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What is the Electron? i 
edited by Volodimir Simulik (Montreal: Apeiron 2005) 

Preface 

The electron is the first elementary particle, from both the physical and the his-
torical point of view. It is the door to the microworld, to the physics of elemen-
tary particles and phenomena. This book is about electron models. 

The year 1997 marked the centenary of the discovery of the electron as a 
particle by J.J. Thomson. We have already passed the centenary of Planck’s 
great discovery and the beginning of quantum physics; 2001 marked the 75th 
anniversary of Schrödinger’s equation and the beginning of quantum mechan-
ics, while the year 2003 was the 75th anniversary of the Dirac equation and 
Dirac’s model of the electron. 

Today the most widely used theoretical approaches to the physics of the 
electron and atom are quantum mechanical and field theoretical models based 
on the non-relativistic Schrödinger and the relativistic Dirac equations and their 
probabilistic interpretation. This is the basis of modern quantum field theory. 
More than 75 years is a long time for a physical theory! This theory is the basis 
for all contemporary calculations of physical phenomena. 

After 75 years most physical theories tend to be supplanted by new theo-
ries, or to be modified. The theory’s successes, as well as its difficulties, are 
now evident to specialists. There is no proof of the uniqueness of the quantum 
field theory approach to the model of the electron and atom. Are other ap-
proaches possible? Quantum field theory may be sufficient to describe the elec-
tron, but is it necessary? This theory and its mathematics are very complicated; 
can we now propose a simpler construction? Is the electron an extended struc-
ture, a compound object made up of sub-particles, or is it a point-like elemen-
tary particle, which does not consist of any sub-particles? What is the limit of 
application of modern classical physics (based either on the corpuscular or 
wave model) in the description of the electron? These and many other ques-
tions remain without definitive answers, while experiments on quantum entan-
glement have given rise to new discussion and debate. New high-precision ex-
perimental data, e.g., on the electric and magnetic dipole moments of the elec-
tron, may prove decisive. 

This book, What is the electron?, brings together papers by a number of 
authors. The main purpose of the book is to present original papers containing 
new ideas about the electron. What is the electron? presents different points of 
view on the electron, both within the framework of quantum theory and from 
competing approaches. Original modern models and hypotheses, based on new 
principles, are well represented. A comparison of different viewpoints (some-
times orthogonal) will aid further development of the physics of the electron. 

More than ten different models of the electron are presented here. More 
than twenty models are discussed briefly. Thus, the book gives a complete pic-
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ture of contemporary theoretical thinking (traditional and new) about the phys-
ics of the electron. 

It must be stressed that the vast majority of the authors do not appeal to 
quantum field theory, quantum mechanics or the probabilistic Copenhagen in-
terpretation. The approaches adopted by these authors consist in using “lighter” 
mathematics and a “lighter” interpretation than in quantum theory. Some of 
them are sound approaches from the methodological point of view. 

The editor will not presume to judge the models or the authors. We will 
not venture to say which model is better, and why. The reasons are simple. (i) 
Readers can reach their own conclusions themselves. (ii) Investigation of the 
electron is by no means finished. (iii) My own point of view is presented in my 
contribution to the book. So I want my paper to be on an equal footing with 
other new models of the electron presented here. 

The general analysis of the electron models presented here shows that 
they can be classified as follows: corpuscular and wave, classical and quantum, 
point and extended, structureless and with structure. The reader can compare 
and ponder all these approaches! I would like to thank the authors for their con-
tributions. 

It is my hope that this volume will prove worthwhile for readers, and en-
courage them to pursue further investigation of electron models. 

Volodimir Simulik 
Senior Research Associate 

Institute of Electron Physics 
Ukrainian National Academy of Science. 

Uzhgorod, Ukraine
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A Comprehensive Theory of the 
Electron from START 

Jaime Keller 
Departamento de Física y Química Teórica 
Facultad de Química 
Universidad Nacional Autónoma de México 
AP 70-528, 04510, México D.F., MEXICO 
E-mail: keller@servidor.unam.mx  
and keller@cms.tuwien.ac.at 

Space and Time are primitive concepts in science, used to describe material ob-
jects in relation with other material objects and the evolution of those relations. 
Mathematical description of those relations results in an observer’s geometric 
frame of reference. To describe the object’s behaviour, we add one more geo-
metric element: the Action attributed to the system of objects. A fundamental 
concept is that of action carriers. The resulting Theory has a deductive character. 
A comprehensive (mass, charge, weak charge, spin, magnetic moment) theory of 
the electron is presented from this point of view. The main emphasis is given to 
the mathematical structures needed and the epistemological issues of the theory. 

PACS number(s): 01.55.+b, 31.15.Ew, 71.10.-w, 71.15.Mb 

Keywords: Space-Time-Action, Electron, Neutrino, Magnetic Interaction, Weak 
Interaction, START. 

1. Introduction: space, time and material objects – 
mathematical structures 

This paper contributes to the construction of a deductive theory of matter, start-
ing from first principles and using a single mathematical tool, geometric analy-
sis. We present a comprehensive theory, where the analysis is centered in the 
theory of the electron. 

It represents a logical continuation of the material presented in the volume 
The Theory of the Electron, A theory of matter from START and a series of pub-
lications [1-5]. 

We recast here our fundamental philosophical and methodological re-
mark. The theory of the electron developed in the above mentioned book is 
based on two main theoretical considerations: the nature of a scientific theory 
and the elements used to describe nature. The basic purpose of the theory pre-
sented here is a description of what can be observed, inferred, related and pre-
dicted within the fundamental limitations of experimental and theoretical sci-
ence. We do not go beyond these limitations in any sense, nor seek to derive 
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fundamental concepts from model structures which might be supposed to be 
more fundamental. 

We use three basic elements of physical objects and phenomena: time, 
space, and action density. The first element, a one-dimensional manifold time, 
an evolution parameter, (a primitive concept, universally accepted) is defined 
by its mathematical properties. The concept of space, frame of reference, is de-
fined, using the same considerations, through its mathematical description; this 
requires a three dimensional manifold in agreement with our anthropological 
apprehension of nature. The third element of physical nature considered here is 
given the unfortunate name of density of action, and describes the existence of 
physical objects, assuming action is a one dimensional manifold joined to the 
previous four in a geometrical unity. We have refrained from giving this con-
cept a new name because we want to emphasize that we are presenting new 
conceptual and mathematical structures (Principia Geometrica Physicae). In 
our presentation an action density field is introduced into the space-time frame 
of reference to describe matter through the properties of this action density dis-
tribution. The space-time-matter concept is tautological: it is a set of non-
separable concepts in nature. 

Geometry is introduced through the use of a quadratic form to give a 
quadratic space structure to the variables: 

 

2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2
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When distributions of action in space-time are made to correspond to 
physical objects, we conclude that, as time evolves, the permanence of these 
objects is related to a set of symmetry constraints on that action distribution. 
The presentation used is then both a mathematical and an epistemological ap-
proach to the study of matter, and of physics itself. 

1.1 Epistemological approach 
The procedure followed in this article is: 

1. To define a frame of reference to describe physical objects as a distri-
bution field (carrier), the geometric space-time-action frame allows the 
definition of velocities and of energy-momentum as derivatives. 

2. To define fields of carriers through a set of properties. 
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3. To describe interaction as the possibility of exchange of energy-
momentum among the carriers (of sets of properties). 

4. To find the equations for the interaction fields. 
5. To find the sources of the interaction fields. 
6. To determine the physical properties of a field of sources in such a 

form that those fields can be used as carriers. 
7. To find the equations for the (source) carriers. 
8. To find the observable properties of those carriers and identify them as 

the observed electron and its elementary particle partner, the neutrino. 

1.2 Position and localization 
Once the sub-frame space-time is defined there is a fundamental difference be-
tween position and localization. Position refers to a mathematical point x in 
space (which in general can be described by an anchored vector). The fixing 
point is called Coordinate Origin and a Poincaré coordinate transformation in-
cludes a change of this reference point. Localization refers to the possibility of 
assigning a restricted, continuous, set of position points ( ) 0ρ ≠x  to a physical 
object (or phenomena). Localized objects are those for which a domain of posi-
tion points can be assigned, the size of the domain being defined as the size of 
the physical object (or phenomenon). Non-localized objects correspond to 
those for which the domain of explicitly considered position points is larger 
than some assumed size of the object (or phenomenon). 

1.3 Mass, charge, action, space and time 
In our theory action, as a fundamental variable, is distributed among a set of 
carrier of action fields. An action density ( , )w tx , action w  per unit space-
time hypervolume 0 1 2 3x x x xΔ Δ Δ Δ  at point ( , )tx  with 0x ct= , is the fundamen-
tal concept defining space (parameterized by x), time (parameterized by t), and 
action density (parameterized by a scalar analytical function ( , )w tx , as primi-
tive concepts from which all other physical quantities will be derived or at least 
related directly or indirectly. The different forms of distributing the action 
among these carriers define the carriers themselves. This is fundamental in the 
practical use of the four principles below. For an elementary carrier n  we will 
define ( , ) ( , )n n nw x t f x tρ= . With constant in space nf . 

Within our fundamental formulation we will have to define properties of 
the fields we call carriers. A carrier will have physical significance through its 
set of properties. The density ρ of an elementary carrier field can be defined 
through a set of scalar constants, such that the integral of the product of these 
constants, and the density gives the experimentally attributed value of a prop-
erty for that carrier. We will use an example: a carrier field identified with an 
electron will have a density ( , )tρ x , and if the property is Q we will define 

( , ) ( , )Q q t d q t dρ= =∫ ∫x x x x  for all t, which determines that Q is a constant 
property (in space and time) for that field. The set of properties {Q} character-
izes a carrier field and in turn establishes the conditions for a density field to 
correspond to an acceptable carrier. 
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The concept of charge appears in the theory first of all from the necessity 
to define the objects which exchange action (charges are always relative prop-
erties) in order to give a formal meaning to the principle that action will be ex-
changed in integer units of the Planck constant. In this context for an electron-
like carrier both mass and electric charge belong to the generic name of 
‘charges’. This program can obviously not be achieved if the formulation is not 
suitable to deduce of the theory of elementary particles, giving a geometric 
meaning to this theory. 

The definition of w is as a finite analytical action density and, to agree 
with standard formulations, the energy density /E w t= ∂ ∂�  and the momentum 
density / i

ip w x= ∂ ∂  are the fundamental rates of change of the primitive con-
cept of action (considering a unit time-like interval 0 1xΔ = ). 

In our full geometrization scheme a vectorial representation X x eμ
μ=  for 

{ , , , ; , 0,1,2,3}ct x y z xμ μ =  is used, and from the space-time gradient of w we 
recover the positive semi-definite energy-momentum expression 
 2 2 2 2 2 2/ ,       ,x y zE c p p p P P p eμ

μ− − − = =  (1) 

as well as the space-time 2 2 2 2 2 2ds c dt dx dy dz= − − − . Action change 
dK P dX= ⋅  is introduced through quadratic terms 2dK  (see appendix) 
 { }22 2 2 2 2 2 2 2 2 2 2 2 2

0 ( / ) ,x y zdS ds dK E c c dt p dx p dy p dzκ− = − = − − − −  (2) 

creating a unified geometrical quadratic form 2dS . The dK  vector, the direc-
tional in space-time change of action, is a new theoretical quantity formally de-
fined by (2). Notice that the generalization 2 2ds dS⇒  also corresponds to a 
(generally curved) generalization of the space-time metric 

( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 01 / 1 1 1x y zdS E c c dt p dx p dy p dzκ κ κ κ= − − − − − − −  

1.4 Hypotheses and principles of START 
The set of hypotheses and principles which are explicitly included in our theory 
are called START [3]: 

Physics is the science which describes the basic phenomena of Nature within 
the procedures of the Scientific Method. 

We consider that the mathematization of the anthropocentric primary con-
cepts of space, time and the existence of physical objects (action carriers), is 
a suitable point of departure for creating intellectual structures which de-
scribe Nature. 

We introduce a set of principles: Relativity, Existence, Quantization and 
Choice as the operational procedure, and a set of 3 mathematical postulates 
to give these principles a formal, useful, structure. 

We have derived in this and previous papers some of the fundamental struc-
tures of Physics: General Relativity, Density Functional Theory, Newtonian 
Gravitation and the Maxwell formulation of Electromagnetism. A funda-
mental common concept is the definition of energy (action) carriers. Most of 
the relations presented here are known, our procedure derives these struc-
tures and theories from START. 
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1.5 Energy, momentum and interaction fields 
There are in the theory two different forms of studying contribution to energy 
and momentum: the quantities defined in the paragraphs above and, second, 
quantities that will be called relative energy or relative momentum. 

Principle of Space-Time-Action Relativity. In a space-time-action mani-
fold an unstructured observer cannot determine his own state of motion; he can 
only determine the relative motion of other bodies in relation to himself and 
among the other bodies themselves. Light in the space-time-action manifold is 
assigned the “speed” c. 

An observer of a “system of bodies” will describe first each body as in 
motion relative to the observer with the concept: motion originated momentum 
(p), and, second, the motion of that body in relation to the rest of the system 
with the concept: interaction originated momentum (Δp=eA). The interaction 
originated momentum is the result of a non-unique description procedure, this 
freedom of definition will mathematically appear as a “gauge freedom” in the 
formulations below. The total momentum to enter in the descriptions for bodies 
in interaction is p + Δp. 

1.6 Action carriers in START 
Consider a set of scalar field “carriers” in such a form that the total action den-
sity in space-time is the sum of the action attributed to the carriers. Some prop-
erties arise from the START geometry itself, others from the description of a 
physical system as a time evolving energy distribution. In stationary systems, 
for a given observer, an elementary carrier field c is defined to have an energy 
density (x)ε ρc c  with cε  being a constant in space, and an integer number of 
carriers cN  of type c. The density ( , )c tρ x  obeys (x, ) xc c

V

t d Nρ =∫  in the sys-
tem’s volume V . 

We make a sharp distinction between action density and Lagrangian den-
sity. The Lagrangian contains, in general, prescriptions (and Lagrange multi-
pliers) for the description of the system. 

Both the action density function ( )w X  and the splitting among carrier 
fields will be considered analytically well-behaved functions. A description is 
introduced when we treat the energy )E t(  of a system as a sum of the different 
carrier types { }c  such that ( ) ( )c

c

E t E t= ∑ , a sum of constants ( )cE t  in space 
for a given observer. 

1.7 Carriers and physical bodies 
The charges are to be defined in our theory from a geometrical analysis of the 
distribution ( )w X when momentum is described in two ways: the amount 
which is related to the rate of change of action with respect to relative position, 
and the amount, per unit charge, which is pairwise shared, adding to zero, 
among the carriers. 

The rates of change of relative energy and momentum are called forces. A 
carrier for which a current of charges can be defined is by definition a body. A 
body corresponds to our hitherto undefined concept of matter. 
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Our study below will show that we cannot define an elementary body 
unless other properties, in addition to charge, are given to the carrier. 

In our presentation the word “particle” is systematically avoided as for many 
authors it refers to a “point” body, with no spatial dimensions. The word 
body, on the other hand, conveys the idea of spatial distribution. Point-like 
distributions can only be introduced as a practical tool for handling a distri-
bution confined to a region of space small in relation to the total system’s 
volume. 

1.7.1 Maxwell equations from START 
In our formalism [3,4] the Maxwell equations in their standard textbook form 
are analytical properties of the third derivatives of the action density attributed 
to a test carrier (with ‘electric’ charge) as induced by a collection of interacting 
carriers. The energy per carrier can be considered the derivative of a scalar 
field, but the momentum for interacting carriers cannot be solely considered the 
gradient of a scalar field. In this particular case, assume that we describe a set 
of carriers as interacting by partitioning an amount of energy (the interaction 
energy E ( )e X ) among them, allowing the partitioning to be described as the 
sum of the overall momentum ( ( ) / )ei i

ew X x∂ ∂  plus the momentum 
, e

e i

i
R pΔ  

induced by interactions among the carriers. These interaction moment fields 
might then have a non-null rotational part. 

Consider, in the reference frame of a given observer, the induced action 
density (arising from the interaction), denoted by ( )ew X∂ , per unit charge 
(⇒ p.u.ch) of a test carrier at space-time point X x eμ μ= . Here the Greek indi-
ces 0,1,2,3μ =  and 0x ct=  whereas the space vectors e e ,= =i i

i iq qq  
0e ,   1,2,3= =i ie e i  are written in bold face letters, and we use the standard 

definitions of “dot” and “cross” products. From it define the related energy 
density ( )e XE  and the total (external plus induced) momentum density pe , 
per unit charge of the test carrier, as 

 ,  ,
( ) ( )

( ) ,      e e ,i ie e
e e e i R e ii

w X w X
X p p p

t x
∂ ∂⎛ ⎞= = = + Δ⎜ ⎟∂ ∂⎝ ⎠

E  {def. 1} (3) 

also, by definition, the electric field strength E as the force (p.u.ch) correspond-
ing to these terms 

 ,( ) p
e ( ) ,e i ie e

ei

pX
X

x t t
∂⎛ ⎞∂ ∂

= + = ∇ +⎜ ⎟∂ ∂ ∂⎝ ⎠

E
E E  (4) 

with time dependence 

 
2 22 3

, ,
2

( )( ) ( )
e 2 e e .

( )
e i R e ii i ie e

i i

p pX a X
t t x t t t x t t

⎛ ⎞∂ ∂ Δ∂ ∂∂
= + = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

EE  

By definition of interacting carriers, we have added in {def. 1} the term 
, ei

R e ipΔ  as the effect of the conservation of interaction transverse moment be-
tween the fields representing the rest of the carriers with that sort of charges. 
This is by definition the origin, in START, of a magnetic field intensity 
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B k
kB e=  that will appear as the curl of the momentum (p.u.ch) of an interac-

tion field acting on a carrier of type b. The axial vector 

 , ( )
B e e p ,e i j i

ei

p X
x

∂⎛ ⎞
= × = ∇ ×⎜ ⎟∂⎝ ⎠

 

with time dependence 

 
2

, ( )B e e .e i j i
i

p X
t t x

⎛ ⎞∂∂
= ×⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

 

Otherwise the space variation of E , including the interaction transverse mo-
ment, E E E,∇ = ∇ ⋅ + ∇ ×  will also include a transversal (rotational) term 

 
2

, ( ) Be ee j i j
i

p X
x t t

⎛ ⎞∂ ∂
∇ × = × = −⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

E  {2nd Maxwell Equation} (5) 

relation which is the direct derivation in START of this well known Maxwell 
equation. The scalar term ∇ ⋅ E  being a divergence of a vector field should be 
defined to be proportional to a source density 

 
2

2

0

( )1 ( ),e
ei i

i

w X
w X

x x t t
ρ

ε
⎛ ⎞∂ ∂

∇ ⋅ = = = ∇⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∑E  {1st Maxwell Equation} 

and will be given full physical meaning below. 
For the space variation of B  we have 

 B B B∇ = ∇ ⋅ + ∇ × . 
The first term vanishes identically in our theory because it corresponds to the 
divergence of the curl of a vector field 
 B 0∇ ⋅ = , {3rd Maxwell Equation} 
while the last term, using ( ) ( )U V W V U W U V W× × = ⋅ − ⋅  

 2 2
0 0B ( ( )) p J ,e ew X

t
μ ε ∂⎛ ⎞∇ × = ∇ ∇ − ∇ = +⎜ ⎟∂⎝ ⎠

E  {4th Maxwell Equation} 

The additional dimensional constant μ0 is needed to transform from time units 
(used in the conceptual definition of a current 2

0( ( )) /eJ a X μ= ∇ ∇ ) into dis-
tance units. The units of 0 0ε μ  are of 2 2/T D  or inverse velocity squared, in 
fact (see below) 2

0 0 cε μ −=  corresponding to have used above twice the deriva-
tive with respect to t and not to 0x ct= . 

The (4th Maxwell Equation), defining J, is related to the analog of the 
(1st Maxwell Equation) and the analog of the (2nd Maxwell Equation), also to 
a Lorentz transformation of the (1st Maxwell Equation). 

The Maxwell equations can be formulated in 4-D form ( eμ
μ= ∂, ) 

 0 0 0
1 1 e ,   J ,   ,   0,1,2,3,   ) :μ

μ ρ μ= ∂ + ∇ = ∂ + ∂ = = = =�, t t i ie e J J x ct
c c

 

 
0 0

1 1 1F E cB , F J F , F J.
c c

ρ
ε ε

∂⎛ ⎞= + ∇ = + − =⎜ ⎟ ∂⎝ ⎠
�,

t
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The here derived Maxwell equations are formally equivalent to the original 
Maxwell equations, then they are: first local equations and second linear in the 
sources (ρ and J). 

Both the (4th Maxwell Equation), defining J, related to a Lorentz trans-
formation of the (1st Maxwell Equation) defining ρ, can immediately be inte-
grated using geometric analysis techniques, the standard approach being of 
fundamental conceptual consequences in START. The space divergence of a 
non-solenoidal vector field like E is immediately interpreted as its ‘source’ us-
ing the standard geometric theorem that the volume integral of a divergence 

E∇ ⋅  equals the surface integral of the normal (to the surface) component of 
the vector field ⋅n E . Consider: 

 
( )2 2

0 0

2
0

4 1 (r n)( E) ( ) 4 ,

r rE ,         r n .
4

π ρ π
ε ε

πε

⋅′ ′ ′∇ ⋅ = = = =

= = ⋅ =

∫ ∫ ∫
V V S

dV r r dr Q E(r) dS r E r
r

QE(r) r
r r r

 

That is: the inverse square law of the Newtonian and Coulomb forces are geo-
metrical consequences of the definition of interaction among charged carriers. 
Nevertheless this is not a derivation of the value(s) of the (Newtonian and) 
Coulomb constant(s) G and 0ε . 

For a small ( l r≤ ) current source at the origin of coordinates: (in the 
sphere 2 2r ( , ) r 0,   (r ) (r ) 1t ct t ctθ φ ⋅ = = = ) 

 

2

2 2 0
0 0 2

( B) (r ( , ) n) 4 r ,

4 J ( ) r 4 r B ( )r r ,
4

t ct

V S

ct ct t t

V

dV B(r) dS r fB(r)

M
r r dr M r fB(r) B r

r f

θ φ π

μ
πμ δ μ π

π

∇ × = × =

′ ′ ′ = = ⇒ = =

∫ ∫

∫
 

and its Amperian inverse square law is also a geometrical consequence of the 
definition of transverse interaction among charged carriers. 

1.7.2 Beyond Newtonian gravity 
The analysis above depends only on the assumption of the decomposition of 
the action and of the energy momentum into contributions per carrier. The 
analysis above can applied to gravitation considering the mass 2/M E c= . The 
Newtonian gravitational potential equation per unit test mass m 

 ( ) ,MV r G
r

= −   that is  2E ,MG
r

= −  

the usual relations in the textbook formulation of Newtonian gravity. The con-
stant ( )

01/ 4 gG πε= . If we define 2 ( ) ( )
0 0 1g gc μ ε =  then ( ) 2

0 4 / .g G cμ π=  
In this approach to gravitation there is no quantization properly, there be-

ing no exchange of action, only a description of the sharing of energy between 
a source carrier and a test carrier. We include the transverse momentum in the 
interaction between sources of the gravitational field: 
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2 ( ) ( ) B

E ,
g

j gi j
g i

p X
e e

x t t
∂ ∂

∇ × = × = −
∂ ∂ ∂

 (6) 

( )2 ( ) 2 ( ) ( ) ( )
0 0 2 2

E E4 1B ( ) p J Jg gg g g g
g e e g g

Gw X
t c c t

πμ ε
∂ ∂⎛ ⎞

∇ × = ∇ ∇ − ∇ = + +⎜ ⎟∂ ∂⎝ ⎠
 

1.8 Formal definition of carrier fields 
We follow our presentation in [4] (Keller and Weinberger). 

A carrier-domain B is a connected open set whose elements can be put 
into bijective correspondence with the points of a region (domain in some in-
stances) B of an Euclidian point space E. B is referred to as a configuration of 
B; the point in B to which a given element of B corresponds is said to be “oc-
cupied” by that element. If X denotes a representative element of B and x the 
position relative to an origin 0 of the point x occupied by X in B, the preceding 
statement implies the existence of a function ϑ: B 0B→ , ( 0B , stands for the 
totality of the positions relative to 0 of the points of B) and its inverse Θ: 

0B →  B such that 
 ( ),   X= (x)x Xϑ= Θ  (7) 
In a motion of a carrier-domain the configuration changes with time 
 x  = φ(X,t),         X = Φ( x ,t) (8) 
In a motion of B a typical element X occupies a succession of points which to-
gether form a curve in E. This curve is called the path of X and is given para-
metrically by equation (8). The rate of change v of x in relation to t is called the 
velocity of the element X, (our definitions run parallel to those of an extended 
body in continuum mechanics; see for example Spencer 1980 [8]). The velocity 
and the acceleration of X can be defined as the rates of change with time of po-
sition and velocity respectively as X traverses its path. “Kinematics” is this 
study of motion per se, regardless of the description in terms of physical forces 
causing it. In space-time a body is a bundle of paths. 

Equations (8) depict a motion of a carrier-domain as a sequence of corre-
spondences between elements of B and points identified by their positions rela-
tive to a selected origin 0. At each X a scalar quantity is given, called carrier 
density ρ(X), such that if x = φ(X,t) then ρ(X) → ρ( x ,t) defines a scalar field 
called local carrier density. 

As already mentioned, a carrier will have physical significance through its 
set of properties. We used charges as example. The set of properties { }Q  char-
acterizes a carrier field and in turn establishes the conditions for a density field 
to correspond to an acceptable carrier. 

1.9 Carriers in interaction 
In B the carrier has existence only, whereas in B the carrier c has a distribution 
characterized by the density ( , )c tρ x . There is no restriction in defining a refer-
ence space BR  where the carrier exists in the points x with constant density 0ρ  
occupying a volume 0V  such that (0)

0 1Vρ = . These two quantities are unob-
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servable as far as any “observation” requires an “interaction,” only then the 
distribution acquires meaningful space dependence as a function, by definition, 
of an external interaction V( , )tx , which will be defined below. Here it is im-
portant to state that as a result of this interaction, and of the properties attrib-
uted to the carrier, the density evolves into a current: (0) (x, )V

cj tρ ⇒
G

. The den-
sity is characterized by the properties of the carrier and the self-organization of 
the carrier, which adapts to the external interactions. 

1.10 Composite, decomposable, elementary, average and average 
description of carriers 

There are several ways to analyze the density. Each allows a physical interpre-
tation. For example: 

• A composite carrier is defined as one for which the density 
 ( , ) ( , ),c

C C c
c

t A tρ ρ= ∑x x  (9) 

with the definition of each of the ( , )c tρ x  being also meaningful as a descrip-
tion of a carrier. 

• Similarly a non-decomposable carrier is defined as one for which (9) 
applies but for which the meaning of each of the ( , )c tρ x  cannot be 
defined without reference to the global ( , )C tρ x . 

• An (non-decomposable) elementary carrier is one for which a single 
( , )c tρ x  is all it is needed; in this case we emphasize the discrete na-

ture of an elementary carrier, but we do not assume a point-like or any 
internal structure for them. 

• An average carrier is defined as one for which its density can be de-
scribed as ( 1,

c
c n AW A== Σ ) 

 
1,

1(x, ) (x, ),c
A A c

c n
t A t

W
ρ ρ

=

= ∑  (10) 

with the definition of each of the ( , )c tρ x  being meaningful as a de-
scription of a carrier itself. 

• Similarly an average description of a carrier can be defined either as a 
space average over carrier descriptions as in (10) or as a time average 

of a description, or sum of descriptions (
0

0
1,

1 ( )
t t

c

c n t t

W A t dt
r

τ= +

= =

= ∑ ∫ , the 

choice 1W =  presents less manipulation difficulty) 

 
0

0
1,

1 1( ) ( ) ( ) .
t t

c

c n t t

A t ,t dt
W r

τ

ρ ρ
= +

= =

= ∑ ∫x x  (11) 

This paper is centered on the definition of the elementary carriers and 
their correspondence with the fields describing the elementary particles, in par-
ticular the electron and its partner particle, the neutrino. 
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1.11 The density 
For a physically acceptable carrier density: 

D1. (x, )c tρ  is a real function (x, )c tρ ⊂ R . 
D2. The density 0 (x, )c tρ≤ < ∞  in order to represent a finite 

amount of charges and of action. 
D3. The derivatives of the density (x, )c tμ ρ−∞ < ∂ < +∞  in order 

to represent a finite amount of energy-momentum. 

Theorem 1 If ( , )tΨ x  is an analytical quadratic integrable complex or 
multivector function, conditions D1, D2 and D3 are fulfilled identically if 

2( , ) ( , )c ct tρ = Ψx x . Here 2f means the real quadratic form of any more gen-
eral function f, even if f itself is not necessarily a real function and we define: if 

2f f f+=  then 2fμ∂ =  ( ) ( )f f f fμ μ
+ +∂ + ∂ . 

Condition D1 is fulfilled by the definition 2( , ) ( , )c ct tρ = Ψx x , D2 by the 
requirement of quadratic integrability, D3 by the definition 2fμ∂ =  
( ) ( )f f f fμ μ

+ +∂ + ∂  and the analytical properties of ( , )tΨ x . It is seen that the 
conditions D1, D2, D3 and ( , )c ct d Nρ =∫ x x  correspond to the ( , )tΨ x  being 
quadratic integrable Hilbert functions. 

1.12 Wave function quantum mechanics and density functional 
theory from START 

We proceed now to establish the basic theoretical aspects of the study of carri-
ers, which result in a stationary state Wave Function Quantum Mechanics and 
Density Functional Theory of the carriers. 

• The total energy of the system is a functional of the density, which can 
be defined in two steps. The first is to establish that there is a ground, 
least action, minimum energy, state of the system, which defines the 
carriers themselves: 

 ( ) ( ) ( )
0 0 0(x) x (x) x ,N N NE E d d Nρ ε ε= = =∫ ∫  (12) 

 ( )
0 (x) xN d Nρ =∫         (N = number of carriers), (13) 

where the density of energy ( )
0 ( )NE x  at a given space point x has been 

factorized as the product of the energy ε per carrier and the carrier 
density ( )

0
Nρ . This by itself is the definition of elementary carriers of 

a given type: they are indistinguishable, equivalent, and the energy of 
the carrier is a constant in space, for all points of the distribution and, 
in a given system, the same for all elementary carriers of the given 
type. 

• The constant defining the energy per carrier is a real functional of the 
carrier density and of the auxiliary function (x)Ψ . 

 ( )
0 (x), (x)Nε ε ρ⎡ ⎤= Ψ⎣ ⎦ . (14) 

Because the reference energy has to be freely defined, this constant 
may be positive, negative, or null. The functional may, in some cases, 
become a local density functional (LDF). 
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The energy density, assuming indistinguishable (independent or inter-
acting) carriers of a given type is now subject to the needs or desires 
of the observer describing the system. This defines independent carri-
ers from interacting carriers, in that this energy appears as a property 
of the carrier in the system (a pseudo-carrier in condensed matter 
physics language), different from an isolated carrier. 

Physics studies both the system in itself and, mainly, its response to external 
excitations. In the simplest approximation the necessary description is that of 
the possible stationary states of the system. 

• The study of different excitation energies of the system hν is now 
equivalent to the Heisenberg approach to studying a physical system 
through its excitation spectra, which was properly termed quantum 
mechanics due to the direct use of Planck’s constant h. 

•  Density functional theory describes the self-organization of the carrier 
system with density ( )ρ x  in the presence of some external potential. 

1.12.1 The density as the basic variable 
It is convenient to define the action in a form that distinguishes the part corre-
sponding to the self-organization of the distribution and the part that corre-
sponds to the ‘external’ influences on the distribution. 

The volume (in space) of integration is considered large enough for the 
‘kinetic’ energy to be internal; there should be no need to change the integra-
tion domain as a function of time. If the external influence is represented by the 
external potential V( )X  we can write for the total (invariant) action 
 [ ( )] xV( ) ( ) ,IA dt E X d X Xρ ρ⎡ ⎤= +⎣ ⎦∫ ∫�  (15) 

where the functional [ ( )]IE Xρ�  corresponds to the energy of the distribution of 
carriers ( )Xρ . This functional IE�  has the interesting property that at a given 
time 

 V( )
( )

IE X
X

δ
δρ

= −
�

. (16) 

This is a basic relation in Action-DFT as far as there is an intrinsic definition of 
the external potential. This shows the tautological nature of the concept of car-
riers, once they are defined, by [ ( )]IE Xρ� , the external potential is defined 
through the density of the carriers themselves. The tautological cycle is closed 
when given V( )X  and ( )Xρ  the kinetic energy and the interaction terms de-
fine [ ( )]IE Xρ� . Reminder: in practice more general forms of V( )X  should 
also be acceptable. 

From the definitions above we can extend the description to consider a set 
{b} of types of carriers, each carrier type with density bρ . In this case for each 
b the ‘external potential’ depends in all types b b′ ≠ . 
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1.12.2 Introducing gauge freedom for the description of the action 
The density ( )Xρ  at space-time point X is required to be gauge invariant, 
whereas the description of the energy (action) is gauge dependent. This is 
achieved by constructing the energy density as the product of an average en-
ergy per carrier ε with the two conjugated quantities ( )XΨ  and † ( )XΨ  such 
that †( ) ( ) ( )X X Xρ = Ψ Ψ  is gauge invariant. Here we define an auxiliary 
quantity: a gauge phase ( )Xφ , similar to that proposed by Klein and by Fock 
as early as 1926 [10]: 
 0 ( ) ( )( ) ( )  ( )   ,ia X i XgeomX A X X e Pφρ − +

+↑Ψ =  (17) 
where we are restricted (even if ( )Xφ  can be very general [3] and can repre-
sent electroweak, color and gravitational interactions), by definition, to 

 0( ( ) ( ))
,

a X X
t

φ
ε

∂ −
=

∂
=  (18) 

showing the gauge freedom of the description of the energy (action) associated 
with the carrier. We have then recovered the equivalent to the Hohenberg-
Kohn Theorems [11] and, with our definition of ( )geom Xρ  below, the Hartree-
Fock or the Kohn-Sham minimization procedures [12] from 

 { }( )[ ] (x) x 0,E p d Nδ ε ρ− − =∫�  (19) 

allowing the direct self-consistent determination of ( )ρ x  and ε (see [5]). 

1.13 Least action amplitude functions in START 
We can now follow the START definitions and the Schrödinger procedure to 
obtain the stationary action states of the elementary carriers system. 

1. Let the Schrödinger (1926) definition of action W(x, )t  in terms of an 
auxiliary function ( , )tΨ x  be 

 †W(x, ) ln (x, ) ln (x, )t K t K t= Ψ = − Ψ , (20) 
that is: action is considered a sum of terms. The action W(x, )t  is re-
quired to correspond to the stationary states of the system to be de-
scribed, if ensured through a variational optimization procedure. 

2. Let the carrier density ρ be the real quantity defined above 
 †(x, ) (x, ) (x, ),t t tρ = Ψ Ψ  (21) 

where , ( , )tρ x , Ψ and †Ψ  are: unique-valued, continuous and twice-
differentiable and obey the additional condition (x, ) 0space boundarytρ = . 

3. Let the canonically conjugated variables be (x, )X t=  and 
†W ln lniK iK= Ψ = − Ψ, , , , with eμ

μ= ∂,  the space-time gradient 
operator. 

4. Let the local energy description be ( 0E�  is not a density) 

 
†

2 2 2 2 2 2 2
0 0†

( )( ) ( ) ( ) ( ) ,K c E Pc E m cΨ Ψ
= − = =

Ψ Ψ
� �, ,  (22) 
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(in the case where an interaction, through a gauge, is assumed to exist 
2 2 2 2

0( ) ( ) ( )E V Pc eA m c− − − = ) with the Euler-Lagrange (density of 
energy and constrain) function 

 2 † 2 2 2 †
0( ) ( ) ( ) ,J K c m c= Ψ ⋅ Ψ − Ψ Ψ, ,  (23) 

and perform the variational search for the extremum energy E�  (mini-
mum of action for a stationary state system) 0Jδ =  to obtain from the 
standard variational approach the condition ( 2 2K = = ) 

 2 † 2 2 † 2 †
0[ ( ) ( ) ] ,K m cΨ Ψ + Ψ Ψ = Ψ Ψ, ,  (24) 

and then the equation for the auxiliary function Ψ (the Schrödinger-
Klein-Gordon-like Equation (SKG)) is 

 
2 2 2 2

2 2 2 2
02 2 2 2 ( ) 0.c m c

t x y z
⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂

− + + − Ψ =⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
=  (25) 

We must emphasize that in the relativistic (and in the non-relativistic) case we 
obtain, through the Schrödinger optimization procedure, the Ψ  (or †Ψ ) func-
tion which minimizes the action of the system. A geometric factorization of the 
operator in the SKG equation transforms it into a Dirac-like equation. The 
gauge potentials are to be added. 

1.13.1 General case of the auxiliary amplitude function Ψ 
The auxiliary amplitude function Ψ describing the (set of) carrier(s) is con-
structed from sums of per carrier c, contributions cψ  (sets of sums also). The 
space-time distribution cψ  of a carrier and its intrinsic properties is given by 
the (four factors) functions: 
 ( )

(1) ( , ) ( , ) i t kxgeom
c x t R x t e Pωψ ρ − −

+↑=  (26) 

the first factor, the geometric square root geom ρ , describes the per carrier local 
density, the second, the multivector transformation ( , )R x t , the carrier local 
properties, the third ( )i t kxe ω− −  the observer-relative carrier local motion and the 
last, the P+↑ , is a projector describing the reference sign of the mass and the 
reference direction of the spin. 

1.13.2 First order equation as a factorization-projection 
Consider (here again 2 2

0( / )k m c= = , 2 1i = − ) 

 
2

2 2
2 2

1 0,k
c t

ψ ψ ψ∂
− ∇ + =

∂
 (27) 

and propose the factorization of the operator in the Dirac sense ( eμ
μ= ∂, ) 

 ( )( ) ( )( ) ,ik ik ik ikμ μ
μ μψ γ γ ψ+ − = ∂ + ∂ −, ,  (28) 

defining the projected function 
 ( ) ,ikμ

μγ ψΨ = ∂ −  ( ) 0ikμ
μγ ∂ + Ψ =  (29) 

which obeys, by construction, the well known Dirac equation, showing that the 
auxiliary function Ψ, optimized to obtain the least action, is a geometric func-
tion (using a representation ( )eμ μγ γ=  of the geometry). 
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For a massless carrier field 0k = , this factorization is not unique, as 
 2 †( ) ( )( ),m D mi D miμ

μ∂ ∂ + = + −  (30) 
requires that 
 † 0D m mD− + =     and    † 2 ,D D μ

μ= ∂ ∂ =,  (31) 
therefore we can have a set of choices, either: 

1. any value of m and †D D=  (the standard Dirac operator 0D =, ); 
2. or when m = 0 the possibility †D D≠  also becomes acceptable. 

The basic requirement † †D D DD μ
μ= = ∂ ∂  limits the choices of D. Here they 

will be written in the Lorentz invariant form. The ( )f
μΓ  are a generalization (ir-

reducible or reducible representation) of the Dirac μγ  matrices. The limitation 
is so strong that the only possible choice, within the algebra, is when the chiral-
ity generator 5iγ , which has the same action on all μγ , that is 5 5i iμ μγ γ γ γ= − , 
is used (see Keller [3]). We define the differential 

 ( ) 51cos( ) sin( ) ,
2 2

d d dn t i n tμ μ μ μ
π πγ⎧ ⎫∂ = + + + ∂⎨ ⎬

⎩ ⎭
 (32) 

with n and dtμ  integers, a choice which results in the simplest multi-vector. 
Here, to take the electron as a reference, we use n = 1. 

Then, in a particular frame we have the ‘diagonal’ structure: 

 ( )
5

          if    are even,
   if    are odd.

d
d

d

n t
i n t
μ μ

μ
μ μγ

⎧∂ +⎪∂ = ⎨ ∂ +⎪⎩
 (33) 

The vectors, which can be represented by the standard μγ  matrices, correspond 
to an irreducible representation of the Clifford algebra 1,3C  useful for writing 
the wave equations of the fundamental family of leptons and quarks 
( , , ,{ ,R L L L le e u dν− − ; color}} of elementary particles. The electron requires a 
combination of two massless fields ( , )R Le e e− − −=  for the standard phenomenol-
ogy of electroweak-color interactions. The case of the neutrino presented here 
is the simplest of these structures. 

1.14 Interaction fields and charges 
Consider the particular case of an initial situation without electromagnetic phe-
nomena being present E 0,   J 0,   B 0= = =  and 0ρ = , and that in the process 
of creating a pair of interacting carriers with electric charges Q , an initial pulse 
of current 0J(r, ) v(r) ( )t Q tδ=  is assumed to have been generated. This induces 
an electric field for 0t t>  from the Maxwell Equations derived above: 
 0 0 0 0 0E J(r, ) / / v(r) ( ) / ,t t B Q tε ε μ δ ε∂ = − + ∇ × =  (34) 
 0 0E(r, ; ) v(r) /t t t Q ε> = −   then  (r, ) v(r),t Qρ = − ∇ ⋅  (35) 
and 
 0 0 0B(r, ; ) E(r, ; ) v(r) / ,t t t t t t t Q ε∂ > = −∇ × > = ∇ ×  (36) 
showing that this virtual mechanism (in our process to establish a partitioning 
of energy and momentum among charged carriers) requires the actual alloca-
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tion of physical properties, to the collection of created carriers, since the diver-
gence of the current pulse creates a charge and the rotational of the current 
pulse of velocity field v(r)  creates a magnetic dipole. We can see that the defi-
nitions are a circular procedure: sources create fields or fields generate the con-
cept of sources. 

In START the charge Q corresponds to the rotations (a new type of 
“spin”) in the planes generated by the (space axis)-(action axis) basis vectors. 
Notice that a charged source with a circular current generates an electric and a 
magnetic field, the case of the electron, and the carrier also shows the presence 
of the spin associated to the solenoidal current. Within the postulates above the 
action of circular currents will have to be quantized in terms of Planck’s = , a 
pair of currents in terms of / 2=  each. The emitted, excess energy-momentum-
angular momentum (electromagnetic wave), is itself (from the Maxwell Equa-
tions) an action carrier traveling at the speed 2

0 0( )c ε μ− = . We see that the 
concept of electromagnetic (light) wave is basic to the study of action density 
and its distribution in space-time, and the quantization condition is also funda-
mental in this case. 

2. The experimental electron 
The matter fields enter into the theory as charge-current distribution densities 

( , J).jμ ρ→  The currents J (for example those generated by the electron field) 
can, in general, be decomposed into their solenoidal solj  and irrotational j  
parts. In Dirac’s theory the solenoidal parts analyzed via the Gordon decompo-
sition contain two components: one which is intrinsically solenoidal; and a 
second which is solenoidal only with reference to the boundary conditions and 
the observer’s frame of reference. Then the electron sources of the electromag-
netic fields, in units of the electron charge e , are described in fact by a set of 
seven basic quantities: 
 , ,, , , , ,i j k i sol j solj j j j jρ  and ,k solj  (37) 

We have already reminded the reader that an electron cannot exist without 
its electromagnetic fields, that is, it exists with an electrostatic field generated 
by the electron’s charge, an intrinsic magnetic field generated by its intrinsic 
solenoidal current and an additional electromagnetic field generated by the, ex-
trinsic, electric current. A satisfactory theory considers physical entities as con-
stituted by whatever is observable. 

The intrinsic solenoidal current of the electron implicates not only a mag-
netic moment but also an angular momentum 

 1( ) ,
2

S S x= =∫ =  (38) 

then in (39) above solj  could also be replaced by an angular moment field 
( )S x
G

. Dirac’s theory shows that the magnitude of ( )S x
G

 is 
 ( ) ( ),S x S xρ=  (39) 
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then only the direction of ( )S x
G

 is independent of ( )xρ  but not its magnitude. 
This is one of the most important features of the geometrical content of the 
electron theory. It says that, even if the analysis of an electron distribution 
shows some solenoidal current, there is a curl of the distribution at every point 
and, as is well known in vector analysis, the overall intrinsic solenoidal current 
is the result of the application of Gauss’ theorem to the ensemble: every point 
of the distribution contains the same amount of intrinsic angular momentum 
per unit density. 

There is no indication whatsoever of a structure giving rise to spin, and in 
fact a spin field 1

12 12*S ψγ ψ ρψγ ψ −= =  is one of the most fundamental quanti-
ties of the standard theory. 

In all experiments performed up to date an electron appears as a distribu-
tion of charge, currents and electromagnetic (electroweak, in fact) fields. Prob-
lems arise from the attempt to rationalize the experimental facts starting from a 
point particle idea as the basis for the interpretation of experiment or for the in-
terpretation of the results of the now standard quantum mechanical calcula-
tions. Experiment shows that there is no internal structure of the electron, but 
the experiment does not disagree with the existence of distribution. The ‘inter-
pretation’ of the distribution is a not a question of quantum mechanics, nor of 
the electron theory. That is, there is no experiment resolving the electron 
‘cloud’ into instantaneous positions of a ‘point’ particle, nor at the same time is 
there any evidence at all of a possible excitation of internal structures of an 
electron. 

We could speak in terms of electromagnetic quantities alone. The densi-
ties, which we commonly refer to the sources, can be substituted by electro-
magnetic quantities through the integral form of the Maxwell equations. For 
example, to relate E and E∇ ⋅  

 0 1 12
2 12

0 12 12

E( )1E( ) ,
4

r rr dV
r r

ε
πε

∇ ⋅
= ∫

G GG  (40) 

or to relate H∇ ×  and E∇ ⋅  for time independent E, 
 H∇ ×  = ( E)v,∇ ⋅  (41) 
and we can even think of the electromagnetic potentials Aμ  as quantities re-
lated to the sources in special forms 

 2 0

0

D .AA
t ε

∂ ∇ ⋅
∇ + ∇ ⋅ =

∂

G
 (42) 

We can then assume that besides the field intensities E and H we have a vector 
distribution (reminder 0J ( J)ε ρ= +� ) 
 E ,ρ∇ ⋅ →  (43) 
 ( E)v J,∇ ⋅ →  (44) 
the energy-momentum related to this vector being 
 0 0m E/e,E γ ε= ∇ ⋅  (45) 
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 0 0m ( E)v /e.P γ ε ′= ∇ ⋅  (46) 
Here 0m  appears as a parameter providing the correct dimensions and v′  cor-
responds to the relative velocity between the inertial system where E∇ ⋅  has 
been computed and that of the observer. Remember that relativistically E and 
H cannot be separated, nor do they have a unique formulation; in fact, they can 
always be expressed as Lorentz transformations and duality rotation of a refer-
ence bi-vector 12H *ψγ ψ= . 

2.1 Spin, magnetic moment and mass 
We now give a meaning to the proposed amplitude function cψ in the free par-
ticle approximation. The rest mass parameter 0m  of the carrier will be directly 
related to the amplitude term of the non-dispersive wave packet. This is a con-
sequence of the fact that a non-dispersive wave packet, ψ , is a solution of the 
equation 

 0,ψ =,  where 
2

2 2
2 2

1 .
c t

∂
= ∇ =

∂
,  (47) 

Then a non-dispersive wave for a carrier of mass m travelling in the x+  direc-
tion with velocity v relative to the observer takes the form [13, 14, 15]) 
 0 0(sin / )exp[ ( ) ,geom k r k r i t kx Pψ ρ ω +↑= −  (48) 
where 

 

1
2 2

2 2
0 0 2 2

2 2 2
0

( )m / ,     ,
1 ( / )

m / ,     m / ,     ( / ) ,

x vtk c r y x
v c

c k v k w c kω

⎧ ⎫−
= = + +⎨ ⎬

−⎩ ⎭
= = = −

=

= =

 (49) 

with (x, )tρ = constant representing the time average of a steady state. That 
(48) is a solution of (47) follows by simple substitution. It is also one form of 
the standard spherically symmetrical solution of (47) after it has been subjected 
to a Lorentz transformation. 

Then a solution of (47) takes the form (we leave out the reference projec-
tor P+↑  in this part of the discussion; note 0R > ) 
 exp[ ]geom R iSψ ρ= . (50) 
Inserting this ψ  into (47) and then separating real and imaginary parts, the fol-
lowing two equations are obtained: 

 
2

2
2

12 ( ) 0,SR R S
c t

⎧ ⎫∂⎪ ⎪⎛ ⎞− ∇ − =⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭
,  (51) 

 2

12 2 0.R SR S R S
c t t

⎧ ∂ ∂ ⎫⎛ ⎞⎛ ⎞+ ∇ ∇ − =⎨ ⎬⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠⎩ ⎭
,  (52) 

If one takes the exp[ ]iS  to be the de Broglie wave, so that S t kxω= − , (52) 
now leads directly to the result that 
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2 2
0

2

2
.

m cR
R

=
=

,  (53) 

It is well known that equation (48) represents the superposition of two 
spherically symmetrical waves, one converging and one diverging, both having 
phase velocity c [15], and if the waves are electromagnetic waves, this combi-
nation constitutes a phase-locked cavity similar to that proposed by Jennison 
[16], who has also shown that such cavities have many of the inertial properties 
of particles. The structure of the field can be associated with the electron. We 
now compute the spin of the distribution (48). The momentum P  of the field is 

 † †[ ( ) ] h.c.,
4i

μ
μψ ψ ψ α α ψ= ∇ + ∇ +P =  (54) 

 † † †[ ( ) ],
2 4i

ψ ψ ψ ψ ψ σψ= ∇ − ∇ + ∇ ×P = =  (55) 

and, for k = 0 corresponding to a particle at rest, 

 
2 2

2 2 2

sin ˆ ˆ(x, ) ( 2 2 ),
4 2

k krt yx xy
r k r

ρ
π

⎛ ⎞ ⎛ ⎞∂
= − +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠

P =  (56) 

which represents a circular flow of the field in the plane ˆ ˆx y∧ . The angular 
momentum is given by 

 † † 3 † 3J [ ( ) ] ,
2 2

x d x d x
i

ψ ψ ψ ψ ψ σψ= × ∇ − ∇ +∫ ∫
= =  (57) 

and again the second term, spin, will be the relevant quantity. If we assume R 
to be normalized, then the integral of the spin part would be trivially of magni-
tude / 2= . As for a de Broglie wave packet 0 0m /k c= = , then the same prefac-
tor ( )R r  that generates the mass generates the spin of the total wave. This ap-
pears to be the real origin of the structural parts discussed above. Notice that 

24 ( ) 0r R rπ =  as 0.r →  
The prefactor ( )R r  provides, additionally, a connection with the standard 

model of elementary particles given that 

 sin( ) ,
ikr ikrkr e eR r

kr ikr ikr

−

= = −  (58) 

and it corresponds to a standing spherical wave: /ikre kr  is an outgoing spheri-
cal wave and /ikre kr−  an incoming spherical wave. Given a spin direction they 
will have opposite helicities, and the standing spherical wave will be the reali-
zation of the well-known sum of a left-handed and a right handed wave. 

2.1.1 Conserved electromagnetic quantities 
The integrated quantities 
 3 3E E(x, )( ) ,      P (x, )( ) ,t dx P t dx= =∫ ∫   and  3M ( )( )P x dx= ×∫  (59) 

electromagnetic energy-momentum and angular momentum for a steady cur-
rent J�  are time independent: 0 0 0E / P / M / 0.d dx d dx d dx= = =  
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2.2 The basic structural relationship between charge, magnetic 
moment, spin and mass 

A crucial argument of the present paper is that once we have defined a field of 
sources for an electromagnetic field, which contains a static electric and a static 
magnetic part, and we have shown that this field carries a spin 1/ 2= , the field 
configurations correspond to a charged “particle” with spin. The charge of this 
particle is e and its spin is / 2zM = = . In this case we have (see Appendix) 

 
2 2
ge

=
=   or  2 ,eg e

e α
= =

=  (60) 

where 2 /e cα = =  = 7.29735308 310 1/137−× ≈  is the fine structure constant 
(above in units where c = 1). The relation e/g is a fundamental dimensionless 
structural constant of the formulation of the theory. We now argue that the 
usual relationship between a magnetic moment μ and a spin s is 

 
m
e sμ =  (61) 

and, as for the carrier field, we have defined that the magnetic moment is 0μ  
the carrier should be attributed a mass 0m . This being a structural relationship, 
which should be obeyed at each point of the distribution with carrier density ρ. 
The space integral of ρ  for one carrier is 1, and then the relation (61) is obeyed 
as a relation between physical constants at each and every point of the carrier 
distribution, its space integral being 0 0,  ,  meμ  and s. The radius 0r  is implic-
itly contained in the definitions. 

2.3 Action and energy involved in the interaction 
The logical cycle of the interaction structure would close when the energy and 
action related to these logical and mathematical structures are determined. 
From the definition of the divergence of the interaction fields as the sources 

 
0

1 ,F Jβ
αβ αε

∂ = −  (62) 

which allows the calculations of the energy given off by the source itself, the 
energy of the interaction field. 

For this purpose, consider a variation of the four-vector potential Aμ  and 
the scalar product of these Aμδ  with the source carrier current to obtain, from 
(62) after integration in a volume Ω  of four-dimensional space 

 
0

1 0,F J A dβ α
αβ α δ

ε
⎛ ⎞

∂ + Ω =⎜ ⎟
⎝ ⎠

∫  (63) 

this quantity refers to the action related to the source and also to the field. No-
tice that where 0Jα ≠  the integrand vanishes by definition. An integration by 
parts, using a boundary condition Aμδ (boundary) = 0 and the antisymmetry of 
the F Fμν νμ= −  gives 

( ) [ ( ) ( )] ( ) ..F A d F A F A d F A dβ α β α β α β α
αβ αβ αβ αβδ δ δ δ∂ Ω = ∂ − ∂ Ω = − ∂ Ω∫ ∫ ∫  (64) 

because 0Aαδ =  on the boundary. 
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( ) ( ) ( )

( ) ( ) ( )

1
2

1 1 1 ,
2 2 4

F A d F A F A d

F A A d F F d F F d

β α β α α β
αβ αβ βα

β α α β αβ αβ
αβ αβ αβ

δ δ δ

δ δ δ

⎡ ⎤− ∂ Ω = − ∂ − ∂ Ω⎣ ⎦

⎡ ⎤= − ∂ − ∂ Ω = Ω = Ω⎣ ⎦

∫ ∫

∫ ∫ ∫
 (65) 

to obtain finally 

 
0

1 1 0.
4

F F J A dαβ α
αβ αδ

ε
⎛ ⎞

+ Ω =⎜ ⎟
⎝ ⎠

∫  (66) 

The field energy density is 

 
0

1 1( ) .
4

E X F F J Aαβ α
αβ αε

= +�  (67) 

We have followed the Huang and Lin [9] analysis in his equivalent work to ob-
tain the Lagrangian of the electromagnetic field. We should remember that in 
our approach carriers do not interact with themselves, and the quantity in (67) 
should be taken to be zero if (x, ) 0J tα ≠ . 

3. The many-electron problem 
The N electron problem (fermions) should solve the set of equations 

 †
inN one electron the N electrons systemρ ρ= = Ψ Ψ . 

The statistics are the Fermi-Dirac statistics and require: 
• The density for the N equivalent fermion carriers system is to be con-

structed as a sum of M independent alternative contributions 
( ) ( ) ( )1,i M N i it t sρ ρ= ≥, = , , .Σx x  

• There should be at least one linearly independent function (pseudo-
carrier amplitude) contributing to the density for each of the N equiva-
lent carriers in the system. A linear transformation would then give 
one different spin-orbital (SO or “state”) per electron, the usual argu-
ment. 

 
( )

1

2 2

1

1( )

1

M N
i i

c c i i c c i
i

Mi i i i i i
c c c c c ci

t a t s a b
N

a a a a a a N

ψ φ α

′ ′

≥

=

=

, = , , =

= − ≤ ; =

∑

∑

x x
 

The total amplitude function should be a sum of single (pseudo-) carrier ampli-
tude functions ( )c x t sψ , , , such that the exchange among two carriers of the 
space–time–spin ( )x t s, ,  descriptions. 
 †( ) and ( )c c

c c
c c

t s t sω ψ ϖ ψ
′

′
′

Ψ = , , Ψ = , ,∑ ∑x x  

This defines Ψ  as a vector, linear form, expressed in the basis { }cω . 
The Ψ  are defined and the products ordered to obtain 

 2d d NΨ = ΨΨ =∫ ∫x x  
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 ( ) ( ) c c c c c c cc
i ii i i i

t s t s d alsoφ φ δ ω ω ω ω ϖ ω δ
′ ′ ′ ′

′ ′ ′, , , , = ; = − ; =∫ x x x  

The 1st condition is double: first the orthonormality among the iϕ  functions 
(requiring them to be eigenfunctions of the same differential equation operator) 
to fulfill the condition of making linear independent combinations cψ  and sec-
ond the Grassmann character of the i

ca  coefficients, to make the local density 
per carrier corresponds to the sum of the squares 

 ( ) 2i
c i ia t sφ , ,x , 

and the 2nd condition, equivalent to the Pauli principle, defines the cω  as 
Grassmann variables and the cϖ  as their Grassmann conjugates. 

The (stationary state) Hamiltonian for a many-electron atom (or molecule 
or solid) may be written in the form 

 

2ˆ ˆ ( )
1 1

ˆ ˆˆ ˆ( ) ( ) ,
1

ω ϖ ω ω ϖ ϖ

ω ϖ

⎡ ⎤
⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

∗

′ ′ ′
= + ∫ / ,∑ ∑

′= = +

⎡ ⎤= + = Ψ Ψ∑ ⎣ ⎦=
∫

N Ncorec c c c cc c cH x dx e rH j ijc c c
N core interactionc cH x x E H dxH H

c

 

where the core Hamiltonian for the electron c, consists of the kinetic-energy 
and nuclear attraction terms for electron c with coordinates i. Hamiltonian 

( ) ( )core interactionx xH H+  is a one-electron operator, even if 1 cc
ijr

′

/ , being de-
pendent on the inter-electron distance, is a two-electron operator; cω  and cϖ  
act here as projection operators. The energy of the N -electron system is given 
by E and we should determine both Ψ  and E 

There is a total density function ( )N xρ  which should be integrable in a 
final volume, and everywhere in that volume should be a finite and non nega-
tive function, corresponding to a many electron function ({ } 1 )N nx n NΨ ; = ,...,  
where 2( )N Nxρ = Ψ

1 1
( ) ( )N M N

c ac a
x xρ ρ≥

= =
= =∑ ∑ . This Hermitian square can 

be described as both a sum of ( )c xρ =  2
cψ  or as a sum of SO contributions 

2( )a a ax bρ φ= . 
Third, in the case of the many electron (fermion) system we are studying 

all N  electrons (fermions) are equivalent. This requires that the density itself 
is a sum 2( ) ( )N N electronx N xρ ρ= Ψ = , and each ( )electron xρ  should be generated 
by equivalent contributions. That is ( ) 1electron x Nρ = /  ( )aa

xρ∑ . 
As density appears as a sum of densities, then the wave function should 

both be the square root of the total density and also provide the square root of 
each one of the contributions to the total density. For this we require the use of 
geometric (multivector analysis) techniques. In fact the problem is similar to 
that of finding the linear form (geometric square root) 1 2 3 ...d ae be ce= + + +

JG
 

which corresponds to the quadratic form 2 2 2 2 ...d a b c= + + + . 

3.1 Configuration space and real space 
A basic concept in the study of a many-electron system (N interacting fer-
mions) is, from the considerations above, the simultaneous, repeated, use of 
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real space (the space of the observer) for each one of the fermions of the sys-
tem: configuration space. Then, if x represents a point in real space, it is cus-
tomary to represent by { }a ;a 1, , N= =X x …  the set of points in the configura-
tion space X for N fermions. 

Here and in the rest of our presentation we use a geometric notation 
{ }a ; a 1, , N; n m m nω ω ω ω ω= = = −∑X x …  and the projection operators aϖ  

such that a b abϖ ω δ=  selecting the part of the configuration space which cor-
responds to electron a : a aϖ =X x . This allows a clear formal definition of the 
electrons involved in each part of the calculation. Our geometric procedure in-
troduces the statistics of the fermion system from the beginning because the in-
terchange of two electrons in a given expression will change the sign of the 
corresponding terms. 

3.2 The energy calculation 
In correspondence with our formal definition of configuration space the total 
electronic energy operator or Hamiltonian is 

 
2 2 2 21ˆ

2 2KKW n m m nn m n
e n nm

Ze eH
m x x

ω ω ϖ ϖ
≠

⎞⎛ ∇
= − − + ⎟⎜⎜ ⎟⎝ ⎠

∑ ∑= , (H) (68) 

and the wave function KKW
NΨ  is , with ij and i j j i i jα α α α α α δ= −  

 
1

NKKW
N nn

ψω
=

Ψ = ∑  where ( )1
 (WF)M N

i i i ii
b xψ α φ≥

=
= ∑  (69) 

Here the electron, or pair of electrons, under consideration is explicitly se-
lected. Note that a double set of Grassmann numbers { };n iω α  has been intro-
duced; this has an analytical analogue in the HF method, where in a determi-
nant the exchange of columns or of rows changes the sign of the determinant. 
The exchange terms arise from the definition of the wave function (WF) when 
used in (H). 

In (H) the core Hamiltonian for the electron n with coordinates i consists 
of the kinetic-energy term and the nuclear attraction local potential. In the cal-
culation of ψ the effective Hamiltonian is ( ) ( )core interactionH x H x+  where the 
second term is a one-electron operator, even if the electron repulsion, being de-
pendent on the inter-electron distance, is a two-electron (i for n, j for m) opera-
tor. The resulting exchange and correlation potential is the same for all compo-
nents of ψ. Orthonormality and equivalence are used 

 
1

†

1

1
ˆ ( )

1 ˆ( ) ( ) ( )

N
c ccore

core c
c

N
c ccored d

d d cdd
c dd

E c dH
N

c dH
N

ω ϖ

ϖ ψ ω ϖ ω ψ′

′′

′

=

=

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

= Ψ Ψ

=

∫ ∑

∫ ∑∑ ∑

x

x x x
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11†

1 1 1 1 1 1 1 1 1

1 1

1 1 1 1

( )
ˆ( ) (1) ( ) ( ) ( )

( )

( ) ( ) (formal definition)

i

icorecore

core i
i

core

aN
E d dH

N

d

ρ
ψ ψ ε ρ

ρ

ε ρ

= =

=

⎡ ⎤
⎢ ⎥
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∫ ∫ ∑

∫

x
x x x x x x

x

x x x
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For the electron-electron interaction (e-e), because the equivalence of the N 
electrons and using the expansion of the ψ, we obtain 

 
2

1 2
12

(1) (2) (2) (1)
2int i i j j k k l l

i j k l

N e
E d d

x
ϕ α ϕ α ϕ α ϕ α∗ ∗ ∗ ∗= ∑ ∑ ∑ ∑ x x . 

Considering the property i j ijα α δ∗ = , there are 3 types of e-e terms: 
I) j k=  and i l=  which gives 

 
2

2 2

1 2 1 1 1 1 1 1
12

1
(2) (1) ( ) ( )

2
j i

Ij i
i j i

e
a d a d V d

x
ρρ ρ

≠

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎪ ⎪

⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

=∫ ∫ ∫∑ ∑ x x x x x  

II) j l i= ≠  and i k=  (one interchange i j j ia a a a= −  is needed!) 

 

2
2 2

1 1 2 1 1 1

12

1 1 1 1

1
(2) (2) (1) (1) ( ) ( )

2

( ) ( ) (the arises from spins orthonormal)

j

i

j

i

s j i

s j i i j

i j i

s

II s

e
d da a

x

V d i j

δ ϕ ϕ ϕ ϕ ρ ρ

ρ δ

∗ ∗

, ≠

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭

− /

= ≠ ,

⎡ ⎤
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∫ ∫ ∑

∫

x x x x

x x x

 

III) Null terms, where ( i l≠  and i k≠  ) or ( j l≠  and j k≠ ). The total 
electron-electron interaction energy: 

 [ ] ( )1 1 1 1 1 1 1 1 1
, ( ) ( ) ( ) ( ) ( )

2
inter inter

I II

N
E V V d N dρ ρ ε ρΨ = + =∫ ∫x x x x x x x  

Then we have two different contributions which will also contribute to the 
formal interpretation of the Pauli Exclusion Principle: a given electron is not 
interacting with itself and there is an “exchange” term for fermions, where 
from i j j ia a a a= −  a negative sign appears. Those terms are related, and similar 
in structure, to the integrals related to “exchange-correlation” in the HF+CI 
sense. Finally the total energy of N  equivalent electrons is 

 
[ ] { }1 1 1 1 1

1 1 1 1 1

( ) ( ) ( )

( ) ( ) constant , ( )

core inter

core inter

E N d

E N d N

ρ ε ε ρ

ε ρ ε ε ρ ε ρ ρ ε

= +

= + = = =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∫

∫

x x x x

x x x x
 

In principle it should be written [ ]E E ρ= , Ψ . The variational procedure is to be 
carried with respect to the ψ ’s. The basic set of equations for our KKW 
method, presented in comparison with HF and HF+CI, is as follows: 
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Row 1 presents the basic equation, row 2 the structure of the wave function, 
row 3 the resulting equation after the variation, energy minimization procedure, 
row 4 the definitions for the total density in each method and some auxiliary 
conditions. 

Appendix: Definitions and Notation 
We use the term space to denote the 3-D space of our perception of the distri-
bution of physical objects in Nature and for its mathematical representation as 
an 3R  manifold with a quadratic form. Its points are denoted by the letter x 
and represented as a vectorial quantity x ei ix= . We use the traditional indices 

1,2,3.i =  
We use the term time to denote the 1-D space of our perception of the 

evolution of physical phenomena in Nature and for its mathematical represen-
tation as an 1R  manifold with a quadratic form. The normal-face letter t  de-
notes its points. 

We use the term space-time to denote the 4-D Minkowski space of our 
perception of the physical world in the sense of relativity theory, and for its 
mathematical representation as an 4R  manifold with a quadratic form: 

2 ,ds g dx dxμ ν
μν=  ( , 0,1,2,3).μ ν =  Its points are denoted by the Normal-face 

letter X  and represented as a vectorial quantity X X eμ
μ= . We use the tradi-

tional indices 0,1,2,3μ = . The vectors eμ  in the geometry of space-time gen-
erate the STG  16 dimensional space-time geometry of multivectors. The basis 
vectors 0 1 2 3{ , , , }e e e e , with 2 2 2 2

0 1 2 3 1e e e e= − = − = − =  and the definition property 
e e e eμ ν ν μ= −  generate a Clifford group 1,3Cl . We also use the notation 

0 0 e   ( 1,2,3)j j je e e j= = =  and 5 0 1 2 3 0123.e e e e e e= =  A special property of the 
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pseudo-scalar (and also hypervolume and inverse hypervolume) in space-time 
5e  is that 5 5e e e eμ μ= −  (from ,   e e e eμ ν ν μ μ ν= − ≠ ) and then it has the same 

commuting properties with the generating vectors of STG  as generating vectors 
have among themselves. 

A vector 4e  can be used to introduce an additional basis vector, giving 
one more dimension (action). We thereby obtain the five dimensional carrier 
space spanned by the basic vectors ,   0,1,2,3,4ue u =  (identified as 

,  ue e uμ μ⇒ =  and 4e ) with metric diag( 1, 1, 1, 1, 1)uvg = + − − − − . This is used 
to construct a geometrical framework for the description of physical processes: 
a unified space-time-action geometry STAG , mathematically a vector space 
with a quadratic form. An auxiliary element j anti-commutes with all 

:   j je e eμ μ μ= −  and 2j 1.= +  
Multivector Representation. The base space 5R  corresponds to the real vari-
ables set 0{ } { 0 1 2 3 4}uct x y z x uακ, , , , ↔ ; = , , , , , that is, time, 3-D space and ac-
tion (in units of distance introducing the universal speed of light in vacuum c 
and the system under observation dependent, using the Compton wavelength λ 
for a system with energy 2mc : 0 1h mcλκ = / = / ). Time is usually an independ-
ent evolution coordinate. Action is distributed in space, then we consider the 
functions ( ) ( ) ( )x t y t z t, ,  and ( )w t x y z, , ,  0 ( )t x y zακ= , , , . The nested vectors 
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are members of a Clifford algebra generated by the definition of a quadratic 
form 
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This 5-D geometry has two types of rotations: space rotations associated with 
angular momentum (in particular spin 1

2 =  and intrinsic magnetic moment) and 
“rotations” in the action-space planes, with degeneracy 3 and intrinsic value 

/ 2mc℘= , associated with the electric charge of the field. 
Observable objects are extended in space described by an action density 

α  in space-time. Then a) defining 2( )m t c, =x ( )total tε ,x , b) the inverse of the 
space-time volume 0 1 2 3e e e e x y z t/+ + + + , c) the space-time d’Alembertian opera-
tor eμ μ

μ= Σ ∂,  (for a given observer with time vector 0e  the operator ,  has 
the property ( ) ( )0 1 1t t i ie c c e= ∂ + ∇ = ∂ + ∂, ), d) along b b eμ μ

μ= Σ  the direc-
tional change operator is db dbμ μ

μ= Σ ∂  (apply for 0 1 2 3b cte xe ye ze= , , ,  to ob-
tain the sum of directed changes of w) to obtain: 

( )0
4 0 4 0 0

2 2 ( )( ) ( )1( ) ( )
m t m c tm t c t m t c tt e t e e e em cx y z t x y z t x y z tκ α κ

, /, ,, = , = = =
xx xa x x

++ +
+ + + + + + + + + + + +  
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( )

0
4

( ) ( )( ) ( )

( )

m t m c t w tt e e e w t e
x y z t x y z t

edw w t dx e eμ
μ μμ

, / ,
, = = = ,

⎡ ⎤= ∂ ,⎣ ⎦∑

x xa x x

x

+
+ + + + + + + +

 

 
( ) ( ) ( )

( ) ( ) ( )

2 †

2 2 2 22 2 221 ( ) 1 1 10 0 0 1 0 2 0 3

dS dSdS

p cdt p dx p dy p dzκ κ κ κ
⎛ ⎞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

=

= − − − + − + −
 

here ( )p tμ μα= ∂ ,x  is a momentum density. Notice that ( )w t,x  is the distance 
equivalent to a reduced action density, this makes the approach universal for 
all systems. 

We use the term action a  to denote the 1-D space of our perception of the 
objects of physical phenomena in Nature and for its mathematical representa-
tion as an 1R  manifold with a quadratic form 2da . 
e) We use the term space-time-action to denote the 5-D space of our perception 
of physical phenomena in Nature and for its mathematical representation as an 

5R  manifold with a quadratic form 

 
2 2 2 2 2 2

0 0 ,

( , 0,1,2,3,4),    ( , 0,1,2,3).

A B
ABdS ds da g dx dx da g dx dx

A B v

μ ν
μνκ κ

μ

= − = − =

= =
 (70) 

Its points are represented by the set 0( , ),X aκ  0 01/ m cκ = . 
f) We use the term description to denote the partitioning of the total action (or 
energy-momentum) into carriers c. We use the term theoretical structure for a 
set of defining mathematical considerations. 
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The electron, one of the most fundamental particles in nature, is described in de-
tail in the unified composite model of all fundamental particles and forces, a 
candidate for the most fundamental theory in physics. 

I. Introduction 
In 1897, J.J. Thomson discovered the electron, one of the most fundamental 
particles in nature. For more than a century since then, the electron has played 
a key role in physics as well as science and technology. What is the electron? 
From the remarkable progress in experimental and theoretical physics in the 
twentieth century, it has become well known that matter consists of atoms, an 
atom consists of a nucleus and electrons, a nucleus consists of nucleons (pro-
tons or neutrons) and a nucleon consists of quarks. There exist at least twenty-
four fundamental fermions, the six flavours of leptons including the electron 
and the eighteen (six flavours and three colors) of quarks. In addition, there ex-
ist at least twelve gauge bosons including the photon, the three weak bosons, 
and the color-octet of gluons. The quarks have the strong interaction with the 
gluons while both the quarks and leptons have the electroweak interactions 
with the photon or the weak bosons. In addition, all these fundamental particles 
have the gravitational interaction with themselves (or through the graviton). 
Furthermore, it has also become clear that the strong and electroweak forces of 
these fundamental particles fit the standard model in which the strong interac-
tion can be described by quantum chromodynamics, the Yang-Mills gauge the-
ory of color SU(3) , while the electroweak interactions can be described by the 
unified gauge theory of weak-isospin SU(2) × hypercharge U(1) . The latter 
theory assumes the existence of additional fundamental particles, the Higgs 
scalars, which should be found in the near future. Since there exist so many 
fundamental particles in nature and so many parameters in the standard model 
of fundamental forces, it is now hard to believe that all these particles are fun-
damental, and it is rather natural to assume that the standard model is not the 
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most fundamental theory, but what can be derived as an effective theory at low 
energies from a more (and probably the most) fundamental theory in physics. 

In this paper, I shall describe the electron in detail in the unified compos-
ite model of all fundamental particles and forces, a candidate for the most fun-
damental theory in physics. This paper is organized as follows: In Section II, I 
will introduce the unified composite model of all fundamental particles and 
forces, in which not only all quarks and leptons, including the electron, but also 
all gauge bosons including the photon, the weak bosons and even the graviton 
as well as the Higgs scalars are taken as composite states of subquarks, the 
more (and most) fundamental particles. In Section III, I will explain all proper-
ties of the electron such as the electric charge, the intrinsic spin angular mo-
mentum and the mass in the unified composite model. In Section IV, I will de-
scribe all interactions of the electron such as the electroweak and gravitational 
interactions as effective interactions at low energies (or at long distances) in the 
unified composite model. Finally, the last Section will be devoted to conclu-
sions and further discussion. Throughout this paper, the natural unit system of 

( / 2 ) 1h cπ≡ = ==  where 34[ 6.62606876 10  Js]h −≅ ×  is the Planck constant 
and  ( 299792458 m/s)c =  is the speed of light in vacuum should be understood 
for simplicity unless otherwise stated. Also, note that electric charges should be 
understood as in units of electron charge 19[ 1.602176462 10  C]e −≅ × unless 
otherwise stated. 

II. Unified composite model of all fundamental parti-
cles and forces 

The unified composite model of all fundamental particles and forces consists of 
an iso-doublet of spinor subquarks with charges ±½, 1w  and 2w  (called 
“wakems” standing for weak and electromagnetic) [1] and a Pati-Salam color-
quartet of scalar subquarks with charges +½ and 1

6− , 0C  and iC  ( 1,2,3)i =  
(called “chroms” standing for colors) [2]. The spinor and scalar subquarks with 
the same charge +½, 1w  and 0C , may form a fundamental multiplet of N 1=  
supersymmetry [3]. Also, all the six subquarks, iw  ( 1,2)i =  and 

 ( 0,1,2,3)Cα α = , may have “sub colors,” the additional degrees of freedom 
[4], and belong to a fundamental representation of sub color symmetry. Al-
though the sub color symmetry is unknown, a simplest and most likely candi-
date for it is SU(4) . Therefore, for simplicity, all the subquarks are assumed to 
be quartet in sub color SU(4) . Also, although the confining force is unknown, 
a simplest and most likely candidate for it is the one described by quantum 
subchromodynamics (QSCD), the Yang-Mills gauge theory of sub color 
SU(4)  [4]. Note that the subquark charges satisfy not only the Nishijima-Gell-
Mann rule of ( ) / 2wQ I B L= + −  but also the “anomaly-free condition” of 

0w CQ QΣ = Σ = . 
In the unified composite model, we expect at least 36 ( 6 6)= × composite 

states of a subquark ( )a and an antisubquark ( *a or a) which are sub color-
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singlet. They include: 1) 16 (4 2 2)= × × spinor states corresponding to one 
generation of quarks and leptons and their antiparticles of 
 * * * *

0 1 0 2 1 2,   ,   ,   ,e i i i iv C w e C w u C w d C w= = = =  
and their hermitian conjugates ( 1,2,3)i = ; 2) 4 ( 2 2)= ×  vector states corre-
sponding to the photon and weak bosons of  
 2 1;W w w+ =  

 1 1 2 2 0 0,   ,   ,   ,   ;i iZ w w w w C C C Cγ =  

 1 2 ;W w w− =  

or 4 ( 2 2)= ×  scalar states corresponding to the Higgs scalars of 
 1 1 2 1 1 2 2 2( )  ( ) / ( )  ( )   ( , 1,2)ij w w w w w w w w i jϕ ⎡ ⎤= =⎣ ⎦ ; 

and 3) 16 4 4= ×  vector states corresponding to a) the gluons, “leptogluon” and 
“barygluon” of 
 ( ) 0 0 0 92 ;   ;     ( , 1,2,3)a i a j i iij

G C C G C C G C C i jλ= = = = , 

where  ( 1,2,3,...,8)a aλ =  is the Gell-Mann’s matrix of SU(3) and b) the “vec-
tor leptoquarks” of  
 0i iX C C=  

and the hermitian conjugates ( 1,2,3)i =  or 16 4 4= ×  scalar states correspond-
ing to the “scalar gluons,” “scalar leptogluon,” “scalar barygluon” and “scalar 
leptoquarks” of 
   ( , 0,1,2,3).αβ α β α βΦ = =C C  

Quarks and leptons with the same quantum numbers but in different genera-
tions can be taken as dynamically different composite states of the same con-
stituents. In addition to these “meson-like composite states” of a subquark and 
an antisubquark, there may also exist “baryon-like composite states” of 4 sub-
quarks, which are sub color-singlet. 

