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INTRODUCTION

Few of us can any longer keep up with the flood of scientific literature, even
in specialized subfields. Any attempt to do more and be broadly educated
with respect to a large domain of science has the appearance of tilting at
windmills. Yet the synthesis of ideas drawn from different subjects into new,
powerful, general concepts is as valuable as ever, and the desire to remain
educated persists in all scientists. This series, Advances in Chemical
Physics, is devoted to helping the reader obtain general information about a
wide variety of topics in chemical physics, a field that we interpret very
broadly. Our intent is to have experts present comprehensive analyses of
subjects of interest and to encourage the expression of individual points of
view. We hope that this approach to the presentation of an overview of a
subject will both stimulate new research and serve as a personalized learning
text for beginners in a field.

1. PRIGOGINE
STUART A. RicE

vii



INTRODUCTION TO THE ADVANCES OF
CHEMICAL PHYSICS VOLUME ON:
THE ROLE OF DEGENERATE STATES IN CHEMISTRY

The study of molecular systems is based on the Born—-Oppenheimer
treatment, which can be considered as one of the most successful theories in
physics and chemistry. This treatment, which distinguishes between the fast-
moving electrons and the slow-moving nuclei leads to electronic (adiabatic)
eigenstates and the non-adiabatic coupling terms. The existence of the
adiabatic states was verified in numerous experimental studies ranging from
photochemical processes through photodissociation and unimolecular
processes and finally bimolecular interactions accompanied by exchange
and/or charge-transfer processes. Having the well-established adiabatic
states many studies went one step further and applied the Born—
Oppenheimer approximation, which assumes that for low enough energies
the dynamics can be carried out on the lower surface only, thus neglecting
the coupling to the upper states. Although on numerous occasions, this
approximation was found to yield satisfactory results, it was soon realized
that the relevance of this approximation is quite limited and that the
interpretation of too many experiments whether based on spectroscopy or
related to scattering demand the inclusion of several electronic states. For a
while, it was believed that perturbation theory may be instrumental in this
respect but this idea was not found in many cases to be satisfactory and
therefore was only rarely employed.

In contrast to the successful introduction, of the electronic adiabatic states
into physics and mainly into chemistry, the incorporation of the comple-
mentary counterpart of the Born—Oppenheimer treatment, that is, the
electronic non-adiabatic coupling terms, caused difficulties (mainly due to
their being ‘“‘extended” vectors) and therefore were ignored. The non-
adiabatic coupling terms are responsible for the coupling between the
adiabatic states, and since for a long time most studies were related to the
ground state, it was believed that the Born—Oppenheimer approximation
always holds due to the weakness of the non-adiabatic coupling terms. This
belief persisted although it was quite early recognized, due to the Hellmann—
Feynman theorem, that non-adiabatic coupling terms are not necessarily
weak, on the contrary, they may be large and eventually become infinite.
They become infinite (or singular) at those instances when two successive
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X INTRODUCTION TO THE ROLE OF DEGENERATE STATES IN CHEMISTRY

adiabatic states turn out to be degenerate. Having singular non-adiabatic
coupling terms not only leads to the breakdown of the Born—-Oppenheimer
approximation but also rules out the possibility of keeping it while applying
perturbation theory. Nevertheless the Born—Oppenheimer approximation can
be partly ‘““‘saved,” in particular while studying low-energy processes, by
extending it to include the relevant non-adiabatic coupling terms. In this
way, a new equation is obtained, for which novel methods to solve it were
developed—some of them were discussed in this volume.

This volume in the series of Advances of Chemical Physics centers on
studies of effects due to electronic degenerate states on chemical processes.
However, since the degenerate states affect chemical processes via the
singular non-adiabatic coupling terms, a major part of this volume is
devoted to the study of features of the non-adiabatic coupling terms. This is
one aspect related to this subject. Another aspect is connected with the
Born—Oppenheimer Schrodinger equation which, if indeed degenerate states
are common in molecular systems, frequently contains singular terms that
may inhibit the possibility of solving this equation within the original Born—
Oppenheimer adiabatic framework. Thus, an extensive part of this volume is
devoted to various transformations to another framework—the diabatic
framework—in which the adiabatic coupling terms are replaced by potential
coupling—all analytic smoothly behaving functions.

In Chapter I, Child outlines the early developments of the theory of the
geometric phase for molecular systems and illustrates it primarily by
application to doubly degenerate systems. Coverage will include applica-
tions to given to (E x €) Jahn—Teller systems with linear and quadratic
coupling, and with spin—orbit coupling. The origin of vector potential
modifications to the kinetic energy operator for motion on well-separated
lower adiabatic potential surfaces is also be outlined.

In Chapter II, Baer presents the transformation to the diabatic framework
via a matrix—the adiabatic-to-diabatic transformation matrix—calculated
employing a line-integral approach. This chapter concentrates on the
theoretical-mathematical aspects that allow the rigorous derivation of this
transformation matrix and, following that, the derivation of the diabatic
potentials. An interesting finding due to this treatment is that, once the non-
adiabatic coupling terms are arranged in a matrix, this matrix has to fulfill
certain quantization conditions in order for the diabatic potentials to be
single valued. Establishing the quantization revealed the existence of the
topological matrix, which contains the topological features of the electronic
manifold as related to closed contours in configuration space. A third feature
fulfilled by the non-adiabatic coupling matrix is the curl equation, which
is reminiscent of the Yang—Mills field. This suggests, among other things,
that pseudomagnetic fields may “‘exist” along seams that are the lines
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formed by the singular points of the non-adiabatic coupling terms. Finally,
having the curl equation leads to the proposal of calculating non-adiabatic
coupling terms by solving this equation rather than by performing the
tedious ab initio treatment. The various theoretical derivations are
accompanied by examples that are taken from real molecular systems.

In Chapter I1I, Adhikari and Billing discuss chemical reactions in systems
having conical intersections. For these situations they suggest to incorporate
the effect of a geometrical phase factor on the nuclear dynamics, even at
energies well below the conical intersection. It is suggested that if this phase
factor is incorporated, the dynamics in many cases, may still be treated
within a one-surface approximation. In their chapter, they discuss the effect
of this phase factor by first considering a model system for which the two-
surface problem can also easily be solved without approximation. Since
many calculations involving heavier atoms have to be considered using
approximate dynamical theories such as classical or quantum classical, it
is important to be able to include the geometric phase factor into these
theories as well. How this can be achieved is discussed for the three-particle
problem. The connection between the so-called extended Born—Oppenheimer
approach and the phase angles makes it possible to move from two-surface
to multisurface problems. By using this approach a three-state model system
is considered. Finally, the geometric phase effect is formulated within the
so-called quantum dressed classical mechanics approach.

In Chapter IV, Englman and Yahalom summarize studies of the last
15 years related to the Yang—Mills (YM) field that represents the interaction
between a set of nuclear states in a molecular system as have been discussed
in a series of articles and reviews by theoretical chemists and particle
physicists. They then take as their starting point the theorem that when the
electronic set is complete so that the Yang—Mills field intensity tensor
vanishes and the field is a pure gauge, and extend it to obtain some new
results. These studies throw light on the nature of the Yang—Mills fields in
the molecular and other contexts, and on the interplay between diabatic and
adiabatic representations.

In Chapter V, Kuppermann and Abrol present a detailed formulation of
the nuclear Schrodinger equation for chemical reactions occurring on
multiple potential energy surfaces. The discussion includes triatomic and
tetraatomic systems. The formulation is given in terms of hyperspherical
coordinates and accordingly the scattering equations are derived. The effect
of first and second derivative coupling terms are included, both in the
adiabatic and the diabatic representations. In the latter, the effect of the non-
removable (transverse) part of the first derivative coupling vector are
considered. This numerical treatment led, finally, to the potential energy
surfaces that are then employed for the scattering calculations. The coverage
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includes a detailed asymptotic analysis and expressions for the reactive
scattering matrices, the associated scattering amplitudes and differential
cross-sections. The inclusion of the geometric phase in these equations is
discussed, as well as results of representative calculations.

In Chapter VI, Ohrn and Deumens present their electron nuclear
dynamics (END) time-dependent, nonadiabatic, theoretical, and computa-
tional approach to the study of molecular processes. This approach stresses
the analysis of such processes in terms of dynamical, time-evolving states
rather than stationary molecular states. Thus, rovibrational and scattering
states are reduced to less prominent roles as is the case in most modern
wavepacket treatments of molecular reaction dynamics. Unlike most
theoretical methods, END also relegates electronic stationary states,
potential energy surfaces, adiabatic and diabatic descriptions, and
nonadiabatic coupling terms to the background in favor of a dynamic,
time-evolving description of all electrons.

In Chapter VII, Worth and Robb discuss techniques known as direct, or
on-the-fly, molecular dynamics and their application to non-adiabatic
processes. In contrast to standard techniques, which require a predefined
potential energy surfaces, here the potential function, is provided by explicit
evaluation of the electronic wave function for the states of interest. This fact
makes the method very general and powerful, particularly for the study of
polyatomic systems where the calculation of a multidimensional potential
function is expected to be a complicated task. The method, however, has a
number of difficulties that need to be solved. One is the sheer size of the
problem—all nuclear and electronic degrees of freedom are treated
explicitly. A second is the restriction placed on the form of the nuclear wave
function as a local- or trajectory-based representation is required. This intro-
duces the problem of including quantum effects into methods that are often
based on classical mechanics. For non-adiabatic processes, there is the addi-
tional complication of the treatment of the non-adiabatic coupling. In this
chapter these authors show how progress has been made in this new and
exciting field, highlighting the different problems and how they are being
solved.

In Chapter VIII, Haas and Zilberg propose to follow the phase of the
total electronic wave function as a function of the nuclear coordinates with
the aim of locating conical intersections. For this purpose, they present
the theoretical basis for this approach and apply it for conical intersect-
ions connecting the two lowest singlet states (S; and Sp). The analysis
starts with the Pauli principle and is assisted by the permutational symmetry
of the electronic wave function. In particular, this approach allows the
selection of two coordinates along which the conical intersections are to be
found.
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In Chapter IX, Liang et al. present an approach, termed as the “crude
Born—Oppenheimer approximation,” which is based on the Born—Oppen-
heimer approximation but employs the straightforward perturbation method.
Within their chapter they develop this approximation to become a practical
method for computing potential energy surfaces. They show that to carry out
different orders of perturbation, the ability to calculate the matrix elements
of the derivatives of the Coulomb interaction with respect to nuclear
coordinates is essential. For this purpose, they study a diatomic molecule,
and by doing that demonstrate the basic skill to compute the relevant matrix
elements for the Gaussian basis sets. Finally, they apply this approach to the
H, molecule and show that the calculated equilibrium position and force
constant fit reasonable well those obtained by other approaches.

In Chapter X, Matsika and Yarkony present an algorithm for locating
points of conical intersection for odd electron molecules. The nature of the
singularity at the conical intersection is determined and a transformation to
locally diabatic states that eliminates the singularity is derived. A rotation of
the degenerate electronic states that represents the branching plane in terms
of mutually orthogonal vectors is determined, which will enable us to search
for confluences intersecting branches of a single seam.

In Chapter XI, Peri¢ and Peyerimhoff discuss the Renner—Teller coupling
in triatomic and tetraatomic molecules. For this purpose, they describe some
of their theoretical tools to investigate this subject and use the systems FeH,,
CNC, and HCCS as adequate examples.

In Chapter XII, Varandas and Xu discuss the implications of permuta-
tional symmetry on the total wave function and its various components for
systems having sets of identical particles. By generalizing Kramers’ theorem
and using double group theory, some drastic consequences are anticipated
when the nuclear spin quantum number is one-half and zero. The material
presented may then be helpful for a detailed understanding of molecular
spectra and collisional dynamics. As case studies, they discuss, in some
detail, the spectra of trimmeric species involving 2S atoms. The effect of
vibronic interactions on the two conical intersecting adiabatic potential
energy surfaces will then be illustrated and shown to have an important role.
In particular, the implications of the Jahn—Teller instability on the calculated
energy levels, as well as the involved dynamic Jahn—Teller and geometric
phase effects, will be examined by focusing on the alkali metal trimmers.
This chapter was planned to be essentially descriptive, with the
mathematical details being gathered on several appendixes.

MICHAEL BAER
GERT DUE BILLING
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Benzene molecule:
conical intersections, two-state chemical
reactions, 436—438
direct molecular dynamics, complete active
space self-consistent field (CASSCF)
technique, 407-410
loop construction, isomerization reactions,
479-481
phase-change rule, pericyclic reactions,
448-450
Benzvalene, loop construction, isomerization,
479-481
Bernoulli’s equation, molecular systems,
modulus-phase formalism, 265-266
Berry’s phase. See Geometric phase effect
Bessel-Ricatti equation, electronic states,
triatomic quantum reaction dynamics,
318
Bicyclo-[3,1,0]hex-2-ene (BCE), phase-change
rule, large four-electron systems, 459
Biradical models, conical intersection research,
494-496
Body-fixed coordinates, permutational
symmetry:
electronic wave function, 680-682
group theoretical properties, 669—674
total molecular wave function, 664—668,
674-678
Bohr-Sommerfeld quantization, non-adiabatic
coupling, 57-58
quasiclassical trajectory (QCT) calculation,
three-particle reactive system, D + H,
reaction, 160-163
Boltzmann distribution, electron nuclear
dynamics (END), intramolecular
electron transfer, 350-351
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Born-Huang approximation:
conical intersections, theoretical background,
506-507
electronic states:
adiabatic representation, 286—289
adiabatic-to-diabatic transformation, 296—
300
diabatic representation, 292—293
triatomic quantum reaction dynamics,
309-319
partial wave expansion, 312-317
nuclear motion Schrodinger equation, 418—
420
permutational symmetry, total molecular
wave function, 667-668
potential energy surfaces (PES), 284-286
Born-Oppenheimer approximation. See also
Crude Born-Oppenheimer
approximation; Extended Born-
Oppenheimer approximation
conical intersection:
historical background, 144148
two-state chemical reactions, 436—438
degenerate states chemistry, ix—xiii
direct molecular dynamics:
adiabatic molecular dynamics, 362—381
theoretical background, 357-361
vibronic coupling, adiabatic effects, 382—
384
electron nuclear dynamics (END), theoretical
background, 324-325
geometric phase theory, single-surface
nuclear dynamics, 24
molecular systems:
chemical research, ix—xiii
Yang-Mills fields, nuclear Lagrangean,
249-250
non-adiabatic coupling:
Born-Oppenheimer-Huang equation:
Hilbert space, 44—45
sub-Hilbert space, 46—47
equations, 186—191
extended Born-Oppenheimer equations:
closed path matrix quantization, 171—
173
theoretical principles, 144—148
three-state matrix quantization, 173—-174
three-state system analysis, 174—175
Jahn-Teller systems, Longuet-Higgins
phase, 121-122

SUBJECT INDEX

Longuet-Higgins phase-based treatment,
two-dimensional two-surface system,
150-157

molecular systems, electronic states,
202-205

potential energy surfaces (PES), 284-286

theoretical background, 42-44

nuclear motion Schrodinger equation,
418-420
permutational symmetry:

dynamic Jahn-Teller and geometric phase
effects, 703-711

generalized approximation (GBO), two-
dimensional Hilbert space, 718—-721

non-adiabatic coupling, 711

total molecular wave function, 667-668,
676-678

phase-change rule, chemical reactions,
450-453
Renner-Teller effect:

nonlinear molecules, 606—-610

tetraatomic molecules, 628—631

theoretical principles, 584—585

triatomic molecules, 587-598
Hamiltonian selection, 611-615
pragmatic models, 619-621

Born-Oppenheimer-Huang equation, non-
adiabatic coupling:
future research applications, 118-119
Hilbert space, Born-Oppenheimer equations,
44-45
historical background, 40—44
minimal diabatic potential matrix, 81-89
sub-Hilbert space, 46—47
vector potential, Yang-Mills field, 93-95
Born-Oppenheimer-Schrodinger equation,
degenerate states chemistry, x—xiii
Bose-Einstein statistics, permutational
symmetry, total molecular wave
function, 677-678
Boundary conditions:
electronic states, adiabatic-to-diabatic
transformation, two-state system, 304—
309
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
328-330
geometric phase theory, single-surface
nuclear dynamics, vibronic multiplet
ordering, 27-31
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non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, orthogonality, 123
minimal diabatic potential matrix,
noninteracting conical intersections,
88-89
theoretic-numerical approach:
three-state system in plane, 101-103
two-state system in plane:
conical intersection distribution
solution, 101
single conical intersection solution,
97-101
three-state molecular system, strongly
coupled (2,3) and (3,4) conical

intersections, “real” three-state systems,

117
Bound-state photoabsorption, direct molecular
dynamics, nuclear motion Schrodinger
equation, 365-373
Branching space dimension, conical
intersections, spin-orbit interaction,
559-561
Breakable multidegeneracy, non-adiabatic
coupling, 81
Breit-Pauli approximation:
conical intersections, spin-orbit interaction,
571-578
convergence equations, 572
H, + OH 1,2°A’ and 1°A’ states, 571572
orthogonality properties, 576—578
seam parameters:
conical parameters and invariant, 574—
576
locus, 572-574
Renner-Teller effect, triatomic molecules,
597-598
Brody distribution, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 708—711
Burlisch-Stoer integrator, direct molecular
dynamics, ab initio multiple spawning
(AIMS), 412-414
Butadiene molecules:
conical intersection location, 490
direct molecular dynamics, complete active
space self-consistent field (CASSCF)
technique, 408-410
loop construction, 474-482
phase-change rules:

four-electron ring closure, 455-456
two-state chemical reactions, 436—438
Butene compounds, loop construction, 478—479
Buttiker-Landauer method, time shift

calculations, 213

Car-Parinello method:
direct molecular dynamics, theoretical
background, 360-361
electron nuclear dynamics (END), structure
and properties, 327
Cartesian coordinates:
crude Born-Oppenheimer approximation,
nuclei interaction integrals, 524—527
direct molecular dynamics, vibronic coupling,
383-384
electronic state adiabatic representation, first-
derivative coupling matrix, 290-291
electronic states:
adiabatic-to-diabatic transformation, two-
state system, 303—-309
triatomic quantum reaction dynamics,
310-312
non-adiabatic coupling:
quantum dressed classical mechanics, 179
two-state molecular system:
C,H-molecule: (1,2) and (2,3) conical
intersections, 109—-112
single conical intersection solution,
98-101
permutational symmetry, degenerate/near-
degenerate vibrational levels, 728—733
Renner-Teller effect, triatomic molecules,
Hamiltonian equations, 612—615
Cauchy-integral method, molecular systems,
component amplitudes, 219-220
Center-of-mass coordinates:
crude Born-Oppenheimer approximation,
hydrogen molecule, 513-516
permutational symmetry, total molecular
wave function, 664—-668
Chemical identity, permutational symmetry,
total wave function, 674—-678
Chiral systems, phase-change rule, 456—458
C,H radical:
non-adiabatic coupling, (1,2) and (2,3) conical
intersections, two-state molecular
system, 109-112
Renner-Teller effect, multiple-state systems,
623
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cis-trans isomerization, loop construction,
ethylene photolysis, 472—473
Classical wave theory, historical background,
206-207
Coherent states:
direct molecular dynamics, non-adiabatic
coupling, 403-404
molecular systems, 212
Complete active space (CAS) wave functions,
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
334-337
Complete active space self-consistent field
(CASSCEF) technique:
conical intersection location, 492—-493
direct molecular dynamics:
non-adiabatic systems, 404—411
theoretical background, 358—-361
vibronic coupling, diabatic representation,
385-386
Complex representations, multidegenerate
nonlinear coupling, higher order
coupling, 243-244
Component amplitudes, molecular systems:
analytic theory, 214-233
Cauchy-integral method, 219-220
cyclic wave functions, 224228
modulus and phase, 214-215
modulus-phase relations, 217-218
near-adiabatic limit, 220-224
reciprocal relations, 215-217, 232-233
wave packets, 228—232
multidegenerate nonlinear coupling,
continuous tracing, component phase,
236-241
Condon approximation, direct molecular
dynamics:
ab initio multiple spawning (AIMS), 414
adiabatic systems, 374-377
vibronic coupling, diabatic representation,
386
Configuration space:
canonical intersection, historical background,
144-148
non-adiabatic coupling, extended Born-
Oppenheimer equations, 170-171
Configuration state functions (CSFs), direct
molecular dynamics, complete active
space self-consistent field (CASSCF)

SUBJECT INDEX

technique, non-adiabatic systems,
405-411
Conical intersections:
crude Born-Oppenheimer approximation,
theoretical background, 506—-507
degenerate states chemistry, Xi—xiii
direct molecular dynamics, vibronic coupling,
386-389
electronic states:
adiabatic representation, 291
adiabatic-to-diabatic transformation, two-
state system, 303—-309
future research issues, 493-496
geometric phase theory, 4—8
adiabatic eigenstates, 8—11
loop construction:
Longuet-Higgins loops, 461-472
cyclopentadienyl radical/cation systems,
464-472
phase-change rule, 443-446
photochemical systems, 453—460
four-electron systems, 455-458
larger four-electron systems, 458—-459
multielectron systems, 459—-460
three-electron systems, 455
qualitative molecular photochemistry, four-
electron problems, 472-482
quantitative cyclohexadiene
photochemistry, 482—-487
molecular systems:
anchors, 439-441
molecules and independent quantum
species, 439-441
electronic states, 202—205
multidegenerate nonlinear coupling:
pairing, 235-236
research background, 233-234
theoretical background, 434—435
two-state systems, 436—438
non-adiabatic coupling:
Born-Oppenheimer approximation, matrix
elements, 186—191
coordinate origins, 137-138
extended Born-Oppenheimer equations:
closed path matrix quantization, 171—
173
theoretical principles, 144—148
three-state matrix quantization, 173—174
three-state system analysis, 174—175
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Herzberg-Longuet-Higgins phase-based
treatment, Jahn-Teller model, 185-186

Jahn-Teller systems, Longuet-Higgins
phase, 119-122

Longuet-Higgins phase-based treatment,
148-168

geometric phase effect, two-dimensional

two-surface system, 148—157
three-particle reactive system, 157—-168
minimal diabatic potential matrix,
noninteracting intersections, 85-89
multidegeneracy, 80—81
quantum dressed classical mechanics,
177-183
geometric phase effect, 180—183
sign flips, geometrical interpretation,
77-80
three-state molecular system, 102—103

strongly coupled (2,3) and (3,4) conical

intersections, ‘“‘real’ three-state
systems, 113-117
two-state molecular system:
C,H-molecule: (1,2) and (2,3) conical
intersections, 109-112
distribution solution, 101
single conical intersection solution,
97-101
vector potential formulation, 191-196
orthogonal coordinates, 565-567
permutational symmetry, adiabatic states:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
phase-change rule:
chemical reaction, 446-453
pericyclic reactions, 447-450
pi-bond reactions, 452—-453
sigma bond reactions, 452
comparison with other techniques,
487-493
loop construction, 443-446
coordinate properties, 443446
phase inverting reactions, 496—499
spin-orbit interaction:
derivative couplings, 569-570
electronic Hamiltonian, 559
future research issues, 578580
location, 564—-565
numerical calculations, 571-578
convergence equations, 572

H, + OH 1,2%4’ and 1?4’ states,
571-572
orthogonality properties, 576—578
seam parameters:
conical parameters and invariant,
574-576
locus, 572-574
orthogonal intersection adapted
coordinates, 565-567
perturbation theory, 561-564
research background, 558-559
time-reversal symmetry, 559-561, 563-564
topography:
conical parameters, 569
energy parameters, 568—569
transformational invariant, 567
Continuity equation, molecular systems:
component amplitude analysis, phase-
modulus relations, 217-218
modulus-phase formalism, 262-263
Continuous tracing, molecular systems,
multidegenerate nonlinear coupling,
236-241
Convergence, conical intersections, spin-orbit
interaction, 572-573
Coriolis term, non-adiabatic coupling, Longuet-
Higgins phase-based treatment, three-
particle reactive system, 159—168
Correction terms, molecular systems, modulus-
phase formalism, Lagrangean density,
269-270
Correlation functions, direct molecular
dynamics, adiabatic systems, 374-377
Coulomb interaction:
crude Born-Oppenheimer approximation:
basic principles, 507-512
derivative properties, 527-542
first-order derivatives, 529-535
second-order derivatives, 535-542
hydrogen molecule, Hamiltonian equation,
515-516
nuclei interaction integrals, 519-527
theoretical background, 507
diabatic framework, 133-134
electronic state adiabatic representation,
Born-Huang expansion, 287-289
permutational symmetry, potential energy
surfaces, 692—-694
phase inverting reactions, 499
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Coupled-perturbed multiconfiguration self-
consistent field (CP-MCSCF) technique,
direct molecular dynamics, complete
active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 406—411

Coupling matrices, electronic state adiabatic
representation:

first-derivative matrix, 290-291
second-derivative matrix, 291-292
Covariant elements, molecular systems:
modulus-phase formalism, Dirac theory
electrons, 267-268
Yang-Mills fields, pure vs. tensorial gauge
fields, 250-252

Cross-sectional analysis, electron nuclear
dynamics (END), molecular systems,
345-349

Crude Born-Oppenheimer approximation:

degenerate states chemistry, Xiii
hydrogen molecule:
Hamiltonian equation, 512-516
minimum basis set calculation, 542—550
integrals, 551-555
molecular systems, Yang-Mills fields, 260—
261
potential energy surface (PES):
angular-momentum-adopted Gaussian
matrix elements, 517-542
Coulomb potential derivatives,
527-542
first-order derivatives, 529-535
second-order derivatives, 535-542
normalization factor, 517
nuclei interaction terms, 519-527
overlap integrals, 518-519
theoretical background, 506—507
principles and equations, 507-512
Curl condition:
degenerate states chemistry, x—xiii
electronic states:
adiabatic representation, 291
adiabatic-to-diabatic transformation,
297-300
geometric phase theory, eigenvector
evolution, 13-17
molecular systems, Yang-Mills fields:
properties, 252-253
pure vs. tensorial gauge fields,
250-252

INDEX

non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, quasidiabatic framework, 53,
56-57
conical intersection coordinates, 137—138
future research applications, 118—119
pseudomagnetic field, 95-96
theoretical background, 42—44
three-state molecular system, 102—103
two-state molecular system, single conical
intersection solution, 97—101
Yang-Mills field, 92-97
pseudomagnetic field, 95-96
vector potential theory, 93—-95
Yang-Mills field, 203-205
Cyanine dyes, direct molecular dynamics,
complete active space self-consistent
field (CASSCF) technique, 411
Cyclic wave functions, molecular systems,
component amplitude analysis, 224-228
Cyclobutadiene(CBD)-tetrahedrane system,
loop construction, 476—478
1,4-Cyclohexadiene (CHDN) molecule:
conical intersection location, 490-491
phase-change rule:
helicopter reactions, 459—-460
large four-electron systems, 458—459
photochemistry, quantitative analysis, 482—
487
quantitative photochemical analysis, 483—-487
Cyclooctatetraene (COT)semibullvalene (SB)
photorearrangement, loop construction,
482-483
Cyclooctenes, loop construction, isomerization,
473-474
Cyclopentadienyl cation (CPDC), phase-change
rule, 467-472
Cyclopentadienyl radical (CPDR), Longuet-
Higgins phase-change rule, loop
construction, 464—-467

DCCS radical, Renner-Teller effect, tetraatomic
molecules, IT electronic states, 633—640
Degenerate states:
permutational symmetry, vibrational levels,
728-733
theoretical background, ix—xiii
A electronic states, Renner-Teller effect:
tetraatomic molecules:
perturbative handling, 647—-653
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theoretical background, 625-626
triatomic molecules, 600
minimal models, 618
vibronic/spin-orbit coupling, 604—605
Demkov technique, non-adiabatic coupling,
sub/sub-sub-Hilbert construction,
67-70
Density functional theory, direct molecular
dynamics, complete active space self-
consistent field (CASSCF) technique,
non-adiabatic systems, 404—411
Density operator, direct molecular dynamics,
adiabatic systems, 375-377
Derivative couplings:
conical intersections, 569-570
direct molecular dynamics, vibronic coupling,
conical intersections, 386—389
Determinantal wave function, electron nuclear
dynamics (END), molecular systems,
final-state analysis, 342—-349
Diabatic representation:
conical intersection location, 489
defined, 41-42
degenerate states chemistry, x—xiii
direct molecular dynamics, vibronic coupling,
384-386
electronic states, adiabatic-to-diabatic
transformation, 292-293
non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, quasidiabatic framework,
54-56
future research applications, 118-119
minimal diabatic potential matrix,
82-89
theoretical background, 41-44
properties and equations, 132—134
Renner-Teller effect, triatomic molecules,
595-598
Diabatization matrix, electronic states,
adiabatic-to-diabatic transformation,
295-300
Diagonal element:
adiabatic-to-diabatic transformation matrix,
quantization, 67
molecular systems, multidegenerate nonlinear
coupling, 247
Diatomics-in-molecule (DIM) surfaces:
electron nuclear dynamics (END), molecular
systems, 345-349
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permutational symmetry, nuclear spin
function, 679-680
Diels-Alder reaction, phase-change rule,
pericyclic reactions, 447-450
Dimensionless parameters, Renner-Teller effect,
tetraatomic molecules, perturbative
handling, 642-646
Dirac bra-ket notation, permutational symmetry,
group theoretical properties, 672—-674
Dirac 6 function, non-adiabatic coupling, curl
condition, pseudomagnetic field,
95-96
Dirac theory, molecular systems, modulus-phase
formalism:
electron properties, 266—268
topological phase electrons, 270-272
Direct integration, molecular systems,
multidegenerate nonlinear coupling,
242-243
Direct molecular dynamics:
adiabatic systems, 362—-381
Gaussian wavepacket propagation,
377-381
initial condition selection, 373-377
nuclear Schrodinger equation, 363-373
electron nuclear dynamics (END), structure
and properties, 327
future research issues, 415-417
non-adiabatic coupling:
ab initio multiple spawning, 411-414
CASSCEF techniques, 404—-411
direct dynamics, 410—411
MMYVB method, 406-410
Ehrenfest dynamics, 395-397
Gaussian wavepackets and multiple
spawning, 399-402
mixed techniques, 403-404
semiempirical studies, 414—415
theoretical background, 356-362
trajectory surface hopping, 397—-399
vibronic effects, 381-393
adiabatic properties, 382-384
conical intersections, 386—389
diabatic properties, 384—386
Hamiltonian model, 389-393
nuclear motion Schrodinger equation,
principles of, 418-420
Dirichlet conditions, electronic states, adiabatic-
to-diabatic transformation, two-state
system, 304-309



774 SUBJECT INDEX

Discrete Fourier transform (DFT), non-adiabatic
coupling, Longuet-Higgins phase-based
treatment, two-dimensional two-surface
system, scattering calculation, 153—155

Discrete variable representation (DVR):

direct molecular dynamics, nuclear motion
Schrodinger equation, 364—373
non-adiabatic coupling, quantum dressed
classical mechanics, 177-183
formulation, 181-183
permutational symmetry, dynamic Jahn-Teller
and geometric phase effects, 699-711

Dixon’s model, Renner-Teller effect, triatomic
molecules, 617-618

DMBE III calculation, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 699-711

Double degeneracy, geometric phase theory,
Jahn-Teller models, 2—4, 31-33

Dynamic phase, properties, 210

Eckart conditions, Renner-Teller effect,
triatomic molecules, 610-615
Ehrenfest dynamics, direct molecular dynamics:
error sources, 403-404
Gaussian wavepacket propagation, 378—383
molecular mechanics valence bond (MMVB),
409-411
non-adiabatic coupling, 395-397
theoretical background, 358-361
wave function propagation, 422-423
Eigenstates:
electronic states, triatomic quantum reaction
dynamics, partial wave expansion, 315—
317
geometric phase theory:
adiabatic eigenstates, conical intersections,
8-11
linear Jahn-Teller effect, 18—20
spin-orbit coupling, 21-22
Electromagnetic theory, geometric phase theory,
single-surface nuclear dynamics, vector-
potential, molecular Aharonovo-Bohm
effect, 26-31
Electronic Hamiltonian, conical intersections,
spin-orbit interaction, 559
Electronic states:
adiabatic representation:
Born-Huang expansion, 286-289
first-derivative coupling matrix, 290-291

nuclear motion Schrodinger equation,
289-290
second-derivative coupling matrix,
291-292
adiabatic-to-diabatic transformation:
diabatic nuclear motion Schrodinger
equation, 293-295
diabatization matrix, 295-300
electronically diabatic representation,
292-293
two-state application, 300-309
four-state molecular system, non-adiabatic
coupling:
quantization, 60-62
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
molecular systems, theoretical background,
198-205
quantum reaction dynamics:
theoretical background, 283-286
triatomic reactions, two-state formalism,
309-319
partial wave expansion, 312-317
propagation scheme and asymptotic
analysis, 317-318
symmetrized hyperspherical coordinates,
310-312
quantum theory and, 198-205
three-state molecular system, non-adiabatic
coupling:
minimal diabatic potential matrix,
noninteracting conical intersections, 81—
89
numerical study, 134—137
extended Born-Oppenheimer equations,
174-175
quantization, 59-60
extended Born-Oppenheimer equations,
173-174
sign flip derivation, 73-77
strongly coupled (2,3) and (3,4) conical
intersections, “real” three-state systems,
113-117
theoretical-numeric approach, 101-103
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
two-state molecular system, non-adiabatic
coupling:
Herzberg-Longuet-Higgins phase, 185
quantization, 58—59
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“real” system properties, 104—112
C,H-molecule: (1,2) and (2,3) conical
intersections, 109-112
C,H-molecule: (1,2) and (2,3) conical
intersections, ‘‘real” two-state
systems, 109-112
H; system and isotopic analogues, 103—
109
single conical intersection solution, 97—
101
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
Electronic structure theory, electron nuclear
dynamics (END):
structure and properties, 326—327
theoretical background, 324-325
time-dependent variational principle (TDVP),
general nuclear dynamics, 334-337
Electronic wave function, permutational
symmetry, 680—682
Electron nuclear dynamics (END):
degenerate states chemistry, xii—xiii
direct molecular dynamics, structure and
properties, 327
molecular systems, 337-351
final-state analysis, 342—-349
intramolecular electron transfer,
349-351
reactive collisions, 338—-342
structural properties, 325-327
theoretical background, 323-325
time-dependent variational principle (TDVP),
327-337
basic ansatz, 330-333
free electrons, 333-334
general electron structure, 334-337
Electron properties, molecular systems,
modulus-phase formalism:
Dirac theory, 266—268
nonrelativistic states, 263-265
Electron spin, permutational symmetry,
711-712
Electron transfer:
direct molecular dynamics, 415
electron nuclear dynamics (END):
intramolecular transfer, 349-351
molecular systems, 348—349
Empirical valence bond (EVB), direct molecular
dynamics, theoretical background,
359-361
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Energy format, permutational symmetry,
737-738
Entangled states, molecular systems, Yang-Mills
fields, 261
Enthalpy properties, molecular systems,
modulus-phase formalism, 265-266
ESAB effect, phase properties, 209
Ethylene:
direct molecular dynamics, ab initio multiple
spawning, 414
loop construction, qualitative photochemistry,
472-473
Euler angles:
adiabatic-to-diabatic transformation matrix,
quantization, 66—67
electronic state adiabatic representation,
Born-Huang expansion, 287-289
electronic states:
adiabatic-to-diabatic transformation, two-
state system, 302—309
triatomic quantum reaction dynamics,
311-312
non-adiabatic coupling:
three-state molecular system, 134—137
Wigner rotation matrices, 90
permutational symmetry, rotational wave
function, 685-687
Euler-Lagrange equations, electron nuclear
dynamics (END), time-dependent
variational principle (TDVP):
basic ansatz, 330-333
free electrons, 333-334
Evans-Dewar-Zimmerman approach, phase-
change rule, 435
EWW Hamiltonian, Renner-Teller effect,
triatomic molecules, 610-615
Expanding potential, molecular systems,
component amplitude analysis, 230-232
Expectation value, crude Born-Oppenheimer
approximation, nuclei interaction
integrals, 519-527
Extended Born-Oppenheimer equations, non-
adiabatic coupling:
closed path matrix quantization, 171-173
theoretical principles, 144—-148
three-state matrix quantization, 173-174
three-state system analysis, 174—-175
Extended molecular systems, component
amplitude analysis, phase-modulus
relations, 218
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Fast Fourier transformation (FFT):
direct molecular dynamics, nuclear motion
Schrodinger equation, 364—373
non-adiabatic coupling, Longuet-Higgins
phase-based treatment:
semiclassical calculation, D + H, reaction,
164-167
two-dimensional two-surface system,
150-157
Femtosecond laser pulses, molecular systems,
211
Fermic-Dirac statistics, permutational
symmetry, total molecular wave
function, 676-678
Fermi resonance, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 710-711
Fermi’s Golden Rule:
direct molecular dynamics, adiabatic systems,
initial conditions, 373-377
electron nuclear dynamics (END), molecular
systems, 340—342
Feshbach projection operator, non-adiabatic
coupling:
analycity properties, 124—126
Born-Oppenheimer-Huang equation, sub-
Hilbert space, 46—-47
Field intensity tensor, molecular systems,
Yang-Mills fields, 254-255
vanishing of, sufficiency criterion, 257-259
Filtering techniques, phase interference, 207
Final-state analysis, electron nuclear dynamics
(END), molecular systems, 342—-349
First-derivative coupling matrix:
crude Born-Oppenheimer approximation,
Coulomb potential derivatives,
529-535
electronic states:
adiabatic representation, 290-291
adiabatic-to-diabatic transformation, two-
state systems, 300—309
diabatic nuclear motion Schrodinger
equation, 293-295
Floppy molecules, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 701-711
Floquet theory, geometric phase theory:
principles of, 33-36
single-surface nuclear dynamics, vibronic
multiplet ordering, 25-26
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Force constants, crude Born-Oppenheimer
approximation, hydrogen molecule,
minimum basis set calculation, 545-550

