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Preface to the Fifth Edition

The aim of this monograph is to outline the physics of image formation,
electron—specimen interactions, and image interpretation in transmission elec-
tron microscopy. Since the last edition, transmission electron microscopy has
undergone a rapid evolution. The introduction of monochromators and im-
proved energy filters has allowed electron energy-loss spectra with an energy
resolution down to about 0.1 eV to be obtained, and aberration correctors
are now available that push the point-to-point resolution limit down below
0.1 nm.

After the untimely death of Ludwig Reimer, Dr. Koelsch from Springer-
Verlag asked me if I would be willing to prepare a new edition of the book.
As it had served me as a reference for more than 20 years, I agreed without
hesitation. Distinct from more specialized books on specific topics and from
books intended for classroom teaching, the Reimer book starts with the basic
principles and gives a broad survey of the state-of-the-art methods, comple-
mented by a list of references to allow the reader to find further details in the
literature. The main objective of this revised edition was therefore to include
the new developments but leave the character of the book intact.

The presentation of the material follows the format of the previous edi-
tion as outlined in the preface to that volume, which immediately follows.
A few derivations have been modified to correspond more closely to modern
textbooks on quantum mechanics, scattering theory, or solid state physics.

A special acknowledgement is due to M. Silder for preparing the new figures
and helping with TeX and to all colleagues who gave permission to publish
their results.

Miinster, May 2007 H. Kohl



Preface

The aim of this monograph is to outline the physics of image formation,
electron—specimen interactions, and image interpretation in transmission
electron microscopy. The preparation of this fourth edition has made it
possible to update the text and the bibliography. Meanwhile, the book
Energy-Filtering Transmission Electron Microscopy has been published as
Vol. 71 of the Springer Series in Optical Sciences. Discussion of this rapidly
growing method has therefore been kept brief, and special aspects of energy
filtering are discussed together with their conventional counterparts.

In the introductory chapter, the various electron—specimen interactions
and their applications are summarized, the most important aspects of high-
resolution, analytical, high-voltage, and energy-filtering electron microscopy
are reviewed, and the different types of electron microscopes are compared.
The optics of electron lenses are discussed in Chap. 2 in order to bring out
electron-lens properties that are important for an understanding of the modes
of operation of an electron microscope. In Chap. 3, the wave optics of electrons
and the phase shifts caused by electrostatic and magnetic fields are introduced;
Fresnel electron diffraction is treated using Huygens’ principle. The recogni-
tion that the Fraunhofer diffraction pattern is the Fourier transform of the
wave amplitude behind a specimen is important because the influence of the
imaging process on the transfer of spatial frequencies can be described by in-
troducing phase shifts and wave aberrations in the Fourier plane. In Chap. 4,
the elements of an electron-optical column are described: the electron gun,
the condenser, the imaging and recording system, and equipment for electron
energy-loss spectroscopy and energy filtering.

A thorough understanding of electron—specimen interactions is essential to
explain image contrast. Chapter 5 contains the most important facts about
elastic, inelastic, and multiple scattering. The origin of scattering and phase
contrast of noncrystalline specimens, the introduction of contrast-transfer
functions, and the background of holographic and tomographic methods are
described in Chap. 6. Chapter 7 introduces the most important laws about
crystals and reciprocal lattices. The kinematical and dynamical theories of



VIII  Preface

electron diffraction are then developed, and in Chap. 8 different modes and
applications of electron diffraction are presented; convergent-beam electron
diffraction (CBED) is of increasing interest. Electron diffraction is also the
source of diffraction contrast. This type of contrast is important for the imag-
ing of crystalline specimens and their defects and for the high-resolution study
of crystal structure, treated in Chap. 9. Methods of elemental analysis and
the formation of images representing the distribution of chemical elements by
x-ray microanalysis and electron energy-loss spectroscopy are summarized in
Chap. 10. The final chapter contains a brief account of the various specimen-
damage processes caused by electron irradiation.

The author thanks Dr. P.W. Hawkes for thorough correction of the man-
uscript and many helpful comments.

Miinster, January 1997 L. Reimer
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1

Introduction

1.1 Transmission Electron Microscopy

1.1.1 Conventional Transmission Electron Microscopy

In a conventional transmission electron microscope (CTEM, or TEM for short)
(Fig. 1.1), a thin specimen is irradiated with an electron beam of uniform cur-
rent density. The acceleration voltage of routine instruments is 100-200 kV.
Medium-voltage instruments work at 200-500 kV to provide better trans-
mission and resolution, and in high-voltage electron microscopy (HVEM) the
acceleration voltage reaches 500 kV-3 MV. Earlier books on the subject are
listed as references [1.1-1.55]. The development of both theory and instru-
mentation as well as the different applications of TEM can be followed by
consulting the proceedings of the International Conferences on Electron Mi-
croscopy [1.56-1.68].

Electrons are emitted in the electron gun by thermionic, Schottky, or field
emission. The latter are used when high gun brightness and coherence are
needed. A three- or four-stage condenser-lens system permits variation of the
illumination aperture and the area of the specimen illuminated. The electron-
intensity distribution behind the specimen is imaged with a lens system, com-
posed of three to eight lenses, onto a fluorescent screen. The image can be
recorded by direct exposure of a photographic emulsion or an image plate in-
side the vacuum, or digitally via a fluorescent screen coupled by a fiber-optic
plate to a CCD camera.

Electrons interact strongly with atoms by elastic and inelastic scattering.
The specimen must therefore be very thin, typically of the order of 5-100 nm
for 100 keV electrons, depending on the density and elemental composition
of the object and the resolution desired. Special preparation techniques are
needed for this; electropolishing and ion-beam etching in materials science and
ultramicrotomy of stained and embedded tissues or cryofixation in the bio-
sciences.
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The aberrations of the objective lens are so great that it is necessary to
work with very small objective apertures, of the order of 10-25 mrad, to
achieve a resolution of the order of 0.1-0.3 nm. Bright-field contrast is pro-
duced either by intercepting the electrons scattered through angles larger than
the objective aperture (scattering contrast) or by interference between the
scattered wave and the incident wave at the image point (phase contrast).
The phase of the electron waves behind the specimen is modified by the wave
aberration of the objective lens. This aberration and the energy spread of the
electron gun, which is of the order of 0.3-2 eV, limit the contrast transfer of
high spatial frequencies. Dark-field contrast is obtained by tilting the primary
beam or by hollow-cone illumination so that the primary beam falls on the
objective diaphragm.

In crystalline specimens, the use of the primary beam (bright field) or
a Bragg-reflected beam on-axis (dark field) gives rise to diffraction contrast,
which is important for the imaging of crystal defects. When Bragg-diffracted
beams also pass through the aperture, crystal-structure imaging reveals pro-
jections of atomic rows. For the interpretation of these images, digital image
simulation using the dynamical theory of electron diffraction is indispensable.
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A further capability of modern TEM is the formation of nanometer-sized
electron probes, 0.2-10 nm in diameter, by means of a three- or four-stage
condenser-lens system, the last lens field of which is the objective prefield in
front of the specimen. The main applications of such electron probes are in
analytical electron microscopy (see below). This enables the instrument to
operate in the scanning transmission (STEM) mode with a resolution deter-
mined by the electron-probe diameter; this has advantages for imaging thick
specimens and for recording secondary electrons and backscattered electrons.

1.1.2 High-Resolution Electron Microscopy

The wave-optical theory of imaging is necessary to discuss high resolution.
This theory can be expressed in terms of a two-stage Fourier transform. In
the focal plane of the objective lens, the diffraction pattern of the specimen is
formed; each scattering angle 6 corresponds reciprocally to a periodic spacing
A in the specimen, or in other words is proportional to a spatial frequency
g=1/Asince 0 ~ A/A = Ag (X : electron wavelength). The amplitude distri-
bution F'(q) of the electron wave in the focal plane is the Fourier transform
of the specimen transparency. The spherical aberration can be represented as
a wave aberration, which is an additional phase shift that depends on scat-
tering angle, the spherical-aberration constant Cg, and the defocusing Az.
This phase shift can be introduced as a phase factor applied to F(q). The im-
age amplitude is then the inverse Fourier transform of this weighted Fourier
transform, in which the influences of the diaphragm, the finite illumination
aperture (partial spatial coherence), and the energy spread of the electron gun
(partial temporal coherence) can be included. The result may be expressed
in terms of a contrast-transfer function for the different spatial frequencies.
This transfer function is important because it characterizes the effect of the
instrument on image formation and is independent of the particular specimen
in question.

Transmission electron microscopy can provide high resolution [1.69, 1.70]
because elastic scattering is an interaction process that is highly localized to
the region occupied by the screened Coulomb potential of an atomic nucleus.
The angular distribution of inelastically scattered electrons is concentrated
within smaller scattering angles than that of elastically scattered electrons.
Most of the inelastically scattered electrons normally pass through the objec-
tive diaphragm in the bright-field mode. Inelastically scattered electrons do
not, however, contribute to high-resolution image details because the inelas-
tic scattering is less localized. With increasing energy loss, the localization
becomes narrower for inner-shell ionization, and resolutions of lattice peri-
odicities of about 0.3-0.5 nm are possible with energy-filtering transmission
electron microscopy.

The spherical-aberration coefficients Cs in present-day microscopes are
about 0.5-2 mm. The optimum imaging condition in bright-field mode occurs
at the Scherzer defocus Az = (CsA\)'/2, for which a broad band of spatial
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frequencies is imaged with positive phase contrast. This band has an upper
limit at gumax. The value dmin = 1/gmax = 0.67(CsA3)!/* is often used to define
a limit of resolution, though it is not correct to characterize resolution by
one number only. For Cs = 1 mm and E = 100 keV (A = 3.7 pm), we find
Az ~ 60 nm and 6y, = 0.32 nm. Narrow bands of higher spatial frequencies
can be imaged if the image is not blurred by imperfect spatial and temporal
coherence. These effects limit the resolution of conventional microscopes to
0.15-0.3 nm and ~0.1 nm for crystal-structure imaging has been approached
in a 1 MeV instrument.

The efforts of the last few years to increase resolution have been concen-
trated on using a Schottky or field-emission gun to decrease the damping of the
contrast-transfer function at high spatial frequencies caused by partial spatial
and temporal coherence. Normal TEMs equipped with thermionic cathodes
work with illumination apertures «; of about 0.1 mrad; with a Schottky or
field-emission gun, apertures smaller than 10~2 mrad are possible. The energy
spread AE = 1-2 eV of a thermionic gun can be reduced to 0.3-0.6 ¢V with
a Schottky or field-emission gun.

Using such guns, the resolution can be improved up to the information
limit, which is determined by the spatial and temporal coherence rather than
by the spherical-aberration constant. There are three routes to obtain a res-
olution at the information limit

1. Use a focal series combined with a reconstruction algorithm.

2. Improve holography, which was originally devised by Gabor in 1949 in the
hope of overcoming the resolution limit imposed mainly by spherical aber-
ration. With the development of the laser, a light source of high coherence,
holography rapidly grew into a major branch of light optics. Holography
has attracted renewed interest in electron optics with the development of
field-emission or Schottky guns of high brightness and coherence. Apart
from the attainment of better resolution than in the conventional bright-
field mode, holography is becoming of increasing interest for quantitative
studies of phase shifts [1.71-1.73].

3. Correct the spherical-aberration coefficient Cs by using multipole lens
systems, so that the first zero of the phase-contrast transfer function is
moved to spatial frequencies beyond 10 nm~! [1.74].

High-resolution micrographs of specimens on supporting films are dis-
turbed by a phase-contrast effect that creates defocus-dependent granularity.
One way of reducing this granularity is to use hollow-cone illumination, which
suppresses the granularity but does not destroy contrast arising from spec-
imen structures containing heavy atoms. Furthermore, the contrast transfer
does not show sign reversal with this type of illumination.

A further obstacle to obtaining high-resolution images of organic speci-
mens is the radiation damage caused by ionization and subsequent breakage of
chemical bonds and finally by a loss of mass. The radiation damage depends on
the electron dose in C cm ™2 (charge density) incident on the specimen. A dose
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of 1 C cm~2 corresponds to 6 x 10% electrons per nm?, the value needed to
form an image free of statistical noise at high magnification. Most amino-acid
molecules are destroyed at doses of 1072 C cm ™2, and only a few compounds,
such as hexabromobenzene and phthalocyanine and related substances, can
be observed at doses of the order of a few C cm~2. The deterioration and
mass loss can be reduced in various ways.

1. The specimen may be cooled to liquid-helium temperature. However, the
ionization products are only frozen-in, and the primary ionization damage
will be the same as at room temperature. Only those secondary radiation
effects that are caused by loss of mass are appreciably reduced.

2. The electron dose may be kept very low, which produces a noisy image.
The noise can be decreased by signal averaging, which is straightforward
for periodic structures. Nonperiodic structures have to be aligned and
superposed by correlation techniques. This technique is used especially
for the tomography of biomacromolecules, where a resolution >1 nm can
be reached reliably.

1.1.3 Analytical Electron Microscopy

The strength of TEM is that not only can it provide high-resolution images
that contain information down to 0.1-0.2 nm but can also operate with small
electron probes in various microanalytical modes with a spatial resolution of
0.2-100 nm [1.75-1.84].

X-Ray Microanalysis. X-ray microanalysis [1.75-1.77] in TEM mainly re-
lies on energy-dispersive Si(Li) or highly pure germanium detectors, though
instruments have been constructed with wavelength-dispersive spectrometers,
as used in x-ray microanalyzers. The energy-dispersive Si(Li) detector with a
resolution of AF, = 150 eV of x-ray quantum energy F, = hv has the disad-
vantages that neighboring characteristic lines are less well separated and the
analytical sensitivity is poorer than in a wavelength-dispersive spectrometer;
this is counterbalanced by the fact that all lines with quantum energies Fy
greater than 0.2 keV can be recorded simultaneously, even at the low probe
currents used in the TEM. Reliable quantitative information concerning el-
emental composition is provided because the x-ray signal generated by thin
films needs only small corrections.

X-ray production in thin foils is confined to the small volume excited by the
electron probe, only slightly broadened by multiple scattering. Better spatial
resolution is therefore obtainable for segregation effects at crystal interfaces or
precipitates, for example, than in an x-ray microanalyzer with bulk specimens,
where the spatial resolution is limited to 0.1-1 um by the diameter of the
electron-diffusion cloud.

Electron Energy-Loss Spectroscopy. An electron energy-loss spectrum
(EELS) can be recorded either with a magnetic prism spectrometer behind
the final image or with an imaging energy filter inside the column of the
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microscope [1.78, 1.79]. With a CCD array, a large range of energy losses
can be recorded in parallel. Because the inelastically scattered electrons are
concentrated in small angles, a large fraction of the inner-shell ionizations can
be collected by the spectrometer, whereas the collection efficiency of x-rays
is much smaller due to the low fluorescence yield, the isotropic emission, and
the small solid angle of the detector. Electron energy-loss spectrsocopy can
therefore be superior for elemental analysis when recording in parallel by
means of a CCD array; a disadvantage is that the background is larger than
in x-ray spectra.

The low-loss region with energy losses AE < 50 eV contains the plasmon
losses and interband transitions, which are related by the dielectric theory
to the optical constants. At higher energy losses, the inner-shell ionization
processes result in sawtooth-like or delayed edges, which can be used for ele-
mental analysis.

The ionization edges contain an energy-loss near-edge structure (ELNES)
that contains information about the bonding and band structure of solids
in a range of about 50 eV beyond the edge. An extended energy-loss fine
structure (EXELFS) continuing to a few hundred electron volts beyond the
edge furnishes information about the coordination of neighboring atoms.

Electron Diffraction. Information about crystal structure and orientation
is provided by the electron-diffraction pattern [1.80-1.83]. The possibility of
combining electron diffraction and the various imaging modes is the most pow-
erful feature of TEM for the investigation of the crystal lattice and its defects
in crystalline material. With the selected-area electron-diffraction technique,
it is possible to switch from one mode to another simply by changing the
excitation of the diffraction or intermediate lens and to select the diffrac-
tion pattern from areas 0.1-1 um in diameter. Other modes of operation that
permit electron-diffraction patterns to be obtained from small areas can be
used when the instrument is capable of forming an electron probe 1-20 nm
in diameter. In most cases, crystals are free of defects in such a small area
and so convergent-beam electron diffraction (CBED) techniques can be ap-
plied. In particular, the appearance of Kikuchi lines in the convergent primary
beam provides much additional information about crystal structure and de-
fects. A high-order Laue zone pattern of large aperture, of the order of 10°,
can be used for the three-dimensional reconstruction of the lattice because
the Ewald sphere intersects high-order Laue zones in circles of large diam-
eter. Convergent-beam electron diffraction patterns allow the determination
of the space group of the crystal. Furthermore, the lattice constants and the
Fourier coefficients Vj; of the lattice potential can be measured accurately, and
these can be used to calculate charge-density distributions inside the unit cell.
Large-angle CBED patterns (LACBED) are used to investigate lattice defects
or strains and misfits in multilayers.
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1.1.4 Energy-Filtering Electron Microscopy

Energy-filtered images or diffraction patterns can be obtained either with an
imaging spectrometer below the final screen or with an energy filter inside
the column [1.84]. Zero-loss filtering allows us to remove the background of
inelastically scattered electrons, which results in a considerable increase of
contrast. Plasmon-loss filtering can be used for the analysis of different phases
and precipitates. The contrast can also be enhanced or reversed by placing
energy windows at a few hundred electron volts; for biological specimens, just
below the carbon K edge at 285 eV. A three-window method with two images
below and one image just beyond the ionization edge of an element allows us
to extrapolate the background and to subtract the background in the third
image pixel per pixel, which results in an element distribution image.

Zero-loss filtering of diffraction patterns allows a better comparison with
the dynamical theory of electron diffraction to be made, and the structure
amplitudes can be measured quantitatively in convergent-beam electron dif-
fraction patterns. The Bragg-diffraction spots become diffuse with increasing
energy loss, and at large energy losses the filtered pattern consists of excess
or defect Kikuchi bands.

The method of angle-resolved EELS shows the intensity distribution as a
function of scattering angle and energy loss along a stripe in the diffraction
pattern. The recorded diagram contains the plasmon losses and their disper-
sion, the Compton scattering (Bethe ridge), and the ionization edges of the
elements.

1.1.5 High-Voltage Electron Microscopy

For acceleration voltages higher than 500 kV, the high voltage must be gener-
ated in a tank on top of the microscope, typically filled with SFg at a pressure
of a few bars, which decreases the critical distance for electrical breakdown.
The high voltage is applied to a cascade of acceleration electrodes, with only
50-100 kV between neighboring rings. The structure occupies a considerable
space, and the column of an HVEM is also large because the yokes of the
electron lens must be scaled up to avoid magnetic saturation. A building
some 10-15 m high is therefore needed to house an HVEM. For this reason,
the present trend is more toward microscopes with acceleration voltages in the
range 200-400 kV and with high resolution, which can be housed in normal
rooms. In the following, we summarize some advantages of HVEM (for more
details, see the review articles and special conferences on HVEM [1.85-1.91]).

Increased Useful Specimen Thickness. The investigation of thick spe-
cimens is limited by the full width AFE of the energy-loss spectrum because
the chromatic aberration of the objective lens blurs image points into im-
age patches of width C.a,AE/E, where C. ~ 0.5-2 mm is the chromatic-
aberration coefficient and «, is the objective aperture. The decrease of the
ratio AE/E markedly reduces the effect of chromatic aberration and allows
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thicker specimens to be investigated. Biological sections, for example, which
can be observed in a 100 keV TEM only if their thicknesses are less than
200 nm, can be studied in a 1 MeV TEM with thicknesses as great as 1 ym.
The investigation of whole cells and microorganisms by stereo pairs helps
to establish the three-dimensional structure and the function of fibrillar and
membranous cell components. At 100 kV, such large structures can be recon-
structed only by analyzing serial sections.

Many ceramics and minerals are difficult to prepare in thin enough layers
for 100 kV microscopy but can be studied by HVEM. An increase of useful
thickness is also observed for metal foils, which can additionally show typical
orientations for best transmission (10 ym silicon or 2 ym iron at 1 MV). This
has two important advantages. Normally, areas thin enough at 100 kV are
concentrated at edges; at 1 MV, the transparent area increases to nearly
the whole specimen area. Secondly, the thicker parts of the specimen are
more representative of the bulk material, an important point for dynamical
experiments such as mechanical deformation, annealing, in situ precipitation,
and environmental experiments.

Easier Specimen Manipulation. The polepiece gap of the objective lens is
of the order of millimeters in 100 kV instruments and centimeters in HVEM;
this extra space makes it a great deal easier to install complicated specimen
stages or goniometers for heating, cooling, or stretching. Higher partial pres-
sures of gases at the specimen controlled by using a differentially pumped
system of diaphragms can be tolerated for environmental experiments. Simi-
larly, organic specimens can be investigated in the native state with a partial
pressure of water.

Radiation-Damage Experiments. For threshold energies of a few hundred
keV, depending on the displacement energy E4q ~ 20-50 eV and the mass of
the nuclei, energy losses greater than Fq can be transferred to the nuclei by
elastic large-angle scattering; the nucleus is then knocked from its position in
the crystal lattice to an interstitial site, for example. High-voltage electron
microscopy thus becomes a powerful tool for the in situ study of irradia-
tion processes and the kinetics of defect agglomeration. In normal operation,
however, the current density can be kept low so that the specimen can be
investigated over a reasonable time without damage.

Incorporation of Analytical Modes. At 100 kV, electron energy-loss spec-
troscopy is restricted to specimen thicknesses of the order of the mean free
path for plasmon losses (10-30 nm) because the ionization edges are blurred
by the low-energy part of the loss spectrum. Although the mean free path
saturates at high energies, an increase of about a factor of 3 can be observed
for 1 MV. In x-ray microanalysis, the x-ray continuum decreases owing to the
pronounced forward bias of the emission of continuous x-ray quanta at higher
energies.

Electron-diffraction analysis can be applied to thicker crystals because
the dynamical absorption distance increases as the square of the velocity.
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Many-beam dynamical theory has to be applied even for thin foils because
the Ewald sphere is now large and many more Bragg reflections are excited
simultaneously when a sample is irradiated near a low-index zone axis.

High Resolution. The relation between voltage (wavelength) and resolution
was already discussed in Sect. 1.1.2. A notable feature is that many-beam
imaging of the crystal structure is used to better advantage. Optimum results
in crystal-lattice imaging are obtained with increasing acceleration voltage,
and 0.1 nm resolution has been achieved with a 1 MV instrument. For organic
material, the decrease of ionization probability (radiation damage) with in-
creasing energy provides a gain of only a factor of 3 between 100 and 1000 kV.
For thin specimens, however, the contrast in the image decreases by the same
factor. The best images of organic crystals such as phthalocyanine have been
obtained with an HVEM in the range 500-700 kV.

1.1.6 Dedicated Scanning Transmission Electron Microscopy

A dedicated STEM consists only of a field-emission gun, one probe-forming
lens, and the electron-detection system, together with an electron spectrom-
eter for electron energy-loss spectroscopy (EELS) and for separating the
currents of unscattered and elastically scattered electron and inelastically scat-
tered electrons (Fig. 1.2) [1.92-1.95]. The specimen is scanned by deflection
coils in synchrony with the imaging TV tube. The whole column including the
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Fig. 1.2. Field-emission STEM with an electron energy-loss spectrometer.
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specimen is under an ultrahigh vacuum. Electron-probe diameters of 0.2-0.5
nm can be formed, the spherical and chromatic aberrations of the lens being
the limiting factors.

An advantage of STEM instruments is that the contrast can be enhanced
by collecting several signals simultaneously and displaying differences and/or
ratios of these by analog or digital processing. In particular, single atoms on
a thin substrate can be imaged with a higher contrast than in the CTEM
bright- or dark-field modes. An incoherent dark-field mode allows a high-
resolution image of the crystal lattice to be formed, the contrast increasing
with increasing atomic number. The irradiation of the specimen area can be
reduced to a minimum in order to decrease radiation damage.

1.2 Alternative Types of Electron Microscopy

Although the main concern of this book is transmission electron microscopy,
the function and limits of the other types of electron microscopes are also men-
tioned in this introductory chapter to show the advantages and disadvantages
of their various imaging techniques. Several types of electron microscopes and
analyzing instruments capable of furnishing an “image” can be distinguished.
We now examine these briefly in turn, without considering the historical se-
quence in which these instruments were developed.

1.2.1 Emission Electron Microscopy

In an emission electron microscope [1.96-1.105], the cathode that emits the
electrons is directly imaged by an electrostatic immersion lens, which ac-
celerates the electrons and produces an intermediate image of the emission-
intensity distribution at the cathode. This image can be magnified by further
lenses and is observed on a fluorescent screen or with an image intensifier. The
cathode (specimen) has to be planar and its surface should not be irregular.
The electron emission can be stimulated by

1. heating the cathode (thermionic emission), which means that observa-
tion is possible only at elevated temperatures and for a limited number of
materials, or alternatively, the cathode temperature need not be raised be-
yond 500°C-1000°C if a thin layer of barium is evaporated on the surface
because this lowers the work function;

2. secondary-electron excitation by particle bombardment or by irradiating
the cathode surface with a separate high-energy electron beam or an ion
beam at grazing incidence; or

3. irradiation of the cathode with ultraviolet light to excite photoelectrons
(using a photoelectron-emission microscope, PhEEM).

These instruments have a number of interesting applications, but their use
is limited to particular specimens; at present, therefore, scanning electron mi-
croscopes and scanning tunneling microscopes and their variants are the most
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widely used instruments for imaging bulk specimens, especially because there
is no need to limit the roughness of the specimen surface. The final restriction
is the limited number of electrons emitted, which limits the image intensity at
high magnification, and moreover the resolution of the immersion-lens system
is only of the order of 10-30 nm. On the credit side, surfaces can be observed
directly in situ, and each of the processes 1-3 generates a specific contrast.
The photoelectron-emission microscope has the advantage of being applicable
to nearly any flat specimen surface, including biological specimens. The im-
age contrast is caused by differences of the emission intensity (material and
crystal orientation contrast) and by angular selection with a diaphragm that
intercepts electrons whose trajectories have been deflected by variations of
the equipotentials near the surface caused by surface steps (topographic con-
trast), surface potentials (potential contrast), or magnetic stray fields (mag-
netic contrast). Investigations based on photoemission in combination with
Auger-electron spectroscopy in an ultrahigh vacuum [1.100] are of special
interest for surface physics. With improved access to synchrotron-radiation
sources, PhEEM is developing into a versatile analytical tool in surface and
materials science [1.104, 1.105].

1.2.2 Reflection Electron Microscopy

The electrons that emerge from a specimen as a result of primary-electron
bombardment are either low-energy secondary electrons, which can be used
in an emission microscope (see above) or a scanning electron microscope (see
below), or primary (backscattered) electrons with large energy losses, which
cannot be focused sharply by an electron lens because of the chromatic aber-
ration. However, imaging of the surface is possible for a grazing electron in-
cidence below 10°, the “reflected” electrons being imaged with an objective
lens [1.106-1.109]. The energy-loss spectrum of the reflected electrons has a
half-width of the order of 100-200 eV. With additional energy selection by
means of an electrostatic filter lens, a resolution of 10-20 nm has been at-
tained. Because the angle of incidence is so low, small image steps can be
imaged with high contrast. The angular distribution of the electrons reflected
at single crystals is a reflection high-energy electron diffraction (RHEED) pat-
tern with Bragg-diffraction spots; images exhibiting crystallographic contrast
can be formed by selecting individual Bragg spots. A TEM equipped with
the appropriate specimen holder can be operated in this mode by tilting the
incident beam and with the reflected electrons on the axis of the objective
lens. This reflection electron microscopy (REM) mode in the TEM has be-
come a powerful tool for the investigation of the surface structure of crystals,
especially with additional energy filtering (Sect. 9.7.2) [1.109].

1.2.3 Mirror Electron Microscopy

An electron beam is deflected by a magnetic sector field and retarded and
reflected at a flat specimen surface that is biased a few volts more negative
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than the cathode of the electron gun. The reflected electron trajectories are
influenced by irregularities of the equipotential surfaces in front of the spec-
imen, which may be caused by surface roughness or by potential differences
and specimen charges; magnetic stray fields likewise act on the electron tra-
jectories [1.110]. An advantage of this technique is that the electrons do not
strike the specimen; it is the only method that permits surface charges to be
imaged undisturbed. After passing through the magnetic sector field again,
the electrons can be selected according to their angular deflection. A new
design [1.111] of mirror electron microscope has a resolution of the order
of 4 nm. Single surface steps, 5 nm in height, can produce discernible con-
trast. Such a mirror electron microscope can be combined with an electron
interferometer, which offers the possibility of measuring phase shifts by the
equipotentials or magnetic stray fields with high precision. There are types
of scanning mirror electron microscopes [1.112, 1.113] that allow the relation
between the observed image point and the local deflection to be established
more quantitatively.

1.2.4 Scanning Electron Microscopy

The SEM is the most important electron-optical instrument for the investiga-
tion of bulk specimens [1.114-1.123]. An electron probe is produced by two- or
three-stage demagnification of the smallest cross section of the electron beam
after acceleration. This electron probe, 2-10 nm in diameter, is scanned in a
raster over a region of the specimen (Fig. 1.3). The smallest diameter of the
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Fig. 1.3. Schematic ray path for a scanning electron microscope (SEM).
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electron probe is limited by the minimum acceptable probe current, which lies
in the range 10~12-10~!! A. This value is determined by the need to generate
an adequate signal-to-noise ratio and by the spherical and chromatic aberra-
tions of the final probe-forming lens. The image is displayed on a cathode-ray
tube (CRT) scanned in synchrony. The CRT beam intensity can be modu-
lated by any of the different signals that result from the electron-specimen
interactions.

The most important signals are those produced by secondary electrons
(SE) with most probable exit energies of 2-5 eV and by backscattered elec-
trons (BSE) with energies that range from the energy of the primary electrons
to about 50 eV. The secondary-electron yield and the backscattering coeffi-
cient depend on the angle of electron incidence (topographic contrast), the
mean atomic number (material contrast), the crystal orientation (channeling
contrast), and electrostatic and magnetic fields near the surface (potential and
magnetic contrast). A signal can also be produced by the specimen current
and by electron-beam-induced currents in semiconductors. Analytical infor-
mation is available from the x-ray spectrum and Auger electrons or from
light quanta emitted by cathodoluminescence. The crystallographic structure
and orientation can be obtained from electron channeling patterns, electron-
backscattering patterns, and x-ray Kossel diagrams. An environmental SEM
can work with a high partial pressure between the specimen and the objective-
lens diaphragm.

The resolutions of the different modes of operation and types of contrast
depend on the information volume that contributes to the signal. Secondary
electrons provide the best resolution because the exit depth is very small, of
the order of a few nanometers. The information depth of backscattered elec-
trons is much greater, of the order of half the electron range, which is as much
as 0.1-1 ym, depending on the density of the specimen and the electron en-
ergy. The secondary electron signal also contains a large contribution from the
backscattered electrons when these penetrate the surface layer. At higher en-
ergies, the electron range and the diameter of the electron-diffusion region are
greater. Conversely, higher energies are of interest for x-ray microanalysis if K
shells of heavy elements are to be excited. The progress in Schottky and field-
emission gun design has increased the gun brightness at low electron energies,
too, so that low-voltage scanning electron microscopy (LVSEM) [1.123] in the
range 0.5-5 keV is attracting interest because information can be extracted
from a volume nearer to the surface.

Unlike in TEM, special specimen-preparation methods are rarely needed
in SEM. Nevertheless, charging effects have to be avoided by coating a non-
conductive specimen with a thin conductive film, for example, and organic
specimens have to be protected from surface distortions by chemical fixation
or cryo-fixation.
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1.2.5 X-ray and Auger-Electron Microanalysis

By using a wavelength-dispersive x-ray spectrometer (Bragg reflection at a
crystal), we can work with high x-ray excitation rates and electron-probe
currents of the order of 1078-10~7 A, though the electron-probe diameter is
then larger, about 0.1-1 um. The main task of an x-ray microanalyzer [1.124—
1.132] is to analyze the elemental composition of flat, polished surfaces at
normal incidence with a high analytical sensitivity. The ray diagram of such an
instrument is similar to that of an SEM, but two or three crystal spectrometers
that can simultaneously record different characteristic x-ray wavelengths are
attached to the column. The surface can be imaged by one of the SEM modes
to select the specimen points to be analyzed.

An SEM or x-ray microanalyzer can be equipped with an Auger-electron
spectrometer of the cylindrical mirror type, for example. It is then necessary
to work with an ultrahigh vacuum in the specimen chamber because Auger
electrons are extremely sensitive to the state of the surface: A few atomic
layers are sufficient to halt them. Special Auger-electron microanalyzers have
therefore been developed in which the 1-10 keV electron gun may, for ex-
ample, be incorporated in the inner cylinder of a spectrometer. This type of
instrument can also work in the scanning mode, or an element-distribution
map can be generated using Auger electrons.

1.2.6 Scanning-Probe Microscopy

The scanning tunneling microscope (STM, Fig. 1.4) [1.133-1.137] uses a tung-
sten tip of small radius like that of a field-emission gun. When the tip, nega-
tively biased by a few tenths of a volt (Ur), approaches the conductive surface
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% U,
% / 4— Scan l
v Uy |
)
Ur, It Feedback
] Loop Fig. 1.4. Scanning tunneling microscope
Tip (STM) with a mechanical approach to the
Specimen specimen, a piezo electric tube for x and y
1 Specimen approach scanning, a z shift, and a feedback loop to
keep the tunneling current It at a constant

/ level.
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in vacuum, air, or even a liquid at a distance below one nanometer, the
quantum-mechanical tunneling effect causes a current It to flow through
the barrier. The tunneling starts at the atom of the tip that is nearest to
the surface, and it is possible to record the arrangement of single atoms and
monoatomic steps on surfaces. The current depends on the distance between
tip and surface, but it is convenient to maintain the current, and hence the
distance, constant by moving the tip normal to the surface as it scans over the
latter. This vertical movement is achieved by means of a piezoelectric trans-
ducer, that is, by the voltage U, at the inner electrode of a piezoelectric tube.
The scanning motion in the x and y directions is likewise effected by a crossed
pair of outer electrodes. The voltage U, is a measure of the local specimen
height and can be used to modulate a CRT tube scanned in synchrony. This
results in a very simple and compact microscope with atomic resolution.

Insulating specimens can be observed in the atomic force mode. The tip is
mounted on an elastic ribbon (cantilever), which is deformed by the force be-
tween tip and specimen. The elastic deformation, on the order of nanometers,
is recorded by a second tip or by reflection of a laser beam at the cantilever.
Related scanning-probe methods are scanning near-field optical, acoustic, and
thermal microscopies as well as capacitance, electrochemical, and micropipette
scanning microscopies.

This wealth of additional modes, the atomic resolution of STM, and the
possibility of direct surface profiling are the striking advantages of scanning-
probe microscopy, which is, however, restricted to the imaging and analysis
of surfaces. On the contrary, TEM mainly gives information about the bulk
structure, including the high resolution of atomic rows in crystals. The analyt-
ical modes of x-ray microanalysis, electron energy-loss spectroscopy, and elec-
tron diffraction supplement this, though the specimens have to be prepared
as thin films. Surface information can also be obtained by various surface-
sensitive methods, though scanning-probe microscopy is superior. The two
techniques, TEM and STM/AFM, should be regarded as complementary, and
scanning-probe microscopists should take more notice of the advantages and
results of TEM.



2

Particle Optics of Electrons

The acceleration of electrons in the electrostatic field between cathode and
anode, the action of magnetic fields with axial symmetry as electron lenses,
and the application of transverse magnetic and electrostatic fields for electron-
beam deflection and electron spectroscopy can be analyzed by applying the
laws of relativistic mechanics and hence calculating electron trajectories. Lens
aberrations can likewise be introduced and evaluated by this kind of particle
optics. In the case of spherical aberration, however, it will also be necessary
to express this error in terms of a phase shift, known as the wave aberration,
by using the wave-optical model introduced in the next chapter.

2.1 Acceleration and Deflection of Electrons

2.1.1 Relativistic Mechanics of Electron Acceleration

The relevant properties of an electron in particle optics are the rest mass my
and the charge —e (Table 2.1). In an electric field E and a magnetic field B,
electrons experience the Lorentz force

F=—¢(E+vxB). (2.1)
Inserting (2.1) in Newton’s law
mr=F (2.2)

yields the laws of particle optics.

We start with a discussion of the acceleration of an electron beam in an
electron gun. Electrons leave the cathode of the latter as a result of thermionic
or field emission (see Sect. 4.1 for details). The cathode is held at a negative

potential ¢ = —U (U: acceleration voltage) relative to the anode, which
is grounded, @5 = 0 (Fig. 2.1). The Wehnelt electrode of a thermionic gun,
maintained at a potential @w = —(U + Uw), limits the emission to a small

area around the cathode tip. Its action will be discussed in detail in Sect. 4.1.4.
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Cathode Fig. 2.1. Electron acceleration, tra-
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The electrode potentials create an electric field E in the vacuum between
cathode and anode, which can also be characterized by equipotentials @ =
const (Fig. 2.1). The electric field is the negative gradient of the potential

0P 0P 0P
E=-Vo=—|—,—,— ). 2.3
(31’ dy’ 0z ) (23)
The existence of a potential implies that the force F' = —eFE is conservative
and that the law of energy conservation
E +V = const (2.4)

can be applied, as will be demonstrated by considering the electron acceler-
ation in Fig. 2.1. The kinetic energy at the cathode is E = 0, whereas the
potential energy V is zero at the anode. The potential energy at the cathode
can be obtained from the work W that is needed to move an electron from
the anode to the cathode against the force F':

Vv

c c C
~W=—[F-ds=¢[E-ds=—¢[V®-ds
A A A

= —e(@c — ¢A> = €U. (2‘5)

In the reverse direction, the electrons acquire this amount eU of kinetic
energy at the anode. This implies that the gain of kinetic energy E = eU of an
accelerated electron depends only on the potential difference U, irrespective
of the real trajectory between cathode and anode.

Relation (2.5) can also be used to define the potential energy V (r) at each
point 7 at which the potential is &(r):

V(r) = —ed(r). (2.6)

However, an arbitrary constant can be added to V() or @(r) without
changing the electric field E because the gradient of a constant in (2.3) is
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zero. We arbitrarily assumed ¢4 = 0 in the special case discussed above, and
the results do not change if we assume that &¢c = 0 and @5 = + U, for
example.

An electron acquires the kinetic energy E = 1.602 x 10~'? J if accelerated
through a potential difference U = 1 V because in SI units

1CV=1AVs=1Ws=11J.

This energy of 1 eV = 1.602 x1071? J is used as a new unit and is called “one
electron volt”. Electrons accelerated through U = 100 kV have an energy of
E =100 keV.

Relativistic effects have to be considered at these energies particularly
when acceleration voltages up to some megavolts (MV) are used in high-
voltage electron microscopy. Table 2.1 therefore contains not only the classical
(non-relativistic) formulas but also their relativistic counterparts.

Table 2.1. Properties of the electron.

Rest mass mo = 9.1091 x 1073! kg
Charge e = —1602x107'C
Kinetic energy E = eU
leV =1602x10""J
Velocity of light c = 29979 x 10 ms~!
Rest energy Ey = moc® =511 keV
Spin s = hj/4n
Planck’s constant h = 6.6256 x 1073 Js
Nonrelativistic  (E < Eo) Relativistic (E ~ Ep)
) d
Newton’s law F = £ F = %(mv) (2.7)
Mass m = mo m = mo/\/1—v2/c? (2.8a)
Energy E=cU = %mov2 me? = moc?+eU=Fy+E (2.9)
. 1
Velocit v=+/2E/m v = ¢, /1—- 2.10
Yy /mo mj ( )
Momentum p=mov=+2moE p = /2moE(l1+ E/2E;) (2.11)
- LAEE, + B
Wavelength A=B—h/VameE X = h/\2moE(1+ E[2Eo) (2.12)

= he¢/\2EE, + E?
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Fig. 2.2. Increase of electron
mass m and velocity v with
increasing electron energy
E=eU.

m/m,, v/c

The formula (2.8a) for the increase of the electron mass with increasing ve-
locity v can be obtained from the invariance of the conservation of momentum
under a Lorentz transformation, and Newton’s law, in the form F = dp/dr,
can also be used for relativistic energies.

The most important law of relativistic mechanics is the equivalence of
energy and mass: £ = mc?. The total energy mc? of an accelerated electron
is the sum of the rest energy Ey = moc? and the kinetic energy E = eU (2.9).
Ey = mgc? corresponds to an energy of 0.511 MeV. The relativistic increase
of the mass m can be formulated not only as in (2.8a) but also in terms of
energy as in (2.8b), which follows directly from (2.9). The mass, therefore,
increases linearly with increasing energy E; it reaches three times the rest
mass mo at F = 2FEy ~ 1 MeV (Fig. 2.2).

The velocity v (2.10) cannot exceed the velocity of light ¢ (Fig. 2.2) and
can be obtained by comparing the right-hand sides of (2.8a) and (2.8b). At
100 keV, the electron velocity v reaches 1.64 x10% m s~!; that is, more than
half of the velocity of light. The electron momentum p (2.11) is important
because the conservation of both energy and momentum has to be considered
in electron collisions (Sect. 5.1). The radius of an electron trajectory in a
homogeneous magnetic field B and the de Broglie wavelength A — (2.12) and
Sect. 3.1.1 — also depend on the value of the momentum.

A further property of the electron is its spin (angular momentum) s =
h/4m, and electrons can be polarized by scattering [2.1]. However, spin polar-
ization does not occur in small-angle scattering, which is responsible for the
image contrast in TEM.

2.1.2 Deflection by Magnetic and Electric Fields

The force generated by the magnetic part of the Lorentz force (2.1) is normal
to both the velocity v and the magnetic field B and has a magnitude |F| =
evBsinf, 0 being the angle between v and B. An electron entering a magnetic
field with velocity v undergoes an acceleration that is everywhere normal to
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the local velocity vector. This causes no change in the magnitude of v but
does alter its direction. In the magnetic field, therefore, energy is conserved.

In a homogeneous magnetic field, the continuous change of direction of v
results in a circular trajectory if v L B or § = 90°. On a circular trajectory,
the centrifugal force F' = mv?/r and the centripetal force F' = evB are equal,
so that the radius of the circle can be calculated from

ho T [2moE(1 + E/2Ey)]'/?
 eB eB
=3.37 x 107°[U(1 4 0.9788 x 107%U)]*/2B~* (2.13)

with 7 (m), U (V),and B (T) (1 T =1 Tesla=1V s m~2).

Large beam deflections through angles of about 90° are used in magnetic
prism spectrometers for electron energy-loss spectroscopy and magnetic imag-
ing energy filters (Sect. 4.6).

Small beam deflections produced by transverse electric and magnetic fields
are needed for the alignment of electron microscopes or for scanning and
rocking electron beams (Sect. 4.2.1). An expression for small-angle deflection
€ with sine ~ e can be obtained by the momentum method (Fig. 2.3). An
electron moves in the z direction with an unchanged velocity v = dz/dr
and with a momentum p, = mv. The electric deflection field is obtained by
applying a voltage +u to plates d apart. The momenta transferred during the
time of flight T'= L/v are as follows:

electric field E

T T L EI|L
pga:‘]"Fd7':ef\E|d7':Ef|E|dz:&7 (2.14)
0 0 Vo v
magnetic field B
T L
pr =€ [vBdr =e [ Bdz = eBL, (2.15)
0 0

deflections € in a trans-
’ [ verse electric field (a) and
a) | b) magnetic field (b).

7 ‘A
SU / ~_u ® ® ® X_[I®
2 2
X Pz E\—JAS
€ g” Pz\
z \
Y Px |\ Fig. 2.3. Small-angle
!
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and the angles of deflection € can be obtained from

_Px _€lE|L _ eul 1+ E/Ey

p. mw?  2Ed 1+ E/2Ey’

eBL eBL
_ Bl 2.17
T v T RPmoE(1+ E/2E)]? (2.17)

(2.16)

for the electric and magnetic fields, respectively. The formula (2.17) for the
magnetic deflection will also be obtained in Sect. 3.1.5 by a wave-optical cal-
culation. This formula is important for Lorentz microscopy (Sect. 6.8).

As an example, we calculate the field strengths needed to deflect 100 keV
electrons through an angle ¢ = 5° ~ 0.1 rad in a field of length L = 1 c¢m
with a plate or polepiece separation d = 1 mm. The electric field has to be
|E| = 2 x 10° V m~!, which implies a voltage u of £ 1000 V at the plates.
The magnetic field B produced by an electromagnet with a slit width d is
given approximately by B = ugNI/d (o = 47 x 10~ Vs/(Am), N: number
of turns, I: coil current). A deflection € of 5° requires B = 10~2 T and can be
achieved with NT = 10 A; e.g. 100 turns and I = 0.1 A.

2.2 Electron Lenses

2.2.1 Electron Trajectories in a Magnetic Lens Field

The physical background of electron-lens optics will be described only briefly
to give a quantitative understanding of the function of an electron lens (see
[2.2, 2.3, 2.4, 2.5, 2.6, 2.7]).

Magnetic lenses with short focal lengths are obtained by concentrating
the magnetic field by means of magnetic polepieces. Figure 2.4 shows the
distribution of a magnetic field produced by a coil enclosed in an iron shield,
apart from an open slit. The magnetic field has rotational symmetry; the
distribution on the optic z axis can be represented approximately by Glaser’s
“Glockenfeld” (bell-shaped field)

By

B.= 1= ook (2.18)
where By denotes the maximum field in the lens center and 2a the full-width at
half-maximum [2.9]. Other approximations for the field distribution B,(z) are
also in use, but the Glaser field offers the advantage that the most important
properties, the positions of foci and principal planes (Sect. 2.2.2), for example,
can be calculated straightforwardly. A knowledge of the magnetic field B,
on the axis is sufficient for calculating the paraxial rays because the radial
component B, close to the axis can be calculated from B,(z). For stationary
fields in a vacuum (no currents: j = 0), we can use Maxwell’s equation curl
B = j = 0, which implies that B can be written as the gradient of a scalar
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magnetic potential [2.8] ¥(r): B(r) = —grad¥(r). Inserting this expression
into Gauss’ law div B = 0, we obtain Laplace’s equation

A¥(r) =0, (2.19)
which can be written in cylindrical coordinates

10 8W+82LP+ 1 0%w
By il g Y7
ror Or 022 12 9p?
For cylinder symmetric setups, the solution of this equation can be expanded

in a power series of r as

0. (2.20)

U(r2) = 3 an(z)r". (2.21)

n=0
Inserting this sum into (2.20), we obtain the recurrence relation

]‘ "

ant1(z) = —m%(z)~ (2.22)
From the series, we obtain
Oap(z)
B.(z) = — ,
(2) P
(2.23)
and, for small r,
—r 0B,
B, = -2 = — . 2.24
(= (2.24)

From the recurrence relation, we see that the scalar magnetic potential,
and thus the magnetic field, is determined by its values on the optic axis.
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The system of differential equations (Newton’s law) for the electron tra-
jectories can be separated in a cylindrical coordinate system r, ¢, 2:

. .92
radial component : d mit = Fr +mrg”. (2:25)
circular component : a(mr2<,b) =rF,. (2.26)
longitudinal component : ms — F.. (2.27)

The last term in (2.25) can be interpreted as the centrifugal force. Equation
(2.26) represents the change of angular momentum L caused by the torque
M =rF, (L= M).

On substituting the Lorentz force F = —ev x B with v = (7, r¢, 2) and
B, = 0 and using (2.24), we obtain

mi = —eB,r¢p + mrg?, (2.28)

2 0B, d
&(mTng) = eB,rr + e%é %~ d <§T23z) , (2.29)
mz = eB,rp. (2.30)

Integration of (2.29) results in
mrlp = grsz +C. (2.31)

The constant of integration C' becomes zero for meridional rays, and only
a trajectory r(z) need be considered in a meridional plane rotating at the
angular velocity

e

This is known as the Larmor frequency, which is half the cyclotron frequency
of an electron on a circular trajectory.

For paraxial rays (small values of r), equation (2.30) can be approximated
by Z = 0, which implies that v, is constant. Substitution of (2.32) in (2.28)
results in

i — —eB.r—B. + (iB )2— B2 (2.33)
mi = —eByro—B, +mr (5B, ) =——rB;. .
The time can be eliminated by writing v, = dz/dr ~ v. Using (2.9) and (2.10),
we find
d?r e E

— = B? ith U'=U(1+—]. 2.34
g B i (1+55) (234)

This is the equation for the trajectory r(z) in the meridional plane rotating
at the angular velocity wr,.
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2.2.2 Optics of an Electron Lens with a Bell-Shaped Field

Let us now substitute the bell-shaped field (2.18) in (2.34). The solution of
the differential equation can be simplified by introducing reduced coordinates
y=r/a and z = z/a and a dimensionless lens parameter

2.2
2 eBja

= 2.35
8m0U* ’ ( )
resulting in
d2y " k?
A A —— 2.36
a2~ Y (1+22)2 Y (2:36)
This equation can be further simplified by the substitution
z = cotg; dx = —de¢/sin’¢; 1+ x? = cosec’o. (2.37)
The meaning of the angle ¢ can be seen from Fig. 2.5. The variable ¢ varies
from 7 for z = —o0 to ¢ = w/2 for z = 0 and then to ¢ = 0 for z = 4oc.
Equation (2.36) becomes
y'(¢) +2cotdy' (¢) + Ky(¢) = 0. (2.38)
The solution of (2.38) is a linear combination,
y(¢) = Cru(¢) + Cow(9), (2.39)

of the two particular integrals
u(¢) = sin(we)/ sin ¢,
w(¢p) = cos(we)/sing with w=+1+k2. (2.40)

The coefficients C; and Cs can be determined from the initial conditions.

Thus, for a parallel incident ray, the initial conditions are r = rg for z = —c0
// | N
/ ! N Bz
/ l \
// N
/ I \\
// )’:T/Cl=1 | \\
— e — R L A —— ——

-—9 . ¢=0,Z:+m —_—
T T T ¥ T T

-3 -2 - 0 1 2 3
Optic axis x=zla

Fig. 2.5. Angular coordinate ¢ for the calculation of electron trajectories and lens
parameters.
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or y(mw) = ro/a and y'(7w) = 0, which results in Cy = 0; the radial component
of the trajectory becomes
T ro sin(we)

y_g_ aw sing

(2.41)
Such trajectories are plotted in Fig. 2.6 for increasing values of the strength
parameter w = v/1 + k2 of the lens.

For a more general discussion, we assume that the ray passes through a
point Pq(yo, ¢o) in front of the lens. Substituting y = yo and ¢ = ¢¢ in (2.39)
and solving for C yields

_ yosin g cos(wap)
C1= sin(wgg) QSin(wg/)o)' (242)
We substitute (2.42) in (2.39), giving
_ sin(wg) sin ¢y Co | _ cos(weo) .
y(9) = sin(wep) sin qzﬁyo * sin ¢ cos(wg) sin(weo) sin(we)| - (243)

The coefficient Co can be determined from the direction (slope) of the ray
at the point Pg, and different values of Cy will correspond to different direc-
tions. The image point Pi(y;,¢1) conjugate to the object point Py can be
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obtained from the condition that the last square bracket in (2.43) becomes
zero, which means that P, has the coordinate

_ sin(wey) sin¢g
 sin(wey) sin ¢y
independent of Cy (M: magnification). Multiplying the bracket in (2.43) by

sin(wdy) yields the addition theorem for a sine function, and the condition for
a zero bracket can be written

sinfw(¢1 — ¢o)] = 0, (2.45)
which is satisfied by

Yo = Myo, (2.44)

¢1n:¢0—ng, n=1,2,.... (2.46)

This means that more than one image point can occur in strong lenses. How-
ever, n = 2 will not be possible until w = v/1 + k2 > 2 or k2 > 3.
The positions of the object and image points are

zo = acotgg ; 21n = acotd1,. (2.47)
Substitution of (2.46) into (2.47) gives

a cotpipcot (n%) —a

T
= acot ( n _) - 2.48
f0=a P1n nw cotp1, + cot (n%) ( )
This equation can be rewritten in the form
{zo —acot (nz)} [zln + acot (nz)} = —a*cosec? (nz) , (2.49)
w w w
which is equivalent to Newton’s lens equation of light optics
ZoZ1 = fofi, (2.50)
where fo and f; denote the focal lengths and the distances
Zy = z0 — 2(Fo), Z1 =2z —z(Fy1), (2.51)

separate the object and image points from the corresponding foci Fy and Fj.
Comparison of (2.49) and (2.50) shows that

Jo = —f1 = acosec (n%) . 2(Fp) = —2(Fy) = acot (n%) . (2.52)

The focal lengths f are not the same as the distances z(F) of the foci from the
lens center at z = 0. This means that electron lenses cannot be treated as
thin lenses. Principal planes can be introduced, as in light optics, to construct
the position of the corresponding image. The positions of the principal planes
are, forn = 1,

z(Ho>=z(Fo>+fo=aCOS(“_z)ﬂ)+ —acot (oo) = —a(l).  (2.59)
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Fig. 2.7. (a) Positions of the foci Fo, F1 and principal planes Ho, H; as the lens
parameter k? is increased and (b) example of a geometrical construction for k? =
1.6 [2.2].

The positions z(F) of the foci and z(H) of the principal planes are plotted
in Fig. 2.7a as a function of the lens parameter k% (2.35). Figure 2.7b also
shows how the image point can be geometrically constructed for the particular
case k? = 1.6. A ray parallel to the axis is refracted at H; and continued as
a straight line through the focus Fi; a ray through F is refracted at Hy,
continuing parallel to the axis. The intersection of these two lines is the image
point. Unlike in light-optical lenses, corresponding foci and principal planes
are situated on opposite sides of the lens center.

The magnification M in (2.44) can be written in terms of f and Z by
substituting ¢ = ¢1,, from (2.46) and using (2.49-2.52):

M= fo/Zo = Z1/ 1. (2.54)

In reality, the trajectories are curved, and the coordinate system rotates
with the angular velocity ¢ of (2.32). The total rotation angle ¢ between
image and object (Fig. 2.4) can be calculated by using the substitution dz =
v dr and (2.35, 2.37, and 2.46):

21 B()dZ
8m OU * f 1+ (2/a)?

€ # T
= — B = — = —_——. 2.
\/ 8moU* 450 q{) d¢ = k(do —¢1) =k V1I+Ek2 (2.55)

¢ T pdr=-° TB.d
90—%{ ZT_QmUZfO 2=




2.2 Electron Lenses 29

The values of the focal lengths and the positions (2.52) of the foci do not
depend on the direction of B,, whereas the image-rotation angle ¢ is reversed
when B, or the lens current is reversed.

The image rotation in an electron microscope can therefore be partially
compensated for by changing the sign of the currents in different lenses. The
image rotation does not influence the quality of the image, but its magni-
tude has to be known if directions in the image have to be correlated with
corresponding directions in the specimen or in an electron-diffraction pattern.

The formulas above are for lenses with symmetric polepieces. Lenses with
asymmetric polepiece diameters are often used in practice. If the larger diam-
eter is on the specimen side, more space is available for specimen translation
with top-entry specimen stages. These lenses can be treated in a similar way
by approximating the lens field on the axis by two Glaser fields (2.36) with
different parameters a; and as on the two sides [2.10].

2.2.3 Special Electron Lenses

Objective Lenses with k? > 3. A lens with an excitation k% = 3 (single-
field condenser-objective lens) will be optimal in the sense that the focal length
is shortest (Fig. 2.11) [2.11, 2.12] and the spherical-aberration coefficient Cy
is low (Sect. 2.3.2). Figures 2.6 and 2.7 show that the focus of such a lens
is in the center of the lens field at z = 0. The specimen position is at the
lens center, and the prefield of the lens acts as a condenser lens. Figure 2.8
shows the electron trajectories in such a single-field condenser-objective lens
and Fig. 4.14 the corresponding ray diagram, with straight lines and two
separate lenses representing the pre- and postfields. The front focal plane
(FFP) and back focal plane (BFP) are conjugate. A parallel beam in the FFP
is focused at the specimen and is again parallel in the BFP. The lens is thus
operating in the “telefocal condition”. The specimen area illuminated can be
limited by placing a diaphragm in a plane conjugate to the specimen plane.
By focusing the last condenser lens in front of the condenser-objective lens
on this diaphragm plane, a demagnified electron probe of 1-5 nm in diameter
is produced in the specimen plane. All modern microscopes work with such
a lens.

The specimen position is shifted beyond the lens center in a second-zone
lens with k% > 3 [2.12, 2.13].

Superconducting Lenses. The strength of a given magnetic lens with an
iron core cannot be increased indefinitely owing to the saturation of mag-
netization My at about 2.1 T (B = poH + M); strong lenses require an
increase of size and power supply. Superconducting hollow cylinders or rings
have the property of screening the inner space from external magnetic fields
and can trap magnetic flux that penetrated the ring in the normal conducting
state. The critical magnetic field that destroys superconductivity is very high
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(B. ~ 5-10 T) in type II superconductors (e.g., Nb-Zr, Nb-Ti, Nb3Sn). Super-
conducting lenses can be designed in three different ways [2.14, 2.15, 2.16, 2.17]
(see also the review in [2.18]):

1. The lens still has ferromagnetic polepieces, which may be of dysprosium
or holmium, for which My = 3-3.4 T at low temperatures; it is excited by
a superconducting coil.

2. Superconductors are introduced into the bore of a conventional magnetic
lens in the form of hollow cylinders, thus confining the magnetic flux to a
smaller space by screening.

3. The flux trapped in superconducting rings or discs may be exploited.

Minilenses. Any decrease in the size of magnetic lenses will have the ad-
vantage of decreasing the length of the electron-optical column, thus reducing
the influence of mechanical vibrations and a.c. magnetic stray fields. Small
lenses (minilenses) are also useful in front of an objective lens to decrease and
control the electron-probe diameter. One way of reducing the size is to use
superconducting lenses; alternatively, a stronger excitation may be employed
with a more efficient water-cooling system [2.19, 2.20].

Multipole Lenses. A quadrupole lens can be constructed from four pole-
pieces of opposite polarity (Fig. 2.9). Because the magnetic field is normal
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Fig. 2.9. Construction of a
quadrupole lens.

to the electron beam, a stronger Lorentz force is exerted. A point object is
focused as a line image, as with a cylindrical lens in light optics. In elec-
tron microscopes, quadrupole lenses are used as stigmators for compensating
the axial astigmatism (Sect. 2.4.1) or to correct the focusing distance of an
electron prism for energy analysis (Sect. 4.6.1).

Hexapole lenses consist of six polepieces and octopole lenses of eight pole-
pieces, with alternating polarities. Combinations of hexapole or quadrupole
and octopole lenses can be used to correct lens aberrations (Sects. 2.4.2
and 4.6).

2.3 Lens Aberrations

2.3.1 Classification of Lens Aberrations

There are five possible isotropic aberrations of third order in lenses with ro-
tational symmetry, as in light optics:

1) spherical aberration (Sect. 2.3.2) 4) distortion (Sect. 2.3.4)
2) astigmatism (Sect. 2.3.3) 5) coma (Sect. 2.3.5)
3) field curvature (Sect. 2.3.3)

There are three further anisotropic aberrations (Sect. 2.3.6):

6) anisotropic coma 8) anisotropic distortion
7) anisotropic astigmatism

If the electron beam is not monochromatic, owing to
a) insufficient stabilization of the acceleration voltage,
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b) the energy spread of the electron gun, and
c) energy losses in the specimen,

9) chromatic aberration (Sect. 2.3.7)

also has to be considered. Departure of the magnetic-lens field from exact
rotational symmetry causes an

10) axial astigmatism (Sect. 2.3.3).

The spherical aberration, a distortion associated with this aberration, the
axial astigmatism, the coma, and the chromatic aberration are the most im-
portant aberrations for electron microscopy, and only these on-axis errors will
be discussed in detail. The other aberrations can normally be neglected be-
cause the electron beam necessarily remains close to the optic axis and small
lens apertures are needed for high resolution. After compensation of axial
astigmatism and coma-free alignment, a threefold astigmatism has to be con-
sidered at high resolution.

The aberrations can be calculated by the eikonal method [2.21, 2.22], for
example, where

Py
S(Po,P1) = [ nds (2.56)
Po
represents the point eikonal as the set of optical path lengths between two
points Py and P;. The true path makes the eikonal (2.56) an extremum,
which is known as Fermat’s principle in light optics.

The so-called diffraction error is not caused by the lens itself but is a con-
sequence of the presence of diaphragms; this error will therefore be discussed
not in this section but in Sects. 3.3.2 and 6.2, where the wave-optical theory
of image formation is presented.

2.3.2 Spherical Aberration

The spherical aberration has the effect of reducing the focal length for electron
rays passing through outer zones of the lens (Fig. 2.10). Electrons crossing the
optic axis at different angles 6 or scattered in the specimen through angles
will intersect the Gaussian image plane at a distance

from the paraxial image point. The Gaussian image plane is the position of the
image when very small apertures are used (paraxial rays). Cj is the spherical-
aberration coefficient and M the magnification. We use coordinates z,y, or
r in the specimen plane and the corresponding coordinates ' = —Mz and
y', v, respectively, in the image plane.
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P Fig. 2.10. Electron trajecto-
ries and wavefronts in a lens
® with spherical aberration.

Wavefronts
~—with
---without
spherical aberration

As=Path ditference
due to wave aberration

Plane of least
confusion

d’s, min

Gaussian
image plane

A conical electron beam with angular aperture o, defined by the objec-
tive diaphragm does not produce a sharp image point, but the beam diame-
ter passes through a minimum, df .., in a plane of least confusion; in the
Gaussian image plane, the diameter is d’ = 2Csa2M. The correspond-
ing dlameterb referred back to the bpecnnen plane are ds g = dg /M and
dsmin = d{ 1i,/M. It can be shown that the smallest diameter is given by

dsmin = 0.5 Csad. (2.58)

The spherical-aberration coefficients of objective lenses are normally of the
order of 0.5-2 mm. Calculated values of the spherical-aberration coefficient Cy
of magnetic lenses are plotted in Fig. 2.11 as a function of the lens parameter
k2. Cy decreases with increasing lens strength. The minimum focal length
occurs at k2 = 3, and Cy shows a flat minimum at k2 = 7.

The spherical aberration of the objective lens not only influences the res-
olution but can also be observed when imaging crystalline specimens. The
diffracted beams produce shifted twin images if the objective aperture di-
aphragm is removed or if the primary beam and the diffracted beam can both
pass through the diaphragm. The bright bend contours of crystalline foils ob-
servable in the dark-field image are shifted relative to the corresponding dark
contours in the bright-field image. This effect can be used for the measurement
of Cy [2.23, 2.24, 2.25]. The same effect limits the useful area in selected-area
electron diffraction (Sect. 8.1.1).
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Fig. 2.11. Dependence of reciprocal focal length a/f, reduced spherical-aberration
constant Cs/a, and chromatic-aberration constant C./a on the lens parameter
k? [2.2].

A wave-optical formulation of the effect of spherical aberration, which is
important for the discussion of phase contrast, will be presented in Sect. 3.3.1.
Determination of the contrast-transfer functions by optical diffractometry
(Sect. 6.4.7) or a digital Fourier transform and from a defocus series of crystal-
lattice images (Sect. 9.6.4) also allows Cs to be evaluated.

2.3.3 Astigmatism and Field Curvature

A cone of rays of semiangle € from a specimen point P at a distance x from
the axis is focused in the Gaussian-image plane as an ellipse with its center
at the Gaussian-image point x’. The principal axes of the ellipse are parallel
to 2’ and 9/, and their lengths are proportional to 2 and 6.

Rays passing through points around a circle of radius R in the lens and
the corresponding points on the ellipse form an astigmatic bundle of rays that
collapses to perpendicular focal lines Fy and F,, for rays in the sagittal and
meridional planes. These foci lie on the curved sagittal and meridional image
surfaces shown in Fig. 2.12. A circle of least confusion is formed in the curved
mean image surface. This error disappears for on-axis specimen points (z = 0),
and this type of astigmatism can in practice be neglected because small aper-
tures are used to decrease the influence of spherical aberration and because
the electron beam is necessarily adjusted on-axis to decrease the influence of
coma and chromatic aberration.

However, astigmatism will be observed even for points on-axis if the lens
field is not exactly rotationally symmetric, owing to inhomogeneity of the
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Fig. 2.12. Astigmatic focal differences be-
tween meridional and sagittal ray bundles.

magnetization of the polepiece, ellipticity of the polepiece bores, or electric
charging of aperture diaphragms. This error is therefore called axial astig-
matism. In consequence, a pair of diametrically opposite zones of a circular
specimen will be focused sharply at one focal point Fg, and the two other
diametrically opposite zones, 90° from the first, will be focused at the other
focal point Fp,. The difference Afa of the focal lengths (Fig. 2.12) will be
small and is only of the order of 0.1 to 1 pum. Nevertheless, the resolution can
be reduced, as is shown by the following estimate.
The diameter of the error disc at the specimen plane will be

da = Afaag. (2.59)

If a resolution § = 0.5 nm is wanted for an aperture o, of 10 mrad, ds should
be smaller than ¢ and, therefore, Afa < §/a, = 50 nm. If we assume that the
polepiece bore is elliptical with semiaxes by &= Ab, the relative focal difference
becomes

Afa Ab
— =2— 2.60
7 b (2.60)
because the focal length is of the order of the diameter bgy. It follows that Ab
must be less than 25 nm with the estimated value of Afa. It is very difficult

to obtain such precision in the diameter of the bore.
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Fig. 2.13. Cross sections through the caustic at different values of the coordinate
¢ of Fig. 2.12 [2.27].
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Fig. 2.14. (a) Pin cushion, (b) barrel, and (c) spiral distortion of a square grid.

The simple drawing of Fig. 2.12 is not adequate for calculating the cross
section of the electron beam in an astigmatic image. If all rays, including those
not in the sagittal or in the meridional plane, are considered, a complicated
intensity distribution in the neighborhood of the focus results, the so-called
caustic. Figure 2.13 shows observed intensity distributions [2.26, 2.27] corre-
sponding to cross sections through the caustic at the positions ¢ indicated in
Fig. 2.12. The orthogonal focal lines have the coordinates { = +1.

2.3.4 Distortion

Distortion causes a displacement
Ar' = —Cgr® (2.61)

in the Gaussian image plane for off-axis points. This results in a geometrical
distortion of a square, which is known as pin cushion distortion for Cg > 0
and barrel distortion for Cg < 0 (Fig. 2.14a,b).
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Fig. 2.15. (a, b) Examples of distortion caused indirectly by the spherical aberra-
tion of a projector lens.

The spherical aberration may be used to explain an image distortion found
in intermediate and projector lenses operating at low magnifications. These
large-bore lenses magnify an intermediate image in which the angular aperture
at any image point is smaller by a factor 1/M than the objective aperture «.
Therefore, no further decrease of image resolution by the spherical aberration
is expected. However, Fig. 2.15 shows how a distortion of the image can be
generated indirectly by the spherical aberration. A conical beam coming from
P in the intermediate image of Fig. 2.15a converges to an image point Py,
in the absence of spherical aberration but to a point P’ if it is present. The
deviation A7’ on the image screen increases with 7/ as 7’3, resulting in a pin
cushion distortion of a square specimen area. The opposite situation is ob-
served when the intermediate image lies beyond the second lens (Fig. 2.15b);
the deviation Ar’ o< 73 is now directed toward the optical axis, resulting in
a barrel distortion. It is possible to compensate for this type of distortion by
suitably exciting the lens system, and a pin cushion distortion can be com-
pensated for by a barrel distortion in another intermediate image step [2.20].
This compensation of distortion is very important for preliminary exploration
of the specimen at low magnification.

2.3.5 Coma

Coma causes a cone of rays passing through the specimen point P at an off-
axis distance r at angles 6 to the axis to be imaged as a circle with radius
proportional to 82 and r. The center of the circle does not coincide with the
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Fig. 2.16. (a) The effect of coma on the image P’ of a specimen point P at a
distance r = r'/M from the axis for increasing angular apertures. (b) Anisotropic
astigmatism and (c) anisotropic coma [(- - -) magnetic field of the lens reversed].

Gaussian image point v’ = —r M but is shifted in the radial direction by twice
the radius. Circles corresponding to different angles 6 therefore lie within a
sector of 60° (Fig. 2.16a). Coma-free alignment is necessary for high resolution
(Sect. 2.5.3).

2.3.6 Anisotropic Aberrations

The anisotropic distortion is caused by the dependence of the image rotation
on the off-axis distance r of the object point; the latter is imaged with an
additional rotation angle ¢ proportional to 2. Straight lines in the specimen
plane become cubic parabolas in the image plane (Fig. 2.14c¢). Reversal of the
lens current changes the sense of rotation.

The anisotropic astigmatism together with the astigmatism discussed in
Sect. 2.3.3 results in an ellipse, the principal axes of which are not parallel to
the 2’ and y’ axes (Fig. 2.16b).

The anisotropic coma differs from the coma (Sect. 2.3.5) in the direction
of the coma sector, which is not perpendicular to the radius r’ (Fig. 2.16c¢).

2.3.7 Chromatic Aberration

Variations of electron energy and lens current cause a variation of focal length
Afe  AE 2AI

f B 1
because f is proportional to E and B~2 or I=2 (I: lens current). This means

that chromatic aberration can be caused by fluctuations of the acceleration
voltage, by the energy spread of the emitted beam, by energy losses inside

(2.62)
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the specimen, and by fluctuations of the lens current. An energy spread AF
causes a point to be imaged as a chromatic-aberration disc of diameter

g g~ Lo AE 1+ E/E

e N i NN V3 2.63
27 E 1+ E/2E," (2.63)

The chromatic-aberration coefficient C. is of the order of the focal length f
for weak lenses and decreases to a minimum of about 0.6 f for stronger lenses
(Fig. 2.11) [2.28).

The chromatic aberration caused by the energy spread AE of the electron
beam limits the resolution. If a resolution 6 = 0.2 nm < d. is wanted for o, =
20 mrad and C. = 2 mm, we must ensure that AE/E < 107°. Owing to the
Boersch effect (Sect. 4.1.2), the half-width of the electron energy distribution
from a thermionic cathode is of the order of 1-2 eV. If the focusing corresponds
to the maximum of this energy distribution, only half of this value should be
used for AFE in (2.63). This means that Schottky or field-emission cathodes
with AF < 1 eV must be used for high-resolution work, that is, not worse than
0.1-0.2 nm. Furthermore, the acceleration voltage and the lens currents have
to be stabilized to better than 107°. The influence of chromatic aberration
on contrast transfer will be discussed in detail in Sect. 6.4.2. To minimize
the influence of energy losses AFE inside the specimen, the proportion of the
beam scattered inelastically should be very much smaller than that scattered
elastically or unscattered.

The number of unscattered and elastically scattered electrons is strongly
reduced in thick films, and the energy-loss spectrum is broadened by multiple
energy losses (Fig. 5.34b,c). An operator will focus on the most probable
energy (the maximum of the energy-loss spectrum). The resolution will be
limited by the half-width of the energy-loss spectrum [2.29]. The chromatic
aberration associated with film thickness can be measured from the blurring
of sharp edges [2.30].

Equation (2.63) describes the axial chromatic aberration, which is still
present for electron beams entering the objective lens from the axial point of
the specimen. When the electron beam passes the specimen at a distance r
from the axis, a chromatic error streak d,, with two components is observed: a
radial component §,., due to changes of magnification as a function of electron
energy, and an azimuthal component d,,, due to variation of the image rotation
angle ¢ (2.55). Together, these give (Fig. 2.17a)

AE
5= Crpr = with CZ,=C2+CL. (2.64)

The constant (). remains positive whatever the lens excitation, whereas C,
can change sign [2.31]. This chromatic-error streak is illustrated in Fig. 2.17b,
where several exposures of polystyrene spheres corresponding to different val-
ues of the lens current are superimposed.
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2.4 Correction of Aberrations and Microscope
Alignment

2.4.1 Correction of Astigmatism

Axial astigmatism can be compensated for by placing a simple stigmator in
the polepiece bore of a lens. The function of this correction element can be
understood from a light-optical analogue [2.32] (Fig. 2.18). Axial astigmatism
can be simulated by adding a cylindrical lens C1 to the rotationally symmetric
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lens L1 (Fig. 2.18a). The lens C1 acts only on the sagittal bundle, resulting
in a shorter focal length (Fig.2.18b). The stigmator consists of a cylindrical
lens C2 rotated through 90° relative to C1. It acts only on the meridional
bundle (Fig.2.18c), so that P, and P/ coincide in P’. This means that the
lens astigmatism is compensated for by a perpendicular astigmatism of the
same magnitude. The orientation and strength of C2 therefore have to be
adjustable.

In electron optics, toric rather than cylindrical lenses are employed in the
form of very weak quadrupole lenses (Sect. 2.2.3). Two quadrupoles mounted
with a relative rotation of 45° around the axis and excited by different currents
allow the direction and strength of the quadrupole lens system to be varied.

For high resolution, the astigmatic focal difference Afa should be smaller
than 10 nm. Sensitive methods of detecting such small focal differences are
required to adjust the stigmator correctly. The following methods can be used.

Fresnel-Fringe Method. Defocusing causes Fresnel diffraction fringes to be
seen at edges (Sect. 3.2.2). These fringes disappear in focus. The distance zq
(3.35) of the first fringe from the edge is proportional to the square root of the
defocus Az = Ry. If a small hole of about 0.1 pm diameter in a supporting
film is observed, the Fresnel fringes disappear in the presence of astigmatism
only on opposite sides of the hole. They remain visible in a perpendicular
direction as a result of the astigmatic focal difference. The astigmatism is
compensated for when the fringe visibility for small defocusing is the same
around the edge of a hole. This method is capable of revealing values of Afa
greater than 0.1 ym by visual observation of the viewing screen and about
half of this value on a micrograph.

Granularity of Supporting Films. Supporting films of carbon exhibit a
granularity caused by phase contrast (Sect. 6.2.2) that is very sensitive to
defocusing. In the presence of astigmatism, the granularity shows preferential
directions that change through 90° if the focusing is changed from the sagittal
to the meridional focus. A very high sensitivity can be obtained by record-
ing the image with a CCD camera and observing the granularity on the TV
screen. An improved contrast can be observed when using a thin evaporated
amorphous germanium film.

Fraunhofer Diffraction. The spatial-frequency spectrum of the granularity
can be observed by light-optical Fraunhofer diffraction on developed micro-
graphs (Sect. 6.4.7) or by online digital Fourier analysis of images recorded by
a CCD camera. Spherical aberration and defocusing lead to gaps in the trans-
fer of spatial frequencies, which can be seen as a ring pattern in Fraunhofer
diffractograms (Fig. 6.27). Astigmatism deforms the rings to ellipses or hy-
perbolas.

The latter two methods can detect values of Afy greater than 10 nm,
which is sufficient for high resolution. All three methods are based on phase-
contrast effects caused by defocusing. It is necessary to work with a nearly
coherent electron beam to prevent blurring of the fringes and the granularity.
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With an illumination aperture «; of 1 mrad, for example, only one Fresnel
fringe can be resolved, whereas with a very coherent beam produced by a
Schottky emitter or a field-emission gun, hundreds of fringes may be seen
(Fig. 3.9).

2.4.2 Correction of Spherical and Chromatic Aberrations

Because the third-order lens aberrations are observable only for nonparax-
ial rays, aberration correction will be necessary only for lenses working with
larger apertures, a > 1 mrad, such as a probe-forming condenser lens or an
objective lens. In the intermediate and projector lenses, the angular aperture
is decreased to a/M.

The resolution is limited by both the spherical and chromatic aberrations
of the objective lens, and it will hence be of interest to correct both defects
simultaneously. In light optics, spherical aberration is caused by the spherical
shape of the glass-lens surfaces, and chromatic aberration is caused by the
dispersion of the refractive index. Both errors can be corrected by using non-
spherical surfaces and/or a suitable combination of lenses. The magnetic field
of an electron lens cannot be “polished”, and spherical aberration is a conse-
quence of the structure of the rotationally symmetric magnetic field. Thus, in
(2.24), we used the relation div B = 0 to show that the radial component B,
cannot be independent of the axial component B,. Starting from this relation
and an equivalent one for electric fields, Scherzer has demonstrated that the
spherical- and chromatic-aberration coefficients of a stationary, charge-free
round lens are always positive [2.33].

Scherzer [2.34] proposed that correction of the third-order spherical aber-
ration and first-order chromatic aberration should be possible by introduc-
ing an additional system of multipole lenses behind the objective lens. The
spherical aberration can in principle be compensated for by a combination
of magnetic quadrupole and octopole lenses, whereas a combination of elec-
trostatic and magnetic quadrupoles is necessary for the chromatic aberration
[2.35, 2.36, 2.37]. Koops et al. [2.38] showed experimentally that such a system
works and that the sensitivity to misalignment can be decreased by additional
trim coils.

When using Schottky or field-emission guns with AE < 0.3 eV, the chro-
matic aberration at voltages >200 kV will be less than the spherical aber-
ration. Correction of the spherical aberration thus permits the extension of
the point-to-point resolution to the information limit, which is determined by
the chromatic aberration and the mechanical and electrical stability of the
instrument. Rose [2.39] has proposed such a Cs-corrector, composed of two
sextupoles and two round lenses. This system has been built for a 200 kV
microscope by Haider [2.40]. This corrector is now commercially available and
has proven its usefulness for materials applications [2.41]. More recent ideas
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for corrector systems include a quadrupole-octupole corrector for a STEM
[2.42] and an “ultracorrector” to correct all primary spherical and chromatic
aberrations in TEM [2.43].

2.4.3 Microscope Alignment

When the acceleration voltage or the objective current is wobbled, specimen
structures move on spirals around the corresponding voltage or current center
(Fig. 2.17b). Both centers should coincide with the center of the final screen.
This correction is sufficient for medium resolution. If the centers do not coin-
cide, preference should be given to the voltage center. Owing to mechanical
limitations, the condenser-, objective- and projector-lens systems are not per-
fectly aligned. An on-axis alignment of the electron beam in the objective lens
is essential for high resolution (coma-free alignment). The microscope can be
aligned with the aid of beam-tilt coils above and image-shift coils below the
objective lens. Three different types of autoalignment methods are in use.

Diffractogram Method. When using an untilted beam and the compen-
sation for astigmatism described in Sect. 2.4.1, the Fraunhofer diffractogram
shows concentric circles from which the defocus and Cg can be determined;
the axial coma and threefold astigmatism cannot be detected. On tilting the
beam by +6, the latter aberrations cause noncentrosymmetric differences in
the diffractograms. A useful procedure is to take micrographs of amorphous
carbon or germanium films with a beam tilt  ~ 5-10 mrad at 6—20 azimuths
between 0 and 27 and produce a tableau of diffractograms [2.44, 2.45, 2.46].
When the illumination direction is aligned, the tableau of diffractograms is
centrosymmetric. Further alignment is necessary for the voltage and current
centers.

Image-Contrast Method. The image shows minimum contrast when the
beam is aligned, the image focused, and astigmatism corrected [2.47, 2.48].
Accurate settings are obtained by a deliberate variation of defocus, astigma-
tism, and alignment. The method only works efficiently when the parameters
are close to their correct values, and the dose required is high.

Image-Shift Method. This method exploits the beam-tilt-induced displace-
ments of an image [2.49, 2.50, 2.51] and is independent of the particular spec-
imen structure, whereas the two previous methods use amorphous carbon or
germanium test films. Coma-free alignment is based on the nonlinear relation
between displacement and beam tilt. The displacements can be measured by
seeking the maximum of the cross-correlation (Sect. 6.5). For coma-free align-
ment, five images have to be recorded: one without and four with equal but
oppositely tilted beams, for example. The reproducibility of alignment on the
coma-free axis is better than 0.1 mrad and that of focusing and stigmation
better than 3 nm at M = 500 000.
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Wave Optics of Electrons

A de Broglie wavelength can be attributed to each accelerated particle, and
the propagation of electrons can be described by means of the concept of
a wave packet. The interaction with magnetic and electrostatic fields can
be described in terms of a phase shift, or the notion of a refractive index
can be employed, leading to the Schrédinger equation. The interaction with
matter can similarly be reduced to an interaction with the Coulomb potentials
of the atoms.

Many of the interference experiments of light optics can be transferred
to electron optics. The most important are the Fresnel biprism experiment
and Fresnel diffraction at edges. The diffraction pattern far from the speci-
men or in the focal plane of an objective lens can be described by means of
Fraunhofer diffraction. As in light optics, the Fraunhofer-diffraction amplitude
is the Fourier transform of the amplitude distribution of the wave leaving the
specimen where the lens aberrations are incorporated in the wave-aberration
function.

The image amplitude can be described in terms of an inverse Fourier trans-
form, which does not, however, result in an aberration-free image owing to
the phase shifts introduced by the electron lens and the use of a diaphragm
in the focal plane.

3.1 Electron Waves and Phase Shifts

3.1.1 De Broglie Waves

In 1924, de Broglie showed that an electron can be treated as a quantum of
an electron wave and that the relation £ = hv for light quanta should also
be valid for electrons. As a consequence, he postulated that the momentum
p = mw is also related by p = hk to the wave vector k, the magnitude of
which (the wave number) may be written |k| = 1/X (\: wavelength); this is
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analogous to p = hv/c = hk for light quanta. This implies that A = h/p
(2.12) with the relativistic momentum p (2.11). Substitution of the constants
in (2.12) results in the formula

h 1.226
A=—= 3.1
mv  [U(1+0.9788 x 10-6U]1/2 (3:1)
with A (nm) and U (V) (A = 3.7 pm for U = 100 kV and 0.8715 pm for U =
1 MV).
A stationary plane wave that propagates in the z direction can be described
by a wave function ¢ that depends on space and time 7,

¥ = Poexp[2mi(kz — vT)] = Yoexp <2/\mz — 2m’1/7'> = YPoexp(iv), (3.2)

where v is called the amplitude and ¢ the phase of the wave. The phase
changes by 27 for 7 = const if the difference between two positions (zo — z1)
is equal to A (Fig. 3.1a).

When the electron moves in an electrostatic field, we have to distinguish
between the kinetic energy Ej;, and the total energy Ej,:, which is given by
the sum of the kinetic and the potential energies E;os = moc? + Epin + V(7).
Whereas the frequency is directly related to the energy, ' = hv, the definition
of a wavelength or a wave number is more complicated. If we assume that the
potential varies only slowly, we can define a spatially varying wave number
k by dividing the local momentum p by Planck’s constant h. In the one-
dimensional case, we then obtain a wave function

P(z) = Poexp {2m' [7 k(z)dz — Z/T‘| } . (3.3)

Formally, this so-called WKB approximation can be obtained from the
Schrédinger equation (3.21). Details can be found in many textbooks on

Infinite plane wave Wave packet
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kK= 1/ ' k- /A
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Fig. 3.1. (a) Infinite cosine wave with a discrete k-spectrum and (b) a wave packet
of lateral width Az and a broadened k-spectrum of width Ak = 1/Az.
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quantum mechanics [3.1, 3.2, 3.3]. Due to the fact that an arbitrary constant
can be added to the potential ¢ or the potential energy V as shown in (2.6),
the frequency of an electron wave is not a clearly defined quantity. This does
not matter because it is not an observable quantity.

In the presence of fields, the quantities E/ = mc? — e® and p = mwv do
not form a relativistic four-vector, whereas that is a necessary condition if the
physical laws are to satisfy the invariance requirements of relativity. An elec-
trostatic field is time dependent if it is seen from a frame of reference moving
with a velocity v relative to the original frame. It is therefore associated with
a magnetic field via Maxwell’s equations. The correct value p’ that must be
used for p in p = hk — the canonical momentum — is

p' =mv —ecA = hk. (3.4)

The magnetic vector potential A is related to the magnetic field by B = Vx A.
The vector (pl,, py, p’, E'/c) thus becomes a relativistic four-vector.

In the relation (3.4), the vector potential A is not uniquely defined because
an arbitrary field A’ that satisfies the condition V x A" = 0 can be added to
A without affecting the value of B because B =V x (A+ A") = V x A. The
arbitrary field A’ therefore has only to be curl-free. Just like the frequency,
then, the wave number k and the wavelength A\ are not uniquely defined
quantities for electrons and therefore are not observable quantities.