III. Quantum numbers and electron mass 
In the unified composite model the electron of charge –1 and spin ½ is taken as 
a composite S-wave ground state of the spinor subquark 2w  of charge –½ and 
spin ½ and the scalar antisubquark 0C  of charge –½ and spin 0. The quantum 
numbers of the electron come from those of subquarks, the constituents of the 
electron. In order to explain the mass of the electron, we must consider all the 
masses of quarks and leptons together, since the electron is not the only iso-
lated member but one of the at least twenty-four fundamental fermions, the 
quarks and leptons. By taking the first generation of quarks and leptons as al-
most Nambu-Goldstone fermions [5] due to spontaneous breakdown of ap-
proximate supersymmetry between a wakem and a chrom, and the second gen-
eration of them as quasi Nambu-Goldstone fermions [6], the superpartners of 
the Nambu-Goldstone bosons due to spontaneous breakdown of approximate 
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global symmetry, we have not only explained the hierarchy of quark and lepton 
masses, ,   ,   ,e u c t d s bm m m m m m m m mμ τ<< << << << << <<  but also ob-
tained the square-root sum rules for quark and lepton masses [7], 

1 1 1 1 1 1 1
2 2 2 2 2 2 2  and  ,e d u e s dm m m m m m mμ= − − = −  and the simple relations 

among quark and lepton masses [8], 2 3 3 2 3 2and ,e u s t d c bm m m m m m m m mτ μ= =  
all of which are remarkably well satisfied by the experimental values and esti-
mates. By solving a set of these two sum rules and two relations [9], given the 
inputs of me = 0.511 MeV, mμ = 105.7 MeV, mu = 4.5 ± 1.4 MeV, mc = 
1.35 ± 0.05 GeV and mb = 5.3 ± 0.1 GeV [10], we can obtain the following 
predictions: 
 1520 MeV (1776.99 0.29 / 0.26 MeV)mτ = + − , 
 8.0 1.9 MeV (5 to 8.5 MeV)dm = ± , 
 154 8 Mev (80 to 155 Mev)sm = ± , 
 187 78 GeV (174.3 5.1 or 178.1+10.4/ 8.3 GeV)tm = ± ± − , 
where the values in the parentheses denote either the experimental data or the 
phenomenological estimates [10], to which our predicted values should be 
compared. Furthermore, if we solve a set of these two sum rules and these two 
relations, and the other two sum rules for the W boson mass Wm  and the Higgs 
scalar mass ( Hm ) derived in the unified composite model of the Nambu-Jona-
Lasinio type [1], 

 ( )
1

22
,3 ,W q lm m=  

 ( )
1

24 2
, ,2 ,H q l q lm m m= Σ Σ  

where ,  '  sqm l  are the quark and lepton masses and < > denotes the average 
value for all the quarks and leptons, we can predict not only the four quark 
and/or lepton masses such as ,  ,  d s tm m m , and mτ as above but also the Higgs 
scalar and weak boson masses as 
 2 366 156GeV,H tm m≅ = ±  

 1
2(3/8) 112 24GeVW tm m≅ = ± , 

which should be compared to the experimental value of Wm =  
80.423 0.039 GeV±  [10]. 

What is left for future theoretical investigations is to try to complete the 
ambitious program for explaining all the quark and lepton masses by deriving 
more sum rules and/or relations among them and by solving a complete set of 
the sum rules and relations. To this end, my private concern is to see whether 
one can take the remarkable agreement between my prediction of 

( )
1

23 2 3
t d c b u sm m m m m m= ≅ 180 GeV and the experimental data as an evidence 

for the unified composite model. Recently, I have been more puzzled by the 
“new Nambu empirical quark-mass formula” of 
 02nM M=  
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with his assignment of n = 0,1,5,8,10,15 for u, d, s, c, b, t [11], which makes 
my relation of 3 2 3 2

u s t t t bm m m m m m=  hold exactly. More recently, I have been 
even more puzzled by the relations of 

2 2 and u b s d t cm m m m m m≅ ≅  
suggested by Davidson, Schwartz and Wali (D-S-W) [12], which can coexist 
with my relation and which are exactly satisfied by the Nambu assignment. If 
we add the D-S-W relations to a set of our two sum rules, our two relations and 
our sum rules for Wm  and if we solve a set of these seven equations by taking 
the experimental values of 0.511 MeVem = , 105.7 MeVmμ =  and Wm =  
80.4 GeV as inputs, we can find the quark and lepton mass spectrum of 
 1520 MeV (1776.99+0.29/ 0.26 MeV),mτ = −  
 3.8MeV (1.5 to 4.5MeV),um =  
 7.2MeV (5 to 8.5MeV)dm = , 
 150MeV (80 to 155MeV)sm =  
 0.97GeV (1.0 to 1.4GeV)cm = , 
 5.9GeV (4.0 to 4.5GeV)bm = , 
 131GeV (174.3 5.1GeV or 178.1+10.4/ 8.3GeV)tm = ± − , 
where an agreement between the calculated values and the experimental data or 
the phenomenological estimates seems reasonable. This result may be taken as 
one of the most elaborate theoretical works in elementary particle physics. 

IV. Interactions and coupling constants of the electron 
In the unified composite model, the unified gauge theory of Glashow-Salam-
Weinberg for electroweak interactions of the composite quarks and leptons 
[13] is not taken as the most fundamental theory, but as an effective theory at 
low energies which can be derived from the more (and, probably, most) fun-
damental theory of quantum subchromodynamics for confining forces of ele-
mentary subquarks [4]. It is an elementary exercise to derive the Georgi-
Glashow relations [14], 
 2 2 2

3(sin ) ( ) / 3/8w I Qθ = Σ Σ = and 

 2 2 2
3( ) ( ) / ( / 2) 1af g I λ= Σ Σ = , 

for the weak-mixing angle wθ , the gluon and weak-boson coupling constants (f 
and g), the third component of the isospin (I), the charge (Q) and the color-spin 
( )/ 2aλ  of subquarks without depending on the assumption of grand unifica-
tion of strong and electroweak interactions. The experimental value [10] is 
[ ]2sin ( ) 0.23113 0.00015w zMθ = ± . The disagreement between the value of 
3/8 predicted in the subquark model and the experimental value might be ex-
cused by insisting that the predicted value is viable as the running value renor-
malized à la Georgi, Quinn and Weinberg [15] at extremely high energies (as 
high as 1510 GeV , given the “desert hypothesis.” 
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The CKM quark-mixing matrix V [16] is given by the expectation value 
of the subquark current between the up and down quark states as [17] 
 1 2usV u w w d= . 

By using the algebra of subquark currents [18], the unitarity of quark-mixing 
matrix † † 1V V VV= =  has been demonstrated although the superficial non-
unitarity of V as a possible evidence for the substructure of quarks has also 
been discussed by myself [19]. In the first order perturbation of isospin break-
ing, we have derived the relations of ,  ,...,us cd cb tsV V V V= − = −  which agree 
well with the experimental values of 0.219 0.226usV = −  and  

0.219 0.226cdV = − [10] and some other relations such as 
( ) ( / ) 0.021cb ts s b usV V m m V= ≅ ≅ , which roughly agree with the latest ex-

perimental value of 0.038 0.044cbV = − [10]. In the second-order perturbation, 
the relations of ( / ) 0.0017ub s c us cbV m m V V≅ ≅  and 0.0046td us cbV V V≅ ≅  
have been predicted. The former relation agrees remarkably well with the latest 
experimental data of 0.0025 0.0048ubV ≅ −  [10]. The predictions for tsV  and 

tdV  also agree fairly well with the experimental estimates from the assumed 
unitarity of V, 0.037 0.044tsV ≅ − and 0.004 0.014tdV ≅ −  [10]. In short, we 
have succeeded in predicting all the magnitudes of the CKM matrix elements 
except for a single element, say, usV . On the contrary, the lepton-mixing has a 
different feature. 

In 1998, the Super-Kamiokande Collaboration [20] found an evidence for 
the neutrino oscillation [21] due to neutrino-mixing among three generations of 
neutrinos ( ),  ,  e μ τν ν ν  in the atmospheric neutrinos. More recently, neutrino-
mixing has been confirmed not only by the K2K Collaboration [22] for long-
base-line neutrino oscillation by neutrino beams from KEK to Super-
Kamiokande, but also by the SNO Collaboration [23] for solar neutrinos at the 
Sudbury Neutrino Observatory. They have concluded that the data are consis-
tent with two-flavour νμ ↔ ντ oscillations with 2(sin 2 ) 0.88μτθ ≥ and 

2 32 10mμτ
−Δ = ×  to 3 25 10  (eV)−×  [20]. The neutrino oscillation indicates not 

only the non-vanishing mass of neutrinos but also the breakdown of lepton 
number conservation [24]. I have found a simple model of neutrino masses and 
mixings [25], whose predictions are consistent not only with such a large mix-
ing and such a small mass-squared difference between μν  and τν  suggested by 
the Super-Kamiokande data but also with a small mixing 

2 3 2((sin ) 2 10  to 4 10eμθ − −= × ×  and a large mass-squared difference 
2 20.3 to 2.2(eV)em μΔ = between eν  and μν  suggested by the LSND data [26] 

but not with the solar neutrino deficit [27]. However, the LSND data has not 
been confirmed by any other experiments [26, 28] but seems to contradict the 
latest result from the KamLAND Collaboration [29], which has excluded all 
oscillation solutions but the ‘Large Mixing Angle’ solution to the solar neu-
trino problem with a large mixing 2[(sin 2 ) 0.86 to 1.00]eμθ ≅  and a small 
mass-squared difference 2 5 2( 6.9 10  (eV) )em μ

−Δ ≅ × . Also note that the 
CHOOZ experiment [28] has given the constraints of 2(sin ) 0.15eτθ <  and 
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2 3 2
, 1 10  (eV)e em μ τ

−Δ < × . Furthermore, the Heidelberg-Moscow group has re-
cently reported the first evidence for neutrinoless double beta decay deducing 
the effective neutrino mass of 0.11 to 0.56 eV with a best value of 0.39 eV 
[30]. On the other hand, very lately, the determination of absolute neutrino 
masses from Z-bursts caused by ultrahigh energy neutrinos scattering on relic 
neutrinos has predicted the heaviest neutrino mass to be 2.75 1.28 / 0.98 eV+ −  
for galactic halo and 0.26 0.20 / 0.14 eV+ −  for extragalactic origin [31]. More 
lately, by comparing the power spectrum of fluctuations derived from the Two 
Degree Field Galaxy Redshift Survey with power spectra for models with four 
components: baryons, cold dark matter, massive neutrinos and a cosmological 
constant, an upper limit on the total neutrino mass of 1.8 eV has been obtained 
[32]. As it stands now, it seems difficult to make a simple model of neutrino 
masses and mixings which is consistent with all the experimental results since 
some experimental results contradict others. 

In the unified pregauge and pregeometric theory of all fundamental 
forces, the gauge-coupling and gravitational constants are related to each other 
through the most fundamental length scale of nature. A pregauge theory is a 
theory in which a gauge theory appears as an effective and approximate theory 
at low energies (lower than a cut-off 1λ ) from a more fundamental theory [33], 
while a pregeometric theory (or pregeometry) is a theory in which Einstein 
theory of general relativity for gravity appears as an effective and approximate 
theory at low energies (lower than a cut-off 2λ ) from a more fundamental the-
ory [34]. Let us suppose that the cut-off in electrodynamics .e mλ  and the cut-off 
in geometrodynamics gravλ  are the same or at least related to each other as 

.e m gravλ λ≈ . In most pregeometric theories of gravity in which Einstein-Hilbert 
action is induced as an effective and approximate action at long distances by 
quantum effects of matter fields, the Newtonian gravitational constant is natu-
rally related to the ultra-violet cut-off as 2

gravG λ −≈ . If this is the case, these 
two equations lead to the relation  
 1

2
.e m Gλ ≈ . 

This is the famous conjecture by Landau in 1955 [35]: there must be a natural 
ultra-violet cut-off at the Planck energy 1

2G  where gravity becomes strong. On 
the other hand, in most of pregauge theories of electomagnetism, in which the 
Maxwell action is induced as an effective and approximate action at long dis-
tances by quantum effects of charged particles, the fine-structure constant is 
naturally related to the ultra-violet cut-off as 
 2 2

.1/ ln( / )e m Mα λ≈ , 
where M is a parameter of mass dimension. If this is the case, these two rela-
tions lead to the relation of 
 21/ ln( )GMα ≈ . 
This is the so-called α-G relation first derived by us in 1977 in the unified pre-
gauge and pregeometric theory of all fundamental forces [36]. Note, however, 
that in some pregauge and pregeometric theories these fundamental constants 
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are determined as 2 4/G M λ≈  and 4( / )Mα λ≈  so that the α-G relation be-
comes 
 2GMα ≈ . 
Hereafter, I will concentrate on the α-G relation of the former type, leaving the 
α-G relation of the latter type for later discussion. 

For definiteness let us write the α-G relation as 
 21/ ln(1/ )A GMα = , 
where A is a constant parameter depending on a particular unified pregauge and 
pregeometric model of all fundamental forces. In our unified pregauge and 
pregeometric model of all elementary particle forces including gravity [36], for 
example, the constant is simply given by 2 / 3A Q π= Σ , where 2QΣ  is the sum 
of squared charges over all fundamental fermions. For N generations of quarks 
and leptons, 2 8 / 3Q NΣ = , so that 8 / 9A N π= . Also, the mass parameter is 
approximately given by 2 25 / 24WM Nm π≅  for N generations, so that the α-G 
relation approximately becomes 29 /8 ln(24 / 5 )WN NGmα π π≅ , where Wm  is 
the charged weak boson mass. Furthermore, we also know that for six genera-
tions of quarks and leptons (N = 6) the α-G relation of 
 ( )23 16ln 4 / 5 WGmα π π≅  

is very well satisfied by the experimental values of 1/137α ≅ , 
1

2 191.22 10 GeVG ≅ ×  and 80GeVWm ≅ . Therefore, from now on let us as-
sume that there exist six generations of quarks and leptons, or three generations 
of quarks and leptons and their mirror particles, or that there exist three genera-
tions of quarks and leptons, their super-partners and more, so that 16 / 3A π= . 

We now suppose that the fundamental length scale 1/ λ  be time-varying 
with respect to the mass scale related to the mass parameter M. Then, we ex-
pect that both the fine-structure and gravitational constants α and G are time-
varying [37] and their time-derivatives /d dtα  and /dG dt  may satisfy the re-
lation of 
 2( / ) /d dt AdG dtα α = , 
which can be derived by differentiating the both hand sides of the α-G relation 
with respect to time. If instead 1/ λ  stays constant and if M varies, /dG dt  
must vanish but the time-derivatives dα/dt and dM/dt may satisfy the other re-
lation of 
 2( / ) 2 ( / ) /d dt A dM dt Mα α = . 
For 16 / 3A π= , the above relations become 
 2( / ) / (3 /16)( / ) /dG dt G d dtπ α α=  
and 
 2( / ) (3 / 32)( / ) /dM dt M d dtπ α α= . 

Now the first relation together with the latest result of 
15/ / (2.25 0.56) 10 / yrd dtα α −< > = ± × for redshift of 0.5 3.5z< <  by Webb 

et al. [38] immediately leads to our prediction of 
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 12( / ) / (0.181 0.045) 10 / yrdG dt G −= ± ×  
We find that this prediction is not only consistent with the most precise limit of 

12( / ) / ( 0.6 2.0) 10 / yrdG dt G −= − ± ×  by Thorsett [39] but also feasible for fu-
ture experimental test. 

If the α-G relation of the latter type holds instead of the one of the former 
type, it leads to either the relation  
 ( / ) / ( / ) /d dt dG dt Gα α =  
or  
 ( / ) / 2( / ) /d dt dM dt Mα α = , 
depending on whether the length scale 1/ λ  or the mass scale M varies while M 
or 1/ λ  stays constant. Then, the first relation together with the result of Webb 
et al. [38] immediately leads to another prediction of 
 15( / ) (2.25 0.56) 10 / yrdG dt G −= ± × . 

We find that this predicted value for ( / )dG dt G  seems too small to be 
feasible for experimental tests in the near future although it is consistent with 
the limit of Thorsett [39]. On the other hand either one of the second relations 
together with the result of Webb et al. [38] immediately leads to another pre-
diction of 
 12( / ) (0.081 0.023) 10 / yrdM dt M −= ± × , 
or 
 15( / ) (1.13 0.28) 10 / yrdM dt M −= ± × . 
However, I suspect that either one of these predicted values for ( / )dM dt M  is 
too small to be feasible for experimental tests in the near future, although a 
prediction for the possible time-varying particle masses seems extremely inter-
esting at least theoretically. 

In concluding this Section, I would like to emphasize that the recent result 
of Webb et al. [38] suggesting a varying fine-structure constant may indicate 
not only a varying gravitational constant but also a varying cosmological con-
stant [40], if our picture for varying constants of nature is right and future ex-
periments to test our predictions for ( / )dG dt G  in this Section may check not 
only the α-G relation but also the unified pregauge and pregeometric theory of 
all fundamental forces. A few questions would still remain: What is the origin 
of the varying length scale 1/ λ  or of the varying mass scale M? Is it related to 
the mass field [41], the “quintessence” [42] or the Kaluza-Klein extra space in 
extra dimensions? Are no “constants” of nature constant? After all, it may be 
that nothing is constant or permanent, as emphasized by the Greek and Indian 
philosophers some two and a half millennia ago! 

V. Conclusions and further discussion 
I have explained almost all the properties of the electron including the charge, 
spin, mass, mixing-angle and coupling constants in the unified composite 
model of all fundamental particles and forces. There remain some other impor-
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tant properties such as the electric and magnetic moments and the possible non-
vanishing size of the electron. First of all, the latest experimental value for the 
electron mass is [43] 
 0.0005485799092 0.0000000000004 uem = ± , 
where u is the unified atomic mass unit [ (931.494013 0.000037) MeV= ± =  

27(1.66053873 0.00000013)10  kg]−± , while that for the electron charge magni-
tude is [10] 

19(1.602176462  0.000000063) 10  C
(4.80320420 0.00000019) esu.

e −= ±
= ±

 

The fine structure constant is given by [10] 
 2( /4 ) 1/(137.03599976 0.00000050)e cα π≡ = ±= . 
The experimental upper bound on the charge difference between the electron 
and the positron is [10] 

84 10e eq q e −
+ −+ ≤ × . 

The experimental upper bound on the mass difference between the electron and 
the positron is [10] 
 98 10 |e e em m m −

+ −− < × , 
which gives strong constraint on possible violation of CPT invariance. On the 
other hand, the current experimental constraint on the electric dipole moment 
of the electron is [10, 44] 
 26(0.07 0.07) 10  e cmed −≤ ± × , 
which may allow a small violation of CP or T invariance in the electron sector. 
Furthermore, the experimental value for the electron magnetic moment is [10] 
 ( )1.001159652187 0.000000000004 2e ee mμ = ± , 
which is consistent with the standard model. The experimental data on the dif-
ference between the electron and positron g-factor is [10] 
 12( 0.5 2.1) 10e e averageg g g −

+ −− = − ± × |, 

which gives another strong constraint on possible violation of CPT invariance. 
In 1996, the CDF Collaboration at Tevatron [45] released their data on the 

inclusive jet differential cross section for jet transverse energies TE  from 15 to 
440 GeV with the significant excess over current predictions based on pertur-
bative QCD calculations for 200TE GeV> , which may indicate the presence 
of quark substructure at the compositeness energy scale Cλ  of the order of 
1.6T eV. This could be taken as an exciting and intriguing historical discovery 
of the substructure of quarks (and leptons), which had been long predicted, or 
as the first evidence for the composite model of quarks (and leptons), which 
had been proposed since the middle 1970s [1]. It might dramatically change 
not only so-called “common sense” in physics or science but also that in phi-
losophy, which often states that quarks (and leptons) are the smallest and most 
fundamental forms (or particles) of matter in mother nature. Note that such a 
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relatively low energy scale for Cλ  of the order of 1 TeV had been anticipated 
theoretically [46] or by precise comparison between currently available ex-
perimental data and calculations in the composite model of quarks (and lep-
tons) [47]. In 1997, the H1 and ZEUS Collaborations at HERA [48] reported 
their data on the deep inelastic e p+  scattering with a significant excess of 
events over the expectation of the standard model of electroweak and strong in-
teractions for high momentum-transfer squared 2 2>15000 (GeV)Q , which 
might indicate new physics beyond the standard model. Although neither one 
of these indications have been confirmed by the other experiments and the sig-
nificance of the HERA anomaly has decreased with higher statistics, not only 
the substructure of quarks and leptons as well as Higgs scalars and gauge bos-
ons, but also the possible existence of leptoquarks has been extensively re-
investigated [49]. As it stands now, I must emphasize that both the CDF and 
HERA anomalies are still with us, and that the explanation of the latter anom-
aly either by the leptoquark with the mass between 280 GeV and 440 GeV, or 
by the excited electron with the mass between 300 GeV and 370 GeV [50] is 
still very viable. The current lower bound on the mass of the excited electron is 

*>223GeVem  [10] while that on the compositeness energy scale of the elec-
tron is ( ) 8.3 TeVLL eeeeλ+ >  and ( ) 10.3 TeVLL eeeeλ− >  [10], which means that 
the size of the electron (1/ )eλ  is smaller than the order of 1810  cm− . 

The possible substructure of fundamental fermions such as the electron 
was considered in some detail by McClure-Drell and Kroll [51] and by Low 
and myself [52] already in the middle of nineteen sixties, while that of quarks 
was pointed out by Wilson and others [53] in the early nineteen seventies. 
Also, the possible substructure of fundamental bosons such as the weak bosons 
was discussed in great detail by myself and others [54] in the mid-nineteen 
seventies. In conclusion, let me repeat what I said in my talks at the Paris Con-
ference in 1982 [55] and at the Leipzig Conference in 1984 [56]. “It seems to 
me that it has taken and will take about a quarter century to go through one 
generation of physics: atomic physics in 1900-1925, nuclear physics in 1925-
1950, hadron physics in 1950-1975, quark-lepton physics in 1975-2000, “sub-
quark physics” in 2000-2025 and so on.” “I would like to emphasize that the 
idea of composite models of quarks and leptons (and also gauge bosons as well 
as Higgs scalars), which was proposed by us, theorists, in the mid-seventies, 
has just become a subject of experimental relevance in the mid-eighties.” A 
century has past since the discovery of the electron, the “first elementary parti-
cle,” and, hopefully, the compositeness of “elementary particles” will soon be 
found. 
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Prospects for the Point Electron 

Thomas E. Phipps, Jr. 
908 South Busey Avenue 
Urbana, Illinois 61801 

Introduction: the relativity of physical size 
Many ingenious models for the electron, perhaps the most stable and funda-
mental of known particles, have been devised. Some of these are discussed 
elsewhere in this book. Here we shall examine the advantages and prospects of 
the simplest model of all, the mathematical point. It might seem that this could 
be dismissed at the outset on general philosophical grounds; e.g., that a point is 
“infinitely small,” therefore (like the “infinitely large”) operationally indefin-
able and hence non-physical. This overlooks the fact that models are not to be 
confused with that which is modeled, but are to be judged by results rather than 
by inferred resemblances to truth. So, I shall not address the imponderable on-
tology of what the electron “is,” but only what a point-particle model of it 
might accomplish. As a point of my own philosophy, I claim that this sort of 
metaphorical approximation to reality is what the science of physics at best 
provides. When it pretends to do more, it trespasses on the territories of phi-
losophy, religion, and faith. 

On the scale of Newtonian physics the point particle has done yeoman 
service as an approximation to everything from planets to bullets, and has 
given us a Newtonian principle of relativity of physical size. Dirac believed 
that the granularity of atoms brought an end to this Newtonian relativity. He 
wrote:(1) “So long as big and small are merely relative concepts, it is no help to 
explain the big in terms of the small. It is therefore necessary to modify classi-
cal ideas in such a way as to give an absolute meaning to size.” But if we ex-
amine not the words Dirac used but the parameters, we discover that his own 
most wildly successful and seminal theory of the electron describes not an ex-
tended particle but a mathematical point! Therefore he himself was the active 
agent in saving Newtonian relativity on all size scales. It is upon Dirac’s suc-
cess in describing the point electron that we shall build here in seeking con-
sciously to implement a universal Principle of Relativity of Physical Size. It 
will be evident that such a principle by no means implies the physical proposi-
tion that “size does not matter.” It merely implies the hopeful view that the 
point-particle approximation can be descriptively useful on all size scales… 
and, more cogently, that the form or the parameterization of physical descrip-
tive equations is invariant; i.e., does not abruptly change at some threshold 
such as the “atomic” or “nuclear.” Thus, like another better-known relativity 
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principle, it implies mathematical form preservation or invariance. Stated in 
that modest way, it seems to make a good deal of sense, does it not? For if 
there were an abrupt change in parameterization, would this not have to reflect 
an (unobserved) abrupt change in the physics? How else than by form preser-
vation are we to make useful inferences from known physics about the topog-
raphy of unknown physical-descriptive territory? With such questions for 
clues, we should be able to do a bit of elementary detective work that would 
not strain Sherlock. Indeed, the implications of size relativity are the only real 
clue we have to guide us in bettering our pretend-knowledge (as embodied in 
the ludicrously over-hyped Standard Theory) of particles on nuclear and sub-
nuclear size scales. 

A rigorized formal correspondence 
If size relativity is to be a useful guide in physical exploration, it must apply to 
the descriptive transition between the Newtonian and atomic descriptive 
realms. And it must embody rigorous form preservation. That is the first test 
that the principle must pass before its “universality” can be substantiated. Here 
an immediate breakdown of the principle occurs, if Dirac(1) is to be believed. 
Exercising equal parts of optimism and scepticism, let us set aside Dirac’s 
judgment and look closely at the best that can be done in formally aligning 
classical and quantum mechanics … that is, in setting up a “formal Correspon-
dence” between the two. We need to inquire: “Form preservation” under what 
transformation or group? At once we see that our best chance is to improve the 
existing formal Correspondence between the Hamilton-Jacobi (H-J) mechanics 
(of point particles) and the Schrödinger equation; for these two already bear to 
each other a remarkable formal resemblance. Regrettably, it may be that the 
reader’s education has been skimped in regard to the H-J formalism and classi-
cal canonical mechanics(2) in favour of something more trendy, such as string 
theory(3). We shall not attempt a proper tutorial, but merely provide a reminder 
that the classical equations of motion of n point particles take the H-J form, 
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where ( ), ,j jH H q p t=  is the Hamiltonian or energy function, and 
( ), ,j jS S q Q t=  is a scalar known as Hamilton’s principal function. These 

equations completely describe the point-particle mechanics of the classical 
domain. Observe that there are two complementary sets of descriptive parame-
ters, apart from time; namely, the so-called “old canonical variables” ( ),j jq p  
and the “new canonical variables” ( ),j jQ P . The transformations between these 
two are termed “canonical.” Just as special relativity preserves form under co-
ordinate transformations, we might expect the principle of size relativity to im-
ply “form” preservation under canonical transformations. That is manifestly 
impossible if we accept the universal opinion that Schrödinger’s equations, 
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tell the complete story of mechanics in the quantum domain. For, observe that 
there are three differences between the H-J and Schrödinger equations: (a) The 
latter contain a wave function or operand Ψ ; hence the “old canonical vari-
ables” have morphed into “dynamical variables” ( ),j jq p  that are operators. 
(b) The S-function has disappeared and been formally replaced by / i= . (c) The 
“new canonical variables” ( ),j jQ P  have disappeared and been replaced by 
nothing. It is this latter abrupt disappearance that blocks all possibility of in-
variance under the formal Correspondence transformation—and that must be 
corrected if a size relativity principle, implying a rigorized Correspondence, is 
to be implemented. How can we formulate operator equations that combine all 
features of both (1) and (2), when applied in their appropriate physical do-
mains? The following set of equations does exactly that: 
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In order to recover quantum mechanics from (3) it is necessary to postulate 
/S i= = , which is equivalent to the Heisenberg postulate in view of  
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where jkδ  is 1 if j k= , 0 otherwise. Here ( ), ,j jH H q p t= , 
( ), , ,f f j j jq Q P tΨ = Ψ , and in general ( ), ,j jS S q Q t= , if we set aside the 

specialization /S i= =  that describes atomic physics. More generally, we shall 
find it advantageous to assume  

 ( ), ,j jS s q Q t
i

=
= , (5) 

where s is some real scalar function to be determined… in case we might want 
to generalize beyond the atomic case ( )1s →  to describe, e.g., point particles 
in nuclear states. 

The element of “innovation” here, Eq. (3c), is not really new. It is the res-
toration of an operator analog of (1c)—as is obviously essential in order to 
avoid abrupt changes of parameterization of the mechanical formalism—to re-
flect an absence of abrupt discontinuities in the physics. Eq. (3c) could never 
have been dropped from a rigorous formal Correspondence. Eq. (3) constitutes 
an operator analog of (1) and thus embodies both the size relativity principle 
and a rigorized formal Correspondence. Consequently, in the transition from 
“c-numbers” (the commuting real numbers of ordinary arithmetic) to “q-
numbers” (operators), there is no abrupt change in form or parameterization. 
The classical canonical H-J theory is recovered from Eq. (3) by treating the 
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formal operand fΨ  as a constant and cancelling it from all three of (3a,b,c). 
Hence the “Correspondence” becomes a two-way one… it works just as well 
going from the quantum to the classical side as going the other way. This is not 
true of Eq. (2), which allows a transition from classical to quantum, but not the 
other way [for no analogs of the new canonical variables ( ),j jQ P  are present 
in (2), so quantum straw is lacking to make classical bricks—sweeping state-
ments to the contrary by some of the modern era’s most famous physicists to 
the contrary notwithstanding]. H-J theory is not a formal limit of accepted 
quantum theory. 

If we postulate Eq. (3) as holding for all mechanics—classical, quantum, 
and beyond—and thus avoid any formal difference among these quite different 
physical descriptive realms, how is our theorizing to reflect the vast differences 
we know to exist in nature? The answer exploits the fact that Eq. (3), a more 
complicated mathematical form than any set of mechanical equations previ-
ously considered by physicists, offers more solution options. Eq. (2), the 
Schrödinger equation, is really one equation in one unknown function Ψ . But 
in its most general form Eq. (3) is two equations in two unknowns, fΨ  and S. 
Only in the special case of atomic solutions is it permissible to specialize to 

/S i= ==  constant. In describing nuclear states it may prove advantageous to 
treat the “commutator” value S [see Eq. (4)] as a function of space coordinate 
values—in particular as a function of distance from a nuclear “force center.” 
We see thus that there are three distinct classes of solution of (3): 

Class I. fΨ = constant. The solutions for Hamilton’s principal func-
tion S describe the Newtonian states of motion (continuous 
trajectories). 

Class II. /S i= = , fΨ = Ψ . These are the ordinary quantum states de-
scriptive of atoms. 

Class III. Both S and fΨ  non-constant. These are states possibly de-
scriptive of point particles within nuclei or “elementary parti-
cles.” (This is speculative.) 

There is an abrupt discontinuity among these three solution-class options. 
But it is not a physical discontinuity—it is a descriptive choice discontinuity. 
Only in that altered sense can we agree with Dirac that quantum mechanical 
discontinuity sets a size scale to the world. The formalism itself, the equations 
of motion, set no such size scale. They are size invariant. Only our decision, 
our choice to pick one class of solutions or another, reflects a passage from one 
descriptive realm to another. And this is a good thing, since every new bit of 
empirical knowledge we acquire further blurs the line between quantum and 
classical worlds. There are observable particle-wave phenomena in the centi-
metre range, and non-localities of quantum action on the inter-stellar scale. We 
simply cannot rely on “size” to distinguish these worlds. One must know 
enough physics to use Eq. (3) wisely, to make the right solution choice to 
match the particular physical problem at hand—no formalism being foolproof. 
Such a necessity to make intelligent choices is nothing new. In treating Max-
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well’s equations, for instance, we need to know enough physics to choose be-
tween advanced and retarded solutions. And such descriptive choices are al-
ways discontinuous, although the physics is not. 

Class-II solutions: atomic-level description 
We passed a bit too quickly over the atomic solutions. Let us examine in more 
detail how ordinary quantum mechanics is extracted from Eq. (3), the form 
postulated for all mechanics. On setting /S i= =  in Eq. (3), we see that it can 
be written as 
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The first two of these equations are of the familiar form (2). The third is new. 
We recall that in H-J mechanics the new canonical variables ( ),j jQ P  are con-
stants of the motion—unlike the old canonical variables ( ),j jq p , which morph 
here into “dynamical variable” operators. Naturally, by the arguments we have 
already given, there can be no discontinuity in the interpretation of ( ),j jQ P  as 
constants; so constants they remain in the operator calculus—constants being 
good operators. By inspection Eq. (6c) has the solution 

 ( ),j jj
f j

i Q P
q te

−
Ψ = Ψ∑=  . (7) 

[Partially differentiate (7) with respect to jQ , to verify that it satisfies (6c)]. 
Thus the wave function fΨ  satisfying Eq. (3) differs from the standard 
Schrödinger wave function Ψ  only by the constant phase factor 

 j jj
Q P

ie eα − ∑=
=

  (8) 
attached to the Schrödinger function Ψ . After cancelling this phase factor 
from both sides of Eqs. (6a,b), we get exactly Eq. (2), the Schrödinger equa-
tion. So it would appear that the Class-II solutions of Eq. (3) precisely dupli-
cate ordinary quantum mechanics (OQM). (These solutions, then, constitute a 
“covering theory” of OQM.) But that is true only in a formal or mathematical 
sense. On the interpretational side the (uncancelled) phase factor eα  makes a 
great difference, through its ability to affect quantum phases by undergoing 
abrupt changes. Let us examine this more closely. 

Class-II solutions: quantum measurement theory 
Einstein objected that quantum theory is “incomplete.” He probably meant that 
it lacked trajectories. Here we have instead asserted the accepted quantum for-
malism to be parametrically incomplete. This is an altogether different affair. 
Since we have recovered OQM as a viable class of solutions, it is apparent that 
we are just as far as ever from trajectories. But we may be in a position to cor-
rect another more serious loss occasioned by OQM—the loss of objectivity. 
Objectivity does not necessarily require trajectories, but it does need event 
points. That is, real, localized observable happenings must be described by any 
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physically valid theory… and OQM wholly lacks parameters to describe such 
objective point events. If we think of a quantum phase space in which a point is 
specified by ( ),j jq p , we have to recognize that a point so specified is not an 
observable event. Rather, ( ),j jq p  is a running variable describing—if you 
like—a virtual event or presence or one of a sequence of virtual events forming 
a Feynman-like pseudo-trajectory. But it is not an observable localized happen-
ing in real space or “real” phase space… for the simple reason that the ( ),j jq p  
are operators. To be observable in real phase space, whose axes are labelled 
with ordinary real c-numbers, it is necessary that c-number parameters be in-
cluded in the descriptive formalism. Otherwise the formalism is powerless to 
describe observable occurrences, or even to recognize that anything happens in 
the world. That is in fact the situation of OQM, based on Eq. (2). Logically, ac-
cording to (2), nothing can happen in the quantum world, because the accepted 
formalism lacks c-number parameters to describe point events representing ob-
servable occurrences. 

What follows from such a lack? History has witnessed a great prolifera-
tion of ever more ingenious “interpretational” makeshifts, Band-Aids, and sub-
stitutes for a valid formalism. We have had three-quarters of a century of it 
now, and counting. This remarkable social phenomenon, only nominally re-
lated to physics, is known as “quantum measurement theory.” It has become a 
way of life, a source of steady income, an endless intellectual challenge, for a 
whole sub-culture among physicists. Its adherents dedicate their lives to avoid-
ing recognition of the obvious: that OQM is under-parameterized. Their basic 
dogma is that mathematically OQM is an immaculate conception that must not 
be altered in any way. By contrast, the world (being defenceless) is their play-
thing… the rules of their game allow the world to be distorted into any shape 
that will fit their rigidly unyielding mathematics. I wish I could say that the 
Many Worlds Interpretation of OQM represents the apogee of their flights of 
fancy, but in fact there is no limit… they literally stop at nothing. By now the 
amount of professional interest vested in measurement-theory nonsense rivals 
that vested in string-theory nonsense(3). Indeed, the two groups of theorists 
could exchange professional concerns today without any externally detectable 
change—in either quality of product or effect on the rest of physics. 

In the beginning these interpretational makeshifts were simpler and less 
sophisticated than they are today; therefore they were more perspicuous. There 
used to be things called “quantum jumps,” and something called “severance of 
the von Neumann chain” of phase connections between observer and observed. 
Both of these approaches recognized that something had to be done about 
quantum phase connections—but both wandered in the wilderness because the 
theory had no parameters to do it with. Early on, there was a “Projection Postu-
late,” contrived to do postulationally what needed to be done parametrically. 
This has had a phoenix-like rebirth with the latest jargon of obscuration, “quan-
tum (phase) entanglement.” The reason for this rebirth is that in order to make 
any connection at all with observation the OQM equation of motion has to be 
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discarded in order to let things happen locally in the world. Having postulated 
an equation of motion, Eq. (2), the “bold interpreteers” judged it natural to say, 
“Oops, that was wrong, we now add a Projection postulate that contradicts our 
equation-of-motion postulate by replacing a pure state with a mixture.” At one 
time there was even a vogue for carrying this one step farther with a “Selection 
Postulate”—via another, “Oops, that was wrong, we further postulate a single-
state Selection from the projected state mixture, thus contradicting our Projec-
tion that contradicted our postulated equations of motion.” But for some reason 
this busy postulational first-aid work, perhaps because it produced a structure 
resembling The House That Jack Built, fell into desuetude until observational 
necessity eventually forced something (anything) to be done about cutting 
phase connections. Aided by new jargon, these present-day champions of logic, 
mathematicians manqué, are still vying among themselves to build inconsistent 
axiomatic systems. The more postulates the merrier… for postulates whose 
only logical obligation is to contradict one another are always available in any 
number at no charge. 

It should be obvious to every child that the only way out of this thicket of 
obscuration is to get the equations of motion right in the first place. That is 
where and only where the postulational “corrections” should be applied. This 
can happen, as a social phenomenon, only if enough children find enough 
things laughable about the Emperor’s Parade. The necessary open-eyed inno-
cents are going to have to come from the gene pool of uncommitted physicists. 
But with ever-more specialization and ever-more “professionalism” of mutual 
back-scratching among specialties, we have seen a steady trend toward less, 
rather than more, probability of an outcome favourable to physics as science. 
There is just not the requisite laughter in the air. As physics grows less respect-
able, the need of physicists for respect grows more urgent. In these conditions 
physics becomes a very serious business, indeed, or rather profession. Look at 
other professions. In my youth, when medicine was a calling, doctors made 
house calls. They went where needed. Then medicine became a profession. The 
word profession says it all. 

Well… has Eq. (3) finally got the equations of motion right? If so, it is a 
new ballgame, interpretionwise. For there are now extra parameters, constants 
of the motion, explicitly present in the theory. Moreover, those c-number con-
stants appear in a phase factor (8) on the wave function (7). That is just where 
we should want them to be, if phase-connection severance or the description of 
“loss of phase knowledge” is our objective. And that, indeed, is precisely our 
objective. It is what all the postulational fuss was about—“Projection,” “Selec-
tion,” and the rest. But that must now be forgotten, if the new paradigm is to 
receive a fair trial. The questions will be the same, but the solutions will be 
new and the methods of arriving at them will be somewhat unfamiliar. 

Consider quantum particles “basking” in an atomic pure state. They obey 
Eq. (6). At some time in the past, we may suppose, this pure state was “pre-
pared.” At that time or earlier the parameters ( ),j jQ P  received some fixed 
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values, which they maintain throughout the duration of the pure state. They 
must stay constant in order that the phase factor eα , given by Eq. (8), may stay 
constant. During this basking period all processes may be considered virtual 
and all “time flow” in abeyance (without responsibility to causality), all phase 
connections remaining intact. Nothing observable can happen anywhere in the 
system. Then something happens. This occurs purely at nature’s initiative. 
Human thought or “mind” has nothing to do with it. The job of physics is to 
describe the happening, after the fact. The happening is localized—of the na-
ture of a point event—to fit with relativity. But we may push beyond that in 
supposing the localization to take place in phase space, so that both jQ  and jP  
acquire numerical values. The result is an abrupt, unknowable change αΔ  in 
the phase angle of the wave function. (Heisenberg’s “Uncertainty” is not vio-
lated, since it concerns the old canonical variables, not the new ones.) 

The unknowability of αΔ  implies severance of phase connections and 
loss of phase “knowledge,” although this is a poor way of speaking, inasmuch 
as one cannot lose what one never had. So, here we have the “quantum jump,” 
a severance of the von Neumann chain, effected by a jump in numerical values 
of the new canonical variables. Something has happened locally in nature, de-
scribed by a sudden change in c-number values of event-descriptive parame-
ters. To accomplish this, the wave function phase discontinuously changes in 
an unpredictable way—thus severing the past from the future and ratcheting 
time flow at the most basic quantum descriptive level. As long as the pure-state 
phase stays constant, we cannot say that time flows at all. But when the phase 
jumps in a way we cannot know, it is allowable to say that phase “knowledge” 
is lost in an irreversible way, and that time flows irreversibly “forward,” in 
conformity with a postulated observance of causality. As an extra dividend for 
rigorizing formal Correspondence and thereby “completing” the equations of 
motion of quantum mechanics, we gain an accounting for the “arrow of time” 
at the quantum level. Like the Scarlet Pimpernel, that arrow has been sought 
high and low, even in the farthest reaches of the cosmos… and all the time it 
has been hiding in our sub-basement right at home. We also dispose of all 
those versions of quantum measurement theory that rest on deep Wignerian 
speculations about “mind” intervening as a causal agent in nature. Calling on 
mind to sever quantum phase connections is just as silly as calling on mutually 
contradictory postulates to do the job. Mind-fans will certainly prefer their “in-
sights” to the more prosaic notion that the job of the mind, as applied to phys-
ics, is to describe nature, not to actuate it. To accomplish the description of na-
ture requires descriptive parameters. Where parameters are lacking, mind and 
postulates are equally poor surrogates. 

What we have said so far about phase jumps reflecting locally completed 
processes applies strictly only to the simplest one-body and one-component 
(one-channel) problems. In many experimental situations, or generally in 
many-body problems, a quantum system may be described by numerous com-
ponent wave functions, among which may occur only partial reductions of the 
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total system wave function. I have suggested(4) that these partial reductions be 
termed “virtual events,” and that they might be used to describe the type of ab-
sorber action whereby some observable effect(5) is “frustrated” by the mere 
presence of a potential absorber, without any actual localized absorption occur-
ring. (The accepted jargon calls these “interaction-free” or “non-demolition” 
measurements. What it amounts to is the introduction of phase incoherence(4) 
into some but not all channels of a multi-channel pure-state process.) By the 
view I have suggested, the absorber always absorbs… but not always by a lo-
cally-completed “real” event; possibly by a virtual event that imposes phase in-
coherence on a single component or channel of a many-channel process. That 
virtual occurrence is not observable directly because the phase jump does not 
affect the quantum system as a whole (quanta by definition act only as a 
whole!); but it is indirectly inferred(5) through the observable aspects of “frus-
tration.” This large and somewhat subtle subject is at present speculative and in 
need of development. I have been able to give only the most crude and fallible 
introduction to it(4).  

In summary concerning measurement theory: OQM endows factual his-
tory with ensemble attributes that have no basis in experience. To correct this, 
the theory needs to acquire c-number parameters descriptive of unique, factual 
point events. The best way to do this is to rigorize the formal Correspondence 
with H-J theory, thereby restoring analogs of the new canonical variables, or 
constants of the motion. The same is mandated by a Principle of Relativity of 
Physical Size, applied in the context of a point particle model. 

Class-II solutions: the Dirac electron 
By linearizing the classical one-body relativistic energy expression,  
 2 2 4 2 2 2

1 2 3E m c p p p= + + +  , (9) 
through use of 4 4×  anti-commuting unit matrices ( )1 2 3, , , mα α α α , Dirac(1) 
obtained an operator description of the free electron at the atomic level of de-
scription. On introducing electromagnetism via the potentials, 

( )/j j jp p e c A→ + , 1,2,3j =  (where e is the unsigned charge of the elec-
tron), he obtained a Hamiltonian (energy function) of the form 
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eH c mc eV
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α⎛ ⎞= − ⋅ + − −⎜ ⎟
⎝ ⎠

α p A  , (10) 

where 0V A=  is the scalar potential, etc. This Hamiltonian, which is a per-
fectly good classical one for any point particle, proved fabulously successful 
when applied on the quantum side to description of the electron-positron, by 
means of the operator identifications ( )( )→ ∂ ∂=j jp i q , in accordance with 
Eq. (2b). We need say no more about this, since it forms a cornerstone of mod-
ern physical theory, and is doubtless taught everywhere. 

Just one point need detain us. This is that the same formalism (of H-J 
pedigree) that on the classical side describes any point particle suddenly turns 
out on the quantum side to describe only one species of particle—the electron. 
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What could this mean? It seems a very startling constriction of physical de-
scriptive purview. Does it mean that our size relativity principle fails? That a 
sudden discontinuity at the quantum boundary is real and reflects an absolute-
ness of physical scale, as Dirac(1) thought? So it would seem… but I have ven-
tured to suggest an alternative(6) appraisal that is both simple and drastic. This 
is embodied in the beta-structure hypothesis; namely, that all physical particles 
and the vacuum are composed of electrons. The steps of reasoning behind this 
are simple: (1) If a principle of relativity of physical size is valid, then a single 
mechanical equation of motion [viz., Eq. (3)] must govern particle mechanics 
on all size scales. (2) If Eq. (3) governs, then its atomic-level specialization 

/S i= =  manifestly describes the Dirac electron. (3) If no physical discontinu-
ity marks the transition between classical and atomic levels, as to either equa-
tions of motion or form (10) of the Hamiltonian, then there can be no abrupt 
change in physical nature of the particles described. (4) If there is no distinct 
boundary between the realms inhabited by “all particles” and by “electrons,” 
then all particles must in fact be electrons or their composites. (Here I do not 
distinguish between electrons and positrons.)  

This idea meets at once certain troubles, such as that protons seem quite 
different from positrons. But it is implicit in the beta-structure hypothesis that 
positrons (vacant electron states) are somehow captured within protons and 
held permanent prisoners there; and that the proton is in fact a very many-body 
relativistic system composed ultimately of electrons. Similarly the vacuum, as 
Dirac originally thought (“hole theory”) before he was brain-washed, is com-
posed of electrons in negative-energy states. The relativistic very many-body 
problem is so difficult, so little explored, and so cleverly dodged (e.g., through 
field-theoretical devices such as second quantization), that I do not see how 
any prudent physicist, not adept at dodging, can dogmatically reject the beta-
structure hypothesis. Not included among prudent physicists is that vast major-
ity who unhesitatingly bet the farm on field theory. It is my belief, to mix 
metaphors, that pure point particle mechanics has still plenty of mileage left in 
it. Admittedly, the leap from size relativity and form preservation to the above 
wild guess about world structure is a bold one… but the fact that field theory 
totally rejects it rather prejudices me in its favour. Is it not high time that a few 
physical theorists began to think outside the field-theory box? 

Class-III solutions: formalism 
From Eqs. (3a) and (5) we get 

 f fH s
i t

∂
Ψ = − Ψ

∂
= . (11) 

The Class-III solutions are those that treat S or s and fΨ  as non-constant. This 
shows at once that there is a problem: Since s is to be treated as real (Hermi-
tian), and ( )/ /i t− ∂ ∂=  is known to be Hermitian, we have H represented in 
(11) as a product of two Hermitian operators. It is a well-known theorem that 
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the product of two Hermitian operators is non-Hermitian. The reader will have 
to take my word for it that it is simply not physics to represent a physical en-
ergy as a non-Hermitian operator. That would say energy is unreal, which is 
physically incorrect, as far as is known. Fortunately, there is a ready fix for this 
that works like magic. We simply introduce a new Hermitian Hamiltonian H  
in place of the classical-analog Hamiltonian H, a Hermitian momentum jp  in 
place of jp , and a transformed wave function Ψ , by means of the definitions 
 1Hs−=H , 1

jp s−=jp , fsΨ = Ψ . (12a,b,c) 

Here, for the one-body problem, 1,2,3.j =  This transforms Eq. (3) into 
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From this we see that the basic formalism of OQM is recovered, even for 
the Class-III solutions, but with a transformed Hamiltonian and an extra rela-
tion, Eq. (13c). In terms of the Hermitian operator H  the equation of motion 
of a Heisenberg variable X, 

 ( )1dX X X X
dt t i

∂
= +

∂ =
H- H  , (14) 

is also recovered. Thus all the standard OQM techniques employing Hermitian 
operators are applicable [the operators on both sides of (13c) being Hermitian, 
as well as those of (13a,b)]. The formal operand fΨ  is not useful for calculat-
ing observable probability distributions; but its transformed analog Ψ  is [and 
is understood as the operand in (14)]. Similarly, any classical-analog Hamilto-
nian H, such as Eq. (10), is not the observable physical energy, but H  is, since 
it is the generator of infinitesimal time displacements of the system [Eq. (13a)]. 
In short, the non-Hermitian classical-analog quantities entering Eq. (3) have 
served their purpose of form preservation over the whole physical range, and in 
the particular case of Class-III solutions are to be discarded in favour of their 
transformed Hermitian counterparts. This has proven a disappointment to 
mathematicians, who feel cheated of novelty by this return to familiar forms 
[Eqs. (13a,b), (14)]. But physicists will recognize that any alteration of the 
Hamiltonian [Eq. (12a)] entails “new physics”—which should console them for 
the lack of “new math.” 

Class-III solutions: the electron on the nuclear scale 
Given Eq. (3) as descriptive of particle mechanics on all size scales, we have 
seen that its Class-I solutions describe the motions of any classical point parti-
cles (possessed of trajectories). The Class-II solutions, descriptive of the 
atomic realm (without trajectories but with objective point events), given Eq. 
(10) as the (relativistic one-body) Hamiltonian, describe only electron-
positrons. We may suppose that the same classical-analog Hamiltonian, with 
the help of Class-III solutions, might describe the same particle (electron) on a 
still smaller size scale. This is a speculation, but it proves fruitful. We recall 
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that the Class-III solutions obey a commutation rule [Eq. (4), left of arrow] that 
generalizes the Heisenberg postulate. Thus we are contemplating a new physics 
of the nuclear realm, whereby the Heisenberg postulate may be locally dis-
obeyed. That is, the commutator of the position and momentum dynamical 
variables may become non-constant in the vicinity of a nuclear force center. 
This gives an entirely new meaning to the concept of “nuclear force,” and im-
plies that it is not like other “forces” known from larger-scale (including 
atomic-scale) experience. 

To probe the general nature of point-electron dynamics in this nuclear or 
sub-nuclear domain, let us consider a relativistic central-force one-body prob-
lem. In this case the classical-analog Hamiltonian is given by Eq. (10) with 

/V Ze r= , where we allow for Z positive charges on the attractive force center, 
assumed to be a fixed point. The mathematics has been given in some detail in 
earlier references(6-8), and will only be summarized here. The Hermitian Hamil-
tonian is [from Eqs. (10), (12), (13)] 
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1 1 2 1 1
m

e ZeHs c s mc s s
i c r

α− − − −⎛ ⎞= = − ⋅ ∇ + − −⎜ ⎟
⎝ ⎠

α A=
H  . (15) 

We consider the conservative case in which the Hamiltonian and s are time-
independent, so that the substitution ( )/ 'i E te ψ−Ψ = =  reduces (13a) to the ei-
genvalue equation 
 'Eψ ψ=H  . (16) 
The assumption of spherical symmetry, ( )s s r= , together with an identity 
given by Dirac(1), allows this (with 0=A ) to be reduced to 
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==H  , (17) 

where j is an operator that commutes with any function of r (hence with s) and 
Dirac gives the representations 
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ρ
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The eigenvalue equation (16), with ψ  a two-component wave function, then 
yields the two simultaneous equations 
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r c r c

ψ ψ ψ
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⎝ ⎠⎣ ⎦= =

 , (19a) 
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2
1 1 2

1 '' 0j s Ze Emc
r c r c

ψ ψ ψ
−⎡ ⎤⎛ ⎞−

− + + − − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦= =

 , (19b) 

for the two ψ -components. We need another equation to determine s, and this 
is furnished by (13c) with j = 1,2,3. Introducing formal spherical polar coordi-
nates by means of 2 2 2

1 2 3R Q Q Q= + + , 1 sin( )cos( )Q R θ φ= , 
2 sin( )sin( )Q R θ φ= , 3 cos( )Q R θ= , we find 
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j j

R
Q Q R R

ξ θ φ
⎛ ⎞∂ ∂ ∂ ∂

= =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 ,  j = 1,2,3, (20) 

the jξ  being direction cosines. Let ,θ φ  specify an arbitrary fixed direction 
from the coordinate origin. Then the jξ  are constants, and in view of spherical 
symmetry we can consider the jP  in Eq. (13c) to obey j jP Pξ= , where P is 
some constant. By this means the three relations (13c) are reduced to the single 
(two-component) equation 

 1Ps
i R

ψ ψ− ∂
= −

∂
=  . (21) 

Recall that R is related to the jQ  and thus is a constant of the motion. Both s 
and ψ  may be considered to depend at least implicitly on this constant. How-
ever, we choose to eliminate the explicit appearance of R by seeking a solution 
that depends on r and ( )1 2 3, ,Q Q Q=R  only through the combination −r R . 
If such a solution exists, we can replace / R∂ ∂  by / r−∂ ∂ , so that (21) be-
comes 

 1Ps
i r

ψ ψ− ∂
=

∂
=  . (22) 

For consistency with our assumption of spherical symmetry, it is evidently 
necessary to impose a particular initial condition; namely, 
 ( ) ( )1 2 3, , 0,0,0Q Q Q= =R  . (23) 
This initial condition will unfortunately limit the usefulness of our solution, 
since it implies the presence at the coordinate origin of an infinitely massive 
force center. (Strictly speaking, we assume the electron to be “found” at an 
event point R coincident with the origin.) We accept this limitation and pro-
ceed, because we are here more interested in proving the existence of some so-
lution than in finding the most general one. Since now ( )rψ ψ= , we can re-
place all partial derivatives by total ones, so that (22) becomes 

 1 ds
iP dr

ψ ψ− =
=  . (24) 

The assumptions that s is some scalar (spin-independent) real function 
( )s s r= , possessing an inverse, and that P is a constant suffice, with (24), to 

establish the equality of logarithmic derivatives of the two ψ -components. 
Thus 

 1 11 2 1
1 2 2 1

2

ln .d d const C
dr dr
ψ ψ ψ

ψ ψ ψ ψ
ψ

− − ⎛ ⎞⎛ ⎞ ⎛ ⎞= → = → =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 , (25) 

where C is some constant. Using (24), (25) to eliminate s and 2ψ from (19), we 
obtain from the two parts of the latter equation 

 ( )2

1 1

1'' 0
j Cimc iZe EC

P cPr c r
ψ ψ

+⎡ ⎤⎡ ⎤
+ + + − + =⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦=
 , (26a) 
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' 1' 1 0imcC iZe C E C j

P cPr c r
ψ ψ

⎡ ⎤ −⎡ ⎤− − + + − + =⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ =
 . (26b) 

As can be seen by multiplying (26a) by C, these two equations for 1ψ  are 
compatible if and only if 

 2 1
1

jC
j

−
=

+
 and 

1
imcC j

P j
−

=
+

 . (27a,b) 

In order to recover the Heisenberg postulate (s = 1) at long distances from the 
force center, we shall require unity as the asymptotic value of s, 
 lim ( ) 1

r
s r

→∞
=  . (28) 

From (24) we see that in this limit both components of ψ  behave like 
exp( /iPr = ). Since the wave function components must be bounded at infinity, 
P must have a positive imaginary part. In Dirac’s electron theory the operator j 
takes any positive or negative integral eigenvalues. Since j commutes with any 
function ( )s r , we may expect j to have somewhat similar commutation proper-
ties and eigenvalues in the present formalism. However, it is easily seen from 
(27) that the eigenvalues 1±  must be excluded here. It follows from this exclu-
sion that C is real; thus that P is pure imaginary and positive. Hence P can be 
written as 2P iK= , where K is real and non-zero. Then Eq. (27) yields 

 2 2 1

jmc
K j

=
−

 1
1

j jC
j j

−
= −

+
  (29a,b) 

Eq. (29a) makes it obvious that 1j = ±  must be forbidden. All other non-zero 
integral eigenvalues of j are allowed. Substituting 2P iK=  and (26a) into (24), 
written for the first component 1ψ , we obtain 

 ( ) 2
1 1

2 2 22
1

1' ' j CE mc Zes C
K c r K cK rK

ψ
ψ

− +⎡ ⎤⎛ ⎞ ⎡ ⎤
= − = − + + +⎜ ⎟ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎝ ⎠ ⎣ ⎦

= =
=

. (30) 

Applying to this the asymptotic condition (28), we find 

 2 2
'lim ( ) 1

r

mc Es r C
K K c→∞

⎡ ⎤ ⎡ ⎤= = + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 . (31) 

Solved for the energy eigenvalues 'E , this yields with the help of (29) 
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2 2
J

mcE E cK C mc
j

′ ′= = − − = − ,  2, 3,j = ± ± "  , (32) 

as the eigenvalue spectrum. The corresponding eigenfunctions can be found by 
integrating Eq. (30). However, it is easier to guess a solution of the form 
 ( )1 1

r
j jA e r γαψ ψ β−= = +  . (33) 

From this we obtain 
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γ αβαψ γα
ψ β β

−
− +
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 . (34) 
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On putting (29) and (32) into (30) we evaluate s finally as 
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1
( ) 1 1j

j jjZes s r
mc r mc r

⎡ ⎤−⎡ ⎤
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Comparison of the ratio 1 1' /ψ ψ  from (30) with (34) then yields the following 
evaluation of the constants in (33): 
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jZe
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2

2 21 1Ze jj j
c j
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Eq. (33) then evaluates the first eigenfunction component 1ψ . The second, 2ψ , 
follows from (25) and (29b). The multiplier jA  in Eq. (33) is arbitrary and can 
be used for wave function normalization. 

This completes our formal demonstration of the existence of localized 
bound-state Class-III solutions on the sub-atomic scale. These are electron 
states, since m is the electron mass. It is seen that α  is of the order of the elec-
tron Compton wavelength, and by (33) that this controls the “size” of the elec-
tron wave function. But the fact that the canonical “momentum” parameter P is 
pure imaginary [ 2P iK= ] seems to imply that the point electron cannot be 
“found” or “detected” on any size scale larger than a mathematical point—
which according to Eq. (23) is collocated with the force center at the origin. In 
other words, any event of “finding” is described by the new canonical variables 

1 2 3 0Q Q Q= = = . We know that nucleons have non-zero sizes. Therefore this 
solution is of no direct use for describing them. It treats merely an idealized 
limiting case of the infinite-mass force center localized at a point. Some of the 
simplifications we have pointed out along the way would have to be corrected 
in order to describe a finite-mass nucleon. That would ultimately involve solv-
ing a relativistic very many-body problem, and is beyond this writer’s capabili-
ties. Still, the results so far seem encouraging. 

Summation 
We have seen that point particle mechanics is not dead, and that a nuclear dy-
namics founded on the Class-III solutions, which locally violate the Heisenberg 
postulate, lies easily within the realm of formal descriptive possibility. Such an 
enhancement of dynamics seems limited on the sub-atomic scale to a descrip-
tion of the electron-positron—a fact that suggests a “beta structure hypothesis,” 
viz., that only electrons exist on the finer scales in nature. Our derivation of ei-
genvalues, Eq. (32), and of eigenfunctions, Eq. (33), establishes that stable 
bound states exist, beyond any known on the basis of classical (Class-I) or 
atomic (Class-II) solutions of our postulated equations of motion for all me-
chanics, Eq. (3). The eigenvalues in question lie within what was termed by 
Pauli the “Zwischengebiet”—the region of real mass-energy, but imaginary 
momentum, lying between particle total energies 2mc± . (That fits also with the 
imaginary value 2P iK=  of the canonical momentum parameter.) This fur-
nishes a ready mechanical explanation for nuclear beta processes and encour-
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ages further speculations, for instance that all heavy particles may be aggre-
gates of many imaginary-momentum electrons in real-mass states, i.e., elec-
tronic states within the Zwischengebiet… and that neutrinos (if found to be of 
zero rest mass) may be energy quanta associated with electronic transitions be-
tween states of real and imaginary momentum, as distinguished from photons, 
which are zero-mass quanta associated with electronic transitions between 
states of real momentum. 

The Class-I (Hamilton-Jacobi) solutions are exact solutions of Eq. (3), 
hence are as valid approximate descriptors of nature as the atomic (Class-II) 
solutions. Each solution class is available to describe its own appropriate aspect 
(and scale) of experience. None is subordinate to any other. Therefore we do 
not have to use the de Broglie wavelength of a planet to get a more “accurate” 
description of its motion; nor do we have to picture a “wave function of the 
universe.” Our basic theme has been a rigorization of formal Correspondence, 
motivated by a Principle of Relativity of Physical Size. An immediate conse-
quence has been the parametric restoration of formal analogs of the new ca-
nonical variables (constants of the motion). The parameter count must not 
change under formal Correspondence, there being no corresponding disconti-
nuity in nature. The restoration of c-number parameters in the Class-II equa-
tions of motion clears up all the OQM mysteries that have provided full em-
ployment for quantum measurement theorists (by providing a parametric 
mechanism for phase-connection severance that replaces “Projection”). Pros-
pects for a resurgence of the dynamics of the point electron have never been 
brighter. Still, I have found during forty years that such ideas are of little inter-
est to professional physicists… who remain supremely assured that quantum 
field theory, not particle dynamics, is the mathematical language by which na-
ture communicates her inmost secrets. Thus they conform to the definition of 
an expert, as one who makes no small mistakes. 
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A classical model for a spinning electron is described. It has been obtained 
within a kinematical formalism proposed by the author to describe spinning par-
ticles. The model satisfies Dirac’s equation when quantized. It shows that the 
charge of the electron is concentrated at a single point but is never at rest. The 
charge moves in circles at the speed of light around the centre of mass. The cen-
tre of mass does not coincide with the position of the charge for any classical 
elementary spinning particle. It is this separation and the motion of the charge 
that gives rise to the dipole structure of the electron. The spin of the electron 
contains two contributions. One comes from the motion of the charge, which 
produces a magnetic moment. It is quantized with integer values. The other is 
related to the angular velocity and is quantized with half integer values. It is ex-
actly half the first one and points in the opposite direction. When the magnetic 
moment is written in terms of the total observable spin. one obtains the g = 2 gy-
romagnetic ratio. A short range interaction between two classical spinning elec-
trons is analysed. It predicts the formation of spin 1 bound states provided some 
conditions on their relative velocity and spin orientation are fulfilled, thus sug-
gesting a plausible mechanism for the formation of a Bose-Einstein condensate. 

1. Introduction 
The spin of the electron has for many years been considered a relativistic and 
quantum mechanical property, mainly due to the success of Dirac’s equation 
describing a spinning relativistic particle in a quantum context. Nevertheless, in 
textbooks and research works one often reads that the spin is neither a relativis-
tic nor a quantum mechanical property of the electron, and that a classical in-
terpretation is also possible. The work by Levy-Leblond [1] and subsequent 
papers by Fushchich et al. [2], which show that it is possible to describe spin ½ 
particles in a pure Galilean framework, with the same g = 2 gyromagnetic ratio, 
spin-orbit coupling and Darwin terms as in Dirac’s equation, lead to the idea 
that spin is not strictly a relativistic property of the electron. 

The spin is the angular momentum of the electron, and the classical and 
quantum mechanical description of spin is the main subject of the kinematical 
formalism of elementary spinning particles published by the author [3]. This 
work presents the main results of this formalism and, in particular, an analysis 
of a model of a classical spinning particle whose states are described by 
Dirac’s spinors when quantized. Other contributions are also discussed. 
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2. Classical elementary particles 
To understand what a classical elementary particle is from the mathematical 
point of view, we consider first the example of a point particle. It is the sim-
plest geometrical object with which we can build any other geometrical body 
of any size and shape. The point particle is the classical elementary particle of 
Newtonian mechanics and has no spin. Yet we know today that spin is one of 
the intrinsic properties of all known elementary particles. The description of 
spin is related to the representation of the generators of the rotation group, and 
we know it is an intrinsic property since it is related to one of the Casimir op-
erators of the Galilei and Poincaré groups. 

From the Lagrangian point of view, the initial (and final) state of the point 
particle is a point on the continuous space-time manifold. In fact what we fix as 
boundary conditions for the variational problem are the position 1r  at time 1t  
and the position 2r  at the final time 2t . We call kinematical variables of any 
mechanical system the variables which define the initial (and final) configura-
tion of the system in this Lagrangian description, and kinematical space the 
manifold covered by these variables. The point particle is a system of three de-
grees of freedom with a four-dimensional kinematical space.  

In group theory, a homogeneous space of any Lie group is the quotient 
structure between the group and any of its continuous subgroups. The impor-
tant property of the kinematical space of a point particle, from the mathemati-
cal viewpoint, is that it is a homogeneous space of the Galilei and Poincaré 
groups. 

In the example of the point particle, the kinematical space manifold is the 
quotient structure between the Poincaré group and the Lorentz group in the 
relativistic case, and also the quotient between the Galilei group and the homo-
geneous Galilei group in the non-relativistic one. 

We use this idea to arrive at the following definition. 

Definition: A classical elementary particle is a mechanical system whose 
kinematical space is a homogeneous space of the kinematical group. 

The spinless point particle fulfils this definition, but it is not the most 
general elementary particle that can be described, because we have larger ho-
mogeneous spaces with a more complex structure. The largest structured parti-
cle is the one for which the kinematical space is either the Galilei or Poincaré 
group or any of its maximal homogeneous spaces. 

With this definition we have a new formalism, based upon group theory, 
to describe elementary particles from a classical point of view. It will be quan-
tized by means of Feynman’s path integral method, where the kinematical vari-
ables are precisely the common end points of all integration paths. The wave 
function of any mechanical system will be a complex function defined on the 
kinematical space. In this way, the structure of an elementary particle is basi-
cally related to the kinematical group of space-time transformations that im-
plements the Special Relativity Principle. It is within the kinematical group of 
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symmetries that we must look for the independent and essential classical vari-
ables to describe an elementary object. 

When we consider a larger homogeneous space than the space-time mani-
fold, for both Galilei and Poincaré groups, we have variables additional to time 
and space to describe the states of a classical elementary particle. These addi-
tional variables will produce a classical description of spin. 

3. Main features of the formalism 
When we write the Lagrangian of any mechanical system in terms of the intro-
duced kinematical variables, and the dynamics is expressed in terms of some 
arbitrary evolution parameter τ (not necessarily the time parameter), we get the 
following properties: 
• The Lagrangian is independent of the evolution parameter τ. The time evo-

lution of the system is obtained by choosing ( )t τ τ= . 
• The Lagrangian is only a function of the kinematical variables ix  and their 

first τ derivatives ix� . 
• The Lagrangian is a homogeneous function of first degree in terms of the 

derivatives of the kinematical variables ix�  and therefore Euler’s theorem 
implies that it can be written as ( , ) ( , ) ,i iL x x F x x x=� � �  where i iF L x= ∂ ∂� . 

• If some kinematical variables are time derivatives of any other kinematical 
variables, then the Lagrangian is necessarily a generalised Lagrangian de-
pending on higher order derivatives when expressed in terms of the essen-
tial or independent degrees of freedom. Therefore, the dynamical equations 
corresponding to these variables are no longer of second order, but, in gen-
eral, of fourth or higher order. This will be the case for the charge position 
of a spinning particle. 

• The transformation of the Lagrangian under a Lie group that leaves the dy-
namical equations invariant is ( , ) ( , ) ( ; ) ,L gx gx L x x d g x dα τ= +� �  where 

( ; )g xα  is a gauge function for the group G and the kinematical space X. It 
only depends on the parameters of the group element and on the kinemati-
cal variables. It is related to the exponents of the group [4]. 

• When the kinematical space X is a homogeneous space of G, then 
( ; ) ( , )xg x g gα ξ= , where 1 2( , )g gξ  is an exponent of G. 

• When quantizing the system, Feynman’s kernel is the probability ampli-
tude for the mechanical process between the initial and final state. It will 
be a function, or more precisely a distribution, over the X X×  manifold. 
Feynman’s quantization establishes the link between the description of the 
classical states in terms of the kinematical variables and its corresponding 
quantum mechanical description in terms of the wave function. 

• The wave function of an elementary particle is thus a complex square inte-
grable function defined on the kinematical space. 

• The Hilbert space structure of this set of functions is achieved by a suitable 
choice of a group invariant measure defined over the kinematical space. 
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• The Hilbert space of a classical system, whose kinematical space is a ho-
mogeneous space of the kinematical group, carries a projective, unitary, ir-
reducible representation of the group. In this way, the classical definition 
of an elementary particle has a correspondence with Wigner’s definition of 
an elementary particle in the quantum case. 

4. The classical electron model 
The latest LEP experiments at CERN suggest that the electron charge is con-
fined within a region of radius 1910 meR −< . Nevertheless, the quantum me-
chanical effects of the electron appear at distances of the order of its Comp-
ton’s wavelength 13/ 10 mC mcλ −= ≅= , which are six orders of magnitude lar-
ger. 

One possibility to reconcile these features is the assumption, from the 
classical viewpoint, that the charge of the electron is a point, but at the same 
time this point is never at rest and it is affected by an oscillating motion in a 
confined region of size Cλ . This motion is known in the literature as Zitter-
bewegung. This is the basic structure of spinning particle models that will be 
obtained within the proposed kinematical formalism, and also suggested by 
Dirac’s analysis of the internal motion of the electron [5]. It is shown that the 
charge of the particle is at a single point r, but this point is not the centre of 
mass of the particle. Furthermore, the charge of the particle is moving at the 
speed of light, as shown by Dirac’s analysis of the electron velocity operator. 
Here, the velocity corresponds to the velocity of the point r, which represents 
the position of the charge. In general, the point charge satisfies a fourth-order 
differential equation, which is the most general differential equation satisfied 
by any three-dimensional curve. 

We shall see that the charge moves around the centre of mass in a kind of 
harmonic or central motion. It is this motion of the charge that gives rise to the 
spin and dipole structure of the particle. In particular, the classical relativistic 
model that when quantized satisfies Dirac’s equation shows, for the centre of 
mass observer, a charge moving at the speed of light in circles of radius 

0 / 2R mc= =  and contained in a plane orthogonal to the spin direction [6,7]. 
This classical model of electron is what we will obtain when analysing the rela-
tivistic spinning particles. 

To describe the dynamics of a classical charged spinning particle, we 
must therefore follow just the charge trajectory or, alternatively, the centre of 
mass motion and the motion of the charge around the centre of mass. In general 
the centre of mass satisfies second-order, Newton-like dynamical equations, in 
terms of the total external force. But this force has to be evaluated not at the 
centre of mass position, but rather at the position of the charge. We will dem-
onstrate all these features by considering different examples. 
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5. Non-relativistic elementary particles 
Let us first consider the non-relativistic formalism because the mathematics in-
volved is simpler. In the relativistic case the method is exactly the same, [3,6,7] 
and we limit ourselves here to giving only the main results. We start with the 
description of the Galilei group to show how we obtain the variables that de-
termine a useful group parameterization. These variables associated with the 
group will later be transformed into the kinematical variables of the elementary 
particles. We end this section with an analysis of some different kinds of clas-
sical elementary particles. 

5.1 Galilei group 
The Galilei group is a group of space-time transformations characterised by ten 
parameters ( , )g b a,v,α≡

GG G . The action of a group element g on a space-time 
point ( , )x t r≡

G , represented by x gx′ = , is considered in the following form 
 exp( )exp( )exp( )exp( )x bH a P v K J xα′ = ⋅ ⋅ ⋅

G G GGG G  
It is a rotation of the point, followed by a pure Galilei transformation, and fi-
nally a space and time translation. Explicitly, the above transformation be-
comes 
 ,t t b′ = +  (1) 
 ( ) .r R r vt aα′ = + +

G G G G  (2) 
The group action (1)-(2) represents the relationship between the coordinates 
( , )t rG  of a space-time event, as measured by the inertial observer O, and the 
corresponding coordinates ( , )t r′ ′G  of the same space-time event as measured by 
another inertial observer O′. Parameter b is a time parameter, aG  has dimen-
sions of space, vG of velocity and αG  is dimensionless, and these dimensions 
will be shared by the corresponding variables of the different homogeneous 
spaces of the group. 

The variables b and aG  are the time and position of the origin of frame O 
at time t = 0 as measured by observer O′. The variables vG  and αG  are respec-
tively the velocity and orientation of frame O as measured by O′. 

The composition law of the group g′′ = g′g is: 
 b′′ = b′+b, (3) 
 ( ) ,a R a v b aα′′ ′ ′ ′= + +

GG G G G  (4) 
 ( ) ,v R v vα′′ ′ ′= +

GG G G  (5) 
 ( ) ( ) ( ).R R Rα α α′′ ′=

G G G  (6) 
The generators of the group in the realization (1, 2) are the differential opera-
tors 
 ,      ,      ,      i i l i

i i k kliH t P x K t x J x xε= ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂  (7) 
and the commutation relations of the Galilei Lie algebra are 
 [ , ] ,     [ , ] ,     [ , ] ,     [ , ] 0,J J J J P P J K K J H= − = − = − =

G G G G G G G G G G
 (8) 

 [ , ] 0,     [ , ] ,     [ , ] 0,     [ , ] 0.H P H K P P P K P= = = =
G G G G G G G

 (9) 
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The Galilei group has the non-trivial exponents [4] 

 21( , ) ( ) ' .
2

g g m v b v R aξ α⎛ ⎞′ ′= + ⋅⎜ ⎟
⎝ ⎠

GG G G  (10) 

They are characterised by the non-vanishing parameter m. The gauge functions 
for the Lagrangians defined on the different homogeneous spaces of the Galilei 
group are of the form 

 21( ; ) ( )
2

g x m v t v R rα α⎛ ⎞= + ⋅⎜ ⎟
⎝ ⎠

GG G G  

They all vanish if the boost parameter vG  vanishes. This implies that a Galilei 
Lagrangian for an elementary particle is invariant under rotations and transla-
tions, but not under Galilei boosts. In the quantum case this means that the Hil-
bert space for this system carries a unitary representation of a central extension 
of the Galilei group. In the classical case, the generating functions of the ca-
nonical Galilei transformations, with the Poisson bracket as the Lie operation, 
satisfy the commutation relations of the Lie algebra of the central extension of 
the Galilei group [4]. 

The central extension of the Galilei group [8] is an 11-parameter group 
with an additional generator I which commutes with the other ten, 
 [ , ] [ , ] [ , ] [ , ] 0,I H I P I K I J= = = =

G G G
 (11) 

while the remaining commutation relations are the same as above (8, 9), the 
only exception being the last, which now appears as 
 [ , ] .i j ijK P m Iδ= −  (12) 

If the following polynomial operators are defined on the group algebra 

 21 1,          ,
2

W IJ K P U IH P
m m

= − × = −
G G G G G

 (13) 

we see that U commutes with all generators of the extended Galilei group and 
that W

G
 satisfies the commutation relations 

 [ , ] ,     [ , ] ,     [ , ] [ , ] [ , ] 0.W W IW J W W W P W K W H= − = − = = =
G G G G G G G G G G G

 
We find that 2W

G
 also commutes with all generators. It turns out that the ex-

tended Galilei group has three functionally independent Casimir operators. In 
those representations in which the operator I becomes the unit operator, for in-
stance, in the irreducible representations they are, respectively, interpreted as 
the mass, M = mI, the internal energy 2

0 / 2H H P m= − , and the absolute 
value of the spin 

 
2

21 1,       .S J K P S J K P
m m

⎛ ⎞= − × ⇒ = − ×⎜ ⎟
⎝ ⎠

G G G G G G G
 (14) 

In what follows we take the above definition (14) as the definition of the spin 
of a nonrelativistic particle. In those representations in which I is the unit op-
erator, the spin operator S

G
 satisfies the commutation relations: 

 [ , ] ,       [ , ] ,       [ , ] [ , ] [ , ] 0,S S S J S S S P S K S H= − = − = = =
G G G G G G G GG G G
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i.e., it is an angular momentum operator, transforms like a vector under rota-
tions and is invariant under space and time translations and under Galilei 
boosts, respectively. 

Furthermore, it reduces to the total angular momentum operator J
G

 in 
those frames in which 0P K= =

G G
. 

5.2 The spinless point particle 
The kinematical variables of the point particle are { , }t rG , time and position, re-
spectively. The nonrelativistic Lagrangian written in terms of the τ derivatives 
of the kinematical variables is the first order homogeneous function 

 
2

,
2NR
m rL Tt R r

t
= = + ⋅

G� G G��
�  

where we define /T L t= ∂ ∂�  and / i
iR L r= ∂ ∂� . The constants of motion ob-

tained through the application of Noether’s theorem to the different subgroups 
of the Galilei group are 

 
2

energy     ,
2
m drH T

dt
⎛ ⎞= − = ⎜ ⎟
⎝ ⎠

G
 

 linear  momentum     ,drP R m
dt

= =
GG G

 

 kinematical  momentum     ,K mr Pt= −
G GG  

 angular  momentum     .J r P= ×
G GG  

The spin for this particle is / 0S J K P m= − × =
G G G G

. 

5.3 A spinning elementary particle 
According to the definition, the most general nonrelativistic elementary particle 
[9] is the mechanical system whose kinematical space X is the whole Galilei 
group G . The kinematical variables are, therefore, the ten real variables 

( ) { ( ),  ( ),  ( ),  ( )}x t r uτ τ τ τ ρ τ≡
GG G , with domains 3 3,  ,  t r u∈ ∈ ∈

G G
R R R  and 

(3)SOρ ∈
G . The latter, with tan / 2ρ α= , is a particular parameterization of the 

rotation group. In this parameterization the composition law of rotations is al-
gebraically simple, as shown below. All these kinematical variables have the 
same geometrical dimensions as the corresponding group parameters. The rela-
tionship between the values ( )x τ′  and ( )x τ  take, at any instant τ, for two arbi-
trary inertial observers  
 ( ) ( ) ,t t bτ τ′ = +  (15) 
 ( ) ( ) ( ) ( ) ,r R r vt aτ μ τ τ′ = + +

G G G G G  (16) 
 ( ) ( ) ( ) ,u R u vτ μ τ′ = +

G G G G  (17) 

 ( ) ( )( ) .
1 ( )

μ ρ τ μ ρ τρ τ
μ ρ τ

+ + ×′ =
− ⋅

G GG GG
GG  (18) 
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The way the kinematical variables transform allows us to interpret them, re-
spectively, as the time (15), position (16), velocity (17) and orientation (18) of 
the particle. 