Forward peak scattering, electron nuclear
dynamics (END), molecular systems,
339-342

Fourier transform, molecular systems,
component amplitude analysis:

cyclic wave functions, 224—228
reciprocal relations, 216-217
Four-state system:
loop construction:
ammonia and chiral systems, 456—458
cis-trans isomerization, pi and sigma
electrons, 456
larger systems, 458—459
photochemical reactions, 455-458
pi-electrons, butadiane ring closure, 455—
456
qualitative photochemistry, 472—482
non-adiabatic coupling:
quantization, 60-62
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92

Franck-Condon factor, direct molecular

dynamics:

adiabatic systems, 374-377

complete active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 408—411

Free and Lombardi (FL) models, Renner-Teller
effect, triatomic molecules, 618-621

Free electrons, electron nuclear dynamics
(END), time-dependent variational
principle (TDVP), 333-334

Frozen Gaussian approximation:

direct molecular dynamics:
Gaussian wavepackets:
multiple spawning, 402
propagation, 380—381
molecular systems, component amplitude
analysis, wave packet construction, 229—
230

Fubini-Study metric, projective Hilbert space,
209-210

Full Hilbert space:

electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
328-330

non-adiabatic coupling:
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analycity properties, 124—126
theoretical background, 42—-44
Full multiple spawning (FMS), direct molecular
dynamics, non-adiabatic coupling, 402
Fulvene molecule, direct molecular dynamics,
complete active space self-consistent
field (CASSCF) technique, 408—410

Gauge fields, molecular systems, Yang-Mills
fields, pure vs. tensorial gauge fields,
250-253

Gauge invariant geometric phase, properties,
3-4

Gauge theories, Yang-Mills field, 204—-205

Gauge transformation:

molecular systems, Yang-Mills fields, 254—
255
wave functions, 213-214

Gauss-Hermite basis set, non-adiabatic
coupling, quantum dressed classical
mechanics, 178-179

discrete variable representation (DVR),
181-183
geometric phase effect, 180
Gaussian basis sets, crude Born-Oppenheimer
approximation:
angular-momentum-adopted Gaussian matrix
elements, 517-542
Coulomb potential derivatives,
527-542
first-order derivatives, 529—-535
second-order derivatives, 535—-542
normalization factor, 517
nuclei interaction terms, 519-527
overlap integrals, 518-519
Coulomb potential derivatives, first-order
derivatives, 529-535
hydrogen molecule, minimum basis set
calculation, 542-550
theoretical background, 507
Gaussian wavepacket calculations:
direct molecular dynamics:
adiabatic systems, propagation techniques,
377-381
non-adiabatic coupling, 399-402
theoretical background, 358-361
non-adiabatic coupling:
Longuet-Higgins phase-based treatment:
semiclassical calculation, D + H,
reaction, 166—167
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two-dimensional two-surface system,
scattering calculation, 151-155
semiclassical calculation, D + H, reaction,
164-167
Geometric phase effect (GPE):
conical intersections, 4—8
adiabatic eigenstates, 8—11
topographical energy, 568—569
curl equations, 11-17
degenerate states chemistry, x—xiii
electronic states:

adiabatic-to-diabatic transformation, two-
state system, 301-309

quantum reaction dynamics, 284—286

electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
general nuclear dynamics, 334—337

Floquet theory principles, 33—-36

historical background, 1-4, 3—4

Jahn-Teller E X € problem, 17-23

linear Jahn-Teller effect, 18—-20

quadratic Jahn-Teller effect, 22-23

spin-orbit coupling, 2E state, 20—22

molecular systems:

electronic states, 202—-205

modulus-phase formalism, Dirac electrons,
270-272

multidegenerate nonlinear coupling:
continuous tracing, component phase,

237-241
off-diagonal elements, squaring-off, 246
research background, 234
non-adiabatic coupling:

Longuet-Higgins phase-based treatment,
two-dimensional two-surface system,
148-157
quasi-Jahn-Teller model, scattering

calculation, 150-155

quantum dressed classical mechanics, 180

discrete variable representation (DVR),
181-183

quasiclassical trajectory (QCT) calculation,
three-particle reactive system, D + H,
reaction, 160-163

sign flip interpretation, 77-80

theoretical background, 42-44

two-state molecular system, H; molecule,
105-109

vector potential, Yang-Mills field, 95

permutational symmetry:
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Geometric phase effect (GPE): (Continued)
adiabatic states, conical intersections:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
antilinear operator properties, 721-723
degenerate/near-degenerate vibration
levels, 728733
degenerate states chemistry, Xiii
electronic wave function, 680—-682
energy functional form, 737-738
GBO approximation and geometric phase,
two-dimensional Hilbert space model,
718-721
group theoretical issues, 668—674
nuclear spin function, 678-682
phase-change rule, 451-453
rotational wave function, 683-687
rovibronic/vibronic wave functions,
682-683
single-surface nuclear dynamics, 30-31
25 systems:
alkali metal trimers, 712-713
dynamic Jahn-Teller and geometric
phase effects, 698—-711
electron/nuclear spin effects, 711-712
1H3 isotopomers, 713—-717
nonadiabatic coupling effects, 711
potential energy surfaces, 692—694
static Jahn-Teller effect, 694—-698
theoretical background, 660—661
time-dependent Schrodinger equation,
723-728
total molecular wave function, 661—-668,
674-678
vibrational wave function, 687-692
research background, 209-210
single-surface nuclear dynamics, 23-31
molecular Aharonov-Bohm effect, vector-
potential theory, 25-31
symmetry properties, 28—31
vector-potential theory, molecular effects,
25-31
vibronic multiplet ordering, 23-24
Glory scattering, electron nuclear dynamics
(END), molecular systems,
339-342
Gradient difference (GD) vector, direct
molecular dynamics, vibronic coupling,
conical intersections, 386—-389
Ground-state wave function:

INDEX

conical intersection, anchors, molecules and
independent quantum species, 440—-441
geometric phase theory, adiabatic eigenstates,
11
permutational symmetry, static Jahn-Teller
effect, 696—698
phase-change rule:
loop construction, 441-446
pericyclic reactions, 448—-450

Hamiltonian equations:
conical intersections:
electronic Hamiltonian, spin-orbit
interactions, 559
geometric phase theory, 4—8
crude Born-Oppenheimer approximation,
hydrogen molecule, 512-516
direct molecular dynamics, vibronic-coupling
model, 389-393
molecular systems, Yang-Mills fields,
observability of, 259-261
non-adiabatic coupling:
quasiclassical trajectory (QCT) calculation,
three-particle reactive system, D + H,
reaction, 160-163
semiclassical calculation, D + H, reaction,
163-167
Renner-Teller effect:
tetraatomic molecules, basic properties,
626-628
triatomic molecules:
effective Hamiltonians, 623-624
nonlinear molecules, 606—610
nonrelativistic vs. relativistic selection,
610-615
Hamilton-Jacobi equation, molecular systems,
modulus-phase formalism, 262-265
Lagrangean density correction term, 270
nearly nonrelativistic limit, 269
Handy, Carter, and Rosmus (HCR) theory,
Renner-Teller effect, triatomic
molecules, benchmark handling,
621-623
Handy-Carter (HC) equation, Renner-Teller
effect, triatomic molecules, 611-615,
618-619
Harmonic oscillator:
crude Born-Oppenheimer approximation,
hydrogen molecule, Hamiltonian
equation, 515-516
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direct molecular dynamics, Gaussian
wavepackets and multiple spawning,
399-402
non-adiabatic coupling, Longuet-Higgins
phase-based treatment, two-dimensional
two-surface system, scattering
calculation, 151-155
permutational symmetry, degenerate/near-
degenerate vibrational levels, 731-733
Renner-Teller effect:
tetraatomic molecules:
Hamiltonian equations, 627-628
II electronic states, 632—633
triatomic molecules, 587-598
minimal models, 615-618
Hartree-Fock calculations:
direct molecular dynamics, complete active
space self-consistent field (CASSCF)
technique, non-adiabatic systems,
404-411
permutational symmetry, potential energy
surfaces, 692—-694
HCCS radical, Renner-Teller effect, tetraatomic
molecules, II electronic states, 633—-640
H,D molecule, non-adiabatic coupling, two-
state molecular system, 107—109
HD, molecule, permutational symmetry:
isotopomers, 713—-717
potential energy surfaces, 692—694
Heaviside function:
molecular systems, component amplitude
analysis, reciprocal relations, 216-217
non-adiabatic coupling, curl condition,
pseudomagnetic field, 95-96
Heitler-London ground state, geometric phase
theory, adiabatic eigenstates, 11
Helgaker algorithm, direct molecular dynamics:
nuclear motion Schrodinger equation,
371-373
theoretical background, 360-361
Helgaker-Chen algorithm, direct molecular
dynamics:
ab initio multiple spawning (AIMS),
412-414
nuclear motion Schrodinger equation,
371-373
Helicopter reactions:
phase-change rule, 459-460
quantitative photochemical analysis,
485-487
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Heller equations, direct molecular dynamics,
Gaussian wavepackets and multiple
spawning, 399-402

Hellmann-Feynman theorem:

degenerate states chemistry, ix—xiii
direct molecular dynamics:
nuclear motion Schrédinger equation, 372—
373
vibronic coupling, adiabatic effects, 382—
384
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
332-333
geometric phase theory, adiabatic eigenstates,
conical intersections, 8—11
non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, 49-50
three-state molecular system, 134—137
two-state molecular system, H; molecule,
104-109
nuclear motion Schrodinger equation, 420

Helmzholz theorem, electronic state adiabatic
representation, first-derivative coupling
matrix, 291

Herman-Kluk method, direct molecular
dynamics, Gaussian wavepacket
propagation, 380—381

Hermite basis functions:

direct molecular dynamics, Gaussian
wavepacket propagation, 380—381
non-adiabatic coupling:
quantum dressed classical mechanics, 178—
179
semiclassical calculation, D 4 H, reaction,
163-167
Hermitian matrix:
conical intersections, spin-orbit interaction,
560-561
permutational symmetry, antilinear operators,
722-723
phase properties, 207-208
Herzberg-Longuet-Higgins phase:
non-adiabatic coupling:
historical background, 144—148
Jahn-Teller effect, 185-186
Longuet-Higgins phase-based treatment:
three-particle reactive system, 157—168
two-dimensional two-surface system,
150-157
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Herzberg-Longuet-Higgins phase:  (Continued)
quantum dressed classical mechanics,
177-183
geometric phase effect, 180—183
theoretical background, 177—-180
permutational symmetry:
dynamic Jahn-Teller and geometric phase
effects, 698-711
total molecular wave function, 667—-668
Hilbert space. See also Full-Hilbert space; Sub-
Hilbert space; Sub-sub-Hilbert space
Berry’s phase, 209-210
molecular systems, Yang-Mills fields,
untruncated Hilbert space, 253-254
non-adiabatic coupling:
adiabatic-to-diabatic transformation
matrix, quasidiabatic framework, 54—56
Born-Oppenheimer approximation, 189—
191
Born-Oppenheimer-Huang equation, 44—
45
extended Born-Oppenheimer equations,
168-171
theoretical background, 42—-44
permutational symmetry, GBO
approximation/geometric phase, Hilbert
space model, 718-721
phase properties, operators, 207-208
quantum theory, 199
"H, molecule, permutational symmetry,
rotational wave function, 686—-687
"H; molecule, permutational symmetry,
isotopomers, 713-717
H; molecule, permutational symmetry:
'H3 isotopomers, 713-717
potential energy surfaces, 692—694
Homonuclear molecules, permutational
symmetry:
electronic wave function, 680—-682
nuclear spin function, 679-680
rovibronic/vibronic wave functions,
682-683
vibrational wave function, 687-692
Hougen, Bunker, and Johns (HBJ) configuration,
Renner-Teller effect:
tetraatomic molecules, Hamiltonian
equations, 626—628
triatomic molecules, 614—-615
pragmatic models, 619-621
Hiickel’s 4n + 2 rule:

SUBJECT INDEX

conical intersections, two-state chemical
reactions, 436—438
phase change rule:

ammonia and chiral systems, 457-458

orbital overlap, 451-452

pericyclic reactions, 448—450

pi bond reactions, 452—453

Hund’s coupling, permutational symmetry,
rotational wave function, 684—-687
Hydrodynamic theory, direct molecular
dynamics, trajectory “swarms,” 421—
422
Hydrogen molecules:
crude Born-Oppenheimer approximation:

Hamiltonian equation, 512-516

minimum basis set calculation, 542—550

nuclei interaction integrals, 527

H; molecule:

Longuet-Higgins phase-change rule, loop
construction, 463-472

phase-change rule, 443-446

two-state system:
adiabatic-to-diabatic transformation,

301-309
non-adiabatic coupling, 104—109
H,4 molecule, phase-change rule, 443—-446
permutational symmetry, total molecular
wave function, 675-678
Hyperspherical coordinates:
electronic states:

adiabatic-to-diabatic transformation, two-
state system, 302—309

triatomic quantum reaction dynamics,
310-312

non-adiabatic coupling:

Longuet-Higgins phase-based treatment,
three-particle reactive system,
158-168

semiclassical calculation, D + H, reaction,
164-167

two-state molecular system, H; molecule,
106-109

vector potential formulation, 191-194

permutational symmetry:

potential energy surfaces, 693—-694

total molecular wave function, 668

Independent Gaussian approximation (IGA),
direct molecular dynamics, Gaussian
wavepacket propagation, 379-383
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Infinite-order sudden approximation (IOSA),
electron nuclear dynamics (END),
molecular systems, 345-349

Initial relaxation direction (IRD), direct
molecular dynamics, theoretical
background, 359-361

Inorganic compounds, loop construction,
photochemical reactions, 481-482

In-phase states:

conical intersection, two-state systems, 438
phase-change rule, pericyclic reactions, 448—
450
Integral properties, crude Born-Oppenheimer
approximation:
angular-momentum-adopted Gaussian matrix
elements:
nuclei interaction, 519-527
overlap integrals, 518-519
equations for, 551-555
Interference effects:
molecular systems, 211
phase properties, 206—207
quantum theory, 200

Intraanchor reactions, conical intersection, two-
state systems, 437-438

Intramolecular electron transfer, electron
nuclear dynamics (END), 349-351

Intrinsic reaction coordinate (IRC), direct
molecular dynamics, theoretical
background, 358-361

Invariant operators, permutational symmetry,
conical intersection, adiabatic state,
735-737

Irreducible representations (IRREPs),
permutational symmetry:

degenerate/near-degenerate vibrational levels,
728-733
electronic wave function, 681-682
group theoretical properties, 669—-674
invariant operators, 735-737
nuclear spin function, 678—-680
time-dependent equations, 727-728
total molecular wave function, 667-668
vibrational wave function, 688—692
Isomerization reactions:
loop construction:
benzene molecules, 479-481
cyclooctenes, 473-474
ethylene photolysis, 472-473
phase-change rules, loop construction, 456
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quantitative photochemical analysis, 482—-487
“Isomorfic Hamiltonian,” Renner-Teller effect,
triatomic molecules, 618
Isotopomers, permutational symmetry:
alklali metal trimers, 712-713
"H; molecule, 713-717
vibrational wave function, 689—-692

Jacobi coordinates:
electronic state adiabatic representation,
Born-Huang expansion, 286-289
electronic states, triatomic quantum reaction
dynamics, 310-312
non-adiabatic coupling, vector potential
formulation, 191-194
Jahn-Teller effect:
canonical intersection, Herzberg-Longuet-
Higgins theorem, historical background,
144-148
conical intersection location, 489
degenerate states chemistry, x—xiii
direct molecular dynamics:
conical intersections, 388—389
vibronic coupling, 381-382, 391-393
geometric phase theory:
conical intersections, 5—8
E x € problem, 17-23
linear Jahn-Teller effect, 18—-20
principles of, 2—4
quadratic Jahn-Teller effect, 22—23
spin-orbit coupling, *E state, 20—22
single-surface nuclear dynamics, vector-
potential, molecular Aharonovo-Bohm
effect, 28—-31
Longuet-Higgins phase-change rule, loop
construction, 461-472
multidegenerate nonlinear coupling:
E x € problem, 233-234, 238-241
higher order coupling, 243-248
complex representation, 243-244
interpretation, 248
nonlinear diagonal elements, 247
off-diagonal coupling, 246247
off-diagonal squaring, 245-246
non-adiabatic coupling:
Herzberg-Longuet-Higgins phase, 185-186
Longuet-Higgins phase, 119-122
two-dimensional two-surface system,
quasi-Jahn-Teller scattering
calculation, 150-155
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Jahn-Teller effect: (Continued)
theoretical background, 41-44
topological spin insertion, 70—73
two-state molecular system, 58—59

permutational symmetry:
conical intersection, adiabatic state,
733-735
dynamic effect, 698—711
electron/nuclear spin function, 712
1H3 isotopomers, 713-717
potential energy surfaces, 692—694
static effect, 694—698
phase properties, 209
Jaynes-Cummings model, phase properties,
206
Jungen-Merer (JM) pragmatic model, Renner-
Teller effect, triatomic molecules,
619-621
benchmark handling, 621-623

Kekulé structure:
conical intersections, two-state chemical
reactions, 436—438
phase-change rule, permutational mechanism,
451-453
Kinetic energy operator (KEO):
crude Born-Oppenheimer approximation,
basic principles, 507-512
direct molecular dynamics:
theoretical background, 360-361
trajectory “‘swarms,” 420-422
vibronic coupling Hamiltonian, 390-393
electronic states:
adiabatic representation, Born-Huang
expansion, 287-289
triatomic quantum reaction dynamics,
311-312
non-adiabatic coupling:
Born-Oppenheimer approximation, 187—
191
historical background, 145-148
Longuet-Higgins phase-based treatment:
semiclassical calculation, D + H,
reaction, 164—-167
three-particle reactive system, 158—168
two-dimensional two-surface system,
149-157
nuclear motion Schrodinger equation,
418-420
Renner-Teller effect:

SUBJECT INDEX

tetraatomic molecules:
II electronic states, 638—640
vibronic coupling, 628—631
triatomic molecules, 594-598
Hamiltonian equations, 612—-615
pragmatic models, 620-621
Kramers doublets, geometric phase theory:
linear Jahn-Teller effect, 20-22
spin-orbit coupling, 20—22
Kramers-Kronig reciprocity, wave function
analycity, 201-205
Kramers’ theorem:
conical intersections, spin-orbit interaction,
561
degenerate states chemistry, xiii
geometric phase theory, conical intersections,
6-8
permutational symmetry, 712
group theoretical properties, 669—-674
rotational wave function, 684—-687
Kronecker delta, molecular systems, Yang-Mills
fields, nuclear Lagrangean, 249-250

Lagrangian density:
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
327-328
basic ansatz, 330-333
molecular systems:
modulus-phase formalism:
correction term, 269-270
Dirac electrons, 266—-268
topological phase, 270-272
nearly nonrelativistic limit, 268—269
nonrelativistic electron, 263-265
nonrelativistic/relativistic cases,
262-263
potential fluid dynamics and quantum
mechanics, 265-266
spinor phases, 272
Yang-Mills fields, 249-250, 255-257
Lagrangian multiplier, conical intersection
location, 488-489, 565
Laguerre polynomials, Renner-Teller effect,
triatomic molecules, 589-598
Lanczos reduction:
direct molecular dynamics, nuclear motion
Schrodinger equation, 364—373
non-adiabatic coupling, Longuet-Higgins
phase-based treatment:
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semiclassical calculation, D + H, reaction,
164-167
two-dimensional two-surface system,
scattering calculation, 152—-155
Landau-Zener model:
direct molecular dynamics:
dependency properties, 415-416
trajectory surface hopping, 397-399
non-adiabatic coupling:
sub/sub-sub-Hilbert construction, 6770
topological spin insertion, 70-73
Laplace transform:
electronic state adiabatic representation,
Born-Huang expansion, 286289
permutational symmetry, total molecular
wave function, 664—-668
Legendre polynomials:
permutational symmetry, degenerate/near-
degenerate vibrational levels,
732-733
Renner-Teller effect, triatomic molecules,
benchmark handling, 622—-623
Legendre wave function, non-adiabatic
coupling, semiclassical calculation,
D + H, reaction, 164—-167
Lie groups, molecular systems, Yang-Mills
fields:
nuclear Lagrangean, 250
pure vs. tensorial gauge fields, 250252
Linear combinations of atomic orbitals (LCAO),
direct molecular dynamics, complete
active space self-consistent field
(CASSCEF) technique, non-adiabatic
systems, 4—5-411
Linear coupling approximation, geometric phase
theory, 3
Jahn-Teller effect, 18—-20
Linear triatomic molecules, Renner-Teller
effect:
singlet state vibronic coupling, 598-600
vibronic/spin-orbit coupling, 600—605
Line integral techniques:
adiabatic-to-diabatic transformation matrix,
50-57
quasidiabatic framework, 53—-57
single-valued diabatic potentials and
topological matrix, 50-53
non-adiabatic coupling:
three-state molecular system, sign flip
derivation, 73-77
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two-state molecular system and isotopic
analogues, 108—109
C,H-molecule: (1,2) and (2,3) conical
intersections, 111-112
Lithium compounds:
direct molecular dynamics, ab initio multiple
spawning, 413-414
permutational symmetry:
adiabatic states, conical intersections:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
antilinear operator properties, 721-723
degenerate/near-degenerate vibration
levels, 728-733
degenerate states chemistry, xiii
electronic wave function, 680—-682
energy functional form, 737-738
GBO approximation and geometric phase,
two-dimensional Hilbert space model,
718-721
geometric phase theory, single-surface
nuclear dynamics, 30-31
group theoretical issues, 668—674
nuclear spin function, 678—680
phase-change rule, 451-453
rotational wave function, 683—-687
rovibronic/vibronic wave functions, 682—
683
5 systems:
alkali metal trimers, 712-713
dynamic Jahn-Teller and geometric
phase effects, 698-711
electron/nuclear spin effects, 711-712
lH3 isotopomers, 713—-717
nonadiabatic coupling effects, 711
potential energy surfaces, 692—-694
static Jahn-Teller effect, 694—-698
theoretical background, 660—661
time-dependent Schrodinger equation,
723-728
total molecular wave function, 661-668,
674-678
vibrational wave function, 687-692
Local harmonic approximation (LHA), direct
molecular dynamics, Gaussian
wavepacket propagation, 378—381
Local hyperspherical surface functions (LHSFs),
electronic states, triatomic quantum
reaction dynamics, partial wave
expansion, 315-317
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Localized molecular orbital/generalized valence
bond (LMO/GVB) method, direct
molecular dynamics, ab initio multiple
spawning (AIMS), 413-414

Longuet-Higgins phase-change rule:

conical intersections:
chemical reaction, 446—453
pericyclic reactions, 447-450
pi-bond reactions, 452—-453
sigma bond reactions, 452
comparison with other techniques, 487—
493
loop construction, 441-446
dynamic phase properties, 210
loop construction:
cyclopentadienyl cation (CPDC), 467-472
cyclopentadienyl radical (CPDR), 464—-467
Jahn-Teller theorem, 461-472
non-adiabatic coupling, 148—168
geometric phase effect, two-dimensional
two-surface system, 148—157
quasi-Jahn-Teller model, scattering
calculation, 150—155
historical background, 145-148
Jahn-Teller systems, 119-122
theoretical background, 42—-44
three-particle reactive system, 157168
D + H, reaction:
quasiclassical trajectory (QCT)
calculation, 160-163
semiclassical calculation, 163—167
H + D, reaction, quasiclassical
trajectory calculation, 167-168
permutational symmetry, 'H isotopomers,
717
theoretical background, 434—-435
Loop construction:
conical intersections, photochemical systems,
453-460
four-electron systems, 455-458
larger four-electron systems, 458—459
multielectron systems, 459—-460
three-electron systems, 455
phase-change rule and, 441-446
coordinate properties, 443—-446
qualitative molecular photochemistry, 472—
482
ammonia, 480—481
benzene derivatives, 479-480
butadiene, 474—-479

SUBJECT INDEX

cyclooctatetraene (COT), 482
cyclooctene isomerization, 473—-474
ethylene, 472-473
inorganic complexes, 481-482
theoretical background, 434-435
LSTH potential energy parameters:
non-adiabatic coupling, quasiclassical
trajectory (QCT) calculation:
H + D, reaction, 167—-168
three-particle reactive system, D + H,
reaction, 160-163
semiclassical calculation, D + H, reaction,
166-167

Manifold approximation, non-adiabatic
coupling, line integral conditions,
adiabatic-to-diabatic transformation
matrix, 53

Marcus theory, electron nuclear dynamics
(END), intramolecular electron transfer,
349-351

Maslov index, molecular systems, 212

Mass polarization effect, electronic state
adiabatic representation, Born-Huang
expansion, 287-289

Matrix elements, Renner-Teller effect, triatomic
molecules, 594—-598

Maxwell equation, non-adiabatic coupling,
pseudomagnetic field, 97

Minimal diabatic potential matrix, non-adiabatic
coupling, 81-89

Minimal models, Renner-Teller effect, triatomic
molecules, 615-618

Minimal residuals (MINRES) filter
diagonalization, permutational
symmetry:

dynamic Jahn-Teller and geometric phase
effects, 699-711
theoretical background, 660-661

Minimum energy method (MEM), direct
molecular dynamics, Gaussian
wavepacket propagation, 379-381

Minimum energy path (MEP), direct molecular
dynamics, theoretical background, 358—
361

Mixed-state trajectory:

conical intersection research, 495-496
direct molecular dynamics:

Ehrenfest dynamics, 396-399

error sources, 403—-404
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molecular mechanics valence bond
(MMVB), 411
Mixing angle, non-adiabatic coupling, two-state
molecular system, H; molecule, 104—
109
Mobius strip, phase-change rule:
ammonia and chiral systems, 457458
general bond reactions, 452—-453
pericyclic reactions, 448—-450
pi bond reactions, 452—453
sigma bond reactions, 452
Modulus-phase formalism, molecular systems,
205
component amplitude analysis, 214-215,
217-218
Lagrangean properties:
Dirac electrons, 266—-268
topological phase, 270-272
Lagrangean-density correction term, 269—
270
nearly nonrelativistic limit, 268—-269
nonrelativistic electron, 263-265
nonrelativistic/relativistic cases, 262—263
potential fluid dynamics and quantum
mechanics, 265-266
spinor phases, 272
Molecular dynamics:
adiabatic molecular dynamics, 362—381
Gaussian wavepacket propagation, 377—
381
initial condition selection, 373-377
nuclear Schrodinger equation, 363-373
conical intersection location, 491-492
degenerate states chemistry, xii—xiii
direct molecular dynamics, theoretical
background, 356-362
geometric phase theory, single-surface
nuclear dynamics, vector-potential,
molecular Aharonovo-Bohm effect,
25-31
Molecular-fixed coordinates, crude Born-
Oppenheimer approximation, hydrogen
molecule, Hamiltonian equation, 514—
516
Molecular mechanics (MM) potentials, direct
molecular dynamics:
complete active space self-consistent field
(CASSCEF) technique, non-adiabatic
systems, 406—411
theoretical background, 359-361
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Molecular mechanics valence bond (MMVB):
conical intersection location, 489-490
direct molecular dynamics:

complete active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 406—411

theoretical background, 359-361

Molecular orbital-conical intersection (MO-CI):

Longuet-Higgins phase-change rule,
cyclopentadienyl radical (CPDR),
464-467

two-state systems, 438

Molecular orbital (MO) theory:
conical intersection research, 493—-496
crude Born-Oppenheimer approximation,

hydrogen molecule, minimum basis set
calculation, 548-550
direct molecular dynamics:
ab initio multiple spawning (AIMS),
413-414
AM1 Hamiltonian, 415
complete active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 405-411
nuclear motion Schrodinger equation,
372-373
phase-change rule:
chemical reactions, 450-453
cyclopentadienyl cation (CPDC),
467-472
Molecular systems:
analytic theory, component amplitudes,
214-233
Cauchy-integral method, 219-220
cyclic wave functions, 224-228
modulus and phase, 214-215
modulus-phase relations, 217-218
near-adiabatic limit, 220-224
reciprocal relations, 215-217, 232-233
wave packets, 228232
electron nuclear dynamics (END), 337-351
final-state analysis, 342—-349
intramolecular electron transfer,
349-351
reactive collisions, 338-342
four-state molecular system, non-adiabatic
coupling:
quantization, 60—-62
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
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Molecular systems: (Continued)
modulus-phase formalism, Lagrangean
properties:
Dirac electrons, 266—-268
topological phase, 270-272
Lagrangean-density correction term, 269—
270
nearly nonrelativistic limit, 268-269
nonrelativistic electron, 263—-265
nonrelativistic/relativistic cases, 262—263
potential fluid dynamics and quantum
mechanics, 265-266
spinor phases, 272
multiple degeneracy non-linearities, 233—-249
adiabatic-to-diabatic transformation, 241—
242
component phase continuous tracing, 236—
241
conical intersection pairing, 235-236
direct integration, 242-243
experimental phase probing, 248—-249
Jahn-Teller/Renner-Teller coupling effects,
243-248
complex representation, 243-244
generalized Renner-Teller coupling, 247
off-diagonal coupling, 246—247
off-diagonal element squaring, 245-246
phase factors, 205-214
quantum theory and, 198-205
three-state molecular system, non-adiabatic
coupling:
minimal diabatic potential matrix,
noninteracting conical intersections,
81-89
numerical study, 134—137
extended Born-Oppenheimer equations,
174-175
quantization, 59—-60
extended Born-Oppenheimer equations,
173-174
sign flip derivation, 73—-77
strongly coupled (2,3) and (3,4) conical
intersections, “real” three-state systems,
113-117
theoretical-numeric approach, 101-103
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
two-state molecular system, non-adiabatic
coupling:
Herzberg-Longuet-Higgins phase, 185

SUBJECT INDEX

quantization, 58—59
“real” system properties, 104112
C,H-molecule: (1,2) and (2,3) conical
intersections, 109-112
C,H-molecule: (1,2) and (2,3) conical
intersections, “‘real” two-state
systems, 109-112
H; system and isotopic analogues, 103—
109
single conical intersection solution, 97—101
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 92
Yang-Mills fields:
alternative derivation, 254-255
curl condition, 252-253
future implications, 255-257
Hamiltonian formalism, observability in,
259-261
nuclear Lagrangean equation, 249-250
pure vs. tensorial gauge fields, 251252
tensorial field vanishing criteria, 257-259
untruncated Hilbert space, 253-254
Momentum operator, non-adiabatic coupling,
Longuet-Higgins phase-based treatment,
three-particle reactive system, 157—-168
MORBID Hamiltonian, Renner-Teller effect,
triatomic molecules, benchmark
handling, 621-623
Morse oscillator:
non-adiabatic coupling:
quantum dressed classical mechanics, 179
quasiclassical trajectory (QCT) calculation,
three-particle reactive system, D + H,
reaction, 160-163
semiclassical calculation, D + H, reaction,
164-167
Renner-Teller effect, triatomic molecules,
benchmark handling, 622—-623
Morse potentials, direct molecular dynamics,
Gaussian wavepacket propagation, 378—
383
Mulliken population, electron nuclear dynamics
(END), intramolecular electron transfer,
349-351
Multiconfiguration self-consistent field
(MCSCF) technique, direct molecular
dynamics:
complete active space self-consistent field
(CASSCF) technique, non-adiabatic
systems, 404-411
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theoretical background, 358-361
vibronic coupling, diabatic representation,
385-386
Multiconfiguration time-dependent Hartree
(MCTDH) method, direct molecular
dynamics:
Gaussian wavepacket propagation, 380—381
nuclear motion Schrodinger equation, 364—
373
theoretical background, 357-361
Multidegenerate conditions:
molecular system non-linearities, 233—-249
adiabatic-to-diabatic transformation, 241—
242
component phase continuous tracing, 236—
241
conical intersection pairing, 235-236
direct integration, 242-243
experimental phase probing, 248-249
Jahn-Teller/Renner-Teller coupling effects,
243-248
complex representation, 243-244
generalized Renner-Teller coupling, 247
off-diagonal coupling, 246—247
off-diagonal element squaring, 245-246
non-adiabatic coupling, 80—81
Wigner rotation/adiabatic-to-diabatic
transformation matrices, 91-92
Multiple independent spawning (MIS), direct
molecular dynamics, non-adiabatic
coupling, 402
Multiple spawning, direct molecular dynamics:
ab initio multiple spawning, 411-414
non-adiabatic coupling, 399-402
Multivalued matrix elements, non-adiabatic
coupling:
adiabatic-to-diabatic transformation matrix,
126-132
Herzberg-Longuet-Higgins phase, Jahn-Teller
model, 185-186
minimal diabatic potential matrix, 83—89
Mystery band, direct molecular dynamics,
vibronic coupling, 381-382

NasF,; cluster, direct molecular dynamics,
semiempirical studies, 415

Near-adiabatic limit, molecular systems,
component amplitude analysis, 220-224

Near-degenerate states, permutational
symmetry, vibrational levels, 728—733
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Neumann boundary conditions, electronic states,
adiabatic-to-diabatic transformation,
two-state system, 304-309

Newton-Raphson equation, conical intersection
location:

locations, 565
orthogonal coordinates, 567
Non-Abelian theory, molecular systems,
Yang-Mills fields:
nuclear Lagrangean, 250
pure vs. tensorial gauge fields, 250—-253
Non-adiabatic coupling:
adiabatic-to-diabatic transformation matrix
analyticity, 123-126
derivation, 47-48
historical background, 40—44
line integral approach, 50-57
quasidiabatic framework, 53-57
single-valued diabatic potentials and
topological matrix, 50-53
orthogonality, 122—-123
quantization, 63—-67
single/multivaluedness, 126—132
solution conditions, 48—50
Wigner rotation matrix and, 89-92
conical intersections:
Born-Oppenheimer approximation, matrix
elements, 186—-191
coordinate origin removal, 137-138
extended Born-Oppenheimer equations:
closed path matrix quantization, 171—
173
theoretical principles, 144—148
three-state matrix quantization, 173—174
three-state system analysis, 174—175
Herzberg-Longuet-Higgins phase-based
treatment, Jahn-Teller model, 185186
Jahn-Teller systems, Longuet-Higgins
phase, 119-122
Longuet-Higgins phase-based treatment,
148-168
geometric phase effect, two-dimensional
two-surface system, 148157
three-particle reactive system, 157—168
quantum dressed classical mechanics, 177—
183
geometric phase effect, 180—183
vector potential formulation, 191-196
curl condition, Yang-Mills field, 92-97
pseudomagnetic field, 95-96
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Non-adiabatic coupling: (Continued)
vector potential theory, 93—-95
diabatic potential matrix, minimal conditions,
81-89
noninteracting conical intersections, 85—89
diabatic representation, 132—134
direct molecular dynamics:
ab initio multiple spawning, 411-414
CASSCEF techniques, 404—-411
direct dynamics, 410—411
MMVB method, 406-410
Ehrenfest dynamics, 395-397
Gaussian wavepackets and multiple
spawning, 399-402
mixed techniques, 403—-404
semiempirical studies, 414—-415
theoretical background, 356-362
trajectory surface hopping, 397-399
vibronic effects, 381-393
adiabatic properties, 382—384
conical intersections, 386—389
diabatic properties, 384—386
Hamiltonian model, 389-393
geometric phase theory, 2—3
sign flip interpretation, 77—-80
historical background, 40—44
Jahn-Teller model, Longuet-Higgins phase,
119-122
molecular systems, 203—-205
Yang-Mills fields, nuclear Lagrangean,
249-250
multidegenerate case, 80-81
nuclear motion Schrodinger equation,
principles of, 419-420
permutational symmetry, 711
quantization:
general case techniques, 63-67
model systems, 57—-63
extensions, 62—-63
four-state case, 60—62
three-state case, 59—-60
two-state system, 58—59
sub-Hilbert space construction, 67—69
sub-sub-Hilbert space construction, 69—70
theoretic-numerical approach:
three-state system in plane, 101-103
two-state system in plane:
conical intersection distribution solution,
101
single conical intersection solution,
97-101
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three-state molecular systems:

numerical study, 134—137

sign flip derivation, 73-77

strongly coupled (2,3) and (3,4) conical
intersections, “real” three-state systems,
113-117

theoretic-numerical in plane, 101-103

topological spin, 70-73
two-state molecular systems:

C,H-molecule: (1,2) and (2,3) conical
intersections, “‘real”’ two-state systems,
109-112

H; system and isotopic analogues, “‘real”
systems, 103—109

theoretic-numerical approach, in-plane
systems:
conical intersection distribution solution,

101
single conical intersection solution, 97—
101
Noncrossing rule, geometric phase theory, 2
Nondemolition measurements, phase
interference, 207
Nonlinear coupling, multidegenerate conditions:
higher order coupling, complex
representations, 243-244
molecular systems, 233-249

adiabatic-to-diabatic transformation, 241—
242

component phase continuous tracing, 236—
241

conical intersection pairing, 235-236

direct integration, 242-243

experimental phase probing, 248—249

Jahn-Teller/Renner-Teller coupling effects,
243-248
complex representation, 243244
generalized Renner-Teller coupling, 247
off-diagonal coupling, 246-247
off-diagonal element squaring, 245-246

Nonlinear molecules:
permutational symmetry:

electronic wave function, 681-682

static Jahn-Teller effect, 696—698

vibrational wave function, 688—-692

Renner-Teller effect, 606—-610
Nonrelativistic states:
conical intersections, spin-orbit interaction,
seam loci, 573-574
molecular systems, modulus-phase
formalism:
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electron configuration, 263-265
nearly nonrelativistic limit, 268—269
theoretical background, 262-263
Nonremovable couplings, electronic states,
adiabatic-to-diabatic transformation,
two-state systems, 301-309
Nonvanishing matrix elements, crude Born-
Oppenheimer approximation, hydrogen
molecule, minimum basis set
calculation, 546-550
Normalization factor, angular-momentum-
adopted Gaussian matrix elements, crude
Born-Oppenheimer approximation, 517
Nuclear dynamics. See also Quantum reaction
dynamics
electron nuclear dynamics (END), time-
dependent variational principle (TDVP),
general reactions, 334-337
geometric phase theory:
quadratic Jahn-Teller effect, 22—23
single-surface nuclear dynamics, 23-31
molecular Aharonov-Bohm effect,
vector-potential theory, 25-31
vibronic multiplet ordering, 24—-25
permutational symmetry:
adiabatic states, conical intersections:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
antilinear operator properties, 721-723
degenerate/near-degenerate vibration
levels, 728-733
degenerate states chemistry, xiii
electronic wave function, 680—682
energy functional form, 737-738
GBO approximation and geometric phase,
two-dimensional Hilbert space model,
718-721
geometric phase theory, single-surface
nuclear dynamics, 30-31
group theoretical issues, 668—674
nuclear spin function, 678-682
phase-change rule, 451-453
rotational wave function, 683—-687
rovibronic/vibronic wave functions, 682—
683
25 systems:
alkali metal trimers, 712-713
dynamic Jahn-Teller and geometric
phase effects, 698—711
electron/nuclear spin effects, 711-712
1H3 isotopomers, 713-717
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nonadiabatic coupling effects, 711
potential energy surfaces, 692—694
static Jahn-Teller effect, 694—698
theoretical background, 660—661
time-dependent Schrodinger equation,
723-728
total molecular wave function, 661-668,
674-678
vibrational wave function, 687—-692
Nuclear Lagrangean equation, molecular
systems, Yang-Mills fields, 249-250,
255-257
Nuclear motion Schrodinger equation:
direct molecular dynamics, 363-373
vibronic coupling, adiabatic effects,
382-384
electronic states:
adiabatic representation, 289-290
adiabatic-to-diabatic transformation,
293-295
diabatization matrix, 296—300
diabatic representation, 292—-293
triatomic quantum reaction dynamics,
partial wave expansion, 313-317
principles of, 417-420
Nuclear spin function, permutational symmetry,
678-680, 711-712
Nuclei subsystems, permutational symmetry,
total molecular wave function,
677-678

Off-diagonal elements:
adiabatic-to-diabatic transformation matrix,
quantization, 67
conical intersection location, 488489
multidegenerate nonlinearity:
generalized coupling, 246-247
squaring-off method, 245-246
permutational symmetry, total molecular
wave function, 666—668
One-dimensional representations:
conical intersections, spin-orbit coupling,
558-559
Renner-Teller effect:
theoretical principles, 585-586
triatomic molecules, pragmatic models,
620-621
On-the-fly molecular dynamics. See Direct
molecular dynamics
Oosterhoff correlation diagram, conical
intersection research, 494—-496
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Open-path phase:
molecular systems, multidegenerate nonlinear
coupling, 242-243
properties, 210
Operator definitions, phase properties, 206—207
Optical phases, properties, 206—207
Orbital overlap mechanism, phase-change rule,
chemical reactions, 450-453
Orthogonal transformation matrix:
conical intersections, spin-orbit interaction:
invariant parameters, 574—576
seam loci, 576-578
molecular systems, 204—205
non-adiabatic coupling:
adiabatic-to-diabatic transformation,
122-123
Longuet-Higgins phase-based treatment,
two-dimensional two-surface system,
scattering calculation, 151-155
two-state molecular system, H; molecule,
104-109
Orthonormalization:
electron nuclear dynamics (END), molecular
systems, final-state analysis, 343-349
permutational symmetry, GBO
approximation/geometric phase, Hilbert
space model, 719-721
Out-of-phase states:
conical intersection, two-state systems, 438
loop construction, benzene molecules,
479-481
phase-change rule, pericyclic reactions, 448—
450
phase inverting reactions, 496—499
quantitative photochemical analysis, 485-487
Overlap integrals, crude Born-Oppenheimer
approximation, angular-momentum-
adopted Gaussian matrix elements,
518-519

Pairing approximation, phase inverting
reactions, 499

Pancharatnam phase, properties, 206

Parabolical insertions, non-adiabatic coupling,
topological spin, 70-73

Parallel transported eigenstates, geometric phase
theory, 10—11

Partial wave expansion, electronic states,
triatomic quantum reaction dynamics,
312-317
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Pauli principle:
conical intersections:
phase-change rule, chemical reaction,
446-453
pericyclic reactions, 447-450
pi-bond reactions, 452-453
sigma bond reactions, 452
two-state chemical reactions, 436—438
degenerate states chemistry, xii—xiii
loop construction, coodinate properties,
443-446
permutational symmetry, rotational wave
function, 685-687
Pauli spin matrices, geometric phase theory,
eigenvector evolution, 14—-17
Pegg-Barnett operators, phase properties,
207-208
Pericyclic reactions, phase-change rule,
447-450
Permutational symmetry:
adiabatic states, conical intersections:
invariant operators, 735-737
Jahn-Teller theorem, 733-735
antilinear operator properties, 721-723
degenerate/near-degenerate vibration levels,
728-733
degenerate states chemistry, xiii
electronic wave function, 680—-682
energy functional form, 737-738
GBO approximation and geometric phase,
two-dimensional Hilbert space model,
718-721
geometric phase theory, single-surface
nuclear dynamics, 30-31
group theoretical issues, 668674
nuclear spin function, 678—680
phase-change rule, 451-453
rotational wave function, 683-687
rovibronic/vibronic wave functions,
682-683
g systems:
alkali metal trimers, 712-713
dynamic Jahn-Teller and geometric phase
effects, 698-711
electron/nuclear spin effects, 711-712
1H3 isotopomers, 713-717
nonadiabatic coupling effects, 711
potential energy surfaces, 692—694
static Jahn-Teller effect, 694—-698
theoretical background, 660—661
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time-dependent Schrodinger equation,
723-728
total molecular wave function, 661-668,
674-678
vibrational wave function, 687—-692
Perturbation theory:
conical intersections:
location, 488—-489
spin-orbit interaction, 559, 561-563
time-reversal symmetry, 563—-564
crude Born-Oppenheimer approximation,
basic principles, 510-512
electronic states, quantum reaction dynamics,
285-286
non-adiabatic coupling, two-state molecular
system, single conical intersection
solution, 97—-101
permutational symmetry, total molecular
wave function, 665-668
Renner-Teller effect:
tetraatomic molecules:
A electronic states, 647—-653
II electronic states, 641—-646
triatomic molecules, minimal models,
615-618
Petelin-Kiselev (PK) model, Renner-Teller
effect, tetraatomic molecules, 625-633
II electronic states, 634—640
Phase-change rule. See Longuet-Higgins phase-
change rule
Phase factors. See also Modulus-phase
formalism
canonical intersection, historical background,
144-148
geometric phase theory, eigenvector
evolution, 13-17
molecular systems, 205-214
experimental probing, 248-249
non-adiabatic coupling:
Longuet-Higgins phase-based treatment,
three-particle reactive system, 157-168
theoretical background, 43-44
observability, 208
quantum theory, 200
Phase-inverting reactions:
molecular model, 496-499
phase-change rule, pericyclic reactions, 449—
450
Phase-preserving reactions, phase-change rule,
pericyclic reactions, 449-450

791

Photochemistry:
direct molecular dynamics, vibronic coupling,
381-382
future research issues, 493-496
loop construction, 453—460
four-electron systems, 455-458
larger four-electron systems, 458—459
multielectron systems, 459—-460
qualitative analysis, 472—482
ammonia, 480-481
benzene derivatives, 479-480
butadiene, 474-479
cyclooctatetraene (COT), 482
cyclooctene isomerization, 473-474
ethylene, 472-473
inorganic complexes, 481-482
quantitative analysis, 482—487
three-electron systems, 455
Photodissociation, direct molecular dynamics,
nuclear motion Schrodinger equation,
365-373
Photoelectron spectroscopy (PES), non-
adiabatic coupling, Born-Oppenheimer-
Huang equation, 45
Photon capture, direct molecular dynamics,
adiabatic systems, initial conditions,
373-377
© bonds, phase-change rule, 452—-453
isomerization reactions, 456
large four-electron systems, 458—459
II electronic states:
permutational symmetry, electronic wave
function, 680-682
Renner-Teller effect:
tetraatomic molecules:
ABBA models, 631-633
Hamiltonian equations, 626—628
HCCS radical, 633-640
perturbative handling, 641-646
theoretical background, 625-626
triatomic molecules:
minimal models, 615-618
vibronic coupling, singlet states,
599-600
vibronic/spin-orbit coupling,
452-453
Planar molecules, permutational symmetry:
electronic wave function, 681-682
rotational wave function, 685—-687
vibrational wave function, 687-692
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Podolsky method, Renner-Teller effect,
triatomic molecules, Hamiltonian
equations, 612-615

Poincare sphere, phase properties, 206

Point group symmetry:

conical intersections, geometric phase theory,
5-8
permutational symmetry:
electronic wave function, 681-682
group theoretical properties, 669—-674
Poisson equations:
electronic states, adiabatic-to-diabatic
transformation, 296—300
two-state system, 303-309
permutational symmetry, dynamic Jahn-Teller
and geometric phase effects, 708—711
Polar coordinates:
electronic states, adiabatic-to-diabatic
transformation, two-state system, 303—
309
non-adiabatic coupling:
Jahn-Teller systems, Longuet-Higgins
phase, 119-122
Longuet-Higgins phase-based treatment,
two-dimensional two-surface system,
scattering calculation, 154—155
three-state molecular system, 134—137
two-state molecular system, single conical
intersection solution, 98—101
permutational symmetry, degenerate/near-
degenerate vibrational levels, 730-733
Polyene molecules:
direct molecular dynamics:
complete active space self-consistent field
(CASSCEF) technique, 409-410
semiempirical studies, 414—-415
phase-change rule, pericyclic reactions, 448—
450
Pople-Longuet-Higgins model, Renner-Teller
effect:
tetraatomic molecules, 629-631
II electronic states, 633
triatomic molecules, 616-618
Potential energy surface (PES):
conical intersection, nonadiabatic coupling,
148
crude Born-Oppenheimer approximation:
angular-momentum-adopted Gaussian
matrix elements, 517-542
Coulomb potential derivatives, 527-542

first-order derivatives, 529-535
second-order derivatives, 535-542
normalization factor, 517
nuclei interaction terms, 519-527
overlap integrals, 518-519
hydrogen molecule, minimum basis set
calculation, 542-550
theoretical background, 506—507
direct molecular dynamics:
adiabatic systems, 362—381
Gaussian wavepacket propagation, 377—
381
initial condition selection, 373-377
nuclear Schrodinger equation, 363-373
Gaussian wavepackets and multiple
spawning, 399-402
molecular mechanics valence bond
(MMVB), 408411
nuclear motion Schrodinger equation, 419—
420
theoretical background, 356—-362
trajectory surface hopping, 397-399
vibronic coupling, 382-393
electronic states:
adiabatic representation:
Born-Huang expansion, 286—289
first-derivative coupling matrix, 290—
291
nuclear motion Schrodinger equation,
289-290
second-derivative coupling matrix, 291—
292
adiabatic-to-diabatic transformation:
diabatic nuclear motion Schrodinger
equation, 293-295
diabatization matrix, 295-300
electronically diabatic representation,
292-293
two-state application, 300—-309
theoretical background, 283—-286
triatomic reactions, two-state formalism,
309-319
partial wave expansion, 312-317
propagation scheme and asymptotic
analysis, 317-318
symmetrized hyperspherical coordinates,
310-312
electron nuclear dynamics (END):
structure and properties, 325-327
theoretical background, 324—325
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non-adiabatic coupling:
extended Born-Oppenheimer equations,
170-171
Longuet-Higgins phase-based treatment,
155-157
permutational symmetry:
format, 737-738
2§ systems, 692—-694
Renner-Teller effect, theoretical principles,
585-586
Potential fluid dynamics, molecular systems,
modulus-phase formalism, quantum
mechanics and, 265-266
Pragmatic models, Renner-Teller effect,
triatomic molecules, 618-621
Probability densities, permutational symmetry,
dynamic Jahn-Teller and geometric
phase effects, 705-711
Projection operators, geometric phase theory,
eigenvector evolution, 16—17
Projective Hilbert space, Berry’s phase, 209—
210
Prony analysis, electron nuclear dynamics
(END), molecular systems, 344—-349
Propagation techniques, electronic states,
triatomic quantum reaction dynamics,
317-318
Pseudomagnetic fields:
degenerate states chemistry, x—xiii
non-adiabatic coupling:
curl equation, 95-96
vector potential, Yang-Mills field, 94-95
Pseudoparticles, direct molecular dynamics:
nuclear motion Schrodinger equation, 371—

373
trajectory “swarms,” 421-422
Pseudorotation:
electronic states, quantum reaction dynamics,
284-286

permutational symmetry, dynamic Jahn-Teller
and geometric phase effects, 702—711
Pseudoscalar term, multidegenerate
nonlinearity, off-diagonal elements,
squaring-off, 246
Pump-probe techniques, molecular systems, 211

Quadratic coupling, geometric phase theory,
Jahn-Teller effect, 22-23
Quantal adiabatic phase:
geometric phase theory, 2

793

quantum theory, 199-200
Quantization:
degenerate states chemistry, x—xiii
non-adiabatic coupling:
curl condition, pseudomagnetic field, 96
extended Born-Oppenheimer equations,
171-173
three-state systems, 173-174
future research applications, 118—-119
general case techniques, 63—67
model systems, 57-63
extensions, 62—-63
four-state case, 60—62
three-state case, 59-60
two-state system, 58—59
theoretical background, 41-44
Quantum chemistry, direct molecular dynamics,
416
Quantum correction, molecular systems,
modulus-phase formalism, 264-265
Quantum dressed classical mechanics, non-
adiabatic coupling, 177-183
geometric phase effect, 180—183
theoretical background, 177—180
Quantum measurements, component amplitude
analysis, phase-modulus relations, phase
losses, 218
Quantum mechanics:
adiabatic molecular dynamics, theoretical
background, 362-363
molecular systems, modulus-phase
formalism, potential fluid dynamics and,
265-266
Quantum numbers:
permutational symmetry, dynamic Jahn-Teller
and geometric phase effects, 702—-711
Renner-Teller effect:
nonlinear molecules, 607-610
triatomic molecules, 592—-598
Quantum reaction dynamics, electronic states:
adiabatic representation:
Born-Huang expansion, 286—289
first-derivative coupling matrix, 290—291
nuclear motion Schrodinger equation, 289—
290
second-derivative coupling matrix, 291—
292
adiabatic-to-diabatic transformation:
diabatic nuclear motion Schrodinger
equation, 293-295
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Quantum reaction dynamics, electronic
states: (Continued)
diabatization matrix, 295-300
electronically diabatic representation,
292-293
two-state application, 300-309
theoretical background, 283-286
triatomic reactions, two-state formalism,
309-319
partial wave expansion, 312-317
propagation scheme and asymptotic
analysis, 317-318
symmetrized hyperspherical coordinates,
310-312
Quantum theory, molecular systems, 198—205
Quasiclassical trajectory (QCT) calculation,
non-adiabatic coupling, Longuet-
Higgins phase-based treatment, three-
particle reactive system:
D + H, reaction, 160—163
H + D, reaction, 167-168
Quasidiabatic framework, non-adiabatic
coupling, adiabatic-to-diabatic
transformation matrix, line integral
approach, 53-57
Quasi-Jahn-Teller model, non-adiabatic
coupling, Longuet-Higgins phase-based
treatment, two-dimensional two-surface
system, scattering calculation, 150—155

Racah coefficients, multidegenerate nonlinear
coupling, higher order coupling, 243
Reactive collisions, electron nuclear dynamics
(END), molecular systems, 338—342
final-state analysis, 343—-349
Reactive double-slit model (RDSM), non-
adiabatic coupling, Longuet-Higgins
phase-based treatment, two-dimensional
two-surface system, scattering
calculation, 150-155
Reactive transitions, non-adiabatic coupling,
extended Born-Oppenheimer equations,
175-177
Reciprocal relations:
molecular systems, component amplitude
analysis:
cyclic wave functions, 225-228
modulus-phase formalism, 215
origins, 215-217
theoretical consequences, 232—233
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wave function analycity, 201-205
Reference configuration:
permutational symmetry, 737-738
Renner-Teller effect, triatomic molecules,
614-615
Regge poles, molecular systems, phase
properties, 214
Relativistic states:
conical intersections, spin-orbit interaction:
future research issues, 578—-580
seam loci, 573-574
molecular systems, modulus-phase
formalism, 262-263
Renner effect, historical background, 584—-585
Renner parameter, Renner-Teller effect:
tetraatomic molecules:
perturbative handling, 642—646
II electronic states, 635-640
II electronic states, 632—633
triatomic molecules, vibronic/spin-orbit
coupling, 600-605
Renner-Teller effect:
degenerate states chemistry, xiii
historical background, 584585
multidegenerate nonlinear coupling, higher
order coupling, 243-248
complex representation, 243-244
generalized coupling, 247
interpretation, 248
nonlinear diagonal elements, 247
off-diagonal coupling, 246247
off-diagonal squaring, 245-246
non-adiabatic coupling, topological spin
insertion, 70-73
nonadiabatic coupling, two-state molecular
system, 59
tetraatomic molecules:
delta electronic states, perturbative
handling, 647-653
II-electronic states:
ABBA molecules, 631-633
HCCS radical, 633-640
perturbative handling, 641-646
theoretical principles, 625—-633
Hamiltonian equation, 626—628
vibronic problem, 628—-631
theoretical principles, 585-586
triatomic molecules:
benchmark handling, 621-623
effective Hamiltonians, 623-624
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Hamiltonian equations, 610-615
minimal models, 615-618
multi-state effects, 624
pragmatic models, 618-621
spectroscopic properties, 598-610
linear molecules:
singlet state vibronic coupling, 598—
600
vibronic/spin-orbit coupling, 600—605
nonlinear molecules, 606-610
theoretical principles, 587-598
Restricted open-shell Hartree-Fock (ROHF)
procedure, 415
Restriction equations, molecular systems,
component amplitude analysis,
reciprocal relations, 215-217
Robb, Bernardi, and Olivucci (RBO) method,
conical intersection location, 489—-490
Rotational couplings:
electronic states, 284—286
electron nuclear dynamics (END), final-state
analysis, 348-349
Rotational wave function, permutational
symmetry, 683—-687
Rovibrational states, electron nuclear dynamics
(END), molecular systems, final-state
analysis, 344-349
Rovibronic wave function, permutational
symmetry, 682—683
Rydberg states:
Renner-Teller effect, tetraatomic molecules,
625
wavepacket revivals, 212
Rys’ polynomials:
crude Born-Oppenheimer approximation,
hydrogen molecule, Hamiltonian
equation, 515-516
integral equations, 553—-555

Sayvetz condition, Renner-Teller effect,
triatomic molecules, 614-615
Scattering calculations:
direct molecular dynamics, nuclear motion
Schrodinger equation, 365-373
electronic states, triatomic quantum reaction
dynamics, 309-319
electron nuclear dynamics (END), molecular
systems, reactive collisions, 338-342
non-adiabatic coupling, Longuet-Higgins
phase-based treatment, two-dimensional
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two-surface system, quasi-Jahn-Teller
scattering calculation, 150—155
time shifts, 213
Schiff approximation, electron nuclear dynamics
(END), molecular systems, 339—-342
Schrodinger equation:
canonical intersection, historical background,
145-148
crude Born-Oppenheimer approximation:
basic principles, 510-512
hydrogen molecule, Hamiltonian,
514-516
degenerate states chemistry, xi—xiii
diabatization, 42
electronic states:
adiabatic-to-diabatic transformation,
298-300
Born-Huang expansion, adiabatic
representation, 289
Longuet-Higgins phase-change rule, loop
construction, 462—-472
molecular systems:
component amplitude analysis:
phase-modulus relations, 217-218
time-dependent equation, 214-215
time-dependent ground state, 220-224
Yang-Mills fields, nuclear Lagrangean, 250
non-adiabatic coupling:
Born-Oppenheimer approximation, 187—
191
extended Born-Oppenheimer equations,
three-state molecular system, 174—175
Jahn-Teller systems, Longuet-Higgins
phase, 121-122
vector potential, Yang-Mills field, 94-95
nuclear motion equation:
direct molecular dynamics, 363-373
electronic states:
adiabatic representation, 289-290
diabatic representation, 292—293
principles of, 417-420
permutational symmetry, total molecular
wave function, 661-668, 674—678
quantum theory, 199
Renner-Teller effect:
tetraatomic molecules, vibronic coupling,
628-631
triatomic molecules, 587-598
benchmark handling, 621-623
Hamiltonian selection, 610-615
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Schrodinger equation:  (Continued)
time-dependent equation:
direct molecular dynamics, 356—362
Ehrenfest dynamics, 395-397
initial conditions, 373-377
trajectory surface hopping, 399
vibronic coupling, diabatic
representation, 385—-386
electron nuclear dynamics (END):
structure and properties, 325-327
theoretical background, 323-325
permutational symmetry, 723-728
wave function propagation, 422—423
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I. INTRODUCTION

Subsequent chapters deal largely with developments in the theory of geometric
phase and non-adiabatic coupling over the past 10 years, but the editors agreed
with me that there would be some value in including a chapter on early contri-
butions to the field, to provide a historical perspective. No doubt the choice of
material will seem subjective to some. Others will find it redundant to repeat
well-established results in an ‘“Advances” volume, but this chapter is not
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addressed to the experts; it is primarily intended for students seeking a
pedagogical introduction to the subject. Discussion is limited to what is now
known as the quantal adiabatic (Longuet-Higgins or Berry) phase, associated
with motion on a single adiabatic electronic surface, on the assumption that the
nuclear motion occurs far from any points of electronic degeneracy. The geo-
metric phase and an associated vector potential term in the nuclear kinetic energy
operator will be seen to arise from the presence of singularities in the non-
adiabatic coupling operator, at so-called conical intersection points, but the
wave function will appear as a product of a single electronic and a single
nuclear factor.

The story begins with studies of the molecular Jahn-Teller effect in the late
1950s [1-3]. The Jahn-Teller theorems themselves [4,5] are 20 years older and
static Jahn—Teller distortions of electronically degenerate species were well
known and understood. Geometric phase is, however, a dynamic phenomenon,
associated with nuclear motions in the vicinity of a so-called conical inter-
section between potential energy surfaces.

The simplest and most widely studied case is the E x € Jahn—Teller model
[2,6,7] for which a double degeneracy at say an equilateral triangular geometry
is relieved linearly by nuclear distortions in a doubly degenerate nuclear
vibration. In the language of later discussions [8], the nuclear coordinates Q
define a two-dimensional (2D) parameter space containing the intersection point
0o, and the geometric phase is associated with evolution of the real adiabatic
electronic eigenstates, say |x;(Q)) and |x_(Q)), on parameter paths around Q.
The important points are that |x.(Q)) are undefined at Qy, but that they can be
taken elsewhere as smooth functions of Q, in the sense that (x.(Q)|x+(Q+
8Q)) — 1 as 8Q — 0, over any region free of other degeneracies. It is then a
simple matter to demonstrate that the linearity of the separation between the two
adiabatic potential surfaces, say W, (Q), also requires a sign change in |x4(Q)),
as they are transported around Q [2,6,7]. Note that there is no corresponding
geometric phase associated with symmetry determined electronic degeneracies
in linear molecules for which the degeneracy is relieved quadratically in the
bending coordinate [9]; in other words the two linear molecule adiabatic
potential surfaces touch at Qy but do not intersect. Conical intersections, with
associated geometric phase, do, however, arise at accidental degeneracies in
linear molecules, between, for example, 3 and II electronic states [6]; they can
also occur in quite general geometries for nonsymmetric species, such as
NaKRb. The latter were taken by Longuet-Higgins [7] as test cases to resolve a
controversy over the ‘“‘noncrossing rule” in polyatomics.

The next significant development in the history of the geometric phase is due
to Mead and Truhlar [10]. The early workers [1-3] concentrated mainly on the
spectroscopic consequences of localized non-adiabatic coupling between
the upper and lower adiabatic electronic eigenstates, while one now speaks
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of the geometric phase associated with a well-separated lower adiabatic surface,
such that the nuclear motions revolve around the intersection point Qy, without
passing close to it. Longuet-Higgins et al. [2] treat this situation in a linear
coupling approximation, but Mead and Truhlar [10] were the first to provide a
systematic formulation. Any treatment must recognize that the nature of the
nuclear wave function is necessarily affected by the electronic sign change,
since the total wave function must be a single-valued function of Q. This means
either that the boundary conditions on the nuclear wave function must
incorporate a compensating sign change for circuits around Qg or that the real
adiabatic eigenstates, |x.), must be defined with compensating phase factors,
such that

Ins) = eV |x)

is single valued around Qy. Ham [11] analyses the ordering of vibronic eigen-
values in the presence of geometric phase from the former standpoint, while
Mead and Truhlar [10] adopt the latter formulation, which leads to a vector
potential contribution to the nuclear kinetic energy, dependent on the form of the
chosen phase factor \s(Q). Residual arbitrariness in the choice of . (Q), subject
to the single valuedness of |n.), must cancel out in any consistent treatment of
the nuclear dynamics.

Berry [8] set the theory in a wider context, by defining a ““gauge invariant”
geometric phase, which is specific to the system in question and to the geometry
of the chosen encircling path, but is also independent of the above residual
arbitrariness. The resulting integrated geometric phase applies to quite general
situations, provided there is a single isolated point of degeneracy. The
degeneracy need not be twofold, nor need the encircling path lie in the plane
containing Qy, as demonstrated by Berry’s [8] explicit treatment of angular
momentum precession, with arbitrary 2J 4 1 degeneracy, in a slowly rotating
magnetic field.

Macroscopic physical manifestations of the above adiabatic geometric phase
may be found in the Aharonov—Bohm effect [12] and in nuclear magnetic
resonance (NMR) systems subject to slowly rotating magnetic fields [13]. Their
observation in molecular systems is less straightforward. Books have been
written about the multisurface dynamics of Jahn-Teller systems [14,15], but
effects attributable to the geometric phase on the lowest adiabatic potential
surface are quite elusive. One example is an observed energy level dependence
on the square of a half-odd quantum number, j, in Naz [16,17], as first predicted
by Longuet-Higgins et al. [2]. It depends, however, on the assumption of strictly
linear Jahn-Teller coupling, because j is conserved only in the absence of
corrugations on the lower surface arising from the inclusion of quadratic and
higher Jahn-Teller coupling terms (see Sections V.A and V.C). The strongest
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general prediction, for Cs point groups, is that geometric phase causes a
systematic inversion in the vibronic tunneling splitting associated with the
above corrugations [11]; thus the levels of the lowest vibronic triplet are
predicted in the order E(E) < E(A), an order that is successively reversed and
restored in the higher triplets. The possible observation of similar geometric
phase related effects in molecular scattering situations is discussed in several of
the following chapters.

Section II begins with a general discussion of conical intersections, including
deductions from the point group and time-reversal symmetries, concerning
connections between the nuclear coordinate dependencies of different electronic
Hamiltonian matrix elements. Section III is concerned with the nature of
electronic adiabatic eigenstates close to a conical intersection. The crucial result
for later sections is that an E X € conical intersection gives rise to an adiabatic
eigenvector sign change regardless of the size and shape of the encircling loop,
provided that no other degenerate points are enclosed. Specifically, geometrical
aspects of adiabatic eigenvector evolution are discussed in Section IV, along the
lines of papers by Berry [8] and Aharonov et al. [18]. Different expressions for
its evaluation are also outlined. Various aspects of the E x e Jahn-Teller
problem, with linear and quadratic coupling, including and excluding spin—orbit
coupling, are outlined in Section V. More general aspects of the nuclear
dynamics on the lower potential sheet arising from a conical intersection are
treated in Section VI, from two viewpoints. Section VI.A expounds Ham’s
general conclusions about the order of vibronic tunneling levels from a band
theory standpoint [11], with sign-reversing boundary conditions on the nuclear
wave functions. There is also an appendix for readers unfamiliar with
Floquet theory arguments. By contrast, Section VI.B outlines the elements
of Mead and Truhlar’s theory [10], with normal boundary conditions on the
nuclear wave function and a vector potential contribution to the nuclear kinetic
energy, arising from the compensating phase factor (Q), which was discussed
above. The relationship between the contributions of Aharonov et al. [18]
and Mead and Truhlar [10] are described. Aspects of the symmetry with
respect to nuclear spin exchange in the presence of geometric phase are also
discussed. Section VII collects the main conclusions and draws attention to
related early work on situations with greater complexity than the simple E X €
problem.

II. CONICAL INTERSECTIONS

Molecular aspects of geometric phase are associated with conical intersections
between electronic energy surfaces, W(Q), where Q denotes the set of say k
vibrational coordinates. In the simplest two-state case, the W(Q) are eigen-
surfaces of the nuclear coordinate dependent Hermitian electronic Hamiltonian
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matrix,
Haa(Q) Hap(Q)
n@ = (58] i) W
namely,
W2 (Q) = 5 [Fan(Q) + Hn(0)] % 5/ [Han(©) — Hin (Q)F + 4IHrs(Q)F

(2)

Strict degeneracy between the electronic energy surfaces therefore requires the
existence of points Qg at which Haa(Q) = Hpp(Q) and Hag(Q) = 0. These two
independent conditions will rarely occur by variation of a single coordinate Q
[unless Hap(Q) = 0 by symmetry]—hence the diatomic “noncrossing rule.”
There is, however, no such prohibition in polyatomics. In the common case of a
real representation, degeneracies can clearly lie on a surface of dimensionality
k — 2, where k is the number of vibrations [6,7,19,20]. They are termed conical if
Haa(Q) — Hgp(Q) and Hag(Q) vanish linearly in Q. Such points are symmetry
determined for Jahn-Teller systems [4], which include all electronically
degenerate nonlinear polyatomics. They also occur as a result of bending at, say
a X — Il intersection in a linear molecule [6], and at more general configurations
of nonsymmetrical species. For example, Longuet-Higgins [7] shows that
Heitler—London theory for a system of three dissimilar H-like atoms, such as
LiNaK, has a pair of doublet states with eigensurfaces governed by the
Hamiltonian matrix

Woa+iB+y) B

H =
\/é(ﬁ—v) Wto—3(B+7v)

(3)

where o, B, and y are exchange integrals for the three interatomic bonds. A
conical intersection therefore occurs at geometries such that o« = 8 = vy, which
again implies two independent constraints.

Aspects of the Jahn-Teller symmetry argument will be relevant in later
sections. Suppose that the electronic states are n-fold degenerate, with
symmetry I', at some symmetrical nuclear configuration Qy. The fundamental
question concerns the symmetry of the nuclear coordinates that can split the
degeneracy linearly in Q — Qy, in other words those that appear linearly in
Taylor series for the n> matrix elements (A|H|B). Since the bras (A| and kets |B)
both transform as I', and H are totally symmetric, it would appear at first sight
that the Jahn—Teller active modes must have symmetry I'p = I', x I',. There
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are, however, further restrictions, dependent on whether the number of electrons
is even or odd. The following argument [4,5] uses the symmetry of the
electronic states under the time-reversal operator T to establish general relations
between the various matrix elements. The essential properties are that 7 com-
mutes with the Hamiltonian

HT = TH; (4)
that any state |A) has a time-reverse T]A), such that
(T|Tor) = (Bloy); (5)

and that states with even and odd electrons are symmetric and antisymmetric
under 772, respectively. It therefore follows that

(A|H|TB) = (TA|THTB)* = (TA|H|T*B)* = +(B|H|TA)
1

((A|H|TB) + (B|H|TA)) (6)

NS}

where the upper and lower signs apply for even and odd electron systems,
respectively.

Suppose now that |A) and |B) belong to an electronic representation I',.
Since H is totally symmetric, Eq. (6) implies that the matrix elements (A|H|TB)
belong to the representation of symmetrized or anti-symmetrized products of
the bras {(A|} with the kets {|TA)}. However, the set {|TA)} is, however, simply
a reordering of the set {|A)}. Hence, the symmetry of the matrix elements in the
even- and odd-electron cases is given, respectively, by the symmetrized
[, x T',] and antisymmetrized {T', x T',} parts of the direct product of T', with
itself. A final consideration is that coordinates belonging to the totally symmetric
representation, I'yg, cannot break any symmetry determined degeneracy. The
symmetries of the Jahn—Teller active modes are therefore given by

I'p CclexT,]—Ty for even electron systems
I'p c{l, xT,} =Ty for odd electron systems

This is the central Jahn—Teller [4,5] result. Three important riders should be
noted. First, Iy = 0 for spin-degenerate systems, because {I', x I',} = I'y. This
is a particular example of the fact that Kramer’s degeneracies, arising from spin
alone can only be broken by magnetic fields, in the presence of which H and T no
longer commute. Second, a detailed study of the molecular point groups reveals
that all degenerate nonlinear polyatomics, except those with Kramer’s
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degeneracy, have at least one vibrational coordinate covered by the above rules.
Finally, no linear polyatom has such coordinates. Hence, there are no symmetry
determined conical intersections in linear molecules. The leading vibronic
coupling terms are quadratic in the nuclear coordinates, giving rise to a Renner—
Teller [9] rather than a Jahn-Teller effect.

The symmetry argument actually goes beyond the above determination of the
symmetries of Jahn—Teller active modes, the coefficients of the matrix element
expansions in different coordinates are also symmetry determined. Consider, for
simplicity, an electronic state of symmetry E in an even-electron molecule with
a single threefold axis of symmetry, and choose a representation in which two
complex electronic components, |ex) = 1/v/2(|ex) *+ ileg)), and two degen-
erate complex nuclear coordinate combinations Q. = re™® each have character
t*! under the C; operation, where T = ¢*™/3, The bras (e. | have character T7'.
Since the Hamiltonian operator is totally symmetric, the diagonal matrix
elements (ei|H|ey) are totally symmetric, while the characters of the
off-diagonal elements (ex|H|e+) are 1=2. Since 1° =1, it follows that an
expansion of the complex Hamiltonian matrix to quadratic terms in Q. takes the
form

B 0 kQ_ + 10
= <kQ+ 2 0 +) )

The corresponding expression in the real basis (Jea), |es)) is

[ krcosd + Ir* cos 2¢ krsin ¢ — Ir? sin2¢ (8)
~ \ krsing — Ir*sin2¢p  —krcos ¢ — Ir? cos 2

after substitution for (Q,,Q_) in terms of (r, ). Equation (8) defines what is
known as the E x € Jahn—Teller problem, which is discussed in Section V.

More general situations have also been considered. For example, Mead [21]
considers cases involving degeneracy between two Kramers doublets involving
four electronic components |o), |o), |B), and |B’). Equations (4) and (5),
coupled with antisymmetry under 77 lead to the following identities between
the various matrix elements

(ofHer) = (To|THo)" = (TolH|To)" = (o |Hle)" = (of |H|o!) ©)
(o) = (ol H|To) = (To|TH|Te)" = (To|H|T?0)" = —(o/|H|e)"  (10)
(ulH|B) = (Te|THI|B)" = (To|H|TB)" = («/|H|B)" (11)
(ol H|B') = (To|TH|B')" = (TolH|TH')" = —(o/|H|B)" (12)
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The conclusion is therefore that the 4 x 4 Hamiltonian matrix, which is assumed
to have zero trace, takes the form

w(@) 0 u(@)  v(Q)
Q@ —v(@) -w@) 0
Q) u(Q) 0 —w(©Q)

~

where w(Q) is real. Consequently, there are five independent conditions for a
strict conical intersection between two Kramers doublets, although v(Q) may, for
example, vanish in model situations (see Section V.B). Moreover, there is no
certainty that the intersection will lie in a dynamically accessible region of the
coordinate space.