This is a very strange conclusion for an electron microscopist, who daily
sees electron-diffraction patterns and uses (3.1), but it transpires that electron-
interference effects can be observed even though the wavelength of an electron
is not a clearly defined quantity. Consider the following experiment, which can
serve as a model for all interference and diffraction experiments. A wave from a
source Q (Fig. 3.2) passes through a double slit, beyond which the two partial
waves overlap at P. There will be constructive interference if the difference
between the phases is an integral multiple of 27 or an even integral multiple

o
i

W

o< , “»

Fig. 3.2. Calculation of the phase difference between two partial waves passing the
double slit at P and Po.
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of m and destructive interference if the phase is an odd integral multiple of .
In the presence of an electrostatic and a magnetic field, the phase difference
between QPP and QPP becomes

Py P Py P
po—¢p1=2r| [k-ds+ [k-ds— [k-ds— [k-ds
Q Q

Py Py

o
h

The signs of the last integrals have been changed by interchanging the lower
and upper integration limits, and the four integrals have thus been reduced
to an integral over the closed loop QP2PP;Q in which (3.4) for k has been
used. Stokes’ law can be applied to the integral involving A, and the result
may be expressed in terms of the magnetic flux @,, enclosed within the loop
of area S:

2 2
902—<P1Zifmvds——mf(VxA)-dS
h ho

(mv —eA) -ds. (3.5)

2 2
- % j{mv -ds — %eqsm. (3.6)

An arbitrary additional vector field A’, such that Vx A" = 0, which caused the
trouble in the definition of the wavelength, does not influence the difference
between the phases in (3.6). Equation (3.6) therefore shows that the relation
k =1/X = muv/h can be used to calculate phase or wave number differences
for interference and diffraction experiments in the absence of a magnetic field
(P = 0) and that if magnetic flux does pass through the loop (@, # 0), it
causes an additional phase shift. This phase shift can be measured by means of
a biprism. Consider two rays (Fig. 3.2) from the source Q to the point P of the
interference pattern. The optical phase difference ¢ depends on the enclosed
magnetic flux &,,. A phase shift occurs even if there is no magnetic field at
the trajectory, and hence if no magnetic term of the Lorentz force acts on the
electrons (Fig. 3.2). For the phase shift, only the magnetic flux through the en-
closed area is important. This Aharonov-Bohm effect [3.4] has been verified ex-
perimentally by many authors. A magnetic flux @, = h/e = 4.135 x 10~1% Vs
is sufficient to cause a phase shift ¢ = 27 corresponding to a path difference
As = X\ and to a shift of the interference pattern by one fringe distance. Such
a small flux can be created by an iron whisker with a cross section of 2000 nm?
and a saturation magnetization By = 2.1 T [3.5, 3.6] or by a 25 nm permalloy
film evaporated on the biprism wire [3.7]. The theoretical value of the phase
shift was confirmed from two exposures of the fringe system obtained with
Bs in opposite directions. By using three biprism wires, a larger spatial sep-
aration of the electron rays can be achieved and the flux of a coil 20 ym in
diameter can be enclosed [3.8, 3.9]. Lischke [3.10] verified the quantization of
the enclosed flux in superconductors, which is a multiple of the flux quantum
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(fluxon) h/2e. One fluxon corresponds to a shift of the fringe pattern by one-
half of the fringe distance. The fact that the effect occurs even if the electrons
themselves do not experience any magnetic field has been proven by carefully
shielding the magnetic field created in a toroidal magnet by embedding it in
a superconductor [3.11].

The deflection of electrons in a transverse magnetic field of length L
through an angle € (Sect. 2.1.2 and Fig. 2.3b) means, in wave-optical terms,
that the incident wave is tilted through an angle € after passing the magnetic
field. With an arbitrary origin at = 0 in Fig. 2.3, rays at a distance x en-
close a magnetic flux ¢, = BLx. Equation (3.6) gives the same value for the
deflection angle e = As/z, with As = A(p2 — ¢1)/2m7, as that given by (2.17),
obtained by using classical mechanics.

Because only the time-independent term of the phase in (3.2) is important
for interference experiments, we reduce the wave function (3.2) of a plane
wave to

P(2) = g exp(2mikz). (3.7)
For many applications, it is also of interest to use spherical waves

eQﬂ'lkr

¥ = Aq (3.8)
Aq is a measure of the magnitude of the source Q, and r denotes the dis-
tance from the source. The plane-wave function (3.7) and the spherical-wave
function (3.8) are special solutions of the time-independent wave equation
(3.19).

The widely used terms “wavefront” or “wave surface” can be defined as
surfaces of constant phase ¢. The wavefronts of a plane wave are planes normal
to the direction of propagation. In the case of a spherical wave, they are
concentric spheres. For a vanishing magnetic vector potential A = 0, the rays
of particle optics are trajectories normal to the wavefronts.

, .

4 4

3.1.2 Probability Density and Wave Packets

A parallel electron beam with N electrons per unit volume and velocity v
represents a current density

Jj=Nev (3.9)

in A m~2, where Nv is the flux of particles; that is, the number of electrons
traversing a unit area per unit time. In electron microscopy, we can measure
the current or current density, proportional to Nv, or we can count the number
N by single-particle detection. To combine these possibilities of measuring
with the wave concept, we use the quantum-mechanical formula for a flux of
particles

J =g (V' — v VY). (3.10)
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When this formula is applied to a plane wave (3.7), the operator V becomes
0/0z, and substitution of (3.7) in (3.10) results in

. h
J= GEQWkW/oF = ev|to[® (3.11)

by using the relation & = mwv/h. Comparison of (3.11) with (3.9) shows that
|10/ = N, which corresponds to the interpretation of 1| = ¢1)* as a prob-
ability density or ¥*dV = NdV as the probability of finding N electrons in
the volume element dV. We shall call the quantity

I=y > =vy* (3.12)

the intensity, which can be used to relate the wave amplitude to measurable
quantities.

We have to be careful when substituting |¢o| = N'/? because we can
describe only one electron by a de Broglie wave (N = 1); interference effects
between electron waves can occur only within the wave field of one electron
(see also the discussion in Sect. 3.1.4).

Because 11" means the probability of finding an electron, its integral over
all space should be unity for one electron:

[yp*dV = 1. (3.13)
J

An infinite plane wave such as (3.7) cannot be normalized by means of (3.13).
The concept of a wave packet is therefore introduced to combine the motion
of a particle of velocity v with the concept of a wave. A monochromatic wave
with a discrete wavelength A\ or wave number k& = 1/) represents a plane
wave with an infinite extension (Fig. 3.1a). A limited wave packet moving
with the particle velocity v (Fig. 3.1b) can be obtained by superposing a
broad spectrum A(k) of wavelengths or wave numbers:

b= +fo A(k)e2mikz g (3.14)

The amplitudes in front of and behind a wave packet vanish by destructive
interference. The amplitudes are summed up by constructive interference with
the correct phase only inside the wave packet. The width Ak of the wave-
number spectrum A(k) and the spatial width Az of the wave packet are related
by the Heisenberg uncertainty principle ApAz > h/(4xw) or AkAz > 1/(4w)
(compare the Fourier transform of a finite cosine wave in Table 3.2).

In practice, it is inconvenient to use a broad spectrum A(k), which cor-
responds to the superposition (3.14) of many partial waves. Therefore, we
continue to use the expression (3.7). The results obtained for the center of
the k spectrum are not appreciably different from the behavior of the wave
packet, provided that Ak < k.
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3.1.3 Electron-Optical Refractive Index
and the Schrodinger Equation

An electron-optical refractive index n can be introduced as in light optics,
where it is defined as the ratio of the velocity ¢ in a vacuum to the velocity ¢,
in matter or by the corresponding ratio of the wavelengths: n = ¢/ = A/ Am.
The velocity of electrons in matter is influenced by the attractive Coulomb
potential V (r):

€2 Zeg (7)
dmeor

Vr)= (3.15)
The effective number Z.g(r) takes into account the increased screening of the
nuclear charge by the atomic electrons with increased r (Sect. 5.1.3). We have
only to replace the energy in (2.12) by E — V(r) to obtain the dependence of
electron wavelength on r. The refractive index in the absence of a magnetic
field becomes

A pm [2AE-V)E,+ (E—-V)2]"?

= =2 . 3.16
=T 2EE, 1 B2 (8.16)
This formula can be simplified if it is assumed that V' (r) < E and Ey,
V(?") EO + F
=1- — + .. 1
n(r) E 2E,+E 7 (38.17)

n > 1 because V(r) in matter is negative.

Figure 3.3 shows schematically the potential energy V(r) along a row of
atoms. The mean value V; = —eUj, which is the constant term of a Fourier
expansion, is called the inner potential (Table 3.1). This inner potential causes

Atomic distance 2a —-I X ——

-0.2 -01 0 01 nm 0.2
l -~ ~ ~ s

Fig. 3.3. Potential V(r) of a crystal lattice along a row of Ge atoms with interatomic
spacing 2a and definition of the inner potential Vi = eUs.
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Table 3.1. Values of the inner potential U; (V) of various elements.

Be 7.8+ 04 3.12] Au 211 +2 [3.14]
C 78406 [3.13] 22.1 — 27.0 [3.13]
Al 130 + 04 [3.13] Si 115 3.16]
124 £ 1 3.14] Ge 156408  [3.15]
11.9 £ 0.7 3.15] W 234 [3.16]
Cu 235 + 0.6 3.13] ZnS 102 + 1 [3.14]
20.1 + 1.0 [3.15]
Ag 207 + 2 [3.14]
170 — 218 [3.14]

a phase shift relative to a wave traveling in a vacuum. (The large local vari-
ations of V(r) in the specimen produce elastic scattering of electrons at the
nuclei; see Sect. 5.1.3.)

An optical path difference As = (n — 1)t and hence a phase shift ¢ that
corresponds to a layer of thickness ¢ can be introduced by writing

2 27 _2mely Eg+ FE

iy
Ly P LN A | PR Lt e I Y
i e s W Ok s vl ay oy

Thus, for carbon films, for example, we have U; = 8 V, givingn—1 = 4x 107°
for 100 keV electrons, for which A = 3.7 pm. A film thickness ¢ of 21 nm will
be needed to obtain a phase shift ¢ of 7/2.

The electron-optical refractive index or the inner potential U; can be de-
termined from the shift of single-crystal diffraction spots or Kikuchi lines
in electron-diffraction patterns with oblique incidence (RHEED, Sect. 8.1.4)
[3.16, 3.17]. An interference effect due to double refraction can be observed in
small polyhedral crystals (e.g., MgO smoke); however, this can be explained
completely only by the dynamical theory of electron diffraction [3.18, 3.19].
The phase shift also causes modifications of the Fresnel fringes at the edges of
transparent foils (Sect. 3.2.2). However, the most accurate method of measur-
ing U; involves the use of electron interferometry (Sect. 3.1.4). Other meth-
ods of measuring U; are discussed in [3.20]. The inner potential measured by
surface-sensitive methods can be different from the value for bulk material.

Substitution of the wave number ky, = n(r)k in the time-independent wave
equation

V23 + 4k ) = 0, (3.19)

(3.18)

which is also valid for electromagnetic waves and light quanta, yields the
quantum-mechanical Schrodinger equation in a relativistically corrected form,

V24 +473n? (r)k21/)
V 2E, + 2E\ 2EE, + E?

_ 2 2 _ _
_vw+4w< E2E0+E) V=0 (3.20)
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or with i = h/2m,

9 E B
Vi % {E (1 " 2Eo) —vin) (1 * Eo)] v=0 (821)
or
Mgy —0 with Erop o tE 3.92
[zm e (’”W— . " V(B + B (322

For energies well below the rest energy of the electron E << FEj, we obtain
the conventional Schrédinger equation

[%fjw + V(r)} Y = Ev. (3.23)

3.1.4 Electron Interferometry and Coherence

An electron wave can be split into two coherent waves by an electron-optical
biprism interferometer, the analogue of the Fresnel biprism of light optics as
developed by Méllenstedt and Diiker [3.21, 3.22].

Figure 3.4a shows the light-optical Fresnel biprism. The refracted waves
behind the prism are generated by the virtual sources Q; and Q2. The optical
phase difference (3.18) can be calculated as a function of the coordinate = in
the viewing plane from the path difference As. From Fig. 3.4a, we see that

) an 21172 ) 212
As=|L2+ (e+2) | - |2+ (a-2) ] =% 3.24
s [ + (z+ 5 } [ + (= 5 7 (3.24)
ifr,;a < L.
Constructive interference maxima are obtained if As = n\ or ¢ = 27n, n
being an integer. The distance between the maxima becomes

Ax = £A = i

a 273

The electric field between a thin wire (diameter ~ 1um) and grounded plates

can form such a biprism for electrons (Fig. 3.4b). A shadow of the wire is seen

at the viewing plane if the wire is grounded. As the positive bias of the wire is

increased, the two waves with wave vectors ki and ks can overlap, resulting
in an amplitude distribution

¥ = olexp(2wiky - ) + exp(2wiks - 7)]
= to{exp[mi(ky — k2) - r] + exp[—7i(k1 — k2) - 7]} exp[mi(k1 + k2) - 7]

(3.25)

= 2 cos[m(ky — ka) - r] exp(27ikz). (3.26)
The intensity distribution I(z) = 11* becomes
I(x) = 41y cos?(2m Bz /N), (3.27)

in which we have written Iy = |¢o|?, (k1 + ko) - 7 ~ 2kz, and (k1 — k) -7 =
2kxsin 8 ~ 23x/X (see Curve 1 in Fig. 3.4c).
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Fig. 3.4. (a) Fresnel-biprism experiment of light optics. (b) Electron-optical re-
alization of a biprism experiment with a positively biased wire (¢) Curve 1 (left);
intensity distribution of interference fringes for coherent illumination and curves 2
and 3 (right) for partially coherent and incoherent illumination.

If an extended source is used rather than a point source, as assumed above,
the probability (3.27) of observing an electron at any point z will not be
changed. However, electrons from other points of the extended source will
produce shifted interference patterns. The maxima and minima are totally
blurred if the extension Aa of the source is larger than the distance Az be-
tween the maxima. The illumination is said to be “incoherent” (see Curve 3
in Fig. 3.4¢). In the center of the overlap, the intensity becomes 21y, the value
expected if no interference effects occur. Partially coherent illumination, with
Aa < Az, leads to a decrease of the maxima, and the minima no longer fall
to zero (Curve 2 in Fig. 3.4c).

When the source size is sufficiently small, Aa < Az = L\/a, the radiation
is said to be spatially coherent. The angle, a; = Aa/2L, can be interpreted
as the illumination angle; that is, the cone angle of the rays from different
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points of the source at the point P in the observation plane. The condition
Aa < Ax for spatial coherence is thus equivalent to Aac; < A/2, which is
also used as a coherence condition in light optics.

A coherence condition for temporal coherence results from the finite co-
herence length Az of the wave packet (Fig. 3.1b). The path difference As
between two interfering waves has to be much smaller than Az. The value
of Az = cAr is related to the emission time Ar. In light emission, a normal
dipole transition has an emission time A7 ~ 107® s so that with v = ¢ we
have Az ~ 3 m ~ 6 x 105\ for A = 0.5 um. For electrons, At can be es-
timated from the Heisenberg uncertainty relation AEAT ~ h, where AE ~
1 eV is the energy spread at the electron gun; this gives A7 ~ 4 x 10715 s.
Thus 100 keV electrons, for which v = 1.64 x 10® m s~!, have a coherence
length Az = v A7 = 600 nm ~ 2 x 10°\. Méllenstedt and Wohland [3.23] pro-
duced path differences As of the order of Az using a biprism combined with
a Wien filter and confirmed that the biprism interference pattern decreases in
amplitude if As ~ Az.

The influence of spatial and temporal coherence on phase contrast is dis-
cussed in Sects. 6.4.2 and 6.4.3. For further discussion of coherence and the
introduction of coherence functions, see [3.24, 3.25].

The biprism experiments shed light on another important aspect of wave
optics. In particle optics, the concept of a trajectory is used. In our example,
the particle can pass either side of the wire. In wave optics, the wave of a
single electron passes on both sides of the wire simultaneously and we can
observe only the probability of detecting the electron at some position x. It is
therefore nonsense to ask on which side the electron has passed. If we put a
detector on one side of the wire, half of the total number of electrons will be
detected, but we thereby suppress all wave amplitudes on this side and will
observe no interference pattern.

Introduction of a thin foil on one side of the wire causes a phase shift (3.18)
given by the inner potential U; (Sect. 3.1.3). The phase shift can be measured
accurately by using an electron interference microscope, which images both the
specimen and an interference pattern. It is advisable to use a simple geometry
for measuring, such as evaporated stripes [3.12] or circular areas [3.14].

3.2 Fresnel and Fraunhofer Diffraction

3.2.1 Huygens’ Principle and Fresnel Diffraction

In wave optics, all other wavefronts can be calculated once the shape of one
of them is known by using the Kirchhoff diffraction theory based on the wave
equation (3.19). However, the simpler treatment offered by Huygens’ principle
can also be used in electron optics; this states that each surface element d.S
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wavefront

Fig. 3.5. Illustration of Huygens’ principle and Fresnel zones showing how the wave
amplitude at the point P is obtained by summing the amplitudes of the Huygens
wavelets from a spherical wavefront of radius 7.

of a wavefront generates a secondary spherical wave with amplitude

a A(0) . eQTrik‘R
) R

where 1 denotes the amplitude of the incident wave at dS and 6 the angle of
emission to the normal of the wavefront. A new wavefront is generated by the
superposition of all of the secondary waves (Fig. 3.5). At a point P in front of
the wavefront, the amplitudes of all the secondary waves have to be summed,
considering their phase shifts. The factor A(f) is unity in the direction of the
propagating wave and decreases with increasing 6. For the reverse direction, A
is zero. The exact form of A(6) is not important for the following calculation.
The factor 1/i = exp(—in/2) in (3.28) represents a phase shift of —m/2 relative
to the incident wave.

We apply Huygens’ principle to the propagation of a spherical wave
(Fig. 3.5). The known wavefront is thus spherical with radius » and ampli-
tude ¢ (3.8). The surface element dS = rdy - 27rsin x by using the spherical
polar coordinates r and x. The distance R to the point P can be calcu-
lated from R? = 72 + (r + Rg)? — 2r(r + Rg) cos x, from which we obtain
2RAR = 2r(r+ Rp) sin xdy, and it follows that dS = 2x[r/(r + Ro)| RAR. The
amplitude ¢p at P is obtained by integration over all the secondary waves,

dS, A(0) = (1+cosb)/2, (3.28)

) 2rikr 2mikR
o= [AO) y e ds
g 1A r R
_ 274q o 2TKT R

~ iMr+Ro) g,

A(0)e2™ER YR, (3.29)
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Imaginary axis Fig. 3.6. Amplitude-phase
Contribution of i % 2mikR diagram for the integral in
st Fresnel zone\| Tk dR (3.29).
v=2nk{R-R,)

eIV 4R
Real axis

The result can be established by means of an amplitude-phase diagram
(APD) (Fig. 3.6). The term exp(ip)dR can be represented in the complex
number plane by a line element dR inclined at an angle ¢ to the real axis.
The integration in (3.29) means adding infinitesimal line elements dR with
increasing ¢ = 2wkR, resulting in a circle. The radius of the circle decreases
because of the decrease of A(f) with increasing 6. The result is a spiral that
converges to the center of the circle. Starting from the lower limit of integra-
tion, R = Ry, the integral reaches its greatest value when ¢ = 2rk(R—Ry) = 7
or R — Ry = A\/2. The value of the integral then decreases again because the
phase shift of the secondary wave becomes greater than m. This is the basic
idea of the Fresnel-zone construction. If a sphere of radius R = Ry + A\/2
centered at P is drawn, as in Fig. 3.5, the first Fresnel zone is obtained, as
indicated by the hatched area on the wavefront, which contributes to the
amplitude ¢p with a positive value. The second Fresnel zone, between the
corresponding radii Ry + A/2 and Ry + A, results in a negative contribution,
the next Fresnel zone again gives a positive contribution, and so on with al-
ternating signs. The convergence of the APD to the center of the circle means
that the integral in (3.29) becomes only half of the value 1p of the first Fresnel
zone. This results in the following value for the integral in (3.29):

Rxnax .
A(0)e*TRE R =

1 R0+A/2 . 1 .
J 5 Rj‘ e27leRdR _ _7627TII€R0. (330)
0 0

2mik
Substituting this value in (3.29) gives
p = Aq exp2mik(r + Ro)]/(r + Ro). (3.31)

This is the expected formula for the wavefront at a distance r + Ry from
the point source. This simple example demonstrates the power of Huygens’
principle.

We now use Huygens’ principle with another choice of coordinates, which
directly yields Fresnel diffraction at an edge (Sect. 3.2.2). The surface element
dS is placed in an x-y plane normal to the line from the source Q to the point P
(Fig. 3.7). The distance r becomes
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Fig. 3.7. Calculation of wave amplitude at a point P behind an opaque edge.

22 4 2 1/2
r:(r§+x2+y2)1/2:7‘0<1+ T2y>
0

22 4 2
= 1 .. .32
To < + 27"8 + > ) (3 3 )
with a corresponding formula for R if rg is replaced by Ry. Substitution of
(3.32) into (3.29) results in (3.33); A(#) has been omitted because the integral
already converges for small values of = and y, for which A(9) = 1:

o = Aq exp[f;f](%o + Ry)] Jz: U:: exp (27rik:x2 T;;bio)
X exp <27riky2m> dady. (3.33)
The substitutions u = z (W) v and v =y (W) v give
oo = Aq e);}i)([f:ifrgs Ro)] jf: exp(iru?/2)du jE exp(imv?/2)dv

N AQ eXp[Zﬂ'i(’f’o + Ro)] 1
B i(rg + Ro) 2

where C'(u) and S(u) are the tabulated Fresnel integrals and z( replaces ug.
C(u) + iS(u) produces the Cornu spiral in the APD of Fig. 3.8a. The more
complicated shape of the APD as compared with Fig. 3.6 results only from the
different choice of coordinate system. The point of convergence is —0.5(1+i)
for the limit of integration u — —oo and 0.5(1+i) for u — 4o00. The total
amplitude is obtained by connecting the two points of convergence and is

[C(u) +iS(u)] X2 [Cv) +iS(w)]EX, (3.34)
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hence 1 + i. Because we have to consider the product of two integrations
in the = and y directions, the two quantities in square brackets in (3.34)
give (1 + i)? = 2i, and again we obtain the expected value ¥p of the wave
excitation at P at a distance ry + Ry from the source Q.

3.2.2 Fresnel Fringes

The last section has shown that the wave amplitude at a point of a wavefront
and the wave propagation can both be described by Huygens’ elementary
waves and Fresnel integrals. This formalism will now be applied to electron-
opaque obstacles. One important example is the appearance of Fresnel dif-
fraction fringes at opaque half-planes (Fig. 3.9).

At a distance xg from the shadow of a half-plane (Fig. 3.7), the intensity is
obtained by integration in the x direction from zg to +oc. In the y direction,
we again consider stripes of width dy from —oo to 400, and the integral in the
y direction has the value 1 + i, as before. The amplitude contribution from the
z direction is obtained by connecting the point of convergence 0.5 + 0.5 i for
To = u = 400 to the corresponding point u = —x0[2(ro+Ro)/AroRo]'/? on the
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Fig. 3.9. Numerous Fresnel fringes around a hole in a carbon foil obtained with a
highly coherent field-emission gun.

Cornu spiral. The coordinate w is the arc length along the Cornu spiral. At the
point (3) of the spiral farthest from the positive-convergence point, we obtain
a maximum of amplitude and intensity. In Fig. 3.8a,b, further corresponding
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points on the Cornu spiral and in the intensity distribution are numbered. In
all practical cases, g > Ry, a relatively accurate formula can be obtained for
the positions of the maxima wu,, or z, from the condition that the phase in
the integral of (3.34) will be 7u?/2 = 7(2n —5/4) for n = 1,2,... or, in other
words, that the tangent to the Cornu spiral is inclined at an angle of —45° to
the real axis. This condition results in

un, =+/(8n=5)/2; xp, =+/ARo(8n —5)/4. (3.35)

The intensity distribution of these Fresnel fringes in a plane at a distance
Ry below an edge can be imaged by defocusing the objective lens [3.26]. Obser-
vation of these Fresnel fringes is important for the recognition and correction
of astigmatism (Sect. 2.3.4). The number of Fresnel fringes visible is a measure
of the spatial coherence of the electron beam. Figure 3.9 shows many Fresnel
fringes around a hole in a supporting film illuminated with a field-emission
gun. The influence of the spherical aberration of the objective lens on the
intensity and position of Fresnel fringes has to be considered [3.27] for trans-
parent supporting films. The decrease of wave amplitude caused by scattering
and the phase shift due to the inner potential U; also have an effect [3.28, 3.29].
Fresnel fringes can likewise be used to characterize grain boundaries [3.30].

If the source has a finite size Aa, the specimen is irradiated with an angular
aperture oy = Aa/2rg, which causes blurring of the Fresnel diffraction pattern
proportional to 2a;Rg. The intensity distribution with such partially coherent
illumination is given by the convolution of the coherent distribution with
the geometric shadow distribution of the source at a distance Ry. Because
the distances between the diffraction maxima z,+1 — ,, (3.35) decrease with
increasing n, the diffraction maxima of high order disappear first, and only one
Fresnel maximum can be observed with a thermionic cathode when a larger
illumination aperture necessary for visual observation of the viewing screen
at high magnification is used. A small illumination aperture, use of an image
intensifier or CCD camera, and observation on a TV screen are necessary
to see more than one fringe. All of the maxima are blurred when the angular
aperture q; is very large, as in the case of incoherent illumination; the intensity
distribution is then the same as that of the purely geometric shadow of the
edge thrown by an extended source.

3.2.3 Fraunhofer Diffraction

Fresnel diffraction goes over into Fraunhofer diffraction if a plane incident
wave is used and if the diffraction pattern is observed at an infinite distance.
Alternatively, this pattern can be observed in the focal (diffraction) plane of
a lens (Fig. 3.10). A parallel beam inclined at a small angle 6 to the optical
axis converges to a point in this plane at a distance f@# from the optic axis.
No further phase shifts occur if the lens is aberration-free. The exit wave
amplitude after passing the specimen can be described by

W = oas(r) explivs(r)] exp(2mikz) = 1)s(r) exp(27ikz) (3.36)
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Fig. 3.10. Ray diagram

x|P Specimen for image formation by an
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} = Diffraction plane
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(r: radius vector in the specimen plane from the origin on the optic axis,
as(r) < 1: local decrease of amplitude (absorption), and ¢s(7): phase shift
caused by the specimen).

Furthermore, a phase shift ¢, has to be introduced that results from the
geometric path difference of the plane wavefront in the direction 6. Figure 3.11
shows that the two points O and P separated by a distance r correspond to
an optical path difference

Asg=up-r—u-r (3.37)

(up = Ak and u = Ak are unit vectors in the direction of the incident and
scattered waves, respectively). The phase difference is given by

2
0y = %Asg = —2r(k — ko) T = —27q - 7. (3.38)
Figure 3.11 shows that
|k — kol = |q| = 2ksing ~ % (3.39)

A diffraction grating with period A (lattice spacing) generates a diffraction
maximum at an angle sinf ~ 6 = \/A. This implies that ¢ in (3.37)—(3.39) is
equal to A~%; it is known as the spatial frequency by analogy with the relation
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Incident plane wave Fig. 3.11. Demonstration of the path-
length difference Asg caused by scattering
at two points O and P.

v = T ! between the temporal frequency and the period 7. From now on, we
shall use q as a coordinate in the diffraction plane.

The amplitude F(q) in the diffraction plane can be obtained by integration
over all of the surface elements dS = d?r of the specimen plane,

f?/)s r) exp(ipg)dS = f¢s ) exp(—2miq - r)d*r. (3.40)

This shows that F'(q) is the Fourier transform of (7).

3.2.4 Mathematics of Fourier Transforms

This section contains a short review of the mathematics of Fourier transforms,
which are important not only in the description of Fraunhofer diffraction and
electron diffraction at crystal lattices but also in the electron-optical the-
ory of image formation. For simplicity, we normally discuss one-dimensional
functions f(x). There is no difficulty in extending this to two- and three-
dimensional Fourier transforms (see the examples in Table 3.2).

Let f(z) be a real or complex function of the real variable 2. The Fourier
transform of f(z) is defined by the mathematical operation F':

F{f(2)} = f J(@)e > da, (3.41)

f(x) can be obtained from F(q) by the inverse Fourier transform F~1, which
has the opposite sign in the exponent:

FY{F(q)} = f F(q)et?™rdq. (3.42)
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The following relations can be obtained from the definition (3.41) of a Fourier
transform:
1) Linearity

F{af(z) 4+ bg(x)} = aF(q) + bG(q). (3.43)
2) Translation theorem

F{f(z—a)} = F(@)e "™ or F{F(q—q)} = f(z)er™0". (3.44)

3) Scale change

F{f(ax)} = —F (4) o PP (L)} =lalf(a). (3.45)
la] \a a
Table 3.2 contains concrete examples of Fourier transforms. Example 1la,
a rectangular function (the slit in a diffraction experiment), will be calculated
in detail as an example. Because of the Euler relation exp(27wigz) = cos(2mqx)
+ i sin(2mqx), the last sine term can be omitted in the integration of (3.41)
owing to the antisymmetry of this term:

+o0 ) +a/2 "
Fi(q)= [ fi(x)e*™"dx = [ cos(2rgz)dr =a sin(rqa) . (3.46)
— 00 —a/2 mTqga

If the width of the slit a tends to zero, a d-function results (the point
source in Example 1b). The width of the diffraction maximum in F(q) then
goes to infinity. This means that the diffraction amplitude F'(¢q) of a point
source is isotropic in all directions ¢. The Fourier transform of a J-function
at the position b relative to the origin (Example 1c) is obtained by using the
translation theorem (3.44).

Further examples are shown in Table 3.2 - a rectangular slit (2), a paral-
lelepiped (3), a circular diaphragm (4) and a sphere (5) - illustrating Fourier
transforms of functions in more than one dimension.

A Gaussian function (Example 6) is again a Gaussian function after a
Fourier transform but with the reciprocal half-width.

The Fourier transform F7(q) of a one-dimensional point lattice with N
points distance d apart shows principal maxima with spacing 1/d if the nu-
merator and denominator of F7(g) simultaneously become zero. There are
N — 1 zeros between these principal maxima, where only the numerator is
zero. The widths of the principal maxima decrease in proportion to 1/Nd,
and the amplitudes of the subsidiary maxima are further decreased. Example
7 becomes Example 11 for N — oc.

Convolution Theorem for Fourier Transforms. This theorem is of in-
terest for calculating Fourier transforms of a product or a convolution of two
functions each of whose Fourier transforms is known. We first introduce the
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Table 3.2. Examples of Fourier transforms.

65

Specimen function f(z)

Fourier Transform F{f(z)} = F(q)

1 a) One-dimensional slit

1 if|z] < a/2
ro={§ HEse

1 b) Point source (@ — 0)
one- two-dimensional
fHi(z) =6(x)  fi(r)=6(r)
Jéx)dz=1 [ [6(r)d*r=1

%

lc) fi(z) =é(z - b)

(=]
o
x

sinma
Fl (q) = aqu

F1(q) =1 (isotropic scattering)

1

—_— -
0 q

Fi(q) = exp(2wibg);

‘
N Re. --\,lm
A A}
\ A \

[Fi(q)] =1

2) Transparent rectangle fa(z,y)

7

_ ;sinmagg sin bq
Fy(q) = absz_wb#

%
L e
> - D -
@z

<

sin wagqz sin whgy sinwcg,

3) Parallelepiped f3(z,y, 2) F3(q) = abc R TR L
<
b
a
4) Circular hole
Fu(g) = sz'hz(—izqRR—) (Airy distribution)

1 ifjr|<R
f4(r):{ 0 ;fH§R

! 0.61
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Table 3.2. (continued)

Specimen function f(z) Fourier transform F{f(z)} = F(q)
5) Sphere of radius R: f5(r) Fs(q) = %R’?W’;ﬂ, u = 2nqR
6) Gaussian function
fo(x) = exp[~(2/a)’] Fy(q) = V/maexp[—(mqa)’]
he=vinZa i th: n2ag
0 x 0 q

7) One-dimensional point lattice

N .
3 Nd
fa(z) =h§1 5(z — zn) Fr(g) = %—
— 1/d
Ll WLLALLLL
0 x [} q

8) N slits of width a
fs(z) = fi(2) ® fr(2) Fy(g) = Fi(q) - Fr(q) = oSii7Tag sinmgNd

Taq  sinmwqgd
H D E]‘ { _Fylq}
[} x W L”@’ Rt

9) Infinite wave

fo(z) = cos(2rz/A) Fo(q) = %[5 (q + 711) +4 (q — 71{)]
NN\ A8 N ?

HAVARVARVARVAR A0 WA g

10) Wave packet of width a

fro(z) = fi(z) - folz) Fio(q) = Fi(q) @ Fa(q)

PSS A fe

e A 0 VA g
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Table 3.2 (continued)

Specimen function f(x) Fourier transform F{f(z)} = F(q)
11) Infinite point row N — oo
+oo +o0
fn= Y bz-nd) Fu@= 3 6(a-13)
n=—oo n=—0ocQ
e 1d

L

-6,-039,-6; 0 g, 9, a; G,

12) Infinite periodic function

fiz(x) = fulz) ® fi(z) Fii(q) = Fi2{q) - F1(q) = +ZO:° Fi(gn)6(q — qn)

n=-—oo

concept of convolution of two functions f(z) and g(z). Let us consider, for
example, measurements of the intensity distribution f(z) of a photographic
emulsion with a densitometer. Let g(z) be the slit function f;(x) introduced
in Table 3.2 describing the transmission of a slit. The slit moves across the
function f(x), and at a position x all values of the function f(z) between
the limits # — a/2 and = + a/2 will be integrated. The resulting intensity
curve is a convolution of the functions f(z) and g(z), which can be described
mathematically by

c@) = | Feote — Ot = f(a) © g(x). (3.47

The symbol ® stands for a convolution. If F(¢) and G(q) are the Fourier
transforms of f(z) and g(z), respectively, then the convolution theorem states
that

F{f®g}=F(q) - G(g), (3.48)
F{f g} = F(q) ® G(q). (3.49)

The proof of the first relation passes through the stages of reversal of the
order of integration, use of the translation theorem (3.44), and withdrawal of
G from the integral because it no longer depends on &:

— 00

+o00 | +o00o -
F{f(@)©g()} = lf f<s>g(x—s>d5] o2 g,
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+oo | +oo

= | ] glw—9eT Mz f(€)de
—+oo 2 .
= | Gla)e™ M f(€)de = F(q) - Gla). (3.50)

Some applications of this convolution theorem will now be discussed in
detail. The diffraction grating consisting of NV slits with spacing a (Example 8)
can be described as the convolution of a discrete point function f7(x) that
coincides with the centers of the slits with the function fi(z) of a single slit.
By using (3.48), the Fourier transform Fg(q) is equal to the product of the
Fourier transforms Fj(q) of the single slit and F7(q) of the lattice function. The
slit function Fj(q) therefore acts as an envelope, modulating the amplitudes
of the principal maxima.

Examples 9 and 10 contain an application of (3.49) to a wave of infinite
extent, as already discussed in Sect. 3.1.2 and illustrated in Fig. 3.1b. The
Fourier transform Fy(q) of the infinite sine wave fg(x) has nonzero values
only for ¢ = £1/A. A finite wave can be described by the product fio(z) =
fi(x) - fo(z), which is zero for < —a/2 and x > a/2. The Fourier transform
is obtained from (3.49) by a convolution of the Fourier transforms of the
individual functions: Fi(¢) = Fy(q) ® F1(g). This means that the d-functions
at the positions ¢ = £1/4 will be broadened by the function Fi(q). If the
sine wave does not decrease abruptly to zero at x = +a/2 but is multiplied
by a Gaussian function fg(x), the example shown schematically in Fig. 3.1b
is obtained.

An infinite row of points (Example 11), with spacings d, has a Fourier
transform consisting of an infinite number of §-functions at the positions ¢, = n/d
(n integer), whereas only a first-order maximum appears for the function fo(z).
Each d-function at g,, corresponds to a function exp(27ig,z) (Example 1c). An
infinite periodic function fp(x) with the period d (Example 12) can be described
by a convolution of the infinite point row (Example 11) with a function f(z)
defined in the interval —d/2 < & < +d/2. The Fourier transform of f(x) is
therefore the envelope of the maxima of §(¢ — ¢,,). At the positions ¢, the
Fourier amplitudes of the periodic function fp become

1+°°
= f f(x) exp(—27ig,z)dx. (3.51)

“+oo
The inverse Fourier transform of Fp(z) = > F,0(q — g») gives the description
— 00

of a periodic function in terms of a sum of sine and cosine terms (Fourier sum):,
+oo .
fr (m) = Z Fn eXp(QWIan)
— 00

+oo
= % + > [an cos(2mgnx) + by, sin(2mwg,x)], (3.52)
n=1
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where the coefficients a,, and b,, can be calculated from

2 +d/2 n 2 +d/2 n
{/2 f(x)cos (271’3.%‘) dz; b, {/2 f(z)sin (QWEJ:) dz. (3.53)

If this formula is applied to a periodic rectangular function, a diffraction
grating of slit width a = d/2, for example, all of the b,, become zero because
f(x) is a symmetric function and

1 2 . nm
ap ==, a,=—sin—,
2 ™ 2
0 for n even
which means a,, = (3.54)
71.—271(—1)(”’1)/2 for nodd .

Figure 3.12 shows how the rectangular function can be approximated suc-
cessively by an increasing number of cosine functions of the Fourier sum (3.52)
with the coefficients (3.54) up to the fifth order. The last curve in Fig. 3.12
can be observed experimentally as the intensity distribution of a grid in the
image plane if all diffraction maxima with n > 5 are removed by a diaphragm
in the focal plane of the objective. A pure cosine wave will be observed when

df ——>  qy=1/d;
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only the first maximum is transmitted by the diaphragm (the first curve in
Fig. 3.12). The image will then contain only the information that there is a
periodicity d in the specimen but no information about the detailed form of
the periodic function.

Fourier transforms of electron-microscope images can be obtained by
means of an optical diffractometer (Sect. 6.3.6) or by digital computation us-
ing a fast Fourier transform (FFT) algorithm. In the latter case, the Fourier
transform or its inverse will be calculated using a limited number of discrete
image points. The intensity distribution o(x,y) in the image can be obtained
by digital recording over a square of side length L. The smallest spatial fre-
quency will be ¢ = 1/L. All higher spatial frequencies are multiples of this
frequency: spectral points with the coordinates ¢z, = n/L and ¢y, = m/L
(m, n integer). The Fourier transform S(q) of o(x,y) inside the square of area
L? can be calculated from the sum

5(4z,qy) = F{o(z, Z/)}
szf:v Z - Sin[mL(qyn — gz)] sin[TL(qym — qy)] (3.55)

—N m=— ﬂ—L(an - qz) WL(Qym - Qy)
with the coefficients
1 N—-1N-1 )
Frm = Z Z o (x4, yi) exp|—27i(qen®i + qym¥;))- (3.56)
1=0 j=

If 0 denotes the resolution of the electron-microscope image, then ¢4, =
1/6 = N/L will be the highest spatial frequency when the number of sampling
points is N? (sampling theorem of Shannon). The area of the densitometer slit
or the electron detector should be of the order of 62 to ensure good averaging
and to reduce the noise.

3.3 Wave-Optical Formulation of Imaging

3.3.1 Wave Aberration of an Electron Lens

The spherical aberration can be treated in wave optics in the following manner.
An object point P emits a spherical, scattered wave with concentric wavefronts
of equal phase (Fig. 2.10). An ideal lens would introduce the phase shifts
necessary to create a spherical wave beyond the lens, converging onto the
image point P’. The rays of geometric optics are trajectories orthogonal to
the wavefronts, and the wave amplitudes scattered into different angles 6
of the cone with the aperture a, are summed in the image point with equal
phase. A radial decrease is observed in the intensity distribution of the blurred
image point only because of the finite aperture (Airy disc, see Fig. 3.16Db).
The spherical aberration reduces the focal length for rays at larger 6. Because
the rays and wavefronts are orthogonal, the wavefronts beyond a lens with
spherical aberration are more strongly curved in the outer zones of the lens;
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R=a® M=b/a a=f @'=86/M
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Fig. 3.13. Ray diagram for evaluating the angular deviations € caused by (a) spher-
ical aberration, (b) change Aa of specimen position, and (c) change Af of focal
length.

there is a difference As of optical path relative to the spherical wavefronts
of an ideal lens (Fig. 2.10). The wave amplitudes are therefore not all in
phase at the Gaussian image point. The smallest diameter of the intensity
distribution, similar to an Airy disc, will be observed in front of the Gaussian
image plane (Fig. 3.16¢). A phase shift caused by defocusing of the lens also
has to be considered; this can be generated either by a displacement Aa of
the specimen or by a change Af of focal length.

Figure 3.13 will be used to calculate the dependence of the phase shift
W(0) = 2nrAs/\, which is known as the wave aberration, on the scattering
angle 0. First, however, a comment on its sign should be added, because
different conventions are found in the literature. By using exp(2wikz) instead
of exp(—2mwikz) for a plane wave in Sect. 3.1.1, the convention is made that the
phase increases with increasing z, that is, the direction of wave propagation.
Because the optical path length along a trajectory in Fig. 2.10 is decreased
by As, the phase shift W (0) is also decreased. This phase shift therefore has
to be represented by a phase factor exp[-ilW ()] with a negative sign in the
exponent (see also comments in [3.31, 3.32]).

A ray that leaves the specimen point P at a scattering angle 6 reaches
the lens at a distance R ~ af (0 ~ a few tens of mrad) from the optic axis
(Fig. 3.13a). The ray intersects the optic axis in the Gaussian image plane at
P’ if there is no spherical aberration and at P”, a distance Ar = Cs#>M from
P’ in this plane, if the spherical aberration does not vanish; see (2.57). This
causes a small angular deviation,

€ =~ Ar/b = C.0°M/b. (3.57)
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By using the relation § = R/a, M = b/a, and a ~ f, (3.57) becomes
es = CR®/ £ (3.58)

We now assume that there is no spherical aberration and that the specimen
distance a is increased by Aa (Fig. 3.13b). The focal length f of the lens is
unchanged. The variation Ab of the image distance can be calculated from
the well-known lens equation

1 1 1 1 Aa 1 Ab
- = =—|1-——+4... —(1—-——+...]. (3
f a—l—Aaer—&-Ab a< a * >+b< b * ) (3:59)

Solving for Ab and using 1/f = 1/a + 1/b, we obtain
Ab = —Aab*/a?. (3.60)

The corresponding angular deviation is obtained from
€ = |AbIO' /b= Aa R/ f? (3.61)

by using 6’ ~ R/b.

A third case (Fig. 3.13c), where the focal length is changed to f+ Af, can
be treated in a similar way. The lens equation 1/(f+ Af) = 1/a+1/(b+ Ab)
gives Ab= Afb?/f? and so

e = —|Ab|0' /b= —Af R/ f?. (3.62)

Adding the three angular deviations of the geometric optical trajectories,
we obtain the total angular deviation

€=¢s+ea+ et = Cs(R¥/fY) — (Af — Aa)R/ f2. (3.63)

Figure 3.14 shows an enlargement of part of the lens between two trajec-
tories and their orthogonal wavefronts, which reach the lens at distances R
and R + dR from the optic axis. The angular deviation causes an optical path
difference ds = edR between the two trajectories. These path differences ds
have to be summed (integrated) to get the total path difference As or the
phase shift W (0) relative to the optic axis:

Lens
\_ds:st

Fig. 3.14. Part of the outer zone
P’ of alens at a distance R from the
optic axis showing the relation be-
tween the angular deviation € and
the optical path difference ds =

l
l
|
P R ;
yLens axis edR.
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2w o B o B
9 = 7A = — = —
W (0) As = {ds 5 {edR

2r [1 , RY 1 R?

< |z (‘;ng(Afan)F : (3.64)
With R/f ~ 6 and the defocusing Az = Af — Aa, the so-called Scherzer
formula [3.33] is obtained,

W (0) = %(0394 — 2A26%), (3.65)
or by introducing the spatial frequency ¢ = 6/ (3.39),
W(q) = g(CS)\?’q‘l —2A202). (3.66)

In more accurate calculations, the change of the positions of the principal
planes of the lens and the variation of Cs when the lens excitation is changed
also have to be considered. Axial astigmatism (Sect. 2.3.3) can be included in
(3.65) by introducing an additional term

Wa = o5 Afasin2(x = xo)l, (3.67)

which depends on an azimuthal angle x.

The relation (3.65) is important for the discussion of phase contrast and
for the study, in wave-optical terms, of the formation of a small electron
probe for scanning transmission electron microscopy (STEM). Because the
wave aberration depends on the two parameters Cy and A, it is convenient to
discuss the wave aberration in terms of reduced coordinates [3.34, 3.35],

0 =0(Cs/NY* and  Az* = Az (C\)~Y2, (3.68)
This results in the reduced wave aberration

W(e*) B 9*4 9*2

2r 4 2

Figure 3.15 shows W (6*) for different values of reduced defocus Az* = /n
(n an integer), for which the minima of W (0*) are —nm/2.

Defocusing with positive Az is called underfocusing and defocusing with
negative Az is called overfocusing. Scattered electron waves are shifted with
a phase 7/2 relative to the unscattered wave (Sect. 6.2.1). For this reason,
a reduced defocusing Az* = 1 (Scherzer focus) is advantageous for phase
contrast because W (#) has the value —7/2 over a relatively broad range of

scattering angles or spatial frequencies in the vicinity of the minimum for
Az* =1 in Fig. 3.15.

Az, (3.69)

3.3.2 Wave-Optical Theory of Imaging

The rays from an object point P are reunited by the lens at the image point P’
(Fig. 3.10), a distance @’ = —Mz from the optic axis, where x is the off-axis
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Fig. 3.15. Wave aberration W (0*) as a function of the reduced scattering angle
0" for various reduced focusing distances Az*. The upper scale shows the values of
A = )\/0 for the special case £ = 100 keV and Cs = 2 mm.

distance of P (M = b/a: magnification). Rays with equal scattering angles
from different points of the specimen intersect in the focal plane of the lens.
It has already been shown in Sect. 3.2.3 that the wave-amplitude F(q) in
this plane is obtained from the exit wave-amplitude distribution () behind
the specimen by a Fourier transform. The wave amplitudes from different
points of this g plane have to be summed at the image point P/, taking into
account differences of the optical path. Just as we defined the geometrical
path difference Asg in Sect. 3.2.3, we now formulate the path difference As,
from Fig. 3.10 using r = [0, §' = z/f,

As'g =rf = +Aqx = —As, or As'g =+\g T, (3.70)

for the two-dimensional q plane. This corresponds to a phase shift ¢, = 27q-r.
As in (3.40), the wave amplitude 1, at the image point P’ is obtained by
integrating over all elements of area d2q of the focal plane

Un(r) = - [ [ Fla)e?™ 7 dPq = i (r). (371)

Thus, 1y, is obtained as the inverse Fourier transform of F'(q). The image
intensity I = 11} decreases as M ~2 because the electrons are spread over
an area M? times as large as the corresponding specimen area.
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For aberration-free imaging, there will be no further phase shift, apart
from ¢y, and the integration in (3.71) will be taken over the whole range of
spatial frequencies q that appear in the specimen. In practice, a maximum
scattering angle 0,,.x = «,, (objective aperture) corresponding to a maximum
spatial frequency gmax is used. This limitation on spatial frequencies by an
objective diaphragm can be expressed in terms of a multiplicative masking
function M (q), which would have the values M (q) = 1 for ¢ = |q| < gmax and
M(q) = 0 for |g| > gmax in the normal bright-field mode. Because the wave
aberration W (q) in (3.66) representing the spherical aberration and defocusing
depends only on ¢, the action of this contribution can be represented by
a multiplication of the amplitudes at the focal plane by the phase factor
exp[-iW (q)]. Equation (3.71) therefore has to be modified to

Un(r') = 22 [ [ Flg) WO M (g)] *am g, (3.72)
H(q)

Fig. 3.16. (a) The limiting rays M and M’, which produce an image of the point P at
the image point P{ in the Gaussian image plane G. (b) and (c) show the enlarged
intensity distribution near P{, and lines of equal intensity for an aberration-free
lens (b) and for a lens with spherical aberration (c). The curve at the bottom of
(b) represents the cross section I(r) through the Gaussian focus (Airy disc). The
horizontal axis corresponds to the distance to the optical axis and the vertical axis
to the defocus.
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H(q) is known as the pupil function. The convolution theorem (3.49) can be
applied to (3.72) as

Yn(r') = 2 (r) © h(r) = 2 [ [(rh(r — r2)dPra, (3.73)

where h(r) = F~1{H(q)} is the inverse Fourier transform of the pupil function
H(q). This means that sharp image points will not be obtained. Instead, each
image point will be blurred (convolved) with the point-spread function h(r).
The image of a point source that scatters in all scattering angles with uniform
amplitude [F(¢q) = const and ¢s(r) = §(0)] would be the function h(r)/M.

We consider now the case W(g) = 0 (no spherical aberration or defocus-
ing). The image amplitude of a point source can be calculated as the Fourier
transform of M(q) (see Example 4 in Table 3.2),

Jl(l‘)

T

Ym(r) < h(r) < with 2 = 2771-0%7". (3.74)

This amplitude distribution, which corresponds to the intensity distrib-
ution I(x) o< [J1(x)/z]?, of the blurring function of a point source with an
aberration-free but aperture-limited objective lens is called the Airy distrib-
ution (Fig. 3.16b). The intensity distribution for Az # 0 is symmetrical in
Az and is plotted in Fig. 3.16b as lines of equal intensity. The same situation
is shown in Fig. 3.16¢ with spherical aberration present. The distribution is
asymmetric in Az; the smallest error disc occurs at underfocus, in agreement
with the geometrical-optical construction of Fig. 2.10. The dashed line is the
caustic of geometrical optics. Further discussion of the wave-optical imaging
theory will be found in Sect. 6.2.



4

Elements of a Transmission Electron
Microscope

Not only does the electron gun of an electron microscope emit electrons into
the vacuum and accelerate them between cathode and anode, but it is also
required to produce an electron beam of high brightness and high temporal
and spatial coherence. The conventional thermionic emission from a tungsten
wire is limited in temporal coherence by an energy spread of the emitted
electrons of the order of a few electron volts and in spatial coherence by the gun
brightness. Schottky-emission and field-emission guns are newer alternatives
for which the energy spread is less and the gun brightness higher.

The condenser-lens system of the microscope controls the specimen il-
lumination, which ranges from uniform illumination of a large area at low
magnification, through a stronger focusing for high magnification, to the pro-
duction of an electron probe of the order of a few nanometers or even less
than a nanometer in diameter for scanning transmission electron microscopy
or for microanalytical methods.

The useful specimen thickness depends on the operation mode used and the
information desired. Specimen manipulation methods inside the microscope
are of increasing interest but are restricted by the size of the specimen and
by the free space inside the polepiece system of the objective lens.

The different imaging modes of a TEM can be described by ray diagrams,
as in light optics, which can also be used to evaluate the depth of focus or to
establish a theorem of reciprocity between conventional and scanning trans-
mission electron microscopy. Electron prism spectrometers or imaging energy
filters allow electron energy-loss spectra (EELS) to be recorded and various
operating modes of electron spectroscopic imaging (EST) and diffraction (ESD)
to be used.

Observation of the image on a fluorescent screen and image recording
on photographic emulsions can be replaced by techniques that allow digital,
parallel, and quantitative recording of the image intensity.
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4.1 Electron Guns
4.1.1 Physics of Electron Emission

Thermionic Emission. The conduction electrons in metals or compounds
have to overcome the work function ¢, if they are to be emitted from the
cathode into the vacuum. Figure 4.1 shows the dependence of potential energy
on a coordinate z normal to the surface. The potential energy V(z) of an
electron in front of a conducting surface at a distance z larger than the atomic
diameter can be calculated by considering the effect of a mirror charge with
opposite sign behind the surface; with an electric field E, the potential energy

V = —¢|E|z is superposed on that of the mirror charge, giving
e 1
V(z) = ¢y — — —e|Elz. 4.1
(2) = v — 1o s — €lBl: (1)

Increasing the cathode temperature leads to a broadening of the Fermi
distribution f(F) at the Fermi level Ey, and for high temperatures, electrons
in the tail of the Fermi distribution acquire enough kinetic energy to overcome
the work function ¢,. The current density j. (A m~2) of the cathode emission
can be estimated from Richardson’s law [4.1],

Jo = AT? exp(—¢y JETL), (4.2)

where k = 1.38 x 10723 J K~! is Boltzmann’s constant, 7, is the cathode
temperature, and A ~ 12 x 10> A K2 m~2 is a constant that depends on the
cathode material.

Most metals melt before they reach a sufficiently high temperature for
thermionic emission. An exception is tungsten, which is widely used at a work-
ing temperature T¢. of 2500-3000 K (melting point T, = 3650 K). Lanthanum

0— ———1

SF 7777777

Metal

Fig. 4.1. Potential energy V (z) of electrons at the metal-vacuum boundary. Elec-
trons with energies beyond the Fermi energy Er have to overcome the barriers ¢y
and ¢w — Agy for thermionic or Schottky emission or can tunnel through the barrier
of width w for field emission.



Table 4.1. Parameters of thermionic,

E =100 keV.

4.1 Electron Guns

Schottky, and field-emission cathodes at

Characteristic parameters:
Cathode temperature T

Work function ¢y

Emission current density jc

Gun brightness 3 at £ = 100 keV
Energy spread AE

Tip radius r of pointed cathodes
Diameter d of source

Operating vacuum p

Field strength |E| at cathode

Thermionic cathodes (field at cathode reduced by Wehnelt electrode)

Tungsten hairpin

T. = 2500-3000 K

¢w =4.5eV

je =~ (1 —3) x 10* A/m?

8= (1-5)x10° A/m? sr

AE =1.5-3¢eV

d = 20-50 pm

p<107% Pa (1 Pa= 107" bar)
|E| ~ 10° V/m

Pointed LaBg rod

T. = 1400-2000 K

¢w = 2.7 eV

Jo =~ (2 —5) x 10° A/m?

B =(1-5)x10"° A/m? sr
AE =1-2¢eV

d = 10-20 pum

p<107* Pa

Point-source cathodes

Schottky emission

(Thermal emission from ZrO/W tip
at 1800 K with high electric field)
T. = 1800 K

bw = 2.7 eV

Je =5 x 10% A/m?

AE = 0.3-0.7 eV
r = 0.5-1 pm

d~ 15 nm
p<107° Pa

|B| ~2 x 10® V/m

Field emission

(Tunneling from cold or heated
tungsten tips)

T. = 300 K or ~ 1500 K

¢w = 4.5 eV

je ~10° =10 A/m?

B =2x10"—2x 10" A/m? sr
AE = 0.2-0.7 eV

r < 0.1 ym

d >~ 2.5 nm

p<107% Pa

|E| ~5 % 10° V/m

hexaboride (LaBg) cathodes with T, = 1400-2000 K are also employed be-
cause their work function is lower (Table 4.1). The tungsten metal evaporates
continuously during operation, limiting the lifetime of the filament, which de-
creases from ~ 200 h to 5 h if T¢. increases from 2500 K to 2900 K [4.2]. Also,
CeBg cathodes are now offered commercially.

Schottky Emission. When the field strength E at the cathode is increased,
the overlap of potential energies in (4.1) results in a decrease A¢,, of the
work function (Schottky effect). At the maximum of (4.1), the effective work
function is lowered to [4.1]

c|E|
dmey”

¢W,eff = Oy — A¢w = ¢w —€ (43)
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Fig. 4.2. Schottky plot of emission current from a ZrO/W tip at different tip
temperatures [4.2].

This decrease can be neglected in normal thermionic cathodes. When using
a Schottky cathode with a radius » < 1 um at the tip and a field strength 108
V/m, the decrease is A¢y, ~ 0.4 eV. In contrast to field emission, discussed
below, the electrons still have to overcome the now lowered work function
Ow.et by their kinetic energy, which is furnished by heating the cathode. This
can be confirmed experimentally by a Schottky plot (Fig. 4.2). Substitution
of (4.3) in (4.2) shows that a semilogarithmic plot of the emission current
log I versus the square root of the electric field strength |E| results in a
straight line when the temperature of the tip is constant and |E| is increased
by increasing the extraction voltage [4.3]. As in a thermionic cathode, the
emission increases with increasing temperature of the tip. Beyond |E| = 4 x
108 V/m, the stronger increase of emission indicates the onset of field emission;
the latter becomes independent of cathode temperature at higher |E| (4.4)
and a Fowler-Nordheim plot of log I versus 1/|E| then results in a straight
line.

Field Emission. The width b of the potential barrier at the metal-vacuum
boundary decreases with increasing E; for |E| > 10° V. m~!, using a tip radius
r < 0.1 pm, the width b becomes less than 10 nm (Fig. 4.1) and electrons at
the Fermi level can penetrate the potential barrier by the quantum-mechanical
tunneling effect. This means that the electron waves near the Fermi energy are
reflected at the potential barrier but penetrate with an exponential decrease
of their amplitude 1 into the barrier. When the width b of the barrier is
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small, the amplitude at the vacuum side of the barrier is still appreciable and
the probability of tunneling across the barrier is proportional to ¥*. The
emitted electrons do not need to overcome the potential barrier and it is not
necessary to heat the cathode, whereas this is essential for thermionic and
Schottky emissions. If a field-emission source is heated, it is mainly to prevent
the adsorption of gas molecules.

The current density of the field emission can be estimated from the Fowler—
Nordheim formula (see also [4.4])

) I{; E2 k/’ 3/2
j= 1B exp (— TZ}T ) (4.4)

Pw
The constants ky and ko depend only weakly on |E| and ¢y,.

4.1.2 Energy Spread

The tail of the Fermi distribution f(FE) = {1 + exp[(FE — Er)/kT.]} !, which
can overcome the work function ¢, results for £ > FEp in a Maxwell-
Boltzmann distribution of the exit momenta p or energies E = p?/2m,

f(E) x exp(—E/kT). (4.5)

Electrons are emitted in all directions within the half-space; the electron mo-
tion is characterized by the tangential (t) and normal (n) components of p,
so that (4.5) has to be multiplied by the volume element (density of states)
27p2dp of the momentum space to get the number of electrons with momenta
between p and p + dp or energies between E = (p? + p2)/2m and E + dE.
This yields the normalized total energy distribution (Fig. 4.3)

N(E)dE = (ki)Z exp(—E/kT.)dE, (4.6)

with a most probable energy F,, = kT,

a mean energy (E) = 2kT,, (4.7)
and a half-width AE = 2.45kT..
1Ep
N(E) ‘(E)
AE =245KkT,

Fig. 4.3. Maxwellian distribution

of electron energies emitted from a

. thermionic cathode ((E): mean en-

0 1 2 3 4 5 ergy, F,: most probable energy, AE:
E/kTe energy half-width).
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Thus, for a cathode temperature T, of 2500 K, the half-width AE will
be 0.5 eV. This energy spread is superposed on the accelerating energy E =
eU. This theoretical value will occur only when the cathode is operated in
the saturation mode with low current density. In the normal operating mode
with a triode gun (Sect. 4.1.4), an anomalous energy spread is observed (the
Boersch effect [4.5]), with the result that AE ~ 1-2 eV and even worse. This
can be explained by Coulomb interactions of the electrons in the crossover
[4.6, 4.7, 4.8, 4.9]. The energy spread of a thermionic cathode increases with
increasing emission current and depends on the shape of the Wehnelt electrode
[4.10]. The energy spread of Schottky and field-emission guns is of the order
of AE = 0.2-0.7 eV; for the dependence on tip orientation and temperature,
see [4.11].

4.1.3 Gun Brightness

The components p; of the initial exit momenta tangential to the exit surface
result in an angular spread of the electron beam and limit the value of the
gun brightness 3. This quantity is defined as the current density j = AI/AS
per solid angle Af2 = ma?, where a denotes the half-aperture of the cone of
electrons that pass through the surface element AS,
Al g

p= ASAR  wa?’

The maximum possible value By, for a thermionic cathode can be estimated
from the following simplified model (Fig. 4.4) (see [4.12, 4.13] for details). The
components p; and py, are each described by a Maxwell-Boltzmann distribu-
tion (4.5) with mean-square values

(p?) = (}) = 2mokT... (4.9)

The electron acceleration contributes an additional kinetic energy F = eU so
that, in all, using (2.11), we find

(p?) = 2mokT. + 2moE(1 + E/2E)). (4.10)

(4.8)

The angular aperture « of a virtual electron source behind the cathode surface
can be obtained from the vector sum of p, and p, (Fig. 4.4): a = p/pn or
(a?) = (p?)/(p?). Substituting (4.9) and (4.10) into (4.8) gives

Je E _ JcE

Bimax = T L kT, (L+ E/2Ep) | = kT,
This formula is valid even for nonuniform fields in front of the cathode.

Numerical values of the gun brightness are listed in Table 4.1. With
thermionic cathodes, the maximum value S, can be attained by using op-
timum operating conditions (Sect. 4.1.4). Otherwise, lower values, which also
depend on the Wehnelt shape, are found, ranging from 0.1 to 0.5 Bpax- The
angular spread is also increased by the Coulomb interactions in the crossover
(the lateral Boersch effect), again decreasing f3.

(4.11)
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Fig. 4.4. Evaluation of the angular spread « of electrons emitted; with a transverse
exit momentum pt and a uniform electric field in front of the cathode, the trajectories
are parabolic.

This axial gun brightness 3 (that is, the brightness for points on the axis of
an electron-optical column) remains constant for all points on the axis, from
the anode to the final image. This invariance of axial gun brightness along
the optic axis will now be demonstrated by considering an aberration-free
lens with a diaphragm in front of it, though the result is true for real lenses
with aberrations. Lenses and diaphragms are typical elements of any electron-
optical system. We assume that an intermediate image of the source is formed
in the plane indicated by the suffix 1 (Fig. 4.5). The electron current density in
this intermediate image may have a Gaussian distribution (4.14). We consider
only the center of this distribution because we are interested only in the axial
brightness. A fraction Al of the total current passes through the area AS;
with an angular aperture o corresponding to a solid angle A2 = wa?. The
gun brightness in this plane is

AL AL
n ASlAgl - AS{/TOZ%.

The diaphragm in front of the lens cuts off a fraction of the current Al;, and
only a fraction

b1 (4.12)

7ra2

_ap T 1
AIQ AII WO[% (4. 3)
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Fig. 4.5. Demonstration of the conservation of gun brightness on the axis of an
electron-optical system in the presence of apertures and lenses.

will pass the diaphragm. This current is concentrated in an image area ASy =
AS1M?, where M = b/a is the magnification, which can be smaller than unity
if the lens is demagnifying. The aperture is decreased to as = /M because
tan @« ~ o = R/a and as ~ R/b so that as/a = a/b = 1/M. The gun
brightness in the image plane is G2 = Aly/ASyAf2y. Substituting for the
quantities with the suffix 2 gives 31 = (2, which demonstrates the invariance
of 3 for this special case.

The invariance of § means that high values of the current density j at the
specimen can be obtained only by using large apertures of the convergent elec-
tron probe or beam. If it is essential to use very small apertures, for Lorentz
microscopy (Sect. 6.8) and small-angle electron diffraction (Sect. 8.1.5), for
example, correspondingly low values of j must be expected. The gun bright-
ness is therefore an important characteristic of an electron gun. The need
for high gun brightness has stimulated the development of LaBg thermionic
cathodes and Schottky and field-emission guns.

4.1.4 Thermionic Electron Guns

The most widely used thermionic cathodes consist of a tungsten wire 0.1-0.2
mm in diameter bent like a hairpin and soldered on contacts. The wire is
directly heated by a current of a few amperes.
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LaBg cathodes consist of small, pointed crystals [4.14, 4.15, 4.16, 4.17,
4.18]. They require indirect heating because their electrical resistance is too
high for direct-current heating. The heating power can be decreased by sup-
porting a small crystal between carbon rods or fibers or binding it to re-
fractory metals (rhenium or tantalum) that have a low rate of reaction with
LaBg. These cathodes need a better vacuum than tungsten cathodes to re-
duce the damage caused by positive-ion bombardment. They provide a higher
gun brightness, and the value of the energy spread is lower (Table 4.1). The
emission current is greatest for (100)-oriented tips, ten times higher than for
the (510) orientation [4.19].

A thermionic electron gun consists of three electrodes (triode structure):

1. the heated filament, which forms the cathode, at the potential &¢ = —U;

2. the Wehnelt electrode, at a potential @w some hundreds of volts more
negative than the cathode; and

3. the grounded anode (@5 = 0).

The electron optics of a triode electron gun is reviewed in [4.21]. Figure 2.1
shows the equipotentials @ = const in a cross section through a triode gun
and Fig. 4.6 those near the cathode tip. In Fig. 4.6a, the negative bias of the
Wehnelt electrode is not great enough to decrease |E| at the cathode surface.

e

§=0 45 9 18 27 3B LV Fig. 4.6. Equipotentials ¢ =
const in front of the cathode
tip for (from a to c) increasing
negative bias —Uw of the
Wehnelt electrode; electron
trajectories are shown with
an exit energy of 0.3 eV and
various angles of emission
$-0 45 9 18 27 36 45 V [4.20].
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The zero equipotential intersects the tip around a circle. All of the electrons
emitted from a large cathode area (nonshaded) are accelerated. Beyond the
circle, the electric field strength is of opposite sign, and no electrons can leave
the shaded area. In Fig. 4.6b, the negative bias is further increased and the
area of emission is thus reduced. In Fig. 4.6¢, the zero equipotential reaches
the tip of the cathode. No electrons will leave the cathode if the Wehnelt bias
is increased further.

Figure 4.6 also shows some electron trajectories, with an initial exit ener-
gy of 0.3 eV and different angles of emission. In Fig. 4.6b, the electrons en-
ter a more or less uniform electric field, which exerts small additive radial
force components on the electron trajectories; the cross section of the electron
beam passes through a minimum, known as the crossover, between the cath-
ode and the anode. This crossover acts as an effective electron source for the
electron optical system of the microscope. Large radial components of veloc-
ity (momentum) are produced near the zero equipotentials in Fig. 4.6a. The
corresponding electrons cross the axis and result in a hollow-beam cross sec-
tion. Radial components are also produced in Fig. 4.6¢ near the cutoff bias.
No further decrease of the crossover is observed, but the emission current
falls. Figure 4.7 shows enlarged images of the crossover and the transition
from hollow beam to optimum cross section as the gun filament current is
increased in an autobiased gun discussed below. A lower energy spread due to
the Boersch effect can be observed at moderate underheating corresponding
to the crossover profile of Fig. 4.7b.

The minimum diameter of the crossover is limited not only by the lens-
like action of the electric field in front of the cathode but also by the radial
components of the electron exit momenta. The Maxwellian distribution of
exit velocities gives the radial current-density distribution in the crossover an
approximately Gaussian shape:

j(r) = joexp[—(r?/rg)]- (4.14)
In practice, the Wehnelt electrode is biased not by a separate voltage
supply but by the voltage drop Uw = I.Rw across the resistor Ry in the

Fig. 4.7. Enlarged images of the crossover of an autobiased tungsten-hairpin cath-
ode. From (a) to (c), the heating current of the gun is increased.
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high-tension supply line (Fig. 4.8) produced by the emission current I.. The
resistance Ry can be altered by means of a mechanical potentiometer or a vac-
uum diode, the filament heating of which is varied. It will now be shown that
this system is autobiasing. When Uyy is generated by an independent voltage
supply, the dependence of the emission current I, on Uy shown in Fig. 4.9a

%35 @

2 Uw’ lc’ Rw
Cathode
meehnelt

™~ Crossover +

U=
1-50kV|

a) Thermionic gun b) Field-emission gun

Fig. 4.8(a,b). Generation of Wehnelt bias Uw as a voltage drop across a resistance
Rw by the total beam current I in an electron gun with autobias.

Rw=
I / MR
o ___——2MQ
MR
: : ¢ |- ——————12MQ
0 -420 -460 -500 -540 -580V-62012500 2600 2700 2800 K
Wehnelt bias Uw Cathode temperature T¢
a b
Fig. 4.9. (a) Dependence of the total beam current I, (—«—-— ) I. = Uw/Rw for

different Rw on Wehnelt bias. (b) Construction of the dependence of I. on cathode
temperature Tc from the intersection of the dash-dotted line in (a) with the I. — Uw
curves. (c) Dependence of gun brightness 5 on Wehnelt bias Uw for different cathode
temperatures T¢, (— — —) working points for constant Ry. [4.20].



88 4 Elements of a Transmission Electron Microscope

will be observed as the cathode temperature T, is increased. When Wehnelt
biasing is produced by the voltage drop across Ry, the working points shown
in Fig. 4.9a are obtained; these are the points of intersection of the straight
lines I. = Uw/Rw, plotted for different values of Ry (1-12 M{2), with the I,
vs. Uw curves. From this diagram, the dependence of 1. on T, for constant Ry
(Fig. 4.9b) can be constructed. This plot shows an emission current I. that
increases as T, is raised until it reaches a saturation value beyond which any
further increase of T produces little increase of I.. This has been attributed,
in older publications, to the fact that the gun is running into space-charge-
limited conditions. That this is not so can be seen when this type of biasing
is replaced by a variable, independent bias. The saturation effect does not
result from space-charge limitation but from the shape of the I. — Uy curves.
Space-charge effects can therefore be neglected at normal temperatures, T, ~
2560 K, but can occur at higher values of T, [4.20].

The optimum value of Ry for a given cathode geometry and temperature
can be constructed by dropping a vertical line from the maximum of 3 in
Fig. 4.9¢c onto the corresponding I. — Uy curve. The slope of the straight line
from the intersection Q to the origin of Fig. 4.9a determines the optimum
resistance Ryw. These optimum points are situated just at the onset (knee)
of the saturation of the emission current in Fig. 4.9b. Decreasing Rw and
increasing 7. produces higher brightness and larger saturation currents but
shortens the lifetime of the cathode.

The gun-brightness values shown in Fig. 4.9 are for a particular gun geom-
etry. The shape of the Wehnelt electrode (flat or conical, with the cone apex
turned toward or away from the anode) has a large influence on the brightness
and other gun parameters.

4.1.5 Schottky Emission Guns

So-called Schottky emission cathodes are of the ZrO/W(100) type with a tip
radius r ~ 0.1-1 pm [4.22, 4.23]. Just after etching, the middle of the rod
is coated with ZrHs powder, which dissociates at ~1800 K in UHV and lets
metallic Zr diffuse to the tip. Zirconium oxide is formed at 1600 K for a few
hours at a partial oxygen pressure of 107#-107° Pa and flashed for a few
seconds at 2000 K [4.3]. The work function is lowered by the ZrO coating
from ¢y = 4.5 eV (W) to 2.7 eV. This allows the electrons to overcome the
work function at a temperature of 1800 K. The cathode is surrounded by a
negatively biased suppressor (Wehnelt) electrode beyond which the tip apex
protrudes ~0.3 mm. The electrons are extracted by a voltage of 4-8 kV at an
extractor electrode. The field strength at the cathode is much higher than in
thermionic cathodes but is still ten times lower than in field-emission sources.
This means that the field strength is not sufficient for quantum-mechanical
tunneling. Although the potential barrier is lowered by A¢y, (Fig. 4.1), the
Schottky effect, the electrons have to overcome the barrier with their thermal
energy. It is therefore confusing to call this type of source a field-emission
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gun. The only common feature is emission from a pointed cathode, and it is
more reasonable to regard the Schottky emitter as a field-assisted thermionic
emitter. In contrast to a thermionic cathode, the Schottky emission gun has an
energy spread AFE ~ 0.5 eV not widened by the Boersch effect, and its emission
current density j. ~ 5 x10° A/m? is higher by two orders of magnitude.
The size of the virtual source as defined by the intersection of extrapolated
trajectories behind the tip is ~15 nm, much smaller than the tip radius r ~
0.5-1 pm. Thanks to these properties and to the high gun brightness, this
type of cathode is coming into widespread use.

4.1.6 Field-Emission Guns

Field-emission guns also consist of a pointed cathode tip and at least two
anodes. Tungsten is normally used as the tip material because etching is easy,
but it has the disadvantage of sensitivity to surface layers. Wires of 0.1 mm
diameter are spot-welded on a tungsten hairpin cathode and electrolytically
etched to a radius of curvature of about 0.1 gm. The hairpin can be heated
to eliminate absorbed gas atoms from the tip, to work at higher temperatures
(of the order of 1500 K), or to raise the temperature when the tip requires
remolding. So-called cold field-emission guns work with the cathode at room
temperature. In both cases, the temperature is too low for the work function
to be overcome; the electric field strength at the tip is so high that the emis-
sion occurs by the quantum-mechanical tunneling effect. (310)-oriented tips
are mainly used for cold field emitters and (100)- and (111)-oriented tips for
heated ones.

The electron optics of a field-emission source are discussed in [4.24]. The
positive voltage U; of a few kV at the first (extraction) anode (Fig. 1.2) gen-
erates a field strength |E| ~ U, /r of about 5 x 10° V. m~! at the cathode tip;
this produces a field-emission current of the order of 1-10 pA. The electrons
are postaccelerated to the final energy F = eU by the voltage U between the
cathode tip and the grounded second anode. The field-emission current (4.4)
depends on the work function ¢, and on |E|. Both quantities vary during
operation of the gun. The work function changes owing to diffusion of impu-
rities from within the tip material or to surface reactions or the adsorption of
gases. The electric field strength changes as a result of damage to the tip by
ion bombardment. This damage is unacceptable unless an ultrahigh vacuum
< 5 x 1078 Pa is maintained in the field-emission system. Even with a con-
stant emission current, these factors can alter the solid angle of emission. The
current emitted by a field-emission gun therefore drifts over long periods, and
the tip has to be reactivated and remolded from time to time to concentrate
the emitted current within a smaller angular cone.

A focused electron probe with a diameter of about 10 nm is formed as an
image of the source by the action of anodes 1 and 2, which behave as an electro-
static lens. The diameter and the position of the focused probe and aberration
constants Cg and C; depend on the shape and dimensions of the anodes and on
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the ratio Uy /U [4.25, 4.26, 4.27, 4.28, 4.29]. The strong dependence of the po-
sition of the probe on the ratio U; /U for a constant geometry is a disadvantage
when the field-emission gun is combined with the condenser system of a TEM,
whereas the dependence of the position of the crossover of thermionic cath-
odes on the operating parameters can be neglected. Anode 1 can be replaced
by an electrostatic lens to overcome this problem [4.30, 4.31, 4.32, 4.33]; the
electron-probe position can then be adjusted independently of the necessary
voltage U;. Other authors have proposed that a magnetic-lens field should be
superimposed to provide a fully controllable field-emission gun [4.34, 4.35].
Field-emission guns have the advantage of high brightness and low en-
ergy spread (Table 4.1). They are of interest in all work that needs high
coherence, which means low beam apertures and high current densities (high-
resolution phase contrast, electron holography and interferometry, Lorentz
microscopy, and STEM), though these modes can also function satisfacto-
rily with a Schottky emitter. The high coherence of a field-emission gun is
demonstrated in Fig. 3.9 by the large number of resolvable Fresnel fringes.

4.2 The Illumination System of a TEM

4.2.1 Condenser-Lens System

The condenser-lens system of a TEM (Fig. 4.10) performs the following tasks:

1. focusing of the electron beam on the specimen in such a way that sufficient
image intensity is obtainable even at high magnification;

2. irradiation of a specimen area that corresponds as closely as possible to the
viewing screen with a uniform current density, whatever the magnification,
thereby reducing specimen drift by heating and limiting the radiation
damage and contamination in nonirradiated areas;

3. variation of the illumination aperture «;, which is of the order of 1 mrad
for medium magnifications and must be <0.1 mrad for high-resolution
and phase-contrast microscopy and <10~2 mrad for Lorentz microscopy,
small-angle electron diffraction, and holographic experiments;

4. production of a small electron probe (0.2-100 nm in diameter) for x-ray
microanalysis, electron-energy-loss spectroscopy, microbeam electron-dif-
fraction methods and the scanning mode, and simple switching from the
probe mode to area illumination.

Transmission electron microscopes are equipped with at least two con-
denser lenses to satisfy these requirements; the prefield of a strongly excited
objective lens can act as an additional condenser lens, especially for point 4
(Sect. 4.2.3).

Figure 4.10 shows the most important modes of operation of a two-lens
condenser system. In cases a—c, only the condenser lens C2 is excited. When
focusing (Fig. 4.10b), the familiar lens formula 1/f; = 1/s2 + 1/s5 can be
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Fig. 4.10. Operation of a two-lens condenser system for illuminating the specimen.
(a) Underfocused and (c) overfocused and (b) in-focus operation with condenser
lens C2. (d) Additional use of condenser lens C1 to demagnify the crossover, the
demagnified image then being focused on the specimen with condenser lens C2.

applied, and the crossover or virtual source is demagnified by the factor
ds/d. = sh/s2. The current density js at the specimen and the illumination
aperture a; reach a maximum and the diameter dg of the irradiated area a
minimum (Fig. 4.11). For underfocus (Fig 4.10a) and overfocus (Fig 4.10c)
Js and o increase. A condenser diaphragm (100-200 pm diameter) near the
center of the condenser lens selects only the center of the beam. In focus, dg
has the same value as with no diaphragm because the crossover is imaged
in both cases; the maximum current density js in the center of the beam
and the illumination aperture «; are, however, decreased as the diaphragm is
made smaller. The current density and the aperture are related via the gun
brightness (4.8) 8 = js/ma.

The size of the final fluorescent screen corresponds to a specimen diameter
of 1 pm at M = 100 000. It is therefore sufficient to illuminate specimen areas
as small as this. This can be achieved by fully exciting the condenser lens C1
(Fig. 4.10d); the strongly demagnified intermediate image of the crossover,
with a diameter d/ ~ 1 um in the case of a thermionic cathode, can then be
imaged on the specimen by condenser C2 with M = s/ /s, resulting in dg ~
0.5-1 pm.

Very small values of o (for Lorentz microscopy or small-angle electron dif-
fraction, for example) can be obtained by exciting condenser lens C1 and using
the demagnified image of the crossover as the electron source (C2 switched
off). The smallest obtainable illumination aperture with thermionic cathodes
will be o = 1/ /(s2 + s5) ~ 1072 mrad. In view of (4.8), this operating mode
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only works when very small current densities js are acceptable. These results
for the case of thermionic cathodes can be improved by the use of Schottky
or field-emission guns, which have a higher brightness and a virtual source of
about 10-100 nm diameter.

The condenser lens C1 works with a relatively large entrance aperture and
is therefore equipped with a stigmator to compensate for the astigmatism
and to decrease the diameter d. of the crossover image. It is usually suffi-
cient to observe caustic cross sections as in Fig. 2.13 for the compensation of
astigmatism.

The electron-gun system of a microscope can be adjusted onto the axis
of the condenser-lens system by tilting and shifting the gun system. Fur-
ther adjustments are necessary to bring the electron beam onto the axis of
the objective-lens and magnifying-lens system. The specimen structures spi-
ral around the image-rotation center if the high voltage, or preferably the
lens current of the objective lens, is varied periodically (wobbled). For easy
observation of this spiral movement during alignment, holey formvar films or
polystyrene spheres on supporting films can be used as specimens (Fig. 2.17b).
The distance of the image-rotation center from the point of intersection of the
objective axis can be calibrated by shifting the condenser-lens system relative
to the objective lens. The point of intersection of the objective-field axis with
the final screen does not necessarily coincide with the center of the final screen
[4.36, 4.37]. Its position can be determined by reversing the objective-lens cur-
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Fig. 4.12. (a) Shift (translation) and (b) tilt (rocking) of an electron beam by a
double deflection-coil system when exciting the coils with a sawtooth current. (c)
Scanning and (d) rocking when working with the prefield of an objective lens as an
additional condenser lens.

rent. Specimen structures at the point of intersection will remain stationary.
Comar-free alignment for high resolution is discussed in Sect. 2.4.3.

The alignment procedure needed to bring the electron beam on-axis in-
volves a mechanical shift and tilt of the condenser-lens system or electromag-
netic deflection of the electron beam by pairs of alignment coils (Fig. 4.12a,b).
Such coils can also be used to generate the dark-field mode (Sects. 4.4.2 and
6.1.2). The incident electron beam is tilted (Fig. 4.12b) so that a cone of scat-
tered electrons or Bragg-reflected electrons is on-axis and can pass the objec-
tive diaphragm. The transition from the bright- to the dark-field mode and
back can easily be achieved by switching the alignment coils off and on, respec-
tively. These coils can also be used for irradiation with a rocking beam at low
and medium magnifications as an additional focusing aid (Sect. 4.4.4) or, to-
gether with the objective-lens prefield, for scanning and rocking (Fig. 4.12¢,d)
the electron probe in a scanning mode (Sect. 4.2.3) or for special diffraction
techniques (Sect. 8.1).

A dark-field mode with hollow-cone illumination (Sect. 6.1.2) can be cre-
ated by replacing the circular diaphragm in the condenser lens C2 by an annu-
lar diaphragm. Alternatively, the beam may be deflected successively around
a circle (Sect. 6.4.3).

4.2.2 Electron-Probe Formation

The illumination of specimens with small electron probes of diameter less than
0.1 pm is important for the x-ray microanalysis and energy-loss spectroscopy
of small specimen areas and for microbeam-diffraction methods in TEM as
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well as for scanning transmission electron microscopy (STEM). An electron
probe is formed by two- to three-stage demagnification of the electron-gun
crossover. If the geometrical diameter of the probe is dy, the total probe
current will be given by

I = %d%jp. (4.15)

In reality, the intensity is distributed more as a Gaussian distribution (4.14).
This, however, will only change the results of our simple estimation by cor-
rection factors of the order of unity. The conservation of gun brightness (4.8)
on the optic axis implies j, = Wa?ﬁ (o is the electron-probe aperture). Sub-
stitution in (4.15) gives

7w’ 2 2
I, = Zﬂdoap. (4.16)

Solving for dy, we find

a\'? 1 G
_ (AL o 4.1
o (m) -2 (4.17)

which shows that for a given probe current I, small values of dy can be
obtained only for large values of the gun brightness 3 and probe aperture a,.

The geometrical diameter dy is broadened by the action of lens aberra-
tions; chromatic aberration produces an error disc of diameter d. (2.63) and
spherical aberration of diameter ds (2.58). The aperture limitation ¢, causes
a diffraction disc dqg = 0.6\/a,; that is, the half-width of the Airy distribution
in Fig. 3.16b.

To estimate the final probe size dj,, this blurring can be treated approxi-
mately as a quadratic superposition of the error-disc diameters [4.38], though
this is strictly valid only when the error discs are all of Gaussian shape and
independent from one another

A2 =di+d3 +d+d;

11 AE\?
2 2 2 6 2
For a thermionic cathode, the constant Cy (4.17) will be much greater than
the wavelength. Then the chromatic-error and diffraction terms in (4.18) can
be neglected.

Figure 4.13 shows how the diameters dy and ds superpose and produce a
minimum probe diameter dpin at an optimum aperture cp; for a constant
probe current I,,. The optimum aperture is obtained by writing dd, /0, = 0,
giving

topt = (4/3)/53(Co/C) Y4, (4.19)
and substitution in (4.18) gives

dmin - (4/3)3/8 (0305)1/4 (420)
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For a field-emission gun, the constant Cjy will be much smaller than the
wavelength, and the energy spread AFE is also smaller. Superposition of the
largest terms in (4.18), now dgq and ds, again yields a minimum (Fig. 4.13).
For this case, a wave-optical calculation should strictly be used (see, e.g.,
Fig. 3.16¢), but this has no influence on the position of the minimum [1.94].
The only difference is that the increase due to spherical aberration for a > apt
is not so rapid.

It is of practical interest to express the maximum probe current I, as a
function of the probe diameter d,. For thermionic cathodes, (4.20) can be
solved for I,, which is included in Cy (4.17):

I, = (37%/16)3 C2/3d8/3. (4.21)

To obtain a formula similar to (4.21) for a field-emission gun, the spherical-
aberration constants Cy; and Cyo of the lens system of the field-emission
gun and the objective lens, respectively, have to be considered [4.39, 4.40],
resulting in

137 s
- (4.22)
ool

with J = dI/df2 as the emission current per solid angle. The probe current I,

increases only as df,/ % and reaches saturation at a relatively small value of d,,
because I, cannot become larger than the emission current. Although these
calculations are somewhat oversimplified, they show that the field-emission
gun can have disadvantages if large currents are needed. For the production of
electron probes smaller than 0.1 pm, the field-emission gun has the advantage
of providing larger beam currents for a constant probe diameter, which is
important for increasing the signal-to-noise ratio in STEM.
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The importance of the probe current I, for achieving a good signal-to-
noise ratio is shown by the following estimate. A signal S is produced by a
number

n= fl,7/e (4.23)

of electrons, where f denotes the fraction of electrons recorded by the detector
(f < 1) or the number of recorded x-ray quanta per electron (f < 1) and
7 denotes the recording time for one image point (pixel); that is, the frame
time (1/20-1000 s) divided by the number of pixels (10°-10°). As a result of
statistical shot noise, the noise signal is N = /n. The signal-to-noise ratio
must be larger than some value x, which should be of the order of 3-5 to
detect a signal in a noisy record. If a signal difference AS on a background S
is to be detected, then
AS nl/? K

S T T UL 24

and so [, has to satisfy the inequality

I, > (Ag/s>2f67' (4.25)

As a numerical example, for k = 3, AS/S = 5%, f = 0.1, 7 = 1 ms (scanning of
a frame with 10® pixels in 1000 s), and e = 1.6 x 1071% C, we find I;, > 3.6 pA.