There exist three differential constraints among the kinematical variables: 
( ) ( ) / ( )u r tτ τ τ=
G G� � . These constraints, and the homogeneity condition on the La-

grangian L in terms of the derivatives of the kinematical variables, reduce from 
ten to six the essential degrees of freedom of the system. These degrees of 
freedom are the position ( )r tG  and the orientation ( )tρG . Since the Lagrangian 
depends on the derivative of uG  it thus depends on the second derivative of 

( )r tG . For the orientation variables the Lagrangian only depends on the first de-
rivative of ( )tρG . It can be written as 
 ,L Tt R r U u V ρ= + ⋅ + ⋅ + ⋅

G G G GG G �� ��  (19) 
where the functions written in capital letters are defined as before as 

/ ,   / ,   / ,   /i i i
i i iT L t R L r U L u V L ρ= ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂� �� � . In general they will be 

functions of the ten kinematical variables ( ,  ,  ,  )t r u ρGG G  and homogeneous func-
tions of zero degree of the derivatives ( ,  ,  ,  )t r u ρGG G �� �� . 

If we introduce the angular velocity ωG  as a linear function of ρG� , then the 
last term of the expansion of the Lagrangian (19), V ρ⋅

G G� , can also be written as 
W ω⋅
G G , where / i

iW L ω= ∂ ∂ . 
The different Noether constants of motion are related to the invariance of 

the dynamical equations under the Galilei group, and are obtained by the usual 
Lagrangian methods. They are the following observables: 

 energy     ,dUH T u
dt

= − − ⋅
G

G  (20) 

 linear  momentum     ,dUP R
dt

= −
GG G

 (21) 

 kinematical  momentum     ,K mr Pt U= − −
G G GG  (22) 

 angular  momentum     .J r P u U W= × + × +
G G G GG G  (23) 

From 0K =
G� , comparing with (21), we find R mu=

G G , and the linear momentum 
has the form /P mu dU dt= −

G GG . We see that the total linear momentum does 
not coincide with the direction of the velocity uG . The functions U

G
 and W

G
 are 

what distinguishes this system from the point particle case. The spin structure 
is thus directly related to the dependence of the Lagrangian on the acceleration 
and angular velocity. 

We see that K
G

 in (22) differs from the point particle case K mr Pt= −
G GG , 

in the term U−
G

. If we define the vector /k U m=
G G

, with dimensions of length, 
then 0K =

G�  leads to the equation: 

 ( ) .d r kP m
dt
−

=
GGG

 

The vector q r k= −
GG G , defines the position of the centre of mass of the particle. 

It is a different point from rG , whenever k
G

 (and thus U
G

) is different from zero. 
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In terms of qG  the kinematical momentum takes the form 
 ,K mq Pt= −

G GG  
which looks like the result in the case of the point particle, where the centre of 
mass and centre of charge are the same point. 

The total angular momentum (23) has three terms. The first term r P×
GG  

resembles an orbital angular momentum, and the other two Z u U W= × +
G G GG  can 

be taken to represent the spin of the system. In fact, the latter observable is an 
angular momentum. It is related to the new kinematical variables and satisfies 
the dynamical equation /dZ dt P u= ×

G G G . Because P
G

and uG are not collinear vec-
tors, Z

G
 is not a conserved angular momentum. This is the dynamical equation 

satisfied by Dirac’s spin operator in the quantum case. The observable Z
G

 is the 
classical spin observable equivalent to Dirac’s spin operator.  

One important feature of the total angular momentum is that the point rG  
is not the centre of mass of the system, and therefore the r P×

GG  part can no 
longer be interpreted as the orbital angular momentum of the particle. The an-
gular momentum Z

G
 is the angular momentum of the particle with respect to 

the point rG , but not with respect to the centre of mass. 
The spin of the system is defined as the difference between the total angu-

lar momentum J
G

 and the orbital angular momentum of the centre of mass mo-
tion L q P= ×

G GG . It can assume the following different expressions: 

 1 .dkS J q P J K P Z k P mk W
m dt

= − × = − × = + × = − × +
GG GG G G G G G G G GG  (24) 

The second form of the spin S
G

 in (24) is exactly expression (14) which leads 
to one of the Casimir operators of the extended Galilei group. It is expressed in 
terms of the constants of the motion ,  J K

G G
 and P

G
, and it is therefore another 

constant of motion. Because the particle is free and there are no external 
torques acting on it, it is clear that the spin of the system is represented by this 
constant angular momentum and not by the other angular momentum observ-
able Z

G
, which is related to Dirac’s spin operator. 

The third expression in (24) is the sum of two terms, one Z
G

, coming from 
the new kinematical variables, and another k P×

G G
, which is the angular mo-

mentum, of the linear momentum located at point rG , with respect to the centre 
of mass. Alternatively we can describe the spin according to the last expression 
in (24) in which the term /k mdk dt− ×

G G
 suggests a contribution of (anti) orbital 

type coming from the motion around the centre of mass. It is related to the Zit-
terbewegung, or more precisely to the function U mk=

GG
, which comes from the 

dependence of the Lagrangian on acceleration. The term W
G

 comes from the 
dependence on the other three degrees of freedom iρ , and thus on the angular 
velocity. This Zitterbewegung is the motion of the centre of charge around the 
centre of mass, as we shall see in an example in section 5.6. That the point rG  
represents the position of the centre of charge has also been suggested in previ-
ous works for the relativistic electron [10]. 
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To analyse the different contributions to the spin of the most general ele-
mentary particle we shall consider now two simpler examples. In the first one, 
the spin is related to the existence of orientation variables, and in the second, to 
the dependence of the Lagrangian on the acceleration. 

5.4 Spinning particle with orientation 
The kinematical space is / KGG , where KG  is the three-dimensional subgroup 
which consists of the commutative Galilei boosts, or pure Galilei transforma-
tions at a constant velocity. The kinematical variables are now { ,  ,  }t r αGG , time, 
position and orientation, respectively. The possible Lagrangians are not unique 
in this case. They must be functions only of the velocity /u dr dt=

G G  and of the 
angular velocity ωG . They have the general form 
 ,L Tt R r W ω= + ⋅ + ⋅

G G GG��  
where / ,  / ,  /T L t R L r W L ω= ∂ ∂ = ∂ ∂ = ∂ ∂

G G GG�� . 
The basic conserved observables are: 

 energy     ,H T= −  

 linear  momentum     ,P mu=
G G  

 kinematical  momentum     ,K mr Pt= −
G GG  

 angular  momentum     .J r P W= × +
G G GG  

For such a particle r q=
G G , the centre of mass and centre of charge coincide and 

the spin 0S W= ≠
G G

. A particular Lagrangian which describes this system is the 
Lagrangian of a spherically symmetric body: 

 
2

21 ,
2 2

dr IL m
dt

ω⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

where the spin is S W Iω= =
G G G . 

5.5 Spinning particle with Zitterbewegung 
The kinematical space is the manifold / (3)SOG , where (3)SO , is the three-
dimensional subgroup of rotations. The kinematical variables are 

( ) { ,  ,  }x t r uτ =
G G , time, position and velocity, respectively. The possible La-

grangians are not unique as in the previous case, and must be functions of the 
velocity /u dr dt=

G G  and the acceleration /a du dt=
G G . 

The Lagrangians have the general form when expressed in terms of the 
kinematical variables and their τ-derivatives 
 ,L Tt R r U u= + ⋅ + ⋅

G GG G� ��  
where / ,  / ,  /T L t R L r U L u= ∂ ∂ = ∂ ∂ = ∂ ∂

G GG G� �� . A particular Lagrangian could be, 
for example 

 
2 2

2 ,
2 2
m r m uL

t tω
= −

G G� �
� �  (25) 

If we consider that the evolution parameter is dimensionless, all terms in the 
Lagrangian have dimensions of action. The parameter m represents the mass of 
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the particle while the parameter ω, with dimension 1time− , represents an inter-
nal frequency: it is the frequency of the internal Zitterbewegung. In terms of 
the essential degrees of freedom, which reduce to the three position variables 
rG , and using the time as the evolution parameter, the Lagrangian can also be 
written as 

 
22 2

2 2 .
2 2
m dr m d rL

dt dtω
⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

G G
 (26) 

The dynamical equations obtained from the Lagrangian (26) are: 

 
4 2

2 4 2

1 0,d r d r
dt dtω

+ =
G G

 (27) 

whose general solution is 
 ( ) cos sin ,r t A Bt C t D tω ω= + + +

G GG GG  (28) 
in terms of the 12 integration constants ,  ,  A B C

G GG
 and D

G
. 

We see that the kinematical momentum K
G

 in (22) differs from the point 
particle case in the term U−

G
. The definition of the vector /k U m=

G G
, implies 

that 0K =
G�  leads to the equation ( ) /P md r k dt= −

GG G , as before, and q r k= −
GG G  

represents the position of the centre of mass of the particle. It is defined in this 
example as 

 
2

2 2

1 1 .d rq r U r
m dtω

= − = +
GGG G G  (29) 

In terms of the center of mass, the dynamical equations (27) can be separated 
into the form 

 
2

2 0,d q
dt

=
G

 (30) 

 
2

2
2 ( ) 0,d r r q

dt
ω+ − =

G G G  (31) 

where (30) is just equation (27) after twice differentiation of (29), and equation 
(31) is (29) after all terms on the left hand side have been collected. 

From (30) we see that the point qG  moves in a straight trajectory at con-
stant velocity while the motion of point rG , given in (31), is an isotropic har-
monic motion of angular frequency ω around the point qG . 

The spin of the system S
G

 is defined as 

 1 ,S J q P J K P
m

= − × = − ×
G G G G G GG  (32) 

and since it is written in terms of constants of motion it is clearly another con-
stant of motion. Its magnitude 2S  is also a Galilei invariant quantity which 
characterizes the system. From its definition we get 

 ( ) ( ) ,d dkS u U k P m r q r q k m
dt dt

= × + × = − − × − = − ×
GG GG G GG G G G G  (33) 

which appears as the (anti)orbital angular momentum of the relative motion of 
the point rG  around the centre of mass position qG  at rest, so that the total angu-
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lar momentum can be written as 
 .J q P S L S= × + = +

G GG G GG  (34) 
The total angular momentum is the sum of the orbital angular momentum L

G
, 

associated with the motion of the centre of mass, and the spin part S
G

. For a 
free particle both L

G
 and S

G
 are separate constants of motion. We use the term 

(anti)orbital to suggest that if the vector k
G

 represents the position of a point of 
mass m, the angular momentum of its motion is in the opposite direction from 
what we obtain here for the spin observable. But, as we shall see in a moment, 
the vector k

G
 represents not the position of the mass m, but the position of the 

charge of the particle. 

5.6 Interaction with an external electromagnetic field 
If the point qG  represents the position of the centre of mass of the particle, then 
what position does point rG  represent? The point rG  represents the position of 
the charge of the particle. This can be seen by considering interaction with an 
external field. The homogeneity condition of the Lagrangian in terms of the de-
rivatives of the kinematical variables suggests an interaction term of the form 
 ( , ) ( , ) ,IL e t r t eA t r rφ= − + ⋅

GG G G��  (35) 
which is linear in the derivatives of the kinematical variables t and rG , and 
where the external potentials are only functions of t and rG . 

The dynamical equations obtained from the Lagrangian IL L+  are 

 ( )
4 2

2 4 2

1 ( , ) ( , ) ,d r d r e E t r u B t r
dt dt mω

+ = + ×
G G G GG G G  (36) 

where the electric field E
G

 and magnetic field B
G

 are expressed in terms of the 
potentials in the usual form / ,   E A t B Aφ= −∇ − ∂ ∂ = ∇ ×

G GG G
. Because the inter-

action term does not depend on uG� , the function U mk=
GG

 has the same expres-
sion as in the free particle case. Therefore the spin and the centre of mass defi-
nitions, (33) and (29) respectively, remain the same as in the previous free 
case. Dynamical equations (36) can again be separated into the form 

 ( )
2

2 ( , ) ( , ) ,d q e E t r u B t r
dt m

= + ×
G G GG G G  (37) 

 
2

2
2 ( ) 0.d r r q

dt
ω+ − =

G G G  (38) 

The centre of mass qG  satisfies Newton’s equations under the action of the total 
external Lorentz force, while the point rG  still satisfies the isotropic harmonic 
motion of angular frequency ω around the point qG . But the external force and 
the fields are defined at the point rG  and not at point qG . It is the velocity uG  of 
the point rG  which appears in the magnetic term of the Lorentz force. The point 
rG  clearly represents the position of the charge. In fact, this minimal coupling 
we have considered is the coupling of the electromagnetic potentials with the 
particle current, which, in the relativistic case, can be written as j Aμ

μ . The 
current jμ  is associated with the motion of a charge e at the point rG . 
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The charge has an oscillatory motion of very high frequency ω, which in 
the case of the relativistic electron will be 2 21 12 / 1,55 10 smcω −= ≈ ×= , as 
shown later. The average position of the charge is the centre of mass, but it is 
this internal orbital motion which gives rise to the spin structure and also to the 
magnetic properties of the particle. 

When analysed in the centre of mass frame (see Fig. 1), 0,  q r k= =
GG G , and 

the system reduces to a point charge whose motion is in general an ellipse. If 
we choose C = D, and 0C D⋅ =

G G
, it reduces to a circle of radius r = C = D, or-

thogonal to the spin. Because the particle has a charge e, it produces a magnetic 
moment, which according to the usual classical definition is [11] 

 31 ,
2 2 2

e dk er jd r k S
dt m

μ = × = × = −∫
GG GGG G G  (39) 

where 3 ( ) /j e r k dk dtδ= −
G GG G  is the vector current associated with the motion of 

a charge e located at the point k
G

. The magnetic moment is orthogonal to the 
Zitterbewegung plane and opposite to the spin if e > 0. The particle also has a 
non-vanishing electric dipole moment with respect to the centre of mass 
d ek=
G G

. It oscillates and is orthogonal to μG , and therefore to S
G

, in the centre 
of mass frame. Its time average value vanishes for times larger than the natural 
period of this internal motion. Although this is a nonrelativistic example, it is 
interesting to compare this analysis with Dirac’s relativistic analysis of the 
electron, [5] in which both momenta μG  and d

G
 appear, giving rise to two pos-

sible interacting terms in Dirac’s Hamiltonian. 

6. Relativistic elementary particles 
The Poincaré group can be parameterised in terms of exactly the same ten pa-
rameters { ,  ,  ,  }b a v αGG G  as the Galilei group and with the same dimensions as 
before. We therefore maintain the interpretation of these variables respectively 
as the time, position, velocity and orientation of the particle. The homogeneous 
spaces of the Poincaré group can be classified in the same manner, but with 
some minor restrictions. For instance, the kinematical space of the example of 
the spinning particle with orientation as in section 5.4, / KX G= G , can no 
longer be defined in the Poincaré case, because the three dimensional set KG  
of Lorentz boosts is not a subgroup of G; but the most general structure of a 
spinning particle still holds. 

 

Figure 1: Charge motion in 
the C.M. frame. 
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The Poincaré group has three different maximal homogeneous spaces 
spanned by the variables { ,  ,  ,  }b a v αGG G , which are classified according to the 
range of the velocity parameter vG . If v c<  we have the Poincaré group itself. 
When v c> , this homogeneous space describes particles whose charge is mov-
ing faster than light. Finally, if v c= , we have a homogeneous space which de-
scribes particles whose position rG  is always moving at the speed of light. This 
is the manifold which defines the kinematical space of photons and electrons 
[6,7]. The first manifold gives, in the low velocity limit, the same models as in 
the nonrelativistic case. It is the Poincaré group manifold, which is transformed 
into the Galilei group by the limiting process c → ∞ . But this limit cannot be 
applied to the other two manifolds. Accordingly, the Poincaré group describes 
a larger set of spinning objects. 

6.1 Spinning relativistic elementary particles 
We shall review the main points of the relativistic spinning particles whose 
kinematical space is the manifold spanned by the variables { ,  ,  ,  }t r u αGG G , inter-
preted as the time, position, velocity and orientation of the particle, but with 
u c= . This is a homogeneous space homomorphic to the manifold G/V, where 
V is the one-dimensional subgroup of pure Lorentz transformations in a fixed 
arbitrary direction. 

For these systems the most general form of the Lagrangian is 
 ,L Tt R r U u W ω= + ⋅ + ⋅ + ⋅

G G G GG G� ��  
where / ,  / ,  /i i

i iT L t R L r U L u= ∂ ∂ = ∂ ∂ = ∂ ∂� � �  and / i
iW L ω= ∂ ∂  will be, in gen-

eral, functions of the ten kinematical variables { ,  ,  ,  }t r u αGG G  and homogeneous 
functions of zero degree in terms of the derivatives { ,  ,  ,  }t r u αGG G �� �� . 

The Noether constants of motion are now the following conserved ob-
servables: 

 energy     ,dUH T u
dt

= − − ⋅
G

G  (40) 

 linear  momentum     ,dUP R
dt

= −
GG G

 (41) 

 2 2kinematical  momentum     / / ,K Hr c Pt S u c= − − ×
GG GG G  (42) 

 angular  momentum     J r P S= × +
GG GG , (43) 

where 
 .S u U W= × +

G G GG  (44) 
The difference from the Galilei case comes from the different behaviour 

of the Lagrangian under the Lorentz boosts when compared with the Galilei 
boosts. In the nonrelativistic case the Lagrangian is not invariant. However, the 
relativistic Lagrangian is invariant and the kinematical variables transform in a 
different way. This gives rise to the term 2/S u c×

G G  instead of the term U
G

 
which appears in the kinematical momentum (42). The angular momentum ob-
servable (44) is not properly speaking the spin of the system, if we define spin 
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as the difference between the total angular momentum and the orbital angular 
momentum associated with the centre of mass. It is the angular momentum of 
the particle with respect to the point rG , as in the nonrelativistic case. Neverthe-
less, the observable S

G
 is the classical equivalent of Dirac’s spin observable be-

cause in the free particle case it satisfies the same dynamical equation, 

 ,dS P u
dt

= ×
G G G  

as Dirac’s spin operator does in the quantum case. It is only a constant of mo-
tion for the centre of mass observer. This can be seen by taking the time deriva-
tive of the constant total angular momentum J

G
 given in (43). We shall keep 

the notation S
G

 for this angular momentum observable, because when the sys-
tem is quantized it gives rise to the usual quantum mechanical spin operator in 
terms of the Pauli spin matrices. 

6.2 Dirac’s equation 
Dirac’s equation is the quantum mechanical expression of the Poincaré invari-
ant linear relationship [6,7] between the energy H and the linear momentum P

G
 

 0,duH P u S u
dt

⎛ ⎞− ⋅ − ⋅ × =⎜ ⎟
⎝ ⎠

GGG G G  

where uG  is the velocity of the charge (u = c), /du dtG  the acceleration and 
uS S Sα= +

G G G
 Dirac’s spin observable (see Figure 2). This expression can be ob-

tained from (42) by making the time derivative of that constant observable and 
a final scalar product with the velocity uG . The Dirac spin has two parts: one 

uS u U= ×
G GG , is related to the orbital motion of the charge, and S Wα =

G G
 is due to 

the rotation of the particle and is directly related to the angular velocity, as it 
corresponds to a spherically symmetric object. 

The centre of mass observer is defined as the observer for whom 
0,K P= =

G G
 because this implies that 0q =

G  and / 0dq dt =
G . By analysing the 

observable (42) in the centre of mass frame where H = mc2, we get the dy-
namical equation of the point rG , 
 2/r S u mc= ×

GG G  
where S

G
 is a constant vector in this frame. The solution is the circular motion 

depicted in Figure 2. 

Figure 2. Motion of the centre 
of charge of the electron 
around its centre of mass in 
the C.M. frame. 
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The radius and angular velocity of the internal classical motion of the 
charge are, respectively, /R S mc= , and 2 /mc Sω = . The energy of this sys-
tem is not definite positive. The particle of positive energy has the total spin S

G
 

oriented in the same direction as the uS
G

 part while the orientation is the oppo-
site for the negative energy particle. This system corresponds to the time re-
versed motion of the other. When the system is quantized, the orbital compo-
nent uS

G
, which is directly related to the magnetic moment, quantizes with inte-

ger values, while the rotational part Sα

G
 requires half integer values. For these 

particles of spin ½, the total spin is half the value of the uS
G

 part. When ex-
pressing the magnetic moment in terms of the total spin, we thus obtain a pure 
kinematical interpretation of the g = 2 gyromagnetic ratio [12]. 

For the centre of mass observer this system appears as a system of three 
degrees of freedom. Two represent the x and y coordinates of the point charge, 
and the third is the phase of its rotational motion. However this phase is exactly 
the same as the phase of the orbital motion of the charge. Because the motion is 
at constant radius at constant speed c, only one independent degree of freedom 
is left—say the x variable. Therefore the system is reduced to a one-
dimensional harmonic oscillator of angular frequency ω. When the system is 
quantized, the stationary states of a one-dimensional harmonic oscillator have 
the energy 

 1 ,          0,1,2,...
2nE n nω⎛ ⎞= + =⎜ ⎟

⎝ ⎠
=  

But if the system is elementary, then it has no excited states, and in the C.M. 
frame it is reduced to the ground state of energy 

 2
0

1 .
2

E mcω= ==  

If we compare this with the classical result 2 /mc Sω =  we see that the con-
stant classical parameter S  takes the value / 2S = =  when quantized. The ra-
dius of the internal motion is / 2CR λ= , half Compton’s wavelength. 

We see that all Lagrangian systems with the same kinematical space as 
the one considered in this model have exactly the same dynamics for the point 
r, describe spin ½ particles and satisfy Dirac’s equation when quantized. The 
formalism describes an object whose charge is located at a single point rG , but 
it is nevertheless moving in a confined region of radius of order Cλ . It has a 
magnetic moment produced by the motion of the charge, and also an oscillating 
electric dipole moment, with respect to the centre of mass, of average value 
zero. 

To conclude this section, and with the above model of the electron in 
mind, it is convenient to remember some of the features that Dirac obtained for 
the motion of a free electron [5]. Let the point rG  be the position vector in terms 
of which Dirac’s spinor ( , )t rψ G  is defined. When computing the velocity of the 
point rG , Dirac arrives at: 
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1. The velocity / [ , ]u i H r cα= =
GG G= , is expressed in terms of the αG  ma-

trices and he writes, ... “a measurement of a component of the velocity 
of a free electron is certain to lead to the result c± .” 

2. The linear momentum does not have the direction of this velocity uG , 
but must be related to some average value of it: ... “the 1x  component 
of the velocity, 1cα , consists of two parts, a constant part 2 1

1c p H − , 
connected with the momentum by the classical relativistic formula, 
and an oscillatory part, whose frequency is at least 22 /mc h ,.....” 

3. About the position rG : “The oscillatory part of 1x  is small... which is 
of order of magnitude / mc= ....” 

And when analyzing the interaction of the electron with an external elec-
tromagnetic field in his original 1928 paper [13], after taking the square of 
Dirac’s operator, he obtains two new interaction terms: 

 ,
2 2
e ieB E
mc mc

αΣ ⋅ + ⋅
G GG G= =  

Here Dirac’s spin operator is written as / 2S = Σ
G G
=  where 

 
0

,
0
σ

σ
⎛ ⎞

Σ = ⎜ ⎟
⎝ ⎠

GG
G  

in terms of σ-Pauli matrices. E
G

 and B
G

 are the external electric and magnetic 
fields, respectively. He says, “The electron will therefore behave as though it 
has a magnetic moment ( / 2 )e mc Σ=  and an electric moment ( / 2 )ie mc αG= . The 
magnetic moment is just that assumed in the spinning electron model” (Pauli 
model). “The electric moment, being a pure imaginary, we should not expect to 
appear in the model.” 

In the last sentence it is difficult to understand why Dirac, who did not re-
ject the negative energy solutions, disliked the existence of this electric dipole, 
which was obtained from the formalism on an equal footing with the magnetic 
dipole term. Properly speaking this electric dipole does not represent the exis-
tence of a particular positive and negative charge distribution for the electron. 
The negative charge of the electron is at a single point but because this point is 
not the centre of mass, there exists a non-vanishing electric dipole moment 
with respect to the centre of mass even in the centre of mass frame. This is the 
observable Dirac disliked. It is oscillating at very high frequency and basically 
plays no role in low energy electron interactions because its average value van-
ishes, but it is important in high energy processes or in very close electron-
electron interactions. 

All real experiments to determine very accurately the gyromagnetic ratio 
are based on the determination of precession frequencies. But these precession 
frequencies are independent of the spin orientation. However, the difficulty 
separating electrons in a Stern-Gerlach type experiment suggests polarization 
experiments have to be done to determine in a direct way whether the spin and 
magnetic moment for elementary particles are either parallel or antiparallel to 
each other. One of the predictions of this formalism is that for both particle and 
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the corresponding antiparticle the spin and magnetic moment have to have the 
same relative orientation, either parallel or antiparallel. 

6.3 Dynamical equation of the relativistic spinning electron 
We recall from elementary differential geometry some basic properties of any 
arbitrary three-dimensional curve ( )r sG . If it is expressed in parametric form in 
terms of the arc length s as the parameter, it has associated the three orthogonal 
unit vectors ,  1,2,3iv i =

G  called respectively tangent, normal and binormal. 
These unit vectors satisfy the so called Frenet-Serret differential equations: 

 
1 2

2 1 3

3 2

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

v s s v s
v s s v s s v s
v s s v s

κ
κ τ

τ

=
= − +
= −

G G�
G G G�
G G�

, 

where κ and τ are respectively the curvature and torsion. Since the unit tangent 
vector is (1)

1v r r= ≡
G G G� , when successive derivatives are taken it yields 

 

(1)
1

(2)
2

(3) 2
2 2 1 2 3

(4) 3 2
1 2 3

,

,

,

3 ( ) (2 ) .

r v

r v

r v v v v v

r v v v

κ

κ κ κ κ κτ

κκ κ κ κτ κτ κτ

=

=

= + = − + +

= − + − − + +

G G
G G

G G G G G G�� �
G G G G� �� � �

 

The elimination of the ivG  vectors between these equations implies that the most 
general curve in three-dimensional space satisfies the fourth-order ordinary dif-
ferential equation: 

 
2

(4) (3) 2 2 (2) 2 (1)
2

2 2 0.r r r rκ τ κτ κ κκ κ τκ τ κ
κ τ κτ κ κ τ

⎛ ⎞−⎛ ⎞ ⎛ ⎞− + + + + + + − =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

� � � �� �� � �G G G G  

All the coefficients in brackets, in front of the s-derivatives ( )irG , can be ex-
pressed in terms of the scalar products ( ) ( ) ,  , 1,2,3i jr r i j⋅ =

G G . For helical mo-
tions there is a constant relationship /κ τ = constant, and therefore the coeffi-
cient of (1)rG  vanishes. 

Our example of the nonrelativistic spinning particle also satisfies the 
fourth order differential equation (27). Similarly, the point rG  of the relativistic 
spinning electron also satisfies a fourth order ordinary differential equation 
which has been calculated from invariance principles [14]. It takes the follow-
ing form for any arbitrary inertial observer: 

 

(2) (3)
(4) (3)

(2) (2)

(3) (3) (2) (3) 2
(2) (2) 1/ 2 (2)

(2) (2) (2) (2) 2

3( )
( )

2( ) 3( ) ( ) 0.
( ) 4( )

r rr r
r r

r r r r r r r
r r r r

⋅
− +

⋅

⎛ ⎞⋅ ⋅
− − ⋅ =⎜ ⎟⋅ ⋅⎝ ⎠

G GG G
G G

G G G G G G G
G G G G

 (46) 

It corresponds to a helical motion since the term in the first derivative (1)rG  is 
lacking, and it reduces to circular central motion at constant velocity c in the 
centre of mass frame. Here we use space-time units such that the internal radius 
R = 1 and the Zitterbewegung frequency 1ω = . 

The centre of mass position is defined by 
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(2) (2) (2)

(2) (3) 2
(2) (2) 3/ 2 (3) (3)

(2) (2)

2( ) .
3( )( ) ( )
4( )

r r rq r
r rr r r r
r r

⋅
= +

⋅
⋅ + ⋅ −

⋅

G G GG G
G GG G G G
G G

 (47) 

We can check that both qG  and (1)qG  vanish for the centre of mass observer. The 
fourth order dynamical equation for the position of the charge (46) can also be 
rewritten as a system of two second order ordinary differential equations for 
the positions of the points qG  and rG  

 
(1) (1)

(2) (2)
2

10,       ( ),
( )

q rq r q r
q r

− ⋅
= = −

−

G GG G G G
G G  (48) 

i.e., a free motion for the centre of mass qG  and a kind of central motion for the 
charge position rG  around the centre of mass. Equation (46) emerges from (47) 
after differentiation twice with respect to time. The last equation of (48) is just 
(47) written in terms of qG  and (1)qG . 

For the relativistic electron, when the centre of mass velocity is small, 
(1) 0q →
G , and because 1q r− =

G G  in these units, we obtain the equations of the 
Galilei case 
 (2) (2)0,       q r q r= = −

G G G G  (49) 
i.e., a free motion for the centre of mass and a harmonic motion around qG  of 
angular frequency 1ω = , for the position of the charge, as happened in the 
nonrelativistic example analysed in (30) and (31). 

6.4 Interaction with an external field 
The free equation for the centre of mass motion (2) 0q =

G  represents the conser-
vation of linear momentum / 0dP dt =

G
. But the linear momentum is written in 

terms of centre of mass velocity as (1) (1)( )P m q qγ=
G G , so that the free dynamical 

equation (48) in the presence of an external field should be replaced by 

 
(1) (1)

(1) (2)
2

1,       ( ),
( )

q rP F r q r
q r

− ⋅
= = −

−

G GG G G G G
G G  (50) 

where F
G

 is the external force and the second equation is left unchanged. We 
consider the same definition of the centre of mass position (47) as in the free 
particle case, because it corresponds to the fact that the internal structure of an 
elementary particle is not modified by any external interaction, and the charge 
moves in the same way around the centre of mass as in the free case. Since 

 (1) (2) (1) 3 (1) (2) (1)( ) ( ) ( )dP m q q m q q q q
dt

γ γ= + ⋅
G

G G G G  

it yields 
 (1) 3 (1) (2) (1)( ) ( )m q q q F qγ ⋅ = ⋅

GG G G  
and by leaving the highest derivative (2)qG  on the left hand side we finally ob-
tain the differential equations that describe the evolution of a relativistic spin-
ning electron in the presence of an external electromagnetic field: 
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 ( )(2) (1) (1) (1) (1)
(1) [ ] ,

( )
emq E r B q E r B q
qγ

⎡ ⎤= + × − + × ⋅⎣ ⎦
G G G GG G G G G  (51) 

 
(1) (1)

(2)
2

1 ( ).
( )

q rr q r
q r

− ⋅
= −

−

G GG G G
G G  (52) 

7. Gyromagnetic ratio 
The Hilbert space which describes the wave functions of the spinning electron 
is a complex vector space of squared integrable functions ( , , , )t r uψ αGG G  of the 
kinematical variables. The general structure of the quantum mechanical angular 
momentum operator acting on this Hilbert space, in either the relativistic or 
nonrelativistic approach, is 

 ,J r S r P S
i

= × ∇ + = × +
G GG G=G G  (53) 

where the spin operator takes the form S = Z+W 

 .uS u W
i

= × ∇ +
G G=G  (54) 

The operator u∇  is the gradient operator with respect to the velocity variables 
and W

G
 is a linear differential operator which depends only on the orientation 

variables αG ; it therefore commutes with u∇ . For example, in the 
tan( / 2)nρ α=

G G  parameterization W
G

 is written as 

 [ ( )],
2

W
i ρ ρ ρρ ρ ρ= ∇ + × ∇ + ⋅∇

G G G G=  (55) 

where ρ∇  is the gradient operator with respect to the ρG  variables. 
The first part Z in (54) is related to the Zitterbewegung spin and has only 

integer eigenvalues. This is because it has the form of an orbital angular mo-
mentum operator in terms of the uG  variables. Half-integer eigenvalues come 
only from the operator (55). This operator takes into account the change of ori-
entation, i.e., the rotation of the particle. 

We have seen, in both relativistic and non-relativistic examples, that if the 
only spin content of the particle S

G
 is related to the Zitterbewegung part 

Z u U= ×
G GG , then the relationship between the magnetic moment and Zitter-

bewegung spin is given by 

 ,
2 2
e dk ek Z

dt m
μ = × =

GG GG  (56) 

i.e., with a normal gyromagnetic ratio g = 1. If the electron has a gyromagnetic 
ratio g = 2, this necessarily implies that another part of the spin arises from the 
angular velocity of the body, but makes no contribution to the magnetic mo-
ment. 

For the electron, therefore, both parts W
G

 and Z
G

 contribute to the total 
spin. But the W

G
 part, which is related to the angular variables that describe its 

orientation in space, does not contribute to the separation k
G

 between the centre 
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of charge and the centre of mass. It turns out that the magnetic moment of a 
general particle is still related to the motion of the charge by the expression 
(56), i.e., in terms of the Z

G
 part, but not to the W

G
 part. It is precisely when we 

express the magnetic moment in terms of the total spin S
G

 that the concept of 
gyromagnetic ratio arises. 

We now assume that both Z
G

 and W
G

 terms contribute to the total spin S
G

 
with their lowest admissible values. In the model of the spinning electron Z

G
 

and W
G

 have opposite orientation. 
For Dirac’s particles, the classical Zitterbewegung is a circular motion at 

the speed of light of radius / 2R mc= =  and angular frequency 22 /mcω = = , 
on a plane orthogonal to the total spin. The total spin S

G
 and the Z

G
 part are 

both orthogonal to this plane, and parallel to each other. Let us define the gy-
romagnetic ratio by Z = gS. For the lowest admissible values of the quantized 
spins z = 1 and w = ½ in the opposite direction, this gives rise to a total s = ½ 
perpendicular to the Zitterbewegung plane, and therefore g = 2. 

8. Bound motion of two electrons 
If we have relativistic and nonrelativistic differential equations satisfied by the 
spinning electrons we can analyze the interaction between them by assuming, 
for example, a Coulomb interaction between their charges. This leads to a sys-
tem of differential equations of the form (37-38) or (51-52) for each particle. 
For example, the external field acting on the charge 1e  is replaced by the in-
stantaneous Coulomb field created by the other charge 2e  at the position of 1e , 
and similarly for the other particle. The integration is performed numerically 
by means of the numerical integration program Dynamics Solver [15]. 

Figure 3 represents the scattering of two spinning electrons analysed in 
their common centre of mass frame [14]. We send the particles with their spins 
parallel and with a non vanishing impact parameter. In addition to the helical 
motion of their charges, we can also depict the trajectories of their centre of 
mass. If we compare this motion with the Coulomb interaction of two spinless 
electrons coming from the same initial position and with the same velocity as 
the centre of mass of the spinning electrons, we obtain the solid trajectories 
marked with an arrow. Basically, this corresponds to the trajectory of the centre 
of mass of each spinning particle, provided the two particles do not approach 
each other below the Compton wavelength. This can be understood because the 
average position of the centre of charge of each particle approximately coin-
cides with its centre of mass, and if they do not approach each other too closely 

 

Figure 3. Scattering of two spin-
ning electrons with parallel 
spins, in their centre of mass 
frame. It is also depicted the 
scattering of two spinless elec-
trons with the same energy and 
linear momentum. 
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the average Coulomb force is the same. The difference comes out when we 
consider a very deep interaction or very close initial positions. 

Figure 4 represents the initial positions of a pair of particles with parallel 
spins. Recall that the radius of the internal motion is half the Compton wave-
length. The initial separation of their centres of mass a is a distance smaller 
than the Compton wavelength. The centre of mass of each particle is consid-
ered to be moving with a velocity vG , as depicted. 

That the spins of the two particles are parallel is reflected by the fact that 
the internal motions of the charges, represented by the oriented circles that sur-
round the corresponding centre of mass, have the same orientation. It must be 
remarked that the internal motion of the charge around its centre of mass can 
always be characterised by a phase. The phases of the particles are chosen op-
posite to one another. We also depict the repulsive Coulomb force F computed 
in terms of the separation of charges. This interaction force F has also been 
drawn attached to the corresponding centre of mass, so that the net force acting 
on the point 2m  is directed toward the point 1m , and conversely. This external 
force determines the motion of each centre of mass. We thus see that a repul-
sive force between the charges represents an attractive force between their cen-
tres of mass when located at such a short distance. 

In Figure 5 we depict the evolution of the charges and masses of this two-
electron system for 0,4 Ca λ=  and 0,004v c=  during a short time interval. 
Figure 6 represents only the motions of the centres of mass of both particles for 
a longer time. It shows that the centre of mass of each particle remains in a 
bound region. 

The evolution of the charges is not shown in this last figure because it 

Figure 5: Bound motion of two electrons 
with parallel spins during a short period of 
time 

 

Figure 4: Initial position and velocity of the 
centre of mass and charges for a bound 
motion of a two-electron system with paral-
lel spins. The circles would correspond to 
the trajectories of the charges if considered 
free. The interacting Coulomb force F is 
computed in terms of the separation dis-
tance between the charges. 
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blurs the picture, but it can be inferred from the previous figure. We have 
found bound motions at least for the range 0 0,8 Ca λ≤ ≤  and velocity 
0 0,01v c≤ ≤ . We can also obtain similar bound motions if the initial velocity 
v has a component along the OX axis. Bound motion can also be obtained for 
initial charge positions different from the ones depicted in Figure 4. This range 
for the relative phase depends on a and v, but in general bound motion is more 
likely if the initial phases of the charges are opposite to each other. If, instead 
of the instantaneous Coulomb interaction between the charges, we consider the 
retarded electromagnetic field of each charge, we obtain a similar behaviour for 
the bound motion of this electron-electron interaction. 

We thus see that if the separation between the centre of mass and centre of 
charge of a particle (Zitterbewegung) is responsible of part of the spin struc-
ture, then this attractive effect can be easily interpreted. 

A bound motion for classical spinless electrons is not possible. We can 
conclude that one of the salient features of the present formalism is the exis-
tence, from the classical viewpoint, of possible bound states for spinning elec-
tron-electron interaction. If the centres of mass of two electrons are separated 
by a distance greater than the Compton wavelength, they always repel each 
other as in the spinless case. But if the centres of mass of two electrons are 
separated by a distance less than the Compton wavelength, then from the clas-
sical viewpoint they can form bound states, provided certain initial conditions 
regarding their relative initial spin orientation, position of charges and centre of 
mass velocity are fulfilled. The difficulty may be to prepare a pair of electrons 
in the initial configuration depicted in Figure 4. A high-energy deep scattering 
can bring electrons to a very close approach. At low energy, if we consider the 
electrons in the conduction band of a solid, their interaction with the lattice 
could do this job. If we have a very thin layer under a huge external magnetic 
field perpendicular to the surface, as in the quantum Hall effect measurements, 
most of the electrons in this layer will have the spins parallel. If this happens to 
be true, we have a mechanism associated with the spin structure of the elemen-
tary particles for the plausible formation of a spin 1 Bose-Einstein condensate. 
This is just a classical prediction, not a quantum prediction, associated with a 
model which satisfies the Dirac equation when quantized. The possible quan-
tum mechanical bound states must be obtained from the corresponding analysis 

 

Figure 6. Evolution of the centres of 
mass of both particles for a longer 
time 
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of two interacting quantum Dirac particles, a problem which has not been 
solved yet. From the classical viewpoint, bound states for a hydrogen atom can 
exist for any negative energy and any arbitrary angular momentum. The quan-
tum analysis of the atom gives the correct answer for the allowed stationary 
bound states. 
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The Dirac equation is considered the wave equation for a particle with spin ½. 
We write this equation in the frame of real linear spaces. We present the change 
resulting from new frames: we can construct new relativistic wave equations, 
which may not be equivalent to the Dirac equation. One of these new wave 
equations is proposed for neutrinos. The diversity of relativistic waves is con-
nected to with the diversity of particles with spin ½. 

Classical electromagnetism itself was not sufficient to explain the electron, be-
cause it predicted neither the electron’s stability, nor quantification of energy 
levels, nor the electron’s spin. Louis de Broglie discovered [1] the electron’s 
wave. The non-relativistic equation for the electron was introduced by Erwin 
Schrödinger. From relativistic considerations the Klein-Gordon relativistic 
equation was proposed for the electron’s wave. However, this equation con-
tains two kinds of defects. It gives a conserved current without the probability 
density, and it does not give expected quantum numbers and the expected 
number of states in the case of the hydrogen atom. 

In order to obtain a current with the probability density, Dirac introduced 
a relativistic wave equation [2] based on the Pauli equation, and sought a wave 
equation with first order derivatives only. This equation lead to interesting re-
sults. In the case of the H atom, the Dirac equation gives the expected quantum 
numbers, the expected number of states, and precise energy levels. Moreover, 
on the basis of the Pauli principle the Dirac equation (not the Schrödinger 
equation) leads to the periodic classification of chemical elements. This equa-
tion also gives a correct calculation of the Zeeman effect and explains the 
Lande factors. Consequently, the Dirac equation is the basis for quantum field 
theories. Further, when experimental physicists discovered new particles with 
spin ½ (muons, neutrinos and quarks), the Dirac equation was used as the wave 
equation for all these particles. 

Today it is possible to write the Dirac equation differently. Moreover, 
these real formalisms lead to new relativistic wave equations that are not 
equivalent to the Dirac equation. The diversity of these wave equations may be 
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linked to the diversity of particles. For instance, it is possible to obtain a chiral 
relativistic wave equation with a mass term but without the possibility of a 
charge term, which corresponds to the neutrino’s properties. It is possible to 
derive the different wave equations in triplicate, equivalent, but distinct equa-
tions, and this fact may be related to the existence of three and only three gen-
erations of particles. Thus, a study of relativistic wave equations provides sim-
ple explanations of well-established but not yet understood facts, such as the 
insensitivity of leptons and sensitivity of quarks to strong interactions, or the 
presence of charged and uncharged leptons in each generation. 

1. Classical framework of the Dirac equation 
We use the usual matrices here 
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 5 0123;          .ij i j iγ γ γ γ γ= = −  (3) 
Thus, the Dirac equation reads 
 [ ( ) ] 0,iqA imμ

μ μγ ψ∂ + + =  (4) 

 0,      ,
m ceq m

c
= =
= =

 (5) 

where e is the negative electron’s charge and Aμ  are the covariant components 
of the electromagnetic potential vector. The probability vector current is one of 
the tensorial quantities of this theory. These quantities have the form: 
 †

1 0;        ψψ ψ ψ γΩ = = , (6) 

 J μ μψγ ψ= , (7) 

 S iμν μ νψγ γ ψ= , (8) 

 5K μ μψγ γ ψ= − , (9) 

 2 5iψγ ψΩ = − , (10) 
where †ψ  is the adjoint, 1Ω  is an invariant scalar; J is the probability current, 
whose time component 
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is the probability density. Authors who present the Dirac theory are usually 
very happy to get 16 tensorial densities without derivatives, because the 4 4×  
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complex matrix algebra is 16-dimensional above the complex field. And we 
have 16 densities: the 1Ω , scalar, the J, vector, the S, bivector, the K, pseudo-
vector, the 2Ω , pseudo-scalar, but these densities are real, not complex. More 
generally, it is very difficult to adjust the Dirac theory to the quantum theory, 
because the Dirac matrices are not Hermitian. We have †

0 0γ γ= , but, on the 
contrary, we have †

1 1γ γ= − . Many difficulties arise from this fact in terms of 
adjusting the Dirac equation to quantum principles derived from non-
relativistic quantum mechanics. We shall see that these sixteen tensorial densi-
ties are not the only existing densities of the theory. 

The γ matrices and the ψ wave are not uniquely defined in the Dirac equa-
tion, and this fact has led some to see the wave only as a tool for calculations, 
without physical reality. It is always possible to replace the γ matrices and ψ by 
 1 1 †;      ;      S S S S Sμ μγ γ ψ ψ− −′ ′= = = , (12) 
where S is any fixed unitary matrix. The gauge transformations with 4iaIS e=  
are among the gauge transformations (12), where nI  is the unitary n n×  ma-
trix. This gauge transformation is very important, because it is both global and 
local . The gauge (12) can be made local, but the U(4) gauge group is too small 
to give an acceptable frame for local gauge invariance of the standard model. 

2. Real mathematical frames for the Dirac equation 
Due to the fact that each ψ  has a real and an imaginary part, the Dirac spinor 
is made of eight real components. Clifford algebras present two kinds of eight-
dimensional algebras over R  which can be used to obtain the Dirac equation, 
the Clifford algebra 3Cl  of the three-dimensional physical space, and the even 
subalgebra of the space-time algebra 1,3.Cl  

A. Space algebra 
This Clifford algebra, isomorphic to the Pauli algebra, is generated by the eight 
elements 1 2 3 23 31 12 1231,  ,  ,  ,  ,  ,  ,  σ σ σ σ σ σ σ . To get the Dirac equation with 
this frame it is sufficient [3] to associate with each ψ of the Dirac theory the 

( )fφ ψ= , defined by 
 1 2 32 3 31 4 12 5 123 6 1 7 2 8 3( )f a a a a a a a aψ φ σ σ σ σ σ σ σ= = + + + + + + +  (13) 
where ja  are 

 1 1 4 2 3 2

3 8 5 4 6 7

;      
;      

a ia a ia
a ia a ia

ψ ψ
ψ ψ

= + = − −

= + = +
 (14) 

The space algebra 3Cl  is isomorphic to the Pauli algebra 2 ( )M C , but this iso-
morphism is not an isomorphism of linear space above C , it is only an isomor-
phism of linear space above R , because we get 
 12( )f iψ φσ=  (15) 
but not ( ) ( )f i ifψ ψ= . Therefore, only linear spaces and algebras above R  are 
convenient here. 

We chose the notation *ψ  for the complex conjugate of ψ. We also use 
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 †
1 2 32 3 31 4 12 5 123 6 1 7 2 8 3a a a a a a a aφ φ σ σ σ σ σ σ σ= = − − − − + + +� , (16) 

 1 2 32 3 31 4 12 5 123 6 1 7 2 8 3
ˆ a a a a a a a aφ σ σ σ σ σ σ σ= + + + − − − − , (17) 

 1 2 32 3 31 4 12 5 123 6 1 7 2 8 3a a a a a a a aφ σ σ σ σ σ σ σ= − − − + − − − , (18) 
and for each A and B we get 

 
^

† † † †ˆ ˆ ˆ( ) ;    ;    ;    AB B A AB B A A A AB AB= = = = . (19) 
The f isomorphism yields for each ψ 
 *

2 2
ˆ( ) ;f ψ σ φσ=   ˆ( )f μ

μγ ψ σ φ= . (20) 
And we get  
 ( )( ) 0μ

μ μγ ψ⎡ ⎤∂ + + =⎣ ⎦f iqA im . 

This is 
 12 12

ˆ ˆ 0q A mμ μ
μ μσ φ σ φσ φσ∂ + + =  (21) 

Within space algebra we use 
 ;      A Aμ μ

μ μσ σ∇ = ∂ = , (22) 

 0

0

ˆ ;
ˆ ;A A A

∇ = ∂ + ∂

= −

G

G   1 1 2 2 3 3

1 2 3
1 2 3.A A A A

σ σ σ

σ σ σ

∂ = ∂ + ∂ + ∂

= + +

G

G  (23) 

And the Dirac equation in the space algebra frame is 
 12 12

ˆ ˆ 0qA mφ φσ φσ∇ + + =  (24) 
Tensorial densities without derivatives are 
 †J Jμ

μφφ σ= = , (25) 

 †
3K Kμ

μφσ φ σ= = , (26) 

 1 2 123R φφ σ= = Ω + Ω , (27) 
 23 31 12 10 20 30

3 1 2 3 23 31 12.S S S S S S Sφσ φ σ σ σ σ σ σ= = + + + + +  (28) 
If J and R are single, we immediately see that K and S, with 3σ , may be 

chosen as a case (3) (3),   K K S S= =  of 
 †

( ) ( );      j j j jK Sφσ φ φσ φ= =  (29) 
We therefore get the old 16 tensorial densities without derivatives, and 20 new 
tensorial densities without derivatives. More generally, from a spinor with 2n  
real components it is possible to construct 1(2 1) 2n n−+ ×  tensorial densities 
without derivatives. The 16 densities of the classical theory are electric gauge 
invariant. Many attempts have been made to reduce the Dirac spinor to its ten-
sorial densities [4] [5]. It is well known that we cannot know the entire wave 
from the only 16 gauge invariant tensorial densities, because they tell us noth-
ing about the phase, which changes with the gauge. The gauge transformation 
 12;      σψ ψ φ φ′ ′= = aiae e  (30) 
induces a rotation between (1)K  and (2)K  and between (1)S  and (2)S  as 
 †

(1) 1 (1) (2)cos(2 ) sin(2 ) ,K a K a Kφ σ φ′ ′ ′= = −  (31) 
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 †
(2) 2 (1) (2)sin(2 ) cos(2 ) .K a K a Kφ σ φ′ ′ ′= = +  (32) 

Space algebra also enables us to describe the chirality of relativistic 
waves, and that is made, in the complex formalism, by the Weyl spinors. These 
spinors are defined by 
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 (33) 

But we simply have 
 ( )*

132 ;φ ξ σ η=   ( )*
13

ˆ 2 .φ η σ ξ=  (34) 
Thus, using the matrix representation of the space algebra, ξ is simply the left 
column of φ and η is the left column of φ̂ . From (21) it is easy to write the 
wave equation for ξ and η 
 0,iqA imη η ξ∇ + + =  (35) 

 ˆˆ 0iqA imξ ξ η∇ + + =  (36) 
Chirality in the Dirac theory is linked to the existence of two different repre-
sentations of the proper Lorentz group. If M is an element of the (2, )SL C  
group, and if V is a space-time vector 
 μ

μσ=V V  (37) 
the transformation †: ′ =6r V V MVM  is a Lorentz rotation, a component of 
the restricted Lorentz group ↑

+L . With 
 † †;      ;      φ φ′ ′ ′= ∇ = ∇ =M M M A MAM  (38) 
we have † 1ˆM M −= , and 1M M −= , and we get 
 12

ˆ ˆφ σ φ φ′ ′ ′ ′ ′∇ = +m qA  (39) 
We notice that the linkage between ,  φ ξ  and η  is invariant under the re-
stricted Lorentz group ↑

+L , because ξ  and η  are transformed as 

 
† 1 * * * *

2 2
* *

13 13

ˆ ˆ; ( ) ;ξ ξ η η η η η σ σ η

σ η σ η

−′ ′ ′= = = = =

′ =

M M M M M

M
 (40) 

The 1Ω  and the 2Ω  are invariant: 
 1

1 2 123 1 2 123 ,M M MMσ φ φ φφ φφ σ−′ ′ ′ ′Ω + Ω = = = = Ω + Ω  (41) 
 1

( ) ( ) ,j j jS MS Mφ σ φ −′ ′ ′= =  (42) 
While the J and ( )jK  vectors become 
 † † † †

( ) ( );      .j j jJ MJM K MK Mφ φ φ σ φ′ ′ ′ ′ ′ ′ ′= = = =  (43) 
These transformations under a Lorentz rotation are sufficient to prove the ten-
soriality of ( )jK  and ( )jS . Therefore we must regard the complex formalism of 
the Dirac equation as very deficient. 
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B. Space-time algebra 
The Clifford algebra (1,3)Cl constructed above the space-time with a signature 
+ – – – was used by Hestenes [6], Boudet [7], Lasenby [8] to write a complete 
relativistic physics, and particularly the Dirac equation. It is impossible to 
summarize these works here. We will simply describe how we can use the ma-
trix representations of space algebra and space-time algebra to go from one to 
the other. The space-time vector A reads 

 
ˆ0A
0

μ
μ

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠

A A
A

γ  (44) 

 0
5; 1, 2, 3;γ γ= = =j j jγ γ  (45) 

The gradient μ
μ∂ = ∂γ  reads 

 
ˆ0
0

⎛ ⎞∇
∂ = ⎜ ⎟⎜ ⎟∇⎝ ⎠

 (46) 

With each ( )fφ ψ=  we associate the ( )g φΨ =  defined by 
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0
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φ

⎛ ⎞
Ψ = ⎜ ⎟⎜ ⎟

⎝ ⎠
= + + + + + + +a a a a a a a aγ γ γ γ γ γ γ

 (47) 

We notice that Ψ  has value in the even subalgebra of the space-time algebra, 
and g is an isomorphism of the space algebra to the even subalgebra. The Dirac 
equation takes the Hestenes form  
 12 0 A∂Ψ = Ψ + Ψm qγ γ  (48) 
Invariance under the restricted Lorentz group reads 
 ; A A A ;′ ′∂ → ∂ = ∂ → =� �R R R R  (49) 

 
†

1
ˆ 00, ,

00
−⎛ ⎞ ⎛ ⎞

′Ψ → Ψ = Ψ = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
� MMR R R R

MM
 (50) 

where ~ “tilde” is reversion, defined by 
 ; ( ) .μ μ= =� ��� AB BAγ γ  (51) 
As f and g are isomorphisms, each result in one of these mathematical frames 
may automatically be translated into another. 

But we may also use a third mathematical frame, with real matrices. 

C. The algebra of real matrices 
Quantum mechanics gives great importance to hermiticity and unitarity, be-
cause quantum theory always uses a Hermitian scalar product, which is, for 
Dirac spinors 
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This Hermitian scalar product is associated with the norm 
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Transposition of this norm to real algebras is very easy, because 
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And we get the norm 
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It is always possible to translate something from one formalism to another, so it 
is possible to transpose this Hermitian scalar product to the real Clifford alge-
bra, by calculating the real and imaginary parts of the scalar product separately. 
But with a linear space above the real field a Hermitian scalar product is pure 
nonsense. The only scalar product naturally linked to the norm of φ is the 
Euclidean scalar product 
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But we get this scalar product very simply as 
 t dvφ φ′ ′⋅ = Φ Φ∫∫∫ , (57) 

associating with each φ of space algebra the real matrix 
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With this real matrix the Dirac equation reads 
 ( ) 33

0,μ
μ μ

⎡ ⎤Γ ∂ + + Φ =⎣ ⎦qA P mP  (59) 

where the μΓ  and jP  are 

 01340 1
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,      ,
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I
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γ

γ
⎛ ⎞⎛ ⎞

Γ = Γ = Γ = −Γ = ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠
 (60) 
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0 0
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0 0
γ γ

γ γ
− −⎛ ⎞ ⎛ ⎞

Γ = −Γ = Γ = −Γ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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 013 05 135
1 2 3

013 05 135

0 0 0
,      ,      .

0 0 0
P P P

γ γ γ
γ γ γ

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (62) 

These matrices yield 
 82 ;       .j jg I P Pμ ν ν μ μν μ μΓ Γ + Γ Γ = Γ = Γ  (63) 
The 3P  matrix, with square 8I− , replaces the “i” of the classical formalism. 
For example, the gauge invariance of the wave equation now reads 
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 1 ,A A A a
qμ μ μ μ′→ = − ∂  (64) 

 3 .aPe′Φ → Φ = Φ  (65) 
The real matrix formalism uses 
 0.tΦ = Φ Γ  (66) 
Transposing the Dirac equation, and multiplying by Γ0 by the right, with 

t
j jP P= −  and 0 0( )tμ μΓ Γ = Γ Γ  we obtain the equation 

 ( )3 3
0.μ

μ μ⎡ ⎤Φ ∂ − Γ − =⎣ ⎦qA P mP  (67) 

Tensorial densities without derivatives are 
 1 ,Ω = ΦΦ  (68) 
 ,J μ μ= ΦΓ Φ  (69) 
 ( ) ( ) ,j jS Pμν μν= ΦΓ Φ  (70) 

 ( ) ( ) ,j jK Pμνρ μνρ= ΦΓ Φ  (71) 

 0123
2 .Ω = ΦΓ Φ  (72) 

This formalism immediately shows the similarity between (3) (3),   S Kμν μνρ  
of the complex formalism and the new densities (1) (2) (1),   ,   S S Kμν μν μνρ  and 

(2)K μνρ . But the real formalism yields much more. While with the complex 
formalism the algebra generated by the μγ  and their products is the complete 
4 4×  matrix algebra, the matrix algebra generated by the μΓ  and their prod-
ucts is also 16-dimensional, but it is an algebra above R  and the real 8 8×  ma-
trix algebra is 64-dimensional above R , so these two algebras are not identical. 
It is possible to establish that any matrix of 8 ( )M R  may be written in only one 
way under the form 
 0 1 1 2 2 3 3M M M P M P M P= + + + , (73) 
where the jM  are linear combinations of the μΓ  and their products. The jP  
commutes with the μΓ , while I8, P1, P2, and P3 generate an algebra isomorphic 
to the quaternion field. 

From the existence of three matrices with square 8I−  which replace the 
indistinct “i” of quantum mechanics results that we may write, in addition to 
the Dirac equation, two more equations 
 ( )1 1 0,μ

μ μ⎡ ⎤Γ ∂ + + Φ =⎣ ⎦qA P mP  (74) 

 ( ) 22
0.μ

μ μ
⎡ ⎤Γ ∂ + + Φ =⎣ ⎦qA P mP  (75) 

And so we get three similar wave equations. These equations are equivalent, 
since an arbitrary solution of one can be associated with a single solution of 
another. There is a small but very interesting difference between these three 
equations. In the case of the hydrogen atom, when the Dirac equation is solved, 
the kinetic momentum operators 2J  and 3J  are diagonalized. The third axis is 
always used. As early as 1934 Louis de Broglie [9] showed this shocking fail-
ure of symmetry, and tried to save the Dirac theory, indicating that with a rota-
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tion it is always possible to put the third axis into any direction. But when a ro-
tation is made (with the Dirac equation) a multiplication is done on ψ  or on φ  
with a left-acting matrix, which changes nothing on the third preferred axis. 
This number is the index of one P matrix, corresponding to a multiplication of 
φ  by the right. After rotation, the third axis is always used again. And this 
third axis will always be used when the Zeeman effect is calculated: this calcu-
lation requires a magnetic field in the direction of the third axis. What is the re-
sult of a magnetic field in any other direction, not orthogonal to the plane of the 
trajectory? If this calculation is made, the Dirac equation does not give the ex-
perimental results. 

The first axis is the preferred axis for equation (74). If we solve the equa-
tion in the case of the hydrogen atom, it will be 2J  and 1J  which become di-
agonalized. And to calculate the Zeeman effect, we must take the magnetic 
field in the direction of the first axis to obtain the experimental results. Evi-
dently it is the same with (75), where the second axis is the preferred axis. 

The 1 2 3,  ,  P P P  matrices are matrices from right multiplication of φ  by 
23 31,   σ σ  and 12σ . They commute with the μΓ  matrices, which are matrices 

from left multiplication of φ  by μσ . Therefore they commute with μνΓ , 
which are the generators of the Lorentz rotations. The index of the preferred 
axis is a relativistic invariant. 

But in experimental physics, a very similar situation exists. We know that 
in addition to electrons there are muons and tauons. A muon acts exactly as an 
electron, but it is not an electron, does not have the same mass, is not forced by 
the Pauli principle into an electron cloud. Absolutely nothing explains the exis-
tence of three kinds of electrons. Nevertheless these three kinds exist, and now 
the study of the 0Z  boson indicates that only three kinds exist. 

Well, the simplest hypothesis that we can make is to associate each gen-
eration with one of the three possible indices, with one of these three possible 
objects with square –1, which give a Dirac equation. Separately, these objects 
will act in a very similar way, as these three equations are equivalent. But to-
gether the three objects will be different, because if we make a rotation, it is 
impossible to put a direction into the third and the first axis at the same time. 
Therefore, the spin of one cannot be added to the spin of the other. 

A muon decays into an electron by emitting two neutrinos: one has the 
muonic preferred direction, while the other carries the preferred direction of the 
electron family. 

From our hypothesis, we cannot know if the muon’s family is the first, the 
second or the third family. But since inversion between a first and a second 
axis is a spatial symmetry, we should not be astonished if chirality, the differ-
ence between left and right, plays a fundamental role. 

The 64 matrices PΓ —where Γ is a product of matrices μΓ  and where P 
is 8I  or one of the jP —form a basis for 8 ( )M R . This basis splits into two sub-
sets: 36 have square 8I , yield 1tM M M −= = and give the 36 tensorial densi-
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ties t MΦ Φ ; 28 have square 8I− , yield 1tM M M −= − = , do not give tensorial 
densities, but generate the Lie algebra of the orthogonal group SO(8). 

This orthogonal group is a global gauge group of the Dirac equation, since 
(59) is invariant under the transformations 
 1,        ,tA A A−′Φ → Φ = Φ =  (76) 
 1,μ μ μ −′Γ → Γ = ΓA A  (77) 
 1

3 3 3 .−′→ =P P AP A  (78) 
In quantum mechanics, replacing unitarity by orthogonality is a heresy, which 
should immediately lead to catastrophic results. For example, solving the Dirac 
equation in the case of the H atom, we orthonormalize the different solutions 
corresponding to the different possible quantum states, and we use this or-
thonormalization when we calculate the Zeeman effect. But there is a particular 
coincidence, and the orthonormalization for the Hermitian scalar product is ex-
actly identical to the orthonormalization for the Euclidean scalar product (56) 
in this case [10]. 

3. New relativistic wave equations 
A. Chiral wave with mass for the neutrino 
One of the most unexpected discoveries of particle physics was parity violation 
by weak interactions, and even maximal violation of this parity. This violation 
led some to think that a wave of neutrinos is purely chiral and that charge con-
jugation reverses chirality. The charge conjugate of the left neutrino is the right 
antineutrino. The chirality of relativistic waves may be described with Weyl 
spinors, and we have seen that they transform as  
 ˆ; .ξ ξ η η′ ′= =M M  (79) 
We obtain them in the complex formalism by considering the left part Lψ  and 
the right part Rψ  of a Dirac spinor ψ : 

 ( ) ( )4 5 4 5
1 1;        .
2 2

ψ γ ψ ψ γ ψ= − = +L RI I  (80) 

Translation into real formalisms is 

 
( ) ( )

( ) ( )

3

3

1 ˆ1 , 2 0 ,
2
1 1 2 0 ,
2

ϕ φ σ φ η

ϕ φ σ ξ

= − =

= + =

L L

R

 (81) 

 ( ) ( )30 30
1 11 γ ,          1 γ ,
2 2

Ψ = Ψ − Ψ = Ψ +L R  (82) 

 ( ) ( )0123 0123
8 3 8 3

1 1,          .
2 2

Φ = − Γ Φ Ψ = + Γ ΦL RI P I P  (83) 

The Dirac equation gives (35) and (36); the mass term links ξ  with η . Conse-
quently we have only two possibilities: either a mass term exists and the wave 
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has a left and a right part, or the wave is purely chiral, with only a left or a right 
part, and the mass term must be zero. 

It is easy to give a relativistic chiral wave equation, with only a left wave 
and a mass term [11]: 
 2

ˆ .L Lmφ φ σ∇ =  (84) 
This equation gives for the left column, which is the Weyl spinor η : 
 2 *.η σ η∇ = m  (85) 
Conjugating, we get 
 2

ˆˆ .L Lmφ φ σ∇ = −  (86) 
And for the second order we get 
 ( ) 2

2 2 2 ,φ φ φ σ φ σ σ φ= ∇∇ = − ∇ = − = −
�

, L L L L Lm m m m  (87) 

 ( )2 0.φ+ =, Lm  (88) 
To obtain the plane wave solutions we let 
 ( ) ( )1 2cos sin ,μ μ

μ μφ φ φ= +L L Lp x p x  (89) 
where 1Lφ  and 2Lφ  are fixed left terms. With p pμ

μσ= , the wave equation is 
equivalent to 
 1 2 2

ˆ
L Lp mφ φ σ− =  (90) 

 2 1 2
ˆ .L Lp mφ φ σ=  (91) 

The first equation gives 

 2 1 2
ˆ

L L
p
m

φ φ σ= −  (92) 

and substituting in the second equation we obtain 
 ( )2

1 2
ˆˆ 0.φ σ− =Lpp m  (93) 

A not identically null wave results only if 
 2 0 2 2 2ˆ , ( ) ( ) ,pp m p p m= − =

G  (94) 
which is the relativistic condition between mass and impulse. If this condition 
is found, 1Lφ  is anything and 2Lφ  is given by (92).  

With space-time algebra, the wave equation (84) reads 

 2

ˆ 0; .
0

φ
φ

⎛ ⎞
∂Ψ = Ψ Ψ = ⎜ ⎟⎜ ⎟

⎝ ⎠
L

L L L
L

m γ  (95) 

It is possible to build a Lagrangian formalism for this wave equation. But 
to get this Lagrangian, we must consider in the same time a left wave LΨ  and 
a right wave RΨ . We shall use here the method explained by Lasenby in [12]. 
<A> is the scalar part of a multivector A. The Lagrangian density is 
 1 12 .= ∂Ψ Ψ + Ψ Ψ� �

L R L Rmγ γL  (96) 

Lagrangian equations are 
 ( )Ψ ∂Ψ∂ = ∂ ∂� �

L L
L L ,  (97) 
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 ( )Ψ ∂Ψ∂ = ∂ ∂� �
R R
L L ,  (98) 

Here we have 
 1 12 , 0,Ψ ∂Ψ∂ = ∂Ψ + Ψ ∂ =� �

R RL Lmγ γL L  (99) 

 21 1,Ψ ∂Ψ∂ = Ψ ∂ = Ψ� �
L LR Lm γ γL L  (100) 

so the Lagrangian equations give 
 2∂Ψ = ΨL Lm γ  (101) 
 2∂Ψ = ΨR Rm γ  (102) 
We may consider RΨ  the charge conjugate of LΨ . The Lagrangian formalism 
itself implies equality between particle mass and antiparticle mass. 

With LΨ  alone we can build only ten tensorial densities without deriva-
tives, which are the components of 
 0 3J K= Ψ Ψ = −Ψ Ψ = −� �

L L L Lγ γ  (103) 
 (2) 13 0123 (1)S S .= Ψ Ψ =�

L Lγ γ  (104) 
The probability current is at the same time conservative and isotropic 
 J J 0,⋅ =  (105) 
 J 0∂ ⋅ =  (106) 

B. Chiral wave with mass and charge terms 
When the Dirac equation is transposed to the space-time algebra, a question in-
evitably arises. Why does the wave has a value only in the even subalgebra of 
the space-time algebra? Furthermore, for a chiral wave restriction to even 
subalgebra renders the existence of a wave equation with a mass term and a 
charge term impossible, because no even term with square –1 commutes with 

03γ  and 2γ . But if we do not restrict the wave to the even subalgebra, we can 
have electric gauge invariance and a charge term. The wave now reads 

 30 1 2 2
1 (1 ), ,
2

Ψ = Ψ − Ψ = Ψ + ΨL Lγ γ  (107) 

 1 1 2 23 3 13 4 21

4 0123 3 10 2 20 1 30 ,
Ψ = + + +

− + + −

a a a a
a a a a

γ γ γ

γ γ γ γ
 (108) 

 2 5 6 23 7 13 8 21

8 0123 7 10 6 20 5 30 ,
Ψ = + + +

− + + −

a a a a
a a a a

γ γ γ

γ γ γ γ
 (109) 

The chiral wave equation with charge and mass term is 
 2 2A∂Ψ + Ψ = ΨL L Lq mγ γ  (110) 
Relativistic invariance of this equation is again (49)-(50). We obtain gauge in-
variance under the transformations 

 2
1; A A Aa

L L Le a
q

′ ′Ψ → Ψ = Ψ → = − ∂γ  (111) 

We find a Lagrangian formalism for our equation with 
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 1 12 12A ,= ∂Ψ Ψ + Ψ Ψ + Ψ Ψ� � �
L R L R L Rm qγ γ γL , (112) 

which, in addition to (110), gives the equation 
 2 2A∂Ψ + Ψ = ΨR R Rq mγ γ  (113) 
Thus, if charge conjugation is given as the exchange L R↔ or if C = P, we 
must see this equation as 
 2 2( )( A)∂Ψ + − − Ψ = ΨR R Rq mγ γ  (114) 
This is equivalent to hypothesizing (with Ziino [13]) that the charge conjuga-
tion, which changes the sign of each charge, must also change the sign of the 
resulting electromagnetic potential vector. Here also, the Lagrangian formalism 
itself creates equality between the proper mass of the particle and the proper 
mass of the antiparticle. 

It is possible to solve equation (110) in the case of the hydrogen atom, and 
our equation gives exactly the same results as the Dirac equation. In fact, we 
can attach a unique solution of the Dirac equation to each solution of our equa-
tion, and vice versa. To see this equivalence we use in addition to (107): 

 1 2
1 2

1 2

ˆ ˆ0 0; .
0 0
φ φ

φ φ

⎛ ⎞ ⎛ ⎞
Ψ = Ψ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (115) 

The wave equation (110) is equivalent to the system 
 1 2 1 2 1 2 1 2

ˆ ˆ ˆ ˆˆA , A ,q m q mφ φ φ σ φ φ φ σ∇ − = ∇ − = −  (116) 

 2 1 2 2 2 1 2 2
ˆ ˆ ˆ ˆˆA , A ,q m q mφ φ φ σ φ φ φ σ∇ + = ∇ + = −  (117) 

1φ  and 2φ  are two left spinors, and thus have the form 
 ( ) ( )1 1 2 2

ˆ ˆ2 0 , 2 0 ,φ η φ η= =  (118) 

 ( ) ( )* *
1 13 1 2 13 22 0 , 2 0φ σ η φ σ η= =  (119) 

where 1η  and 2η  are Weyl spinors. The preceding system is equivalent to 
 * * *

1 2 13 1 13 1 13 2 1
ˆˆA , A ,q im q imη η σ η σ η σ η η∇ − = ∇ − =  (120) 

 * * *
2 1 13 2 13 2 13 1 2

ˆˆA , A ,q im q imη η σ η σ η σ η η∇ + = ∇ + =  (121) 
If we let 
 * *

1 2 13 1 13 2, ,η η η ξ σ η σ η= + = − −  (122) 
the preceding system becomes 
 A 0,iq imη η ξ∇ + + =  (123) 

 ˆˆ A 0,iq imξ ξ η∇ + + =  (124) 
which is the system (36)-(37), equivalent to the Dirac equation. From this 
equivalence and with our equation we obtain exactly the same results as with 
the Dirac equation. Because the conjugation φ̂  changes the spinor’s parity, we 
can associate a left spinor with any right spinor and vice versa. We can there-
fore also assume either (with the Dirac theory) that the wave is made of a right 
spinor and a left spinor, or (with equation (110)) that the electron wave is made 
of two left spinors, i.e., of two neutrino waves. The electrical interaction which 
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links these two spinors is then not of a different nature from the weak interac-
tion linking the left wave of a neutrino to a left wave of an electron. 

4. Space-time algebra and real matrices 
If Ψ  is a wave with value into the full space-time algebra it reads 

 
1 2 23 3 13 4 21 5 0123 6 10

7 20 8 30 9 0 10 023 11 013

12 021 13 132 14 1 15 2 16 3

Ψ = + + + + +

+ + + + +

+ + + + +

a a a a a a
a a a a a
a a a a a

γ γ γ γ γ

γ γ γ γ γ

γ γ γ γ γ

 (125) 

We associate Ψ  with the real single-column matrix 

 

1

2

16

.

a
a

a

⎛ ⎞
⎜ ⎟
⎜ ⎟Χ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

#
 (126) 

The scalar product and associated norm are 
 2;           .′ ′Χ ⋅ Χ = Χ Χ Χ = Χ Χ∫∫∫ ∫∫∫t tdv dv  (127) 

This Euclidean scalar product is invariant under the orthogonal transformations 
 1,            ,tM M M−′Χ → Χ = Χ =  (128) 
where M is any orthogonal 16 16×  matrix. 

The linear space 16 ( )M R  formed by the matrices of any linear application 
from space-time algebra into itself is 256-dimensional above R . It contains the 
16 matrices L that are matrices of left multiplication γΨ → Ψ  and the 16 ma-
trices R, which are matrices of the right multiplication γΨ → Ψ . We call 

8 0123,  ,  ,  ,  I L L L Lμ μν μνρ  respectively the matrices of left multiplication and 
8 0123,  ,  ,  ,  I R R R Rμ μν μνρ  the matrices of right multiplication by 

01231,  γ ,  γ ,  γ ,  γμ μν μνρ . We notice that L L Lμν μ ν=  while R R Rμν ν μ= . It is pos-
sible to establish that the 256 matrices M = LR = RL form a basis of 16 ( )M R  
and as with 8 ( )M R , these 256 matrices split into two subsets: 136 16 17 2= ×  
yield 2

16 ,   tM I M M= = and give the 136 tensorial densities t MΧ Χ . 
120 16 15 2= ×  yield 2

16 ,   tM I M M= − = −  and form the basis of the Lie al-
gebra of the orthogonal group (16)SO . It is possible to compute the 256 matri-
ces M = LR from: 

 
0

,         0,1,2,3,
0

L μ
μ

μ

μ
Γ⎛ ⎞

= =⎜ ⎟Γ⎝ ⎠
 (129) 

 01238
0

01238

00
,         ,           1,2,3.

00
j

j
j

PI
R R j

PI
Γ⎛ ⎞⎛ ⎞

= = =⎜ ⎟⎜ ⎟ −Γ⎝ ⎠ ⎝ ⎠
 (130) 

The left and right parts of the wave read 

 ( ) ( )16 03 16 03
1 1;           .
2 2

Χ = − Χ Χ = + ΧL RI R I R  (131) 

The chiral wave equation (110) with real matrices reads  
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 ( )2 2 .L LL qA R mRμ
μ μ∂ + Χ = Χ  (132) 

With 0
t

L L LΧ = Χ , transposing the matrices and multiplying by 0L  from the 
right we get 
 ( )2 2.μ

μ μΧ ∂ − = − ΧL LqA R L m R  (133) 
Multiplying (132) by LΧ  by the left, (133) by LΧ  by the right and adding we 
obtain the conservation of the probability vector current 
 0; .L LJ J Lμ μ μ

μ∂ = = Χ Χ  (134) 
The wave equation (132) is invariant under a gauge group comprising the 
transformations 
 1;          ,t

L L LM M M−′Χ → Χ = Χ =  (135) 
 ,R R RM′Χ → Χ = Χ  (136) 
 1.L L ML Mμ μ μ −′→ =  (137) 

This orthogonal gauge group G is a subgroup of (16)SO  isomorphic to 
(8)SO . The 28 matrices generate the Lie algebra of G: 

1 3 0 1 3 01 1 3 02 1 3 03 1 3 123 1 3 2 3 0 2 3 01 2 3 02 2 3

03 2 3 123 2 3 3 3 0 3 3 01 3 3 02 3 3 03 3 3 123 3 3 1 3 2 3

3 3 12 3 23 3 31 3 012 3

p ,  p ,  p ,  p ,  p ,  p ,  p ,  p ,  p ,  p ,  
p ,  p ,  p ,  p ,  p ,  p ,  p ,  p ,  p ,  p ,

p ,  p ,  p ,  p ,  p ,  

R L R L R L R L R L R R L R L R L R
L R L R R L R L R L R L R L R L L
L L L L L L023 3 031 3 0123 3p ,  p ,  p ,L L

 

where 

 ( ) ( )3 16 03 3 16 03
1 1p ;           q .
2 2

= − = +I R I R  (138) 

If 3pN M=  is one of the 28 generators, we get 

 3
16 3 3 3 3 3

1 1

( p )
p q p q p ,

! !

∞ ∞

= =

⎛ ⎞
= + = + + = +⎜ ⎟

⎝ ⎠
∑ ∑

n n n
aN aM

i i

aM a Me I e
n n

 (139) 

 3 3 3 3p 0,      q ,      q 0,      p ,R R R L L LΧ = Χ = Χ Χ = Χ = Χ  (140) 
 ,           .aN aN aM

R R L Le e eΧ = Χ Χ = Χ  (141) 
So G leaves the right part of the wave invariant and acts only on the left part, 
which remains a left part. We can define an isomorphic group G, by replacing 

3p  by 3q , which leaves invariant the left part of the wave and acts only on the 
right part, transformed into a right part. 

The electric gauge invariance (111) is one of the preceding gauge invari-
ances, with 2 3pR  as generator. It is one of the 3 generators 
{ }1 3 2 3 3 3p ,   p ,   pR R R , which generate an algebra isomorphic to the Lie algebra 
of (2)SU . We also notice that { }1 3 2 3 3 3 0123 3p ,   p ,   p ,   pR R R L  generate an alge-
bra isomorphic to the Lie algebra of (1) (2)U SU× . 

Finally we notice that the G′ group is isomorphic to (8)SO . But the ad-
joint representation of (3)SU  is 8-dimensional, and consequently goes into 

(8)SO . It is therefore easy to find all the parts of the Lie algebra of the 
(1) (2) (3)U SU SU× ×  group coming from the standard model into the algebra 

of our orthogonal matrices. But here, contrary to the standard model where the 
group was built up progressively from experimental results, the structure of the 
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wave itself gives the invariance group. And we obtain isomorphic groups if we 
replace 3p  by 1p  or by 2p  everywhere. The need to treat the three generations 
separately comes from the fact that, if the three gauge groups are isomorphic, 
they are not identical, and do not have the same generators. 

Previously we supposed that the signature of space-time is + − − − . It is 
also possible to use a space-time with signature − + + + . We get then the Clif-
ford algebra 3,1Cl , which is generated by 0 1 2 3,  ,  ,  e e e e with e e e eμ ν ν μ= −  and 

2 2 2 2
0 1 2 31,   1e e e e= − = = = . Then we write Ψ  as 

 1 2 32 3 31 4 12 5 0123 6 01 7 02 8 03 9 0

10 032 11 031 12 012 13 123 14 1 15 2 16 3

a a e a e a e a e a e a e a e a e
a e a e a e a e a e a e a e

Ψ = + + + + + + + +

+ + + + + + +
 (142) 

And with Ψ  we associate the matrix 

 

1

2

16

.

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

#

a
a

X

a

 (143) 

If Lμ′  is the matrix of left multiplication eμΨ → Ψ  and Rμ′  the matrix of right 
multiplication eμΨ → Ψ , we obtain 

 8
0123 0123

8

0
;       ;       .

0
I

L L S R SR S L R
Iμ μ μ μ

⎛ ⎞
′ ′= = = − = ⎜ ⎟−⎝ ⎠

 (144) 

Consequently the set of 256 matrices M L R′ ′ ′=  is identical to the set of 256 
matrices M LR= . We therefore obtain the same results. 

Using this 3,1Cl  mathematical frame we have studied [14] the wave equa-
tion 
 0123A .m q e∂Ψ = Ψ + Ψ  (145) 
This wave equation cannot be equivalent to the Dirac equation, because the 
wave is made up of 16 real components, not just 8. Nevertheless this equation 
yields results close to the Dirac theory. For example, we obtain the same en-
ergy levels in the case of the hydrogen atom. 