III. ADIABATIC EIGENSTATES NEAR A
CONICAL INTERSECTION

Suppose that |x,(Q)) is the adiabatic eigenstate of the Hamiltonian H(g; Q),
dependent on internal variables g (the electronic coordinates in molecular
contexts), and parameterized by external coordinates Q (the nuclear coordi-
nates). Since |x,(Q)) must satisfy

H(q; Q)1xa(Q)) = Eo(Q)1xa(Q))  (Xuln) = Sy (14)
it follows by the Hellman—Feynman theorem that
[H(q; Q) — Ex(Q)]Volxn(Q)) = [VoEn — VoH]|xa(Q)) (15)
Thus, on expanding

Volua(Q)) = Y bin(Q)) (un| Volxa) (16)

the off-diagonal matrix elements of V, may be derived from Eq. (15) in the form

(Xm| VoH |xn)
En(Q) - Em(Q)
The adiabatic approximation involves neglect of these off-diagonal terms, on
the basis that |E,(Q) — En(Q)| > |(xm|VoH|x,)|. The diagonal elements

(x4|Vg|x,) are undetermined by this argument, but the gradient of the normali-
zation integral, (x,|x,) = 1, shows that

VQ<xn|xn> = <xn|van> + <van|xn> = <xn|van> + <xn‘van>* =0 (18)

(| Volxn) = (17)
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Consequently,
(a|Voxn) = —(xa| Vo) (19)

from which (x,|Vox,) = 0, for real |x,).

Equations (16)—(20) show that the real adiabatic eigenstates are everywhere
smooth and continuously differentiable functions of Q, except at degenerate
points, such that E,(Q) — E,,(Q) = 0, where, of course, the |x,) are undefined.
There is, however, no requirement that the |x,) should be real, even for a real
Hamiltonian, because the solutions of Eq. (14) contain an arbitrary Q dependent
phase term, V(@) say. Second, as we shall now see, the choice that |x,) is real
raises a different type of problem. Consider, for example, the model
Hamiltonian in Eq. (8), with [ = 0;

[ krcosd krsin ¢
H= < krsing —krcos ) (20)

with a degeneracy at r = 0 and real eigenvectors

cos % —sin %
)= ) = ) (21)
sin 3 cos 3

It is readily verified that
0 0
— ={x_|zx_) = 22
<x+|a¢|x+> (.X' |a¢|‘x > 0 ( )

but the new problem is that
s (¢ +2m)) = —|x+(4)) (23)

which means that |x4(¢)) is double valued with respect to encirclement of the
degeneracy at r = 0. In the molecular context, the assumption of a real adiabatic
electronic eigenstate therefore requires boundary conditions such that the associ-
ated nuclear wave function also changes sign on any path around the origin,
because the total wave function itself must be single valued. A more convenient
alternative, for practical calculations, is often to add a phase modification, such
that the modified eigenstates, |n.), are single valued [2,10].

) in &
. cos = . —sin %
" " < sin é) "= e ( cos 29) 4

2 2
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with (Qr) — ¥(Q;) = £n. The simplest choice in the present context is
V(Q) = ¢/2 but any phase factor, ¢"¥(®), that changes sign around a circuit of ¢
is equally acceptable. Nevertheless, the geometric phase defined in Section IV
and the associated vector potential theory outlined in Section VI.B are gauge
invariant (i.e., independent of this phase ambiguity).

We should also notice explicitly that [22]

_%

(v [ Vohy) =52 (25)
where ey is a unit vector in the direction of increasing ¢. Equation (25) shows
that the non-adiabatic coupling diverges at the conical intersection point, which
is of course a manifestation of the fact that |x.) are undefined at an exact
degeneracy. It is readily verified that (n_|Vg|ny) and (n|Vg|n.) also diverge in
a similar way.

In turn, this leads to an important conclusion, for the general discussion, that
the above sign change, for real eigenstates such that (x5 (Q + 00)|x+(Q)) — 1
as 0Q — 0, arises solely from the electronic degeneracy—not from the linearity
of Eq. (20), because the adiabatic eigenstates were seen above to be smooth
continuously differentiable functions of the nuclear coordinates Q, except at the
conical intersection g, where the divergence occurs. To reverse a famous
argument of Longuet-Higgins [7], suppose that a sign change were observed for
an arbitrarily small path C around Qy, on which the linear approximation (20) is
valid, but not around some larger loop L, which excludes other degeneracies.
Now, imagine a continuous expansion and deformation that takes C into
L, parameterized by a monotonically increasing parameter A. There must be
some point Ag, at which |x_(Q)), say, is sign reversing on C(A¢) but sign pre-
serving on C(Ag + dA). In other words, the change from sign reversing to sign
preservation on the larger loop requires the smoothly continuous function
|x_(Q)) to undergo a discontinuous change at Ap—a logical impossibility.

Longuet-Higgins [7] actually uses the argument in reverse to infer the logical
existence of conical intersections, from the observation of sign changes around
arbitrary loops, a test that is now widely used to detect the existence of conical
intersections between ab initio potential energy surfaces [23]. A generalization
of the Longuet-Higgins argument to the case of a spin—orbit coupled doublet has
been given by Stone [24]. As discussed above [see Eq. (13)] the Hamiltonian
matrix is then intrinsically complex, and there are no real adiabatic eigenstates.
Nevertheless one can still find ““parallel transported” states |x.), with vanishing
diagonal elements, as in Eq. (22), which acquire a variable phase change,
according to the radius of the encircling loop. The conical intersection is now
removed by spin—orbit coupling, but it’s influence is still apparent in simple sign
changes of |x4) around very large loops. The difference from the Longuet-
Higgins case is that the phase change falls to zero on very small circles around
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the maximum on the lower adiabatic surface. This situation is further discussed
in Section V.B.

Longuet-Higgins [7] also reinforces the discussion by the following quali-
tative demonstration of a cyclic sign change for the LiNaK like system subject
to Eq. (3), in which rows and columns are labeled by the basis functions

2‘I’l = (\l’B - ‘ch)
(26)

Wy = —(—2Va + Vg + Ve)

S-Sl

where 5, = (@bc), and so on, with the B spin on atom A. Thus >¥; may be
recognized as the Heitler—London ground state of BC in the ‘“‘reactant” A +BC
geometry, at which =y =0. Second, there is also a ‘“transition state”
geometry B-A-C at which o < B = vy, where the lower eigenstate goes over to
2W,. The table below follows changes in the ground-state wave function as the
system proceeds through various permutations of the three possible reactant and
transition state geometries, subject to the constraint that the overlap from one
step to the next is positive.

Geometry Ground-State Wave Function
A + BC ﬁ(‘l’B =)

A-BC )
AB + C ﬁ(‘l’B —Va)

B-A-C % (=2Ya + ¥ +¥c)
B + AC %(*‘JIA + V)
B-C-A % (=Va — Vg +2¥c)
BC + A L (g + )

Comparison between the first and last lines of the table shows that the sign of
the ground-state wave function has been reversed, which implies the existence
of a conical intersection somewhere inside the loop described by the table.

IV. GEOMETRIC PHASE

While the presence of sign changes in the adiabatic eigenstates at a conical
intersection was well known in the early Jahn-Teller literature, much of the
discussion centered on solutions of the coupled equations arising from non-
adiabatic coupling between the two or more nuclear components of the wave
function in a spectroscopic context. Mead and Truhlar [10] were the first to
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focus on the consequences for both scattering and spectroscopy on a single
adiabatic electronic energy surface, influenced by, but well separated from a
conical intersection (see Section VI). Berry [8], who coined the term geometric
phase, set the argument in a more general context. Given the existence of an
infinity of phase modified adiabatic eigenstates of any given problem, the
questions at issue are

1. Whether there are any physical invariants of the system, independent of
phase modifications.

2. How such invariants can be computed.

Berry [8] starts by assuming the existence of a single-valued adiabatic
eigenstate |n(Q)), such as that in Eq. (24), subject to

H(Q)|n(Q)) = E.(Q)[n(Q))  (mln) = 8 (27)
Solutions of the time-dependent Schrodinger equation

A1)

200 mom)|w(0) (28)

are sought then in the form

W(0(1))) = [n(Q(1)))e™ /M JE@O ) — ¢ (29)

as the system is taken slowly round a time dependent path Q(¢). It readily follows
from Eq. (28) and (29) that

V(@) - Q+i % ju(@)) = 0 (30)

from which it follows by integrating around a closed path C in parameter space
that

Ye = (T) = y(0) = ,-4;

(n|Vqn) -Qdt = ijL (n|Vqgn) -dQ (31)
c

C

It should be noted, by taking the gradient of the normalization identity that

(n|Vgn) = —(Vgnln) = =(n|Von)™. (32)



EARLY PERSPECTIVES ON GEOMETRIC PHASE 13

In other words, (n|[Vqn) is imaginary, making v real. As an illustrative
example, |n) may assumed to be given by Eq. (24), in which case

ve =i (Von)-4Q = ~§ Vou-dQ = ~[y(1) ~¥(0)] = Fx (33

The sign of y. is actually indeterminate for this particular model because the
quantity of physical interest is e’c = ¢ = —1.

Equation (31) is the fundamental geometric phase formula. It is termed
geometric for two reasons. First, the combination of |Vgn) and Qudt in the
central term ensures that v~ depends only on the geometry of the path C—not
on the rate at which it is traversed. Second, it is gauge invariant, in the sense that
multiplication of any single-valued eigenstate |1) by a phase factor ¢’2¥, such
that Ay/(T) = A(0) leaves v, invariant. All single-valued solutions of Eq. (27)
have the same geometric phase Y. The arbitrariness in Y(Q) allows, however,
for different manifestations of Eq. (31). For example, the choice |y = —¢/2,
coupled with Eq. (25) for the linear E x € model allows the identity

(n|Vgln) = iVolr = —i% = —i{x_|Volx,) (34)

so that Eq. (31) may be expressed as
ve = (x-[Vok.) - 4@ (39)

Phase factors of this type are employed, for example, by the Baer group [25,26].
While Eq. (34) is strictly applicable only in the immediate vicinity of the coni-
cal intersection, the continuity of the non-adiabatic coupling, discussed in
Section III, suggests that the integrated value of (x_|Vgql|x4) is independent of
the size or shape of the encircling loop, provided that no other conical
intersection is encountered. The mathematical assumption is that there exists
some phase function, y(Q), such that

Vol = —(x_|Volr,) (36)

a condition that requires that Vg x (x_|Vgqlx;) = 0, because Vg x Vo =0
for any function \(Q). Equation (34) ensures that this curl condition is satisfied
for the linear E x € model, but it would not be valid for the spin % model
discussed below, for example (or for the isomorphous 2E x € model discussed in

Section V.B), for which the adiabatic eigenstates are intrinsically complex.
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Other forms for y. are also available. Consider, for example, the phase
modification

In(Q)) = ¢"'9[x(Q)) (37)

so that Y[O(T)]—V[Q(0)] =arg(x[Q(0)]|x[Q(T)]), because (n[Q(0)]|n[Q(T)]) =
1 [i.e., |n(Q)) is single valued]. It follows from Eq. (31) that

ve = arg(x[Q0)]X[Q(T)]) + ijgc (¥ Vox) -dQ (38)

which applies to a quite general adiabatic eigenstate |x(Q)). At one extreme, |x)
is single-valued and Eq. (38) reverts to Eq. (31), while at the opposite limit |x) is
real, (x|Vqx) vanishes and vy, takes values O or m according to whether |[x)
evolves to +|x).

Another form

YC:,-“vQ X (n[Vgn) - dS (39)

with the integral taken over an area enclosed by the contour C, was obtained by
Berry [8] by applying Stokes theorem [27] to the line integral in Eq. (31). Care is,
however, required to ensure that the chosen surface excludes the conical
intersection point, Qo, where (n|Vn) diverges, because Stokes theorem requires
that (n|Von) should be continuously differentiable over the surface.

A variant of Eq. (39), with the integral taken over a surface bounded by a
path C’ that excludes Qy, is illuminating in situations where |n) is given by
Eq. (37), with |x) real. One then finds that

Yo = iJJVQ X VQ\I! -dS'=0 (40)

because Vo x Vo = 0 for any function (Q). This means that the value of v,
is independent of the size and shape of the path C, provided that no degenerate
points, other than Qy are enclosed, because any distortion of C can be interpreted
as taking in an additional area over which the integrals in Egs. (31) and (39) both
vanish. This Stokes theorem argument confirms the earlier topological conclu-
sions applicable to real adiabatic eigenstates |x).

A third expression may be obtained by taking the curl inside the bracket in
Eq. (39) and using the identities

Vo) =Y lm)(m|Vgn) (41)
(m|VoH|n)

Em(Q) - En(Q) (42)

<m|VQn> =—
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to yield [8,10]

. <n|VQH|m) X <m|VQH|n> .
te=i]] 2 b0 -l )

The sum excludes m = n, because the derivation involves the vector product of
(n|V o H|n) with itself, which vanishes. The advantage of Eq. (43) over Eq. (31)
is that the numerator is independent of arbitrary phase factors in |n) or |m);
neither need be single valued. On the other hand, Eq. (43) is inapplicable, for the
reasons given above if the degenerate point lies on the surface S.

Consequently, Eq. (43) is inapplicable to the model of Eq. (20), because the
eigenstates, given by Eq. (21) or (24), are only defined in the (x,y) plane, which
contains the degeneracy. On the other hand, Berry [8] extends the model in the
form

1 z X —1iy
H2<x+iy . > = x0, + YO, + 20, (44)

where the components of the vector ¢ are the Pauli spin matrices. Thus

vQI{ = (Gxa Gy, GZ) (45)
Moreover, because there are only two eigenstates, it follows from the com-
pleteness property, the vanishing of (n|VyH|n) and the angular momentum
commutation relations that

(n|VoH|m) x (m|VoH|n) = (n|VoHxVqH|n) = i(n|c|n) (46)

The level splitting for this model is E,,(Q) — E,(Q) = v/x* +y*+ 22 =r and
the eigenstates may be taken as

- cos [ —sin g )
In-c) = singei¢ In-) = cos geid) (

It is readily verified that
r
(nslofne) =+ (48)

where T is a unit vector perpendicular to the surface of the sphere, used for
evaluation of the surface integral. One readily finds, by use of Eqgs. (43)—(47), that

o= [ ) a5 L[ ao "
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where dfQ is the solid angle element. The choice of a contour at constant z or 6
therefore yields
Yo ==£(1 —cosO)n (50)

which reduces to Eq. (33) for 6 = n/2, a comparison that is justified by noting
that the model (44) with 6 = 7/2 reduces to that in Eq. (20), in a complex rather
than a real representation. The factors e'’c for the two states, which could be
obtained more directly by substitution from Eq. (47) in Eq. (31), now take
different values for 6 # /2.

There is also an interesting alternative approach by Aharonov et al. [18], who
start by using projection operators, II,, = |n)(n| to partition the Hamiltonian

2

P
H:%"i-Hl((I?Q) (51)

between the adiabatic eigenstates |n) of Hj(g;r), rather than immediately
assuming an adiabatic representation. Since P does not commute with the II,,
products such as I1,P?II,, must be interpreted as

IT,P°II, = TI,P - > " 1I,,PII, (52)
an expression that can be simplified by decomposing P into two parts; a part
P — A that acts only within an adiabatic subspace and a part A that causes non-
adiabatic transitions. Thus

[(P—A),IL] =0 (53)
while ambiguity in A can be removed by requiring that

In other words, A is a strictly off-diagonal operator that can be evaluated as the
difference between P and its diagonal parts

A=P-> TI,PI, = %Z[Hm, [IL,,,, P]] (55)

The operation of (1/2m)P? within any particular subspace may therefore be
represented as

1 1
— TII,P?II, = —1I1,,(P — A + A)*TIL,
2m 2m ( +4)
1
= — |IL,(P — A)IL,(P — A)II, I1,AlIL,AIL,
o ( )L )L, + ;
1
=5 - [TL(P A)TL, + IT,AL,] (56)
m

Equations (53) and (54) are used to perform the manipulations in (56).
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The strengths of this approach are that the operator A is gauge invariant and
that equation (55) can be employed for its computation, regardless of the
number of components. To see the connection with geometric phase, arguments
given by Stone and Goff [28] show that A determines a field strength operator
with components

Fy = —ilPi — A;, P; — A)] (57)

the diagonal elements of which determine the phase change Ay over a loop
AriAr/ in parameter space, in the form [18]

Ay, = AriArj<n\Fij|n> = iAriArj<n|[A,~,Aj}|n> (58)

In three-dimensional (3D) applications the overall phase change over a cycle
may therefore be expressed as a surface integral, analogous to Eq. (43), namely,

=i | ol Ay as (59)

Comparison with Eq. (43) is illuminating. By the method of construction, the
matrix elements of A are identical with the off-diagonal elements of P; thus,
with the help of Eqgs. (41) and (42)

Aln) = Z|m (m|Aln) = —lZ|m (m|Vgl|n) —ZZ

mtn mn m Q)

|m m|VQH|n> (60)

Consequently, Egs. (43) and (59) are identical, for applications in a 3D parameter
space, except that the vector product in the former is expressed as a commutator
in the latter. Both are computed as diagonal elements of combinations of strictly
off-diagonal operators; and both give gauge independent results. Equally,
however, both are subject to the limitations with respect to the choice of surface
for the final integration that are discussed in the sentence following Eq. (43).

Equations (31)—(43) assume a 3D parameter space, (, although the gradient
Vo|n) has an obvious generalization to higher dimensions. Further general-
izations, to include the curl, transform equation (38) into the integral of a two
form over the surface bounded by C, this two form being obtained by replacing
V by the exterior derivative d and x by the wedge product A of the theory of
differential forms [29].

V. THE E x ¢ JAHN-TELLER PROBLEM

The E x € Jahn-Teller problem, described by Eq. (7) or (8), plus an additional
nuclear term /p(Q), common to the two electronic states, is the prototype for all
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subsequent discussions. In its linear variant, with / = 0 in the above equations, it
provided the first example of geometric phase, plus a less familiar half-integral
quantum number [2]. The effects of spin—orbit coupling on geometric phase
[21,24] are also conveniently illustrated. Addition of the quadratic terms in
Eq. (7) or (8) is of interest in introducing a threefold corrugation on the lower
adiabatic potential surface leading to an “inverted” pattern of vibronic
multiplets (E levels below A, in the lowest triplet), which is one of the clearest
experimental manifestations of geometric phase [11]. There is also an inter-
esting question concerning the relative magnitudes of the linear and quadratic
terms in Eqgs. (7) and (8). We shall find that there is no geometric phase effect
unless k # 0, which raises questions as to the nature of its disappearance as
k/1 — 0.

A. The Linear Jahn-Teller Effect

It is convenient to discuss the linear Jahn—Teller model in the scaled complex
representation

_( hy  kre™
H= (kreiq’ ho ) (61)
where
h 77ig g ,La_erl 2 (62)
°" T2 or rar 2r279p* 2 d

rather than in the real representation in Eq. (20). It is readily verified, by ignoring
the kinetic energy terms, that the eigensurfaces take the form

1
W. = Er2 + kr (63)
with single-valued eigenstates
1 1
) = ( a0 ) (64
Substitution in Eq. (33) therefore yields Y- = —m, in agreement with the result

obtained from the real representation of the Hamiltonian in Eq. (20).

Figure 1a shows that the eigensurfaces form an interconnected double sheet,
the lower member of which has a ring of equivalent minima at r =k and
W_ = —%k2. As expected angular momentum is conserved, but with the
complication that it is vibronic, rather than purely vibrational in character,
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(a)

®)

Figure 1. Adiabatic potential surfaces (a) for the linear E x € case and (b) for a 2E state with
linear Jahn-Teller coupling and spin—orbit coupling to a 2A state.

because it may be confirmed that the operator

j=l+o, L =—ir (65)
commutes with H; and j includes an electronic component, G, as well as the
vibrational term /,. The single valued eigenstates of 7, belonging to the upper and
lower potential surfaces, may be obtained by multiplying Eq. (64) by ¢/l/~1/2)¢;
thus

1 el i—1/2)¢ 135
|u/i(¢)> :75 (iei(j+1/2)¢> J 2575,5 (66)

They must be coupled by separate radial factors in a full calculation [2]
but, to the extent that non-adiabatic coupling between the upper and lower
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surfaces is neglected, the total lower adiabatic wave function may be expressed
as

0-) =Pl (9)) v- (1)) (67)

with the radial wave function on the lower adiabatic surface, |v_(r)), taken as an
eigenstate of the radial operator

j 1
b=y 2 gy (68)

For large k, the approximate potential minimum lies at » = k and the lower
vibronic eigenvalues are given by [2]

K> N 2
Evj:—2+(v+2>+2k2 (69)

The presence of the half-odd quantum number j in Eq. (69) is potentially a
physically measurable consequence of geometric phase, which was first claimed
to have been detected in the spectrum of Naj [16]. The situation is, however,
quite complicated and the first unambiguous evidence for geometric phase in Najz
was reported only in 1999 [17].

B. Spin-Orbit Coupling in a °E State

The effects of spin—orbit coupling on geometric phase may be illustrated by
imagining the vibronic coupling between the two Kramers doublets arising from
a 2E state, spin—orbit coupled to one of symmetry 2A. The formulation given
below follows Stone [24]. The four ?E components are denoted by |e. o), |e_a),
le4B), |e_B), and those of 2A by |ea), |eoB). The spin—orbit coupling operator
has nonzero matrix elements

(e4B|Hsoleoor) = (e—0t|HsoeoB) (70)

giving rise to a second-order splitting, of say 2A, between one Kramers doublet,
lesa), |e—PB), and the other, |e_a), |e, B). There is also a spin-preserving vibronic
coupling term, of the form in Eq. (61), giving rise to a Hamiltonian of the
form

o+ A kre ™
H= ( kre'® ho—A> (71)

for one coupled pair and the complex conjugate form for the other. Notice
that Eq. (71) conforms to Eq. (13) with w = A, u = kre *®, and v = 0. The
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eigensurfaces now take the forms
Lol /on 2
Wizir:t Kr2+ A (72)
with an avoided conical intersection, as shown in Figure 1b.
It is convenient, for comparison with Section V.A, to employ substitutions

kr

A = p(r)cos0(r) kr = p(r)sin0(r) tan 0(r) = A (73)

which convert the Hamiltonian in Eq. (71) to the form in Eq. (44). Comparison
with Eq. (50) shows that the geometric phase, for a cycle of constant radius, r, is
given by

Ye=—(1—cosO(r))n (74)

It reverts to the unspin—orbit modified value, y- = —m, for paths such that
kr > /\, but vanishes as r — 0.

Reverting to the vibronic structure, the operator j again commutes with H,
and the analogue of the lower adiabatic eigenstate of j in Eq. (66) becomes

. (75)

|

1 —sin %ei(j*1/2)¢ 13
|uj*(r7¢)>_ﬁ COSgei(j+l/2)¢ ]_5757

where the r dependence of |u;_(r, $)) comes from that of 8(r). There is also an
equivalent complex conjugate eigenstate of the complex conjugate Hamiltonian
to that in Eq. (71). One finds after some manipulation that

(uj (r, &) lolr™"u; (r, 9))
19> j24jcosb 1 /do\?
_ ) Lo g Ajcosh 1/db
’ { 207 T 2 +WUHS(W) (76)

The radial factor in the total wave function

0-) = 1Pl (§))lv-(r)) (77)

must therefore be an eigenstate of

hy=—-—S+——=5—+W_(r)+<

" 10> j*+4jcosh 1 /do\*
: 20r2 2r2
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The principal differences from Eq. (68) lie in the form of the potential W_(r) and
in the presence of the term j cos 0, of which the latter arises from the dependence
of the geometric phase on the radius of the encircling path. The eigenvalues of h,
are no longer doubly degenerate, but a precisely equivalent Kramer’s twin radial
Hamiltonian may be derived from the complex conjugate of Eq. (71).

C. The Quadratic Jahn-Teller Effect

The quadratic Jahn—Teller effect is switched on by including the quadratic terms
in Eq. (7); thus, with the inclusion of the additional diagonal Hamiltonian Ay,

ho kre=¢ 4 [r2e%®
H = ) , 79
(kre’d’ + Ir2e2i0 ho (79)

The eigensurfaces are given by

1
Wgn¢):§#ir¢ﬂ+aumm3¢+ﬂﬂ (80)

with a threefold corrugation around the minimum of W_(r), in place of the line
of continuous minima in Figure 1. The three absolute minima in Figure 2, at
¢ = 0, £21/3, correspond to three equivalent isosceles distortions of an initially
equilateral triangular molecule.

There is no simple general form for the adiabatic eigenvectors, except in the
limits, k = 0 and / = 0, when, for example,

oid/2
|x_) = o =0
—idp
(iw> k=0 (81)

In the first case, |x_) changes sign as ¢ increases to ¢ + 2w, while in the
second, |x_) is single valued. There is therefore a geometric phase of +m, for
Ir < k, but no geometric phase in the opposite limit, /r > k. The interesting
questions concern (1) the effects of the corrugations on the vibronic eigenvalues;
and (2) the origin of the change in geometric phase behavior as the ratio Ir/k
increases.

The first of these questions is deferred to Section VI. The second is addressed
by considering the degeneracy condition W, (r,d) = W_(r,d). One solution
lies at r = 0, and there are three others at r = k/l and ¢ = nr, /3 [30,31]. A
circuit of ¢ with r < k/I therefore encloses a single degenerate point, which
accounts for the ‘“normal” sign change, e™™ = —1, whereas as circuit with
r > k/I encloses four degenerate points, with no sign change because e*#* = 1.
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Quadratic case: lower surface

vk
o
|

x/k

Figure 2. Contours of the lower potential surface in the quadratic £ x € Jahn—Teller case.

Any proper treatment of the dynamics, including motion in the » variable
therefore requires knowledge of the position of the minima of W_(r, ¢), which
are found to lie at r = k/(1 — 2/?) [units are dictated by the form of the scaled
restoring term 72 /2 in Eq. (80)]. The potential minima therefore lie inside the
critical circle r = k/Iif I < 1/+/3 and outside it if the sense of the inequality is
reversed. Single surface dynamics, in the sense to be discussed below, may
therefore be assumed to apply with a geometric phase of m if / < 1/ V3, and
with no geometric phase if /> 1//3. Cases with /== 1/+/3, with significant
wave function amplitude at the degenerate points with r = k/I, cannot be
validly treated in an adiabatic approximation.

VI. SINGLE-SURFACE NUCLEAR DYNAMICS

Given the full-Hamiltonian

P2
H(q,Q) =) V5 + Ha(g: Q) (82)
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and adiabatic eigenstates |n(g; Q)), such that

Ha(gq; Q)ln(g; Q)) = W(Q)In(g; Q)) (83)

the Born—Oppenheimer approximation to the total wave function,

W(g, Q) = In(g; 2))|v(Q)) (84)

requires that
(3 50 7+ 2000Bi) -+ 1))+ W(0) ) (@) = EI(Q)) (59

with appropriate boundary conditions on the vibrational factors |v(Q)). As
discussed in Section III, coupling terms of the form

(n|V gHa|m)

(86)

have been neglected in the derivation of Eq. (85). The assumption is that the
wave function has negligible amplitude in the vicinity of any points at which
W(Q) has a close degeneracy with any other eigensurface.

Geometric phase complications necessarily arise, however, whenever the
nuclear wave function has significant amplitude on a loop around an isolated
degeneracy. They can be treated in two ways, according to whether the adiabatic
eigenstate |n(g; Q)) is taken to be multivalued or single-valued around the loop
in nuclear coordinate space Q. Illustrations are given below for the two different
approaches. The first concerns the energy ordering of the vibronic eigenstates
arising from a strong quadratic Jahn—Teller effect [11]. The second outlines the
vector potential approach, due to Mead and Truhlar [10], with applications to
the above E X € linear Jahn-Teller problems and to scattering problems
involving identical nuclei.

A. The Ordering of Vibronic Multiplets

It was seen in Section V.C that quadratic Jahn—Teller coupling terms result in a
threefold corrugation around the minimum energy path on the lower potential
surface W_(Q) and that there is a geometric phase, Y- = m, provided that the
radius of the minimum energy path satisfies » < k/I. We now consider the
influence of geometric phase on the relative energies of the (A, E) symmetry
levels in different tunneling triplets. The solution, due to Ham [11], applies band
theory arguments to assess the influence of antiperiodic, V(¢ + 21) = —\(d),
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boundary conditions on solutions of the threefold periodic angular equation

{ch:;—i-E— v(¢)}¢(¢) =0 v<¢+23”) =V()  (87)

Note that there is no first derivative term in Eq. (87), because the first line of
Eq. (81) ensures that (x|0/0¢|x) = 0.

The first strand of Ham’s argument [11] is that V(¢) supports continuous
bands of Floquet states, with wave functions of the form

Vi) = e E0¢(¢) (88)

where &(¢) has the same periodicity as V(¢) [32]. Elements of Floquet theory,
collected in the appendix, show that the spectrum is bounded by — % <k<Z %, and
that the dispersion curves, E(k) obtained by inversion of k(E) in Eq. (88), have
turning points at k = 0 and k = %

A second constraint is that the relative order of the critical energies at k = 0
and k :% is invariant to the presence or absence of the potential V(¢) [11].
Equation (A.6) shows that the free motion band structure can be folded onto the
interval —% <k<Z % Consequently, preservation of relative energy orderings at
k=0and k = % implies a band structure for V(¢) # 0, with the form shown in
Figure 3.

The question of vibronic energy ordering, with and without geometric phase,
now turns on the appropriate values of k in Eq. (88), bearing in mind that all
energy levels are doubly degenerate except those at k =0 and k = % Normal
periodic boundary conditions require integral k, with E(0) < E(£1), in the
lowest energy band. However, introduction of a sign change in 5 (¢d), to
compensate the electronic geometric phase factor, introduces half odd-integral
values of k, with E(+1) < E(3). This ordering is seen from Figure 3 to be
reversed and restored in the successively excited bands. It may also be noted
that an explicit calculation of the lowest 89 vibrational levels of Naj [33]
confirms that the ordering of vibronic energy levels is the clearest observable
molecular manifestation of geometric phase.

B. Vector-Potential Theory: The Molecular Aharonov—-Bohm Effect

Mead and Truhlar [10] broke new ground by showing how geometric phase
effects can be systematically accommodated in scattering as well as bound state
problems. The assumptions are that the adiabatic Hamiltonian is real and that
there is a single isolated degeneracy; hence the eigenstates |n(q; Q)) of Eq. (83)
may be taken in the form

In(g; Q) = ¢"@lx(g; 0)) (89)
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Floquet band structure

scaled energy

k

Figure 3. Floquet band structure for a threefold cyclic barrier (a) in the plane wave case after
using Eq. (A.11) to fold the band onto the interval —% <kZ %; and () in the presence of a threefold

potential barrier. Open circles in case (b) mark the eigenvalues at k = 0, =1, consistent with periodic

boundary conditions. Closed circles mark those at k = i%,%, consistent with sign-changing

boundary conditions. The point k = f% is assumed to be excluded from the band.

where |x(g; Q)) is real, and (Q) is designed to ensure that |n(g; Q)) is single
valued around the degeneracy. Consequently, Eq. (85) takes the form

1 ~ 2 ~2
(sz,[{l’i —a} + (<P 0] + W(Q)) M) =Ev(@)  (90)
where
a; = —hVo (1)
The term a; therefore plays the role of a vector potential in electromagnetic

theory, with a particularly close connection with the Aharonov—Bohm effect,
associated with adiabatic motion of a charged quantal system around a magnetic
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flux line [12], a connection that has led to the phrase molecular Aharonov—Bohm
effect [34,35] for the influence of a; on the nuclear dynamics. Note also that
single valuedness of |n(q; Q)) allows considerable ambiguity in the definition of
Y(Q), but it is easily verified that the substitution of y(Q) for y(Q) merely alters
the phase of [v(Q)) by a factor e/V~¥), without altering the essential dynamics.
The simplest choice (Q) = pud, where p is a half-odd integer and ¢ is an angle
measured around the degeneracy, is therefore normally employed in molecular
Aharonov—-Bohm theory.

An advantage of Eq. (90) for computational purposes is that the solutions are
subject to single-valued boundary conditions. It is also readily verified that
inclusion of an additional factor ¢'2¥(@) on the right-hand side of Eq. (89) adds a
term Aa; = —hV, Ay to the vector potential, which leads in turn to a comp-
ensating factor e “2¥(@) in the nuclear wave function. The total wave function is
therefore invariant to changes in such phase factors.

We now consider the connection between the preceding equations and the
theory of Aharonov et al. [18] [see Egs. (51)-(60)]. The tempting similarity
between the structures of Eqgs. (56) and (90), hides a fundamental difference in
the roles of the vector operator A in Eq. (56) and the vector potential a in
Eq. (90). The former is defined, in the adiabatic partitioning scheme, as a strictly
off-diagonal operator, with elements (m|A|n) = (m|P|n), thereby ensuring that
(P — A) is diagonal. By contrast, the Mead-Truhlar vector potential a arises
from the influence of nonzero diagonal elements, (n|P|n) on the nuclear
equation for |v), an aspect of the problem not addressed by Arahonov et al. [18].
Suppose, however, that Eq. (56) was contracted between (n| and |n)|v) in order
to handle the adiabatic nuclear dynamics within the Aharonov scheme. The
result becomes

(n[P2[m)|v) = 21 (nl(P — A)*[m)[v) + <n|A2\n>\V>} (92)

1 1
2m © 2m

Given a real electronic Hamiltonian, with single-valued adiabatic eigenstates of
the form |n) = ¢¥(Q|x,) and |x,,), the matrix elements of A become
(m|Aln) = (oulAlxa) = (ou[Pxa) (93)

so that

(n|A%[n) =" (n|Alm) (m]Aln) = (6 |Plen) (xu[Plrs) = (6P ]x) - (94)

m m

The sum over all m is justified by the fact that the diagonal elements (x,|P|x,)
vanish in a real representation. It is also evident from the factorization of |n) and
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the absence of diagonal elements of A that
(n|P — Aln) = (n|P|n) = iV = —a (95)
Consequently, inclusion of the nuclear derivatives of |v) leads to
(n|(P — AP [n)lv) = (P —a)’|v) (96)

The upshot is that Eq. (95) goes over precisely to the kinetic energy part of
Eq. (90). Despite some phrases in the introduction to Aharonov et al. [18] there is
therefore no fundamental contradiction with Mead and Truhlar [10].

Some final comments on the relevance of non-adiabatic coupling matrix
elements to the nature of the vector potential a are in order. The above analysis
of the implications of the Aharonov coupling scheme for the single-surface
nuclear dynamics shows that the off-diagonal operator A provides nonzero
contributions only via the term (n|A?|n). There are therefore no necessary
contributions to a from the non-adiabatic coupling. However, as discussed
earlier, in Section IV [see Eqgs. (34)—(36)] in the context of the E x € Jahn—
Teller model, the phase choice y = —¢/2 coupled with the identity

Vol = —(x[Volx,) = ~ 3 ©7)

close to the degeneracy, allows a representation for a in terms of (x_|Vgl|x,),
without recourse to arguments [36,37] that have aroused some controversy [38].
The resulting ADT form for the vector potential may have computational
advantages in avoiding the need to identify the precise conical intersection
point; a number of successful applications have been reported [25,26,39]. Notice
that adoption of the first equality in Eq. (97) implies a new phase choice
W #+ % ¢) which must, by the continuity argument in Section III, still ensure a
single-valued adiabatic eigenstate |n). It must be emphasized, however, that such
an ADT representation for the vector potential is subject to the same restrictions
as those that apply to the corresponding representation for the geometric phase in
Eq. (35).

1. Symmetry Considerations

It is beyond the scope of these introductory notes to treat individual problems in
fine detail, but it is interesting to close the discussion by considering certain,
geometric phase related, symmetry effects associated with systems of identical
particles. The following account summarizes results from Mead and Truhlar [10]
for three such particles. We know, for example, that the fermion statistics for H
atoms require that the vibrational-rotational states on the ground A, electronic
energy surface of NH3 must be antisymmetric with respect to binary exchange
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and symmetric with respect to cyclic permutations; that is, they must belong to
the A, representation of the C3, point group. We now consider how similar
symmetry constraints are introduced in a scattering context, in the presence of
geometric phase. It is convenient to formulate the theory in a symmetrical
coordinate system, which is here taken, for historical reasons, in the form
employed by Mead and Truhlar [10]. An alternative hyperspherical formulation
is also available in the literature [40].

The three internal coordinates are expressed as combinations of squares of
the interparticle distances;

0 = Rig + Ric + Rea
u=Ri.+R:, — 2Rz = Scosd
v =V3(R3c — R:,) = Ssind
2 2 2
S*=u +v* =2[(Rig — Ric)” + (Ric — Rea)” + (Rea — Rap)’]

(98)

Note that Mead and Truhlar [10] employ the symbol 8 in place of the present ¢,
which is preferred here for consistency with the previous text.