4.2.3 Illumination with an Objective Prefield Lens

A single-field condenser-objective lens (Figs. 2.8 and 4.14) with an excitation
k? = 3 not only has the advantage of a low spherical-aberration coefficient
Cs but also simplifies the transition from the extended illumination needed
for the TEM bright- and dark-field modes (Fig. 4.14a) to the illumination
required to form a small electron probe for the scanning transmission mode
and for x-ray and energy-loss spectroscopy and electron diffraction of small
specimen areas (Fig. 4.14b).

As discussed in Sect. 2.2.3, this type of lens operates in the telefocal condi-
tion with the specimen at the lens center. The action of the prefield condenser
and postfield objective field can be represented in a ray diagram by two sepa-
rate lenses. The optimum working condition for illumination with an extended
beam (Fig. 4.14a) will be achieved by fully exciting condenser lens C1 and
focusing the crossover on the front focal plane (FFP) with condenser lens C2.
This can be checked by imaging the back focal plane (BFP) on the final view-
ing screen, the BFP being conjugate to the FFP. Furthermore, the specimen
plane and the plane of the condenser C2 diaphragm of diameter dy are con-
jugate, and the diameter of the irradiated area is thus ds = Mds with the
demagnification M = fy/sh. The illumination aperture o; = d.. /2 fo is limited
by the diameter d. of the crossover image in the FFP. Thus, for fo = 1 mm,
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sh = 200 mm, dy = 100 pm, and d,, = 0.5 pm, we find ds = 0.5 ym and o; =
0.25 mrad, which are optimum operating conditions for high resolution.

A very small spot diameter dg can be obtained for the scanning mode
(Fig. 4.14b) by switching off C2 and using a small C2 diaphragm. The geome-
trical diameter dy of the electron probe in the specimen plane can be estimated
with the demagnification factor M = fy/s} ~ 1/250; if the diameter of the
crossover image in the focal plane of C1 is 0.5 pm, we obtain dy ~ 2 nm.
The aperture of the electron probe is determined by the projected diame-
ter of the C2 diaphragm in the FFP. The aperture will be of the order of
5 mrad and therefore one order of magnitude larger than the illumination
aperture ¢; in the extended-beam-producing mode of Fig. 4.14a. As shown in
Sect. 4.2.2, a large probe aperture a;, will be necessary to produce a small
probe diameter dp,.

This principle, which has been illustrated with a two-lens condenser sys-
tem, can be optimized by using a three-lens system, which allows illumination
analogous to the Kohler illumination of light microscopes to be achieved; the
condenser diaphragms can likewise be selected automatically for different di-
ameters of the irradiated area [4.41].
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The electron probe can be scanned across the specimen plane by means
of pairs of scanning coils, as in Fig. 4.14b, which rock the incident electron
beam. If the pivot point of this beam rocking is at the FFP, the pivot point
of the rays behind the specimen will be at the BFP because these planes are
conjugate. This means that the position of the first diffraction pattern in the
BFP is stationary, and the BFP can be imaged on the detector plane in the
scanning transmission mode (Sect. 4.5.1).

4.3 Specimens

4.3.1 Useful Specimen Thickness

The maximum useful specimen thickness depends on the type of electron—
specimen interaction used to form the image and on the mode of operation.
For high-resolution imaging (<1 nm) in the bright-field mode, phase-contrast
effects are important. The image contrast is then due to the interference of the
scattered waves with the unscattered primary incident wave. Phase-contrast
effects therefore decrease with increasing specimen thickness owing to the at-
tenuation of the incident-wave amplitude (Sect. 6.2). For irregular structures,
this limits the useful thickness range to a few tens of nanometers. Typical
specimens for this mode of operation are single atoms or clusters of heavy
elements, organic macromolecules, viruses, phages, etc. This implies that the
specimen must be mounted on a thin supporting film of thickness t < 5 nm.

The imaging of lattice planes of crystals results from the interference of
the primary beam and one or more Bragg-reflected waves and can be observed
for thicknesses of a few tens of nanometers for which sufficient wave amplitude
remains. Directly interpretable high-resolution images of the crystal structure
using several Bragg reflections can only be obtained for thicknesses less than
10 nm because the wave amplitudes of the Bragg reflections are changed by
dynamical electron diffraction; false contrast results, which can be interpreted
only by computer simulations.

For medium and low resolutions (>1 nm), most work on amorphous speci-
mens relies on scattering contrast. In the bright-field mode, the image intensity
depends on the number of electrons that pass the objective diaphragm. The
decrease in image intensity is caused by the absence of those electrons that
have been scattered outside the cone with aperture a, (objective aperture).
In biological sections, the scattering contrast is increased by staining the tis-
sue or thin sections with heavy atoms. Quantitative examples of scattering
contrast are reported in Sect. 6.1.3. Another example is the negative staining
technique, where microorganisms or macromolecules are embedded in a layer
of a heavy metal compound, such as phosphotungstic acid. The energy lost
by electrons during inelastic scattering and the chromatic aberration of the
objective lens limit the maximum useful specimen thickness to 100-300 nm for
100 kV and about 1 pm for 1 MV. This chromatic error can be avoided in the
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STEM mode of TEM. However, the resolution is limited by the broadening of
the electron probe due to multiple scattering (Sect. 5.4.3). The electron spec-
troscopic imaging mode of an energy-filtering TEM also avoids the chromatic
error resulting from energy losses in thick specimens. The investigation is lim-
ited only by the decrease of transmission below T' = 1073, which means ~75
pg/em? for amorphous and 150 ug/cm? for crystalline specimens at 80 keV.

By using the primary beam in the bright-field mode or a Bragg-reflected
beam in the dark-field mode, lattice defects in crystalline specimens can be
imaged. The maximum thickness is limited by the intensity of the primary
or Bragg-reflected beam and by the chromatic error for thick specimens. The
intensities of the beams depend on the crystal orientation, and better penetra-
tion is observed in the case of anomalous transmission near a Bragg condition.
At 100 keV, the useful thickness of metal foils and other crystalline material
is of the order of 50-200 nm. The increase in the useful thickness when the
accelerating voltage is increased from 100 kV to 1 MV is only of the order
of three to five times (see also Sect. 9.1.6). However, a large number of spec-
imens (electropolished metal foils, for example) are some 200-500 nm thick
over most of the thinned specimen area and, in many cases, the only areas that
can be used at 100 keV are the edges of holes in the center of electropolished
or ion-beam thinned discs.

4.3.2 Specimen Mounting

Metals and other materials can be used directly as thin discs of 3 mm diameter
and ~0.1 mm thickness if they can be thinned in the center by electropolishing
or chemical or ion etching.

Other specimens for TEM (crystal flakes, surface replicas, evaporated
films, biological sections) are mounted on copper grids with 100-200 um
meshes. Grids of 3 mm diameter are commercially available with different
mesh sizes and orientation marks.

Small particles, microorganisms, viruses, macromolecules, and single mo-
lecules need a supporting film possessing the following properties:

. low atomic number to reduce scattering

. high mechanical strength

. resistance to electron irradiation (and heating)

. electrical conductivity to avoid charging

. low granularity (caused by phase contrast) for high resolution
. easy preparation

DU W N

For medium magnifications, formvar films of 10-20 nm are in use that are
produced by dipping a glass slide in a 0.3% solution of formvar in chloroform
and floating the dried film on a water surface. A higher mechanical strength
is obtained by evaporating an additional thin film of carbon (~5 nm) on a
formvar or collodion film. Pure carbon films are more brittle but can be used
as 3-5 nm films on plastic supporting films with holes.
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For high resolution, the granularity of carbon (or amorphous germanium)
films is useful for investigating the contrast-transfer function of the TEM
(Sect. 6.4.6), but it obscures the image of small particles, macromolecules,
and single atoms. Numerous attempts have therefore been made to prepare
supporting films with less phase-contrast granularity: amorphous aluminum
oxide [4.42], boron [4.43], single-crystal films of graphite [4.44], or vermiculite
[4.45].

The specimen grids or discs are mounted in a specimen cartridge, which can
be transferred through an airlock system either into the bore of the upper pole-
piece of the objective lens (top entry) or, mounted on a rod, into the polepiece
gap (side entry). The specimen position is near the center of the bell-shaped
lens field for a strongly excited objective lens with k? ~ 3. The polepiece gap
also contains the objective diaphragms and the anti-contamination blades
or cold finger (Sect. 11.4.2), which decrease the partial pressure of organic
molecules near the specimen. This decreases the space available for special
specimen manipulations. The gap is only of the order of a few millimeters for
100 kV TEMs and 1-2 cm in an HVEM.

4.3.3 Specimen Manipulation

The principal methods of specimen manipulation are summarized in [4.46,
4.47, 4.48] and the proceedings of the HVEM symposia [1.86, 1.87, 1.88, 1.89,
1.90, 1.91].

Specimen rotation about an axis parallel to the electron beam can be
used to bring specimen structures into a convenient orientation in the final
image. Tilting devices with one axis normal to the electron beam can produce
stereo pairs for quantitative measurement and stereoscopic observation of the
three-dimensional specimen structure. A goniometer can tilt the specimen
with high precision in any desired direction up to £60° or even £70°. Side-
entry goniometers are available that cause a specimen shift less than 1 um
when tilting the specimen +30°. The second degree of freedom for angular
adjustment is often exploited as a specimen rotation about an axis normal to
the specimen plane. Top-entry goniometers can often tilt the specimen and
move the specimen normal over a cone around the optic axis. Goniometer
stages can be useful when studying biological tissue sections to bring lamellar
systems or other structures into favorable orientations or for tomography, for
example. Crystalline specimens have to be tilted in a goniometer for

1. observation of lattice fringes and crystal structures,

2. observation of diffraction contrast of lattice defects with distinct Bragg
reflections or known orientation,

3. determination of the Burgers vector of lattice defects, and

4. determination of crystal orientation by electron diffraction.

A large variety of specimen tilting, heating, and straining cartridges
have been developed for 100 kV TEMs. The problem arises of whether the
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phenomena of deformation, annealing, and precipitation are the same in thin
specimen areas that can be studied at 100 kV as in the bulk material. Such
specimen manipulations are therefore of particular interest in HVEM [4.49]
in which there is more space in the polepiece gap and the specimens will be
more similar to bulk material because greater thicknesses can be penetrated.

Specimen-cooling devices operating at temperatures below —150°C can
be used to reduce the contamination of inorganic material associated with
radiation-induced etching of carbon in the presence of oxygen molecules
(Sect. 11.4.2). Such devices must not be confused with the cooled anti-
contamination blades mentioned above. Specimens that melt at room tem-
perature or due to electron-beam heating or that sublimate in the vacuum
may be observable if the specimen is cooled. A special application is the di-
rect observation of cryosections. The sections have to be transferred from
the cryomicrotome to the cooled specimen cartridge of the microscope via a
cooling chain.

Specimen-cooling devices operating at liquid-helium temperature need
very careful design and construction [4.50, 4.51, 4.52]. The specimen and an
additional storage tube for liquid helium have to be shielded against radia-
tive heat loss by surrounding them in a liquid-nitrogen-cooled trap. Specimen
structures or physical effects that are normally present only at very low tem-
peratures can be observed such as the crystal structure of condensed gases,
magnetic fields around superconducting domains, and ferromagnetic films of
low Curie temperature. The mobility of radiation-induced lattice defects de-
creases at low temperatures. These defects can be generated directly in a
cooled specimen by bombardment with a-particles or high-energy electrons
beyond the threshold energy (Sect. 5.1.2); the coagulation of dislocation loops
or stacking faults can then be observed when the temperature is raised. The
suppression of the radiation damage of organic specimens is another applica-
tion of liquid-helium-cooled stages. However, specimen cooling obviously only
retards secondary radiation effects such as the distortion of the crystal lattice,
which leads to fading of the electron-diffraction pattern, but cannot prevent
primary damage of the individual organic molecules (Sect. 11.2).

Environmental cells in which the partial pressures of inert and reactive
gases up to atmospheric pressure are maintained allow us to observe in situ
reactive processes between a gas and the specimen; with a partial pressure
of water, hydrated biological specimens can be observed [4.53]. Such studies
are limited by electron scattering at the gas molecules. The large gas pressure
in the specimen area can be obtained either by using differentially pumped
systems of diaphragms or by confining the gas between diaphragms covered
with thin films. High-voltage electron microscopy is more suitable for envi-
ronmental experiments because much more space is available in the polepiece
gap and the scattering in the gas atmosphere is less severe. Table 4.2 contains
some further examples of in situ experiments.
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Table 4.2. Specimen manipulations.

Procedure

Application

1. Specimen rotation
Rotation on an axis parallel to the electron

beam

2. Specimen tilt

a) Tilt (£5° — £10°) about an axis in the specimen

plane

b) Tilt about an axis normal to the beam and
rotation about an axis parallel to the beam

c) Double tilt (+25° — £70°) about two perpen-
dicular axes normal to the beam

d) Specimen goniometer (£25 — +50°)
Small specimen shift by adjustment of tilt axis
in height and position (accuracy: 40.1°)

3. Straining devices

Straining of the specimen by movement of two
clamps by mechanical or piezoelectric effects

4. Specimen heating

Direct heating of a grid

Indirect heating (~10 W for 1000°C)

5. Specimen cooling

a) Cooling to between —100°C and —150°C

with liquid nitrogen

b) Cooling with liquid helium (4-10 K)

6. Environmental cells

Gas pressure between diaphragms covered with
foils or separated from the microscope
vacuum by additional pumping stages

Spraying the specimen with a gas jet

7. Other in situ methods

Evaporation in the specimen chamber

Particle bombardment by an ion source
or the beam of an HVEM

Magnetization of the specimen by additional

coils (Lorentz microscopy)

Orientation of specimen structures or
diffraction patterns relative to the

edges of the final screen

Stereo pairs

Lattice defects

Determination of orientation
Favorable orientation of biological
sections

Lattice defects

Three-dimensional reconstruction by

tomography

Straining of metals and high polymers

Recovery and recrystallization

Precipitation and transition phenomena

Temperature-sensitive specimens
Decrease of specimen contamination
Direct observation of cryosections
Structure of condensed gases
Decrease of radiation damage
Superconducting states

Magnetic structure in low-Curie-point

ferromagnetics

Biological specimens in wet atmosphere
Gas reactions on the specimen

Corrosion tests

Investigation of film growth

Radiation-damage experiments

Direct observation of movement of

ferromagnetic domain walls
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4.4 The Imaging System of a TEM

4.4.1 Objective Lens

Alhough the first intermediate image formed by the objective lens has a mag-
nification of only 20-50 times, it is from this lens that the highest performance
will be demanded. The mechanical tolerances necessary have already been dis-
cussed in Sect. 2.3.3. The natural astigmatism of an objective lens must be so
small that the main task of the stigmator is to compensate for the astigma-
tism caused by contamination of the diaphragm and other perturbing effects.
The resolution-limiting errors such as the spherical and chromatic aberra-
tions are important only for the objective lens because a magnification M
decreases the apertures for the following lenses to o« = v, /M. The diameter of
the spherical-aberration disc is proportional to a® (2.58). Even for a modest
magnification M of 20-50 times at the first intermediate image, the aperture
becomes so small that the spherical aberration of the intermediate and subse-
quent lenses can be neglected, even though these lenses normally have larger
values of Cy and C, than the objective lens. In projector lenses (Sect. 2.3.4),
the dominant aberration will usually be distortion (pin cushion or barrel) at
low magnifications, which distorts but does not impair the sharpness of the
image.

Any of three or four diaphragms of 20200 um diameter can be inserted
in the focal plane of the objective lens, thus permitting the objective aper-
ture a, to be changed (Fig. 4.15). We should distinguish between apertures
(angles) and solid diaphragms and not use the word “aperture” for both. The
trajectories in Fig. 4.15 show that a diaphragm introduced in this plane stops

From condenser lens

2777277787270 Specimen

Objective
lens

a=f

J‘_ Fig. 4.15. Action of the objective

Aperture diaphragm in the focal plane of the

diaphragm  picctive lens as an angle-selective
diaphragm.
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all electrons that have been scattered through angles 8 > «a,. Decreasing the
objective aperture increases the scattering contrast (Sect. 6.1). For high reso-
lution, an aperture as large as possible is used so that high spatial frequencies
can contribute to the image (Sect. 6.2) and so that any contamination and
charging of the diaphragm do not disturb the image.

The objective aperture a, will be given by r/ f, where r is the radius of the
diaphragm, only to a first approximation because the electron trajectories in
the thick objective lens are curved (Fig. 4.15). The objective aperture can be
measured accurately by selected-area electron diffraction (SAED, Sect. 8.1.1),
in which the focal plane of the objective lens is imaged on the final image
screen. For the measurement of ay,, exposures of the diffraction pattern (of
an evaporated Au film, for example) are taken with and without the aperture
diaphragm. The ratio of the objective aperture «, to the Bragg—diffraction
angle 20p of a Debye—Scherrer ring is related to the diameter dy of the shadow
of the diaphragm and the diameter dg of the Debye—Scherrer ring by

040/29]3 = do/dB. (426)

The same procedure can be used to measure the illumination aperture «y,
which corresponds to the radius of the primary beam in a diffraction pattern.
For small values of a; below 0.1 mrad, the magnification (camera length) of
the SAED pattern has to be increased.

The nature of the objective diaphragm is important for the quality of
the image. The diaphragm has to be of a heat-resistant material (Pt, Pt-Ir,
Mo, or Ta) capable of tolerating the largest possible current density in the
focal plane; this may reach 10° A m~2. Dust, fragments of the specimen,
and contamination in general can cause local charging, which generates an
additional astigmatism, especially if small apertures are used. Charging effects
can be delayed by using diaphragms in the form of thin metal foils (1-2 pm)
with circular holes [4.54, 4.55, 4.56].

4.4.2 Imaging Modes of a TEM

The imaging system of a TEM consists of at least three lenses (Fig. 4.16): the
objective lens, the intermediate lens (or lenses), and the projector lens. The
intermediate lens can magnify the first intermediate image, which is formed
just in front of this lens (Fig. 4.16a), or the first diffraction pattern, which is
formed in the focal plane of the objective lens (Fig. 4.16b), by reducing the ex-
citation (selected-area electron diffraction, Sect. 8.1.1). In many microscopes,
an additional diffraction lens is inserted between the objective and interme-
diate lenses to image the diffraction pattern and to enable the magnification
to be varied in the range 10% to 10°.

The bright-field mode (BF) (Figs. 4.16a and 4.17a) with a centered ob-
jective diaphragm is the typical TEM mode, with which scattering contrast
(Sect. 6.1.1) and diffraction contrast (Sect. 9.1) can be produced with objec-
tive apertures «, between 5 and 20 mrad. For high-resolution phase contrast
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Fig. 4.16. Ray diagrams for a TEM in (a) the bright-field mode and (b) selected-
area electron diffraction (SAED) mode.

(Sect. 6.2), the aperture should be larger (a, > 20 mrad) to transfer high
spatial frequencies. The only purpose of the diaphragm in this mode is to de-
crease the background by absorbing electrons scattered at very large angles.
The resolution is limited by the attenuation of the contrast-transfer function
(CTF) caused by chromatic aberration (Sect. 6.4.2) and not by the objec-
tive aperture a,. Normally, the specimen is irradiated with small illumination
apertures a; < 1 mrad. For high resolution, an even smaller aperture a; < 0.1
mrad is necessary to avoid additional attenuation of the CTF by partial spa-
tial coherence (Sect. 6.4.2). When unconventional types of contrast transfer
are desired, it is often necessary to change the illumination condition by tilting
the beam or using hollow-cone illumination, for example.
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Fig. 4.17. (a) Bright-field mode with a centered objective diaphragm and produc-
tion of a dark-field mode by (b) a shifted diaphragm, (c) a tilted beam, and (d) a
central beam stop.

In the dark-field mode (DF), the primary beam is intercepted in the focal
plane of the objective lens. Different ways of producing dark-field conditions
are in use. The shifted-diaphragm method (Fig. 4.17b) has the disadvantage
that the scattered electrons pass through the objective lens on off-axis tra-
jectories, which worsens the chromatic aberration. The most common mode
is therefore that in which the primary beam is tilted (Fig. 4.17c) so that
the axis strikes the centered diaphragm. The image is produced by electrons
scattered into an on-axis cone of aperture a,. This mode has the advantage
that off-axis aberrations are avoided. There is thus no increase of chromatic
error. Asymmetries in the dark-field image can be avoided by swiveling the
direction of tilt around a cone, or conical illumination can be produced by
introducing an annular diaphragm in the condenser lens. Another possibility
is to use a central beam stop that intercepts the primary beam in the back
focal plane; for this, a thin wire stretched across a circular diaphragm may be
employed (Fig. 4.17d). DF micrographs need a longer exposure time because
there are fewer scattered electrons. For high resolution, the contrast-transfer
function (CTF) of DF is nonlinear, whereas the CTF of the BF mode is lin-
ear for weak-phase specimens. The DF mode can also be employed to image
crystalline specimens with selected Bragg-diffraction spots.

Increasing the objective aperture in the BF mode allows us to transfer the
primary and one Bragg-reflected beam through the diaphragm. These beams
can interfere in the final image. The fringe pattern is then an image of the
crystal-lattice planes (Sect. 9.6.1). Optimum results are obtained for this mode
when the primary beam is tilted by the Bragg angle +60p. The Bragg-reflected
beam that is deflected by 20p passes through the objective lens with an
angle —fp relative to the axis.
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In the crystal-lattice imaging mode, more than one Bragg reflection and the
primary beam form a lattice image that consists of crossed lattice fringes, or
an image of the lattice and its unit cells if a large number of Bragg reflections
are used (Sect. 9.6). This mode is most successful for the imaging of large unit
cells, which produce diffraction spots at low Bragg angles so that the phase
shifts produced by spherical aberration and defocusing are not sufficiently
different to cause imaging artifacts.

Further operating modes of a TEM are described in other sections: scan-
ning transmission mode (Sect. 4.5), Lorentz microscopy (Sect. 6.8) and the
analytical modes of a-ray microanalysis (Sect. 10.2), electron energy-loss spec-
troscopy (EELS, Sect. 10.3), and electron diffraction (Chap. 8).

4.4.3 Magnification and Calibration

If structures as small as 0.1 nm are to be resolved, the instrument must be
capable of magnifying this distance until it is larger than the resolution of the
photographic emulsion or the pixel size of the CCD camera (20-50 pm); this
requires a magnification M of at least 250 000 — 500 000 times, for which more
than two imaging lenses are needed.

The accuracy of magnification depends on the excitation of the objective
lens. If the magnification is to be constant to within about +1%, the following
precautions have to be taken:

1. The height of the specimen in the specimen cartridge must be repro-
ducible. Depending on the microscope used, a variation of the vertical
position of 450 pm results in a variation of 2-5% in the magnification
[4.57, 4.58].

2. The lens current and acceleration voltage must be highly stable. The lens
current necessary for focusing is related to the height of the specimen.
Differences of specimen height can therefore be compensated for by read-
ing the lens current and using a calibration curve relating lens current
and magnification. However, accuracies of reading the lens currents of the
order of £1% are needed [4.59].

3. Hysteresis effects in the iron parts of the objective lens must be avoided
[4.58]. This can be achieved by setting the lens excitation at its maximum
value and then reducing the lens current down to (but not below) that
needed for focusing. This cycle of maximum excitation and focusing has
to be repeated two or three times. It would be better to keep the excita-
tion of the objective lens constant and move the specimen by means of
a mechanical and/or piezoelectric specimen drive [4.60]; this would also
minimize the effort required for microscope alignment (Sect. 2.4.3).

Up to values of about 20 000 times, the magnification can be calibrated by
means of surface replicas of metal gratings, which are commercially available.
Polystyrene spheres should be avoided for magnification calibration because
their diameters are affected by the preparation, by radiation damage, and by
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contamination [4.61]. For magnifications of the order of 100000 times, images
of lattice planes (Sect. 9.6.1) can be used, provided that the lattice spacings
are not altered by radiation damage. Dowell [4.62] discussed the procedure
and the possible errors (+2%) if the lattice constant is calibrated with a T1C1
standard by electron diffraction; these errors can mainly be attributed to the
distortion of electron-diffraction patterns. For intermediate magnifications,
catalase crystals can be employed; the measured lattice constants are 8.8 +
0.3 nm [4.63] and 8.6 £+ 0.2 nm [4.64].

A magnification standard covering the whole range of magnifications has
been proposed that consists of molecular-beam-epitaxy-grown single-crystal
layers of alternating Si and SiGe (two sets of layer distances at low and medium
resolutions and the Si lattice for high resolution) [4.65].

4.4.4 Depth of Image and Depth of Focus

The depth of image S is defined in Fig. 4.18. A blurring of the image dsM
will be observed at a distance +5/2 from the final image plane, where J; and
S are related as

2
oM =a's, §= oM _ oM (4.27)

o Qg

Here, o/ = a,/M denotes the aperture in the final image. As a numerical
example, for M = 10000, o, = 10 mrad, and d; = 5 nm, we find that S > 50

Image plane

—-
2r'=TagM
I Fig. 4.18. Calculation of the depth of image S
osM and the depth of focus 7.
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cm. Because of this large depth of image, a focused image will be obtained on
the photographic plate or CCD camera even though these are some centime-
ters below the viewing screen, which is normally inclined for focusing; only
the magnification will be different.

Another property of the instrument is the depth of focus. This is the axial
distance +7'/2 within which specimen details on the axis will be focused with
a resolution ds. From Fig. 4.18, we have

T < (53/040. (428)

As a numerical example, for a resolution égM = 50 um of the image record-
ing system, a magnification M = 10000, and an aperture o« = 1 mrad, we
find T = 5 pm. Therefore, focusing at low magnifications sometimes becomes
difficult owing to the large depth of focus. For thick specimens, a larger aper-
ture can be used for focusing, which decreases the depth of focus; for thin
specimens, the illumination aperture can be artificially increased by rocking
(wobbling) the electron beam [4.66].

These geometrical estimates of the depth of focus are equivalent to wave-
optical considerations at high resolution because defocusing differences Az
change the image-intensity distribution. If the specimen contains a periodicity
A or a spatial frequency ¢ = 1/4, a diffraction maximum will be formed at
sin § ~ 6 = A/A. The maxima and minima of the specimen periodicity will
be reversed in contrast when the second term of the wave aberration W (0) in
(3.65) caused by the defocusing Az changes the phase of the diffracted beam
by 7. Setting W (0) = 7Az6%/\ < 7 results in

—~

A

With Az « T, A < &, 0 < «, this formula corresponds to (4.28). As a
numerical example, for o, = 10 mrad, and A = 0.1 nm, we find Az < 10 nm.

IS

(4.29)

4.5 Scanning Transmission Electron Microscopy (STEM)

4.5.1 Scanning Transmission Mode of TEM

Unlike the conventional transmission mode of TEM, in which the whole im-
aged specimen area is illuminated simultaneously, the specimen is scanned in a
raster point-by-point with a small electron probe in the scanning transmission
mode.

The prefield of the objective lens is used as an additional condenser lens
(Sect. 4.2.3) to form a small electron probe at the specimen when operat-
ing in the STEM mode (Fig. 4.14b) [4.67]. The objective lens works near
k? = 3 (condenser-objective lens, Sect. 2.2.3). An electron-probe diameter
of the order of 0.2-5 nm can be produced. No further lenses are needed
below the objective lens. Nevertheless, the later lenses may be excited to
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image the first diffraction pattern in the back focal plane (BFP) through
the small polepiece bores of the subsequent lenses onto the electron-detector
plane, above or below the final image plane. The generator that produces the
saw-tooth currents for the x and y deflection coils simultaneously deflects, in
synchrony, the electron beam of a cathode-ray tube (CRT). The intensity of
the CRT beam can be modulated by any of the signals that can be obtained
from the electron—specimen interactions. The transmitted electrons can be
recorded in the bright- and dark-field modes with a semiconductor detector
or a scintillator—photomultiplier combination. These modes can be selected by
placing large circular or sector diaphragms in front of the detector; we recall
that an enlarged far-field diffraction pattern is produced in the detector plane
by each object element in turn and does not move during scanning if the pivot
point of the primary-beam rocking is at the FFP (Fig. 4.14b).

In conventional TEM, small illumination apertures «; are used in the
bright- and dark-field modes (Sect. 4.4.2). In the STEM mode, a small electron
probe can be obtained only with a large value of a; ~ 10 mrad (Sect. 4.2.2).
The detector aperture agq has to be matched to this illumination condi-
tion. Thus, in the BF mode it will be necessary to use a detector aperture
aq =~ aj. Otherwise, a large part of the unscattered electrons would not be
recorded, and the signal-to-noise ratio would be correspondingly decreased.
Details of contrast mechanisms and differences between STEM and the con-
ventional TEM modes are discussed in Sect. 6.1.5 for amorphous specimens
and in Sect. 9.1.4 for crystalline specimens.

An annular semiconductor detector or scintillator can be used below the
specimen to record the electrons scattered through angles 6 > 10° [4.68]. An-
other detector can be placed above the specimen to record the backscattered
electrons (BSE). Secondary electrons (SE) with exit energies <50 eV will move
around the axis in spiral trajectories owing to the strong axial magnetic field
and can be detected by a scintillator—photomultiplier combination situated
between the objective and condenser lenses (Fig. 4.19). This SE mode can be
used to image the surface structure of the specimen.

The effect of chromatic aberration of the objective lens can be avoided in
the STEM mode. This is of interest for thick specimens. However, the gain
in resolution will be limited by the top—bottom effect (Sect. 5.4.3) caused by
broadening the electron probe by multiple scattering. The main advantages of
the STEM mode are the production and positioning of small electron probes
<0.1 pm for the microbeam electron diffraction and convergent-beam diffrac-
tion techniques, x-ray microanalysis, and electron energy-loss spectroscopy
(EELS) of small specimen areas.

The STEM mode can also be used to generate other signals, such as
cathodoluminescence and electron-beam-induced current (EBIC) in semicon-
ductors. The use of cathodoluminescence (CL) is a well-established technique
in scanning electron microscopy (SEM). The CL signal can also be recorded in
a transmission electron microscope equipped with a STEM attachment by col-
lecting the light quanta emitted. An advantage of this mode is the possibility
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Fig. 4.19. Detectors for x-rays, secondary electrons (SE), backscattered electrons
(BSE), and transmitted electrons (TE) in the scanning transmission mode of TEM.

of simultaneously imaging lattice defects in the STEM bright-field mode and
examining their influence on CL; alternatively, additional information about
variations in the concentration of dopants, which act as luminescence centers
or nonradiative recombination centers, can be obtained. A disadvantage is
that the CL intensity is accumulated only in a foil thickness much smaller
than the electron range and, in addition, the film surface acts as a dead layer
due to surface recombinations. The method is restricted to those semicon-
ductors with a high luminescence yield. For these, resolutions of the order of
a few tens of nanometers are obtainable thanks to the reduction of electron
diffusion.

The low intensity requires an efficient light-collection system with a large
solid angle and lateral selection of the irradiated area to shield the signal from
CL contributed by diffusely scattered electrons. An obstacle to the collection
of the light quanta is the narrowness of the polepiece gap. A tapered silver
tube or an elliptical mirror is used to transmit the light to a quartz light pipe
and a photomultiplier [4.69]. X-rays can cause CL in the quartz light pipe
and this signal must be eliminated by placing additional lead-shielded mirrors
between the collection system and the light pipe.

In diamond, for example, almost all of the luminescence is emitted from
dislocations as a result of localized electron states near these defects [4.69,
4.70]. The CL depends on the crystal orientation and exhibits bend contours
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that are similar to channeling effects in energy-loss spectroscopy and x-ray
emission; this has been shown for ZnS single-crystal foils [4.71]. In a Ga;_,
Al As laser structure, CL can be employed to analyze radiative and nonradia-
tive centers and to record the luminescence spectra from the different parts of
the structure, which may be separated by wedge-shaped etching of the struc-
ture; the CL signal may be compared with that obtained in EBIC experiments
[4.72].

The EBIC mode is also widely used in SEM [4.73]. An electric field must
be present in a p-n junction, or a Schottky barrier must be present to sepa-
rate the electron-hole pairs generated by the electron beam. A current can be
recorded at zero bias or with a reverse bias, which increases the field strength
and the width of the depletion layer. The EBIC signal consists not only of
electron-hole pairs generated in the depletion layer but also minority carriers,
which reach the layer by diffusion. The EBIC signal may decrease at lattice
defects, such as dislocations or stacking faults, which act as recombination cen-
ters. It is thus of interest to image the lattice defects in the TEM or STEM
mode. Combination of the SEM/EBIC and the TEM modes (in different in-
struments) [4.74] has the advantage that the EBIC mode can be applied first
to the bulk semiconductor device, after which a TEM investigation of the same
area after thinning gives information about the faults. Another possibility is
to observe the thin sample in a scanning transmission electron microscope or
a transmission electron microscope with a scanning attachment in the STEM
and EBIC modes simultaneously [4.72, 4.75]. Because the active area and de-
pletion layers are of the order of a few micrometers thick, HVEM offers better
penetration of thick regions. Unlike SEM/EBIC experiments, in which the
electron-hole pairs are generated in the whole volume of the electron-diffusion
cloud a few micrometers in diameter, the generation in STEM/EBIC is con-
centrated in the volume irradiated by the electron probe, which is only slightly
broadened by multiple scattering. This can result in better resolution, though
the latter is ultimately limited by the diffusion of the minority carriers.

Another interesting method is scanning deep-level transient spectroscopy
(SDLTS) [4.72, 4.76], which can provide the profile of the defect concentration
in the direction normal to the junction. The electron probe is switched on and
off so that the deep levels are filled by the injected carriers when the beam
is on. They can be detected by observing the thermally stimulated current
transient that flows when the levels empty during the off time of the beam.
The depth of the levels (activation energy for emission) can be determined
from the temperature dependence of the transient-time constant, which can
be measured by opening two sampling-rate windows at times ¢; and to after
the electron-beam chopping pulse.

4.5.2 Dedicated STEM

This type of electron microscope is designed to work only in the scanning
transmission mode. Figure 1.2 schematically shows a version introduced by
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Crewe and coworkers [4.77, 4.78, 4.79, 4.80]. A field-emission gun is used to
produce a very small electron source of the order of 10 nm. Only one magnetic
lens with a short focal length, low spherical aberration, and equipped with a
stigmator is needed to demagnify this source to an electron probe of 0.2-0.5
nm on the specimen. The scanning coils are arranged in front of the lens. A
signal I, of large-angle elastically scattered electrons can be detected by an
annular detector. The cone of small-angle scattered electrons, which enters a
prism spectrometer, can be separated into unscattered (I,,) and inelastically
scattered (Ii,) signals.

The diffraction pattern of the illuminated area of the specimen is formed
in the detection plane, and various annular, semiannular, quadrant, or multi-
channel detectors can therefore be used to get optimum contrast. This offers
new possibilities for contrast enhancement that are not available in a conven-
tional transmission electron microscope:

1. Z-contrast of amorphous (especially biological) specimens (Sect. 6.1.5)
quantitative determination of mass thickness (Sect. 6.1.6)

imaging and contrast enhancement of single atoms (Sect. 6.3.2)

methods of differential phase contrast (Sect. 6.4.4)

differential phase contrast in Lorentz microscopy (Sect. 6.8.2)

imaging of lattice planes and atomic rows by high-angle Z-contrast dark-
field imaging (Sect. 9.6.6).

O CU W

The scanning transmission electron microscope can also be used for x-ray
microanalysis and electron energy-loss spectroscopy of a selected area or for
energy-filtering microscopy.

The field-emission gun, lens, and spectrometer occupy little space, and the
whole STEM column can be kept at a UHV of 1078 —10~7 Pa. This allows the
gun to operate satisfactorily and drastically reduces specimen contamination.

4.5.3 Theorem of Reciprocity

The reciprocity theorem was first discussed by Helmholtz (1860) in light op-
tics. In geometrical optics, it is known as the reciprocity of ray diagrams.
However, in wave optics it also implies that the excitation of a wave at a
point P by a wave from a source Q is the same as that detected at Q with the
source at P.

The ray diagram of STEM is the reciprocal of that of TEM [4.81, 4.82].
This will be demonstrated with the aid of the ray diagram of Fig. 4.20. The
source in the ray diagram of TEM in Fig. 4.20a is already a demagnified image
of the crossover produced by the condenser lenses. The intermediate image can
be further enlarged by the subsequent lenses, not shown in the diagram. The
specimen is illuminated with an illumination aperture «; of the order of 0.1-1
mrad, which is much smaller than the objective aperture o, = 5-20 mrad. The
ray diagram of STEM (Fig. 4.20b) has to be read in the reverse direction. The
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Fig. 4.20. Demonstration of the theorem of reciprocity for (a) TEM and (b) STEM
in terms of ray diagrams connecting the intermediate source and image.

objective lens now demagnifies a source point on the specimen. A large probe
aperture oy, ™~ o, is necessary to obtain the smallest possible spot size (Sect.
4.2.2). A fraction of the incident cone of the electron probe and scattered
electrons are collected by the detector aperture aq. If ag = a5 < ap = ap,
the same image contrast is obtained as in TEM. A scanning unit between the
source and the objective lens deflects the electron probe in a raster across
the specimen. Projected backwards, the rays scan over a virtual source plane,
which corresponds to the image plane in TEM in Fig. 4.20a. We can argue
that, in STEM, the CRT is needed to image this virtual plane by modulating
the CRT with the detector signal.

By enlarging the ray diagram near the specimen in Fig. 4.21, we can
demonstrate that the theorem of reciprocity can also be applied to wave-
optical imaging, Fresnel fringes, and phase contrast, for example. The reci-
procity theorem for the imaging of crystal lattices by STEM is discussed in
Sect. 9.6.6. Here, we consider the case of Fresnel fringes. The source and the
detector are assumed to be very distant so that the incident and exit waves
can be regarded as plane waves. The objective lens in TEM enlarges the in-
tensity distribution in the plane at a distance Az = zy (defocusing) behind
the specimen. At one point of this plane, the Huygens elementary wavelets
from each point beside the specimen edge overlap with their corresponding
geometrical phase shifts and form the Fresnel fringes of an edge (Fig. 3.8).
When the diagram is reversed for discussion of the STEM mode, an electron
probe is formed in the focal plane at a distance zg in front of the specimen
edge. The same geometric phase shifts as in TEM will occur during the wave
propagation to the detector. It should be mentioned that the distance of the
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Fig. 4.21. Demonstration of the theorem of reciprocity of TEM and STEM for
phase contrast (Fresnel fringes at an edge) (z0 = defocusing).

first Fresnel fringe from the edge increases as /zp with increasing defocusing
[4.83], whereas a fringe distance increasing as zy can be explained by refraction
at the wedge-shaped edge [4.84].

The phase shifts caused by the spherical aberration of the lens also act
in the same manner in TEM and STEM. It was shown in Sect. 3.2.2 that an
increase of the illumination aperture o; causes a blurring of the Fresnel fringes
by +a; Az, thus decreasing the number of observable fringes. The same effect
would be obtained when recording a TEM image with a slit width of 2a;Az.
An analogous blurring is observed in STEM if the detector area or the detector
aperture ¢ is increased. Therefore, if phase-contrast effects are to be observed
in STEM, a small detector aperture has to be used (aq < ). It will be shown
in Sect. 6.1.5 that this is an unfavorable operating condition. Exposure of the
specimen to damaging radiation has to be kept low, and all of the unscattered
electrons have to be collected in order to image single atoms, for example.
This means that aq should be approximately equal to cy,. This corresponds
to extremely incoherent illumination in TEM. Single atoms are imaged in
STEM mainly by their scattering contrast. In TEM, the optimum condition for
imaging atoms corresponds to phase-contrast operation, for which o; < ay.

4.6 Electron Spectrometers and Imaging Energy Filters

Electron spectrometers of high energy resolution are needed to resolve the rel-
atively low energy losses between AE = 0 and 3000 eV for electron energy-loss
spectroscopy (EELS). The energy spread AE ~ 1-2 eV of a thermionic gun is
normally narrow enough to record energy losses by the excitation of plasmons
and inner shells, though in some cases a fine structure can be seen in the
spectrum if the resolution is better. Higher resolution needs a field-emission
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gun (AE ~0.2—0.5 eV) or a monochromator (AE > 0.1 eV). A widely used
postlens spectrometer is the magnetic-prism spectrometer. The Wien filter is
also described below because of its historical importance and its use as the
monochromator for high-resolution electron energy-loss spectroscopy. A new
trend in analytical microscopy is the use of imaging energy filters, which can
record either energy spectra or energy-filtered images with an energy-selecting
slit in the energy-dispersive plane (Sect. 4.6.3).

4.6.1 Postcolumn Prism Spectrometer

Electron prisms consist of transverse magnetic or electric fields. In a transverse
magnetic field, the radius of the trajectories is proportional to the momentum
(2.13). In a radial electric field, the radius is proportional to the electron
energy. A spectrometer should have a high resolution and a large angle of
acceptance, which means a large entrance aperture o = d/2p, (d: diameter of
the entrance diaphragm, p,: distance PH in Fig. 4.22). The two aims can be
reconciled only by designing the sector field to give additional focusing and by
correcting the second-order aberrations. A point source P will then be imaged
by the spectrometer as a sharp line or image point Q, at which a slit can be
placed in front of an electron detector (Fig. 4.22).

The central beam in a magnetic sector field (Fig. 4.22) is bent into the
form of a circle of radius ro = mv/eB with center C. If the incident and
exit directions are normal to the edges of the sector field with sector angle
¢, focusing occurs for small « (paraxial rays), and the points P, C, and Q
are collinear (Barber’s rule). The distances p, = PH and ¢, = H'Q (focal
lengths) are given by p, = ¢ = ro/tan(¢/2) for a symmetric prism. There is
no focusing of the momentum components in the z direction parallel to the
magnetic field.

Fig. 4.22. Radial focusing property of a 90° magnetic electron prism with second-
order aberration Aya for large .
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Tilting the magnet edge (e # 0) (Fig. 4.23a) has the same effect (in first
order) as adding a quadrupole lens with focal length f = +rgcote for compo-
nents of the momenta in the radial (+) and axial (-) directions, respectively.

The focal lengths are therefore
1 1 1

é 111
o= = = tan§—tane , — =— = —tane.

Pr qr To Pz 4z 7o

(4.30)

So-called double-stigmatic focusing can be obtained if p, = ¢, = p, = ¢, =

ro/ tane and tan(¢/2) = 2tane. For ¢ = 90°, this gives tan ¢ = 0.5 or ¢

26.5° (Fig. 4.23a).
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Focusing in the z direction is not necessary when a slit is used to record a
spectrum. However, the slit has to be aligned and the line focus may be curved.
Double focusing will therefore be advantageous, though complete focusing in
the z direction is not necessary; indeed, a small width in the z direction can
be desirable to avoid damaging the detector.

It has been assumed in the foregoing that the magnetic field terminates
abruptly at the edges (sharp cutoff fringe field, or SCOFF, approximation).
The real fringe fields influence the focal lengths, and the effective prism angle ¢
becomes larger. This can be counteracted by finishing the edge of the magnetic
polepiece plates with a 45° taper and by introducing field clamps, which are
constructed from the same high-permeability material as the polepieces and
placed at half the gap length in front of the prism, with a small hole for the
incident and exit rays (Fig. 4.23a) [4.85, 4.86].

The dispersion Ay/AE is defined as the displacement Ay of electrons with
energy F — AFE in the dispersion plane (Fig. 4.23) and becomes (here p is the
electron momentum)

Ay 4rg Ay  2rg 1+ E/E

Ap  p’ AE  E 1+ E/2Ey’
for a symmetric prism with ¢ = 90°. We find Ay/AE = 1 um/eV for E =
100 keV and 79 = 5 cm.

On increasing a, a second-order angular aberration Ays = Ba? becomes
apparent (Fig. 4.22). This aberration can be corrected in the radial direction
by curving the edges of the magnet (Fig. 4.23b) [4.85, 4.86, 4.87, 4.88]. The
total width As of the zone occupied by the zero-loss electrons in the dispersion
plane is determined by the size of the image of the entrance slit or diaphragm,
which is blurred owing to the energy width of the electron gun, and also by
the second-order aberrations. This width and the dispersion (4.31) limit the
resolution AE, = As/(Ay/AFE). With a thermionic electron gun at 100 keV,
a resolution of 1-2 eV is obtainable.

A magnetic prism spectrometer is normally situated below the viewing
screen of the transmission electron microscope. The lens system can be used
to adapt the different operating modes of TEM to the spectrometer [4.89,
4.90]. Thus, any corrections needed to focus the beam on the exit slit can be
made by means of a pre-spectrometer lens or a quadrupole lens between the
spectrometer and the exit slit. The point source P is formed at the focus of
the last projector lens by the demagnified diffraction pattern or the image of
a selected area if the entrance plane of the spectrometer contains an image or
a diffraction pattern, respectively.

The resolution of a prism spectrometer can be increased by decelerating the
electrons in a retarding field to an energy of the order of 1 keV. Magnetic [4.91,
4.92] and electrostatic prisms are used in this way. Electrostatic prisms consist
of radial electric fields between concentric cylindrical or spherical electrodes.
An electrostatic prism-spectrometer without retardation is described in [4.93].

(4.31)
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4.6.2 Wien Filter

The field strength E of a transverse electric field and the magnetic induction
B of a crossed transverse magnetic field normal to E can be adjusted so that
electrons of velocity v are not deflected. The condition for this is

F=e|lE|=ev|B] — wv=]|E|/|B]. (4.32)

Electrons passing through the filter with other energies are spread out into
a spectrum, or a spectrum is serially recorded by varying one of the field
strengths. This type of filter has the advantage that it is situated on-axis and
there is no overall deflection of the beam. Focusing conditions have to be found
such that the entrance slit is focused on the exit slit. Wien filters with 1 eV
resolution for a commercial transmission electron microscope are described in
[4.94, 4.95].

A deceleration of 10-20 keV electrons to 20-300 eV by an electrostatic re-
tarding lens yields a resolution of 2 meV [4.96]. In order to obtain an energy-
loss spectrum with this resolution in the range AE = 0-10 eV (Fig. 5.7),
the electron beam must be monochromatized by placing a further Wien filter
in front of the specimen. This resolution can be realized for EELS experi-
ments only. A resolution of 80 meV with monochromatizing and analyzing
Wien filters has been realized in a scanning transmission electron micro-
scope [4.97] and a transmission electron microscope [4.98, 4.99]. More recently,
monochromators have been developed, that can be incorporated in a regular
transmission electron micrcoscope without impeding its imaging capabilities
[4.100, 4.101, 4.102].

4.6.3 Imaging Energy Filter

To understand the functioning of an imaging energy filter, we regard the filter
as a black box (Fig. 4.24) with the following properties. In the source plane
SP (focal plane of a projector lens), we find either a demagnified image of the

— — ‘Crossover’ plane

Filter entrance
— 7 "~ plane (FEP)

—————— Energy filter

Achromatic
image plane

__ Energy-dispersive
77772 wZzzzz  plane . . . . .
Fig. 4.24. Schematic action of an imaging

energy filter and its important planes.
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focal plane of the objective lens with the diffraction pattern or a demagnified
image of the selector diaphragm in the intermediate lens. The filter entrance
plane then contains an enlarged image or diffraction pattern, respectively. The
imaging filter produces a 1:1 image in the achromatic image plane (AIP) with
the difference that electrons that have lost energy now pass their image point
with an angular deviation that increases with increasing energy loss. This
means that the image is sharp, apart from the chromatic aberration of the
objective lens, of course. Rays of equal energy loss from different points of the
ATIP intersect in the energy-dispersive plane (EDP) and form an energy-loss
spectrum (EELS). A further projector lens can magnify either the EDP or the
AIP. The former case results in a magnified EELS on the final image plane
and the latter in an energy-filtered image or diffraction pattern when a slit
in the EDP selects an energy window of width A. The final image can be
observed on a fluorescent screen or recorded on a photographic emulsion or
with a CCD camera.

Energy Filtering with a Prism Spectrometer. The 90° magnetic sector
field spectrometer (Sect. 4.6.1) can be used as an energy-dispersive imaging
filter (Fig. 4.25) with the properties shown in Fig. 4.24 [4.103, 10.156, 4.105].
The entrance diaphragm with a diameter of 0.6-5 mm contains a magnified
image or diffraction pattern. The prespectrometer optics permit adjustment
of the beam and compensation for some of the aberrations. The spectrum in

to projector
crossover

ing screen (removable)

entrance aperture

pre-spectrometer optics

magnetic sector

Q1 Q2 quadrupole - detector
sextupole (scintillator
slit imaging unit + CCD-Camera)

Fig. 4.25. Schematic diagram of the imaging-filter system consisting of a mag-
netic sector-field spectrometer and a quadrupole-octopole system for magnifying
the energy-selected image.
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the energy-dispersive plane can be enlarged using a pair of quadrupole lenses
Q1 and Q2 just behind the spectrometer. The slit width for selecting the
energy window can be adjusted piezoelectrically, and the slit system can be
removed pneumatically when parallel recording the energy-loss spectrum. By
introducing a quadrupole-sextupole imaging unit after the slit, it is possible
to work in the electron spectroscopic imaging (ESI) or diffraction (ESD) mode
or the parallel-recorded EELS mode. Electron spectroscopic imaging is real-
ized by selecting the desired energy-loss window with the slit. The system of
quadrupoles and sextupoles behind the slit produces a filtered image on the
CCD array, corrected for the most important aberrations and magnified by a
factor ranging from 8 to 20. One therefore has to operate the microscope itself
with a corresponding reduction of the magnification on the viewing screen.

An advantage of this type of imaging filter is that it can be attached below
conventional microscopes up to 1.25 MeV [4.106].

Castaing—Henry and 2-Filters. Castaing and Henry [4.107, 4.108] com-
bined a retarding-field electrode (electron mirror) and a double magnetic
prism to form an imaging energy filter that can be incorporated in the col-
umn of a transmission electron microscope [4.109, 4.110] between the first
and second projector lenses. The function of such an imaging energy filter
for electron spectroscopic imaging (ESI) and diffraction (ESD) or electron
energy-loss spectroscopy (EELS) can best be understood by considering the
conjugate planes (Fig. 4.26) [4.111, 4.112].

In the ESI mode, the objective lens produces a first diffraction pattern in
its focal plane and a magnified image in the first intermediate image plane. The
primary spot in the diffraction pattern is an image of the crossover. Electrons
scattered through larger angles are absorbed by the objective diaphragm, and
that part of the pattern passing the diaphragm is demagnified by the first
projector system P1 into its focal plane. This “crossover” plane acts as the
source plane (SP) for the energy filter. The plane conjugate to the latter, after
passing the energy filter with 1:1 magnification, is the energy-dispersive plane
(EDP) containing the energy-loss spectrum. The filter entrance plane (FEP)
is conjugate to the achromatic image plane (AIP). Electron spectroscopic
imaging is now realized by magnifying the achromatic image plane with the
second projector P2 onto the final image plane (FIP) and selecting an energy
window of width A = 0.5-50 eV by a slit in the energy-dispersive plane.

In the ESD mode, the objective diaphragm is withdrawn and a selector
diaphragm in the intermediate image plane limits the area contributing to
the “selected-area electron diffraction” (Sect. 8.1.1). P1 produces a conjugate
diffraction pattern in the final image and the achromatic image plane. The
source plane behind the first projector P1 now contains a demagnified image
of the selector diaphragm, which becomes conjugate to the energy-dispersive
plane. Magnifying the achromatic image with the diffraction pattern by P2
and selecting an energy window in the energy-dispersive plane now results in
an energy-filtered diffraction pattern on the final image.
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Fig. 4.26. Castaing—Henry filter between the first and second projector lens systems
of a transmission electron microscope as incorporated in a Zeiss EM902. Conjugate
planes for the electron spectroscopic imaging (ESI) and diffraction (ESD) mode and
the EELS spectrum mode are shown at the right. [4.111].

In the EELS spectrum mode, P2 is more strongly excited to magnify the
energy-loss spectrum in the energy-dispersive plane onto the final image plane
by withdrawing the energy-selecting slit. The energy-loss spectrum can be
recorded either serially, by shifting the spectrum across a slit in front of a
scintillator—photomultiplier combination, or in parallel with a scintillator cou-
pled by a fiber plate to a CCD camera. Because the energy-dispersive plane is
conjugate to the source plane, the observed energy-loss spectrum is convoluted
with the demagnified image of the diffraction pattern (objective diaphragm)
when P1 is excited as in the ESI mode or with the demagnified image of the
selector diaphragm in the ESD mode. Further modes of recording energy-loss
spectra are described in Sect. 10.3.1.

An advantage of incorporating such an imaging energy filter in the TEM
column is that energy-filtered images and the positions of diaphragms and slits
can be observed directly on the fluorescent screen in the final image. However,
the second-order aberration of the Castaing—Henry filter limits the diameter
of the exactly filtered image to about 2-3 cm on the FIP. Furthermore, the
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Castaing—Henry filter is limited to an acceleration voltage of 80-100 kV be-
cause the same voltage is applied to the mirror electrode and breakdown may
occur for higher voltages.

Pure magnetic imaging energy filters have been proposed and built
[4.113, 4.114] in order to extend the technique to higher voltages. Rose
and Plies [4.115, 4.116] proposed the first symmetric magnetic equivalent of
the Castaing-Henry filter, which is called an {2-filter because of the shape
of the trajectories. This filter can be equipped with a system of multipoles
between the magnetic sector fields in order to correct the second-order aber-
ration so that an energy-filtered image can be observed with A = 1 eV over
the whole final screen [4.117, 4.118]. Figure 4.27 shows such a fully corrected
(2-filter with the adjacent lenses in front of and behind the filter, which has
been built at the Fritz-Haber-Institut in Berlin (see [4.119] for an extensive
discussion of the theory and alignment procedures). Uhlemann and Rose

i/.'}\)\/’/ J , i ﬁ

o ———— intermediate lens

~—33 —— diffraction plane

deflection system
sextupole 1
image plane

sextupoles

achromatic
image plane
sextupole 7

energy-selection
plane

transfer lens

Fig. 4.27. Cross section through the sextupole-corrected energy filter of the Fritz-
Haber-Institut (Berlin) and the adjacent lenses located in front of and behind the
filter.
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Fig. 4.28. Schematic diagram of the MANDOLINE filter (by courtesy of E. Essers).

[4.120] proposed to use inclined pole faces in the sector magnet to reduce the
residual aberrations. Such a MANDOLINE filter (Fig. 4.28) has an energy
dispersion of ~10 eV/um at 200 keV. Together with an appropriate set of
multipole elements for correcting aberrations, it is particularly suitable for
200-400 kV microscopes [4.121].

4.6.4 Operating Modes with Energy Filtering

Energy-filtering transmission electron microscopy (EFTEM) can be performed
with a dedicated scanning transmission electron microscope (Sect. 4.5.2), or in
a transmission electron microscope equipped with a postcolumn imaging prism
spectrometer or an in-column imaging energy filter (Sect. 4.6.3). The method
of EFTEM is extensively described in [4.112, 4.122]. A dedicated scanning
transmission electron microscope can scan the specimen pixel by pixel and
store the parallel-recorded EELS (PEELS) signal, whereas an imaging filter
can record two-dimensional images at successively increased energy losses. For
both techniques, an image series at many energy losses occupies about several
tens of Mbytes of computer memory [4.123]. The complete information can
be described as a data cube (Fig. 4.29) with the spatial coordinates  and y
and the energy loss E as the third dimension. Whereas in the scanning trans-
mission electron microscope the information is acquired column by column
(Fig. 4.29a), EFTEM permits detection of the data slice by slice (Fig. 4.29b).
When many energy losses are of interest, it is obvious from this scheme that
a scanning transmission electron microscope can operate with a much lower
irradiation dose, whereas for a large number of image points the EFTEM
technique is less time-consuming.
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Fig. 4.29. The data cube depicting the complete information that can be explored
in different ways. (a) A scanning transmission electron microscope acquires spectra
point by point. (b) In EFTEM, the information is obtained energy slice by energy
slice. (¢) Using an energy filter, one can obtain a spectrum from a line selected in
the image.

Figure 4.30 describes schematically a classification of the different modes

of electron spectroscopic imaging (EST) depending on the selected energy-loss
range and the type of information available [4.111, 4.112, 4.124]:

1.

e

o.
6.

zero-loss filtering to remove the inelastically scattered electrons in images
of amorphous and crystalline specimens

. plasmon-loss imaging for selectively imaging phases with a shift of plas-

mon losses and investigation of the preservation of phase and diffraction
contrast

structure-sensitive contrast for biological sections

contrast tuning of optimum energy window for imaging biological speci-
mens and polymers

elemental distribution images at inner-shell ionization edges
most-probable-loss imaging of amorphous and crystalline specimens

In electron spectroscopic diffraction (ESD), the following modes can be em-
ployed:

1.

zero-loss filtering of whole diffraction patterns of amorphous, polycrys-
talline, and single-crystal specimens

plasmon-loss filtering for analyzing the anisotropy of energy losses
high-energy-loss filtering for the imaging of Compton scattering and the
contributions of inelastically scattered electrons to single-crystal diffrac-
tion patterns
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Fig. 4.30. Imaging modes of electron spectroscopic imaging (ESI) with selected
energy windows at different parts of the electron energy-loss spectrum (EELS).

The following modes of electron energy-loss spectroscopy (EELS) can be used:

1.
2.

ot

EELS image mode with an image at the entrance plane

EELS diffraction mode with a diffraction pattern at the entrance plane;
shifting the pattern across the entrance diaphragm allows energy-loss spec-
tra to be recorded at different scattering angles

angle-resolved EELS of a line through the diffraction pattern selected by
a slit in the filter entrance plane with energy dispersion normal to the slit
(see Fig. 5.13)

time-resolved EELS for recording radiation damage [4.123]

spatially resolved EELS by selecting a line through an image (Fig. 4.29¢)
“Image EELS” by taking a series of ESIs, digitally selecting an area of
interest, and plotting the integrated intensity versus the selected energy-
loss windows

4.7 Image Recording and Electron Detection

4.7.1 Fluorescent Screens

The final image of a transmission electron microscope can be observed on a
fluorescent screen consisting of ZnS or ZnS/CdS powder, which is excited by
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cathodoluminescence. The color can be varied by adding small concentrations
of activator atoms, such as Cu or Mn. The maximum emission is normally in
the green (550 nm), where the sensitivity of the human eye is at a maximum.

The light intensity of a fluorescent screen is proportional to the incident
electron current density j, usually measured in A m~2. For constant j, the
intensity might be expected to increase in proportion to the electron energy
because more light quanta are generated by high-energy electrons. In fact, a
slower rate of increase is observed owing to the increasing depth of genera-
tion and the subsequent absorption and scattering of the light quanta. The
light-generating efficiency likewise decreases when the electron range exceeds
the thickness of the fluorescent layer; this can be a problem in high-voltage
electron microscopy [4.125].

The decay of intensity with time proceeds in two stages: A fast decrease
with a time constant of the order of 107° —1072 s is followed by an afterglow of
the order of seconds. For a faster response, in STEM for example, fluorescent
materials with time constants less than 1 us are needed (Sect. 4.7.6).

4.7.2 Photographic Emulsions

Photographic emulsions are directly exposed to the electrons inside the micro-
scope vacuum. The gelatin of the emulsion contains a considerable amount
of water, and it is necessary to dehydrate the photographic material in a
desiccator at 1 Pa and to load the microscope camera as quickly as possible
4.126].

The basic processes that occur in the exposure of photographic emulsions
to electrons will now be discussed; for more details, see [4.127, 4.128, 4.129,
4.130, 4.131, 4.132]. The ionization probability of electrons is so large that
each silver halide particle penetrated is rendered developable and can be re-
duced to a silver grain. High-energy electrons in the MeV range can probably
penetrate some particles without ionization. For light, on the contrary, several
quanta have to be absorbed in a single particle for it to be made developable.
Therefore, unlike light exposure, there is no illumination threshold for expo-
sure to electrons.

The following laws for the photographic density D can be derived with
this exposure mechanism. The density D of a developed emulsion is defined
as the logarithm of the ratio of the light transmission Ly of an unexposed part
and that of an exposed region (L):

D =1log,,(Lo/L). (4.33)

A saturation density Dy, is reached when all of the grains are developed.
Owing to the statistical nature of silver-grain production, the density D of
an unsaturated emulsion exposed to a charge density J = j7 = en in units
C m~2 [j: current density (A m~2), 7: exposure time, n: number of incident
electrons per unit area] will be given by

D = Dpax (1 — 7). (4.34)
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The validity of this law means that a long exposure with low j produces the
same density as a short exposure with high j if the product j7 is constant. This
law of reciprocity is not true for light exposure. For the latter, the relation
can be expressed in terms of the Schwarzschild exponent k, different from
unity, equal densities being obtained for j7" = const. All experiments show
that K = 1 for exposure to electrons. However, for some emulsions, the results
depend on the delay between exposure and development [4.133].
For small values of .J, equation (4.34) leads to the proportionality

D = cDpaxJ = €J, (4.35)
where € is known as the sensitivity. This is valid for D < 0.2D,.x, which
means, in practice, D < 0.6 — 1.5 (Fig. 4.31a).

If N grains are developed per unit area with a mean projected area @, the
density D can be written for small J as

D = 0.46Na = 0.46 pJa/e, (4.36)

where p denotes the number of particles exposed by one electron. This gives
for the sensitivity

e =0.46 pa/e. (4.37)

The mean number of particles exposed depends on the electron energy and the
following parameters of the emulsion: quantity of silver per unit area (0.4-0.6
mg cm~2), mean density p = 1 — 2 g cm ™3, thickness of emulsion ¢ = 1-50
pm, and grain diameter (0.5-2 pm). The electron energy and the mean density
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Fig. 4.31. (a) Density curves for a photographic emulsion exposed to 60 keV elec-
trons (full lines) and to light (dashed lines) for the developing times indicated. (b)
Double logarithmic plot for various values of v = dD/d(logioJ) at D = 1.
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determine the electron range R, which lies between 75 and 120 pum for 100
keV electrons. The sensitivity increases as E increases if R < t and decreases
if R > t because the ionization probability per unit path length of an electron
trajectory decreases with increasing energy. Photoemulsions therefore exhibit
decreasing sensitivity with increasing energy in HVEM.

It is usual to plot D versus log1gJ (Fig. 4.31b). This curve has a straight
part with slope v for medium densities. This slope is used to characterize the
photographic emulsion because high values of v correspond to high-contrast
recording. A relative variation of current density Aj/j or charge density AJ/.J
produces a relative variation of light transmission AL/L = —yA.J/J. During
exposure to light, the value of « can be high even at low density owing to the
existence of a threshold (see exposure to light with dotted lines in Fig. 4.31a).
Because the density curve for electron exposure does not show a threshold,
~ cannot increase beyond a certain limit. The proportionality (4.35) can be
written as

D =eJ=el0"807, (4.38)

and the maximum possible slope 7 is given by

dD

= Y In10-10%807 = 2.3D. 4.39
7= dllogy ) (4.39)

With electron exposure, it is therefore impossible to obtain a value of -y greater
than 2.3 for a density of unity. v can increase as long as the density increases
with J. No further increase is observed when D approaches the saturation
value Dyax. A further increase of contrast can be obtained by a suitable
choice of the photographic material used for printing the micrograph.

The resolution of an emulsion is limited by two effects: the diameter of the
electron-diffusion cloud and the granularity of the emulsion. When exposed
to light, a halo is formed by scattering at the silver halide grains, the radius
of which depends on the grain size. The diffusion halo in electron exposure
depends only on electron energy and the mean density of the emulsion. If a
slit of width d is illuminated with unit intensity, a density distribution (edge
spread function)

S(z) = ﬁlofﬂxl/l’k (4.40)
Tk

(d < xx) is obtained [4.128]. The quantity zy, typically 30-50 pm, is the
width over which the intensity falls to 10% of the central value. Figure 4.32a
shows the intensity recorded by an emulsion for which xx = 50pum exposed to
a slit of width d = 10um.

Suppose now that the density varies periodically with a spacing corre-
sponding to a spatial frequency ¢ = 1/A : D = Dy + AD cos(2mqz). This
function has to be convoluted with S(z), which results in a decrease of the
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Fig. 4.32. (a) Edge-spread function and (b) contrast-transfer function C(q) repre-
senting electron diffusion in the photographic emulsion.

density amplitude from AD to AD’. The contrast-transfer function,

AD’ TqIY 2 - 1
Cla) = -1 ( ) - 4.41
(@) =35 { o } 1+ (1.36q72 )2 (441)
is plotted in Fig. 4.32b.
The granularity can be considered in the following manner. The number
p of neighboring developed grains is greater when an electron passes through
the emulsion than when it is stopped by it. Depending on the grain size, the
thickness of the emulsion, and the electron energy, p lies between 6 and 50.
For light (p = 1), the mean-square deviation of the density with a photometric
slit of area A is
— 1 a
AD? = ——D. 4.42
L7234 (4.42)

An emulsion exposed to a homogeneous current density j appears more gran-
ular than one exposed to light because, during electron exposure, clusters of
neighboring silver grains are rendered developable by single electrons. The
observed mean-square deviation AD% will lie between the limits

AD? < AD% < (p+1)AD3. (4.43)

In order to detect a periodicity, the amplitude AD’, already decreased by
electron diffusion, must be approximately five times greater than the noise,

AD' > 5\/ ADZ,. (4.44)

Furthermore, the shot noise caused by the statistical variation AN = N'/2 of
the number

N=ns?= %52 (4.45)

of electrons incident on a small area 62 (§: resolution of the emulsion) must
be less than the noise caused by granularity. The necessary charge density
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g7 for a density D = 1 in Fig. 4.31a is of the order of 10~ C cm~2. For a
resolution ¢ of 30 pm, this results in NV = 350 electrons and a noise-to-signal
ratio AN/N = N —1/2 = 4%. The human eye can detect relative intensity
variations of the order of 5%. This means that the sensitivity of photographic
emulsions to electron exposure is of just the right order, and emulsions are
optimum for the recording of electron micrographs. A film size of A =6 x 9
cm? contains A/§? = 6 x 10° image points, which corresponds to a very high

storage capability.

4.7.3 Imaging Plate

The imaging plate (IP) was first developed for x-ray radiography to have a
higher sensitivity and better image quality than conventional x-ray films. The
IP is also an interesting image recording system for TEM [4.134, 4.135, 4.136].
The IP is a flexible sheet with a thickness of 0.3-0.5 mm that is composed
of a transparent protective layer, a phosphor layer (50-100 pm thick), and a
plastic support. The main part is the photostimulatable phosphor BaFX:Eu
(X = Cl, Br, I). The phosphor, with a grain size of ~5 um, is spread over the
plastic support together with an organic binder. The IP is directly exposed
to electrons in the vacuum in the same way as for photographic emulsions.
Part of the electron energy dissipated is stored in luminescence centers. When
such an exposed IP is scanned in air with a small spot of He-Ne laser light,
the stored energy is emitted as blue light with an emission maximum at A =
390 nm; the reading time is about 1000 s. About 100 photons are generated
by a single electron. The emitted light is detected by a photomultiplier. This
allows a digitized image with 3760 x 3000 pixels to be recorded directly with
a reading pixel size of 25-50 pum and 2% grey levels (14 bits). The image can
equally well be printed directly on photographic printing paper. The dissipated
energy remaining in the phosphor is erased by irradiating it with light, so that
the plate is reusable.
The IP has a total reading range of charge density from 2 x 1070 to
2 x 107% C/m?; the sensitivity is about three orders of magnitude higher than
for a Fuji FG film, which needs 5 x 10~7 C/m? for a density S = 1 when
irradiated with 200 keV electrons. The thickness of the phosphor layer is such
that the sensitivity is approximately constant over the range 100-400 keV.
The contrast-transfer function C(q) of an IP with a 50 pm layer falls to
50% at A =1/q ~ 200 pm compared with ~60 ym for a 50 pum photographic
emulsion (Fig. 4.32b). The resolution can be increased by decreasing the thick-
ness of the phosphor layer, but this will of course also decrease the sensitivity.
The high dynamic range allows both the central and the outer parts of
diffraction patterns to be recorded under conditions in which the central region
would be overexposed on a photographic emulsion.
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4.7.4 Detector Noise and Detection Quantum Efficiency

Not only do the primary electrons show shot noise, which means that the
number of electrons hitting a detector during a given pixel time is statistically
distributed, but the statistics also increase the noise in the different steps
of the detector system; the signal-to-noise ratio SNRyy¢ behind the detector
system is lower than SNR;,. The squared ratio of these is called the detection
quantum efficiency,
2

SNRO;t <1 (4.46)
SNRi,
It will be unity for an ideal detector that produces no further noise. The choice
of definition of this quantity for electronics is historical; the square, not very
intuitive for particle detectors, is associated with the power spectrum of noise.

For the calculation of the DQE, we have to evaluate the variances in the
different steps. We assume that one particle (electron or photon) can randomly
generate ¢ = 0, 1, 2, ... particles in the subsequent step with a probability
P, (i), where Y P, (i) = 1. The mean yield of this step will be

K3

DQE =

z =Y iP,(i), (4.47)

K3
and the variance of x, which is the square of the standard deviation o, becomes

var(z) = 0% = 3 (i — @) = Y i* Pu(i) — 20 3P (i) +a® 3 Po(i)

3 7
—— ———
=T =1

= Y i?Pu(i) — 2”. (4.48)

Whereas P, () has been introduced as the probability that one incident parti-
cle generates i particles, the probability P,(n, ) is defined to be the probability
that n incident particles will result in a total number ¢ of particles:

Py(n,i) =3 Po(j)Pu(n — 1,0 — j). (4.49)

P, (i) is called a binomial or binary distribution if only the values i = 0,
1 are possible. This means that the particles are either absorbed (i = 0) or
transmitted, backscattered or ejected (i = 1), and

P,(0)=1—u, P,(1) =z, (4.50)
with the mean yield z and the variance

var(z) = z(1 — x). (4.51)
For a binomial distribution, the relation (4.49) gives

n!

el ) = 56—y

(1 — )" (4.52)
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with a mean yield y = nz and the variance
var(nz) = nz(1 — x). (4.53)

For example, P,(2,0) = (1 — 2)?, Py(2,1) = 22(1 — z), Py(2,2) = 2%
The binomial distribution degenerates to a Poisson distribution for y = nxz
if r < 1 and n is very large:

P,(i) = %e_y, var(y) = y. (4.54)

The following equations are relevant to the statistics of cascade processes. If
one particle generates ¢ particles in the first stage with a probability Py (%),
and if these i particles enter the second stage and generate j particles with
a probability P,o(,j) per incident particle, then the probability P, (k) of
generating k particles in the second stage per incident particle in the first
stage is given by

Py(k) = 3= P (i) Pya(i, k) (4.55)

with mean yield y and variance
Y = x129, var(y) = var(x1)z3 4+ x1var(x). (4.56)

For m statistical processes, the cascade has the mean yield y = z122 ... 2,
and variance

var(xri var(ra var(T,
Var(y):yg( (2 )—l— (2)—1—... (m) 2). (4.57)
e T1xy T1T2 e Tn—1T7,

A cascade of two binomial distributions again results in a binomial distri-
bution with y = z122 and var(y) = y(1 — y). If a Poisson distribution with
mean value x is followed by a binomial distribution, we get a Poisson distri-
bution with y = 129 and var(y) = x. However, two Poisson distributions in
cascade do not result in a Poisson distribution.

We first apply these general laws to the statistics of the primary electrons.
The mean number of incident electrons per pixel is

N = I,7/e. (4.58)

The shot noise, may be analyzed by the following argument. The time 7 for
one pixel can be divided into a large number n of time intervals, so that the
probability x of observing one electron in one of these time intervals is much
less than unity and the probability of observing more than one electron per
time interval is negligible. We then expect the mean value of the number
of electrons y in the time interval 7 to follow a Poisson distribution (4.54),
y=nz = N and var(N) = N.

The electron current consists of pulses of charge e and can be Fourier
analyzed, from which we obtain the rms current of the a.c. or noise component

In,rms = \/E =\ 2€Af[p; (459)
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where Af is the bandwidth of the detection system. Furthermore, (4.58) gives
the noise amplitude

In,rms = E V var(N) = E\/N = elp/T (460)
T T

of the primary current, and the last two equations become identical for 7 =
1/(2Af). The signal-to-noise ratio of the primary electrons will be SNR;, in
(4.46):

SNRin = Ip/Inms = N/y/var(N) = VN = /1, /2eAf. (4.61)

These laws of statistics are used below to calculate the DQE of scintillators
coupled by a fiber plate to a CCD.

4.7.5 Low-Light-Level and Charge-Coupled-Device
(CCD) Cameras

For digital image processing and for electron microscope alignment (Sect.
2.4.3), it is of interest to record two-dimensional arrays of pixels directly,
avoiding the darkroom work required for photographic emulsions or the read-
out for imaging plates. In the first attempts, the image on a fluorescent screen
was captured by a low-light-level TV camera. Several commercial TV tubes
were tested and employed for electron microscopy; see [4.137] for a comparison
of their sensitivities and DQEs. Of these, it was the SIT camera (silicon inten-
sifier target) that was mainly used. However, CCD cameras have come into
increasingly widespread use; see [4.138] for a comparison of a frame-transfer
CCD and a SIT camera.

A CCD image sensor consists of an array of 10242 to 40962 silicon-based
photodiodes (pixels), each typically about 20 x 20 um?. Absorbed light quanta
generate electron-hole pairs, which are separated in the depletion layer of
the diodes, and the electrons are accumulated in the potential wells of the
diodes during storage. By applying sequences of different biases to neighbor-
ing diodes, the charges can be transferred to a serial shift register, after which
a built-in amplifier and ADC transfers the signal to an external buffer store.
Charge-coupled devices in light-optical TV cameras can be read at TV fre-
quency, but the read-out (accumulation) time can be varied and increased to
100 s when the CCD is cooled to —30°C using a Peltier element. This de-
creases the background dark current of the diodes and considerably increases
the signal-to-noise ratio.

The CCD cannot be irradiated with electrons directly owing to the genera-
tion of defects, which cause a long-time fading of the sensitivity. Furthermore,
the large number of electron-hole pairs created by each incident electron would
limit the number of recordable electrons per diode to only about a hundred.
The electrons are therefore converted to photons in a thin scintillator (powder
layer or YAG single crystal with a thickness of 50 ym) and transferred through
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Fig. 4.33. (a) Tandem optics and (b) fiber plate for coupling the light excited in a
fluorescent layer to a charge-coupled device (CCD).

a fiber plate with fiber diameters of 6 pm or a light-optical tandem objective
to the CCD array (Fig. 4.33) [4.138, 4.139, 4.140, 4.141, 4.142, 4.143, 4.144].

The fiber-plate coupling has the advantage of better light-collection ef-
ficiency. A disadvantage is the honeycomb pattern, which can be seen as a
Moiré pattern between the gratings of the diodes and fibers. Digital gain nor-
malization of the recorded signal is hence necessary using an “image” recorded
without any specimen with a uniform incident current density.

The light-collection efficiency and the DQE are less good with light-optical
coupling. Otherwise, it has the advantages that the optics and cooled CCD
are outside the microscope, there is no honeycomb structure, and only some
shading from the center to the corner. It can be used for HVEM [4.145, 4.146],
although the transparency of the fiber plate decreases because of formation
of color centers. Also, the generation of bright spots excited by x-rays in the
CCD can be reduced.

With n = j/e incident electrons per unit area and N = nd? per diode area
d?, the three different conversion stages (scintillator, fiber plate, and CCD)
result in the mean value

E
N. = Nne = Ne—— optTlccD (4.62)
ph S—_——
W—/ 7’]
Tph

of stored electrons per diode, where, for example,

E = (1 —1n.)E : energy dissipated in phosphor,

Ne =~ 0.1 : energy fraction lost by backscattering,
e =5% : energy conversion coefficient,
E,n =2.21eV  : mean photon energy,
Nopt = 0.06 : optical efficiency of the fiber plate,
ncep = 35% : quantum efficiency of the CCD.

This results in a mean number np,, ~ 2000 of emitted photons and
ne ~ 40 accumulated electrons in the CCD per incident 100 keV electron on
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the phosphor layer. The saturation charge (full-well capacity) is ~ 2.5 x 10°
e-/pixel, which means 5000 incident electrons can be recorded per pixel. This
is far superior to a photographic emulsion and provides a dynamic range of
12 bits.
Application of (4.57) to (4.62) results in
var(Ne)  var(N)  var(nph)

)
SNRZ , = = + + 77( : (4.63)
¢ N2 N? Nn2,  Nnpunp?

The third term is the variance of a binomial distribution (4.51), and the first
term (Poisson distribution) becomes 1/N (4.54). Using the definition (4.46)
of the DQE, (4.63), and (4.61) results in [4.142]

-1
1y 1A

DQE — |14 Y2rlmen) 1o 1 A (4.64)
Non Ne N n?

The last term is included to represent the readout noise with An, = 20e.
When the values above are inserted, the last two terms in (4.64) are very
small so long as n. > 1; the DQE is then determined by var(n,y), which can
be calculated from a measured or Monte Carlo simulated pulse-height distri-
bution (Fig. 4.34a). With increasing electron energy FE, the maxima of the
distribution are broadened and shift to higher pulse heights. However, when
the electrons penetrate the phosphor, the maxima decrease strongly and a new
maximum appears at low pulse heights caused by electrons backscattered at
the fiber plate. This results in the decrease of the DQE with increasing E
shown in Fig. 4.34b for different thicknesses ¢ of the single-crystal YAG disc.

As in Fig. 4.32 for a photographic emulsion, an edge- or point-spread
function can be measured for a CCD (Fig. 4.34c); this shows that the signal
is spread over more than one pixel as a consequence of electron diffusion and
light scattering in the phosphor.

The relation between the point-spread function p(x, y) and the edge-spread
function e(z,y) can easily be deduced from the equation

gz, y) = [ f(@' 9" )p(z — 2’y —y')da'dy’ (4.65)

for the image intensity g(z,y) for an object described by the transmission
function f(x,y). For a small slit, the transmission function is given by

flz,y) = 0(x), (4.66)
yielding the line-spread function

Wz)= [ 0" )p(x —a',y —y)da'dy’ = [ p(z,y)dy". (4.67)
Correspondingly, for a sharp edge, we insert the transmission function

1 forx >0

fla,y) = {O otherwise (4.68)



4.7 Image Recording and Electron Detection 137

3600 T T T T 1.0 T T T T T T [ T T T T
3200f 300 kev YAG I __ _ Bockscattering limit 1
- t=50pum ] .
2800} ] 08 1
- 5 k -1 4
200k 250 keV ] L
000 . 08T ]
1600 |- 1 5 T t=100pum 9
C 150 keV 1 841 i
1200 - 4
- 4 I ® Measurement 70 um 1
800 |- - 06 — MC -simulation B
r 200 keV B 2
400 J | 50 um
0 - 0.5 | I SR | 0pm | |
0 100 200 300 400 S00 600 o 50 100 150 200 250 200 350 400
a) Pulse height {photons) b) Electron energy {keV)

10T T T T 71T

T T T T T 17 13

[—— 100 kV {MC)
0.8 |--=-300kViIMCI
® 100kVimeas.} /
I a 300kV(mecs.)ll

NA= 1.0

0.6 a
L - E
g

0.4 “

- N -

02t / s .

L % NA .
A o . ~ .
0.0 il (A WO S S B —l & o
-150 -120 -80 -60 -30 O 30 60 S0 120 SO
c) nm

Fig. 4.34. (a) Pulse-height distribution of a 50 ym YAG single crystal irradiated
with different electron energies, (b) the DQE calculated from the measured pulse-
height distribution and Monte Carlo simulations as a function of electron energy
and different thicknesses ¢ of the YAG single crystal, and (c) point-spread function
of the CCD for 100 and 300 keV electrons [4.142].

and obtain
e(z f fpa;—ac y—y)dx'dy’ = fl (4.69)
x'=0—
The last identity shows that the line-spread function can be obtained from
the edge-spread function by a simple differentiation,

d
l(x) = ae(x) (4.70)
Alternatively, the transfer properties of the camera can be described by a
modulation transfer function defined by
= [ p(r)e*™ " d*r. (4.71)

Assuming rotational symmetry, we obtain

oo 27
f f p qur cos Sod(p?“d’f‘ — o f p Jo(27rqr)7‘d7" (472)
=0 ¢=0
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The modulation transfer function can also be obtained from the line-spread
function via

M(q) = _Of ()€™ 9% . (4.73)

In practice, one often measures the edge-spread function, from which the other
functions can be easily obtained.

4.7.6 Semiconductor and Scintillation Detectors

The following detectors can be used for the recording of signals in STEM or
for sequentially recording electron energy-loss spectra or diffraction patterns,
for example.

Semiconductor Detector. This type of detector consists of a p-n junction
diode below a conductive surface layer; optimally the thickness of the depletion
layer should be of the order of the electron range R. High-energy electrons
of energy E create n = E/FE; electron-hole pairs. The mean energy E; for
creating one pair is 3.6 €V in silicon. The electron-hole pairs created in the
depletion layer are separated and produce a charge-collection current

ICC = Ip(l — nc)fﬁc7 (474)

where 7. takes into account the loss of ionization by backscattering, which is
only of the order of 10% for silicon; Ey, = 1-5 keV is the threshold energy for
the incident electrons arising from absorption in an evaporated gold contact
layer and/or from an increased surface recombination rate (dead layer); and
€. is the charge-collection efficiency of the depletion layer.

Because of the relatively large capacitance of the depletion layer, a low-
impedance current amplifier has to be used to convert I.. to a video voltage
of a few hundred meV. The time constant 79 = RC' decreases with decreasing
arca of the depletion layer and increasing current I,. The capacitance and
the background noise can be further decreased by employing reverse biasing
of the p-n junction. Currents of 107! A can be recorded in about 1075 s,
which corresponds to a cutoff frequency of 100 kHz of the video signal. By
decreasing C', it is possible to observe backscattered electrons at TV scan rates
[4.147, 4.148]. With the high electron energies used in TEM, single-electron
counting is also possible when the single pulses are higher than a threshold
that exceeds the noise level.

Scintillation Detector. Scintillator materials emit light quanta (photons)
under electron bombardment. Zinc sulfide (ZnS), which is used for fluorescent
screens in TEM, has a high efficiency, but its light-intensity decay time is of
the order of one millisecond and the afterglow persists for several seconds;
it therefore cannot be used for fast recording. Plastic scintillators (NE102A
of Nuclear Enterprises Ltd., for example), P-47 powder, or single crystals
(yttrium silicate doped with 1% cerium) have become standard scintillator
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materials for TEM, STEM, and SEM because their time constants are of the
order of 1078 s and their efficiency is not worse than one-tenth that of ZnS.

A conductive and light-absorbing Al coating about 100 nm thick is evap-
orated on plastic scintillators. The light emission decreases with increasing
irradiation time owing to radiation damage of the organic material. However,
the thin damaged layer can be removed by polishing. P-47 powder layers ex-
hibit a much longer radiation resistance. Methods of preparing P-47 layers
with optimum thickness are reported in [4.149, 4.150]. Single-crystal scintilla-
tors consisting of cerium-doped yttrium aluminum garnet (YAG) can be used
for the detection of transmitted and backscattered electrons in STEM [4.151]
and as thin polished slices in front of fiber plates connected to a CCD.

The photons emitted are collected by a light pipe in front of the photo-
multiplier, which reflects the light by total reflection with a transmission 7'
The photons are converted to photoelectrons at the photocathode of the mul-
tiplier with a quantum efficiency ¢. that is between 5% and 20%. The pho-
toelectrons are accelerated by a potential of about +100 V to an electrode of
high secondary-electron yield dpy; = 8-15. The total gain of the multiplier is
obtained by successive acceleration and secondary-electron emission at n =
8-10 electrodes (dynodes), resulting in a total gain gpm = dpy;. The pulse of
gpm electrons or the current induced by a higher rate of incident electrons
causes a voltage drop U across a resistor R = 100 k{2, which can be amplified
by operational amplifiers. For an incident probe current I, and a detector
collection efficiency f, which depends on the signal generated (transmitted,
secondary, or backscattered electrons) and on the solid angle of collection, the
signal is

U= prichégMR7 (4.75)
Eon
where Eiph denotes the mean energy needed to produce one photon in the
scintillator. Such a scintillator—photomultiplier combination can be operated
with a large bandwidth Af, up to some MHz, and low noise. It is possible
to achieve an rms noise amplitude that is only a factor of 1-2 larger than
the shot noise., The latter is the noise amplitude (4.59) associated with an
electron current I, caused by statistical fluctuations of the number of electrons
incident during equal sampling times.