Using the real matrices, it is possible to associate a wave equation written 
in 1,3Cl  with each wave equation written in 3,1Cl , and vice versa. For example, 
with the real matrices, (145) reads 
 0123 ,L m qL A Rμ μ

μ μ′ ′ ′∂ Χ = Χ + Χ  (146) 
which is equivalent to 
 0123 .L mS qL A Rμ μ

μ μ∂ Χ = − Χ + Χ  (147) 
And this equation is the matrix translation of the wave equation 
 0123 0123 0123A 0.∂Ψ + Ψ + Ψ =m qγ γ γ  (148) 
Now if we solve this equation in the case of the H atom, we will obtain the 
same results as with (145). We find the same energy levels as with the Dirac 
equation, but for each quantum state we obtain a set of solutions presenting an 
internal (4)SO  symmetry [14]. 
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Concluding remarks 
Many experimental facts of particle physics can be understood from a study of 
the different kinds of relativistic waves. The existence of three generations of 
particles comes from the dimension of the physical space, which gives three 
kinds of chiral projectors and three equivalent wave equations by permutation 
of the index of right multiplication. The three different generations must be 
treated separately in weak interactions, because the gauge groups of the three 
generations are isomorphic but not identical: they do not have the same genera-
tors. 

We know that each generation has two leptons, one charged one and the 
other neutral. The neutral lepton, called the neutrino, has no electric charge. 
Leptons are insensitive to strong interactions. With weak interactions, parity is 
maximally violated. We can easily find this result if we suppose that the differ-
ences between these objects is due to different kinds of relativistic wave. A 
neutrino has a wave with value in the even subalgebra, and only left. For the 
charged lepton we have a left wave, while quarks have value in the full space-
time algebra. The neutrino’s wave allows only a mass term, but there is no pos-
sible charge. With a left wave, which is not restricted to the even subalgebra, 
we obtain a wave equation for the charged lepton, and this minimal coupling 
may be extended to the weak interactions. But this wave produces insensitivity 
to strong interactions, which acts only on the missing part of the wave. Only a 
wave with value in the full space-time algebra shows the full algebra of the 

(1) (2) (3)U SU SU× ×  Lie algebra from the standard gauge group. This algebra 
is a subalgebra of the Lie algebra of the (16)SO  gauge group, and arises natu-
rally from the Euclidean scalar product, which is the translation of the Hermi-
tian scalar product of quantum mechanics into Clifford algebra. 

For leptons with or without charge, we may identify the P and C symme-
tries or CP with identity: the wave of the particle is purely left and the wave of 
the antiparticle is purely right. The gauge group of strong interactions acts only 
on the missing part of the lepton wave, leading to total leptons insensitivity to 
strong interactions. 

The use, in quantum mechanics and quantum field theories, of a unique 
and indeterminate “i,” and complex linear spaces makes the existence of three 
and only three generations incomprehensible, while three generations are com-
pletely natural if we use real Clifford algebras seriously. 

Computers are used intensively in physics today, but computer science 
has yet to be fully integrated into physicists’ brains. Computer science has two 
main parts, algorithmic and data structures: how to act, what to act on. Quan-
tum theory tells us how to calculate, and (with the Fock space) assumes that the 
question “what we calculate on” must not be asked. Nevertheless, this question 
is important, because gauge groups coming from a wave with value in a real 
Clifford algebra are not the same as when the wave has value in a complex lin-
ear space. As with computer science, progress in physics will come if we also 
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ask questions about data structures and properties of objects used in calcula-
tions. 
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What is the Electron? 

H. Sallhofer 
Bahnhofstrasse 36, A-5280 
Braunau Austria 

1. The hydrogen atom in scalar form 
In my youth I often had talks with Erwin Schrödinger (my teacher at that time) 
about methods for deriving his famous equation. I tried to simplify the compli-
cated derivation of the time-dependent Schrödinger equation, and showed him 
that one only had to insert the Hamilton analogy, 

 
2 ( )c m U

N
U

− Φ
= , (1) 

into the classical equation for light 

 
2 2

2 2 0N
c t

⎛ ⎞∂
Δ − Ψ =⎜ ⎟∂⎝ ⎠

. (2) 

Then, assuming harmonic solutions, one would obtain the time-dependent 
Schrödinger equation 

 22 0.im
t

⎡ Φ ∂ ⎤⎛ ⎞Δ − − Ψ =⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦= =
 (3) 

Thus, the classical light equation contains Schrödinger’s wave mechanics. 
On the basis of its derivation, equation (1) is simply an equation for light re-
fraction. If light refraction is introduced into a classical light equation, the solu-
tions necessarily describe the light fields. Therefore, it would be most obvious 
to treat harmonic solutions of (2) and (3) as the light fields. In this case the Co-
penhagen interpretation of (3) can be dropped. The harmonic solutions of (3) 
for the Coulomb potential Φ produce the hydrogen spectrum. Since these solu-
tions describe standing waves, they substantiate the interpretation: 

Matter is standing light. 
Let us visualize this. 

Any wave train of light has its energy centre. Let us imagine two wave 
trains of light of “equal weight,” e.g., photons, which interact with each other. 
They may, for instance, orbit each other in such a way that each one is re-
flected by the field of the other. Their energy centres form a Kepler system that 
generates the hydrogen spectrum. This idea thus describes, in general, the light 
model of the hydrogen atom. It does not need an electron. 
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Using Ehrenfest’s centre-of-gravity theorem in this conception, we see 
that the energy centres of the light-hydrogen atom move according to Newto-
nian mechanics [1]. 

Until his death, Einstein, and with him Lorentz, von Laue, de Broglie, 
Dirac, Landé, Hartmann, and others, were of the opinion that Copenhagen in-
terpretation of quantum mechanics is not complete. From that time until re-
cently [2] only Schrödinger changed his mind. In a commentary to a com-
memorative publication celebrating his seventieth birthday in 1949, Einstein 
wrote about a quantum mechanics that he could accept. He pointed out that the 
established part of conventional quantum theory would be found again in the 
desired new theory, and that the new theory most probably had to be of statisti-
cal nature. Then he stated,  

Statistical quantum theory—in case such efforts were successful—would 
have a status within the framework of classical mechanics. I am rather 
firmly convinced that the development of theoretical physics will be such, 
but the way will be lengthy and difficult. 

The handicap of Einstein induced some colleagues to look for the “miss-
ing link” between statistical mechanics and Schrödinger’s wave mechanics. 
One searcher was the U. Hoyer of Munster, who 20 years ago in his book [3] 
Wellenmechanik auf Statistischer Grundlage (wave mechanics on a statistical 
basis), put forward a precise derivation of Schrödinger’s wave mechanics via 
statistical mechanics. On the particle path, Hoyer goes directly from Boltzmann 
to Schrödinger, from Vienna to Vienna. 

By inserting his statistical theory into the gaping void between Boltzmann 
and Schrödinger, Hoyer relieves present theoretical physics from the misery of 
paradoxes and other nuances of the Copenhagen interpretation, which include: 

1.1 The indeterminism of microphysics caused by the suspension of the 
law of causality within its realm. 

1.2 The requirement from 1.1 of an extension of classical logic toward one 
in which the theorem of the excluded third no longer holds. 

1.3 The complementarity of contradicting basic conceptions. 

The opportunity for a general amelioration has not induced our physics 
community (thus far) to take advantage of the potential for reform offered by 
Hoyer. The physicist and philosopher Hoyer remains a voice crying in the wil-
derness. 

2. The hydrogen atom in vector form 
At first, Schrödinger found my proposal for an abridged derivation of his wave 
mechanics, mentioned in section 1, “interesting.” Later on, he retracted de 
Broglie’s position by pointing out that with my derivation the Schrödinger 
function may be interpreted as light. The latter showed [4] that the “light” in-
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terpretation is not complete. “If you know better,” Schrödinger meant, “you 
have to support your ideas vectorially.” 

Therefore, I tried at first, on an analogy to the steps in section 1, to derive 
the Dirac equation from Maxwell’s equations. That took quite some time. The 
breakthrough did not come until the end of the seventies [5]. But at last I was 
able to write down the connection between Maxwell’s equation and Dirac’s 
theory with breathtaking brevity [6] 

 

.

( :   Maxwell's  electrodynamics,  :   Pauli vector, 
 :   Dirac  equation)

E D

E
D

σ

σ

⋅ =
GG

G G  (4) 

The simplicity of (4) is not accidental. The far-reaching consequences of 
this relation inspired hope that the Copenhagen interpretation would finally be 
brought down. This equation, which is known today as the “Maxwell-Dirac 
isomorphism,” constitutes a new relation in natural science. To me it appears 
both alarming and binding, as well as basic and absolutely necessary for quan-
tum physics and philosophy. 

To be succinct, we may say the following. On the assumption of harmonic 
solutions, source-free electrodynamics may always be put into the amplitude 
representation 

 
1 0

0.
0 1

eli
c

εωγ ψ
μ

⎡ ⎤⎛ ⎞
⋅∇ + =⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

G  (5) 

If we now compare (5) with Dirac’s amplitude equation, 

 

2
0

2
0

1 0
0,

0 1

D

m c

i
c m c

ωωγ ψ

ω

⎡ ⎤⎛ ⎞⎛ ⎞Φ −
−⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎝ ⎠⎜ ⎟⋅∇ + =⎢ ⎥⎜ ⎟⎛ ⎞Φ +⎢ ⎥⎜ ⎟+⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

=G

=

 (6) 

we see the following. Just as Schrödinger’s theory (3) is contained in the clas-
sical light equation (2), Dirac’s theory (6) is contained in electrodynamics (5). 

Further, some reasons can be suggested why possible radical changes in 
the foundations of the theory are sometimes accepted nowadays by contempo-
rary physicists, even leading physicists. Among other things, the cause may be 
that scientists busy at cyclotron physics are not listened to as much as before. 
This occurred because the Superconducting Super Collider beacon in Waxaha-
chie, Texas was shelved. Nevertheless, scientists sometimes take the view that 
it is not their job to take notice of changes in the foundations. 

I find myself today in a similar position to Hoyer’s. Whereas I took the 
wave path from Maxwell to Dirac, and thereby eliminated the Copenhagen in-
terpretation, Hoyer took the particle route (almost at the same time) from 
Boltzmann to Schrödinger, thus eliminating the Danish interpretation for a sec-
ond time. How often does it have to be eliminated? 
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3. The electron 
3.1 In the Standard Model the electron figures as a basic entity among the 

leptons. In the neighbouring section, the quarks, the electron appears 
to be broken. What a new super-paradox! 

3.2 From the Maxwell-Dirac isomorphism it becomes evident that the 
standing electron must have a field equation in electrodynamics. 

3.3 The spin of the electron would wind the electron field, normally con-
sidered static, around the spin axis. 

3.4 The electron will lead to an epiphany for physics. Even though still 
frequently used in planetary technology, it has remained the most en-
igmatic. 
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The electron is described as a system of classical electromagnetic and scalar 
fields, i.e., a coupled system of two bosons (photon and massless boson with 
spin s = 0). A mathematical proof of electron structure is given. The main prop-
erties of the electron are explained without reference to quantum mechanics or 
quantum field theory. The slightly generalized classical Maxwell equations are 
proved to be the equations for the electron. 

1. Introduction 
The 19th century conception that matter is electromagnetic in nature is extended 
here to the idea of more a complete bosonic nature of matter. This means that 
all bosonic fields (not only photonic or electromagnetic) are treated as sources 
of fermionic fields, which, therefore, are the consequence of bosonic fields. 

The first elementary particle—the electron—is dealt with here in order to 
demonstrate the possibilities of this idea. It must be stressed that the electron is 
not an elementary object, but has a structure. The electron is presented as a sys-
tem of classical electromagnetic and scalar fields, a standing electromagnetic-
scalar wave in its stationary states. In other words, the electron is treated as a 
coupled system of two bosons (photon and massless boson with spin s = 0). 

The proof of this assertion is presented below on the basis of the follow-
ing four arguments: the Maxwell-like equation for the electron, its unitary rela-
tionship with the Dirac theory, the symmetry principle, derivation of atomic 
spectra from the new equation. 

Our non-quantum-mechanical model of the microworld is a model of the 
atom based on slightly generalized Maxwell’s equations, i.e., in the framework 
of a moderately extended classical microscopic electrodynamics of media. This 
model is free of probability interpretation, and can explain many inner-atomic 
phenomena by means of classical physics. Despite the fact that we construct a 
classical model, in building it we use essentially an analogy with the Dirac 
equation and results achieved on the basis of this equation. It should also be 
noted that electrodynamics is considered here in terms of field strengths (with-
out any reference to vector potentials as the initial variables of the theory). 
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The first step is to define the unitary relationship (and broad analogy) be-
tween the Dirac equation and slightly generalized Maxwell equations [1,2]. 

The symmetry principle is the second step. On the basis of this principle 
we introduce in [3,4] the most symmetrical form of generalized Maxwell equa-
tions which can now describe both bosons and fermions, because they have 
[3,4] both spin 1 and spin ½ symmetries. Moreover, these equations are unitary 
connected with the Dirac equation. 

In the third step we refer to Sallhofer, who suggested [5-7] the possibility 
of introducing interaction with an external field as interaction with specific 
media in the Maxwell theory (a new way of introducing interaction into the 
field equations). Nevertheless, our atom (and electron) model [1,2] is essen-
tially different from Sallhofer’s. We have used another, unitary relationship, 
with the Dirac theory. On the basis of these three main ideas we are able to 
construct an electrodynamic model of the atom and atomic electron. 

Interest in the problem of the relationship between the Dirac and Maxwell 
equations emerged immediately after the creation of quantum mechanics [8-
18]. However, the authors of these papers considered the simplest example of a 
free, massless Dirac equation. Interest has grown in recent years thanks to new 
results [5-7], with investigation of the physically meaningful case (the mass 

0 0m ≠ , interaction potential 0 0Φ ≠ ), and our own research [1-4]. 
In another approach [19-26], the quadratic relations between the fermionic 

and bosonic amplitudes were found and used. In our papers [1-4, 27-36], and 
here we discuss linear relations between the fermionic and bosonic amplitudes. 

We have found a relationship between the symmetry properties of the 
Dirac and Maxwell equations [27-32], the complete set of 8 transformations 
linking these equations, a relationship between the conservation laws for elec-
tromagnetic and spinor fields, a relationship between the Lagrangians for these 
fields and two possibilities for quantization. We have also laid the foundations 
for a classical electrodynamic model of the atom. In recent publications [33-36] 
we add a physical interpretation to these mathematical results [1-4, 27-32]. 
Here I present a review of our results together with new interpretations. 

2. The Maxwell-like equations for the electron 
In the history of theoretical physics the electron appeared within classical elec-
trodynamics as the particle with minimum elementary electric charge. Yet 
there was no place for the electron in the framework of the classical electrody-
namics of the atom; the difficulties of Rutherford’s purely electrodynamic 
model of the atom are well known, and the properties of the electron could not 
be described in the framework of classical electrodynamics. A quest for an-
other theory seemed necessary. Quantum mechanics and quantum electrody-
namics were much more successful in the microregion. Strangely though, the 
theory (classical electrodynamics) could not explain the physical object to 
which it gave birth. We must therefore answer the questions: “Why can classi-
cal electrodynamics not describe its principal fundamental object—the elec-
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tron? What could be done better in classical theory in order to bring it into line 
with the experimental facts of atomic and electron physics?” 

The aim of our investigations [1-4, 33-36], and our starting point, is as 
follows: “The electron as the fundamental object of classical electrodynamics 
must be described in the framework of this theory without recourse to quantum 
mechanics or quantum electrodynamics. The solution should exist within clas-
sical electrodynamics.” The result of our investigations has opened up this pos-
sibility. However, the equations we used were slightly generalized Maxwell 
equations. The inneratomic electrodynamics of the microworld appears to re-
quire more general Maxwell-like equations than the ordinary Maxwell equa-
tions of the macroworld. Further, our electron is a wave object, not a particle. 

The slightly generalized classical Maxwell equations [1,2] are considered 
in a specific medium that models the relativistic atom. It is easily seen that they 
differ from the standard Maxwell electrodynamics by the presence of magnetic 
sources (in one interpretation), or scalar fields (in another interpretation). 

The slightly generalized Maxwell equations in a medium representing a 
system of coupled electromagnetic ( , )E H

G G
 and scalar fields 0 0( , )E H  

 
0 0

0 0

0 0
0 0 0 0

curl grad ,      curl grad ,

div ,      div ,             ,

H E E E H H

E E H H
x

ε μ

μ ε

− ∂ = + ∂ = −
∂

= − ∂ = − ∂ ∂ ≡
∂

G G G G

G G  (1) 

are postulated. We emphasize that equations (1) are not proposed ad hoc. In the 
stationary case these Maxwell equations are unitarily connected [1, 2, 33, 34] 
with the Dirac equation for a massive particle in an external field ( )xΦ

G  if the 
electric ε  and magnetic μ  permeabilities are of the form [5-7] 

 0 0( ) ( )( ) 1 ,       ( ) 1 ,x m x mx xε μ
ω ω

Φ + Φ +
= − = −

G GG G  (2) 

i.e., permeabilities are defined by the parameters 0,  m ω , and the given function 
( )xΦ
G . (Below we will demonstrate this relation in detail, and step by step, all 

the reasons for our choice of the form (1) will be explained.) Here the system 
of units 1c= ==  is used, and transition to the standard system is fulfilled by the 
substitution 2

0 0,    m m cω ω→ →= , etc. 
Due to the time independence of ε  and μ , equations (1) may be rewritten 

in the equivalent form 

 0 0curl ,      curl ,

div ,      div ,    
el mag

el mag

H E j E H j

E H

ε μ

ε ρ μ ρ

− ∂ = + ∂ = −

= =

G G G GG G
G G  (3) 

where electric and magnetic current and charge densities have the form 

 
0 0

0 0
0 0

grad ,       grad ,

grad ,       grad .
el mag

el mag

j E j H

E E H Hρ εμ ε ρ εμ μ

= =

= − ∂ + = − ∂ +

G G
G G  (4) 

Due to the presence in equations (1) = (3) of both electric and magnetic 
sources, we called them “slightly generalized Maxwell equations.” 
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For a compact description of the system 0 0( , , , )E H E H
G G

 of electromagnetic 
and scalar fields, it is useful to introduce the following complex vector and ten-
sor functions: 

 1 1 2 2 3 3 0 0
0

( ) column , , , ,
j

E iH E iH E iH E iHμ≡ = = − − − −
E

E E
E

 (5) 

 ( ) :   ,   ,      0,1,2,3,   1,2,3,oj jo j mn mnj ji jμν ε μ≡ = = = = =E EE E E -E E  (6) 
where ( ) ( )j j jE iH E iH= = − = −

G G G
E E  is the well-known form for the electro-

magnetic field used by Majorana as early as 1930 (see, e.g., [9]), and 
0 0 0E iH= −E  is a complex scalar field. 

To illustrate the essence of our generalization of the Maxwell equations 
and the group-theoretical foundations of a description of fermions in terms of 
bosons, we consider the simplest version of equations (1), i.e., the case 

1ε μ= =  (no medium): 

 
0 0

0 0
0 0

0 0

curl grad ,      curl grad ,
div ,      div .  

E H E H E H
E E H H

∂ = − ∂ = − −

= −∂ = −∂

G G G G
G G  (7) 

In terms of functions (5), (6) equations (7) can be rewritten in the following 
equivalent forms: 
 0 0

0 0curl grad ,      div ,i∂ = − = −∂
G G G
E E E E E  (8) 

 0,      0,i ρ σ μ
μ ν ν μ μνρσ με∂ − ∂ + ∂ = ∂ =E E E E  (9) 

 ( )0 0,      ,jμν μ
ν μ μ∂ = −∂ = −∂E EE  (10) 

 ( ) 0
0 grad 0,      0,i s p i μ

μ∂ + ⋅ + = ∂ =
GG G
E E E  (11) 

 ( ) 0,xμ
μγ ∂ =� E  (12) 

where ( )js s≡
G  are the Hermitian generators of irreducible representation D(1) 

of the group SU(2), ( )j
jp p i= = − ∂

G , matrices γ�  contain the operator C of com-
plex conjugation, *C =E E : 

 

0 1

2 3

1 0 0 0 0 0 0 1
0 1 0 0 0 0 0

,     ,
0 0 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0 0

,      ,
0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

i
C C

i

i i
i

C C
i

γ γ

γ γ

−
= =

− −

−

= =
−

− −

� �

� �

 (13) 

and satisfy the relations of the Clifford-Dirac algebra: 2gμ ν ν μ μνγ γ γ γ+ =� � � � . 
The general solution of equations (8) = (9) = (10) = (11) = (12) was found 

[31,32] in the manifold 4 4(S(R ) C )*⊗  of Schwartz’s generalized functions di-
rectly by the Fourier method. In terms of helicity amplitudes ( )c kμ

G
 the solution 

has the form 
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( )
( ) ( ){ }3 1 3 2 4

1 3 4 1 3 43

2

2( ) e e e * e * e e ,
2

                                                       ,

ikx ikxx d k c c e c c e

k

ω
π

ω

−⎡ ⎤ ⎡ ⎤= + + + + +⎣ ⎦ ⎣ ⎦

≡

∫
G

E
 (14) 

where 4-component basis vectors αe  are taken in the form 
 4column ( ,0),        column (0,1).j j= =e e eG  (15) 
Here the 3-component basis vectors jeG  are the eigenvectors of the quantum-
mechanical helicity operator for the spin s = 1, 

 ˆ     with     1,0     for     1,2,3.j j j
s kh jλ λ
ω

⎛ ⎞⋅
≡ = = =⎜ ⎟

⎝ ⎠
e e

GG G G ∓  (16) 

Without loss of generality these vectors can be taken as 

 
( )

2 1 3

1 2 3
1 2 1 31 1 2 2

1 1 2 2

1 ,      *,      .
2 ( )

k k k
kk ik k

k k k k i k k k k

ω
ω

ωω

−
= − − = =

+ +
e e e e

G
G G G G  (17) 

It should be noted that if the quantities 0 0,E H  in equations (7) are some given 
functions for which the representation 

 
( )

( )0 0 3 3 4
3

2 ,
2

ikx ikxE iH d k c e c eω
π

−− = +∫  (18) 

is valid, then equations (7) are the Maxwell equations with the sources 
0elj Eμ μ= −∂ , 0 magj Hμ μ= −∂ . (We call these 4 currents gradient-like sources). In 

this case the general solution of the Maxwell equations 
(7) = (8) = (9) = (10) = (11) = (12) with the given sources, as follows from the 
solution (14), has the form 

 

3 1 2
1 2 33

3 1 2
1 2 33

( ) ( ) . ,
2(2 )

( ) ( ) . ,
2(2 )

E x d k c c c c

H x i d k c c c c

ω α
π

ω β
π

= + + +

= − + +

∫

∫

e e e

e e e

G G G G

G G G G
 (19) 

where the amplitudes of longitudinal waves 3 exp( )ikx−eG  are 3 4c cα = + , 
3 4c cβ = −  and 3 4,c c  are determined by functions 0 0,E H  from equation (18). 
Longitudinal electromagnetic waves were investigated by Hvorostenko 

[37]. Now we are able: (i) to add to his results the exact solution of the Max-
well equations with gradient-like sources, which contains the longitudinal 
waves, and (ii) to identify the location of these waves in the same space-time 
domain where the gradient-like sources are located (since the amplitudes 

3 4,  c c , which define the waves and the gradient-like sources, are the same). 
Note that in the procedure to find the solutions (19), as an arbitrary step 

we can make 0 0H = , or 4 0c = , and easily treat the partial case with only one 
scalar field 0 0E ≠ , corresponding to electric sources. 

The procedure by which we have generalized the standard Maxwell equa-
tions involves two steps. We first add the magnetic currents and charges (gen-
eralization). Second, we suppose that electric and magnetic sources are gradi-
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ents of two scalar fields 0 0( , )E H , i.e., we consider the partial case of sources. 
In this second step we simplify (rather than generalize) standard Maxwell elec-
trodynamics. Lastly, we deal with the slightly generalized Maxwell equations 
for the system 0 0( , , , )E H E H

G G
 of interacting electromagnetic and scalar fields. 

Generalization of the standard Maxwell equations was not undertaken ad 
hoc, i.e., without motivation. There is no doubt that the classical Maxwell elec-
trodynamics of the macroworld (without generalization) is sufficient to de-
scribe electrodynamic phenomena in the macroregion. Yet it is well known that 
for micro-phenomena (inneratomic region), classical Maxwell electrodynamics 
and classical mechanics do not work and must be replaced by quantum theory. 
In attempting to extend classical electrodynamics into the inner-atomic region, 
we concluded that this could be done by generalizing standard Maxwell classi-
cal electrodynamics via an extension of its symmetry. 

We have four reasons for introducing generalized equations (1) to de-
scribe micro phenomena. (i) These equations are directly connected with the 
Dirac equation, whose application in atomic and nuclear physics is well 
known. (ii) These equations are the maximally symmetrical form among the 
possible forms of the Maxwell equations, i.e., they are introduced due to the 
symmetry principle (recall the first use of the symmetry principle by Maxwell). 
(iii) We show below that these equations describe the spectra of atoms on the 
same level as the Dirac equation does. (iiii) The relationship of these equations 
with standard Maxwell theory is evident. 

3. Unitary relationship with the Dirac theory 
We briefly show the connection between the stationary Maxwell equations 

 
0 0

0 0

curl grad ,      curl grad ,
div ,      div ,

H E E E H H
E E H H

ωε ωμ
ωμ ωε

− = − = −

= = −

G G G G
G G  (20) 

[1,2] that follow from Maxwell-like system (1)—below we shall derive (20)—
and the stationary Dirac equation obtained from the ordinary Dirac equation 
 ( ) ( )0

0 0,         ,i mμ α
μγ γ∂ − + Φ Ψ = Ψ ≡ Ψ  (21) 

with 0 0m ≠  and the interaction potential 0Φ ≠ . 
Assuming the ordinary time dependence 

 0( ) ( ) ( ) ( ),i tx x e x i xω ω−Ψ = Ψ ⇒ ∂ Ψ = − Ψ
G  (22) 

for the stationary states, and using the standard Pauli-Dirac representation for 
the γ  matrices, we obtain the following system of equations for the compo-
nents ( )xαΨ

G  of the spinor ( )xΨ
G : 

 

1 4 3
1 2 3

2 3 4
1 2 3

3 2 1
1 2 3

4 1 2
1 2 3

( ) 0,
( ) 0,
( ) 0,
( ) 0,

i i
i i
i i
i i

ωε
ωε
ωμ
ωμ

− Ψ + ∂ − ∂ Ψ + ∂ Ψ =

− Ψ + ∂ + ∂ Ψ − ∂ Ψ =

− Ψ + ∂ − ∂ Ψ + ∂ Ψ =

− Ψ + ∂ + ∂ Ψ − ∂ Ψ =

 (23) 
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where ε  and μ  are the same as in (2). After substitution in equations (23) of 
the following column for Ψ  
 0 3 2 1 0 3 2 1column , , ,H iE E iE E iH H iHΨ = − + − + + − +  (24) 

we obtain equations (20). A complete set of 8 transformations with the same 
properties was obtained in our papers [27,28] with the help of the Pauli-Gursey 
symmetry operators [38]. 

The relationship (24) may be written in terms of a unitary operator. It is 
useful to represent the right-hand side of (24) in terms of components of the 
complex function (5). In these representations the connection between the spi-
nor and electromagnetic (together with the scalar) fields has the form 
 †,         ,st stU U= Ψ Ψ =E E  (25) 
where the unitary operator stU  is the following: 

 ( )

0 0
0 0 1;      1 ,    *,    *.

0 0 2
0 0

st

iC C
C iC

U C C C C
iC C
iC C

− −

+ +

− −

+ +

−
= ≡ Ψ = Ψ =∓ ∓ E E  (26) 

The unitarity of operator stU  (26) can easily be verified by noting that  
 † †( ) ,      *,      ( )* ,AC CA aC Ca aC Ca= = =  (27) 
hold for an arbitrary matrix A and a complex number a. We underline that in 
the real algebra (i.e., the algebra over the field of real numbers) and in the Hil-
bert space of quantum mechanical amplitudes, this operator has all the proper-
ties of linearity and 1 1 1 †1,   st st st st st stU U U U U U− − −= = = . 

The operator (26) transforms the stationary Dirac equation 
 ( ) ( )0

0 0  k
ki m xω γ γ⎡ ⎤− Φ + ∂ − Ψ =⎣ ⎦

G  (28) 

from the standard representation (the Pauli-Dirac representation) into the bos-
onic representation 
 ( ) ( )0

0 0  k
ki m xω γ γ⎡ ⎤− Φ + ∂ − =⎣ ⎦

G
E  (29) 

Here the μγ  matrices have the following unusual explicit form 

 

0 1

2 3

1 0 0 0 0 0 0
0 1 0 0 0 0 0 1

,     ,
0 0 1 0 0 0 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0

,      ,
0 0 0 0 0 0
1 0 0 0 0 0 0

i

C
i

i
i i

i i
i

γ γ

γ γ

−
= =

−

−
−

= =

−

 (30) 

in which, in comparison with (13) only the 0γ  matrix explicitly contains com-
plex conjugation operator C. We call the representations (13), (30) the bosonic 
representations of γ matrices. Matrices (13) and (30) are related to one another 
by the unitary transformation. Due to the presence of operator C these bosonic 
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representations are essentially different from ordinary Pauli-Dirac, Weyl and 
other standard representations of γ  matrices. For example, in bosonic repre-
sentation (30), imaginary unit i is represented by the 4 4×  matrix operator: 

 

0 1 0 0
1 0 0 0

.
0 0 0
0 0 0

i
i

i

−

=
−

−

 (31) 

Due to the unitarity of the operator stU  (26) the μγ  matrices (30) (as well as 
the matrices (13)) still obey the Clifford-Dirac algebra 
 2gμ ν ν μ μνγ γ γ γ+ =  (32) 
and have (together with the matrices (13)) the same Hermitian properties as the 
Pauli-Dirac μγ  matrices: 
 0† 0 †,       .k kγ γ γ γ= =  (33) 
Formulae (13) and (30) thus give two exotic representations of γ  matrices. 

In vector-scalar form, the equation (29) is as follows 

 
( )

( )

0
0

0
0

curl grad ,

div .

i C m

C m

ω

ω

− + − Φ − = −⎡ ⎤⎣ ⎦
= − Φ +⎡ ⎤⎣ ⎦

G G

G
E E E

E E
 (34) 

Completing the transition to common real field strengths according to formula 
E iH= −E  and separating real and imaginary parts, we obtain equations (20), 

which are mathematically equivalent to equations (1) in the stationary case. 
The mathematical facts considered here prove the one-to-one correspon-

dence between the solutions of the stationary Dirac and the stationary Maxwell 
equations with gradient-like 4-currents. Hence, using (24), one can write the 
hydrogen solutions of the Maxwell equations (1) starting from the well-known 
hydrogen solutions of the Dirac equation (21), i.e., without the special proce-
dure of finding solutions of the Maxwell equations [1]. Moreover, all success-
fully solved stationary Dirac problems of atomic physics can easily be refor-
mulated and solved equally well in terms of Maxwell-like equations (1). Yet we 
now work in the framework of slightly generalized classical electrodynamics. 

We now consider the relationship between the Dirac and Maxwell equa-
tions in the simplest case when 0 0m =  and 1ε μ= = . Equations (8) = (9) = 
(10) = (11) = (12) are directly connected with the free massless Dirac equation 
 ( ) 0.i xμ

μγ ∂ Ψ =  (35) 
Substitutiing (the notations are the same as in (26)) 

 

3 0

1 2

3 0

2 1

0 0
0 0

,      ,
0 0

0 0

E iH C C
C iCE iE

U U
C CiH E

C iCH iH

+ −

+ +

− +

− −

+
+

Ψ = = =
+

− +

E  (36) 

into Dirac equation (35) with γ  matrices in standard Pauli-Dirac representation 
transforms it into the slightly generalized Maxwell equations (7) = (8) = (9) = 
(10) = (11) = (12) (the complete set of transformations as in (36) in [27,28]). 
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Thus, equation (35) with Ψ  in the form (36), as well as (12), may be inter-
preted as the electrodynamic representation of the massless Dirac equation. 

The unitarity of the operator (36) can easily be verified with reference to 
relations (27). Here, as in the case of operator (26), in the real algebra (i.e., the 
algebra over the field of real numbers) and in the Hilbert space of quantum me-
chanical amplitudes, this operator has all the properties of unitarity. 

We emphasize that equation (12) has the form of the massless Dirac equa-
tion for the fermionic field. Hence the μγ�  matrices may be chosen in arbitrary 
representation (e.g., in each of the Pauli-Dirac, Majorana, Weyl, etc. represen-
tations). However, only in the exotic representation (13) is equation (12) the 
Maxwell equation for the system of interacting electromagnetic E iH= −

G G G
E  

and scalar 0 0 0E iH= −E  fields. (We thus call the representation (13) “bos-
onic.”) If equation (12) is treated as bosonic, the representation of the μγ�  ma-
trices and their explicit form must be fixed in the form (13). In the bosonic in-
terpretation of equation (35) one must fix the explicit form of μγ  in standard 
Pauli-Dirac representation, and the form of Ψ  must be fixed as column (36). 
Thus, we introduce our generalization of the Maxwell equations on the basis of 
the Dirac equation; or more prescisely, on the basis of the Maxwell-Dirac uni-
tary relationship (the first motivation of our generalization). 

The Maxwell-Dirac relationship presented here may be seen as the deriva-
tion of our generalized form of the Maxwell equations from the well-defined 
Dirac equation. This central conclusion is presented in all our publications. 
This relationship may be seen as a derivation of the Dirac equation from classi-
cal electrodynamics, as demonstrated in other work [35]. 

Finally, knowing the operator U (36), it is easy to obtain the relationship 
between the Bose amplitudes ( )c kμ

G
 (determining the general solution (14) of 

equations (9)) and the Fermi amplitudes r r( ),   ( ),   1, 2,a k b k r =
G G

 (determining 
the well-known general solution of the massless Dirac equation (35), we ex-
plore the Pauli-Dirac representation). This solution has the form: 

 ( )
( ) ( ) ( )3

3 2

2 3

1( ) ( ) * ;
2

1,2,      ,      ,     ,

r ikx r ikx
r rx d k a k v k e b k v k e

r kx t kx k k R

π

ω ω

− − +⎡ ⎤Ψ = +⎣ ⎦

= ≡ − ≡ ∈

∫
G G G G

G GG
 (37) 

where 

 

1 23 1 2

1 2 3

3 1 2

1 2 3

1 2

1 0
0 11 1( ) ,        ( ) ,

( )2 2
( )

( )
1 1( )( ) ,        ( ) .

1 02 2
0 1

v k v k
k k ik

k ik k

k k ik
k ik kv k v k

ω ω
ω ω

ω ω
ω ω

− −

+ +

= =
−

+ −

−
+ −= =

G G

G G

 (38) 



114 Volodimir Simulik 

 

Corresponding formulae [31, 32, 36] connecting fermionic and bosonic ampli-
tudes have the form: 

 

( )( ) ( ) ( ) ( )

( ) ( )( )

( )( ) ( ) ( ) ( )

( ) ( )( )

1 3 3 1 2 3 3 3 4

3 3
2 1 2 1 2 1 2 3 4

3 3

1 3 3 1 2 3 3 3 4

3 3
2 1 2 1 2 1 2 3 4

3 3

1 ,
2

1 ,
2

1 ,
2

1
2

a i k k c c k c k c

k ka i k ik c c k ik c c
k k

b i k k c c k c k c

k kb i k ik c c k ik c c
k k

ω ω ω ω
ω

ω ω
ω ω ω

ω ω ω ω
ω

ω ω
ω ω ω

⎡ ⎤= − + − − − + +⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞+ −⎢ ⎥⎜ ⎟= − + + + + +

⎜ ⎟− +⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤= − + + + + + −⎢ ⎥⎣ ⎦
⎛ ⎞− +
⎜ ⎟= + − + + −
⎜ ⎟+ −⎝ ⎠

.
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 (39) 

In terms of unitary operator V these formulae have the form: 

 

1 1

2 3

1 2

2 4

* * * *
1 ,

2

i pq p i pq q
a cq piz z iz z

p qa c
a V c

b ci pq q i pq p
b cp qiz z iz z

q p

ω

− −

− −

≡ = ⋅ = ⋅

− −

� �  (40) 

where 3 3 1 2 1 2 2,   ,   ,   * ,   .p k q k z k ik z k ik kω ω ω= − = + = − = + ≡
G

 The opera-
tor V (the image of operator U (36) in the space of quantum-mechanical ampli-
tudes c�  and a� , i.e., in the rigged Hilbert space 4 *4

3 3S H S⊂ ⊂ , where 
*4 3 4
3S (S(R ) C )*≡ ⊗  is the space of 4-component generalized Schwartz func-

tions) is linear and 1 1 1 †1,   VV V V V V− − −= = = . 
Hence, the fermionic states may be constructed as linear combinations of 

bosonic states, i.e., states of the coupled electromagnetic E iH= −
G G G
E  and scalar 

0 0 0E iH= −E  fields. The inverse relationship between the bosonic and fer-
mionic states is also valid. We prefer the first possibility which is a new (bos-
onic) realization of the old idea (Thomson, Abraham, etc. [39]) of the electro-
magnetic nature of mass and the material world. Consequently, today on the 
basis of (24), (26), (36) (and (70) below) we may speak of the more general 
idea of the bosonic field nature of the material world. 

On the basis of this relationship, a connection between the quantized sca-
lar-electromagnetic and massless spinor fields has been obtained [31, 32, 36]. 
The possibility of both Bose and Fermi quantization types for the electromag-
netic-scalar field (and, inversely, for the Dirac spinor field) has been proved. 
This is interesting for the development of quantum field theory in general. 

We will not touch on the problems of quantization. As in most of our pub-
lications on this subject, we describe the atom and electron without quantiza-
tion. Quantization of the electromagnetic-scalar field is addressed elsewhere 
[36]. 
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4. Derivation of the slightly generalized Maxwell equa-
tions from the symmetry principle 

Equation (7) = (8) = (9) = (10) = (11) = (12) is the maximally symmetrical 
form of all generalized and non-generalized forms of Maxwell equations. Due 
to the fact that equations (9), (10) = (11), (12) are manifestly covariant vector, 
tensor-scalar and spinor forms of one and the same equation (7), respectively, 
the following theorem is valid. 

THEOREM 1. The slightly generalized Maxwell equations (8) = (9) = 
(10) = (11) = (12) are invariant with respect to the three different transforma-
tions, which are generated by three different representations P ,   P ,   PV TS S  of 
the Poincaré group P(1,3) given by the formulae 

 

( )
( )

( )

1

1

1

( ) ( ) ,

( ) ( ) ,

( ) ( ) ,

V

TS

S

x x x a

x x F x a

x x S x a

−

−

−

⎡ ⎤→ = Λ Λ −⎣ ⎦
⎡ ⎤→ = Λ Λ −⎣ ⎦

⎡ ⎤→ = Λ Λ −⎣ ⎦

E E E

E E E

E E E

 (41) 

where Λ  is a vector (i.e., ( )1 1
2 2, ), F( )Λ  is a tensor-scalar ( (0,1) (0,0)⊗ ) and 

S( )Λ  is a spinor representation ( ( ) ( )1 1
2 20, ,0⊗ ) of SL(2,C) group. This means 

that the equations (8) = (9) = (10) = (11) = (12) have both spin 1 and spin 1/2 
symmetries. 

Proof. Let us write the infinitesimal transformations, following from (41), 
in the form 
 ( ), , , ,1

2( ) 1 ( ).V TS S V TS Sx a j xρ ρσ
ρ ρσω= − ∂ −E E  (42) 

Then the generators of the transformations (42) have the form 

 , , , ,,      ,V TS S V TS Sj x x s
xρ ρσ ρ σ σ ρ ρσρ

∂
∂ = = ∂ − ∂ +

∂
 (43) 

where 
 ( ) ( )1 1

2 2,      , ,V Vs g g s
μ μ μ

ρσ ρ σν σ ρν ρσν
δ δ= − ∈  (44) 

 
0

(0,1) (0,0),      ,      ,      ,
0 0

T
TS T T T mnj j T j

mn oj

s
s s s s i s s sρσ

ρσ ρσ σρ ε= ∈ ⊕ = − = − =  (45) 

( ( )31 2, ,s s s s≡
G  are the same as in (11)), and  

 ( ) ( )1 1 1
4 2 2, , 0, ,0 ,S Ss sρσ ρ σ ρσγ γ⎡ ⎤= ∈ ⊕⎣ ⎦� �  (46) 

where the γ�  matrices in specific bosonic representation are given in (13) and 
satisfy standard Clifford-Dirac algebra. The proof of the theorem is now re-
duced to verifying that all generators (43) obey the commutation relations of 
the P(1,3) group and commute with the operator of the generalized Maxwell 
equations (12) [3,4]. 

COROLLARY 1. The transition inverse to (36) transforms the equation 
(8) = (9) = (10) = (11) = (12) into the massless Dirac equation (35) with matri-
ces μγ�  in standard Pauli-Dirac representation. This means that the massless 
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Dirac equation has the same three different P ,   P ,   PV TS S  Poincaré symmetries 
as the slightly generalized Maxwell equations (9). 

This result for the slightly generalized Maxwell equations (8) = (9) means 
that, from a group theoretical point of view, these equations can describe both 
bosons and fermions. As a result, there are direct group-theoretical grounds for 
applying these equations to describe the electron, as presented below. 

A distinctive feature of equation (9) for the system ( )0,=
G

E E E  (i.e., for 
the system of interacting irreducible (0,1) and (0,0) fields) is that it is the mani-
festly covariant equation with a minimum number of components, i.e., the 
equation without redundant components for this system. 

Note that each of the three representations (41) of the P(1,3) group is a lo-
cal one, because each matrix part of transformations (41) (matrices Λ , F( )Λ  
and S( )Λ ) does not depend on coordinates 4Rx ∈ , and, consequently, the gen-
erators (43) belong to the Lie class of operators. Each of the transformations in 
(41) may be understood as connected with special relativity transformations in 
the space-time 4R ( )x= , i.e., with transformations in the manifold of inertial 
frames of reference. 

It follows from equations (9) = (12) that the field ( )0,=
G

E E E  is massless, 
i.e., 0ν μ

ν∂ ∂ =E . Therefore it is interesting to note that neither PV , nor PTS  
symmetries can be extended to the local conformal C(1,3) symmetry. Only the 
spinor CS  representation of C(1,3) group, obtained from the local PS  repre-
sentation, is the symmetry group for the slightly generalized Maxwell equa-
tions (9). This fact is understandable: the electromagnetic field E iH= −

G G G
E  

obeying equations (9) is not free; it interacts with the scalar field 0E . 
Consider the particular case of standard (non-generalized) Maxwell equa-

tions, i.e., the case of equations (8) = (9) without magnetic charge and current 
densities (when 0 0H =  but 0 0E ≠ ). The symmetry properties of these stan-
dard electrodynamic equations are tightly restricted in comparison with the 
generalized equations (9): they are invariant only with respect to tensor-scalar 
(spin 1 or 0) representation of the Poincaré group defined by the corresponding 
representation (0,1) (0,0)⊗  of the proper orthochronous Lorentz group 
SL(2,C). Other symmetries mentioned in the theorem are lost for this case too. 
The proof of this assertion follows from the fact that the vector ( )1 1

2 2,  and the 
spinor ( ) ( )1 1

2 20, ,0⊗  transformations of ( )0,=
G

E E E  mix the 0E  and 
G
E  

components of the field E , and only the tensor-scalar (0,1) (0,0)⊗  transforma-
tions do not mix them. 

For the free Maxwell equation in vacuum without sources (the case 
0 0 0E H= = ) the loss of the symmetries mentioned above is evident, for the 

same reasons. Moreover, it is well known that these equations are invariant 
only with respect to the tensor (spin 1) representations of the Poincaré and con-
formal groups and with respect to the dual transformation: ,   E H H E→ → −

G G G G
. 

We have obtained the extended 32-dimensional Lie algebra [40] (and the cor-
responding group) of invariance of free Maxwell equations, which is isomor-
phic to C(1,3) C(1,3) dual⊕ ⊕  algebra. We have proved this by a method ob-
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tained from the Lie class of symmetry operators. The proof also held in a more 
general class, namely, in the simplest Lie-Bäcklund class of operators. The cor-
responding generalization of symmetries of equations (9) presented in the 
above theorem leads to a wide 246-dimensional Lie algebra in the class of first 
order Lie-Bäcklund operators.  

The Maxwell equations (9) with electric and magnetic gradient-like 
sources have the maximum possible symmetry properties of all standard and 
generalized equations of classical electrodynamics!!! We therefore introduce 
our generalization of the Maxwell equations on the basis of the symmetry prin-
ciple (the second motivation for our generalization). 

5. Derivation of atomic spectra from the Maxwell-like 
equations 

The consideration presented above for the simplest case 1ε μ= =  furnishes the 
group-theoretical basis for the classical electrodynamic (non-quantum-
mechanical) model of the electron and atom based on the Maxwell equations 
(1) = (3) in medium with ( , ) 1ε μ ≠ . 

Now we return to the input equations (1) and consider the stationary case. 
For the stationary solutions with positive energy ω  

 
0 0 0

0 0 0

( , ) ( ) cos ( )sin ,
( , ) ( ) cos ( )sin ,

A B

A B

E t x E x t E x t
H t x H x t H x t

ω ω
ω ω

= +

= +

G G G
G G G  (47) 

 
( , ) ( ) cos ( )sin ,
( , ) ( ) cos ( )sin ,

A B

A B

E t x E x t E x t
H t x H x t H x t

ω ω
ω ω

= +

= +

G G GG G G
G G GG G G  (48) 

the slightly generalized Maxwell equations (1) in an electrodynamic medium 
(2) (which assumes here the role of nuclear field) have the form (20).  

Strictly speaking for the 16 time-independent amplitudes, two non-linked 
subsystems like (20) [1] are obtained: 

 
0 0

0 0

curl grad ,      curl grad ,
div ,      div ,

A B A B A B

B A A B

H E E E H H
E E H H

ωε ωμ
ωμ ωε

− = − = −

= = −

G G G G
G G  (49) 

 
0 0

0 0

curl grad ,      curl grad ,
div ,      div ,

B A B A B A

A B B A

H E E E H H
E E H H

ωε ωμ
ωμ ωε

+ = + = −

= − =

G G G G
G G  (50) 

We consider only the first of these, because these subsystems are connected by 
the transformations 

 
,   ,   ,   ,

,   .
E H H E E H H Eε μ μ ε
ε μ μ ε

→ → − → → −
→ →

 (51) 

It is useful to separate equations (49) into the following subsystems: 

 

3 2 1 0
1 2 3

0 1 2 3
1 2 3

0 1 2 3
1 2 3

3 2 1 0
1 2 3

0,
0,
0,
0,

B A A A

B A A A

A B B B

A B B B

E H H E
H H H H

E E E E
H E E H

ωε
ωε

ωμ
ωμ

⎧ − ∂ + ∂ + ∂ =
⎪

+ ∂ + ∂ + ∂ =⎪
⎨

− + ∂ + ∂ + ∂ =⎪
⎪ − ∂ + ∂ − ∂ =⎩

 (52) 



118 Volodimir Simulik 

 

 

1 3 2 0
2 3 1

2 1 3 0
3 1 2

1 3 2 0
2 3 1

2 1 3 0
3 1 2

0,
0,
0,
0.

B A A A

B A A A

A B B B

A B B B

E H H E
E H H E
H E E H
H E E H

ωε
ωε
ωμ
ωμ

⎧ − ∂ + ∂ + ∂ =
⎪

− ∂ + ∂ + ∂ =⎪
⎨

− ∂ + ∂ − ∂ =⎪
⎪ − ∂ + ∂ − ∂ =⎩

 (53) 

Assuming the spherical symmetry case, when ( ) ( ),   ,x r r xΦ = Φ ≡
G G  we make 

the transition into the spherical coordinate system and look for solutions in the 
spherical coordinates in the form 
 ( ) ( )( , ) ( , ), ( ) ( ) , ,E H E HE H r R r f θ φ=

G  (54) 
where ( ) ( )0 0, ,   , .E E E H H H≡ ≡

G G
 We choose for the subsystem (52) the 

d’Alembert Ansatz in the form 

 

4 4

4 4 4

4 4

4 4 4

0

0

,

,

,

,

H

k k

k k Ek

E

k k

k k Hk

m im
A E H l

m imk
B E E l

m im
B H E l

m imk
A H H l

E C R P e

E C R P e

H C R P e

H C R P e

φ

φ

φ

φ

−

−

−

−

=

=

=

=

 1, 2,3.k =  (55) 

We use the following representation for the 1 2 3, ,∂ ∂ ∂  operators in spherical co-
ordinates 

 

( )

( )

( ) ( )

1 1 ( 1)
1 , 1 1 , 1

1 1 ( 1)
2 , 1 1 , 1

3 , 1 1 , 1

cos ,
2 1 sin

sin ,
2 1 sin

1
2 1

im
m im m m i m m

l l l l l l

im
m im m m i m m

l l l l l l

im
m im m m

l l l l l

e C m RCRP e R P R P e C P
l r

e C im RCRP e R P R P e C P
l r

e CCRP e R l m P R l m P
l

φ
φ φ

φ
φ φ

φ
φ

φ
θ

φ
θ

+ + −
+ − − +

+ + −
+ − − +

+ − − +

∂ = − +
+

∂ = −
+

⎡∂ = + + − +⎣+

∓
∓ ∓

∓
∓ ∓

∓
∓

∓

.⎤⎦

 (56) 

Subsituting (55) and (56) into subsystem (52), and adopting assumptions 

 1 2 2 1 4 3 3 4

2 4 3 4 1 3

2 4

1 2 3 4

,       ,       ,       ,
1 1 ,

,      ,      ,      ,

( 1),      ,      ( ),

( ),  

E E E E H H H H

H H E E H E H E

I I I I I I I I I
H E H E E E E E

II II II
H E H

R R l l R R l l
m m m m m
C iC C iC C iC C iC

C C l m C С С C C l m

C C l m

α α α α
= = = =

= = − = − =

= = − = − = −

= + + = − ≡ = −

= − −
3 4 1 3

    ,      ( 1),

1 ,      1 ,

II II II II II II
E E E E E

I I I II II II
H E H E

C C C C C l m

l l l l l l

= − ≡ = − + +

= − ≡ = + ≡

 (57) 

ensures the separation of variables in these equations and leads to a pair of 
equations for two radial functions ,E HR R : 
 , , 20,          0,I I I I

E H l H E lR R R Rεω μω− +− = + =  (58) 

 , 1 , 1 ,0,         0,          .II II II II
E H l H E l

d aR R R R R R
dr rαεω μω+ − +

⎛ ⎞− = + = ≡ +⎜ ⎟
⎝ ⎠

 (59) 

In the case 2 /ze rΦ = −  and for the energy region 2
00 m cω< <  the solu-

tions (54) of equations (1) rapidly decrease at the limit x r≡ → ∞ , and the 
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possible values of the energy are discrete and coincide with the Sommerfeld-
Dirac formula 

 

( )

2
0

2

2
2 2

1

hyd
nj

r

m c

n k

ω ω
α

α

= =

+
+ −

=
 (60) 

with the notations 2,   1/ 2,   /rn n k k j e cα= − = + = =  [41]. The reason for this 
is the coincidence of the radial functions ( , ) ( )E HR r  in (58), (59) with those for 
the stationary Dirac equation (28) for the electron with mass 0m  in the external 
field 2 /Ze rΦ = − . Furthermore, the standard relativistic electron states (the so-
lutions of the Dirac equation (28)) can be obtained from the solutions 
( , )( )E H rG  of the slightly generalized Maxwell equations (1) via the unitary op-
erator (24)-(26). 

Nevertheless, (and this is the main result!) here we are only working with 
classical Maxwell equations and do not utilize quantum-mechanical equations. 

For the subsystem (53) the d’Alembert Ansatz has the form 

 

4 4

4 4 4

4 4

4 4 4

0

0

,

,

,

,

H

k k

k k Ek

E

k k

k k Hk

m i m
A E H l

m i mk
B E E l

m i m
B H E l

m i mk
A H H l

E C R P e

E C R P e

H C R P e

H C R P e

φ

φ

φ

φ

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

=

=

=

=

 (61) 

and the corresponding assumptions are the following: 

 
( ) ( )

4 3 3 4 1 2 2 1

3 2 3 2 4 2

3

1 2 3 4

,       ,       ,       ,

1 1 ,

,      ,      ,      ,

1 ,      ,      ,

E E E E H H H H

E H E H E E H H

I I I I I I I I I
H H H E H H E E

II
H

R R l l R R l l

m m m m m

C i C C i C C i C C i C
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C

α α α α

+ + + +

+ + + + + + + +

+ + + + + + +

+
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− = − = = =

= = = = −

= + + = − ≡ = − −

( ) ( )
2 3 2 4 2

,      ,      1 ,

1 ,      1 .

II II II II II II II II
H H E H H E E

I I I II II II
H E H E

i C l m C C С C i C l m

l l l l l l

+ + + + + +

= − − = − ≡ = − + +

= − ≡ = + ≡

 (62) 

Again we derive the equations (58), (59) and formula (60). 
The complete set of solutions of the equations (1) has the form: 

( ) ( )
( ) ( )

( ) ( )
( )

0 1 0 1
1

1 1
1

2 2
1 1

3 1
1

cos 1 ,             sin 1 ,

1 cos ,         1 sin ,

1 sin ,        1 cos ,

cos 1 ,

I I I m I I I m
H l E l

I I I m I I I m
E l H l

I I I m I I I m
E l H l

I I I m
E l

E C R P m H C R P m

E C R l m P m H C R l m P m

E C R l m P m H C R l m P m

E C R P m

φ φ

φ φ

φ φ

φ

+ +
+

+

+ +

+
+

= − + = − +

= − + = − + +

= − − + = − + +

= + ( )3 1               sin 1 ,I I I m
H lH C R P m φ+= +

(63) 
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(64) 
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1 1 1 1
1
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1
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In the first possible interpretation the states of the hydrogen atom are described 
by these field strength functions 0 0( , , , )E H E H

G G
 of electromagnetic and scalar 

fields. 
It is evident from (1) that scalar fields 0 0( , )E H  generate densities of cur-

rents and charges. Therefore the solutions (63)-(66) may be represented in an-
other form, in which 0 0( , )E H  are replaced by the corresponding densities of 
currents and charges: 
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where the following notations are used: 

 ( ) 2
2, ,    .l

d l dR R R etc
dr r dr

α α α
β β β

εε ε+

+⎛ ⎞≡ + +⎜ ⎟
⎝ ⎠

 (68) 
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In the second possible interpretation the states of the hydrogen atom are de-
scribed by the field strength functions ( , )E H

G G
 generated by the corresponding 

currents and charge densities (67). 
The solutions of the second subsystem (50) follow from (63)-(66), or (67), 

after the application of transformation (51). 
As in quantum theory, the numbers 0,1, 2,...n =  1 1

2 2 j k l= − = ∓  
( 1, 2,..., )k n= and , 1,...m l l l= − − +  mark both the terms (60) and the corre-
sponding exponentially decreasing field functions ,E H

G G
 (and 0 0,E H ) in (63)-

(66), i.e., they mark the different discrete states of the classical electrodynamic 
(and scalar) field, which by definition describes the corresponding states of hy-
drogen atom in the model under consideration. 

It is evident from this example that the discreteness of the physical system 
states (and its characteristics such as energy, etc.) may be a consequence of 
both quantum systems (Schrödinger, Dirac) and the classical (Maxwell) equa-
tions for the given system. In the present case, this discreetness is caused by the 
properties of the medium, which are given by the electric and magnetic perme-
abilities (2). 

Note that the radial equations (58), (59) cannot be obtained if one neglects 
the sources in equations (1), or one (electric or magnetic) of these sources. 
Moreover, in this case there is no solution, which is effectively concentrated in 
the atomic region. 

Bohr’s postulates. Now we can show on the basis of this model that the 
assertions known as Bohr’s postulates are consequences of equations (1) and 
of their classical interpretation: i.e., these assertions can be derived from the 
model, and there is no need to postulate them from beyond the framework of 
classical physics, as is done in Bohr’s theory. To derive Bohr’s postulates one 
can calculate the generalized Poynting vector (and generalized expression for 
the energy) for the hydrogen solutions (63)-(66), i.e., for the compound system 
of stationary electromagnetic and scalar fields ( )0 0, , ,E H E H

G G
, 

 ( )3 0 0 ,genP d x E H EE HH= × − −∫
G G G G G

 (69) 

 ( )0 3 2 2 2 2
0 0

1 .
2

hyd
gen njP d x E H E H ω= + + + =∫

G G
 (70) 

The straightforward calculations of genP
G

 show that not only is vector (69) iden-
tically equal to zero, but the Pointing vector itself and the term with scalar 
fields 0 0,E H  are also identically equal to zero. This means that in stationary 
states the hydrogen atom does not emit any Pointing radiation, neither due to 
the electromagnetic ,E H

G G
 field, nor to the scalar 0 0,E H  field. This is the 

mathematical proof of the first Bohr postulate. 
Similar calculations of the energy (70) for the same system give a con-

stant nlW , depending on n, l (or n, j) and independent of m. In our model this 
constant is to be identified with the parameter ω  in equations (1), which in the 
stationary states of ( )0 0, , ,E H E H

G G
 field appears to be equal to the Sommerfeld-
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Dirac value hyd
njω  (60). It is very interesting to consider also the analogy of 

formula (70) in medium 1ε μ≠ ≠ . 
By abandoning the 1c= ==  system and putting arbitrary “A” in equations 

(1) instead of =  we obtain final hyd
njω  with “A” instead of = . The numerical 

value of =  can then be obtained by comparison of hyd
njω  containing “A” with 

experiment. These facts complete the proof of the second Bohr postulate. 
This result means that in this model the Bohr postulates are no longer pos-

tulates, but the direct consequences of the classical electrodynamic equation 
(1). Moreover, together with the Dirac or Schrödinger equations we now have a 
new equation, which can be used to find the solutions to atomic spectroscopy 
problems. In contrast to the well-known equations of quantum mechanics, our 
equation is classical. Thus, we have verified equations (1) introduced by us in 
the test case of the hydrogen atom (the third motivation of our generalization). 

Lamb shift. It is very useful to consider the Lamb shift in the approach 
presented here. This specific quantum electrodynamic effect (as modern theory 
asserts) can be described here in the framework of the classical electrodynam-
ics of media. In order to obtain the Lamb shift one must add to 2( ) /x Ze rΦ = −

G  
in (2) the quasipotential (known, e.g., from [42], which follows, of course, 
from quantum electrodynamics) 

 
4

2 2
0

( )
60

Ze r
m

δ
π

− , (71) 

and solve the equations (1) = (3) for this medium, similar to the procedure pre-
sented above. Finally one obtains the Lamb shift correction to the Sommerfeld-
Dirac formula (60). Therefore, the Lamb shift can be interpreted as a pure clas-
sical electrodynamic effect. It may be considered a consequence of the polari-
zation of the medium (2), and not a polarization of some abstract concept, such 
as the vacuum in quantum electrodynamics. This brief example demonstrates 
that our proposition can essentially extend the limits of application of classical 
theory in the microworld, which was the main purpose of our investigations. 

The electric charge. Due to the unitary connection to the Dirac theory 
(considered above) the electric charge is still a conserved quantity here in the 
same sense as in the Dirac model. It may be defined similarly to the Dirac the-
ory, or be derived from it on the basis of the unitary relationship (24)-(26). 

Transition to ordinary Maxwell theory. The limiting transition to the 
ordinary Maxwell theory is fulfilled by assuming that 0 0H =  in the 
macroworld. This assumption is sufficiently motivated because the field 

0 0H ≠  generates (see (4)) the magnetic charge and current densities. And the 
non-existence of the magnetic monopole in the macroworld is a well-defined 
experimental fact. In this case, when 0 0H = , one immediately obtains the 
simplified partial case of the standard Maxwell electrodynamics with the par-
tial case of electric charge and current densities when electric sources are the 
gradients of the scalar function 0 0E ≠ . 

The inverse assumption, that in the microworld 0 0H ≠ , may be moti-
vated too. In that region the magnetic monopole may exist, much as quarks 
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have “existence,” though they are also not observed in free states in the 
macroworld. We emphasize that the slightly generalized Maxwell equations are 
not free (even if 1ε μ= = ). They are equations for the interacting coupled sys-
tem of the electromagnetic and scalar fields (7) = (8) = (9). Above, we consid-
ered the three main reasons for this possibility ( 0 0H ≠ ): the relationship with 
the Dirac theory, the symmetry principle, and derivation of the observed spec-
tra of hydrogen-like atoms. 

Brief hypothesis on gravity. A unified theory of electromagnetic and 
gravitational phenomena may be constructed in the approach under considera-
tion in the following way. The main primary equations again are written as (1) 
and gravity is treated as a medium in these equations, i.e., the electric ε  and 
magnetic μ  permeabilities of the medium are some functions of the gravita-
tional potential gravΦ : 
 ( ),            ( ).grav gravε ε μ μ= Φ = Φ  (72) 
Gravity as a medium may generate all the phenomena that in standard Einstein 
gravity are generated by Riemann geometry. For example, the refraction of the 
light beam near a massive star is a typical medium effect in a unified model of 
electromagnetic and gravitational phenomena. The main idea is as follows. The 
gravitational interaction between massive objects may be represented as an in-
teraction with some medium, much as the electromagnetic interaction between 
charged particles is considered in equations (1) here. 

6. Conclusions 
Symmetry 
One of the general conclusions of this investigation is that a field equation it-
self does not tell us what kind of particle (Bose or Fermi) it describes. To an-
swer this question one needs to find all the representations of the Poincaré 
group under which the equation is invariant. If more than one such Poincaré 
representation is found [3, 4], including representations with integer and half-
integer spins, then the equation describes both Bose and Fermi particles, and 
both quantization types (Bose and Fermi) [3, 4, 31, 32, 36] of the field func-
tion, obeying this equation, satisfy the microcausality condition. The strict 
group-theoretical grounds for this assertion are presented in theorem 1 above. 

Interpretation 
The above-mentioned conclusion, which follows from our results for symme-
tries, has direct applications to theoretical physics for the interpretation of theo-
ries and models. Now it is clear that only the pair of notions “equation” plus 
“fixed Bose or Fermi representation of Poincaré group” tells us what kind of 
particle, boson or fermion, is described. In the example of the electron, this 
means the following. 

The pair “Dirac equation plus reducible, spins 1 and 0, representation” 
may describe a double bosonic system (photon plus boson). 
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The pair “Dirac equation plus spin ½ representation” may describe fer-
mions (electron, neutrino, etc.). 

The pair “generalized Maxwell equation plus spin 1 and 0 representation” 
may describe a double bosonic system (photon plus boson). 

Finally, the pair “generalized Maxwell equation plus spin ½ representa-
tion” may describe fermions, e.g., the electron. This latter possibility is consid-
ered in this paper. 

Using the slightly generalized Maxwell classical electrodynamics (equa-
tion (1) for the system of electromagnetic and scalar fields) and taking a spin ½ 
representation, we arrive at a model of the electron. The electron can be inter-
preted as a system of electromagnetic and scalar fields (waves) in a medium (2) 
(compound system of photon plus massless boson with spin equal to zero). The 
electron is a standing wave in the stationary case. Because it is a system of 
electromagnetic and scalar waves (not a charged corpuscle), it is free from the 
radiation difficulties of Rutherford’s electron in electrodynamics. The charge 
here is a secondary quality, generated by interacting electromagnetic-scalar 
fields. The limit 0 0,   0m ≠ Φ →  produces the free electron. Thus, the electron 
can be constructed from bosons. 

The simplest case 0 0,   0m = Φ =  is treated in detail in formulae (39), 
where it is shown that amplitudes of fermionic states (or their creation-
annihilation operators) are the linear combinations of amplitudes (or of crea-
tion-annihilation operators) of bosonic states. In this sense our model, where 
the electron is considered a compound system of photon plus mass-less spin-
less boson—i.e., the electron’s states are linear combinations of states of the 
electromagnetic-scalar field—has an analogy in modern quark models of had-
rons. On the basis of (39), together with (70) and discussion after (39) and (70), 
we are able to construct fermionic states from bosonic states. Moreover, for-
mula (70) expresses the mass of the atom in terms of bosonic (electromagnetic 
and scalar) field strengths! This is the basis for our hypothesis: the material 
world is bosonic in nature (more general than simple electromagnetic). 

Furthermore, changing the field strengths in (70) may cause a change in 
the mass of a material object like an atom. Can a new flying machine, with 
mass going to zero, be constructed on the basis of this phenomenon? 

It is evident from the example of the hydrogen atom presented in Section 
5 that the discreetness of the physical system’s states (and its characteristics, 
such as energy, etc.) may be a consequence of both quantum systems 
(Schrödinger, Dirac) and the classical (Maxwell) equations for the given sys-
tem. In the present case, discreetness is caused by the properties of the me-
dium, which are given by the electric and magnetic permeabilities (2). 

The main conclusion from Sec. 3 is the following. The unitary equiva-
lence between the stationary Dirac equation and the stationary Maxwell equa-
tions with gradient-like currents and charges in a medium (2) offers the possi-
bility of reformulating all the problems of atomic and nuclear physics (not just 
the problem of describing the hydrogen atom, which is only one example), 
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which can be solved on the basis of the stationary Dirac equation, in the lan-
guage of the classical electrodynamic stationary Maxwell equations. This 
means that our model for the stationary case is just as successful as conven-
tional relativistic quantum mechanics. In the approach based on equations (1), 
it is possible to solve other stationary problems of atomic physics without ap-
pealing to the Dirac equation or the probabilistic or Copenhagen interpretation. 

Some non-stationary problems, e.g., the problem of transitions between 
stationary states caused by external perturbation, can probably be solved in 
terms of this electrodynamic model, just as this problem is now solved in terms 
of the stationary Schrödinger equation with corresponding perturbation. 

A few words may be said about the interpretation of the Dirac Ψ  func-
tion. As a result of the consideration presented here, e.g., from the relationships 
(24) and (36), a new interpretation of the Dirac Ψ  function can be put forward: 
the Ψ  function is the combination of electromagnetic field strengths ( , )E H

G G
 

and two scalar fields 0 0( , )E H  generating electromagnetic sources; i.e., in this 
case, the probabilistic or Copenhagen interpretation of the Ψ  function is not 
necessary. 

Given that many interpretations of quantum mechanics (e.g., Copenhagen, 
statistical, Feynman’s, Everett’s, transactional [43-46]) exist, we are under no 
illusion that our interpretation should be the only one. (Different models of the 
atom have been proposed in this book and elsewhere [47].) But the main point 
is that a classical interpretation (without probabilities) is now possible. 

In the majority of our publications [1-4, 27-34] we have tried to develop 
the classical electrodynamic interpretation of the above facts, which is the main 
purpose of our investigation. Nevertheless, we have also emphasized [35] that 
a standard quantum mechanical Dirac (or spinor classical field-theoretical) in-
terpretation is certainly also possible here. In this case the above facts only 
demonstrate in explicit form the classical electrodynamic aspect of the Dirac 
equation [35]. In other words, our equations may be considered (interpreted) as 
the Dirac equation for the classical (not quantum) spinor field Ψ  in a specific 
electromagnetic representation. We have written one special paper [35] to ad-
mit this possibility, which may be more suitable for readers who are beyond the 
influence of Standard Model. Magnetic monopole enthusiasts may attempt to 
develop the monopole interpretation [48]: we note that there are few specific 
possibilities for interpretation. Thus, the new features that follow from our ap-
proach are: 

(i) the classical interpretation, 
(ii) a new equation and method in atomic and nuclear physics based on 

classical electrodynamics in an inner-atomic medium as in (2), 
(iii) hypothesis of the bosonic nature of matter (bosonic structure of fer-

mions), 
(iv) application of classical theory extended further into the microworld, 
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(v) foundations of a unified model of electromagnetic and gravitational 
phenomena, in which gravitation is considered a medium in general-
ized equations, 

(vi) the electron is described as a classical electromagnetic-scalar wave 
and is related to the equation of motion. 
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What Causes the Electron to Weigh? 
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In his book on Albert Einstein entitled ‘Subtle is the Lord...’, which was pub-
lished in 1982, Abraham Pais has a section called Electromagnetic Mass: The 
First Century. The last two sentences of this section summarize his conclusions: 
[1] 

Recently, unified field theories have taught us that the mass of the electron is 
certainly not purely electromagnetic in nature. 
But we still do not know what causes the electron to weigh. 

In the present article we discuss various ideas that bear on this problem [2]. Re-
cent discoveries in physics have sharpened our interest, but have not yet pro-
vided answers. 

The concept of mass in physics 
Our ideas about the concept of mass have gone through several stages of de-
velopment in the past few centuries, and in particular in the past few decades. 
During this period, our ability to observe masses, or at least the effect of 
masses, has dramatically increased, both in the very small scale of the atom 
and the very large scale of the universe. In the seventeenth through the nine-
teenth centuries, our knowledge of masses seemed to be in pretty good shape. 
The Newtonian laws of motion delineated the inertial properties of massive ob-
jects, and the experiments of Eötvos demonstrated that the gravitational mass is 
the same as the inertial mass. Physicists didn’t worry about the way that mass 
is distributed in elementary particles or atoms, because there was no way of ob-
serving them, and there was no clear proof that they even existed. Astrophysi-
cists didn’t worry about the distribution of mass in an expanding universe, be-
cause that was not one of their concepts. The discovery of the electron in 1897 
ushered in the modern age of observations at the atomic level, and the devel-
opment of large telescopes early in the twentieth century started our explora-
tion of space and time on an extra-galactic scale. These new observational 
skills have led us into domains where the behaviour of masses is not at all what 
we were expecting, both in the very small and the very large. And these new 
discoveries have, as of now, raised more questions than they have answered, 
even in the case of the ubiquitous electron. 
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The concept of electric charge is as mysterious in its fundamental reality 
as is the concept of mass. We have known since Benjamin Franklin’s time that 
charge comes in two matching forms, which we label positive and negative. A 
stationary charge gives rise to an electrostatic field that acts on other charges, 
and perhaps also on itself. A moving charge gives rise to both an electrostatic 
field and a magnetic field. A moving observer looking at a (to us) stationary 
charge sees both fields where we see just the one. The nature of these electro-
magnetic fields, which can exist in a medium or in the vacuum state, has never 
been clearly revealed, nor has the nature of the electric charge that generates 
them. We might think that there should also be a “magnetic” charge, but persis-
tent searches have failed to find it. Chemical experiments in the 19th century 
made it clear that electric charge exists in a quantized form rather than as a 
continuous “fluid” of some kind. The identification of the electron by Thomson 
and others showed that it is a carrier of the unit charge −e, and that it might in 
fact simply be the charge −e. Electron-electron scattering experiments carried 
out in mid-20th century indicate that the charge on the electron is concentrated 
in a very small area. In fact, it has no measurable size at all, down to length 
scales of about 10−16 cm. If this point charge is all that there is to the electron, 
then the large values observed for its spin angular momentum 1/2 )(J = =  and 
magnetic moment e e( /2 )e m cμ = =  are results for which we have no conven-
tional explanations, since these values, if calculated from the standard formulas 
of mechanics and electrodynamics, require a length scale of roughly 10−11 cm. 

The puzzle about the actual size of the electron is compounded when we 
move to the other basic massive particle—the proton. The proton carries the 
charge +e, where the absolute value of e is precisely the same as that of the 
electron. The proton also has the same spin as the electron, and it has a mag-
netic moment p p2.8 /2e m cμ ≅ = . But, unlike the electron, the proton has a fi-
nite electromagnetic size of about a fermi (10−13 cm). The crucial point here is 
that the measured size of the proton is in fact roughly what we would expect 
theoretically from the values of its spin and magnetic moment. Why should the 
proton, with its classically scaled spectroscopy, be so different from the sup-
posedly point-like electron, with its inexplicable spectroscopy? This is really a 
question about theory more than experiment. The experimentally observed 
elementary particles have mass values that were not anticipated and are not un-
derstood. But we might expect that the theory which gives us some guidance 
about the spectroscopy of the proton should do the same for the electron. And 
perhaps, as we suggest below, it might do just that, but with a required exten-
sion of our concept of mass. 

When we move from protons to quarks, the substates that make up pro-
tons and neutrons, the mass mystery becomes even deeper. When quarks were 
first postulated by Gell-Mann and Ne’eman, it was assumed that, with enough 
energy, we could knock a proton apart into its basic components. When this 
failed to happen, it was attributed to the fact that proton quarks are very mas-
sive and have large binding energies [3]. When collision energies got very high 
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and quarks still didn’t appear, it became apparent that this was not the answer. 
A different type of binding mechanism based on “gluons” was proposed, and 
the proton quarks themselves were now assumed to have very small masses, 
with almost all of the proton mass arising from the quark-gluon plasma. 

Further mass mysteries awaited us in outer space. Modern telescopes en-
abled us to examine large spiral galaxies in detail, and it became apparent that 
these galaxies do not contain enough visible matter to hold themselves together 
gravitationally at the observed rotation rates. They must have some kind of 
“dark matter” that is clumped in the outer regions of the galaxies [4]. Also, the 
existence of “black holes” is required in order to explain the tremendous en-
ergy output of quasars. A black hole is a massive burnt-out star that has col-
lapsed to a small size under the action of its own gravity, and whose gravita-
tional field is so strong that no light or energy can escape from it. As still an-
other result, the Casimir effect [5] demonstrated that if we hold two plates 
close together in a vacuum, there is an attraction between them that is gener-
ated by the ceaseless production and annihilation of charge pairs in the vac-
uum—the so-called “zero point energy.” Thus empty space is not really empty. 

As we enter into the 21st century, further refinements in our concepts of 
mass are being forced upon us. Neutrinos and antineutrinos are electrically 
neutral leptons which are emitted in (e.g.) neutron, muon or tau decay. Postu-
lated and then identified in the 20th century, neutrinos carry energy, spin 
( 1/2J = = ) and lepton number. Their interactions are so small that they can 
penetrate through a hundred light years worth of lead bricks before they inter-
act with the lead. It was originally believed that neutrinos are massless and 
travel at the speed of light. However, measurements of electron neutrino fluxes 
from the sun indicated that only 1/3 of the expected events were occurring. Re-
cent experiments have confirmed [6] that electron neutrinos are being trans-
formed into muon or tau neutrinos as they travel through space, which requires 
that they have finite masses. Since the universe is flooded with neutrinos, even 
a small neutrino mass causes them to make a substantial (but not decisive) con-
tribution to the overall mass of the universe.  

Perhaps the strangest modification in our concept of mass comes from 
modern cosmology. In the “big bang” theory, the universe expanded from a 
point-like beginning to its present size, and observations indicate that it is still 
expanding. Space is filled with low-energy electromagnetic radiation from the 
original expansion. In order to explain the gravitational attraction that has cre-
ated galaxies and clusters of galaxies, we had to assume the existence of large 
amounts of dark matter in space, as mentioned above, whose composition is a 
mystery. But in order to simultaneously account for the large expansion rate of 
the universe, we may also have to assume the existence of vast amounts of un-
observable negative-pressure “dark energy,” sometimes denoted as “quintes-
sence” (the fifth essence) [7]. This postulated dark energy, whose composition 
is also a mystery, is thinly spread throughout the universe because it has the 
unique property that it repels itself gravitationally. Current estimates are that 
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dark energy constitutes 73% of the mass in the universe, and exotic dark matter 
constitutes another 23%. The ordinary baryonic matter with which we are fa-
miliar—protons and neutrons—is assigned just 4% of the matter of the uni-
verse, with only 1/8 of that amount appearing as visible matter. Thus, from this 
viewpoint, most of the space in the universe contains matter—energy—in 
forms that are completely unfamiliar to us. 

One familiar object which also has puzzling mass properties is the photon. 
The photon has a spin of 1 ( J == ), and a circularly polarized photon beam can 
rotate a quarter-wave plate. But the photon, unlike the neutrino, has no measur-
able rest mass, even though it carries energy and momentum. Since an ener-
getic spin 1 photon can be converted into an electron-positron pair of spin ½ 
particles, the spin of the photon must in some sense be related to the spin of the 
electron. Thus the models we make for these objects must be interrelated. A 
particle spin is in principle a spin angular momentum, which involves an ex-
tended mass rotating around a center. Hence the mass problem emerges in a 
very crucial way in the dual concepts of the massless photon and the point-like 
electron. 

In the present paper we bring to bear all of the information we have about 
the spectroscopy of the electron to see what it can tell us about the structure of 
the electron. Many years ago Albert Einstein, who spent years worrying about 
the structure of the photon and the structure of gravitational space, made the 
following observation: [8] 

You know, it would be sufficient to really understand the electron. 

Maybe he was, as usual, correct. 

The spectroscopic and bulk sizes of the electron 
The estimates of the spectroscopic size of the electron come from its magnetic 
moment /2e mcμ = =  and spin angular momentum 1/2J = = . The electron has 
an electric charge −e = 4.8 × 10−10 esu, and it has a mass m = 0.511 MeV/c2. 
Measurements on the size of the charge in the electron show point-like behav-
iour down to at least 10−16 cm. But the magnetic moment and spin tell a differ-
ent story. Magnetic moments arise from current loops, as given by the equation 

2 v 2R i eR cμ π= ⋅ = , where R is the radius of the loop and v is the velocity of 
the rotating charge e in the current i. The minimum possible value of R corre-
sponds to the maximum possible value of v, which is v = c. Inserting this 
value, we see that min / ,R mc= =  which is the Compton radius RC = 3.86 × 10−11 
cm, where the Compton wavelength /h mcλ = matches and quantizes the de 
Broglie path length of the rotating charge in the electron current loop. RC is the 
smallest radius we can use to represent the magnetic moment μ of the electron 
as a current loop.  

The spin angular momentum of the electron is J = Iω, where I is the mo-
ment of inertia of the mass m. As a first-order estimate, we represent m as a 
solid sphere of radius R. This gives J = 2/5 mRv, where v is the velocity at the 
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equator R. Setting v = c as the limiting value, we obtain Rmin = 5/4 RC. This is 
not the same value as we obtained from the magnetic moment, but it indicates 
the same Compton-like size for a spinning electron. When we use a relativisti-
cally spinning sphere (next section), we get exact agreement. 