There is a line of degeneracies at the equilateral geometries, S = 0, and
deviations from the degeneracy line are expressed in terms of u and v, subject at
a given value of Q to u*> + v?> < Q, this bounding circle being the locus of linear
geometries. The properties of Eqs. (98) are summarized in Figure 4, from which

2
R

AB
BC CA
r v
u
2 2
Fca AB Rac

Figure 4. Triangular phase diagram, showing partitions of Rz, R3c, and RZ,, at fixed
Q > R%; + R3. + R%,. Physically allowed combinations lie inside the circle, with the conical
intersection, corresponding to equilateral triangular ABC, at the center.
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it is evident that there three equivalent specifications for # and v, according to
whether AB, BC, or CA is taken as the unique particle pair.

Mead and Truhlar [10] further demonstrate that the real adiabatic eigenstates
close to S = 0 behave in the AB representation as

|[+) sin % cos % |XAB)
= (99)

=) cos % —sin % |YaB)
where the reference kets |Xap) and |Yap) are, respectively, symmetric and
antisymmetric with respect to exchange of particles A and B. The geometry also

dictates the existence of alternative basis kets (|Xgc), |Ysc)) and (|Xca), |Yca)),
related to (|Xag), |Yas)) by

<XAB>> _ -1 (|XBC
|YaB) —\/75 —1 |Ygc
1

(100)

I

/
S

| |
N
~—
T
5 &
> >
- < <
~—

To see the implications of Egs. (98)—(100) for the reaction
AB+C — A+ BC

where A, B, and C are equivalent atoms, we note first that the reactant geometry,
Rpc =Rca > Rap corresponds to ¢ — 0, for which |—) — |Xap) and
|[+) — |YaB). It follows from the definitions of |Xap) and |Yap) that diatomics
in electronic states that are symmetric or antisymmetric with respect to nuclear
exchange have |—) or |+) as the ground adiabatic eigenstate, respectively. The
former possibility (applicable to 2; or X, rather than X, or YF symmetry [41])
is assumed in what follows. Thus attention is focused on the state |—).

The next step is to note that the permutation ABC — CAB corresponds to an
increase in the angle ¢ by 2r/3 [10]. As a result

|—) — cos (dz)—l—;c) |XaB) — sin (2—1—2) |YaB)

= cos %|XCA> + sin §|YCA> (101)

where the second line follows from Eq. (100). The result is the negative of |—) as
given by Eq. (99) in the CA representation. On the other hand, repetition of the
argument, with an additional phase factor e39/2 ghows that the four functions
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e/ 2|+) are all symmetric under cyclic permutations, as required by both bose
and fermi statistics. Moreover, these phase modified eigenstates are also single
valued in ¢.

Finally, following Mead and Truhlar [10], it may be seen that an interchange
of A and B is equivalent to a sign reversal of ¢ followed by a rotation
perpendicular to the AB bond, under the latter of which |Xag) is invariant and
|Yap) changes sign. The net effect is therefore to induce the transitions
e:t3i¢/2|_> N eqt3i¢/2|_> and ei3i¢/2|+> _ —e13i¢/2|+>.

The upshot of these considerations is that total solutions associated, for
example, with the state |—) must be taken in one or other of the symmetrized
forms

0) = (v (2))e™®2 £ [v-(Q))e **/2)|-) (102)

where |v4(Q)) are complex functions satisfying the nuclear equations

Hi|v:(0)) = Elv<(0)) (103)

in which A differ from the normal nuclear Hamiltonian by the substitution
Do — Po £3h/2. Equation (102) assumes that the electronic states of the
fragment diatomics are symmetric with respect to binary exchange (e.g., Z: or
¥.), using the upper and lower signs for bose and fermi statistics, respectively. A
corresponding form with |+) in place of |—) applies when the fragments
electronic states are antisymmetric with respect to nuclear exchange (e.g., i, or
Y1), using lower and upper signs for the bose and fermi cases, respectively, in
view of the substitution e*3®/2|4+) — —¢¥3®/2| 1) under binary exchange.

VII. CONCLUSIONS AND EXTENSIONS

The above discussion centers around the seminal contributions of Longuet-
Higgins [2,6,7], Mead and Truhlar [10], Berry [8], and Ham [11], supplemented
by symmetry arguments due to Jahn and Teller [4,5] and Mead [21]. Topics
covered concerned the conditions required for a conical intersection between
adiabatic potential energy surfaces (Section II); the behavior of adiabatic
electronic eigenstates near a double degeneracy (Section III); the definition and
computation of geometric phase (Section IV); and the influence of geometric
phase on the nuclear dynamics on a well-separated adiabatic potential surface
(Section VI). Illustrations were provided by the simplest and most widely
studied E x € Jahn—Teller model.

First, the starting point for the discussion is that the real smoothly varying
electronic eigenstates |x(Q)) close to a double degeneracy, Qy, are found to
change sign around any path in a nuclear coordinate plane, O, containing the



32 M. S. CHILD

degeneracy. Second, this electronic sign change must be compensated by a
suitable choice of nuclear wave function, such that the total wave function is
single valued with respect to any circuit around Qy. Two possibilities are
therefore open for the nuclear dynamics; either the nuclear wave functions must
change sign on paths around Qy, or the theory must be formulated in terms
phase modified adiabatic eigenstates

n(Q)) = e9|x(Q))

such that |n(Q)) is single valued. There is, however, considerable ambiguity in
the choice of the phase function \(Q). Berry’s first contribution [8] was to show
that the integrated geometric phase

ve=i§ (Vgn) -0

depends only on the geometry of the encircling path, regardless of the choice of
(Q), provided that |n(Q)) is single valued. Moreover, there is no requirement
that the path C should lie in a plane containing Q. In addition, Berry derived an
alternative expression for y. that relaxes the single valuedness condition on
n(0)).

Simple aspects of the theory were discussed in Section V by reference to the
simplest and most widely studied E x € Jahn-Teller model. They include the
existence a half-odd quantum number j in the linear coupling model, which has
been detected in the spectroscopy of Naz [16]. However, j is no longer
conserved in the presence of quadratic and higher coupling terms, due to the
presence of corrugations on the potential energy surface. Next, complications
due to an avoided conical intersection were illustrated by the case of a 2E state
with spin—orbit coupling, which may also be viewed as the case of a circuit in a
plane from which the intersection point is excluded. The geometric phase is then
no longer independent of the size and shape of the encircling path; it takes the
“normal” value of © on large circuits far from the avoided intersection, but is
quenched to zero as the radius of the circuit decreases.

The two basic approaches to the influence of geometric phase on the nuclear
dynamics were outlined in Section VI. The first follows Ham [11] in using band
theory arguments to demonstrate that the nuclear sign change, characteristic of
the E x € problem with real eigenstates |x), causes a reversal in the ordering of
vibronic tunneling triplets arising from threefold potential surface corrugations;
the normal order E(A) < E(E), E(E) < E(A), and so on in successive triplets is
replaced by E(E) < E(A), E(A) < E(E), and so on. The second follows Mead
and Truhlar [10] in replacing |x) by the above single-valued functions |n), in
which case the modifying phase /(Q) contributes a vector potential term to the
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nuclear kinetic energy operator. There was also shown to be a geometric phase
related contribution to the nuclear spin statistics.

The above results mainly apply to the Longuet-Higgins E x € problem, but
this historical survey would be incomplete without reference to early work on
the much more challenging problems posed by threefold or higher electronic
degeneracies in molecules with tetrahedral or octahedral symmetry [3]. For
example, tetrahedral species, with electronic symmetry 7} or 7», have at least
five Jahn—Teller active vibrations belonging to the representations E and T with
individual coordinates (Q,, Qp) and (Qx, Qy, Q;) say. The linear terms in the
nine Hamiltonian matrix elements were shown in 1957 [3] to be

%kE(Qa + \/ng) kTQz kTQy
H= krQ; 1kp(Qu — V30Qy)  krQOx (104)
kT Q_v kTQx _kE Qa

and the corresponding quadratic terms are also well established [42] (see also
Appendix IV of [14]). The cubic group, vector coupling coefficients in Griffith’s
book [43] are very helpful for calculations of this kind. Mead’s recent review [44]
is largely devoted to the geometric phase aspects of this complicated case, in
which one is now concerned with possible circuits in at least a five-dimensional
(5D) parameter space (recall that CH; has two vibrations with symmetry 7,),
some of which encircle lines of degeneracy, while others do not. There is also no
readily tractable means to determine the adiabatic eigenvectors at arbitrary
nuclear geometries, except in the remarkable O’Brien d model [46,47] with
kg = kr, which seems to be relatively little known in molecular physics. The
interesting findings, in this special case, are that the Hamiltonian (104) may be
shown to commute with the three components of a vibronic angular momentum,
somewhat analogous to the operator j in Eq. (65) for the linear E X € case.
Consequently, the eigenvectors at arbitrary nuclear geometries can be expressed
in terms of Wigner matrix elements [48] and an explicit expression for the vector
potential in the Mead and Truhlar formalism has been worked out [47]. The
model is of restricted practical interest, but anyone interested in the complexities
of geometric phase, in its more challenging contexts, is strongly advised to study
these interesting papers. The review by Judd [49] adds useful mathematical
detail.

APPENDIX A: ELEMENTS OF FLOQUET THEORY

Floquet solutions of the periodic second-order equation (taken here to be
threefold periodic)

{%%+E—v<¢>}w<¢>=o ve+X) v (an)
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are defined to propagate from ¢ to ¢ + 271/3 in the form
2n 2mik(E) /3
Vel ¢+ 3)=¢ V() (A2)

so that |y, (¢ + 21/3)| = [V (d)|. The factor k/3 is introduced so that, after
threefold repetition of Eq. (A.2),

Vi +2m) = BN, (¢) (A3)

It also follows that the function

E(¢) = e (9) (A4)

is periodic, because on combining Egs. (A.2) and (A.4)
2n i - 21
(o) ety (04 F) —e) S

Consequently, Floquet solutions may be expressed as

Ve() = " E0¢(¢) (A.6)

where &(¢) has the same periodicity as V(¢). Equation (A.6) defines the energy
dependent wavevector k(E), which is the inverse of the dispersion function E(k)
for the band in question. Different bands have increasingly many nodes in the
periodic factor £(¢).

The existence of such Floquet states, and the nature of the resulting band
structure, is explained by the following argument, due to Whittaker and Watson
[32]. Consider a pair of independent solutions of Eq. (A.1), say f1($) and f2(¢),
and allow ¢ to increase by 27m/3. In view of the periodicity of V(¢), the
propagated solutions f;(¢ + 21/3) must be expressible as linear combinations
of the f;(¢$) themselves;

<f1(¢+2“/3)) (Mll Mlz)(fl(d)))

= (A7)
H(d+21/3) up un ) \f2(9)

Now, continuity requires that the wronskian fi f; — f> f{ is preserved, from which

it may be verified that

detu =1 (A.8)
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Moreover, the trace of the matrix u, 1(E) = uy; + us», is invariant to a similarity
transformation; that is to an alternative choice of fi(¢$) and f>(¢). Consequently,
the eigenvalue equation,

A —tEA+1=0 (A.9)

is also independent of this choice. The solutions A, which have product unity,
take the Floquet form

Xi — eiznik(E)/3 (AIO)

implied by Eq. (A.2), if —2 < #(E) < 2; otherwise A are real and different from
unity, which means, via the analogue of Eq. (A.2) that the corresponding
solutions Y(¢) increase or decrease progressively as ¢ increases by multiples of
2n/3.

Values of A on the unit circle restrict k(E) to —3 < k< 3, with the band
edges at the special points k = 0 and k = 3, where the two roots coincide. The
repeated root condition means that the corresponding dispersion curve E(k) has
turning points at its edges, while every other level is doubly degenerate. We also
note in passing that plane wave solutions can be expressed in the Floquet form

of Eq. (A.6),

okd — pitk=3n)d ,3ind (A.11)

and that n can always be chosen such that —% <k-3n< % Consequently, the
free motion dispersion curve, £ = k2h? /2m, can always be folded onto the above
interval.

As a concrete illustration of the Floquet band structure for a threefold barrier,
Section 3.4 of Child [50] contains an explicit analytical form for the matrix u;

1 +%2(E)e® B —ix(E)e o®)
U= , 3 (A.12)
l‘%(E)elO'(E) 1+ %2 (E)eflo' (E)

where o(E) and o’(E) increase monotonically with E, while »(E) decreases
monotonically to zero as E — oo. Consequently, the trace #(E) varies as

21k (E)
3

t(E) = 24/1 + %*(E) cos &' (E) = 2 cos (A.13)

A proper calculation requires that 6'(E) and »(E) should be evaluated in terms of
semiclassical phase integrals, but it is sufficient for illustrative purposes to
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Trace diagram
3 T I 1

Trace (u)/2

T

scaled energy

Figure 5. Variation of trace(u) with scaled energy, E/hiw, derived from Eq. (A.13) with
Ey = 0.5 ho. The Floquet bands in Figure 3b cover energy ranges such that |trace(u)| < 2.

employ the approximations ¢'(E) = E/ho and x(E) = e~ E=£0)/m® where ho is
an appropriate energy quantum. Successive Floquet bands cover the energy
ranges for which |#(E)| < 2 in Figure 5. The corresponding dispersion curves
shown in Figure 3 were obtained by inversion of the function k(E), determined
by Eq. (A.13).
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I. INTRODUCTION

One of the most interesting observations in molecular physics was made by
Herzberg and Longuet-Higgins (HLH) [1] when they were investigating the
Jahn-Teller (JT) conical intersection (CI) problem [2—15]. These authors found
that in the presence of a CI located at some point in configuration space (CS),
the adiabatic electronic wave functions that are parametrically dependent on the
nuclear coordinates became multivalued and proposed to correct the
“deficiency”” by multiplying the adiabatic wave functions of the two states
with a unique phase factor (see Appendix A). More specifically, in the theory of
molecular dynamics the Born—-Oppenheimer (BO) treatment [16] (see Appendix
B) is based on the fact that the fast-moving electrons are distinguishable from
the slow-moving nuclei in a molecular system. The BO approximation [16,17]
(see Appendix B) has been made with this distinction and once the electronic
eigenvalue problem is solved, the nuclear Schrédinger equation employing the
BO approximation should be properly modified in order to avoid wrong obser-
vations. The BO approximation implies that the non-adiabatic coupling terms
(see Appendix B) [18-30] are negligibly small, that is, it has been assumed that
particularly at low-energy processes, the nuclear wave function on the upper
electronic surface affect the corresponding lower wave function very little. As a
consequence of this approximation, the product of the nuclear wave function on
the upper electronic state and the non-adiabatic coupling terms are considered to
be very small and will have little effect on the dynamics. On the other hand,
when the non-adiabatic coupling terms are sufficiently large or infinitely large,
the use of the ordinary BO approximation becomes invalid even at very low
energies. Even though the components of the upper state wave function in the
total wave function are small enough, their product with large or infinitely large
non-adiabatic coupling terms may not be. The reason for having large non-
adiabatic coupling terms is that the fast-moving electron may, in certain
situations, create exceptionally large forces, causing the nuclei in some regions
of CS to be strongly accelerated so that their velocities are no longer negligibly
small. In this situation, when these terms responsible for this accelerated motion
are ignored within the ordinary BO approximation, the relevance of the ordinary
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BO approximation vanishes even at low energies, hence the formulation of
generalized BO equations become worth while considering.

The aim of the generalized BO treatment is to avoid multivaluedness of
the total wave function. The Longuet-Higgins suggestion [1] of obtaining a
generalized BO treatment for the JT model [2-5] by multiplying a complex
phase factor with the adiabatic wave functions of the two states responsible for
forming the CI, was reformulated by Mead and Truhlar [31-33] by introducing
a vector potential into the nuclear Schrodinger equation (SE) in order to ensure
a single valued and continuous total wave function. In their approach, the
adiabatic wave function is multiplied by the Longuet-Higgins phase and by
operating with the nuclear kinetic energy operator (KEO) on this product
function, the KEO acquire some additional terms. Terms, that appear as a vector
potential. Thus, when the nuclear coordinates travel through a closed path
around the CI, the vector potential can introduce the required sign change and
make the total wave function continuous and single valued. For general
coordinate systems and complicated molecules where the point of CI does not
coincide with any special symmetry of the coordinate system, the introduction
of a vector potential so as to obtain the extended BO equations is a more general
approach than the one that multiplies the adiabatic wave function with an HLH
phase.

For systems with three identical atoms, the JT effect is the best known
phenomena [34-37] and well investigated in bound systems [38—43]. Significant
differences in the reaction cross-section of the H + H, system (and its isotopic
variants) obtained by theoretical calculations and experimental measurements
indicate the complication due to the consideration of the ordinary BO separation
in the theory of electronic and nuclear motion of a molecular system having a CI
between the electronic states. In this respect, we would like to mention the
pioneering studies of Kuppermann and co-workers [44—46] and others [47-48]
who incorporated the required sign change by multiplying the adiabatic wave
function of the D + H, reactive system with the HLH phase. Kuppermann and
co-workers identified the effect of this geometric (or topological) phase for the
first time in a chemical reaction. Their theoretically calculated integral cross-
sections agreed well with experimental data at different energies [49-52]. In
particular, they found that such effects are noticeable in differential cross-
sections. This series of studies renewed interest in this subject.

As the CI of the ground and the excited states of the H; system occurs at the
symmetric triangular configuration, it is possible to incorporate the HLH phase
directly in the basis functions as Kuppermann et al. did so that the nuclear SE
does not require any extra term through a vector potential. Even though this
approch could be a reasonably good approximation for the isotopic variants of
X3 with the dynamics expressed in hyperspherical coordinates, the vector
potential approach, as we mentioned earlier, will be more rigorous for general
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coordinate and reactive systems. We have formulated [53,54] the general form
of the vector potential in hyperspherical coordinates for the A + B, type of
reactive system even in cases where the position of the CI is arbitrary. The
influence of the vector potential on the integral and differential cross-sections of
the D 4 H, reactive system has been estimated [53-55] by quasiclassical
trajectory calculations. We found qualitatively the same relative shift of the
rotational state distribution and the change of scattering angle distributions in
the presence of the vector potential as indicated by Kuppermann et al. through
directly introducing the HLH phase change. We also performed semiclassical
calculations [56] and include either a vector potential in the nuclear SE or
incorporated a phase factor in the basis functions and again obtained the same
relative shift of the rotational state distribution.

The effect of singularities on scattering processes has also been investigated
by extending the JT model [57,58]. The geometric phase effect on the proper
symmetry allowed vibrational transition probabilities in the nonreactive and
reactive channels of a simple two-dimensional (2D) quasi-JT model is an
interesting topic. The ordinary BO equations can be extended either by
including the HLH phase [1] or by adding extra terms through a vector potential
[59,60]. Quantum mechanical calculations indicated that in the case of the
quasi-JT model, ordinary BO equations could not give the proper symmetry
allowed transitions, whereas the extended BO equations could. Finally, a two
surface diabatic calculation on the quasi-JT model confirmed the validity of the
extended BO equations. It is also important to point out that calculations were
done both in the time-independent [59] and time-dependent framework [60].
The findings were the same.

The generalization of BO equations based on the HLH phase seemed to be
the right thing to do so far, but generally two questions arise: (1) Is it really
necessary to incorporate an ad hoc correction of the HLH type into the quantum
theory of an atom and a molecule? (2) Is it guaranteed that such a treatment can
offer correct results in all cases or not? In this context, we would like to mention
the work by Baer and Englman [57]. As the non-adiabatic coupling terms
appear in the off-diagonal positions in the SE, in order to construct a single
approximated BO equation the non-adiabatic coupling terms must be shifted
from their original off-diagonal position to the diagonal position. In the first
attempt, it was shown that such a possibility may exist and an approximate
version of the extended BO equations for the two-state case has been derived. In
a subsequent article, Baer [58] derived a new set of coupled BO-SEs from first
principles (and without approximations) for the 2D Hilbert space where all the
non-adiabatic coupling terms are shifted from the off-diagonal to the diagonal
position. These two equations remain coupled but the coupling term become
potential coupling. As this potential coupling term is multiplied by the original
adiabatic wave function associated with the upper electronic state, which is
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small particularly at low energy processes, two decoupled extended BO
equations are obtained by deleting this product.

The adiabatic-to-diabatic transformation (ADT) matrix (see Appendix B) is
responsible for the transformation from the electronic adiabatic (see Appendix
B) eigenfunctions to the diabatic framework (see Appendix B). The adiabatic
framework describes the functions that govern the motion of the nuclei, namely,
on the potential energy surface (PES) and the non-adiabatic coupling terms. It is
the non-adiabatic terms that cause difficulties when studying nuclear dynamics
of a system having a CI. These terms are abruptly behaving—sometime even
spiky—functions of the coordinate [19,20,61] and therefore cause numerical
instabilities when solution of the corresponding nuclear SE is attempted. It has
been well known for quite some time that the only way to overcome this
numerical difficulty is to move from the adiabatic to diabatic framework where
the non-adiabatic coupling terms are replaced by the potential coupling terms
that are much smoother functions of the coordinates [20,62]. Recently, a direct
connection has been found between a given non-adiabatic coupling matrix and
the uniqueness of the relevant diabatic potential matrix [63,64]. It has been
proven that in order to produce a uniquely defined diabatic potential energy
matrix from the non-adiabatic coupling matrix, the ADT matrix has to fulfill
quantization-type requirements. In simple cases, these requirements become
ordinary quantizations of the eigenvalues of the non-adiabatic coupling matrix.
As, for example, for systems having a CI between two states, the average values
of the non-adiabatic coupling over a closed path is only allowed to have the
value n/2, where n is an integer. This value is the same as that given by the HLH
phase factor. Similarly, for systems having a CI among three states this average
becomes n, where n is now an integer. The main advantage of this new
derivation is that it can be extended to any N-state system. Baer and others,
along with the present authors, proved an “‘existence theorem’ that shows the
possibility of a derivation of the extended BO equation for an N-state system
[65] having a CI at a particular point. We obtained extended BO equations for a
tri-state JT model [66] using quantization-type requirement of the ADT matrix
and these extended BO equations are different from those obtained by using the
HLH phase. Finally, we perform numerical calculation on the ground adiabatic
surface of the tri-state JT model using those extended BO equations obtained by
considering that three states are coupled and found that the results agreed well
with the diabatic results.

Finally, in brief, we demonstrate the influence of the upper adiabatic
electronic state(s) on the ground state due to the presence of a CI between two
or more than two adiabatic potential energy surfaces. Considering the HLH
phase, we present the extended BO equations for a quasi-JT model and for an
A + B type reactive system, that is, the geometric phase (GP) effect has been
introduced either by including a vector potential in the system Hamiltonian or
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by incorporating a phase factor into the adiabatic nuclear wave function. The
effect of a topological phase on reactive and non-reactive transition probabilities
were obtained by using a time-dependent wavepacket approach in a 2D quasi-JT
model. Even when we replace the operators in the Hamiltonian (with or without
introducing a vector potential) of the D + H, reactive system with the corres-
ponding classical variables and calculate integral and differential cross-sections,
we can clearly identify the signature of the GP effect. Semiclassical results on
the same system also indicate an effect. We also present the results obtained by
quasiclassical trajectory calculations for the H + D, reaction. In case of a two-
state isolated system (a Hilbert space of dimension 2), the formulation of
extended BO equations to perform scattering calculations on a quasi-JT model
and A + B, type reactive systems is based on the idea of a Longuet-Higgins
phase. If more than one excited state is coupled with the ground state, the phase
factor could be different from the Longuet-Higgins phase factor as shown by
Baer et al. [65], where the phase angle is defined through the ADT matrix. It
indicates that even for reaction dynamic studies on the ground adiabatic surface
one needs to know the number of excited states coupled with the ground state
and depending on this number, the phase factor changes, hence the form of
extended BO equations will be modified. We present the outline of the derivation
of the extended version of the BO approximate equations and perform scattering
calculation on a two-arrangement—two-coordinate tri-state model system. These
calculations were done three times for each energy: Once without any approxi-
mations, that is, a diabatic calculation; next with those extended BO equations
derived by using the HLH phase; and finally with those extended BO equations
derived by using the new phase factor due to tri-state coupling. The state-to-
state (reactive and nonreactive) transition probabilities obtained indicate that
only the new approximate BO equations can yield the relevant results for a tri-
state system. In Section V, we introduce a new formulation of quantum
molecular dynamics (so-called quantum dressed classical mechanics) and give
the form of the vector potential needed for incorporating topological phase
effects if the dynamics is solved using this approach.

II. LONGUET-HIGGINS PHASE-BASED TREATMENT

As mentioned in the introduction, the simplest way of approximately accounting
for the geometric or topological effects of a conical intersection incorporates a
phase factor in the nuclear wave function. In this section, we shall consider
some specific situations where this approach is used and furthermore give the
vector potential that can be derived from the phase factor.

A. The Geometric Phase Effect in a 2D Two Surface System

The non-adiabatic effect on the ground adiabatic state dynamics can as men-
tioned in the introduction be incorporated either by including a vector potential
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into the system Hamiltonian derived by considering the HLH phase or by
multiplying the HLH phase directly on the basis functions. We have studied a
two-coordinate quasi-“JT scattering” model [37] where the nuclear kinetic
energy operator in Cartesian coordinates can be written as,

wor o
T, R,r)=—— |—=+— 1
n(R,1) 2m [ar2 * GRJ m
or in terms of polar coordinates we have,
wlo* 190 10
T, 0) = — o |25+ o+ s 2
@0 == [aqz W ad)z} @

R and r are defined in the intervals, —oo < R < oo and —oo < r < 0o and these
are related to ¢ and ¢ in the following way:

r=gsin ¢, R = gcos ¢, and ¢ = arctan(r/R)

The effective nuclear kinetic energy operator due to the vector potential is
formulated by multiplying the adiabatic eigenfunction of the system, (R, r)
with the HLH phase exp(i/2arctan(r/R)), and operating with T,(R,r), as
defined in Eq. (1), on the product function and after little algebraic simpli-
fication, one can obtain the following effective kinetic energy operator,

T’(R )—_h_z 6_2_|_a_2+ R 'g_ r '3_71
O T om e TR T\ ) o P+ R) R AP+ R
(3)

Similarly, the expression for the effective kinetic energy operator in polar
coordinates will be,

hz{az 1o 13> 190 1]
2

-5 S S

!
T,(q,:9) = aq2+qaq+qza¢2 i 336 iq
If the position of the conical intersection is shifted from the origin of the co-
ordinate system to (rp, Ryp), the relation between Cartesian and polar coordinates
for the present system can be written as, r + rg = gsin ¢, R + Ry = g cos ¢ and
¢ = arctan(r + ry/R = Ry). Consequently, the effective nuclear kinetic energy
operator will be [68],

hZ

2m

Tr;l(Ra r) =

o R+R 0
2 T T 2 ol Lew
or2 " dR (r+r))°+ (R£Ry)*) Or

B (r£r) ii _ 1 (5)
(r10)’ + (RERo)’ ) R \4((r £ 1) + (R £ Ro)’)
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Hence, the expression of Eq. (5) indicates that, in a polar coordinate system,
Eq. (4) will remain unchanged even if the position of the conical intersection is
shifted from the origin of the coordinate system.

The ordinary BO equations in the adiabatic representation can also be used
for single surface calculations where the geometrical phase effect is incorpo-
rated by an HLH phase change in ¢. The correct phase treatment of the ¢
coordinate has been introduced by using a special technique [44-48] when the
kinetic energy operators are evaluated numerically. More specifically, the
geometrical phase effect has been introduced by modifying the fast Fourier
transformation (FFT) procedure when evaluating the kinetic energy terms. The
wave function (g, ¢) is multiplied with exp(i¢/2), then after doing a forward
FFT the coefficients are multiplied with a slightly different frequency factor
containing (k + %) instead of k and finally after completing the backward FFT
[69], the wave function is multiplied with exp(—i¢/2). The procedure needs to
be repeated in each time step of the propagation.

The transition probabilities obtained due to the above two modified treat-
ments of single-surface calculations need to be compared with those transition
probabilities obtained by two surface calculations that confirms the validity of
these former treatments.

1. Scattering Calculation with the Quasi-Jahn—Teller Model

The two adiabatic potential energy surfaces that we will use in the present
calculations, are called a reactive double-slit model (RDSM) [59] where the first
surface is the lower and the second is the upper surface, respectively,

(R, r) = 3m(en = 51(R)*P + A7 (R, 1) + ¢(Rhs(R, 1

: (©)
(R, r) = Emw(z)r2 —(D-A)(R,r)+D

= ((3))
i -en(-(*55))

g(R)=0 (7)

The parameters used in the above expressions for the potential energy surfaces
and the calculations are given in Table 1 of [60].

with

and
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The two surface calculations by using the following Hamiltonian matrix are
rather straightforward in the diabatic representation

H=T+W

1 0 W w
_7, n 11 12 (8)
0 1 Wor Wa
where the diabatic potential matrix elements,

1
Wi = 5 [ + uy 4 (1 — uz)cos ]

Wy = % [ur — uz + (1 — ua)cos ¢] )

1

W12 = W21 = E(ul — uz)sind)

are obtained by the following orthogonal transformation:

W = TIUT (10)

. _ [cosd/2 —sind/2 (w0
with T_<sin¢/2 coscb/Z) and U_<O1 u2>

Single surface calculations with a vector potential in the adiabatic representa-
tion and two surface calculations in the diabatic representation with or without
shifting the conical intersection from the origin are performed using Cartesian
coordinates. As in the asymptotic region the two coordinates of the model
represent a translational and a vibrational mode, respectively, the initial wave
function for the ground state can be represented as,

\IIad(Rv r, tO) = \lllé)WP(Ra l())q)v(}’, tO) (11)

where Ygyp(R, o) is a Gaussian wavepacket and @, (r, 7y) a harmonic oscilla-
tor wave function.

It is important to note that the two surface calculations will be carried out in
the diabatic representation. One can get the initial diabatic wave function matrix
for the two surface calculations using the above adiabatic initial wave function
by the following orthogonal transformation,

DR, r 10) \ [ cosd/2 sind/2 [ WalR, 1, to)
(\If?ﬁ(R, r, to)> B (—sin¢/2 COS¢/2> (o ) (12)
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Single surface calculations with proper phase treatment in the adiabatic repre-
sentation with shifted conical intersection has been performed in polar co-
ordinates. For this calculation, the initial adiabatic wave function W.q(gq, ¢, #)
is obtained by mapping W,4(R, r, fp) into polar space using the relations,
r4+ry=gsind and R + Ry = gcos ¢. At this point, it is necessary to mention
that in all the above cases the initial wave function is localized at the positive
end of the R coordinate where the negative and positive ends of the R coordinate
are considered as reactive and nonreactive channels.

The kinetic energy operator evaluation and then, the propagation of the R, r,
or ¢, ¢ degrees of freedom have been performed by using a fast Fourier transfor-
mation FFT [69] method for evaluating the kinetic energy terms, followed by
Lanczos reduction technique [70] for the time propagation. A negative imagi-
nary potential [48]

iV

a coshz[(Ri —R)/B]

max

Vim(R) =

(13)

has been used to remove the wavepacket from the grid before it is reflected from
the negative and positive ends of the R grid boundary. The parameters used in
the above expression and other data are given in Table II of [60].

The transition probability at a particular total energy (E,) from vibrational
level i to f may be expressed as the ratio between the corresponding outgoing
and incoming quantities [71]

-
5 = B0 »
' Jmen (ki) i

where the (+) and (—) signs in the above expression indicate nonreactive and
reactive transition probabilities. If we propagate the system from the initial
vibrational state, 7, and are interested in projecting at a particular energy, E,;, and
final vibrational state, f, the following equation can dictate the distribution of
energy between the translational and vibrational modes,

ik, 1 K, 1

One can obtain the explicit expressions for &,ﬁ; and &k_f as defined in Eq. (13)
considering the following outgoing fluxes in the nonreactive and reactive
channels

G
& (1) = Re{q/;(Rg, 1) x (~ih/m) x (%“))m} (16)

0
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and
() = Re{w;(Ro, o g < (U220 } )
where
bR = [ W R ) (19)

The discrete Fourier expansion of (R, t) can be written as

Ng/2

V(R 1) = n?(NZRm 1 Cal(t)exp {21'%(" -1 (%ﬂ
= ZC Jexp [Zmn—N—lR)(z—l)] (19)

where, R = Ryin + (i — 1)(Rmax — Rmin)/Nr and Ng is total number of grid
points in R space. By substituting Eq. (18) into Egs. (15) and (16), one can easily
arrive at

Ng/2 n—
&/ (1) = Re{\Lf;(RS, Ny, { (H)

n=0

 oxp [2m(n— D(i§ — 1)} c,,(;)}} 20)

Ng
and

() = Re{\vfueo,) > () )

n=—(Ng/2)+1

Xexp[zin(n—l)(ig—1)}6,”@}} 1)

Ng

where it = [(R¥ — Ruin)/(Rmax — Rmin)] + 1. It is important to note that in
if (t) only positive and in & (#) only negative values of n have been considered.
It has been numerically verlﬁed that negative components of n in if (¢) and
positive components of n in &f (¢) actually have negligible contribution.



154 SATRAJIT ADHIKARI AND GERT DUE BILLING

We are now in a position to write from Eqgs. (19) and (20) that,

Ng/2
g =&, (22)
n=0
and
-1
gEn= > &, (23)
n=—(Ng/2)+1
respectively.

The denominator in Eq. (13) can be interpreted as an average value over the
momentum distribution from the initial wavepacket, that is,

L= .
(ki) = %L VAo (R, 10)exp(ikinR) dR (24)
and the limits (kmin, i, n, kmax,i,») Of the integral in the denominator of Eq. (13)
over the variable k; , can be obtained if we consider the wavenumber interval of
the corresponding final f channel,

T T

S Kmax.fn =k p +—— 25
Rmax - Rmin ’ o T Rmax - Rmin ( )

kmin,f,n - kf,n -
These values are related to the initial wavenumber intervals by the following
equations:

h—z(k- )+ hoo (i1 —ﬁ(k- S
m min, i,n 0| ! ) - m min, f,n 0 ) (26)
L (k. 1.n) -+ 00 (i 42 _® (Kinax,f,n)" + T +1
m max, i,n o (¢ ) - m max, f, n Q)] f )

We have used the above analysis scheme for all single- and two-surface
calculations. Thus, when the wave function is represented in polar coordinates,
we have mapped the wave function, W,4(q, &, ) to W,(R, r, t) in each
time step to use in Eq. (17) and as the two surface calculations are performed in
the diabatic representation, the wave function matrix is back transformed to the
adiabatic representation in each time step as

MR, r 1)\ [cosd/2  —sind/2 UL(R, 1, 1) o
V2R, r, 1) )\ sing/2 cosd/2 ) \ Vi (R, 1, 1)

and used in Eq. (17) for analysis.
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For all cases we have propagated, the system is started in the initial
vibrational state, i = 0, with total average energy 1.75 eV and projected at four
selected energies, 1.0, 1.5, 2.0, and 2.5 eV, respectively.

2. Results and Discussion

In Table I we present vibrational state-to-state transition probabilities on the
ground adiabatic surface obtained by two-surface calculations and compare with
those transition probabilities obtained by single-surface calculations with or
without including the vector potential in the nuclear Hamiltonian. In these
calculations, the position of the conical intersection coincides with the origin of
the coordinates. Again shifting the position of the conical intersection from the
origin of the coordinates, two-surface results and modified single-surface results
obtained either by introducing a vector potential in the nuclear Hamiltonian or
by incorporating a phase factor in the basis set, are also presented.

At this point, it is important to note that as the potential energy surfaces are
even in the vibrational coordinate (r), the same parity, that is, even — even and
odd — odd transitions should be allowed both for nonreactive and reactive cases
but due to the conical intersection, the diabatic calculations indicate that the
allowed transition for the reactive case are odd — even and even — odd whereas
in the case of nonreactive transitions even — even and odd — odd remain
allowed.

In Table I(a), various reactive state-to-state transition probabilities are
presented for four selected energies where calculations have been performed
assuming that the point of conical intersection and the origin of the coordinate
system are at the same point. The numbers of the first row of this table have
been obtained from two-surface diabatic calculations and we notice that only
odd — even and even — odd transitions are allowed. Single-surface results
including a vector potential not only give the correct parity for the transitions
but also good agreement between the first- and the second-row numbers for all
energies. The third row of Table I(a) indicates the numbers from a single-surface
calculation without a vector potential. We see that the parity as well as the
actual numbers are incorrect.