4.7.7 Faraday Cages

Direct measurement of electron currents is of interest for determination of
electron-current densities and electron-beam currents. Quantitative measure-
ments require a Faraday cage, which consists of a grounded shield that con-
tains a hole somewhat smaller than that of the inner cage (Fig. 4.35). The
hole has to be small enough to ensure that the solid angle of escape for elec-
trons backscattered at the bottom of the cage is negligible. The backscattering
coefficient of the bottom material must be low (n = 6% for carbon and 13%
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Fig. 4.35. Construction and input circuit of a Faraday cage for measuring electron
currents.

for Al). Furthermore, the secondary electrons produced at the inner walls of
the cage must remain inside the cage. The low currents can be measured with
a commercial electrometer, which makes use of the voltage drop U = RI
of the order of 1mV to 1V across a high resistance R = 105 — 10'°02. A
low-impedance output signal can be obtained by using a field-effect transistor
(FET) or a vibrating-reed electrometer. The high resistance R and the by no
means negligible capacitance C' of the cage, the cables, and the electrometer
input result in a time constant 79 = RC, which may reach a few seconds for
very small currents. A Faraday cage therefore cannot be used to record fast
variations of low electron currents.

Some microscopes are equipped with an insulated fluorescent screen to
measure the incident current for an automatic exposure system. This cannot
be used for quantitative measurements because the large backscattered frac-
tion of the electrons travel like bouncing balls through the chamber and an
unknown fraction hit the screen again.
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Electron—Specimen Interactions

The elastic scattering of electrons by the Coulomb potential of a nucleus is the
most important of the interactions that contribute to image contrast. Cross
sections and mean-free-path lengths are used to describe the scattering process
quantitatively. A knowledge of the screening of the Coulomb potential of the
nuclei by the atomic electrons is important when calculating the differential
cross sections at small scattering angles.

The inelastic scattering is concentrated within smaller scattering angles,
and the excitation of energy states results in energy losses. The dominant
mechanisms are plasmon and interband excitations, which can be described
by the dielectric theory. These inelastic scattering processes are less localized
than elastic scattering and cannot contribute to high resolution. Inner-shell
ionizations result in edge-shaped structures in the electron energy-loss spec-
trum (EELS), on which are superposed a near-edge structure (ELNES) and
an extended energy-loss fine structure (EXELFS), which can be used for an-
alytical electron microscopy at high spatial resolution.

Even quite thin specimen layers, of the order of a few nanometers, do
not show the angular or energy-loss distribution corresponding to a single
scattering process. Multiple-scattering effects have to be considered as the
specimen thickness is increased, and this can also result in electron-probe
broadening.

5.1 Elastic Scattering

5.1.1 Cross Section and Mean Free Path

The most convenient quantity for characterizing the angular distribution of
scattered particles is the differential cross section, which is introduced in
Fig. 5.1a using the Coulomb model for the scattering of an electron by a
nucleus. The electrons travel on hyperbolic trajectories due to the attractive
Coulomb force (3.15) between the electron and the nucleus. If there were no
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Fig. 5.1. (a) Elastic electron scattering in the particle model and explanation of
the differential cross section do/df2 (a: impact parameter). (b) Scattering in the
wave model with the superposition of a plane incident wave of wave number ko and
a spherical scattered wave of amplitude f(0), depending on the scattering angle 6.

interaction between them, the electron would travel straight past the nucleus;
the shortest distance between them, the impact parameter, is denoted by a.
Increasing a decreases the scattering angle 0. Electrons that pass through an
element of area do of the parallel incident beam will be scattered into a cone
of solid angle df2. The ratio do/d{2 is known as the differential cross section
and is a function of the scattering angle 6.

This cross section do/d{2 cannot be calculated exactly from the classical
particle model; quantum mechanics has to be used (Sect. 5.1.3) [3.1, 3.2,
3.3, 5.1]. Far from the nucleus, the total wave field can be expressed as the
superposition of the undisturbed plane incident wave of amplitude ¥ = g
exp(27ikoz) and a spherical scattered wave of amplitude

e27r1kr

depending on the scattering angle 6 (Fig. 5.1b).

The current density jo = eNv of a parallel beam has been introduced in
(3.9); Nw is the flux of particles that pass through a unit area per unit time.
Scattering into the solid angle d{2 is observed when the electron hits the
fraction do of the unit area. The scattered current d/s. that passes through
the area dS = r2 df2 will be

r

. . Lo . . jo do
dlse = ]sc7‘2d-Q = jodo, which implies js. = %E )

Substituting the scattered-wave amplitude 9. (5.1) in the quantum-mecha-
nical expression for the current density (3.10) yields

SOF _ L fOF, (5.3)

r2 r2

(5.2)

jsc = 671\1/)0|2

Comparing (5.2) and (5.3), we find

do 2
2=l (549)
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The total number of scattered electrons can be calculated by dividing the
corresponding solid angle into small segments df2 = 27 sin 0 d6 (Fig. 5.1b)
and integrating over 6 from 0 to 7. This gives the total elastic cross section

Oel = { j—?) 27 sin 6d6. (5.5)

This quantity can be used to calculate the number of unscattered electrons,
for example. Whether or not scattering occurs is determined by the total
(elastic and inelastic) cross section oy = el + Oinel (Tinel is the total inelastic
cross section, Sect. 5.2.2).

Suppose that n unscattered electrons are incident on a thin layer of a solid
film with a mass thickness dz = pdz in units g cm™2. There will be Npdz
atoms per unit area in a layer of thickness dz with N = N /A atoms per gram
(N4 is Avogadro’s number and A the atomic weight). Scattering occurs when
the electrons hit a small area o in the vicinity of each atom. A scattering
event will be recorded when the electrons strike a fraction Noidx of the unit
area, and a fraction

d
N _Nodz (5.6)

n

will be scattered in the layer of thickness dz. The negative sign indicates that
n is decreased by scattering.
Integrating (5.6), we find

Inn = —Noyz + Innyg, (5.7)

where the constant of integration, In ng, is determined by the initial number
n = ng of incident electrons per unit area at x = 0. This shows that the
number of unscattered electrons decreases exponentially with increasing mass
thickness,

n = ngexp(—Nowx) = ngexp(—z/x). (5.8)
The lengths
xy = pAy =1/Noy and Ay = a4 /p (5.9)

are both known as the total mean-free-path length (in units g cm~2 and cm,
respectively) between scattering events.

5.1.2 Energy Transfer in an Electron—Nucleus Collision

An elastic collision is defined as a collision in which the total kinetic energy and
momentum are conserved. The laws of conservation of energy and momentum
before and after the collision can be written without any detailed knowledge
of the interaction process between the particles. We characterize quantities
after the collision by a dash and those of the nucleus by the suffix n. From
Fig. 5.2, the conservation of momentum can be expressed as
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* Fig. 5.2. Conservation of momentum in elastic scattering.
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p = p' cosf + pl, cos
p=p +p,= (5.10)
0 = p'sinf — p/, sine,
and the conservation of kinetic energy requires that
E=FE +E. (5.11)

Equation (2.11) has to be used for the relativistic momentum of the elec-
tron, whereas the nonrelativistic formula

P, = (2ME,)" (5.12)

can be used for the momentum of the nucleus because its rest mass M = Am,,
is very large (mp: atomic mass unit). Solving the lower equation in (5.10) for
siny and (5.11) for E’ and substituting these quantities in the upper equation
in (5.10), we obtain

1 1
~[E(E 4 2E)]"? = = [(E — E.)(E — E, + 2F()]"/? cos 0
C C

(B~ B)(E— By +2E) 5 ]
IME, sin 9)} .
The energy transfer E! to the nucleus will be small compared with E, so
E — E/ ~ E. Transferring the first term on the right-hand side of (5.13) to
the left-hand side, squaring the equation, and using the relation 1 — cosf =
2 sin?(0/2), we find
_2B(E+2E) . ,0 FEE+1.02)  ,0
T M M 2T T aea Mo
with E!| E, and Fy in MeV.
From the conservation of energy (5.11), this energy E! transferred to the
nucleus must be equal to the energy loss AFE of the primary electron. Table 5.1
shows typical values of E!. This energy loss is negligible for small scattering

+ {ZME; (1 - (5.13)

E/ (5.14)
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Table 5.1. Energy transfer E} to a nucleus, which is equal to the energy loss AE
of the primary electron of energy F in an elastic scattering process with a scattering
angle 0 for 100 keV and 1 MeV electrons.

E 100 keV 1 MeV
C Cu Au C Cu Au

0 (A=12) (A=63.5) (A=197)
0.5° 0.5 meV 0.1 meV 0.03 meV 9 meV 1.7 meV 0.54 meV
10°  0.15 eV 29 meV 9 meV 2.7 eV 0.5 eV 0.17 eV
90° 10 eV 1.9 eV 0.6 eV 179 eV 34 eV 11 eV
180° 20 eV 3.8 eV 1.2 eV 359 eV 68 eV 22 eV

10716, Fig. 5.3. Comparison of total cross

sections o for elastic scattering (ger),
inelastic scattering (oine1), K-shell
ionization (o), backscattering into
angles 0 > m/2 (0,/2), and an
atomic displacement with a displace-
ment energy Eq = 20 eV (0q) as

& functions of electron energy E.
{ ~

~
T oN— /Pt ~
10 ™™ ~ 6(m/2)

/ﬁ c/
Ec /Be 64 \/Zu /Au
10'24 \ . \‘, \‘ .

002 005 01 02 05 1iMeV2

E —

angles owing to the presence of the factor sin?(6/2). Therefore, in elastic
electron-nucleus small-angle scattering, we can say that effectively no energy
is lost by the primary electron, though very small energy losses of the order
of meV are possible in solids by electron—phonon scattering (Sect. 5.2.1).
However, the energy losses are not negligible for higher electron energies
and scattering angles. If the energy transfer E! is greater than the displace-
ment energy E4q ~ 10-30 eV, nuclei can be displaced from their lattice points
to interstitial sites, resulting in radiation damage, which has to be considered
in high-voltage electron microscopy (Sect. 11.3.2). Carbon atoms can also be
knocked out of organic compounds by this direct transfer of momentum. How-
ever, the cross section o4 for such knock-on processes is smaller by orders of
magnitude than the cross sections o and oiper (Sect. 5.1.4 and 5.2.2) for elas-
tic and inelastic scattering (Fig. 5.3). The displacement cross section o4 for
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an energy transfer AE = E! > Eq4 can be calculated by first determining the
minimum scattering angle 6,,;, for which E! = Eq using (5.14). We expect
E! > Eq for all > 0, and

U

gq — f

Omin

dO’Cl

ds?

27 sin 6d6, (5.15)

in which we use the differential elastic cross section for large-angle scattering
and relativistic energies. The threshold primary electron energy E, for transfer
of the minimum energy F4 to a nucleus can be obtained by setting E! = Eq4
and 6 = 180° in (5.14).

5.1.3 Elastic Differential Cross Section for Small-Angle Scattering

The elastic cross section doe/df2 or the scattering amplitude f(6) can be
calculated from the Schrédinger equation (3.21). The asymptotic solution far
from the nucleus can be represented by a plane, unscattered wave and a scat-
tered, spherical wave (5.1) with an amplitude f(0) depending on the scattering
angle 0 (Fig. 5.1b),

eZﬂ'lkr

s = tho |exp(2mikz) + f(0)

- (5.16)

The scattering amplitude

£(8) = 1£(9)]e"® (5.17)

is complex.

For scattering angles § < 10°, which are important for TEM, the scattering
amplitude f(0) can be calculated by the so-called WKB method (Wentzel,
Kramer, Brillouin) in the small-angle approximation of Moliere [5.2], also
associated with the name of Glauber [5.3], and by the Born approximation.
The latter only gives real values of f(#) and fails for atoms of high atomic
number. An exact solution of the Schrédinger equation (3.22) resulting in
complex scattering amplitudes can be obtained by the partial-wave analysis.
These three methods will be described in the following.

WKB Method. The scattering amplitude f(#) is the amplitude of the spher-
ical wave far from the scattering event (Fig. 5.1b) and is therefore identical
with the diffraction amplitude in Fraunhofer diffraction. We need to calculate
the wavefront behind the atom (Fig. 5.4) in the form (3.36). We can assume
that as(r) = 1 because there is no absorption of electrons, and the phase
shift ps(r) can be obtained from the optical path difference As relative to the
wavefront in vacuum,

2,/T+oo N7277TE+E0 +fo
~ AEE +2E,

— 00

V(r)dz. (5.18)

Equation (3.17) has been used for the electron-optical refractive index
n(r); this contains the potential energy, which involves not only the Coulomb
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Fig. 5.4. Phase shift ¢ of a plane incident wavefront passing the Coulomb potential
V(r) of an atom.

potential of the nucleus but also that of the atomic electrons. The latter cause
a screening of the nuclear charge +Ze. The charge distribution p(7;) inside an
atom can be described by a J-function at the nucleus (r = 0) together with the
charge density —epe(7;) of the electron cloud with probability density pe(r;);
1os denotes the wave amplitudes of the Z atomic electrons at the position r;,

ep(r;) = eZ8(0) — epelry) = eZ5(0) — ; s (7 5, (7)- (5.19)

The probability density p.(r;) can be calculated from the Thomas Fermi
model or by the Hartree-Fock method. An element of volume d®r; at a
distance 7; from the nucleus contributes —e?p(r;)(4meg|r; — r;|)~* to the
Coulomb energy of a beam electron at a distance r;. The total Coulomb en-
ergy becomes

2

e p(rj) 3
i) =— 1 _d°r. . 2
V() = g f o, (520)

If pe(r;) is assumed to be rotationally symmetric (5.20), V(r;) can be derived
from the elementary law of electrostatics
E(r;) = Q(mg er, (5.21)

4megr

i
where @, is the charge inside a sphere of radius r;. It is advantageous in

the calculation that follows to approximate the screening action in (5.21) in
various ways:

1. One exponential term (Wentzel atom model)

27
V(r) = —;We_T/R with R=apgz "/ (5.22)

ap = eoh?/mmee? = 0.0529 nm is the Bohr radius.
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2. A sum of exponentials [5.4, 5.5, 5.6]

e2y k k
Vr)= Z b; exp(—a;r), ;bi =1 (5.23)

47T€0T

To distinguish between the unscattered and the scattered parts of the
wave, it is useful to rewrite (3.36) in the form

Ys(1) = b + tof{explips(r] — 1}, (5.24)

where the first term describes the unscattered part of the wave. From the
second term one obtains the scattering amplitude [3.1, 3.2]

£(6) = ik J {explipn(r)] — 1} 7%
= —ik [{explips(r)] — 1}e2™" S Xpdrdy

—2mik C>f{exp[icps(r)] — 1}Jo(2mgr)rdr. (5.25)

Here we have used q - r = grcos x (r, x are polar coordinates in the spec-

imen plane) and d?r = rdrdy. The integral over y for constant r yields the
Bessel function Jg. Figure 5.5 shows calculated scattering amplitudes f(6) for
C and Pt atoms with the muffin-tin model [5.8]. The value of f(f) increases
with increasing electron energy for small 6 but decreases for large 6. In con-
sequence, the total elastic cross section o, decreases with increasing energy
(see Fig. 5.3 and Sect. 5.1.4). The additional phase shift 7(6) is very much less
for C than for Pt. Complex scattering amplitudes have also been reported in
[5.7, 5.9, 5.10].
Born Approximation. The Born approximation can be used only for weak-
phase specimens, for which ¢ < 1 and the Taylor series explips(r)] = 1 +
ips(r) + ... can be truncated after the first two terms. Substituting this in
(5.25), we obtain the Born approximation

f(0) =27k [ ps(r)e*™ I d?r. (5.26)

By writing ¢s = (27/A) [(n — 1)dz with the refractive index n (3.17), f(q) in
(5.26) becomes

2t By + F

— 271'1 a3
16) = —sapap 5 p ) VT dr, (5.27)

where F(q) has been transformed to f(#) by multiplying by the factor A~

The factor in front of the integral in (5.27) is written in various ways in the

literature, which are connected by the identities
7T€2 E0+E _€2m0(1+E/E0) 1+E/EO

cNE2Ey+ FE dreoh? ag

, (5.28)

where ay = 0.0529 nm is the Bohr radius.
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Fig. 5.5. Values of the scattering amplitude |f(0)| and phase shift n(f) of the
complex scattering amplitude (5.17) calculated by the WKB method using a muffin-
tin model for (a) carbon and (b) platinum.
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The scattering amplitude for atoms f(#) is a real quantity in the Born ap-
proximation, and the additional phase shift 77(6) is zero. The Born approxima-
tion therefore cannot be used for atoms of high atomic number because these
are never “weak-phase objects”. The difference between the WKB method
and the Born approximation is shown in Fig. 6.3 for the total elastic cross
section g or xe = A/(Naoe) (see the discussion in Sect. 6.1.1). The Born
approximation has the advantages that an analytical solution can be obtained
for simple potential models and that the dependence of f(6) on the various pa-
rameters can be comprehended more readily. Substitution of (5.20) in (5.27),
with the coordinate r; describing the atomic charge density and r; the beam
electrons, gives

2 E0+E 62

9) —
1) = 2558, 7 B dneg
o0 . oo —oriq - (r; —7;
Jotrertrendty, ORI 0
? J
Z - fx 1/71’(]2

where fy is the scattering amplitude for x-rays. This quantity is dimensionless,
whereas f(0) has the dimension of a length. This may be written

N(1+ E/Ey) 1
=——Z-NTm70m
sin®(60/2)
in which we have used (5.28) and (3.39). The differential cross section for

large-angle scattering can be obtained by setting fx = 0 in (5.30). This yields
the Rutherford cross section

dUR_( Ze? )2(E0+E>2 1
d?  \8wegE 2F, + FE sin4(9/2)

zer
= (e) cosec4g. (5.31)

8megmu?

f(6) (5.30)

87r2aH

Writing sin(6/2)~ 6/2, we obtain the small-angle elastic cross section

MO+ E/Ey)? (Z - f)?
o 4rta?, 94 '

doe -
4| pop

(5.32)

This unscreened cross section and the Rutherford cross section (5.31) have
a singularity at & = 0. However, the numerator also goes to zero as § — 0
because f tends to Z = [ po(r;)d®r; as 0 or ¢ tends to zero; f(0) therefore
takes a finite value, which is sensitive to the choice of the screening model.

This influence of screening on f(0) can be better understood if we substi-
tute (5.22) for V(r) in (5.27) and consider small scattering angles for which
sin 0 ~ 6 [5.11, 5.12]. We have

Z

S oy (5:33)
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Substitution in (5.30) gives

dog  4Z°R*(1+ E/Ey)? 1
do a% 1+ (6/60)2]?
O — 2 R gz —1/3
with 6y = 5l R=anZ . (5.34)

At the characteristic angle 0y, the differential cross section (5.34) falls to
a quarter of the value at # = 0. Calculations of the elastic differential cross
section or f(#) in the Born approximation using electron-density distributions
pe(rj) given by relativistic Hartree-Fock calculations have been published in
[5.13, 5.14, 5.15, 5.16].

Differential scattering cross sections can only be measured for gas targets
if the concentration of atoms is so low that multiple scattering does not occur.
Figure 5.6 shows measurements of the elastic and inelastic differential cross
sections of argon atoms [5.17] that confirm the dependence (5.34) on the scat-
tering angle 6 predicted by the Wentzel model (5.22). The angular intensity
distribution resulting from scattering in thin films is influenced by multiple
scattering even when the films are very thin (Sect. 5.3.1). The results can
be compared with calculated values of do/d(2 only after applying a deconvo-
lution procedure to the measured data; alternatively, the transmission T'(«)
through thin films into a cone of aperture a (Sect. 6.1.1) may be compared
with calculated partial cross sections o(«) as defined in (6.1).

Partial Wave Analysis. For a spherically symmetric potential V (r), the
scattering amplitude can be expanded in an infinite series of Legendre poly-
nomials,

| elastic
Wentzel

a
5 & o VU

Fig. 5.6. Angular dependence of

elastic and inelastic differential cross

sections do/df2 (resonance energy

loss at AE = 11.7 eV) for 25 keV

10-4 10'-3 102 ¥ aq ,011 electrons scattered at an argon gas
g —— target [5.17].




152 5 Electron—Specimen Interactions

o0

= Tk S7(21 + 1) [exp(2id;) — 1]P;(cos §), (5.35)
1R 1=0

f(0)

where [ denotes the quantum number of angular momentum. The phase shifts
d; are positive for an attractive Coulomb potential, and these phase shifts can
be calculated from [3.1, 3.2, 3.3, 5.1]

. i 2m
siné; = — fJl+1/2(27rk‘7“)?V(r)ul(r)dr, (5.36)
0

where the j;1; /o are spherical Bessel functions and the u;(r) are solutions of
the radial Schrodinger equation

d2ul
dr2

Of the order of a hundred partial waves have to be calculated to decrease
the error at low scattering angles to less than 1% for 100 keV electrons (about
a thousand partial waves are necessary for 1 MeV). A computer program
is available that uses the muffin-tin model of V(r) [Fig. 3.3] and can also
calculate deviations from Rutherford cross sections (Mott cross sections) at
large scattering angles [5.18].

2 (1 +1
+ 47r2k2—h—TV(r)— (; N ) = 0. (5.37)

5.1.4 Total Elastic Cross Section

The total elastic cross section o can be calculated by applying (5.5) to the
differential cross section. Because of the fast decrease of f(#) with increasing 6,
an exact knowledge of the large-angle scattering distribution is not necessary.

When a complex scattering amplitude (5.17) or (5.35) given by the WKB
or partial-wave method is available, substitution of (5.35) in (5.5) using the
orthogonality of the Legendre polynomials results in

]_ o]
0o = —3 S (20 4 1) sin? 6. (5.38)
TRT =1

Comparison with (5.35) gives the optical theorem of quantum-mechanical scat-
tering theory

0 = 2 In{(0)} = 2A£(0)] sin(0), (5.39)

which shows that the imaginary part of the forward scattering amplitude for
0 = 0 determines the total cross section.

Substituting the expression doe;/df2 given by (5.34) and R = ayZ~ /3 in
(5.5), we obtain (8 =v/c)

_ ZPR2N)(1+ E/Ey)*  h*ZY?
el = Ta%; - wE3B?

The absolute value of o or its reciprocal xey = A/(Naoe) does not agree
well with experiments (Fig. 6.3) because the Wentzel screening model (5.22)

(5.40)



5.2 Inelastic Scattering 153

is too simple and the Born approximation fails for high Z. However, the cross
section o is observed to be proportional to 372 for low-Z material, and the
predicted saturation for energies larger than 1 MeV is found for all elements
(Figs. 5.3 and 6.3). Also, the proportionality with Z*/3 is a typical result
of the Wentzel model and the Born approximation. Calculations of the total
elastic cross section for Hartree-Fock—Slater or Dirac—Slater atoms [5.19] lead
to the approximate formula

15x10°° ., Z Z
Oel = TZ 1-— 023@ fOI' @ < 12, (541)
2

where o¢; is measured in nm~.

5.2 Inelastic Scattering

5.2.1 Electron—Specimen Interactions with Energy Loss

Whereas an elastic collision preserves kinetic energy and momentum, an in-
elastic collision conserves the total energy and momentum, a part of the kinetic
energy being converted to atom—electron excitation. The primary electron is
observed to lose energy even at small scattering angles. The following excita-
tion mechanisms may be distinguished:

1. Excitation of oscillations in molecules [5.20] and phonon excitations in
solids [5.21, 5.22]. These energy losses (Fig. 5.7) are of the order of 20

Equivalent light wavelength

100 20 10 5 4 3um
T T T T T T
Ge-0
1001 4 meV
Phonons -
Ge-0
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Z 60| .
a \ Intraband
] \
k4 \
\
S 4Of \ -
£ \
m \
20 B
; \
Continuum N
~ Y o
i 1 . 1 i 1 1 { Iy
0 100 200 300 400 meV

AE ——

Fig. 5.7. Energy-loss spectrum of an evaporated Ge film due to phonon excita-
tion, excitation of the GeO bonding and intraband transitions for energy losses
AFE <500 meV [5.22]
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Fig. 5.8. Energy-loss spectrum of an
Ag film and comparison with the dielec-
tric theory (dotted line) [5.23].

3 015 26 25 sV 30

meV-1 eV and can be observed only after monochromatization of the
primary electron beam, which has an energy width of the order of 1 eV
when a thermionic electron gun is used. These interaction processes are
also excited by the infrared part of the electromagnetic spectrum. The
observed energy losses would be of considerable interest for molecular and
solid-state physics but, owing to the low intensity of a monochromatized
beam, high spatial resolution is scarcely possible. At the moment these
processes are therefore of little interest in electron microscopy.

. Intra- and interband excitation of the outer atomic electrons and exci-

tation of collective oscillations (plasmons) of the valence and conduction
electrons (Sect. 5.2.4). Most of the plasma losses show relatively broad
maxima in the energy-loss range of AE = 3-25 eV (Figs. 5.8 and 5.20).
The plasmon losses depend on the concentration of valence and conduc-
tion electrons and are influenced by chemical bonds and the electron-band
structure in alloys. There are analogies with optical excitations in the vis-
ible and ultraviolet.

Tonization of core electrons in inner atomic shells (Sect. 5.3). Atomic elec-
trons can be excited from an inner shell (I = K, L, M,...) of ionization
energy Fp to an unoccupied energy state above the Fermi level; such a tran-
sition needs an energy transfer (energy loss) > Fp. The energy-loss spec-
trum do/dE shows a steep increase for energy losses AE > Fp (Fig. 5.9).
A structure is observed in the loss spectrum a few eV beyond AF = Ej
caused by excitation into higher bound states. In organic molecules, the
fine structure of the loss spectrum depends on the molecular structure
[5.25]. This type of inelastic scattering is also concentrated within rela-
tively small scattering angles 6 < 0y = F1/2F, though part of the inelastic
scattering extends to larger scattering angles. Energy-loss spectroscopy is
therefore the best method for analyzing elements of low atomic number
(e.g., C, N, O) in thin films with thicknesses smaller than the mean free
path for inelastic scattering. When the electron gap in the inner shell is
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Fig. 5.9. Differential cross section do/dE measured on 15 nm films of C, Al and
Cu with 80 keV electrons (full curve: without an aperture diaphragm, dotted curve:
using an objective aperture a, = 4.5 mrad). The arrows indicate the positions of
different shell energies [5.24].

filled by an electron from an outer shell, the excess energy is emitted as an
x-ray quantum or transferred to another atomic electron, which is emitted
as an Auger electron (Sect. 10.1).

The inelastic interactions therefore form the basis for several analytical
methods in electron microscopy (Chap. 10). However, low-loss inelastic scat-
tering is not favorable for high resolution because the inelastic-scattering
process is then less localized than the elastic one. An electron can be in-
elastically scattered even when passing the atom at a distance of a few tenths
of a nanometer. This is also illustrated by the fact that inelastic scattering is
concentrated into smaller scattering angles than elastic scattering (Fig. 5.6).
In order to resolve a specimen periodicity of A, scattering amplitudes are
needed out to an angle = A/ A; there are too few inelastically scattered elec-
trons at large @ for the imaging of small spacings /A or high spatial frequencies
qg=1/A.

The total inelastic cross section oy, is larger than the elastic cross section
o for elements of low atomic number and smaller for high Z (Sect. 5.2.3).
The energy losses in thick specimens decrease the resolution as a result of the
chromatic aberration.
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The largest part of the excitation energy is converted to heat (phonons)
(Sect. 11.1). Excitations and ionizations in organic specimens cause bond rup-
tures and irreversible radiation damage (Sect. 11.2). Color centers and other
point defects and clusters are generated in ionic crystals (Sect. 11.3).

Inelastic scattering can be described by a double-differential cross sec-
tion d20ine1/d(AE)dS2, depending on the scattering angle § and the energy
loss AFE. It becomes difficult to establish accurately such a two-dimensional
cross section from theory or experiment for several reasons: the complexity of
the energy-loss spectrum, its dependence on foil thickness (e.g., excitation of
surface plasmon losses), and the occurrence of multiple elastic and inelastic
scattering.

5.2.2 Differential Cross Section for Single-Electron Excitation

During an inelastic scattering event, an excitation energy AE = FE, — Ej
may be transferred to an electron of the atom that is excited from the ground
state (0) with energy Fy and wave function ags (s = 1,...,7Z) to the excited
state (n) with energy E,, and wave function a,s. For small scattering angles,
selection rules, such as Al = 41, govern the allowed excitations, similar to
those for optical excitation.

The total energy and the momentum after the collision remain the same
as before. We introduce the scattering vector @' = k,, — ko (Fig. 5.10) with
|kn| < |ko| instead of ¢ = k—ko with equal magnitudes of k and kg as used for
elastic scattering. Using the relations p = hk and E = p?/2m (nonrelativistic),
the conservation of momentum

k2 = k% + ¢'* — 2koq’ cos, (5.42)
and the conservation of energy
h* 5 o
AE = — (ki — k A4
(k8 — k2), (5.43)

hk,

} hg'cos v
-~ Fig. 5.10. Conservation of momentum in inelastic scat-
o/ tering.
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we obtain the relation
h2koq
AE = 207 o5 7. (5.44)
m

Furthermore, from Fig. 5.10, the relation

g% = (ko0)* + (¢’ cosn)® = k3 (6° + 63) (5.45)
can be read off, in which g = AE/2E or in relativistic form
AE E+Ey AE

E E+2E, mv?’

Quantum-mechanical scattering theory tells us that the inelastic cross sec-

tion can be calculated [5.26, 5.27] by the golden rule,

doo,  472m? k, )
TR R : A4
an M ke [(ton [V (r)|2b0) (5.47)
~—
~1

O = (5.46)

The wave functions g = ags exp(2wikg - r;) and ¥,, = a,s exp(27ik,, - r;) are
products of the plane incident and scattered waves with wave vectors kg and
k., respectively, and the atomic wave functions ags and a,s; the bracketed
expression in (5.47) thus becomes (r;: coordinate of atomic electrons)

(¥l V (r)[t00)|* =
|[ [exp(—2miky, - 73)as (r;)V (i, 7;)aos(r;) exp(+2miko ~rz-)d3rid3rj|2 .

(5.48)
On substituting the Coulomb interaction potential
2Z A 2
Vir) =t 3 (5.49)

dmegr;  j=1 Ameg|ri — 1y

into (5.48), the first term representing the Coulomb potential of the nu-
cleus cancels because of the orthogonality of the atomic wave functions:
i ansaasd?’rj = Jp0. The two exponential functions in (5.48) representing
the incident and scattered waves can be combined to form exp(—2wiq’ - r;).
Making use of the last integral in (5.29), we obtain [5.26]

doon me? \* |e(q)]?
42~ \2reh? q'* (5.50)

with the atomic matrix element

() = | [ afy exp(~2rig’ - 7;)apsd’r; |’
=|[a},(1—27ig" -7 + .. .)aosdgrj|2

~ 47r2q'2|<ans\u . rj|a()5>|2 = 4772q’2|x0n|2. (5.51)
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The expansion of the exponential term has been truncated because of the
small scattering angles of interest. The term with unity in the round bracket
cancels because of the orthogonality of the atomic wave functions. The unit
vector u is parallel to q¢’. For small ¢/, the atomic matrix element is determined
by the dipole matrix element. This dipole approximation has been introduced
by Bethe [5.26]. Substitution of (5.45) and (5.51) in (5.50) results in

dO'On

B 1

/\2
dn - W2a%|x0n|292+9% . (552)

The characteristic angle g (5.46) for inelastic scattering, typically 0.1 mrad
for AE = 20 eV and E = 100 keV, is much smaller than the characteristic
angle 0y (5.34) for elastic scattering. Inelastic scattering is therefore concen-
trated within much smaller scattering angles than elastic scattering, though
(6% + 6%)~1 also has a long tail for larger 6. Figure 5.6 shows the decrease as
6=2 resulting from (5.52) when 6 > 6 in the case of the AE = 11.7 eV loss
of argon. (In a gas target, the influence of multiple scattering can be kept low
enough.)
When a generalized oscillator strength (GOS)

_ 2mAE |e(¢)]?  8n*mAE

Jon(d") R |Zon|? (5.53)
is introduced, (5.50) and (5.52) can be written
d n 4 n !
00 — € fO (Q) . (5.54)

dn (4meg)2EAE 62 + 63,

Whereas (5.50), (5.52), and (5.54) describe the transition between the elec-
tronic states 0 and n with a discrete energy loss AF, the final states form
a continuum in the case of ionization. With a GOS per unit energy loss
dfon(qd’, AE)/d(AE), (5.54) becomes the double differential cross section

Lo e 1 dfoulq, AE)
dQdAE  (4meg)?EAE 0% + 03 dAFE
The GOS is identical with the optical oscillator strength for ¢ — 0, which

means that electron energy-loss spectra and the absorption spectra of light
and x-ray quanta are related. The GOS satisfies Bethe’s sum rule:

(5.55)

o dfOn o
Enjfon =7 or [ TApdAE =2 (5.56)

5.2.3 Bethe Surface and Compton Scattering

A plot of dfy,/d(AE) is called the Bethe surface [5.27]. Figure 5.11 shows
the Bethe surface for the ionization of hydrogen or for K-shell ionization when
the atomic electrons have hydrogen-like wave functions. The calculation uses
hydrogen wave functions ags and plane waves a,s for the ejected electron
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Q.
=
x

Fig. 5.11. Generalized oscillator
strength (GOS) per unit energy loss
as a function of scattering parameter
¢ and energy loss AE/Ex for K-shell
ionization (Ex = ionization energy)
with the Bethe ridge [5.27].

AE lBethe ridge

[5.26, 5.27]. At AE = Ex and ¢’ — 0, the GOS jumps to a maximum and
then decreases with increasing AFE. This can be observed experimentally either
as the K-edge of the energy-loss spectrum (Fig. 5.9 and Sect. 5.3.1) or as a
jump of the x-ray absorption coefficient when the quantum energy E, = hv
exceeds Fx (Fig. 10.6). The GOS decreases with increasing ¢’ for constant
AE, but shows a “Bethe ridge” at larger ¢’ (Fig. 5.11). This is caused by
direct electron—electron impact. When the energy of the ejected electron is
much larger than the ionization energy (weakly bound electron), the collision
can be treated by classical mechanics, making use of the conservation of energy
and momentum. By analogy with x-ray scattering, this process is therefore
also called Compton scattering. When an electron at rest is hit by an electron
of energy F, the scattering angle 6¢ is strongly related to the energy loss by

sin? ¢ =

-1
AE[HE_AE} g@. (5.57)

E Eo E

This angle corresponds to the maximum of the Bethe ridge in Fig. 5.11 and
increases with the square root of AE. The width of the Bethe ridge is caused
by the momentum distribution of the atomic electrons on their orbits or of
the valence electrons at the Fermi level [5.28]. The GOS of Fig. 5.11 has to
be divided by AE(6? + 6%) (5.55) to become proportional to d?c/d2d(AE).

The Bethe surface can be imaged directly with an electron spectroscopic
diffraction (ESD) pattern. For example carbon film shows a diffuse ring at
the Compton angle ¢ at high energy losses shown for increasing AE in
Fig. 5.12a—d. Angle-resolved EELS (Sect. 4.6.4) is another mode that pro-
vides an image of the Bethe surface. With the diffraction pattern of an
amorphous carbon film at the filter entrance plane (Fig. 4.26) and a nar-
row slit in this plane, the energy-dispersive plane (EDP) contains a super-
position of lines across the patterns (variable ) at different energy losses
AFE perpendicular to the #-axis. The recorded pattern is digitized and the
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Fig. 5.12. Electron spectroscopic diffraction pattern of a graphite foil at (a) AFE
= 0 eV, (b) 200 eV, (c) 400 eV, and (d) 800 eV showing a diffuse ring (Bethe
ridge) caused by Compton scattering, which increases in diameter proportional to
the square root of the energy loss AF.

intensity distribution emphasized by isodensities, which clearly show the plas-
mon losses, the parabolic Bethe ridge, and the carbon K edge (Fig. 5.13) [5.29].

The intensity profile of the Bethe ridge is proportional to the momentum
distribution of atomic electrons in the scattering direction (z),

= [ [ n(pz, py, p-)dp.dpy, (5.58)
where n(p) is the momentum probability distribution. The Fourier transform
(Z) = f J(pz) eXp(_ipzz/h)dpz (559)

of a recorded intensity profile (e.g., across the diffuse rings in Fig. 5.12) is
the autocorrelation function of the ground-state wave function. The analo-
gous Compton scattering for x-rays [5.30, 5.31] is in common use for testing
calculations of atomic orbitals in solids and this method has also been tried
for electron diffraction [5.28, 5.32, 5.33, 5.34]. Advantages compared with
x-ray Compton scattering are that the exposure time is much shorter and
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Fig. 5.13. Angle-resolved EELS of a 2.8
pug cm~? carbon film in a #-AFE plane
with exposures that increase from (a) to
(c) by a factor of 16 at each step. The
isodensities clearly show (a) the plasmon
loss, (b) and (c) the K-shell ionization
edge and the parabolic Bethe ridge.

nanometer-sized specimens can be studied. A disadvantage is that the infor-
mation is contained in small deviations of the Compton profile from an ap-
proximately Gaussian shape. Electron diffraction has a stronger background,
and, in crystalline specimens, Bragg diffraction and Kikuchi lines can disturb

the profile.
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5.2.4 Approximation for the Total Inelastic Cross Section

In Sect. 5.2.2, we discussed inelastic scattering in terms of a single transition
0 — n. In order to calculate the inelastic scattering from a complete atom, the
cross sections of all allowed transitions 0 — n for the s =1, ..., Z atomic elec-
trons have to be summed. The following treatment of inelastic scattering does
not consider the details of the energy-loss spectrum discussed in Sects. 5.2.5
and 5.3 and yields only a mean energy-loss value (mean ionization energy .J).
Nevertheless, this treatment gives a correct description of some important as-
pects of inelastic scattering, such as the concentration of inelastic scattering
within smaller angles than for elastic scattering and the dependence of the
ratio of the total inelastic and elastic cross sections on atomic number.
Using (5.50), this summation over n and s results in

2
dUinel (1+E/E0)2 Z . 3
- sa, -2 sri)dor,| . .
12~ dmagt |2 wetne exp(=2mig’ ) d (5.60)

In the inner summation, products of terms containing different values of the
suffix s = 1,..., Z (exchange terms) can be neglected. The summations over
n and s can thus be interchanged, giving

z
> > | [aosal, exp(—2miq” - 7°j)d31°j|2

s=1n#0
Z
= Zl[z | [[apsal;, exp(—2miq’ - rj)d3rj\2 —| [ apsal, exp(—2mig’ - rj)d?’rj\z]
S= n
+1 fg%/ZQ
=7 f%/z. (5.61)

The first term in the brackets is equal to unity, as can be shown using the com-
pleteness relation for the wave functions a,s. The last term is the contribution
of one electron to the x-ray scattering amplitude f,.. The approximation in
which this is set equal to f,/Z is strictly valid only if the electron-density
distributions of the atomic electrons are equal (H and He atoms only). When
(5.61) is substituted into (5.60) for other atoms, the resulting approximation
permits us to obtain analytical formulas using the Wentzel model (5.22). The
quantity ¢’ in (5.60) contains the energy loss AE. Koppe [5.35] suggested sub-
stituting the mean value AE = J/2, where J is the mean ionization energy
of the atom ~13.5 Z in eV. Taking f, from (5.33), this gives [5.11]

doma  (1+ E/Ep)? 1
= Z ]. _—_— . 2
a2 Artagq (1+4m2¢2R?)% |’ (5.62)
or with ¢ = (62 + 6%)/)\2,
dowa _ ML+ E/By? {1~ s |
- VS (5.63)

o 4mia? (62 + 6%)2
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This formula for the inelastic differential cross section may be compared with
its elastic counterpart (5.34). The characteristic angle 6, which is responsible
for the decrease of the elastic differential cross section dog/df2, is of the order
of 10 mrad and the angle 0g, responsible for the decrease of dojne/df2 with
increasing 6, of the order of 0.1 mrad. This confirms that inelastic scattering
is concentrated within much smaller angles than elastic scattering (Fig. 5.6),
though with a long tail for very large scattering angles, 8 > 6y and 0 > 0 =
J/4E. For such large scattering angles, the ratio

dUinel/dQ _ 1

_ - 64
doa/d2 ~ Z (5.64)

depends only on the atomic number, whereas for small 8, doipe /dS2 > doe/dS?2
for all elements (Fig. 5.6).

A total inelastic cross section ojne can be defined in the same way as the
elastic one o], by using (5.5). Integration of (5.63) gives [5.11]

Oinel 4 h2 26
= = ()= .
YT Z " <7rm0JR)\) Z’ (5.65)
and experimentally [5.36, 5.37] it is found that
20
~ 2 5.66
v (5.66)

5.2.5 Dielectric Theory and Plasmon Losses in Solids

Only the most important theoretical and experimental results concerning
energy losses in solids will be discussed. Extensive reviews have been pub-
lished [5.23, 5.38, 5.39, 5.40, 5.41, 5.42].

A number of interaction processes have to be considered to explain the
characteristic energy losses of a material. An atomic electron can be excited to
a higher energy state by an electron—electron collision. Indeed, energy losses
are found in scattering experiments on gases that can be explained as the
energy differences between spectroscopic terms. Thus, a 7.6 eV loss in Hg
vapor corresponds to the optical resonance line [5.44]. The electrons in the
outer atomic shells of a solid occupy broad energy bands. Excitations from
one band to another (interband excitation) must be distinguished from those
inside one band (intraband excitation). Nonvertical interband and intraband
transitions can also be observed [5.45, 5.46]. Exact information about the band
structure above the Fermi level is not available for most materials, and the
energy-loss spectrum is related to the light-optical constants in the visible and
ultraviolet spectra by means of the so-called dielectric theory. In this theory,
plasma oscillations are considered as longitudinal density oscillations of the
electron gas [5.47].

The underlying idea of the dielectric theory can be understood in the
following manner [5.38, 5.43]. The optical constants of a solid can be de-
scribed either by a complex refractive index n + ik, where x is the absorp-
tion coefficient, or by a complex permittivity e = €; +ies = (n + ix)2. In
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general, the complex permittivity e(k,w) is a function of the wave vector k
and the frequency w. Electrons that penetrate into the crystal with veloc-
ity v represent a moving point charge and can be described by a J-function
p(r,t) = —ed(r —vt). Fourier-transforming this relation with respect to space
and time, we obtain p(k,w) = —ed(kv — v), where w = 27v. To determine
the energy loss of the electron, we have to calculate the electric field acting on
it. This is most easily done using Poisson’s equation eA®(r,t) = —p(r,t) in
Fourier space 47m2k%e(k,w)®(k,w) = p(k,w). Here we have neglected the rel-
ativistic retardation effects. The electric field is given by E(r,t) = —V®(r,t)
or, equivalently, by E(k,w) = —21ik®(k,w). The energy loss per unit length
is given by

dW  eEv  ,v ,iki(kv—v)

T v / 2rk2e(k,w)

Assuming that the electron moves in the z-direction, we integrate over k, and
obtain

aw +ie? vdvd?k |

dz  2mv?” k2%e(k.,w)’
where dk; denotes an integration over the coordinates perpendicular to the

incident beam direction. As the energy loss is a real quantity, we have to take
the real part of (5.68),

_dﬂ_ —e? flm 1 vdvd?k |
dz  2mv? e( k2

exp[—27i(kv — v)t]d*kdv.  (5.67)

(5.68)

(5.69)

where we have used

Re <5(kzw)> = —Im (E(klw)) . (5.70)

Equation (5.69) shows that the inelastic scattering is related to the imaginary
part of the inverse of the dielectric function. The differential cross section is
obtained from (5.55) using the relation [5.48]

df(AE)  —4meoAE 1
dE e2h fm e(k,w) )’ (5.71)
d’c 1  E+Ey Im{-1/¢(AE,0)}
dAEd?  7w2apE E + 2E, 02 + 62
_ 1 Im{—1/€} . (5.72)

m2agmu? 6% + 0%

For a free (f) electron gas with N, electrons per unit volume, the conduc-
tion electrons of a metal or the valence electrons of a semiconductor, for ex-
ample, the dependence of ¢(w) on frequency or the energy loss AE = hw
may be calculated using the Drude model. The alternating electric field
E = Ejexp(—iwt) exerts a force on an electron given by Newton’s law,
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Ld2x . dz
Mg Ty T
This expression contains a friction term proportional to v = dz/dt, which
represents the deceleration due to energy dissipation; m* denotes the effective
mass of the conduction electrons. The solution of this equation has the form

e w?—iwy
=————F. .74
T R o2 + 72 (5:74)

—¢E. (5.73)

The displacement x of the charge —e causes a polarization P = —eN.x =
eoxeE, where x. is the dielectric susceptibility, € = eg(1 + x.). Substituting
for @ from (5.74), we obtain

. N e? 1 .
€(W) — 61’f + 162}f = €p (1 — Muﬂ—i—w}/) Wlth (575)
w? 1 w 1
= |1- B =B 5.76
cLf =<0 < w2 14 (y/w)? )’ LT (v/w)?’ (5.76)

in which wp; is the plasmon frequency

N_e?

Eom* '

Wpl = (5.77)
The dependence of €1 ¢ and € ¢ on frequency is shown in Fig. 5.14. The factor
Im{—1/€} = e2/|€|* that appears in (5.72) passes through a sharp maximum
when the denominator reaches a minimum, which means that ¢;; =0 at w =
wp for small values of the damping constant . This plasmon loss AEy,; = hwp,
excites longitudinal charge-density oscillations in the electron gas, which are
quantized and are known as plasmons [5.49]. For a large number of materials,
the observed energy loss AE,, agrees with that predicted by (5.77) (see Table
5.2), in which n is the number of valence or conduction electrons per atom.

2 -
1+
0
gk Fig. 5.14. Components of the com-
il plex dielectric permittivity e; + iez
for the free electron gas (f) and for
-2F a bound state (b). Shift of the plas-
mon frequency wpl at €1 f = 0 to
w]/:)l'
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Table 5.2. Comparison of experimental and theoretical values of plasmon energy
AEyp; and the half-width (AE);» in eV, the constant a of the dispersion law (5.80),
and the cutoff angle 6. in mrad at 40 keV (n: number of electrons per atom) (see
[5.41] for further tabulated values).

AEpl (AE)l/Q a 9(;
n  exp. theor. exp. theor. exp. theor.
Al 3 15.0 15.8 0.6 0.40 £ 0.01 0.44 15 13
Be 2 189 18.4 5.0 0.42 £ 0.04 0.42 - -
Mg 2 105 10.9 0.7 0.39 £0.01 0.37 12 11
Si 4 169 16.6 3.2 0.41 0.45 - -
Ge 4 16.0 15.6 3.3 0.38 0.44 - -
Sb 5 153 15.1 3.3 0.37 £ 0.03 0.38 - -
Na 1 3.7 5.9 0.4 0.29 £0.02 0.25 10 9

However, the position of the plasmon losses can be influenced considerably
by interband excitations (bound electrons: b). Extending (5.73) to include
bound electrons, we obtain the Lorentz model

L [z dex 9
m (dtZ + ’Ya + wbw) = —cF, (578)
where wy, is the resonance frequency, resulting in

N e? 1
mreg wi —w? —iwy )

e(w) = € (1 +
In the €; p-curve, the bound states show a typical anomalous dispersion near
the resonance frequency. In the special case of Fig. 5.14 with w, < wpi, the
superposition of €;1, and € ¢ (Drude-Lorentz model) causes a shift of the
plasmon loss to a higher frequency Wél, for which €1, + €1 = 0. When wy, >
wpl, the plasmon loss may be shifted to a lower frequency. Thus, the agreement
between the calculated and measured values of the 15 eV plasmon loss in Al
(Fig. 5.20) in Table 5.2 is accidental. The optical constants indicate that
€1 = 0 for AE = 12.7 eV. An oscillator contribution at 1.5 ¢V (interband
transition) shifts the loss to 15.2 eV. For silver, there is a transition of 4f
electrons to the Fermi level at 3.9 ¢V, and further interband excitations occur
at AE > 9 eV. These shift the energy at which e¢; = 0 to 3.75 eV. This sharp
energy loss (Fig. 5.8) is therefore a plasmon loss, which cannot be separated
from the 3.9 eV interband loss. Figure 5.8 shows, as an example, a comparison
of a measured energy-loss spectrum (full curve) with one calculated using the
dielectric theory with optical values of ¢ (dotted curve). Two further maxima
are also in agreement with the optical data.

These classical models can describe the most important features of plas-
mon excitation. A quantum-mechanical model should predict the dielectric
behavior from first principles. The dielectric function of the free electron gas
was calculated in the random-phase approximation by Lindhard [5.53]. This

(5.79)
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approach is not capable of calculating half-widths and results only in a d-peak
for the plasmon loss. In improved theoretical models, correlation, the periodic
lattice potential, and the core polarizability must be considered (see [5.42] for
further details).

One application of EELS for low energy losses is the measurement of band
gaps in semiconductors and insulators [5.50, 5.52]. Furthermore, the optical
constants in the ultraviolet can be determined [5.39]. The dielectric theory
showed that the intensity in energy-loss spectra is proportional to Im{-1/e}.
The Kramers—Kronig relation (Sect. 10.2.2) allows us to calculate Re{l/e},
and hence ¢; and €5 can be obtained. These optical constants for 1-50 eV
photons are mainly measured with synchrotron radiation. Electron energy loss
spectroscopy has the additional advantage that measurements in the nanome-
ter region are possible [5.51].

The loss spectra of different substances show characteristic differences.
However, the spectra are not so specific that they can be used for elemental
analysis. Furthermore, the spectra contain multiple losses and surface-plasmon
losses, which depend on the foil thickness. Nevertheless, EELS can be used
in many cases as an analytical tool to distinguish different phases (SiC [5.54],
glass [5.55], or organic molecules [5.25, 5.56], for example).

The dependence of AEp, = fiwp o /N, on the electron density N, (5.77)
results in a weak decrease of AE}, with increasing temperature because of
the thermal expansion [5.57, 5.58]. Changes of AE},; in alloys, due to the
change of electron concentration, are of special interest because these shifts
can be used for the local analysis of the composition of an alloy by EELS.
Figure 5.15 shows, as an example, the shift of the plasmon energy in an Al-
Mg alloy [5.59], the different phases of which can be identified by their energy
losses. The plasmon energy AE} depends linearly on the concentration in
the «, v, and § phases, which allows the local concentration to be measured
with a spatial resolution of the order of 10 nm. In this way, the variation of
Mg concentration was measured near large-angle boundaries after quenching
of an Al-Twt% Mg alloy [5.60], and the variation of Cu in the Al-rich phase
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near CuAl, precipitates in a eutectic CuAly alloy [5.61]. The plasmon losses
of Al-Zn alloys have also been investigated [5.62]. The position of a plasmon
loss can be determined with an accuracy of 0.1 eV, even if the full-width of
half-maximum (FWHM) is about 1-4 ¢V [5.63]. However, the background of
the energy loss spectrum caused by contamination can produce spurious shifts
of the same order [5.64], and strains in inhomogeneous alloys can cause shifts
relative to calibrations made with a homogeneous alloy [5.65]. Shifts of £0.1
eV have been observed at distances +£20 nm from a dislocation [5.66].
Plasmon losses show a dispersion in the sense that the magnitude of AEy,;
depends on the momentum transferred and therefore on the scattering angle

3 Ep

B 5 . _°2_LtFr
AEL(0) = AEL(0) + 2Eaf*  with a= 5 AB,(0)

(5.80)
where Ey is the Fermi energy. This dispersion can be directly imaged by angle-
resolved EELS as a parabolic extended plasmon loss (Fig. 5.13a). The plasmon
dispersion can also be seen in a series of electron spectroscopic diffraction pat-
terns as small diffuse rings surrounding the primary beam. For single-crystal
Sn films with a plasmon loss at AE = 21 eV, these rings increase in diam-
eter with increasing AFE and disappear beyond AFE = 28 eV because of the
existence of a cutoff angle . (see below) [5.67]. In addition, the half-width
(AE); /2 of the plasmon-loss maxima increases with increasing 6 (Fig. 5.16b)
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Fig. 5.16. (a) Dispersion of the plasmon loss of Mg with increasing scattering angle
0 and the unshifted line due to elastic large-angle scattering and inelastic small-angle
scattering. (b) Verification of the dispersion relation (5.80) by plotting AFEy versus
0* for the Al and Mg plasmon losses [5.73] and the broadening (AE);/ of the
plasmon loss of Al with increasing 6 [5.69, 5.70].
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Fig. 5.17. Intensity contours (digital isodensities) in ESD patterns of a graphite
foil showing the azimuthal anisotropies for the interband transitions at (a) AE =7
eV and (b) AFE = 13 ¢V and no anisotropy for (¢) the plasmon loss at AF = 31 eV.

[5.68, 5.69, 5.70, 5.71, 5.72, 5.73, 5.74, 5.75]. The plot of AE},; versus 6% in
Fig. 5.16b demonstrates the validity of this dispersion law. The constant aexp
in (5.80) (Table 5.2) can be obtained from the slope of the curve. Interband ex-
citations show no dispersion and normally have a larger half-width. However,
a dispersion with ¢ = 0.15 has been observed for the 13.6 eV loss of LiF, which
is an exciton excitation [5.76]. If the energy loss is observed at a scattering
angle 6, not only is the shifted value AE;(#) observed but also the unshifted
AF1(0), which results either from primary small-angle plasmon scattering
and secondary elastic large-angle scattering or vice versa (Fig. 5.16a). The val-
ues of the plasmon losses and their dispersion are anisotropic in anisotropic
crystals such as graphite [5.77, 5.78] and also in cubic crystals (Al, for ex-
ample) for large scattering angles [5.79]. This anisotropy can be imaged by
electron spectroscopic diffraction as shown for a graphite foil in Figs. 5.17a—c
by drawing isodensities around the primary beam. The anisotropy of the in-
terband transition at AE = 7 eV in Fig. 5.17a can be seen as a hexagon with
corners directed towards the surrounding Bragg spots, whereas at AE = 13 eV
(Fig. 5.17b), the corners are directed between the Bragg spots. The plasmon
loss at AE = 31 eV (Fig. 5.17¢) shows no anisotropy (circular isodensities).

Integration of (5.72) over AFE gives the contribution of a plasmon loss to
the differential cross section

do,y  AE, E+4+FE, 1
d?  2mauN.E E +2FE, 02 + 63

G(6,0.), (5.81)
in which we have used
T Tm{—1/e(w)}hdw = 7AE,/2. (5.82)
0
The cross section decreases as 62 for medium scattering angles 0 < 0 < 0.
(Fig. 5.18). The correction function G(6,6..) introduced by Ferrell [5.80] takes

into account the fact that dop,/df2 has to become zero at a cut-off angle
0., which implies that plasmon wavelengths shorter than the mean distance
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Fig. 5.18. Angular dependence of the
Al volume-plasmon loss cross section for AE =

g—g 15.6 eV [5.73] and the surface-plasmon loss
(AE = 6.3 eV) of Al [5.69, 5.70].
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Fig. 5.19. Mean-free-path length A for Al and C plasmon losses as a function of
electron energy [5.81].

between valence electrons are damped more strongly. There is thus a maximum
momentum that can be transferred in the inelastic collision, and scattering
angles greater than 6. are not possible.

Integration over the solid angle {2 in (5.81), using the approximation
G(6,6.) = 1 for 6 < . and vanishing for 6 > 6., yields the total cross section
for plasmon excitation

o)

Opl Noon In(f./0r) (5.83)
assuming that g < 0., and the corresponding mean free path becomes A, =
1/Neopi. Figure 5.19 shows calculated and measured values of A, in the range
E = 100-1000 keV.
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Fig. 5.20. Multiple characteristic plasmon losses of 20 keV electrons passing through
a 208 nm Al film and comparison of the areas of the loss maxima (e) with a theo-
retical Poisson distribution [5.82].

Multiple inelastic scattering is observed in thick specimens (Sect. 5.4.2),
which means that multiples of the plasmon losses appear in the loss spectrum.
This can be seen, in particular, in the loss spectrum of Al, which shows one
sharp plasmon loss at 15.2 eV (Fig. 5.20). The probability P,(t) for the ap-
pearance of an energy loss AE = nAEy}, in a specimen layer of thickness ¢
can be described by a Poisson distribution (n = 0 corresponds to an elastic
scattering event with no energy loss)

Palt) = (t)n exp(=t/Ap) (5.84)

Apl n!

The integrated intensities of the loss maxima agree well with this distribution
(see, e.g., Fig. 5.20 for Al [5.82] and [5.83] for the 16.9 eV loss of Si). However,
deviations from Poisson statistics can occur when a fraction of the multiple
plasmon loss is scattered through angles larger than the aperture used. The
convolution with the background intensity in the loss spectra of carbon and
aluminum films is considered in [5.84, 5.85]. The multiple-loss spectrum can be
calculated for increasing thicknesses by a double convolution over energy loss
AF and scattering angle 6 by a Fourier method using theoretical formulas for
the inelastic single scattering with plasmon losses, Compton scattering, and
inner-shell ionizations [5.86].

5.2.6 Surface-Plasmon Losses

The plasmon losses discussed above are so-called volume losses. Surface-
plasmon losses, with lower energy-loss values, are also observed; these can
be explained by the generation of surface-charge waves [5.87]. Figure 5.21
shows the distribution of the electric field for a symmetric w~ (Fig. 5.21a)
and an antisymmetric (Fig. 5.21b) w™ surface oscillation mode and for a sin-
gle boundary in a thick layer (Fig. 5.21c). Both modes of oscillation show
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Fig. 5.22. Dispersion of the surface-plasmon modes w™ and w™ versus k, = 6/
for a 16 nm Al film covered on each side with a 4 nm oxide film. The dashed curve
corresponds to € for amorphous Al,O3 and the full curve for a-Al,O3 [5.91].

strong dispersions [5.73, 5.90, 5.91, 5.92] that depend not only on the wave
number k, of the surface waves but also on the specimen thickness ¢ (see the
example in Fig. 5.22).

The mode w™ is excited with a lower probability than w™. Figure 5.23
shows how the w and w™ losses move together with increasing film thickness
to a saturation value

Wpl
wt = ﬁ , (5.85)
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hwp Fig. 5.23. Dispersion of the two
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where € is the relative permittivity of the neighboring medium, typically vac-
uum, oxide, or supporting film. If both boundaries of the layer are limited by
vacuum (e = 1), equation (5.85) gives w* = w,1/v/2 for large thicknesses; for
an oxide-coated aluminum layer, we have AE = hw4 = 6.25 eV with €yiqe =
4.7, for example (Fig. 5.22).

The differential cross section of surface-plasmon losses decreases as
00r /(0% + 0%)? for increasing @ and hence as 03 for 6 > 0 [5.88, 5.89)
(Fig. 5.18). At nonnormal incidences of the primary electrons, the exci-
tation of surface-plasmon losses has an asymmetric angular distribution
[6.87, 5.91, 5.92, 5.93, 5.94].

If the electron velocity v is greater than the velocity of light in the specimen
layer (e.g., for Si), energy losses AE = 3.4 eV are observed due to the gen-
eration of Cerenkov radiation [5.95, 5.96]. Guided-light modes can be excited
in thin dielectric films, such as graphite [5.96].

Surface-plasmon losses can also be excited by the polarization caused
by the Coulomb field of electrons when the electron probe of a scanning
transmission electron microscope passes close to a crystal without striking
it [5.97, 5.98]. Correspondingly, an electron spectroscopic image with surface-
plasmon loss shows a bright rim extending exponentially to about 10 nm out-
side a cubic MgO crystal [4.111]. The local excitation of surface plasmons can
be used to determine the dielectric properties of nanotubes or nanoparticles
[5.99, 5.100, 5.101].
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5.3 Energy Losses by Inner-Shell Ionization

5.3.1 Position and Shape of Ionization Edges

The shells K, L, M, N, and O correspond to the main quantum numbers n =
1-5, respectively. Electrons on these atomic levels have energies of the order
of

E, = —R(Z —0,)*/n?, (5.86)

where R = 13.6 €V is the ionization energy of hydrogen and Z — o,, denotes
an effective atomic number, decreased by screening.

There [ = 0,1,...,n — 1 are possible values of the azimuthal quantum
number, resulting in angular momenta L = /I(l + 1) and denoted by the
symbols s, p,d, f, and g for [ = 0, 1, 2, 3, and 4, respectively. The electron
spin is described by the quantum number s = +1/2 with an angular mo-
mentum S = /s(s+ 1)h. The corresponding vectors L and S couple by
spin-orbit interaction to form the total angular momentum J = L 4+ S with
J =+/j(j + 1)h. Thus, for a 2s electron with [ = 0, only j = 1/2 occurs, while
for a 2p electron with [ = 1, j can take the values 1/2 and 3/2. This results
in the splitting of the L shell into three sublevels, L, Ly, and Lg (Fig. 10.3).
The magnetic quantum number m = —j, ..., +j describes the 25 + 1 possible
z-components of the angular momentum L, = mh and tells us that 25 + 1
electrons can be accommodated in the corresponding subshell of quantum
number j.

Following Pauli’s exclusion principle, these configurations of quantum
numbers are filled consecutively as the atomic number increases, though the
sequence is often interrupted; in the transition metals, for example, the 3d
shell is being filled, as is the 4f shell of lanthanides.

The ionization energy that is observed as an edge in electron energy-loss
spectroscopy (EELS) is the energy difference between the first unoccupied
energy state beyond the Fermi level and the ionized subshell. The edges ob-
served in EELS are therefore labeled according to the ionized subshell, Ly or
L3, for example, and Log if the corresponding edges cannot be resolved.

Figure 5.24 shows the edge energy losses AE = Ey (I = K, L, M,...)
versus the atomic number. Because E; increases as Z2 (5.86), the K-edge can
be observed within the useful interval AE = 0 — 2 keV only up to Si (Z = 14).
However, Fig. 5.24 shows that higher shell ionizations occur in each element
within this range of AFE. Collections of the electron energy-loss spectra of all
elements have been published [5.102, 5.103]; these also contain information
about the profile of the edges discussed below.

The differential cross section of inner-shell ionizations decreases over orders
of magnitude with increasing energy loss (Fig. 5.9). Energy losses beyond 2000
eV are therefore rarely used in EELS microanalysis. Beyond the edges follows
a long tail of energy losses that result from the excitation of core electrons to
unoccupied states of the continuum beyond the Fermi level. The plasmon and
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interband transitions also show a background that extends to a few hundred
electron volts. The decrease beyond an edge can be approximated by

do(a)

AR (5.87)
The exponent s depending on « can be determined from the slope in a double-
logarithmic plot of the number of counts versus AF (Fig. 5.9), and s is found to
be of the order of 3.5-4.5. The law (5.87) can also be applied to the background
in front of the edge to permit extrapolation of the background beyond the edge
(Sect. 10.3.3).

The shapes of ionization edges can be classified into groups [5.104] listed
and indicated in Fig. 5.24 and discussed below with examples of recorded
spectra (see also the review in [5.105]).

K Ionizations. K edges can be used from Li to Si and show a typical sawtooth
shape, as shown for carbon and aluminum in Figs. 5.25a,b. Hydrogen has been
investigated in metal hydrides and can be detected as a shift of the plasmon
loss [5.106, 5.107]. Helium can be analyzed as condensed gas bubbles after He
implantation in solids and shows a weak peak at 21-23 eV from atomic-like
1s — 2p transitions [5.108, 5.109, 5.110].

Los Ionizations. Whereas the profiles of K edges are nearly independent
of atomic number, the Loz edges of elements of the third group of the peri-
odic table (Si-Cl) show a delayed maximum 10-15 eV above the threshold as
shown for Si in Fig. 5.25¢. This is a consequence of the centrifugal potential

x AE™?®.
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Fig. 5.25. Examples of recorded energy-loss spectra [5.103] demonstrating the dif-
ferent shapes of ionization edges: (a, b) K edges of C and Al; (¢, d) Loz edges of Si
and Cr [5.103].

barrier in (5.89) when 2p electrons are excited to final states with I’ > 2. The
probability of exciting the 2s electron to the L; subshell is much lower, and
the corresponding maximum is often buried within the energy-loss near-edge
structure (Sect. 5.3.3). In the elements of the fourth group (K—Cu), on the
other hand, 2p electrons can be excited not only to the continuum but also to
unoccupied bound d states; “white lines” are then seen at the threshold, as
shown for Cr in Fig. 5.25d, where the two narrow white lines are caused by
spin-orbit splitting of the 2d subshell. In the elements Cu—Br, no white lines
occur because the d shell is filled and only rounded delayed maxima caused by
transitions to the continuum are observed. Whereas Cu alone shows no white
lines, the electron transfer from Cu to O in copper oxide produces unfilled d
levels, and white lines appear (Fig. 5.27, Sect. 5.3.3).

Mys Ionizations. Elements Rb-1 show edges similar to the 3d-filled Log
edges. The delay of the maximum can reach 60-80 eV, as shown for a
background-subtracted (stripped) Mys edge of Mo in Fig. 5.26a. For Cs to
Yb (including the rare earths), the f shell contains bound states and white
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Fig. 5.26. Examples of recorded energy-loss spectra [5.103] demonstrating the dif-
ferent shapes of ionization edges: (a, b) Mas edge of Mo and Gd, (c) plasmon-like
Mas edge of Ti, and (d) N4s edge of Sm [5.103].

lines again appear as shown for Gd in Fig. 5.26b. From Lu to Au, the f shell
is filled and again strongly delayed maxima and no white lines are observed.
M3 Ionizations. The edges of K—Zn lie between 30 and 100 eV and show
plasmon-like peaks superposed on the background of the valence electrons as
shown for Ti in Fig. 5.26¢.

Nys5 Ionizations. The elements Cs, Ba, and the lanthanides show character-
istic profiles in the range 80-120 eV resulting from the excitation of 4d3/, and
4ds /9 electrons to f states as shown for Sm in Fig. 5.26d.

5.3.2 Inner-Shell Ionization Cross Sections

The calculation of the GOS and d?c/d2d(AE) for inner-shell ionization has

been discussed in Sect. 5.2.2. The wave functions ag and a,, of the initial and

final states of the atomic electrons are solutions of the Schrodinger equation
h

2
V24 E,+V(r)|a,=0. (5.88)
2m
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After substituting apim = Rui(r)Yim (£2)/r, where Yy, is the spherical func-
tion, and separating the variables, the following equation for the radial part
is obtained:

{;;vz +E, + [V(r) + W} } Rp(r) =0. (5.89)

The quantum number [ modifies the Coulomb potential V(r) by a term
that can be interpreted as a centrifugal barrier. The transitions from an initial
state with quantum number [ to the final state with I’ obey the selection rule
Al = £1 for ¢ — 0 (optically allowed transitions), whereas, for large ¢, all
transitions can contribute to the energy-loss spectrum.

For the calculation of K shell ionization cross sections, hydrogenic atomic
functions are widely used, and they can also be used for higher Z by con-
sidering screening of the nuclear charge +Ze by Z—1 electrons [5.111]. These
calculations are included in the SIGMAK program for elements Li to Si [5.112].

For L shells, the centrifugal barrier (5.89) has to be considered. In the
SIGMAL program, photoabsorption data [5.113] and EELS measurements
[5.114] have been used to correct hydrogenic calculations [5.115, 5.116]. Hy-
drogenic model calculations of the M5 and Majz shells based on photoabsorp-
tion data have also been published [5.117]. These calculations are all based on
the Schrodinger equation for the incident electron and thus confined to the
non-relativistic case. The validity of the resulting formulas can be extended
up to about 120 keV electrons by replacing the expressions for the energy and
momentum transfer by their relativistically correct counterparts. For higher
electron energies, a fully relativistic treatment should be used [5.119].

The use of atomic Hartree—Slater wave functions for the initial and final
states [5.118, 5.120] allows us to predict the characteristic shapes of the edges,
such as the sawtooth shape of the K edge and the delayed edge for L shell
ionizations, but not the white lines that occur in M and L edges by transitions
to unoccupied bound states. The generalized oscillator strength for the white-
line components can be calculated separately [5.121].

When the objective diaphragm or the entrance slit or diaphragm of the
spectrometer acts as a limiting aperture, the double differential cross section
has to be integrated between 0 and « as well as between Ey (I =K, L, M,...)
and Er + A to get a partial cross section o(a, A). The width A of the energy
window beyond the ionization edge at Ej has to be limited to 50-100 eV
because of the long tail of the edges and uncertainties when subtracting the
extrapolated background in front of the edge in order to extract the cross
section do(a)/dAE, which can be compared with experiments.

The difficulties of the absolute measurement of ionization cross sections
can be avoided by measuring ratios of partial cross sections of elements a and
a standard element b = O, B, or C, which is present in an oxide, boride, or
carbide of a,

ob(a,A) Ib(a,A)

ka = =
"7 ra(0, A) T I(a, A)

N,
R (5.90)
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where N, and N, are the numbers of atoms per unit area. This ratio is analo-
gous to the Cliff-Lorimer ratio of x-ray microanalysis (Sect. 10.2.4). For these
light standard elements, absolute partial cross sections can be calculated ac-
curately.

Experimental k-factors have been determined for K, Loz, Mys, Mas, and
Nys shells [5.114, 5.122, 5.123, 5.124, 5.125]; see also [5.126, 5.127]). These
data can also be represented by integrated oscillator strengths f(A) (parame-
trization), which are independent of o and E [5.128, 5.129, 5.105].

5.3.3 Energy-Loss Near-Edge Structure (ELNES)

The energy-loss near-edge structure is concentrated within a region of about
50 eV and results from the unoccupied density of states (DOS) beyond the
Fermi energy, which may be regarded as a multiplicative envelope applied to
the corresponding edge. Energy resolutions of less than 1 eV are necessary to
resolve details.

One effect in ELNES is the so-called chemical shift of an edge, which can
be observed when elements occur in different crystal structures or compounds;
for example, the Al Log edge shifts from 73 eV in the metal to 77 eV in Al;O3
and the Si Log edge from 99.5 eV in Si to 103 eV in SiO and 106 eV in
SiOs5. The shift of the K edge from 284 eV in graphite to 289 eV in diamond
can be attributed to the 4 eV band gap. The chemical shift of amorphous
silicon alloys is linearly related to the electronegativity of the ligand, which is
a measure of the charge transfer from Si to the ligand [5.130].

The following examples demonstrate how the fine structure can be inter-
preted (see [5.105] for further details). The Las edge in Cu does not show
white lines, unlike the spectrum of CuO (Fig. 5.27). In the metal, the 3d band
is filled and lies just below the Fermi level, whereas in CuO an electron ex-
change between Cu and O atoms produces vacant states in the 3d band; the
Fermi level shifts into the 3d band with the result that pronounced white lines
are seen in the CuO specimen [5.131]. Figures 5.28a,b show the C K edges

Fig. 5.27. Comparison of the La2s edges of Cu and

920 940 960 980eV
AE = ' CuO [5.131].
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Fig. 5.28. Differences in the energy-loss spectrum at the K ionization edge for
carbon in (a) amorphous carbon films and (b) graphite films [5.132].
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for amorphous carbon and graphite [5.132]. The weak preionization peaks are
attributed to 7" bound states below the ionization threshold. The number
of peaks and their energies observed in the C K edges of different organic
compounds (Fig. 5.29) can be explained in terms of a chemical shift because
the carbon atoms present at different sites within the molecule carry different
charges [5.25, 5.133]. As another example, Fig. 5.30 shows the B K edge, the
N K edge, and the density of free 7* and ¢* states beyond the Fermi level
in hexagonal boron nitride [5.134]. The dotted areas are caused by convolu-
tion with the plasmon-loss spectrum. Such transitions to 7#* and o* states
also form the loss spectrum of graphite in Fig. 5.28b. They show different
angular distributions in the EELS, and their intensity changes when differ-
ent scattering angles are selected. Tilting of anisotropic crystals also alters
the ELNES because 7* and ¢* orbitals are parallel and perpendicular to the
c-axis, respectively [5.135, 5.136].
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Fig. 5.30. Boron and nitrogen K-edge
profiles of boron nitride with transitions to
the 7* and ¢* bands (differently hatched
areas) and convolution due to plasmon
losses (dotted areas) [5.135].
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Energy-loss near-edge structures can be used to identify elements in sim-
ilar compounds or environments when reference spectra are available (“fin-
gerprint” method) [5.137, 5.138]. As examples, we mention the use of the
difference between graphite and diamond (Fig. 5.28) to identify interstellar
diamond [5.139] and the use of the intensity ratio of the L3 and L2 white lines
to determine the Fe?T /Fe3* ratio [5.140].

For more detailed studies, it is of interest to compare ELNES with theo-
retical calculations [5.141] using the band structure and the unoccupied DOS.
The augmented plane-wave method [5.142] has been used to interpret ELNES
for transition metals and their carbides, oxides, and nitrides [5.143, 5.144].
A pseudopotential band theory [5.145] is suitable for semiconductors and ce-
ramic materials [5.146, 5.147]. A multiple-scattering calculation [5.148] con-
siders the influence of nearest-neighbor shells. The excited electron wave is
backscattered and interferes with itself, thus influencing the excitation proba-
bility. This is analogous to the model (Fig. 5.32) also used for EXELFS. This
method is particularly suitable for large unit cells [5.149, 5.150] or oxygen
compounds [5.151]. An alternative method is a molecular orbital calculation
applied to transition metal ions in solids, for example [5.150, 5.152]. The
details in the region of the white lines of the transition metals can be de-
scribed using an atomic model and entering the crystal field as a perturbation
[5.153].
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5.3.4 Extended Energy-Loss Fine Structure (EXELFS)

In contrast to the strong effects in ELNES, EXELFS can be observed only
as weak oscillations in the tail of an edge up to energy losses of about 100
200 eV beyond it (Fig. 5.31) [5.134, 5.154, 5.155, 5.156, 5.157, 5.158, 5.159,
5.160]. This fine structure is also observed in x-ray absorption spectra [5.161],
where it is called EXAFS (extended x-ray-absorption fine structure). Both are
generated by interference between the outgoing spherical wave of the excited
electron with an excess energy AE — Ep beyond the Fermi level and the waves
backscattered at the nearest-neighbor atoms (Fig. 5.32). The variation of the
cross section can be described by

Ao(k) = 3 £, (k)

n; exp(—2r;/A)
2kr3

exp(f87120]2kj2) sin[drkr; + n;(k)], (5.91)

Intensity {arbitary units)

Fig. 5.31. Energy-loss maxima (ex-

tended fine structure) of Al and Al,O3

films above the K ionization edge of
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Fig. 5.32. Excitation and backscatter-
ing of secondary waves at neighboring
atoms and interference with the pri-
mary wave excited by inner shell ex-
citation to explain EXELFS. In the
example, the excited and backscattered
waves interfere constructively at the

central atom, resulting in a maximum
of Ao (k).
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where
k = [2m(AE — Ey)/h?"/? is the wave number of the excited electron;
T = distance of the n; neighboring atoms in the jth coordination shell;

fj(k) = elastic scattering amplitude of neighboring atoms for deflection
through 180°;

A = mean free path for inelastic scattering of the excited electron as

measured by Auger electron spectroscopy, for example, with a

minimum of 1 nm at 100 eV;

Debye—Waller factor arising from thermal vibrations and/or

statistical disorder of the neighboring atoms.

gj

The first term, 47kr;, in the sine function is the geometric phase shift of
the backscattered wave corresponding to the distance 2r;, and n; (k) is a phase
shift associated with backscattering.

Equation (5.91) shows that the cross section is the Fourier transform of
the radial density distribution n; /TJ2 of the nearest-neighbor atoms. After
subtracting the continuous tail beyond the edge, the density distribution can
be derived by an inverse Fourier transform of the oscillatory part. Thus, the
main maxima indicated by arrows in Fig. 5.31 and split by the influence of
second-nearest neighbors give the value r; = 0.284£0.01 nm for Al and r; =
0.2040.01 nm for the oxide, in agreement with crystallographic x-ray data.
The EXELFS spectrum of crystalline specimens also depends on the direction
of ¢’ of the momentum transfer [5.165].

5.3.5 Linear and Circular Dichroism

On several occasions, we have discussed the dependence of the energy-loss
spectrum on the orientation of the scattering vector q’. For small scattering
angles (dipole approximation), the double differential cross section (5.51) is
related to the photoabsorption cross section for a photon energy AE = hv,

opn = 2rhal{ays|e - rjlags)|. (5.92)

Here o =~ ﬁ is the fine-structure constant and e the polarization vector
of the photon. A comparison of (5.51) with (5.92) shows that the direction
of the scattering vector q’ corresponds to the polarization vector e of the
photon. In optics, the dependence of the photoabsorption on the direction
of e is called dichroism. This term is also used in energy-loss spectroscopy.
Instead of talking about the dependence of the spectra on the orientation of
the scattering vector, we can state that we can detect the linear dichroism in
our specimen.

In optics, one can also measure the absorption of circularly polarized light.
In some cases, particularly for magnetic materials, photoabsorption then de-
pends on the helicity (right or left) of the incident photon. As the polarization
vector e of a circularly polarized photon traveling along the z-direction is given
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by e = eptie,, equation (5.92) for the photoabsorption cross section has to
be generalized correspondingly [5.163].

Recently Hébert and Schattschneider have shown that this effect can also
be measured in EELS if a coherent superposition of two plane waves is
used as an incident wave instead of a single plane wave [5.162]. The scat-
tered intensity then contains an interference term [6.118] (a,s|exp(—2riq’ -
r;)|aos){aos|lexp(2mig - r;)|ans). If the two scattering vectors are small and
perpendicular to each other, these matrix elements correspond to equivalent
terms in the photoabsorption cross section. First experiments on Fe demon-
strate that this effect can indeed be detected in energy-loss spectra [5.164].

5.4 Multiple-Scattering Effects

5.4.1 Angular Distribution of Scattered Electrons

The angular distribution of transmitted electrons consists of the peak of
unscattered primary electrons of intensity I and illumination aperture «;
together with the angular distribution of scattered electrons, which can be
measured by recording the current AI(f) with a detector or Faraday cage
having a solid angle Af? of collection; the result is normalized by dividing by
the incident current Ip. The relation

1 AI(6 Nupt do T
where x = pt is the mass thickness, is valid only for very small values of x;
x¢ denotes the mean-free-path length of (5.8), and s1(6) is the normalized
single-scattering distribution ([ 2ms;(6)0dé = 1).

The intensity I of the unscattered primary beam decreases exponentially
with increasing mass thickness x according to (5.8), i.e., I/Iy = exp(—x/x4)
with

11 1 Na

— —_— A (Uel + Uinel) =
Ty Tel Linel

Naoel 1+v

1 (1+v)= 2 (5.94)
where the ratio v = oipei /0 is defined in (5.66). Values of z are listed in
Table 6.1.

For E = 100 keV, a value 2y = 12 pg/cm~2 or ¢ = 120 nm is found for
organic material of density p = 1 g/cm?, but for evaporated Ni and Fe films
the same mass thickness is obtained for ¢ ~ 15 nm [5.166]. The corresponding
decrease of primary-beam intensity is important for the visibility of phase-
contrast effects, which are generated by interference between the primary and
scattered electron waves. In Lorentz microscopy (Sect. 6.8), the domain con-
trast is created by using a primary beam of very small illumination aperture,
a; < 1072 mrad; elastically and inelastically scattered electrons cause a blur-
ring of the domain contrast in the Fresnel mode.
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Fig. 5.33. (a, b) Angular distribution of the elastic and inelastic scattering in-
tensities of 100 keV electrons in carbon films of increasing thickness ¢ = 5-100 nm
[5.169].

The angular distribution for multiple scattering can be obtained by eval-
uating a multiple-scattering integral [5.11] or by superposition of multiple-
scattering distributions s, (#), which are calculated by an n-fold convolution
of s1(0) defined in (5.93),

$n(0) = sp—1(0) ® s1(0). (5.95)
These are then weighted with the coefficients of a Poisson distribution [5.167]

1A10) _ (_m) 5 < z >n sn(0) (5.96)

Ip AN z ) = \zy n!

A procedure is available whereby the two-dimensional integration necessary
for the convolution in (5.95) is reduced to a one-dimensional integration by
using projected distributions [5.168].

Figure 5.33 shows the contributions of elastic and inelastic scattering cal-
culated from (5.96) for different carbon-film thicknesses [5.169]. For thin films
(5 nm), the angular distribution can be assumed to be approximately propor-
tional to the differential cross section do/df?2 for single atoms. The intensity
distribution is modified by multiple scattering as the thickness is increased.
The elastic contribution at small scattering angles 6 increases up to 50 nm but
decreases for greater thicknesses due to elastic multiple scattering into larger
angles and to inelastic scattering, which dominates for greater thicknesses.

These calculations neglect all interference effects. In crystalline specimens,
destructive interference decreases the scattered intensity between the primary
beam and the Bragg-diffraction spots; the scattered intensity is caused by
thermal diffuse scattering (electron—phonon scattering) and inelastic scatter-
ing. In amorphous specimens, the short-range order corresponds to a radial
distribution function of neighboring atoms that causes diffuse maxima and
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minima in the scattered intensity distribution (Sect. 7.5.1). However, this
distribution oscillates around the distributions calculated here, in which in-
terference effects were neglected.

5.4.2 Energy Distribution of Transmitted Electrons

Figure 5.34 shows the variation of the energy-loss spectrum with increasing
thickness for 1.2 MeV electrons [5.81]. Analogous results are obtained with
100 keV electrons only for correspondingly thinner films because the mean
free path is shorter (Fig. 5.19). In a very thin film (Fig. 5.34a), a large frac-
tion of the electrons pass through the film without energy loss. The three
multiples of the Al plasmon loss at AE = 15.2 eV follow a Poisson distribu-
tion (5.84). The intensity of higher energy losses is very low, and an increase
caused by L-shell ionization appears at AEF = 80 eV. At medium thicknesses
(Fig. 5.34b), the zero-loss peak is strongly reduced, and seven plasmon losses
can be detected. The plasmon losses are superposed on a broad maximum
due to overlapping of the L-ionization edge and the multiple plasmon losses.
The plasmon losses disappear in very thick specimens (Fig. 5.34¢), and only
a broad energy distribution with a most probable energy loss AE, and a
full-width at half-maximum AFEy is observed.

For the value of the most probable energy loss, a theory of Landau [5.170]
can be used that considers the atomic structure only in terms of a mean
ionization energy J = 13.5Z (see also modifications in [5.171, 5.172]):

Nae*Zzx Nae*Zzx
AE, = —% S |Ir S ~ ) — 8% +0.198 (5.97)
8meg AL dred J2PA(1 — 3?)
Intensity
Atbitrary units Intensity
Arbitrary units
t=118pm
t=200nm
*1.5eV
AElv) 3 2 1 D AE(ev) 200 100 0
a b
Intensity

{Arbitrary and different units for

each thickness} AEp

t= /85umAS5u 3

AE Fig. 5.34. (a-c) Energy-
loss spectra of 1200 keV
electrons in Al foils of
increasing thickness ¢
[5.81].

AE(eV) 2000 1000 0
c
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Fig. 5.35. Most probable energy F, = E — AE,, and mean energy E., of 20 keV
electrons in (a) Al and (b) Au films of increasing mass thickness x = pt calculated
with (5.97) and (5.100) and comparison with measured values [5.173].

(Ey = moc?, B = v/c, and = pt is the mass thickness). The validity of
this formula has been confirmed at 20 keV for Ag and Al (Fig. 5.35) [5.173]
and recently at 80 keV using an energy-filtering electron microscope [4.124].
However, the observed values of the full-width at half-maximum AFEy of the
energy distribution are greater than the value

4
ABy — 4.02 A ZX

8me AF3?
derived from the Landau theory. The Fourier algorithm of the Landau theory
can be extended to the calculation of both angular and energy distributions si-
multaneously when single-scattering cross sections containing plasmon losses,
their dispersion and cutoff, the Compton scattering, and ionization cross sec-
tions are used. This allows the influence of multiple scattering on energy-loss
spectra to be calculated for different apertures and compared with experi-
ment [5.86].

For many applications, it is not sufficient to characterize the energy dis-
tribution by the most probable energy loss E, and the half-width AFEy; it is
also of interest to know the mean energy, which can be calculated from

(5.98)

7 EN(E)EdE
(a) % dz (5.99)

(b) Bu-E-[
0 B

g =
J§ N(E)AE

by using a measured energy-loss spectrum or from the theoretical Bethe for-
mula for the mean loss per unit path length measured in terms of mass
thickness [5.26],
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Fig. 5.36. Experimental value of the half-width xg.5 of an edge (see Fig. 5.39a
for definition) caused by the chromatic aberration as a function of objective aper-
ture a, for different thicknesses of polystyrene spheres. Solid points: Monte Carlo
simulations [5.174].