Other particles have measured electrical sizes which are roughly compa-
rable to their Compton radii [9]. The proton has an rms electric radius of 0.87 
fermi, as compared to its Compton radius of 0.21 fermi (which can be taken as 
indirect evidence for a quark substructure), and the electrically neutral neutron 
has a magnetic radius of about the same value. The charged pion has an electric 
radius of 0.67 fermi and a Compton radius of 1.44 fermi. The charged kaon has 
an electric radius of 0.56 fermi and a Compton radius of 0.40 fermi. Thus all of 
these rather diverse particles have electric radii that correspond in magnitude to 
the Compton radii specified by their mass values. 

The electric size measurements cited above are for measurements on indi-
vidual particles. Another way to obtain a size estimate is from the overall bulk 
density of a collection of particles. A large atomic nucleus, composed of 
closely-packed nucleons, has a density ρ of about 2 × 1014 g/cm3 [10]. If we re-
late ρ to the size R of the nucleon by means of the formula ρ = m/(2R)3, where 
m is the nucleon mass, we obtain R = 1.0 fermi, which is close to the measured 
rms radius of 0.87 fermi. A neutron star, composed of closely-packed neutrons, 
has a density in the range of 1011 to 1015 g/cm3 [11], which overlaps the atomic 
nucleon density cited above, and which gives a neutron radius in the range of 
0.6 to 13 fermi, as compared to its measured magnetic radius of about 0.9 
fermi. A normal star, composed of closely-packed hydrogen atoms, has a den-
sity in the range of 10−4 to 10 g/cm3, which gives an atomic radius of 0.3 to 13 
angstroms (10−8 cm), in agreement with atomic sizes. A white dwarf star, com-
posed of electrons and atomic nuclei (i.e., collapsed atoms), has a density of 
104 to 108 gm/cm3, and calculated radii of 1.3 to 28 × 10−11 cm. These radii 
bracket the 4 × 10−11 cm Compton radius that we obtained above for the elec-
tron from the values of its magnetic moment and spin, and they suggest that 
Compton-sized electrons could be providing stability against further collapse in 
a white dwarf star, in the same manner as neutrons do in a neutron star. 

The relativistically spinning sphere (RSS) electron model 
We demonstrated above that the magnetic moment of the electron can be re-
produced by a current loop of radius RC, where the charge e is rotating at veloc-
ity c. We also showed that if the mass of the electron is in the form of a solid 
sphere of radius 5/4 RC, then we can reproduce the spin of the electron by the 
non-relativistic rotation of the sphere, where its periphery is moving at the lim-
iting velocity v = c. However, if the sphere is rotating this fast, its rotation will 
be relativistic, and the mass distribution will be non-uniform. The sphere be-
comes heavier near the periphery, which increases its moment of inertia and 
decreases the required radius of the sphere, thus bringing the spin radius more 
in line with the radius required for the magnetic moment. We can make this re-
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sult quantitative. The relativistic equation for a spinning ring of matter of ra-
dius r is  
 2 2 2

0( ) ( )/ 1 / ,m r m r r cω= −  
where ω is the angular velocity of the ring. This equation follows either from 
special relativity, where v = ωr is the instantaneous velocity, or from general 
relativity, where the mass increase is attributed to the increase in gravitational 
potential of the rotating ring [12]. Integrating over the volume of the sphere, 
using cylindrical coordinates, gives  
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By going to the limiting angular velocity ω = c/R, we obtain Ms = 3/2 M0. The 
relativistically spinning sphere (RSS) is half again as massive as its nonspin-
ning counterpart. The spinning mass remains finite because the vanishing of 
the volume element near the periphery cancels out the increase in the mass 
element. The relativistic moment of inertia is 
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In the limit ω = c/R, this becomes I = ¾M0R2 = ½MsR2. Setting J = Iω = ½ =  
for the spin, we obtain R = RC as the radius of the relativistically spinning 
sphere. Thus the magnetic moment and the spin of the electron both lead to the 
same spectroscopic size for the electron—the Compton radius RC = = /mc. 

It is sometimes asserted that the gyromagnetic ratio of the electron—the 
ratio of its magnetic moment to its spin—is a quantum mechanical result that 
has no classical explanation [13]. The RSS model presented here—a spinning 
sphere with a point charge on the equator—stands as a counterexample to this 
assertion. (It should be noted that the RSS model was not discovered [14] until 
after the publication of ref. [13].) The gyromagnetic ratio g of the electron in 
units of e/2mc is g = μ /J = 2, where e/2mc is the g = 1 value that applies to 
electron orbitals in atoms. The fact that the RSS model [2] reproduces g makes 
it of at least heuristic significance. But can it be in accord with reality? There 
are several issues to be addressed, which we deal with in the discussions be-
low.  

One problem that arises with respect to the RSS model is the question of 
relativistic stresses in the material. Spinning the sphere relativistically distorts 
its geometry so that it is no longer Euclidean, as Ehrenfest pointed out long ago 
[15]. If we fasten a circumferential string at points A and B on a disk and then 
set it into rotation, an observer in the disk frame sees A and B as moving apart 
and concludes that the string has become stretched. An observer in the inertial 
frame sees the distance between A and B as remaining constant (since they had 
identical acceleration histories), but sees the string as having been relativisti-
cally contracted in length, so he also concludes that the string has become 
stretched. This is the Dewan-Beran stress [16] that has been discussed in the 
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literature. However, a point that was not noted in these discussions was that the 
string relativistically changes mass in direct proportion to the distance it is 
stretched [17]. Thus its linear density remains constant, and it does not regard 
itself as being stretched. We can extend this result to encompass the relativisti-
cally spinning sphere, whose volume and mass are relativistically increased in 
direct proportion to one another, so that the local density in the sphere remains 
unchanged. If we regard stresses as forces that change densities, then the rela-
tivistic motion in the sphere does not produce stresses.  

Another way of looking at rotational stresses is to study the centrifugal 
force that arises from the centripetal acceleration. This force is mω2r, where 
ω = dθ/dt. As the radius r approaches the peripheral radius R of the sphere, the 
time dilation slows down the rotation, so that the centrifugal force vanishes in 
the limit where r = R. Another consequence of this result is that, since the ef-
fective curvature of the motion vanishes at r = R, an equatorial charge e thinks 
it is going in a straight line and does not radiate. 

The quantization of the electron spin at the value s = ½ =  follows in a 
very direct manner from the RSS model: the sphere has the Compton radius (as 
required for the correct magnetic moment), and it is spinning as fast as it can. 
From the standpoint of energetics, the fact that a relativistically spinning sphere 
has Ms = 3/2 M0 means that three nonspinning mass quanta M0 can isoergically 
transform into two spin ½ =  quanta Ms (pair formation) that are spinning at the 
full relativistic limit. 

A massive sphere that rotates with its equator traveling at (or infinitesi-
mally below) the velocity c may seem to be an unphysical object to use for rep-
resenting an electron, but calculations show that the energy of this sphere is not 
divergent, and it correctly correlates the main spectroscopic features of the 
electron.  

The relativistic transformation properties of the relativisti-
cally spinning sphere 
Is a spatially-extended RSS electron model consistent with the postulates of 
special relativity? Specifically, do the mass, spin angular momentum, and 
magnetic moment of the electron transform properly? In order to answer this 
question, we must first establish the correct transformation properties in going 
from the (non-spinning) center-of-mass frame of reference to the laboratory 
frame. The special-relativistic transformation parameter is 
 2 21/ 1 v / ,cγ = −  
where v is the RSS translational velocity in the laboratory frame. The relation-
ships between the spectroscopic values of the electron in the two frames of ref-
erence are [18] 
 mlab = γmcm,      Jlab = Jcm,      μlab = μcm/γ,      glab = gcm/γ  (1) 
The mass m increases as γ, the spin J is invariant, and the magnetic moment μ 
and gyromagnetic ratio g decrease as 1/γ. The Lorentz transformation equations 
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were formulated with respect to point-like particles, so it isn’t immediately ap-
parent how to analytically apply them to particles with extended internal struc-
tures. However, the problem can be approached numerically by dividing the 
RSS into small unit cells, transforming each cell as a point-like object, and re-
combining the results at the end. Empirically, it was found that using about 
37,000 individual cells gave accurate results [18]. The two transformations that 
had to be taken into account were the relativistic contraction of length for a 
moving electron and the relativistic addition of the rotational and translational 
velocity of each cell. The magnetic moment that results from the rotational mo-
tion of an equatorial point charge was handled by dividing the charge into a se-
ries of fractional charges spread equally around the equator to represent an av-
erage value over the rotation, and then transforming each fractional charge 
separately. The calculation was carried out for various orientations of the spin 
axis of the electron with respect to the translational velocity of the electron. 
The calculations [18] showed accurate agreement with Eq. (1), thus demon-
strating that the RSS has the required Lorentz transformation properties. 

In addition to simply calculating the agreement with Eq. (1), it was possi-
ble to examine the transformation properties in more detail [18]. When the 
relativistic corrections were divided into coordinate C (contraction of length) 
and velocity V components, it was discovered that the relativistic mass increase 
in Eq. (1) came solely from the V component, the invariance of the spin came 
from C and V components with opposite signs that cancelled out, and the mag-
netic moment decrease came from C and V components of the same sign. Add-
ing a small Larmor precessional motion of the spin axis about the axis of spin 
quantization (see the next section) had no significant effect. 

One final RSS calculation is important to consider here. Problems were 
run in which the sphere was rotated with its equator moving at the reduced ve-
locity c/2, instead of at the full limiting velocity c [18]. This gave a spin angu-
lar momentum that was too small. The correct spin was then obtained by in-
creasing the value of the radius R of the sphere. But now the calculated mag-
netic moment was too large. Furthermore, the Lorentz transformation proper-
ties of this slowly-rotating sphere were correct for the mass and spin values, 
but had the wrong angular dependence for the magnetic moment values as a 
function of the spin orientation with respect to the translational velocity. Thus 
we have two significant RSS conclusions: (1) The RSS gives the correct gyro-
magnetic ratio for the electron only when the equator is moving at the full rela-
tivistic limit c (or infinitesimally below that value); (2) the RSS gives the cor-
rect Lorentz transformation equations only when the equator is moving at the 
velocity c. 

The vanishing electric quadrupole moment and spin quan-
tization 
The spectroscopic RSS model of the electron that we described above features 
a spinning sphere of uniform matter of some kind (note the title of this paper), 
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and it has an electric charge −e placed on the equator. This model correctly and 
uniquely reproduces the spin and magnetic moment, and hence the gyromag-
netic ratio, of the electron. From the standpoint of the magnetic moment, the 
charge on the equator could be either a point charge or a continuous charge dis-
tributed around the equator, since each of these reproduces the current loop that 
generates the magnetic field. (Electron-electron scattering mandates a point 
charge.) But this current loop presents a problem, since it is a spatially ex-
tended entity that has an electric quadrupole moment which is large enough to 
affect electron orbitals in an atom. Thus the electric size of the loop should be 
observable. However, the electric quadrupole moment can be made to vanish, 
and in a very intriguing manner. The electrostatic potential V of the current 
loop in (r, θ, z) cylindrical coordinates is [19] 
 2 2V / 1/4( / )( / ) (3cos 1) ... ,e r e r a r= − θ − +  
where e is the electric charge, a is the radius of the current loop, r is the dis-
tance from the center of the ring to a point on the z axis of quantization, and 
r > a. The first term is the coulomb potential V0 and the second is the electric 
quadrupole moment V2. If we choose the quantization angle θ = arccos (1/ 3) , 
then V2 vanishes identically along the z axis, and it can also be shown [19] to 
vanish along the x and y axes when averaged over a cycle of precessional mo-
tion. The V4 term in this expansion is smaller than the V0 term by a factor of 
order α4 [19]. Thus, at this prescribed angle, the current loop on the electron 
appears point-like in nature. 

The interesting thing about this result is the manner in which it relates to 
the spin of the electron. The observed spin of the electron is Jz = ½ = , which 
from a quantum mechanical viewpoint is the projection of the total spin 
J = 1/2(1/2 1)+ =  onto the z-axis of quantization. The projection angle re-
quired to accomplish this is θ = arccos (1/ 3) , which is the same angle that is 
required for the vanishing of the electric quadrupole moment V2. Thus the van-
ishing of V2 in the RSS electron model and the quantum mechanical orientation 
of its spin angular momentum are directly related effects. In terms of the RSS 
model itself, tipping the spin axis by θ = arccos (1/ 3)  with respect to the z 
axis means that we must increase the RSS radius to the value R = 3 RC, so 
that the observed values of ½ =  for the spin and e = /2mc for the magnetic mo-
ment are the z-projections of quantities which are each 3  larger in absolute 
magnitude. 

It is instructive to examine the electric quadrupole effect of an electron in 
an atomic orbital in more detail [20]. The orbital frequency of an electron in an 
atom is typically about 1015 Hz (rps). In comparison, the frequency of rotation 
of the electron about its spin axis is greater than 1020 Hz. Thus a point charge 
on the electron appears as a current loop with respect to its effect on atomic 
motion. The magnetic field of the electron current loop interacts with the mag-
netic field produced by the electron orbital motion to cause a Larmor preces-
sion of the electron spin axis. The Larmor frequency is roughly 1010 Hz, so that 
the electron current loop has essentially a fixed orientation as it makes a single 
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revolution around the atom. Thus the precessional motion of the current loop 
about the z axis that is required in order to produce a vanishing V2 potential in 
the x and y spatial directions comes from the orbital motion of the electron, and 
not from its very slow Larmor precession. 

The spectroscopic properties of the electron are direct indicators of its 
“overall size.” When combined with its “electric size” (and hence its electric 
self-energy), they also provide clues as to the nature of its mass, as we now 
discuss. 

The electric “size” and “mechanical” mass of the electron 
The RSS model of the electron is of interest in that it correlates the main spec-
troscopic properties of the electron—its mass, charge, spin angular momentum, 
and magnetic moment. However, of equal interest is the information it can 
supply us as to the nature of the “mass” of the electron. What is it that makes 
the electron weigh? In discussing this problem, we will use the terms “mass” 
and “energy” interchangeably. 

When the mass m and charge e on the electron were first determined, the 
question immediately arose as to the relationship between them. Is m just the 
self-energy of the charge e, or is it something else? Suppose that the charge e is 
spatially distributed, with each element of charge acting on each other element 
through the laws of classical electrodynamics. Then the self-energy of this con-
figuration is [21] 
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Now assume that the charge distribution ρ is spherically symmetric inside a 
sphere of radius RE. We then have WE = Ae2/RE , where A = ½ for a spherical 
shell, and A = 3/5 for a uniform volume distribution. Let us for simplicity set 
A = 1, and then set WE = mc2 = the total mass of the electron. This gives 
RE = e2/mc2 = 2.82 × 10−13 cm, which is denoted as the classical electron ra-
dius. Thus RE is much smaller than the RC = 3.86 × 10−11 cm Compton radius 
that we require in the RSS model. Hence if WE represents the actual mass of 
the electron, and if RE represents its actual size, then we have no conventional 
explanation for its spin and magnetic moment. 

This conceptual dilemma about the limitations imposed by WE and RE is 
resolved by the experimental results on electron-electron (Møller) and electron-
positron (Bhabha) scattering [21]. The Dirac equations for this scattering accu-
rately reproduce the data, and they indicate point-like scattering down to dis-
tances of less than 10−16 cm. Furthermore, since they give the absolute values 
as well as the angular distributions for the scattering, they indicate that the scat-
tering is purely electromagnetic: electrons interact with one another only 
through their charges. These experiments tell us that RE < 10−16 cm. Since this 
would give a calculated value for WE that is much larger than the total mass of 
the electron, it is apparent that the charge e on the electron is not a distributed 
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entity which interacts with itself. Given this fact, we can in principle choose 
any value we like for the electrostatic mass WE. However, in order to preserve 
the RSS spectroscopic results presented above, where the magnetic moment 
arises from an equatorial charge distribution and the spin angular momentum 
results from the rotation of a uniform sphere of matter, we must set WE = 0. 
Other theoretical approaches—Fokker (1929), Wheeler and Feynman 
(1945,1949), Rohrlich (1964)—have led to this same conclusion [22]. 

If WE = 0, then we are thrown back to the title of the present paper: What 
causes the electron to weigh? There is in fact another electromagnetic compo-
nent in the electron, the magnetic energy WH that is associated with the mag-
netic moment of the electron. This is discussed in the next section, where it is 
shown to represent about 0.1% of the total electron energy. But this leaves 
99.9% unaccounted-for. There must be a non-electromagnetic mass—a new 
state of matter that is not observed in our familiar macroscopic world. We label 
it here as mechanical matter, just to give it a name. This mechanical matter is 
required to have several distinctive properties, which we enumerate here: 
(1) It forms 99.9% of the mass of the electron. 
(2) It furnishes the stability of the electron structure, including the confine-

ment of the electric charge. (It should be noted that, by Earnshaw’s theo-
rem [23], no purely electromagnetic configuration is stable.) 

(3) It is responsible for the inertial properties of the electron, including its 
spin. 

(4) It forms a uniform continuum, at least within the dictates of the relativisti-
cally spinning sphere model and the gyromagnetic ratio of the electron. 
(Note that the ordinary matter with which we are familiar is mostly empty 
space that is filled with occupying particles which are held together elec-
tromagnetically.) 

(5) It is non-interacting; that is, its interactions (in Møller and Bhabha scatter-
ing) are many orders of magnitude smaller than the electromagnetic inter-
actions of the charge e. 

(6) It functions as a rigid body, in the sense that it does not distort if internal 
or external forces are applied. Internal forces occur in the RSS rotation, 
which gives the correct gyromagnetic ratio for the electron only if the ro-
tating sphere is not distorted by the rotational forces. External forces occur 
in Møller or Bhabha scattering, which appear point-like (central) in nature. 
Since this scattering, from the viewpoint of the RSS model, comes from 
equatorial (non-central) electric charges, the apparent point-like angular 
distributions of the scattering require Chasle’s theorem [24], which states 
that an external force applied to a rigid body can be separated into two 
components: (a) a translational force that acts through the mass center; and 
(b) a torque that acts around the mass center. With this assumption, we can 
mimic point-like scattering with spatially extended (but locally point-like) 
charge distributions [25]. 

(7) It carries the lepton quantum number. 
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If we were to start with the electron and then remove its charge, leaving 
just its mechanical mass, we would have a non-interacting object that has a 
spin of ½ =  and carries the lepton quantum number; these are the salient char-
acteristics of the neutrino. 

The magnetic “size” and “magnetic” mass of the electron 
Some of the most important information about the electron comes from its 
magnetic properties [26]. Immediately after the studies of Uhlenbeck and 
Goudsmit established the existence of the magnetic moment of the electron, 
Rasetti and Fermi pointed out that the magnetic energy associated with this 
magnetic moment indicates a larger size for the electron than does the size of 
the electric charge that creates the magnetic field. It is of interest to reproduce 
their calculation. The asymptotic magnetic field components in (r, θ, z) polar 
coordinates are 

3 3
θ2 cosθ/ , sinθ/ ,rH r H rμ μ= =  

where μ is the magnetic moment of the electron. Assuming that these asymp-
totic forms apply all the way in to a magnetic radius RH , we obtain an external 
magnetic field energy 
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This calculation assumes that the magnetic moment μ is spread uniformly over 
the spherical volume inside RH. A similar calculation by Born and Schrödinger, 
assuming a spherical shell distribution for μ, gave ext 2 3/2 ,H HW Rμ=  in close 
agreement with Rasetti and Fermi [26]. If we extend the Rasetti and Fermi in-
tegration in to the origin by assuming that the magnetic field stays constant at 
its RH value, we obtain int ext

H HW W=  as a lower bound on the interior energy. 
Thus the lower bound on the total magnetic energy is tot 2 32 /3 .H HW Rμ≥  To see 
what lower bound this equation gives for RH, we put /2 ,e mcμ = =  and we set 
the magnetic energy equal to the total energy mec2 of the electron. This yields 
 3 3 2

C C( /6) ( ) ( /6) ,H H eR R W R R m cα α≥ ⇒ = ≥  (2) 

where 2/ 1/137e cα = = �  is the fine structure constant and RC is the Compton 
wavelength. Thus we obtain RH ≥ 0.106 Rc = 4.09 × 10−12 cm as the lower 
bound for RH. This is more than a factor of 10 larger than the classical electron 
radius RE = 2.82 × 10−13 cm, as Fermi had foreseen. If we set RH = RC, where 
the magnetic field is assumed to arise from the equatorial current loop on the 
electron, this decreases WH by a factor of α/6, so that it becomes equal to the 
0.1% mass value mentioned in the preceding section. 

How does this 0.1% magnetic energy component fit into the spectroscopy 
of the electron? As we now demonstrate, it logically gives rise to the anoma-
lous magnetic moment of the electron. The magnetic moment equation 

/2e ee m cμ = =  contains only one factor that is specific to the electron—its mass 
me. This equation shows that the magnetic moment varies inversely with the 
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mass. The magnetic moment of the muon obeys the same basic equation, 
/2 .e m cμ μμ = =  The equation //e em mμ μμ μ =  has an experimental accuracy of 

better than one part in 105. Thus both of these quite different particles have 
magnetic moments that depend on just their masses. About two decades after 
the work of Uhlenbeck and Goudsmit, it was discovered experimentally that 
these magnetic moment equations are not completely accurate, and that μe and 
μμ actually obey the equation  
 ( /2 ) (1 /2 ).e mcμ α π≅ +=  (3) 
Since μe and μμ depend solely on me and mμ , respectively, their identical 
anomalies suggest that these anomalies may arise from an additional mass 
component. Furthermore, these anomalies occur in both the magnetic moments 
and the gyromagnetic ratios of the electron and muon, and therefore do not oc-
cur in the spins. This indicates that the anomalous mass component must be ir-
rotational, since it does not contribute to the spin. The four different types of 
energies (masses) we can envision for the electron and muon are: (1) electro-
static self-energy; (2) magnetic self-energy; (3) mechanical mass; (4) gravita-
tional self-energy. We concluded above that the electrostatic self-energy of the 
charge on the electron (and hence also the muon) is zero. Furthermore, the 
gravitational self-energy is negligible until we get down to length scales of 
about 10−30 cm. And the spherical mechanical mass was introduced precisely to 
account for the spin. Thus we are left with the magnetic self-energy as the only 
candidate for the magnetic moment anomaly, and since it is produced by the 
current loop of a rotating charge, it is in fact irrotational in nature. We can 
write Eq. (3) for the electron in the form 
 /2 ( ) /2 .H He e ee m c m mmμ α π= ⇒ =− ⋅=  (4) 
The experimental (and theoretical) expression / /2H em m α π=  shown in Eq. 
(4) is very close to theoretical estimate / ~ /6H em m α  given in Eq. (2). Hence 
the anomalous magnetic moments of the electron and muon are logically at-
tributed to the self-energies of their respective magnetic fields. In the RSS 
model, this correction factor is reproduced by (1) using the Compton radius 

C C/( ) (1 /2 ) ,HeR m m c Rα π= − = +=  as suggested in Eq. (4), which increases the 
spin and magnetic moment values by that amount, and (2) omitting the mag-
netic mass mH from the calculation of the spin angular momentum, which re-
stores the spin to its original value and inserts the α/2π anomaly into the gyro-
magnetic ratio g. 

The calculation of the magnetic moment of the electron or muon in quan-
tum electrodynamics (QED) involves the spin as a factor, and the spin is not 
amenable to direct quantitative measurement. Thus what is actually measured 
is the gyromagnetic ratio g—the ratio of the magnetic moment to the spin. The 
agreement between the calculated and measured g values of the electron and 
muon represents one of the greatest triumphs of modern physics. The α/2π 
term shown in Eq. (3) is the first-order QED correction term. When the QED 
calculation is continued to higher terms, agreement for g is found to an accu-
racy of about 1 part in 1011 for the electron, and 1 part in 108 for the muon [27], 
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and the slightly different higher-order QED diagrams for the electron and 
muon are clearly in evidence. This astounding accuracy far transcends any re-
sults that are obtainable with the RSS model, and the QED calculations include 
effects such as vacuum polarization that are outside of the scope of the present 
RSS calculations. However, it is important to consider the relationship between 
these two approaches to electron or muon structure, and to ascertain if they are 
in any sense complementary. QED is a very formal approach, and the integrals 
involved in its calculations contain divergences that require very careful can-
cellations. It clearly provides the correct answers about the anomalous mag-
netic moments of the electron and muon, but it provides very little information 
about the structures of the particles themselves. Richard Feynman has deline-
ated this situation very clearly: [28] 

It seems that very little physical intuition has yet been developed in this sub-
ject. In nearly every case we are reduced to computing exactly the coeffi-
cient of some specific term. We have no way to get a general idea of the re-
sult to be expected. To make my view clear, consider, for example, the 
anomalous electron moment ... . We have no physical picture by which we 
can easily see that the correction is roughly α/2π; in fact, we do not even 
know why the sign is positive (other than by computing it). ... We have been 
computing terms like a blind man exploring a new room, but soon we must 
develop some concept of this room as a whole, and to have some general 
idea of what is contained in it. As a specific challenge, is there any method 
of computing the anomalous moment of the electron which, on first rough 
approximation, gives a fair approximation to the α term ... ? 

The present RSS electron model, which was discovered [14] after the above 
quote was published, gives some useful first-order information in response to 
this challenge.  

The relationship between the RSS model and QED can be pursued further 
by an examination of the RSS current loop that generates the magnetic field of 
the electron. The full details, including references, are presented elsewhere 
[29], and we sketch the salient results here. We can represent the current loop 
as a thin wire in the form of a circle of radius RC and cross sectional radius 
RE << RC The self-inductance L of the loop is 
 { }4 (ln8 / 2) 1/4 4 ,C C E CL R R R R Bπ η η π′= − + ≡ ⋅  

where η and η′ are the permeabilities inside of and outside of the wire, and 
where B denotes the {} bracket term. The self-energy of this current loop is 
 2 21/2 /2 .HW Li mc Bα π= = ⋅ ⋅  
If we simply set B = 1, we immediately obtain the correct first-order QED 
term. Unfortunately, we have no apparent justification for doing this. But we 
can nevertheless obtain some interesting information from B. The dominant 
term in B is the divergent logarithm ln RC/RE. Expanding B in this term gives 
 2~ ln / ,H C EW mc R Rα ⋅ ⋅  
which is the same logarithmic singularity that occurs in the QED calculation of 
the electromagnetic self-energy of a particle, as was first demonstrated by 
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Weisskopf [30]. Using the value of mH shown in Eq. (4), and assuming that 
B = 1, we can work backward and obtain the value RE ~ 1 × 10−11 cm [29]. This 
is much larger than the intrinsic size of the rotating charge e, which is < 10−16 
cm, and it logically corresponds to the vacuum polarization effects that prevent 
the build-up of intense magnetic fields in the vicinity of the point charge. The 
present analysis indicates that the QED logarithmic singularity in the electro-
magnetic self-energy comes from the size RE of the rotating electric charge, but 
its effect is on the magnitude of the magnetic energy WH (which it has to be 
since WE = 0). 

It is useful to collect together the various aspects of the spectroscopy of 
the electron that we have discussed above. Figure 1 shows the RSS electron 
model, and the caption to the figure describes its parameters. This model re-
produces the main spectroscopic properties of the electron to first order in α. 

Measurement of the size of the electron 
The electron interacts with other particles through its electric charge. The 
charge itself appears to be point-like, but the spin and magnetic moment of the 
electron suggest a much larger size. This situation was summarized by Asim 
Barut: [31] 

If a spinning particle is not quite a point particle, nor a solid three dimen-
sional top, what can it be? What is the structure which can appear under 
probing with electromagnetic fields as a point charge, yet as far as spin and 
wave properties are concerned exhibits a size of the order of the Compton 
wave length? 

The RSS model of Fig. 1 serves as a response to Barut’s queries. However, the 
RSS model leads to another important question: are there any experiments that 
reveal the size of the RSS equatorial current loop? If there are no experiments 
that show this size effect, there is little point in even discussing it. Electrons 
moving in atomic orbitals with their spins oriented at the quantum-
mechanically prescribed angle have vanishing electric quadrupole moments, so 
they do not show appreciable charge size effects. Also, as we described above, 
electron-electron and electron-positron elastic scattering angular distributions 
indicate point-like behaviour, so we cannot use them for size measurements. 

One type of experiment that could reveal an extended size for the RSS 
charge loop on the electron or positron is Mott scattering off atomic nuclei [32, 
33]. Atomic nuclei have radii of a few fermis, and thus are much smaller than 
the Compton-sized current loops on the electron and positron. Mott scattering 
is the quantum mechanical counterpart of Rutherford scattering, which it 
closely resembles. In the RSS model, the equatorial charge traces out a helix as 
the electron or positron approaches the nucleus. If the incident particle is aimed 
right at the nucleus, then the nucleus lies inside the asymptotically projected 
area of the helix. As a result, the plane of the coulomb scattering rotates with 
the helical motion, which serves to enhance the forward scattering relative to 
the wide-angle scattering. This can be referred to as Mott helical channelling, 
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and it only happens for a range of incident energies in the KeV range. If the in-
cident energy is too low, the impact parameters are very large, and the incident 
particle doesn’t get near the nucleus. If the incident energy is too high, there is 
no time for a helical cycle to be completed. 

Extensive computer calculations were carried out for both point-like and 
helical scattering on several atomic nuclei [32]. These calculations involved 
screening effects, nuclear size effects, and relativistic corrections to the motion. 
In all, they required more than 10,000 hours of computer time on a battery of 
workstation computers. Comparison to experimental data on aluminium, cop-
per, tin and gold [33] showed matching dips in the large-angle cross sections at 
about the expected energies, which were at the lowest energies in the experi-
ments. Unfortunately, these are the energies at which multiple-scattering ef-
fects become most important, so the agreement cannot be regarded as conclu-
sive. Thus further experimental work is indicated. To date, there seem to be no 
well-established experimental data that confirm the large spectroscopic size of 
the electron. 

Zero-rest-mass photons and electron waves as particle-
hole (“zeron”) excitations 
The difficulties in understanding the nature of the electron mass are paralleled 
by even more difficulties in understanding the nature of the de Broglie electron 
wave. Moving electrons are accompanied by electron wave packets that clearly 
affect the motion of the electrons. What are these wave packets? Convention-
ally, they are denoted as mere probability distributions—mathematical con-
structs. But a physical system such as a wave packet that does something ought 
to be something, at least in the opinion of the present author. The electron wave 
packet is much larger in size than the associated localized electron that emerges 
in the detection process. When the electron is observed, its wave packet col-
lapses and vanishes without a trace. It is a zero-rest-mass entity. All moving 
objects (e.g., helium atoms) produce similar particle waves, whose frequency 

Figure 1.  The relativistically spinning sphere (RSS) model of the 
electron. The sphere radius is α π= ⋅ ⋅ +=RSS 3 ( / ) (1 / 2 ),eR m c  the 
quantum mechanical tilt angle is 54.7°, the spinning RSS 
“mechanical” mass is α π= ⋅ −m (1 /2 ),em m  and the irrotational 
magnetic mass is α π= ⋅ /2 .H em m  This RSS model reproduces the 
spin = =1/2 ,zJ  magnetic moment μ α π= ⋅ +=( /2 ) (1 /2 ),z ee m c  and 
gyromagnetic ratio α π= ⋅ ⋅ +2 ( /2 ) (1 /2 )eg e m c  of the electron. The 
quadrupole moment of the rotating-charge current loop vanishes 
dentically along the z axis of quantization, and it vanishes on the 
average along the x and y axes. The equator of the RSS is moving 
at (or infinitesimally below) the limiting velocity c. The relativistically 
spinning mass, spin angular momentum, and magnetic moment 
have the proper Lorentz transformations. The rigidity of the 
mechanical mass serves to produce point-like Møller and Bhabha 
scattering, as suggested by Chasle’s Theorem. 
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depends only on the object’s mass and velocity, and not on internal frequencies 
within the object. 

In addition to the massless particle waves, the one truly massless particle 
that we know about is the spin 1 photon, which is created out of “pure energy” 
in (e.g.) atomic transitions or particle-antiparticle annihilation processes, and 
which gives up its energy and angular momentum and vanishes when it is ab-
sorbed. Like the electron, the photon is accompanied by a wave—the electro-
magnetic wave—as it moves along. The analogies between the “photon-photon 
wave” system and the “electron-electron wave” system are very close, and they 
both share the enigma known as “particle-wave duality,” wherein the “particle-
wave” system behaves like a wave when it is moving along, and like a particle 
when it is stopped and detected. In trying to determine the nature of massless 
particles and massless waves, we can employ two guidelines obtained from the 
above studies of the electron: (1) the spectroscopy of the massless particle or 
wave—its frequency, energy, angular momentum, and internal charge states—
gives valuable information about the structure of the physical system involved; 
(2) the spectroscopic requirements may lead us to a new type of mass for the 
system. In the case of the electron, we demonstrated that its spectroscopic re-
quirements can be satisfied within the confines of our known theories of me-
chanics and electrodynamics by invoking a new kind of non-interacting “me-
chanical” mass that, together with the small magnetic self-energy, constitutes 
the rest mass of the electron. In the case of the massless particle waves and 
photons, we will now show that their spectroscopic requirements can be met by 
invoking “particle-hole” excitations of the vacuum state, where the “holes” 
function mechanically as “negative-mass” states, and appear electromagneti-

 
Figure 2.  The basic P—H “zeron” excitation. A “particle” P (+m, −e) is raised out of the vac-
uum state, leaving behind a “hole” H (−m, +e). Without rotation the zeron P—H pair would 
quickly de-excite, but when sent into an orbit where the centrifugal force is balanced by the 
electrostatic attraction, the excitation is stabilized. The left figure shows the laboratory frame 
momentum vectors, and the right figure shows the forces in the rotating frame. The motion of 
H in one direction corresponds to a mass motion through H in the other direction. The zeron 
rotates at the de Broglie frequency ω = =2/ ,mc  and its angular momentum is formally equal 
to zero. The “antizeron” is + +P( , )m e – H − −( , ).m e  
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cally as electrically charged objects (in the same manner as semiconductor hole 
states). We denote these particle-hole (P-H) pairs as “zerons,” since the P and 
H contributions to the total energy, angular momentum, and charge of the pair 
cancel out, and since the P-H excitations, which require rotational motion to 
maintain their stability, vanish without a trace in the de-excitation process. 
Electron-positron pairs can be created out of pure energy, but are positive-
energy particles that require twice the energy of a single electron to create, and 
which release this energy when they annihilate. 

If we think of empty space as being a total void, then it is not easy to en-
vision the process in which a “particle” state is created—lifted out of the 
void—and leaves behind a matching vacancy denoted as a “hole.” What is the 
hole in? But if so-called empty space in fact has some kind of residual mass, or 
if it represents a sea of zero-point excitations, as evidenced for example in the 
Casimir effect, then the hole represents a “gap” in this spatial continuum. As 
discussed above, recent astrophysical studies indicate that the universe appears 
to contain large amounts of attractive “dark matter” and repulsive “dark en-
ergy” spread out over vast regions of space. The nature of these invisible mass 
states is completely unknown, but their possible existence suggests that our 
ideas about “empty space” may need to be updated. In this context, the concept 
of “holes” in the vacuum becomes more plausible. By using particles and holes 
to account for massless photons and massless matter-waves, we may be able to 
examine the nature of the mass of the vacuum state on a microscopic as well as 
a galactic scale of distances. 

The systematics of vacuum-state particle-hole excitations has been given 
elsewhere [34], and we summarize the pertinent results here. The basic P-H ex-
citation, the rotating zeron, is displayed schematically in Fig. 2. The left figure 
shows the P and H masses and charges, together with the momentum vectors in 
the laboratory frame of reference. The right figure shows the equilibrium force 
vectors in the rotating frame. 

The de Broglie wave equation is customarily used in the form λ = h/mv, 
where m and v are the mass and velocity of the particle. Inserting Vv = c2 and 
λ/2π = V/ω, where V is the wave velocity, we obtain 2.mcω ==  Thus the fre-
quency ω of the de Broglie electron wave depends only on the relativistic mass 
of the electron. One essential task in deducing a set of basis states for the de 
Broglie wave is to reproduce the frequency ω. Let us see how this result is ac-
complished by using the zeron P-H pair of Fig. 2. The zeron excitation process 
conceptually occurs when a “particle” P of mass +m and charge −e (which we 
will assume to be equal to the electron charge) is removed from its position in a 
negatively-charged “matter lattice” in the vacuum state, leaving behind a 
“hole” H that appears operationally as having mass −m and charge +e. (Antize-
rons are similarly created when an “antiparticle” P  of mass m+  and charge +e 
is removed from a positively-charged “antimatter lattice.”) If not set into rota-
tion, the P-H pair will recombine under the action of the electrostatic attraction. 
In the recombination process, the particle P is attracted by the apparent positive 
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charge of the hole H and moves toward it. The negatively charged P does not 
act directly on H (since nothing is actually there), but instead acts on the nega-
tive charges that border the hole H, forcing the charge nearest to P into the 
hole, which cause H to move toward P. Hence the +e state H moves under the 
action of an external electrostatic force as a positive-mass state would move, in 
the direction of the force (but with its momentum vector in the opposite direc-
tion); whereas H moves under the action of an external mechanical force as a 
negative-mass state (in the direction opposite to the force) [35]. In order to pre-
vent de-excitation, the P-H pair must rotate, so that its outward centrifugal 
force can counterbalance the inward electrostatic force. The force equation for 
P is 2 2 2/4 ,m r e rω =  where 2r is the charge separation distance and ω is the an-
gular velocity. We assume an angular momentum of /2=  for P, which gives 
the angular momentum equation 2/2 .mr ω==  Eliminating m from these two 
equations and using the de Broglie wave equation 2

em cω == yields 
2 2/2 :ee r m c=  the electrostatic energy of the rotating pair is equal to the total 

energy of the electron. We also have 2/ ,2/em m α=  where α ≅ 1/137, which 
shows that the rotating P mass m is much larger than the mass of the electron. 
These same equations apply to the hole state H of Fig. 2, where we must keep 
in mind that the motion of H to the right is in reality a streaming of particles to 
the left, which produces an outward centrifugal force. The rotating zeron is a 
stable structure that carries the frequency ω of the de Broglie electron wave. 
Since there are three excitation parameters—m, r, ω—and two constraining 
dynamical equations—centrifugal force and angular momentum, zerons can be 
constructed for any frequency ω. 

Zeron rotation is dominated by the large mass values of P and H. Their 
mass energies and angular momenta essentially cancel out. Thus they can be 
easily excited and de-excited, as is required for the production of electron 
waves. The choice of = /2 for the angular momentum of P seems arbitrary in 
the case of electron waves, but is more relevant in the case of the massless pho-
ton. The irreducible photon basis state is a rotating zeron-antizeron quartet, as 
shown in Fig. 3. This Z Z−  quartet has particle-antiparticle symmetry, and it 
accounts for the spin angular momentum = , transverse crossed electric and 

 

Figure 3.  The zeron-antizeron quartet 
model of the photon. The hole states H and 
H  coalesce at the center, and the particle 
states P and P  revolve around them in a 
stable spin 1 orbit. This model accounts for 
the standard spectroscopic properties of the 
photon [34]. The electromagnetic wave that 
accompanies the photon is formed from ze-
ron and antizeron pair excitations. 
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magnetic fields, and circular polarization of the photon. It revolves at the Ein-
stein frequency / .Eω = =  The overlapping H and H  hole states, which are 
held together electrostatically, play no role in the dynamics, but are important 
for the overall energy balance. The electromagnetic wave that accompanies the 
photon is closely analogous to the electron wave that accompanies the electron, 
and is logically constructed of single zeron and antizeron excitations [34]. 

The zeron and antizeron particle-hole excitations of the vacuum state 
serve as basis states that can be used to account for the main properties of 
massless photons and massless electromagnetic and particle waves. One of the 
key problems here is to reproduce the large spin angular momentum J = =  of 
the photon in terms of rotating masses, keeping in mind that the net rest mass 
of the photon is zero. This clearly requires the pairwise use of positive-mass 
and negative-mass (hole) states. Our main goal in the present paper is to see 
what this tells us about the vacuum state, rather than to focus on the particle 
properties of the photon. In order to create the zeron we require a spatial mani-
fold of negatively charged positive-mass matter, and in order to create the an-
tizeron we require another manifold of positively charged positive-mass anti-
matter. If we superimpose these two manifolds, we can envision that the nega-
tive potential energy of their electrostatic attraction offsets their positive-
energy masses, thus keeping the overall spatial mass density at a reasonable 
value. This is the rather complex spatial continuum that we require in order to 
reproduce massless photons with large (1= ) spin values within the context of 
our present spectroscopic theories. 

A dynamical basis for the de Broglie superluminal phase 
velocity 
In order to reproduce the large spin value of the otherwise “point-like” elec-
tron, we introduced a new type of “mechanical mass” that is required to be 
non-interacting and very rigid (Fig. 1). Then, in order to reproduce the large 
spin value of the massless photon, we introduced P-H “particle-hole” pairs, de-
noted as “zerons” and “antizerons,” that have matching positive and “negative” 
masses (Figs. 2-3). Since the photon travels at the luminal velocity c in a vac-
uum, the sum of the P and H positive and negative masses in a P-H pair is re-
quired to stay finite at this velocity. When we use zerons to act as basis states 
for de Broglie electron waves, we encounter the additional problem that the ze-
rons move at superluminal velocities, V > c. The de Broglie velocity relation-
ship is vV = c2, where v is the (group) velocity of the electron (v < c) and V is 
the (phase) velocity of the electron wave. This velocity relationship can be de-
rived by requiring relativistic invariance between the electron and its wave 
[36]. It can also be derived by requiring relativistic energy and momentum 
conservation in the excitation of zerons by moving electrons. This calculation 
has been published elsewhere [37], and we summarize the main results. 

The initial state is an electron of mass m moving at velocity v. The final 
state is a zeron with a relativistic mass n (but no rest mass) moving at velocity 
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V at angle φ with respect to v, plus the electron with mass m′ moving at veloc-
ity v′ at angle θ. The solution to this problem in the perturbative limit where 
n << m is straightforward, but is not to be found in any of the textbooks on 
special relativity. If n < 10–5 m, then [37] 
 v⋅V = c2. 
This result includes the de Broglie velocity relationship vV = c2, but it goes be-
yond that. It shows that the forward velocity Vf of the scattered zeron with re-
spect to the incident velocity v of the electron is c2/v for all values of the zeron 
scattering angle φ. Hence the de Broglie phase wave is accurately planar (and 
not spherical). Also, we can combine the zeron model shown in Fig. 2, which 
reproduces the rotational frequency 2/mcω = =  of the de Broglie phase wave, 
with the dynamically calculated phase velocity V = c2/v, to directly obtain the 
de Broglie wavelength λ = 2πV/ω = h/mv. 

Mechanical masses and constituent quarks 
An examination of the observed spin and magnetic moment of the electron, to-
gether with its point-like charge, led to the phenomenological conclusion that 
the electron is in the form of a relativistically spinning sphere of “mechanical” 
matter with a point charge e located on the equator of the RSS, as shown in 
Fig. 1. This raises the question of the nature of the masses of the other 200 or 
so elementary particles and resonances [9]. Are they also formed from me-
chanical matter? These particle states can be reproduced by a subset of “quark” 
states, which passes the mass question on from the particles themselves to the 
quarks of which they are composed. What are quarks made of? 

The Standard Model of quantum chromodynamics (QCD) is widely ac-
cepted as the correct way to deal with the quark systematics, and it does an ex-
cellent job of correlating the principle quantum numbers of the observed parti-
cle states. However, it does not per se give us direct information about quarks 
masses. Kurt Gottfried and Victor Weisskopf (1984) summarized this situation 
as follows: [38] 

Unfortunately, QCD has nothing whatsoever to say about the quark mass 
spectrum, nor, for that matter does any other existing theory. 

And Richard Feynman (1985) echoed their sentiments: [39] 
Throughout this entire story there remains one especially unsatisfactory fea-
ture: the observed masses of the particles, m. We use these numbers in all 
our theories, but we do not understand them—what they are or where they 
come from. I believe that from a fundamental point of view, this is a very in-
teresting and serious problem. 

The difficulty with quark masses is that the quarks cannot be removed from the 
particles and examined individually. We can only infer their properties from 
those of the particles within which they reside. The two basic types of quarks 
that have been considered are constituent quarks, wherein the masses of the 
quarks add up to form the mass of the particle, and current quarks, wherein the 
“gluon” currents that bind the quarks together contribute most of the mass at 
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low energies and a substantial fraction of the mass at higher energies. The 
Standard Model features current quarks. However, if we look directly at the 
mass values of the metastable (longer-lived) particles, they have the linear rela-
tionships that we logically expect to find with constituent quarks [40, 41]. 
Also, the interval spacings between related low-mass particles reveal the exis-
tence of a basic constituent-quark excitation quantum X. We illustrate these 
statements with the minimal constituent-quark model shown in Table I. The 
lowest-mass strongly-interacting particle is the π meson, which is spinless and 
is reproduced as a quark-antiquark pair. The π± mass of 139.57 MeV matches 
the mass me(2/α) = 140.05 MeV, and it suggests me/α = 70 MeV as a basic 
constituent-quark mass quantum. We assume that this is the spinless mechani-
cal mass M(70). If we further assume that M is in the form of a Compton-sized 
uniform sphere of matter, and if we set it into RSS rotation, its mass becomes 
half again as large, as shown above, and it has a calculated spin of ½ .=  This 
gives MS(105) as the basic spin ½ constituent-quark mass quantum. With these 
two basis states, and with the assumption of zero binding energy, we can accu-
rately reproduce the absolute masses of the stablest mesons and baryons, and 
also the masses of the leptons, as is demonstrated in Table I. Furthermore, we 
can account for the combinations of constituent quarks that occur in the low-
mass resonances in terms of the cross-over excitation X(420), and we can re-
produce the high-mass thresholds in terms of characteristic mass triplings of 
lower-mass quarks. 

The quarks Q, S, C, and B correspond to quark states in the Standard 
Model. The spinless quark M and its spinning counterpart MS do not form part 
of the SM systematics, but they generate the SM quarks, and they accurately 
reproduce the masses of the lowest (and therefore most basic) lepton and 
meson states. Two points to note in Table I are the overall accuracy of the mass 
values and the comprehensiveness of the results. All of the principle stable par-
ticles and particle-channel threshold resonances are accurately reproduced in 
Table I with no adjustable parameters. By way of contrast, the Standard Model 
requires, according to one count, 19 adjustable parameters in order to obtain its 
fits to the data, although it should be noted that the SM accounts for many 
more properties of the elementary particles than just their masses and quantum 
numbers. 

In addition to reproducing the masses of particles in terms of spinless 
M(70) and spinning MS(105) mass units, Table I also shows that the lowest-
mass narrow-width resonances and particle states are spaced by mass intervals 
which are multiples of an excitation quantum X(420). This quantum has an in-
teresting phenomenological explanation. The mass transformation 
3M(210) ⇔ 2MS(210) is isoergic, which suggests a mechanism for transform-
ing between spinless and spinning mass quanta. However, if we apply this to 
the generation of a μμ (211) pair (see Table I), the μμ  pair is particle-
antiparticle symmetric, whereas a combination of three M and M quanta is not. 
The lowest symmetric transformation quantum is X = 6M = 4MS = 420 MeV, as 
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shown at the top of Table I. Multiples of this mass spacing appear in the 
spinless low-mass mesons (X and 2X), in the lepton and nucleon pair produc-
tion thresholds (4X and 8X), and in the strange S quark ( )SS M X= ⋅ . Other 
quark masses are Q = 3MS, C = 3S, B = 3C, and WZ = 9B, where WZ is a hypo-
thetical quark which gives rise to the observed W and Z spin 1 resonances. (The 
actual existence of the WZ quark would be manifested as (e.g.) a Q WZ⋅  reso-
nance at half the W and Z mass values.) 

Table I. The minimal constituent-quark mechanical mass model. The basic CQ masses 
are the spinless quantum M = 70 MeV and its RSS spin 1/2 counterpart MS = 105 MeV, 
which occur in particle and antiparticle forms, and are used here with zero binding en-
ergy. The excitation quantum ≡ ⋅ = =2 420MeVS SX MMM MMM M M  is the lowest-mass 
symmetric cross-over spin excitation, and it dominates low-mass particle production. 
The higher-mass threshold resonances feature mass triplings of the S quark. The parti-
cle mass values shown here are from Ref. [9]. 

Spin 0 low-mass mesons 
M(70) MM  iMM X  iMM XX  iM X  
 (140)MM  4 (560)MM  7 (980)MM  7M(490) 

 ±π (140)  η(547) η’(958) K(494) 

Spin ½ lepton and nucleon thresholds 
MS(105) S SM M  i4S SM M X  i8S SM M X  

 (210)S SM M  9 (1890)S SM M  17 (3570)S SM M  
 μμ(211)  (1877)pp  ττ (3554)  

Spin ½ quark masses 
MS(105) 3MS(315) ≡i (525)SM X S  3S(1575) 3C(4725) 9B(42525) 
 Q≡U,D(315) S(525) C(1575) B(4725) WZ(42525) 

Spin 1 meson threshold resonances 
iS SM M X  ≡iS SM M XX SS  3SS  9SS  ×9 9SS  

3 (630)S SM M  (1050)SS  (3150)CC  (9450)BB  9 (85050)BB  

    (630)QQ  φ(1020) J/ψ(3097) ϒ (9460) ½(W+Z)(85806) 

Spin 0 mixed meson resonances 
(1890)QC  (5040)QB  (2100)SC  (5250)SB  (6300)CB  

D(1869) B(5279) DS(1969) BS(5369) BC(6400) 

Baryon octet resonances 
QQQ(945) QQS(1155) QSS(1365) SSS(1575) 
p(938) Λ(1116), Σ(1193) Ξ(1321) Ω(1672) 

Charmed and bottom baryon resonances 
 QQC(2255) QSC(2415) QQB(5355) 
 ΛC(2285), ΣC(2455) ΞC(2466) ΛB(5624) 
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The U and D quarks of the Standard Model correspond to the Q quark in 
Table I. The mass splittings of different charge states in the same resonance 
(e.g., D(1869)) can be attributed to slightly different U and D mass values. We 
note that the π MM=  mass splitting is almost exactly equal to 9 electron 
masses, as shown at the bottom of Table I. 

The mass values shown in Table I include all of the basic lepton, meson, 
and baryon threshold particles—roughly 22 states in all. The fact that one 
common set of masses accurately works for all of these various types of parti-
cles shows that they bear a deep relationship to one another, which from the 
constituent-quark point-of-view is suggestive of a common set of mechanical 
masses. 

In jumping from the electron mass me to the 70 MeV mechanical mass M, 
we invoked a scaling in α ≅ 1/137. It is worthwhile to mention that the life-
times of the metastable particles form groups that correlate with their quark 
structures [42], and these lifetime groups are spaced by powers of α, over a 
range of lifetimes that extends from the long lifetime of the neutron to the 
shorter lifetimes over a span of 11 powers of α, or 23 orders of magnitude [43]. 

The mass of the neutrino 
In the mass analyses of the present paper, we demonstrated that the spin angu-
lar momentum of the electron can be reproduced by a Compton-sized relativis-
tically spinning sphere of non-interacting “mechanical” matter. We also repro-
duced the spin angular momentum of the massless photon by the rotation of P-
H “particle-hole” excitations of the vacuum state. These results suggest that a 
particle such as the neutrino, which carries a spin of ½, should logically have a 
mass that is responsible for its spin. If we start with the RSS electron model 
shown in Fig. 1, and then remove its charge, we are left with a spinning sphere 
of matter that has a spin of ½, that does not interact appreciably with other ob-
jects, and that carries the lepton quantum number. These are the salient proper-
ties of the neutrino. Hence the studies on the electron imply that spin ½ neutri-
nos have masses. At the time that these ideas were first set forth [14], the pre-
vailing view was that neutrinos are chirally invariant particles which have zero 
rest mass and travel at the velocity c. Thus the recent confirmation of a finite 
mass for the neutrino [6] serves to reinforce the present notion that where there 
is spin angular momentum, there is also mass. 
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We review the basic features of a model of the electron in a 6-dimensional 
space-time with two extra time dimensions. The electron is assumed to be a 
massless particle in this space, and it acquires mass when considered in the usual 
4-D space-time. Its spin and magnetic moment are obtained by an effect of po-
larization, which gives rise—in the three-dimensional temporal space—to a 
helicoidal motion along the usual time axis with radius of the order of the 
Compton wavelength of the electron. In this model, chirality is nothing but the 
direction of rotation of the electron in the “time” space. It is also shown that a 
connection can be established between the 6-D space-time and a recently devel-
oped Kaluza-Klein-like formalism with energy as fifth dimension. 

1. Introduction: time and the electron 
1.1 How many times? 
What is time? Many definitions exist, all very different one from the other, 
from psychological to physical. For example, Rovelli [1] has analyzed the dis-
tinct roles that the notion of time plays in different scientific theories and found 
ten versions of the concept of time, from “natural time” to “no time,” all used 
in natural sciences. From a physical point of view and in the framework of spe-
cial relativity, time is the fourth dimension of the Minkowski space-time, 
namely the component of the position four-vector dxμ = (dt, dr) ( 1c = == ). 
This representation is so well established experimentally that a necessary re-
quirement to be satisfied by any physically acceptable theory is its Lorentz co-
variance in a space-time with 4 dimensions, 3 spacelike and 1 timelike. 

As is well known, there is no experimental evidence that time has more 
than one dimension in our Universe. This is obvious, since any matter with a 
different time direction would remain observable only for a very short time be-
fore disappearing almost immediately. For example, had particles been created 
during the Big Bang with more than one initial common time direction, they 
would have been immediately separated, and now only those with the same 
time would constitute our Universe. (The hypothesis by Stueckelberg [2] and 
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Feynman [3] that antimatter corresponds to particles travelling backwards in 
time can explain why the Universe does not seem to contain the same amounts 
of matter and antimatter.) 

However, if space-time is a physical concept and not only a mathematical 
representation—as suggested indeed by Einstein’s Special Relativity (SR)—the 
question arises: why do three space coordinates and only one time coordinate 
exist? The idea of a multidimensional time was considered in the second half 
of the past century, mainly as a possible tool to explain quantum features in a 
semi-classical framework [4–6]. In particular, the problem of a possible sym-
metry in the number of dimensions in space and time was noticed in the early 
seventies in the framework of the generalization of SR to faster-than-light 
speeds [7]. Indeed, the superluminal Lorentz transformations in four dimen-
sions (introduced by Recami and one of the present authors (RM) [7]) change 
the sign of the space-time interval, thus mapping spacelike dimensions into 
timelike ones, and vice versa. This leads in a natural way to the hypothesis of 
an equal number of time and space dimensions. Following Demers [8] (who 
assumed a 3+3-dimensional space-time M(3,3) and applied it to some aspects 
of trichromatism*), Mignani and Recami [9] introduced a time vector t

G
 (be-

sides the space vector rG ) in order to explain the appearance of the imaginary 
quantities entering into the 4-D generalized Lorentz transformations. A space-
time point in the space M(3,3) is therefore represented by a 6-vector 

( )X r tμ =
GG  (μ = 1,…,6)†. In agreement with Demers, it was assumed that 

only the modulus 

 ( )
1

2 2 2 2
1 2 3t t t t= + +  (1.1) 

is physically observable for bradyons (slower-than-light particles), whereas 
only the modulus of rG  is a meaningful quantity for tachyons (faster-than-light 
particles). 

Since that time, much work on the “three-time” formalism has been done, 
with or without connection to SR [10–23].  

For instance, by defining a 6-D vector electromagnetic potential 
( )A BμΦ =
G G

, one gets a 6×6 electromagnetic tensor given by [10,11]: 

 E
X X

μ ν
μν

ν μ

∂Φ ∂Φ
= −

∂ ∂
. (1.2) 

This made it possible to build up a formulation of electromagnetism in (3+3) 
dimensions valid for both bradyons and tachyons (thus confirming the hy-
pothesis [7] that electrically charged tachyons behave as standard magnetic 
monopoles). 

                                                 
* This kind of application relies on the well known fact that transformations in a complex 3-space 

are related to the unitary group SU(3). 
† Throughout the paper, an arrow denotes a three vector. Moreover, the indices 1,2,3 label the space 

components, whereas 4,5,6 refer to the time (with the index 4 labeling the usual time axis). 
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Averaging on time directions was also proposed [12] in order to overcome 
the non-linearity of the transformation equations for four-vector components.  

Other authors [12–14] have considered theories with a three-dimensional 
time on a different (often criticized) basis. In particular, Cole formulated a 
complete mathematical theory for a 6-D space-time, which includes the usual 
four-dimensional theory as a special case [17–23]. In his theory, the motion of 
a particle at a given space-time point X ∈ M(3,3) in any frame is specified by 
the unit vector αG  along the projection of its path in the time subspace and by 
its velocity v dr dt=

G G , where dt is measured along this path. A transformation 
between two inertial frames is expressed by the 6×6 matrix  

 
D P

A Q R
⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, (1.3) 

where , , ,D P Q R  are constant 3×3 matrices. Specific transformations have been 
given by Cole and Buchanan [21] for the simplest non-trivial cases. 

The link with the standard 4-D theory is obtained if all time vectors in a 
given frame are parallel to a given fixed vector 0αG . 

The basic features of any reasonable 6-D theory have been summarized 
by Cole and Starr [22]. It must: 

a. Include the standard (3+1) theory as a special case; 
b. Explain why only one time dimension is observed; 
c. Make new testable predictions. 

It is possible to show that the most recent version of the theory does fulfill 
point (i). However, the total lack of experimental evidence of a time direction 
other than the macroscopic, everyday dimension has limited interest in the 
three-time theory, which therefore has not been further explored. 

Now recall that space-times with more than 4 dimensions have often been 
proposed, mainly in attempts to unify fundamental interactions. The first pio-
neering proposal is due to Kaluza [24] and Klein [25]; they introduced a five-
dimensional space-time in order to unify gravitation and electromagnetism in a 
single geometrical structure. Their scheme, in which the coefficient of the fifth 
coordinate is constant, was later generalized by Jordan [26] and Thiry [27], 
who considered this coefficient to be a general function of the space-time coor-
dinates. The Kaluza-Klein (KK) formalism was later extended to higher di-
mensions, also in the hope of achieving unification of all interactions, includ-
ing nuclear (weak and strong) forces. Modern generalizations [28] of the KK 
scheme require a minimum of 11 dimensions in order to accommodate the 
Standard Model of electroweak and strong interactions; note also that 11 is also 
the maximum number of dimensions required by supergravity theories [29]. For 
a recent exhaustive review of Kaluza-Klein theories we refer the reader to an 
excellent monograph by Wesson [30]. In these models, the extra dimensions 
are always spacelike, and are not observable, because they are wrapped up in a 
very small region (compactified dimensions). There have also been other pro-
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posals where the fifth (uncompactified) dimension is linked with mass [31-33] 
or energy [34,35]. 

1.2 What is the electron? 
The electron (discovered by J.J. Thomson in 1897) is the first and best-known 
elementary particle, and plays a fundamental role in many observed physical 
phenomena. Notwithstanding, it still remains an enigmatic object [36]. Its in-
trinsic features (like mass, charge, spin and magnetic moment) have been 
measured with a very high level of accuracy. Only the electron’s size is still 
unknown, since many different values, from 10–11 to less than 10–16 cm, can be 
attributed to its radius, depending on the different phenomena under considera-
tion. All the electron properties related to its interactions are well described in 
the framework of the Glashow-Weinberg-Salam electroweak theory. However, 
the values of the mass and of electric charge of the electron considered in 
Quantum Electrodynamics (QED) are not intrinsic, but result from its interac-
tion with the vacuum. As a matter of fact, there exists presently no model of 
the electron able to fully account for its behaviour and features in a convincing 
way. 

The above facts are well known and generally accepted as a consequence 
of the impossibility of describing the electron either classically or quantum-
mechanically. This leads to the quite contradictory view that the electron is re-
garded as an electrically charged, point-like particle, but endowed with an un-
known internal structure responsible for its spin and magnetic moment. 

This situation, already summarized by Fermi in 1932 [37], was restated by 
Barut [38] in 1990 in the following terms: “If a spinning particle is not quite a 
point particle, nor a solid three-dimensional top, what can it be? What is the 
structure which can appear under probing with electromagnetic fields as a point 
charge, yet as far as spin and wave properties are concerned exhibits a size of 
the order of the Compton wavelength?” 

Although most physicists believe that quantum theory explains everything 
that can be explained concerning the electron, many attempts have been and 
are being made to establish a model of the electron able to link together its 
static and dynamical properties. 

Several models of the electron have been proposed [36,39–48]. They can 
be divided into roughly three classes, in which the electron is regarded as:  

i. A strictly point-like particle; 
ii. An actual extended particle; 
iii. An extended-like particle in which the position of the point-like charge 

is distinct from the particle center-of-mass. 

Among the latter type of theoretical approaches (generalizations of the 
theory of relativistic spinning particles [43]), we may cite the following: 

• Classical extended electron: Theories that use the Lorentz-Dirac 
equation [44] to derive information on the electron’s experimental 
behaviour from parameters of its internal structure [45,46]. 
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• Classical mechanical models (e.g., the electron as a rigid rotating 
sphere with a point-like equatorial electric charge [36]). 

• The electron as a point particle buffeted around, so that its actual po-
sition is spread out over a region of space vastly larger than the intrin-
sic size of the electron itself [36]. This motion corresponds to the Zit-
terbewegung of QED, explains the Lamb shift in atomic nuclei and is 
the basis of the most recent studies on electron models. In particular, 
if the trajectory of the electrically charged particle is a helix around 
the center of mass that moves like a relativistic (spinless point) parti-
cle, an oscillatory motion gives rise to the spin [42,47,48]. 

1.3 Does the electron carry three clocks? 
Is there any connection between the two seemingly unrelated problems 
(namely, the number of time dimensions and a consistent model of the elec-
tron) we discussed above? The answer might be yes. Indeed, recently one of 
the present authors (PL) proposed a model of the electron (and of the other 
charged leptons) in a (3+3)-D space-time [49,50]. In this framework, the elec-
tron is assumed to be a massless point-particle subjected to an attractive field 
towards the (3+1) space-time. This attractive force is caused by the vacuum po-
larization arising when the charge of the electron is removed from the standard 
space-time. The electron trajectory in the “time” space (as seen in the electron 
rest frame) turns out to be a helix, with our usual time axis, and radius equal to 
the Compton wavelength. The electron’s motion along the time axis (occurring 
at the speed of light c) creates an “arrow” of time. 

Obviously, since only four different “time motions” are allowed (corre-
sponding to the two time directions and the two directions of rotation), a four-
component wave function is required in order to describe the motion of the 
electron in the usual 4-D space-time. 

This model exhibits some interesting features, among which: 
a. It recovers the usual values for the spin and magnetic moment of the 

electron [49]; 
b. Quantization of the electron mass follows from the existence of a 

discontinuity in the attractive potential [50];  
c. The time-energy uncertainty principle is recovered indirectly. 

In this paper, we shall review this “three-time” model of the electron, and we 
will also show possible connections with the five-dimensional formalism (with 
energy as extra dimension) [34,35]. 

The content of the paper is as follows. The model of the electron in a 6-D 
space-time is reviewed in Section 2. Its foundations are given in Subsec.2.1. In 
Subsec.2.2 it is shown that the electron mass is derived as an integration con-
stant from the Klein-Gordon equation for a massless particle in (3+3) space-
time. The usual values of the spin and magnetic moment of the electron are ob-
tained in Subsec.2.3 from the hypothesis of an attractive force caused by vac-
uum polarization. We show in Section 3 that the “time” spin of the electron can 
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be identified with chirality. In Section 4 we establish a connection between the 
6-D space-time and the Kaluza-Klein-like formalism with energy as the fifth 
dimension. Section 5 concludes the paper. 

2. The electron in a 6-D space-time 
2.1 Foundations of the model 
The model of the electron as a particle moving in a space with three space and 
three time dimensions has its foundations in the following considerations [49]: 

a. The existence of the spin (and therefore of the magnetic moment) of 
the electron can be associated with a two-dimensional motion. This 
motion cannot be interpreted as the spinning of the electron in ordi-
nary space, and must therefore be thought of as motion in an internal 
space or in two dimensions additional to the standard (3+1) space. In 
the latter case, these two extra dimensions cannot be spacelike (due 
to the r–2 behaviour of the Coulomb law). The simplest hypothesis is 
therefore to assume two extra time dimensions. 

b. The modern view of the problem of the electron mass (pioneered by 
Wheeler and Feynman [51]) assumes that it is not of electromagnetic 
origin (as stated by the Abraham-Lorentz-Poincaré classical model of 
the electron), but entirely mechanical [36]. In this case, however, the 
rest mass of the electron must follow from its equation of state, and 
not be added by hand as an external parameter. This contradiction 
can be overcome by assuming that the electron is a massless particle, 
which acquires mass by means of a suitable mechanism (an assump-
tion made in the past by many authors [48,52,53]). 

c. Conservation of electric charge holds strictly in the usual (3+1) 
space-time. As a consequence, if for any reason a charged particle 
leaves the standard space-time, the resulting vacuum polarization acts 
strongly on the particle itself in the form of an attractive force (which 
attempts to restore the original condition by bringing the particle 
back to its starting space-time point). 

The fundamental assumptions of the model of the electron based on a 3-
dimensional time are therefore [49,50]: 

i. The electron (as well as any other charged lepton) is a massless particle 
moving in a (3+3) dimensional space-time as introduced by Demers [8], 
Mignani and Recami [9] and developed by Cole [12,17–22]; 

ii. It is subjected to an attractive force (due to vacuum polarization) toward 
the standard space-time if it moves in the extra-dimensional time plane. 
If a particle with charge –e is allowed to leave our time direction toward 
the “time” space of the 6-D space-time, then a “hole” with charge +e 
arises at the point of the 4-D space-time left by the particle. This gives 
rise to a potential e τ−  (with τ  being the time distance between –e and 
+e), which attracts the former charge toward the latter one. 
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2.2 6-D Klein-Gordon equation and the electron mass 
We now discuss some implications of the above assumptions, in particular as 
far as the properties of the electron are concerned [49]. 

It follows from i) that the electron is described by a massless 6-D Klein-
Gordon equation: 
 ( )( ) 0p e p eμ μ

μ μ ϕ− Φ − Φ =  (2.1) 

(μ = 1,…,6) where ( ),p i x p Eμ
μ = − ∂ ∂ ≡

GG  and ( ),A BμΦ ≡
G G

 are, respectively, 
the 6-momentum and the e.m. 6-potential.  

If the spatial part of the 6-potential vanishes ( 0A =
G

), equation (2.1) can 
be rewritten as: 
 ( )2 2 2 22 0E e B eB E ie B p ϕ+ − ⋅ + ∇ ⋅ − =

G G G
 (2.2) 

By taking (imaginary*) cylindrical time coordinates (t, τ, θ)† and an Euclidean 
metric, and assuming only that 0Bτ ≠ , Eq. (2.2) becomes: 

( )
2 2

2 2 2
2 2 2

1 1 12 0e B eB eB p
t τ ττ τ ϕ

τ τ τ τ ϑ τ τ τ
⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ + + − + + + =⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦

. (2.3) 

Inserting in Eq. (2.3) 
 ( ) ( ), inf g t r e ϑϕ τ=

G   0, 1, 2,...n = ±∓  (2.4) 
and separating variables, one gets the usual 4-dimensional Klein-Gordon equa-
tion for g and the following “time” radial equation for f: 

 ( )
2

2 2 2
2

1 12 0d nf eB f e B eB m f
dτ τ ττ

τ τ τ τ
⎡ ⎤⎛ ⎞′′ ′+ + + + − − =⎢ ⎥⎜ ⎟

⎝ ⎠ ⎣ ⎦
. (2.5) 

Here, m is an integration constant that corresponds to the rest mass of the parti-
cle in the 4-D Klein-Gordon equation satisfied by g. Therefore, the electron 
mass arises in this framework as an integration constant‡, which reflects, in 
the standard (3+1) space-time, the influence of the electron motion in the two 
extra dimensions. 

2.3 Spin and magnetic moment of the electron 
According to assumption ii), we set B Zeτ τ= −  (where Z is a parameter char-
acterizing the strength of the polarization attractive force). Then, Eq. (2.5) be-
comes: 

 
2 2 2 2

2 2

1 2 1 0d f Z df n Z f
dz z dz z

α α⎛ ⎞− −
+ − + =⎜ ⎟

⎝ ⎠
 (2.6) 

with 2,z m eτ α= = . The general solution of this equation is: 
 ( ) ( )( )Z

n nf z AK z BI zα= +  (2.7) 

                                                 
* We stress that the choice of imaginary time coordinates is mandatory in this framework, in order 

to obtain physically acceptable (i.e., finite) solutions of Eq. (2.3) [49]. 
† In this coordinate system, t represents the usual time coordinate, whereas τ,θ parametrize position 

in the extra-dimensional plane.  
‡ An analogous result is obtained in the model by Barut and Udal [48]. 
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where A, B are constants and nK (z), nI (z) are the Bessel functions with imagi-
nary arguments. The solution of Eq. (2.5) must vanish for τ = ∞  and remain 
finite for 0τ = ; therefore, a physically acceptable solution is: 
 ( )Z

nf Az K zα=  (2.8) 
The MacDonald function ( )nK z  for 0n ≠  (which is required to yield a rotat-
ing motion) behaves as ze−  for z → ∞  and as nz−  for 0z → . Therefore, 

( )0nf  is finite provided that Z nα ≥ . The lowest-order solution showing a de-
pendence on ϑ  and finite for 0τ =  is obtained for 1n = ± , and yields the low-
est value 1 for Zα . 

Finally, the complete solution Ψ is obtained by taking a plane wave for 
the 4-D Klein-Gordon equation. In the rest frame of the particle, it reduces to: 
 ( ) ( )1

i mtAe m K mϑ τ τ− ±Ψ =  (2.9) 
Generalizing the usual 4-D expression for the current density to the 6-

dimensional case, we have 

 ( )1
2

ej p p
cμ μ μ μ

∗ ∗ ∗≡ Ψ Ψ − Ψ Ψ − Φ ΨΨ  (2.10) 

In the above hypotheses on the 6-potential, only the time-vector part of the cur-
rent survives, and reads (for a particle at rest, described by Eq.(2.9)): 

 tj im ∗= Ψ Ψ ; 1
tj j

mϑ τ
= ± ; j ijτ ϑ= ± . (2.11) 

In ordinary units, if cR mc= =  is the Compton radius of the electron, it is 

 c
t

R
j j

cϑ τ
= ± . (2.12) 

Since, classically, tj ice= −  is the charge density of the electron, we get: 

 .el cR
j ice

cϑ τ
= ± . (2.13) 

The magnetic moment due to the rotation of the particle in the “time” space is 
given, by analogy with its definition for the usual space magnetic moment, by: 

 1 1
2 2 2

el cR ej t ice ic
c c c mc

μ τ
τ

⎛ ⎞= × = ± = ±⎜ ⎟
⎝ ⎠

G G =  (2.14) 

(in the reference frame moving with velocity c along the t-axis). Expression 
(2.14) is the usual one for the magnetic moment of the electron when neglect-
ing QED effects. 

It is also possible to define a time angular momentum, similar to the usual 
angular momentum in space, given by: 
 s j t= ×

G G
. (2.15) 

In the reference frame moving with velocity c along the t-axis, the only com-
ponent of j

G
 to be taken into account is ( )cj imc R cϑ τ= ± . However, the 

massless particle considered here can be seen as a charged photon, whose rotat-
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ing motion is equivalent to the motion caused by a gravitational potential. Ac-
cording to General Relativity [54], the kinetic energy of this particle is 2 2mc * 
This implies that the “time” momentum of the electron is reduced by a factor 
½. Therefore the time angular momentum (2.15) is 

 1
2 2

cR
s imc ic

c
τ

τ
= ± = ±

=  (2.16) 

and can obviously be interpreted as the spin of the particle. 
Still on the basis of general relativistic arguments, the classical radius of 

the circular orbit of a massless particle, moving at the speed of light in the 
“time” space, and subject to a potential 2Ze cτ− , is given by [54]: 

 ( )2c Z
mc

τ α=
= . (2.17) 

If 1
2Zα = , cc Rτ = , the spin and the magnetic moment of the electron have the 

expected values (2.16) and (2.14), respectively. Moreover, if 
2KMm c Ze cτ τ=  is a gravitational field equivalent to the given potential, the 

gravitational radius is: 

 ( )
2

2 2

2 2 2g c
KM Zec Z R
c mc

τ α= = =  (2.18) 

which, for 1
2Zα = , coincides with cR . 

The electron moves in the time space along a helix, its axis the usual time 
axis and radius equal to the Compton length. 

On the other hand, the averaged value of cτ , with respect to the wave 
function (2.9), is given by: 

 
( )

( )

2 4
10

2 3
10

1.2c c

K z z dz
c R R

K z z dz
τ

∞

∞= ≅∫
∫

. (2.19) 

The slight difference between cτ  as calculated from Eq.(2.9) and cR  is 
probably due to the fact that the assumed form of the potential, although accu-
rate enough for τ  sufficiently large, is inadequate for 0τ → . In fact, it must 
be noted that the rest mass of the electron obtained as an integration constant is 
not quantized, and any value for m is acceptable. However, it has been shown 
that the quantization of the electron mass can be recovered by using for the 
time radial potential an expression obtained when, in addition to the vacuum 
polarization described by a potential of the form Zα τ− , a virtual pair of par-
ticles is created between the rotating electron and its center of rotation [50]. 

                                                 
* The reduction of the particle energy only occurs in the direction of the rotating motion in the 6-D 

space, whereas it is still mc2 in the usual 4-D space-time. This situation is similar to the one in which 
relativistic effects appear only in the direction where v is comparable to c, and not in the directions in 
which v c�  [49]. 
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3. Time spin of the electron and chirality 
According to relativistic quantum theory, in the standard 4-D space-time, the 
average spin of the electron 2s  is represented by the space components of an 
antisymmetric tensor ikS  or by its associated axial vector 

( )1 2i ijkl
jk la m e S p= − , where lp  is the energy-momentum of the particle. The 

space part of ia  corresponds to 2s  in the rest frame (but not in other reference 
frames). 

Since the results of Subsection 2.3 were obtained from the Klein-Gordon 
equation in 6 dimensions, the electron spin, even though it has the same nu-
merical value as in the Dirac theory, has a completely different physical origin. 
It is now a time angular momentum and therefore it is conserved independently 
from the usual space angular momentum. This reflects the fact that the Klein-
Gordon equation describes a scalar field with no spin. It would be possible in 
principle to consider a 6-D Dirac equation for a spinor field [55]. However, in 
this case, two spins—spatial and temporal [56]—would arise (in addition to the 
time angular momentum caused by the rotation of the massless charge around 
the standard 4-D time axis). This is in contrast with the well-established ex-
perimental evidence that only one internal angular momentum exists (in the 4-
D space-time). 

We now consider the 6-D angular momentum tensor Mμν (and the associ-
ated dual 6-vector m M αβ

ν ναβε= ) with , , 4,5,6ν α β = . In the rest frame of the 
particle (in the standard 4-D space-time), the only non-null component of Mμν 
(after averaging during rotation around the standard time axis 4x ) is 56M . The 
corresponding (time) component of mν , 4m , can be regarded as the time com-
ponent of a 4-vector (in the standard 4-D space-time) with null space compo-
nents. This is contrary to the usual assumption that the spin is a space 3-vector 
in the particle rest frame, and that the time component is different from zero 
only in reference frames in which the particle is moving. Obviously, under a 
Lorentz transformation, 56M does not transform as the time component of a 4-
vector. However, this is not really different from the standard relativistic repre-
sentation of the spin as a 4-vector whose space components, too, do not trans-
form as the average tridimensional spin. 

Let 0s  denote twice the value of the spin of a charged lepton of mass m in 
its rest frame. It can be considered the time component of a 4-vector, which, in 
a generic frame, is given by: 

 0s
s p

m
α α=  (3.1) 

where pα is the 4-momentum of the particle. There is a space component of sα 
parallel to the momentum, which, for ultrarelativistic speeds, is almost equal to 
the time component. This situation is analogous to the case of the neutrino, 
whose spin is always parallel to momentum. Therefore, in a 4-dimensional rep-
resentation, the time component of the spin must be equal to the space compo-
nent in order to have 0s sμ

μ = .  
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Definition (3.1) can be used when calculating the decay rate of the muon. 
As is well known, this rate is proportional to 2

, 't t
M∑ , where t and t′ are the 

spins of the two neutrinos which are not observed and the matrix element M is 
given by: 
 5 5(1 ) (1 )

eeM u u u v
μ

μ
ν μ μ νγ γ γ γ⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦ . (3.2) 

The evaluation of the squared invariant matrix element by standard methods 
yields 
 2

, '
64( ' ') ( ) 'e

t t
M p m s k p m s kα β

μ α β= − −∑  (3.3) 

where p′,s′, p,s, k,t and k′,t′ denote momentum and spin of the muon, of the 
electron and of the two neutrinos, respectively. Replacing s′ and s with their 
expressions (3.1), one obtains: 
 2

0 0
, '

64(1 ' )(1 ) ' '
t t

M s s p k p kα β
α β= − −∑ . (3.4) 

Summing over the electron spin orientations and averaging over the spin orien-
tations of the muon yields a decay probability proportional to 

 ( )2

, ', , '

1 1 2.2 0 0 0 64 ' '
2 2s s t t

M p k p kα β
α β= + + +∑ . (3.5) 

In an analogous way, it is possible to evaluate the squared matrix element 
for charged pion decay, thus getting: 
 2 24 (1 ')

t
M m s p kα

μ α= −∑ . (3.6) 

Expressions (3.4) and (3.6) show explicitly that the introduction of the 
term 5(1 )γ−  in the matrix element (3.2) (and the similar term for pion decay) 
causes only particles with spin equal to –1 to interact. Therefore, if this inter-
pretation is valid, one can conclude that chirality is nothing but the inverse of 
rotation of the charged lepton in the “time” space. 

This result is a sensible prediction of the 6-D model of the electron, sus-
ceptible to experimental verification, and is presently under investigation. 

4. 5-D space-time and the 3-D time model electron 
We now wish to show that it is possible to connect the (3+3) space-time model 
of the electron with the 5-dimensional theories [32-35], in particular with the 
Kaluza-Klein-like scheme [34,35] with energy as an extra dimension. 