Again, in Table I(b), we present reactive state-to-state transition probabilities
at the four selected energies where the position of the conical intersection
is shifted from the origin of the coordinates. The first row of this table indicates
results from a two-surface diabatic calculation where in the nonreactive case the
same parity and in the reactive case opposite parity transitions appear as allowed
transitions. Calculated numbers shown in the second row came from single-
surface calculations with a vector potential and the results not only follow
the parity (same parity for the nonreactive case and different parity for the
reactive case) but also agree well for all energies with the numbers shown in the
first row of Table I(b). Results from single-surface calculations incorporating a
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TABLE I(a)

Reactive State-to-State Transition Probabilities when Calculations are Performed Keeping the
Position of the Conical Intersection at the Origin of the Coordinates

Ee) 0-0 0—-1 0—-2 0—-3 0—4 0—-5 0—6 0—-7 0—8 0—9
1.0 0.0000¢ 0.0033 0.0000 0.0220
0.0001% 0.0101 0.0008 0.0345
0.0094¢ 0.0000 0.0361 0.0000
1.5 0.0000 0.1000 0.0000 0.0342 0.0000 0.0764
0.0001 0.1046 0.0001 0.0370 0.0004 0.0582
0.0719  0.0000 0.0664 0.0000 0.0827 0.0000
2.0 0.0000 0.1323 0.0000 0.0535 0.0000 0.0266 0.0000 0.2395
0.0002 0.1323 0.0000 0.0583 0.0001 0.0267 0.0007 0.2383
0.1331  0.0000 0.0208 0.0000 0.0300 0.0000 0.1963 0.0000
2.5 0.0000 0.0987 0.0000 0.0858 0.0000 0.0901 0.0000 0.0248 0.0000 0.2529
0.0001  0.0983 0.0001 0.0903 0.0005 0.0870 0.0010 0.0297 0.0007 0.2492
0.2116  0.0000 0.0382 0.0000 0.0121 0.0000 0.1783 0.0000 0.1119 0.0000
“ Two-surface calculation.
b Single-surface calculation with vector potential.
¢ Single-surface calculation without vector potential.
TABLE I(b)

Reactive State-to-State Transition Probabilities when Calculations are Performed by Shifting the
Position of Conical Intersection from the Origin of the Coordinate System

Eev 0—-0 0—-1 0—-2 0—-3 0—-4 0—-5 0—6 0—-7 0—-8 0—9
1.0 0.0000“ 0.0119 0.0000 0.0090
0.0001” 0.0113 0.0004 0.0060
0.0003¢ 0.0363 0.0004 0.0271
1.5 0.0000 0.1043 0.0000 0.0334 0.0000 0.0571
0.0000 0.1084 0.0001 0.0346 0.0002 0.0592
0.0001  0.1390 0.0000 0.0183 0.0001 0.0050
2.0 0.0000 0.1281 0.0000 0.0561 0.0000 0.0365 0.0000 0.2443
0.0001 0.1286 0.0002 0.0604 0.0001 0.0319 0.0001 0.2609
0.0000 0.1040 0.0001 0.0853 0.0004 0.0526 0.0002 0.2185
2.5 0.0000 0.0869 0.0000 0.0909 0.0000 0.0788 0.0000 0.0211 0.0000 0.2525
0.0002 0.0864 0.0002 0.0981 0.0007 0.0750 0.0002 0.0342 0.0018 0.2387
0.0000 0.0711 0.0002 0.0877 0.0006 0.0932 0.0009 0.0479 0.0019 0.2611

¢ Two-surface calculation.
b Single-surface calculation with vector potential.
¢ Single-surface calculation with phase change.

phase factor into the basis set are shown in the third row of Table I(b) for the
reactive channel. Though the phase treatment can offer proper parity allowed
transitions, these numbers have for all energies less agreement with those
presented in the first and second rows of Table I(b).



NON-ADIABATIC EFFECTS IN CHEMICAL REACTIONS 157

In this model calculation, using a time-dependent wavepacket approach, we
studied the extended JT model in order to investigate the symmetry effects
on the scattering processes. First, we performed two surface diabatic
calculations, which are considered to be the exact ones as they can follow
interference effects due to the conical intersection. We see that the ordinary BO
approximation has failed to treat the symmetry effect but the modified single-
surface calculations, either by including a vector potential into the nuclear
Hamiltonian or by incorporating a phase factor in the basis set, can reproduce
the two-surface results for different situations. Though the transition probabili-
ties calculated by Baer et al. [59] using the same model are qualitatively the
same as the present numbers, small quantitative differences are present,
particularly, at higher energies. We believe that some of these deviations could
be due to the dynamic effects of the potential, the vector potential, or the phase
changes in the wave function. We may therefore conclude that if the energy is
below the conical intersection, then the effect of it is well described by simply
adding a vector potential to the Hamiltonian or by the simple phase change in
the angle ¢, which when increased by 2m makes the system encircle the
intersection and appear to work well even in cases where the intersection is
shifted away from the origin.

B. Three-Particle Reactive System

We derive the effective Hamiltonian considering the HLH phase change for any
reaction involving three atoms and discuss integral and differential cross-
sections obtained either classically or semiclassically. An easy way of incorpo-
rating the geometric phase effect is to use the hyperspherical coordinates in
which the encircling of the intersection is connected with a phase change by 21
of one of the hyperangles (¢).

In the presence of a phase factor, the momentum operator (P), which is expre-
ssed in hyperspherical coordinates, should be replaced [53,54] by (P — htyn)
where /M creates the vector potential in order to define the effective
Hamiltonian (see Appendix C). It is important to note that the angle entering the
vector potential is strictly only identical to the hyperangle ¢ for an Az system.

The general form of the effective nuclear kinetic energy operator (7”) can be
written as

. 1 . 2
1=, (P hym)
A2

1,

P - R*7*n — 2P + iPyn vn) (28)

It is now convenient to introduce hyperspherical coordinates (p, 6, and ),
which specify the size and shape of the ABC molecular triangle and the Euler
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angles a, 3, and v describing the rotation of the molecular shape in space. If the
Euler angles are treated as classical variables and the coordinate system is such
that the z axis is aligned [67] with the total angular momentum J, the semi-
classical kinetic energy operator Ty for a three-particle system can be expressed
in a modified form of Johnson’s hyperspherical coordinates [72] as below,

s P +—= L 0,
= T = (0,0)| +
_ p2 ; 2
(J? Py)(1 + sin 6 cos2y) _h l_,_ 1 29)
up? cos? 0 2up? |4 sin’20

PY [P, — 4cosOPy]
2up? sin% 0

where p is the hyperradius, and 0 and ¢ are the hyperangles with

. o? 1 @
= R |l—=4——
&w*sm%a&]

Due to the special choice of coordinates, the momenta conjugate to o and [ are
constants of motion, that is, P, = J, Pg = 0, and P, = J cos .

When we wish to replace the quantum mechanical operators with the corres-
ponding classical variables, the well-known expression for the kinetic energy in
hyperspherical coordinates [73] is

1 4 1 P[P, —4cosOP
m:—ﬁ+—G§ e%ﬂ+dy J

2u p? 2up? sin’ O
P2 — p? l+51n90052
L (PP v) 0
up2cos? 6

The explicit expressions of the other terms in Eq. (27) can be evaluated in terms
of hyperspherical coordinates using the results of Appendix C,

2
—— = 2uzaxz where  X; = (ry, ry, 17, Ry, Ry, R;)

= upji}zne {[sin By cos 0 sin ¢p/2[sin* O sin> ¢ + (cos O sin O cos
+ sin 0 cos 0)%]] + [sin O, sin O sin G{sin® ¢ cos O sin O
+ (cos B sin 0 cos ¢ + sin By cos B)(cos By cos B sin ¢ — sin By sin0) }
+ (cos 09 sin O + sin Oy cos O cos $){sin* O sin ¢ cos
— cos B sin 0 sin ¢(cos Oy sin 0 cos ¢ + sin By cos0)}]/

[sin? 0 sin” ¢ + (cos O sin O cos ¢ + sin O, cos 0)]*} (31)
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" I = 0n o
2p YWV T 5 2 Bx; ax,

where X; = (ry, 1y, 17, Ry, Ry, R;)

B 27?12 [sin 0o sin® & + (cos O sin O + sin Oy cos O cos P)?]
1p? [sin” O sin® ¢ + (cos Oy sin O cos ¢ + sin Oy cos 0)*]*

(32)

where  X; = (ry, 1y, 17, Ry, Ry, R;) (33)

where the general form of the momenta Py, (x indicates that the Coriolis term is
not included) in hyperspherical coordinates can be expressed as

op 0

P* Pan—|—Pea +P¢aX

It is to easy to evaluate Op/0X;, 06/0X;, and 0¢/0X; [for X; = (r, 1y, 17, Ry,

R;)] using equation (C.2) and after introducing the Coriolis term [72], the
momenta Py, become

Ty 2R, 2R,
Prx = Epp__'Pe‘i’—Pd)—(Dzry

p? p?sin B
p,=(2p, - BRep, 2R p g
T \p P pr Y prsing ¢ e
P, = (0,ry — 0,1y
= (@ — o) »
Pr = (Bep, 4 20py— 2 py R
ke p P2 0= p sme o
2ry 2r,
Pe = (R, + 2py s 2 5Po + OR,
p p? p? sin

P, = (0:Ry — 0yRy)

where oy, oy, and ®, are the components of instantaneous angular velocity of
the rotating axes XYZ with respect to the stationary axes X'Y'Z’.
By substituting On/0X; and Py, in Eq. (32), after some simplification we get,

I p 4h[sin O sin O sin $Py + (cos Oy sin O + sin Oy cos O cos ¢)Py]

1p? sin B[sin® O sin” ¢ + (cos O sin O cos ¢ + sin O cos )]
(35)
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It is important to note that Eq. (34) becomes independent of the Coriolis term
because the symmetrical components of P and 5/ cancel it identically.

Thus, the total effective Hamiltonian (H) in the presence of a vector potential
is now defined and it is for an X3 type reactive system (8y = 0) given by

212 4hP

— V(p, 0 36
T 70?0 ppsin?@ (p, 6, 9) (36)

Hscl(cl) = Tscl(cl)

Thus the inclusion of the geometric phase in this case adds two terms to the
Hamiltonian. The first is an “‘additional” potential term and the second has the
effect that 27 is added to P, in the Coriolis coupling term [see Eq. (35)].

1. Quasiclassical Trajectory (QCT) Calculation on D + H,

The total effective Hamiltonian H, in the presence of a vector potential for an
A + B, system is defined in Section II.B and the coupled first-order Hamilton
equations of motion for all the coordinates are derived from the new effective
Hamiltonian by the usual prescription [74], that is,

. OH
qA:—
" Opi

37
 w (37)
pii aql

During initialization and final analysis of the QCT calculations, the numerical
values of the Morse potential parameters that we have used are given as
D, =4.580 eV, r, =0.7416 A, and B =1.974 AL, Moreover, the potential
energy as a function of internuclear distances obtained from the analytical
expression (with the above parameters) and the LSTH [75,76] surface
asymptotically agreed very well.

In the final analysis of the QCT calculations, j is uniquely defined. By using
the final coordinate (/) and the momentum (p’), the rotational angular
momentum (L = ' x p’) and j [setting L> = j/(j' + 1)#*] can be determined.
Once the rotational angular momentum (L) is obtained, we can find the
vibrational energy (Evi, = Eint — Erot). From the vibrational energy, the final
vibrational quantum number, V', is obtained using the expression of the energy
levels of a Morse oscillator. However, at higher values of V' the energy level
expression of the Morse oscillator may not be accurate and the following
semiclassical formula based on the Bohr—Sommerfeld quantization

I 1
/7 RS —
Vo= 2+h1;p,dr (38)
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can be used instead. We have performed QCT calculations for obtaining integral
cross-sections of the D + H, (v =1, j) — DH(V, j/) + H reaction at the total
energy of 1.8 eV (translational energy 1.0 eV) with the LSTH [75,76] potential
energy parameters. These studies have been done with or without inclusion of
the geometric phase and starting from initial states (v = 1, j = 1). For this case,
1.2 x 10° trajectories are taken noting that convergence was actually obtained
with ~5 x 10* trajectories. The distribution of integral cross-sections with
(8p = 11.5°) or without inclusion of the geometric phase as a function of j’
(v = 1) has been shown in Figure 1 and compared with those QCT results
obtained by using 6y = 0.

In Figure 1, we see that there are relative shifts of the peak of the rotational
distribution toward the left from j/ =12 to j/ =8 in the presence of the
geometric phase. Thus, for the D+ H, (v =1, j)—DH (v, j/) + H reaction
with the same total energy 1.8 eV, we find qualitatively the same effect as found
quantum mechanically. Kuppermann and Wu [46] showed that the peak of the
rotational state distribution moves toward the left in the presence of a geometric
phase for the process D+ H, (v=1,j=1)—=DH( =1,j)+H. It is
important to note the effect of the position of the conical intersection (0y) on the
rotational distribution for the D 4 H, reaction. Although the absolute position
of the peak (from j/ = 10 to j/ = 8) obtained from the quantum mechanical
calculation is different from our results, it is worthwhile to see that the peak
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Figure 1. Quasiclassical cross-sections for the reaction D+ H, (v=1,j=1) - DH (v =
1, /) + H at 1.8-eV total energy as a function of ;. The solid line indicates results obtained without

including the geometric phase effect. Boxes show the results with the geometric phase included
using either 0y = 0 (dashed) or 6, = 11.5° (dotted).
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position of the rotational distribution without a geometric phase effect using
classical hyperspherical calculation comes at j/ = 12 (the overestimation is due
to the use of classical mechanics), which is different from the quantum
calculation having the peak at j/ = 10.

The relative shift of the peak position of the rotational distribution in the
presence of a vector potential thus confirms the effect of the geometric phase for
the D 4+ H; system displaying conical intersections. The most important aspect
of our calculation is that we can also see this effect by using classical mechanics
and, with respect to the quantum mechanical calculation, the computer time is
almost negligible in our calculation. This observation is important for heavier
systems, where the quantum calculations are even more troublesome and where
the use of classical mechanics is also more justified.

The effect of the GP is expected to be even more pronounced in differential
cross-sections and the computation of differential cross-sections are again
carried out by QCT calculations forthe D+ H, (v =1,j=1) = DH(V =1, ) +
H reaction at the total energy of 1.8 eV (initial kinetic energy 1.0 eV) with the
London-Sato-Truhlar—-Horowitz (LSTH) [75,76] potential energy parameters. We
calculated the scattering angle distributions for different final rotational states
(V' = 1, j)) with or without inclusion of a geometric phase starting from the initial
state [(v = 1, j = 1)]. The convergence of these distributions has appeared when
there are a sufficient number of trajectories in each scattering angle. Nearly 1.0 x 10°
number of trajectories have been computed to obtain converged distributions for all
the final ;' states.

The rotationally resolved differential cross-section are subsequently smooth-
ened by the moments expansion (M) in cosines [77-79]:

dGR (j,a e)
do

- GZ(/) 1+ ick cos (kma(0))
T =1

Ng(/")

Cp = %(]—/) Z; cos (kma(6y)) (39)
or(j') = by Ne(/) /N
a(0) = %(1 —cos0)

where N is the total number of trajectories and Ng(j) is the number of reactive
trajectories leading to the DH(j') product. Also, 0 is the scattering angle, s labels
the reactive trajectories leading to the same product, and b, is the impact
parameter.

The calculations showed [54,55] significant effect of the GP on scattering
angle resolved cross-sections for a particular final rotational state. It is
interesting to see the change of these distributions due to the geometric phase
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compared to those obtained without the geometric phase. It appears that for
lower final rotational states (/' < 10), scattering angle distributions in the
presence of the geometric phase, have higher peaks compared to those without
geometric-phase situations. Similarly, for higher final rotational states (j/ > 10),
nongeometric-phase cases have predominance over geometric-phase cases.
Finally, there are crossings between these distributions at j/ = 10. The
rotationally resolved differential cross-section results as shown in [55] are
quite expected when considering the integral cross-section distributions
displayed in Figure 1. Kuppermann and Wu showed differential cross-sections
at Ey,, = 1.8 eV (initial kinetic energy 1.0 eV) forthe D+ H, v =1,j=1) —
DH(V' = 1, j') + H reaction with or without considering the geometric phase. In
their calculations, the differential cross-section distributions represented either
with or without the geometric-phase cases have crossings at j/ = 8, where for
lower j/ values the ““with geometric phase” and for higher j’ values the “without
geometric phase” cases have predominance. Qualitatively, we have found the
same features for differential cross-section distributions as they have obtained
except that the crossing position is in our case j/ = 10 as compared to theirs
J = 8. Again, this difference in crossing position comes about due to the use of
classical mechanics. The scattering angle resolved differential cross-sections in
the presence of a vector potential indicate and confirm the effect of the
geometric phase in the D 4 H; reaction having a conical intersection. The fact
that these effects can be seen using classical mechanics is the most important
aspect of our calculations since the computational cost in this case is very small.

2. Semiclassical Calculation on a D + H, Reaction

Considering the semiclassical Hamiltonian from Eq. (28), one can expand the
total wave function as,

\I’<p, 0, ¢, t) = Z\Ijk(ea o, t)q)k(pa t) (40)

where p, 0, and ¢ are quantum degrees of freedom and ®(p, 7) are Hermite
basis functions with expansion coefficients s, (0, ¢, 7).
The Hermite basis functions ®;(p, ¢) have the following form:

Ba(p, 1) = ' exp £ 10 + Po(0)(p — pl0) + ReAG)(p = p(1)) ) u(r)

(41)

where

-~ Tt)
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and

£ () = ———— exp(—x/2) Hy(x)

NN

are the harmonic oscillator basis functions.

In this semiclassical calculation, we use only one wavepacket (the classical
path limit), that is, a Gaussian wavepacket, rather than the general expansion of
the total wave function. Equation (39) then takes the following form:

\Ij(p’ ea d)v tO) = \ljl(ea d)a IO)(I)GWP(p’ fo) (42)

where Pgwp(p, 1) is Po(p, ) as defined in Eq. (39), and the expansion
coefficient [80] is

Vi (0, 9, 10) = py/sin (—n)/Cgv(C)Pj(cos ) (43)

where g, and P; are the Morse vibrational and normalized Legendre wave
functions, respectively. The variables { and 1 can be expressed using the asymp-
totic representation of 6 and ¢,

0 =00+ Csinn
¢ =y +Ccosn

The general hyperspherical formulation of the vector potential arising due to an
arbitrary position of the conical intersection of the adiabatic potential energy
hypersurfaces of an A 4 BC type reactive system has been formulated [54]. For
the Hj system, the location of the conical intersection is at 8y = ¢, = 0 but for
the D + H; system it is at ¢ = 0 and 0y = 11.5°. As we wish to compare the
results obtained by introducing a vector potential in the system Hamiltonian
with those obtained by multiplying the wave function with a complex phase
factor, we approximated the vector potential expression using 6p = 0 and the
corresponding extra terms are added to the Hamiltonian.

In hyperspherical coordinates, the wave function changes sign when ¢ is
increased by 2m. Thus, the correct phase treatment of the ¢ coordinate can be
obtained using a special technique [44—48] when the kinetic energy operators
are evaluated: The wave function f(¢) is multiplied with exp(—i¢/2), and after
the forward FFT [69] the coefficients are multiplied with slightly different
frequencies. Finally, after the backward FFT, the wave function is multiplied
with exp(id/2).

The kinetic energy operator evaluation and then the propagation of the 0, ¢
degrees of freedom have been performed using the FFT [69] method followed
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by the Lanczos iterative reduction technique [70] for the time propagation. In
the classical path picture, the propagation of the p motion has some additional
equations of motion for the width parameter A(¢). The variables y and its
conjugate momentum P, are propagated using classical equations of motion and
a mean-field potential averaged over the p, 0, and ¢ dependence.

The energy and state resolved transition probabilities are the ratio of two
quantities obtained by projecting the initial wave function on incoming plane
waves (I) and the scattered wave function on outgoing plane waves (F')

PIHF(E) — lim k_F|ffde dd) Zkfdpexp(_ika)(bk(p7 t)\llk(ev d)? t)|2

= ki | [ dpexp(+ikip)Pawe(p, 0)V;(0, P, 1o)]
where the total energy, E = (1*k?/2p) + E; = (h*k2/2u + Er, and p is the
reduced mass for the p motion.

The integral over p can be evaluated analytically due to use of a Hermite
basis,

k
Pror(E) =0\ [ exp(=gr(Pyle) = Bke)* + g1(= P} + ko))

1

Ho(A) exp(—ikd)|”

VkI2k

X

S [ [0 donue, o, 0000, 0. 1) x (1)
k=0
(45)

where H; is a Hermite polynomial, and

d = arctan (ImA(t))

Re A(t)
A = VER(Py (1) — kr)
~ ImA(r)
7 2nlAwP
_ ImA(1)”
817 2nlA(10))|

and ¢ should be large enough for the interaction potential to vanish and gg to
approach a constant value.

With each random choice of y and its conjugate momentum P,, one can have
a separate trajectory with a different final wave function. After a series of
calculations, the energy and state resolved cross-sections are obtained.
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This semiclassical method, using one wavepacket only (GWP), has been
applied for the reaction D + Hy(v=1,j=1) — DH (v/ = 1, ) 4+ H by using
the LSTH potential energy surface [75,76], where in order to obtain integral
cross-sections we have considered the total angular momentum vector J to
be different from zero. We have performed all calculations with total energy
1.80 eV (E;; = 1.0eV) with or without introducing geometric phase effects. The
transition probabilities as a function of total energy can be obtained by Eq. (43)
for each trajectory and finally, series of trajectories can give state resolved cross-
sections with good accuracy around the total energy 1.80 eV. The trajectories
had randomly selected values of the total angular momentum in the range O to
Jmax = 50 in units of %. The parameter P, as well as y are also selected
randomly. The propagation has been carried out with the initial values of width
parameters, Re A(ty) = 0, ImA(ty) = 0.5 amu t~' (1t = 10~!*s) assuming that
the quantum classical correlation will remain small during the entire collision,
that is, the traditional classical path picture is valid [81].

In Figure 2, we present integral cross-sections as a function of rotational
quantum number j, with or without including the geometric phase effect. Each
calculation has been performed with a product-type wave function consisting of
one wavepacket (®o(p, 7)) and a grid size (Np x Ny) in (8, ¢) space equal to
256 x 64 has been used. Though in this result the peak of the rotational state
distribution without including the geometric phase effect is at j/ = 8 instead of

0.12 T T T T T T T T

5
R
T

2
)

o

o

®
I

Cross-section (A

Figure 2. Quantum classical cross-sections for the reaction D+ H, (v=1,/=1) —
DH (V' =1,j)+H at 1.8-eV total energy as a function of j. The solid line indicates results
obtained without including the geometric phase effect. Boxes show the results with geometric phase
effect included using either a complex phase factor (dashed) or a vector potential (dotted).
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at j/ = 10 (corresponding to accurate quantum mechanical calculation [46]), the
result is still impressive because we have used only one basis function instead of
a grid in the p coordinate. But the important point is that the peak position is
again shifted to the left, from j/ = 8-6 if the GP effect is considered either by
including the vector potential into the system Hamiltonian or by incorporating a
phase factor in the adiabatic nuclear wave function.

3. Quasiclassical Trajectory Calculations on a H 4 D, Reaction at 2.20 eV

Satisfactory agreement between experimentally measured and theoretically
(without considering the GP effect) calculated results [80,82-87] for the
reaction, H+ D, (v=10,j=0) — HD(V, ) + D, at a collisional energy of
2.20 eV has renewed theoretical interest in this area. As at this collisional
energy, the CI is located at 2.7 eV, a significant contribution from the geometric
phase is expected to appear. We studied the difference between results obtained
with or without including the GP effect. We have calculated integral and differ-
ential cross-sections for the same reaction using the QCT approach with or
without including the general expression of a vector potential into the system
Hamiltonian. As we mentioned earlier, the simplest way of including the phase
effect is to switch to hyperspherical coordinates, in which the HLH phase factor
is exp(in/2) where the hyperangle 1 increase by 2w as the conical intersection
is encircled. When the nuclear kinetic energy operator operates on the wave
function multiplied by the HLH phase factor, the Hamiltonian accumulate an
additional potential (a vector potential). In this calculation, we wish to replace
the quantum operators by classical variables. The reason for this is that the
classical trajectories are easy to integrate to obtain reliable values of integral and
differential cross-sections. In particular, our previous QCT calculations showed
that the GP effect was predicted qualitatively correct. For each trajectory, the
final vibrational quantum number (V') is calculated using the semiclassical
formula based on the Bohr—Sommerfeld quantization rule,

Y
Integral and differential cross-sections for the H + D,(v =0, j =0) — DH
(v, j') + D reaction at total enery 2.3917 eV (collisional energy 2.20 eV) are
computed by using QCTs on the LSTH potential energy surface and these
calculations have been performed with or without including a vector potential
into the system Hamiltonian. For each case (with or without GP) ~1.2 x
10° QCTs are computed to get the product rotational state distributions of the
final vibrational state (V') although convergence is nearly obtained with 5 x
10* QCTs. The scattering angle distributions for different final rotational state
(j') are calculated from 1.0 x 10% QCTs for each case (with or without GP).
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Differential cross-sections for particular final rotational states (j) of a
particular vibrational state (V') are usually smoothened by the moment
expansion (M) in cosine functions mentioned in Eq. (38). Rotational state
distributions for the final vibrational state v/ = 0 and 1 are presented in [88]. In
each case, with or without GP results are shown. The peak position of the
rotational state distribution for v/ = 0 is slightly left shifted due to the GP effect,
on the contrary for v/ = 1, these peaks are at the same position. But both these
figures clearly indicate that the absolute numbers in each case (with or without
GP) are different.

We have also presented scattering angle distributions for v/ = 0, j/ = 0-12
and v =1, = 0-12 in [88] where in each figure results obtained with or
without considering GP effect are shown. These figures clearly demonstrate that
the differential cross-section as a function of scattering angle for with or without
GP are rather different.

III. THE EXTENDED BORN-OPPENHEIMER
APPROXIMATION

The BO coupled equations in the adiabatic representation (see Appendix B) are

h2 hz N
= 5= VAU () + () = ENy(n) = - {25 V(n) + ()} = 0
i=1
(40)
where ;(n) and u;(n), j=1, ..., N are the nuclear wave functions and the

adiabatic potential energy surfaces, V is the gradient (vector) operator, m is the
reduced mass of the system, (1) is the non-adiabatic vector matrix, and @ is
non-adiabatic scalar matrix. Recalling their relation from Appendix B, Eq. (45),
they can be written in the following matrix notation:

W, o, "
—— VU —— 1T —E|V—-——21-V+V)¥ =0 47
2m +{M 2mT } 2m( ' +V1) (47)

where V¥ is a column matrix that contains the nuclear wave functions \|/] uisa
diagonal potential (adiabatic) matrix, the dot product designates a scalar
product, and t replaces (") to simplify the notation.

If we consider the transformation ¥ = A®, then Eq. (46) can be transformed
into the following diabatic matrix equation:

hz
—2—v2<1> + (AT THA —E)® =0 (48)
m
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where the transformation matrix (unitary) A has to satisfy the following matrix
equation:

VA+1A =0 (49)

and we are interested in exploring the detailed properties of the transformation
matrix A when it satisfies Eq. (48).

As stated in the introduction, we present the derivation of an extended BO
approximate equation for a Hilbert space of arbitary dimensions, for a situation
where all the surfaces including the ground-state surface, have a degeneracy
along a single line (e.g., a conical intersection) with the excited states. In a two-
state problem, this kind of derivation can be done with an arbitary t matrix. On
the contrary, such derivation for an N > 2 dimensional case has been performed
with some limits to the elements of the t matrix. Hence, in this sence the present
derivation is not general but hoped that with some additional assumptions it will
be applicable for more general cases.

The t matrix is an antisymmetric vector matrix with the component
T,,p =X, Y, 2, X, Y, Z, and so on, and 7, is assumed to be a product of a scalar
function ¢, and a constant antisymmetric matrix g (which does not depend on p).
Thus,

T =18

g = (§IVE)) 0

If we consider G as a unitary transformation matrix that diagonalizes the g
matrix and i is the diagonal matrix with elements iw;, j=1,..., N as
the corresponding eigenvalues, it can be shown that, following the unitary
transformation performed with G, Eq. (46) becomes

i (V + itw)*y + (W - E)y =0 (51)

2m

where y is related to ¥ through the transformation ¥ = Gy and the nondiagonal
diabatic potential matrix W is related to the adiabatic potential matrix u as
W = G'uG. Due to the above transformation, the non-adiabatic coupling matrix
T becomes a diagonal matrix @ and a new off-diagonal potential matrix is
formed that couples the various differential equations. It is important to note
that so far the derivation is rigorous and no approximations have been imposed.
Hence, the solution of Eq. (46) will be the same as the solution of Eq. (50), but it
will be convenient to impose the BO approximation in Eq. (50). For low enough
energies, all upper adiabatic states are assumed to be classically closed, that is,
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each of the corresponding adiabatic functions \;, j =2, ..., N is expected to
fulfill the condition

in those regions of configuration space (CS) where the lower surface is energe-
tically allowed. This assumption has to be employed with great care and is
found nicely fulfilled for two- or three-state systems although some risk is
involved by extending this assumption to an arbitrary number of states. We can
analyze the product Wy for the jth equation,

(Wy); = {(G"uG)(G* W)}, = (G*u¥), Z Gy

N
= ulxj — U Z G;}(\I/k + Z Gfkuk\I/k
k=1 k=1

—ulXj—i_Zij Uy — ug \Ijka ]:laaN (53)

By substituting Eq. (52) in Eq. (50) and introducing the approximation

R . .
_%(V+zt0}j)2xj+(u1—E)Xj:O, j=1,...,N (54)

the N equations for the Ny functions are uncoupled and each equation stands on
its own and can be solved independently. These equations are solved for the
same adiabatic PES u; but for different w;s.

Now, we assume that the functions, tw;, j =1, ..., N are such that these
uncoupled equations are gauge invariant, so that the various yx values, if
calculated within the same boundary conditions, are all identical. Again, in
order to determine the boundary conditions of the y function so as to solve
Eq. (53), we need to impose boundary conditions on the ¥ functions. We assume
that at the given (initial) asymptote all \I/f values are zero except for the ground-
state function \|Ii1 and for a low enough energy process, we introduce the
approximation that the upper electronic states are closed, hence all final wave
functions \I!{ are zero except the ground-state function \I/J? .

Hence, in order to contruct extended BO approximated equations for an N-
state coupled BO system that takes into account the non-adiabatic coupling
terms, we have to solve N uncoupled differential equations, all related to the
electronic ground state but with different eigenvalues of the non-adiabatic
coupling matrix. These uncoupled equations can yield meaningful physical
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solutions only when the eigenvalues of the g matrix fulfill certain requirement.
For example, these eigenvalues produce gauge invariant equations, that is, its
solution will be compatible with the assumption concerning the BO approxi-
mation.

A. The Quantization of the Non-Adiabatic Coupling Matrix
Along a Closed Path

In this section, we prove that the non-adiabatic matrices have to be quantized
(similar to Bohr—Sommerfeld quantization of the angular momentum) in order
to yield a continous, uniquely defined, diabatic potential matrix W(s). In
another way, the extended BO approximation will be applied only to those cases
that fulfill these quantization rules. The ADT matrix A(s, so) transforms a given
adiabatic potential matrix u(s) to a diabatic matrix W(s, s¢)

Wi(s, s0) = A*(s, so)u(s)A(s, so) (55)

A*(s, so) is the complex conjugate matrix of A(s, so), so is an initial point in
CS, and s is another point. It is assumed that W(s, s¢) and u(s, so) are uniquely
defined throughout the CS and to ensure the uniqueness of W(s, so) our aim is
to derive the features to be fulfilled by the A(s, so).

We introduce a closed-path I" defined by a parameter A. At the starting point
50, » = 0 and when the path complete a full cycle, A = B(2m, in case of circle).

We now express our assumption regarding the uniqueness of W(s, so) in the
following way:

WL =0)=W(OL=p) (56)

By using Eq. (54), we can rewrite Eq. (55) as
A*(0)u(0)A(0) = A*(B)u(B)A(B) (57)

Hence, u(pB) and u(0) are connected as below
u(B) =Du(0)D” D= A(B)A™(0) (58)

The D matrix is by definition a unitary matrix (it is product of two unitary
matrices) and since the adiabatic eigenvalues are uniquely defined in CS, we
have, u(0) = u(B). Then, Eq. (57) can be written as

u(0) = Du(0)D* (59)
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By performing the matrix multiplication, one can get the following relations
between the adiabatic eigenvalues #;(0) and the D matrix elements

STDDy 8w (0) =0  k=1,...,N (60)
=T

Equation (59) is valid for every arbitary point in CS and for an arbitary set of
nonzero adiabatic eigenvalues, u;(0), j=1,..., N, hence the D matrix
elements fulfill the relation

Dj) Dy =8 j,k=1,...,N (61)

Thus D is a diagonal matrix that contains diagonal complex numbers whose
norm is 1. By recalling Eq. (57), we get

A(B) = DA(0) (62)

Again, we already know that the ADT becomes possible only when the trans-
formation matrix A satisfy Eq. (63)

VA+1tA=0 (63)

where 1 is the non-adiabatic coupling matrix. A uniquely defined A matrix will
be guaranteed if and only if the elements of the t matrix are regular functions of
the nuclear coordinates at every point in CS.

However, in order to obtain a uniquely defined diabatic potential matrix, it is
not necessary for the A matrix to be uniquely defined throughout CS. Still, we
ignore this difficulty and go ahead to derive A by a direct integration of Eq. (62),

Al =exp|- [ as-<|a) (64)

So

where the integration is performed along a closed-path I" that combines s and s,
ds is a differential vector length element along this path, and the dot stands for a
scalar product. We already define the matrix G as the unitary transformation
matrix that diagonalizes the t matrix,

A(s) = Gexp [—iw J ds - t(s)] G*A(s0) (65)

5o
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Hence, the matrix D along a path I' takes the following form:
D =Gexp <—iw§; ds - t(s)) G* (66)
r

As the D matrix is a diagonal matrix with a complex number of norm 1, the
exponent of Eq. (65) has to fulfill the following quantization rule:

1 .
%mjjtds%(s):nj j=1,...,N (67)

where 7; is an integer and if the D matrix is multiplied by (—1) the values of all
n; parameters have to be one-half of an odd integer. This fact is the necessary
conditions for Eq. (53) to be gauge invariant or this quantization requirement
that is a necessary condition for having uniquely defined diabatic potentials also
guarantees the extended BO equation. Thus, the effect of non-adiabatic coupling
terms lead to a extended BO approximation.

B. The Quantization of the Three-State Non-Adiabatic
Coupling Matrix
We concentrate on an adiabatic tri-state model in order to derive the quantiza-
tion conditions to be fulfilled by the eigenvalues of the non-adiabatic coupling
matrix and finally present the extended BO equation. The starting point is the
3 x 3 non-adiabatic coupling matrix,

0 5] 15
T= —h 0 13 (68)
—t 13 0

where #;, j = 1,2, 3 are arbitary functions of the nuclear coordinates. The matrix
G diagonalizes t at a given point in CS

q ih®d — Kt —ith® — 31 1‘37\,\/5
G=——>| ind+ny —itz® + tty —6r02 (69)
A2 ) 5
A » /@)

where A = /15 + 13, ® = /1] + 13 + 13, and the three eigenvalues (0, +i®).
We already assume that the t matrix fulfills the conditions in Eqs. (48)
and (49). These conditions ensures that the matrix G diagonalizes t(s) along
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a close path is independent of s and by employing Eq. (65), we obtain the
D matrix,
B+ (8 +6)C 1S — 2615, —®nS| + 261135,
D =62 n0S, — 2655, B+ (B +8)C —108] + 266,Cy
OnS) + 2615 6OS) + 26160, g+ (B+153)C
(70)
where S| =sin(§®-ds); C; =cos(§@-ds); S, =sin’(L(f&-ds)); C=

cos? (3 (@ - ds)).
As the D matrix has to be a unit matrix in order to get a continuous, uniquely
defined diabatic matrix, the following integral is quantized as:

1 [. 1
E#w-ds:ﬁ§\/ﬁ+t§+t§'ds:n (71)

Thus from the D matrix, it is easy to say that for three states n will be an integer
and for two states n will be one-half of an odd integer.

C. The Study of the Three-State System

The numerical calculations have been done on a two-coordinate system with g
being a radial coordinate and ¢ the polar coordinate. We consider a 3 x 3 non-
adiabatic (vector) matrix t in which t, and t4 are two components. If we
assume 1, = 0, 14 takes the following form,

Ty
T =18 =8 (72)
q
where f( is a constant and g is a 3 x 3 matrix of the form
0 1 0
g=|-1 0 n (73)
0O —m O

where 1 is a constant. The t matrix couples the ground adiabatic state to the first
excited state and then the first excited state to the second excited state. There is
no direct coupling between the ground and the second excited state.

The adiabatic coupled SE for the above 3 x 3 non-adiabatic coupling matrix
are

1 o O MG

<T+M1 +2mq2 E>\|11 +mqa¢\l/2 zqu \ll3 = O
2(1+n?) fp O Nt 0

T AL A ) - = =\, = 74

2. 2
LR Nty 0 Ny
T ) P P L R PR
(Tt us + 2mg> Vs mq 0 2mg> i
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where T is the nuclear kinetic energy operator

1 /> 10 1 &
re (412,18 as)

2m\0¢> " 40 " ¢*3¢?