(5.100)

dE,,
dx

¢NZ (B
= n .
g Ame3AEy3? 2J

This formula can also be used to calculate the specimen heating (Sect. 11.1)
and the radiation damage caused by ionization (Sect. 11.2). Values of the mean
energy F,, obtained from measured energy distributions N(E) by applying
(5.99a) agree with calculations using (5.99b) and (5.100) (Fig. 5.35). The
stronger decrease of the experimental values for large mass thicknesses of gold
can be attributed to an increase of the effective path length caused by multiple
scattering.

The energy losses impair the resolution as a result of chromatic aberra-
tion (2.63). Measurements of the width x5 of the blurred intensity spread
(Figs. 5.38c and d) at the edges of indium crystals placed below polystyrene
spheres of different thicknesses (see Fig. 5.39a for a definition of zq5) are
plotted in Fig. 5.36 as a function of objective aperture. The reason why the
measured values of g5 do not increase in proportion to a, (2.63) is that the
step intensity distribution consists of a steep central and a flat outer part.
Monte Carlo simulations that take into account the plural scattering of the
carbon plasmon-loss spectrum, from which x( 5 can be obtained by the same
method, predict the same dependence on aperture and agree with experimen-
tal results. Figures 5.38c and d at £ = 100 and 200 keV, respectively, show
that the effect of chromatic aberration decreases with increasing E.

5.4.3 Electron-Probe Broadening by Multiple Scattering

The angular distribution of scattered electrons in thick films (0.1-1 pm) pro-
duces a spatial distribution that in turn broadens the incident electron probe
normal to the beam direction. This effect limits the resolution of the scanning
transmission mode, although the chromatic aberration of the conventional
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Fig. 5.37. Specimen structure and electron-beam broadening in the two cases in
which the polystyrene spheres are (a) below and (b) above the evaporated indium
layer.

transmission mode shown in Fig. 5.36 is avoided. It likewise limits the lateral
resolution of x-ray microanalysis of thick specimens.

The multiple scattering can be observed as a top—bottom effect in the scan-
ning transmission mode and is illustrated in Figs. 5.37 and 5.38. The specimen
consists of a thin formvar supporting film onto which indium, which condenses
as small flat crystals on the substrate, has been evaporated. This specimen is
coated with polystyrene spheres of 1 um diameter to simulate a thick spec-
imen of known thickness. The indium layer is scanned by an unbroadened
electron probe with the polystyrene sphere below the layer (Figs. 5.37a and
5.38a). The image of the indium crystals is sharp, and the subsequent scatter-
ing in the polystyrene sphere and the broadening of the beam merely decrease
the intensity recorded with the STEM detector without affecting the resolu-
tion. With the polystyrene spheres uppermost, the indium layer is scanned
by a broadened probe, the edges of the indium crystals are blurred, and the
resolution is reduced (Figs. 5.37b and 5.38b).

A resolution parameter can be obtained by measuring the intensity distri-
bution across the edge of the indium crystals and the width x¢ 5 between the
points at which the step reaches 0.25 and 0.75 of its total intensity (Fig. 5.39).
Measured values of xg 5 behind polystyrene spheres of thickness ¢ are plotted
in Fig. 5.39 for different electron energies.

A value of zg 5 ~ 10 nm is found for £ = 100 keV and t = 1 um. The order
of magnitude is the same for the chromatic aberration using objective aper-
tures a, > 10 mrad (Fig. 5.36). Whereas the blurring of specimen structures
by chromatic aberration is approximately the same over the whole specimen
thickness, structures at the top of a 1.1 ym layer are imaged in the scanning
mode with a better resolution. It has therefore been suggested that the chro-
matic aberration of a conventional TEM mode should be avoided in this way
[4.67]. However, the top—bottom effect sets a limit on the improvement that
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Fig. 5.38. Images of indium crystals and the same polystyrene sphere of 1.1 pum
diameter in the 100 keV STEM mode with the polystyrene sphere (a) below and
(b) above the indium layer to demonstrate the top—bottom effect. (¢) and (d) are
normal TEM images of the same area at £ = 100 and 200 keV, respectively, blurred
by the chromatic aberration and the energy losses in the polystyrene spheres [5.175].

can be achieved [5.175]. The advantages of the scanning mode can be seen in
other applications (Sect. 4.5.1).

The effect of chromatic aberration decreases with increasing energy, and
in high-voltage electron microscopy, multiple scattering can also cause a top—
bottom effect in the conventional bright-field TEM mode. Here, however,
structures at the bottom of the specimen are imaged with a better resolu-
tion [5.174]. Such a top-bottom effect is also experimentally proved at 100
keV when the chromatic aberration is avoided by zero-loss filtering with an
energy-filtering transmission electron microscope [5.176].
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Fig. 5.39. Measurements of xo.5 in the STEM mode caused by beam broadening
for specimens below polystyrene spheres of thickness ¢ [5.175]. (Inset: Densitometer
recording across an edge of an indium crystal and definition of xq.5).

This spatial broadening of the electron probe can be calculated from the
differential cross section do/df2 by evaluating a multiple-scattering integral
[6.177], by solving the Boltzmann transport equation [5.178, 5.179], or by
Monte Carlo simulations [5.180]. A disadvantage of all of these methods is
that they do not lead to analytical formulas.

An approximate formula for estimating the beam broadening can be ob-
tained if we return to a multiple-scattering theory proposed by Bothe [5.181]
(see also [5.182]). The differential cross section (5.34) can be approximated
by a two-dimensional Gaussian function of the form exp[-(62 4 65)/63], where
62 = 02. This function has the advantage that convolutions can be evaluated
straightforwardly thanks to the following property of Gaussians:

exp(—2?/a?) @ exp(—2?/b*) o exp[—2?/(a* + b?)]. (5.101)

Bothe obtained the projected probability function that expresses the likeli-
hood of finding an electron at a depth z, a distance = from the axis, and with
a projected scattering angle 6, (A: mean-free-path length):

aA (6% 320, 32?
Integration over x gives the projected angular distribution for a film of thick-
ness z =t

f(t,0,) x exp(—602/02) with 62 = 63t/ A. (5.103)
This means that the width of the angular distribution increases as t'/2. Inte-
gration over #, results in the projected lateral distribution
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2
I(t,2) = exp(—2?/23) with 2= %tS' (5.104)

Substitution of 0y from (5.34) and A = A/N4poe from (5.40) yields

22 NAP 1/2 s
= 22 Z(1+ E/Ey) t*/?
o 2ray <37TA) (1+E/Ep)

P\Y2Z 14+ E/Ey 4
1.05 x 10° ( & R 5.105
% (A) E1+ E/2E, (5.105)

with ¢ and ¢ in cm, and F in eV.

With the exception of the numerical factor and the relativistic correction,
this formula is identical with one derived in [5.183]. For polystyrene spheres
(p=1.05gcm™3), ¢t =1 pum, and E = 100 keV, equation (5.105) gives zg5 =
0.96z = 20 nm, which is larger than the measured value of 10 nm (Fig. 5.39).
However, the blurred image of an edge in the scanning mode is produced only
by small-angle scattering 6 < aq, which reduces the beam broadening actually
observed.

5.4.4 Electron Diffusion, Backscattering,
and Secondary-Electron Emission

Electron diffusion in bulk material is more important for scanning electron
microscopy. In TEM, the specimens normally have to be thin enough to avoid
the multiple-scattering effects that occur in thick films. However, a knowledge
of electron interactions with solids is necessary for recording by photographic
emulsions, scintillators, and semiconductors. Walls and diaphragms in the
microscope are struck by electrons, and backscattered electrons (BSE) and
secondary electrons (SE) from the specimen can be used as signals in the
STEM mode. The most important facts about electron diffusion and BSE and
SE emission from thin films will therefore be summarized here (see [1.122] for
details).

Electron trajectories in a solid are curved by large-angle elastic-scattering
processes. The mean electron energy decreases along the trajectory as a result
of energy losses. This decrease can be described by the Bethe stopping power
(5.100). Integration of (5.100) using (5.99b) yields Ey, (z) (Fig. 5.40). Setting
E,, = 0 gives the Bethe range Rp, which increases with increasing atomic
number Z. However, the trajectories become more strongly curved with in-
creasing Z owing to the presence of the factor Z2 in the Rutherford cross
section (5.31). In practice, the range R is approximately independent of Z if
it is measured in units of mass thickness (e.g., ug cm™?2) and is of the order of
Rp only for small Z. The range can be estimated from the empirical formula

20
R~ §E5/3 (5.106)

in the range 10 < E < 100 keV with R in ug cm™2 and E in keV.
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[5.185].

The depth distribution @Q(z) of energy dissipation by ionization describes
the probability of producing electron-hole pairs in semiconductors, or photons
in scintillators, and the generation of heat. In Fig. 5.40, Q(z) curves are plotted
for C and Au. These have a maximum below the surface and also demonstrate
the existence of a range Ry.x approximately independent of Z.

A fraction n of the incident electrons can leave the specimen as backscat-
tered electrons (BSE) with energies reduced by inelastic scattering; 1 is known
as the backscattering coefficient. Integration of the Rutherford cross section
(5.31) from 0 = 7/2 to 6 = w (backscattering) gives

€4Z2
- 16me3 B2

E+Ey\?
Nt
(E+2Eo) ’

U] (5.107)
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where N = Nap/A is the number of atoms per unit volume. Plots of /N Z>
against the film thickness ¢ are indeed approximately independent of the ma-
terial (Fig. 5.41). The linear increase of 7 with increasing film thickness can
be used to measure the latter by placing a small Faraday cage in front of
the specimen [5.184, 5.185, 5.186]. For a more accurate comparison of theory
and experiment, it is necessary to consider Mott instead of Rutherford cross
sections [5.187]. Monte Carlo simulations are suitable for these calculations
[5.188, 5.189]. The backscattering coefficient may be influenced by channeling
effects and also depends on the orientation of the crystal foil relative to the
electron beam. These effects can be used to record channeling patterns with
BSE by rocking the incident electron beam (Sect. 8.1.2).

Electrons excited by inelastic collisions with an energy sufficiently far
above the Fermi level to overcome the work function can leave the speci-
men as secondary electrons (SE); by convention, these have an energy Fsg <
50 eV and emerge from a small exit depth of the order of tgg = 0.5-10 nm
[5.190, 5.191]. The secondary-electron yield d is proportional to the Bethe loss
|dEy, /dz| (5.100) in the surface layer and to the path length tgp sec ¢ inside
the exit depth; ¢ is the angle between the incident direction and the surface
normal. The total SE yield is the sum of the SE generated by the primary
beam (0pg) and by the backscattered electrons or the transmitted electrons
on the bottom surface (0psg),

0 = 0pg + 0BSE = 5pE(1 + /67)). (5.108)
The fraction 3 is greater than unity and can increase to values of 2-3 for
compact material [5.192]. This indicates that the number of SE per BSE is
greater than dgg owing to the decreased BSE energy and the increased path

length of BSE in the exit depth. The SE yield at the top and bottom of a thin
foil can also be explained in these terms [5.193].
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Scattering and Phase Contrast
for Amorphous Specimens

Elastic scattering through angles larger than the objective aperture causes
absorption of the electron at the objective diaphragm and a decrease of trans-
mitted intensity. This scattering contrast can be explained by particle optics.
The exponential decrease of transmission with increasing specimen thickness
can be used for quantitative determination of mass thickness or the total mass
of an amorphous particle, for example. The zero-loss mode of electron spec-
troscopic imaging allows us to increase the contrast by removing inelastically
scattered electrons; alternatively, the contrast can be increased by energy fil-
tering at higher energy losses.

The superposition of the electron waves at the image plane results in in-
terference effects and causes phase contrast, which depends on defocusing and
spherical aberration, on the objective aperture, and also on the particular
illumination conditions.

It is possible to characterize the imaging process independently of the spec-
imen structure by introducing the contrast-transfer function, which describes
how individual spatial frequencies of the Fourier spectrum are modified by
the imaging process. The contrast-transfer function of the normal bright-field
mode alternates in sign and decreases at high spatial frequencies owing to the
partial temporal and spatial coherence. Methods of suppressing the change in
sign, by hollow-cone illumination, for example, have been proposed.

The idea of holography as an image-restoration method, originally pro-
posed by Gabor for electron microscopy, was for many years impeded by
the imperfect coherence of the electron beam. With the introduction of field-
emission guns, holography can now be employed in electron microscopy for
the quantitative measurement of phase shifts at the atomic scale.

Many different methods can be employed for analog or digital image
restoration and for the alignment of image structures in a series of micro-
graphs. A tilt series can be used for tomography, especially for low-dose ex-
posures of biomacromolecules.
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The phase shift caused by magnetic fields inside ferromagnetic domains can
be exploited to image the magnetic structure of thin films or small particles;
this is known as Lorentz microscopy.

6.1 Scattering Contrast

6.1.1 Transmission in the Bright-Field Mode

We assume in this section that the electrons move as particles through the
imaging system. All electrons that do not pass through the objective dia-
phragm are stopped by it; this results in scattering contrast. This means that
we shall be considering the intensity and not the wave amplitude, even in
the focal plane of the objective lens, and that we shall sum intensities and
not wave amplitudes in the image plane. In the purely wave-optical theory
of imaging (Sect. 3.3.2), we always sum over wave amplitudes and obtain the
image intensity by squaring the wave amplitude in the final image plane. The
resulting phase contrast will be considered in Sect. 6.2. (It will be shown in
Sect. 6.2.6 in (6.25)—(6.28) that the scattering contrast can be incorporated in
the more general phase-contrast theory if complex scattering amplitudes are
used.) The scattering contrast therefore describes the image intensity at low
and medium magnifications, where phase-contrast effects do not normally have
to be considered unless a highly coherent electron beam and large defocusing
are employed.

In the bright-field mode, the diaphragm in the focal plane of the objective
lens acts as a stop (Fig. 4.15) that absorbs all electrons scattered through
angles 0 > «, (objective aperture). Only electrons scattered through 6 < «,
can pass through the diaphragm. We can thus define a transmission T'(«,,) that
depends on the objective aperture o, and also on the electron energy F, the
mass thickness x = pt (p: density, ¢: thickness) and the material composition
(atomic weight A and atomic number Z). We assume that the illumination
aperture «; of the incident beam is appreciably smaller than o, (; < ),
which is usually the case in normal TEM work, whereas in STEM the two
apertures are normally comparable (Sect. 6.1.5).

Scattering contrast is typically observed with amorphous specimens, sur-
face replicas, or biological sections (see quantitative examples in Sect. 6.1.3).
Even for amorphous specimens, the assumption that the waves scattered at
single atoms add incoherently is not fully justified because the angular distri-
bution of the scattered intensity (diffraction pattern) shows diffuse maxima
(Sect. 7.5.1). However, the total number of electrons scattered into a cone
of half-angle «, is very insensitive to such diffuse maxima in the diffraction
pattern because the angular distribution oscillates about that corresponding
to completely independent scattering (Fig. 7.22). Polycrystalline films with
very small crystals, platinum for example, can also be treated by the theory
of scattering contrast [6.1]. Evaporated films that contain larger crystals, Ag
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or Au for example, may deviate from this simple theory owing to dynamical
diffraction effects, and their mean transmission averaged over a larger film
area cannot be described exactly by the formulas of scattering contrast.

Equation (5.5) can be used to calculate the number of electrons scattered
through angles 8 > «, and intercepted by the diaphragm in the focal plane
of the objective lens. Substituting the small-angle approximation (5.34) for
elastic scattering gives the partial cross section [5.11]

o9 dUel 4Z2R4(1 + E/E())2 o9 0
el(Q) = 2 0do = 2 dé
0, I(Oé ) 7Tafo a0 ™ GIZ.I (.1]; [1+(0/90)2}2
Z2R2\%(1 + E/Ey)? 1
= 2 2 (61)
Tay 1+ (ao/6p)

The total cross section o (5.40) is obtained by setting «, = 0. According to
(5.9), the mean free path x, between elastic scattering events becomes
R wAa%

"~ Noa  NaZ2R2X\2(1+ E/Eg)?’

Tel (62)
where N = N4 /A denotes the number of atoms per gram. If complex scatter-
ing amplitudes f(6) are available, say from WKB or partial wave calculations,
0 can be obtained from the optical theorem (5.39); subtracting the number
of electrons passing through the diaphragm then gives

@Q
calas) = 2AIm{£(0)} —2r [ |£(6)[0do. (6.3)
S——— 0
Oel
This means that the complex scattering amplitude needs to be known only in
the region 0 < 0 < «.

A formula for the cross section oinel (), analogous to (6.1), can be calcu-
lated by using the differential inelastic cross section (5.63). The term g that
contains the mean ionization energy J can be neglected in ¢ because it will
be important only for very small scattering angles. We find

Tinet(@00) = 2 [ dg}“;l 6de (6.4)
NZ(1+ E/Ep)? < 1 1
=2 — |1l — ——F F | 64O
T i iw< )

_AZR?N(1 + B/Ey)” 1 + mW} :

mag; [_ A1+ (ao/60)?]
The decrease of transmission T'(«,) through the aperture a, with increasing
mass thickness © = pt can be obtained as in (5.6),
dn NA

— = 7[ael(ao)+amel(ao)1dx. (6.5)
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Fig. 6.1. Semilogarithmic plot of the transmission 7" of carbon films as a function
of mass thickness x = pt for different objective apertures a, (E = 100 keV). The full
curves were calculated using a multiple-scattering integral [5.11] with the constants
Tel = 47.6 pug em ™2 and 0y = 28.4 mrad, obtained from a best fit of the initial slopes
at small z. The straight lines Tg correspond to measurements of zero-loss-filtered
transmission. The straight lines Tyns correspond to unfiltered transmission.

Integration gives
T(ao) =n/ng = exp|—z/xx ()], (6.6)

where the contrast thickness xy(a,) is given by

1 4 Z—1
= 2 .

Tnan)  Zaw | T (ag/ao T mVEF (Go/0) (67)
and z is defined in (6.2).

The exponential decrease (6.6) of transmission with increasing mass thick-
ness x can be checked by a semilogarithmic plot. The expected linear decrease
of log1oT is observed for small mass thicknesses (Fig. 6.1) [6.2, 6.3, 6.4, 6.5].
The agreement is less good for larger mass thicknesses, owing to multiple scat-
tering. A higher transmission is observed than that predicted by (6.6) because
electrons first scattered through large angles can be scattered back toward the
incident direction and can hence pass through the objective diaphragm. For
high energies and large apertures, the situation can be reversed; 7" then shows
a lower increase than expected from the value of x because electrons are
scattered out of the cone with aperture «, by multiple scattering. The full
curves in Fig. 6.1 were calculated on the basis of a multiple-scattering inte-
gral [5.11] and show good agreement with the experimental results. The curves
were calculated with the values x and 6y of Table 6.1, which were obtained
by fitting the initial slopes of logioT" versus x curves. The limits of linearity
of these curves are discussed in [6.5, 6.6, 6.7]. For very large mass thicknesses
(x > 100 ug cm~2 in Fig. 6.1), the transmission 7' is proportional to the solid
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Table 6.1. Experimental values [6.5] of mean free path ze and characteristic angle
0o. Mean-free-path length Ao = 10ze1/p with A (nm), ze (ug cm72) and p (g cm73).

C Ge Pt
E Tel to Tel o Tel to
(keV) [ug cm™2]  (mrad) (ug cm™2)  (mrad) (ug cm™?)  (mrad)

17.3 10.1 92.4 - - 6.5 53.8
25.2 14.4 69.9 6.8 50.6 8.1 52.4
41.5 22.4 46.6 10.6 42.6 11.65 50.8
62.1 31.8 37.8 14.4 38.2 14.1 43.2
81.8 39.7 32.4 17.8 34.4 16.8 40.2
102.2 47.6 28.4 21.0 30.8 19.2 38.4
150 70.6 21.6 28.0 23.4 23.4 25.8
300 114.0 17.8 42.0 19.0 31.6 16.2
750 139.2 10.2 58.7 11.5 50.7 13.2
1200 168.0 6.5 62.1 6.8 46.8 8.0
200+ ’ 50 /
By / M9 y
em? / em? | b) Platinum Y

a) Carbon

¥ T T
0 10 20 30 40 d 0
a) ay—2 mra b) 10 2910 _3,0 40 mrad

Fig. 6.2. Contrast thickness xx of (a) carbon and (b) platinum for £ = 40 and 100
keV, respectively [6.5]. (- - -) Theoretical values considering elastic scattering only
and (—) considering both elastic and inelastic scattering [6.8].

angle ma? of electrons passing through the objective aperture a,. This is a
consequence of the broadened angular distribution of the scattered electrons,
which decreases slowly with increasing 6 for the range of apertures used. How-
ever, this thickness range is of no interest for conventional TEM because of
the large energy losses and probe broadening due to multiple scattering. The
transmission for zero-loss filtering is discussed in Section 6.1.4.

Values of contrast thickness zy obtained from the initial slope of log1o7T(x)
in Fig. 6.1 are plotted in Fig. 6.2 for different apertures «, and electron
energies; for comparison, calculated values using (6.3) and complex scatter-
ing amplitudes f(0) given by the WKB method (Sect. 5.1.3) (pure elastic
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scattering), modified to take account of the inelastic contribution [6.8], are
also plotted. The calculation of f(f) assumed dense atomic packing, repre-
sented by the muffin-tin model.

The mean free path x for elastic scattering (6.2) and the characteristic
angle 0y = A/27 R (5.34) should depend on only one parameter, the screening
radius R, when the Wentzel potential model (5.22) is used. However, this is a
consequence of the Born approximation, which fails for high Z. Nevertheless,
(6.7) can still be used when the parameters ) and 6y, which appear in (6.7),
are fitted to the measured values of xy(c). Values of these quantities are
tabulated in Table 6.1, and the dependence of x on electron energy is shown
in Fig. 6.3. The values for carbon differ from those given in (6.2) by only
a constant vertical shift in the logarithmic scale of Fig. 6.3, which means
a constant factor. The theory is thus confirmed, so far as the dependence
on electron energy is considered, apart from this constant factor, which is
determined by the scattering potential V(r) of the atoms.

For all elements, z attains a saturation value at high electron energies
(Fig. 6.3), whereas the contrast thickness xy (o) continues to increase for
a fixed value of a, (Fig. 6.4). The increase can be understood from the fact
that, with increasing energy, the electrons are scattered through smaller angles
(Fig. 5.5). For this reason, smaller apertures are normally used in high-voltage
electron microscopy.

An empirical law [6.4, 6.5]

Za
log,, T = —b—=x (6.8)
A
100
Hgem2
K3 p
<5, w7 WKB  ceeeee
10+ VAl y
A Lenz (R=ay Z°7) — — —
1 4/'3 v/ Carbon {exp.} —_—
< 7oA '
o Germanium (exp.) —o
//// Platinum {exp.} —a
o
1 . L 1 " N 1 1
10 100 1000 keV 10 000
E

Fig. 6.3. Variation of electron mean free path z. for C, Ge, and Pt films with
electron energy E. (- - -) Calculations based on the Lenz theory [5.11] (Born ap-
proximation) and (—) calculations by the WKB method [6.5].
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Fig. 6.4. Dependence of the con-
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can be used to describe the dependence of T" on the atomic number Z for
a constant «, and electron energy F; a and b are aperture- and energy-
dependent constants. Measurements on gases, which are ideal examples of
amorphous specimens, can also be approximated by the same power law as
for amorphous and polycrystalline films. The Wentzel atomic model (5.22)
with R = agZ~'/? leads to a = 4/3 for purely elastic scattering if (6.2) is
used. Rutherford scattering would give a = 2. In reality, none of these ex-
ponents of Z is valid. The case in which £ = 60 keV and «a, = 4 mrad is
of special interest because a = 1.1 for these values and the slow decrease of
Z/A with increasing Z is thus compensated. In consequence, the value of T
is nearly constant for equal mass thicknesses x of different elements; this is
of interest for the determination of mass thickness from measurements of the
transmission (Sect. 6.1.6).

6.1.2 Dark-Field Mode

The bright-field mode is not convenient for specimens with very small mass
thicknesses such as DNA molecules or virus particles because a decrease of
transmission of at least 5% is needed for visual detection. Better contrast can
be expected in the dark-field mode if a thin supporting film is used (see the ex-
ample in Sect. 6.1.3). However, the requisite electron charge density in C cm 2
and the exposure time are greater for the dark-field mode. Dark-field imaging
is also advantageous if structures with high and low mass thicknesses are to
be imaged simultaneously; bacteria with cilia provide a striking example [6.9].

Dark-field images can be formed in the various ways described in Fig. 4.17.
To decrease the effect of lens aberrations, the tilt method (Fig. 4.17¢) is widely
used, and the transition from the bright- to the dark-field mode can be effected
by switching on the current in the tilt coils [6.10]. Another way of distributing
the intensity of the primary beam around the circular diaphragm is to work
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Fig. 6.5. Example of dark-field intensity I/Io [Io: intensity of the incident electron
beam] as a function of carbon mass thickness = = pt for different objective apertures
Qo in the tilted-beam mode; the distance of the primary beam from the periphery
of the centered objective diaphragm is 1 mrad (E = 100 keV).

with an annular diaphragm in the condenser lens [6.11, 6.12] or to deflect
the electron beam electronically on a cone by means of the tilt coils between
condenser and objective lens (hollow-cone illumination) [6.13].

The dark-field intensity I/ is plotted against mass thickness z in Fig. 6.5
for the tilted-beam mode and various centered apertures; the primary beam
is at a distance of 1 mrad from the periphery of the centered diaphragm. The
intensity passes through a maximum because the number of electrons scat-
tered through the dark-field aperture first increases with mass thickness and
subsequently decreases with increasing mass thickness as a result of multiple
scattering to larger angles.

6.1.3 Examples of Scattering Contrast

The following quantitative examples of scattering contrast (Fig. 6.6) illustrate
how the scattering contrast affects different imaging problems and how this
contrast can be calculated with the aid of experimental data; they also indicate
how the measured transmission can be quantitatively evaluated. The xy values
used have been calculated from (6.7) using the experimental z; and 0y values
of Table 6.1.

(a) Shadow-Casting Film (Fig. 6.6a). Shadowing surface replicas with
evaporated films of heavy metals increases the contrast and resolution
(Fig. 9.37). A shadow such as that shown in Fig. 6.6a is clearly recog-
nizable. Denoting the intensity without a specimen by I, the intensity with
the carbon supporting film by I, and the intensity with the evaporated Pt
film by Ip, the following relations are found:



6.1 Scattering Contrast 203

= Fig. 6.6. Examples of scattering-
- contrast calculations.
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The ratio of the platinum and carbon intensities

Ipg < PPtlpt )

— =exp | ——— 6.10

IC Tx,Pt ( )
is observed in the image. If ¢p; is small, so that the exponential law of trans-
mission (6.6) is obeyed, the thickness of the carbon supporting film has no

influence on the ratio Ip/I¢ in (6.10). For a given value of Ip;/Ic, the thick-
ness of the shadowing film must be at least

Tx,Pt In IC

tpy = (6.11)

ppe  Ipy
2

)

As a numerical example, for £ = 80 keV, o, = 4 mrad, zx py = 17.5 ug cm™
and ppy = 21 g em ™3, we find tpy = 0.9 nm for Ip;/Ic = 0.9.

(b) Stained Membrane in a Biological Section (Fig. 6.6b). Measure-
ments at £ = 60 keV and a, = 5 mrad of the transmission of a thin section
of an OsOy-stained mitochondrial membrane embedded in Vestopal result in
mean values of Tg = Ig/Iy = 0.765 for the embedding medium and Ty =
I /I = 0.67 at a membrane. The thickness of the section can be calculated
from the first value by assuming that the main contribution to the contrast
comes from carbon (zy ¢ = 14.6 ug cm™2); this gives xg = 7 ¢ In(1/Ts) = 3.9
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ug em~ 2, so that with pg = 1.1 g cm ™3, the section thickness tg = 35.5 nm. For
more accurate quantitative measurements, the mass loss by radiation damage
(Sect. 11.2) has to be considered.

Assuming zx os ~ rpy = 13.0 ug cm™2, the second value Ty implies
ros = 2 peln(Ts/Tv) = 1.7 pg em~2 for the equivalent mass thickness of
the incorporated osmium. The relative fraction of Os atoms becomes

number of C atoms rs Aos

= 36.

number of Os atoms  apy Ac

The same ratio Ty/Ts = 0.88 would be observed at E = 1 MeV and o, =
1.5 mrad for a membrane in a section of thickness tg = 120 nm. For a section
as thick as this, the resolution is already reduced at E = 60 keV by the effect
of chromatic aberration.

(c) Organic Particle on a Supporting Film (Fig. 6.6¢). This case is
described by a formula similar to (6.10),

P exp <”Ptp> . (6.12)

Ic Tk,C

In bright-field mode, an unstained particle with tp = 10 nm and pp = 1 g cm 3

generates an intensity ratio Ip/Ic = 0.97 for E = 100 keV, o, = 10 mrad,
and zy ¢ = 32 pg em~2, which is beyond the limit of visibility. However, such
a particle can be seen in phase contrast at optimum defocusing (Sect. 6.2).

If the same particle of 10 nm diameter (zp = 1 pug cm~2) on a carbon
support film of r¢ = 1 ug ecm™2 (tc = 5 nm) is observed in the dark-field
mode, the ratio I},/I§ increases to 2 because the dark-field intensities are
proportional to x for small thicknesses. From Fig. 6.5, the ratio I§/Iy can
be seen to be 0.01. A 30-50-fold longer exposure time than for a bright-field
mode is therefore needed.

(d) Negatively Stained Particle (Fig. 6.6d). The same particle, 10 nm in
diameter, is now negatively stained by embedding it in a thin layer of phos-
photungstic acid, PWO, (pn = 4 g cm™?). For the same imaging conditions
as in c¢), the contrast thickness for PWO, will be approximately the same as
that for Pt: oy v ~ zkpe = 19 ug cm™2. Where the particle is situated, an
increase of the transmitted intensity ratio

I
P _exp [(pN - pl’) tp] —1.19 (6.13)
In TN  Tk,C

can be expected, which means a considerable gain of contrast in comparison
with the decrease Ip/Is = 0.97 for an unstained particle in the bright-field
mode.
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6.1.4 Improvement of Scattering Contrast by Energy Filtering

Zero-Loss Filtering. The exponential decrease of transmission (6.6) in the
conventional bright-field mode depends on the contrast thickness zy () and is
asum T = Iy, + I+ Ly of unscattered, elastically scattered, and inelastically
scattered electrons, respectively, that pass the objective diaphragm. By zero-
loss filtering, the part I;,, can be removed and the transmission becomes [6.14]

T 1

T = Tun + Jor = exp [ Tel (1 + (o /60)? - V)} 7 (6.14)
where v (5.66) is the ratio of inelastic-to-elastic total cross sections. In the
semilogarithmic plots of T'(z) in Fig. 6.1 measurements of the zero-loss trans-
mission Ty are compared with unfiltered values (Tyy,¢) for carbon at E = 80
keV. Whereas carbon shows a much stronger decrease of the transmission T
and a weak dependence on aperture «,, the differences are much less for evap-
orated platinum films [6.14]. This is a consequence of the difference between
the values v ~ 3 for carbon and v ~ 0.25 for platinum. The gain of contrast
for zero-loss filtering by the higher sensitivity to small variations in mass
thickness and by the avoidance of chromatic aberration is therefore largest
for carbon-containing specimens. The resolution and contrast of membrane
structures in biological sections, for example, are much better with zero-loss
filtering, and it is possible to investigate section thicknesses up to 0.5 pum
where the zero-loss transmission Ty falls below 1072 (Fig. 6.1), which is a cri-
terion for the practical limit of observation (see also Sect. 9.1.6). An example
of the improvement of contrast and resolution by zero-loss filtering is shown
in Fig. 6.7 for a section of a copolymer of polyethylene and polypropylene
stained with ruthenium oxide.

Although the chromatic aberration can be avoided by zero-loss filtering,
the resolution of 0.5-1 um thick organic specimens can be limited by the

Fig. 6.7. Comparison of (a) an unfiltered and (b) zero-loss filtered image of a thin
section of a copolymer of polyethylene (PE) and polypropylene (PP) stained with
ruthenium oxide (E = 80 keV, bar = 0.5 pm).
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Fig. 6.8. Demonstration of structure-
sensitive contrast in an electron spec-
troscopic image (ESI) at AE = 250
eV of a 60 nm liver section (OsOg4-
gluaraldehyde fixed, uranyl-acetate
stained, and epon embedded).

top—bottom effect, as described for the STEM mode in Sect. 5.4.3 with the
difference that structures at the bottom show a better resolution than those
at the top [5.176].

Structure-Sensitive Contrast. With an energy-loss window just below the
carbon K edge at AE = 285 eV (Fig. 4.30), the contribution of carbon to
an electron spectroscopic image will be at a minimum. Superposed contribu-
tions to the EELS intensity from the tail of plasmon losses and ionization
edges below the carbon K edge of other elements give a brighter image of
these components, as in a dark-field image, with a better contrast than in the
conventional dark-field mode (Sect. 6.1.2) [5.37, 6.15]. This structure-sensitive
contrast can be seen in an ESI image of a 60 nm liver section recorded at AE
= 250 eV (Fig. 6.8). At AE ~ 50 eV, the EELS of the stained part inter-
sects that of the unstained material and the contrast changes from bright to
dark field.

Contrast Tuning. The EELS from different parts of a specimen can in-
tersect several times owing to differences in the decrease of the background
intensity with increasing energy loss and overlapping of the ionization edges
of different elements. This causes contrast reversals when the selected energy
is tuned over a larger range of selected energy-loss windows. This technique of
contrast tuning [6.16, 6.17] can be applied to thicker biological sections when
the stained areas become very dark and cannot be recorded together with
much brighter areas. Contrast tuning can reveal an optimum energy window
in which both parts are imaged with comparable intensities. Another example
is shown in Fig. 6.9 for the same copolymer as in Fig. 6.7, but the specimen
is now thicker and more lightly stained. Whereas the unfiltered image and an
ESI at AE = 50 eV show no strong difference in contrast and the boundaries
between PE and PP cannot be clearly distinguished, maximum contrast is
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Fig. 6.9. Demonstration of contrast tuning for the example of a section of a
copolymer of polyethylene (PE) and polypropylene (PP) stained with ruthenium
oxide; the section is thicker than that of Fig. 6.9 and more lightly stained. (a) Un-
filtered, (b) AE = 50 eV, (c) AE = 200 eV, and (d) AE = 350 eV (E = 80 keV,
bar = 5 pm).

observed at AE = 200 eV, which can be used for a stereological measurement
of relative fractions. At AE = 300 eV beyond the carbon K edge, the contrast
decreases again.

Most-Probable-Loss Imaging. When the intensity of the zero-loss trans-
mission falls below 1073 (e.g., T~ 10~* for a 1 um thick biological section at
80 keV), the EELS shows a broad maximum between 100 and 300 eV (e.g.,
AE = 270 eV for ¢ = 1 pm). This most probable energy loss can be calcu-
lated by the Landau formula (5.97), which is in agreement with experiments
[4.124, 5.173]. The intensity at the most probable loss is large enough to record
an image either in a dedicated scanning transmission electron microscope
[6.18] or by EFTEM with an imaging energy filter [6.16, 6.19]. Whereas zero-
loss filtering is limited to mass thicknesses x < 70 pg/cm?, most-probable-loss
imaging allows us to investigate organic films up to x ~ 150 ug/cm?. The res-
olution will be limited by the broad energy window of 10-20 eV and the
large aperture necessary to obtain sufficient intensity. Electron spectroscopic



208 6 Scattering and Phase Contrast for Amorphous Specimens

images of 0.7 um sections at 80 keV are comparable with micrographs in a
conventional transmission electron microscope at 200 keV, though there are
differences in contrast: The ESI image shows more details [6.16].

6.1.5 Scattering Contrast in the STEM Mode

It is a characteristic of the bright-field transmission mode in TEM that the
illumination aperture «a; is much smaller than the objective aperture «,
(Fig. 6.10a). In consequence, the transmission 7' = I/I; depends only on
the objective aperture. Small shifts of the objective aperture or small incli-
nations of the incident beam hardly alter the intensity I that goes through
the diaphragm. It was shown in Sect. 4.2.2 that the smallest possible spot
size of an electron probe for STEM can be obtained only with a relatively
large probe aperture ap, ~ 10 mrad. The theorem of reciprocity (Sect. 4.5.3)
indicates that the same transmission can be expected if the electron-probe
aperture «; is approximately equal to oy, whereas the detector aperture is
small: aq ~ «a; (Fig. 6.10b). In fact, a lower intensity Iy is recorded in the
absence of a specimen because Iy is a fraction a3/a? of the intensity of the
incident electron probe with aperture ay,. The intensity I with a specimen
present is determined by the decrease of Iy due to scattering through larger
angles together with the increase due to scattering from the other directions
of incidence back into the detector aperture. The same ratio T' = I /I can
therefore be expected as in the TEM mode if we normalize with respect to the
intensity Ip that actually passes through the detector aperture. In practice,
however, the electron irradiation must be minimized and the signal-to-noise
ratio must be made as high as possible; it thus becomes more convenient to
work with aq ~ a; in the STEM mode (Fig. 6.10c), so as to collect all of the
electrons of the incident beam when no specimen is present.

Figure 6.11a shows calculated lines of equal transmission T' = I/l for
a relatively thin carbon film (¢t = 320 nm) in an a, — aq diagram. The full
curves are those for which Iy represents the intensity going through the detec-
tor aperture. The dashed lines for o, < aq are those for which I is the total

Fig. 6.10. (a) Apertures in the
o TEM mode, (b) reciprocal apertures
in the STEM mode, and (c) opti-
mum STEM mode with ap ~ aq.

a) TEM: gj«a, bl STEM:ag «ap c) STEM:ag=ap
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Fig. 6.11. Lines of equal transmission 7" in an ap — aq diagram (ap: electron-probe
aperture, aq: detector aperture) for (a) ¢ = 320 nm and (b) ¢ = 1.28 um carbon
films (E = 100 keV). The hatched areas indicate the ranges of the conventional (C)
and scanning transmission (S) modes of TEM.

current in the electron probe. When thicker films are used (¢ = 1.28 pm in
Fig. 6.11b), the angular width of the electron-scattering distribution becomes
broader than the apertures used. The transmission then becomes less depen-
dent on the aperture and is determined by the larger of the two apertures ay,
and aq [6.20, 6.21].

If g is increased while vy, is kept constant (corresponding to motion along
a line parallel to the abscissa of Fig. 6.11a), the transmission decreases for
small mass thicknesses x. The decrease of T with increasing mass thickness is
still exponential, but the value of . for ag >~ v, is larger in the STEM mode
than it is for oy < @, = agq in the TEM mode.

As shown in Fig. 1.2, the signals I, for electrons scattered elastically
through large angles, I, for unscattered electrons, and I, for inelastically
scattered electrons with energy losses can be recorded simultaneously. A dis-
play of the ratio I /Ii, provides a Z-contrast image with enhanced contrast
of stained and unstained biological sections [6.22, 6.23], though the ratio sig-
nal is only thickness-independent as long as both signals are proportional to
the mass thickness [6.24]. Another way of discriminating between different
elements is to use two annular detectors or a set of ring detectors to collect
elastically scattered electrons at different scattering angles [6.25, 6.26].

6.1.6 Measurement of Mass Thickness and Total Mass

The exponential law of transmission (6.6) in the conventional TEM bright-
field mode and the STEM mode can be used for a quantitative determi-
nation of the mass thickness of amorphous specimens, such as supporting
films, biological sections, and microorganisms (see the examples in Sect. 6.1.3)
[6.27, 6.28, 6.29]. The method can also be used to measure the loss of mass
by radiation damage (Sect. 11.2). It is only necessary to know the contrast
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thickness xy for the operating conditions in question (electron energy, objec-
tive aperture, material). Calibration of this value with films of known mass-
thickness, established by microbalance or interferometric measurements, is
preferable to theoretical calculations. If ¢ is measured by an interferometric
method (two-beam or Tolansky multiple-beam interferometry), care must be
taken to ensure that the film has the same density p as the bulk material
for the calculation of the mass thickness x = pt. The mass thickness will be
directly proportional to logi0(1/T) = logio(lo/Is). The intensities Iy and I
with and without the specimen, respectively, can be obtained by placing a
Faraday cage in the image plane, by measuring the photographic density D
of a developed emulsion with a densitometer, or by using the signal from a
CCD camera.

In the STEM mode, the signal provided by a scintillator—-photomultiplier
combination is directly proportional to the intensity. A signal proportional to
the mass thickness can be obtained online by means of a logarithmic ampli-
fier [6.30] and can be displayed as a Y-modulation trace on the cathode-ray
tube (CRT). This method can also be used to plot lines of equal transmis-
sion (mass thickness) directly, and these can be superposed on the CRT im-
age. Isodensity curves can be produced from photographic records by special
reproduction techniques [6.31]. The proportionality of the dark-field signal
to very small local mass thicknesses (Fig. 6.5) can also be used to provide
a digital record of mass thickness in a dedicated STEM [6.32, 6.33, 6.34].
The backscattering coefficient of thin films is proportional to the thickness
(Fig. 5.37). A backscattered electron signal can be recorded by placing a
semiconductor or scintillation detector in front of the specimen (Fig. 4.19)
and can be used in the STEM mode for the determination of the local mass
thickness of biological sections [6.35].

These methods yield the local mass thickness of a specimen. The total
mass of a particular particle can be evaluated by numerical integration over
the projected area, which is straightforward with digital integration of a log-
arithmic STEM signal. A special photometric method has been employed for
the bright-field [6.36, 6.37] and dark-field modes [6.12], but the methods dis-
cussed above are preferable when the microscope is linked to a computer.

These methods for the quantitative measurement of mass thickness are
applicable only to amorphous specimens; in the crystalline state, a film of the
same mass thickness will show a decrease of the diffuse scattering depending
on specimen temperature (thermal diffuse scattering, Sect. 7.5.3), and the
intensities of the Bragg reflections depend strongly on the specimen thickness
and orientation. Polycrystalline films with large crystals (Cu, Ag, and Au
evaporated films, for example) show an averaged transmission that can be
twice the value found for an amorphous film. For films with very small crystals
(such as Al, Ni, Pt), however, the transmission is of the same order as that
of amorphous films of equal mass thickness, provided that the crystals are so
small that their diffraction intensity is within the limits of the kinematical
diffraction theory [6.1].
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6.2 Phase Contrast

6.2.1 The Origin of Phase Contrast

We have shown that there is a phase shift of 90° (7/2 radians) between the un-
scattered and scattered waves (Sect. 5.1.3). The complex scattering amplitude
of the atom creates an additional phase shift 1(f), which can be neglected for
low-Z material. If 1); is the amplitude of the incident wave in the final image
(In = Yipf = |5]?) and ). that of the scattered spherical wave that passes
through the objective diaphragm, there will be a phase shift of /2 if we as-
sume that the imaging lens introduces no additional phase shift. We examine
the 90° phase shift by plotting ¥; + 1 1. as a complex amplitude. Figure 6.12a
shows that, for ¥s. < 15, the resulting amplitude has approximately the same
absolute value as 1, so that I = |t); + iths.|? does not differ significantly from
Iy = [31]?; this means that the phase object is invisible. If the phase of the
scattered wave could be shifted by a further 90° (Fig. 6.12b), the superposi-
tion would become 1; — b5 and hence I = [1); —thsc|? = P2 —2hitbse +. .. < Ip.
This is called positive phase contrast. If 1. were shifted by 37/2 or —m/2, the
superposition would be v; + s, (Fig. 6.12¢) so that I > Iy; this is called neg-
ative phase contrast. In light microscopy, these phase shifts can be produced
by inserting a Zernike phase plate in the focal plane of the objective lens;
such a plate shifts the scattered wave by an optical-path-length difference of
A/4 and has a central hole through which the primary beam passes unmod-
ified. In electron microscopy, a path difference \/4, which corresponds to a
phase shift of 7/2, can be produced by passing 100 keV electrons through
a 23 nm thick carbon foil with inner potential U; = 8 V (Sect. 3.1.3). This
possibility has been investigated in attempts to create the desired phase shift
by means of a carbon foil with a central perforation (Sect. 6.4.6). However,
practical difficulties arise with such phase plates because, in continuous op-
eration, the foil becomes charged and contaminated by electron irradiation.
Recently, microscopic electrostatic elements have been built, that allow ap-
plication of a well-defined phase-shift to the primary beam. These will be
discussed in Sect. 6.4.6.
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The effect of spherical aberration and defocusing may be expressed in
terms of the wave aberration W(f) (Fig. 3.15). The shape of the wave-
aberration curve for different values of defocusing shows that a phase shift
» = —=W(q) = 7/2 cannot be obtained simultaneously for all scattering an-
gles; only for a limited range of scattering angles or their corresponding spa-
tial frequencies ¢ will W (0) produce the desired phase shift. Defocus values
for which W(#) takes a minimum value of —m/2 are particularly favorable
(Az* =1 in Fig. 3.15).

6.2.2 Defocusing Phase Contrast of Supporting Films

Supporting films (especially carbon) show a characteristic granular struc-
ture at high resolution, the appearance of which changes with the defocus
(Figs. 6.14); this granularity was first reported by Sjostrand [6.38] and dis-
cussed as a phase-contrast effect by von Borries and Lenz [6.39]. Carbon
films show statistical fluctuations of local mass thickness and therefore of
the electron-optical phase shift. The two-dimensional Fourier transform of
the phase shift contains a wide range of spatial frequencies. For this reason,
carbon (or better, amorphous germanium) films are ideal test specimens for
investigating the transfer characteristics of an electron-optical imaging system
for different spatial frequencies.

A single spatial frequency ¢ that corresponds to spacing or periodicity
A = 1/q creates a diffraction maximum at a scattering angle § = \/A = Aq.
Those spatial frequencies for which the wave aberration is an odd multiple of
/2, and thus

W(0) = (2m — 1) (6.15)

2 | m = odd: maximum positive phase contrast,

will be imaged with maximum phase contrast. Wave aberrations (phase shifts)
for which W(0) = mm, where m is an integer, generate no phase contrast
and thus leave gaps in the spatial-frequency spectrum observed at the image.
Substituting for W () from (3.65) in (6.15) and writing § = A/A, we obtain
an equation for those values of A for which maximum positive or negative
phase contrast is to be expected. Solving for A gives

~1/2
Az n <A22 (2m — 1))\>1/2] /

™ { m = even: maximum negative phase contrast

A=A

ol (6.16)

This formula of Thon [6.40] is an extension of the earlier expression of Lenz and
Scheffels [6.41]. In the latter, only those terms of W (6) caused by defocusing
were considered, W () = 7Az0?/\ = 7/2. This led to

A= V2AzX. (6.17)

This is valid for large A and defocusing Az. In these conditions, it relates a
specimen periodicity A to the optimum defocusing Az at which the periodicity
will be imaged with optimum phase contrast.
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Fig. 6.13. Comparison of measured spatial frequencies ¢ with maximum positive
and negative phase contrast obtained by laser diffraction on micrographs of carbon
films and theoretical curves based on (6.16) [6.40].

The periodicities A that are imaged with maximum positive or negative
phase contrast can be measured in light-optical Fraunhofer diffraction patterns
of the developed photographic emulsion or by digital two-dimensional Fourier
transform (Sect. 6.4.7); typical curves are plotted in Fig. 6.13 as functions of
defocusing Az. The full curves were calculated from (6.16) and show excellent
agreement. Even in focus, the granularity of the carbon film does not disap-
pear owing to the term in W (0) that contains the spherical aberration. The
resolution is limited in this experiment (horizontal dashed line in Fig. 6.13)
by the attenuation of contrast transfer caused by chromatic aberration and
the finite illumination aperture (Sect. 6.4.2).

The transfer of spatial frequencies as a function of the defocus can be illus-
trated by calculating a linear Fourier transform of the phase-contrast image
of a tilted specimen [6.42]. An example is shown in Fig. 6.14.

Crystalline areas with periodic structures have been observed in carbon
foils [6.43] by using a tilted primary beam, as used for the imaging of lattice
planes (Sect. 9.6.1). However, when such structures are seen in amorphous
specimens with this mode of imaging, they may equally well be caused by
selective filtering of spatial frequencies. This selective filtering results from
modification of the contrast-transfer function caused by a tilt of the illumi-
nating beam (Sect. 6.4.3). Bright spots of 0.2-0.5 nm diameter have been
observed in dark-field imaging with an annular aperture [6.44] that were most
intense in overfocus. These spots were attributed to Bragg reflections on small
crystallites (see also [6.45]).
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Fig. 6.14. (a) Bright-field electron micrograph of tilted carbon film [6.42]. A 1000 A
distance in the horizontal direction corresponds to a defocus range of 2145 A.
(Cs = 1.35mm, A = 0.0374). (b) “One-dimensional” light optical Fourier transform
of a tilted film. (¢) Match between the theoretical defocusing dependence (solid lines)
and experimental transform (vertcal bars). The vertical bars indicate the approxi-
mate width of the bright bands from the experimental “one-dimensional” transform.
(b) and (¢) can be directly compared since their horizontal and vertical scales are
identical and a vertical line will pass through the same defocus.

As we have seen, the granularity of carbon foils is very useful for investi-
gating the contrast transfer of TEM but degrades the image of small particles,
macromolecules, and single atoms by adding a noisy background. Numerous
attempts have therefore been made to prepare supporting films with less gran-
ularity in phase contrast (Sect. 4.3.2).

An electron-optical method of decreasing the phase contrast of the sup-
porting film relative to the contrast of single atoms and structures with
stronger phase contrast involves using hollow-cone illumination (Sect. 6.4.3).
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6.2.3 Examples of Phase Contrast

Figure 6.14 shows a through-focus series of ferritin molecules on a carbon
supporting film 5 nm thick. In focus (third image in second row), the mole-
cules show weak scattering contrast due to the iron-rich core of the molecules
(~5 nm in diameter). This contrast is caused by the loss of electrons that
have been scattered through large angles and intercepted by the objective
diaphragm. The part of the electron wave that passes through the objective
aperture is phase shifted by 90°. An increase of contrast caused by phase con-
trast can be observed for underfocus (Az > 0). The image of the molecules
becomes darker at the center. Normally, the operator instinctively focuses for
maximum contrast, which means underfocusing. In overfocus (Az < 0), the
phase shift () becomes positive and the molecules appear bright in the
center. For a quantitative interpretation of the dependence of image intensity
in the center on defocusing, see [6.46].

Reversed phase contrast may occur in some specimens, for example mole-
cules of o-phenanthroline incorporated in electrodeposited nickel films [6.47].
The molecules are imaged as bright spots in underfocus and as dark spots
in overfocus. This confirms that there really are vacancies in the nickel film
(~1 nm in diameter) that contain the organic molecules. Because of the lower
inner potential U; of the vacancies, the wavefront behind the inclusions will
exhibit an opposite phase shift. Phase contrast can also be observed in defo-
cused images of crystal foils with vacancy clusters [6.48].

In phase contrast, the number of electrons that pass through the objective
diaphragm will be constant and all will reach the image. This means that
if the intensity at some points of the specimen is increased by summing the
amplitudes with favorable phase shifts, the intensity at neighboring image
points will be decreased so that the mean value of the intensity is reduced
only by scattering contrast. If the image of a particle is darker in the cen-
ter as a result of positive phase contrast, it will be surrounded by a bright
rim and vice versa (Fig. 6.15). Beyond this bright ring, further rings follow
with decreasing amplitudes. In complex structures, and especially in periodic
structures, these bright and dark fringes can interfere and cause artifacts.
Figure 6.16 demonstrates such an effect for myelin lamellae. The contrast of
the membranes can be reversed by overfocusing (Az < 0). The width of the
dark stripes increases with increasing overfocus, and at Az = —4.8 um, twice
the number of dark lines can be seen. In underfocus, an increase of the dark
contrast of the membranes can again be observed.

The two examples of Figs. 6.15 and 6.16 show that the phase-contrast
effects in a defocus series can be interpreted when the specimen structure is
known from a focused image or from the method of preparation. For struc-
tures smaller than 1 nm, however, this becomes difficult because the spherical
aberration term of W (0) also has to be considered. In this case, more com-
plicated image-reconstruction methods have to be used (Sect. 6.6) to extract
information about the specimen from a single micrograph or a series.
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Fig. 6.15. Defocus series of ferritin molecules on a 5 nm carbon supporting film
and changes in the granulation of the carbon film (E = 100 keV).

6.2.4 Theoretical Methods for Calculating Phase Contrast

The wave-optical theory of imaging has already been described in Sect. 3.3.2.
We set out from formula (3.36) for the modified plane wave behind the spec-
imen. The amplitude 1y will be normalized to unity. The local amplitude
modulation ag(r) is assumed to differ little from one: as(r) = 1 — e5(r), where
€s(r) is small. If the phase shift yg(r) is also much less than one, then the
exponential term in (3.36) can be expanded in a Taylor series

P(r)=1—e(r) +ips(r)+... . (6.18)

With this approximation, the specimen is said to be a weak-amplitude, weak-
phase object. In practice, electron-microscope specimens thinner than 10 nm
and of low atomic number do behave as weak-phase objects. The amplitude
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Fig. 6.16. Defocus series of an ultramicrotome section through myelin lamellae
(stained with OsO4, embedded in Vestopal).

modulation es(7) can then be neglected. When the phase contrast of particles
with high atomic number, such as colloidal gold particles, is calculated, the
decrease €5(r) of amplitude, however, must be considered [6.46, 6.49, 6.50].
For low spatial frequencies the influence of the amplitude leads to an ex-
tended peak in a regime, where the phase-contrast transfer function is almost
zero [6.51].

Equations (3.72) and (3.73) contain the complete mathematical treatment
of phase contrast. Depending on the information required and the nature of
the phase contrast, the following procedures can be used:

1. If the scattering amplitude F(6) of a specimen is known, the image am-
plitude ¢! () is given approximately by (3.72). For high resolution, F'(q)
is related to the scattering amplitude f(6) of a single atom (Sect. 5.1.3)
by F'(¢) = Af(#). Examples are discussed in Sect. 6.3.1.

2. For constant conditions and variations of the specimen structure, it can
be advantageous to use the convolution (3.73) of the object function t)s(r)
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with the Fourier transform h(r) of the pupil function H(q) because in this
case, intermediate calculation of F(q) would be a waste of computation
time.

3. If more general information is wanted about the contrast transfer — which
spatial frequencies ¢ are imaged with positive or negative phase contrast
for a given electron lens or how the contrast transfer is influenced by a
finite illumination aperture or by the energy spread of the incident electron
beam — then the pupil function or the contrast-transfer function can be
used (Sect. 6.4).

6.2.5 Imaging of a Scattering Point Object

For a further discussion of phase contrast, we consider an idealized point spec-
imen that scatters isotropically into all scattering angles. It is the source of a
spherical wave of amplitude f(#), independent of the scattering angle 0. As
shown in Sect. 3.3.2, the amplitude-blurring or point-spread function h(r) is
obtained as the image. The scattering amplitude of a single atom decreases
with increasing 6. Nevertheless, to a first-order approximation, this point spec-
imen can be pictured as a single atom, though in most cases the scattering
amplitude f(0) of single atoms already begins to decrease within § < «,. The
resulting phase contrast of single atoms will be discussed in Sect. 6.3.

We introduce polar coordinates r’ and x in the image plane and normalize
the magnification to unity (M = 1). The scalar product in (3.72) becomes
q-r = qr' cosx = 0r' cosx/\; we have d?q = 6df/\? and F(q) = \f(6). For
the bright- and dark-field modes (1 and 0, respectively, for the first term), we
obtain

/ 1 i e 2 —iW(0) 2mi /
Ym(r') = of* I [ f(0)e exp TGT cos x | 6d6. (6.19)
00

The difference between the bright- and dark-field modes is that, in the former,
the primary incident wave (normalized in amplitude to unity) contributes
to the image amplitude, whereas in the dark-field mode, it will be absorbed
by a central beam stop or by a diaphragm. The factor i indicates that there
is a phase shift of 90° between the primary and scattered waves.

If the specimen and the scattering amplitudes are assumed to be rotation-
ally symmetric, the integration over x in (6.19) gives the Bessel function Jg.
The term involving W (6) can be rewritten, using the Euler formula, as follows:

Y (') = (1)} + ?j{f(@)[cos W (0) —isin W(0)]Jo (2)7\T97,/) 940

é } + em(r") +igm(r’). (6.20)
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In the absence of the wave aberration [W () = 0], the real part ey, (r) of (6.20)
becomes zero and the same result is obtained as in Fig. 6.12a, namely that
the 90° phase-shifted imaginary part ¢, (') makes no contribution to bright-
field image contrast because ¢, (') < 1. With nonvanishing wave aberration
W (), the real part of (6.20), which contains sin W (), is non-zero: €, (r") # 0.
The image intensity is obtained by squaring the absolute amplitude; i.e.,

2

1
10 = 0500 = |} +enle)] 46207
1+ 26m + €2, + 02 ~ 1+ 2 (1) + ... bright field
- (6.21)
€2 + o2 dark field.

Because both €, and ¢y, are very much smaller than unity, the quadratic
terms can be neglected in the bright-field mode. If we consider the intensity
variation

AI(r"y = I(r") — Iy = 2€m (")
4 X

=3 1@ we)Jo <>\0r>9d6‘ (6.22)

for the bright-field mode relative to the background Iy = 1, the integrand
in (6.22) can be split into three factors, which are plotted in Fig. 6.17. The
factor 6f(0) expresses the fact that the area of an annular element 276 df
increases as 6. The factor sin W () passes through a broad maximum when
the minimum of the wave aberration in Fig. 3.15 takes the value —m/2; this
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occurs for a reduced focusing Az* = 1. The Bessel function Jg is unity at the
center (' = 0) of the atom. The reduced optimum aperture will be that for
which W () is again zero, that is, o, = V2 for Az* = 1. The subsequent
rapid oscillations of W (0) with increasing 6 will give no further contribution
to the integral in (6.22). From (3.68), the values

Qopt = LALN/COYA Azgpy = (CN)V2, (6.23)

are obtained for the so-called Scherzer focus with maximum positive phase
contrast [3.33] and the corresponding optimum aperture.

As the distance r’ from the center of the point source is increased, the
oscillations of the Bessel function Jy in (6.22) are shifted to smaller values of
0 (Fig. 6.17¢), which decreases the value of the integral and can even change
its sign. The image amplitude (3.74) is obtained for F'(#) = const and for sin
W(0) = —1 at all scattering angles. At the Scherzer focus, the half-width of
the image-intensity distribution passes through a minimum:

Srnin = 0.67(CA*)M/2, (6.24)

This quantity dmi, is often used to define the resolution of TEM. However,
a single number proves to be insufficient to characterize the resolution. Thus
specimen details closer together than d,,;, can be imaged by shifting the min-
imum of the wave aberration toward higher spatial frequencies by defocusing.
However, this better resolution will be obtained only for a limited range of
spatial frequencies. Furthermore, the influences of the chromatic aberration
and of the finite illumination aperture have to be considered. It is therefore
more informative to characterize the objective lens of a transmission electron
microscope by its contrast-transfer function (Sect. 6.4).

6.2.6 Relation between Phase and Scattering Contrast

We now demonstrate that the phase and scattering contrast will both emerge
from the wave-optical theory of image formation if complex scattering am-
plitudes (5.17) are substituted in (6.20) [6.46, 6.54, 6.55]. The phase shift
1(#) has to be added to the existing phase shift of 90° between primary and
scattered wave; it causes a decrease of the amplitude in Fig. 6.12a even if
the lens introduces no additional phase shift. To demonstrate this, we assume
that W(6) = 0 and replace f(0) by |f(0)|exp[in(€)] in (6.20) for the bright-
field mode. When the Euler formula is applied to explin(d)], equation (6.20)
becomes

" = 2mi % cos isin 2 r
(') = 1+ 22 T @losn(o) + isinn(o)o (Son ) oas. (62

If we assume that |f(0)]sinn(0) ~ |f(0)|sinn(0) = const for all scattering
angles 6 < «o, the relation [ yJo(y)dy = xJi(z) can be used and (6.25)
becomes
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2
Unn(r') = 1= [£(0)] sinn(0) =21 ( T-aor’
7/ A

o 2
+1|f(0)| cos n(O)%Jl (;aor')
=14+ en(r) +iem(). (6.26)
The radial variation AI(r") of the intensity distribution is obtained as in
(6.22), but all the terms in (6.21) are now retained:

AI(r) = 26 + €2+ 2. (6.27)

The dominant first term is negative, which means that a decrease of intensity
is observed in the bright field. Integrating the intensity variation AI(r’) over
the whole image disc, we obtain

27770AI(T‘/)7‘/d7"/ = —47T‘f(0)| sin 77(0)060 Oﬁ Jl <2>7\TO[O7‘/) d’/‘/
0 0
I (2)7\Toz0r’>
+ 27| £(0)|?[sin® 77(0) + cos? n(0)]a? i Tdﬂ
0
= —2)|f(0)| sinn(0) + ma2|f(0)|?. (6.28)

The first term is identical with o), as the optical theorem (5.39) shows. The
last term is the elastically scattered intensity that goes through the objective
diaphragm; the last integral takes the value 1/2. The whole integral is equal
to —oe(o); see (6.3). This is none other than the contribution of one atom to
the decrease of intensity caused by scattering contrast. Formula (6.5) for the
decrease of intensity caused by a layer of atoms is obtained by multiplying
oel(ao) by the number of atoms Nadxz/A per unit area of a film of mass
thickness dz. If the individual atoms cannot be resolved, an average over the
intensity decrease of all atoms is observed, as in (6.28).

6.3 Imaging of Single Atoms

6.3.1 Imaging of Single Atoms in TEM

One of the reasons for calculating atomic images is to study the behavior of
the radial intensity distribution when different parameters are varied. Most
of the calculations of the image contrast of single atoms have used real values
of f(0) in (6.19) [6.52, 6.53, 6.54, 6.55, 6.56, 6.57].

Figure 6.18 shows the calculated decrease of intensity AI/I at the center
of a platinum atom (E = 100 keV, C5 = 1 mm) in the form of lines of equal
AI/Iy with defocus Az and objective aperture o, as coordinate axes. If the
objective aperture is varied at the Scherzer optimum defocus, along the line
BB’, the upper curve of Fig. 6.18 shows that an increase of a, beyond the opti-
mum aperture does not improve the image because of the rapid oscillations of
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Fig. 6.18. Calculated decrease of intensity AI/Ip in the center of platinum atoms
as a function of defocus Az and objective aperture a, for £ = 100 keV and Cs =
0.5 mm. Sections along the lines AA’ and BB’ are shown at the bottom left and
top right, respectively. The radial intensity distribution of a platinum atom at the
Scherzer focus M for Azqpt and aopt is seen at the top left corner.

W (0) (see also the contrast-transfer function in Sect. 6.4.1). In practice, large
diaphragms should be used because a smaller diaphragm that corresponds
to the optimum aperture at the Scherzer focus can become charged around
the periphery, thereby causing additional phase shifts. If the defocus is varied
through the Scherzer focus at constant aperture «, along the line AA’, the
left curve in Fig. 6.18 shows that the phase contrast oscillates with increasing
defocus Az. The atom is alternately imaged in positive and negative phase
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contrast. Positive phase contrast is observed not only at the Scherzer focus,
at Az* = 1 (Az = 43 nm), but again at Az* = /5 (Az = 96 nm), where a
broad interval of spatial frequencies is transferred with the phase shift W (6) =
—5m/2 (Figs. 3.15 and 6.21c). The inset in the top left corner of Fig. 6.18 con-
tains the radial distribution of I(r’) for a platinum atom at the Scherzer focus
M. Once again, a bright annular ring is observed around the central darker
region (Sect. 6.2.2), which reconciles the larger decrease of the intensity in
the central region with the fact that the number of electrons transmitted is
constant.

Figure 6.19 shows the influence of various parameters on the radial in-
tensity distribution I(r’) of a single bromine atom [6.58]. A decrease of
the spherical-aberration constant Cy (full curves in Fig. 6.19a) increases the
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Fig. 6.19. Calculated radial intensity distribution of Br atoms (a) for different
values of the spherical-aberration constant Cs and the reduced defocus Az* at F =
100 keV, (b) for a range of electron energies, and (c¢) for three modes of dark-field
imaging.
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positive phase contrast at the center (7' = 0), strengthens the bright annu-
lar ring, and reduces the half-width. For Az* = /5 (dotted line), stronger
oscillations are observed at large distances r’. If the sign is changed (phase
shift of 180° in the region in which — sin W () is negative), as in an optical
reconstruction scheme proposed by Maréchal and Hahn (Sect. 6.5.4), a result
is obtained for Cy = 2 mm that is comparable with that for Cs = 0.5 mm at
the Scherzer optimum defocus (dashed curve in Fig. 6.19a).

Figure 6.19c contains calculated dark-field intensity distributions for three
different modes of dark-field imaging (Sect. 6.1.2). The advantage of using a
central beam stop (1) or tilted illumination with a centered diaphragm (2)
rather than a shifted diaphragm (3) can be seen clearly (see also [6.59]). In
modes (2) and (3), the radial intensity distributions are somewhat asymmetri-
cal. Illumination with a hollow cone (Sect. 6.4.3) corresponds to an incoherent
superposition of images obtained with mode (2); this averages the weak asym-
metry of the image discs (see also [6.60, 6.61]).

The intensity of dark-field images is much lower and is smaller than the
decrease of intensity in the bright-field mode. Nevertheless, the dark-field
mode has the advantage of higher contrast. Single atoms appear as relatively
bright spots against the weak background intensity of the supporting film
[6.63, 6.64, 6.65, 6.66]. However, longer exposure times are needed than in the
bright-field mode. Furthermore, the contrast transfer of the dark-field mode
is nonlinear [6.60, 6.61, 6.67]. In (6.21), €, (1’) appears as a linear term in the
bright-field mode but as a quadratic term in the dark field mode. The Fourier
spectrum of a specimen periodicity A with spatial frequency ¢ = 1/A consists
of the central beam and two diffracted beams of order £1. Removal of the
central beam in the dark field mode will result in twice the spatial frequency
between the two diffracted waves so that a periodicity A/2 will be observed
in the dark field.

The presence of neighboring atoms leads to a superposition of the im-
age amplitudes of the individual atoms that can produce parasitic structures
in bright- and dark-field imaging. Consider, for example, the dotted curve
in Fig. 6.19a, which corresponds to the image of a Br atom at a defocus
Az* = /5. If two neighboring atoms are separated by a distance of 0.4 nm, the
second minimum of I(r’) for one atom will coincide with the central decrease
of the other, thus causing an increase in the contrast of both. If, however,
they are separated by 0.8 nm, the secondary minimum at ' = 0.4 nm will
increase; a third atom will apparently be seen, though this in fact will be an
image artifact.

Hitherto we have discussed only the contribution of elastic scattering to
phase contrast. The image amplitudes of the inelastically scattered electrons
also have to be considered. However, elastic scattering is more concentrated
within smaller scattering angles than elastic scattering and already decreases
strongly with increasing 6 within the objective aperture. We know that the
image amplitude is the Fourier transform of the scattering amplitude f(6).
A narrow scattering distribution results in a broader image disc [6.59, 6.68].
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It can also be argued that there are many fewer inelastically scattered electrons
at high spatial frequencies, where they would be needed for high resolution.
In a classical model of scattering, we can say that inelastic scattering is less
localized than elastic scattering. An electron that passes far from an atom
can nevertheless excite an atomic electron by Coulomb interaction. Inelastic
scattering at low energy losses is therefore useless for obtaining high-resolution
information.

Images of single heavy atoms have been observed in molecules of known
structure: triangles of mercury atoms separated by distances of the order
of 1 nm in triacetomercuryaurin [6.69], uranium-stained mellitic acid [6.70],
monolayers of thorium-hexafluoracetylacetonate [6.71], and single W atoms
and clusters [6.72]. These confirm that the calculated contrast and resolution
in the bright-field mode are of the right order of magnitude. In the dark-field
mode, single-atom images have been obtained for U, Os, Ir, Pd [6.10], Th
[6.63], Rh [6.73], and, at high voltages (200 and 3000 keV), for U, Ba, Sr, and
Fe (Z = 26) [6.74, 6.75]. The dark-field mode with hollow-cone illumination
was employed to observe Hg [6.66] and U and Ba atoms [6.74].

These experiments merely show that single atoms can indeed be imaged
in principle; they also clearly demonstrate that high resolution is limited not
by the lack of contrast but by the background noise of the supporting film or
organic matrix and by radiation damage.

6.3.2 Imaging of Single Atoms in the STEM Mode

It was shown in Sect. 4.2.2 that small electron probes can be obtained only
with large probe apertures «,,. The theorem of reciprocity (Sect. 4.5.3) indi-
cates that phase-contrast effects can be observed also with a; > aq4. In the
normal STEM mode with o, ~ agq ~ 10 mrad, however, the illumination is
incoherent, which blurs phase-contrast effects (see also Sect. 6.4.4). Never-
theless, the contrast of atoms can be increased by using the following three
signals, all of which can be obtained with a dedicated STEM equipped with
an electron spectrometer (Fig. 4.25):

(1) The signal I generated by the elastically scattered electrons. All elec-
trons scattered through angles larger than the detector aperture ag, which
is of the same order as the electron-probe aperture ay, are collected by an
annular scintillator or semiconductor detector. This signal contains a few in-
elastically scattered electrons, but these can be neglected because inelastic
scattering is concentrated at small scattering angles. At large angles, the ra-
tio of the elastic and inelastic differential cross sections is proportional to Z 1
(5.64). Similarly, some of the elastically scattered electrons remain inside the
detector cone and pass into the spectrometer, where they contribute to the
signal I, of unscattered electrons. From (6.1), which is strictly valid only
for parallel illumination, we can assume that about 50% of the electrons are
scattered inside a cone of aperture 8y. This characteristic angle of elastic scat-
tering is tabulated in Table 6.1 and aqg should be appreciably smaller than 6.
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For calculating I, the total elastic cross section ¢ (e.g., the approximation
(5.41)) can be used.

(2) The signal I, = I, — (Ieg + i) that corresponds to the unscattered
electrons, which pass through the specimen and spectrometer with no energy
loss (Ip,: probe current).

(3) The signal I;,, is generated by all of the inelastically scattered elec-
trons with the exception of those scattered through angles larger than ayq; the
approximation (5.52) can be used for the total inelastic cross section oyy,.

A homogeneous supporting film (suffix s in 6.29) containing N = Nap/A
atoms per unit volume and of thickness ¢ will produce the signals

Icl,s = O’CLSNtIp, Iin,s = O'jn,SNtIp. (629)

The probe current I, is concentrated within the probe diameter d,. The cur-
rent density is therefore j, ~ I,/ df). The image of a single heavy atom (suffix
ain 6.30) will also take the form of an error disc of diameter dy,. At its center,
a signal contribution

Iel,a = Jel,aujp = Oel,a Ip/dlzj (630)

will be observed. This relation was verified experimentally for single U, Hg,
and Ag atoms [6.76]. The contrast of single atoms can be increased by exploit-
ing the fact that only this signal contributes to the high-resolution informa-
tion. The inelastic scattering of a heavy atom is distributed over a larger area
([6.77] and Sect. 10.5.4) owing to the delocalization of inelastic scattering. The
signal I (Fig. 6.20b) from a supporting film with varying mass thickness to-
gether with isolated individual heavy atoms (Fig. 6.20a) contains a long-range
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4 ence signal (Ie) — klin)/Io.
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contribution that depends on the local mass thickness, in which the contri-
butions of the single atoms of the supporting film overlap and their images
are not resolved. In addition, there exists a short-range fluctuation associated
with the higher spatial frequencies of the supporting film and with the local
increase of elastic scattering at the individual heavy atoms. The inelastic sig-
nal I;;, (Fig. 6.20c) also contains the long-range variation of mass thickness,
but the image of the higher spatial frequencies of the supporting film and that
of the single atoms are blurred on account of delocalization. The contrast of
single atoms can be increased and filtered by combining the various signals
online by means of analog techniques [6.78, 6.79] as follows:

1. The ratio I/ I, renders the contrast due to the long-range variations of
mass thickness of the supporting film uniform (Fig. 6.20d).

2. The difference signal (I, — ki, ) /1o can also be used to suppress the long-
range variations of mass thickness (Fig. 6.20e). Division by the emission
current Iy eliminates effects due to fluctuations of this current.

3. If two annular detectors are used, the scattering angle between the two
detectors can be chosen in such a way that heavy atoms scatter mainly on
the outer annular detector. It is now possible to eliminate the short-range
fluctuations of mass thickness from the supporting film.

The following quantitative values for Hg atoms (Z = 80) on a carbon
(Z = 6) substrate [6.78] give an idea of the number of electrons per unit area
needed to record a high-resolution STEM micrograph at £ = 40 keV. The
supporting film (t = 2 nm, p = 2 g cm™?) contains Napt/A = 200 nm 2
carbon atoms, and the electron-probe area is taken to be dg = 0.05 nm?. This
gives

Lo/, = 2.9 x 1072, Lua/T, = 0.13,

Lins/I, = 4.4 x 1072, Lina/I, ~ 0,
and the ratio signals become

Lo s/Iins = 0.65, Ia/Iins = 3.3.

The first ratio will be observed for the pure supporting film and the second
when an Hg atom is present. The ratio of these two ratios is the increase of
the signal inside the image disc of an Hg atom relative to the background
of the supporting film: I o/l s = 4.6. It will be necessary to record about
ten electrons per atom in order to form an image disc that can be separated
from the background, for which about two electrons are needed per the same
area. This implies that n = 10I,/Iad] = 1.5 x 10° electrons nm™2 or a
charge density of J = j7 = ne = 2.5 x 10> C m~2. This charge density is
already high enough to cause severe damage to organic material; most organic
molecules will be destroyed at such large densities by irreversible radiation
damage (Sect. 11.2).
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The positions of atoms on carbon substrates are seen to change in a se-
quence of micrographs [6.80, 6.81, 6.82], whereas clusters of two or more atoms
remain stationary. Examination of biological molecules stained with heavy
atoms will be possible in STEM only if the atoms stay at their reaction sites.

6.4 Contrast-Transfer Function (CTF)

6.4.1 The CTF for Amplitude and Phase Specimens

The method whereby the imaging properties of an objective lens are described
by a contrast-transfer function, independent of any particular specimen struc-
ture, was first developed in light microscopy and subsequently applied to elec-
tron microscopy by Hanszen and coworkers [6.62, 6.83, 6.84, 3.34].

For a specimen with a single spatial frequency ¢, €5(r) and @g(r) in (6.18)
can be replaced by ¢, cos(2mgz) and ¢, cos(2mgx), respectively, giving

Ps(z) =1 — € cos(2mqa) + ip, cos(2mqz) + ... . (6.31)
Apart from the central peak, the Fourier transform F'(q) of 1s(z) consists of
two diffraction maxima of order +1:

F(+q) = %(—eq +ipg). (6.32)

Equation (6.19) simplifies to a sum over the amplitudes of the primary beam
and the two diffracted beams:

1 . L,
Un(e) = 14+ ¥ 5 (g +ipg)e W Dt
q

=14 (—€4 +ipg)e W@ cos(2mqa’) . (6.33)
The image intensity becomes
I(z") = [hm(2)?
=1—2cosW(q)egcos(2mqz’) + 2sin W(q) ¢4 cos(2mgz’) + ...
=1- D(q)eq cos(2mqz’)  — B(q)pq cos(2mqx’).  (6.34)
The factor of the term ¢, is the CTF of the amplitude structure of the
specimen:
D(q) = 2cosW(q). (6.35)

Similarly, the factor of the term containing ¢, is the CTF of the phase
structure:

B(q) = —2sinW(q) = —2sin [g(C’SA?’q4 — 2Az)\q2)} ) (6.36)

The sign of B(q) is chosen so that B(g) > 0 for positive phase contrast.
Equation (6.36) can be written in terms of the reduced coordinates (3.68)
and (3.69):
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Fig. 6.21. (a-c) Phase-contrast-transfer functions B(0*) = —2sin W (0*) for weak-
phase specimens in reduced coordinates 6* = (Cs/\)Y*0 for various values of
reduced defocus Az* = (CA)"Y2Az. The arrows indicate the main transfer
intervals.
. L[
B(0*) = —2sinW(6*) = —2sin {5 (0t — 29*2Az*)} . (6.37)

We discuss only the more important case of the CTF for phase structures.
Figure 6.21 shows the CTF B(6*) for three values of the reduced defocus
Az* = 1,3, V5, and for the neighboring values of Az* = (Cs\)~V/2Az
indicated in the figure as a function of the reduced angular coordinate
0* = (Cs/N\)"*0 (3.68). The ideal CTF would take the value B(q) = 2 for
all ¢. The CTFs shown in Fig. 6.21 pass through zero at certain points,
around which there are transfer gaps; for the corresponding values of 8 or ¢,
no specimen information reaches the image. Other spatial-frequency transfer
intervals are seen with negative values of B(g), which means imaging with
negative phase contrast for the corresponding range of ¢. With negative phase
contrast, the maxima and minima in the image of a periodic structure are
interchanged relative to those seen with positive phase contrast. Broad bands
of spatial frequencies (main transfer bands) with the same sign of the CTF are
expected when the minima of W (q) in Fig. 3.15 are odd multiples of —7/2.
The main transfer bands are indicated in Fig. 6.21 by arrows. The transfer
bands become somewhat broader if the underfocus is increased slightly be-
yond the values Az* = \/n (see dashed CTFs with a central dip in Fig. 6.21).
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In focus (Az* = 0), there is no main transfer band. This is also the case for
overfocus (Az* < 0), for which the oscillations of the CTF are more frequent.

For a corrected electron microscope, the spherical aberration Cs can be
adjusted at will. The wave aberration is then given by

C C C
W(q) = 27r( 65 Mgl + 3)\3 4y 21 AqQ). (6.38)
Here we have used C5 for the constant of the fifth-order spherical aberra-
tion, C3 = Cj for the third-order spherical aberration, and C; = —Az for

the defocus. With the additional flexibility to adjust C3, one can extend the
transfer band up to spatial frequencies beyond 10 nm~' for phase as well as
for amplitude contrast [1.74, 6.86].

6.4.2 Influence of Energy Spread and Illumination Aperture

We assumed in Sect. 6.4.1 that the electron beam is monochromatic (temporal
coherence) and the incident wave is plane or spherical (point source = spatial
coherence). In reality, the electron-emission process gives a beam with an
energy width of AE = 1-2 eV for thermionic guns and 0.3-0.5 eV for Schottky
and field-emission guns (Sect. 4.1.2), and the electron source (crossover) has
a finite size corresponding to an illumination aperture «;. So long as a; < v,
the illumination is said to be partially spatially coherent; when «; and «,
are of the same order, the illumination becomes incoherent. The variations of
electron energy AE as well as those of the accelerating voltage and the lens
currents AU and AI, respectively, result in variations Af of the defocusing
(2.62). The influence on the CTF has been investigated in [6.87]. The energy
spread can be approximated by a Gaussian distribution

J(Af) = NE [ In2 ( 4/ )21 (6.39)

JrH H/2

which is normalized so that f J(Af)A(AS) is equal to unity and has the
full-widths at half maxima

AFE AU Al
H = Ccff“ H = Cc7fr, or H= QCc?fr,
14 B/E,
h = ——— 4
where  f; T3 E2E, (6.40)

The contributions from electrons with different values of Af are superposed
incoherently at the image. We thus have to average over the image intensities.
By using (6.34), the contribution from a phase object becomes

= J_rfof(ffl)j(A JA(AS) =1 — g cos(2mqa’) f B(q )A(Af)

=1 - B(q)Kc(q)pq cos(2mqz’). (6.41)
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24 Fig. 6.22. Envelope K.(6") of the
contrast-transfer function B(0*) for differ-
ent values of the parameter H. Values of
H =5, 10, 20 nm correspond to AE = 1,
20 2, and 4 eV, respectively, for £ = 100 keV,
Csy =C. = 0.5 mm.

The value of Az in B(q) = —2sin W (g) in (6.36) is the mean defocus Az = Af,
and the result of the integration (averaging) in (6.41) is to multiply B(q) by
the function

Kc(q) = exp [— (Z%) ] : (6.42)

which depends only on ¢ and not on B(g). The function K.(q) therefore
acts as an envelope function; it damps the CTF oscillations for increasing ¢
(Fig. 6.22). The contrast transfer of low spatial frequencies will not be affected
because the spatial frequency appears in the exponent of (6.42) to the power
of 4. We can define a limiting spatial frequency ¢max = 1/Amin for which
K.(q) = 1/e = 37%. The exponent in (6.42) then becomes unity. Solving for
Apin gives

)\H 1/2
Anin = (47:/@) . (6.43)

As a numerical example, for £ = 100 keV, C. = 1 mm, AF = 1 ¢V, or
AI/T =5 x 107 we find Ay = 0.2 nm (¢max = 5 nm~1). To obtain this
resolution, the half-widths of the energy spread, the accelerating voltage or the
objective lens current must not exceed these values. A Gaussian distribution
is only an approximation to the true energy-spread distribution. In reality, an
asymmetric distribution similar to a Maxwellian distribution should be used.
Calculations show that this asymmetry has little effect [6.87].

If a finite electron-source size and hence a finite illumination aperture is
used, many of the electrons in a supposedly parallel beam in fact travel at
an oblique angle to the optic axis; this angle is characterized by an angular
coordinate s = 8/\. The action on the CTF is discussed in [6.88, 6.89, 6.90].
Each spatial frequency ¢ produces diffraction maxima of order +1 on either
side of the primary beam. The diffraction maxima with angular coordinates
g+ s will pass through the objective lens with phase shifts different from those
of the central beam, for which s = 0. For small values of s, the phase shift
can be described by the first term of a Taylor series,

W(gts)=W(g)£VW(g)-s+..., (6.44)
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where V is the gradient. Equation (6.34) now becomes
I(z') =1 — g cos(2mqz’)[sin W (q + s) + sin W(q — s)]
=1 — ¢, cos(2mqz"){2sin W(q) cos[VW (q) - s]}. (6.45)

If a two-dimensional Gaussian distribution is assumed for the s values, so that

. In2 5\ 2 o oo _
Ji(s) = e &P [— (ﬁ) 1112] . H= % 2%{](5)5&9 =1, (6.46)

then averaging over all s as in (6.41) again results in an envelope function

_ (VW (9)PH?\ (rCN2q® — mAzq)%a?
K(q) = exp ( 41n2 e 2

Uunlike the envelope K.(q) (6.42), which depends only on ¢, Ks(¢q) depends
also on the illumination aperture and defocusing. After first decreasing, K;(q)
passes through a minimum and rises again to unity where W(q) reaches a
minimum and hence VW (g) = 0. The main transfer bands, in which VW (q)
is small over a wide range of spatial frequencies, will therefore be influenced
least (Fig. 6.23, curves with of = 0.09). The attenuation of the CTF by
the envelope Ki(g) can be confirmed by laser diffraction or digital Fourier
transform of the micrograph (Sect. 6.4.7) [6.91, 6.92].

Under usual conditions of TEM in the presence of both energy spread and
finite source size (AE < 2 eV, o; < 1 mrad), the effective envelope can be
approximately written as a product of the envelope functions K.(¢) and K(q),
which describe the effects of energy spread and illumination spread separately
[6.90]. For larger values of a; or the reduced aperture of = a;(Cy/A\)'/4,
Fig. 6.23 shows the numerical results for A2* = 1 and /2 [6.87]. An envelope

(6.47)
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Fig. 6.23. Contrast-transfer func-
tions for phase contrast at the de-
focus values (a) Az* = 1 and (b)
Az* = /2 and increasingly large re-
duced illumination apertures o =
(Cs/N) Y0 [6.87).
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representation is no longer possible; B(6*) is now damped inside the main
transfer intervals as well. For Az* = /2, for example, and a large illumination
aperture, B(6*) has a broad interval of equal sign but with reduced amplitude,
of the order of 1 instead of 2 for the maxima. A full analysis of these effects
is given in Vol. 3 of [2.6].

6.4.3 The CTF for Tilted-Beam and Hollow-Cone Illumination

In the axial illumination mode, each spatial frequency contributes to the dif-
fraction maxima of order +1 (double-sideband transfer). The superposition
of the primary beam and the two sidebands is responsible for the gaps in
the CTF. Tilted-beam illumination with the primary beam near the centered
objective diaphragm cuts off one sideband (single-sideband transfer); in one
direction (across the aperture), twice the maximum spatial frequency for axial
illumination can be transferred. If this extended transfer is to be achieved in
more than one direction, several micrographs must be recorded with different
azimuths of the tilted beam. The superposition of several exposures with a
range of tilted-beam-illumination azimuths is of special interest because this
is equivalent to hollow-cone illumination. Single-sideband transfer can also
be achieved with axial illumination by using a shifted circular diaphragm or
a specially designed half-plane diaphragm (see single-sideband holography in
Sect. 6.5.2). A disadvantage of all these modes is that the primary-beam spot
passes near the diaphragm, which can introduce unreproducible phase shifts
due to local charging. Tilted-beam or hollow-cone methods that do not require
a physical diaphragm or can function with one of a larger diameter will there-
fore be of interest. Some important properties of these nonstandard modes
will now be discussed in detail.