Recall that this formalism (Deformed Relativity in Five Dimensions, DR5) 
is based on a five-dimensional Riemann space—with energy ε as the fifth di-
mension and a metric whose coefficients depend in general on ε —and essen-
tially seeks to provide a (local) metric description of fundamental interactions. 

In order to establish this connection, we first notice that, when 1
2Zα = , 

Eq.(2.17) yields for the electron rest mass (in ordinary units)  

 2m
c τ

=
=  . (4.1) 
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Therefore, the following relation holds between the energy ε, as measured in 
the standard 4-D space-time, and the radial time τ: 

 
2

2 2 2 2 4 2 2
2c p m c c pε

τ
= + = +

=  (4.2) 

or 

 ( )
1

2 2 2 2c pτ ε
−

= −= . (4.3) 

The interval in the (3+3) space-time reads 
 2 2 2 2 2 2 2 2ds c dt c d c d drτ τ ϑ= + + − . (4.4) 
Obviously the term in dθ can be taken equal to zero over a complete rotation, 
so that (4.4) reduces to: 
 2 2 2 2 2 2ds c dt c d drτ= + − . (4.5) 
It follows from Eq.(4.3) 

 
( )

3
2 2 2 2

d
d c p

τ ε
ε ε

−
=

−
. (4.6) 

When (4.6) is substituted in (4.5), the interval becomes: 

 
( )

2
2 2 2 2 2 2 2

32 2 2
ds c dt dr c d

c p

ε ε
ε

= − +
−

= . (4.7) 

Eq.(4.7) has the form of the interval in a 5-dimensional space with energy ε as 
an extra dimension, the fifth metric coefficient depending on the fifth coordi-
nate. 

In particular, for a particle in its rest frame, Eq.(4.7) takes the form 

 
2

2 2 2 2 2 2
4

dds c dt dr c ε
ε

= − + = . (4.8) 

This interval corresponds to a metric which is obtained, in the formalism 
of DR5, as a solution of the Einstein equations in vacuum (viz., Class VIII so-
lutions of the 5-D Einstein equations with 4r = −  [34,35]). 

5. Conclusions 
The main advantages of the model of the electron in a (3+3) space-time we 
have described can be summarized as follows: 

a. The mass of the electron (which is assumed to be a massless particle 
in the 6-D space) is obtained from the 6-D Klein-Gordon equation as 
an integration constant; 

b. The usual expressions (and therefore the experimental values) of the 
spin and the magnetic moment are derived by assuming an attractive 
force (due to vacuum polarization in the usual space-time) along the 
radial time direction in the extra-dimensional plane. The direction of 
both of them is always orthogonal to this plane, and therefore parallel 
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to the standard time direction. The origin of the electron spin is due 
to the helicoidal motion of the electron in the time three-space; 

c. Mass quantization follows from an assumed discontinuity in the at-
tractive potential. This discontinuity can be generated, e.g., by the 
presence of a virtual pair of charged particles somewhere between the 
center of rotation of the electron and its actual position in the “time 
subspace.” 

In this model, chirality is nothing but the inverse of electron rotation in the 
“time” space. We have also shown that a connection can be established be-
tween the 6-D space-time and a recently developed Kaluza-Klein-like formal-
ism with energy as the fifth dimension. 

In conclusion, the model of the electron with two extra dimensions seems 
to provide a good representation of its known properties. However, many ques-
tions remain still unanswered, in particular concerning the applicability of the 
model to the other charged leptons. It is also an open problem how neutrinos fit 
in this scheme.  

A possible test of the reliability of the model involves chirality. Work is 
presently in progress to establish the feasibility of a specific experiment. In the 
meantime, the model of the electron presented here would appear physically 
sensible, and suggests that the (3+3) space-time is perhaps something more 
than a mere mathematical hypothesis. 
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It is shown that both the classical spherical electron and a point-like electron 
considered in the framework of quantum electrodynamics predict the correct 
form of the expressions for the inertial and gravitational forces acting on a non-
inertial electron. Surprisingly, the two models turn out to be indistinguishable if 
formulated in terms of a radically new idea of the electron structure (4-
atomism), which explains why the correct forms of the expressions for the iner-
tial and gravitational forces can be derived from the two models. That idea also 
appears to shed some light on a number of quantum mechanical puzzles. 

1. Introduction 
Studies of the nature of the electron deal, as a rule, with its quantum mechani-
cal features. This paper takes a different approach. In Section 2 the inertia and 
gravitation of the classical electron are discussed. The classical model regard-
ing the electron as a small charged sphere leads to correct expressions for the 
inertial force acting on an accelerating electron and for the gravitational force 
acting on an electron at rest in a gravitational field. As these forces originate 
from the interactions of different elements of the charged sphere (representing 
the classical electron) it is concluded that their derivation from the classical 
model is an indication that the real electron is unlikely to be a point-like parti-
cle of a size smaller than 10–18 m as experiments probing its scattering proper-
ties appear to suggest [1]. In Section 3 the inertial and gravitational properties 
of the electron in terms of quantum electrodynamics (QED) are studied. It is 
shown that a point-like model of the electron in QED yields expressions for the 
inertial and gravitational forces in which the forces are proportional to the ac-
celeration and mass of the electron. Section 4 analyzes arguments that indicate 
that the electron cannot be a point-like object and considers a model (4-
atomism) which appears to resolve several puzzles: (i) why is an electron not 
localized when not measured, (ii) the stability problem of the classical electron, 
(iii) the meaning of the scattering experiments according to which the electron 
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appears to be a particle localized in an area of dimensions smaller that 10–18 m 
(which contradicts the wave-like nature of the electron), and (iv) why do both 
the classical electron and a point-like electron in QED lead to correct forms of 
the expressions of the inertial and gravitational forces acting on a non-inertial 
electron (accelerating and supported in a gravitational field, respectively). It is 
also shown in the last section that the 4-atomistic model of the electron may 
shed some light on a number of difficult quantum mechanical problems. 

2. Inertial and gravitational properties of the classical 
electron 

In the classical model of the electron, its charge is uniformly distributed on a 
spherical shell. This model offers a mechanism responsible for the electron’s 
inertia and mass. The repulsion of the charge elements of an electron in uni-
form motion cancels out exactly and there is no net force acting on the elec-
tron. If, however, the electron is accelerated with respect to an inertial refer-
ence frame I its electric field distorts, which causes the repulsion of its ele-
ments to become unbalanced. As a result the non-inertial (accelerated) electron 
experiences a self force Fa

self that resists its acceleration: it is precisely this re-
sistance that we call inertia (why the repulsion of the different parts of an ac-
celerating electron becomes unbalanced is explained elsewhere [2]). 

The calculation of the self force is easier in the non-inertial (accelerated) 
reference frame Na in which the electron is at rest. At first, it appears that the 
field of the electron is not distorted in Na since it is at rest in Na, which would 
mean that no force is acting on the electron. If this were the case, there would 
be a problem: an inertial observer in I and a non-inertial observer in Na would 
disagree on whether or not the electron is subjected to a force. As the existence 
of a force is an absolute fact, all observers should recognize it. This problem 
disappears when a corollary of general relativity—that the average velocity of 
light in non-inertial reference frames is anisotropic—is taken into account in 
the calculation of the electron field in Na [3]. The average anisotropic velocity 
of electromagnetic disturbances (for short light) in Na is [3]: 

 21
2

ac c
c
⋅⎛ ⎞= −⎜ ⎟

⎝ ⎠

a r ,  (1) 

where a is the proper acceleration of Na and r is a radius vector representing 
the path of a light signal between two points separated by the distance r = |r|. 
The anisotropic velocity of light (1) causes the distortion of the electric field of 
the electron in Na. As a result the balance in the mutual repulsion of all pairs of 
charged elements de1 and de2 of the spherical shell representing the classical 
electron is disturbed and the resulting net (self) force acting on the electron 
turns out to be precisely equal to the inertial force: 
 Fi

self = –mia. (2) 
Detailed calculations of (2) are given in [4]. The coefficient of proportionality 
mi = U/c2 in (2) represents the inertial mass of the electron, where 
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is the energy of the electron field. Therefore the inertial mass of the classical 
electron is electromagnetic in origin since it is the mass that corresponds to the 
energy of the electron field. Equation (2) is an important result for three rea-
sons: (i) it reveals that both inertia and mass of the classical electron have elec-
tromagnetic origin [5-8]; (ii) it demonstrates that inertia is a local phenomenon 
contrary to Mach’s hypothesis that the local property of inertia has a non-local 
origin [9], and (iii) it constitutes a derivation of Newton’s second law F = ma 
[10]—a law that had been considered so fundamental that after Newton postu-
lated it few attempts were made to derive it. 

Consider now a classical electron which is supported in the Earth’s gravi-
tational filed. The average velocity of light in the non-inertial reference frame 
Ng in which the electron is at rest is also anisotropic [3]: 

 21
2

gc c
c
⋅⎛ ⎞= +⎜ ⎟
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g r , (3) 

where g is the gravitational acceleration. The anisotropic propagation of light 
in Ng distorts the electron field, which in turn disturbs the balance in the mutual 
repulsion of its charged elements. The resulting unbalanced repulsion gives rise 
to a net (self) force [4] 
 Fg

self = mgg, (4) 
where mg = U/c2 is again the electromagnetic mass of the electron, interpreted 
in this case as its passive gravitational mass. 

The self-force (4) which acts upon the electron on account of its own dis-
torted field is directed parallel to g and is traditionally called the gravitational 
force. It resists the deformation of the electron field caused by the fact that the 
electron is at rest in the Earth’s gravitational field and is therefore prevented 
from falling, i.e. prevented from following a geodesic path. The only way for 
the electron to keep its field from getting distorted is to compensate the anisot-
ropy in the propagation of light in Ng by falling with an acceleration g; the 
electric field of a falling electron turns out to be the Coulomb field, and there-
fore the electron does not resist its fall [3, 4]. This sheds some light on the fact 
that in general relativity a falling particle, represented by a geodesic worldline, 
is moving non-resistantly. Since a non-resistant motion is motion by inertia, a 
particle falling in a gravitational field is moving by inertia. 

As a Coulomb field is associated with a non-resistantly moving electron 
(represented by a geodesic worldline) it follows that Fg

self is, in fact, an inertial 
(not gravitational) force since it resists the deviation of the electron from its 
geodesic path [11]. That is, Fg

self resists the deviation of the electron from its 
motion by inertia. Therefore, the nature of the force acting upon a classical 
electron at rest in a gravitational field is inertial and is purely electromagnetic 
in origin as seen from (4), which means that the electron passive gravitational 
mass mg in (4) is also purely electromagnetic in origin. It is clearly seen from 
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here why the inertial and the passive gravitational masses of the classical elec-
tron are equal. As the self-force (4) is inertial in origin it follows that what is 
traditionally called passive gravitational mass is, in fact, inertial mass. This be-
comes evident from the fact that the two masses are the measure of resistance 
an electron offers when deviated from its geodesic path. In flat spacetime, 
when the worldline of an electron is not a straight line, the force that resists the 
deformation of the worldline is Fi

self = –mia [14], whereas in curved spacetime 
the same force that resists the deviation of the electron from its geodesic path is 
Fg

self = mgg, where mi and mg are the measures of resistance (inertia) in these 
cases. The two resistance forces are equal for |a| = |g|, and therefore mi = mg. 
This equivalence also follows from the fact that mi and mg are the same thing—
the mass associated with the energy of the electron field. 

The self forces (2) and (4) originate from the unbalanced repulsion of the 
charged elements of the classical electron. The equations (2) and (4) represent 
the correct expressions for the inertial force acting on an accelerating classical 
electron and for the (gravitational) force to which an electron supported in a 
gravitational field is subjected. This fact appears to suggest that inertia and the 
inertial and passive gravitational mass of the real electron may be also caused 
by unbalanced self interactions of its charge which would not be possible if the 
electron were point-like. Let us now examine the inertial and gravitational 
properties of the electron in the framework of QED and see whether we can 
gain some additional insight into its nature. 

3. Inertial and gravitational properties of the electron in 
quantum electrodynamics 

We have seen that both the inertial and gravitational forces acting on the clas-
sical electron originate from the self interaction of its charge through its dis-
torted field. 

In QED the quantized electric field of a charge is represented by a cloud 
of virtual photons that are constantly being emitted and absorbed by the charge. 
It is believed that the attraction and repulsion electric forces between two 
charges interacting through exchange of virtual photons originate from the re-
coils the charges suffer when the virtual photons are emitted and absorbed. 

A free charge is not subjected to any self force since the recoils from the 
emitted and absorbed virtual photons constituting its own undistorted electric 
field cancel out exactly. Therefore, in terms of QED a charge is moving non-
resistantly (and is represented by a geodesic worldline) if the recoils from the 
emitted and absorbed virtual photons completely cancel out. 

The field of a non-inertial electron, however, is distorted. A distorted field 
in QED manifests itself in the anisotropy in the average velocity of the virtual 
photons comprising the electron field, which leads to the general relativistic 
red/blue shifts of the frequencies of the virtual photons that are absorbed by the 
non-inertial electron; the recoils from the emitted virtual photons always cancel 
out since they are emitted with the same initial frequency and wavelength as 
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seen by the electron. Hence, virtual photons coming from different directions 
before being absorbed by the electron have different frequencies (and wave-
lengths) and therefore different momenta. But since it is the momentum of a 
photon that determines the recoil felt by an electron when the virtual photon is 
absorbed, the balance in the recoils a non-inertial electron experiences will be 
disturbed, and a self force acting upon the electron will arise. 

This means that in QED the interaction of a non-inertial electron with its 
own distorted field also gives rise to a self force that is electromagnetic in ori-
gin. It should be stressed that the mechanism that gives rise to this self force is 
the accepted mechanism responsible for the origin of attraction and repulsion 
forces in QED, which in the case of a non-inertial electron, described in the 
non-inertial reference frame in which it is at rest, should take into account the 
anisotropic propagation of light there and the resulting frequency shift of the 
incoming virtual photons. Therefore QED and the general relativistic shift of 
the frequency of the virtual photons absorbed by a non-inertial charge do lead 
to a self force which acts on the charge—an effect that has been overlooked so 
far. 

It seems that the inertial and gravitational properties of at least two mod-
els of the electron—a point-like electron and an electron whose charge has a 
spherical distribution—can be studied in QED. However, a semiclassical calcu-
lation of the simpler case—a point-like electron—can be carried out relatively 
easily in order to determine what kind of self force is acting on a non-inertial 
electron in this case. 

Consider an accelerating electron. In the accelerating frame Na where the 
electron is at rest the frequencies of the virtual photons coming from a direc-
tion n = r/r toward the electron (as seen by the electron) can be written in the 
vector form 

 21af f
c
⋅⎛ ⎞= −⎜ ⎟

⎝ ⎠
a r , 

where f is the frequency measured at r = 0. Here r = |r| is the (half) distance 
traveled by a virtual photon during its lifetime. An incoming virtual photon of 
frequency f a has energy 

 21aE E
c
⋅⎛ ⎞Δ = Δ −⎜ ⎟

⎝ ⎠

a r . 

As virtual particles are off-mass-shell particles their momenta are not equal to 
E/c. For this reason the momentum of a virtual photon approaching the electron 
can be written as 

 21
a

a E Ep
c c c

ββΔ Δ ⋅⎛ ⎞Δ = = −⎜ ⎟
⎝ ⎠

a r , 

where β is a real number. 
In order to calculate the self force caused by the recoils the accelerating 

electron experiences during the absorption of the incoming virtual photons, 
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several explicit assumptions should be made. Like the energy of the electric 
field of the classical electron, which is determined at a given moment of time, 
the energy of the electron field in QED can be defined as the energy of all vir-
tual photons also determined at a given moment. This energy can be alterna-
tively defined as the energy of the virtual photons that are absorbed during 
some characteristic time Δt. The second definition is equivalent to the first 
since it appears natural to assume that during the characteristic time the elec-
tron renews its field; so, for every Δt the energy of the absorbed virtual photons 
will be equal to the energy of all virtual photons at a given moment of time. 
We will also assume that a virtual photon is absorbed for a time Δτ. 

The lifetimes of the virtual photons absorbed by the electron can be ex-
pressed in terms of the characteristic time Δt as αΔt, where α is a real number. 
By the uncertainty principle the energy of a virtual photon of lifetime αΔt is 
proportional to ħ/αΔt = ΔEa/α. The distance traveled by a virtual photon dur-
ing its lifetime αΔt is αr = αcΔt. 

Assume that the number of the virtual quanta coming from a direction n 
within the solid angle dΩ which are absorbed during the characteristic time Δt 
is X. The total momentum of all X virtual photons is 

 2
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The unbalanced recoils of all virtual photons, coming from all directions to-
ward the electron and absorbed during the time Δt, produce a self force acting 
on the electron: 

 

( )

2
1 1

3
1 1

1i i

aX X
i i
self i

i i i

X X
i i

i ii

p E
d d

c c
E E

d d
c c

α β β
α

τ τα
β β

τα τ

= =

= =

Δ Δ ⋅⎛ ⎞= Ω = − Ω⎜ ⎟Δ Δ ⎝ ⎠
Δ Δ

= Ω − ⋅ Ω
Δ Δ

∑ ∑∫ ∫

∑ ∑∫ ∫

a rF n n

 n a r  n

    

  
. (5) 

Due to symmetry the first integral in (5) is zero and for the self force we can 
write (noticing that r = n r and r = cΔt): 
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For the integral in (6), which is similar to the one evaluated in the Appendix of 
[4], we have: 

 ( ) 4
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d π
⋅ Ω =∫ a n n a  . 

When this result is substituted in (6) the self force acquires the form 
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is the energy of all virtual photons approaching the electron from all directions 
of the solid angle 4π and absorbed during the time Δt. As the energy U was de-
fined as the energy of the electron field the electromagnetic contribution to the 
inertial mass of the electron can be written as mi = U/c2. Finally, for the self 
force acting on the accelerating electron we can write: 

 i1
3

i
self

t m
τ

Δ
= −

Δ
F a . (7) 

The self force (7) has the form of the inertial force, since (i) it is propor-
tional to the acceleration, (ii) the coefficient of proportionality has the dimen-
sion of mass, and (iii) it has the correct sign. 

The unbalanced recoils of the virtual photons that are absorbed during the 
time Δt by an electron at rest in a gravitational field also give rise to the self 
force 

 g1
3

g
self

t m
τ

Δ
=

Δ
F g ,  (8) 

which has the form of what is traditionally called the gravitational force. The 
mass mg in (8) is the electromagnetic contribution to the passive gravitational 
mass of the electron. 

The equations (7) and (8) have the form of Newton’s second law, but due 
to the factor of Δt/3Δτ, they are not exact equations for the inertial and gravita-
tional forces. A possible reason is that the mass of the electron may not be en-
tirely electromagnetic in origin. The electron does not participate in strong in-
teractions and does not have a strong charge and strong field. Therefore its 
mass should not contain a contribution from the strong interactions. As the 
electron participates in weak and gravitational interactions (in addition to elec-
tromagnetic interactions) it appears to follow that its mass should contain weak 
and gravitational contributions. At this moment it seems more realistic to ex-
pect only a weak contribution to the electron mass. So far all attempts to quan-
tize the gravitational interaction have failed and there is no experimental evi-
dence that its carrier—the graviton—exists. That failure may mean either that 
we are not dealing with the quantization of gravity properly or that gravita-
tional interactions are not as fundamental as the electromagnetic, strong and 
weak interactions. 

The semiclassical calculations of the self force to which a non-inertial 
electron is subjected were carried out to demonstrate that the unbalanced re-
coils of the virtual photons that are absorbed by a non-inertial electron do give 
rise to the forces (7) and (8) which have the form of the inertial force in the 
case of an accelerating electron and the gravitational force in the case of an 
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electron at rest in a gravitational field. This shows that we may expect inertia 
and mass to be explained in the framework of the Standard Model in terms of 
unbalanced recoils from virtual quanta. An obvious question that should be ad-
dressed is about the rest masses of the carriers of the weak interaction. As 
shown in [15] this question does not affect the conclusion that the mechanism 
of unbalanced recoils from virtual quanta, considered here, should give rise to 
inertia and mass of elementary particles if the Standard Model and general rela-
tivity are correct. 

4. On the nature of the electron 
We started with the intention to see whether the study of the inertial and gravi-
tational properties of the electron can help us gain some understanding of its 
nature. Instead, it appears we have obtained contradictory results. The classical 
model of the electron leads to correct expressions for the inertial and gravita-
tional forces acting on an accelerating electron and on an electron at rest in a 
gravitational field, respectively. Those expressions cannot be obtained if the 
electron is point-like. In QED, however, it is a point-like electron whose semi-
classical treatment yields the correct form of the expressions for the inertial and 
gravitational forces acting on it. It is precisely this apparent paradoxical result 
that may provide some insight into the nature of the electron. 

At first, it might seem that a point-like model of the electron may be 
closer to what the real electron is due to (i) the experimental evidence (putting 
an upper limit of 10–18 m on the electron size) mentioned in the Introduction, 
and (ii) the stability problem of the classical electron according to which it 
cannot be stable since its charge will tend to explode. However, there exist 
strong arguments against a point-like electron. 

As one of the most difficult problems of the classical electron is its stabil-
ity, one may conclude that the basic assumption in the classical model of the 
electron—that there is interaction between the elements of its charge—may be 
wrong. The very existence of a radiation reaction force, however, is evidence 
that there is indeed interaction (repulsion) between the different parts of the 
electron charge. “The radiation reaction is due to the force of the charge on it-
self—or, more elaborately, the net force exerted by the fields generated by dif-
ferent parts of the charge distribution acting on one another” [16]. In the case 
of a single radiating electron the presence of a radiation reaction force implies 
interaction of different parts of the electron. Therefore, not only does the clas-
sical model of the electron yield the correct expressions for the inertial and 
gravitational forces acting on a non-inertial classical electron (accelerating and 
at rest in a gravitational field, respectively), but also reflects an important and 
puzzling feature of the real electron—the self interaction of its charge. 

The strongest argument against a point-like electron, however, comes 
from quantum mechanics. Despite all studies devoted to the nature of the elec-
tron (see, for instance, [17-19]) no one knows what an electron looks like be-
fore being detected and some even deny the very correctness of such a ques-
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tion. One thing, however, is completely clear: the experimental upper limit on 
the size of the electron (<10–18 m) cannot be interpreted to mean that the elec-
tron is a point-like particle (localized in such a region) without contradicting 
both quantum mechanics and the existing experimental evidence. 

Let us consider an example which clearly demonstrates why according to 
quantum mechanics the real electron cannot be a localized (point-like) particle. 
The hydrogen atom does not possess a dipole moment when its electron is in an 
s-state. It is difficult to explain why so little attention has been paid to the fact 
that this is only possible if the electron is not localized somewhere “above” the 
nucleus, but somehow occupies the spherical region (for short, shell) around 
the nucleus where its wavefunction is different from zero. It should be stressed 
that this example leaves us with no choice about the interpretation of the non-
zero probability of finding the electron in the spherical shell—the electron 
must actually occupy the whole shell; otherwise, if it were as small as the scat-
tering experiments seem to suggest, the hydrogen atom (with its electron in s-
state) would certainly have a dipole moment. 

Therefore, the experimentally determined size of the electron tells us very 
little about what the electron itself is and needs further studies in order to un-
derstand the meaning of that size. 

The example with the s-electron of the hydrogen atom is important in two 
respects. First, it shows that the argument that there should be a stability prob-
lem in the case of the classical electron applies equally to an electron in s-state 
when we take into account that an s-electron must actually exist in the whole 
spherical shell where its wavefunction is different from zero (strictly speaking, 
it applies to all electrons in an atom). In that state the electron is like the classi-
cal electron—a charged spherical shell which should tend to blow up due to the 
repulsion of its different parts. But it does not, which further deepens the mys-
tery of the electron. It seems there is no stability problem for an s-electron and 
no one knows why. This implies that there should be no such problem for the 
classical electron either. 

Second, the hydrogen atom example clearly demonstrates that perhaps the 
greatest mystery we have to solve in order to understand the nature of the elec-
tron is: how can an electron occupy the whole region where its wavefunction is 
different from zero when it is not measured, whereas the electron is always 
measured as a localized entity (a point-like particle)? As this mystery has per-
sisted for decades, any idea that is sufficiently radical to have some chance of 
surviving both theoretical and experimental scrutiny should be studied thor-
oughly. 

I will briefly discuss such a radical idea here, since it offers a possible si-
multaneous resolution of the mysteries mentioned above: (i) how can an elec-
tron be an extended object before measurement, but is always measured as a 
point-like particle, and (ii) why is there no stability problem (why does a 
charged spherical shell not blow up)? The idea was proposed by Anastassov 
[20] in the 1980s but, unfortunately, remained unnoticed and untested. Its es-
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sence is bringing the idea of atomism to its logical completion—discreteness 
not only in space but in time as well (4-atomism). In the 4-atomistic model an 
electron is represented not by its worldline (as deterministically described in 
special relativity) but by a set of four-dimensional point-like objects (for short 
4D points) modeled by the energy-momentum tensor of dust—in this case a 
sum of delta functions. We can regard these objects as the points of the disinte-
grated worldline of the electron. Those 4D points are scattered all over the 
spacetime region in which the wavefunction of the electron is different from 
zero. 

The 4-atomistic approach sheds light on the physical meaning of the 
Compton frequency of the electron—for one second the electron is represented 
by 1020 4D points which means that the constituents of the electron appear and 
disappear with the Compton frequency. It follows from here that during a given 
period of time, when not measured, the electron is everywhere in the region 
where there exists a nonzero probability of finding it. However, the electron is 
always measured as a point-like particle since when the first 4D point appears 
in the detector it is trapped there; there is a jump in the boundary conditions of 
the electron wavefunction and all consequent 4D points of the electron start to 
appear and disappear in the detector as well. 

What is promisingly original in the 4-atomism hypothesis is its radical 
approach toward the way we understand the structure of an object. The present 
understanding is that an object can have structure only in space. The 4-
atomistic model of the quantum object suggests that an object can be indivisi-
ble in space (like an electron) but structured in time. The idea of 4-atomism not 
only offers a possible (and nice) resolution of the extended/point-like electron 
mystery, but also gives an idea of why there appears to be no stability problem. 
The charge of an s-electron is not continuously smeared out on a spherical shell 
(since in this case the charged spherical shell will tend to explode). Instead, for 
one second the spherical shell is formed by 1020 4D points. In a three-
dimensional language such a spherical shell can be described in the following 
way. The spherical shell is not given entirely at any moment of time—the s-
electron looks like a spherical shell only when the instantaneous locations of 
the 4D points are averaged over a given period of time (say, 1 s). At a given in-
stant there is just one 4D charged point at a given place on the shell, at the next 
instant it disappears there and re-appears at another location; for one second 
this repeats 1020 times. So, when the electron is not measured for every second 
it will be represented by 1020 4D points appearing and disappearing on the 
spherical shell. Each charged 4D point feels the repulsion from other previ-
ously existing constituents of the electron, but cannot be repelled since it exists 
just one instant. Therefore, a spherical distribution of the electron charge may 
be stable. 

The 4-atomistic hypothesis is fully compatible with the scattering experi-
mental data—the dimensions of the constituents of the electron (its 4D points) 
can be much smaller than 10–18 m. 
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This hypothesis also provides a hint as to why the classical (spherical) 
model of the electron and the point-like electron studied in Section 3 both yield 
the correct form of the expressions for the inertial and gravitational forces act-
ing on a non-inertial electron. If the spherical shell of the classical electron is 
not a rigid shell, but is formed by the 4D points of a 4-atomistic electron, then 
the same calculations will give the same expressions for the self forces (2) and 
(4) since there is no fundamental difference between a spherical 4-atomistic 
electron and a point-like electron in the case of QED—in both cases it is the 
individual 4D points of the electron that emit and absorb virtual quanta no mat-
ter in what effective shape those 4D points are arranged. 

I will briefly mention two other problems on which the 4-atomistic hy-
pothesis also sheds some light. The first is the issue of whether the electron 
wavefunction describes a single electron or an ensemble of electrons. As the 
electron, according to this hypothesis, is itself an ensemble of 4D points, the 
electron wavefunction does describe a single electron. The second problem is 
the understanding of the superpositional state in quantum mechanics. It is not 
clear how one should understand the statement that a half-spin particle in 
Bohm’s version [21] of the Einstein-Podolsky-Rosen argument, for example, is 
in a superpositional state. If that particle continuously existed in time, it would 
be really impossible to think of the particle as actually being in a superposi-
tional state of spin up and spin down. However, if it is a 4-atomistic particle, 
each of its constituents is in either in spin-up state or spin-down state and the 
particle itself is in an actual superpositional state when no experiment to detect 
its spin is carried out. 

The 4-atomistic hypothesis shows that it is not unthinkable to view the 
electron as an entity (i) that occupies the whole region where its wavefunction 
is different from zero, but is always localized when measured, (ii) that has dif-
ferent shapes in different situations, and (iii) that is free of the stability prob-
lem. Whether or not that hypothesis will turn out to have anything to do with 
reality remains to be seen, but the very fact that it offers conceptual resolutions 
to several open questions and goes beyond quantum mechanics (which cannot 
be discussed in this paper) by predicting at least two new effects that can be 
tested makes it a valuable candidate for a thorough examination. All agree that 
radical ideas deserve careful study, especially in such desperate times when 
quantum physics is unable to say anything about the nature of the quantum ob-
jects it studies. In spite of all the successes, quantum mechanics remains fun-
damentally incomplete, since it does not describe the quantum objects them-
selves, but only their states. 

Conclusions 
The correct forms of the expressions for the inertial and gravitational forces 
acting on a non-inertial electron are obtained from two different models of the 
electron—the classical spherical electron and a point-like electron considered 
in the framework of QED. It turns out that both models yield correct predic-



180 Vesselin Petkov 

 

tions since there is no fundamental difference between them if they are ex-
pressed in terms of a radically new idea of the electron structure (4-atomism). 
That idea also sheds some light on a number of quantum mechanical problems. 
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Authors write many things, and the common people cling to them through ar-
guments made without experiment. –Roger Bacon, On Experimental Science, 
1268. 

I. Most current theories in physics or astronomy are 
not unique 

For the purposes of this review, I would like to explain the general concepts 
which underlie my recent work in theoretical physics or astronomy, without 
going into technical details that may be found in the original papers (1-5). 

Today in 2005, both modern physics and astronomy seem to be continu-
ing in a state of crisis. Quantum mechanics and relativity remain as far as ever 
from unification; theories of light and matter such as QED remain unpalatable 
with their false infinities and ad hoc schemes of renormalization (6); high-
energy particle physics has become increasingly expensive and unproductive, 
with hundreds of different unstable particles discovered, but only a highly pa-
rameterized QCD theory to explain them (7,8). Similarly, astronomy has be-
come dominated by a cosmological concern to prove the Big Bang theory and 
to find an elusive “dark matter” (9,10). 

More importantly perhaps, the possible uniqueness of currently accepted 
physical or astronomical theories seems highly doubtful. In physics, students 
are taught the Born-Bohr interpretation of quantum mechanics, as well as the 
Lorentz-Einstein view of special and general relativity, as if those were unique 
breakthroughs of a historical stature. 

Yet any assertions of uniqueness are demonstrably not true. For example 
in quantum theory, many early workers including Schrödinger, deBroglie and 
Bohm disagreed vigorously with the proposal by Born and Bohr that the elec-
tron could be only a point-particle whose location in space or time might be 
found just probabilistically by squaring an abstract “wave function.” More re-
cently, Simulik and Krivsky (11) have shown that the electron may be treated 
as an electromagnetic scalar wave in a medium, with full accuracy of experi-
mental prediction just as for the Dirac equation. In relativity theory, the Lor-
entz-Einstein view has had some success, yet has led also to many “paradoxes” 
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between experiment and theory (e.g., the twin paradox for time, or the spin-
ning-disk paradox of Ehrenfest). Furthermore, it makes a first-order prediction 
concerning Thomas precession (e.g., retrograde motion of any rotating object 
due to length contraction) that appears experimentally not to be true, a discrep-
ancy noted by Phipps (12) and Galeczki (13). 

Next in astronomy, students are taught the uniqueness of the Big Bang 
theory; and are even taught to regard “dark matter” as a real thing, just await-
ing formal discovery. Yet a series of leading astronomers including F. Hoyle, 
G. Burbidge, M. Burbidge, J. Narlikar and H.C. Arp (14) argue that the Uni-
verse may not really be expanding at all, if the mass m and time-counting rate 
f = 1/t of particles were lower billions of years ago than today, as a kind of 
natural “evolution.” By a similar (and still quite heretical) view, quasars need 
not lie at huge Hubble distances from Earth, if they were to be composed of 
newly created matter, which might have a lower intrinsic m or f as for ancient 
matter in the past. Finally, the “dark matter” hypothesis to explain abnormally-
large frequency shifts of spectral lines, across single galaxies or galaxies in 
clusters, becomes unnecessary if mass m and time-counting rates f = 1/t are not 
absolute, but may vary slightly over broad astronomical scales, depending on 
the underlying energy of a zero-point vacuum. 

II. We should listen to experience as well as theory 
concerning quantum phenomena 

Having suggested a lack of uniqueness for many accepted theories of physics 
or astronomy, let me now present a revised conceptual understanding of those 
two fields, based on my long experience in x-ray diffraction as well as molecu-
lar biology; on my correspondence with workers in many fields of science; as 
well as much study at home. When studying these ideas, we should remain 
open to the advice of Roger Bacon from 700 years ago and let experience be 
our guide. In other words, when people of 13th-century England saw a rainbow 
and wished to attribute it to mystical powers, Bacon would say, “no, it is not 
mystical at all: look at a waterfall with the Sun shining on it, or the range of 
colors created by light passing through a crystal, and you will see a similar 
thing.” 

In modern times, such practical advice is still useful. For example, we can 
see that many natural objects are “discretely coloured” as either red, blue, yel-
low or green, etc. From those simple visual observations, an uneducated man 
could deduce the general nature of quantum phenomena, even without knowing 
probabilistic quantum mechanics! 

Thus from much direct experience, let me suggest gently to the reader that 
the photon cannot be a point-particle; nor can the electron be a point-particle. 
Rather, both the photon and the electron must possess some internal, highly-
periodic structure through both space and time, in order to diffract as observed. 
Even outside of the laboratory we can watch light diffract as it passes by a 
sharp edge, or through a meshed fly-screen. Indeed, most natural fluid sub-
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stances will break spontaneously into some periodic structure of their own ac-
cord, and will never remain random under all circumstances. From experience 
we see that water will break into regular waveforms while running down a hill; 
similarly, clouds will break into regular waveforms as they as pushed by air-
flows in the sky. 

When x-rays pass through a crystal, some of them are deflected or “dif-
fract” at various precise angles and intensities to one side. What actually seems 
to happen, on a microscopic scale, is that the original x-ray waveform breaks 
up into smaller undetectable fragments of precise phase, which are scattered 
through space by electrons within crystalline atoms; then those many dispersed 
fragments may join together to form a new detectable photon, probabilistically 
in proportion to the square of their concentration in space: since at a funda-
mental level they seem to be composed of dimeric filaments. 

Indeed, the very nature of “inertia” on a macroscopic scale may be de-
rived from “loss of phase coherence” on a microscopic scale, although this 
fundamental and important idea has not yet been widely recognized. For exam-
ple, whenever an electron diffracts in-phase, or follows a closed path of inte-
gral (deBroglie) phase in atoms, no inertia seems to be observed. David Bohm 
has included those strange, inertia-less phenomena in his alternative version of 
quantum mechanics, and argues that particles moving under the influence of an 
in-phase “guide wave” need not show any inertia whatsoever (which is just an-
other way of saying the same thing). Bohm’s views have been strongly sup-
ported by modern quantum experts such as J.S. Bell or S. Goldstein. 

But the same process of photon or electron-creation in diffraction would 
be treated very differently by Born or Bohr: they would formulate their model 
in terms of some “point-photon” without any internal periodicity, which relo-
calizes instantly to a new spatial location that can be determined only by squar-
ing an abstract “wavefunction.” Next in order to convince a point-photon to 
diffract, they have to invent an ad hoc principle known as “wave-particle dual-
ity,” where the photon can sometimes be a wave with well-defined intensity 
and phase, and sometimes just a dimensionless point. 

Perhaps the Born-Bohr model seemed plausible in 1930, when it was first 
applied to very simple particles such as an electron or photon; but today in 
2005, how can we possibly explain the diffraction of large, multi-atom mole-
cules by such an approach? For example, when a porphyrin ring from biology 
shows diffraction phenomena in the gas phase, where might the information 
come from to reconstruct accurately that multi-atom structure, if the entire por-
phyrin supposedly (according to Born and Bohr) “collapses” first to a dimen-
sionless point; then moves instantly elsewhere without inertia; and finally is 
“recreated” with perfect reliability in some new location? Surely in this limit of 
diffraction by large chemical structures, the Born-Bohr model may be consid-
ered implausible or even absurd. 

Alternatively, by the Bohm model for diffraction, a hypothetical (de-
Broglie) “guide wave” would be the only part of that multi-atom porphyrin to 
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experience interference. The major part of that complex chemical structure 
would remain intact and undisturbed; and would just “follow” the in-phase 
guide-wave through one “slit” or another in an inertia-less fashion. Hence our 
multi-atom porphyrin would never need to “collapse” to a dimensionless point, 
nor be “recreated” in some new location. 

Finally, the Bohm-deBroglie “guide wave” could plausibly represent 
some weak, externally detectable aspect of a much more energetic internal pe-
riodicity: not seen for a particle at rest, but seen for a particle in motion. In 
other words, the slightly higher mass m of a moving particle (see below) could 
cause its very energetic internal periodicity, not detectable for a particle at rest, 
to “spill over” into the space around itself; thereby causing wave-like diffrac-
tion phenomena for otherwise material particles. 

In summary, as noted above, most current theories in physics or astron-
omy are not unique! We can choose between Bohm’s “guide-wave” or Born-
Bohr’s “point-wave duality” seemingly at will. To this author, the former the-
ory seems more plausible in terms of physical concepts. 

Going now beyond simple concerns for uniqueness, the consequences of 
adopting a Born-Bohr model for modern quantum electrodynamics or QED are 
shown in Figure 1. There we can see that a randomly moving point-electron 
(left-hand side) will not easily be able to generate any finite energies in its elec-
trical interaction with light. For example, a hypothetical point-electron of ra-
dius r = 0 will repel itself by an infinite amount e2/2r. It will also interact with 
an infinity of photons of all possible wavelengths, as it travels randomly 
through space; yet it will not know how much of its total energy mc2 to commit 
to any electron-light interaction. Hence that number (precisely 1/137.03599) 
has to be put into the theory finitely “by hand.” Nor will the point-electron 
even be able to proceed easily from one location in space or time to another, 
since it has no continuous structure in either dimension. 

Infinite QED (quantum electrodynamics) is based precisely on those ran-
dom, unstructured principles, and hence requires many essential parameters to 
be added “by hand.” Moreover, the point-model generates at least three differ-
ent kinds of spurious infinite energy that have to be removed by a mathemati-
cal trick known as “renormalization” (dividing one near-infinite quantity by 
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another). Dirac was very knowledgeable concerning such faults, and therefore 
never accepted infinite QED as any more than an abstract calculating tool. 

By contrast, we can next examine the consequences of adopting a con-
tinuous and periodic waveform for the electron, as shown in Figure 1 (right-
hand side), by a philosophical approach more akin to the Bohm-deBroglie 
model for diffraction. Now the electron self-repulsion e2/2r becomes finite, be-
cause its radius r is finite. Also, the finite electron will only be able to interact 
with a limited number of photons of discrete wavelength from the outlying 
vacuum, as it exchanges some finite but mobile energy inside of itself (equal to 
1/137 of mc2), with similar self-energies in other particles nearby. Hence this 
number need not be added “by hand.” Its passage from one location in space or 
time to another will similarly be defined by the continuous periodic structure 
itself. 

Having considered the favourable interaction of a wave-like electron with 
light, it should be noted further that our periodic electron is dynamically stable 
in a Casimir sense (15), whereas the random point-like electron is not. In other 
words, all particles should experience an outward force that depends on their 
finite size, due to inertial-motional influences as well as electrical self-
repulsions; which may be balanced by an inward pressure due to zero-point 
waves from the surrounding vacuum. In order for any particle to be stable dy-
namically, those two terms “outward and inward” should balance closely, 
which they do for a typical periodic electron. 

For example, considering the periodic electron shown below, one finds 
that E(out) = 137 × (e2/2r) while E(in) = hf/2 = hc/4πr. Since 137 × e2 = hc/2π 
by the formula for fine-structure constant, one can see that E(in) = E(out) to a 
first-order approximation (5). But for any point-like electron of r = 0, both the 
outward electrical self-repulsion e2/2r and the inward vacuum pressure hc/4πr 
go to infinity! Only by omitting all mention of Casimir stability, an experimen-
tal certainty, can the electron point-theorists rescue an otherwise impossible 
situation. 

III. A periodic waveform of spin ½ symmetry 
Based on the previous discussion, two general concepts should now be clear. 
First, physicists in the early 20th century had to make a choice: whether they 
would follow a Born-Bohr model assuming “point particles,” or else a de-
Broglie-Bohm model involving “guide waves.” Secondly, having chosen a 
Born-Bohr model, those physicists wished to extend their point-model to en-
compass a wider range of phenomena, and so arrived at a strange and complex 
theory that we now know as “infinite renormalized QED,” which is highly suc-
cessful in a numerical sense, but an undisputed failure in a conceptual sense. 

But what if the original choice made in 1930 was wrong? Next we should 
present some well-defined, plausible, wave-like model for the electron, in order 
to support the general assertions given above. Different contemporary workers 
have preferred different wave-like models: for example the electromagnetic 
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scalar wave of Simulik and Krivsky (11), or the three-dimensional spinning 
ring favoured by Parsons in 1915, and now back in favour. But as matter of 
personal choice, I prefer the model shown in Figure 2 (upper part), the drawing 
of which is intended to represent a doubly-spinning, continuous and periodic 
structure in four dimensions of both space and time (x, y, z, t). 

However bizarre this four-dimensional wave-model might seem on first 
glance, there are several sound reasons for preferring a well-defined structure 
in four nearly-equivalent dimensions (x, y, z, t), rather than a well-defined 
structure in three spatial dimensions (x, y, z) which can advance through time t 
as a separate entity. 

First, we know by experiment that the electron shows a periodic symme-
try of “spin ½,” which means that it must possess two separate axes of rotation. 
Thus it must advance about one axis (e.g., the major) at twice the frequency 
that it advances about the other axis (e.g., the minor): see Figure 2, upper left 
and right. That spin ½ symmetry is fundamental to building any sort of plausi-
ble model for an electron; just as by analogy, C2 space-group symmetry was 
essential to Watson and Crick for building a correct DNA model in 1953. 

One could perhaps build some kind of three-dimensional model with the 
required spin ½ symmetry as a filamentous Moby’s strip, yet other experimen-
tal aspects of electron behaviour suggest that the model should really be four-
dimensional: for example g = 2 for magnetism, which suggests that the area of 
capture for external light may be twice as large through time as through space; 
or the anomalous part of magnetic moment as 1/(137 × 2π), which represents a 
slight extra self-energy through time; or squaring of the wave-function to gen-
erate a new particle upon diffraction, as explained elsewhere in terms of a 
dimeric four-dimensional filament (3). 

Next in the lower part of Figure 2, we can see that this particular model 
for the electron generates two principal forms of electrical self-repulsion. 

 

Figure 2 
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Across the electron diameter through space, we see a well-defined self-
repulsion e2/2r equal to 1/137 of mc2, which is precisely the probability of any 
electron to exchange light with another particle at distance, so as to generate, 
for example a net energy of 1/(2 × 1372) for the n = 1 shell of hydrogen. Then 
along the electron path through time, we see another well-defined self-
repulsion e2/4πr equal to 1/(137 × 2π) of mc2, which is the amount of electrical 
self-energy lost in the Lamb shift, when the electron experiences a full proton 
charge and loses some of its stable mass. That same 1/(137 × 2π) is also the in-
crement by which electron magnetic moment increases beyond its twice-
classical value of g = 2: the slight extra self-energy thus gives a little extra 
magnetism. 

These and other experimental quantities—Casimir stability, anomalous 
magnetic moments to high accuracy (16), the Lamb shift, and a possible topo-
logical nature for electron paths in atoms—have been calculated from a four-
dimensional model (3, 5). 

Finally, the slight extra energy of electricity (“magnetism”) or gravity 
(“general relativity”), which is seen for two particles in relative motion, may 
follow naturally from the same four-dimensional model: if its minor plane 
shown in Figure 2 (upper) projects from “time into space” by an amount 
sin θ = v/c, as relative velocity v increases towards c; thereby providing an in-
creased area in space for the two-way exchange of light or gravity waves. 

Hence our major plane of spin could provide for electricity or gravity at 
rest, through exchange of light or gravity waves with a distant particle; while 
our minor plane of spin could provide for a slight extra exchange of light or 
gravity waves, when two particles are in motion relative to one another; 
thereby increasing the total energy from 1 to (1 + v2/c2). That extra motional 
part would not, however, serve as the source for any further exchanges; and so 
total energy would remain constant at (1 + v2/c2) without any possible “run-
away” to infinity. 

To conclude, it should be emphasized that I make no claims for the 
uniqueness of my own particular model over others of a suitable nature. We 
can only make models concerning Nature through a series of ever-improving 
approximations, and will never be sure of having the “right” answer. 

I do intend to argue, however, that time t as it enters into modern physics 
through a series of infinitesimal time-slices in Hamiltonian theory, or through 
non-Euclidean geometry in relativity, has not been treated correctly. We imag-
ine by our animal intelligence, having a brain that measures time t as a series of 
forward-moving events, that time “flows” forward in an absolute fashion. Yet I 
argue that the forward-flow of absolute time is just an illusion; and that on a 
subatomic scale particles may become structurally four-dimensional; while on 
an astronomical scale the flow-rate of time may become variable, depending 
upon the zero-point vacuum E = hf/2 within which any particle resides (e.g., 
through an effect on the Casimir equilibrium). 
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IV. Variable character of time on subatomic or astro-
nomical scales? 

One may address the notion of variable time rather simply, by considering a 
four-dimensional interpretation of Newton’s Law F = ma as shown in Figure 3, 
upper part. There we see how some lateral force F will induce greater accelera-
tion in a low mass m than a high mass m′. Could the low mass m contain a 
lesser number of periodic turns, within a given volume of space and time, than 
the high mass m′? In other words, if we were to apply the same force F to a ball 
made of carbon versus a ball made of iron, would the greater acceleration a of 
the carbon ball be due to a lesser intrinsic rate of counting time as m = f = 1/t 
on a subatomic scale, where a = F/f(carbon) = high or F/f(iron) = low? 

This example, however trivial provides, a good introduction to what we 
will discuss next, which is the possibility of variable mass m or time t over 
broad astronomical scales. Many astronomers such as Arp and Hoyle (1, 14) 
have long argued that aberrant redshifts in astronomy, and even the Hubble 
redshift, might be due to altered mass m or time t at the distant source of such 
light, rather than due to Doppler shifts from receding motion as advocated by 
Big Bang enthusiasts. Only recently has that cosmological controversy come to 
a stage where it can be addressed through experimental data. 

Thus a number of expert astronomers have recently made new measure-
ments of supernovae lifetimes in distant galaxies, and have used those data to 
evaluate how cosmologically different such distant galaxies might be from 
modern Earth, in terms of dimensional parameters such as space-distance x or 
time-counting rate f = 1/t. The general result from their studies (17) may be 
expressed succinctly as t′/t = f/f′. Here t′/t tells how much longer it takes for 
some supernova in a distant galaxy to decay through its light-curve, the bright-
ness of which reflects radioactive half-lives there, versus for a similar super-
nova near Earth. Similarly, f/f′ tells how much more slowly the bulk of stars in 
that distant galaxy count time by a Hubble redshift there, versus for similar 
stars near Earth. Since the two experimental quantities t′/t and f/f′ agree in 

Figure 3 
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many examples, one may conclude that we are really seeing a cosmological ef-
fect: but what might it mean? 

One simple interpretation is shown in Figure 3 (lower part), where the su-
pernova in that distant galaxy contains atoms which count time more slowly 
than on modern Earth, by a factor t′/t = 3/2 or f′/f = 2/3. Since it takes light at 
finite speed c a long time to reach Earth from the distant supernova—many 
millions or billions of years—perhaps the Universe may have evolved to a 
higher state of energy over such a long period, due to an increase in the energy 
of the underlying zero-point vacuum? That is a fundamental factor which 
would affect Casimir stabilities by an altered E = hf/2, leading to higher fre-
quencies of periodic motion within particles on modern Earth today, versus 
particles in distant galaxies long ago. 

The Big Bang cosmologists, however, interpret those same data in another 
way. They believe that the overall spatial structure of the Universe may be ex-
panding uniformly over long periods of time, due to the initial momentum pro-
vided by some ancient, creational explosion; and so they argue that all space-
distances x are larger on Earth today than on that distant galaxy in the faraway 
past. Hence light-wavelengths become longer or “stretched” like the rubber 
skin of a balloon, over millions of years of travel from that distant galaxy to 
Earth; and so we see those light-images on Earth today over greater lengths of 
time t and with lesser frequencies f, than when they were emitted at the source. 

As an ad hoc addendum to the “stretched space” theory, we find that the 
apparent rate of stretching becomes greater when we look at later historical 
times near Earth. That is exactly the opposite of what one would expect from 
an ancient Big Bang, where the rate of stretching would decrease due to mutual 
gravitational attraction among distant galaxies, as time proceeds after an initial 
explosion. Hence recently we saw the proposal of another cosmological “dis-
covery”: the return of a repulsive cosmological constant or “quintessence” to 
explain why the Universe decides, in their view, to expand more rapidly as 
time goes on! 

In response to “quintessence,” Arp or Hoyle might say that the rate of en-
ergetic evolution of the Universe need be not linear with time. There is no rea-
son why the zero-point vacuum should grow in energy-density with precise 
linearity over billions of years. 

Yet another difficult aspect of the stretched-space theory is that the Hub-
ble redshift of normal galaxies can no longer be treated as a Doppler shift, but 
rather must be treated as a uniform but very slow “stretching of space” which 
occurs all around us, even on commonplace scales of distance. As we proceed 
to shorter and shorter distances from Earth, an ambiguity arises: is any redshift 
due to a Doppler shift or due to stretched-space? A Doppler shift is mainly due 
to receding velocity as (1 – v/c), and hence shows a much smaller time-dilation 
t′/t than for stretched-space. 

As a final astronomical concern, one might expect that accurate measure-
ments of proper motion—looking at angular motions of stars through the sky, 
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as seen from Earth over many years—would give estimates of velocity that 
agree well with Doppler shifts as inferred from frequency shifts of spectral 
lines. Such is not the case however, since proper motions for stars on the outer 
edges of our Milky Way remain highly anomalous, when compared to apparent 
velocities as inferred from an interpretation of those frequency shifts as a Dop-
pler effect (2, 18). Such anomalies lie at the heart of the “dark matter” problem, 
since if the zero-point vacuum can vary slightly across galaxies, to change 
masses m and rates of time-counting f = 1/t, no dark matter need exist (10). 

V. Variable character of time for particles in motion 
To conclude this review, we will discuss the known variation in rates of count-
ing time t for particles in rapid motion, and analyze those experimental results 
in terms of two distinct logical frameworks: perception versus dynamics (4). 

The original derivation of special relativity in 1905 (ref. 19, Chapter 7a) 
was based on light-image distortions: when two observers in relative motion v 
exchange light-signals with one another at constant speed c, what might be the 
effects on length x, time t or mass m as inferred from viewing those light-
signals at a distance? Lorentz and Einstein worked out that the perception of 
light-image distortions would co-vary reciprocally between any two moving 
observers, by numerical relations such as t′/t = 1/√(1 – v2/c2) which are now 
familiar even to beginning physics students. The term “co-variant” therefore 
implies reciprocal and equivalent views by means of light-image distortions, 
without any specified changes to the intrinsic time-counting rates f = 1/t. 

Those intrinsic rates of counting time could thus be regulated by a differ-
ent physical mechanism, for example by Casimir stabilities within individual 
subatomic particles, as described above. Indeed with reference to the discus-
sion above concerning Newton’s law F = ma, one could say that carbon and 
iron balls count time intrinsically at different internal rates f = 1/t, even while 
at rest, and without any reciprocal light-images being exchanged between 
them. Each observer or ball would “see” the same external situation using dif-
ferent internal rates of counting time, while light signals need not be exchanged 
at all. 

Furthermore, such intrinsic or internal rates of counting time should po-
tentially change in a dynamic, energetic sense for any single particle moving 
through a vacuum; by a mechanism similar but not identical to the “co-variant” 
changes seen, when light signals are exchanged between two observers moving 
relative to one another. To be more precise, single particles when moving 
through a vacuum would seem to count intrinsic time t more slowly than when 
at rest; yet their intrinsic masses m will also increase in a proportional fashion; 
so that total energies (and atomic spectra) may remain “in-variant” or con-
served, due to equal and opposite changes in both t and m. 

It should be emphasized here that intrinsic distances x do not vary with 
motion at all; any changes to x are always perceptive. Indeed if it were other-
wise, three intrinsic parameters t, m and x could never cancel exactly, so as to 
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produce the relativistic “invariance” which makes our Universe possible. We 
would see instead that electrical energies within atoms, or gravitational ener-
gies for planets about the Sun, would “run away” to infinity, since uncompen-
sated increases in mass m would produce ever-higher energies of motion with 
each application of a supposed “relativistic formula”! But because changes of x 
are only perceptive (i.e., expansion or shrinking of a light-image), they do not 
enter into dynamics, while reciprocal changes to t and m cancel. 

As an actual example, let us consider what happens when muons are ac-
celerated in a synchrotron to speeds of 0.9994c. Then it is observed that their 
mean-lifetimes increase by a factor of t′/t = 1/√(1 – v2/c2) = 30 or from roughly 
1.5 to 50 microseconds: see Figure 4, upper part. This is clearly a dynamic or 
internal-intrinsic effect, since no reciprocal light-signals have been exchanged. 
Thus, the decaying muons are detected directly by emission of electrons to a 
counter. Nevertheless, the dynamic or “in-variant” time dilation seen here for 
fast-moving muons still follows the characteristic mathematical formula, de-
rived by Einstein in 1905, for perceptive or “co-variant” time dilation by recip-
rocal light-signals. 

Is it any wonder that those two kinds of physical phenomena have often 
been confused, if the same formula works sometimes in both cases? Yet in 
other cases of dynamic measurement, we see many failed predictions and para-
dox, as noted below. 

Now if the speed of light c may be regarded as a limiting factor, in a dy-
namic sense just as in a perceptive, then we find easily for particle models 
which postulate some internal wave-like character, that internal periodic veloc-
ity vs. should decrease for any particle in translational motion vt through a vac-
uum, to yield t′/t = c/vs = 1/√(1 – vt

2/c2) for the dynamic case as well as for the 
perceptive: see Figure 4, center and lower. In other words, some component of 
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periodic motion vs will always lie perpendicular to the direction of translational 
motion vt; and since speed c cannot be exceeded as the vector sum of vs and vt, 
we find that vs must go to zero as vt goes to c; likewise the periodic counting of 
internal-intrinsic time t comes to a stop. 

A confusion between those two kinds of phenomena, perceptive versus 
dynamic, has led to many paradoxes and arguments concerning the nature of 
special relativity, all through the 20th century. For example in the well-known 
“twin paradox,” one twin goes into space for many years at a speed close to c, 
then returns to Earth to find his partner aged beyond recognition. The non-
reciprocal aging of those twins is clearly a dynamic process, where intrinsic 
rates of counting time are much less for the twin moving at close to speed c, 
rather than for the twin who remains home at speed v = 0. 

Yet if at any time during that space voyage, the fast-moving twin had sent 
a television image back to Earth, in order to exchange news with his partner at 
home, the partner twin would have seen his fast-moving space friend as dilated 
to much slower time. Similarly, a television image sent from the near-
stationary Earth twin, to his fast-moving friend in space, would be seen by his 
space friend as also dilated to much slower time. 

Hence no true paradox really exists. One simply has to specify whether 
the experimental circumstances are dynamic-intrinsic or else perceptive-
covariant. A spinning-disk paradox concerning length contraction x′/x may be 
resolved in a similar way; and the hypothetical Thomas precession need never 
be measured as a dynamic effect. Indeed, tests for it have always proven nega-
tive. (It should be mentioned here that Thomas precession is still invoked in 
many quantum mechanics textbooks, to resolve a factor-of-two error in the 
prediction of fine-structure spectra.) 

Of course, according to a Born-Bohr model for diffraction, subatomic par-
ticles can be only “dimensionless points,” and hence have no possible internal 
mechanism by which to count time intrinsically. And so we arrive at false in-
finities in QED, false infinities in astronomy, and paradoxes in special relativ-
ity. By contrast, according to a deBroglie-Bohm model for diffraction, sub-
atomic particles and their “guide waves” would probably possess a periodic in-
ternal mechanism by which to count time intrinsically. And so we could arrive 
at finite versions of QED, finite versions of astronomy, and no paradoxes in 
special relativity, if the current generation of physicists would simply open 
their minds. 

A clear distinction between dynamics and perception also clears up an 
important issue regarding possible models for the electron. By a perceptive, 
Lorentz-covariant view, only point-models would be allowed, especially due to 
a predicted length contraction x′/x for particles in rapid motion. But since we 
see now, that such concerns are associated only with light-image distortions 
and not with dynamics, there exists no real objection to proposing wave-like 
models of finite size, as has been done here and elsewhere (3,5,11). 
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Each individual particle will therefore count time in its own way, depend-
ing on Casimir relations between the outward self-energy of any particle (iner-
tial and electrical), balanced against an inward pressure from the zero-point 
vacuum; which itself need not remain precisely constant over large scales of 
space or time. Hence “there may be as many times as there are inertial frames” 
(19), on Earth and perhaps across distant galaxies as well. 

To conclude, when searching for an improved understanding of difficult 
subjects such as quantum theory, relativity or cosmology, we should listen to 
experience as well as theory, since most current theories in physics and astron-
omy are not unique. Also, we should try to understand all of these subjects to-
gether as a whole, so far as possible, in order to avoid the acceptance of theo-
ries in one field which contradict those in another. 
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We discuss the problem of the electron mass in the framework of Deformed 
Special Relativity (DSR), a generalization of Special Relativity based on a de-
formed Minkowski space (i.e., a four-dimensional space-time with metric coef-
ficients depending on energy). We show that, by this formalism, it is possible to 
derive the value of the electron mass from the space-time geometry via experi-
mental knowledge of the parameter of local Lorentz invariance breakdown, and 
the Minkowskian threshold energy E0,em for the electromagnetic interaction. We 
put forward the suggestion that mass generation can be related, in DSR, to the 
possible dependence of mass on the metric background (relativity of mass). 

1 Introduction 
The problem of the mass spectrum of the known particles (leptons and had-
rons) is still an open one from the theoretical side. As a matter of fact, the 
Standard Model of electromagnetic, weak and strong interactions is unable to 
say why a given particle has a given (experimental) mass. As to the carriers of 
the four fundamental forces, symmetry considerations would require they are 
all massless. However, it is well known that things are not so simple: weak 
quanta are massive. It is therefore necessary, in the framework of the Glashow-
Weinberg-Salam model of electroweak interaction, to hypothesize the Gold-
stone mechanism, which gives weak bosons a mass by interaction with the 
(still unobserved!) Higgs boson. 

Even the first, best known and most familiar particle, the electron, is still a 
mysterious object. In spite of the successes of the Dirac equation, which ex-
plains the spin value and the magnetic moment of the electron, the origin of its 
mass is far from being understood. The classical electron theory (with the 
works by Abraham, Lorentz and Poincaré) attempts to consider the mass of the 



196 Fabio Cardone, Alessio Marrani and Roberto Mignani 

 

electron as of purely electromagnetic origin, and is well known to be deficient 
in several respects. The basic flaw of this picture is due to the Ernshaw theo-
rem, which states that it is impossible to have a stationary non-neutral charge 
distribution held together by purely electric forces. Moreover, a purely elec-
tromagnetic model of the electron implies the occurrence of divergent quanti-
ties. Such infinities can be dealt with by means of the renormalization proce-
dure in Quantum Electrodynamics (QED). However, even in this framework, 
the value of the electron mass is not intrinsic, but only results from its interac-
tion with the vacuum. 

The modern view of the problem of electron mass was pioneered by 
Wheeler and Feynman(1), according to which it is not of electromagnetic origin 
but entirely mechanical(2). In this paper, we show that the electron mass me can 
be obtained from arguments related to the breakdown of local Lorentz invari-
ance, in the framework of a generalization of Special Relativity (Deformed 
Special Relativity, DSR), based on a “deformation” of Minkowski space (i.e., 
with metric coefficients depending on energy). This assigns me a geometrical 
meaning, by expressing it in terms of the parameter δ of LLI breakdown. 

The organization of the paper is as follows. In Sect. 2 we briefly introduce 
the concept of deformed Minkowski space, and give the explicit forms of the 
phenomenological energy-dependent metrics for the four fundamental interac-
tions. The LLI breaking parameter δint for a given interaction is introduced in 
Sect.3. In Sect. 4 we assume the existence of a stable fundamental particle in-
teracting gravitationally, electromagnetically and weakly, and show (by impos-
ing some physical requirements) that its mass value (expressed in terms of δe.m. 
and E0,grav is just the electron mass. In Sect.5 we briefly introduce the concept 
of mass relativity in DSR. Sect. 6 concludes the paper. 

2 Deformed Special Relativity in four dimensions (DSR) 
2.1 Deformed Minkowski space-time 
Deformed Special Relativity is a generalization of Special Relativity (SR) 
based on a “deformed” Minkowski space, assumed to be endowed with a met-
ric whose coefficients depend on the energy of the process considered(3). The 
deformation is intended essentially to provide a metric representation of the in-
teraction governing the process considered (at least in the given energy range, 
and locally, i.e., in a suitable space-time region)(3–6). DSR applies in principle 
to all four interactions (electromagnetic, weak, strong and gravitational), at 
least as far as their non-local behaviour and non-potential part are concerned. 

The generalized (“deformed”) Minkowski space 4M�  (DMS4) is defined 
as a space with the same local coordinates x of M4 (the four-vectors of the 
usual Minkowski space), but with a metric given by the metric tensor* 

                                                 
* In the following, we employ the notation “ESC on” (“ESC off”) to mean that the Einstein sum 

convention on repeated indices is (is not) used. 



 A geometrical meaning of electron mass 197 

 

 ( )2 2 2 2
0 1 2 3

2 2 2 2
0 0 1 1 2 2 3 3

( ) ( ), ( ), ( ), ( )

( ) ( ) ( ) ( )

ESCoff

E diag b E b E b E b E

b E b E b E b E

μν

μν μ μ μ μ

η

δ δ δ δ δ

= − − − ≡

⎡ ⎤≡ − − −⎣ ⎦

 (2.1) 

( )0E R+∀ ∈ , where the {bμ2(E)} are dimensionless, real, positive functions of 
the energy(3). The generalized interval in 4M�  is therefore given by 
(xμ = (x0,x1,x2,x3) = (ct ,x, y, z), with c being the usual light speed in vacuum) 
(ESC on) 
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μνη
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 (2.2) 

The last step in (2.2) defines the scalar product ∗ in the deformed Minkowski 
space 4M� *. It follows immediately that it can be regarded as a particular case 
of a Riemann space with null curvature. 

We stress that, in this formalism, the energy E is to be understood as the 
energy of a physical process measured by the detectors via their electromag-
netic interaction in the usual Minkowski space. Moreover, E is to be considered 
a dynamical variable, because it specifies the dynamical behaviour of the proc-
ess under consideration, and, via the metric coefficients, it provides us with a 
dynamical map—in the energy range of interest—of the interaction ruling the 
given process. Let us recall that the use of momentum components as dynami-
cal variables on the same footing as space-time variables can be traced back to 
Ingraham(9). Dirac(10), Hoyle and Narlikar(11) and Canuto et al.(12) treated mass 
as a dynamical variable in the context of scale-invariant theories of gravity. 

It was also shown that the DSR formalism is actually five-dimensional, in 
the sense that the deformed Minkowski space can be naturally embedded in a 
larger Riemannian manifold, with energy as fifth dimension(13). Curved 5-d 
spaces have been considered by several authors(14). In this regard, the DSR 
formalism is a kind of generalized (non-compactified) Kaluza-Klein theory, 
and resembles, in some aspects, the so-called “Space-Time-Mass” (STM) the-
ory (in which the fifth dimension is the rest mass), proposed by Wesson(15) and 
studied in detail by a number of authors(16). 

By putting ds2 = 0 , we get the maximal causal velocity in 4M� (3,21) 

 0 0 0

1 2 3

( ) ( ) ( )
( ) , ,

( ) ( ) ( )
b E b E b E

u E c c c
b E b E b E

⎛ ⎞
≡ ⎜ ⎟

⎝ ⎠

G  (2.3) 

(i.e., the analogue of light speed in SR) for the interaction represented by the 
deformed metric. 

In DSR the relativistic energy for a particle of mass m subjected to a given 
interaction and moving along ˆix  has the form(3): 
                                                 

* Notice that our formalism—in spite of the use of the word “deformation”—has nothing to do with 
the “deformation” of the Poincaré algebra introduced in the framework of quantum group theory (in par-
ticular the so-called κ-deformations)(7). In fact, the quantum group deformation is essentially a modifica-
tion of the commutation relations of the Poincaré generators, whereas in the DSR framework the defor-
mation concerns the metric structure of the space-time (although the Poincaré algebra is affected, too(8)). 
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In the non-relativistic (NR) limit of DSR, i.e., at energies such that 
 vi ≅ ui(E) (2.6) 
Eq.(2.4) yields the following NR expression for the energy corresponding to 
the interaction: 

 
2
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i

b E
E mu E mc

b E
= =  (2.7) 

2.2 Energy-dependent phenomenological metrics for the four in-
teractions 

In terms of phenomenology, we recall that a local breakdown of Lorentz in-
variance may be envisaged for all four fundamental interactions (electromag-
netic, weak, strong and gravitational), yielding evidence for a departure of the 
space-time metric from Minkowskian (at least in the energy range examined). 
The experimental data analyzed are for the following four physical processes: 
the lifetime of the (weakly decaying) K0

S meson(17); the Bose-Einstein correla-
tion in (strong) pion production(18); the superluminal photon tunnelling(19); the 
comparison of clock rates in the gravitational field of Earth(20). A detailed deri-
vation and discussion of the energy-dependent phenomenological metrics for 
all four interactions has been given [3-6]. Here, we limit ourselves to recalling 
their following basic features: 

1. Both the electromagnetic and the weak metric show the same func-
tional behaviour, namely 

 ( )2 2 2( ) 1, ( ), ( ), ( ) ,E diag b E b E b Eμνη = − − −  (2.8) 
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 (2.9) 

(where θ(x) is the Heaviside theta function) the only difference be-
tween them being the threshold energy E0, i.e., the energy value at 
which the metric parameters are constant, i.e., the metric becomes 
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Minkowskian (ημν(E ≥ E0) = gμν = diag(1,–1,–1,–1)); the fits to the ex-
perimental data yield 

 E0,e.m. = (4.5± 0.2) μeV; 
 E0,weak = (80.4± 0.2) GeV;  (2.10) 

Notice that for either interaction the metric is isochronous, spatially 
isotropic and “sub-Minkowskian,” i.e., it approaches the Minkowskian 
limit from below (for E < E0). Both metrics are therefore Min-
kowskian for E>E0,weak > 80 GeV, and then our formalism is fully con-
sistent with electroweak unification, which occurs at an energy scale 
~100 GeV. 
We recall that the phenomenological electromagnetic metric (2.8)-
(2.10) was derived by analyzing the propagation of evanescent waves 
in undersized wave guides(17). This accounts for the observed superlu-
minal group speed in terms of a nonlocal behaviour of the wave guide, 
described by an effective deformation of space-time in its reduced 
part(5). The weak metric was obtained by fitting the data on the mean 
lifetime of the K0

S meson (experimentally known in a wide energy 
range (30 ÷ 350 GeV)(17)), thus accounting for its apparent departure 
from a purely Lorentzian behaviour(3,21). 

2. For the strong interaction, the metric was derived(4) by analyzing the 
phenomenon of Bose-Einstein (BE) correlation for π-mesons produced 
in high-energy hadronic collisions(18). In this approach the BE effect is 
explained as the decay of a “fireball” whose lifetime and spatial size 
are directly related to the metric coefficients b2

μ,strong(E), avoiding the 
introduction of ad hoc parameters in the pion correlation function(4). 
The strong metric reads 

 ( )2 2 2 2
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 (2.12) 

with 
 E0,strong = (367.5 ± 0.4) GeV  (2.13) 

We stress that, in this case, contrary to the electromagnetic and weak 
cases, a deformation of the time coordinate occurs; moreover, the 
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three-space is anisotropic, with two spatial parameters constant (but 
different in value) and the third one variable with energy like the time 
parameter. 

3. The gravitational energy-dependent metric was obtained(6) by fitting 
the experimental data on the relative rates of clocks in the Earth’s 
gravitational field(20). Its explicit form is*: 
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with 
 E0,grav = (20.2 ± 0.1) μeV. (2.16) 

Intriguingly enough, this is approximately of the same order of magni-
tude of the thermal energy corresponding to the 2.7°K cosmic back-
ground radiation in the Universe†. 
Notice that the strong and the gravitational metrics are over-
Minkowskian (namely, they approach the Minkowskian limit from 
above (E0 < E), at least for their coefficients b0

2(E) = b3
2(E)). 

3. LLI breaking factor in DSR 
The breakdown of standard local Lorentz invariance (LLI) is expressed by the 
LLI breaking factor parameter δ(23). We recall that two different kinds of LLI 
violation parameters exist: the isotropic (essentially obtained by means of ex-
periments based on the propagation of e.m. waves, e.g., of the Michelson-
Morley type), and the anisotropic ones (obtained by experiments of the 
Hughes-Drever type(23), which test the isotropy of the nuclear levels). 

In the former case, the LLI violation parameter reads(23) 

 

2

1,u
c

u c v

δ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

= +

 (3.1) 

where c is, as usual, the speed of light in vacuo, v is the LLI breakdown speed 
(e.g., the speed of the preferred frame) and u is the new speed of light (i.e., the 
                                                 

* The coefficients b2
1,grav(E) and b2

2,grav(E) are presently undetermined at the phenomenological 
level.  
† It is worth stressing that the energy-dependent gravitational metric (2.14)-(2.16) is to be regarded as a 
local representation of gravitation, because the experiments considered took place in a neighborhood of 
Earth, and therefore at a small scale with respect to the usual ranges of gravity (although a large one 
with respect to the human scale). 
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maximal causal speed in Deformed Special Relativity(3)). In the anisotropic 
case, there are different contributions δA to the anisotropy parameter from the 
different interactions. In the HD experiment, it is A = S, HF, ES, W, meaning 
strong, hyperfine, electrostatic and weak, respectively. These correspond to 
four parameters δS (due to the strong interaction), δES (related to the nuclear 
electrostatic energy), δHF (coming from the hyperfine interaction between the 
nuclear spins and the applied external magnetic field) and δW (the weak inter-
action contribution). 

All the above tests put upper limits on the value of δ(23). 
Moreover, at the end of the past century, a new electromagnetic experi-

ment was proposed(24), designed to directly test LLI. It is based on the possibil-
ity of detecting a non-zero Lorentz force between the magnetic field B gener-
ated by a stationary current I circulating in a closed loop Γ, and a charge q, on 
the hypothesis that both q and Γ are at rest in the same inertial reference frame. 
The force is zero according to standard (relativistic) electrodynamics. The re-
sults obtained by this method in two experimental runs(25) admit as the most 
natural interpretation the fact that local Lorentz invariance is in fact broken. 

The value of the (isotropic) LLI breaking factor determined by this elec-
tromagnetic experiment is(25) 

 Δ ≅ 4 × 10–11 (3.2) 
and represents the present lowest limit to δ. 

In order to establish a connection with the electron mass, we can define 
the LLI breakdown parameter for a given interaction, δint. , as 
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where min.,int. is the inertial mass of the particle considered with respect to the 
given interaction*. In other words, we assume that the local deformation of 
space-time corresponding to the interaction, and described by the metric (2.1), 
gives rise to a local violation of the Principle of Equivalence for interactions 
different from gravitation. This departure, just expressed by the parameter δint, 
also constitutes a measure of the amount of LLI breakdown. In the framework 
of DSR, δint embodies the geometrical contribution to the inertial mass, thus 
discriminating between two different metric structures of space-time. 

Of course, if the interaction considered is gravitational, the Principle of 
Equivalence holds strictly, i.e., 
 min.,grav. = mg (3.4) 
where mg is the gravitational mass of the physical object considered, i.e., it is 
its “gravitational charge” (namely its coupling constant to the gravitational 
field). 

Then, we can rewrite (3.3) as: 

                                                 
* Throughout the present work, “int.” denotes a physically detectable fundamental interaction, 

which can be operationally defined by means of a phenomenological energy-dependent metric of de-
formed-minkowskian type. 
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and therefore, when the particle is subjected only to gravitational interaction, it 
is 
 δgrav. = 0 (3.6) 

In the case of the gravitational metric (2.14)-(2.15), we have 
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Therefore, for i = 3, Eq.(2.4) yields, for the gravitational energy of a particle 
moving along the z-axis (v3 = v): 
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with non-relativistic limit (cfr. Eq.(2.7)) 
 2

,grav NR gE m c=  (3.9) 

namely, the gravitational energy takes its standard, special-relativistic values. 
This means that the special characterization (corresponding to the choice 

i = 3) of Eqs.(2.4) and (2.7) within the framework of DSR relates the gravita-
tional interaction with SR, which is—as well known—based on the electro-
magnetic interaction in its Minkowskian form. 

4. The electron as a fundamental particle and its “geo-
metrical” mass 

We now consider E the threshold energy of the gravitational interaction: 
 E = E0,grav (4.1) 
where E0,grav is the limit value under which the metric ημν,grav (E) becomes 
Minkowskian (at least in its known components). Indeed, from Eqs. (2.14), 
(2.15) it follows that: 
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Notice that at the energy E = E0,grav the electromagnetic metric (2.8),(2.9) 
is Minkowskian, too (because E0,grav >E0,e.m.). 

On the basis of the previous considerations, it seems reasonable to assume 
that the physical object (particle) p with a rest energy (i.e., gravitational mass) 
just equal to the threshold energy E0,grav, namely 
 E0,grav = mg,pc2, (4.3) 
must play a fundamental role for either e.m. and gravitational interaction. We 
can, e.g., hypothesize that p corresponds to the lightest mass eigenstate which 
experiences both force fields (i.e., from a quantum viewpoint, coupling to the 
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respective interaction carriers, the photon and the graviton). As a consequence, 
p must be intrinsically stable, due to the impossibility of its decay into lighter 
mass eigenstates, even when the a particle is subject to weak interaction (i.e., it 
couples to all gauge bosons of the Glashow-Weinberg-Salam group 
SU(2) × U(1), not only to its electromagnetic charge sector). 

Since, as we have seen, for E = E0,grav the electromagnetic metric is Min-
kowskian, too, it is natural to assume, for p: 
 min,p,e.m. = min,p, (4.4) 
namely its inertial mass is that measured with respect to the electromagnetic 
metric. 

Then, due to the Equivalence Principle (see eq. (3.4)), the mass of p is 
characterized by 
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Therefore, for this fundamental particle the LLI breaking factor (3.3) of the 
e.m. interaction becomes: 
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Substituting (4.3) in (4.6) yields: 
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Eq.(4.7) allows us to evaluate the inertial mass of p from the knowledge of the 
electromagnetic LLI breaking parameter δe.m. and the threshold energy E0,grav of 
the gravitational metric. 

Due to Eq.(3.1), we can relate the lowest limit to the LLI breaking factor 
of electromagnetic interaction, Eq.(3.3) (determined by the coil-charge experi-
ment), with δe.m as follows: 
 δ = 1 – δe.m. ≅ 4 × 10–11 (4.8) 
Then, inserting the value (2.16) for E0,grav

* and (4.8) in (4.7), we get 
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(with min,e the electron mass) where the ≥ is due to the fact that in general the 
LLI breaking factor constitutes an upper limit (i.e., it sets the scale below which 
a violation of LLI is expected). If experiment [25] does indeed provide evi-
dence for a LLI breakdown (as seems the case, although further confirmation is 
needed), eq. (4.9) yields min,p = min,e. We find therefore the amazing result that 
the fundamental particle p is nothing but the electron e– (or its antiparticle 

                                                 
* Recall that the value of E0,grav was determined by fitting the experimental data on the slowing 

down of clocks in the Earth gravitational field (20). See ref.[6]. 
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e+*). The electron is indeed the lightest massive lepton (pointlike, non-
composite particle) with electric charge, and therefore subjected to gravita-
tional, electromagnetic and weak interactions, but unable to weakly decay due 
to its small mass. Consequently, e– (e+) shares all the properties we required for 
the particle p, whereby it plays a fundamental role for gravitational and elec-
tromagnetic interactions. 

5. Mass relativity in DSR 
The considerations carried out in the previous Sections therefore relate the 
electron mass to the (local) breakdown of Lorentz invariance. Its mass would 
then be a measure of the deviation of the metric from Minkowskian. The mini-
mum measured mass of a particle would be related to the minimum possible 
metric deviation compatible with its interactions. 

This point can be reinforced by the following argument. 
The maximum causal velocity uG  defined by Eq.(2.3) can be interpreted, 

from a physical standpoint, as the speed of the quanta of the interaction locally 
(and phenomenologically) described in terms of a deformed Minkowski space. 
Since these quanta are associated with lightlike world-lines in 4M� , they must 
be zero-mass particles (with respect to the interaction considered), by analogy 
with photons (with respect to the e.m. interaction) in the usual SR. 

Let us clarify the latter statement. The carriers of a given interaction 
propagating with the speed uG  typical of that interaction are actually expected 
to be strictly massless only inside the space whose metric is determined by the 
interaction considered. A priori, nothing prevents such “deformed photons” 
from acquiring a non-vanishing mass in a deformed Minkowski space related 
to a different interaction. 