In the case of a coupled system of three adiabatic equations, mn (which is a
constant) is chosen such that the quantization condition is fulfilled. Inserting the
following values for #;, j = 1,2,3: 1 = 1/2¢, t, = 0, and 13 = 1/2¢g, we get the
following m value:

n=Van -1 for n=1-n=+3 (76)

Now, we are in a position to present the relevant extended approximate BO
equation. For this purpose, we consider the set of uncoupled equations as
presented in Eq. (53) for the N = 3 case. The function iw; that appears in these
equations are the eigenvalues of the g matrix and these are ®; = 2; 0, = —2,
and @3 = 0. In this three-state problem, the first two PESs are u; and u; as given
in Eq. (6) and the third surface us is chosen to be similar to u, but with D; =
10 eV. These PESs describe a two arrangement channel system, the reagent-
arrangement defined for R — oo and a product—arrangement defined for
R — —o0.

D. Results and Discussion

We present state-to-state transition probabilities on the ground adiabatic state
where calculations were performed by using the extended BO equation for the
N =3 case and a time-dependent wave-packet approach. We have already
discussed this approach in the N = 2 case. Here, we have shown results at four
energies and all of them are far below the point of CI, that is, £ = 3.0 eV.

In [66], we have reported inelastic and reactive transition probabilities. Here,
we only present the reactive case. Five different types of probabilities will be
shown for each transition: (a) Probabilities due to a full tri-state calculation
carried out within the diabatic representation; (b) Probabilities due to a two-
state calculation (for which 1 = 0) performed within the diabatic representa-
tion; (c) Probabilities due to a single-state extended BO equation for the N = 3
case (w; = 2); (d) Probabilities due to a single-state extended BO equation for
the N =2 case (w; = 1); (e) Probabilities due to a single-state ordinary BO
equation when ®; = 0.

At this stage, we would like to mention that the model, without the vector
potential, is constructed in such a way that it obeys certain selection rules,
namely, only the even — even and the odd — odd transitions are allowed. Thus
any deviation in the results from these selection rules will be interpreted as a
symmetry change due to non-adiabatic effects from upper electronic states.
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TABLE II
Reactive State-to-State Transition Probabilities when Calculations are Performed Keeping the
Position of the Conical Intersection at the Origin of the Coordinate System

Eev 0-0 0—-1 0—-2 0—-3 0—-4 0—-5 0—6 0—-7 0—8 0—9

1.0 0.0044¢ 0.0000 0.0063 0.0000
0.0000% 0.0049 0.0000 0.0079
0.0047¢ 0.0000 0.0195 0.0000
0.0000¢ 0.0045 0.0000 0.0080
0.0094¢ 0.0000 0.0362 0.0000

1.5 0.0325 0.0000 0.0592 0.0000 0.0311 0.0000
0.0000 0.1068 0.0000 0.0256 0.0000 0.0068
0.0419 0.0000 0.0648 0.0000 0.0308 0.0000
0.0000 0.1078 0.0000 0.0248 0.0000 0.0075
0.0644 0.0000 0.0612 0.0000 0.0328 0.0000

2.0 0.1110 0.0000 0.0279 0.0000 0.0319 0.0000 0.2177 0.0000
0.0000 0.1232 0.0000 0.0333 0.0000 0.0633 0.0000 0.1675
0.1068 0.0000 0.0172 0.0000 0.0274 0.0000 0.2277 0.0000
0.0000 0.1264 0.0000 0.0353 0.0000 0.0656 0.0000 0.1678
0.1351 0.0000 0.0217 0.0000 0.0304 0.0000 0.2647 0.0000

2.5 0.1318 0.0000 0.0295 0.0000 0.0091 0.0000 0.1375 0.0000 0.2043 0.0000
0.0000 0.0936 0.0000 0.0698 0.0000 0.1350 0.0000 0.0200 0.0000 0.2398
0.1256  0.0000 0.0155 0.0000 0.0084 0.0000 0.1545 0.0000 0.1977 0.0000
0.0000 0.0947 0.0000 0.0658 0.0000 0.1363 0.0000 0.0190 0.0000 0.2365
0.1831 0.0000 0.0343 0.0000 0.0089 0.0000 0.1607 0.0000 0.1157 0.0000

“ Tri-surface calculation.
bTwo-surface calculation.

¢ Single-surface calculation (o = 2).
4 Single-surface calculation (» = 1).
¢ Single-surface calculation (o = 0).

Effects due to the non-adiabatic coupling terms on reactive transition
probabilities are given in Table II. The two-state results and the corresponding
extended approximated BO equation results follow the odd — even selection
rules instead of even — even or odd — odd transitions in case of an ordinary
BO scheme. This symmetry change has been discussed at length in Section
II.A.2. The more interesting results are those for the tri-state case that appa-
rently does not show any GP effect. Diabatic calculations, extended, and
ordinary adiabatic BO calculations show the same selection rules. We thought
that the extended BO equation could be partially wrong and the GP effects
would become apparent but they did not. The present calculation reveals two
points: (1) That geometrical features do not necessarily show up where they are
expected as in the present tri-state case. (2) The extended approximated BO
equation contains the correct information regarding the geometric effects. So,
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due to the conical intersection, in the two-state case, it contains the GP effects,
whereas in tri-state case it tells us that such effects do not exist.

IV. QUANTUM DRESSED CLASSICAL MECHANICS

It is possible to parametarize the time-dependent Schrédinger equation in such a
fashion that the equations of motion for the parameters appear as classical
equations of motion, however, with a potential that is in principle more general
than that used in ordinary Newtonian mechanics. However, it is important that
the method is still exact and general even if the trajectories are propagated by
using the ordinary classical mechanical equations of motion.

Thus it is possible to obtain a very convenient formulation, which is
appealing from a computational point of view and allows the blending of
classical and quantum concepts in a new way, by a selection of the initial time-
dependent variables as in ordinary classical mechanics and an application of
Newtons mechanics for the propagation of these parameters. Thus the classical
mechanical part of the problem can, for example, be used to decide on the
branching ratio in a chemical reaction, whereas the quantum mechanical part,
which consist of grid points with quantum amplitudes, is used to project onto
asymptotic wave functions of the product channels. In this fashion, we avoid
describing the whole of space quantum mechanically at the same time, but only
locally around the classical trajectories. The consequence is a large saving in the
number of grid points and since it is also possible to minimize the computing
effort when propagating the equations of motion, the final theory is not only
easy to program, it is also efficient from a numerical point of view.

A. Theory

We directly give the relevant equations of motion for the simplest but
nevertheless completely general scheme that involves propagation of grid points
in a discrete variable representation (DVR) of the wave function. The grid points
are propagated by classical equations of motion in a so-called fixed width
approach for the basis set. For a derivation of these equations the reader is
referred to [81,89,90]. As mentioned, the theory generates classical equations
of motion for the center of the basis set or in the DVR representation the center
of the DVR grid points. Thus, the grid points follow the classical equations of
motion in space and if an odd number of grid points is used the middle one is
the classical trajectory. For a one-dimensional (1D) problem we therefore have
the following equations of motion:

(1) = pult)/m (17)
o) = - V0 (78)
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defining the trajectory. For the quantum amplitudes, we have the matrix
equation

ihd(r) = (W(r) + K)d(z) (79)

where W is a diagonal matrix and K the ‘“kinetic coupling” matrix. The
elements of the kinetic matrix is for a 1D system given as

ho ~ ~
Kj == 0,() 20+ 1)d,(5) (80)
where m is the mass associated with the x degree of freedom and oy is the
imaginary part of the width parameter, that is, oy = Im A of the Gauss—Hermite
(G-H) basis set [81]. Since the kinetic operators have already worked on the
basis functions before the DVR is introduced, the above matrix is what is left of
the kinetic coupling.

We also notice that in coordinates weighted by +/0/m the kinetic matrix is
universal, that is, independent of the system.

The zeros of the Nth Hermite polynomial are denoted z; and

J)n(zi) = d)n(zl)/\/‘?l (81)
A=Y (@) (82)
where
1 1
d,(2) = NG exp ( 5?) H,(z) (83)

The elements of the diagonal matrix W are given as

dv

W(x:) = V(x) — V(x(t) - .

(7 —x(1)) == (xi = x(0)* (84)

x=x(1)

that is, the actual potential V(x) from which a “reference” potential defined
by the forces evaluated at the trajectory is subtracted. In the fixed width
approach, the second derivative term V” is related to the imaginary part of the
width, that is, by the equation V” =4ImA?/m. This relation secures that
ImA(t) = constant if Re A(7y) = 0. In the simplest possible approach, the first
derivative is furthermore taken as the classical force in the sense of Newton.
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But we emphasize that more general forces may be applied [81,91]. The grid
points follow the trajectory and are defined through

x; = x(t) + /o / 20z (85)

For an atom—diatom collision, it is convenient for the formulation of the time
dependent Gauss—Hermite (TDGH) discrete variable representation (DVR)
theory to use Cartesian coordinates. That is, the center-of-mass distance
R = (X, Y, Z) and the three coordinates for the orientation of the diatomic
molecule r = (x, y, z) in a space-fixed coordinate with origo in the center of
mass of the diatomic molecules. Thus the dimension of the grid is 6 and will be
denoted (ny, ny, nz, ny, ny, n;), where n; is the number of grid points in
degrees of freedom i. Note that in this approach n; = 1 is an acceptable number
of grid points (the classical limit). The dimension of the quantum problem is
then H?:ln,-. But since one grid point in each mode makes sense from a
dynamical point of view it is possible to explore the simplest quantum
corrections to the classical limit, namely, the corrections obtained by adding
grid points in each dimension.

The initial amplitudes d;(#) are obtained by projecting the initial wave
function on the DVR basis set. For the initial wave function, we use

WX, Y, Z, %, 3, ) ~ 2 Bawe(R) (1) Yin(0.0) (56)

where Ogwp(R) is a Gaussian wavepacket in R, g,(r) a Morse vibrational wave
function, and Y}, a spherical harmonics for the diatomic molecule. The GWP is
projected on planewave functions exp(ikR) when energy is resolving the
wavepacket.

We can pick the initial random variables for the classical coordinates and
momenta in the way it is done in an ordinary classical trajectory program.

The projection on the final channel is done in the following manner. We let
the trajectory decide on the channel—just as in an ordinary classical trajectory
program. Once the channel is determined we project the wave function (in the
DVR representation) on the appropriate wave function for that channel

1 . 1
ﬁexp(zk'R’) S8 ()Y (6, 0") (87)

where R’ is the center-of-mass distance between A and BC, B and AC, or C and
AB according to the channel specification. Likewise 7/, &', and ¢’ specify the
orientation of the diatom in the reactive channel found by the trajectory. This
projection determines the final state (n'j'm’) distribution and the amplitudes
therefore. The final probability distribution is added for all the trajectories of the
channel and normalized with the classical total reactive cross-section of that
channel to get the cross-section.
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B. The Geometric Phase Effect

As demonstrated in [53] it is convenient to incorporate the geometrical phase
effect by adding the vector potential in hyperspherical coordinates. Thus
we found that the vector potential gave three terms, the first of which was zero,
the second is just a potential term

2
V= (88)
up? sin” 0
and the third term, V}, contains first derivative operators. By adding these terms
to the normal Hamiltonian operator, we can incorporate the geometric phase
effect.
We can express V), as

Vp=—— Py 89
b uiax,- % ( )

where p = /mimyms/(m; +my +m3), n= /2, and 0¢p/0X; is given in
Appendix C.

In order to incorporate the geometric phase effect in a formulation based on
an expansion in G-H basis functions we need to consider the operation of the
momentum operator on a basis function, that is, to evaluate terms as

e enp (4 10+ o) = 2(0) 4 ReAL(0(x = x0)) ) 1) (90

Since we will normally use the fixed-width approach we can simplify the
calculation by using Re A(f) = 0. Thus we have

(2ImA(1) /1) exp(ip. (1) (x = x(1)) /A) (P (1), (x, 1)

+ (1/i)\/ImA(1) /h(Vnd,_y — Vi +10,4,) (91)
where we have used
Imy(z) = —Zln (21272@) (92)

ol 1) =~ exp (i) H,(2) (93)
\/nl2n/n 2

& = /2ImA(1) /h(x — x(1)) (94)
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C. The DVR Formulation

In the basis set formulation, we need to evaluate matrix elements over the G-H
basis functions. We can avoid this by introducing a discrete variable
representation method. We can obtain the DVR expressions by expanding the
time-dependent amplitudes a,(¢) in the following manner:

Mz

Cl d)n Zl (95)
i=1

where z; are zeros of the N'th Hermite polynomium and n =0, 1, ..., N — 1.

Thus we can insert this expansion in the expression for ,(f) and obtain
equations for ¢;() instead. In this operation, we need to use

Z b (@) da(z) = Aidy (96)

36 (E) ~ @ 97)

J

After a little manipulation, we obtain

ihd 1 Z di(1) (Hyd; + M) + Ty) (98)
where
= Fu(pu(1)8; — ih/ImA/ A, /A

X (Z d)n(zi)(\/;ld)nfl(zj) —vn+ 1¢n+l(zj))> (100)

7y = MMAW 1241257 6 ()2 4+ 1), (5) (101)

m

Thus, the matrix elements Mgf) are those that should be added in order to

incorporate the geometric phase effect.

Extension to six dimensions is now straightforward. We obtain similar
expressions just with the y and z components and the index n running over the
basis functions included in the particular degree of freedom. For the functions
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F,, and so on, we obtain

F,=F(X +xtgd/d}) (102)
Fy=F(Y +ytg¢/d}) (103)
F,=F(Z+ztgd/d}) (104)
= F(x — Xtg od?) (105)
= F(y - Yigdd}) (106)
=F(z— Ztg od?) (107)

where the function F is given as F = —(/i/2p)cos ¢sin¢/(r-R) and d? =
m (1 —my/M)/p with M =m; +my +ms [72,73]. In six dimensions, the
amplitudes d;(¢) [in Eq. (97)] will be of dimension N = H?:]N,-. Here, in mass
scaled coordinates we have used [48]

?/dF = %z(l—i-sinecosd)) (108)
1

R*d} = 5P p?(1 —sin@cos ) (109)

r-R:—%pzsinGSind) (110)

Since the geometric phase effect is related to the angle ¢ we express ¢ as

r-R

tgd):—m (111)
and obtain
0p  cos¢sind 2
0¢ cosdsind 2
&_W(X Xtgddy) (113)

plus similar expressions for the y and z components.

Note that in this TDGH-DVR formulation of quantum dynamics, the
inclusion of the geometric phase effects through the addition of a vector
potential is very simple and the calculations can be carried out with about the
same effort as what is involved in the ordinary scattering case.

Figure 3 shows the results with and without including the geometric phase
effect for the D + H, reaction. The basis set is taken as 1,1,1,15,15,15, that is,
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Figure 3. Cross-sections obtained with a (1,1,1,15,15,15) basis set and the TDGH-DVR
method for the D+ H, (v=1,j=1) — DH (v =1, j) + H reaction at 1.8-eV total energy. The
solid line indicates the values obtained without the vector potential and the dashed with a vector
potential. The dashed line indicates the experimental results [49-52].

the X, Y, Z variables are treated classically. Altogether 200 trajectories were
calculated. We notice that the branching ration, that is, the total reactive cross-
section is obtained from the trajectories but the distribution is obtained by a
projection of the DVR points on final rotational-vibrational states of the
product. The maximum of the distribution is now j/ = 9 (in better agreement
with full quantum calculations). It is shifted to j/ = 8 if the geometric phase is
included. The agreement with experimental data is good for j/ values <8 but
overestimated at higher values. Since part of the system is still treated classi-
cally, we attribute this discrepancy to the lacking ability of classical trajectories
to yield proper state-resolved reaction cross-sections (see also Fig. 1).

V. CONCLUSION

In this chapter, we discussed the significance of the GP effect in chemical
reactions, that is, the influence of the upper electronic state(s) on the reactive
and nonreactive transition probabilities of the ground adiabatic state. In order to
include this effect, the ordinary BO equations are extended either by using a
HLH phase or by deriving them from first principles. Considering the HLH
phase due to the presence of a conical intersection between the ground and the
first excited state, the general form of the vector potential, hence the effective
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kinetic energy operator, for a quasi-JT model and for an A 4 B, type reactive
system were presented.

The ordinary BO approximate equations failed to predict the proper
symmetry allowed transitions in the quasi-JT model whereas the extended
BO equation either by including a vector potential in the system Hamiltonian or
by multiplying a phase factor onto the basis set can reproduce the so-called
exact results obtained by the two-surface diabatic calculation. Thus, the
calculated transition probabilities in the quasi-JT model using the extended BO
equations clearly demonstrate the GP effect. The multiplication of a phase
factor with the adiabatic nuclear wave function is an approximate treatment
when the position of the conical intersection does not coincide with the origin of
the coordinate axis, as shown by the results of [60]. Moreover, even if the total
energy of the system is far below the conical intersection point, transition
probabilities in the JT model clearly indicate the importance of the extended BO
equation and its necessity.

The integral and differential cross-section obtained by using QCT calcula-
tions on the ground adiabatic surface of the D + H, system at a total energy of
1.8 eV, clearly indicates the GP effect where the ground state of this system has
a conical intersection with its’ first excited state at a total energy of 2.7 eV.
Similarly, semiclassical calculations on the same system with or without includ-
ing a vector potential in the system Hamiltonian confirms this effect. Preliminary
calculations with the new TDGH-DVR method also show a less dramatic effect.
In the case of the H 4+ D, reaction at total energy 2.4 eV, calculated rotational
state and scattering angle distributions obtained from the QCT calculations on
the LSTH surface demonstrate quantitative change due to the GP effect but the
qualitative variation, at least in the integral cross-section, is not significant.

Formulation of the extended BO approximate equations using the HLH phase
is based on the consideration of two coupled states. If the ground state of a
system is coupled with more than one excited state, it has been demonstrated
that the phase factor could be different from the HLH phase factor. In this
formulation, we consider the BO coupled equations with the aim of deriving an
approximate set of uncoupled equations that will contain the effect of non-
adiabatic coupling terms. When the electronic states are degenerate, some of the
non-adiabatic coupling terms may become infinite and affect the dynamics of
the nuclei irrespective of how far it occurs from the point of the degeneracy.
Hence, the importance of non-adiabatic coupling terms has been taken into
account when deriving the uncoupled BO from the coupled ones. In this
approch, the non-adiabatic coupling terms are not eliminated but shifted from
the off-diagonal position to the diagonal one and the BO approximation has
been introduced afterward. This shift has been done with the physical
assumption that the non-adiabatic coupling matrix guarantees the continuous,
single-valued diabatic potential matrix in the CS, that is, along a close path the
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non-adiabatic coupling matrix follows the Bohr—Sommerfeld type quantization
rule. This quantization guarantees that all N decoupled equations obtained by
deleting the potential coupling terms are invariant under gauge transformations
and follow proper boundary conditions. These extended—approximated BO
equations are tested for a tri-state system. First, we performed a so-called exact
calculation in the diabatic representation to obtain reactive and nonreactive
transition probabilities on the ground adiabatic surface and then the extended—
approximated BO equations for the ground adiabatic surface are solved to get
the relevant results. State-to-state transition probabilities obtained by both
calculations indicate that the new approximate BO equations yield correct
results for a tri-state system.

Hence, systems having conical intersections between two or more than two
electronic states exhibit geometric phase effects. For two-states systems, the
HLH phase factor is the same as that obtained by Baer et al. from first principles
but the new phase factor appears to be different and depends on the number of
electronic states coupled. Considering a conical intersection between the ground
and first excited state of the D 4+ Hj reactive system, the extended BO equations
are the same in both of the above-mentioned approaches and we found
significant GP effect at a total energy of 1.8 eV. However, it has been possible to
obtain good agreement between experiment and theory without including the
effect for the H + D, system at a total energy 2.4 eV. At this point, it is worth
noting that the calculations on the H 4 D, reaction were carried out on a
different potential energy surface than the one we used in our calculations. May
be the reactivity of one potential energy surface could hide the GP effect while
another could expose it. At the same time, the importance of the GP effect is
clearly understood in the quasi-JT model. The inclusion of a simple phase factor
(HLH) or by using the extended BO equations can change the parity for
vibrational transitions in the 2D two-surface model and give good agreement
with results obtained by an exact two-state diabatic calculation. Again,
calculations on a tri-state 2D quasi-JT model using the extended BO equations
(N > 2) derived by Baer et al. not only exhibit geometric phase effects but also
the new phase factor that changes with the number of electronic states coupled.

APPENDIX A: THE JAHN-TELLER MODEL AND THE
HERZBERG-LONGUET-HIGGINS PHASE

When two electronic states are degenerate at a particular point in configuration
space, the elements of the diabatic potential energy matrix can be modeled as a
linear function of the coordinates in the following form:

W:k(y x> (A.1)

=y
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where k is the force constant and (x, y) are the nuclear coordinates. The
eigenvalues and eigenvectors of the above matrix represent the adiabatic poten-
tial energy surfaces and the columns of the ADT matrix, respectively. In order to
carry out this diabatization, we use the following transformations between the
Cartesian (x, y) and polar (g, ¢) coordinates: x = gsin¢$ and y = gcos ¢.

The eigenvalues and eigenfunctions of this model are

uyr = tkq (A.2)

where ¢ =0, oo and ¢ = 0,27, and

g = (\}E cos ¢ /2, % sin4>/2)

£y = (\/LE sin /2, —ﬁ cosd>/2)

respectively.

These adiabatic eigenfunctions depend only on the angular coordinate ¢ and
are not single valued in configuration space when ¢ changes to ¢ + 2n—a
rotation that brings the adiabatic wave functions back to their initial position.
This multivaluedness of the adiabatic eigenfunctions was first revealed by
Herzberg and Longuet-Higgins. In order to avoid multivalued electronic
eigenfunctions they suggested that the corresponding nuclear wave function
be treated with care. While solving the nuclear SE, this feature needs to be
incorporated explicitly through specific boundary conditions. It is worth
mentioning that in the HLH state realistic ab initio electronic wave functions
posses the multivaluedness feature.

Longuet-Higgins corrected the multivaluedness of the electronic eigenfunc-
tions by multiplying them with a phase factor, namely,

n;() = exp(i)§;(9)  j=1,2 (A.4)

where o = ¢/2. It is important to note that n;(¢), j = 1, 2 are single-valued
complex eigenfunctions.

APPENDIX B: THE BORN-OPPENHEIMER TREATMENT

The total electron—nuclear Hamiltonian of a molecular sytem is defined as

H=T,+H,(e|n) (B.1)
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where T, is the kinetic energy operator for the nuclei and H,(e | n) is the
electronic Hamiltonian and

H,=T,+ V(e|n) (B.2)

with T, being the kinetic energy operator of the electrons and V(e | n) the
potential energy operator as a function of electronic coordinates(e) with nuclear
coordinates(n).

The BO expansion of the molecular wave function

N

W(e, n) =D Wi(n)&i(e | no) (B.3)

i=1

where the functions {;(n) are the nuclear coordinate-dependent coefficients,
later considered as the nuclear wave function, and the &;(e | ng)s are the
electronic eigenfunctions satisfying the equation

I:Ie(no)E_,i(e | no) = ui(no)&;(e | no) i=1,...,N (B.4)

Here, the u;(ng)s are the electronic eigenvalues dependent on the nuclear
coordinate ny. Note that ny = n is defined as the adiabatic case and ny # n is
defined as the diabatic case.

Substituting Eqs. (B.1) and (B.3) into the time-independent Schrodinger
equation HU (e, n) = E¥(e, n), one obtains

(Tu+ He = E) Y _Ui(n)&;(e | no) =0 (B.5)
Below, we apply the bra—ket notation to electronic coordinates only,

(&, (m)IE;(no)) = {g”"(”’ oo 7 1o (B.6)

dji; forn = ng

By returning back to Eq. (B.5), we have

N N

> Tali(m)l&ile [ no)) + D Wi(n)(He — E)|gi(e | ng)) = 0 (B.7)

i=1 i=1
If we consider the ADIABATIC (ny = n) case, we get
N

Y Tai(n)[g(e | n) + Z\Ifi(n)(ui(n) —E)[Gi(e[n)) =0 (B.8)

i=1
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Multiplying by (£;| and integrating over electronic coordinates yields

Z<§j|Tn‘Ijn(n)|E.ai> + (uj(n) _E)\Ijj(n> =0 j=1...,N (B9)

i=1

where V is the gradient operator and T, = —(1/2m)V>.
Hence, the following matrix element becomes

1
(GIT;(n)|E;) = _E{Sijv2\|’i +2(§|VE;) + <E.~j|v2‘i>\|/i} (B.10)
and the non-adiabatic coupling matrix elements are defined as below,

W =(glve) 1 =gV (B.11)

For example, in the case of the x component of the nuclear coordinates we have

m_ /.| @ _
Tii = <§j a§i> i = <§j

Therefore, Eq. (B.10) in terms of this notation becomes

62
55 (B.12)

I IE) = — 5 (872, + 20 Vg + 5P} (B13)

It is important to note that the non-adiabatic coupling terms have a direct effect
on the momentum of the nuclei, which is the reason it is called a dynamic
coupling. By substituting Eq. (B.13) in Eq. (B.9), we get

LN~ ) )y —

Z(ZTji Vi1 ;) =0 (B.14)

i=1

1
2m

VA, + (5(n) = E)j(n)

" 2m

This is the electronic adiabatic Schrodinger equation and in the case of a single
coordinate x Eq. (B.14) takes the following form:

L& L~ (. 4 @)
o ) = BN — 55 (25 S ) =0 (813)

When the non-adiabatic coupling terms t(!) and t® are considered negligibly
small and dropped from Eq. (B.15), we get the uncoupled approximate
Schrodinger equation

Lk ) — ENn) =0 (8.16)
2mdx? win = ’
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or more general,

1

%Vz\l/j(n) + (uj(n) — E)y;(n) = 0 (B.17)

The approximation involved in Eq. (B.17) is known as the Born—-Oppenheimer
approximation and this equation is called the Born—Oppenheimer equation.

By assuming the Hilbert space of dimension N, one can easily establish the
relation between couplmg matrices 1) and t(® by considering the (ij)th matrix
element of V - 1(!

Vrfj” — V(&[VE) = (VE|VE) + (&]V7E)
= (V&|V§) + ng2>

We can resolve the unity operator in the following way:

N
=> e

k=1

and obtain,

(VEIVE) = (VE|IIVE) = <|<Zak><ak>|a>

k=
N N
=) (VEIEN(EIVE) = = > (EIVENEIVE)
k=1 k=1
H_(1
= _Zrl(ci)rl(cj) = _(1'(1)),'2/
k=1

Hence, the elements of (1) and 1@ are related as below
1@ = (r(”)izj + Vrl(-jl)
and finally in matrix notation

1@ = (W) 4 v (B.18)

Incorporating relation (B.18) in Eq. (B.14), we can write in matrix form,

—2—v2\|f+<u—2ir<‘ )q/—i(zr” V4+viy=0 (B.19)
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which can be expressed in compact form as

b

5 (V+ )+ (u—EW =0 (B.20)

So far, we have treated the case n = ny, which was termed the adiabatic
representation. We will now consider the diabatic case where n is still a variable
but ny is constant as defined in Eq. (B.3). By multiplying Eq. (B.7) by
(€;(e | no)| and integrating over the electronic coordinates, we get

1, N 5
(-5 7~ E )yt + > (g el mlite [ e e (=0 (321)
We can rewrite the electronic Hamiltonian in the following form:
H,(e|n)=T,+V(e|n)
H,(e |ny) =T, + V(e |no) (B.22)
Hc(e [ n) = He(e [ no) +{V(e |n) = V(e|no)}

and by using Eq. (B.22), we can calculate the following matrix element:
(e | no)lHe(e [ n)|E;(e | mo)) = u(no)dji + Vyi(n | no) (B.23)
where

Vii(n [ no) = (&j(e | no)[V(e [ n) = V(e | no)|&;(e | no))

¢ (B.24)
vii(n | no) = vi(n | no) + u;j(no)d;i

By substituting the expression for the matrix elements in Eq. (B.21), we get the
final form of the Schrodinger equation within the diabatic representation

(— ﬁw _ E) V() + > vii(n | no)W(n) =0 (B.25)
i=1

where the coupling terms among the states are due to potential coupling.
By substituting the following transformation
Y =Ad (B.26)

into the adiabatic Schrédinger equation (B.20), we obtain the following
expression,

- ﬁ {AV?® + 2(VA +14) - V& + {(t1 + V) - (VA +14)}®} + (u — E)AD
=0 (B.27)
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If the transformation matrix A is chosen in such a way that VA 4+ 1A =0,
Eq. (B.27) can be rearranged to the following form:

I 1
—— VP AT'uA — E)P = B.2
3 V0 + (A" u ) 0 (B.28)

which is basically in “diabatic” representation and identical looking with
Eq. (B.25) and A is the adiabatic—diabatic transformation matrix.

APPENDIX C: FORMULATION OF THE VECTOR POTENTIAL
The vector potential is derived in hyperspherical coordinates following the

procedure in [54], where the connections between Jacobi and the hyperspherical
coordinates have been considered as below (see [67])

0 9) ¢
= — cos— + sm2 cos—

}(2 z
¢

cos— — sin— |sin—
) 2

( sg+ sin )sin%

cos? — sin? )eos
2 S 0082

%!v

%\

%\

The interatomic distances of the triangle ABC formed due to any A + BC type
reactive system are as follows:

2 2

Iii%B %(1+sinecosd))
I

Ry p?

% 5 (1 +sinBcos (¢ — &,)) (C2)
2

RZ ’

% %(1+smecos(¢+§3))
3

and these interatomic distances can also be expressed in terms of Jacobi



192 SATRAJIT ADHIKARI AND GERT DUE BILLING

coordinates
2 2 2\ 2
RAB = (rx + ry)dl

RZBC:(RZ—&—RZ)d%(liCOSE"Z) (r2+r2)d§(1+00552)
X y x

2 y 3
— (reRy + 1yR))d5 sin &, (C3)
d;(1 - &2(1
R, = (R + Rg)w e )%

+ (1R, + ryR,)d3 sin &,

where d? = (my/p)(1 — my /M), my my and mjy are the masses of the atom A, B,
and C, respectively, in the corners of the triangle ABC. The parameters
M =my +mp +m3 and p = \/mymyms;/M and the angles are given by &, =
2 arctan (m3/p) and &; = 2 arctan (my/p).

By using Eq. (C.2) one can write

RZ RZ RZ RZ RZ RZ
CA AB BC AB BC C.
(o ) cos & — (G ) eos &+ (T - )

LA AR (C4)
—— — — ] SIn — |- — Sin
(G~ ) sin & — (e ) sin &

tan =

It would be convenient for obtaining the expressions of the gradient of the
hyperangle ¢ with respect to Jacobi coordinates to introduce the physical region
of the conical intersection in the following manner:

0p O ORap , O ORpc O ORca

a—l"i_aRAB ar,- E)RBC a}",' E)RCA ar,»

0p O ORap , O ORpc =~ O ORca
OR; ORasg OR;, ORpc OR;  ORca OR;

(C.5)

where i = x, y, z. To obtain explicit expressions for ¢, we have used Egs.
(C.2-C.5) and after some algebra (!) it is interesting to note that \7¢ becomes
independent of dy and &, for any arbritrary A 4+ BC type reactive system. We obtain

g—ij: —ﬁ(nsin(b—i—&cosd))
op 2
OR; p?sin®
0

X0
or,

9 _
oR.

(—ricosd + R; sin d)
(C.6)

0
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where i = x, y. Similarly, explicit expressions for 570 are obtained using Eqs.
(C.1)

o _ 2R
or,  p?
00 2R,
ory - p?
00 2y
OR, p?
00 2pr (€7
oR,  p*
00

Lo

or,

00

&0

The azimuthal angle (n) about the conical intersection is related with hyper-
angles 0 and ¢ as

sin 0 sin ¢

C.
cos B sin 0 cos ¢ + sin Oy cos O (C8)

n(0, ¢) = ¢’ = arctan

where 0 indicates the position of the conical intersection.

The gradient of \/n with respect to Jacobi coordinates (the vector potential)
considering the physical region of the conical intersection, is obtained by using
Egs. (C.6-C.8) and after some simplification (!) we get,

on 2 [RysinBysin¢ + (cos By sin O + sin O cos O cos §) (r, sin d + Ry cos )]

o, p? [sin® O sin” ¢ + (cos O sin O cos ¢ + sin O cos 9)2]

on 2 [RsinBysin ¢ + (cos By sin O + sin O cos 0 cos §)(ry sin P + Ry cos )]
ory p? [sin® 0 sin” ¢ 4 (cos Oy sin O cos ¢ + sin O cos 0)7]

on

~1_0

or,

on 2 [rysinBgsin ¢ + (cos O sin O + sin 6y cos 0 cos §)(—r, cos 4 R, sin )]
OR, p? [sin” 0 sin® ¢ + (cos O sin O cos ¢ + sin By cos 6)?]
2

on 2 [r,sinOgsin ¢ + (cos O sin O + sin Oy cos 0 cos §)(—r, cos d 4 R, sin )]
[sin? O sin® ¢ + (cos O sin O cos ¢ + sin O cos 0)?]
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OR,

S o
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For the Hj3 isotopic variants, we can calculate the values of 8y and ¢, by
introducing Rag = Rpc = Rca. Moreover, we get 6y = ¢, = 0 for an Az and
o = 0 for an AB, type reactive system. In case of an A + B, type reaction, one
can use

& - &

sinfp = | 5———
d3cos&, — d?

(C.10)

and obtain 0y = 11.5° for DH; and 6y = 14.5° for HD,. The actual position of
the CT on the PES is obtained through the equation, V(p,, 09, ¢y) = Ecr where
E¢y is the potential energy at the point of the CI.
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I. INTRODUCTION AND PREVIEW

In quantum theory, physical systems move in vector spaces that are, unlike those
in classical physics, essentially complex. This difference has had considerable im-
pact on the status, interpretation, and mathematics of the theory. These aspects
will be discussed in this chapter within the general context of simple molecular
systems, while concentrating at the same time on instances in which the
electronic states of the molecule are exactly or nearly degenerate. It is hoped



COMPLEX STATES OF SIMPLE MOLECULAR SYSTEMS 199

that as the chapter progresses, the reader will obtain a clearer view of the
relevance of the complex description of the state to the presence of a degeneracy.

The difficulties that arose from the complex nature of the wave function
during the development of quantum theory are recorded by historians of science
[1-3]. For some time during the early stages of the new quantum theory
the existence of a complex state defied acceptance ([1], p. 266). Thus, both de
Broglie and Schrodinger believed that material waves (or “matter” or “de
Broglie” waves, as they were also called) are real (i.e., not complex) quantities,
just as electromagnetic waves are [3]. The decisive step for the acceptance of
the complex wave came with the probabilistic interpretation of the theory, also
known as Born’s probability postulate, which placed the modulus of the wave
function in the position of a (and, possibly, unique) connection between theory
and experience. This development took place in the year 1926 and it is remark-
able that already in the same year Dirac embraced the modulus-based inter-
pretation wholeheartedly [4]. Oddly, it was Schrodinger who appears to have, in
1927, demurred at accepting the probabilistic interpretation ([2], p. 561, footnote
350). Thus, the complex wave function was at last legitimated, but the modulus
was and has remained for a considerable time the focal point of the formalism.

A somewhat different viewpoint motivates this chapter, which stresses the
added meaning that the complex nature of the wave function lends to our
understanding. Though it is only recently that this aspect has come to the
forefront, the essential point was affirmed already in 1972 by Wigner [5] in his
famous essay on the role of mathematics in physics. We quote from this here at
some length:

“The enormous usefulness of mathematics in the natural sciences is
something bordering on the mysterious and there is no rational explanation
for. .. this uncanny usefulness of mathematical concepts. . .

The complex numbers provide a particularly striking example of the
foregoing. Certainly, nothing in our experience suggests the introducing of these
quantities. . . Let us not forget that the Hilbert space of quantum mechanics is
the complex Hilbert space with a Hermitian scalar product. Surely to the
unpreoccupied mind, complex numbers... cannot be suggested by physical
observations. Furthermore, the use of complex numbers is not a calculational
trick of applied mathematics, but comes close to being a necessity in the
formulation of the laws of quantum mechanics. Finally, it now (1972) begins to
appear that not only complex numbers but analytic functions are destined to play
a decisive role in the formulation of quantum theory. I am referring to the rapidly
developing theory of dispersion relations. It is difficult to avoid the impression
that a miracle confronts us here [i.e., in the agreement between the properties of
the hypernumber \/( —1) and those of the natural world].”

A shorter and more recent formulation is “The concept of analyticity turns
out to be astonishingly applicable’ ([6], p. 37).
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What is addressed by these sources is the ontology of quantal description. Wave
functions (and other related quantities, like Green functions or density matrices), far
from being mere compendia or short-hand listings of observational data,
obtained in the domain of real numbers, possess an actuality of their own. From
a knowledge of the wave functions for real values of the variables and by relying
on their analytical behavior for complex values, new properties come to the open, in
a way that one can perhaps view, echoing the quotations above, as ‘“miraculous.”