In the tilted-beam illumination mode, an extended range of spatial fre-
quencies is transferred without a transfer gap but with a variable phase dif-
ference between the primary beam and the diffracted beam caused by the
difference between W (|@|) for & = a corresponding to the direction (tilt)
of the primary beam and for 8 = a + g/\ corresponding to the diffracted
beam. In axial illumination, the images of single atoms and small particles
are surrounded by concentric Fresnel fringes of Airy-disc-like intensity distri-
butions (Fig. 3.16 and 6.19). With tilted-beam illumination, the fringe system
is asymmetric, with bright and dark central intensities depending on defocus
and aberrations. The different phase shifts W (0) create different lateral shifts
of the corresponding specimen periodicities or Fourier components in the im-
age. Thus, particles typically show an asymmetric contrast with bright and
dark intensities on opposite sides, which resembles oblique illumination with
light (pseudo-topographic contrast).

The contrast transfer of tilted-beam illumination is linear for weak ampli-
tude and phase objects. The appropriate CTFs have been calculated and dis-
cussed in [6.87, 6.93, 6.94, 6.95, 6.96, 6.97, 6.98, 6.99], among others. The effect
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of partial spatial coherence (finite illumination aperture) can be expressed as
an envelope function only to a first approximation. For partial temporal co-
herence (energy spread of the electron gun), an important finding with tilted-
beam illumination is the existence of an achromatic circle [6.100]. Whereas the
envelope K. (¢) for axial illumination shows a rapid decrease at the resolution
limit, the envelope function for tilted-beam illumination increases again to a
maximum for ¢ values around twice the resolution limit for axial illumination.

Hollow-cone illumination can be produced with an annular condenser dia-
phragm. However, a large fraction of the electron beam is absorbed, and it is
better to move a beam of low aperture around a cone by exciting a two-stage
deflection system [6.99]. This can, in practice, be reduced to superposition of
a limited number of exposures; for example, eight different azimuths around
a cone with a half-angle (tilt) of 10 mrad for an illumination aperture of
~0.1 mrad [6.101, 6.102]. The asymmetric fringe systems of the tilted-beam
illumination are canceled and the granular contrast of supporting films also
decreases, whereas the central contrast of stronger-phase objects will be the
same for all the different azimuths.

The theory of hollow-cone illumination is discussed in more detail in [6.88,
6.103, 6.104, 6.105, 6.106, 6.107, 6.108]. Figure 6.24a shows calculated CTFs
for phase structures at a reduced defocus Az* = 1 and different values of
@ = ao(Cs/N)Y* [6.88]. The dashed line Bjq is the CTF for an ideal lens
without aberrations, calculated on the assumption that the directions around
the hollow cone or the discrete number of tilt angles superpose incoherently. A
given spatial frequency with the scattering angle 8* < 2o} can be transferred
only by beams on the arcs ABC and A’B’C’ of the hollow cone (Fig. 6.24b),
and the CTF becomes proportional to the ratio of these arcs to the total arc
length 27 of the hollow beam

4 * * *
Biq(6%) = Aarceos(0”/2a5) = %arccos ( 0 ) . (6.48)

2m 20k

In the presence of a wave aberration, the phase shift W (6*) is not uniform
over the arcs ADC and A’D’C’. Because |sin W (6*)| < 1, all the CTFs clearly
lie below Biq(0*). The curve for of = 1.49 in Fig. 6.24a shows that the ideal
Biq is approached very closely for Az* =1 with ¢, = 2o = 2.98. This CTF
may be compared with that for axial illumination in Fig. 6.21a. The CTFs
of hollow-cone illumination in Fig. 6.24a do not show any contrast reversals.
The only disadvantage is that B(0*) in Fig. 6.24a reaches a maximum value
of only 0.8 as compared with 2 for axial illumination.

Figure 6.25 shows that hollow-cone illumination can also be used without
an aperture-limiting diaphragm [6.105]. The defocusing is Az* = /7 and
the quantities o] and of are the inner and outer apertures of the cone of
finite width. This optimum condition differs from that of Fig. 6.24a mainly in
that narrow regions of negative sign occur for small and large 6* and by the
presence of ripple oscillations on the CTF. The optimum conditions are those
in which the phase contrast reinforces the scattering contrast.
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Fig. 6.24. (a) Phase-contrast-transfer function for hollow-cone illumination for
different values of o = (Cs/\)**a, and a reduced defocus Az*=1; (~ — -) ideal
CTF, which is proportional to the lengths of the segments ABC and A'B’C’ in (b).
Electrons scattered through angles 8* can pass through the diaphragm only within
the segments ABC and A’B'C’ [6.87].
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Fig. 6.25. Example of the phase CTF with hollow-cone illumination and with no
objective diaphragm for a reduced defocus Az*=+/7 and a broad cone of illumination
of inner and outer diameters o] and «3 [6.105].
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6.4.4 Contrast Transfer in STEM

As discussed in Sect. 4.5.3, the phase-contrast effects in the STEM mode
will be the same as in TEM if the corresponding apertures are interchanged:
aq = o5 ~ 0.1 mrad and o}, = a, ~ 10 mrad (Figs. 6.10a,b). However, only
a small fraction of the incident cone would be collected by the detector if
these conditions were employed. There are two collection possibilities: either
the electrons inside the cone of aperture aq =~ a are all detected or an
annular detector, which collects only the mainly elastically scattered electrons,
is used (Sect. 6.3.2). These modes can be described as bright and dark field,
respectively. A detector that collects the whole illumination cone produces
an incoherent bright-field image if interference effects between the scattered
and unscattered waves need not be considered. Figure 6.26 shows the various
current-density distributions in the detector plane. The dashed curve would
be obtained with no specimen, whereas the full curve shows the modification
caused by scattering. This implies that

aq 00
2 f (]0 — jDF)9d9 =27 f jd9d49 (649)
0 g

However, the current density for 6 < agq is modulated by phase effects.
Each point (direction) of the unscattered cone with direction 0,(|6y| < aq)
corresponds to an angle of incidence in the cone of the electron probe, but
the probe-forming lens shifts the phase by W (0,). These phase shifts are
responsible for the shape of the electron probe and the deviations from an
Airy-disc-like probe profile. The intensity at each point of the detector plane
is the result of interference between the unscattered wave of direction 6,
and a wave elastically scattered into this direction with a scattering angle
0s. The elastically scattered wave experiences a phase shift of 7/2 during
the scattering process (Sect. 5.1.3) and an additional phase shift relative to
the unscattered wave: W (|0, — 05|) — W(0,). For a fixed direction 6,, the
result of superposing all possible waves with scattering angles 65 with the
condition |0, — 6| < aq has to be evaluated. This leads to a modulation of the

Fig. 6.26. Schematic current-
density  distribution in  the
detector plane of a scanning
transmission electron microscope
without a specimen (- - -), in the
incoherent mode (—) and in the
phase-contrast mode (- - - - - ).
The electron probe is assumed
to be centered on a rotationally
symmetric specimen (e.g., a single
atom) (o4 = aq).
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current-density distribution inside the illumination cone, drawn schematically
as the dash-dotted line in Fig. 6.26 and consisting of zones of decreased and
increased intensity.

Phase contrast can therefore be produced by dividing the detector plane
into annular zones [6.109], which collect electrons with mainly constructive or
mainly destructive interference. A single narrow annular detector is the coun-
terpart of hollow-cone illumination in TEM. Hence, the CTF of this STEM
mode has a triangular shape, modified by phase-contrast effects similar to
those in Fig. 6.24a.

Another possible phase-sensitive detector consists of two semicircular
discs, separated by a narrow gap, normal to the scan direction [6.105, 6.110,
6.111, 6.112]. This is capable of giving differential phase contrast, which rep-
resents the gradient of the object parallel to the scan direction. An obvious
extension from semicircles to quadrants gives the two components of the gradi-
ent [6.113, 6.114]. To exploit these possibilities, versatile, software-configurable
multichannel STEM detectors with 16 detector areas [6.115] or 30 rings split
into quadrants [6.116] have been developed and tested; such detectors can also
be optimally used for phase contrast in the STEM mode [6.117].

6.4.5 Phase Contrast by Inelastically Scattered Electrons

The incident and elastically scattered waves are coherent, whereas waves of
inelastically scattered electrons are incoherent relative to the incident and
elastically scattered waves and also to inelastic waves that differ in the final
object states [6.118]. The latter are, for example, the excitation of plasmons
or single electrons with different transferred momenta hq’ = h(k,, — ko). Plas-
mon excitation also shows some dependence of energy loss on the scattering
angle (dispersion), and inelastic electron waves with different k,, will also be
incoherent.

To a good approximation, the CTF can thus be calculated, including the
partial spatial coherence of the primary beam represented by a Gaussian dis-
tribution with a half-width of about «;, by an additional convolution with the
angular distribution of inelastic scattering [5.37]. Although many inelastically
scattered electrons are concentrated at low scattering angles 6 = \g, the num-
ber N(q)dg with spatial frequencies between ¢ and ¢ + dg shows a long tail
because the angular distribution o (02 + 63)~! is Lorentzian. The fraction
concentrated at high ¢ totally blurs the CTF just like incoherent illumina-
tion and only the fraction with an angular width of about fg can be seen as
a damped oscillation of CTF, with a decreased amplitude. Qualitatively, this
expected decrease of phase contrast can be observed for the granularity of car-
bon films by comparing the zero-loss and plasmon-loss filtered images [5.37].
Phase-contrast structures with the carbon plasmon loss at lower defocusing
and a width of 4 eV for the selected energy window have also been observed
in the EST mode [6.119] and in a dedicated scanning transmission electron mi-
croscope [6.120]. The counterpart of this decrease of phase contrast caused by
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inelastically scattered electrons is that all phase-contrast effects are enhanced
by zero-loss filtering. The quantitative measurement of the phase contrast of
colloidal gold particles on carbon films [6.121] likewise shows that phase con-
trast of the colloids can be observed with zero-loss filtering for carbon films
up to a mass thickness 40 pg/cm? (¢t = 200 nm), whereas the phase contrast
is invisible in unfiltered images because of the large fraction of inelastically
scattered electrons.

6.4.6 Improvement of the CTF Inside the Microscope

The transfer gaps and changes of sign caused by spherical aberration
render the electron-optical CTF very different from the ideal CTF with
B(q) = +2; the latter can be attained in the light-optical phase-contrast
method in which a Zernike plate shifts the phase by +/2 in the focal plane
of the objective lens. Similar methods have been proposed for the transmission
electron microscope.

An objective diaphragm consisting of a plate with rings alternatively
transparent and opaque to electrons could be used to suppress spatial fre-
quencies or scattering angles that are transferred with a negative sign in B(q)
[6.122, 6.123]. Calculations show that no significant improvements can be
expected because of the broad gaps in the CTF that correspond to spatial fre-
quencies transferred with the wrong sign and consequently suppressed [6.53].
Two complementary zone plates have been proposed, which would cover the
whole CTF without gaps for two different values of defocus [6.85].

Correcting phase shifts can be generated by means of profiled phase plates
of variable thickness that can be produced by electron-beam writing or by
growing a contamination layer with the required local thickness on a carbon
film supported by the diaphragm [6.124]. The transfer gaps in the CTF do
indeed vanish, as shown by laser diffraction [6.125]. However, no practical
examples of image improvement have yet been reported.

All of these interventions in the focal plane, including single-sideband
holography (Sect. 6.5.2), have the disadvantage that the diaphragm, some
100 pm in diameter, has to be adjusted precisely on-axis in the focal plane and
that, whenever the electron beam strikes the transparent film or the opaque
part of the diaphragm, charging can occur, which influences the phase shift
unpredictably. For these reasons, none of these techniques remains in use.
The present tendency is to apply a posteriori restoration methods to the final
micrographs (Sects. 6.6.2 and 6.6.3).

Just recently, experiments with microfabricated electrostatic minilenses in
the focal plane have demonstrated, that a /2 phase plate can be used to
obtain phase contrast for small spatial frequencies [6.126, 6.127].

6.4.7 Control of the CTF by Optical or Digital Fourier Transform

For a weak-phase specimen, a specimen periodicity A or spatial frequency
g = 1/A is linearly transferred to the image as a periodicity AM with an
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amplitude proportional to |B(q)|. The periodicities in the micrograph can be
analyzed by light-optical Fraunhofer diffraction of the photographic record
[6.129, 6.128] or by fast Fourier transform (FFT) of digitally recorded images.

The laser-diffraction technique will be advantageous for the a posteriori
investigation of photographic emulsions. In practice, it is better to record a
diffractogram a priori before recording and developing a photographic emul-
sion. This is possible by digitally recording an image with a CCD or SIT
camera (Sect. 4.7.5), after which a fast Fourier transform (FFT) algorithm
allows us to compute a Fraunhofer diffractogram in a few seconds or less. The
digital image can alternatively be used to modulate a liquid crystal display,
which allows the diffractogram to be observed online with an optical bench
placed beside the microscope [6.130].

The CTF can be controlled and measured with the aid of a specimen for
which the spatial frequency spectrum is like that of white noise; this implies
that the amplitudes ¢, in (6.31) should be independent of ¢. If the spatial
frequency is not too small, this is nearly true for thin carbon supporting films,
as already shown in Sect. 6.2.2. A stronger granularity caused by phase con-
trast can be obtained with thin amorphous germanium films evaporated from
heated tungsten on a glass slide and floated on water as for carbon films. The
variation of the image intensity I(z’) is then proportional to |B(q)|¢, (6.34).
A typical diffractogram (Fig. 6.27a) shows the transfer gaps (zero points) of
|B(q)|>. However, diffraction maxima that belong to regions of B(q) of dif-
ferent sign cannot be distinguished. This requires comparison with formulas
such as (6.36).

The following information can be obtained from a diffractogram:

(1) The g values that correspond to the minima in the diffractogram can be
measured and plotted for a defocus series, as in Fig. 6.13. A diffractogram thus
contains information about the defocusing Az and the spherical-aberration
constant Cs. The diffractogram shows maxima of |B(q)|*> when W (q) = nn/2
and n is odd. The gaps of contrast transfer correspond to even values of n.
By using (3.66) for W (q), the relation W(q) = nm/2 can be transformed to

CNq? — 242\ = n/q”. (6.50)

Plotting n/q? versus ¢? results in a straight line if the numbering of n
is correct. C5 can be read from the slope and Az from the intercept of the
straight line [6.131]. A tilted carbon film contains a whole range of defocus
values, and it is possible to deduce the dependence on Az in Fig. 6.13 from a
single micrograph [6.42]. It is also possible to determine defocusing distances
Az as large as a few millimeters if a small illumination aperture «; < 10~2
mrad is used, as in Lorentz microscopy (Sect. 6.5) [6.132, 6.133]. In this case,
the term that contains the spherical aberration in (6.36) can be neglected
and the relation Az = [2m — 1]/(2A¢?), where m = 1, 2, ..., can be used to
determine Az from the g-values of the maxima in the diffractogram.

(2) Astigmatism can be included in the wave aberration W (q) or CTF
B(q) = —2sinW(q) by adding a term (3.67) to (3.65). This results in an
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Fig. 6.27. Diffractograms of micrographs of carbon foils showing (a) the gaps in
the contrast and a weak astigmatism (elliptical diffraction rings), (b) stronger astig-
matism, which results in hyperbolic diffraction fringes, (¢) detection of a continuous
drift, and (d) a sudden jump in the specimen position during the exposure. The
fringe pattern is caused by the doubling of the image structure (overlapped Young
fringes).
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elliptical distortion of the diffraction rings for small astigmatism (Fig. 6.27a)
and a hyperbolic distortion for stronger astigmatism (Fig. 6.27b).

(3) A continuous drift of the image during exposure results in a blurring
of the diffractogram parallel to the direction of drift (Fig. 6.27¢). A sudden
jump of specimen position during exposure duplicates the entire structure,
so that a pattern of Young interference fringes is superimposed on the main
pattern (Fig. 6.27d) (see also item 4 below).

(4) The envelopes K.(q) (6.42) and Ks(q) (6.47) can be determined from
the decrease of the diffraction-maxima amplitude for large q. The largest spa-
tial frequency transferred is inversely proportional to the resolution limit and
can be read from a diffractogram of two superposed micrographs by the follow-
ing procedure [6.134, 6.135]. When the two micrographs are shifted through
a small distance d, every resolved structure appears twice in the transmitted
light amplitude, which means that each structure is convolved with a double
source that consists of two points a distance d apart. Using the Fourier con-
volution theorem (3.49), we see that the diffractogram of a single micrograph
will be multiplied by the Fourier transform of a double-point source. The
intensity in the diffractogram is hence multiplied by cos?(7qd). The diffrac-
togram of the superposed micrographs is therefore overprinted with a pattern
of Young’s interference fringes with a spacing Aq = 1/d as in Fig. 6.27d. The
limit of contrast transfer can be seen from the limit of recognizable fringes.
It is important to use two successive micrographs and not two copies of one
micrograph. In the latter case, fringes can also be produced by clusters of
silver grains generated by a single electron and reproduced in both copies.
In SEM and STEM, it is necessary to shift the image on the cathode-ray
tube between the two exposures by about 1 cm. Otherwise, the fringe pattern
may be caused by the granularity of the CRT screen, continuing out to larger
spatial frequencies [6.136].

5) The correction methods of the CTF discussed in Sect. 6.4.6 can also be
controlled by studying diffractograms.

These examples of the application of laser diffraction or digital Fourier
transforms show the importance of this technique for the control of the imag-
ing process; such as the correction of astigmatism and also an exact coma-free
alignment (Sect. 2.4.3).

6.5 Electron Holography

6.5.1 Fresnel and Fraunhofer In-Line Holography

The idea of holography was first introduced by Gabor [6.137] to improve the
resolution of the electron microscope by (a posteriori) light-optical processing
of micrographs to cancel the effect of spherical aberration. The recording of
a hologram and the reconstruction of the wavefront will be described for the
case of in-line holography, proposed originally by Gabor. The unscattered part
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Fig. 6.28. (a) Recording and (b) reconstruction of an in-line hologram.

of an incident plane wave acts as a reference wave (Fig. 6.28a). A specimen
(object) point P produces a spherical, scattered wave. The superposition of
the two waves on a photographic emulsion at a distance Az is an interference
pattern, which consists of concentric fringes. The same pattern will be seen
if we insert a magnifying-lens system between the object and the micrograph
and record with a defocusing Az. If the lens is not free of aberrations, the
interference pattern will be modified by the additional phase shifts.

In the reconstruction (Fig. 6.28b), the micrograph is illuminated with a
plane wave and acts as a diffraction grating or Fresnel-zone lens. The fringe
distance decreases with increasing distance from the center, and the corre-
sponding diffraction angle (+6) increases. The two diffracted waves (side-
bands) form spherical waves centered at Q and Q. We see that we reconstruct
the spherical wave from P at Q behind the hologram. However, we also see
that in-line holography has the disadvantage of producing a twin image at Q'.
If we are looking from the right, the distance between @ and Q' has to be so
large that one of the twin images is in focus while the other is blurred. The
latter is a Fresnel diffraction pattern with a defocusing 2Az relative to the
focused twin image, and a single object point is imaged as a weak concen-
tric ring system with a large inner radius r; ~ v AzA. A specimen structure
smaller than this radius and situated in a larger structure-free area can be
reconstructed without any disturbance from the twin image.

Off-axis points will create an asymmetric fringe system, and points in front
of or behind the object plane behave like Fresnel-zone lenses with smaller or
larger fringe diameters, respectively. Each of these fringe systems reconstructs
a point source at the correct position relative to P. A hologram can therefore
store and reproduce a full three-dimensional image of the specimen.
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Fig. 6.29. (a) Plane incident wave and diffracted waves of order 1 in the Fresnel
and Fraunhofer regions. (b) Overlap of the waves in the image plane. (c) Avoidance
of the transfer gaps at A, B, C, ... by absorbing one sideband (single-sideband
holography).

In-line holograms can be further classified into Fresnel, Fraunhofer,
and single-sideband holograms (Sect. 6.5.2). The difference is explained
in Fig. 6.29, in which a periodic object of lattice constant or spatial frequency
g = 1/A is used as an example. Figure 6.29a shows the superposition of
the diffracted waves of order +1 (sidebands) and the incident plane wave.
In Fresnel holography (small defocus Az), the three waves overlap. In the
planes A, B, C,..., the three-wave field results in zero intensities for defocus
values Az = nA%/\ (n integer). These defocus values correspond exactly to
the zeros of the CTF B(q) = —2sin W(q) if only the defocus term of W(q) is
considered. Near the Gaussian image plane, the three waves overlap to form
a magnified image (Fig. 6.29b). A magnification M decreases the scattering
of the sidebands to £6/M and increases the fringe (lattice) spacing to AM.
Spherical aberration in the imaging system creates an additional phase shift
between the plane incident wave and the two sidebands. The photographic
emulsion is placed in the Fresnel region for small defocusing. Such Fresnel
in-line holograms were originally proposed by Gabor.

For the light-optical reconstruction of an in-line hologram, an objective
lens is needed with an appropiately scaled spherical aberration to allow for
the difference between the wavelengths of the electrons used for recording and
that of the light employed for reconstruction [6.138]. The reconstructed image
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shows a contrast-transfer function B?(g) because CTFs have to be multiplied
in such a twofold imaging process. This means that the intervals corresponding
to spatial frequencies with a negative sign of B(g) in the original electron-
optical image are reproduced with the correct sign. However, the information
gaps in the CTF cannot be avoided, so that if the photographic emulsion is
placed at A, B, ... in Fig. 6.29b, the Fresnel in-line hologram cannot contain
any information about the corresponding spatial frequency.

In Fraunhofer in-line holograms, a larger defocusing is used so that the
sidebands do not overlap and no transfer gaps occur (Fig. 6.29). This method
has been tested in electron microscopy [6.139, 6.140]. It was found that gold
particles smaller than 1 nm can be reconstructed, but these are also visible in
the normal bright-field mode.

If a specimen area of diameter dj is to be recorded and reconstructed, the
spatial frequencies present in the spectrum will lie between ¢min = 1/dg and
(max corresponding to the resolution limit; ¢, corresponds to a diffraction
angle 6,1, = A\/dp so that a defocus value

do d?
emin A
will be necessary to separate the primary beam and the sidebands (Fig. 6.29).
This defocusing is large even if the diameter of the specimen area dy is quite
small. A large defocusing causes a blurring of the hologram due to the finite
illumination aperture «;, which sets a limit on the minimum periodicity Amin
or maximum spatial frequency gmax:

1 aid%

= Apin = ) 6.52
Gmax A (6.52)

Az = (6.51)

The following numerical example, Ay = 0.2 nm, A = 3.7 pm (100 keV), dy =
100 nm, o; = 7.5 x 1078 rad, shows the limitation of in-line holography. Only
a small area of diameter dy can be imaged, and an extremely low aperture o
is necessary, which can be obtained only with a field-emission gun.

The influence of nonaxial aberrations (coma, Seidel astigmatism, field
curvature, and distortion) renders the image formation anisoplanatic [6.141,
6.142, 6.143]. These aberrations cause a shift and rotation of a transferred
specimen sine wave of period A. If shifts and rotations of A/8 can be toler-
ated, the radius of the isoplanatic patch can be estimated to be about 100 nm.

6.5.2 Single-Sideband Holography

Figure 6.29¢ shows that the large defocusing needed to separate the side-
bands and hence to avoid the contrast-transfer gaps (transition from Fresnel
to Fraunhofer in-line holography) is not required if one of the sidebands is
suppressed by a diaphragm [6.144, 6.145, 6.146, 6.147]. The best way of doing
this is to insert a half-plane diaphragm in the focal plane of the objective
lens with a small opening for the primary beam. Charging effects can disturb
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the image if the primary beam passes too close to the diaphragm; these can
be reduced either by preparing the diaphragm in a special way [6.148] or by
heating it [6.149].

The influence on contrast transfer can be seen from (6.33), retaining only
one diffraction order (sideband) instead of both (of order +1). The alternative
signs in the following formulas correspond to the two possible single-sideband
images with complementary half-plane diaphragms; we find

1 . o1 . o,
'@/Jb(x/) —1— ieqe—1W(q)ei2ﬂ'1qI + 5isoqe—lW(q)ei%rlqw (653)
and hence
In(z") = iy,
=1—eqcos[2mgr’ F W(q)| F pgsin2mgz’ FW(g)] +... . (6.54)

This means that there are no transfer gaps, a result that can also be
inferred from Fig. 6.29c. The wave aberration produces only a lateral shift of
the lattice image. The image of the phase component is shifted by 7/2 or \/4
even when W(g) = 0. The resulting contrast is asymmetric. This is typical
of single-sideband imaging. Thus edges appear bright on one side and dark
on the other. This asymmetry is reversed when the complementary half-plane
diaphragm is used [reversal of the sign of the last term in (6.54)].

The sign of the amplitude component in (6.54) remains unchanged. This
can be used to separate the amplitude and phase components. The sum of
two single-sideband holograms recorded with complementary half-plane di-
aphragms increases the amplitude component and cancels the phase compo-
nent, whereas the difference between them cancels the amplitude and increases
the phase component. The sum or difference of the holograms can be com-
puted digitally or obtained by superposition of the micrographs; a positive
and a negative copy are used for the difference [6.150]. The wave aberration
W (q) can be corrected in the light-optical reconstruction by using an objec-
tive lens with the appropiate spherical aberration and defocusing (Sect. 6.4.4).
The focal plane of this lens again contains two sidebands. With a half-plane
diaphragm complementary to that used earlier in the electron-optical imag-
ing, the corrected intensity distributions (6.54) can be obtained free of the
lateral shift caused by W (q).

6.5.3 Off-Axis Holography

Off-axis or out-of-line holography, proposed by Leith and Upatnieks [6.151],
uses a separate reference beam for recording the phase in the interference pat-
tern. The superposition of a reference wave (wave vector ki), which may for
example pass through a hole in the support film, and a wave (k2 ), which trans-
mits the specimen structure off-axis and is modified in amplitude and phase
(3.36), can be performed by means of an electrostatic biprism (Sect. 3.1.4)
(k1 and ks include an angle £+ with the axis) [6.140, 6.152, 6.153, 6.154].
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In the narrow region of overlap of the two beams, the wave amplitude is
(Fig. 6.28a)

¢ — % [as(r)eiaps(r)QQﬂ-ik:g-r + eQTrik1-’l":| ) (655)

The hologram is a record of the resulting biprism interference fringes, which
have the intensity distribution

I(r) = Ip{1 4 a2(r) + 2a4(r) cos[2mz/d + s ()]}
=1 {1 +a2(r) + as(r) [ei%(r)e%im/d + e_i“’S(’")e_Q”ix/d} } ,  (6.56)

with z || k1 — ko, and d = /20 is the fringe spacing. The fringes contain the
amplitude modulation as(7) of the specimen wave and the phase shift ¢4(r)
as a local shift of the interference fringes. This allows the phase and amplitude
components of an image to be separated.

The technique can be put into practice in a conventional transmission
electron microscope with a field-emission or Schottky-emission source. The
biprism filament of ~350 nm in diameter is mounted perpendicular to the rod
axis of the holder for the selected-area diaphragms in front of the intermediate
lens. The holder can still contain conventional diaphragms for the routine
operating modes of the transmission electron microscope. A voltage up to
300 V can be applied to the filament [1.72]. The intermediate lens has to be
focused a few millimeters below the biprism in the hologram plane and a few
hundred fringes with a spacing of 0.02 nm and an overlap of 30 nm can be
recorded. This type of holography can also be employed in the STEM mode
[6.155] and in reflection electron microscopy (Sect. 9.7.2) where surface steps
result in a phase shift [6.156, 6.157].

By means of reconstruction methods described in the next section, spec-
imens with amplitude and phase structures can be resolved with a lateral
resolution of three times the fringe spacing, or twice for weak amplitude struc-
tures, which means 0.15 nm and 0.1 nm, respectively, for a fringe spacing of
0.05 nm [1.72].

Applications of off-axis holography are shown for the imaging of magnetic
structures (superconducting vortices, Sect. 6.8.2f, Fig. 6.43), the imaging of
electric fields (Sect. 6.8.3), and the reconstruction of phase and amplitude
from holograms of the crystal structure (Sect. 9.6.4, Fig. 9.34).

6.5.4 Reconstruction of Off-Axis Holograms

Although digital reconstruction methods are often advantageous, various
light-optical reconstruction methods will be discussed here because they bring
out the principles in terms of optical hardware, which may be easier to ap-
preciate than computer software.
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The hologram is reconstructed by illuminating it with a coherent light wave
(Fig. 6.28b). The light amplitude behind the hologram can also be represented
by (6.56), but the amplitude factors are now modified by the y-value (Sect.
4.7.2) of the emulsion. Thus, the factor exp(27iz/d) in the third term of (6.56)
is equivalent to a phase shift by a prism with a deflection angle 6 = A, /d (A,
denotes the wavelength of the reconstruction light wave); for the last term,
the angle would be —6. This means that the specimen wave as(r) explips(r)]
is completely reconstructed in the deflected wave (first diffraction order). This
first order can be selected by placing a diaphragm in the focal plane of the
lens in Fig. 6.30b, thereby suppressing the twin image. Although the wave
amplitude is fully restored with the correct phase and its amplitude only
modified by the v of the recording process, the phase will again be lost in the
recorded reconstruction.

However, the phase can be recovered by splitting the reconstruction wave
with a Mach—Zehnder interferometer (see also Fig. 6.32) placed in front of the
hologram in Fig. 6.30b [6.158]. The resulting two reconstruction waves are
inclined at 46 to the axis, and the central beam selected by the diaphragm
(aperture stop) contains the superposition of diffracted waves of orders +1
from the two reconstruction waves, while their primary spot is absorbed at
the diaphragm. The amplitude in the reconstructed image is thus

W o as(r){expligs(r)] + exp[—igs(r)]} o as(r) cos[es(r)]. (6.57)

This merely represents an intensity distribution proportional to cos?|[ps(7)]
or fringes of equal phase (Fig. 6.31c). These fringes may be lines of equal
specimen thickness produced by the phase shift corresponding to the inner
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Fig. 6.30. (a) Recording and (b) reconstruction of an off-axis hologram.
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Fig. 6.31. Interference image of a decahedral Be particle: (a) reconstructed image,
(b) hologram, (c) contour map of lines of equal phase shift (thickness) [6.158].
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Fig. 6.32. Mach—Zehnder interferometer for recording the phase structure of

holograms.

potential U; (Sect. 3.1.3 and Table 3.2), for example, or magnetic field lines
parallel to B caused by the phase shift of the magnetic vector potential
(Sect. 3.1.1 and 6.8.2f) [6.160, 6.161, 1.73].

A Mach—Zehnder interferometer can also be used in another arrangement,
shown in Fig. 6.32 [6.162], and there are other more compact and disturbance-
free interferometers [6.163]. If only the hologram H;j is used, the wave behind
H; is superposed on a parallel reference wave. The tilt of this wave can be
changed by means of the mirror M, its amplitude by a filter F5, and the phase
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by a pressure cell. In the reconstruction, this superposition results in a new
interference fringe system in which the direction, spacing, and phase can be
changed. Using a copy Hs of a hologram H; in the second beam, a small shift
in the holograms produces a fringe shape that contains information about
the gradient of the phase distribution; alternatively, the phase value can be
doubled if diffraction orders of opposite sign are used for the reconstruction.
A further interesting application is the study of phase shifts in crystals de-
pending on the tilt angle relative to the exact Bragg position [6.163]. For a
detailed study of electron holography, see [1.73, 6.164, 6.165].

6.6 Image Restoration and Specimen Reconstruction

6.6.1 General Aspects

We have seen in the last sections that the exit wave function 1) (r) just behind
the specimen is modified in the imaging process mainly by spherical aberration
and defocusing and shows contrast-transfer gaps. The aim of image restoration
is to recreate the exit wave function. This involves changing the sign of the
contrast transfer, filling the transfer gaps, and extracting the amplitude and
phase of (7). The best way of doing this is electron holography; otherwise,
a series of micrographs at different defocuses may be used, perhaps with the
additional use of a diffraction pattern.

In the case of organic specimens, low-dose exposures (noisy and highly un-
derexposed with <10% e/nm?) have to be used to avoid as far as possible the
loss of resolution by radiation damage. A large number of specimens (separate
identical copies) should be imaged with the same orientation on one or more
micrographs to allow 2D averaging; this is particularly suitable for biomacro-
molecules and macromolecular structures. This is easier when the molecules
form a 2D array (crystalline or quasi-crystalline), but more effort is necessary
in the case of random orientations. In the latter situation, pattern-detection
procedures are needed for the alignment of the molecular images before av-
eraging, and misalignments in 2D arrays also have to be taken into account.
The alignment is achieved by cross-correlation methods. Inorganic crystals are
usually so stable that micrographs can be recorded with normal exposures.
The imaging of crystal lattices is discussed in Sect. 9.6.

A 3D reconstruction of a macromolecular structure can be made by tomo-
graphic methods; views of the structure in different directions are obtained
from a tilt series or from a single tilt if the molecules are randomly oriented.
The methods can be applied to native or positively or negatively stained
macromolecules on supporting films or cryosections of ice-embedded speci-
mens. This kind of 3D tomography is thus on the way to becoming superior
to x-ray crystallography.

Many of the methods for restoration and reconstruction were developed
more or less successfully in earlier times, where the exposure of photographic
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emulsions was the usual method of image recording. Recording by CCD arrays
now allows a series of micrographs to be recorded within a few seconds. Not
only is it advantageous to obtain the image in digital form directly, but changes
in specimen structure between exposures are also decreased. Autofocusing and
autotuning likewise become realistic (Sect. 2.4.3). With modern microscopes
connected directly to a workstation, it is also possible to display restored
images online on the TV monitor.

6.6.2 Methods of Optical Analog Filtering

Although digital image processing is widely used now that micrographs can
be digitized directly by means of image plates or CCD arrays, it is still useful
to have a look at optical analog methods. Figure 6.33 shows the principal
ray path of an optical filtering process. As for optical diffraction (Sect. 6.4.7),
the micrographs can be immersed in a fluid with the same refractive index
as the gelatin of the emulsion to compensate for any phase shift caused by
thickness variations of the gelatin layer. Only the optical density of the silver
grains will then influence the incident wave. A 1 : 1 imaging with the lenses
Lo and L3z can be used to obtain a diffraction pattern in the focal plane of
Lo, where the optical filter is situated. The diameter of the diffraction pattern
can be increased to a few millimeters by making the focal length of Ly large
(30-50 cm). Filtering processes are easier to implement in the focal plane than
in the electron microscope, where the diameter of the diffraction pattern in
the back focal plane of the objective lens is only a few tenths of a millimeter
and any filter in the form of zone plates (Sect. 6.4.6) disturbs the imaging
process.

If the sole aim is optical filtering in the focal plane of Lo, then Lo and Lg
must be free of spherical aberration within the aperture used. If the Gabor
reconstruction method is to be used or if the electron-optical transfer is being
simulated by light optics [6.166], the following relations between the spa-
tial frequencies ¢, the objective apertures «, and the reduced defocusings
Az* (3.68) have to be respected (subscript L: light-optical, E: electron-optical
quantities):

Laser

— f—n f — f t +
Mictograph Diffractogram Filtered image

x

Fig. 6.33. Ray path of a light-optical image-processing system using a Fourier filter.
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Various imaging modes (e.g., bright-field, dark-field, and hollow-cone illumi-
nation) and their contrast-transfer characteristics can be simulated with the
aid of these relations [3.35, 6.166, 6.167].

The filtering that will now be discussed applies to weak-phase objects, for
which we can set ¢ () = 1 —ips(r) in (6.18); this will give an indication of the
optimum design of a Fourier filter in the focal plane of Ly. The image intensity
I(r") can be expressed in terms of the blurring or point-spread function h(r)
introduced in (3.73), which is essentially the inverse Fourier transform of the
pupil function H(q),

I(r') =14 20s(r") @ h(r') = 1+ 2 [ [ ps(r)h(r' — r)d®r. (6.59)
Behind the micrograph (negative), the light amplitude for v = 1 will be

A(r) =1 —2p4(r) @ h(r). (6.60)
The diffracted light amplitude in the focal plane of Ly can be represented by

F(q) = F{A(r)} = 3(q) — 2F,(q) - H(q), (6.61)

where §(q) represents the primary beam at ¢ = 0 and Fy(q) is the Fourier
transform of ¢s(gq). The convolution theorem (3.48) maps the convolution in
(6.60) into a multiplication in (6.61). If an optical filter 1/H(q) is present in
the focal plane of Ly, the amplitude in the reconstructed image will be

Ay = 1= 200 0 B { Hla) g1 |

=1-2ps(r'Y@6(r") =1 — ¢s(r), (6.62)

and the light intensity hence becomes L(7') = A(r’) - A*(v') = 1 — 2¢4(7’).
The originally blurred image [convolved with h(r)] is deblurred by the optical
filter with a transmission 1/H(q). However, this deblurring cannot restore
information lost at gaps in the contrast transfer; spatial frequencies are re-
constructed only if they are present in the micrographs and are larger than
the noise.

The filter can be divided into an amplitude and a phase part:

= o exp(—igy) (6.63)
= —— exp(—ipy). .
H(q) |H(q)| !
A negative sign of H(q) can be included in the phase factor by recalling that
exp(ir) = exp(—in) = —1.

The use of a light-optical filter with |H(q)| = 1 and exp(-ig,) = -1 was
proposed to correct those spatial-frequency intervals for which the sign of
the CTF is negative. This method generates the image that would have been
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produced by a system with |B(q)| as CTF [6.168, 6.169]. If a more complicated
amplitude filter of the form 1/|H(q)| x1/|sin W(q)| is used, the CTF in the
transfer bands can be equalized in magnitude. However, small gaps around
the zeros of sin W (q) have to be tolerated [6.170].

A phase filter can also be created by means of an amplitude grating. The
distance between the slits of the grating must be so small that the twin images
in the first-order diffracted beams are separated from those produced by the
transmitted und undiffracted wave with no overlap. In the transfer intervals
with a negative sign of B(q), the grating is shifted by half of the slit separation.
This causes a phase shift © of the twin images, whereas the phase of the
transmitted wave remains unchanged. This phase shift is a direct consequence
of the translation theorem (3.44) for Fourier transforms. It is also possible
to construct a combined amplitude and phase filter from a two-dimensional
grating of transparent rectangles that vary in size (amplitude) and position
(phase). Such binary filters can be calculated and plotted by a computer
[6.171].

The noise amplitude in periodic structures can be decreased by introducing
in the Fourier plane a mask that contains holes at the diffraction maxima
[6.172, 6.173, 6.174]. Thus, if structures from the back and front of negatively
stained particles, for example, are superimposed, these can be separated by
selecting the corresponding maxima [6.175]. Care will be needed to avoid
introducing artificial periodicities by this filtering method [6.176].

Another simpler method for decreasing the noise in periodic images is to
produce a suitable multiple exposure of a photographic copy of the image
by moving the negative or the copy by multiples of the specimen periodicity
[6.177, 6.178] or by an n-fold rotation of the micrograph by multiples of 27 /n
if the structure shows n-fold rotational symmetry [6.179]. This method is
sometimes known as stroboscopy because the same effect can be obtained
by mounting the micrograph on a turntable that rotates at a frequency f
and illuminating it with a source that flashes at a frequency nf. An n-fold
rotational symmetry will then be detected by the eye. Artificial structure may
be produced if the correct n is established by varying n in the stroboscopic
superposition. It is often more useful to superimpose different micrographs,
which can be done more accurately digitally because objective criteria for
alignment can be applied (Sect. 6.6.4).

6.6.3 Digital Image Restoration

All of the optical analog techniques described in Sect. 6.6.2 can equally well
be exploited on a digital computer if the image intensity is first stored in a
matrix array. Image plates (Sect. 4.7.3) and CCD cameras (Sect. 4.7.5) allow
electron micrographs to be recorded directly in digital form. It is not possible
to describe all of the various digital procedures in detail here. Our aim in
this section is to give some idea of what is, in principle, possible (see [6.180]
for a review). The basic routines of digital image processing are incorporated
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in the diverse commercial programs (see the survey in [6.181]). Digital image
simulation for crystal-structure imaging is discussed in Sect. 9.6.

Digital processing becomes of special interest if two or more micrographs of
a series are used for restoration of the exit wave function. The amplitude and
phase distribution of the specimen can then be separated (see below). Near
the resolution limit, each micrograph requires a two-dimensional restoration
procedure. For this, the methods of Sect. 6.6.2 can be recast in digital form.
A two-dimensional fast Fourier transform using the Cooley—Tukey algorithm
provides the diffraction pattern of the micrograph, which contains information
about the contrast-transfer gaps, the defocus, spherical aberration, paraxial
astigmatism, and other parasitic aberrations. Filtering in Fourier space can be
applied, followed by an inverse Fourier transform, to improve the image. The
resulting image amplitude is complex; phase information will not be lost, as
it is when the Fourier transform is performed by optical means. The ultimate
aim of restoration is to acquire knowledge about the specimen amplitude and
phase, ¥s(r) = as(r) expligs(r)], without transfer gaps. Except in the case of
weak-phase, weak-amplitude objects, this problem is nonlinear; it is reviewed
in detail in [6.182, 6.183, 6.184]. Procedures that set out from various sets of
initial data have been investigated:

1. Use of the diffraction pattern o< |F(q)|? and a bright (or dark) field image
o [1h]? (Gerchberg—Saxton algorithm) [6.185, 6.186]. This method requires
a periodic specimen [6.187] and has been applied to negatively stained
catalase [6.188] and periodic magnetic structures [6.189], for example.

2. Two (or N) micrographs recorded at different values of defocus Az,, [6.190,
6.191]. Schiske’s original description of this procedure for restoring the exit
wave function ¢s(r) of the specimen with its Fourier transform ¥,(q) can
be written [6.192]

1 N
Vs(q) = F{l.(q)} exp[iW(q)]

n=1

2= =

exp(iWC’S)\qul/Q) ]i:l F{I.(q)} exp(—iﬂ)\Azq2), (6.64)

where F{I,,(q)} is the two-dimensional Fourier transform of the intensity
distribution in the nth micrograph and W(q) is substituted from (3.66).
Inside the sum, the phase-correction factors only depend quadratically
on ¢. With the exception of the phase factor containing C', this method
has been rediscovered as the focus variation or paraboloid method [6.193].
Practical difficulties arise from the need to align the micrographs to within
about one-half of the desired resolution (see below) and from the contri-
bution of inelastic scattering.

3. Bright- and dark-field micrographs taken under identical electron-optical
conditions [6.187, 6.194].
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4. Two micrographs with complementary half-plane diaphragms. The basic
idea of this method has already been discussed as single-sideband holog-
raphy in Sect. 6.5.2.

Methods 1-3 are iterative methods in which an initial approximation for
amplitude and phase is guessed. Considerable thought has been given to the
problem of achieving rapid convergence and a unique solution for the phase,
especially in the presence of unavoidable noise; see [6.195] and Vol. 3 of [2.6].

6.6.4 Alignment by Cross-Correlation

The first step in any digital computation involving a series of micrographs
with the same or different defocus is to align the individual micrographs in
orientation and position. A preliminary adjustment can be made by using
characteristic image details. For exact alignment, cross-correlation is needed
[6.196]. The cross-correlation of two functions f1(r) and fa(r) is the integral

CCF(r) = fi(r) * fa(r) = J f Ji(r) fa(r' + T)dzrl
=F {F(q) F (g} (6.65)

Setting f1 = fo gives the autocorrelation function. This integral will have a
maximum at r = 0 for two similar, exactly aligned images because the in-
tegrand is then positive-definite over the whole area. The integral will show
regularly spaced maxima for periodic structures. If two otherwise similar mi-
crographs are not exactly aligned, the position of the maximum indicates
the necessary shift (see the example in Fig. 6.34). Two micrographs taken
at different values of defocus may give a very broad correlation maximum,
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Fig. 6.34. Example of the cross-correlation of electron micrographs of carbon foils:
(a) autocorrelation of one micrograph with a correlation peak at z = 0, y = 0, (b)
cross-correlation of two successive micrographs, indicating an image shift between
the two exposures of z = —0.35 nm, y = 0.17 nm [6.196].

11 nm
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which makes determination of the shift vector » more difficult [6.197]. Sharper

maxima can be obtained by calculating the mutual-correlation function MCF
[6.198]:

F{f;(r)} = A;(q) expliO;(q)], ¢; = F {A}?(q) expli®;(q)]},
MCF(r) = ¢1(r) * ¢a(r), (6.66)

where ¢;(r) (j = 1, 2) are versions of the input images fi(r) and fo(r) for
which the transform amplitudes have been replaced by their square roots, thus
attenuating the strongest Fourier components.

For determination of the defocus, spherical aberration, and astigmatism, it
is necessary to calculate the Fourier transforms Fi(q) and Fy(q) of fi(r) and
fa(r), respectively. Tt is therefore of interest to note that the cross-correlation
is the inverse Fourier transform of the Wiener spectrum Wia(q) = Fi(q)-F5(q)
[see the end of (6.65)].

This method of aligning two micrographs with equal defocus can also be
used in an image-difference method designed to provide information about
radiation damage in the specimen between two exposures or to subtract from
a macromolecular image the image of a clean supporting film obtained be-
forehand [6.197, 6.199]. However, successive micrographs of a clean carbon
film can show variations in structure caused by contamination and radiation
damage.

6.6.5 Averaging of Periodic and Aperiodic Structures

Averaging by Fourier Filtering. The signal-to-noise ratio can be improved
by the following scheme [6.200]. If we consider the amplitude distribution in
the image to be the specimen function s(r) convolved with the blurring
(point-spread) function h(r) (3.53) superimposed on an additive noise distri-
bution n(r),

a(r) = s(r) @ h(r) +n(r), (6.67)
the Fourier transform becomes

A(q) = F(q) - H(q) + N(q) (6.68)

with H(q) = —M(q)sinW(q) (3.72) and F(q) = F{is(r)}. Instead of ap-
plying only the filter function H~!(q) as in (6.62), the filter is multiplied by
a further weighting function Hw(q); after inverse Fourier transformation, we
obtain

d'(r) = Ys(r) @ hw(r) + n(r) @ hw(r) @ h(r) (6.69)
with hw = Fil{Hw} and h = Fil{Hil}.
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The convolution of 1s(r) with hy (7) in the first term inevitably decreases
the resolution. Resolution will not be lost only if Hyw = const and hyw = §(0).
We therefore conclude that each noise-filtering operation will be a compromise
between a loss of resolution (blurring of the image points) and a reduction of
the noise amplitude.

The signal-to-noise amplitude can be calculated from the Wiener spectra
Wo = |F(q)|*> and W,, = |[N(q)|* and takes the following values:

before ﬁltering after filtering
S _ [ Wolg |2d2q 5_ ffWo )| Hw(q)*d*q
N ffW d¢ N [ [Wa(@)H(q)|7*Hw(q)?d*q

(6.70)
Weighting functions that have been tested [6.200, 6.201] include:

Hyw(q) = exp [a (1 - smlif(fmﬂ ’

B H*(q)
Hw(q) = |H(q)|% + Wy(q)/Wo(q)

Rotational Symmetry. For the detection of n-fold rotational symmetry the

(Wiener’s optimum filter).  (6.71)

following method can be used [6.202]. The image intensity I(r,¢) in polar
coordinates is expanded in a Fourier series

I(r,¢) = jX;).:gn(r)ei"“", (6.72)

and the strength of an n-fold component can be calulated from
Py = [ |gn(r)rdr. (6.73)

The presence of unique n-fold symmetry will be indicated by pronounced
maxima of P, for one value of n and its multiples.

Periodic Structures. Electron microscopy of biomacromolecules needs low-
exposure techniques and averaging of as many individual molecules as pos-
sible. Averaging is best performed with two-dimensional crystalline arrays,
and the techniques for the 2D crystallization of membrane and water-soluble
proteins have therefore been extensively developed [6.203]. For 2D arrays that
are imperfectly ordered, displacement vectors can be calculated to prevent the
averages from being degraded [6.204, 6.205].

The Fourier coefficients F(6,¢) of a two-dimensional periodic specimen
with a unit cell characterized by two translation vectors vary in a defo-
cus series, the Fourier coefficients of a micrograph being proportional to
|F'(0,)sin W(60)]. The value of |F(0, ¢)| and the amplitude component trans-
ferred, if any, can be evaluated from the series by the method of least squares.
These corrected Fourier coefficients can be used to calculate a periodic image
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that represents an average over all unit cells and micrographs. There is an op-
timum increase of the signal-to-noise ratio because noise due to the electron
statistics, the grain of the photographic emulsion, and the inhomogeneities
of the specimen is scattered diffusely over the whole Fourier plane (diffrac-
tion pattern). This method has been applied to catalase crystals, for example
[6.206]. It can also be employed to sharpen micrographs taken at very low
electron exposures to reduce radiation damage [6.207, 6.208].

Images of periodic arrays of macromolecules can be obtained by using
various heavy-metal stains, negative staining, freeze-drying, freeze-fracturing,
and thin shadow-casting films of Ta/W, for example. They provide informa-
tion about the internal structure, the external shape, and the surface relief
[6.209]. The optical diffraction method (Sect. 6.4.7) can also be employed to
investigate differences between shadowed periodic arrays of macromolecules
using different types of thin shadowing films [6.210].

Aperiodic Structures. Noise-reduced images of aperiodic structures similar
in appearance but randomly distributed over the micrograph (e.g., macromole-
cules or virus particles with a site of preferential attachment to the supporting
film) can be obtained by averaging over a sufficiently large number of parti-
cles after alignment in position and orientation. For this, the computer must
be furnished with a motif-detection capability [6.211]. The method becomes
reasonably practicable when applied interactively on an image-analyzing com-
puter [6.212, 6.213, 6.214]. The particles are selected by eye and centered by
the cross-correlation methods described above. This means that the cross-
correlation maxima for different shifts and rotations have to be calculated.
If a low-dose exposure is employed to reduce radiation damage, a subsequent
high-dose picture can be used for prealignment and selection of particles that
have the most satisfactory appearance.

Figure 6.35 shows an application of noise reduction to ribosomes [6.215].
The latter are randomly distributed and can be separated into left- and right-
oriented particles (Fig. 6.35a). Figure 6.35b shows a series of left-oriented
images after alignment: 77 particles were used for averaging. Figures 6.35e
and f show the averages of 38 and 39 arbitrarily selected particles, respec-
tively, and Fig. 6.35¢ the average of all 77 particles at a resolution of 1.4 nm.
Figure 6.35d shows the result of further averaging over neighboring image
points with a resolution of 3.3 nm. Van Heel [6.216] has introduced a method
that allows single particles to be detected automatically against an extremely
noisy background. Each image element is replaced by the image variance in
its environment. The method based on correspondence analysis also permits
particles to be classified into groups, such that the members of each group
bear a close resemblance to one another (multivariate statistical analysis). An
objective and critical selection of particles can then be made before averaging
by superposition [6.217, 6.218, 6.219].



258 6 Scattering and Phase Contrast for Amorphous Specimens

Fig. 6.35. (a) Micrograph showing left-oriented (L) and right-oriented (R) 40 S
ribosomal subunits of HeLa cells. (b) Gallery of 16 L particles after alignment. (c)
Average obtained from all 77 particles displayed at 1/1.4 nm™" resolution and (d)
at 1/3.2 nm ™" resolution. (e) and (f) Averages from independent sets of 38 and 39
particles, respectively [6.215].

6.7 Three-Dimensional Reconstruction

6.7.1 Stereometry

This technique is based on two tilted micrographs. Two specimen points A and
B with a height difference Az = zp — za are imaged with different separations
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B Fig. 6.36. Basis relation for stereomet-

g . .
Az untilted ric reconstruction.

1st tilt

Parallax p=4x9 -AX

Az and Axs at tilt angles +v (Fig. 6.36). In this simple case of parallel
projection, the parallax

p=(rp2 —xa2) — (zB1 — A1) = Azg — Az = 2M Azsiny (6.74)

is directly proportional to the height difference Az if the tilt axis passes
through the center of the image area observed. For further details of stereom-
etry, see [6.220, 6.221].

The method can be applied to surface replicas, thick biological sections,
aggregates of small particles, and lattice defects in crystal foils. It is essential
that the two micrographs contain sharp image details, recognizable in both
micrographs; otherwise the parallax cannot be determined accurately. The
accuracy for tilt angles v = +10° is of the order of Az = £+3 nm for p/M =
+1 nm.

6.7.2 Electron Tomography

Unlike stereometry, 3D reconstruction by tomography does not necessarily
need sharp image details. The aim is to reconstruct the specimen density
distribution p(z,y, z) from a series of projections. Two types of methods are
employed, one of which operates in Fourier space [6.222, 6.223] and the other in
real space [6.224, 6.225, 6.226, 6.227, 6.228, 6.229]. The formal equivalence and
the differences are explained in [6.230]. The Fourier method will be discussed
in more detail, because the information content and the information gaps can
be evaluated more satisfactorily.

The specimen is represented by its mass-density distribution p(z,y, z), the
three-dimensional Fourier transform of which is

F(qu,qy,q2) = [ [ [ p(z,y, 2) exp[—27i(qox + qyy + ¢-2)|dz dy dz. (6.75)

For specimens with cylindrical symmetry, it is better to use cylindrical polar
coordinates. The Fourier transform then becomes a Fourier—Bessel transform.
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A micrograph with the electrons incident parallel to z corresponds to a
central section through the Fourier space in the ¢, ¢, plane, for example, and
the transform reduces to

F(qz,qy,0) = [ [[f p(z,y, z)dz] exp[—27i(gx + qyy)]dz dy. (6.76)

o(z,y)

The integral o(z,y) is a projection in the z direction (mass thickness distri-
bution) of the mass-density distribution p; this produces an image intensity
I(x,y) = Ipexp|—o(z,y)/xx], applying (6.6) for scattering contrast. Equation
(6.76) tells us that a two-dimensional Fourier transform of o(z,y) yields a
central section through Fourier space. If F'(¢q, gy, ¢-) is known from a tilt se-
ries, which is equivalent to a bundle of central sections through the Fourier
space, p(z,y,z) can be calculated by an inverse Fourier transform. One of
the difficulties of 3D reconstruction is immediately obvious: the maximum
tilt angle that can be attained using a specimen goniometer is £40° — £70°
so that a double cone of the Fourier space remains vacant (“missing cone”).
This can result in a deterioration of resolution or the creation of artifacts;
elongation of the particle shape normal to the specimen plane, for exam-
ple. Recovery routines for filling this vacant Fourier space are introduced in
[6.231, 6.232, 6.233]. Single-axis rotation in which the specimen is mounted at
the tip of a microneedle or micropipette has been proposed for HVEM [6.234].

For many specimens, symmetry relations can be used to reduce the neces-
sary number n of micrographs. Thus, for a specimen with helical symmetry, a
single micrograph is sufficient (T4 phage tail); for icosahedral symmetry (e.g.,
tomato bushy stunt virus), we find n = 2. In the absence of symmetry, n =
30 (e.g., ribosomes). The rule of thumb n = 7D/d has been proposed, where
D is the diameter and d the resolution [6.222].

In principle, any specimen can be 3D reconstructed from a tilt series
(single-axis tomography), where, however, the necessary dose and radiation
damage must be kept low to preserve the biomolecular structure. The ra-
diation damage can be reduced when macromolecules are embedded in ice
and being observed in cryosections on holey carbon films. Figure 6.37 shows
the 3D reconstruction of thermosomes (16-meric complexes of thermosomal
a-subunits from Thermoplasma acidophilum, expressed in Escherichia coli)
from a tilt series in a range +54° with 6° increments. The total magnification
was 40 000x at the CCD camera; thus the pixel size was 0.48 nm at the spec-
imen. The total dose used for recording a tilt series containing 19 projections
was kept as low as 2000 e~ /nm? ~ 300 C/m?. A 2D image of the particle
in top-view orientation is obtained by 2D alignment and averaging 1292 indi-
vidual particle images (Fig. 6.37a) and in side-view orientation obtained from
450 particles (Fig. 6.37b). The image contrast has been reversed so that the
particles (protein) appear in positive contrast relative to the surrounding ice
film. After 3D reconstruction of the tilt series by means of weighted backpro-
jection, volume data of 307 individual particles could be selected. These were
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Fig. 6.37. 3D tomography of thermosomes embedded in a cryosection: (a) 2D image
of the averaged particle in top-view and (b) side-view orientations, (c¢) set of zy slices
and (d) zz slices 1 nm apart, (e) surface-view representation of the reconstructed
particle; particle diameter 16 nm, length 17 nm (courtesy of D. Typke).

aligned in several cycles with respect to three positional and three angular
parameters. Finally, a 3D reconstruction was calculated by weighted backpro-
jection using an appropiate weighting function for the full data set. Figure
6.37c shows a set of xy slices 1 nm apart through the 3D reconstructed and
averaged particle and Fig. 6.37d the same for zz slices; Fig. 6.37e shows a
surface-view representation of the reconstructed particle.

When averaging over randomly oriented biomolecules in a single micro-
graph (Sect. 6.6.5), we again assume that identical particles lie in preferred
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orientations parallel to the specimen plane but in random orientations (az-
imuthal angles) in that plane. A micrograph at normal incidence can be used
for averaging but contains no tomographic information because the images
are identical. However, when the specimen is tilted through ~+ = 45° — 60°,
images of particles with different azimuths are not identical and their direc-
tions of view lie on a cone of semiangle . This is the idea of random coni-
cal tilting or the single-exposure conical reconstruction technique (SECReT)
[6.235, 6.236, 6.237]. An additional untilted micrograph is used to determine
the azimuthal angle and the position on the cone. Cryosections contain mole-
cules in random orientations, and more sophisticated recognition methods
have to be applied to determine their orientations [6.238]. A further step to-
ward automatic electron tomography is to refine the low-dose technique by
using three to five different specimen areas for compensating the specimen
displacement during tilt, autofocusing, and refocusing before recording the
tilt series [6.239, 6.240].

More recently, electron tomography has also been applied to inorganic
specimens using either dark-field images to determine the structure or ele-
mental maps to quantify the 3D composition of the specimen [6.241, 6.242].

6.8 Lorentz Microscopy

6.8.1 Lorentz Microscopy and Fresnel Diffraction

It was shown in Sects. 2.1.2 and 3.1.1 that the angular deflection e (2.17)
of an electron beam by a transverse magnetic field can be calculated either
by evaluating the Lorentz force on the electron or by introducing the phase
shift (3.6) caused by the magnetic vector potential or the enclosed magnetic
flux @,,,. With an arbitrary origin (z = 0) in the specimen plane, the phase
shift caused by a magnetic field parallel to the specimen plane can be written

2me 2me
m :77¢m:*7BSt s .
fule) = == B ta (6.77)

where t is the film thickness and x the coordinate in the object plane normal
to the magnetic induction By. Thus, for a ferromagnetic film of iron with a
thickness ¢ = 50 nm and a spontaneous magnetization By = 2.1 T, (2.17)
gives a deflection angle e = 0.1 mrad for 100 keV electrons. A phase difference
em = 7 corresponding to a path difference A\/2 is found for = 20 nm.
A ferromagnetic film is therefore a pure but not necessarily weak phase object
and can be studied with the theory of phase contrast.

As in (3.36), the wave amplitude behind the specimen is modified from
o exp(27ikz) to

P(x) = o expliom ()] exp(2rikz). (6.78)

In the focal plane of the objective lens, the amplitude distribution is given by
the Fourier transform
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“+ o0

F(Qw) =1y f eXp[i(pm(l‘)] eXp(—QTriqwl‘)dx. (6~79)
From the translation theorem of Fourier transforms (3.44), this has the form of
a o-function at g, = ¢m /272 = eBt/h. Substituting mv = h/\ and recalling
that ¢ = 6/X, we obtain the same angular deflection € = 6 for t = L as in
(2.17).

Because F'(q,) is concentrated within a very small range of values of ¢,
only the defocusing term of the wave aberration W(q) in (3.66) need be con-
sidered, and (3.72) gives

Yn(a') = L2 [ P(g,) explimAAzg?) exp(2riga’)das. (6.80)

Substituting for F(g,) from (6.79), we find

P (2') = % J{[ expligm(z)] exp(—2migyz)da}
x exp(itAAzq?) exp(27igy2’)dg,

= % ([ exp{in[2q. (2" — x) + AAzq2]}dg,) explipm (z)]dz. (6.81)
Introducing ¢ = 20\Az[q, + (' — z)/(AA2)]2, we can rewrite (6.81)

/ wO 1 oo [t s 12 !
1/}m(:c):M\/M7f 7f exp(irq’®/2)dq

1+1
!/ 2
X exp {i [apm(x’) - W(m}\A:)} } dz. (6.82)
The inner integral is one of the Fresnel integrals of (3.34). A further substitu-
tion u = \/2/AAz(z" — x) gives

P (2) = % ! ;_ i +fo exp(ipm ) exp(—iru? /2)du. (6.83)

— 00

This is none other than Fresnel diffraction from the phase distribution caused
by the magnetization. This can also be seen at ¢y, = 0; the integral contributes
a further factor 1 + i, and we have [y, |? = |1o]|?/M?. For uniform magneti-
zation (B = const), ¢, is a linear function of = (6.77). This again results in
a uniform intensity distribution in the image, but the specimen coordinates
are shifted by e M Az, which can also be deduced from particle optics by con-
sidering a plane at a distance Az behind the specimen (Fig. 6.39). Contrast
effects will be seen in the image only for nonuniform distributions of By, such
as magnetic domain walls, across which the direction of By changes, or mag-
netization ripple, in which the magnetic field exhibits periodic or aperiodic
small-angle deviations from the mean value of Bg.
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6.8.2 Imaging Modes of Lorentz Microscopy

All modes of Lorentz microscopy (for reviews, see [6.243, 6.244, 6.245, 6.246,
6.247]) require the illumination aperture a; to be smaller than the deflection
angle €; otherwise, the illumination would become incoherent. Apertures «o; ~
1072 mrad can be obtained by forming a small image of the crossover at a
large distance in front of the specimen by strongly exciting the first condenser
lens, for example. Because the gun brightness is conserved (4.12), the current
density at the specimen plane is reduced; hence long exposure times are needed
for large magnifications. However, in most applications of Lorentz microscopy
(the imaging of domains, for example) a magnification of 10000 is sufficient.
The holographic method (Sect. 6.5.3) requires the higher brightness of a field-
emission gun. Furthermore, the magnetic distribution must not be disturbed
by the magnetic field of the objective lens.

The original magnetization of the specimen and the components B, and
B, parallel to the film or foil can only be analyzed if the z component of
the magnetic lens field is small enough. The magnetic field of the objective
lens at the specimen can be reduced by switching off this lens and using the
intermediate lens, by lifting the specimen some millimeters and reducing the
lens excitation, or by using a specially designed objective lens of long focal
length and small bore to ensure that B falls off rapidly [6.248].

Coils can be used to produce a magnetic field parallel to the film and to
observe the movement of ferromagnetic domain walls [6.249]. The presence
of such a field normal to the electron beam also causes a deflection. Two
further coils are therefore inserted above and below the specimen with opposite
excitation to compensate for the deflection and maintain the beam on-axis.

(a) Small-Angle Electron Diffraction. In small-angle electron diffraction
(Sect. 8.1.5a), a diffraction pattern is recorded with a; ~ 1072 mrad and a
large camera length. A ferromagnetic layer with uniaxial anisotropy consists
of domains with antiparallel directions of By separated by 180° walls. The
primary beam splits into two spots with an angular separation +e [6.250].
Four different distributions of B parallel to (100) are possible in a [100]
epitaxial iron film, causing splitting into four spots (Fig. 6.38); the central
spot is the primary beam passing through holes in the film. In polycrystalline
films with varying directions of magnetization, the splitting of the primary
beam results in a circular or sickle-shaped diffraction pattern. The splitting
2¢ can be used to determine the specimen thickness by means of (2.17) [6.251].
However, the angle of divergence may be decreased since the value of By can
be lower in thin films.

Periodic domain-wall spacings (25 pm in a cobalt film, for example) can
create diffraction maxima, which can be interpreted quantitatively in terms
of diffraction at a phase grating [6.252, 6.253].

(b) Foucault Mode. In the case of a 180° domain wall, the antiparallel
magnetization directions produce two spots in the focal plane of the objective
lens; these are separated by a distance ~2¢f. If the objective diaphragm is
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Fig. 6.38. Small-angle electron diffraction pat-
tern of a (100) oriented epitaxially grown iron
film on NaCl. The primary beam splits into four
beams, corresponding to the (100) directions of
spontaneous magnetization.

moved, one of the spots can be suppressed, and the corresponding domain
becomes dark in the image [6.254, 6.255]. In this mode, the domain wall is
imaged as a boundary between dark and bright areas (Fig. 6.40c,d). The
objective lens then operates in focus, so that the specimen is imaged on the
final screen without any defocusing [6.256]. A special lens with a long focus
has to be used so that the specimen is in a nearly field-free region.

Some means of ensuring that the objective diaphragm is situated in the
focal plane should be provided. Any displacement decreases the area in which
the Foucault contrast can be observed. A thin-foil diaphragm (Sect. 4.4.1) is
preferable; this also reduces charging of the diaphragm.

The Foucault mode can also be used to study much larger extended mag-
netic stray fields around thin wires or small, compact specimens [6.257, 6.258].

In another version of the Foucault mode [6.259], the small-angle deflection
caused by the inner potential (refractive index) is exploited. Small crystals
act like prisms, resulting in a splitting of the electron-diffraction spots and
the primary beam if the illumination aperture is very small. One or more
of these deflected beams can be halted by the diaphragm and can cause a
contrast difference that depends on the inclination of the crystal faces. For
more complex specimens, the contrast is caused by the local gradient of the
optical path length; thus a dark contour for a positive gradient and a bright
contour for a negative gradient lead to pseudo-topographic contrast similar to
that observed in single-sideband holography (Sect. 6.5.2).

(c) Fresnel Mode. The intensity distribution at a distance Az below or
above the specimen is imaged by under- or overfocusing, respectively [6.260].
The principle of this mode will first be explained in terms of the particle
model (geometric theory), in which the electron trajectories are deflected by
an angle € proportional to the local value of [ Bdz. Figure 6.39 shows that the
electron trajectories either converge (left) or diverge (right) at a distance Az
below a specimen with antiparallel domain walls. The left domain wall will
appear as a bright line and the right one as a dark line in the defocused image.
Defocusing in the opposite direction reverses the contrast (Fig. 6.40a, b). The
width of the gap or the overlap b ~ 2e¢Az of the divergent and convergent
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Defocusing

Convergent image Divergent image

Fig. 6.39. Deflections of electron trajectories in a magnetic film with 180° domain
walls that form a convergent (left) and divergent (right) wall image at a defocus Az
(Fresnel mode).

Fig. 6.40. Micrographs that show a 180° domain wall of a polycrystalline iron film
in the Fresnel mode with (a) under- and (b) overfocusing and in the Foucault mode
absorbing the left (c¢) and the right (d) deflected beams.

wall images, respectively, should be large enough to be detectable at medium
magnifications, so that with b = 0.1 pm and ¢ = 0.1 mrad, for example, a
defocusing of 0.5 mm is needed.

The geometric theory cannot be used for detailed image analysis; the wave-
optical theory has to be invoked. The most striking effect is the appearance
of biprism fringes in the convergent image (Fig. 6.41), in which two coherent
waves overlap with a convergence angle 2¢ [6.261]. The fringe spacing can be
calculated from (3.25) with 8 = e. Using (2.17), mv = h/\, and L =t gives

o
" 2Bt

(6.84)
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Fig. 6.41. Fresnel mode, showing biprism
interference fringes in the convergent
domain wall image (top to bottom) and a di-
vergent wall image (horizontal) of a (100)
oriented single-crystal iron film.

This means that the fringe spacing remains constant for constant film thick-
ness, and the number of fringes can be increased only by increasing the overlap
(defocusing Az). Inside the zone of width Az, the magnetic flux

h
&, = AxBt = — 6.85
x 5 (6.85)

is enclosed between two interference fringes. This quantity is just the
magnetic-flux quantum (fluxon, Sect. 3.1.1). This fluxon criterion [6.262]
can be used to estimate the spacing and number of fringes observable.

Figure 6.42 shows a comparison of the intensity profile across a 180° do-
main wall of width w = 80 nm in a ¢ = 20 nm Fe foil at a defocusing Az = 4
mm calculated by using the geometric theory (left) and wave optics (right).
The differences for a very coherent beam (zero illumination aperture «) are
obvious. An aperture of 1072 mrad already blurs the biprism fringes of the
wave-optical theory, and geometric theory and wave optics result in similar
intensity profiles.

The intensity profile of the divergent wall image is scarcely affected by
the use of the wave-optical theory (Fig. 6.42, bottom) [6.245, 6.263]. In the
geometric theory, the width b of the divergent wall image is enlarged, in the
first-order approximation, by the wall width w, whereas in the convergent
image it is decreased by w (b ~ 2e Az + w). Differences between the widths of
divergent and convergent wall images can be used to estimate the wall thick-
ness [6.249, 6.264, 6.265, 6.266, 6.267]. This method also requires a knowledge
of the influence of elastic and inelastic small-angle scattering on image contrast
[6.263]. Thicker films are better studied in a high-voltage electron microscope,
in which small-angle scattering has less effect [6.265, 6.274]. The contrast can
also be increased by zero-loss filtering [6.275].
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Fig. 6.42. Calculated intensity profiles of convergent and divergent domain-wall
images across a 180° wall of width w = 80 nm in a 20 nm Fe foil at a defocus Az =
4 mm (¢4 illumination aperture).

Comparison of convergent wall images that contain biprism fringes with
wave-optical calculations based on models of the magnetization distribution
inside the domain wall can be used to test the model and to distinguish
between Néel walls and Bloch walls [6.268, 6.269, 6.270, 6.271]. A tilt of the
specimen by +45° allows the B, component to be determined as well [6.272].

Besides domain walls, periodic fluctuations in the magnetization (ripple)
can be observed. A ripple structure is not seen in single-crystal films or in elec-
trolytically polished foils but is mostly observed in evaporated, polycrystalline
films. The contrast of the ripple depends strongly on the length of the peri-
odicities and on the defocusing. For quantitative determination of the ripple
spectrum, therefore, the contrast-transfer characteristic has to be considered
[5.166, 6.273, 6.274].

The sensitivity of the Fresnel mode increases with increasing defocus.
When planes a few centimeters below the specimen are imaged (by switching
off the objective lens and imaging with the intermediate lens, for example),
the relation between object and image can be regarded as a projection, with
the demagnified crossover below the first condenser lens as the projection cen-
ter. The projected shadows are shifted by the Lorentz force in the specimen
plane. This has been used to image magnetic stray fields at the surface of su-
perconductors during the transition from the normal to the superconducting
state [6.276, 6.277].

(d) Diffraction Contrast. The deflection by the Lorentz force also changes
slightly the excitation error of Bragg reflections. This can result in a lateral
shift of any bend contours that cross a domain wall in a single-crystal film
[6.278].
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(e) STEM Modes. The theorem of reciprocity (Sect. 4.5.3) tells us that
all modes of Lorentz microscopy can also be used in the STEM mode. For
the Fresnel mode, it will be necessary to use a very small detector aperture
[6.279, 6.280]. The advantage of STEM is that a direct record of the intensity
profiles across domain-wall images is available even if the image intensity
is too low for direct viewing. Contamination marks can be printed on the
specimen, and the deflection by the Lorentz force can be read directly in terms
of the change of the spacing of these marks. An additional mode, applicable in
STEM, involves the use of two half-plane detectors or a quadrant detector; the
difference signal produces differential contrast similar to that of the Foucault
mode [6.281, 6.282].

(f) Reconstruction and Holographic Methods. Because each defocused
image may also be regarded as a hologram, the phase and the magnetization
distribution can be reconstructed [6.283, 6.284]. For example, an inversion
method can be used to obtain information about the magnetization in a do-
main wall from a divergent-wall image [6.285], or the Gerchberg—Saxton algo-
rithm (Sect. 6.6.3) may be employed to reconstruct the distribution in stripe
domains [6.189]. Another holographic recording and reconstruction method is
off-axis holography [6.160, 6.161, 1.73]. Figure 6.43 shows a micrograph of a
vortex lattice (quantized magnetic flux lines of magnetic flux h/2e) in a 70
nm superconducting niobium foil. The specimen on one side of the biprism
was inclined at 45° in a 300 kV transmission electron microscope to record the
normal component of B. Using a Mach—Zehnder interferometer (Fig. 6.32) for
the reconstruction and a 16x amplification of phase, the projected magnetic

Fig. 6.43. Reconstructed hologram of vortices (magnetic flux lines with &, = h/2e)
in a superconducting 70 nm niobium foil inclined by 45° in a 300 kV transmission
electron microscope [6.286].
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lines of force are directly observed as contour fringes. The lines are concen-
trated locally within the circled regions, becoming narrowly spaced. A bend
contour runs diagonally through the micrograph.

Stroboscopic Methods. The dynamic properties of domain walls in high-
frequency magnetic fields (1-30 MHz) can be investigated by stroboscopy. The
short strobe pulses of the stroboscopic illumination must be synchronized with
the a.c. magnetic field applied to the specimen but with a variable time shift
(phase angle). This is achieved by chopping the electron beam; the electron
beam is deflected by the static electric field of a parallel-plate condenser and
returned on-axis by applying a voltage pulse of a few nanoseconds duration
[6.287, 6.288]. The technique can be used to investigate the forced and free
oscillations of domain walls and Bloch lines, with a time resolution of the
order of nanoseconds. The method allows the “mass” and relaxation times of
domain walls and Bloch lines to be determined quantitatively.

6.8.3 Imaging of Electrostatic Specimen Fields

The Fresnel mode of Lorentz microscopy can also be used for the investigation
of electrostatic fields caused by charging of the specimen, by ferroelectric
domains, or by the electric field in the depletion layer of p-n junctions.

Electrostatic fields are generated by electron bombardment in noncon-
ducting specimens. In a shadow projection (Fresnel mode with a very large
defocusing) of collodion, formvar, and SiO supporting films, a fluctuating gran-
ulation can be observed in TEM by strongly exciting the first condenser lens
and switching off the second condenser and the objective lens [6.289, 6.290].
This fluctuating charging occurs only if the beam also hits the specimen grid;
otherwise a stronger charging of uniform magnitude causes a larger deflection
[6.291]. From the deflection of the electron beam, local field strengths of the
order of 108 V/m can be estimated. This fluctuation disappears when a con-
ducting film of metal or carbon has been deposited by evaporation or when
the specimen is simultaneously bombarded with low-energy electrons of a few
hundred eV [6.290]. The fluctuations can be explained in terms of a statistical
charge-compensation mechanism due to the secondary electrons produced at
the specimen grid.

Small particles, such as MgO, NaCl, or polystyrene spheres, on a carbon
or metal film become charged relative to the supporting film [6.292, 6.293].
This charging acts like a lens, focusing the electron rays some 3-6 cm below
the specimen. The charge on NaCl crystals can be estimated to be equivalent
to a potential of 42 V, corresponding to a field strength at the surface of the
order of 10° — 107 V/m. A positive charging by secondary-electron emission
can also be observed from insulating layers on a conductive support [6.294].

Ferroelectric polarization is associated with a larger lattice deformation
than that caused by magnetostriction in ferromagnetics. Ferroelectric domains
in ferroelectrics can therefore be distinguished by diffraction contrast and
edge fringes on oblique domain boundaries [6.295, 6.296, 6.297, 6.298, 6.299].
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The action of the internal electric field in boundaries with a head-to-head
polarization can be demonstrated by defocusing (Fresnel mode); however, the
deflection angle is smaller than 10~2 mrad [6.300].

The electric field strength inside the depletion layer of a p-n junction has
been imaged with the Foucault mode [6.301], the Fresnel mode [6.302, 6.303],
and by holography [6.304, 6.305]. The latter records the phase shift

Te T

o(x0,y0) = SVl 7{0 D(xo, Y0, 2)dz (6.86)

caused by the local potential ®.
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Theory of Electron Diffraction

The theoretical treatment of electron diffraction on crystals needs the con-
cepts of lattice planes and the reciprocal lattice, as in x-ray diffraction. More
detailed descriptions of these matters can be found in standard textbooks on
solid-state physics or crystallography [4.1, 7.1, 7.2, 7.3]. Kinematical theory
leads to the Bragg condition and to a description of the influence of the struc-
ture of a unit cell and the external size of a crystal on the diffracted amplitude
in terms of structure and lattice amplitudes, respectively. The observed dif-
fraction pattern is equivalent to the points of intersection of the Ewald sphere
of radius 1/\ with the reciprocal-lattice nodes.

The dynamical theory considers the interaction between the primary and
reflected waves. For example, when the Bragg condition is satisfied, examina-
tion of the two-beam case reveals a complementary oscillation of the primary
and reflected intensities with increasing thickness. On taking into account the
boundary condition at the surface and the crystal periodicity of the wave field
inside the crystal, the solution of the Schrédinger equation takes the form of
a Bloch-wave field. An example of the effect of inelastic scattering is the dif-
ference between the interaction probability for Bloch waves with nodes and
antinodes at the nuclei. This results in the effect known as anomalous absorp-
tion. The critical-voltage phenomenon is a typical dynamical effect that can
cancel the intensity of Bragg reflections at a voltage that depends sensitively
on the structure amplitude.

Inelastic scattering between the Bragg reflections is also influenced by the
crystal periodicity and results in Kikuchi lines and bands. Diffraction by amor-
phous specimens produces diffuse diffraction maxima, which depend on the
density distribution of atoms. Polycrystalline specimens can generate Debye—
Scherrer rings. Energy filtering of diffraction patterns (electron spectroscopic
diffraction) makes it possible to reduce the inelastic background between dif-
fraction spots and to investigate the contribution of electrons with different
energy losses to the diffraction pattern.



274 7 Theory of Electron Diffraction

7.1 Fundamentals of Crystallography

7.1.1 Bravais Lattice and Lattice Planes

A crystal lattice consists of a regular array of unit cells, which are the small-
est building blocks of the lattice. Each unit cell is a parallelepiped, built
up from three noncoplanar, fundamental translation vectors aq,as,as. The
whole crystal lattice can be generated by translation of the unit cell through
multiples of the a; (Fig. 7.1). The origins of the unit cells therefore can be
described by a translation vector

Ty = ma; + nas + oas (m,n, o integers). (7.1)

The end points of these vectors form the Bravais lattice. This Bravais
lattice may also be characterized by the values of |a;| = a, b, ¢ and the angles
a, 3,7 between the axes (Table 7.1). The unit cell is said to be primitive if
one single atom in the unit cell is sufficient to describe the positions of all
other atoms by translations r,. The unit cell normally contains more than
one (k = 1,...,n) atom at the positions

T = Upa1 + vrpaz + wias, (7.2)

r1 = (0,0,0), and 7o = (%, %, %) in a body-centered cubic lattice, for example
(Table 7.1). All other lattice points (open circles) belong to neighboring unit
cells. Table 7.1 lists the unit cells of the most important crystal structures and
the coordinates (ug, v, wy). The position of an atom in a Bravais translation

lattice is defined by the vector sum r, + 7.
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Fig. 7.1. Construction of a crystal by translation of the unit cell with fundamental
vectors ai,asz,as. Example of lattice directions [100], [010], [001], and [312] and
lattice planes with Miller indices (312).



7.1 Fundamentals of Crystallography 275

Table 7.1. List of the most common crystal types (Bravais translation lattices).
Structures of the unit cell, lattice-plane spacings dpr; and structure factors Feen

A) Lattices

1. Cubic latticesa=b=c; a=03=~v=90° d =

a
NCET RS
a) Simple cubic lattice (sc, e.g. Po)

b) Body-centered cubic lattice (bce, e.g. Cr, Fe, Mo, W)
The unit cell consists of atom at
(0,0,0) and (3, %,3)

Feen =0 if (h +k+ [) odd
Feen =2f if (h+k+1) even

Cubic primitive
unit cell unit cell

c¢) Face-centered cubic lattice (fcc, e.g. Al, Ni, Cu, Ag, Au, Pt)
The unit cell consists of atom at

000), (2:3,0), (1.0.4), (0.4.3)

Feen =0 if h,k, 1 mixed (even and odd)
Feen = 4f if h,k,l all even or all odd

Cubic primitive
unit cell unit cell

2. Hexagonal Lattices, a=b#¢, a=0=90° v=120°
a

\/g(hQ K2 4 hk) + (afc)?12

3. Tetragonal lattices, a=b#c¢, a=p=v=90°

d= a
Vh2 + k2 + (a/c)?1?
4. Orthorhombic lattices, a#b#c¢, a=F=~v=90°
1
V(h/a)? + (k/b)? + (1/c)?
5. Trigonal lattices, a=b=c¢, a=p03=+v=120°
d=a 1 _3cosat2cs’a . B=hr+E <+
Bsin® a 4 2C(cos” a —cosa)’  C = hk + Kkl + hl
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Table 7.1 (continued)

6. Monoclinic lattices, a#b#c¢, a=~y=90°0%#90°

d= 1 ; A:ﬁ+l2—2—hlcosﬁ
VA sin? 84 k2 /52 @ e

7. Triclinic lattice, a#b#c¢, a# [ #v#90°

2 2 2
d = abe, 1= cos a — cos 8 — cos” Y + 2cosacos fcosy
quih” + q22k” + q33l° + qiahk + quzhl + g23kl
qi1 = b2c? sin? Q; Qo2 = a?c? sin® B; qs3 = a?b? sin? o1
q12 = 2abc®(cos aucos B — cos )
qi3 = 2ab*c(cos a cosy — cos 3)
q23 = 2a”be(cos B cosy — cos @)

B) Structures
1. Cubic structures

a) Diamond structure (e.g. C, Si, Ge)
The unit cell consist of two fcc lattices shifted by (i, i, i)

|Feen)> =0 if h,k,l mixed

|Feen|* =64 f2, if h,k,l all even and (h+k-+1)=4n
|Fren|? =32 f&. if h,k,l all odd

|Feen)> =0 if h,k,l all even and (h+k+1) =4n+2

b) Caesium chloride structure (e.g. CsCl, TICI)
The unit cell consist of two primitive cubic lattices
shifted by (3,3, 3) Cs: (0,0,0); Cl: (5,3, 3)

|Feen)®> = (fos+fa1)? if h+k+1 even

IFcelll2 = (fcsff01)2 if h+l€+l Odd

CsCl

¢) Sodium chloride structure (e.g. NaCl, LiF, MgO)
Unit cell consits of two fcc Na and CI sublattices shifted by (3,1, 3)

|Feen|* = 0 if h,k,l mixed
|Feen|? = 16 (fxa—fc1)®  if h,k,l all odd
|Feent|? = 16 (fxa+fc1)? if h,k,l all even




7.1 Fundamentals of Crystallography 277

d) Zincblende structure (e.g. ZnS, CdS, InSb, GaAs)
Unit cell consists of two fcc Zn and S sublattices
shifted by (%, 1, 1)

FRIVE

W
7

|Feen|* = 0 if h,k,l mixed

|Feen|> = 16 (fZ,+/f3)  if h,k,l all odd

\Fcen\Q =16 (fzn+fs)?> if h,k,l all even and (h+k+l)=4n
|Feent|* =16 (fzn—fs)?  if h,k,l all even and (h+k-+1) =4n+2

Zincblende

2. Hexagonal structures

a) Hexagonal close-packed
structure (hep, e.g. Mg, Cd, Co, Zn)
Unit cell consists of atoms at (0,0,0), (%, %, %)

|Feen|? = 0 if I odd, (h+2k)=3n
|Feen|? = 4f%  if | even, (h+2k)=3n
|Feen|> = 3f% if I odd, (h+2k)=3n+1 or 3n+2
\Fceu\Z = f? if [ even, (h42k)=3n+1 or 3n+2

b) Wurtzite structure (e.g. ZnS, ZnO)
Unit cell consists of two hep Zn and S sublattices shifted by (3, %, %)

RN

Waurtzite

The cubic lattices have the advantage that their structure can be described
by a Cartesian coordinate system. However, it is worth mentioning that the
face- and body-centered cubic lattices can also be described by a primitive
unit cell that is, however, trigonal in shape (Table 7.1).

Direction in crystals is expressed as a vector that connects the origin O to
the origin QQ of another unit cell; the components of the vector are scaled so
that all are integers, as small as possible (e.g., [312], [100], etc., in Fig. 7.1).