This might be the case of the massive bosons W+, W– and Z0, carriers of 
the weak interaction. They would therefore be massless in the space 

4M� (ηweak(E)) related to the weak interaction, but would acquire a mass when 
considered in the standard Minkowski space M of SR (that, as already stressed, 
is strictly connected with the electromagnetic interaction governing the opera-
tion of the measuring devices). In this framework, therefore, it is not necessary 
to postulate a “symmetry breaking” mechanism (like the Goldstone mechanism 
in gauge theories) to allow particles to acquire mass. On the contrary, if meas-
uring devices could be built based on interactions other than e.m., the photon 
might acquire a mass with respect to a non-electromagnetic background. 

Mass itself would therefore assume a relative nature, related not only to 
the interaction concerned, but also to the metric background in which the en-
ergy of the physical system is measured. This can be seen if one considers that 

                                                 
* Of course, this last statement holds strictly only if the CPT theorem maintains its validity in the 

DSR framework, too. Although this problem has not yet been addressed in general on a formal basis, we 
can state that it holds true in the case we considered, since we assumed that the energy value is 
E = E0,grav corresponding to the Minkowskian form of both the electromagnetic and gravitational met-
rics. 
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in general, for relativistic particles, mass is the invariant norm of 4-momentum, 
and what is usually measured is not the value of an invariant, but the related 
energy. 

6. Conclusions 
The formalism of DSR describes—among others things—in geometrical terms 
(via energy-dependent deformation of the Minkowski metric) the breakdown of 
Lorentz invariance at the local level (parametrized by the LLI breaking factor 
δint). We have shown that within DSR it is possible—on the basis of a simple 
and plausible assumption—to evaluate the inertial mass of the electron e– (and 
therefore of its antiparticle, the positron e+) by exploiting the expression of the 
relativistic energy in the deformed Minkowski space 

0
4 ( )

E R
M E +∈
� , the explicit 

form of the phenomenological metric describing the gravitational interaction 
(in particular its threshold energy), and the LLI breaking parameter for the 
electromagnetic interaction δe.m.. 

Therefore, the inertial properties of one of the fundamental constituents of 
matter and the Universe find a “geometrical” interpretation in the context of 
DSR, when local violations of standard Lorentz invariance are admitted. 

We have also put forward the idea of a relativity of mass, namely the pos-
sible dependence of the mass of a particle on the metric background where 
mass measurements are carried out. This could constitute a possible alternative 
mechanism of mass generation to those based on symmetry breakdown in 
Relativistic Quantum Theory. 
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On the Space-Vortex Structure 
of the Electron 

Paramahamsa Tewari* 

1. Introduction 
It was Rene Descartes, the French Mathematician and Philosopher who, per-
haps for the first time in a scientific sense, assigned a reality to the medium of 
space as a property-less fluid-entity, already known at that time as ether. Ac-
cording to Descartes, large cosmic ether vortices existed throughout the uni-
verse. One such vortex carried the planets around the sun, and countless 
smaller vortices aggregated into different sizes of universal matter, filling the 
whole of space. He explained gravity by the pressure and impact of ether on 
bodies; and framed the principles of the inertial tendencies of matter for 
straight line motion based on the property of the fluidity of a space-substratum 
filled with ether vortices. The transmission of the then known magnetic forces 
and the force of gravity between the earth and the planetary bodies found ex-
planations in Cartesian philosophy with physical contacts between the interact-
ing entities mediated by the intervening ether. The theory of Descartes at that 
time was the most convincing natural philosophy and was based on a single 
dynamic ether as the only reality of the universe. The theory remained in ac-
ceptance for almost a century after publication of Newton’s Principia. 

Newton’s laws of motion took into account the principle of inertia for 
straight line motion as conceived by Descartes [1], and Galileo’s experimental 
discoveries on freely falling bodies and their motion on inclined planes; but 
ether was not invoked to explain the properties of mass, inertia (which were in-
troduced in Newton’s laws of motion) and the force of gravity. Thus the me-
dium of space, except for its utility as a continuous fluid-substratum for the 
transmission of light waves, was again made inert and inactive for transmission 
of forces; and this led to the reintroduction of the principle of “action at a dis-
tance.” Based on this principle, R. G. Boscovich (1711-87) tried to explain all 
physical effects and, further, Coulomb and Ampère invoked it in explaining the 
mutual action of forces between charged bodies and electric currents. In con-
trast, Faraday’s researches led him to the conclusion that electromagnetic in-
duction cannot take place without the intervening medium (field). Faraday in-
troduced the concept of continuously varying electric and magnetic fields, sig-
nifying that space is a continuous substratum and “action at a distance” is not 
the basic principle. He also suggested that an atom could be a structure of 
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fields of forces—electric, magnetic, and gravitational, existing around its cen-
tral point. On the existence of ether, Faraday’s belief was that it may have its 
utility in other physical effects, in addition to providing a medium for transmis-
sion of light. Based on Faraday’s concepts, Maxwell wrote equations using hy-
drodynamics to model ether, postulating that it was as an incompressible fluid. 
Helmholtz conceived the ether vortex filament as electric current, and 
W. Thomson believed [2] that ‘the magnetic energy is the kinetic energy of a 
medium occupying the whole space, and that electric energy is the energy of 
strain of the same medium.’ Atomic structure as a vortex motion was also pro-
posed by Thomson and others, and after the electron’s discovery (1897), Lar-
mor concluded that the electron is a structure in the ether and that all matter 
consisted of electrons only. 

Serious problems arose (1905) with the concepts of the vortex structure of 
atoms/electrons in an incompressible fluid. One problem was that of the dissi-
pation of vortex motion, since the streamlines in a vortex may tend to dilate 
outward (W. Thomson). Another problem pertained to the difficulty of the 
transmission of an electromagnetic field in this fluid at the enormous speed of 
light, for which, if its properties are considered akin to matter, the elasticity 
should be near to that of steel! While these difficulties were yet to be over-
come, Einstein’s Theory of Relativity (1905), proposed around the same time, 
postulated the medium of space as an empty extension, which meant no point of 
space had a velocity-vector (or “velocity field”), thus making the very exis-
tence of ether superfluous. The space-vortex structure of the electron, based on 
this writer’s works [3], and described in this paper, provides solutions to both 
the above problems. The high elasticity required for the fluid-ether, as pointed 
out above, is avoided by postulating it as a nonmaterial and incompressible 
fluid devoid of any known property of matter, such as mass, density, discrete-
ness, viscosity, elasticity, or compressibility, etc. Further, if the properties of 
“mass” and “charge” of an electron must be derived from the first principles 
proposed by Descartes, Faraday, Maxwell, and Thompson, then a massless and 
chargeless fluid that, as a vortex, can form the structure of an electron, must be 
assumed. That the proof of this assumption—that the universal substratum of 
space with nonmaterial* properties has real existence—is provided by deriving 
the basic properties of the electron (mass, charge, inertia, gravity, locality, etc.) 
from the space† vortex structure, and by explaining its behaviour in physical as 
well as quantitative terms as experimentally observed. The other problem, that 
of the outward dissipation of the vortex motion, is solved by introducing a dis-
continuity in the energy-distribution at the vortex center, as discussed later. 

                                                 
* “Nonmaterial” signifies a massless, densityless, incompressible, non-viscous and continuous fluid. 
† The absolute vacuum with non-material properties is termed as “Space.”  
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2. Postulates 
1. The medium of space, throughout the universe, is an eternally existing, 

nonmaterial, continuous, isotropic fluid substratum. 
2. The medium of space has a limiting flow speed equal to the speed of 

light relative to the absolute vacuum, and a limiting angular velocity, 
when in a state of circulating motion. 

3. The medium of universal space is eternal and endowed with motion. 

3. Breakdown of fluid space 
The creation of an electron requires a breakdown of the flow of the fluid me-
dium of space (hereafter referred to as “space”). Fig. 1 shows an irrotational 
circular vortex of space with concentric streamlines. Consider an element of 
space of volume dAdr, as shown, on which a tangential velocity field u is act-
ing. If this vortex pertains to a viscous fluid of density ρ, the mass of the ele-
ment will be: dm = ρdAdr. There will be a pressure differential on the two sur-
faces of the element as shown. The two equal and opposite forces acting on the 
element will be: (a) an inwardly directed, radial, net pressure force and (b) a 
centrifugal force, giving the relation: 
Force = net pressure force = centrifugal force = dpdA  

= dm×u2/r = (ρdA dr)u2/r, from which: 

 
( )
( )

2AForce
A

dpd u
dm ρd dr r

= =  (1) 

In an irrotational circular vortex, it can be shown that the velocity of a space-
point at distance r from the vortex center is given by: 
 ur = constant (2) 

When a vortex of massless space is considered, there is neither inward 
force (on the element) due to the pressure-differential, nor outward centrifugal 
force, because the property of mass is common to the origin of both these 
forces. On a circular streamline, and at each of its points, the velocity field u 

creates a radial outward ac-
celeration field u2/r that, act-
ing simultaneously on dia-
metrically opposite points, 
tends to create a tearing ac-
tion to split open the con-
tinuous space. If the speed of 
the space-circulation reaches 
the limiting speed c, which is 
the speed of light in the ab-
solute vacuum, and the ve-
locity-field gradient around 
the center of the vortex be-
comes the postulated limit-



210 Paramahamsa Tewari 

 

ing angular rotation ω, the space breaks down, creating a spherical void 
(Fig. 2), which is defined as a field-less, energy-less and space-less volume of 
nothingness at the vortex center. The radius of the void created follows the re-
lation, as determined by the ratio: 
 eω c r=  (3) 

4. Stability of the void 
Fig. 3 shows a diametrical cross section of the spherical void by the plane Y-Z. 
The circle C rotating around the Y-axis traces a sphere. The point Pz, at the in-
tersection of C and the Z-axis, will have a tangential velocity c (down the pa-
per) the velocity at which the flow of the fluid-space breaks down. The radius 
re of C, from (2), is determined by the ratio c/ω. Consider a point P at the circle 
C that has the Y-coordinate, resinθ: it will have a tangential velocity ωresinθ 
(down the paper at P) provided P too has the same angular velocity ω similar to 
Pz. The velocity gradient at Pz is c/re, which is also the velocity gradient at P, 
that is, ωresinθ/resinθ, or ω. 

Thus, though the tangential velocity of space varies from zero at Py (lo-
cated at the axis, Fig. 3) to the maximum value c at Pz in the diametrical plane, 
the velocity gradient for all the in-between points remains constant at ω (Postu-
late 2). Under these considerations the geometry of the void created at the vor-
tex center due to the breakdown of the flow of space is concluded to be spheri-
cal. It is shown below that the void is dynamically stable. The creation of the 
void reverses the direction of the outward acceleration field* (Eq.1) that created 
the void; because the void (enclosed within a sphere, here referred as the inter-
face) is an empty volume without any “circulating space” or “energy,” it is now 
at zero potential relative to space surrounding it. Therefore, the acceleration 
field in Fig. 2 is shown inward. As described above, ω is the limiting velocity 
gradient c/re at the point Pz just prior to the creation of the void. At each point 
of the interface circle cut by a diametrical plane at right angles to the Y-Z plane 
(Fig. 3), the tangential velocity c produces maximum radial and inward accel-
eration, c2/re. 
                                                 

* The acceleration of fluid space at a point is termed “acceleration field.”  
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The acceleration field at P is (ωresinθ)2/resinθ along resinθ. Although the 
interface is constituted of spinning fluid-space, due to the constancy of ω on 
each of its points, it rotates like a surface of a rigid spherical shell of negligible 
wall thickness. The stability of the void is due to the following two factors. 
Consider the circular section of the interface with the diametrical plane (Fig.2). 
The radial velocity gradient (ω) is c/re. If the void shrinks to a smaller radius, 
the value of ω increases proportionately; which is not possible according to 
Postulate 2; the void thus expands back to its original size. In the event the void 
tends to grow to a larger size, the inward acceleration field c2/re opposes this 
increase and any increase in re decreases the velocity gradient ω to a lower 
value, which is no longer sufficient to sustain the void. The sphere of the void 
is thus reduced to its original size. The other factor is the property of the non-
viscosity of space, which maintains the space-vortex eternally, except for its 
annihilation on meeting a similar vortex with an oppositely oriented velocity 
field (discussed later). Further, the energy-less-void being a region of zero po-
tential, the inward acceleration field c2/re on the interface prevents dilation of 
the streamlines, thereby, preventing dissipation of the space-circulation away 
from the interface. Thus, the void maintains its dynamic stability—its volume 
being regulated due to the constancy of ω and, consequently, the constancy of c 
and re, dictated by the absolute* properties of the medium of space. 

5. Fundamental particles of matter 
If there is only one fundamental particle of matter, it is inconceivable that the 
universe has different kinds of “spaces” or many structures with varying basic 
properties. Hence, it is postulated that the most basic property of the universal 
medium of space is expressed by a single universal constant ω that limits its 
angular rotation and leads to the creation of a fundamental stable vortex. While 
the void of a definite volume is enclosed within the space-vortex, the vortex it-
self extends throughout the whole universal-space through its velocity field†. 
The space-vortex structure with a fixed volume of dynamically stable void at 
its center is defined as the fundamental particle of matter. The properties of 
“electric charge” and “mass” of the fundamental particle, and the “energy 
fields” associated with its structure are derived in the following pages. 

6. Generation of fields 
The space in circulation at speed c within the volume of the spherical void 
prior to its creation is, qualitatively, the basic state of energy‡. At the instant of 
the creation of the void, this energy is pushed out from within the void, and 
distributed in continuous space as continuously varying gravity and electro-

                                                 
* Properties of space, being non-material in nature, are defined to be absolute; unaffected by various 

conditions of temperature and pressure as applicable to material media. 
† The motion of space leads to the generation of “the velocity field.” 
‡ The quantitative definition of energy is given later.  
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static fields. The fields, so created, emanating from the interface of the funda-
mental particle, become integral with the whole of universal space. On account 
of the property of the non-viscosity of space, the void enclosed within the dy-
namically stable interface at the center of the vortex, and the above fields exist 
eternally without any loss of strength. The properties of the fundamental parti-
cle described above identify it as the electron itself. 

7. Unit electric charge 
Electric charge is the effect of the space-circulation produced on the interface 
of a fundamental particle of matter. It is derived as follows. Refer to Fig. 3. 
Consider an elemental surface on the interface, which has an area: dA = 2π re 
sinθ redθ. The tangential velocity of space at each point of the elemental sur-
face is ωresinθ. The electric charge on the elemental surface is defined from 
first principles as the surface integral of the tangential velocity of space on 
each point of the surface: dq = 2πresinθredθωresinθ. Substituting from (2), 
ωre = c, in the above equation: dq = 2πcre

2sin2θdθ. Integrating for the total 
electric charge qe, varying θ from 0 to π: 
 ( )2 2 22 sin 4 4e e eq πcr θdθ πr cπ= =  (4) 
The surface integral of the tangential space velocity on the interface is defined 
as the unit of electrical charge of the fundamental particle of matter. The di-
mensions of electric charge from (4) are: qe = L3/T. In CGSE system of units: 
 3cm s CGSE unit= −  (5) 
Substituting the experimentally determined value of the electric charge of an 
electron (4.8 × 10–10 CGSE) and the speed of light in absolute vacuum 
(3 × 1010 cm/s) in (4), and using the relationship (5), the radius of the interface 
enclosing the void is calculated as re = 4 × 10–11 cm. A comparison with the 
classical electron radius, which in modern textbooks is shown as 2.82 × 10–13 
cm, reveals that re should be about 142 times smaller. However, the following 
quote supports the results obtained from (4). “There are several lengths that 
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might aspire to be characteristic of the dimensions of the electron. If we pro-
ceed from modern theoretical electrodynamics, which has been established bet-
ter than any other field theory, the conclusion seems to be that the electron has 
enormous dimensions, not 10–13 cm, as expected from classical physics, but 10–11 

cm (a hundred times greater!).” [4] This value of the electron radius (10–11cm), 
and its closeness with the radius of the spherical void derived above from Eq.4, 
suggests that the “fundamental particle of matter” described above is the elec-
tron—already discovered by the close of the 19th century. An electron moving 
away from an observer (electron axis coinciding with the line of motion) is 
seen as a positron by another observer whom this electron is approaching. Fig. 
4 shows, qualitatively, attractive and repulsive forces between these particles 
through interaction of their velocity fields, while quantitative relationships fol-
low. 

In (a) of Fig. 4, the velocity-field u between particles is increased due to 
the superposition of the fields. From (2), an increase in u results in a propor-
tionate decrease of r, and hence the particles are brought closer by an attractive 
force between them. In (b) of Fig. 4, due to the decrease of the velocity field 
between the particles, r has to increase proportionately, and this causes a repul-
sive force between similar particles. Quantitative relationships are derived in a 
later section. 

 

8. Fundamental mass 
The property of mass in the fundamental particle of matter (electron) arises due 
to the breakdown of space circulation at the center of the electron, and conse-
quent creation of a dynamically stable spherical void associated with gravita-
tional as well as electrostatic fields in space. The derivation of the mass of the 
electron from the vortex structure is as follows. (Refer to Fig. 3.) Consider an 
element of void volume, dV, within the spherical interface: dV = 
(πre

2sin2θ)redθ = πre
3sin2θdθ. The tangential velocity of space acting at the in-

terface of this element is ωresinθ. The physical process of creation of mass, dm, 
of this element is due to volume dV of the fluid space being pushed out at the 
time of void creation at the speed ω resinθ tangentially through the interface. 
The mass of the elemental void volume is defined from first postulates as 
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dm = dV(ωresinθ) = dV(csinθ). Substituting the value of dV dm = 
(πre

3sin2θdθ)ωresinθ = (4π/3)re
3c. Integrating for the total mass me, varying θ 

from 0 to π: 
 ( ) 34 3e em π r c=  (6) 

 Fundamental mass = Fundamental void volume × c (7) 
The volume-integral of space-circulation velocity within the void, at the instant 
of its creation, is the mass of the fundamental unit of matter (electron). A dis-
tinction between rest mass and relativistic mass is not made here, as explained. 
It was earlier shown that the void at the electron center is dynamically stable 
with radius re and space circulation c. This leads to the creation of only one 
size of stable void. Therefore all the particles of matter, nuclei and atoms will 
have their masses in exact multiples of electron mass (analyzed further below). 
The mass of the electron during motion relative to space will remain constant 
up to speed c because the fluid-space ahead of a moving electron can be dis-
placed up to a maximum speed c only. Thus the volume of the void remains 
constant; therefore electron mass, which is proportional to the volume of the 
void (7), also remains constant. The relativistic increase in electron mass at 
speeds closer to light speed, as experimentally observed, is due to the reaction 
of the fluid space against the central interface in electron structure resulting 
from production of an additional acceleration field, discussed elsewhere [3]. 
The proportionality of mass to the limiting velocity field c and also to the vol-
ume of the central void (6) shows that mass is not energy. “Mass is propor-
tional to energy” is a more accurate statement. 

9. Dimensions and the unit of mass 
The dimensions of mass from Eq.6 are: me = L4/T. Therefore, in the CGS sys-
tem of units, the unit of mass is: cm4/s. With the use of the experimentally de-
termined mass of the electron, the computed mass of a molecule of water, and 
the known numbers of molecules in one cm3 of water; a relationship between 
“cm4/s” and “gram” is approximately determined below. From the charge 
equation (4), the electron radius is: 

 ( )
1

22
e er q π c= . (8) 

The electron charge is experimentally determined as 4.8 × 10–10 CGSE. Ex-
pressing CGSE as cm3/s from (5), qe = 4.8 × 10–10 cm3/s, and substituting this 
value of electron charge and the value of c in (8), we obtain 

 
( )
( )

1 210 3
11

1 22 10

4 8 10 cm s
4 10 cm

3 10 cm s

/

e /

. /
r

π /

−
−

×
= = ×

×
 (9) 

With the above radius of the interface (void), its volume is Ve=(4π/3)(4×10–11 

cm)3 = 2.67 × 10–31cm3. The mass of the electron, experimentally determined, 
is 9.11 × 10–28g. Although the concept of density in its structure is not applica-
ble because of the central void, the ratio of the electron mass and the volume of 
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its void will be indicative of the proportionality of the “quantity of mass” 
within a “unit volume” of void. From above, this ratio, me/Ve is 9.11 × 10–

28g/2.67 × 10–31cm3 = 3.42 × 103g/cm3. One molecule of water is about 
2.88 × 10–23g. Since the mass of a water molecule has to be an exact multiple 
of the electron mass, the ratio, me/Ve, calculated above for the electron, will 
also be applicable to the water molecule. From this ratio, the void volume in 
the water molecule is VH = (2.88 × 10–23g)/(3.42 × 103g/cm3) = 8.4 × 10–27cm3. 
One cm3 of water has 3.34 × 1022 molecules, the void-volume in one cm3 of 
water can be calculated as (3.34 × 1022)(8.4 × 10–27cm3) = 2.8 × 10–4cm3. From 
the mass-equation (6), and mass and void-volume relationship (7), the equiva-
lent mass of one cm3 of water due to its void content is (2.8 × 10–

4cm3)(3 × 1010cm/s) = 8.4 × 106cm4/s. Since the mass of one cm3 of water is 
one gram, from above, we have the relationship: 
 6 4gram 8 4 10 cm s. /= ×  (10) 
Alternatively, the above relationship can be found through a simpler method as 
follows. Substituting the values of electron radius re from (9) and the experi-
mentally determined mass in mass equation (6), we have 9.11 × 10–28 
g = (4π/3) (4 × 10–11 cm)3 (3 × 1010cm/s). From which: 
 6 4gram 8 8 10 cm s. /= ×  (11) 
The results obtained in (10) and (11) are close; from the average of both: 
 6 4gram 8 6 10 cm s. /≈ ×  (12) 

10. Energy in electron structure 
Linear and accelerating motion of space are the basic states of energy. The cir-
culation of space, forming the electron’s interface and spreading throughout the 
universal space, is the structural energy of the electron; it is computed as fol-
lows. Refer to Fig.3. Consider, within the interface, an elemental “disc of void” 
of volume dV = (πre

2sin2θ)redθ = πre
3sin2θdθ, which is created due to the dis-

placement of space through the interface at the tangential velocity, ωresinθ, or, 
csinθ (since ωre = c), at the instant of the electron’s creation. The mass of this 
disc element, as defined in (7) is: 
 ( ) ( )3 2 3 3sin sin sin sine edm dV c θ πr θdθ c θ πcr θdθ= = =  (13) 

The disc element has an area at the interface equal to (2πresinθ)redθ; and has 
an inward radial acceleration field at each point on it such that af = ω2 
re

2sin2θ/resinθ = c2sinθ/re. Consider the process opposite to void creation: the 
case of collapse of the interface to zero radius (as happens during annihilation, 
which is discussed later), when each point at the interface of the elemental disc 
will be displaced along the radius resinθ with the above inward acceleration 
field acting on it. The energy released due to collapse of the void-disc-element 
is defined as dE = dm·af (field displacement) = (πcre

3sin3θdθ)(c2sinθ/re)resinθ = 
πc3re

3sin5θdθ. Integrating, varying θ from 0 to π, to obtain the total energy re-
leased due to the collapse of the spherical void yields the creation energy 
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 ( )( ) ( )3 2 24 5 4 3 4 5e eE πr c c m c= =  (14) 

which is obtained when the mass-equation (6), is used and (4πre
3c/3) is substi-

tuted for me. Here we see an equation discovered by Einstein (and others). 
However, the physical reason why the speed of light c appears in the mass-
energy equation is now explained. It signifies the actual maximum possible 
space-circulation in the structure of fundamental matter, even when it is sta-
tionary relative to the medium of space. 

11. Angular momentum of electron vortex 
The intrinsic angular momentum of the spinning interface of the electron is 
found as follows. Refer to Fig. 3. Consider an element of void-volume dV = 
πre

2sin2θredθ, which, at the interface, has the tangential velocity of space, 
ωresinθ. Its mass from (6) will be dm = dVωresinθ = (πre

3sin2θdθ)csinθ = 
πcre

3sin3θdθ and angular momentum, dL = dm(ωresinθ)resinθ = 
(πcre

3sin3θdθ)cresin2θ = πc2re
4sin5θdθ. Integrating, varying θ from 0 to π, to 

obtain the angular momentum for the whole interface, we obtain 
 ( ) ( ) ( )2 4 5 3sin 4 5 4 3 4 5e e e e eL πc r θdθ π r c cr m cr⎡ ⎤= = =⎣ ⎦  (15) 

in which me has been substituted for the quantity within the bracket as per the 
mass-equation (6). 
The intrinsic angular momentum of the electron is directly proportional to its 
mass, radius, and the speed of light. 

12. Spin magnetic moment 
Refer to Fig.3. Consider an infinitesimal ring-element of charge dq = dAω 
resinθ. The Magnetic moment due to this charge element is defined as dμ = 
dq(ωresinθ)resinθ = (2πresinθredθ)(ωresinθ)(ωresinθ)resinθ = 2πc2re

3sin4θ dθ. 
Integrating, varying θ from 0 to π, to obtain total magnetic moment of the elec-
tron, we obtain 
 ( )( ) ( )( )( ) ( )2 3 22 3 8 3 4 4 4 3 4e e e e eμ πc r π πr c cr q crπ= = =  (16) 

The magnetic moment of electron is directly proportional to its charge, radius, 
and speed of light. 

13. Electrostatic field energy 
An expression for the electrostatic field of the electron at a point in space is de-
rived below from the vortex structure of the electron. Refer to Fig. 5. Consider 
a sphere of radius r, cut by a plane parallel to the X-Z plane containing a circle 
C of radius p1y1. The radius r (op1) passes through the interface of the electron 
at point p, and meets C at p1. In the diametrical plane X-Z of the interface 
(void), the point z at the interface will have a tangential velocity of space ωre, 
that is c (down the paper); the tangential velocity of space at the point z1 (in the 
plane X-Z) down the paper, from (2), will be cre/r. The velocity of space u2, at 
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p, tangential to the circle C1, is ω resinθ, whereas, at p1 tangential to the circle 
C, the velocity of space from (2) is u1 = (ωresinθ)resinθ/rsinθ = cresinθ/r. The 
inward acceleration field at p1, along p1 y1 is: 

 
( )2 2 22

1
3

sin sin
sin sin

e e
f

cr θ/r c r θua
r θ r θ r

= = =  (17) 

The component of af along the radius op1 from (17) is ar = afsinθ = 
c2re

2sin2θ/r3. The electric field E at p1 along the radius op1 is defined to have 
the following relationship with the radial space acceleration field ar derived 
above: 

 
2 2 2

3
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2
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2
ec r θ

E
r

−
=  (18) 

which is an inward field created by the electron (also by a positron, if the same 
is considered) with the minimum value of r equal to re, because the void is 
field-less. 

The magnitude of E at the interface, along the Y-axis, for θ = 0, is zero; 
and in the transverse plane (Etr) for θ = π/2, at the point z1 distant r from the 
origin is 
 2 2 2E 2tr ec r r= −  (19) 
The maximum value of E is at the interface in the transverse plane X-Z for 
θ = π/2, and r = re 

 2
max 2E c= −  (20) 

The electric potential φ at z1 from (19) is given by dφ/dr = Etr , from which, 
dφ = Etrdr = (c2re

2/2r2)dr, and φ = –c2re
2/2r. In an irrotational vortex, from (2), 

cre = ur. Substituting this in the above equation, we have, 

 
( )

2 2
e ecr ur cr u

φ
r

−
= =  (21) 

From (21) it is seen that in a 
space vortex, the velocity field 
u, is the most fundamental field 
in the universe, which creates 
the electrostatic potential. At-
traction between an electron and 
a positron (Fig.4a) can be calcu-
lated by using Coulomb’s equa-
tion for interaction between 
charges with the concept of the 
electric field derived above, and 
also explained through superpo-
sition of velocity fields as stated 
earlier. Coulomb’s law, which 
was experimentally determined, 
can be derived from (19) as fol-
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lows. Multiplying and dividing the right-hand side of (19) by (π/4)4π and rear-
ranging terms: Etr = 
–c2re

2(π/4)4π/2r2 (π/4)4π = –2c[4πre
2cπ/4]/π4πr2. Replacing the quantity in the 

bracket by qe from the charge-equation (4), we have, 

 
( )

2

2 4 e
tr

/π c/ π q
E

r
−

=  (22) 

The above equation shows that the electric field, that is, “force per unit 
charge,” is directly proportional to the charge, and inversely proportional to the 
square of the distance from the charge, in agreement with Coulomb’s law, and 
for spherically symmetric charge distribution is 

 
( )0

2

1 4 e/ πε q
E

r
=  (23) 

14. Dielectric constant, permeability constant, Gauss’ 
law 

Using equations (20, 23), and charge equation (4), we derive the dielectric con-
stant of the vacuum [3] as 

 0 2
πε
c

=  (24) 

The vacuum dielectric constant is inversely proportional to the speed of light. 
A check can be made for the above equation by substituting π/2c in (23) in 
place of є0, yielding E = 1/4π(π/2c)qe/r2 = (c/2π2)qe/r2. 

Expressing qe in CGSE and inserting the value of c, E = [(3 × 1010cm/s)/ 
2 × (3.14)2]4.8 × 10–10 CGSE/r2 = (0.73)CGSE/r2. Two CGSE unit charges, lo-
cated 1 cm apart, require that the above computed coefficient, 0.73, should be 
1; the difference is negligible. 

From Maxwell’s equation it follows that c = 1/(μ0є0)1/2, where μ0 is the 
permeability constant of the vacuum. (From this basic relationship it is possible 
to predict that light is an electromagnetic effect). When є0 is expressed in terms 
of c as derived in (24), the above equation becomes c = 1/(μ0π/2c)1/2; from 
which we have: 
 0 2μ cπ= . (25) 
It is seen that like the dielectric constant, the permeability constant of the vac-
uum is also inversely proportional to the speed of light. 

Using equation (18) for the electric field, charge equation (4), and rela-
tionship (24) for the dielectric constant, we derive Gauss’ law [3] as ФE = 
(–2/3)qe/є0. 

15. Electrostatic energy in electron vortex 
The electrostatic energy U in the velocity field of the electron vortex is calcu-
lated [3] from the electric field(18), the dielectric constant (24), and mass equa-
tion (6), as 
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 ( ) 210 eU m cπ=  (26) 
In the integral to compute the above energy U, the lower limit of the radius 
from the electron center is the interface radius re of the electron, not zero, as is 
the case with a point-charge, which would lead to infinite energy in its electro-
static field. The electrostatic energy (26) is less than the total electron creation 
energy in space derived in the mass-energy equation (14). The difference 
(about (1/2)mec2, given below) should appear as the electron’s gravitational en-
ergy in space. 

16. Gravitation 
Gravitational effects arise from the very structure of the electron. As a result of 
the creation of the spherical void at the electron center due to the limiting speed 
of space-circulation, universal space is gravitationally energized (Fig.6) 
through the transmission of gravitational potential, a process starting from the 
interface of the electron and proceeding outwards at speed c, the limiting speed 
for transmission of fields/potentials in space. The energy used to create each 
electron is retained in space as gravitational/electrostatic potential, there being 
no reduction in the overall content of the universal energy due to the creation 
of electrons. The creation of electron voids requires energy (14) of magnitude 
(4/5)mec2, out of which, from (27), (π/10)mec2 is distributed in space as electro-
static energy, whereas, the remainder, about (1/2)mec2, stays in space as gravi-
tational potential. As shown in the figure, the gravitational field, g, of the elec-
tron is derived [3] as 

 ( )
2

4 ek πc m
g

r
=  (27) 

in which k is a “constant of proportionality” with dimensions 1/T2, so that the 
dimensions of g from (27) are: L/T2. Since the electron is identified as the fun-
damental particle of matter, (27) is the equation of the gravity field applicable 
to all nuclei, atoms and matter in general. A gravitational constant for an atom 
of average atomic mass has been derived [3] from (27). 

17. The annihilation of electrons and positrons—the fun-
damental nature of light 

With the discovery of the positron (1932) a new phenomenon of the annihila-
tion of electrons and positrons was observed. During this process, the spherical 
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interfaces of the 
particles, under 
strong electrical 
attraction, are 
brought together 
and at a very 
close range, the 
particles super-
impose on each 
other; thus stop-

ping the oppositely directed space-circulations around their interfaces which 
leads to a collapse of their central voids. In this process mass vanishes and light 
is produced. It is evident that the void interiors within the interfaces of the 
electron and positron, being energy-less, cannot emit any kind of energy (such 
as photons). The energy (velocity and acceleration fields) in the vortex struc-
ture of these particles pervades the whole of universal space both before anni-
hilation; and following annihilation. Following the annihilation, the process in 
which the electromagnetic and gravitational potentials are reduced to zero, a 
single shell of light, seen as a pulse, initiates from the superimposed interfaces. 
(Fig.7). 

When the interfaces of the particles superimpose, there is only one spheri-
cal-void common to both particles; space flows radially at its maximum speed 
c into the void (Fig.7). The duration of collapse is Δt = re/c. During this period, 
a shell of radial width, Δtc, that is, (re/c)c = re, is formed, and transmitted out-
ward at speed c relative to space. Within the wavelength, the space points un-
dergo acceleration: c/(re/c), which is c2/re. (For light produced due to thermal 
radiation, acceleration of points within the wavelength is c2/λ, where λ is the 
wavelength [3]) The transmission of the shell is a process that de-energizes the 
space medium, erasing for all the time the gravitational and electrostatic poten-
tials that were created at the time of the creation of the now non-existent elec-
tron and positron. The spherical shell produced due to the dying of potentials, a 
process of de-energizing of the space substratum due to electron / positron an-
nihilation, is the fundamental phenomenon known as light. 

The wavelength of the annihilation light (Fig.7) is equal to the electron 
radius. The concept of frequency is not applicable to this light, with a single 
shell. In the event several annihilations take place at a point one after another 
without absolutely any time gap between the successive annihilations, the fre-
quency can be defined as the number of shells formed in unit time. Also, if the 
time for the formation of a single shell is Δt, then frequency f can be defined 
as: f = 1/Δt. This mathematical operation does not mean that the single-shell-
light has the property of frequency in the conventional definition of frequency 
(c = λf). The interrelationship between light and gravity and the derivation of 
the gravitational and Planck constants have been analyzed elsewhere [3]. 
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18. Magnetic fields 
The electron has an axis of rotation at right angles to the diametrical plane of 
its space vortex (Figs. 2, 3). The pattern of the circular magnetic field distribu-
tion observed around a current carrying conductor, though of a representative 
nature, gives an indication that the natural motion of an electron in an electric 
current flowing in a conductor is along the axis of its vortex rotation, because 
the streamlines of the fluid-space in the electron vortex are concentric with the 
electron axis (Fig.2). Given the similarity between the velocity-field in the 
space vortex of an electron and the magnetic field produced in a conductor due 
to its motion relative to space, the fundamental nature of the magnetic field as-
sociated with a moving electron can be determined [3]. In Fig. 8 an electron is 
shown moving linearly at uniform velocity v relative to space. It is seen that the 
direction of the maximum velocity field c at the interface is opposite to the 
magnetic field produced due to the electron’s motion. The analysis [3] shows 
that the magnetic field is an effect produced due to the reaction from the fluid 
space against the velocity field in the vortex on account of the electron’s mo-
tion relative to space. It has also been shown that a point on a circle of radius r 
concentric with the axis (Fig.8) in the electron vortex will have magnetic field; 
B = vre/r; which shows that B falls inversely to r. 

Given this relationship, the charge equation (4) and relationship (25), 
Ampere’s law can be derived [3]. Due to the opposite direction of the magnetic 
field vector compared to the spin-direction in the electron vortex (Fig. 8), two 
electrons in parallel motion in the same direction will magnetically attract, 
while, at the closest range (about 10–10 cm) they will electrically repel. 

19. Atomic Structure 
The limitation on the creation of only one size of stable-void in the space vor-
tex that produces stable fundamental mass and charge as basic units very much 
simplifies the theory of atomic structure with the electron as the fundamental 
particle of the atomic nucleus. It follows that all stable particles will possess 
mass in exact multiples of electron mass—there being no difference between 
rest-mass and relativistic mass. Further, no stable particle with mass less than 
electron mass can ever be found naturally or created through artificial means in 
laboratory. Unstable particles with masses different from the electron mass are 
presumed to be some intermediate stage in the formation of stable particles like 
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neutrons. Stable particles 
such as protons and alpha 
particles are enclosed in 
space-vortices that have 
the property of charge. 

The unstable parti-
cles, with charge, will also 
be enclosed within space 
vortices of varying 
strengths for the duration 
of their lifetime. A neutral 
particle, like a neutron, 

does not a overall space vortex around it and hence, without an electric charge, 
it remains neutral. All stable particles, neutral or charged, will have spin-axes 
of rotation. The charge of a particle, from the charge-equation, will be the sur-
face integral of the velocity field on its surface. An electron and a positron at 
closest possible range (about 10–10 cm) will undergo annihilation under electri-
cal attraction, unless, the particles are translating relative to space and, thereby, 
producing a magnetic force of repulsion between them (Sec. 14). 

Just as an electron is subjected to an “inward acceleration field” on its in-
terface, all charged particles and nuclei, with space-circulation around them, 
will have an “inward acceleration field” tending to crush the particles. This in-
ward force arises due to the existence of a void at the electron center, the vor-
tex structure, and space-circulation around charged particles and the nuclei of 
atoms. Based on the above guiding principles, arising from the space-vortex 
structure of the electron, its observed properties and behaviour, the possible 
structures of nuclear particles are described below. 

19.1 The primary unit 
In Fig.9 an assembly of two electrons and two positrons is shown. The velocity 
fields between the particles are unidirectional, but in the region external to the 
assembly (not shown in the figure), will be in opposition. Therefore, this as-
sembly (designated “primary unit”) will show overall electrical neutrality. The 
particles repel diagonally (Fr) due to similar charges, whereas, there is attrac-
tion between the adjacent particles (Fa) due to dissimilar charges. In addition, if 
the particles are also spinning around the center of their assembly, there will be 
a radial force, mev2/r, which will reinforce the diagonal electrostatic repulsive 
force Fr. If the component force, Fr cosθ, balances the attractive force Fa , the 
primary unit will be stable. Approximate computation [3] of the forces in the 
primary unit shows that if the assembly rotates at speed c, repulsive and attrac-
tive structural forces are nearly equal. 

19.2 Neutrons 
If a primary-unit is enclosed within a space vortex, it will be electrically 
charged and will be subjected to an inward acceleration field on the surface, 



 On the space-vortex structure of the electron 223 

 

thus making it a stable 
building block of matter. 
A neutron core can be as-
sembled with several such 
charged units, in a similar 
pattern as electrons and 
positrons assemble into a 
neutral primary-unit. For a 
spherical assembly of 
equal numbers of elec-

trons and positrons with a total of n particles, the radius is r = (n)1/3re. For a 
neutron, which should have 919 electrons and an equal number of positrons for 
overall neutrality with the superposition of their velocity fields, the radius is: 
 ( )1 31838 12/

n e er r r= ≈  (28) 
Calculations [3] show that electrical repulsive forces in this assembly are about 
two times less than the electrical attractive forces between the adjacent primary 
units. The neutron should therefore be a stable particle, but for the fact that it is 
known to have angular momentum; which signifies that it undergoes rotation. 

It is found that a neutron rotating around its axis at speed c at the periph-
ery (which will account for its maximum possible angular momentum), will not 
be stable; and therefore, its constituents (electron/positron) may be dislodged 
due to outward centrifugal force, and emitted outward. This explains beta-
decay, and shows why a neutron has a short half-life of only about 15 minutes. 

19.3 Protons and the hydrogen atom 
The proton structure contains a neutron enclosed within a space-vortex (Fig. 
10), which accounts for the charge of the proton and in addition, creates an in-
ward acceleration field. In the proton structure, the inward acceleration field on 
its core (neutron’s surface) makes the proton an ultra stable particle. Like the 
electron, the proton’s maximum velocity field is confined within the diametri-
cal plane at right angles to the axis of rotation. From (2), for an irrotational vor-
tex, ur is constant. Therefore, the maximum tangential velocity (up) of space at 
the surface of the proton’s core in the diametrical plane transverse to the axis of 
rotation is found from uprn = cre, where c is the tangential velocity at the inter-
face of electron of radius re. From this we obtain 
 12 12p e n e eu cr r cr r c= = =  (29) 

The electric charge of the proton due to up is computed from the relationship 
similar to the charge equation (4) as 
 ( ) ( ) ( ) ( )22 2 24 4 4 4 12 12 12p n p e eq πr u π r c π r cπ π= = =  (30) 

which is 12 times the electron charge. A hydrogen atom (Fig.11), which has a 
proton and an electron, is neutral because of cancellation of the magnetic mo-
ments as shown below. The orbiting electron is located at a distance that re-
duces its velocity field to the same value as at the surface of the proton core 



224 Paramahamsa Tewari 

 

cre = (c/12)r, where r is the distance of the electron center from the surface of 
the neutron; from this we have r = 12re, which is equal to rn from (28). Thus, 
the radius of the electron orbit is 2rn. The magnetic moment of the orbital elec-
tron is due to its intrinsic spin (16) and its orbital velocity vorb. The total of the 
magnetic moments is 

 
( ) ( )3 4 V 12 12 3 12V

2 4
e e e orb e e

e e e orb

/ q cr q r r cμ q r
+ + ⎡ ⎤⎛ ⎞= = +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (31) 

The intrinsic magnetic moment of the proton, from an expression similar to the 
electron (16) is μp = (3/4)[qp(c/12)12re]. Substituting, qp = 12qe, from (30), we 
have 
 ( ) ( )3 4 12 12 12 9p e e e eμ / q c/ r q cr= =⎡ ⎤⎣ ⎦  (32) 

Equating the magnetic moment of the electron (31) to the magnetic moment of 
the proton (32) in order to achieve an electrically neutral hydrogen atom, we 
obtain qere[(3c/4) + 12vorb] = 9qecre, which gives: vorb = 0.69c. In the hydrogen 
atom, the radius of the electron orbit is 24re, about 10–9 cm, and its orbital ve-
locity is 69% of light speed. With this high rotational speed, the orbital electron 
completes one orbit in a time of (2π)10–9cm/(0.69)3 × 1010 cm/s, that is, 
3 × 10–19s, providing an outer shield to the hydrogen atom with its spinning in-
terface that can not be penetrated. 

The binding force provided by the velocity fields of the oppositely spin-
ning vortices of the orbital electron and proton maintain the assembly with no 
energy loss from the system since the vortices are formed in non-viscous space. 

The Hydrogen nucleus (a neutron within a proton vortex) has an inward 
acceleration field of strength (c/12)2/12re, or (1/12)3c2/re. This inward field, 
which is (1/12)3 times less than the maximum possible field (c2/re) on the elec-
tron interface, makes it a highly stable particle, as stated before. In a similar 
manner, two protons and two anti-protons (with opposite direction relative to 
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the proton vortex), enclosed within an overall space-vortex, can assemble an 
alpha particle, a helium nucleus. When several alpha particles are assembled, 
with four in each unit (similar to the assembly of primary units in the neutron 
structure), and enclosed within an outer vortex, all nuclei of atomic mass 
higher than helium can be built. This process requires that nuclei should have 
equal numbers of neutrons and protons, which, however, is not the case. For 
example, the ratio of neutrons to protons in the Uranium nucleus is 1.586. This 
leads to the conclusion that, in addition to the alpha particles, neutrons are also 
independently present, as required by the atomic masses of the nuclei. The 
emission of alpha particles from radioactive nuclei provides solid proof of their 
existence within nuclei in an independent condition. The presence of electrons 
and positrons in nuclei is confirmed by beta particle radiation. For simplicity in 
the analysis of the stability of nuclear structure, we can assume that protons 
and neutrons exist independently in a dynamic assembly, and each proton ex-
erts a repulsive force on the rest of the protons in the nucleus which is enclosed 
within an outer space-vortex [3]. The space-vortex enclosing the nucleus cre-
ates an inward field acting on the nucleus and it has a maximum value in the 
diametrical plane at right angles to the axis of rotation of the nucleus; given by 
un

2/rn, where un is the tangential velocity of space at the nuclear surface in the 
diametrical plane, transverse to the axis of rotation, and rn is the nuclear radius. 
Since from (2), un varies inversely as rn, the inward acceleration field on the 
nucleus falls inversely as the cube of rn. The outward electrical repulsive forces 
within the nucleus trying to disrupt its structure (due to the presence of pro-
tons) fall inversely as the square of rn. Since the inward acceleration field falls 
faster, nuclei with more protons and a larger radius become radioactive. By 
equating the outward electrical force in the nucleus with the inward force it is 
concluded [3] that stable nuclei with protons more than 100 cannot exist in na-
ture. 

20. Interaction of orbital electrons in an atom with a 
wave-pulse (shell) of light 

With the nuclear structure described above, the nuclear radius of an average 
atom (120 times proton mass) is computed [3] as rn = 2.37 × 10–9cm. The 
maximum velocity field at the nuclear surface from (2) is un = 5 × 108cm/s. In 
the atomic vortex around the nucleus, this velocity field will fall off inversely 
with distance to v = 1.2 × 108cm/s at a radial distance of 10–8 cm, which is as-
sumed to be the orbital radius of the outermost electron. The orbital electron in 
the space vortex will be subjected to an inward acceleration field af = v2/orbital 
radius = (1.2 × 108cm/s)2/10–8cm = 1.44 × 1024 cm/s2. Suppose a light shell of 
wavelength λ, and an acceleration-field al, across the wavelength (directed to-
wards the source) meet the orbiting electron at an instant when both the above 
acceleration fields are in line. Since the direction of al is opposite to that of af, 
the two acceleration fields will nullify and the electron will be released from 
the vortex if al = af. As stated earlier, al = c2/λ. Substituting the values of the 
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acceleration fields, we have (3 × 1010cm/s)2/λ = 1.44 × 1024cm/s2, from which 
λ = 6.25 × 10–4cm, corresponding to a frequency of 0.48 × 1014 cycles/s. (For 
metallic sodium, the threshold frequency for the photoelectric effect is about 
5 × 1014sec–1). The orbital electron, moving with velocity v, will be released 
with the kinetic energy that it already possesses, E = (1/2)mev2 = (0.5 × 10–

28gm) (1.2 × 108cm/s)2 = 7.2 × 110–11 ergs. Experiments show that the kinetic 
energy of photoelectrons is about 8 × 10–11 ergs, very close to the above com-
puted value! Considering the approximate nature of the assumption made as to 
the electron’s orbital radius and computation of the nuclear radius for an atom 
of average mass, better results could not be expected. It is concluded that light 
(photons) does not impart energy to the photoelectron for its release. The ki-
netic energy of a released photoelectron is its own energy of motion in the 
space vortex of an atom. Light simply disturbs the stability of the forces under 
which an electron is stable in its orbit. 

Conclusion 
The medium of space in dynamic states creates matter and its associated fields. 
The properties of mass and charge, the gravitational, electromagnetic, and nu-
clear fields are produced from the most fundamental field, the velocity field, 
and unified in the electron structure. The property of inertia arises [3] due to 
the reaction from space on the central void in the electron’s vortex structure. 
The velocity of light relative to the space-medium is a common factor in all the 
basic universal constants so far experimentally determined. The electron is the 
fundamental particle of matter. 
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The structure of the electron is investigated and found to be the origin of the 
natural laws. The natural laws have been measured for hundreds of years but no 
one knew how Nature creates them. The origins had been proposed earlier by 
Clifford and Schrödinger as a Wave Structure of Matter (WSM), to explain 
natural laws. Einstein also wrote: “Physical objects are not in space, but these 
objects are spherically extended. In this way the concept of ‘empty space’ loses 
its meaning.” (Ideas and Opinions, Crown Paperbacks, 1954) 

Using the WSM quantitative origins have been found based on the wave struc-
ture of the electron described here. It is shown that the quantum wave medium is 
the single entity underlying electron structure and the laws. Two Principles are 
found describing the wave medium, enabling calculation of properties of parti-
cles and the laws. The predictive power of the WSM is shown by deriving the 
previously unknown physical origin of electron spin. The WSM has important 
implications for research, industry, and humans’ role in the universe. 

Part I - Introduction 
Einstein was once asked if he could understand the meaning of the enormous 
number of hadron particles being generated in giant accelerators. He replied, “I 
would rather know what an electron is.” Answering his question is the purpose 
of this article. At the same time, the reader will gain, in hindsight, an under-
standing of the deep meaning of his reply; not only his disinterest in accelera-
tors, but also because the forces of the electron extend to infinity, revealing re-
lationships of the universe and the natural laws which govern it. 
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1. Natural laws 
Our knowledge of science is based on the natural laws that describe the behav-
iour of particles. The laws are the rules for calculating electricity, gravity, rela-
tivity, quantum mechanics, and conservation of energy and momentum. The 
origins have been unknown. Now the origin of the natural laws is found to be a 
quantitative result of a Wave Structure of Matter (WSM). The basic concept is 
very simple: The ancient Greek notion of a point particle, still in use today, is 
replaced with a spherical wave structure, which had already been predicted by 
Clifford1 and Schrödinger2 long ago. Figure 1 shows the structure of an elec-
tron. It is an inward wave that converges to a center, spherically rotates creat-
ing ‘spin’ then becomes an outward diverging wave. Together they form a 
standing wave. The endless wave combinations are like the eight note musical 
scale that becomes the grand symphonies of Wagner and Beethoven. 

The rules of wave combination are of great importance to science because 
the rules and quantum spin determine the Atomic Table, that contains the var-
ied forms of matter: metals, crystals, semi-conductors, and the molecules of 
life. The deep understanding of basic physics that is revealed opens a door to 
broad fields of applied technology such as integrated circuits, medicine, and 
commercial energy. It reveals a universe of real quantum wave structures in a 
space medium that we live in but seldom are aware of. This medium is the ba-
sis of matter and the Universe because its properties underlie the wave proper-
ties. 

2. Space, Human senses and survival 
We don’t easily see the space wave medium because our survival as an animal 
species depended mostly on our ability to fight with other animals seeking 
food, and to compete for mates to produce children, not closely related to the 
quantum space medium. Our sensory mechanisms evolved to directly aid our 
survival, not to be aware of quantum waves. In our self-focused human per-
spective few of us are even aware of the wave medium in which we exist. For 
survival, it doesn’t matter what space is, or whether we can observe it—it ex-
ists unseen. This situation is much like the life of a fish, which cannot compre-
hend the existence of water because he is too deeply immersed in it. Like the 

Figure 1. The Electron. The electron 
is composed of spherical waves 
which converge to the center and 
reverse to become outward waves. 
The two waves form a standing 
wave whose peaks and nodes are 
like the layers of an onion. The wave 
amplitude is a scalar number like a 
quantum wave, not an e-m vector. 
The center is the apparent location 
of the electron. 
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fish, traditional scientists have tended to comprehend the universe in terms of 
their local experiences. 

Our misperceptions are revealed by biological evolution, which teaches 
that the quantum wave universe is not as helpful to survival of our personal 
genes as recognizing apples we can eat and avoiding tigers who want to eat us.. 
Thus it was not necessary that nature equip us to observe quantum waves, al-
though as will be seen below we do observe their presence and effects. Lacking 
direct personal experience of simple quantum waves, people chose to imagine 
that the electron is a discrete “particle,” like a bullet. Laboratory evidence does 
not support this human-oriented idea. Accordingly, belief must change from 
discrete particles to true quantum wave structure. 

Human perspective has another bias. We tend to see space as three rec-
tangular dimensions, one of which is the vertical gravity vector of Earth, plus 
two other vectors perpendicular to it, shaped like the houses we live in. But in 
the cosmos, the shape of the enormous universe is spherical whose important 
dimensions are inward and outward, the direction of waves in space. In the 
vast expanse of the real universe, gravity occurs so rarely, that its direction is 
inconsequential in the larger scheme of things, despite its local importance to 
us. Unfortunately, we feel comfortable with rectangular coordinates and tend to 
ignore the spherical universe. 

The proof of the WSM is that the physical structure of the electron, and 
the empirical natural laws can be obtained mathematically from two basic prin-
ciples describing the wave space medium. In other words, all the experimental 
measurements of historical physics that described natural behaviour are now 
predicted by two fundamental principles. The laws and the principles agree 
with each other—each is the proof of the other. 

Physics of the wave structure of matter is simple. In contrast, old discrete 
particle-structured physics required dozens of assumptions plus many more ar-
bitrary constants to explain the operation of the laws. Many properties and 
laws, like electron spin, were puzzling with no understanding. The puzzles are 
now swept away. Particle-structured physics can be compared to the theory of 
epicycles of the planets around the Earth before Galileo found that the planets 
traveled around the Sun. Discrete particles satisfy our human prejudices but do 
not explain the measured facts. 

3. Comfortable physics and physical reality 
Many people, from the old Greek philosophers such as Democritus and Py-
thagorus, up to the colleagues of Albert Einstein, sought to understand the 
structure of the tiny atoms and molecules in our everyday world. Until recently, 
most answers have been speculation created in analogy to human scale objects 
around us; like baseballs and bullets, and grains of sand. Atoms were imagined 
to move like other familiar objects such as moons around planets and toy tops 
spinning on a table. These analogies made us feel comfortable. so we preferred 
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to ignore strange new ideas. As Churchill said, “We often stumble onto the 
truth but most of us brush ourselves off and pretend it did not happen.” 

Serious thinkers, such as Einstein, Dirac, Schrödinger, and Ernst Mach, 
realized that the analogies were wrong. Instead, experimental measurements 
showed that the structure of matter was closely related to the properties of the 
apparently empty space around us, and that the elements of matter had to: 

a. have a spherical symmetry. 
b. be extended in space. 
c. Possess a means of exchanging energy 
d. Possess wave properties founded on wave equations. 
Their thinking produced conclusions that in hindsight were prophetic. For 

example, Einstein rejected the discrete point particle and stated: “Matter must 
be spherical entities extended in space.” Erwin Schrödinger8 understood the re-
quirements of particle structure when he wrote in 1937: “What we observe as 
material bodies and forces are nothing but shapes and variations in the structure 
of space. Particles are just Schaumkommen (appearances).” He believed that 
quantum waves were real, not probability distributions with a particle hidden 
inside. He saw that abolishing the discrete point particle would remove the 
paradoxes of ‘wave-particle duality’ and the ‘collapse of the wave function’. 
They arrived at their valid conclusions by painstaking analysis and careful ad-
herence to the rules of logic, and the philosophy of truth. But their thinking was 
ignored for sixty years; Truth is no match for belief. Machiavelli understood 
this human behaviour 500 years ago [1513]: “There is nothing more difficult to 
plan, more doubtful of success, more dangerous to manage than the creation of 
a new system. The innovator has the enmity of all who profit by the preserva-
tion of the old system and only lukewarm defenders by those who would gain 
by the new system.” 

The predictions of these pioneers, verified and described here, is that mat-
ter is a wave structure embedded in space. This result not only satisfies the ex-
perimental work, but surprisingly displays an immense but simple tapestry of 
the physical universe. Awe-inspiring connections between matter, ourselves, 
and the cosmos are found. The application of the electron wave structure 
reaches out, on the one hand, to unsuspected fields of cosmology such as the 
big bang, the redshift, and the structure of the universe. On the practical side, a 
new tool is provided that will enable us to deeply understand and improve in-
dustrial devices such as computers, micro circuits, and the efficient transmis-
sion of electric energy. 

The authors, and others who have contributed recognize that wave struc-
tures describe physical reality for the first time; We are aware that this is a ma-
jor and remarkable claim: The discovery of physical reality has been a holy 
grail of intellectual thought for thousands of years. Our hope is that readers will 
gain information and perspective so that they will confirm for themselves that 
this sensible theory deduces the laws of nature (reality) as observed. 
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This does not mean this is written only for the scientist and intellectual 
academic. Because the truth has deceived great minds, many people could as-
sume that this subject is too difficult for them. This is not the case. The Wave 
Structure of Matter has an underlying simplicity that makes it easy to under-
stand. But it is also an exciting mystery of how a century of science, was 
thwarted not by scientific complexity, but by the frailties of human emotions, 
economic ambition, and the power of politics. 

4. Finding laws, space, and the structure of the electron 
Finding the structure of the electron was a key to finding the origin of the natu-
ral laws. Let us look at how the process of deduction has proceeded to find the 
origins from the electron. 

The origin of natural laws. The business of physics is the abstract de-
scription and quantification of facts observed in nature. The rules we form for 
expression of the observed facts are the laws of nature. Since past laws were 
obtained by measurement of nature rather than derived from other knowledge, 
they are by definition empirical and “of unknown origin.” Therefore if we seek 
to find the origins of laws we cannot use the existing laws themselves but must 
use other observed facts together with logic and established mathematics to 
find the origins. The old empirical laws are only a guide and not the source.  

Accordingly the search for origins must probe deeper into nature than 
heretofore and we must be prepared to find new perspectives. The unexplained 
puzzles of nature are attractive sources of input data in the search .Finally, the 
proof of the origins of laws is a match between the observed empirical rules 
and the predictions of the new origins. 

Circular reasoning. When seeking origins, it is important not to inadver-
tently use existing rules (laws) to deduce them. Such circular reasoning can 
occur if, for example, a mechanical model is assumed to be the structure of an 
electron. Such common errors are the use of toy tops, sheets and rings of 
charge, masses in orbit around each other, This is because the quantum laws of 
quantum particles can be extrapolated to large macro-objects but the inverse is 
not possible. Logically, finding the origins of existing laws (rules) requires 
forming new concepts that satisfy observed data. 

The new perspective. The discovery of these origins creates a new per-
spective of the physical world: quantum mechanics and relativity are united, a 
single origin of forces is found, puzzles and paradoxes are explained and, most 
important, relationships between microphysics (electrons and other ‘particles’) 
and the Universe (cosmology) are seen to be a result of an all-pervading space 
filled with oscillating quantum waves of the matter in the universe. We exist in 
a sea of quantum waves. 

Part II - The connections of the electron and the laws 
This part is a discussion of the relationships between electrons, the natural laws 
and the Universe. Let us examine the meaning of these words. Our concept of 
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“Universe” is a collection of particles and their distribution. Thus without par-
ticles to populate a Universe, the Universe concept has no meaning. Accord-
ingly, our concept of our universe depends on understanding the particles in it. 
Especially we need to understand the connections with the electron and proton, 
because the charge waves of those two particles extend throughout the Uni-
verse. The “natural laws” have no meaning without particles because laws re-
quire the presence of particles, upon which the laws operate. “Particles” are 
also meaningless without laws to identify them. We conclude that understand-
ing of the connections between particles, laws, and the Universe is essential to 
understand the whole. Each requires the existence of the others. Therefore, we 
cannot understand cosmology unless we also understand the relationships 
within the trilogy shown in Figure 2. 

5. Measurement is a property of an ensemble of matter 
A particle entirely alone in the universe cannot have dimensions of time, length 
or mass because these dimension are undefined without the existence of other 
matter. Dimensions can only be defined in comparison with other matter. For 
example, at least six separated particle-centers are necessary to crudely define 
length in a 3D space: four to establish coordinates and two being measured. 
Thus the measurement concept requires the existence of an ensemble of parti-
cles. The required ensemble must include all observable matter in our Uni-
verse, because there is no way to choose a special ensemble. Recalling that 
time, length and mass are the basic unit set that describes all scientific meas-
urements we surprisingly concludes that the physical basic of all science de-
pends on the Universe! 

SPACE 
MEDIUM

SPACE 
MEDIUM

quantum 
  waves

quantum 
  waves

        Three 
     Properties  
      of space: 
 1- Wave Equation 

2. Machian Density 
3. Minimum Aplitude

Universe
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Figure 2. The Connected 
Universe. Laws particles, 
and the cosmos are inter-
connected by the quan-
tum waves in the medium 
of space. Nature has cre-
ated a reciprocity among 
the three: Matter creates 
the medium and the me-
dium tells matter how it 
must behave. These in-
terconnections are de-
scribed by three Princi-
ples that define the prop-
erties of the space me-
dium. 
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6. Particle properties require perception-communication be-
tween particles 

If there were no means for each particle to sense the presence of other matter in 
its universe, the required dimensional relationships above could not be estab-
lished. How can a particle possess a property that is dependent on other parti-
cles, if there is no way for the particles to impart their presence to each other? 
Without communication, each particle would be alone and without meaning. 
Therefore continual two-way perceptive communication between each particle 
and other matter in its universe is needed to establish the laws of nature. 
Spherical quantum waves forming the particles are the means of communica-
tion. The laws are then established in terms of the dimensions (units) estab-
lished by waves of the entire ensemble of matter. 

7. The measurement of time requires a cosmological clock 
Using the reasoning above, but for the dimension of time, we conclude that 
time measurement requires the existence of cyclic events among the particles 
of the universe; a kind of clock. Those properties that involve time, notably ve-
locity, mass, and frequency, cannot have a meaning if particles have no com-
mon scale of time. That is, the particles must have a way to compare their own 
cyclic events with other particles. Therefore, there must exist a standard cos-
mological clock. The proposal by DeBroglie was an oscillator (clock) con-
tained in every electron. Evaluating his proposal in a wave medium, we see 
that electron quantum resonances (oscillators) provide the necessary property. 
Because of the near uniformity of space (the oscillator medium) the clock fre-
quencies would be nearly alike throughout the universe. We note that a nearly 
uniform space medium is required in nature, otherwise different clocks in dif-
ferent places would produce time-chaos of the natural laws. 

8. We live in an inter-connected universe 
The above discussions of the requirements of the laws of science make it clear 
that inter-connections must exist between matter, the laws, and the Universe. 
Independence of objects is not possible, for example, no planet, star, or galaxy, 
can exist without the rest. We know this because astronomical measurements 
show that the same laws apply in the farthest galaxy, as here on Earth. And we 
also know because ‘time’ has the same meaning from one moment to the next. 
These requirements are not the fantasy of a supreme law-maker who declares 
that the Standard Model applies everywhere (as is present believed by most of 
the physics community.) The only logical conclusion is that matter and laws 
are inter-connected throughout the universe by a physical mechanism—waves. 
As Lee Smolin writes (Life of the Cosmos, Phoenix books, 1998): “It can no 
longer be maintained that the properties of any one thing in the Universe are 
independent of the existence or non-existence of everything else.” 

In later sections it will be seen that the natural laws originate from the 
properties of the quantum waves of the electron and proton. It will also become 
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clear that the ‘Standard Model’ point-particle of charge and mass substance 
without wave structure cannot satisfy the logic of science. The model is an his-
torical relic.  

9. New physics and old physics 
Study of the wave structure of the electron and other matter is a new adventure 
where you find the origin of the natural laws, and have a revealing window on 
science, cosmology, technology and ourselves. But first old mainstream atti-
tudes must be discarded. For instance, a conventional quantum physicist ex-
pects that all quantum phenomena must derive from Schrödinger’s Equation. 
No. It is the other way around; Schrödinger’s Equation is derived from the 
quantum wave structure of matter. 

Some concepts must be changed, for example, the meaning of charge and 
mass are not inherent properties of particles. Instead Nature has chosen, as 
Schrödinger deduced, that charge and mass are properties of the wave struc-
ture. And, as shown above, natural laws here on Earth depend on the matter of 
the rest of the Universe. Goals of research need to be changed knowing that the 
building blocks of the universe are the waves of the electron and positron. Ac-
cordingly, to be fruitful, physics must study the properties of the wave me-
dium, not build accelerators.  

Part III - A short history of the Wave Structure of Matter 
10. The pioneers 
A wave structure of matter was proposed 130 years ago by the famous English 
geometer, William Clifford1, who spoke before the Cambridge Philosophical 
Society in 1870, “All matter is simply undulations in the fabric of space.” He 
developed this concept as three-dimensional dynamics that reduces to four-
dimensional kinematics describing matter, electromagnetism and kinetic en-
ergy as curvature of a dynamic Riemannian space. His work was the progenitor 
of the WSM and General Relativity. In Clifford’s thoughts, mass and charge 
substances do not exist but are properties of a wave structure in space. In short, 
space waves were real, while mass and charge points are mere appearances of 
the wave structure. His proposals and those of Schrödinger2 were consistent 
with present day quantum theory, since quantum mathematics does not depend 
on a belief in particle or charge substance. 

Ernst Mach3 and Bishop Berkeley had proposed about 1890, that the law 
of inertia depended on all the matter of the universe. This is known as Mach’s 
Principle. It was the first recognition that a natural law depends on cosmology. 
Albert Einstein was greatly influenced by it when he deduced the General The-
ory of Relativity (GTR). Now, Mach’s Principle, in a more exact form, has be-
come Principle II (below) of the Wave Structure of Matter. 

Paul Dirac4 was never satisfied with the discrete point particle because the 
infinity of the Coulomb force law had to be corrected by ‘renormalization’. He 
wrote, “This is just not sensible mathematics. Sensible mathematics involves 
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neglecting a quantity because it turns out to be small, not neglecting it because 
it is infinitely large and you do not want it! Of course the inference is that the 
basic equations are wrong and radical changes need to be made.” Dirac seemed 
to foresee the WSM. 

In 1945 Wheeler and Feynman5 (W&F) sought the cause of the radiation 
from an accelerated charge. Their calculation assumed that the charge gener-
ated equal amplitudes of advanced (inward) and retarded (outward) spherical 
electromagnetic waves. The outward waves evoked a response of the universe; 
that is, the production of inward waves from absorbing charges elsewhere in 
the universe. The absorber waves began before arrival of the source waves. The 
calculated forces due to combined local and absorber waves agreed with 
Dirac’s empirical formula and appeared to be the cause of energy transfer. 
Their remarkable result attracted much attention. However, W&F pointed out 
that the derivation had not been rigorous. Especially, there are no electromag-
netic wave solutions in spherical coordinates. In hindsight, the success of the 
W&F calculation was in part due to suppression of the vector character of the 
electromagnetic waves so that in effect they were calculating scalar (quantum) 
waves. Below it will be shown that a scalar wave equation can rigorously pro-
duce two solutions; namely inward and outward spherical waves that have all 
the properties of positrons and electrons. 

11. The calculation by Wheeler and Feynman (W&F) 
W&F wished to verify the empirical formula for the force of radiation used by 
Dirac6 
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where e is the electron charge, c is the velocity of light and a is the accelera-
tion. The mechanism of the force was unknown. They discussed this problem 
with Einstein, who suggested a proposal by Tetrode7 that light (energy) trans-
mission was not a one-way process, but two-way communication between a 
source molecule or atom and a receiver molecule utilizing inward and outward 
waves. This proposal was not popular since it appeared to violate the causality 
concept: Actions should not appear before their causes, since the inward waves 
appeared to be traveling backward in time. 
 Electromagnetic waves were assumed generated by the acceleration, using 
special solutions of the electric –wave equation:  
 ( )2 2 2 21/ / 0c t∂ ∂∇ − =E E  

Half the difference between inward and outward waves was prescribed. Out-
ward traveling spherical waves encountered absorber charges in the universe 
that produced spherical inward waves that returned to the initial charge—a re-
sponse of the Universe. The inward waves from the universe were assumed to 
begin before the acceleration occurs. 
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Dirac’s empirical formula for the force of acceleration was verified and 
found to be independent of the properties of the absorber provided that absorp-
tion was complete. Remarkably, no inward waves appeared to violate causality 
because the inward waves from the absorber were cancelled upon arrival by in-
terference with waves from the source charge. The remaining wave fields gave 
the disturbance demanded by experience in agreement with the prescription of 
Dirac. 

W&F described their inward waves: Absorber charges at a large distance 
produce spherical waves toward the source. At the moment the source is accel-
erated, these waves just touch the source. Thus all the waves from the absorber 
charges form an array of approximately plane waves marching towards the 
source. The (Huygens) envelope of these plane waves is a spherical in-going 
(advanced) wave. The sphere collapses on the source, and then pours out again 
as a divergent outward wave. 

12. Applications of the wave electron 
W&F’s work has implications beyond an explanation of radiation forces be-
cause the transfer of energy and the motion of matter are the most fundamental 
processes of science. Further, the concept that spherical waves from all matter 
of the universe perform the roles of charged particles suggests that the whole 
universe of particles is involved, i.e., every charged particle is a structural part 
of the universe and the whole universe contributes to each charged particle. 
Their work pioneered the concept that every particle sends quantum waves 
outward, and receives an inward response from the universe. In hindsight, if 
they had used scalar quantum waves entirely, this chapter would have appeared 
55 years ago. 

Research on wave structure. After 1945, particle physicists mainly 
worked on WWII weapons-related contracts. Research on wave structure 
stopped until 1985 when Milo Wolff8,9, using a scalar wave equation with 
spherical quantum wave solutions, found the Wave Structure of Matter de-
scribed here. It successfully predicted the natural laws and the properties of the 
electron, and, as shown below derived a physical origin of spin that accords 
with quantum theory and the theoretical Dirac Equation . 

The wave electron in electrodynamics: Akira Tonomura of the Hitachi 
Corp published in 1998 The Quantum World Unveiled by Electron Waves 
(World Scientific press), a beautifully illustrated book that discusses the quan-
tization of flux at low temperatures in a closed loop of real electron waves. 
Quantization occurs because the waves of the circulating electrons must join in 
phase, otherwise they cancel each other.  

Prof. Carver Mead, an engineer at Cal-Tech investigated electron waves 
in his 2000 book Collective Electrodynamics. He recognized that the electron is 
not a point particle but a wave structure, so that e-m approximations, especially 
in magnetism, do not work at quantum dimensions. He derived a vector poten-
tial to correct the flawed magnetic terms of Maxwell’s Equations, using meas-
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urements of electron waves in closed loops. His book, very popular in Silicon 
Valley, shows correct ways to solve the electromagnetics of transistor circuits. 
MIT awarded him a $500,000 prize. 

Part IV - The Wave Structure of Matter 
The wave-structured electron, Figures 1 & 3, is termed a space resonance 
(SR). Space, that supposed void of which we formerly knew little, is the me-
dium of the waves and the leading player in this new physics of the universe. 
The properties of electrons, other matter, and the laws they obey are derived 
from properties of the medium, i.e. space. Thus space, described by three prin-
ciples, underlies our knowledge of science. 

13. Principle I - A wave equation 
This Principle describes how quantum waves are formed and travel in the space 
medium. The wave amplitudes are scalar numbers. If the medium is uniform, 
typical nearly everywhere, the equation allows only spherical waves. If ob-
served in relative motion, Doppler modulation and elliptical waves appear. If 
the medium is locally dense, as in the central region of a proton, waves circu-
late like sound waves in a drum or a crystalline sphere. 

Principle I: Quantum matter waves exist in space and are solutions of a 
scalar wave equation: 

 2 2 2 2(1/ ) / t 0c ∂ ∂∇ Φ − Φ =  (1) 
where Φ is a scalar amplitude, c is the velocity of light, and t is the time. 
Its solutions, Figure 1, are a pair of spherical in/out waves that form the 
structure of the electron or positron: 
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Figure 3. Electron com-
posed of IN and OUT 
waves. This is a plot of the 
superimposed inward and 
outward waves of an elec-
tron. The envelope of the 
electron waves is observed 
in the lab as the charge po-
tential. The potential of the 
Coulomb law and the wave 
electron are the same at 
large radius, but near the 
center only the wave model 
matches experiment. This 
difference causes the Lamb 
Shift of spectroscopy. 
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There are only two combinations of these two waves. They have opposite 
phase and spin rotation to form electrons and positrons: 

 inelectron= CW spin
positron= CCW spin

out

out in

Φ − Φ +

Φ − Φ +
 (3) 

Thus matter is constituted of binary elements—like computer hardware. 

Figure 3 is a plot of the wave amplitude as a function of radial distance 
from the wave center. The waves decrease in intensity with increasing radius, 
like the forces of charge and gravity. Note that the envelope of the amplitude 
matches the Coulomb Law but at the center reaches a maximum A0 and does 
not go to infinity like the Coulomb Law. Experimental data matches this wave 
model but not the Coulomb Law. Although the variety of molecules and mate-
rials populating the universe is enormous, the building bricks are just two. 

14. Properties of electron and positrons 
The two wave combinations contain all experimental electron-positron proper-
ties. Briefly: Charge polarity depends on whether there is a positive or negative 
amplitude of the in-wave at the center. If a resonance is superimposed upon an 
anti-resonance, they annihilate. The amplitude at the center is finite as ob-
served. The properties of quantum mechanics (QM) and special relativity 
(SRT) are the result of the Doppler motion of one space resonance relative to 
another. The Doppler shifted waves contain QM and SRT for a moving parti-
cle; that is, the DeBroglie wavelength of QM and the relativistic mass and 
momentum changes, are exactly as experimentally measured. Details are in the 
Math Appendix. 

15. Energy transfer and the action-at-a-distance paradox 
An important property not previously known is the mechanism of energy ex-
change. Experience tells us that communication or acquisition of knowledge of 
any kind occurs only with an energy transfer. Storage of information, whether 
in a computer disk or in our brain, always requires an energy transfer. Energy 
is required to move a needle, to magnetize a tape, to stimulate a neuron. There 
are no exceptions. This rule of nature is embedded in biology and our instru-
ments. Finding the energy transfer mechanism between particles is essential to 
understanding the natural laws. 

The first hint of the mechanism of cosmological energy transfer was Ernst 
Mach’s observation3 in 1883. He noticed that the inertia of a body depended on 
the presence of the visible stars. He asserted: “Every local inertial frame is de-
termined by the composite matter of the universe” and jokingly, “When the 
subway jerks, it is the fixed stars that throw us down.” His deduction arose 
from two different methods of measuring rotation. First, without looking at the 
sky one can measure the centrifugal force on a rotating mass m and use the in-
ertia law F = ma = mv2/r to find circumferential speed v and position, as in a 
gyroscope. The second method is to compare the object’s angular position with 
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the fixed (distant) stars. Both methods give exactly the same result. The inertia 
law appears to depend on the fixed stars! 

Mach’s Principle was criticized because it appeared to predict instantane-
ous action-at-a-distance across empty space. How can information travel from 
here to the stars and back again in an instant? As Einstein observed (Ideas and 
Opinions, Crown paperbacks, 1954): “Forces acting directly and instantane-
ously at a distance, as introduced to represent the effects of gravity, are not in 
character with most of the processes familiar to us from everyday life.” 

Action-at-a-distance does not actually occur because Nature’s energy ex-
change mechanism is now seen as the interaction of space resonances with the 
ever-present universal medium of space. Space is not empty because it is the 
quantum wave medium produced (See Principle II below) by waves from every 
particle in the universe as implied by Mach’s Principle. The energy exchanges 
of inertia, charge, and other forces are mediated by the presence of the space 
medium. There is no need to travel across the universe. 

16. Principle II - Space Density Principle 
This principle defines the quantum wave medium—space. It is fundamentally 
important because the properties of waves depend on properties of their me-
dium. But, since the natural laws depend on the waves, we deduce that the 
natural laws in turn depend on the medium. Thus, the medium—space—is the 
wellspring of everything. 

Principle II: At each point in space, waves from all particles in the 
universe combine their intensities to form the wave medium of space. 

 [ ]
2

2
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Space density /
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n nmc hf r∝ = ∝ Φ∑  (4) 

In other words, at every point in space, the frequency f or the mass m 
of a particle depends on the sum of squares of all wave amplitudes Φn 
from the N particles inside the “Hubble universe.” Amplitude de-
creases inversely with their range rn squared. The “Hubble Universe” 
has a radius R = c/H, where H is the Hubble constant. 

This principle is a quantitative version of Mach’s Principle because the 
space medium is the inertial frame of the law F = ma. When mass or charge is 
accelerated, energy exchange takes place between its waves and the space me-
dium. In hindsight, this is the mechanism of charge radiation, sought by 
Wheeler and Feynman5 in 1945, using mixed e-m and quantum waves. 

The number of particles, N ~ 1080 in the Hubble universe, is large, thus 
the medium density is nearly constant everywhere and we observe a nearly 
constant speed of light. But close to a large astronomical body like the Sun, its 
large space density produces a measurable curvature of the paths of the inward 
and outward waves and thus of light and the motion of matter. We observe the 
curved paths as the effect of gravity described by Newton and also space cur-
vature of Einstein’s general relativity. Both due to Equation 4. 
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17. The appearance and origin of charge 
Schrödinger and Clifford predicted that charge was due to wave structures in 
space. Charge ‘appears’ at wave-centers because the spherical waves of an 
electron resonance are very large at the center due to the 1/r2 dependence. Cen-
ters have a high density due to the large wave amplitude. The dense space at 
the central region is non-linear, which causes energy transfer or coupling be-
tween two resonances. We observe this process and call it ‘charge.’ But as 
Clifford and Schrödinger wrote, there is no charge substance involved. It is a 
property of the wave structure at the center. 

The high-density wave centers appear to us as the location of point 
charges because force interactions occur there that we call ‘electric’. The center 
wave-amplitude is finite, as shown in Figure 3, and as experimentally observed. 
It is not infinite as in the puzzling Coulomb law. 

Producing particle motion. The in-waves of a particle, on arrival at the 
wave-center, produce the position and motion of the center that we observe as 
the ‘particle.’ If any matter nearby changes the medium density, this changes 
the in-wave speed and motion, and moves the particle location. We observe 
this motion and describe it as the result of electric forces. Motion (and accel-
eration) of matter also changes the apparent wavelengths (Doppler effect) and 
produces an energy exchange to the wave medium, similar to the W&F re-
sponse of the universe. Inertial motion (F=ma) produces Mach’s Principle be-
cause the space density is formed by all the matter of the Universe. 

18. Equation of the Cosmos 
Can this mechanism be tested? Yes. If a resonance’s self-waves can dominate 
in its local space, then at some local radius, ro from the center, self-wave den-
sity must equal the total density of waves from the other N particles in the Uni-
verse. Evaluating this equality8 yields 
 2 2

0 / 3r R N=  (5) 
The best astronomical measurements, R = 1026 meters, N = 1080 particles, yield 
ro = 6 × 10–15 meters. To satisfy the test, ro should be near the classical radius, 

 

Figure 4. Energy exchange. The 
spherical IN and OUT waves of the 
source and receiver oscillate in two-
way communication until a minimum 
amplitude condition is obtained. The 
decrease of energy (frequency) of the 
source will equal the increase of en-
ergy of the receiver. Thus energy is 
conserved. We observe ‘e-m waves’ as 
a large number of such quantum 
changes. 
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e2/mc2 of an electron, which is 2.8 × 10–15 meters. It is. The test is satisfied 
verifying Mach’s Principle.  

This is called the Equation of the Cosmos a relation between the ‘size’ ro 
of the electron and the size R of the Hubble Universe. Astonishingly, it de-
scribes how all the N particles of the Hubble Universe create the space medium 
and the appearance of charge and mass of each electron as a property of the 
universal space. It also implies the inter-connectedness of all matter. Other 
properties of the cosmos can be derived from it. 