Lattice planes are parallel, equidistant planes through the crystal with the
same periodicity as the unit cells. Examples of three equidistant lattice planes
are shown in Fig. 7.1; one further plane goes through the origin O. Such a set
of lattice planes can be characterized by Miller indices. The plane closest to
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the one that passes through the origin intercepts the fundamental translation
vectors a; at points that may be written a1/h, as/k, as/l (h,k,l integers);
otherwise, the system of parallel planes could not have the same periodicity
as the lattice because this requirement implies that there must be an integral
number h, k,l of interceptions of parallel planes that divide the translation
vectors a; of the unit cell into equal parts. The triplet (hkl) is the set of
Miller indices that are the reciprocal intercepts in units of |a;|. The intercepts
in Fig. 7.1 are ay /h = a1/3,a2/k = as/1,a3/l = az/2, and so the Miller indices
are (312). Miller indices are always enclosed in parentheses to distinguish them
from directions, which are always denoted by square brackets. Only in cubic
lattices is the [hkl] direction normal to the (hkl) lattice planes.

If a lattice plane intersects one or two axes at infinity, which means that
the plane is parallel to one or two of the a;, then the corresponding Miller
indices are zero (Fig. 7.2). If the plane cuts one of the axes on the negative side
of the origin, the corresponding Miller indices are negative. This is indicated
by placing a minus sign above the index; for example, (111) in Figs. 7.2, which
shows further examples of indices in a cubic lattice.

For hexagonal lattices, four indices (hkil) are often used; these are obtained
from intercepts with the ¢ axis and the three binary axes inclined at 120° to
one another. The indices h, k, and i satisfy the relation i = —(h+k).

If we wish to refer to a full set of equivalent lattice planes, such as all
six cubic faces of a cubic crystal, (100), (010), (001), (100), (010), (001), we
enclose the Miller indices in braces (curly brackets): {100}. Thus we might
say that the {111} planes in a face-centered cubic lattice are close-packed
planes. A full set of crystallographically equivalent directions or axes with
all directions parallel to one of the fundamental vectors a;, for example, is
denoted by angle brackets: (100).

Close-packed structures such as the face-centered cubic and the hexagonal
close-packed structures are of special interest. Figure 7.3 shows that there are
two possible sets of positions, B and C, at which a second close-packed plane
can be stacked above the plane with atoms at positions A. The face-centered
cubic lattice can be characterized by the sequence ABCABC..., and the {111}

(091)
7 >
(709) 1770 (777
710),
7
a) b) c)

Fig. 7.2. (a-c) Examples of lattice planes in a cubic crystal: (a) cubic {100}, (b)
dodecahedral {110}, and (c) octahedral {111}.
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Fig. 7.3. Close-packed atoms in a
layer A and positions of the atoms in
neighboring layers B or C. R; (i = 1,
2, 3) are the displacement vectors of
the layers in a close-packed lattice.

o, %2
v - v
N °a1/\3\<°1
d320 . L d L L L]
Crystal lattice Reciprocal lattice

Fig. 7.4. Construction of reciprocal-lattice vectors g parallel to the normal of the
crystal-lattice planes with indices (hkl) and length 1/dpx.

planes are then close-packed, whereas the closed-packed hexagonal structure
follows the sequence ABAB... and the close-packed planes are now (0001).
This corresponds to a ratio ¢/a = \/% = 1.63. However, the measured value
of this ratio for hexagonal crystals is slightly different as a result of binding
forces depending on the crystallographic directions parallel and normal to the
close-packed planes.

7.1.2 The Reciprocal Lattice

The reciprocal-lattice concept is important for the understanding and inter-
pretation of electron-diffraction patterns. There are different ways of intro-
ducing the reciprocal lattice, which will be shown to be equivalent.

We start with an intuitive, graphical construction. Each point of the recip-
rocal lattice will be related to a set of lattice planes of the crystal lattice with
Miller indices (hkl). Such a point can be constructed by plotting a vector n
normal to the (hkl) planes and of length 1/dp; from the origin O of the recip-
rocal lattice. The procedure is illustrated in Fig. 7.4 for a two-dimensional
projection of a lattice (built up from the vectors a; and as with as normal
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to the plane). The lattice planes (hk0) = (320) intercept this plane in paral-
lel straight lines djpro apart. Figure 7.4 shows that all points of a reciprocal
lattice can be described by the reciprocal translation vectors aj and a3 with
|a’{| = 1/d100 = 1/a1 and |a§| = 1/d010 = 1/(11 and that g = ha’{ + k‘a§ is a
reciprocal-lattice vector.

The next method is a more abstract mathematical construction. If the
a; are the fundamental translation vectors of a primitive unit cell, the lattice
vectors a; and the translation vectors a; of the reciprocal lattice are related by

« s _JO if i#g —
a;-aj =0 = {1 i i (i,7 =1,2,3). (7.3)
This system of nine equations has the solution
« as X as « a3 X aj % a| X as
a]=———, ay=—""F7—, Q3= —1-—. 7.4
1 Ve ’ 2 Ve ’ 3 Ve ( )

This shows immediately that the vector af is normal to as and agz. (V, =
ay - (az X ag3) is the volume of the unit cell.)

The reciprocal lattice of a primitive cubic cell with lattice constant a is
again a primitive cubic; the lattice constant of the reciprocal unit cell is 1/a.
The reciprocal lattice of a face-centered cubic (fcc) lattice can be deduced by
considering the primitive trigonal cell of Table 7.1; we see that any fundamen-
tal vector of the primitive trigonal unit cell of the body-centered cubic (bee)
lattice is normal to two fundamental vectors of the primitive trigonal unit cell
of the fcc lattice. The condition (7.4) for the fcc lattice therefore is satisfied
by a reciprocal bec lattice. Conversely, the reciprocal lattice of a bec lattice
is fcc (Fig. 7.5).

(1)

/g . / . 222
.; .
| . 002
l 7.
o | V
P it nls ey
i /ur
I i 00%
' ; ) fi10}
- | | .
03_’ l'/L“‘_T"*:/_ — 220
28— L
alL—a [~ 4 000 b)
~—a— 100} —1fa—* )
Crystal lattice —_— Reciprocal lattice

face-centered cubic

- ¢ body-centered cubic
Reciprocal lattice

Crystal lattice

Fig. 7.5. Body-centered cubic crystal (b) as the reciprocal lattice of a face-centered
cubic lattice (a) and vice versa. Only the full circles in (b) are reciprocal-lattice
points. The open circles are forbidden by the extinction rules for the structure
amplitude F'. The shaded planes are used in Sect. 7.1.3 to construct the Laue zones
(Fig. 7.7).



7.1 Fundamentals of Crystallography 281

Not all of the reciprocal lattice points predicted by (7.4) can in fact be
observed when the fundamental vectors of a nonprimitive unit cell are used.
Some points will disappear. In the reciprocal lattice of the nonprimitive fcc
structure (Fig. 7.5b), for example, the reciprocal lattice points 200, 220 etc.
are allowed, but 100, 210, etc., are “forbidden”. The reasons for this will
become clearer when we meet the zero rules (F = 0) of the structure am-
plitude F' in Sect. 7.2.2 or the interpretation of the reciprocal lattice as the
three-dimensional Fourier transform of the crystal lattice (see the end of this
section).

Let us now consider some important laws that can be derived from the
definitions (7.3) and (7.4) of the reciprocal lattice:

e reciprocal-lattice vector g = haj+kas+la , k,l Integers) 1s norma
1) The reci I-latti hai+kaj+lag (b, k,1i i 1
to the (hkl) planes.

Proof: Figure 7.1 shows that two nonparallel vectors on the (hkl) plane can be
obtained as differences between the points at which the fundamental lattice
vectors intersect this plane: 7y = ay/h — a2 /k, ro = a1 /h — as3/l. The scalar
products of these vectors with g are zero, which means that g L rq, ro; g is
therefore also normal to all other vectors that lie in the (hkl) plane.

(2) The length of the reciprocal-lattice vector g is equal to the reciprocal
lattice-plane distance 1/dpp;.

Proof: Let u,, be the unit vector normal to the (hkl) plane and hence parallel
to g, which means that we can write uw,, = g/|g|. From Fig. 7.1, we see that
dpri is equal to the projection of aq/h, as/k, or as/l on the unit vector w,,:

g a 1

dhkl:un.al/hzm'fzﬂ' (7.5)
(3) The solution of the system of (Laue) equations

a;-g=nh; (i=1,2,3; hi23=hk]l) (7.6)
is

g = hai + ka; + laj. (7.7)

Proof: Substitute (7.7) into (7.6) and use (7.3).

The third way to introduce the reciprocal lattice is to define it as the
Fourier transform of the crystal lattice. The Fourier integral (3.40) of a three-
dimensional crystal lattice with J-functions at the origins of the unit cells
becomes a sum over the discrete lattice points 4 (7.1),

G(q) =Y exp(—2mig-ry)

= > exp[-27iq- (mai + nas + oas)], (7.8)

m,n,o
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where m, n, o are integers. This sum will be nonzero only if the products q- a;
in the exponent are all integers. If we call these integers h;, we recover the
system of equations (7.6) and have nonvanishing values of G(q) for g = g.

7.1.3 Construction of Laue Zones

The product of a translation vector 7, (7.1) of the crystal lattice and a
reciprocal-lattice vector g (7.7),

g-ry=mh+nk+ol=N, (7.9)

is an integer. If N = 0, all the g for a given value of r, lie in a plane through
the origin of the reciprocal lattice and are normal to the zone axis r,. The
system of lattice planes that belongs to these values of g forms a bundle of
planes that have the zone axis as a common line of intersection (Fig. 7.6a).
The reciprocal-lattice plane that contains the corresponding g is called the
zero-order Laue zone. For N =1, 2, ... the first- (FOLZ), second-, and higher-
order (HOLZ) Laue zones, respectively, are obtained, which are parallel to the
zero-order Laue zone (Fig. 7.6b). This means that the Laue zones are parallel
sections through the reciprocal lattice.

The construction of Laue zones is very useful for the indexing and
computation of electron-diffraction patterns. Either triplets of integers hkl
are sought that fulfill the condition (7.9) and have nonzero structure ampli-
tude (Sect. 7.2.2) or a model of the reciprocal lattice like that of Fig. 7.5b can
be used.

Zone axis

Zone axis [mno)
Fg=m6‘ +n62*00‘3

f91

0
1
Lattice planes hk | with = R Ewald sphere
mh+nk+ol=0
a) b)

Fig. 7.6. (a) Bundle of lattice planes with the common zone axis [mno]. (b) Position
of the zero- and higher-order Laue zones in the reciprocal lattice. The angles 6, and
02 at which the Ewald sphere cuts the higher-order zones are discussed in Sect. 8.3.4.
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Fig. 7.7. Examples of the construction of zero- and first- or second-order Laue zones
for the [100], [110], and [111] zone axes of a face-centered cubic lattice.

From Fig. 7.5b, for example, the reciprocal-lattice points for an fcc lattice
can be read off; these are situated on the Laue zones for the zone axes [mno]
= [100], [110], and [111]. Figure 7.7 shows indexed zone patterns for the zero-,
first-, and second-order Laue zones.

7.2 Kinematical Theory of Electron Diffraction

7.2.1 Bragg Condition and Ewald Sphere

The Laue conditions q - a; = h; (integers), which result from the Fourier
transform (7.9) of the crystal lattice, guarantee that the scattered plane waves
with wave vectors k do indeed overlap and interfere constructively, so that
their amplitudes sum. With ¢ = k — k¢ (3.39) and g = g from (7.9), the Laue
conditions can be solved for ¢ = k — ko by using (7.6) and (7.7), which gives

k — ko =g = ha] + kaj + laj. (7.10)

This is the Bragg condition in vector notation. The vector g = k — ko is
normal to the bisector of the angle between k¢ and k (Fig. 7.8). On the right-
hand side of (7.10), we have the reciprocal-lattice vector g, which is normal to
the lattice planes (hkl). It follows that k — ko is parallel to this normal. The
angles of incidence and scattering fp relative to the lattice planes (Fig. 7.8)
must be equal. Although this is strictly an interference phenomenon, the result
can be interpreted as a reflection at the lattice planes. It differs from light-
optical reflection in that only a fixed angle g is allowed. This Bragg angle
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Fig. 7.8. Ewald sphere of radius &k = 1/A
in a reciprocal lattice. A Bragg reflection is
excited if the sphere intersects a reciprocal-
lattice point, such as H.

0p can be calculated by examining the magnitude of (7.10). Figure 7.8 shows
that |k — ko| = 2sinfp /X and |g| = 1/dpg; (7.5). Thus (7.10) results in the
well-known Bragg condition

2dhkl sin QB =\ (711)

The Bragg condition is valid for x-rays and electrons. Typical back reflections
with 20g close to 180° can be obtained with x-rays, whereas the same lattice
planes typically give forward reflection for electrons since the wavelength is so
much smaller. The scattering amplitude for x-rays is approximately isotropic
for all scattering angles, and back reflection can be observed, whereas the
scattering amplitude for electrons decreases with increasing angle and the
Bragg reflections are limited to a cone with an aperture of the order of 50 mrad.

Equation (7.10) can be used to generate a construction first employed by
Ewald. A vector kg = MO is drawn with one end at the origin O of the
reciprocal lattice and with a length |ko| = 1/\ (Figs. 7.6 and 7.8). The other
end M (excitation point) of kg is taken as the center of a sphere of radius 1/\.
Diffraction will be observed only if this Ewald sphere intersects one or more
points g of the reciprocal lattice (e.g., H in Fig. 7.8). The direction k = MH
will be the direction of the scattered wave, and k — kg = g is the vector that
connects the end points of k and k.

The Ewald sphere in Fig. 7.8 has been drawn with a small radius, as for
x-rays. In electron diffraction, the radius of the Ewald sphere, 1/\ = 240
nm~' for 80 keV electrons, is much larger than the distances between the
reciprocal-lattice points; e.g. 1/a = 2.8 nm~* for copper (Fig. 7.6b).

If the incident beam is parallel to a zone axis, the diffraction pattern (e.g.,
Fig. 7.26a) contains Bragg reflections near the primary beam from the zero-
order Laue zone; at larger Bragg angles, circles of reflections occur where
the Ewald sphere cuts the first- and higher-order Laue zones (see also the
discussion of HOLZ patterns in Sect. 8.3.4).
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7.2.2 Structure Amplitude and Lattice Amplitude

The amplitude of the scattered wave in the direction k can be obtained
from the Fourier transform of the crystal lattice. Consider the kth atom
(k=1,...,n) inside one unit cell; this atom scatters with an amplitude fx(6),
which can be calculated by one of the methods described in Sect. 5.1.3 if a
screened Coulomb potential modified by close packing of atoms in a solid
(e.g., the muffin-tin model) is used. Furthermore, the crystal is assumed to be
parallelepipedal in shape, with edge lengths L; = M;a; (i = 1, 2, 3) parallel
to the fundamental vectors a;. The Fourier sum (7.9) becomes

]\41 ]\/[2 M3 n

Flg)= > > > > frexp[=27i(k — ko) - (rg + 7)]- (7.12)

m=1n=1o0=1k=1

The summation over k, which corresponds to the different atoms of the unit
cell, can be extracted, and (7.12) becomes

Flq) = él Frexp[—2mi(k — ko) - ri] - X3 S exp[—2ni(k — ko) - 7] . (7.13)

m n o

Fcell G

The first factor, F..y, is called the structure amplitude and depends only on
the positions and type of atoms inside the unit cell. The second factor, G,
is called the lattice amplitude and depends only on the external shape of the
crystal.

The structure amplitude will be of interest only for the Bragg condition.
It will not be altered by small deviations from the geometry of the Bragg
condition, unlike GG, as our later calculations will show. Substituting for 7
from (7.2), we find

Fcell = Z fk: exp(—27rig . T‘k) = E fk exp[—?wi(ukh + ’Ukk + wkl)] (714)
k=1 k=1
The value of F..; will now be calculated for some typical examples.

(a) Body-Centered Cubic Lattice

Even though the body-centered cubic lattice is a Bravais lattice, it can be
described as a simple cubic lattice with two atoms in the unit cell (Table 7.1)
at r1 = (0, 0, 0) and 75 = (3, 1, 3). Substitution in (7.14) gives

Fcell = f{l + exp[—wi(h +k+ l)]}

Using the relation

excp(—imn) = 1 if nis an even integer
P " | =1 ifnis an odd integer,
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we find

o 2f ifh + k + liseven
“l= 0 ifh + k + lis odd.

(b) Face-Centered Cubic Lattice

The face-centered cubic lattice can be described as a simple cubic lattice with
four atoms in the unit cell at the positions

T = (01070)7 T2 = (%7%a0)7 r3 = (%701 %)7 T4 = (07 %7 %)
Hence

Feenp = f{1 + exp[—mi(h + k)] + exp[—7i(h + )] + exp[—7i(k + )] }.
The rules odd + odd = even, etc., show that

o 4f if h, k, [, are either all even or all odd
= 0 ifh, k, I, are mixed (odd and even).

(c) NaCl Structure

The unit cell consists of two sodium and chlorine face-centered sublattices
that are shifted by one half of the body diagonal (1, %,1) of the unit cell.
This shift can be considered by introducing a common phase factor for the
chlorine sublattice,

Feen = {fxa + farexp[—ni(h + k + )]}
x{1 + exp[—7i(h + k)] + exp[—mi(h + 1)] + exp[—7i(k + )]},

which results in

4(fna + fa1) ifh, k, [, are all even
Feep =< 4(fna — fa1) if h, k, I, are all odd
0 if h, k, [, are mixed.

Similar calculations can be made for other crystal structures (Table 7.1).
The three types of cubic lattices exhibit different zero rules; i.e., different sets
of (hkl) for which F' = 0. These exclude some of the g values of the reciprocal
lattice that would be found if a primitive unit cell with only one atom at the
origin of each unit cell were used. The two atoms in the body-centered cell and
the four atoms in the face-centered cell all scatter either in phase (constructive
interference) or in antiphase, leading to F' = 0 (destructive interference).

For more complicated structures (e.g., NaCl), the nonzero reflections can
have different structure amplitudes. In the case of KC1, the difference (fx— fc1)
for h, k,l odd becomes very small. It is zero for x-rays because both the KT
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Fig. 7.9. Introduction of the ex-
citation error s and a convolution
of the reciprocal-lattice points
with the needle-shaped square of
the lattice amplitude |G|* for a
thin foil of thickness t.
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and the Cl™ ions have the same electron configuration as argon. In electron
diffraction, there is a small residual difference in the nuclear charges Ze.

We now consider the triple sum of the lattice amplitude G in (7.13) and
allow small deviations from the exact Bragg condition k — kg = g. This
deviation is described by the excitation error s = (sg,Sy,s.); this vector
connects the lattice point g in the reciprocal lattice to the Ewald sphere in
the direction parallel to the incident beam (Fig. 7.9). The magnitude and the
tilt angle Af out of the Bragg condition are related by

B ﬁ _ 2sinfp
dnki A

Substituting k — kg = g + s in (7.13) and recalling that g - a; = n (integer)
and exp(—2win) = 1, we obtain an expression for the lattice amplitude

s =gA0 A8 (7.15)

My My Ms
G= > > > exp[—2nmi(g+s) -1y = > exp(—2mis-ry). (7.16)
m=1n=1o0=1 m,n,o

The phase 27is-r, varies very slowly as we move through the crystal from one
unit cell to another. The triple sum can therefore be replaced by an integral
over the crystal volume V' = Ly LoLs (Vi: volume of the unit cell),

1 +L1/2 +L2/2 +L3/2
— [ exp[—27i(sx + syy + s.2)|dedydz. (7.17)

G =
Ve —L1/2—Ly/2—L3/2

Setting Vo, = ajagas (cubic lattice) and integrating with respect to x, we find

1 +L1/2
Gy, =— [ exp(—2nis,z)de
ar 1, /2

1 exp(misyL1) — exp(—mis,Ly)  sin(ms,Mia;) (7.18)

TS, 2i TS,
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and correspondingly for the y and z directions. This is the typical formula,
well known in light optics, for the diffraction at a grating with M slits with
spacing a;. The total diffracted intensity becomes

Iy ‘Fcell|2|G|2 =

2 51n2(7rsmM1a1) sm2(7rsyM2a2) 51n2(7rszM3a3)

|Fcell (719)

(rsza1)? (msyaz)? (rs.a3)?
The form of |G|? will now be discussed for some simple crystal shapes.
(1) Thin Crystal Foils (Discs) with the z direction of electron incidence nor-

mal to the surface (Fig. 7.10a). The last factor in (7.19) reaches a maximum
value of M2 for s, = 0; it first falls to zero when the numerator becomes

zero, which occurs when ws,Msaz = w or s, = 1/Msaz = 1/Ls = 1/t.
Corresponding values are found for the x and y directions. However, the
intensity first becomes zero at much lower excitation errors, s, = 1/L;

and s, = 1/Ly (L1, Ly = 1/D). The function |G(sy, sy,s.)|? therefore has a
needle-like shape in the z direction (Fig. 7.10a). The length of the needle in the
reciprocal lattice is inversely proportional to the foil thickness L3 = ¢. Each
reciprocal-lattice point will be convolved with this |G|? function (Fig. 7.9). The
needle-like extension of the lattice points provokes simultaneous excitation of
a large number of Bragg reflections because the Ewald sphere can intersect

Intensity distributions of a
Crystal shape reciprocal lattice point
a) Crystal disc — Needle

Sz
p——D — .1
| g_ L o2
---0
g
——E'—
1/D
b) Needle Disc

I

c) Sphere —
L

-
O

Fig. 7.10. Shape of the square
of the lattice amplitude |G|*> with
which  reciprocal-lattice  points
have to be convolved for (a) a
crystal disc (thin foil of thickness
t), (b) a needle of length ¢, and
(c) a sphere of diameter L.
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more needles than points (Figs. 7.6b and 7.9). Such needles in the reciprocal
lattice can also be observed for plate-like precipitates in alloys. If the plates
are inclined to the foil, this can cause elongations of the Bragg spots or the
latter may appear to be shifted (Fig. 8.12).

(2) Needle-like Crystals with the long axis in the z direction (Fig. 7.10b). The
first zero for |G|? is reached for small s, and larger s, and s,. |G|? is thus a
disc normal to the z axis.

(3) Small Cubes (Spheres) with edge (diameter) L. The extension of |G|? is the
same in all directions: s, = s, = s, = 1/L (Fig. 7.10c). If the Ewald sphere
intersects a reciprocal-lattice point, a broadened diffraction spot is observed.
Debye—Scherrer rings will be broadened by

ar _ YL _d. (7.20)
r 1/d L
This relation can be used to estimate particle dimensions in the range L =
0.3-5 nm from the broadening Ar of the rings.

Finally, we can arrive at the concept of convolution of each reciprocal-
lattice point with |G|? by reasoning based on the Fourier transform and in
particular on the convolution theorem (3.48), which transforms a convolution
of two functions into a product of their Fourier transforms; likewise a product
is transformed into a convolution.

A crystal can be described by the expression [p(r) ® f(r)] - g(r), which
involves the three functions p(r), f(r), and g(r); p(r) denotes a set of
0-functions at the origin of the unit cells, while f(r) describes the potential
within a single unit cell. The convolution [p(r) ® f(7)] represents an infinite
lattice in which each origin is convolved with the potential of a unit cell.
Finally, g(r) = 1 inside and 0 outside the crystal defines the finite crystal
volume.

The Fourier transform yields

F{lp(r) @ f(r)]- 9(r)} = [P(q) - Feeu(q)] © G(q), (7.21)

in which P(q) denotes a set of d-functions at the reciprocal-lattice points;
F.ei1(q) is the structure amplitude. The presence of points at which Fiey = 0
reduces the number of reciprocal-lattice points if the unit cell contains more
than one atom. G(q) is the lattice amplitude. Each reciprocal-lattice point is
convolved with this function.

7.2.3 Column Approximation

In discussions of the contrast of defects in crystalline specimens, it is useful to
consider not only the amplitude F(q) in the Fraunhofer diffraction plane but
also the intensity at a point P just below the specimen (Fresnel diffraction).
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Fig. 7.11. (a) Column approximation for calculating the amplitude v, of a dif-
fracted wave at a point P on the bottom of a crystal foil of thickness z = t (2p1
= diameter of the first Fresnel zone). (b) Amplitude-phase diagram for calculating

[g = wng;'

We assume r — oo in the formula for Fresnel diffraction (Sect. 3.2.1),
which means that the point source is at infinity and hence that we have a plane
incident wave of amplitude . There are dz/V, unit cells per unit area in an
element of thickness dz, each of which scatters with the structure amplitude
F(0). We use the scattered wavefront with a scattering angle ¢ = 20 to
calculate the contribution di)4 of the layer dz to the diffracted amplitude at
the point P (Fig. 7.11a). Strictly, 1o/ cos @ should be used instead of 1y to
correct for the cross section of the wavefront. This correction can, however,
be neglected because cos >~ 1 for the small values of 6 in question. Equation
(3.28) becomes

dz eQﬂ'ikR 27dz R .
dyyy = Yo [ F(0)—5—dS = vy F(0)e*™ dR
o =ty PO Ve d,
F(0 : i i
_ ilﬁo)\?()eQﬂ'lkROdZ _ g?ﬁerWIkRodZ (722)
e g

with dS = 27R dR. We have introduced the eztinction distance &, (Table
7.2), defined by

_ e
~F(0)

It was shown in Sect. 3.2.1 that the main contribution to the integral in
(7.22) comes from the first Fresnel zone of radius p; = ARy (Fig. 7.11a). For
a distance (foil thickness) Ry = 100 nm and A = 3.7 pm (100 keV electrons),
we find p; = 0.6 nm. This means that only a column with a diameter of
1-2 nm is contributing to the amplitude at the point P, and the method is
therefore called the column approrimation.

&g : (7.23)
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Table 7.2. Extinction distances £, [nm] for £ = 100 keV. (Th: Thomas et al. [7.16],
H: Hirsch et al. [7.17]

Face-centered cubic lattice and NaCl structure

hkl 111 200 220 311 222 400 331
Al 56.3 68.5 114.4 147.6 158.6  202.4 235.7 Th
Cu 28.6 32.6 47.3 57.9 61.5 76.4 88.1 Th
Ni 26.8 30.6 44.6 54.7 58.1 72.0 82.9 Th
Ag 24.2 27.2 38.6 47.4 50.4 63.0 73.0 Th
Pt 14.7 16.6 23.2 27.4 28.8 34.3 38.5 H
Au 18.3 20.2 27.8 33.6 35.6 43.5 49.5 Th
Pb 24.0 26.6 35.9 41.8 43.6 50.5 55.5 H
LiF 117.7 64.5 94.2 2199 121.0 146.3 335.2 H
MgO 272.6 46.1 66.2 1180 85.2 103.3 1075 H
Body-centered cubic lattice
hkl 110 200 211 220 310 222 400
Cr 28.8 42.3 55.5 68.6 81.6 94.7 121.9 Th
Fe 28.6 41.2 53.5 65.8 78.0 90.4 116.2 Th
Nb 26.1 38.3 49.9 61.4 72.9 84.6 108.5 Th
Mo 22.9 33.6 43.2 52.7 62.0 72.3 89.7 Th
Ta 20.2 27.5 33.9 40.0 45.9 51.8 63.8 Th
W% 18.0 24.5 30.2 35.5 41.0 46.2 55.6 Th
Diamond structure

511
hkl 111 220 311 400 331 333 400
C 47.6 66.5 124.5 121.5 197.2  261.3 215.1 H
Si 60.2 75.7 134.9 126.8 204.6  264.5 209.3 H
Ge 43.0 45.2 75.7 65.9 102.8 127.3 100.8 H
Hexagonal lattice
hkl 1110 1120 2200 1101 2201 0002 1102
Mg 150.9 140.5 334.8 100.1 201.8 81.1 231.0 H
Co 46.9 42.9 102.7 30.6 62.0 21.8 70.2 H
Zn 55.3 49.7 118.0 35.1 70.4 26.0 76.2 H
7r 59.4 49.3 115.1 37.9 69.1 51.7 83.7 H
Cd 51.9 43.8 102.3 32.4 60.8 24.4 68.3 H

The amplitude v, of a Bragg reflection is obtained by integrating (7.22)
over the thickness. Using k = kg + g+ s, Ry =t — z, and |¢)o| =1 [1.26],

t
thg = i exp(2rnikot) [ exp[—27i(g + ) - z]dz
9 0

t
= ig exp(2mikot) fexp(—Zﬂisz)dz. (7.24)
g 0
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The integral may be evaluated as for (7.18), and the diffraction intensity at
the point P (I = 1) becomes

72 sin?(ts)

IQ - @Z’gwg - 53 (778)2 . (725)
Substituting for &, from (7.23), we obtain the same dependence on the exci-
tation error s as in (7.19).

The last integral in (7.24) can also be solved graphically by using an
amplitude-phase diagram (Sect. 3.2.1) in which lengths dz are added vec-
torially with slope 27sz in the complex-number plane (Fig. 7.11b); the result
is a circle of radius r. The length of the circular segment QQ’ is ¢. The circle
is closed when the phase factor exp(2wisz) reaches unity, which occurs for
sz = 1 and so the perimeter 271 of the circle is equal to 1/s. It follows that
r = 1/2ws. The amplitude v, is proportional to the square of the length of the
chord QQ'. For foil thicknesses t = n/s (n integer), Q and Q' coincide and the
diffraction intensity I, becomes zero; when the thickness is further increased,
I, = R again increases and subsequently oscillates as shown in Fig. 7.14b.

7.3 Dynamical Theory of Electron Diffraction

7.3.1 Limitations of the Kinematical Theory

The kinematical theory is valid only for very thin films for which the reflection
intensity I, is small and the decrease of the primary-beam intensity Iy can
be neglected. If the Bragg condition is exactly satisfied (s = 0), we obtain
from (7.25) I, = 7*t* /&2 and Iy = 1. The intensity I, increases as ¢*, and the
condition I, < 1 will be satisfied only for ¢t < £,/10. If s # 0, the intensity I,
oscillates with increasing ¢ and reaches maximum values of 1/£2s* (Fig. 7.14b).
The condition I; < 1 will be satisfied when s > 1/£,. In Sect. 7.3.4, we
shall see that, in this case, the kinematical and dynamical theories lead to
identical results.

Furthermore, it must not be forgotten that the case in which only one
Bragg reflection is excited, which is called the two-beam case (including the
primary beam with g = 0), is unusual; normally, a larger number n > 2 of
reflections must be considered (n-beam case). Numerous small reflection in-
tensities I, can reduce the intensity of the primary beam more strongly than in
the two-beam case. The n-beam case therefore restricts the validity of the kine-
matical theory to even smaller thicknesses. In the Bragg condition (s = 0), the
dynamical theory predicts an oscillation of the intensities Iy and I,. A strong
Bragg reflection will excite neighboring reflections with a larger amplitude
than the primary beam. Therefore, in many practical situations the interac-
tion of 30-100 Bragg reflections has to be considered. Furthermore, the in-
tensity does not remain localized in the Bragg reflection. The diffuse electron
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scattering between the Bragg diffraction spots by inelastic and thermal dif-
fuse scattering causes a decrease of intensity in the Bragg spots themselves
(Sect. 7.4.2).

7.3.2 Formulation of the Dynamical Theory as a System
of Differential Equations

This formulation of dynamical theory was first used by Darwin [7.4, 7.5] for
x-ray diffraction and transferred by Howie and Whelan [7.6] to electron dif-
fraction.

We first discuss the two-beam case [1.26]. An incident wave of amplitude
Yo and a diffracted wave of amplitude 1, fall on a layer of thickness dz
inside the crystal foil. After passing through this layer, the amplitude g will
be changed by dvyo and v, by di,. These changes can be calculated from
Fresnel diffraction theory using the column approximation. The contributions
of 1o and v, to dipy and dipy can be obtained by using (7.22)-(7.24) with
the extinction distances (7.23) & = 7Vo/AF(0) and &, = 7V, /AF(20p). The
result is a linear system of differential equations (Howie-Whelan equations):

d% o i i 2misz

dz - 0’(/}0 + g,(/)ge )

dy T _oniss AT

T; = ?woe sz 5*01%- (7.26)
g

The second term of the first equation results from the scattering of the dif-
fracted wave back into the primary beam; the sign of the excitation error s is
the reverse of that for scattering in the opposite direction (first term in the
second equation). This system of equations can be extended to the n-beam
case by introducing the relative excitation errors s,_j; and extinction distances

fgfh:
dyy  Iu im
dz h:gl é-gfh

Ypexp(2misg_pz) for g=gq,....,9,; g1 =0. (7.27)

In the final result, we are interested only in the reflection intensity I, and we
can therefore use the transformation

Yo = Yo exp(—inz/&o); 1y, = by exp(2misz — imz/&p). (7.28)

These new quantities contain only an additional phase factor, which cancels
out when we multiply by the complex conjugate. Substituting (7.28) into
(7.26) yields the simpler formulas

dygy im
dZ - 691)/}9’
dy!

% = = + 2risy). (7.29)
g
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The boundary conditions for these differential equations at the entrance sur-
face of the foil (2 = 0) are [¢hg| = 1 and [¢)4| = 0. We discuss a solution of
(7.29) together with the solution of the eigenvalue problem in Sect. 7.3.4.

The system of differential equations for the n-beam case can be solved
by the Runge-Kutta method or a similar numerical method. The multislice
method (Sect. 9.6.3) uses elements of finite thickness Az and projects the
potential inside the layer Az onto the lower boundary of the layer element.
The space between the layers is treated as a vacuum and the wave propagates
by Fresnel diffraction.

7.3.3 Formulation of the Dynamical Theory
as an Eigenvalue Problem

This formulation was first used by Bethe [7.7] for electron diffraction. The
Schrodinger equation (3.21) is solved with a potential V'(r) that is the su-
perposition of all the atomic potentials (Fig. 3.3) and therefore has the
same periodicity as the lattice. This means that V(r) can be expanded as
a Fourier sum:

2

V(r)=—-> Vyexp(2rig-r) = —2h—m > Ugexp(2mig - r). (7.30)
9 9

A value Vj can be attributed to each point g of the reciprocal lattice. The V,
(eV) and U, (cm™2) are related to the structure amplitude F(6)(6 = 260) of
the kinematical theory because, in the Born approximation, F'(6) is also the
Fourier transform of the scattering potential V' (r) (Sect. 5.1.3):

N°E 2Ey+ E h? F(0)
= —F0)=—+-F(0);, U,= .
9 o9xV, Ey+ E (©) 2mmV, (0); g /A

The extinction distance ¢, introduced by (7.23) can be written as follows,
where £, 100 denotes the extinction distance at £ = 100 keV:

Ve AE2E,+E  h? 1

(7.31)

= — 7.32
9= NF0) T 2V, Bt B 2mAV, AT, (7.32)
€ —¢ m100A100 _¢ v (7.33)

g 9,100 mA g,100 V100 . .

Equation (7.33) allows us to transfer tabulated values of £, for E = 100 keV
(Table 7.2) to other electron energies. The influence of lattice vibrations (see
the Debye-Waller factor exp(—2M) in Sect. 7.5.3) and the thermal expansion
of the lattice cause a slow increase of £, with temperature [7.8, 7.9].

If (7.30) for V(r) is substituted in (3.21), the solutions will also reflect the
lattice periodicity. Such solutions of the Schrédinger equation are called Bloch
waves,

b9 (k,7) = Z C exp[27ri(kgj) +g)-rl. (7.34)
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The summation runs over the infinite number of reciprocal-lattice vectors g.
As an approximation, we confine the sum over n excited points g = g, ..., 9,
of the reciprocal lattice, including the incident direction (g; = 0). The number
j = 1,...,n of different Bloch waves is needed to represent the propagation
of electron waves in a crystal and to satisfy the boundary condition at the
vacuum-—crystal interface. This requires a superposition of n? different waves
with wave vectors kg] ) 4 g and amplitude factors Céj ),

We substitute (7.30) and (7.34) into (3.21) and introduce the abbreviation

K = 2moE(1 4+ E/2Ey) + 2moVo(1 + E/E))/? /h (7.35)

for the wave vector inside the crystal, which is obtained from the sum of the
kinetic energy and the coefficient Vy = eU; (inner potential) (Sect. 3.1.3) of
the Fourier expansion (7.30). This gives

ar? SSIK? = (kY + )2 + 3 Uy exp(2rih - 1)
g h#£0
- CY) exp2rmi(kY) +g) - r] =0 (7.36)
for all g. This system of equations can be satisfied if the coefficients of identical
exponential terms simultaneously become zero. After collecting up terms con-

taining the factor eXp[Qﬂ'i(k(()j) +g) - r], we obtain the fundamental equations
of dynamical theory,

(K% — (k{) + g)2CY) + };O UnCY) =0, g=g1,.9,. (7.37)

The kgj ) = k:((f )+ g are the wave vectors of the Bloch waves, the magnitudes of
which are not identical with K. As in kinematical theory (Fig. 7.8), we obtain
the excitation points M; as the starting points of the vectors ké] ), which end
at the origin O of the reciprocal lattice. For calculation of the position of Mj},
we recall that K > g and

K+ kY + gl ~ K+ kY ~ 2K, (7.38)
Introducing the difference (Fig. 7.12)
K-k +g|~sy— (k) - K) = s, — 41, (7.39)

we find that the first factor of (7.37) becomes
(K — (kg +9)%) = (K + |k + g} (K — |k§” +g]) = 2K (s, — 4)). (7.40)

54 is negative when the reciprocal-lattice point g is outside the Ewald sphere,
as in Fig. 7.12. By using (7.40), the system of equations (7.37) can be written
in matrix form after dividing by 2K, and we have [7.10, 7.11, 7.12, 7.13]

Ay Apg . Apy, C%j_; Cf—i
v e e 02] ) ol
Ag1 Azz ... Agy, =7 for j=1,..,n (7.41)

At Ang o Any )\ o) o)
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" r] M, Akz, min=1/Eq

- §3heres with center

~ G i i-
\/\g and radius X

Ewald sphere with center M4

Fig. 7.12. Branches j = 1 and 2 of the dispersion surface for the two-beam case with
a least distance Ak. min = 1/&,4 in the Bragg condition (k; = 0). Construction of the
excitation points M; and Mz on the dispersion surface for the tilt parameter k, and
the four wave vectors kéﬂ and kéj) = k(()j> + g (j = 1, 2) to the reciprocal lattice
points O and g. Ko is the wave vector of the incident wave and M its excitation
point.

with the matrix elements

% 1
A11 = 0, Agg = Sg, Ahg = Agh = Ug_h/QK = .
2£g—h
This is the equation for an eigenvalue problem. A given matrix [A] has n
different eigenvalues v() (j = 1,...,n) with the accompanying eigenvectors

CE(,j)(g =9i,.--,9,) If we introduce the matrix [C], the columns of which

are the eigenvectors, so that Cy; = Cé'j) and the diagonal matrix {7} with the
eigenvalues v) as diagonal elements, (7.41) can be written

[A][C] = [CI{~}- (7.42)

A matrix [4] is thus diagonalized by a linear transformation of the form
C1[A][C].

In general, the matrix [A] is Hermitian. For centrosymmetric crystals it
is symmetric. Programs exist for defining the matrix and calculating the
eigenvalues and eigenvectors. It is suggested that the Bloch waves should be
numbered in order of decreasing k) [7.14]. The Bloch wave with the largest
~) has the index j = 1, etc.
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The eigenvectors are orthogonal and satisfy the orthogonality relations

OO = oy TOPC = o (743
g J

Changing the direction of the incident wave from kgj ) to kgj ) — h alters the
sequence of the column vectors in the matrix [C], which imposes a periodicity

condition on the ng ),
Cy(k§) = Copn(ki — h), (7.44)
The n eigenvalues 79) correspond to n Bloch waves (7.34) with wave
vectors kéj )+ g. Their starting points do not lie on a sphere of radius K
around O but at modified points M;, given by (7.40). For different tilts of the

specimen — equivalent to varying values of s, in (7.40) or k. in Fig. 7.12 —
the points M;(k;) lie on a dispersion surface. The starting points of the wave

vectors k:é] ) 4 g on this dispersion surface can be obtained by the following
construction. The K vector parallel to the incident direction determines the
point M in Fig. 7.12. Through M a straight line is drawn parallel to the
crystal normal. The points of intersection with the n-fold dispersion surface
are the excitation points M;, which lie above one another in the case of normal
incidence. This geometrical construction results from the boundary condition
that the tangential components of the waves have to be continuous at the
crystal boundary. For nonnormal incidence, the excitation points M; are no
longer above one another (see, e.g., [7.15]).

The total wave function (Bloch-wave field), the solution of (7.41), will be
a linear combination of the Bloch waves b)(k,r) (7.34) with the Bloch-wave
excitation amplitudes ¢); i.e.,

Yior = 2 €0 (k) = 32D 0 09 expl2ri(ky + g) - 7. (7.45)

J J g

The amplitude 1, of a particular reflected wave can be obtained by summing
over all j = 1,...,n waves from the excitation points M; to the corresponding
reciprocal-lattice point g,

Yy = Y eDCY expl2mi(k§’ +g) 7], (7.46)
J
or
g =>" e(j)Céj) exp(27iy9) z), (7.47)
J

if a phase factor is omitted. The excitation amplitudes ¢\?) of the Bloch waves
can be obtained from the boundary condition at the entrance of the incident
plane wave into the crystal. The phase factors in (7.47) are all equal to unity
for z = 0, and a plane wave in a vacuum and the Bloch-wave field in the
crystal must be continuous. This requires

do(0) = LG =1,
J

1y(0) = Z DY) =0 for all g # 0, (7.48)

J
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or in a matrix formulation for the two-beam case

(655 (3)-(8)-C)

which can be readily extended to the n-beam case
[Cle = v(0), (7.50)

where € and 1 (0) are column vectors of n components.

Comparison with the first of the orthogonality relations (7.43) shows that
the boundary conditions (7.49)—(7.50) can be satisfied by writing /) = C’éj)*
for normal incidence. In a more general formulation, the ¢/) can be calculated
from (7.50) by multiplying with the inverse matrix [C~1], which is identical

with the adjoint matrix [C] because of the unitarity of the C’éj ).
€ = [C7](0). (7.51)

7.3.4 Discussion of the Two-Beam Case

In order to bring out the most important results of the dynamical theory,
we now solve and discuss the two-beam case in detail, though it will be a
poor approximation in practice. For high electron energies, the curvature of
the Ewald sphere is so small that a large number of reflections (30-100) are
excited simultaneously.

In kinematical theory, the centers M of the various Ewald spheres (Fig. 7.8)
lie on a sphere of radius & = 1/\ around the origin O of the reciprocal lattice if
the direction of the incident wave is varied. When the intensity of the diffracted
beam is increased by increasing the thickness and becomes larger than the
intensity of the primary beam, the former can be treated as the primary wave
and a sphere of radius k can also be drawn around the reciprocal-lattice point
g as the geometrical surface that describes all possible values of the excitation
points M (Fig. 7.12). As will be shown below, the two spheres do not intersect
each other but withdraw from one another in a characteristic manner.

For the two-beam case, the fundamental equations of the dynamical theory,
(7.37) and (7.41), are

_6) o) Yy ) _
R S (752)
U ) 1 (400 15 0 =0,

Such a homogeneous linear system of equations for the Céj ) has a nonzero

solution if and only if the determinant of the coefficients is zero:

—~) U,/2K

4 — A2 _ o0 _ 2 2
U, /2K (=@ + 5) 0% s Uy /AK= = 0. (7.53)

This is a quadratic equation for the eigenvalues 4). In the n-beam case this
characteristic equation is of order n. Before discussing the solution, it will
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be shown that the Howie-Whelan equations (Sect. 7.3.2) lead to the same
characteristic equation. If we substitute for LZJ; and dl/); from the first equation
of (7.29) into the second, we obtain

Py dug
2~ 2mis S0 4 (/) = 0. (7.54)

A similar equation is obtained for 1/1;. If we look for a solution of the form

Y = Aexp(2miy)z), the same equation (7.53) is found for the v(/) because
& = K/U, (7.32). This shows that the two different ways of treating the
dynamical theory lead to the same solution.

Solving the quadratic equation (7.53) gives

10 = 3 [s = o] = 5 s o g ]
L v - (1 VT+w?], (7.55)

2¢,
in which the parameter w = s{, characterizes the tilt out of the Bragg con-
dition (w = 0). This solution is plotted in Fig. 7.13a as a function of w and
in Fig. 7.12 for a Ewald sphere of a relatively small radius. The two circles
around O and G in Fig. 7.12 correspond to the straight lines (asymptotes
of the hyperbola) in Fig. 7.13a. The two Ewald spheres (asymptotes) do not
intersect but approach most closely for the Bragg condition w = 0; their sep-
aration is then

c -0 5 0 5. 10

0.5 W —
/ Cé" Cgm

-5 0 5 10

g
° ﬁ)
1 c¢f
v 0.5

T

0 -5 0 5 10 d

Fig. 7.13. Dependence of the Bloch-wave parameters of the two-beam case on the
tilt parameter w = s&, out of the Bragg condition (w = 0). (a) EAC2 PSR
is the distance between the two branches of the dispersion surface (Fig. 7.12). (b)
Absorption parameters ¢%) and (c), (d) wave amplitudes of the four excited waves.



300 7 Theory of Electron Diffraction

Akzmin =7 —4®) = U, /K =1/¢,. (7.56)
By using the eigenvalues v), the linear system of equations (7.52) can be
solved for the C{). For the amplitudes ) C{) = C'C§ of the four Bloch
waves with wave vectors k(()] ) 4+ g for normal incidence, we obtain

_1)j
c el — {1 L(—1)y ] . cWow) = G 7.57
2 ( ) /1 + w2 g 2 /1 + w2 ( )
In the Bragg condition w = 0, all four waves have the amplitude 1/2
(Fig. 7.13¢,d).
Sometimes the substitution w = cot is used for the two-beam case. The
matrix [C] of the eigenvectors then becomes

C(l) C(2) sin(5/2)  cos(8/2)

In order to calculate the intensity Iy = ot of the primary beam, which
we call the transmission T', and the intensity of the reflected beam I, = g1y
or reflection R, we use (7.47) and substitute the specimen thickness ¢ for the
z component of the vector r:

2 o .
vo(t) = > C’(()J)C’éj) exp(ZWikgj)t),

hy(t) = C(() )C( ) exp(2rikDt) exp(2rige). (7.59)

B <
e ]
L

J=1

Substituting the values given in (7.55) and (7.57) and omitting the common
phase factor exp(2miK, t)exp(miwt/{,), we find

Yo(t) = cos (71’\/ 1+ w2— > iLsin (W\/ 1+ w2— )
£g 1+ w? gg

i . t .
Pg(t) = T sin <7T\/ 1+ w2§g> exp(2rigx). (7.60)

The intensities (transmission T and reflection R) become

5 sin’ (71'\/ 1+ w2€tg> . (7.61)

*:1_ *
Yoy =1~ vy = T——

R 1-T

Recalling that w = s&,, we see that for w > 0 (large tilt out of the Bragg
condition) (7.61) is identical with the solution (7.25) of the kinematical the-
ory. Otherwise, however, the kinematical theory predicts that for w = 0, R
increases as t2 and becomes larger than one, which is in contradiction with
the conservation of intensity 7'+ R = 1. The formula (7.61) given by the dy-
namical theory results in R = 1—T = sin?(nt/,) for w = 0. This means that,
even in the Bragg condition, the electron intensity oscillates between the pri-
mary and the Bragg-reflected beam with increasing film thickness (Fig. 7.14a)
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—Eg— Egeft=Eg/Y 3.25
B

T R W=0 ~— w=15

Fig. 7.14. Dynamical two-beam case without absorption. Thickness dependence of
the transmitted (7') and Bragg-reflected intensity (R) (a) in the Bragg condition
w =0 and (b) for a tilt parameter w = s§; = 1.5; (c) and (d) tilt dependence
(rocking curve) of R for the different relative thicknesses /&, (between 0.25 and 1).
(- - -) comparison with the kinematical theory.

(“pendellosung” of the dynamical theory). We now clearly see the meaning
of the extinction distance &, (Table 7.2); it is the periodicity in depth of this
oscillation. There are thicknesses t = (n + 1/2)¢, for which the intensity is
completely concentrated in the Bragg reflection and others, ¢t = n&,, for which
the whole intensity returns to the direction of incidence. These oscillations re-
sult from the superposition of the two waves with wave vectors k:él) + g and
k((J2) + g, which are somewhat different in magnitude: [k — k?| = 1/&,
(7.56).

For w # 0, the amplitude (7.61) of the oscillation decreases as (1 + w?)~!
and the depth of the oscillations can be described by a reduced effective ex-
tinction distance (Fig. 7.14b)

Eget = Eg/V 1+ w2 . (7.62)

The dependence of T' and R on the tilt angle A0 of the specimen or the
excitation error s or tilt parameter w for a fixed thickness t is called a rocking
curve (Fig. 7.14c,d). In the absence of absorption, the condition 7'+ R =1 is
everywhere satisfied, and T' and R are, as can be seen from (7.61), symmetric
in w. (This will cease to be the case for T when we consider absorption in the
next section.) Figures 7.14c and d show R for ¢/&, = 0.25-1. We observe that
R =0 for w=0 and t/{, =1 (Fig. 7.14a). If the specimen is tilted (w # 0),
R increases again (Fig. 7.14d), reaching a maximum at w ~ 1. The distances
Aw between the minima (R = 0) of the rocking curve become narrower with
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increasing t. Figure 7.14c also contains the results of the kinematical theory
(dashed lines). Deviations from the kinematical theory are observed for larger
values of t/£,, especially when w is small.

The relation E = h2k?/2m between energy and momentum p = hk can
be used to reveal an analogy between the dispersion surface as a function of
k. (Fig. 7.12) and the Fermi surface of low-energy conduction electrons. If
there is no interaction between the electrons and the lattice (no excitation of
a low-order reflection), the dispersion surface degenerates to a sphere around
the origin of the reciprocal lattice (Fermi surface of free electrons). In the
theory of conduction electrons, the Fermi surface also splits into energy bands
with forbidden gaps if there exists an interaction with the lattice potential,
and dE/dk becomes zero at the boundary of the Brillouin zone for which the
Bragg condition is satisfied. The same behavior can be seen in Fig. 7.12;
the Brillouin zone is the midplane between O and G. The splitting Ak, min of
the energy gap is directly proportional to V, and therefore to the interaction
with the crystal lattice.

7.4 Dynamical Theory Including Absorption

7.4.1 Inelastic-Scattering Processes in Crystals

If the energy of the electron falls from the initial value F,, to the final value F,
during a scattering process with an energy loss AE = E,,, — E,,, the dispersion
surfaces for these two energies are different (Fig. 7.15). The surfaces have the

Fig. 7.15. Shift of the dispersion surface caused by electron excitation m — n
with energies E,, and FE,, respectively, and interband (1, 3) and intraband (2, 4)
transitions.
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same shape because AF < FE,,, but are shifted by Ak, = |k,,, —k,|. = AE/hv
[7.18]. The excitation point P corresponds to the excitation of a Bloch wave
of type j = 2. The transitions 1-4 are called

1. Elastic
3. Inelastic

2. Elastic

} interband transition 4 Tnelastic

} intraband transition.
The symmetry (type) of Bloch waves is changed in an interband transition

and preserved in an intraband transition. The vector PQ corresponds to q in
Fig. 5.10 and, according to (5.45),

¢*=PQ =RQ +PR = K(0>+063). (7.63)

The shift Ak, of the dispersion surface for E,, and FE,, depends on the
scattering process. For thermal diffuse scattering (electron—phonon scatter-
ing), the difference can be neglected. For the Al 15 eV plasmon loss, the shift
becomes Ak, = AE/hv =2 x 1072 nm~! at E = 100 keV, whereas the dis-
tance AB = CD between the branches of the dispersion surface is 1 /&g =
1/56.3 = 1.8x1072 nm~!. The distance and the shift are thus of the same
order of magnitude.

Inelastic scattering by a single atom was treated in Sect. 5.2.2 in terms of
a model in which the incident wave is plane and the scattered wave is also
plane far from the scattering atom. In a crystal, the primary wave function
Y (m = 0) as well as the scattered wave function 1, are Bloch waves that
are solutions of the Schrédinger equation (3.22) for the complete system of
the incident electron (coordinate r) and atomic electrons (coordinates r;) and
nuclei (Ry) [7.18, 7.19, 7.20]:

h2
{2v2 + He + H’] U = FEW. (7.64)
m

The first term of the Hamiltonian represents the propagation of free electrons,
the term H. the interaction of the bound electron and ions, and

1 €2 €27,
H = — 7.65
Treo (Z ] %v—m) (7.69)

the interaction energy between the incident electron and the crystal.
The total wave function ¥ can be expanded as a series

Sp(’l”,’r‘j7Rk) = Zan(rjaRk)wn("')7 (766)

where the a,, are the wave functions of the crystal electrons in the nth excited
energy state €, determined by

H.a, = epan,. (7.67)

o (r) is the wave function of the incident and elastically scattered electron
and 1, (r) that of the inelastically scattered electron of energy E, = E — ¢,
for an energy loss AE = F — E,, = €,.
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Substitution of (7.66) into (7.64), multiplication by a}, and integration
over the coordinates r; and Ry, (crystal volume) lead to a set of equations for
the 1y,

h2
——V?—Ep+ Hun| o ==Y Humm, n=0,1,.., (7.68)
2m m#n

with the matrix elements

Hym(r) = fa,:('r'j,Rk)H/('r‘,Tj,Rk)am(rj,Rk;)dgrjngk
v

= (an|H'|am). (7.69)
The diagonal elements

Hpn(r) = Hop(r) = = 3 Ve 2mi9m (7.70)

represent the usual potential V' (r) in (7.30). The off-diagonal elements, which
appear on the right-hand side of (7.68), characterize the probability of an
inelastic transition from a,, - ¥, to a, -1, caused by the Coulomb interaction
H’ and are small compared with H,,. It can be seen that the normal case
of elastic electron scattering with the Bloch-wave solution is obtained if all of
the off-diagonal elements H,,, are zero and no inelastic scattering occurs.

The H,,,, have the same periodicity as the lattice and can be expanded in
a Fourier series,

Hpp(r) = exp(—2miq,,,, - 7) > H,™ exp(2wig - r), (7.71)

g

where g,,,, is the wave vector of the crystal excitation created in the transition
m— n.

If all of the Hy,,, (1) with n # m are small compared with Hog(r) and the

amplitudes 1, of the inelastically scattered waves are small compared with
1o, the set of equations (7.68) can be written [7.19]

h2
——V?—Ey+ Hoo] o = — >, Hontn,
|: 2m ngo
h2
|:_2’I7”LVQ - En + Hnn:| wn = - n0w0~ (772)

Yoshioka [7.19] also omitted H,, in (7.72) and solved the system with
the aid of the Green’s function for scattered spherical waves. However, in a
crystal, both the incident and scattered waves can propagate only as Bloch
waves. The solution with a Green’s function constructed of Bloch waves is
discussed in [7.21, 7.22]. As the crystal potential is hardly influenced by the
transition, H,,, can be approximated by Hpg. Howie [7.18] considered a long-
range interaction potential H’ for the excitation of plasmons. Single-electron
excitation is discussed in [7.23, 7.24, 7.25] and electron—phonon scattering in
[7.26, 7.27]. Solutions 1), of (7.72) in the form of a series of Bloch waves b(?)
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(7.34) can be sought. These Bloch waves are solutions of [—(h?/2m)V? - E,, +
H )¢, = 0 but have z-dependent amplitudes el )(z)

Un(r) = 3 e ()b (k) )

=2 el (2) 2 O (kL)) expl2ri(ky) +g) - 7). (7.73)
i g
Substituting (7.73) into (7.72), neglecting the small terms d?w,,/dz?%, mul-
tiplying both sides by b*(?), and integrating over the z, y plane containing
the reciprocal-lattice vectors g, we obtain the following relation between the
Bloch-wave amplitudes ) of the incident wave and () of the scattered wave
(the latter indicated by a dash):

v

de®)

dZ - Z Zcinjnenz)' (774)

m#n j

The matrix elements

- im

cid, = ———— exp[2mi(k) — k) — ¢id)2) S CSOH O (7.75)
Rk, g

describe the transition probabilities between branches j and i’ of the disper-
sion surfaces (i’ = j: intraband transition; ¢’ # j: interband transition).

It can be seen from (7.75) that the scattering in a crystal depends on both
eigenvector components C’;l/) and C,(f ). This is none other than a reciprocity
theorem [7.28], which means that if a primary wave travels in the reverse
direction along the path of the scattered wave, it will be scattered with the
same probability in the former primary direction. In a crystal, the interaction
is inevitably a scattering from one Bloch-wave field into another because inci-
dent and scattered waves have to exhibit the lattice periodicity. The scattered
intensity therefore depends not only on the scattering angle 6, as for a single
atom or for amorphous material, but also on the excitation probabilities of
the Bloch waves in the incident and scattered directions. This observation
will be used in the discussion of the intensities of Kikuchi lines and bands
(Sect. 7.5.4).

Plasmon scattering is not concentrated at the nucleus but within a rela-
tively large volume of 1-10 nm diameter. This process is therefore limited to
small scattering angles, and therefore the term H"™ dominates in (7.75). The
sum over the matrix elements in (7.75) can thus be approximated by

EC“ Hy"CF) = Hy™ 55, (7.76)

which is nonzero only for 7/ = j. This means that plasmon scattering causes
predominantly intraband scattering. Image contrast by Bragg reflection is
consequently preserved [7.18]. The same is true for the ionization processes in
inner shells, so long as Hy"" > H"" [7.23].
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Interband scattering can be observed for large scattering angles, which is
equivalent to a narrower localization of the scattering process near the nu-
cleus [7.23]. On the other hand, electron—phonon scattering (thermal diffuse
scattering) is predominately interband scattering for small scattering angles
and intraband scattering for large scattering angles between the Bragg reflec-
tions [7.27]. It therefore contributes mainly to the absorption parameters of
the Bloch-wave field.

7.4.2 Absorption of the Bloch-Wave Field

The transition from the initial state m = 0 to any n # m and ¢ in (7.74)

results in an exponential decrease of e(() ), with the value e( )( 0) = C'(j ) at the

entrance surface of the crystal (z = 0) being deternnned by the boundary
conditions discussed at the end of Sect. 7.3.3.

This exponential decrease can also be incorporated in the Schrodinger
equation (3.21) and in the fundamental equations of dynamical theory (7.37)
by introducing an additive imaginary lattice potential V’ Vo — Vy + 1V’
or by replacing U, by U, + iU, [7.19]. The V, values can be converted to
U, as in (7.30). Returning to (7.32)7 Vy + iV, obliges us to replace 1/, by
1/€4+i/¢;,, where {; is the mean absorption distance and the £, are anomalous
absorption distances. Values of the imaginary Fourier coefficients Vg’ are listed
in Table 7.3; see also [7.29, 7.30] for relative values of {,/¢; and [7.31, 7.32,
7.33, 7.34] and [7.35] for contributions to V, by thermal diffuse scattering and
inner-shell ionization, respectively.

The V, are assumed to be independent of electron energy because they
are defined as Fourier coefficients of the lattice potential V(r). The V, are
proportional to v™'. In view of (7.33), this implies that &, o v and &, £y X v2,
which can be confirmed experimentally [7.36, 7.37, 7.38].

Replacing 1/, by 1/§, +1/&; in (7.26), we obtain the form of the Howie-
Whelan equations in which these absorption effects are considered. In the
formulation of the dynamical theory as an eigenvalue problem (Sect. 7.3.3),
the matrix [A] in (7.41) now contains the elements

A = iU 2K, Agy = s, +1Up/2K, Ay, = (Uyp +1U._,) /2K,

with the result that the eigenvalues become complex: Instead of 47| we write
749 +1qW). The characteristic equation (7.53) for the complex eigenvalues
becomes more complicated. Assuming that fé,fé > &4, approximately the
same values are obtained for the real part v} (7.55), and for the two-beam
case the imaginary absorption parameters become

g =1 ll S el (7.77)

& §vV1+ w?
which are plotted in Fig. 7.13b.
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Table 7.3. Imaginary Fourier coefficients V, (eV) for different substances at E
= 100 keV and room temperature (and in a few cases at 150 K). The absorption
distance &) is equal to 340/V§ nm and po = Vg /54 nm ™.

hkl
Substance 74 vy Ref.
Al — 111 220 311
theor. 0.85 0.18 0.14 0.13 - [7.39]
0.58 0.16 - - - [7.40]
exp. 0.37 0.23 - - - [7.36]
0.6 - 0.11 0.13 - [7.41]
0.54 0.17 - - - [7.40]
Si 220 331 422 -
theor. 0.70 0.11 0.07 0.08 - [7.39]
exp. 0.68 0.11 0.08 0.08 - [7.42)
0.62 0.14 0.08 - - [7.41]
Cu 111 200 220 311
theor. 3.48 0.83 0.79 0.68  0.63  [7.39]
exp. 1.48 0.81 0.92 - - [7.43, 7.44]
1.35 - - 049 045  [7.41]
Ge 220 400 422
theor. 1.56 0.54 0.48 0.43 [7.39]
exp. 1.25 0.52 - 0.36 [7.42]
1.35 - 0.32 -
Au 220 331 440
theor. 7.57 2.8 2.3 1.87 [7.39]
exp. 2.64 2.0 - 15 [7.45]
- - 1.62 - [7.41]
150 K 6.71 - 1.81 - [7.39]
2.5 - 1.12 - [7.46]
MgO 200
theor. 1.8 0.16 [7.39]
exp. 1.5 0.13 [7.47]
NaCl 220 420
theor. 1.63 0.20 0.14 [7.39]
exp. - 0.21 0.15 [7.48]
PbTe(150 K) 422
theor. 4.7 0.98 [7.39]

exp. 1.8 0.67 [7.46]
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The ¢\9) can also be calculated for the n-beam case. If, in the additional
elements of the matrix [A], the U, are smaller than 0.1 U, then the familiar
first-order perturbation method of quantum mechanics can be applied, giving

4 , Ul 1 L
G) — [ p) Y@ _ / (1) ()
g <b (k,7) QK‘b (k:,r)> sk SEULC) Y, T

in which the C’éj ) are the components of the eigenvectors of the unperturbed
matrix without the imaginary components, corresponding to the situation in
which absorption is disregarded. The Bloch-wave formula (7.34) has to be
modified to

b9 (k,7) = exp(—2mqW2) 2 C;j) exp[27ri(kéj) +g)-rl. (7.79)
9

The first factor with ¢\9) in the real exponent describes an exponential
decrease of the Bloch-wave amplitude with increasing depth z below the sur-
face. From the first term of (7.77), we know that all Bloch-wave amplitudes
decrease as exp(—mz/¢)). Differences of the ¢¥) due to the second term of
(7.77) can be understood from the following Bloch-wave model. Let us com-
bine the four possible waves of the two-beam case (Fig. 7.12), but not as we
did in (7.47), when we calculated the amplitudes of the primary and Bragg-
reflected beams. Now, the waves with wave vectors k(()l) and kzgl) form “Bloch

wave 17 and kéz) and sz) “Bloch wave 27, where k§1,2) = k(()l’Q) +g. The
superposition of two inclined waves propagates in the direction of the angle
bisector, which is parallel to the reflecting lattice planes hkl. The superpo-
sition results in interference fringes in the z direction, perpendicular to the
direction of propagation, with a periodicity equal to the lattice-plane spacing
dpgi. From (7.57), we see that all of the CéJ)C,(f) (j =1, 2; h =0, g) take

the values £1/2 in the Bragg condition (w = 0). The C,(lj) are symmetric for
j = 1 (equal signs) and antisymmetric for j = 2 (opposite signs). Substitution
in (7.34) and (7.79) results in

[bM| o cos(mg - ) = cos(mx/dpi),
6P| o sin(rg - ) = sin(7x/dpi), (7.80)

because the ¢/ are equal for the same branch (j) of the dispersion surface.
The probability densities [b()|? of the Bloch waves 1 and 2 are therefore
proportional to cos? (7 /dpx;) and sin?(wx/dpy), respectively. This results in
minima (nodes) at the lattice plane for the antisymmetric wave (j =2) and
in maxima (antinodes) for the symmetric wave (j = 1) (Fig. 7.16). This is
important for the absorption of these Bloch waves. In particular, thermal
diffuse scattering is caused by the deviations from the ideal lattice structure
due to thermal vibrations of the lattice. Because the amplitude of lattice
vibrations is small, the symmetric Bloch wave 1 with maxima at the nuclei
will be scattered more strongly than the antisymmetric wave, the values of the
absorption parameters ¢¢/) will be larger, and the Bloch-wave amplitude will
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Bloch wave type1 type 2

I(-(oﬂ/\-k—(g‘l) ":(02/\":(92)
M52 [p @2

lo

reflecting lattice planes

Fig. 7.16. Squared amplitudes (interaction probabilities) 1™ \b(j)|2 of Bloch
waves of type 1 and type 2 in the two-beam case (independent Bloch-wave model)
with antinodes and nodes at the nuclei and lattice planes, respectively.

decrease more rapidly with increasing z; the antisymmetric Bloch wave 2 with
nodes at the nuclei interacts less strongly (q(z) < ¢, see also Fig. 7.13b).
A consequence of thermal diffuse scattering is that &) and 5; depend strongly
on temperature.

There are tilt angles out of the Bragg position for which the antisymmet-
ric Bloch waves show a large transmission (low ¢(?) and a large excitation
amplitude ¢ (anomalous transmission). As shown in Fig. 7.13, this is the
case for positive excitation parameters w for which the squared amplitude
€@)2 = |C{P|? is large and ¢®) < ¢,

The following analytical formula for T" and R can be derived for the two-
beam case [7.49]. Using the abbreviations

ug:27rU;/K:27T/§; and M0:27T/§(/)7

we find
e~ Moz WgZ
T=—|(1+2w?)cosh—=2"2
A Tw?) | AR

/1 2
+ 2wv/1 + w?sinth—E25— § cos (271'—“1}2:)] , (7.81)

— oz V1 2
R=_° 5+ | cosh BoZ  _ cos 27T¢z . (7.82)
2(1 + w?) V1+w? &g

Certain characteristic differences are found when the expressions above are
compared with the two-beam case without absorption (7.61). The rock-
ing curve of the transmission is not symmetric about the Bragg position
(Fig. 7.18). This asymmetry is a consequence of the second term in the square
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14
TR

054}

Fig. 7.17. Thickness dependence of the transmitted (7') and Bragg-reflected (R)
intensities in the Bragg condition (w = 0) with absorption.

Fig. 7.18. Tilt dependence (rocking
curve) of the transmitted (7) and
Bragg-reflected (R) intensities for the
dynamical two-beam case with absorp-
tion for foil thicknesses (a) t = 1.5,
and (b) t = 5.5¢,.

brackets of (7.81). The reflected intensity R still remains symmetric [there are
no terms in odd power of w in (7.82)]. The relation T+ R = 1 is no longer
valid. The amplitude of the pendellosung fringes decreases with increasing
thickness (Fig. 7.17). Only a broad transmission band (anomalous transmis-
sion) with extremely weak pendellésung fringes is observed for very thick
specimens (Fig. 7.18Db).

In the case of anomalous transmission, only the antisymmetric Bloch wave
2 with low ¢(®) remains after passage through a thick specimen layer. This ob-
servation might seem to imply that the Bloch waves can be regarded as approx-
imately independent. However, this independent Bloch-wave model cannot
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satisfy the boundary condition at the entrance plane of the crystal and ex-
periments show that there are situations in which the whole Bloch-wave field
(dependent Bloch-wave model) has to be considered — in the study of the
probability of large-angle scattering, for example [7.50].

7.4.3 Dynamical n-Beam Theory

The n-beam case must normally be treated numerically by solving the eigen-
value problem (7.41) for a large number of excited reciprocal-lattice points g
near the Ewald sphere or by applying the Howie-Whelan equations. The dis-
persion surface splits into n branches, and j = 1,..., n absorption parameters
¢\9) of the n Bloch waves have to be considered.

A special case of the n-beam theory is the systematic row, where the
reflections —ng, ..., —2g,—g,0,4+g,+2g, ..., +ng are excited. The overlap of
—g and +g reflections in the rocking curve forms reflection bands, which
can be seen in Kikuchi diagrams, channeling patterns, and images of bent
crystal foils (bend contours, Sect. 9.1.1). As an example, Fig. 7.19a shows the
absorption parameters ¢\/) of a three-beam case for Cu at F = 100 keV with
g = 220, 0, 220 excited. The tilt parameter k, /g is now zero for the symmetric
incidence and 40.5 for the excitation of g = 220. For a thickness ¢ = 40 nm,
Fig. 7.20a shows the rocking curve for the intensity Iy of the primary beam
and Iso0 of one Bragg reflection. I55, will show a similar curve with its center

nm™!

/\w
ql3)
(2)

Cu

q

220-band
a) E=100 keV 3 - beam theory
-10 -05 0 kyjg—n+05 +10

kx/g_;(lS +1.0

1.0 -05 0

Fig. 7.19. Dependence of (a) absorption parameters ¢“) and (b) the squared am-
plitudes |C(()J>|2 of the Bloch waves on the tilt parameter k, /g for a 220 band in Cu
at E = 100 keV (three-beam case with excitation of 220, 0, 220).
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Cu 40 nmj 220 -band
defect Lo
band Ilg
0.3
a)

T T T 1
-1.0 -0.5 o kxig—= 05 1.0
excess |band

[ Jyv*dz
b)
T T T 1
-10 -0.5 0 kyjg—= 05 1.0

Fig. 7.20. Dependence of (a) the primary-beam intensity Io and Bragg-reflected
intensity I200 (rocking curve) and X1, (defect band) and (b) the large-angle scat-
tering probability [1*dz (excess band) as a function of the tilt parameter ks /g
for the three-beam case in Cu at E = 100 keV.

at k,/g = —0.5. The rocking curve for Ispp is symmetric about the Bragg
condition (see also the discussion of the two-beam case in Sect. 7.4.2), whereas
Iy exhibits the asymmetry associated with anomalous absorption. This can be
seen from Fig. 7.19. For k, /g < 0.5, the Bloch-wave intensity |C'(()1)|2 with a
2)|2
|

large value of ¢(!) is larger than |C’(() , which results in stronger absorption.

For k,/g > 0.5, the intensity |Cé2)\2 is larger for the lower parameter ¢(?),
leading to a higher value of the transmission. (The intensity |C(()3)|2 is so low
in this special case that it is not included in Fig. 7.19b.). Tilting to negative
values of k, /g results in anomalous absorption for &k, /g > —0.5 and anomalous
transmission for k;/g < —0.5.

In the sum of intensities XjI, = I_4 4 Iy + 114, the pendellésung fringes
cancel. However, the sum is not constant, as it is in the dynamical theory
without absorption, but varies with k, /¢ and a defect band of reduced in-
tensity is created (Fig. 7.20a). This cancellation of the pendellésung fringes
can be shown analytically by using (7.47) and (7.79) for the 1,4, changing the
order of summation and employing the orthogonality relations (7.43) for the
eigenvector components

ZIQ = Z %w;
g g
= IS 09O exp(—2mqD) ) expl2mi(k) + g) - 7|2
g J

= Y3009l 0 expl-2m(g® + ¢D)2] exp2mi(k) — kD) - r]

g i.J
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=YX CO* D C§) CF* exp[—2m(q™ +¢D)2] exp[2ri(ky — kG - 7]

“j 9
and hence

> 1y =3 |C§7 exp(—amq ). (7.83)
g 7

Inside the defect band, only the Bloch-wave intensity |C’(()1) |2 with a large value
of ¢V is excited, and the intensity therefore decreases.

Scattering effects that are strongly localized at the nuclei (e.g., scatter-
ing through large angles and backscattering or excitation of an inner shell or
x-ray emission) are proportional to the probability density ¢¢* at the atom
positions. For a finite thickness ¢, the scattering probability is therefore pro-
portional to [ ¢1*dz. Inside the defect band, the intensity |C’(()1) |2 of the Bloch
wave with its antinodes at the nuclei is large, which causes increased large-
angle scattering or an increased probability of inner-shell ionization, resulting
in an excess band (Fig. 7.20b).

For high electron energies, a semiclassical method can be used to calcu-
late the Bloch-wave amplitude distribution in the lattice and the correspond-
ing ¢U). If the electrons travel along an atomic row, the interaction can be
expressed approximately in terms of a projected potential valley. Quantum
mechanics tells us that the electrons occupy quantized states in such a valley,
e.g. 1s, 2s, 2p, .... Branch 1 of the dispersion surface corresponds to the most
strongly bound state 1s with the largest probability density at the nuclei.
The 1s state therefore shows a strong absorption (blocking) and a 2p state
(branch 2) with a low probability density a weak absorption (channeling). Cal-
culations can be based on a semiclassical approach, particularly for shorter
values of electron wavelength, and there is an analogy with the classical theory
of channeling for ion beams with the difference that, owing to the opposite sign
of the charge (the same is also true for positrons), ion channeling is observed
when electrons are blocked and vice versa. This model is especially suitable
for calculating the parameters of the dispersion surface and the amplitude
distribution of Bloch waves at high electron energies [7.51, 7.52, 7.53].

7.4.4 The Bethe Dynamical Potential and the Critical
Voltage Effect

In the following discussion, an n-beam case with one strongly excited low-order
reflection (g; = 0 and g, = g) and a number of weakly excited reflections
g, (n > 2) is considered (Bethe’s approximation [7.7]). In the fundamental
equations (7.37), the first equations are the same, and in those for g,, (n > 2),
only terms with the largest amplitude factors C(()] ) and C’éj ) need be considered
in a first-order approximation:
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[K? — (kéj) +g)2}C§j) + h%é:@ UhC;j_)h =0 for g,=0andg,=g
K2 — (kY + n)21cV) L u,cY) + U, .09 =0 for h = 7.84
[ (kg +h)7]Cy + UGy + Up—yg or 93 Gn (7.84)

g

The second set of equations is not coupled and can be solved for the C}(LJ );
these can then be substituted in the first equations for g; = 0 and g4 = g.
This yields a two-beam case analogous to (7.52) but with a corrected potential
coefficient Uy qyn or dynamic potential

2m V,V,_
Vgﬁdyn:Vg_io(l‘FE/EO) Z 9ok

— =V, -V, corr- 7.85
W 2 KT (e b o Voo (T80)

Depending on the sign of the denominator in (7.85), Vj ayn may be larger
or smaller than V,. The latter will be decreased when the reciprocal-lattice
point is inside the Ewald sphere. From the relation ¢, = (AU,) ™! (7.32), the
extinction distances will also be changed by this dynamical interaction.

The value of Vj qyn in (7.85) decreases with increasing electron energy and
can vanish for a certain critical voltage V, or energy E. = eV, if the excitation
error is positive (reciprocal-lattice point inside the Ewald sphere). At this
voltage, {, — oo, which means that the corresponding reflection will not be
excited. This effect was first observed in electron-diffraction patterns [7.54,
7.55]. The minimum distance Ak, i, between the branches of the dispersion
surface falls to zero and the branches intersect.

The use of (7.85) alone can explain the existence of a critical voltage
but is not sufficient for an accurate calculation. With increasing energy, first
the dynamical potential Vg 4yn of a systematic row (0, +g, £2g, ...) vanishes
because the two terms in (7.85) cancel for the second-order reflection (e.g., 400
in a 200 row) when the 2g reflection is fully excited. We therefore assume a
three-beam case 0, g, 2g [7.56] with so; = 0 and s, = K —/K? — g% ~ ¢?/2K.
The eigenvalue equation (7.41) can be rewritten

—2K’y Ug Ugg C()
Uy (92 —2K7) U, Cy | =0. (7.86)
Usg Uy —2K~ Cayq

The solution can be simplified by considering the symmetry of the matrix,
which leads us to distinguish the two cases

(a) CO = ng, Cg # 0 and
(b) Cop = —Cyy, Cy = 0.
On substituting in (7.86), we obtain the reduced system of equations

(a) (U2g —2K7)Co + UgCy =0,
2U,Co + (g% — 2Kv)C, = 0,

.. 1
giving K2 = I |:U29 +g%+ \/8Ug2 + (Uzg — ¢2)2 |,

1
(b) — 2K Ak.Cy — UpyCo = 0, giving K& = —5Usy.



7.4 Dynamical Theory Including Absorption 315

The values of v for case (a) are obtained by setting the determinant equal to
zero. The difference

1
2 3) _ 2
%>—7<t_ﬂgkmm+g-—¢&g+(wg—fﬁ (7.87)
vanishes when the quantity in the square brackets is zero. This yields
U; = Us, + Uzgg®. (7.88)

When U, is replaced by using (7.30), the critical energy E = E. appears in
the factor m = mo(1 + E/Ey) and solving for E results in

h?g*Vayg

Bo=eVom |— 0 T2
T 2mo(VE - V)

— 1| B,. (7.89)

The critical voltage can also be obtained by calculating the Bloch-wave am-
plitudes C(()] ) because the symmetry of Bloch waves 2 and 3 changes for the

second-order reflection when the electron energy exceeds the critical energy
[7.16]. We find

V<V V>V
j = 2 symmetric antisymmetric
j = 3 antisymmetric symmetric

and

1. V < V. when |C?| > |CP] or V > V. when |C{?| < |C{Y]
for the second-order reflection at k, =0
(symmetrical incidence of the electron beam)

2. V < V; when |Cég)| > |Cé4)| or V>V, when |C(()3)| < |C(§4)\
for the third-order reflection at k, = 0.5g
(Bragg condition for the third order).

In Table 7.4, some experimental values of the critical voltage are listed.
Most of the values of V. are much greater than 100 keV and hence in the
HVEM range. Vanishing of the reflection 2g in the Bragg condition can be
observed with Kikuchi lines in electron-diffraction patterns [7.57], with bend
contours in electron micrographs or in convergent-beam diffraction patterns
[7.58, 7.59]. Figure 7.21 shows the rocking curve near the 220 Bragg condition
for a 300 nm Cu foil. The critical voltage V. can be determined with an
accuracy of a few kilovolts.

The following applications of the critical voltage effect are of interest:

(1) Accurate measurement of V. and study of the excitation of other
reflections predicted by the dynamical theory allow us to measure the co-
efficients V, of the lattice potential and to calculate the structure ampli-
tude F(0) at the corresponding scattering angle § = 26g by using (7.31)
[7.56, 7.59, 7.60, 7.61, 7.62, 8.9, 7.64, 7.65]. The differences between F(0)
and the calculated values of f(6) for free atoms can be used to obtain in-
formation about variations in the electron-density distribution caused by the
packing of atoms in a solid (e.g., for Ge and Si [7.66]). Another possibility is to
evaluate F'(f) from convergent-beam electron diffraction using energy-filtering
microscopy (Sect. 8.3.3).
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Table 7.4. Examples of experimental critical voltages V. [kV] at room temperature
[7.16].

Face-centered cubic metals

hkl 111 200 220 331
Al 425, 430 895, 918 — —
Co 276 555 1745 2686
Ni 295, 298 588, 587 1794 2730
Cu 310, 325 600, 605 1750 2700
Ag 55 225 919 1498
Au (<0) 108 726 1266
AuCus 175 425 - -
Body-centered cubic metals
hkl 110 200 211
A% 230, 238 - -
Cr 259, 265 1238 -
Fe 305 1249 -
Nb 35 749 1595
Mo 35 789 1729
Ta - 6651 -
W% - 660 >1100
Diamond cubic crystals
hkl 111 220 400
Si 1113 >1150 -
Ge 925 1028 >1100
GaP 1026 1098 >1100

6+ 343 kV 1393 kV 2V, + 443 kV 46
x10-3 x10-3

Lt 1 : 44
o
o
~N 2F 2
x

08 10 1.2 0.8 1.0 12 0.8 1.0 1.2
a) b)  k«/g1 c)

Fig. 7.21. Calculated rocking curves near the 222 Bragg condition (a) 50 kV below
the critical voltage, (b) at Ve = 393 kV with the critical-voltage effect at k»/gi111 = 1,
and (c) 50 kV beyond the critical voltage of copper (¢ = 300 nm) [7.58]. The sharp
dip at the center of (b) is a computation artifact.

(2) The critical voltage depends on the composition of an alloy. It decreases
from V., = 590 kV for pure Ni to V. ~ 450 kV for a Ni-10 mol% Au alloy, for
example [7.67]; this can be used for local measurements of concentration.
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(3) Measurements of V. at different temperatures give F(6)exp(—M,)
(Sect. 7.5.3) and can be used to obtain an accurate value of the Debye temper-
ature fp [7.56] and its dependence on orientation in noncubic crystals (e.g.,
Zn, Cd [7.68]) or alloys (e.g, Cu-Al, Cu-Au [7.69]).

(4) The study of V; can shed light on ordering in solids. Thus, an increase
of V. from 166 kV to 175 kV is observed during the transition from a dis-
ordered to an ordered state in AuCug [7.16]. Ordered states of short range
in Fe-Cr and Au-Ni alloys act like frozen-in lattice vibrations and make a
temperature-independent contribution to the Debye temperature. By mea-
suring the temperature dependence of V¢, the contributions from distortion of
the long-range order and thermal vibrations can be separated if it is assumed
that the corresponding (u?) can be added [7.67, 7.70].

These few examples show how the critical-voltage effect offers interesting
possibilities for the quantitative analysis of metals and alloys. The critical-
voltage effect and the intersecting Kikuchi-line technique [7.71, 7.72] are
closely related and both need at least a three-beam diffraction condition. In
the second technique, distances between intensity anomalies in intersections
in either Kikuchi or convergent-beam diffraction patterns are measured. Such
intersections can be found for high-order reflections at any voltage and also
allow the potential coefficients V;, to be determined.

7.5 Intensity Distribution in Diffraction Patterns

7.5.1 Diffraction at Amorphous Specimens

The diffraction pattern of amorphous films — carbon supporting films, poly-
mers, silicon and aluminum oxides, glass, and ceramics — consist of diffuse
rings (Fig. 7.22a). Each amorphous structure contains a nearest-neighbor or-
dering, which can be described by a radial distribution function p(r). The
probability of finding the centers of neighboring atoms inside a spherical shell
between r and r + dr is 47r?p(r)dr (Fig. 7.22b).

The observed intensity distribution I, in the diffraction pattern oscillates
about the intensity distribution N|f(6)|? that would be seen if all of the N
atoms scattered independently, without interference [7.73, 7.74],

ldICXp sin(2mqr) P ldfim’
Iy df2 2mqr Iy df?

= VUG |1+ T amr0) (7.0
0

with the incident electron current Iy, the spatial frequency ¢ = 6/, and an in-

coherent background dIj,./df2 caused by inelastic scattering. After producing

a normalized function

i = v | (22 - ) -~ M@ (1)
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Fig. 7.22. (a) Measured intensity distribution of the diffuse diffraction rings of an
amorphous Ge film (E = 60 keV) and fits of the background. (b) Calculation of the
radial density distribution 4772?p(r) oscillating about a mean value 47r%py. Values
obtained by x-ray diffraction (- — —) for comparison [7.73].

from the experimentally observed distribution, the transformation (7.90) can
be reversed, giving the reduced density function

4rr?[p(r) — po] = 87 20 i(q) sin(2mqr)qdq. (7.92)

Zero-loss filtering of an amorphous diffraction pattern can remove the
inelastic and incoherent background [7.74, 7.75], whereupon the maxima and
minima become more pronounced and it is easier to fit the elastic contribu-
tion N|f(q)|?; this will not, however, be exactly proportional to the differential
elastic cross section because of multiple elastic scattering, which also occurs in
thin films. This action of zero-loss filtering is demonstrated in Fig. 7.23, which
shows the recorded radial intensity distribution of a 27 nm amorphous ger-
manium film, whereas the oscillations between maxima and minima are much
lower for inelastically scattered electrons with an energy loss AF = 17 eV.

7.5.2 Intensity of Debye—Scherrer Rings

Polycrystalline specimens with random crystal orientations produce diffrac-
tion spots distributed randomly in azimuth. If the irradiated area is large
and/or the crystal size is small, the high density of diffraction spots forms a
continuous Debye—Scherrer ring for each allowed set of hkl values with non-
vanishing structure amplitude F (Fig. 8.11).
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Fig. 7.23. Radial intensity dis-
tribution of the diffraction pat-
tern of an evaporated amorphous
27 nm germanium film: unfil-
tered, zero-loss, and plasmon-loss
filtered at AE =17 eV.

Intensity

0 10 20 0 mrad 40
Scattering angle @ —=

The intensity of the rings is obtained by averaging over all crystal orienta-
tions, that is, by integrating over s in (7.19) or (7.61). The kinematical theory
gives the following expression for the integrated intensity Ijx; of the total ring
with Miller indices hkl [7.76]:

2,22

Tt = s 5 KN Vepnal Vi ? exp(~2M) V. (7.93)
where js denotes the current density in the specimen plane, K the number
of crystals with on average N unit cells, V. the volume of the unit cell, pyx;
the multiplicity of the hkl planes (e.g., p1oop = 6 since there are six possible
cubic planes, p119 = 12, p111 = 8, ete.), and V the lattice potential with the
Debye-Waller factor exp(—M,) (Sect. 7.5.3).

This implies that the ring intensity depends only on the total number KN
of unit cells in the electron beam and not on the shape and dimensions of the
crystals. The intensity ratios of various rings are independent of wavelength
and crystal dimensions and depend on ppii, Vg, and dpp.

If dynamical two-beam theory is employed, the following differences rela-
tive to kinematical theory are found [7.77]:

Idyn
= — Jo(22)dz, 7.94
Iin Anki { (22) (7.94)

where Jg is the Bessel function and Apy, = 2memqt V, /b2

The dynamical theory predicts the same results as the kinematic theory
(Layn/Ixin ~ 1) if App is small either because the crystal diameter ¢ is small
or the wavelength A is short. The intensity ratios of different rings do not
remain independent because they also depend on Ajg;. The curves in Fig. 7.24
show the decrease of I4yy/Ixin With increasing Apg; and measurements of the
ratio for evaporated Al films with small and large crystals [7.76]. The ratio
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Tayn/Ixin is close to unity for crystals of the order of 10 nm (Fig. 7.24a). The
intensities of Bragg reflections with low indices are the first to decrease for
larger crystals (Fig. 7.24b), whereas the kinematical theory still holds for high
indices. Reflections of higher order (e.g., 400 or 222) do not lie on the curves
because reflections of low order are also excited. The two-beam theory is no
longer valid, and many-beam theory has to be used.

The laws governing Debye—Scherrer ring intensities assume that the ori-
entation of the crystals is random, with no preferential orientation (texture).
A texture causes strong changes of the ring intensities and also an azimuthal
variation of ring intensity for oblique electron incidence to the fiber axis of
the texture (Sect. 8.2.2).

Zero-loss filtering of diffraction patterns with Debye—Scherrer rings consid-
erably increases the contrast [7.78, 7.79, 7.80, 7.81, 7.82], as shown for an evap-
orated aluminum layer (¢ = 230 nm) in Fig. 7.25. The background between
the rings can be attributed to thermal diffuse scattering. This is important
for the investigation of thick films and the detection of weak ring intensities.
The gain of contrast (e.g., of the ratio of a (111) ring-to-background ratio) is
largest for low atomic number (~25x), as for the example in Fig. 7.25, and
low for high atomic number (e.g., platinum films).



7.5 Intensity Distribution in Diffraction Patterns 321

150 -
Aluminum (62.2 pg/cm?)
125 unfiltered
100
ﬁ 75 4
o
_O
<= 504
25
a
o T T T T T 1
0 10 20 30 40 mrad 50
Scattering angle 6
15 -
Aluminum (62.2 ug/cmz)
121 AE=0eV
9-
o]
£
o
= 6
3
b
0 T T T T T T T 1
0 10 20 30 40 mrad 50

Scattering angle 8

Fig. 7.25. Normalized radial intensity distributions (note the different scales) of (a)
unfiltered and (b) zero-loss filtered diffraction patterns of an evaporated aluminum
film (x = 62 pg/cm?, t = 230 nm, E = 80 keV) [7.82].

7.5.3 Influence of Thermal Diffuse Scattering

Thermal vibrations of the atoms (nuclei) cause a distortion of the lattice
periodicity and produce the following effects:

1. decrease of the effective potential V; by the Debye-Waller factor with
increasing temperature, thus influencing the extinction distances &, and
the critical voltage V¢,

2. increase of the absorption parameters ¢\/) of the dynamical theory and de-
crease of the absorption distances {; and § with increasing temperature,

3. thermal diffuse scattering in the background between and near the Bragg
spots and formation of Kikuchi lines and bands.
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These interactions can be treated as electron—phonon scattering because the
lattice vibrations are quantized (phonons of momentum p = hk and energy
E = hw).

The influence of lattice vibrations on the potential coefficients V, can
be understood from the following simplified model. If the atoms are shifted
through a distance w(r) from their equilibrium positions 7, the potential is
changed in first order only by a translation V(r) — V(r 4+ u(r)). Using the
Fourier expansion (7.30) of the lattice potential, each Fourier coefficient V,
contains the following factor ({ ): mean value):

(¥ 9y — (1 4 2miu - g — 272 (w-g)? +...)
=1-27%((u-g)}) +... e 2 (" — =My, (7.95)

The mean value (u) in the Taylor series becomes zero and only the
quadratic term in ((u - g)?) has a nonzero value. It can be demonstrated
that this can be written as an exponential Debye-Waller factor exp(—M,)
[7.83]. The Debye—Waller factor results formally in a reduction of the Fourier
coefficient V, to Vj exp(—M,), and the reflection amplitudes of the kinemat-
ical theory will be decreased by the same factor; the diffraction intensities
are thus attenuated by exp(—2M,). An increase of &, is also expected due to
(7.23) and is observed experimentally [7.9].

The mean-square value (u?) of the lattice vibrations depends on the
phonon spectrum of the crystal. The Debye model for a monoatomic cubic
crystal gives

2\ . v = - e
W)= g (179 | oo (7.96)

3h? (1 T2 00/T pdy )
where M is the atomic mass and fp the Debye temperature. The term in
brackets is tabulated (International Tables for X-Ray Crystallography, Vol. IT).
The term 1/4 results from the zero-point vibrations, which are present even at
T = 0, as the quantum-mechanical treatment of a harmonic oscillator shows.
The quantity (u?) will also depend on the direction of g for noncubic crystals.
It differs for different types of atoms in the unit cell.

The absorption parameters ¢U) or imaginary parts V;, of the lattice po-
tential (Sect. 7.4.2) contain a large contribution from thermal diffuse scat-
tering and depend strongly on temperature (see, for example, calculations
[7.39, 7.84, 7.85] and experiments [7.43]).

Scattering between the Bragg spots cancels the destructive interference in
ideal crystals. That part of the background caused by thermal diffuse scat-
tering between the spots increases with increasing temperature, as does the
background near strongly excited Bragg spots. The scattering is inversely
proportional to the square of the phonon frequency v(q). Diffuse streaks con-
necting Bragg spots [7.86, 7.87, 7.88, 7.89, 7.90, 7.91] are therefore mainly
generated by transverse acoustic phonons of low frequency with wave vectors
k perpendicular to one of the atomic-chain directions and polarization vectors
parallel to it.
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The influence of lattice vibrations is small at large scattering angles. An ex-
ception is the contrast of the excess Kikuchi bands in electron back-scattering
patterns (EBSP, Sect. 8.1.4), which decreases with increasing temperature.
Temperature-independent large-angle scattering is found as a result of sum-
ming the scattering processes at individual nuclei, which means that the scat-
tering process is concentrated near a nucleus.

The background of electron diffraction patterns of polycrystalline films
depends more strongly on temperature than the Debye—Waller factor predicts
[7.92, 7.93]. The influence of thermal diffuse scattering on the background has
been investigated for Al [7.94], Ag [7.95], and Au [7.96]. The intensities of
the primary and reflected beams also depend more strongly on temperature
than would be expected from the influence of the Debye-Waller factor (7.95)
[7.97, 7.98, 7.99, 7.100]. These effects can be explained by the dependence of
the absorption parameters q(j ) on temperature.

7.5.4 Kikuchi Lines and Bands

The background between the Bragg-diffraction spots of a diffraction pattern
contains a structure that can be characterized as excess and defect Kikuchi
lines and bands (Fig. 7.26).

Excess and defect Kikuchi lines are formed by the following mechanism.
Electrons scattered diffusely by thermal diffuse or inelastic scattering can be
Bragg-reflected at lattice planes with reciprocal lattice vector g if the Bragg
angle is +0p or if the direction of incidence kj, lies on one of the Kossel
cones, which have an aperture of 90° — 0 and the g direction (normal to the
lattice planes) as cone axis (Fig. 7.27). The Bragg-reflected beam also lies on
the opposite cone in the plane defined by g and k:f] and results in a bright
excess Kikuchi line along the hyperbola in which the Kossel cone intersects
the plane of observation (diffraction pattern). The lines are approximately
straight owing to the low values of fg. On the other side, the Bragg reflection
decreases the intensity of the incident direction kj, and the intersection of
the incident Kossel cone with the plane of observation results in a dark defect
Kikuchi line. This mechanism therefore generates a set of corresponding excess
and defect Kikuchi lines separated by an angular distance 20g. The system
of Kossel cones behaves as though fixed to the crystal, which means that the
Kikuchi lines move if the crystal is tilted, whereas the position of the Bragg-
reflection spot is fixed at the plane of observation (angle 20p with the primary
beam), and the Bragg spots are visible only for a limited tilting range around
the Bragg position of the primary beam. In the Bragg position (excitation
error s = 0), the excess Kikuchi line coincides with the diffraction spot and
the defect line with the primary beam. The displacement between the Bragg
spot and the corresponding Kikuchi line can be used to measure the excitation
error.

Excess Kikuchi bands are formed in each scattering process between
the Bragg-reflection spots. As discussed in Sect. 7.4.1, the inelastically and
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Fig. 7.26. Electron-diffraction patterns of Si foils at £ = 100 keV with increasing
thickness (a) ¢ = 80 nm, (b) 800 nm, and (c) 1500 nm with the electron beam
parallel to [111]. Pattern (a) shows diffraction spots of the zero- and first-order
Laue zones; (b) shows defect and excess Kikuchi lines at medium angles and defect
Kikuchi bands at low angles. In (c), the center shows only Kikuchi bands, and the
region of excess and defect Kikuchi lines is shifted toward larger angles.

thermal diffusely scattered electrons are scattered again as Bloch waves, so
that a theorem of reciprocity can be established. A primary Bloch-wave field
has a larger scattering probability if there are antinodes at the nuclei. The
scattered intensity becomes proportional to [1*dz and depends on the
tilt parameter k,, which means that the whole intensity of large-angle scat-
tering including backscattering varies, as shown in Fig. 7.20b, if the direc-
tion of incidence is changed. If the rocking beam forms a raster, the signal
from a large-solid-angle detector designed to collect backscattered electrons
or forward-scattered electrons with scattering angles § > 5° — 10° generates
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an electron channeling pattern (ECP), well-known in scanning electron mi-
croscopy (SEM), with excess-band intensity distributions as in Fig. 7.20b.
When we observe a stationary electron-diffraction pattern, the direction
of the primary beam is fixed. The scattering of electrons into larger angles
depends on the Bloch-wave intensity at the nuclei, but the scattering prob-
ability will be large only when the Bloch-wave field of the scattered Bloch
wave also shows antinodes at the nuclei. The scattered intensity depends on
the observation angle and the Bloch-wave intensity that would appear if the
scattered Bloch wave struck the crystal opposite the direction of observation.
The whole angular distribution of scattered electrons is therefore not uniform
but modulated by a system of excess Kikuchi bands. These can be seen at
large scattering angles in diffraction patterns of thin single crystals and can
also be observed as electron backscattering patterns (EBSP) recorded on a
screen near the specimen in a scanning electron microscope (Sect. 8.1.4).
The excess Kikuchi bands can also show a contrast reversal that apparently
converts them into defect bands (Fig. 7.26b,c) by the following mechanism
[7.17, 7.101]. A set of excess and defect Kikuchi lines can be observed so long
as more electrons hit the lattice planes from one side than from the other (Fig.
7.26b). With increasing foil thickness, this will be the case for large scattering
angles, for which the scattered intensity distribution decreases more rapidly
with increasing angle (Fig. 7.26¢). For small scattering angles, however, the
angular distribution is so diffuse and uniform that equal numbers of electrons
hit the lattice planes from both Kossel cones, and cancellation of the pattern
of excess and Kikuchi lines is to be expected. However, the resulting intensity
distribution will be a defect Kikuchi band due to the influence of anomalous
absorption. For a direction of observation near the Kossel cone, the intensity
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will be the sum of the intensities of the incident and Bragg-reflected beams;
that is, 7'+ R for the two-beam case and X1, for the n-beam case. The depen-
dence of this sum on the tilt angle has already been discussed in Fig. 7.20a and
results in a defect band. Only in kinematical theory is T'+ R = const, which
results in the cancellation of Kikuchi-line contrast without the formation of
defect Kikuchi bands.

These are the basic mechanisms — in a somewhat simplified presenta-
tion — whereby excess and defect Kikuchi lines and bands are formed; their
appearance in diffraction patterns depends on the distribution of the diffusely
scattered electrons. With increasing foil thickness, the central region shows
Bragg spots, pairs of excess and defect Kikuchi lines, and excess Kikuchi bands
extending to large scattering angles. This central region expands with increas-
ing thickness to larger scattering angles for thin films [7.102, 7.103, 7.104],
and excess and defect Kikuchi lines are observed in only that angular region
for which the scattered intensities decrease strongly and different intensities
hit the two sides of the lattice planes. This is also the region in which the
central excess bands show a contrast reversal, which converts them to de-
fect Kikuchi bands, produced by the mechanism discussed above. More de-
tails about the attempts to describe this phenomenon quantitatively are to
be found in [7.28, 7.101, 7.105, 7.106, 7.107, 7.108, 7.109, 7.110, 7.111]. The
study of Kikuchi-line patterns from high-order Laue zones (HOLZ patterns)
is described in Sect. 8.3.4.

7.5.5 Electron Spectroscopic Diffraction

An electron spectroscopic diffraction (ESD) pattern can be obtained with a
diffraction image at the entrance plane of an imaging energy filter (Sect. 4.6.4).
The advantages of energy filtering of diffraction patterns from amorphous and
polycrystalline specimens have already been described in Sects. 7.5.1 and 7.5.2.
At high energy losses, amorphous and crystalline specimens show a diffuse ring
caused by Compton scattering (Sect. 5.2.3). The method of angle-resolved
EELS allows us to image a two-dimensional map of diffraction intensity in
an AE—0 plane by selecting a line across a diffraction pattern with a slit
in the filter entrance plane (Figs. 5.12). The zero-loss filtering of CBED and
LACBED patterns (Sects. 8.3 and 8.4) allows a better quantitative analysis to
be made. Here, some typical effects and applications of ESD on single-crystal
specimens are reported.

Zero-loss filtering can increase the contrast of weak reflections, such as
superlattice reflections, by removing the inelastic background. This makes it
easier to adjust dark-field images on axis. The streaks caused by electron-
phonon scattering (Sect. 7.5.3) are increased in contrast. With increasing
thickness, these streaks also appear in multiple plasmon losses as a result
of elastic-inelastic multiple scattering; they become more diffuse because of
the convolution with the angular distribution of plasmon losses. The back-
ground of plasmon and other low-energy losses near the Bragg spots can be
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Fig. 7.28. Series of electron spectroscopic diffraction (ESD) patterns of a 111-
oriented 50 nm Si foil: (a) unfiltered, (b) AE = 0 eV, (c) 16 eV, (d) 100 eV,
(e) 1800 eV, and (f) 2000 eV.

particularly harmful if the intensities and positions of the reflections are to be
analyzed quantitatively or if weak reflections surround very strong reflections,
as is the case in large-unit-cell crystals.

The various contributions of inelastically scattered electrons to the in-
tensity of single-crystal diffraction patterns can be seen in a series of elec-
tron spectroscopic diffraction (ESD) patterns at increasing energy losses
[4.112, 7.81, 7.112, 7.113]. Figure 7.28a shows the unfiltered diffraction pat-
tern of a 50 nm 111-oriented Si foil. The zero-loss filtered pattern (Fig. 7.28b)
sharpens the Bragg spots and enhances the excess Kikuchi lines through
the 220 reflections and the thermal diffuse streaks. This shows that Kikuchi
lines will also be produced by quasi-elastic thermal diffuse scattering. In the
plasmon-loss filtered pattern (Fig. 7.28¢) the Bragg spots become diffuse as a
result of the convolution with the angular distribution of inelastic scattering.
The increasing broadening with increasing energy loss (Fig. 7.28d) results in
a strong decrease of high-order diffraction for AE = 100 eV; the low-order
diffraction spots are totally blurred at energy losses of a few hundred elec-
tron volts. The ESD patterns at 1800 eV below (Fig. 7.28¢) and at 2000 eV
beyond the K edge (Fig. 7.28f) of silicon show excess Kikuchi bands. These
are generated by the same mechanism as described in Sect. 7.5.4 for large-
angle elastic scattering. Also, these high-energy losses are concentrated near
the nuclei. A large scattering intensity is observed only in directions where
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the Bloch wave of the inelastically scattered electron shows antinodes at the
nuclei. Beyond the Si K edge, the ESD pattern (Fig. 7.28f) not only shows
the expected jump in intensity compared with Fig. 7.28e but sharper Kikuchi
lines and dark HOLZ lines are also seen in the central region. Below the edge,
the background of the EELS contains a mixture of multiple high-energy losses,
whereas just beyond the edge the largest fraction comes from a single ioniza-
tion process. A further increase of foil thickness decreases the jump ratio of
the K edge; both the background and the region beyond the edge are pro-
duced mainly by multiple scattering. Both patterns then show defect Kikuchi
bands.
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Electron-Diffraction Modes
and Applications

Electron-diffraction methods are employed for the identification of substances
by measuring the lattice-plane spacings and for the determination of crys-
tal orientations in polycrystalline films (texture) or single-crystal foils. Extra
spots and streaks, caused by antiphase structures or plate-like precipitates,
for example, may also be observed when imaging a selected area.

The selected-area diffraction technique, in which an area of the order of
0.1-1 pm across is selected by a diaphragm in the first intermediate image, is
a standard method. The introduction of additional scan and rocking coils into
an instrument capable of producing an electron probe of the order of a few
nanometers renders micro-area diffraction techniques feasible. In particular,
convergent-beam electron diffraction (CBED) and the observation of high-
order Laue zone (HOLZ) lines inside the primary-beam spot provide further
information about the crystal structure. The charge-density distribution in
unit cells can be obtained by a best fit of CBED intensities. Lattice defects can
be analyzed by their influence on HOLZ lines. The overlap of convergent-beam
Bragg spots can be avoided by the technique of large-angle CBED (LACBED).

8.1 Electron-Diffraction Modes

8.1.1 Selected-Area Electron Diffraction (SAED)

The cone of diffracted electrons with an aperture of the order of a few tens of
mrad can pass through the small polepiece bores of the final lenses only if the
back focal plane of the objective lens that contains the first diffraction pattern
is focused on the screen. Figure 4.16 shows the ray diagram of this technique
[8.1, 8.2, 8.3]. A selector diaphragm of diameter d situated in the intermediate
image plane (magnification M ~ 20 — 50) in front of the intermediate or
diffraction lens selects an area of the specimen of diameter d/M. This area can
be chosen in the normal bright-field mode (Fig. 4.16a), in which the primary
beam passes through the objective diaphragm. When the excitation of the
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Fig. 8.1. Example of a selected-area electron diffraction (SAED) from a thin section
of an Al-Cu eutectic cut with a microtome. (b) (Al matrix) and (c) (AlCuz) contain
the SAED pattern of the circles indicated in (a).

intermediate lens is decreased, its focal length is increased and the diffraction
pattern in the focal plane of the objective lens can be focused on the final
screen after removing the objective diaphragm (Fig. 4.16b). The excitations
of the later projector lenses are unchanged. These lenses magnify either the
intermediate image or the diffraction pattern behind the intermediate lens.
Figure 8.1 shows an example of SAED from 1 pum diameter areas of Al and
Al;Cu in a section of an Al-Cu eutectic alloy cut with a diamond knife.

The diameter of the area selected cannot be decreased below 0.1-1 pm
owing to the spherical aberration of the objective lens. The intermediate im-
ages of the Bragg reflections (dark-field images) are shifted relative to the
bright-field image [8.4, 8.5] by a distance

As = (Ci0) — Az0,) M, (8.1)

as can be seen from (3.63), which depends on the defocusing Az and the
constant Cs (8, = 20 and 6p is the Bragg angle). It is of course possible
to compensate for the shift by a suitable choice of the defocus Az, but only
for one Bragg reflection, not for the whole diffraction pattern simultaneously.
The consequence is that Bragg reflections of high order with large 6, do not
come from the area that was selected in the bright-field mode. Thus, for
20 = 50 mrad and Cs = 1 mm, the shift is 0.125 pm. The diffraction angle 0,
decreases linearly with A as the electron energy is increased. A further selection
error can result if the position of the intermediate image is shifted when the
intermediate lens changes over from the imaging to the diffraction mode.
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Diffraction patterns from smaller areas can only be obtained by using the
rocking-beam technique (Sect. 8.1.2) or by producing a small electron probe
(Sect. 8.1.3).

The resolution d/Ad of an SAED pattern can be defined in terms of the
smallest lattice-spacing difference Ad that can be resolved and may be esti-
mated from the ratio Ar/r. Here r denotes the distance from a diffraction
spot to the center of the diffraction pattern in the focal plane of the objective
lens, » = 205 f = Af/d (f: focal length), and Ar is the diameter of the spot,
which is equal to the diameter 2q;f of the primary beam («;: illumination
aperture):

a4 _r _ A
Ad Ar 204d

Thus, for A = 3.7 pm (100 keV), d = 0.1 nm, and a; = 0.1 mrad, we find
d/Ad = 200. The resolution can be increased only by reducing «;, but this
reduces the pattern intensity.

The spherical aberration of the objective lens can cause barrel and spiral
distortion of the SAED pattern [8.6, 8.7, 8.8] but this is, however, smaller than
1%; an elliptic distortion can arise due to astigmatism of the intermediate lens.
The most severe distortion is caused by the projector lens. For the accurate
determination of lattice spacings d, the diffraction (camera) length L (Sect.
8.2.1) must be calibrated by using a diffraction standard.

(8.2)

8.1.2 Electron Diffraction Using a Rocking Beam

A rocking beam with varying angle of incidence ~ in the specimen plane can be
generated by means of scanning coils situated between the specimen and the
final condenser lens. The following two diffraction techniques can be employed.

In the first technique, described by Fujimoto et al. [8.9], the specimen
area (0.2-4 pm) that contributes to the electron-diffraction pattern (EDP)
is defined by a selector diaphragm at the first intermediate image, as in the
SAED mode (Sect. 8.1.1). The lenses below the objective lens produce a mag-
nified image of the first EDP, formed in the focal plane of the objective lens.
When the incident beam is rocked, the primary beam and all of the diffrac-
tion spots shift, so that the diffraction pattern is scanned bodily across the
final screen plane. A small fixed detector diaphragm selects the direction in
the EDP that just coincides with the microscope axis. The detector signal
measures the electron intensity and is then fed to the intensity modulation
of a cathode-ray tube, which is scanned in synchrony with the rocking. The
theorem of reciprocity tells us that the intensity of the on-axis beam is the
same as in a stationary SAED technique [8.10].

The angular resolution of the recorded ECP can be varied by altering
either the diameter of the detector diaphragm or the magnification camera
length (L) of the EDP in the final screen plane, but it can never be smaller
than the illumination aperture of the rocking beam.
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This technique has the advantage that the EDP is recorded in the scanning
mode and that the spot intensities can therefore be displayed directly, by the
Y-modulation technique, for example [8.11, 8.12]. Furthermore, the selection
error of SAED is avoided because all the beams recorded pass through the
microscope on-axis. The diameter of the selected area is, however, limited by
the diameter of the selector diaphragm, which cannot be smaller than 5 pm,
owing to charging and contamination.

In a second technique, described by van Oostrum et al. [8.13], a highly
magnified image (M > 100000) is formed on the final screen (detector plane).
The diameter d of the detector diaphragm selects a small area of the image,
which, back-projected into the specimen plane, can be much smaller than the
selected area in SAED (e.g., 3-10 nm for M = 100000 and d = 0.3-1 mm as
in [8.14, 8.15]).

The angular resolution is provided by the diaphragm in the focal plane of
the objective lens, which again cannot be smaller than 5 pym. If the primary
beam passes through this diaphragm, a bright-field image appears in the de-
tector plane. The primary beam is intercepted by the diaphragm if the beam
is tilted. A diffraction spot passes through the diaphragm if the tilt angle
v = 20p and can then generate a dark-field image in the detector plane. This
means that, during the rocking, a bright-field image is seen followed sequen-
tially by a series of dark-field images that correspond to different diffraction
spots. The dark-field images are not shifted toward the bright-field image as
they are with the SAED technique because all the beams recorded are on-axis.

In conclusion, we see that the Fujimoto technique can give a better angular
resolution but the area selected is limited by the diameter of the selector
diaphragm, whereas the van Oostrum technique can select smaller areas but
the angular resolution is limited by the size of the objective diaphragm.

8.1.3 Electron Diffraction Using a Stationary Electron Probe

The selection error of SAED can also be avoided by using small electron
probes. It was shown in Sect. 4.2.3 that electron-probe diameters of 2-5 nm
can be produced with a thermionic electron gun, whereas diameters less than
1 nm require a Schottky or field-emission gun. The smallest possible probe
diameter will be obtained with a large probe aperture «y, of the order of
about 10 mrad. Decreasing this aperture increases the probe diameter. It is
therefore impossible to obtain EDPs with sharp diffraction spots from areas as
small as 2-10 nm because apertures less than 1 mrad would be needed [8.16,
8.17]. However, the convergent-beam diffraction patterns described below are
in many points even more informative than conventional EDPs.

Figures 8.2a—c and 8.3a—c show how the EDP changes, from a spot pattern
to a convergent-beam and a Kossel pattern, as the electron-probe aperture oy,
is increased. A spot pattern as obtained by SAED requires o, < 0 (Figs. 8.2a
and 8.3a), so that the primary beam and the Bragg-reflection spots are sharp.
The system of Kikuchi lines and bands will not be affected by the illumination
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Stationary probe

Fig. 8.2. Electron-diffraction techniques that use a small electron probe. (a)
A Bragg-diffraction spot pattern as obtained by SAED, (b) a convergent-beam
electron-diffraction (CBED) pattern, (c) a Kossel pattern in which the intensity
at a point P is proportional to XI,, and (d) large-angle convergent-beam electron
diffraction (LACBED) obtained by raising the specimen a distance Az and selecting
the primary spot by a virtual diaphragm conjugate to a selected-area diaphragm.

aperture because they are normally generated by the cone of electrons diffusely
scattered inside the specimen, and the necessary angular divergence can also
be aided by any initial divergence (convergence) of the incident beam.
Increasing the aperture (o, < g, Figs. 8.2b and 8.3b) increases the Bragg-
spot diameter. The primary beam and the diffraction spots are extended to
circular discs with sharp edges if the cone of the illumination aperture is
sharply limited by a condenser diaphragm inside which the current density is
uniform. However, each point in the discs corresponds to one distinct direction
of incidence in the illumination cone. The intensity within the discs of the
primary beam and the diffraction spots varies owing to the variation of the
excitation errors, and the intensity distribution inside the discs corresponds
to a two-dimensional index rocking curve of the dynamical theory of electron
diffraction. This convergent-beam electron-diffraction (CBED) technique was
introduced by Kossel and Mollenstedt [8.19, 8.20] and has become a routine
method for electron diffraction of small areas with an electron probe. The
information obtainable from a CBED pattern will be discussed in Sect. 8.3.
An undisturbed CBED pattern can be expected only if there is no strong
lattice distortion or crystal bending inside the irradiated area. For this reason,
CBED patterns can normally be recorded only with a small electron probe. A
limitation can be the rapid growth of a contamination needle on the irradiated
area, which can be reduced either by specimen heating [8.21] or specimen
cooling [8.22]; see also the discussion of contamination in Sect. 11.4.2.
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Fig. 8.3. Stationary-probe electron-diffraction patterns of the same specimen area
of a 150 nm thick Cu foil with the three illumination conditions of Figs. 8.2a—c. (a)
ap < OB, primary beam (left) and 220 Bragg-diffracted spot (right). (b) oy < 08,
CBED pattern with the spot circles of the primary beam (left), showing the anom-
alous absorption, and that of the Bragg reflection (right), showing the symmetric
pendelldsung fringes. (c) ap > 6, Kossel pattern with an intensity distribution
proportional to X1, [8.18].

When a highly coherent field-emission source is used, interference fringes
can be observed where neighboring convergent discs [8.23, 8.24, 8.25, 8.20]
overlap. The phase difference between diffracted waves can be read from the
relative positions of the fringes. Energy filtering increases the contrast.

A further increase of probe aperture, o, > g (Fig. 8.2¢), increases the
overlap of the extended diffraction spots [8.27, 8.28]. The intensity at a point
P of the Kossel pattern does not consist only of the contribution from the
primary-beam direction Py. In addition, the directions P, contribute with
the corresponding Bragg-diffraction intensities. The intensity Ip = X1,
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including g = 0, is a multibeam rocking curve. According to Fig. 7.20a, there
is cancellation of the pendellésung fringes, but an intensity distribution in
the form of defect Kossel bands persists (Figs. 8.3¢c and 8.6a), caused by the
dependence of anomalous transmission on the excitation error, see also (7.83).
Residual pendellosung-fringe contrast in Fig. 8.3c can result from buckling of
the Cu foil inside the irradiated area.

The following nomenclature is proposed [8.29] to distinguish between
Kikuchi and Kossel bands. In EDPs with Kikuchi bands, the angular di-
vergence is caused by scattering in directions between the diffraction spots,
whereas Kossel bands are produced by the convergence of the external probe
aperture. Kossel patterns without diffraction spots can be obtained for all film
thicknesses, whereas Kikuchi bands appear only in thicker specimens.

In the standard CBED method, the maximum angle of the central circu-
lar disc corresponds to the value of 20p for the nearest low-indexed reflection
so as to prevent any overlap of the discs. For large unit cells especially, this
is a major handicap. To get two-dimensional rocking curves over a large an-
gular range without overlap of the discs of Bragg reflections, the technique
of large-angle convergent-beam diffraction (LACBED) introduced by Tanaka
[8.30] can be employed (Fig. 8.2d). When a stationary electron probe is fo-
cused on the specimen plane with a large convergence angle, an image of
this spot can be seen in the normal imaging mode. When the specimen is
raised by a distance Az, additional spots are generated by Bragg reflection
and form a small spot-diffraction pattern, not as is usually the case in the
focal plane of the objective lens but now in the specimen plane. One of these
spots can be selected in the image mode by a diaphragm, which is best placed
in the conjugate intermediate image by adjusting a 5 pum selector diaphragm
normally used for SAED. On switching the intermediate (diffraction) lens
to the diffraction mode, the large-angle convergent-beam (LACBED) pattern
appears with the angular width of the primary cone. Figure 8.4a shows an
energy-filtered LACBED pattern obtained from Si along the (331) zone axis
and Fig. 8.4b a computer simulation of the pendellésung fringes of the FOLZ
reflections and the location of the HOLZ lines matched to the experimental
pattern in Fig. 8.4a for an acceleration voltage 121.7 keV.

If a small selector diaphragm and a large Az are used, the diaphragm
selects only small scattering angles (down to ~ 0.1 mrad) around the selected
spot. A much smaller fraction of the elastic and inelastic diffuse background
then contributes to the LACBED. This can be seen as a kind of energy filtering
[8.31], though real zero-loss filtering generates a further significant increase of
contrast.

This geometry has the consequence that a larger area of 100-1000 nm
diameter contributes to the LACBED. This can be an advantage for radiation-
sensitive specimens because the current density is orders of magnitude lower
than for CBED with the electron probe focused on the specimen. Otherwise,
the pattern is an overlap of real and reciprocal space information. Each point
in the LACBED pattern corresponds simultaneously to a distinct specimen
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Fig. 8.4. (a) Energy-filtered LACBED pattern from Si along the (331) zone axis. (b)
Computer simulation matched to the experimental pattern (a) for an acceleration
voltage of 121.7 keV.

point and distinct excitation error s,. Applications of this technique will be
discussed in Sect. 8.3.

These results show that information about the crystal structure does not
necessarily require the use of small electron-probe apertures o, for a diffrac-
tion pattern with Bragg spots; small electron probes with large apertures
are more suitable for CBED, LACBED, and Kossel pattern studies. A con-
ventional spot pattern does not always provide the fullest information about
crystal structure and symmetry as shown in Sect. 8.3.

8.1.4 Electron Diffraction Using a Rocking Electron Probe

Electron-probe diffraction patterns can be displayed on a CRT by post-
specimen deflection of the diffraction pattern across a detector diaphragm
or by rocking the electron probe by means of scan coils placed in front of
the specimen (Fig. 8.5a). However, it is not easy to avoid shifting the elec-
tron probe during rocking. The spherical aberration of the probe-forming lens
causes an unavoidable shift, and the electron probe moves along a caustic
figure. This shift can be partially compensated for by adding a contribution
to the deflection-coil current proportional to 6% [8.32], and the shift can be
kept below 0.1 pym in TEM. The rocking causes the EDP to move across the
detector plane, like the rocking beam in the Fujimoto technique (Sect. 8.1.2).
If a small probe aperture a, < g is used, a spot pattern will be recorded by
a small detector aperture (ag < 0g) as the theorem of reciprocity shows; with
aq < 0, a convergent-beam pattern is obtained, and with aq > 6g, a Kossel
pattern. However, to avoid the shift caused by spherical aberration, it is bet-
ter to use a stationary probe and postspecimen deflection. The advantage of
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Rocking probe Fig. 8.5. Electron-diffraction techniques that use
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rocking the electron probe is that types of information not available from a
conventional EDP become accessible. Figure 8.6a shows a stationary electron-
probe Kossel pattern of the 111 pole of a Si foil. Using a rocking probe and
a large detector aperture, a similar pattern can be recorded with the cone
of electrons scattered through the detector aperture (Fig. 8.6b). These dia-
grams contain defects due to anomalous electron transmission. Suppose now
that the annular detector is placed below the specimen [4.68]. Electrons scat-
tered through large angles, normally not used in TEM, will be collected, and
a contrast reversal is observed (Fig. 8.6¢). The diagram now contains excess
Kikuchi bands generated by direct scattering of electrons out of the Bloch-
wave field into larger angles. The pattern is the same as that recorded with
backscattered electrons (BSE) (Fig. 8.6d) known as an electron channeling
pattern (ECP) in SEM. The only difference is that the noise is larger in the
BSE pattern (Fig. 8.6d) than in the pattern recorded with (Fig. 8.6¢) be-
cause many fewer electrons are backscattered than forward scattered through
large angles; we recall that the Rutherford cross section varies with angle as
cosec*(60/2).

If two semiconductor detectors are used, one annular in shape, the other
occupying the central region, the first will record a Kossel pattern and the
second a spot pattern [8.33, 8.34]. The two signals can be added or subtracted
to obtain a Kossel pattern on the CRT with superposed bright or dark dif-
fraction spots. This facilitates accurate determination of orientation because
the position of the Kossel bands relative to the spots and the position of the
central beam in the diagram can be established with high accuracy.

Another interesting variant is the double-rocking method [8.35, 8.36, 8.37]
(Fig. 8.5b). A second postspecimen scan-coil system is arranged in such a way
that the primary beam falls on the detector at all rocking angles. A convergent-
beam pattern can be obtained for the primary beam over a very much larger
angular range undisturbed by the overlap of other Bragg reflections. In a
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Fig. 8.6. Electron diffraction patterns near the 111 pole of an Si foil. (a) Stationary-
probe Kossel pattern recorded with the transmitted electrons. (b) Rocking-probe
diffraction pattern with the transmitted electrons, (¢) with the transmitted electrons
scattered through large angles (f > 10°), and (d) with the backscattered electrons
(6 >90°) [8.18].

similar fashion, a convergent-beam pattern can be obtained from a Bragg
reflection if the detector diaphragm is shifted and only the diffracted intensity
I, recorded (see also zone-axis pattern in Sect. 8.1.5¢). This technique is the
rocking variant of LACBED.

8.1.5 Further Diffraction Modes in TEM

(a) Small-Angle Electron Diffraction Small-angle x-ray diffraction is suc-
cessfully used for the investigation of periodicities and particles of the order of
10-100 nm. This method can also be used with electrons [8.38]. Diffraction at
spacings of d = 100 nm requires a primary beam with an illumination aperture
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Fig. 8.7. Small-angle electron-diffraction patterns (b and c) of a shadow-cast col-
lagen specimen (a) showing the periodicities of the collagen fibers [8.38].

smaller than the diffraction angle: as < A/d = 0.03 mrad for E = 100 keV.
With a double-condenser system, «; = 0.01 mrad can be achieved (Sect. 4.2.1)
and the neighborhood of the primary beam can be magnified by the projector
lens (thereby increasing the effective camera length to several meters). An
extensive account of small-angle electron diffraction has been given in [8.39)].

A typical application of this method is the study of evaporated films with
isolated crystals, showing diffuse rings with diameters inversely proportional
to the mean value of the crystal separation [8.40]. Further applications involve
periodicities in collagen (Fig. 8.7), conglomerates of latex spheres and virus
particles [8.41, 8.42], catalase [8.43], and high polymers [8.44]. Organic spec-
imens have to be coated with a metal conductive layer to prevent charging,
which would perturb the primary beam. Periodicities can also be resolved in
a micrograph, and the same information is obtainable by laser (Fraunhofer)
diffraction on the developed film or plate (Sect. 6.4.7) or by Fourier transfor-
mation of digitized images. Small-angle diffraction can also be used in Lorentz
microscopy (Sect. 6.8.2a) because the primary beam is split by the Lorentz
force inside the magnetic domains.

(b) Scanning Electron Diffraction For the quantitative interpretation of
EDPs, it can be useful to record the intensities directly by scanning the dif-
fraction pattern across a detector diaphragm (Grigson mode). The detector
may be a Faraday cage, a semiconductor, or a scintillator—photomultiplier
combination [7.79, 8.45]. This method also can be used for energy filtering of
an EDP [7.80] by means of a retarding-field filter [7.79, 8.47] or a magnetic
prism spectrometer and is of special interest for ultrahigh-vacuum experi-
ments [8.48]. The EDP can also be recorded digitally by means of a CCD
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Fig. 8.8. (a) Schematic ray diagram for recording a high-energy reflection of an
NaF film evaporated on a (100) NaF cleavage plane of 270°C (H. Raether).

camera or an image plate; the beam-rocking methods described in Sect. 8.1.2
can likewise be employed [8.49].

(c) Reflection High-Energy Electron Diffraction (RHEED) Bulk ma-
terial can be investigated by allowing the electron beam to fall obliquely on the
specimen at a glancing angle 6 < 0 (Fig. 8.8). The electrons penetrate only a
few atomic layers into the material. Because the interaction volume is so thin,
the reciprocal-lattice points will be drawn out to needles normal to the surface,
and the Bragg spots will be elongated. Plane surfaces also show Kikuchi lines
and bands (Fig. 8.9). The influence of refraction, which shifts the Bragg spots
to smaller Bragg angles, has to be considered. The method is as sensitive to
surface layers as low-energy electron diffraction (LEED). The surface can be
cleaned by heating or by electron and/or ion bombardment [8.50]. Charging
effects can cause problems with insulating materials. They can be avoided by
irradiating the specimen with 200-1000 eV electrons from a separate source,
which increases the secondary-electron production and avoids the buildup of
a large negative charge, or by heating (increasing electrical conductivity).

Imaging of the surface by selected Bragg-diffraction spots is used in re-
flection electron microscopy (REM, Sect. 9.7). Micro-area diffraction can be
achieved by employing a nanometer probe in a STEM [8.51], and this tech-
nique can also be used at low electron energies (0.5-20 keV) [8.52].

(d) Electron-Backscattering Pattern and Electron-Channeling
Pattern Increasing the angle 6 between beam and specimen (Fig. 8.8a)
to 5°-30° and increasing Py to 20°-30° yields electron-backscattering pat-
terns (EBSP) [8.53] that contain excess Kikuchi bands (Fig. 8.9). Increasing
0 still further causes contrast reversal in defect bands for small take-off angles
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Fig. 8.9. Electron-backscattering pattern (EBSP) with excess Kikuchi bands of a
germanium single crystal recorded with 100 keV electrons striking the crystal with
an angle of 10° (see Fig. 8.8a).

[8.54, 8.55]. This is analogous to the extension of defect bands in the central
area of a transmission EDP with increasing thickness (Sect. 7.5.4, Fig. 7.26).

Electron-backscattering patterns can be obtained in TEM by positioning
the specimen about 10 cm above the final screen and photographic plate and
deflecting the electron beam on the specimen by means of coils situated below
the projector lens [8.55].

The formation of an electron-channeling pattern (ECP) [8.56, 8.57] by
backscattered or forward-scattered electrons (Fig. 10.66¢,d) is related to that
of EBSP by the theorem of reciprocity [8.55, 8.58].

(€) Zone-Axis Pattern (ZAP) In convergent-beam electron diffraction
(CBED) (Sect. 8.3), each point corresponds to a particular direction of elec-
tron incidence inside the convergent electron probe. If a crystal foil is bent
two-dimensionally by distortion and the electron beam hits the foil nearly
parallel to a low-indexed zone axis, then each point of the foil in a bright-field
image corresponds to another direction of incidence of the parallel electron
beam relative to the lattice planes (Fig. 9.3). If the two main radii of curva-
ture of the foil have the same sign and equal order of magnitude (dome- or
cup-shaped), the bend contours (Sect. 9.1.1), which form a zone-axis pattern
(ZAP), exhibit the same intensity distribution as a CBED pattern. There is
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also a resemblance to the double-rocking technique (Sect. 8.1.3 and Fig. 8.5b)
because the tilt of the foil can be larger than the Bragg angles, resulting in
overlap of the reflection circles in CBED but not in the ZAP.

Unlike CBED, which produces a two-dimensional rocking curve in Fourier
space (diffraction plane), the ZAP is a real-space phenomenon. Whereas a
pattern is formed by an electron probe of a few nanometers in diameter, a
ZAP extends over a few micrometers. Zone axis patterns contain a lot of
information about the crystal symmetry [8.59, 8.60, 8.61] and can be used to
determine the space group [see also discussion of the high-order Laue-zone
patterns (HOLZ) in Sect. 8.3.4]. If the incident electron energy is varied, the
intensity distribution near the zone axis changes and gives information about
Bloch-wave channeling and the critical voltage [8.61, 8.62, 8.63].

8.2 Some Uses of Diffraction Patterns
with Bragg Reflections

8.2.1 Lattice-Plane Spacings

Calculations of the lattice-plane spacing dpx; from the Bragg condition (7.11)
require a knowledge of the electron wavelength A (3.1) and the Bragg angle 0.
Since g is small, the sine that occurs in the Bragg condition can be replaced
by the tangent in a first-order approximation,

g = 2sin 0 ~ tan(20g) = %, d ~ % , (8.3)

where r is the distance of the diffraction spot from the primary beam or the

radius of a Debye—Scherrer ring, and L is the diffraction (or camera) length.

For higher accuracy, a further term of the series expansion can be included,
AL 3 /1r\2

== [1+8(L) +] (8.4)
However, this formula is valid only if the diffraction pattern is magnified
without any barrel or pin cushion distortion. The pin cushion distortion of
the projector lens (Sects. 2.3.4 and 8.1.1) contributes a further term in r? so
that a value larger than 3/8 may be found for the constant in (8.4) during
calibration [8.8].

The diffraction (or camera) length L cannot be measured directly. The
product AL must therefore be determined by calibration with a substance of
known lattice constant. Only substances with the following properties should
be used for calibration:

1. many sharp rings with known dp;;

2. chemically stable and no change of lattice parameters under electron ir-
radiation;

3. correspondence with x-ray lattice constant;

4. easy preparation.
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Table 8.1. Calibration standards for electron diffraction.

Standard Lattice type Lattice constant (nm) Ref.

LiF NaCl a = 0.4020 [8.69]

TIC1 CsCl a = 0.3841 [8.64, 8.70]

MgO NaCl a = 0.4202 [8.70]

ZnO Wurtzite a = 0.3243 [8.71]
c=0.5194

Au fee a = 0.40783

Si Diamond a = 0.54307 [8.68]

Table 8.1 contains some suitable calibration substances and their lattice
parameters. The value for TICI has been compared with the x-ray data in a
high-precision experiment (Ad/d = 43 x 107°) [8.64].

When single-crystal standards are used, the reciprocal-lattice points have a
needle-like shape parallel to the surface normal (Figs. 7.9 and 7.10a). If the
crystal normal is inclined to the electron beam, the intersections of these
needles with the Ewald sphere can alter the positions of Bragg-diffraction
spots [8.65].

Tilt coils for the electron beam can be used for the calibration of diffraction
patterns because the deflection angle 6 is proportional to the coil current. The
diffraction pattern is shifted by L@ [8.66, 8.67]. Double exposures with known
and previously calibrated 6 allow the distortion of the EDP to be determined.
Alternatively, the lattice spacing can be measured directly in the microscope
with an accuracy of 0.1% by recording the 2 and y coil currents needed to
bring the diffracted beam on-axis [8.68].

8.2.2 Texture Diagrams

For many polycrystalline specimens, the distribution of crystal orientations is
not random; instead, one lattice plane may lie preferentially parallel to the
specimen plane. In this plane, however, the crystals are rotated randomly
around a common axis F = [mno], the fiber axis of the fiber texture.

The existence of this fiber axis means that the reciprocal-lattice points are
distributed around concentric circles centered on the fiber axis (Fig. 8.10a).
(They would lie on a sphere for a totally random distribution.)

If the electron beam is parallel to the fiber axis, the Ewald sphere intersects
the circles and a Debye—Scherrer ring pattern is observed that does not show
all possible hkl but only those that fulfill the condition

(hkl)[mno] = hm + kn 4+ lo = 0. (8.5)

The limitation of the number of observable rings can mimic extinction
rules |F|? = 0. As a consequence, wrong conclusions may be drawn about
the crystal structure. In a weak fiber texture, the fiber axis will be no more
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Fig. 8.10. (a) Distribution of the g vectors of the crystallites in reciprocal space
for foils with a fiber texture with [mno] as fiber axis. (b) Intersection of the Ewald
sphere (— — —) with these rings resulting in sickle-shaped segments of the Debye—
Scherrer rings. (¢) Relations between the angles (E: electron-beam direction, N:
intersection of Ewald sphere and reciprocal lattice, F: fiber axis).

Fig. 8.11. (a) Electron-diffraction pattern at normal incidence of an evaporated
Au film with a weak (111) fiber texture and (b) the same specimen tilted 45° to the
electron beam showing a weak dependence of the ring intensities on the azimuth.
(c) Strong fiber texture of an evaporated Zn film tilted at 45° to the electron beam.

than a preferential direction; all possible rings now appear but with the wrong
intensity ratios. The diffraction pattern of an evaporated gold film (Fig. 8.11a),
for example, shows a 220 ring that is more intense than would be expected
from a random distribution.

A fiber texture can be recognized clearly if the direction of electron inci-
dence E is tilted through an angle g relative to the fiber axis F; in practice, the
specimen normal is tilted relative to the electron beam in a goniometer stage.
The intersections of the Ewald sphere with the concentric circles then become
sickle-shaped (Fig. 8.10b), as can be seen for the weak fiber texture of a gold
film in Fig. 8.11b and for the stronger texture of a zinc film in Fig. 8.11c. The
sickles become narrower for a larger tilt angle § = 45° — 60°. The texture
should be most clearly detectable with 8 = 90°, but this is possible only in a
RHEED experiment (Sect. 8.1.5).
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Quantitative results about the fiber axis can be obtained by measuring the
azimuths ¢ of the centers of the sickle-shaped ring segments [8.72, 3.17]. The
intersection of the plane that contains the directions E and F with the Ewald
sphere defines a direction F’ in the diffraction pattern that gives the origin
of § (Fig. 8.10b). The angle p between (hkl) and [mno] can be calculated by
evaluating their scalar product. The hkl are obtained from the ring diameter.
For the spherical triangle FEN in Fig. 8.10c, with v = 90°, we have

cos p = cos 3 cosy + sin siny cos § = sin 3 cos d. (8.6)

For known values of the tilt angle § and azimuth §, the value of cos p can
be calculated and compared with theoretical values for different possible fiber
axes. A procedure for noncubic crystals is described in [8.74, 8.75]. Measure-
ment of the azimuthal distribution of the ring intensities can be used for the
quantitative characterization of a texture [8.45].

8.2.3 Crystal Structure

The method described for measuring lattice-plane spacings dpy; can be used
for direct comparison of different substances. If the chemical composition is
known or has been established by x-ray microanalysis or EELS, the crystal
structure can be identified by comparing the spacings with tabulated x-ray
values of the dpg; A.S.T.M. Index or using the search/match programs de-
veloped for electron diffraction listed in [8.46]. However, a problem is that
the dpx; cannot be measured with an accuracy better than about 1% and the
results may fail to coincide with the tabulated data. Only in the case of a
standard (evaporated film or small particle, Table 8.1) at the same position
in the specimen plane can accuracies of 0.1% be achieved. In single-crystal
EDPs, the symmetry of the spot diagram, the extinction rules, and the angles
between the diffraction spots can be used for a further identification of the
structure.

The complete determination of crystal structure by Fourier synthesis us-
ing electron-diffraction patterns is superior to x-ray analysis if the material
under investigation exists in only small quantities or produces diffuse x-ray
diffraction because the particles are small. In x-ray crystal-powder diffrac-
tion patterns, the Debye—Scherrer rings already begin to broaden for crystals
smaller than 100 nm. This broadening can be detected in EDPs only when
the crystals are smaller than 5 nm.

However, Fourier synthesis requires exact values of the reflection intensi-
ties, and the following difficulties are encountered when using conventional
electron-diffraction patterns with Bragg spots:

1. The transition from the kinematical to the dynamical theory is significant

for thicknesses or dimensions as small as 5 nm.

Forbidden and weak reflections can be excited by multiple diffraction.

3. In small particles or small irradiated areas, only a few reflections, for which
the reciprocal-lattice points are near the Ewald sphere, are excited.

o
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4. Foils of large area are often bent and exhibit Bragg-spot intensities that
depend randomly on the fraction of the irradiated area that contributes
to the Bragg reflection.

Methods have been described for obtaining quantitative values of the struc-
ture factors |F(6)|? from polycrystalline ring and texture patterns for subse-
quent Fourier synthesis of the atomic positions in the unit cell [3.17, 8.74, 8.75].
These methods assume that the kinematical theory is completely valid and
that there is no influence on the intensity of high orders of a systematic row
(see, e.g., Fig. 7.24). In consequence, the results have to be interpreted with
care [8.76]. A correction using the Blackman formula (7.94) has been applied
to NizC, for example [8.77]; see also [8.78].

The problems in determining crystal structure from electron-diffraction
patterns with Bragg spots is discussed in [8.79, 8.80], and a method is de-
scribed for measuring the integrated intensity of Bragg spots. Each diffrac-
tion spot is expanded to a square by a pair of deflection coils, which allows
the integrated intensity to be determined more easily by photometry. It has
also been suggested that the specimen should be oscillated around an axis in
the specimen plane to average over the reflection range of a reciprocal-lattice
point [8.81]. Vincent and Midgley have proposed to rock the beam conically
around the optic axis with a double-rocking technique [8.82]. Recent progress
is discussed in [8.83].

Thin crystal lamellae are often parallel to the specimen plane. The Bragg
spots around the primary beam are an “image” of the zero-order Laue zone
(HOLZ) of the reciprocal lattice. If the Bragg spots in high-order Laue zones
(HOLZ) are regarded as a two-dimensional net, this net can be continued to
the origin of the reciprocal lattice. This results in an overlap like that seen in
Fig. 7.7. The diameters of the high-order Laue zones (Sect. 8.3.4) can be used
to extract information about the lattice-plane spacings normal to this plane.
A goniometer that provides tilt angles up to £45° and adjustment of the tilt
axis with an accuracy of 0.1-1 um permits us to explore the three-dimensional
structure of the reciprocal lattice [8.84, 8.85, 8.86]. It will be useful to rotate
the crystal around the specimen normal, so that a systematic row is parallel to
the tilt axis. In most cases, the unit cell can be reconstructed with only a few
tilts, for which the electron beam is again parallel to a zone axis. If necessary,
a further tilt around another row can be performed [8.87, 8.88, 8.89).

For complete structure analysis, not only should a goniometer be used but
also convergent-beam diffraction (Sect. 8.3) to get information about the point
and space group and to measure the lattice-potential coefficients V; and the
crystal thickness from the spacing of the pendellésung fringes (Sect. 8.3). An
electron micrograph contains information about the crystal size and lattice
defects that can be included in the analysis of EDP. For thin crystals (t <5
nm), it may be possible to resolve the projected lattice structure directly
(Sect. 9.6).
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X-ray diffraction is influenced by the electron-density distribution of the
atomic shell and electron diffraction by the screened Coulomb potential of
the nuclei. The scattering amplitudes of single atoms are proportional to Z
for x-rays (5.33) and to Z2/3 for electrons (5.34). The difference between light
and heavy atoms is smaller for electrons than for x-rays. Light atoms can be
localized better in the presence of heavy atoms [8.90, 8.91].

The different scattering mechanisms for x-rays and electrons can be ob-
served with KCI, for example. Both elements have the electron configuration
of argon, and the scattering amplitudes for x-rays are equal; the structure
amplitude 4(fx — fc1) therefore vanishes for all hkl odd (Sect. 7.2.2). In elec-
tron diffraction, the nuclear charges are different, so that for odd values of
hkl, the amplitude is weak but not zero, whereas the amplitude for hkl even,
4(fx + far), is strong [8.92].

8.2.4 Crystal Orientation

A knowledge of the exact orientation of crystals is important for investigating
lattice defects and for establishing the relative orientations of different phases
of the matrix and precipitates.

Many diffraction spots are observed if the foil is very thin, so that the
reflection range of the reciprocal-lattice points is enlarged, or if the foil is
bent. Both effects limit the accuracy of orientation determination. For this,
the diffraction spots R1, Rg, ... at the distances r,, from the central beam O
are used to calculate d,, by taking the product AL from a calibration pattern
(Sect. 8.2.1). When the lattice structure and lattice constant are known, the
corresponding reciprocal-lattice points g,, = (hn, kn,l,) can be indexed. For
cubic crystals, the ratio method can be applied by using

r%_h%—kk%-‘-l% 8.7

R ®.7)
From a table of values of this ratio for all possible combinations of |g;| and
|go|, the indices of both reflections can be identified without knowing AL.
To be sure that spots have been indexed with the correct signs, agreement
between the observed angle ays between OR; and ORs and the theoretical
value,

cosag — 192 _ hiho + kika + l1lo (8.8)

F lalleol (7R A E)R(3 R ) '
must be checked. There may be small differences between measured and cal-
culated a2 [8.93]. The direction of the electron incidence (normal to the foil)

is parallel to the vector product of two reciprocal-lattice vectors
n || g, X gy = (kila — kaly,l1hy — lahy, hiky — hoky). (8.9)

The needle-like extension of the reciprocal-lattice points (Sect. 7.2.2) widens
the tilt range, which can be +10° for low-order reflections [8.94]. The orienta-
tion therefore becomes more accurate if a large number of reflections is used,
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especially high-order reflections at the periphery of the EDP. An accuracy of
+3° can then be achieved [8.95, 8.96]. Further improvements can be made by
considering the intensities of the diffraction spots [8.94].

The orientation determination becomes unique and more accurate if three
reflections g, g5, g5 are employed [8.97, 8.98]. A circle is drawn through the
three spots to establish the correct numbering of the sequence. If the central
beam O is inside the circle, the reflections are numbered counterclockwise;
otherwise they are numbered clockwise. With this convention, the determinant

hy ki 1y

91 (92%93) = 37 |ha bz o (8.10)
hs ks I3

should be positive. If it is not, the signs of the hkl must be reversed so that
for combinations of two g,, (8.8) is also obeyed. The direction of the normal
antiparallel to the electron beam is then given by the mean value

n | g, (g2 % g3) + 19217 (g3 % g1) + 193/ (91 x g2)- (8.11)

However, the orientation is not unique if all of the reflections happen to belong
to a single zone with odd symmetry [8.93, 8.99, 8.100]. After rotation of the
crystal through 180°, the same diffraction pattern is obtained. The orientation
can be established uniquely from a second EDP obtained after tilting the
specimen. A goniometer should also be used if the EDP does not contain two
or three diffraction spots convenient for calculation. With these precautions,
an accuracy of £0.1° can be attained.

A high accuracy is also obtained if the Kikuchi lines are used [8.93, 8.98,
8.101, 8.102]. A reflection is in the exact Bragg condition if the excess Kikuchi
line goes through the diffraction spot. If the distance from the line to the
reflection g, is a,, the tilt out of the Bragg position or the excitation error s, is

Aa Aa
:Ei, sg:gAﬁzﬁr—Z . (8.12)
Equation (8.11) implies exact Bragg positions. If the three terms are multi-
plied by a,, = (r, + 2a,)/r,, an accuracy of +0.1° is obtained [8.98]. For
determination of the relative orientation of two crystals from the Kikuchi
pattern, see [8.103].

The relative orientation between a matrix and coherent or partially coher-
ent precipitates can be determined by means of a transfer matrix that relates
the coordinate systems of the two phases [8.104, 8.105, 8.106].

The orientation can be checked by using specimen details that are visible
in the micrograph, provided that precipitates, stacking faults, or dislocations
are recognizable in different planes and show traces with measurable relative
angles. The traces of structures in octahedral planes can be used, for exam-
ple, to analyze the accuracy and uniqueness of the orientation determination
[8.107, 8.108].

In older microscopes, the diffraction pattern of a specimen area is rotated
relative to the image of the same area because of image rotation by magnetic

Af
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lenses. This rotation angle can be calibrated by using MoOj3 crystal lamellae.
These are prepared as smoke particles by heating an Mo wire in air with a
high a.c. current in an open high-vacuum evaporator and collecting the vapor
on a glass slide. After floating the crystal film on water and collecting it
on a formvar-coated grid, crystal lamellae parallel to the specimen plane are
obtained. The long edge of these crystals is parallel to [100]. The rotation angle
can be read from a double exposure of an image and the SAED pattern [8.109].

If the orientation of the diffraction pattern relative to the specimen is of
interest, the angle of rotation between specimen and micrograph also has to be
measured [8.110]. Kikuchi lines can again be used for this purpose [8.111]. The
system of Kossel cones is fixed to the crystal so that the Kikuchi lines move if
the specimen is tilted about an axis of known orientation. This direction can
be compared with the direction of shift of the Kikuchi lines.

8.2.5 Examples of Extra Spots and Streaks

Electron-diffraction patterns contain not only the Bragg-diffraction spots that
are expected from the structure of the unit cell of a perfect crystal but also ad-
ditional spots and streaks. Not every effect can be discussed here because they
vary from one specimen to another. A few typical examples will be described
that should provide some guidance in the discussion of particular diffraction
patterns.

Forbidden Reflections In dynamical theory, the intensity of a beam dif-
fracted at hkl lattice planes can be equal in magnitude to the primary beam.
A second Bragg reflection at lattice planes h'k’l’ can therefore produce re-
flections with indices h — h/,k — k’,l — I'. Spots that are forbidden by the
extinction rules for the structure amplitude F (Sect. 7.2.2) may therefore be
seen: an 00/ spot (I odd) in FeS, [8.112], a 222 spot in Ge by double exci-
tation at the allowed (111) and (311) lattice planes [8.113, 8.114], or a 00.1
spot in hexagonal cobalt coming from (h0.1) and (h0.0) [8.81]. This explana-
tion of forbidden reflections is restricted to particular crystal orientations with
relatively low values of s, (accidental interaction). In other situations, more
Bragg reflections can be excited simultaneously in dynamical theory, resulting
in more intense forbidden-reflection spots (systematic interaction).

Twins and Precipitates Twinning results from a mirror reflection of the
crystal structure about special lattice planes. For example, face-centered cubic
crystals show a twin formation with a mirror reflection about the {111} planes,
and Ag films evaporated on [100] cleavage planes of NaCl or Ni films electrolyt-
ically deposited on copper show an epitaxy with frequent twin lamellae. The
reciprocal lattice of these twin lamellae can be obtained from the reciprocal
lattice of the matrix by mirror reflection about the {111} planes, and addi-
tional reciprocal lattice points occur on one-third of the neighboring points in
the (111) directions. Extra spots are seen (Fig. 9.4), which are strongest if the



350 8 Electron-Diffraction Modes and Applications

foil is tilted through about 16° out of the [100] orientation [8.115]. Precipitates
with a fixed orientation to the matrix cause similar effects. In order to identify
the origin of extra spots, the specimen must be imaged in the dark-field mode,
selecting these extra spots only; the parts of the image that contribute to the
spot will then appear bright (Sect. 9.1.2).

Stacking Faults and Planar Precipitates The finite extension of a crys-
tal plate results in a needle-shaped extension of the reciprocal-lattice points
normal to the plate (Sect. 7.2.2). If the electron beam is parallel to this nor-
mal, the diffraction pattern is not changed and reflections will appear over a
larger tilt range. However, small shifts in the position of diffraction spots can
result from the intersection of the Ewald sphere with the needles (Fig. 7.9).
The needles at the reciprocal-lattice points create diffuse streaks in the dif-
fraction pattern if the angle between the normal to the crystal plates and
the electron beam is near 90°. The streaks can extend from one Bragg spot
to another and are normally sharper than streaks caused by electron—phonon
scattering (Sect. 7.5.3). The existence of streaks indicates that the specimen
contains planar faults such as high density, precipitate lamellae, or Guinier—
Preston zones, for example. Figure 8.12 shows an example of {111} stacking
faults in FesN particles (fce, a = 0.378 nm) extracted from an Fe-0.1wt. %N
alloy heat-treated to 370°C. In Fig. 8.12a, the {111} planes are inclined more
parallel to the foil, and in Fig. 8.12b their normals are inclined at an angle of
nearly 90° to the electron beam [8.116].

Ordered Alloys with a Superlattice Structure The most important ef-
fects will be discussed for the example of Cu-Au alloys. The alloy AuCus is
not ordered at temperatures 1" > 399°C, where it consists of a solid solution
with a random distribution of Au and Cu atoms at the sites of an fcc lattice.

Fig. 8.12. Selected-area electron-diffraction patterns of plate-like FesN precipitates
with stacking faults in the {111} planes in two different orientations: (a) {111}
oblique to the electron beam and (b) one of the planes parallel to the electron beam
[8.116].
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The diffraction pattern contains the reflections allowed by the extinction rules
for this lattice type (Table 7.1). Below the transition temperature, the alloy
acquires an ordered structure with the Au atoms at the corners and Cu atoms
at the face centers of the cubic unit cell. In this situation, F' = fay + 3fcy for
all even and all odd hkl and F' = fa, — fou for mixed hkl; for the latter, FF =0
in the nonordered structure. Additional Bragg spots therefore appear below
388°C, and this can be used for calibration of the specimen temperature, for
example (Sect. 11.1.1).

In an Au-Cu alloy (50:50 wt%), the transition from the random phase to
the ordered CuAu II phase, in which alternate (002) planes consist wholly
of Cu and wholly of Au atoms, occurs at 410°C. Every 2 nm, the Cu and
Au atoms change places, and the consequence is a domain structure with
antiphase boundaries (Fig. 9.17). The resulting unit cell is elongated with
a spacing of 4 nm, and the Bragg-diffraction spots are split in the (100)
directions by this increased spacing (Fig. 8.13) [8.117]. The antiphase structure
can be imaged in the dark-field mode in which one Bragg-reflected beam
and the surrounding superlattice reflections contribute to the image intensity.
Similar superlattice reflections can be observed in the EDPs of other alloys
(see, for example, [8.118]).

Below 380°C, the phase CuAu I is stable; this consists of a face-centered
tetragonal lattice (¢/a = 0.92), again with alternating (002) planes of Au and
Cu atoms but without the closely spaced antiphase boundaries of the CuAu
II phase. These boundaries are planar faults and can be identified by their
fringe pattern in electron micrographs (Sect. 9.3.3).

Fig. 8.13. Electron diffraction pattern of an ordered CuAu II film [8.117].
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8.3 Convergent-Beam Electron Diffraction (CBED)

8.3.1 Determination of Point and Space Groups

Symmetries in CBED patterns allow the point and space groups to be deter-
mined in defect-free regions not buckled inside the contributing area. Thirty-
one different diffraction groups can be distinguished by using the ten possible
two-dimensional point groups for the determination of the point symmetries of
the whole pattern, the dark Holz-line pattern inside the primary-beam CBED
disc, or mirror lines in Bragg reflections and in +g. Tables are published that
list these symmetries for the different diffraction groups, relate the 31 diffrac-
tion groups to the 32 crystal point groups, and give the expected diffraction
symmetries at any particular zone axis of each of the 32 crystal point groups
[8.119, 8.120, 8.121, 8.122, 8.123].

In x-ray crystallography, the crystal space group can be obtained from for-
bidden reflections whenever the structure factor I (Sect. 7.2.2) vanishes for a
crystal structure containing screw axes or glide planes. In electron diffraction,
forbidden reflections can often appear quite strongly due to multibeam dy-
namical theory. However, in well-aligned zone-axis CBED, dynamic extinction
conditions exist that appear as dark bars or crosses (Gjonnes-Moodie lines)
[8.124] and can be used to determinate the space group [8.123, 8.125].

8.3.2 Determination of Foil Thickness

The generation of CBED patterns has been described in Sect. 8.1.3. The in-
tensity distribution inside the circles of a convergent-beam diffraction pattern
(Fig. 8.3b) is none other than a stationary, two-dimensional rocking curve
(Sect. 7.3.4, Figs. 7.18 and 7.20), which contains information about the lo-
cal thickness ¢, and the extinction and absorption distances &, and 5!’], which
are reciprocal to the lattice potentials V, and V;, respectively. A necessary
condition for CBED is that the circles do not overlap, which restricts the
range of rocking. A larger rocking angle can be employed without overlap by
the double-rocking technique (Sect. 8.1.4), by studying ZAP patterns (Sect.
8.1.5), or by large-angle CBED (LACBED, Sect. 8.3.6).

The thickness can be obtained from the positions of the subsidiary minima
of the pendellésung fringes. The two-beam rocking curve (7.61) has minima if
the argument of the sine term is an integral multiple n of w. The corresponding
excitation errors s, are then given by

n? 1

@si=F-g o O

i”)z _1o 1 (8.13)

n) 2 n2g2 -
Plotting s? against n? [8.126] gives us ¢ from the slope and &, from the in-
tercept with the ordinate; alternatively, plotting (s, /n)? against 1/n? gives t
from the intercept with the ordinate [8.127]. In both cases, the correct start-
ing number n; of the first minimum has to be known. For a foil thickness
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between mé, and (m + 1)¢,, the appropriate value is n; = m + 1. If a wrong
value of np is used, the plot does not give a straight line. Errors arising from
the two-beam case can be decreased by exciting reflections equal to or higher
than 200, 220, and 311 for Al, Cu, and Au, respectively [8.128].

However, the two-beam case can never be perfectly realized, and many-
beam calculations are necessary. Using rough values of ¢ and &, given by the
two-beam method, many-beam fits must be computed in which ¢, §,, and 5;
are allowed to vary (see also the next section).

The CBED pattern also contains a diffuse background with Kikuchi bands.
This background has to be subtracted before seeking a best fit with many-
beam calculations. A photometric record of the background very near the
selected trace through the CBED pattern can be obtained by placing a thin
wire across the circular diaphragm in the condenser lens, which casts a shadow
across the CBED circles and allows the diffuse background inside the shadow
to be measured [8.129]. The background intensity can be decreased by zero-
loss filtering of electron spectroscopic diffraction patterns (Sect. 7.5.5).

8.3.3 Charge-Density Distributions

X-ray crystallography allows us not only to determine the position of atoms
in the unit cell but also to obtain charge-density maps. Familiar examples
are NaCl and the diamond structure. In NaCl the resulting charge density
around the nuclei has an approximate spherical symmetry because the Na™
and Cl™ ions have the closed shells of a noble gas. In a diamond structure,
the tetrahedral bonds, regarded as overlaps of the sp? hybrid wave functions,
result in bridges in the charge density. In x-ray diffraction, the scattering am-
plitude fx (5.33) is influenced only by the charge distribution pe of the jellium
and tends to Z when # — 0; for electrons, on the other hand, the structure
factor may even show an enhanced sensitivity to bonding effects for low-order
Bragg reflections because the structure amplitude (Fourier coefficient V) is
proportional to Z — fx (5.30). Small changes in the scattering amplitudes f
have a large effect on Z — f,. Many difficulties with the x-ray method, such as
crystal defects and dispersion correction, can be avoided with electrons, and
CBED allows defect-free small areas or even nanometer-sized crystals to be
investigated [8.130].

Measurements of V;; have been based on three-beam dynamical theory in
the analysis of three-phase structure invariants [8.131], the critical-voltage
method (Sect. 7.4.4), and the analysis of degeneracies in centrosymmet-
ric [8.132] and noncentrosymmetric crystals [8.133, 8.134]. For accounts of
structure-factor determination, see [1.81, 8.135].

Modern methods record CBED patterns by CCD arrays and apply energy
filtering [7.82] to reduce the inelastic background. Line scans across the pen-
dellosung fringes of a CBED pattern are fitted by varying the thickness and
the V, and V; for a large number of reflections (about 30) in the first- and
high-order Laue zones. For noncentrosymmetric crystals, both the real and
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the imaginary (absorptive) parts of the crystal potential are complex, which
requires the introduction of additional phase factors ¢:

V(r) =3 [|V,]ei¢s +i|vg’\ei¢.’q} exp(—2mig - 7). (8.14)
g

The parameter space for the best fit can contain 12-16 nonseparable para-
meters, which can be divided into geometrical and physical parameters. The
first are the starting and end points of the line scan, the incident beam di-
rection, and the radius of the CBED discs, for example, and the last are
the wanted thickness and Fourier coefficients. Different iterative procedures
[8.136, 8.137, 8.138, 8.139] have been developed to find the minimum of

n wi(cffXP _ fitheo)Q
X2 = ; 5 , (8.15)

0;

where f{*? and fih°° are the experimental and theoretically calculated values
of the intensities at the points ¢ within the line scan. Examples of results have
been published for GaAs [8.130], MgO [8.137], and BeO [8.140], for example.

8.3.4 High-Order Laue Zone (HOLZ) Patterns

A high-order Laue zone (HOLZ) diffraction pattern is obtained when the
electron beam is incident on the specimen parallel to a low-index zone axis.
The Ewald sphere intersects the needles of the zero-zone reciprocal-lattice
points, producing the convergent-beam circles of the Bragg reflections around
the primary beam; at larger angular distances, sin 8,, = AR,,, the next higher
Laue zones of order n are intersected in the reciprocal lattice with radii R,
(Figs. 7.6b and 8.14). These radii can be evaluated from Fig. 7.6b using the
result given by elementary geometry,

9 2 n

R, = gn <)\ - gn> ) gn = m ) (8.16)
where 2/ is the diameter of the Ewald sphere and g,, denotes the distance be-
tween the nth Laue zone and the zero-order Laue zone for the zone axis [mno].
Quantitative measurement of R,, gives information about the third dimension
of the reciprocal lattice, especially for materials with layer structures such
as ZrSey, TaSey, NbSy, TaSs, and MoS, [8.141, 8.142, 8.143]. For different
crystal structures, the HOLZ rings appear with different relative intensities
(Fig. 8.14). Laue zones may disappear completely if the structure amplitude
F is zero for them, but these forbidden reflections can reappear with weak
intensity as a result of many-beam systematic interactions. Higher-order Laue
zone reflections correspond to low values of V;; and hence to large values of &,
and their intensities seem to be directly related to the structure factor |F|? for
these beams, even for thicker specimens, so that first-order perturbation the-
ory is usually applicable [8.144]. However, for crystal thicknesses greater than
a few tens of nanometers, dynamical interaction effects can occur, and these
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Fig. 8.14. High-order Laue zone (HOLZ) diffraction patterns of 2 H polytypes
of (a) MoS2 and (b) MoSez with structure amplitudes (fmo — 1.4fc), fumo, and
(fmo + 1.4fc) (C: chalcogen) for the first- to third-order Laue zones, respectively,
showing that the first-order Laue zone (FOLZ) of MoSe; is practically invisible
owing to the very small contribution from (fumo — 1.4 fsc)[8.145].

furnish information about the crystal potential and the dispersion surface
[8.145, 8.146, 8.147, 8.148]. The high-order reflections decrease more strongly
with increasing temperature due to the Debye—Waller factor (Sect. 7.5.3), so
that specimen cooling increases the intensity of HOLZ rings and HOLZ lines
in the CBED of the primary beam (see below).

8.3.5 HOLZ Lines

In a CBED pattern, the HOLZ reflections become bright HOLZ lines, and
each bright line in the outer HOLZ rings appears inside the primary-beam
circle as a dark line because there is a relationship between excess and defect
Kikuchi lines and the HOLZ lines. Figure 8.15b shows the central (000) disc
with the six surrounding {220} discs for a 111-oriented Si foil. The central disc
is filled with crossing dark (defect) HOLZ lines and pendellosung fringes; these
are not straight as they would be for two-beam excitation but concentric, due
to the interaction with the six strongly excited 220 reflections.

Whereas Kikuchi lines are hard to observe for thin specimens and become
clearer as the thickness is increased, HOLZ lines are narrower (A6 < 0.1 mrad)
and are most readily visible at thicknesses for which the Kikuchi lines are still
weak. The angular width of a HOLZ line can be estimated from the first zero
of the sine term in the two-beam approximation (7.61) to be

A0 =2/g¢, for t>¢;, and Af=2/gt for t<E,. (8.17)

We have the first case for zero-order (HOLZ) reflections with &, ~ 20 —
50 nm and the second case for high-order reflections with &, > 1000 nm.
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Fig. 8.15. HOLZ lines in the primary circle of a CBED pattern [six neighboring 220
reflections are visible in (b)] from (111) Si at three different electron energies: (a) E
= 96.5 keV, (b) 100.5 keV, (¢) 103.5 keV. The bright rings are pendellosung fringes
that depend on film thickness and result from the interaction with the neighbored
220 reflections of the zero-order Laue zone [8.149].

Thicker specimens should therefore be used to decrease the detrimental effect
of thin-film relaxations. Because of the Debye-Waller factor exp(—2M,) =
exp(—4m2(u?)g?) (7.95), cooling of the specimen, which is essential to suppress
contamination (Sect. 11.4.2), increases the contrast of HOLZ lines with high g;
these decrease more strongly at room temperature due to g2 in the exponent.

The pattern of overlapping HOLZ lines (Fig. 8.15) in the (000) CBED
disc depends very sensitively on the electron energy E (accelerating voltage
U) [8.149] and/or the lattice constant a. This is shown in Fig. 8.15a—c for
small increments in electron energy. The HOLZ lines from the third Laue zone
move faster than those from the second zone when the acceleration voltage U is
varied. Lines from the same side of the HOLZ ring move in the same direction,
and those from the diametrically opposite side move in the opposite direction.

The lattice dimension can be evaluated with high precision once the beam
voltage has been calibrated with a lattice of known dimensions, such as Si;
alternatively, a relative change Aa of the lattice constant due to a change of
composition or to electron-beam heating [8.150] can be obtained from a shift
of the HOLZ line when the pattern of crossing lines is compared with a set of
computer maps.

The accuracy is Aa/a = AE/2E =2 x 10~% at E = 100 keV. Thus, local
concentrations of Al in Cu-Al alloys can be measured with an accuracy of
1 at% [8.142] or strains at planar interfaces can be determined in a fashion
similar to the chemical changes [8.151]. The symmetry of HOLZ lines in the
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center of a convergent-beam pattern can be used for determination of the
crystal space group. [8.152, 8.153, 8.146, 8.154]

The relative shift of HOLZ lines can be detected very sensitively at points
where three HOLZ lines intersect simultaneously (see the center of Fig. 8.15¢,
for example). Such a situation can be created by using a suitable acceleration
voltage. However, the positions of the HOLZ lines are influenced by the crystal
potential for electrons because the HOLZ lines arise from intersections of
their dispersion spheres with the zero-order dispersion surface. This can cause
deviations of a few keV in the effective acceleration voltage or a few percent in
the lattice parameter when calculating the HOLZ line positions kinematically
[8.155]. A fully dynamical calculation is thus needed to reduce the errors below
10~* in acceleration voltage or lattice parameters [8.156, 8.157, 8.158].

The dark high-order Kikuchi lines in the central spot of a CBED can be
converted to bright lines of higher contrast by tilting the primary beam and
moving it around a hollow cone with an angle 6,, equal to that of the nth
Laue zone. Only the (now excess) HOLZ lines, which are not disturbed by
low-order reflections of the zero-order Laue zone, appear at the cone center
[8.159, 8.160].

8.3.6 Large-Angle CBED

As shown in Sect. 8.1.3, the LACBED pattern is a two-dimensional rock-
ing curve containing FOLZ and HOLZ contour lines without any overlap of
the CBED discs from neighboring reflections, each point corresponding to
an image point as well as a distinct excitation error. Crystal boundaries, for
example, show two LACBED patterns to the left and right of the projected
boundary image, while strain fields cause a bending of the LACBED lines.
An important advantage of LACBED is that lattice defects can be investi-
gated [8.161, 8.162]. As a typical example to illustrate the method [8.163], we
discuss dislocations crossing the contributing area parallel to the z axis; the
pattern of a crossing Bragg contour parallel to the y axis is then the intensity
as a function of the distance y from the dislocation core and the excitation
error sq(x). If we are dealing with high-order reflections, the extinction dis-
tances are much larger than 100 nm and the kinematical approach (9.4) can
be applied to calculate the local intensity 1 — |1/)g\2 for a black contour line
of reciprocal-lattice vector g in the z direction, for example. This results in
a characteristic splitting when the contour line approaches and intersects the
dislocation core. In the example of Fig. 8.16, dislocation lines cross five dif-
ferent contours with indicated indices. For a product g -b=n (b = §[1210]:
Burgers vector of dislocation), we find n — 1 subsidiary maxima. The line
will of course be unaffected by the dislocation when the invisibility criterion
g-b=0 (Sect. 9.4.1) holds. Unlike the conventional Burgers vector determi-
nation from two invisibility criteria as described in Sect. 9.4.4, several g-b =n
products can be read in one LACBED when several contour lines cross the
core line, and the solution for b can be directly correlated to the vector parallel
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Fig. 8.16. Splitting of dark contour lines in a
bright-field LACBED pattern crossed by dislo-
cations in a quartz sample with different prod-
ucts g-b = n resulting in n— 1 subsidiary max-
ima [8.163].

to the dislocation to distinguish edge and screw dislocations, for example. The
problem of establishing the rotation of a diffraction pattern relative to the im-
age, an inconvenience of the conventional method, does not arise. The image
of the defect moves inside the LACBED pattern if the specimen is slightly
shifted, and a position can be selected for which no other contour lines cross
the core line nearby. In contrast to the imaging mode, where the dislocation
core line can be seen over a large range of excitation errors, a dislocation can
be seen in LACBED only near the intersection of a defect and a core line. In
the case of low-order defect lines, dynamical calculations are necessary. Large-
angle CBED patterns have the advantage that a whole pattern is visible as in
Fig. 8.16, whereas a splitting of the contour lines is seen in CBED patterns
only when the probe approaches a dislocation [8.164].

A further application is the determination of the displacement vector R of
stacking faults [8.162]. Splitting of the contour lines allows strains and periods
in bicrystals and multilayers with the boundaries parallel to the surface (plane
view) to be investigated even when cross-sectional samples cannot be easily
prepared [8.165, 8.166, 8.167, 8.168, 8.169]. The ability to display rocking
curves over a wide angle enables us to analyze complex multilayers in plane
view such as a thin GaAs quantum well between thicker layers of AlGaAs.
The kinematical theory of rocking curves results in a periodic variation of the
magnitude of the rocking curve maxima from which the depth and thickness of
intermediate layers can be analyzed. In principle, such rocking-curve profiles
can also be obtained in bend contours in imaging; these are, however, more
or less accidental since the local s, is not known exactly.

Otherwise, the structure of Bragg contours crossing multilayers in cross-
section samples can also be used for strain measurements [8.170].
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Imaging of Crystalline Specimens
and Their Defects

A crystal can be imaged with the primary beam (bright field) or with a Bragg
reflection (dark field). The local intensity depends on the thickness, resulting
in thickness (or edge) contours, and on the tilt of the lattice planes, resulting
in bend contours, which can be described by the dynamical theory of electron
diffraction. In certain cases, the intensity of a Bragg reflection depends so
sensitively on specimen thickness that atomic surface steps can be observed.
The most important application of diffraction (Bragg) contrast is the imaging
of lattice defects such as dislocations, stacking faults, phase boundaries, pre-
cipitates, and defect clusters. The contrast depends on the Bragg reflection
excited and its excitation error, the type of the fault, and its depth inside
the foil. The Burgers vector of a dislocation or the displacement vector of a
boundary can thus be determined quantitatively. The resolution of the order
of 10 nm when a strongly excited Bragg reflection is used can be reduced to
the order of one nanometer by the weak-beam technique, which allows us to
measure the width of dissociated dislocations, for example. Different types of
contrast for precipitates are associated with coherent and incoherent precip-
itates, which can hence be distinguished. Electron spectroscopic imaging can
remove the inelastically scattered electrons in the background of a diffraction
pattern and increase the contrast and resolution of defect images.

With crystalline specimens, the interference of the primary and a Bragg-
reflected wave in the final image creates images of lattice planes. When the
objective aperture is large and includes a large number of Bragg reflections,
the exit distribution of electrons can be imaged. Irradiation along zone axes
produces a projection-like image of the crystal lattice with a resolution of
0.1-0.2 nm. For reliable interpretation, such images must be compared with a
computer simulation that takes into account the thickness, the potential coef-
ficients, and the wave aberration. The high resolution of the crystal-structure
image can be exploited to investigate lattice defects and interfaces. By using
electrons scattered through large angles, contrast increasing with atomic num-
ber can be superposed on the crystal-structure image. Atomic surface steps
and surface-reconstruction structures can be investigated by special methods,
notably by reflection electron microscopy (REM).
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9.1 Diffraction Contrast of Crystals Free of Defects
9.1.1 Edge and Bend Contours

The diffraction angle 6, = 20p between the primary beam and reflected beams
is often larger than the objective aperture «y; for Cu, for example, the 111
lattice spacing d is 0.208 nm and so at E = 100 keV (A = 3.7 pm) we find 6, ~
A/d = 18 mrad. This means that then the Bragg-diffracted beams are halted
by the objective diaphragm in the bright-field mode and do not contribute to
the image intensity. The image intensity thus becomes equal to that of the
primary beam (transmission 7"), which depends on the excitation error s, or
tilt parameter w = s&, of the Bragg reflection and on the specimen thickness ¢.
Furthermore, contributions to the image can also come from electrons that
have been scattered elastically or inelastically into the diffuse background of
the diffraction pattern and pass through the objective diaphragm. Like the
scattering at amorphous specimens, this contribution depends on the objective
aperture a, [9.1, 9.2]. Crystals show a higher transmission in regions without
strong Bragg reflections than do amorphous films of equal mass thickness
because the diffuse scattering between the Bragg reflections is reduced by
destructive interference [9.3, 9.4].

We now use the results of the dynamical theory of electron diffraction
(Figs. 7.17 and 7.18) to discuss diffraction contrast. The pendellésung of the
dynamical theory (Fig. 7.17) can be seen as edge contours (Fig. 9.1) in the
images of specimen edges of electropolished metals or of small cubic crys-
tals (MgO), for example. A high intensity will be observed for thicknesses
(Fig. 9.2a) at which the Bragg-reflected intensity is scattered back to the
primary beam; maximum transmission thus occurs at a thickness equal to
integral multiples of the extinction distance &, eq; see (7.62) and Fig. 7.14.
The spacing of the edge contours is greatest in the Bragg position (w = 0)
and decreases with increasing positive or negative tilt, owing to the decrease
of the effective extinction distance &, . This dependence on the tilt can be
seen in Fig. 9.1 on a bent crystal edge. With the aid of a tilting stage or
specimen goniometer, the specimen can be brought into the Bragg position,
where the largest spacing is observed. The extinction distances can be mea-
sured when the edge profile is known, or the local thickness can be estimated
by using tabulated values of §, (Table 7.2). However, the extinction distance
for w = 0 can also be influenced by the excitation of other Bragg reflections
(see dynamical Bethe potentials in Sect. 7.4.4). A quantitative measurement
of the intensity of edge contours can be used to determine the absorption
distances & and & [9.1]. A large number of contours can be observed in high-
voltage electron microscopy [9.5, 9.6] because £, increases as v and &, f; are
proportional to v? (Sect. 7.4.2).

Edge contours can also be observed at crystal boundaries that are oblique
to the foil surface (Fig. 9.2b). When the orientation of the second crystal is
such that it does not show strong Bragg reflections, the diffraction contrast of
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Fig. 9.1. (a) Bright- and (b) dark-field micrographs of edge conto