19. Principle III - Minimum Amplitude Principle (MAP) 
This third principle can be obtained from Principle II, but because it is a very 
useful law of the universe, which simply describes how interactions take place 
and how wave structures will move, it will be written out separately: 

Principle III: The total amplitude of particle waves always seeks a mini-
mum at each location. 

 
1

a minimumnΦ =∑
N

 

This principle is the disciplinarian of the universe. That is, energy transfers 
take place and wave-centers move in order to minimize total wave amplitude. 
Amplitudes are additive, so if two opposite resonances move together, the mo-
tion will minimize total amplitude. This explains empirical rules such as, “Like 
charges repel and unlike charges attract,” because those rules minimize total 
amplitude. The origins of other rules are also now understood. For example, 
MAP produces the Pauli Exclusion Principle, which prevents two identical 
resonances (two fermions) from occupying the same state. Two identical states 
are not allowed because total amplitude would be a maximum, not a minimum. 
The operation of MAP is seen in ordinary situations like the water of a lake, 
which levels itself, and in the flow of heat that always moves from a hot source 
to a cold sink, which are examples of the increase of entropy principle. 

20. Conservation of energy 
The energy transfer mechanism occurs at the high density wave-centers, which 
permits coupling or changes of their wave frequency. When the waves of a po-
tential source and a potential receiver pass through each other’s centers, and an 
allowed transition exists between them, MAP minimizes the total of both am-
plitudes by choosing the transition. In the source, the frequency (energy) of the 
wave state shifts downward. In the receiver, there is an equal shift upward, as 
in Figure 4. Only wave states (oscillators) with equal frequencies ‘tuned’ to 
each other can couple and shift frequency. Accordingly, the frequency (energy) 
changes must be equal and opposite. This is exactly the content of the Conser-
vation of Energy law, not too different from rules of tuning up an orchestra 
matched to the ‘A’ played by the first violin.  

This mechanism also describes the proposal noted by Einstein in the writ-
ing of Tetrode5,7: “When I see a star 100 light-years away, the star knew that its 
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light would enter my eye, 100 year ago—before I was born!” Tetrode was pre-
dicting that energy exchange is a two-way symmetrical resonance exchange be-
tween source and receiver—not a one-way photon. 

If you keep the traditional assumption that matter consists of points of 
mass and charge substance and that energy exchange is a one-way e-m photon 
traveling between particles, you are doomed to the paradoxes of: causality vio-
lation, wave-particle duality, Copenhagen errors, Heisenberg uncertainty, red-
shift, and others. Only the two-way exchange of the WSM matches observa-
tion. 

Even though Einstein had originally proposed the ‘photon’ he never un-
derstood them. In 1954, he wrote to his friend Michael Besso expressing his 
frustration, “All these fifty years of conscious brooding have brought me no 
nearer to the answer to the question, ‘What are light quanta? Nowadays every 
Tom, Dick and Harry thinks he knows it but he is mistaken.” Einstein also 
came to realize that matter could not be described by an electromagnetic field: 
“I consider it quite possible that physics cannot be based on the field concept, 
i.e., on continuous structures [discrete particles]. In that case nothing remains 
of my castle in the air, gravitation theory included [and of] the rest of modern 
physics.” (Ideas and Opinions, 1954). In hindsight, he was correct about the er-
rors of field theory and his general relativity has survived. 

21. The origin of the IN waves and the response of the universe 
At first thought, it is puzzling where the in-waves come from. This puzzle is 
our own fault—a result of looking at the waves of only one particle, and ignor-
ing the waves of all other particles in the universe—gross over simplification. 
To find reality, we must deal with the real wave-filled universe. When we 
study this question5,10 we find a rational origin of the inward waves: 

Three hundred years ago Christian Huygens, a Dutch mathematician, 
found that if a surface containing many separate wave sources was examined at 
a distance, the combined wavelets appeared as a single wave front having the 
shape of the surface as shown in Figure 5. This wave front is termed a ‘Huy-
gens Combination’ of the separate wavelets. 

This mechanism is the origin the in-waves, as follows: When an outgoing 
wave encounters other space resonances (particles), their out-waves are joined 
with the initial out-wave to form a Huygens Combination wave front. These 

Sources

Huygens wave front

 

Figure 5. Plane wave formed 
by Huygens combination of 
wavelets. The wavelets from a 
line of sources combine, at a 
distance from the sources, to 
form a new wave front which 
repeats the geometry of the 
sources. 
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waves arrive in phase at the initial center forming the in-wave of the initial par-
ticle. This occurs throughout the universe so that every particle depends on all 
others to create its in-wave as in Figure 6. Although particle centers are widely 
separated, all particles are one unified structure because they share each other’s 
waves.  

Part V - The origin of the electron’s spin 
As an example of the depth of understanding and universality of the Wave 
Structure of Matter, We describe the origin of the spin of the electron. The 
physical nature and cause of electron spin has been sought for 75 years ever 
since Nobel laureate Paul Dirac4 made a calculation of spin in 1926. His theo-
retical work predicted the positron, found five years later by C. D. Anderson. 

22. Dirac’s theory 
Dirac was interested in the differences between relativity and quantum theory. 
Dirac compared the conservation of relativistic energy (E = energy and 
p = momentum of a particle of mass m) given by 
 2 2 2 2 4

0E p c m c+ =  (6) 
with Schrödinger’s procedure in quantum theory. Schrödinger’s procedure was 
to use an energy statement like Eqn. 6, and change it to a wave equation. He 
changed the terms for E and p into two wave equation operators using, 
 ( )[ ]/2 /E ih tπ ∂ ∂= Φ , ( )[ ]/ 2 /p ih rπ ∂ ∂= − Φ  (7) 
Where Φ is the amplitude of the Schrödinger wave function sought. Then the 
solutions should describe the amplitude of waves of the particle. No one knew 
why this worked but the results for the H atom are amazingly accurate so it was 
trusted. 

 

Figure 6. Formation of in-
waves. The out-wave of every 
particle interacts with other 
matter in the universe. The re-
sponse to the outgoing wave 
is Huygens wavelets from 
other matter that converge 
back to the center of the initial 
out-wave, forming the in-wave. 
Thus every particle depends 
on all other particles for its ex-
istence. Every charged parti-
cle is a structural part of the 
universe and the whole uni-
verse contributes to each 
charged particle. 
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The procedure was puzzling to Dirac because Eqn. 6 uses squared terms 
whereas Eqns. 7 cannot be squared! He reasoned that in Eqn. 8 the equivalent 
of squaring could become part of a matrix algebra. He had a new idea: Try re-
placing Eqn. 6 with a matrix equation: 
 [Identity]E = [alpha]pc + [beta]moc2 (8) 
where the new matrices [Identity], [alpha], and [beta] are 4-operators. This 
avoided squares of E and p but placed restrictions on the new operators and 
their solutions. 

He found that solutions existed if E and p had fixed values. This theoreti-
cal matrix algebra produced correct fixed values of the electron’s energy = mc2, 
and spin = h/4π angular momentum units, but it gave no hint of the physical 
structure of the electron. His new ‘Dirac Equation[8] became famous. 

Dirac also noticed that only two functions were needed in the electron’s 
Φ solution. So Dirac simplified the algebra by introducing number pairs, 
termed spinors, and 2 × 2 matrices called spin operators creating a 2-algebra 
instead of a 4-algebra. The pair of electron waves, Φin and Φout from the WSM 
are a Dirac spinor, part of the binary universe. A reader-friendly review of 
Dirac’s Equation is found in Eisele11. 

23. The physical mechanism of spin 
Spin occurs when the in-waves arrive at the center and change direction and 
transform into the out-waves. There are strict (boundary) conditions on the 
transformed amplitudes and polarity of the in- and out-waves: Space cannot be 
allowed to twist up without limit. The spherical wave amplitudes must con-
tinually and smoothly change from being in-waves to out-waves. The in-wave 
amplitude at the center must be equal and opposite to the out-wave. 

It turns out this transformation is possible using a known12 property of 3D 
space called spherical rotation—a misleading name, there is no true rotation—
in which space moves continually around a point and returns to its initial state 
after two turns. In spherical rotation there is no axis like cylindrical rotation of 
a wheel. Spherical symmetry is preserved because the center of ‘rotation’ is a 
point. One direction of rotation produces the electron, the other the positron. 
This is why every charged particle has an anti-particle. 

 This apparatus is easily made  out  of  a few st icks, a cork, 
and six rubber bands. The cork can be rot at ed (t aking care  
not  to knot up the rubber bands) cont inuously without 
 entangling the rubber bands!  The cork and bands will  
return to their init ial conf igurat ion every two t urns. 
    This demonstrates a lit t le known variety of  
rotat ion. It  has applicat ion t o to  part icle theory because the 
spherical ro tat ion does not dest roy cont inuity of  space.

SUPORTING FRAME MADE OF STICKS

CORK 
BALL

RUBBER  
BANDS

A Mo de l o f Spherica l Ro tatio n

 
Figure 7. Demonstrating spherical rotation. 
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Batty-Pratt & Racey13 (1980) analyzed spherical rotation and showed that 
an exponential oscillator, eiwt, was a spinor. Wolff8 realized in 1989 that the 
exponential in-out oscillator waves of the WSM were the real physical spinors 
satisfying the Dirac Equation. It is humbling to realize that only 3D space12 has 
this remarkable property shown in Figure 7. If this property of 3D space did 
not exist, particles and matter could not exist. Life and the universe as we know 
it could not exist. 

24. The equivalence of the WSM and the Dirac equation proce-
dure 

It is easy to calculate the rotation rate of an in-wave of frequency (en-
ergy) = mc2/h and wavelength = h/mc. The rotation rate is two turns each cycle. 
This produces an angular momentum of ±h/4π, obtaining Dirac’s result simply. 

The energy value of electrons is the same for both, but of different signs. 
The Dirac equation yields ± mc2 while the WSM says the both electron and 
positron energy are positive, +mc2. Dirac was forced to interpret the puzzling 
negative energy as an unseen “sea of negative energy particles.” This strange 
concept has never been observed and has been abandoned. 

How can we understand Dirac’s negative energy? Look at the elec-
tron/positron wave algebra in the Appendix. Write the product of energy and 
time as negative, that is: –Et/h = –wt. But this is the same as switching the in-
wave with the out-wave which changes the electron into a positron! Now we 
see Dirac’s result described an anti-particle not a negative energy. He assumed 
the electron was a discrete particle instead of a wave structure! This mistake 
has plagued physics for centuries. 

25. A model of spherical rotation 
Spherical rotation in 3D space can be modeled by a ball held by threads inside 
a cubical frame shown in Figure 7. The threads represent the coordinates of the 
space and the rotating ball represents the space at the center of the converging 
and diverging quantum waves. The ball can be turned about any axis starting 
from any initial position. If the ball is rotated continuously it returns to its ini-
tial configuration after every two rotations. This demonstration appears in the 
classic book12 Gravitation by Misner, Thorne and Wheeler. 

Using the exponential wave solutions for the electron shown in the Ap-
pendix, you can reverse the spin axis, by reversing time (t → –t) or by revers-
ing the angular velocity (w → –w). Both are equivalent to switching the outgo-
ing spherical wave of an electron with the incoming wave. A similar change is 
an inverted spin state produced by the inversion matrix operating on the spinor. 
But this does not change the direction of the in/out waves. Thus in these two 
examples, axis inversion and spin reversal are not the same. But in our human 
view of cylindrical rotation they are the same. This unique difference is charac-
teristic of the quantum wave electron. 
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26. Connecting quantum theory and relativity 
Before the WSM, there was no physical reason known for the mass increase of 
relativity. Likewise there were no physical explanations for quantum theory or 
spin. Were these apparently separate laws connected or not? Indeed, many 
theorists proclaimed that these phenomena were irreconcilable! Few thought 
about a connection because most physicists imagined point particles, and were 
satisfied despite the puzzles. After all, particles had been in the textbooks for 
years. The connection clue is that both depend on the relative velocity v. Both 
are Doppler effects due to the relative velocity of two wave structures. 

The Appendix shows that the Doppler increase of frequency causes in-
crease of mass (energy or frequency) so that m = mo[1 – v2/c2]–1/2 as seen by a 
moving observer. Rearranged, this equation gives the energy equation used by 
Dirac: 
 2 2 2 2 4

0E p c m c+ =  
Similarly, the de Broglie wavelength λ = h/p is also a Doppler change of wave-
length seen by a moving observer (See Appendix) and it leads to the 
Schrödinger equation. 

27. What is the space medium? 
The space medium determines the properties of the waves that propagate in it, 
as is true for all wave phenomena. Thus space underlies the WSM, the natural 
laws originating from the WSM, and all the sciences built on the natural laws. 
But space is not obvious to our bodily senses although we are aware of it, 
knowing: 

A. The law of inertia F = ma. For example, our sense of force or energy 
transfer (to the space medium) when we move or ‘heft’ a massive ob-
ject. 

B. The laser gyro. These instruments now used in most commercial air-
craft, contain two laser beams counter-rotating in a quartz prism that 
measure rotary motion in inertial space. The two beams travel in the 
space medium, so when the prism rotates, they have opposite fre-
quency shifts and the beat note is proportional to inertial rotation rate. 

C. The e-m constants μ and ε: These are derived from properties of 
space and determine the indices of refraction in optics. 

 

Figure 8. Atoms in a crystal. The waves of 
the electrons in the crystal array produce 
standing waves along the planes of sym-
metry. There is no solid structure, sub-
stance or material in the crystal. It is the 
waves that produce the array dimensions, 
and it is the immense energy density of the 
space medium that gives it physical 
strength and rigidity. 
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D. The rigidity of crystals. The nuclear wave structures in say a dia-
mond, are held rigidly by standing electron waves forming a lattice in 
the space medium. This is shown in Figure 8. The geometry of the lat-
tice is determined by the MAP. 

E. The General Theory of Relativity. The space medium of quantum 
waves and the space-time of general relativity are one and the same. In 
both, the density of space is determined by the distribution of matter in 
the Universe, and, matter properties depend on the space density. This 
strange feedback between space and matter has been expressed: Mat-
ter tells space what it is and space tells matter how to behave.  

The minimum energy density of space can be approximated using the 
density of nuclear matter. It is >1046 MeV per cubic centimetre, astoundingly 
large. We have no sensation of its presence despite its existence all around us, 
because energy transfer only occurs between a resonant source and receiver. 
Learning more about the space medium is the most exciting and pioneering 
topic in science today. Prepare yourself for a fascinating adventure. 

Part VI - Discussion 
We can confidence that the Wave Structure of Matter is the true physical real-
ity of the universe. The logical proof test is that the experimental measure-
ments of the empirical natural laws must agree with their predictions by the 
WSM. They do. In fact, the experimental evidence agrees better with the WSM 
predictions than with conventional rules. For example, an infinity of charge po-
tential at r = 0 is expected from Coulomb’s empirical law. It is not found. In-
stead, the finite experimental value agrees with the WSM. There are more ex-
amples: Conventional physics has no explanation for energy exchange, or the 
Pauli Principle, or spin, or gravity, or charge attraction and repulsion. All of 
these are predicted correctly by the WSM. 

The philosophical conclusions from the connectedness of laws and matter 
in the universe are thought provoking: Everything we observe here on Earth—
life, mind and matter—depends on the existence of the matter elsewhere in the 
universe. Thus if the stars and galaxies were not in the heavens, we could not 
exist. Matter on Earth and matter in the Universe are necessary to each other. 

Einstein was close to the truth. He wrote: A human being is part of the 
whole called by us Universe, a part limited in time and space. We experience 
ourselves, our thoughts and feelings as something separate from the rest, a 
kind of optical delusion of consciousness. This delusion is a kind of prison for 
us, restricting us to our personal desire and to affection for a few persons 
nearest to us. We must free ourselves from the prison by widening our circle of 
compassion to embrace all living creatures and the whole of nature in its 
beauty… We shall require a substantially a new manner of thinking if humanity 
is to survive. 
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But the practical value of the WSM theory is the insight it provides allow-
ing scientists to deeply analyze quantum wave structures. In the R&D labora-
tory, the new insight should advance electronic applications, especially IC and 
memory devices because their tiny transistor elements use quantum effects to 
control the flow of currents. The new knowledge will improve bio-technology, 
communication, and the efficiency of energy transmission. For example, con-
duction of electric energy along a wire is a quantum energy transfer process. 
Knowing this, energy losses and costs may be reduced, and transmission dis-
tances increased. 

Part VII. Mathematical Appendix 
28. Solutions of the wave equation (Principle I) 
The wave equation [1], must be written in spherical coordinates because cos-
mological space has spherical symmetry. Uniform density of the medium 
(space) is assumed which yields a constant speed c of the waves (and ‘light’). 
There are only two solutions. They are: 
 ( ) ( )out maxOutward wave= 1/ expr iwt ikrΦ = Φ −  (A) 

 in max Inward wave =(1/ ) exp ( )            r iwt ikr= Φ Φ +  (B) 
where Φ = wave amplitude, k = mc/h = wave number, w = 2πf, r = radius from 
the wave center, and energy = E = hf = mc2. These two waves are components 
of charged particles including the electron, positron, proton, and anti-proton. 
Superposition of the two amplitudes produces a standing wave, and can occur 
in two ways forming either an electron or a positron. At the center, the inward 
wave undergoes a rotary-reversal transforming it to the outward wave. This can 
happen in two ways: CW or CCW. One is the electron, the other the positron, 
with opposite spins: 
 inelectron CW spinout= Φ − Φ +  (C) 
 positron CCW spinout in= Φ − Φ +  (D) 
If you add the electron amplitude to the positron amplitude, the result is zero or 
annihilation, the well-known result, as seen by a check of Equations 
[A,B,C,D]. 

You can experiment with particle inversions by changing the (+ or –) 
signs in the amplitude equations (A and B) of the particles (C and D). To per-
form a Time inversion, change t to –t. To perform a mirror inversion (Parity), 
imagine that the waves are viewed in a mirror. You will see that a positron is a 
mirror image of the electron. To change a particle to an anti-particle (Charge 
inversion), switch the in-waves and the out-waves, and the spin direction. 
Thus, successive C, P, and T inversions returns to the initial state which is a 
proof of the empirical-theoretical CPT rule, now seen to be a property of the 
wave structure. 

No time travel. These CPT relations are the physical basis of Feynman 
diagrams that describe the behaviour of electrons and positrons in experimental 
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particle labs. You can now understand Feynman’s cryptic statement, “A posi-
tron is an electron traveling backward in time.” Although this statement led to 
many sci-fi films about time travel, the fact is the positron does not go back-
wards. Only its inward and outward waves are opposite to those of the electron. 
It is still a normal citizen in the particle universe. 

29. Origin of special relativity mass increase and the deBroglie 
wavelength 

Write the equation of a SR, as seen by an observer with relative velocity 
b = v/c, as shown in Wolff8. Insert relativistic Doppler factors, g = [1 – v2/c2]–

1/2. The amplitudes received by the observer are then, 
Received amplitude = ( ) ( ){ ( ) ( ) }max1/ 2 exp + sinr ikg ct br kg bct rΦ +⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

This is an exponential oscillator modulated by a sine factor. The origins of the 
de Broglie wavelength (QM) and the relativistic energy and momentum (mass 
increase of SRT) are as follows: 
In the exponetial factor: 
Wavelength = h/mvg = de Broglie wavelength with relativistic momentum. 
Frequency = kgc/2π = gmc2/h = mass frequency with relativistic energy. 
And in the sine factor: 
Wavelength = h/mcg = Compton wavelength with relativistic momentum. 
Frequency = bgmc2/h = b × (mass frequency) = relativistic momentum fre-
quency. 
You see that the Doppler factor g causes the correct deBroglie wavelength and 
SRT mass to appear in the observed waves, as a function of the relative veloc-
ity. It is important to note that the effect is symmetrical; it does not depend on 
whether the relative velocity is +v or –v. This symmetry is exactly as observed. 
Examination of the algebra shows that this is due to the symmetrical presence 
of both the inward and outward waves. 

Thus the space resonance physically displays all properties of an electron, 
viz., electric charge, QM, SRT, forces, annihilation, spin, conversion to a posi-
tron, and CPT relations—all of which were formerly empirical or theoretical 
properties. These physical properties depend on the spherical wave structure 
and ultimately on the wave medium—space. 

To a scientist familiar with wave optics, the truth of the wave structure of 
an electron seems irrefutable. This is the way waves behave. On the other hand 
if one has been taught that particles are discrete objects, and if one’s career de-
pends on the existence of particulate quarks and gluons and a research contract 
with a giant accelerator, it is difficult to change belief. 
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Statistics, variables and equations, and concepts such as energy, force and field 
tell us nothing about the architectures of light, the atom, and the Universe. The 
mathematical theories of General and Special Relativity and of Classical and 
Quantum Mechanics deal exclusively with relations and concepts, and are there-
fore powerless to describe the shape of physical objects. To discern the architec-
ture of an invisible entity we must merely venture an assumption and logically 
check whether the proposal explains observation. Pursuant to this method, we 
show architectures of light, the atom, and the Universe rebuff the abstractions 
(photon, wave, duality, wave-packet, etc.) inferred by Classical and Quantum 
Mechanics. 

Key words: particle, wave, duality, wave-packet, hydrogen atom, static universe, 
dynamic universe. 

The Moon does not move! 
For centuries man has debated whether the Universe is static or dynamic. New-
ton was one who believed in a homogeneous, infinite, and static universe, rea-
soning that only infinite mass and volume could counteract the gravitational at-
traction of stars and keep them essentially in place. In contrast, relativity 
champions a dynamic universe characterized by self-creation and inflation. 
However, technically speaking, Newton’s universe is not what we really call 
motionless. Under his peculiar version of static, the Moon still orbits a spin-
ning planet and a dog sleeping quietly here on Earth nevertheless moves with 
respect to Jupiter. If the plain meaning of the word static is ‘having no motion’, 
the Newtonian universe is ill-conceived. It is imperative, therefore, to distin-
guish clearly between these mutually exclusive scenarios and reformulate the 
ageless inquiry using the rigorous definition of static. Is there any movement 
whatsoever in the Universe? Does the Moon move at all? 

In light of this clarification, the reply is now academic. In order to thaw a 
frozen universe it suffices that a single object move; the remaining ones auto-
matically adjust their distance to it. And since it is a matter of fact that at least 
your hand moves, we can proceed to synthesize this undeniable reality into a 
law: 

The First Law of Physics or The Dynamic Universe: An object moves 
with respect to at least one other object in the universe. 
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However, before we certify our conclusion, it would seem elementary to 
begin by defining what we mean by move. Newton considered motion to be so 
self-evident that he thought it trivial to bother with a definition, casually re-
marking: “I do not define time, space, place and motion, as being well known 
to all.” [1] His definitions of absolute and relative motion leave us in even 
greater doubt as to his understanding: “Absolute motion is the translation of a 
body from one absolute place to another; and relative motion, the translation 
from one relative place into another.” Translation and motion are synonyms, 
and we end up learning nothing from Newton’s circular attempt. This is actu-
ally quite stunning considering that Newton is credited with having discovered 
the three laws of motion. Can theorists assert that a particle collided in an ac-
celerator or that light travels at 300,000 km/sec if they haven’t formally de-
fined the word motion? Can Quantum Mechanics (QM) regard indeterminacy 
to be a ‘principle’ if advocates haven’t first distinguished between position and 
momentum? Can we take for granted that our universe is dynamic if we have 
but vague notions of the terms location and translate? It is inconceivable to an-
swer such questions unless we firmly anchor certain foundations: 

distance: Linear space, gap, or separation between the surfaces of two 
objects. [2] 

position: An imaginary volume of space occupied by an object; the ob-
ject itself. [3] 

location: The set of distances of an object from the remaining matter in 
the universe. 

In a universe consisting of a single shape, the object merely has position: 
the object itself. For location to acquire meaning, two or more objects must in-
habit the frame or field of view. Motion requires more than one location, and 
time, that we compare two locations or motions. Whereas distance, position, 
and location are attributes of a static universe, motion and time conceptually 
belong to a dynamic world, and whereas time necessarily involves observers, 
motion is contextual. [4] 

motion: Two or more locations of an object. 
time: A qualitative relation between two locations of an object or 

between the motions of two objects (e.g., before, after). A 
second, in contrast, is a specific quantitative relation between 
the movement of one object and a reference. (e.g., the orbit of 
Earth versus the trajectory of a caesium wave). [5] 

For example, energy is not an object, but a concept. [6] Energy lacks the 
one attribute that would allow this term to be classified as ‘physical’: shape. [2] 
Likewise, boundaries are implicit requisites for distance and location, a fact 
that by extension denies concepts such as love or energy the ability to move. In 
Physics, motion is a property circumscribed to objects. For instance, the Moon 
is an object, a photograph—a single frame of the film. The orbit of our satellite 
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is a video, the set of locations that comprises one revolution. However, the 
Moon can either be here or there. Like any object it enjoys the static attribute 
of being at a single location. The Moon does not live stretched out across an in-
finitesimal interval of time (i.e., between two marks on the time axis [t > 0]). 
The Moon exists in a cross-section of time (i.e., conceptually a single cut 
through the time axis [t = 0]). The reason conscious observers perceive motion 
is that they remember the Moon’s previous location, the next-to-the-last frame 
on the film. In the absence of this now vanished reference the Moon and every 
atom comprising the Moon only have location. Each and every atom exists at 
the cutting edge of universal events, at the limit of motion, in a cross-section of 
time: the atom itself. Without memory, the Moon does not move! It merely has 
location. These definitions now give us justification to amend our First Law: 

The First Law of Physics or The Static Universe: An object has location. 

It is important to note that Mathematics plays no role in a static universe. 
There is not a single variable, function, or equation that can depict a physical ob-
ject. Without prior experience, we cannot derive the shape of a sphere from the 
expression [x3] or from an equation such as [υ = (4πr3)/3]. Mathematical sym-
bols represent relations inferred after an object is observed. Hence, Mathemat-
ics has no authority to tell us what things look like; it is a language restricted 
solely to characterizing the dynamic universe (i.e., relations). Variables, func-
tions, and equations depict motion and are limited to communicating how ob-
jects or behaviours compare with standards and references. Therefore, if 
Mathematics underlies General and Special Relativity and Classical and Quan-
tum Mechanics, these theories are wholly unsuited for the task of illustrating 
our static universe. What does light look like when it is standing still? What 
would the photograph reveal if Atom Man took a snapshot of hydrogen? What 
is the nature of the Universe before we introduce an observer? We cannot hope 
to answer these questions with statistics, functions, or motion-embodying con-
cepts such as energy [6], force [7], or field [8]. What we can do is make an as-
sumption—propose an object—and logically and empirically check whether 
the model successfully simulates what we observe.  

Why light is not a particle 
Consistent with the foregoing methodology, Newton [9] proposed a hypothesis. 
He assumed that light is comprised of discrete corpuscles that together form a 
ray or beam. He argued that a stream of bullets could account for: reflection, 
refraction, and rectilinear propagation. His theory predicted that light should 
travel faster through denser media. However, it either has been or can be 
shown that each of his arguments is without merit. 

a. Reflection. A simple experiment shows that your hand interferes with the 
free passage of light to generate a shadow. If, as Newton argued, light con-
sists of corpuscles, the implication is that each corpuscle is three-
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dimensional (3D), possesses a surface, and strikes your palm. Bohr’s [10] 
still accepted ‘quantum jump’ theory holds that the atom emits corpuscles 
(light) when the electron falls to a lower energy orbit, state, or band. 
[11],[12] However, we just settled that energy is a concept. Therefore, if 
light is comprised of particles, the atom in effect becomes a mechanism 
that somehow converts a concept (energy) into a physical object (a parti-
cle). Should this assessment be incorrect, the onus shifts to advocates to 
explain how a corpuscle of light is manufactured inside the atom. How 
does something that has no shape or physical dimensions (energy) acquire 
such attributes?  

Another simple experiment demonstrates that two beams intersecting 
perpendicularly do not interact. In order to avoid billiard ball style colli-
sions, particle surfaces must be regarded as being physically transparent to 
each other. This saddles advocates with the burden of explaining how a 3D 
mirror manages to turn back these ethereal particles. Monte Carlo simula-
tions reduce corpuscular reflection and refraction to a hit or miss phe-
nomenon. [13] While ingenious, this statistical gimmick falls short of an-
swering why a particle of light travels roundtrip through several feet of 
transparent pool water without being deflected by countless protons and 
electrons whereas the same particle finds it immeasurably harder to cross a 
1 mm sheet of opaque paper. Clearly, if a mirror reflects light and glass al-
lows it through, neither thickness nor molecular makeup of the material is 
the discriminating factor. [14] 

b. Refraction. Foucault [15] proved Newton’s ‘refrangibility’ prediction to be 
false. 

c. Rectilinear Propagation. A specific particle cannot mimic the verified 
wave behaviour of light (oscillate about a fixed axis) and be said to be 
moving rectilinearly in the direction of the ray. 

These objections show that none of Newton’s behavioural justifications 
for the corpuscle passes a more rigorous examination. We add to this list that, 
in a laboratory setting, marbles would fail to simulate the stochastic explana-
tion offered for interference fringes. [16] Where such straight-forward predic-
tion is refuted by experiment, the scientific method demands that advocates re-
solve the discrepancy, namely, the subatomic world’s refusal to follow rational 
Newtonian mechanics. 

A more pertinent objection to the corpuscular hypothesis comes from a 
little regarded, but well-established principle of optics: ray reversibility. [17] 
Whether reflecting or refracting, a beam of light inexplicably retraces its path. 
Neither particle nor wave—both of which are outgoing, one-way mecha-
nisms—can simulate re-tracking, especially if source and mirror are light years 
apart. 

As shown by the following arguments, discrete particles are also notori-
ously incompatible with waves.  
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a. Let us assume that a plane transverse wave is comprised of discrete cor-
puscles. Under this scheme, frequency is the number of cycles completed 
by a given particle in an arbitrary period of time, and wavelength, the 
separation between two adjacent corpuscles of the crest or trough. There-
fore, a particle does not vibrate up and down while the ‘disturbance’ 
passes through, for this contradicts the notion of frequency. Rather, the 
particle completes a sinusoidal trajectory (i.e., up, down, and forward). 
However, this behaviour presents three insurmountable problems:  

1. An oscillating particle must travel faster than c and faster yet during 
amplitude increases.  

2. Newton’s 1st and 3rd Laws require that an extrinsic object account for 
the sinusoidal cycle of each discrete particle.  

3. The 2D wave is comprised of 3D particles.  

Any one of these observations defeats the initial assumption that a plane 
transverse wave could consist of particles. 

b. Faraday and Maxwell Laws require mutual induction between magnetic 
and electric fields. The discrete particle hypothesis is incompatible with 
continuity and orthogonality.  

c. Electric lines of force begin and end on charges whereas magnetic lines 
of force form closed loops. Discrete particles are at odds with the continu-
ity required to generate these architectures. 

The scientific method requires that we discard a hypothesis if a single ob-
servation contradicts our prediction. [18] Here we have listed several well-
documented objections to the corpuscle. Hence, this reasonable rule of thumb 
renders the particle hypothesis as well as the mathematics developed for it null 
and void. By extension, all explanations that assume light to be a corpuscle 
(e.g., Eddington’s alleged confirmation of Einstein’s Theory of General Rela-
tivity [19]) are also declared moot. 

Why light is not a transverse wave 
In contrast to the particle, Huygens [20] proposed that light rays consist of lon-
gitudinal waves propagating in accordance with the principle that carries his 
name. Years later, Fresnel [21] introduced plane transverse waves to model po-
larization. Newton objected to waves, among other reasons, because propo-
nents failed to specify the nature of the intermediary. When Michelson [22] fi-
nally demolished the 200-year-old aether, proponents, undaunted, replaced it 
with ‘nothing’. Today, wave theorists continue to insist that waves are the un-
dulation of nothing! [23] 

This ethereal hypothesis, however, bypasses established rules of science. 
The scientific method requires that the prosecutors begin by defining ‘nothing’. 
[2] Afterwards, they must conceptualize how nothing (or the flat ribbon they 
usually use to model the wave) interacts with a 3D hand to generate a shadow. 
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If the allegation is that the wave converts to particle upon contact, the scientific 
method mandates in addition that this mystical 0D or 2D to 3D metamorphosis 
be accounted for in the theory as well. 

A more poignant criticism of transverse waves arises from the bizarre 
standing wave simulation. The reason fluids and gases cannot support trans-
verse waves is that they are comprised of discrete molecules. For the standing 
wave to oscillate about an imaginary axis connecting Sun and Earth, it must 
necessarily be continuous (made of a single piece) and be attached at both 
ends. Only the force of pull can generate straightness in Physics. Photons, par-
ticles, waves, and wave-packets are out-going, push mechanisms incapable of 
modeling properties such as straightness or ray reversibility under dynamic 
conditions. 

Wave theory has also been shown to be inconsistent with the photoelectric 
[24] and Compton [25] effects, and has yet to justify why electric lines of force 
begin and end on charges while magnetic lines of force loop around. If we fur-
ther factor in that a wave is what something does as opposed to what something 
is [26], the transverse wave hypothesis crumbles like a house of cards. Again, 
these arguments constitute sufficient reasons to reject the transverse plane 
wave as a structural object and viable candidate for light. Any equation or ex-
planation ever devised around transverse waves is hereby rendered without ef-
fect (e.g., Young’s slit experiment [27]). 

Why light is not a wave-packet 
By the end of the first quarter of the 20th Century it became apparent that light 
could be neither particle nor wave, a predicament that warranted brainstorming 
new architectures. Instead, theorists chose a regrettable unscientific path. The 
still-accepted Copenhagen Interpretation (CI) that resulted from the 5th Solvay 
Conference of 1927 blends Heisenberg’s Uncertainty Principle [28], Born’s 
probability wave [29], Bohr’s Principle of Complementarity [30], and personal 
opinions of Heisenberg [31] into an unfathomable compromise known as dual-
ity. With regard to light, the CI states essentially that a photon ‘behaves’ both 
as a particle and as a wave, and that the nature of the experiment determines 
which of these aspects light will exhibit. Therefore, the claim that the CI is a 
‘physical’ interpretation of the quantum formalism is quite misleading. The CI 
addresses location, behaviour, and perceptions; it says nothing about structure. 

Moreover, the scientific method requires that the relevant definitions and 
objects be established a priori and remain unalterable throughout the subse-
quent theory. The CI flows in reverse. It retroactively infers the assumptions 
from experiment and tailors architectures to suit its arguments. If the results of 
the slit experiment are explainable in terms of waves, the photon retroactively 
converts to a wave, and if the results of the photoelectric effect are explainable 
in terms of particles, the wave now becomes a particle. It is this ‘tenderness’ of 
the two strategic hypotheses of QM—the photon and the electron—that leads 
Baierlein [32] to conclude that light is simultaneously a 2D wave and a 3D par-
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ticle. But here again Quantum Mechanics steamrolls over science. The scien-
tific method compels proponents to incorporate within their theory the process 
by which an object intermittently loses and regains a physical dimension such 
as width to support such assertions.  

Actually, these issues may no longer be relevant. Duality has made a more 
radical transition by transmuting from tentative principle to permanent object. 
Penrose [16] and Ridley [33] not only discuss, but also illustrate the peculiar 
entity known as a wave-packet, an unfathomable cross between a quantum of 
energy and the ripples of nothing. Indeed, if as the establishment suggests, light 
consists of discrete packages of energy, proponents have no further excuse not 
to illustrate this admittedly finite structure. [34] QM has, in effect, transformed 
a formless concept into a solid! 

Thus, the wave-packet divides the mainstream into two camps. Those who 
still yearn to visualize the architecture of light have yet to come to terms with 
the fact that whatever shape they concoct for the photon, wave-packet, wave-
function, probability wave, or state vector is guaranteed to be irreconcilable 
with certified behaviours of light. Rather than incorporate the favourable as-
pects of waves and particles as proponents intend, the wave-packet embodies 
the weaknesses of both. The objections made earlier to waves and corpuscles 
have not disappeared with this forceful integration, and we are nevertheless left 
with the uneasy feeling that the wave-packet is a wave made of particles, in 
turn made of waves, and so on ad infinitum. On the other hand, those who have 
surrendered to abstraction are assuming that they actually have a physical 
structure before them during the thought experiment. This is not Physics, but 
semblance of Physics. Duality is an ad hoc concept, and the wave-packet, an 
extremely misleading term that stealthily attempts to pass a mathematical equa-
tion for a physical object. The wave-packet is the grandest monument, the most 
amusing symbol of the establishment’s impotence to elucidate the correct ar-
chitecture of light through the language of Mathematics. 

The shape of light 
If all experimental results can be expressed in terms of frequency and wave-
length, light is obviously some sort of wave, but what kind of wave is it? The 
first clue arises from a basic observation. If your hand intercepts light, this 
wave is not longitudinal or transverse but 3D! If, in addition, common sense 
leads us to suspect that there is a Grand Unified Theory (GUT) that marries 
light (an outward force) with gravity (an inward force), we must simply brain-
storm all the rational mechanisms that can simultaneously generate push and 
pull. [7]  

One candidate that incorporates these features is a rope. You torque a taut 
rope and the sinusoidal signal instantly makes its presence felt at the opposite 
end. Coincidentally, the object attached there immediately feels tugged in your 
direction. This twined, DNA-like structure consists of anti-parallel, orthogonal 
electric and magnetic threads, physical entities quite unlike the ethereal field 
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proposed by Classical and Quantum Mechanics. [8] Although it may be argued 
that the plane transverse wave is but a lengthwise cross-section of the rope, this 
observation actually underscores the motion-architecture dichotomy inherent in 
these irreconcilable systems. The 2D transverse wave is dynamically undulant 
whereas the 3D rope is structurally wavy. In a universe devoid of motion, the 
2D transverse wave becomes what wave theorists allege today: absolutely 
nothing. The rope, instead, need not be torqued to acquire a rippled shape be-
cause this is its natural static state. The rope is also unique in that it is already 
attached at and tugs from both ends.  

The rope configuration makes it apparent why light consists of both object 
(particle) and motion (wave). In a motionless state, the rope contains no infor-
mation; it is actually an unremarkable object. We note, however, that consistent 
with wave theory, the shorter the links (wavelength), the greater the number of 
links that fit in a given length (frequency), making the rope the only physical 
configuration that can justify the constancy of the expression (c = ƒ * λ). If we 
twist the rope the signal blitzes out at lightning speed, a phenomenon that could 
easily confuse the keenest observer. The signal travels rectilinearly along the 
taut intermediary while the rope moves in space, thus embodying straightness 
and curving (of the signal) in a single mechanism. More telling is the subtle bi-
directional flow. When observing the middle of a spinning rope, the signal 
travels in diametrical directions. Suddenly, ray reversibility is also demystified. 
[17] If we torque the rope from both ends, the links get longer the farther we 
are from origin. Now the results of the Harvard Tower experiment make sense. 
[35] A rope twirls simultaneously clockwise (CW) and counterclockwise 
(CCW) depending on which end we face, and when compelled to reverse rota-
tion, the opposite end has no alternative but to follow through. Now, EPR is 
also descrambled: it is no longer necessary to invoke mathematical wizardry or 
quantum magic to explain this phenomenon. [36] The electric and magnetic 
strands may spin counter to each other, so a cross-section of the rope would 
show ‘photons’ with both CW and CCW spin states. [37] As a bonus we have 
simplicity and perfect symmetry, features generally favoured by intuition. By 
making the assumption that light is a torque wave generated by a two-strand 
rope, we have tentatively been able to account for a series of well-established 
structural and dynamic aspects of light: 

Static or structural aspects of light 
1. Duality: why light behaves both as a particle (object) and as a wave 

(motion) 
2. Maxwell and Faraday Laws: why the electric and magnetic ‘fields’ run 

90° to each other and appear to induce each other into being 
3. Why light is sinusoidal 
4. Why the expression c = ƒ * λ is a constant 
5. The physical interpretation of amplitude 
6. Why wavelength increases away from the center of the Earth [35] 
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Dynamic or motion-related aspects of light 
1. Why light travels so fast. 
2. Why light travels rectilinearly even during refraction and diffraction 
3. Why each ‘field’ oscillates around an imaginary axis 
4. The Principle of Ray Reversibility: retracing of the optical path [17] 
5. EPR: instantaneous mutual influence of diametrically directed photons 

[36] 
6. Simultaneous CW and CCW spin of a ‘photon’ [37]  

The crucial attribute, however, is that we have integrated the two oppos-
ing forces of the universe—push and pull—into a single mechanism. Hence, in 
principle, the rope has the potential to unify light with gravity. Let’s now factor 
in the hydrogen atom. 

Why the electron is not a discrete bead 
Thomson [38], Millikan [39], Rutherford [14], and Bohr [10], pioneered the 
discrete, planetary model of the hydrogen atom. This prototype consists of a 
positively charged bowling ball circled by a much lighter, negatively charged 
bead. Lewis [40] developed the shell model, and de Broglie [41] presented an 
electron that extends in an integral number of waves around Rutherford’s pro-
ton sphere. Schrödinger [42] and Born [29] gave yet another physical interpre-
tation by conceptualizing the electron as a cloud. The question actually begs a 
much simpler answer. The scientific method demands that proponents decide 
in advance whether the single, S-orbital electron of hydrogen is a cloud, a shell, 
a ring, or a bead and then to use this hypothesis consistently throughout their 
dissertation. And the fact remains that the prosecutors have overwhelmingly 
voted for the bead. Despite wholesale denials and disclaimers the architecture 
used in Quantum Mechanics is still Bohr's debunked planetary model. The 

 
Fig. 1  How longitudinal (spring), transverse (ribbon), and torque (rope) waves measure up. 

a. Straightness. Neither back and forth (long.) nor up and down (trans.) generate straight-
ness. In Physics only the force of pull generates straightness. As the taut rope rotates in 
space it give the impression that light curves.  

b. Speed and Direction. The twist of a taut rope sends the signal almost instantaneously in 
both directions (i.e., ray reversibility). The rope configuration embodies push and pull. 

c.  EPR. The rope twirls CW from one end and CCW from the other. 
d.  Amplitude. Only the rope achieves consistent amplitude. 
e. Orthogonality. Only the rope configuration can justify why the electric 'field' runs at 90° to 

the magnetic 'field'. 
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American Heritage Dictionary (AHD) defines an ion as an atom that has gained 
or lost one or more discrete electron beads. Ridley [43] defines electric current 
as the flow of discrete electron particles. Davies [44] portrays scattering as the 
exchange of supernatural virtual photons between two discrete electron mar-
bles. And Ebbing [45] depicts covalent bonding as the inter-atomic sharing of 
discrete electron golf balls. Indeed, discrete electrons underlie Lewis’s shell 
theory. Schrödinger lent credibility to de Broglie’s Saturnian hypothesis, but 
the matter-wave equation relies on discrete quantities for electron mass and 
charge, implying that a finite object underlies it nevertheless. And Born’s [46] 
electron cloud is really a cloud of probability, the region around the nucleus 
where a discrete electron bead is likely to be found. Therefore, the hydrogen 
atom in use today continues to be the Ptolemaic anachronism conjured by the 
Fathers of Quantum. The integral wave, the shell, and the cloud are not archi-
tectural models of a physical electron, but regions occupied by electron beads.  

However, the discrete bead model of the electron runs into insurmount-
able obstacles and must be discarded once and for all by serious scientists for a 
host of reasons, among them: 

a. Quantum has yet to offer a physical interpretation of positive and negative. 
b. Newton’s 1st and 3rd Laws require contact between two surfaces for one of 

them to change course. The quantum mechanical hydrogen atom tacitly 
has two interfaces: proton-field and field-electron. The electron bead is 
physically bound to and orbits the nucleus thanks to this intermediary 
known as field. However, field is not a physical object, but a concept. [8] 
Hence, QM implicitly has a concept binding the physical bead to the bowl-
ing ball. (Fig. 2 - Hydrogen)  

c. QM has electron beads occupying energy levels. [10] However, Feynman 
[6] candidly confesses that physicists have no idea what energy is. Feyn-
man has the scientific method backwards. The scientific method requires 
Feynman to tell the jury what X is for, or else the jury cannot understand 
what he is talking about. If Feynman doesn’t know what X is, then he 
should not be allowed to use X in his dissertation. 

d. Valence Band (VB) and Molecular Orbital (MO) theory hold not that the 
beads themselves, but rather that their trajectories (i.e., orbitals) interact! 
[45] 

e. VB and MO theories self-servingly avoid quantum paradox by alleging not 
that the negative bead, but that its charge-indifferent P-orbital (the region 
where an electron bead is likely to be found) runs unprejudiced through a 
barrier of positive protons in a nucleus and out the other side (Fig. 2 - 
Neon). 

Until these objections are addressed, the scientific method requires us to 
reject that the electron can possibly be a discrete bead. Meanwhile, any theory 
and mathematics ever developed around the orbiting bead model is hereby ren-
dered moot (e.g., VB and MO theories). 
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The shape of the hydrogen atom 
If QM’s cartoonesque atom is not viable, is there a rational model we can re-
place it with? Let’s invoke EM threads again and suppose that the verb of MO 
theory is really a noun. Thus, the quantum orbital becomes what MO theory 
has assumed it to be for decades: a balloon. Electric and magnetic threads con-
verge on the hydrogen atom from the remaining atoms in the Universe. The 
electric component of the rope continues straight into the center of the atom, 
where, at a radius of 10–15 m, the proton behaves as the impenetrable sphere 
Rutherford [14] experienced. The proton is a tiny dandelion, an intersection of 
electric threads extending outwards towards every atom in existence. [47] The 
magnetic thread forks out from the electric thread at the boundary of the elec-
tron shell and begins to circumvent the proton in a de Broglie-like [41] undu-
lating pattern. Countless such threads approaching from near and far knit a 
wavy ball-of-yarn surface that encapsulates the dandelion in a Lewis-like [40] 
membrane known as the electron (Fig. 3). Under these assumptions all atoms, 
detected and undetected, are bound to each other via EM threads. The Universe 
is criss-crossed and threaded throughout by the medium through which the 
torque signal (light) travels. [48] Indeed, the underlying proposal is that matter 
consists of a single, closed-loop thread in the whole of space. This thread con-
verts to tiny spherical knots known as hydrogen atoms, which then, consistent 
with current theory, fuse to form heavier atoms or join to form molecules, 
which in turn serve as building blocks for macro objects like human beings. 
Under the rope hypothesis, what prevents our planet from escaping the solar 
system is that every atom on Earth is physically connected via EM threads to 
every atom that comprises the Sun.  

We now integrate the electron balloon, the proton dandelion, and the elec-
tromagnetic rope that interconnects two such structures into a simple, symmet-
ric system consisting of two hydrogen atoms bound by a two-strand rope (Fig. 

Fig. 2 The hydrogen and neon 
atoms of Quantum Mechanics 
Hydrogen. QM has 'some-
thing' known as a 'field' physi-
cally binding the electron 
bead to the proton bowling 
ball. However, a field is not a 
physical object. It is defined 
as a 'region' of space (i.e., a 
concept). 
Neon. QM self-servingly 
avoids paradox by running the 
charge-neutral p-orbital 're-
gion' (a concept) rather than 
the negative electron 'bead' 
(an object) through the posi-
tive nucleus. 
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3). We rely on this simple system to explain the most fundamental attributes of 
the hydrogen atom from a strictly physical perspective. 

Once we integrate the rope, the electron shell, and the proton dandelion, it 
becomes apparent why two vibrating atoms act like they were connected by a 
stiff spring [49]—because indeed they are. For the rope to remain straight, any 
brusque motion of one atom necessarily shakes the one at the opposite end. But 
light is exchanged independently of the vibrating motion of the atom. The 
torque signal is the result of pumping. Consistent with Bohr’s theory [10], 
when the electron balloon spontaneously contracts to a smaller radius (i.e., 
makes a ‘quantum jump’ to a lower energy state), the rope picks up the slack. 
The hydrogen atom is said to have ‘emitted’ a photon, a ‘quantum of energy’, 
which predictably is measured as an integral number of ‘wavelengths’ (i.e., 
rope links). This ‘packet’ does not travel towards infinity, but along the taut 
rope to the atom connected at the other end. When the balloon expands, it does 
so at the expense of EM rope, which again is drawn in an integral number of 
wavelengths. By its very nature, this model disallows intermediate ‘orbitals’ or 
energy bands. Hence, every rope converging on our atom is constantly torqued 
from both ends. The atom is a tiny heart perpetually pumping torque waves in 
and out of the system. The friction generated at every point along the electron 
surface where electric and magnetic threads fork out is a composite Millikan 
[39] measured as charge, a physical interaction that misleads Baeirlein [32] to 
conclude that a signal struck a wall and morphed into a particle. This model 
enables us to explain observations heretofore considered supernatural by QM 
advocates. 

Static or structural aspects of the hydrogen atom 
a. Why the electron has wave, particle, shell, and cloud-like properties 
b. Structural stability: why the electron does not spiral into the nucleus 
c. The absence of intermediate ‘energy bands’ 
d. Why a P-’orbital’ runs through the ‘positive’ nucleus  
e. de Broglie integral waves  
f. Why electric ‘lines of force’ begin and end on ‘charges’. 

Dynamic or motion-related aspects of the hydrogen atom 
a. Bohr’s mystical quantum jump  

Fig. 3  Cross-section of two hydrogen atoms interconnected by an EM rope 
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b. Why the atom emits and absorbs light in discrete quantum packets  
c. Why light has constant velocity irrespective of the motion of the source  
d. The Mössbauer Effect: recoilless emission [50] 
e. Why light ‘travels’ as a wave and departs and arrives as a ‘particle’ 
f. The physical interpretation of charge 

From a universal point of view, the rope hypothesis also explains:  

a. the physical meaning of c2 (light travels in both directions from one 
atom to all others and vice versa)  

b. Mach’s Principle [51]  
c. the inverse square rule of gravity (or why the Earth orbits the Sun) 

We have now finished our introduction to Thread Theory (TT). We have 
arrived at the end of our quest: an illustration of the static universe we inhabit. 
The words spoken by Democritus 2500 years ago serve as appropriate closing 
remarks. He purportedly said ‘The only existing things are atoms and empty 
space; the rest is mere opinion.’ We rephrase his materialistic vision in order to 
incorporate light and state that: ‘The only existing things are atoms intercon-
nected by ropes, both drifting in empty space; the rest is mere opinion.’ 

Conclusion 
For the past 400 years, Physics has entertained but two alternatives for light: 
wave and corpuscle; for the last 200 years theorists have used loosely defined 
concepts such as points, energy, field, and force to describe structure; and in 
the last 100 years Quantum Mechanics has treated photons and electrons as 
particles. Indeed, the apologetic CI is a result of QM’s stubborn insistence on a 
corpuscular universe. Most of the equations of Quantum Mechanics and the 
work of hundreds of ‘particle’ physicists revolve around discrete particles. 

Fig. 4   The static universe 
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However, without exception, every subatomic particle ever identified lacks the 
one attribute that would qualify it as such: shape. And nevertheless, even if 
mathematicians were successful in illustrating a single subatomic particle ever 
‘invented’ to explain observation, QM would still fail. The reason theoretical 
physicists have yet to find gravity is that discrete corpuscles have no physical 
way of generating the force of pull, the only ‘force’ that QM has yet to explain 
rationally.  

The purpose of this article was to underscore known weaknesses in the 
quantum/classical, wave/particle models and to introduce Thread Theory. The 
hypotheses just formulated are the pillars of a quite complex theory of light and 
gravity that arises as an alternative to purely mathematical endeavours. Thread 
Theory seeks to demystify longstanding physical paradoxes, among which we 
include the most notorious:  

a. How do intersecting beams manage to elude interaction? (Under TT 
the question becomes: how do threads avoid tangling?) This is actually 
the only question Theoretical Physics needs to answer today! 

b. EPR, tunnelling, ray reversibility, Mössbauer effect, polarization, etc. 
c. How does a single entity generate both fringes in the double slit ex-

periment and instantaneous electric current during the photoelectric ef-
fect? 

d. What physical mechanism embodies the two forces of the universe: 
gravity and electromagnetism, respectively pull and push? 

e. How do magnets physically manage to attract and repel (i.e., the 
physical meaning of positive and negative)? 

f. How does an electric current physically propagate and generate a 
field? 

Development of these topics are well beyond the scope of the instant pa-
per. Meanwhile, the open-minded reader may want to ponder the words of Dr. 
Penrose [16], “Somehow, Nature contrives to build a consistent world in which 
particles and field-oscillations are the same thing! Or, rather, her world consists 
of some more subtle ingredient, the words ‘particle’ and ‘wave’ conveying but 
partially appropriate pictures.” The rope hypothesis may very well be the subtle 
ingredient that has eluded detection since man began to tinker with light. 
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The intention of the present paper is to underline the continuity between matter 
and life, and to advance our investigation of matter. 

Early in the last century, Oparin, a pioneer in studies of the origin of life, 
reached the following conclusion: “…the simplest living organisms originated 
gradually by a long evolutionary process from organic substances…” and 
“…the numerous attempts to discover some specific “vital energies” resident 
only in organisms invariably ended in total failure…”(1) 

Today, this approach is central to most theories on the origin of life (2).  
However, given the very nature of life, Oparin’s statement contained a 

major difficulty: life was characterized primarily by its irreversibility, while 
matter was then considered essentially reversible.  

Indeed, the irreversibility of matter, as expressed by the second law of 
thermodynamics, according to which the disorder of the world increases con-
stantly, was thought and taught to be a consequence of our human limitation 
rather than an intrinsic property of matter. The limitation is that we do not live 
long enough to observe all the possible states a system can adopt. Our short 
stay on earth allows us to witness only those states with a high probability.  

From this perspective, matter could not “give birth” to life since both 
realms were totally alien to each other, each “living” a different time. It would 
have been like watching a video film of a pregnant woman giving birth and 
suddenly finding the live baby in our living room. 

The question that seemed unavoidable in Oparin’s time was: How, in the 
long evolutionary process mentioned above, did we pass from a reversible 
world to an irreversible one? 

Strangely enough, in spite of the importance of the question, the answer 
was found much later, in Prigogine’s work. 

Indeed, in his study on non-equilibrium thermodynamics (for which he 
won the Nobel Prize in chemistry in 1977), Prigogine showed that matter irre-
versibility is part of the very nature of matter. It is not an illusion, but the ine-
luctable result of the dynamics of large populations of particles constantly col-
liding. He showed that these collisions lead to resonances between the degrees 
of freedom of the particles. and it is these resonances which are responsible for 
time-symmetry breaking (3). 
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In other words, it is not because we are not able to live billions of years 
that we will never see a gas mixture spontaneously separating, but because ir-
reversibility is an inherent quality of matter, as it is for life. Matter is irreversi-
ble because it is made of a multitude of particles. This may, by the way, lead to 
a satisfying answer to Schrödinger’s queries: Why are atoms so small com-
pared to our own dimensions? Why is the number of atoms so large? (4) 

Thanks to Prigogine, in the passage from matter to life, there was no ques-
tion of jumping from one reality to another. Continuity between inert matter 
and the living realm was established, Darwin’s evolution theory could be 
“stretched” to Mendeleev’s table, and Oparin’s statement returned to its proper 
place. 

It is not the purpose of this article to dwell on the mathematical develop-
ment which led Prigogine to his results, but to focus on another area of Prigog-
ine’s work in an attempt to further transform our perception of inert matter. 

Prigogine studied systems far from equilibrium. This domain of thermo-
dynamics is the domain of the living. We constantly consume energy to keep 
us away from equilibrium. Indeed, “running away from equilibrium” is at the 
basis of our life; it corresponds to our instinct of life; it is at the root of the 
teleonomic character defined by Monod (5). In this context, metabolism and 
replication are seen as sophisticated strategies used by an organism to resist 
equilibrium. For all of us, equilibrium is synonymous with death: it is when it 
losses its ability to “resist equilibrium” that an organism disintegrates and dies. 

On the other hand, in the world of matter, the “instinct” of chemical sys-
tems is to rush to equilibrium, spontaneously, at the first opportunity, as iron 
attracted by a magnetic field.  

It is known that a spaceship can be projected out of the field of earth’s 
gravitational attraction. Similarly, one might ask: Is it possible to remove a 
chemical system from the field of equilibrium attraction?  

As long as energy is provided a chemical system can be kept far from 
equilibrium. The shock was to see that, under specific conditions, far from 
equilibrium, certain chemical systems, the oscillating reactions, spontaneously 
generate organized structures. These spectacular and unexpected structures are 
known today as dissipative structures. 

The phenomenon was observed as early as 1921, but for decades it was 
rejected as an artifact by most chemists because it seemed to violate the second 
principle of thermodynamics. (6) Tremendous effort was made to fight this re-
jection and convince a reluctant community to open their eyes and minds to 
unexpected but real facts. Nearly half a century later, in 1968, Prigogine and 
his co-workers presented a mathematical model for those reactions, showing 
full compliance with the second principle of thermodynamics. (Yet, as late as 
1972, some scepticism remained. (6)) 

What we want to remember about these systems is this sentence from 
Prigogine, in which he refers to their spontaneous auto-organization, or to what 
he later called “order out of chaos”: 
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Such a degree of order stemming from the activity of billions of molecules 
seems incredible…. To change the color all at once, molecules must have a 
way to “communicate.” The system has to act “as a whole. (7, p.148)  

Though this conclusion leaves us quite perplexed, coming from Prigogine, it is 
worthy of consideration. 

In 1924, Louis de Broglie, considering the dual nature of light as sug-
gested by Einstein (1905), thought of the possible dual nature of matter—
corpuscular and wave-like. De Broglie suggested the following mathematical 
relation, which assigns a specific wavelength λ to any particle of momentum p, 

/λ = h p  (h = Planck’s constant). 
Since then, this relation has been confirmed with great success throughout 

experiments on elementary particles, not only electrons (8), but also atoms (9) 
and neutrons. (10) The correspondence between experiment and theory is im-
pressive. 

Two years later in 1926, Schrödinger found, for bound particles such as 
electrons, the function that describes this wave, the wave function ψ that revo-
lutionized physics. 

Consequently, the building blocks of our universe became hybrids of two 
components, one exhibiting properties taken from the physics of waves, and 
the other exhibiting properties taken from the physics of rigid bodies. How-
ever, even today, we have no precise idea what this hybrid really is. This is 
what the Heisenberg Uncertainty Principle stipulates: if one focuses on one 
part of the hybrid, the other part becomes hazy. Moreover, when scaling up the 
phenomenon and dealing with large populations of atoms and their electrons, 
the wave component of this hybrid seems to be “lost” and one is left with a 
rigid body. Indeed, the wavelength associated with any macroscopic object is 
smaller than the dimensions of any physical system, and no wave phenomena, 
such as interference, can be observed, not even for dust particles. 

Therefore, except for limited and specific cases (like those mentioned 
above), we have dropped the idea of a tangible picture of the wave component 
of that hybrid and turned to a mathematical interpretation, given by Max Born, 
who showed that |ψ(x)|2 gives the probability of finding a particle at point x.  

However we should not forget that at the atomic scale, there is no such 
thing as a rigid body and that what we call matter is an aggregate of these 
strange hybrids, an “intensive state” (by analogy to intensive properties) of 
something we still cannot grasp. 

De Broglie, who died in 1987, witnessed the tremendous success of quan-
tum theory, but did not agree with the abstract interpretation given to “his” 
wave. He wrote: “…By which strange coincidence could a representation of 
probabilities propagate in space through time like a physical wave able to be 
reflected, refracted and diffracted?” (11) 

Similar reservations were expressed by Schrödinger: “…The mathemati-
cal representations used by theoreticians must be only a manner of describing 
with precision the nature of the considered phenomena, and must not be re-
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duced to a simple intellectual gymnastics,” (12)—as well as by Einstein and 
Planck. Einstein refused to accept that all we could observe was a probability. 
He wrote to his friend Born (13): “I am not satisfied with the idea that we pos-
sess a machinery that enables us to prophesize but to which we are not able to 
give a clear sense.” For Einstein, quantum mechanics was not wrong but in-
complete, unfinished.  

Since the interpretation given to |ψ(x)|2 has lead to exact predictions and, 
as such, forms the cornerstone of the highly successful quantum theory, at-
tempts to give a tangible description of ψ, the wave function of the electron, 
have declined. Indeed, it is so hard to envisage what this wave function is that 
we cannot help but wonder if solving the wave-particle duality enigma might 
not be like transcending body-mind duality. 

However, after this digression, we return to dissipative structures and the 
communication between molecules, mentioned by Prigogine. 

During an oscillating reaction there is a reversal of the spontaneous mo-
tion of electrons from maximum disorder, (i.e., the most probable electron ar-
rangement) to organized structures. Prigogine said that this organization is the 
result of communication between molecules. Our hypothesis is that, if commu-
nication between molecules indeed exists, it is accomplished through the wave 
associated with their electrons. Even though these waves are not directly ob-
servable, they may induce observable effects. It seems plausible that informa-
tion about these structures may be transmitted through coherence between 
these electron waves. 
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The ether (vacuum, zero-point energy, spacetime, etc.) is modeled as a gas com-
posed of elementary particles called cosmons. Physical fields are defined by me-
chanical properties of a cosmonic gas. These gas properties are necessary and 
sufficient to derive the structure of the electron as an extended fundamental par-
ticle, based on known (measured) properties, such as mass, isospin, hyper-
charge, and two concentric charges of opposite sign equivalent to the single 
electron charge e. 

Introduction 
Previous studies of relativity showed that Einstein-Minkowski space-time is an 
isomorphism of Galilean space and time [Martin 1994b, 1998], thereby unify-
ing electromagnetism with classical mechanics, and making it possible to use 
classical mechanics to describe the nature of physical phenomena. A new 
model is proposed to explain known physical phenomena [Martin 1994a]. The 
material substratum is modeled as a gas composed of elementary particles 
called cosmons which are agitated in all directions. This “cosmonic gas” is as-
sumed to pervade the Universe, even the space between and within fundamen-
tal particles. 

It will be shown that the well-known mechanical gas properties [Loeb, 
1961] are sufficient to account for the electrical, magnetic and gravitational 
fields and other physical phenomena. Arguments will then be presented to 
show that fundamental particles are spatially extended configurations of cos-
monic gas. Lastly, the results of calculations to determine electron structure 
will be presented. 

Cosmons 
Cosmons have no moving parts, and hence no internal energy and, according to 
Einstein, no rest, inertial or gravitational mass. The space between cosmons is 
absolute void. Cosmons are thus alone in the Universe, and there are no fields 
or forces at this level. The sole property of a cosmon, its diameter, determines a 
certain volume of space that is forbidden to other cosmons. The cosmonic gas 
is the substance of which the universe is made. 
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Interaction with other cosmons occurs only during encounters, where 
there is an exchange of velocity components along the line of centres, with a 
quantum space jump of one cosmon diameter. The velocity components normal 
to the line of centres remain with each cosmon. Between encounters, cosmons 
move at constant velocity (speed and direction). 

Laws of physics from cosmonic gas equations 
In accordance with kinetic gas theory, cosmon velocity varies from zero to in-
definitely large values in a Maxwell distribution, the mean speed of agitation 
C, with 5C2 = 2c2, c being the speed of light. Because they have zero spin, 
cosmons are bosons, and their energy varies according to Planck’s distribution 
law. Classical concepts such as mass, charge and magnetism, are properties of 
the gas at this level. 

In the vacuum, which is space devoid of fields and fundamental particles, 
cosmonic gas properties are spatially uniform by definition. Local vacuum 
properties (denoted by the subscript 0), are taken as the zero level of all physi-
cal measurements. 

Fields are produced by local gradients or variations of gas properties due 
to the presence of cosmons. In the cosmonic gas, the total pressure (the sum of 
kinetic energy density and static pressure) defines the quantity electric charge 
density × electric potential. The total pressure gradient parallel to streamline 
accelerates the gas element, giving it velocity, thus producing electric current. 
The gradient of total pressure normal to streamline results from vector product 
of gas flow × vorticity (twice the rotational velocity of the gas element). The 
induced velocity due to a vortex line element at any point around it is propor-
tional to this pressure gradient normal to streamline and inversely proportional 
to the cube of distance from vortex element to the point considered. This in-
duced velocity is normal to both the pressure gradient and the vorticity. “This 
is exactly the Biot-Savard Law in electrodynamics, from which the magnetic 
field in the neighbourhood of a current carrying wire can be calculated.” 
(Prandtl and Tietjens, 1957: p. 206) Magnetic lines of force are simply vortex 
lines in the cosmonic gas. These are the necessary conditions for the existence 
of electromagnetic fields. 

Constant total pressure corresponds to irrotational flow of the cosmonic 
gas, which is the signature of purely mechanical phenomena, as in acceleration 
of neutral matter. Static pressure and kinetic energy density then vary in com-
plementary fashion. 

There are no forces between cosmons. Therefore, the term of the Van der 
Waals equation which accounts for potential between molecules of gas has no 
role in the cosmonic gas. In the resulting Clausius equation, 

( )1P b V NkT− = , gravitation is due to the volume term. When this term is 
negligible, the equation accounts for the phenomena of QED. When this term is 
not negligible, it assumes the form ( )max2 N N Nπ− − , where Nmax is the nu-
meric density (concentration) of cosmons at maximum compaction (mean free 
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path being 0). This dimensionless factor multiplies the pressure p in the cos-
monic gas equation. This negative pressure accounts for the gravitational term. 
It thus reproduces, at a different scale, all the effects of the electromagnetic and 
weak interactions, which then become the strong and colour forces of QCD. 

A black hole in cosmonic gas theory is defined as a configuration where 
the gravitational term of the Clausius equation is greater than the pressure term, 
which produces gravitational collapse, and cosmon number density reaches its 
maximum value, Nmax. There is no singularity. 

The main equations of quantum physics are derived from the viscosity 
formula for gases. The Planck constant thus corresponds to the minimum quan-
tum of action in the cosmonic gas. It can be defined as the cosmonic gas vis-
cosity coefficient per cosmon, or cLμ , where μ is mean cosmon mass and L is 
mean free path. The Einstein (E = mc2) and Planck (E = hν) energy formulae 
follow automatically. Highly transient quantum mechanical phenomena are due 
to cosmonic gas viscosity effects. Quasi-permanent quantum mechanical phe-
nomena are due to mechanical resonance (quantum conditions), which neutral-
izes viscosity effects, giving the cosmonic gas superfluid properties.  

Gas vortex in fundamental particles 
Fundamental particles are thus seen as spinning concentrations of gas (vortices) 
exhibiting gradients of pressure, density, and temperature. As a result, a mov-
ing fundamental particle will automatically possess wave properties. The wave-
particle duality is thereby explained. 

According to Maxwell, wherever the electric field has a divergence (sum 
of partial differentials), there is an electric charge density. Consequently, 
fields—both electromagnetic and gravitational—which extend indefinitely far 
in space (as do their charge, mass and energy), are part of the fundamental par-
ticles, which in turn must also extend indefinitely far in space. The general ap-
plicability of wave mechanics, the apparent nonlocality of fundamental parti-
cles, and diffraction phenomena are thus explained. 

When the Coulomb law is modified by replacing the invariant e with a 
charge er which varies from 0 at the centre to e at r → ∞, the problem of infini-
ties is removed, and with it the need for renormalization. 

In gas dynamics there are two very stable velocity configurations in three 
dimensions. Both have toroidal geometry. 

Circular vortex 
The circular vortex is analogous to a circular smoke ring. Series of tori are cen-
tred on a common axis, their meridians, defined by planes passing through the 
axis, being circles whose centre describes a circle in the equatorial plane nor-
mal to the axis. These torus meridians are streamlines of the gas. This pattern is 
rotated about the axis, making it spherical. 
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Planes normal to the axis cut the torus sur-
faces in circular lines, all centred on the common 
axis. These circular lines are vortex lines in the gas. 
Hence the name “circular vortex.” 

Spin vortex 
The geometrical arrangement of the spin vortex 
(also called “spherical”) is the same as the circular 
vortex. However, the flow and vortex lines are interchanged. The streamlines 
are circles concentric with the axis, while the vortex lines are the tori meridi-
ans. 

This pattern exists in every spinning concentration. The closer the merid-
ian circles of the tori, the higher the rotational velocity. In purely mechanical 
configurations (irrotational flow), the rotational velocity becomes mechanical 
spin, and neutral currents follow the streamlines. In electrical concentrations 
(rotational flow), the pattern is equivalent to iso-spin, while electrical currents 
follow the streamlines, and the vortex lines are the magnetic lines of force of 
the magnetic field. 

Moving particle 
The circular vortex pattern, combined with a uniform flow pattern, produces 
the flow around a sphere. There is no flow across the sphere, so the gas inside 
the sphere moves with it. The gas outside the sphere, however, does flow past 
the sphere. This combined velocity pattern accompanies every concentration 
moving in the gas, including the photon. (The Compton effect is a vectorial ex-
change of energy and momentum components of the circular vortices.) The 
higher the velocity of the concentration, the higher the velocity along the 
streamlines and the greater the vorticity on the vortex lines. At the two inter-
sections of the axis of motion with the sphere, the velocity falls to zero relative 
to the concentration, and the pressure goes to a maximum. The distance be-
tween these two points is the deBroglie wavelength. 

The sphere is infinitely large at zero velocity of the concentration, and de-
creases in size as the velocity increases. It shrinks to zero at infinite Galilean 
velocity V or when Einstein velocity v = c. The relation between these two ve-
locities is v/c = tanh (V/c). 

Similar purely mechanical patterns at constant 
total pressure account for the kinetic energy of neu-
tral concentrations. The flow pattern (circular vor-
tex) due to the concentration’s velocity, combined 
with the iso-spin pattern (spherical vortex), when 
viewed in the direction of motion, produces a pre-
cession of the spin axis to the left, normal to the  

Figure 2 – Spin vortex. 
Streamlines are circles centred 
on the vertical axis. 

 
Figure 1 - Circular vortex. 
Streamlines follow the torus 
surfaces. 



 The electron as an extended structure in cosmonic gas 277 

 

velocity, of all ½-spin matter particles. Anti-particles precess to the right. 
For integral iso-spins, –1, 0, +1, the particle spin is to the right or left. Be-

cause the spin axis is parallel to the velocity in these particles, the streamlines 
of the spin vortex are parallel to the vortex lines of the circular vortex, and 
similarly, vortex lines of the spin vortex are parallel to the streamlines of the 
circular vortex. There is no induction and no precession of the spin axis. 

Fundamental particle spectrum 
When fundamental particles are classified by their charge Q (abscissa) and 
hypercharge Y (ordinate), the above table results, with each row representing 
iso-spin (–1, –½, 0, +½, +1), according to the Gell-Mann formula Q = t + Y/2. 

In leptons, however, where gravity is negligible, equilibrium can be ob-
tained only with two concentric charges of opposite sign, and the formula must 
be modified to Q = (t + Y) – Y/2, which yields the same charge as the classic 

Table 1. Fundamental particle spectrum from Q = (t + Y) – Y/2 
(values in units of e/6) 

Y    Q –4/3 –1 –2/3 –1/3 0 1/3 2/3 1 4/3  

      t = –1   t = 0  

       t = –½   t = ½ 

2     6–6
Z   12–6

W+Z   

5/3      7–5
Y   13–5 

X  

4/3    2–4*   8–4   t = 1 

1     3–3
n ν

  9–3
e p   

2/3   –2–2
2d   4–2   10–2 

2u  

1/3    –1–1
d vacuum  5–1

u    

0  –6+0 
W π 

  0–0
γ g**

  6–0
W π

  

–1/3   –5+1
u   1+1

d     

–2/3 –10+2 
2u   –4+2   2+2

2d    

–1  –9+3 
e p   –3+3

n ν
     

–4/3   –8+4   –2+4*     

–5/3 –13+5 
X   –7+5

Y       

–2  –12+6 
W+Z   –6+6

Z      

      X & Y
(theor.)     

*  impossible 
**  gluon 



278 Adolphe Martin 

 

Gell-Mann formula when the particle is viewed from a distance. The (t + Y) 
term includes the additive or subtractive spin effect on the central charge where 
it has its greatest effect. This component, which is normal to the toroidal vortex 
line, combines with the centrifugal force due to spin. This resultant adds to the 
radial total pressure gradient, thereby contributing to the charge of the particle. 
The Y/2 term is a charge, of opposite sign and concentric to the (t + Y) term, 
that is produced by vacuum polarization. It extends indefinitely from the cen-
tral charge to the surrounding space. Neutral particles are mass concentrations 
with charges of equal and opposite sign. 

The values of these terms are multiplied by 6 to give integral values in the 
chart. They form a continuous quantized series from –13 to +13, including hy-
pothetical unobserved X and Y particles. The odd values are distributed on 
half-integer iso-spin lines t = ±½, and correspond to left-handed fermion parti-
cles. Even values are concentrated on integral spin lines corresponding to bos-
ons. 

The values (Y + t) = 0, with Y/2 = 0, correspond to the vacuum level. It 
can be seen that the values of particles and anti-particles of each species are 
symmetrical (opposite sign) about the vacuum values. This condition is re-
quired for photon energy to transform into a particle/anti-particle pair from the 
vacuum, together with the inverse (photon pair production). 

Calculation of electron structure 
Due to the particle/anti-particle symmetry of opposite charges, it is assumed 
that the properties at the centre of the electron have the same values as the vac-
uum. This symmetry requires that the functions of gas properties also be sym-
metrical about the vacuum values. Since we assume a gas medium, the Lane-
Emden function for the equilibrium of a polytropic gas sphere (Chandrasekhar, 
1939) meets all the requirements for stationary fundamental particles. This 
function is also a requirement for the equilibrium of any spherically symmetric 
configuration (Kompaneyets, 1961). 

A polytropic gas sphere with index n = 5 is the only one that extends to 
infinity and yet has finite mass and charge. Electrical concentrations are ob-
tained by setting G = 1, replacing M by e and the pressure term p by total pres-
sure P, thus making allowance for spin kinetic energy and iso-spin charge in a 
spherical geometry. For a circular vortex, the relations between vorticity 
(2 × velocity), orbital velocity and velocity potential are nearly the same as for 
the polytropic gas sphere properties between charge density, field, and electric 
potential with the same functions along the radius (Prandtl and Tietjens, 1957). 
This explains why isospin acts as part of the total charge. In our calculations, 
the same value of isospin ratio t = ½, is part of each constituent charge, as in 
the total charge. 

The calculations have been performed for the electron concentration with 
the Lane-Emden function applied to each of two superimposed charges ec1 and 
ec2 of opposite sign. The functions, derived directly from the mass, charge, iso-
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spin, and hypercharge, bear a strong resemblance to the Schrödinger wave 
forms for a free electron. The general equations are for concentrations with two 
charges, given known electron values, and values of particle charges e1 and e2, 
from the particle spectrum chart. The resulting parameter values represent sta-
bility conditions for the electron structure. 
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where e1 is inner charge for 0 ≤ r ≤ r0, e2 is outer charge from r0 ≤ r ≤ ∞, while 
ec1 is major polytropic charge, ec2 is minor polytropic charge for both 
0 ≤ r ≤ ∞, and r0 is radius of inner charge e1, and a1 is the radius of a sphere at 
constant density ρc1 with charge ec1; a2 is the radius of a sphere at constant den-
sity ρc2 with charge ec2, as isospin ratio of t = ½ is applied to each charge. 

The calculations for the resolution of these equations were made in a 
computer spreadsheet (Table 2). Values of a1/a2 and ec1/e are iterated until 
value of e1/e calculated from the inverse of the equation for ec1/e reached the 

Table 2 – Calculated values for electron structure
A B C D E F G H I J 

Electron  mass m 9.10E–28 e1/e = 3/2 e2/e = ½ k(mc2) t 9.10E–28 mass me 

CONSTANTS   –7.2E–13 2  0.470588 0.5 4.80286 e E–10 

a1/a2 1–a1/a2
2 (B43/5) a1/a2

6/5 ec1/e ec2/e e1/e –e2/e 2.81785 re E–13 

0.247511 0.938738 0.962779 0.187203 2 1 1.5 0.5 2.41E–07 3πe2/32re 

a1/a2 a2/a1 e1/e (G4–C6) a/a1 a/a2 q/e re/a 0.625864 51π/256 

0.247511 4.040219 1.5 –6.6E–16 0.266489 0.065959 1 1.59779 5.12E+27 3e/4πre3 

co h K1 K2 ρe1/ρe –ρe2/ρe 3e/4πa3 sin2αο1 1.59779 256/51π 

2.99E+10 6.62E–27 0.001009 0.000331 1.007639 0.007639 2.09E+28 0.914127 0.470588 k(mc2) 

a1/a2 1–a1/a2 ec1/e ec2/e re/a1 re/a2 ρe ψc Pc ΔΩ 

0.247511 0.752488 2 1 0.425794 0.105389 7.85E+26 211.9759 1.66E+29 –7.2E–13 

To ro/a1 ec1 E–10 ec2 E–10 a1 E–13 a2 E–13 ro/re ro E–l3 mc2 E–07 8/17mc2 

2.736 3.262691 9.60572 4.80286 6.617856 26.73759 7.662588 21.59202 8.186193 3.852326 
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required value of e1/e = 1.5. The remaining values relevant to electron structure 
are given in Table 2. 

These lead to values of charge density ρc, electrical potential ψc, and total 
cosmonic gas pressure Pc, as follows: 

 26 3
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3 7.85 10  esu cm
4

c
c

e
a

ρ
π

−= = ×∑  

 2 12.1198 10 erg esu
6

c
c

e
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 29 31.66 10 erg cmc c cP ρ ψ −= = ×  

 
Figure 3 – Polytropic values against r/a for a single charge. This configuration is physi-
cally unstable, since the distributed charge would explode by self-repulsion. 

 
Figure 4 – Polytropic values for two polytropic charges of opposite sign in equilibrium. 

 
Figure 5 – Same as graph 2, but with P and ρ values ×100. This shows that ρ passed at 
zero values at r0/a1 = 3.26 as calculated, determining the maximum of er/e. 
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With polytropic index 5, ψ varies as cosα, ρ varies as cos5α, and P varies as 
cos6α (0 ≤ α ≤ π/2). The ratio of varying electron charge to constant Coulomb 
charge is defined as er/e shown in the graph in Figure 4. The electron’s electri-
cal field E = er/r2 = e/r2(er/e). The ratio of the electron’s field to the Coulomb 
field is er/e. Thus er/e is the ratio of the electron charge and field to Coulomb 
values. 

The results of these calculations are amenable to experimental verifica-
tion, probably in electron-electron collisions. 
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