A term that is nearly synonymous with complex numbers or functions is
their ““phase.” The rising preoccupation with the wave function phase in the
last few decades is beyond doubt, to the extent that the importance of phases
has of late become comparable to that of the moduli. (We use Dirac’s
terminology [7], which writes a wave function by a set of coefficients, the
“amplitudes,” each expressible in terms of its absolute value, its ‘“‘modulus,”
and its “phase.”) There is a related growth of literature on interference effects,
associated with Aharonov—Bohm and Berry phases [8—14]. In parallel, one has
witnessed in recent years a trend to construct selectively and to manipulate
wave functions. The necessary techniques to achieve these are also anchored in
the phases of the wave function components. This trend is manifest in such
diverse areas as coherent or squeezed states [15,16], electron transport in mesoscopic
systems [17], sculpting of Rydberg-atom wavepackets [18,19], repeated and
nondemolition quantum measurements [20], wavepacket collapse [21], and
quantum computations [22,23]. Experimentally, the determination of phases
frequently utilizes measurement of Ramsey fringes [24] or similar methods [25].

The status of the phase in quantum mechanics has been the subject of debate.
Insomuch as classical mechanics has successfully formulated and solved
problems using action-angle variables [26], one would have expected to see in
the phase of the wave function a fully “observable” quantity, equivalent to and
having a status similar to the modulus, or to the equivalent concept of the
“number variable”’. This is not the case and, in fact, no exact, well-behaved
Hermitean phase operator conjugate to the number is known to exist. (An article
by Nieto [27] describes the early history of the phase operator question, and
gives a feeling of the problematics of the field. An alternative discussion,
primarily related to phases in the electromagnetic field, is available in [28]). In
Section II, a brief review is provided of the various ways that phase is linked to
molecular properties.

Section IIT presents results that the analytic properties of the wave function
as a function of time ¢ imply and summarizes previous publications of the
authors and of their collaborators [29-38]. While the earlier quote from Wigner
has prepared us to expect some general insight from the analytic behavior of the
wave function, the equations in this section yield the specific result that, due to
the analytic properties of the logarithm of wave function amplitudes, certain
forms of phase changes lead immediately to the logical necessity of enlarging
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the electronic set or, in other words, to the presence of an (otherwise)
unsuspected state.

In the same section, we also see that the source of the appropriate analytic
behavior of the wave function is outside its defining equation (the Schrodinger
equation), and is in general the consequence of either some very basic
consideration or of the way that experiments are conducted. The analytic
behavior in question can be in the frequency or in the time domain and leads
in either case to a Kramers—Kronig type of reciprocal relations. We propose
that behind these relations there may be an ‘“‘equation of restriction,”” but while
in the former case (where the variable is the frequency) the equation of
restriction expresses causality (no effect before cause), for the latter case (when
the variable is the time), the restriction is in several instances the basic
requirement of lower boundedness of energies in (no-relativistic) spectra
[39,40]. In a previous work, it has been shown that analyticity plays further
roles in these reciprocal relations, in that it ensures that time causality is not
violated in the conjugate relations and that (ordinary) gauge invariance is
observed [40].

As already mentioned, the results in Section III are based on dispersions
relations in the complex time domain. A complex time is not a new concept. It
features in wave optics [28] for “complex analytic signals” (which is an
electromagnetic field with only positive frequencies) and in nondemolition
measurements performed on photons [41]. For transitions between adiabatic
states (which is also discussed in this chapter), it was previously introduced in
several works [42—45].

Interestingly, the need for a multiple electronic set, which we connect with
the reciprocal relations, was also a keynote of a recent review ([46] and previous
publications cited there and in [47]). Though the considerations relevant to this
effect are not linked to the complex nature of the states (but rather to the
stability of the adiabatic states in the real domain), we have included in
Section III a mention of, and some elaboration on, this topic.

In further detail, Section III stakes out the following claims: For time-
dependent wave functions, rigorous conjugate relations are derived between
analytic decompositions (in the complex ¢ plane) of phases and of log moduli.
This entails a reciprocity, taking the form of Kramers—Kronig integral relations
(but in the time domain), holding between observable phases and moduli in
several physically important cases. These cases include the nearly adiabatic
(slowly varying) case, a class of cyclic wave functions, wavepackets, and
noncyclic states in an “‘expanding potential.” The results define a unique phase
through its analyticity properties and exhibit the interdependence of geometric
phases and related decay probabilities. It turns out that the reciprocity property
obtained in this section holds for several textbook quantum mechanical
applications (like the minimum width wavepacket).
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The multiple nature of the electronic set becomes especially important when
the potential energy surfaces of two (or more) electronic states come close,
namely, near a ““conical intersection” (ci). This is also the point in the space of
nuclear configurations at which the phase of wave function components
becomes anomalous. The basics of this situation have been extensively studied
and have been reviewed in various sources [48-50]. Recent works [51-57] have
focused attention on a new contingency: when there may be several ci’s between
two adiabatic surfaces, their combined presence needs to be taken into account
for calculations of the non-adiabatic corrections of the states and can have
tangible consequences in chemical reactions. Section IV presents an analytic
modeling of the multiple ci model, based on the superlinear terms in the
coupling between electronic and nuclear motion. This section describes in detail
a tracing method that keeps track of the phases, even when these possess
singular behavior (viz., at points where the moduli vanish or become singular).
The continuous tracing method is applicable to real states (including stationary
ones). In these, the phases are either zero or 1. At this point, it might be objected
that in so far as numerous properties of molecular systems (e.g., those relating to
questions of stability and, in general, to static situations and not involving a
magnetic field) are well described in terms of real wave functions, the complex
form of the wave function need, after all, not be regarded as a fundamental
property. However, it will be shown in Section IV that wave functions that are
real but are subject to a sign change, can be best treated as limiting cases in
complex variable theory. In fact, the ‘“phase tracing” method is logically
connected to the time-dependent wave functions (and represents a case of
mathematical “embedding”).

A specific result in Section IV is the construction of highly nonlinear
vibronic couplings near a ci. The construction shows, inter alia, that the
connection between the Berry (or “topological,” or ‘“‘geometrical”’) phase,
acquired during cycling in a parameter space, and the number of ci’s circled
depends on the details of the case that is studied and can vary from one situation
to another. Though the subject of Berry phase is reviewed in Chapter 12 in this
volume [58], we note here some recent extensions in the subject [S9-61]. In
these works, the phase changes were calculated for two-electron wave functions
that are subject to interelectronic forces . An added complication was also
considered, for the case in which the two electrons are acted upon by different
fields. This can occur when the two electrons are placed in different environ-
ments, as in asymmetric dimers. By and large, intuitively understandable results
are found for the combined phase factor but, under conditions of accidental
degeneracies, surprising jumps (named “‘switching’”) are noted. Some applica-
tions to quantum computations seem to be possible [61].

The theory of Born—Oppenheimer (BO) [62,63] has been hailed (in an
authoritative but unfortunately unidentified source) as one of the greatest
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advances in theoretical physics. Its power is in disentangling the problem of two
kinds of interacting particles into two separate problems, ordered according to
some property of the two kinds. In its most frequently encountered form, it is
the nuclei and electrons that interact (in a molecule or in a solid) and the
ordering of the treatment is based on the large difference between their masses.
However, other particle pairs can be similarly handled, like hadronic mesons
and baryons, except that a relativistic or field theoretical version of the BO
theory is not known. The price that is paid for the strength of the method is that
the remaining coupling between the two kinds of particles is dynamic. This
coupling is expressed by the so-called non-adiabatic coupling terms (NACTs),
which involve derivatives of (the electronic) states rather than the states
themselves. ‘“Correction terms’ of this form are difficult to handle by con-
ventional perturbation theory. For atomic collisions the method of “perturbed
stationary states” was designed to overcome this difficulty [64,65], but this is
accurate only under restrictive conditions. On the other hand, the circumstance
that this coupling is independent of the potential, indicates that a general
procedure can be used to take care of the NACTs [66]. Such general procedure
was developed by Yang and Mills in 1954 [66] and has led to far reaching
consequences in the theory of weak and strong interactions between elementary
particles.

The interesting history of the Yang—Mills field belongs essentially to particle
physics [67-70]. The reason for mentioning it here in a chemical physics
setting, is to note that an apparently entirely different procedure was proposed
for the equivalent problem arising in the molecular context, namely, for the
elimination of the derivative terms (the NACTs) from the nuclear part of the BO
Schrodinger equation through an adiabatic—diabatic transformation (ADT)
matrix [71,72]. It turns out that the quantity known as the tensorial field [or
covariant, or Yang-Mills (YM) field, with some other names also in use] enters
also into the ADT description, though from a completely different viewpoint,
namely, through ensuring the validity of the ADT matrix method by satisfaction
of what is known as the ““curl condition.” Formally, when the “‘curl condition”
holds, the (classical) YM field is zero and this is also the requirement for the
strict validity of the ADT method. [A review of the ADT and alternative
methods is available in, e.g., [48,49], the latter of which also discusses the YM
field in the context of the BO treatment.] However, it has recently been shown
by a formal proof, that an approximate construction of the ADT matrix (using
only a finite, and in practice small, number of BO, adiabatic states) is possible
even though the “curl condition’ may be formally invalid [36]. An example for
such an approximate construction in a systematic way was provided in a model
that uses Mathieu functions for the BO electronic states [73].

As noted some time ago, the NACTS, can be incorporated in the nuclear part
of the Schrodinger equation as a vector potential [74,75]. The question of a
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possible magnetic field, associated with this vector potential has also been
considered [76-83]. For an electron occupying an admixture of two or more
states (a case that is commonly designated as noncommutative, ‘“non-
Abelian”), the fields of physical interest are not only the magnetic field, being
the curl of the “vector potential,” but also tensorial (YM) fields. The latter is the
sum of the curl field and of a vector-product term of the NACTs. Physically,
these fields represent the reaction of the electron on the nuclear motion via the
NACTs.

In a situation characteristic of molecular systems, a conical intersection ci
arises from the degeneracy point of adiabatic potential energy surfaces in a
plane of nuclear displacement coordinates. There are also a number of orthogonal
directions, each representing a so-called ‘“‘seam” direction. In this setting, it
emerges that both kinds of fields are aligned with the seam direction of the ci
and are zero everywhere outside the seam, but they differ as regards the flux that
they produce. Already in a two-state situation, the fields are representation
dependent and the values of the fluxes depend on the states the electron
occupies. (This evidently differs from conventional electro-magnetism, in which
the magnetic field and the flux are unchanged under a gauge transformation.)

Another subject in which there are implications of phase is the time evolution
of atomic or molecular wavepackets. In some recently studied cases, these
might be a superposition of a good 10 or so energy eigenstates. Thanks to the
availability of short, femtosecond laser pulses both the control of reactions by
coherent light [16,84-94] and the probing of phases in a wavepacket are now
experimental possibilities [19,95-97]. With short duration excitations the initial
form of the wavepacket is a real “doorway state”” [98—100] and this develops
phases for each of its component amplitudes as the wavepacket evolves. It has
recently been shown that the phases of these components are signposts of a time
arrow [101,102] and of the irreversibility; both of these are inherent in the
quantum mechanical process of preparation and evolution [34]. It was further
shown in [34] (for systems that are invariant under time reversal, e.g., in the
absence of a magnetic field) that the preparation of an initially complex
wavepacket requires finite times for its construction (and cannot be achieved
instantaneously).

The quantum phase factor is the exponential of an imaginary quantity (i times
the phase), which multiplies into a wave function. Historically, a natural
extension of this was proposed in the form of a gauge transformation, which
both multiplies into and admixes different components of a multicomponent
wave function [103]. The resulting “‘gauge theories’” have become an essential
tool of quantum field theories and provide (as already noted in the discussion of
the YM field) the modern rationale of basic forces between elementary particles
[67-70]. It has already been noted that gauge theories have also made notable
impact on molecular properties, especially under conditions that the electronic
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state basis in the molecule consists of more than one component. This situation
also characterizes the conical intersections between potential surfaces, as
already mentioned. In Section V, we show how an important theorem, originally
due to Baer [72], and subsequently used in several equivalent forms, gives some
new insight to the nature and source of these YM fields in a molecular (and
perhaps also in a particle field) context. What the above theorem shows is that it
is the truncation of the BO set that leads to the YM fields, whereas for a
complete BO set the field is inoperative for molecular vector potentials.

Section VI shows the power of the modulus-phase formalism and is included
in this chapter partly for methodological purposes. In this formalism, the
equations of continuity and the Hamilton—Jacobi equations can be naturally
derived in both the nonrelativistic and the relativistic (Dirac) theories of the
electron. It is shown that in the four-component (spinor) theory of electrons, the
two extra components in the spinor wave function will have only a minor effect
on the topological phase, provided certain conditions are met (nearly non-
relativistic velocities and external fields that are not excessively large).

So as to make the individual sections self-contained, we have found it
advisable to give some definitions and statements more than once.

II. ASPECTS OF PHASE IN MOLECULES

This section attempts a brief review of several areas of research on the
significance of phases, mainly for quantum phenomena in molecular systems.
Evidently, due to limitation of space, one cannot do justice to the breadth of the
subject and numerous important works will go unmentioned. It is hoped that the
several cited papers (some of which have been chosen from quite recent
publications) will lead the reader to other, related and earlier, publications. It is
essential to state at the outset that the overall phase of the wave function is
arbitrary and only the relative phases of its components are observable in any
meaningful sense. Throughout, we concentrate on the relative phases of the
components. (In a coordinate representation of the state function, the “phases of
the components” are none other than the coordinate-dependent parts of the
phase, so it is also true that this part is susceptible to measurement. Similar
statements can be made in momentum, energy, etc., representations.)

A further preliminary statement to this section would be that, somewhat
analogously to classical physics or mechanics where positions and momenta (or
velocities) are the two conjugate variables that determine the motion, moduli
and phases play similar roles. But the analogy is not perfect. Indeed, early on it
was questioned, apparently first by Pauli [104], whether a wave function can be
constructed from the knowledge of a set of moduli alone. It was then argued by
Lamb [105] that from a set of values of wave function moduli and of their rates
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of change, the wave function, including its phase, is uniquely found.
Counterexamples were then given [106,107] and it now appears that the
knowledge of the moduli and some information on the analytic properties of the
wave function are both required for the construction of a state. (The following
section contains a formal treatment, based partly on [30-32] and [108,109].) In
a recent research effort, states with definite phases were generated for either
stationary or traveling type of fields [110].

Recalling for a start phases in classical waves, these have already been the
subject of consideration by Lord Rayleigh [111], who noted that through
interference between the probed and a probing wave the magnitude and phase of
acoustic waves can be separately determined, for example, by finding surfaces
of minimum and zero magnitudes. A recent review on classical waves is given
by Klyshko [112]. The work of Pancharatnam on polarized light beams
[113,114] is regarded as the precursor of later studies of topological phases in
quantum systems [9]. This work contained a formal expression for the relative
phase between beams in different elliptic polarizations of light, as well as a
construction (employing the so-called ‘“‘Poincare sphere’’) that related the phase
difference to a geometrical, area concept. (For experimental realizations with
polarized light beams we quote [115,116]; the issue of any arbitrariness in
experimentally pinning down the topological part of the phase was raised in
[117].) Regarding the interesting question of any common ground between
classical and quantal phases, the relation between the adiabatic (Hannay’s)
angle in mechanics and the phase in wave functions was the subject of [118].
The difference in two-particle interference patterns of electromagnetic and
matter waves was noted, rather more recently, in [119]. The two phases,
belonging to light and to the particle wave function, are expected to enter on an
equal footing when the material system is in strong interaction with an
electromagnetic field (as in the Jaynes—Cummings model). An example of this
case was provided in a study of a two-level atom, which was placed in a cavity
containing an electromagnetic field. Using one or two photon excitations, it was
found possible to obtain from the Pancharatnam phase an indication of the
statistics of the quantized field [120].

Several essential basic properties of phases in optics are contained in
[28,41,121]. It was noted in [28], with reference to the ‘“‘complex analytic
signal” (an electromagnetic field with positive frequency components), that the
position of zeros (from which the phase can be determined) and the intensity
represent two sets of information that are intetwined by the analytic property of
the wave. In Section III, we shall again encounter this finding, in the context of
complex matter (Schrédinger) waves. Experimentally, observations in wave
guide structures of the positions of amplitude zeros (which are just the “phase
singularities’”) were made in [122]. An alternative way for the determination of
phase is from location of maxima in interference fringes ([28], Section VII.C.2).
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Interference in optical waves is clearly a phase phenomenon; in classical
systems it arises from the signed superposition of positive and negative real
wave amplitudes. To single out some special results in the extremely broad field
of interference, we point to recent observations using two-photon pulse
transition [94] in which a differentiation was achieved between interferences
due to temporal overlap (with finite pulse width) and quantum interference
caused by delay. The (component-specific) topological phase in wave functions
has been measured, following the proposal of Berry in [9], by neutron
interferometry in a number of works, for example, [123,124] with continual
improvements in the technique. The difficulties in the use of coherent neutron
beams and the possibility of using conventional neutron sources for phase-
sensitive neutron radiography have been noted in a recent review [125].

Phase interference in optical or material systems can be utilized to achieve a
type of quantum measurement, known as nondemolition measurements ([41],
Chapter 19). The general objective is to make a measurement that does not
change some property of the system at the expense of some other property(s)
that is (are) changed. In optics, it is the phase that may act as a probe for
determining the intensity (or photon number). The phase can change in the
course of the measurement, while the photon number does not [126].

In an intriguing and potentially important proposal (apparently not further
followed up), a filtering method was suggested for image reconstruction
(including phases) from the modulus of the correlation function [127]. [In
mathematical terms this amounts to deriving the behavior of a function in the
full complex (frequency) plane from the knowledge of the absolute value of the
function on the real axis, utilizing some physically realizable kernel function.]
A different spectral filtering method was discussed in [128].

Before concluding this sketch of optical phases and passing on to our next
topic, the status of the “‘phase” in the representation of observables as quantum
mechanical operators, we wish to call attention to the theoretical demonstration,
provided in [129], that any (discrete, finite dimensional) operator can be
constructed through use of optical devices only.

The appropriate quantum mechanical operator form of the phase has been
the subject of numerous efforts. At present, one can only speak of the best
approximate operator, and this also is the subject of debate. A personal
historical account by Nieto of various operator definitions for the phase (and of
its probability distribution) is in [27] and in companion articles, for example,
[130-132] and others, that have appeared in Volume 48 of Physica Scripta T
(1993), which is devoted to this subject. (For an introduction to the unitarity
requirements placed on a phase operator, one can refer to [133]). In 1927, Dirac
proposed a quantum mechanical operator 4) defined in terms of the creation and
destruction operators [134], but London [135] showed that this is not
Hermitean. (A further source is [136].) Another candidate, ¢® is not unitary,
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as was demonstrated, for example, in [28], Section 10.7. Following that,
Susskind and Glogower proposed a pair of operators c6s and sin [137], but it
was found that these do not commute with the number operator 7. In 1988, Pegg
and Barnett introduced a Hermitean phase operator through a limiting procedure
based on the state with a definite phase in a truncated Hilbert space [138]. Some
time ago a comparison was made between different phase operators when used
on squeezed states [139]. Unfortunately, there is as yet no consensus on the
status of the Pegg—Barnett operators [121,140-142]. Maybe at least part of
the difficulties are rooted in problems that arise from the coupling between the
quantum system and the measuring device. However, this difficulty is a moot
point in quantum mechanical measurement theory, in general.

(For the special case of a two-state systems, a Hermitean phase operator was
proposed, [143], which was said to provide a quantitative measure for “‘phase
information.””)

A related issue is the experimental accessibility of phases: It is now widely
accepted that there are essentially two experimental ways to observe phases
[9,124,144]: (1) through a two-Hamiltonian, one-state method, interfero-
metrically (viz., by sending two identically prepared rays across two regions
having different fields), (2) a one-Hamiltonian, two-state method (meaning, a
difference in the preparation of the rays), for example, [89,92]. (One recalls that
already several years ago it was noted that there are the two ways for measuring
the phase of a four-component state, a spinor [145].) One can also note a further
distinction proposed more recently, namely, that between “observabilities” of
bosonic and fermionic phases [146]: Boson phases are observable both locally
(at one point) and nonlocally (at extended distances, which the wave reaches as
it progresses). They can lead to phase values that are incompatible with the Bell
inequalities, while fermion phases are only nonlocally observable (i.e., by
interference) and do not violate Bell’s inequalities. The difference resides in that
only the former type of particles gives rise to a coherent state with arbitrarily
large occupation number n, whereas for the latter the exclusion principle allows
only n =0 or 1.

The question of determination of the phase of a field (classical or quantal, as
of a wave function) from the modulus (absolute value) of the field along a real
parameter (for which alone experimental determination is possible) is known as
“the phase problem” [28]. (True also in crystallography.) The reciprocal
relations derived in Section III represent a formal scheme for the determination
of phase given the modulus, and vice versa. The physical basis of these singular
integral relations was described in [147] and in several companion articles in
that volume; a more recent account can be found in [148]. Thus, the reciprocal
relations in the time domain provide, under certain conditions of analyticity,
solutions to the phase problem. For electromagnetic fields, these were derived in
[120,149,150] and reviewed in [28,148]. Matter or Schrodinger waves were
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considered in a general manner in [39]. The more complete treatment, presented
in Section IIT applies the results to several situations in molecular and solid-state
physics. It is likely that the full scope and meaning of the modulus-phase
relationship await further and deeper going analyses.

In 1984, Berry made his striking discovery of time scale independent phase
changes in many-component states [9] (now variously known as Berry or
topological or geometric phase) . This followed a line of important developments
regarding the role of phases and phase factors in quantum mechanics. The
starting point of these may be taken with Aharonov and Bohm’s discovery of the
topologically acquired phase [8], named after them. (As a curiosity, it is
recorded that Bohm himself referred to the “ESAB effect” [151,152].) The
achievement, stressed by the authors of [8], was to have been able to show that
when an electron traverses a closed path along which the magnetic field is zero,
it acquires an observable phase change, which is proportional to the ‘““vector
potential.” The “topological” aspect, namely, that the path is inside a multiply
connected portion of space (or that, in physical terms, the closed path cannot be
shrunk without encountering an infinite barrier), has subsequently turned out to
be also of considerable importance [153,154], especially through later
extensions and applications of the Aharonov—Bohm phase change [155] (cf.
the paper by Wu and Yang [156] that showed the importance of the phase factor
in quantum mechanics, which has, in turn, led to several developments in many
domains of physics).

In molecular physics, the “topological” aspect has met its analogue in the
Jahn-Teller effect [47,157] and, indeed, in any situation where a degeneracy of
electronic states is encountered. The phase change was discussed from various
viewpoints in [144,158-161] and [163].

For the Berry phase, we shall quote a definition given in [164]: “The phase
that can be acquired by a state moving adiabatically (slowly) around a closed
path in the parameter space of the system.” There is a further, somewhat more
general phase, that appears in any cyclic motion, not necessarily slow in the
Hilbert space, which is the Aharonov—Anandan phase [10]. Other develop-
ments and applications are abundant. An interim summary was published in
1990 [78]. A further, more up-to-date summary, especially on progress in
experimental developments, is much needed. (In Section IV we list some
publications that report on the experimental determinations of the Berry phase.)
Regarding theoretical advances, we note (in a somewhat subjective and selective
mode) some clarifications regarding parallel transport, e.g., [165]. This paper
discusses the “projective Hilbert space” and its metric (the Fubini-Study
metric). The projective Hilbert space arises from the Hilbert space of the
electronic manifold by the removal of the overall phase and is therefore a
central geometrical concept in any treatment of the component phases, such as
this chapter.
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The term “Open-path phase” was coined for a non-fully cyclic evolution
[11,14]. This, unlike the Berry-phase proper, is not gauge invariant, but is,
nevertheless (partially) accessible by experiments ([30-32]). The Berry phase
for nonstationary states was given in [13], the interchange between dynamic and
geometric phases is treated in [117]. A geometrical interpretation is provided in
[166] and a simple proof for Berry’s area formula in [167]. The phases in oft-
diagonal terms form the basis of generalizations of the Berry phase in [168,169];
an experimental detection by neutron interferometry was recently accomplished
[170]. The treatment by Garrison and Wright of complex topological phases for
non-Hermitean Hamiltonians [171] was extended in [172-174]. Further
advances on Berry phases are corrections due to non-adiabatic effects (resulting,
mainly, in a decrease from the value of the phase in the adiabatic, infinitely slow
limit) [30,175,176]. In [177], the complementarity between local and nonlocal
effects is studied by means of some examples. For more general time-dependent
Hamiltonians than the cyclic one, the method of the Lewis and Riesenfeld
invariant spectral operator is in use. This is discussed in [178].

Note that the Berry phase and the open-path phase designate changes in the
phases of the state components, rather than the total phase change of the wave
function, which belongs to the so-called ‘“Dynamic phase” [9,10]. The existence
of more than one component in the state function is a topological effect. This
assertion is based on a theorem by Longuet-Higgins ([158], “Topological test
for intersections’’), which states that, if the wave function of a given electronic
state changes sign when transported around a loop in nuclear configuration
space, then the state must become degenerate with another at some point within
the loop.

From this theorem it follows that, close to the point of intersection and
slightly away from it, the corresponding adiabatic or BO electronic wave
functions will be given (to a good approximation) by a superposition of the two
degenerate states, with coefficients that are functions of the nuclear coordinates.
(For a formal proof of this statement, one has to assume, as is done in [158], that
the state is continuous function of the nuclear coordinates.) Moreover, the
coefficients of the two states have to differ from each other, otherwise they can
be made to disappear from the normalized electronic state. Necessarily, there is
also a second “‘superposition state,” with coefficients such that it is orthogonal
to the first at all points in the configuration space. (If more than two states
happen to be codegenerate at a point, then the adiabatic states are mutually
orthogonal superpositions of all these states, again with coefficients that are
functions of the nuclear coordinates.)

If now the nuclear coordinates are regarded as dynamical variables, rather
than parameters, then in the vicinity of the intersection point, the energy
eigenfunction, which is a combined electronic—nuclear wave function, will
contain a superposition of the two adiabatic, superposition states, with nuclear
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wave functions as cofactors. We thus see that the topological phase change
leads, first, to the adiabatic electronic state being a multicomponent superposi-
tion (of diabatic states) and, second, to the full solution being a multicomponent
superposition (of adiabatic states), in each case with nuclear-coordinate-
dependent coefficients.

The design and control of molecular processes has of late become possible
thanks to advances in laser technology, at first through the appearance of
femtosecond laser pulses and of pump-probe techniques [179] and, more
recently, through the realization of more advanced ideas, including feedback
and automated control [180-183]. In a typical procedure, the pump pulse pre-
pares a coherent superposition of energy eigenstates, and a second delayed pulse
probes the time-dependent transition between an excited and a lower potential
energy surface. When the desired outcome is a particular reaction product, this
can be promoted by the control of the relative phases of two fast pulses
emanating from the same coherent laser source. One of the earliest works to
achieve this is [184]. A recent study focuses on several basic questions, for
example, those regarding pulsed preparation of an excited state [92]. In between
the two, numerous works have seen light in this fast expanding and
technologically interesting field. The purpose of mentioning them here is to
single out this field as an application of phases in atomic [25,95,96] and
molecular [84-90] spectroscopies. In spite of the achievements in photo-
chemistry, summarized, for example, in [185], one hardly expects phases to play
a role in ordinary (i.e., not state-selective or photon-induced) chemical
reactions. Still, interference (of the kind seen in double-slit experiments) has
been observed between different pathways during the dissociation of water
[186,187]. Moreover, several theoretical ideas have also been put forward to
produce favored reaction products through the involvement of phase effects
[188-194]. Calculations for the scattering cross-sections in the four-atom
reaction OH + H, — H,O + H showed a few percent change due to the effect
of phase [195].

Wavepacket reconstruction, or imaging from observed data, requires the
derivation of a complex function from a set of real quantities. Again, this is
essentially the “phase problem,” well known also from crystallography and
noted above in a different context than the present one [28]. An experimental
study yielded the Wigner position-momentum distribution function [88]. This
approach was named a ‘“‘tomographic’’ method, since a single beam scans the
whole phase space and is distinct from another approach, in which two different
laser pulses create two wavepackets: an object and a reference. When the two
states are superimposed, as in a conventional holographic arrangement, the
cross-term in the modulus squared retains the phase information [16,90,196].
Computer simulations have shown the theoretical proposal to be feasible. In
a different work, the preparation of a long-lived atomic electron wavepacket
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in a Rydberg state, with principal quantum numbers around n = 30, was
achieved [197].

Rydberg states, as well as others, can provide an illustration for another,
spectacular phenomenon: wavepacket revivals [15]. In this, a superposition of
~10 energy states first spreads out in phase space (due to phase decoherence),
only to return to its original shape after a time that is of the order of the
deviation of the spacing of the energy levels from a uniform one [198,199]. Not
only is the theory firmly based, and simulations convincing, but even an
application, based on this phenomenon and aimed at separation of isotopes, has
been proposed [200]. Elsewhere, it was shown that the effect of slow cycling on
the evolving wavepacket is to leave the revival period unchanged, but to cause a
shift in the position of the revived wavepacket [201].

Coherent states and diverse semiclassical approximations to molecular
wavepackets are essentially dependent on the relative phases between the wave
components. Due to the need to keep this chapter to a reasonable size, we can
mention here only a sample of original works (e.g., [202-205]) and some
summaries [206-208]. In these, the reader will come across the Maslov index
[209], which we pause to mention here, since it links up in a natural way to the
modulus-phase relations described in Section III and with the phase-tracing
method in Section IV. The Maslov index relates to the phase acquired when the
semiclassical wave function traverses a zero (or a singularity, if there be one)
and it (and, particularly, its sign) is the consequence of the analytic behavior of
the wave function in the complex time plane.

The subject of time connects with the complex nature of the wave function in
a straightforward way, through the definition in quantum mechanics of the
Wigner time-reversal operator [210,211]. In a rough way, the definition implies
that the conjugate of the complex wave function describes (in several instances)
the behavior of the system with the time running backward. Given, on one hand,
“the time-reversal invariant™ structure of accepted physical theories and, on the
other hand, the experience of passing time and the successes of nonequilibrium
statistical mechanics and thermodynamics, the question that is being asked is:
When and where does a physical theory pick out a preferred direction of time
(or a ““time arrow’’)? From the numerous sources that discuss this subject, we
call attention to some early controversies [212-214] and to more recent
accounts [101,215-217], as well as to a volume with philosophical orientation
[102]. Several attempts have been made recently to change the original
formalism of quantum mechanics by adding non-Hermitean terms [218-220], or
by extending (rigging) the Hilbert space of admissible wave functions
[221,222]. The last two papers emphasize the preparation process as part of
the wave evolution. By an extension of this idea, it has recently been shown that
the relative phases in a wavepacket, brought to life by fast laser pulses,
constitute a unidirectional clock for the passage of time (at least for the initial
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stages of the wavepacket) [34]. Thus, developing phases in real life are
hallmarks of both a time arrow and of irreversibility. It also emerged that, in a
setting that is invariant under time reversal, the preparation of an “initially”
complex wavepacket needs finite times to accomplish, that is, it is not
instanteneous [34,92].

Time shifts or delays in scattering processes are present in areas as diverse as
particle, molecular, and solid-state phenomena, all of which are due to the
complex nature of the wave function. For a considerable time, it was thought
that the instance of formation of a particle or of an excited state is restricted only
by the time-energy uncertainty relation. The time delay T was first recognized
by Bohm [223] and by Eisenbud and Wigner [224], and was then given by
Smith [67] a unifying expression in terms of the frequency () derivative of the
scattering (or S) matrix, as

(1)

The Re presymbol signifies that essentially it is the phase part of the scattering
matrix that is involved. A conjugate quantity, in which the imaginary part is
taken, was later identifed as the particle formation time [225-228]. Real and
imaginary parts of derivatives were associated with the delay time in tunneling
processes across a potential barrier in the Buttiker-Landauer approach (a
review is in [229].) Experimentally, an example of time delay in reflection was
found recently [230]. The question of time reversal invariance, or of its default, is
naturally a matter of great and continued interest for theories of interaction
between the fundamental constituents of matter. A summary that provides an
updating, good to its time of printing, is found in [231].

Another type of invariance, namely, with respect to unitary or gauge trans-
formation of the wave functions (without change of norm) is a cornerstone of
modern physical theories [66]. Such transformations can be global (i.e., co-
ordinate independent) or local (coordinate dependent). Some of the observa-
tional aspects arising from gauge transformation have caused some controversy;
for example, what is the effect of a gauge transformation on an observable
[232,233]. The justification for gauge invariance goes back to an argument
due to Dirac [134], reformulated more recently in [234], which is based on the
observability of the moduli of overlaps between different wave function, which
then leads to a definite phase difference between any two coordinate values, the
same for all wave functions. From this, Dirac goes on to deduce the invariance
of Abelian systems under an arbitrary local phase change, but the same argument
holds true also for the local gauge invariance of non-Abelian, multicomponent
cases [70].

We end this section of phase effects in complex states by reflecting on how,
in the first place, we have arrived at a complex description of phenomena that
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take place in a real world. There are actually two ways to come by this
situation.

First, the time-dependent wave function is necessarily complex and is due to
the form of the time-dependent Schrodinger equation for real times, which
contains i. This equation will be the starting point of Section IIlI, where we
derive some consequence arising from the analytic properties of the complex
wave function. But, second, there are also defining equations that do not contain
i (like the time-independent Schrédinger equation). Here, also, the wave function
can be made complex through making some or other of the variables take
complex values. The advantage lies frequently in removing possible ambiguities
that arise in the solution at a singular point, which may be an infinity. Complex
times have been considered in several theoretical works (e.g., [42,43]). It is
possible to associate a purely imaginary time with femperature. Then,
recognizing that negative temperatures are unphysical in an unrestricted Hilbert
space, we immediately see that the upper and lower halves of the complex
¢t plane are nonequivalent. Specifically, regions of nonanalytic behavior are
expected to be found in the upper half, which is the one that corresponds to
negative temperatures, and analytic behavior is expected in the lower half plane
that corresponds to positive temperatures. The formal extension of the nuclear
coordinate space onto a complex plane, as is done in [44,45], is an essentially
equivalent procedure, since in the semiclassical formalism of these works the
particle coordinates depend parametrically on time. Complex topological phases
are considered in, e.g., [171,172], which can arise from a non-Hermitean
Hamiltonian. The so-called Regge poles are located in the complex region of
momentum space. (A brief review well suited for molecular physicists is in
[235]). The plane of complex-valued interactions is the subject of [236].

In addition, it can occasionally be useful to regard some physical parameter
appearing in the theory as a complex quantity and the wave function to possess
analytic properties with regard to them. This formal procedure might even
include fundamental constants like e, i, and so on.

III. ANALYTIC THEORY OF COMPLEX
COMPONENT AMPLITUDES

A. Modulus and Phase

With the time-dependent Schrodinger equation written as

; 0 (x,1)

= H(x, V(1) @

[in which 7 is time, x denotes all particle coordinates, H(x, t) is a real
Hamiltonian, and 7 = 1], the presence of i in the equation causes the solution
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U(x, t) to be complex valued. Writing ¥(x, t) in a logarithmic form and
separating as

InW(x, 1) =In(|¥(x, 1)]) + iarg(V(x, 1)) (3)

we have in the first term the modulus |U(x, f)| and in the second term arg, the
“phase.” It is the latter that expresses the signed or complex valued nature of the
wave function. In this section, we shall investigate what, if any, interrelations
exist between moduli and phases? Are they independent quantities or, more
likely since they derive from a single equation (2), are they interconnected? The
result will be of the form of “reciprocal” relations, shown in Egs. (9) and (10).
Some approximate and heuristic connections between phases and moduli have
been known before ([2] Vol. 5, Part 2, Section IV.5); [237-241]; we shall return
to these in Section III.C.3.

B. Origin of Reciprocal Relations

Contrary to what appears at a first sight, the integral relations in Egs. (9) and
(10) are not based on causality. However, they can be related to another
principle [39]. This approach of expressing a general principle by mathematical
formulas can be traced to von Neumann [242] and leads in the present instance
to an “‘equation of restriction,” to be derived below. According to von Neumann
complete description of physical systems must contain:

1. A set of quantitative characterizations (energy, positions, velocities,
charges, etc.).

2. A set of “properties of states” (causality, restrictions on the spectra of
self-energies, existence or absence of certain isolated energy bands, etc.).

As has been shown previously [243], both sets can be described by eigenvalue
equations, but for the set 2 it is more direct to work with projectors Pr taking the
values 1 or 0. Let us consider a class of functions f(x), describing the state of the
system or a process, such that (for reasons rooted in physics) f(x) should vanish
for x € D (i.e., for supp f(x) = D, where D can be an arbitrary domain and x
represents a set of variables). If Prp(x) is the projector onto the domain D, which
equals 1 for x € D and 0 for x ¢ D, then all functions having this state property
obey an “‘equation of restriction” [244]:

J(x) = Prp(x)f(x) 4)

The ‘“‘equation of restriction” can embody causality, lower boundedness of
energies in the spectrum, positive wavenumber in the outgoing wave (all these
in nonrelativistic physics) and interactions inside the light cone only, conditions
of mass spectrality, and so on in relativistic physics. In the case of interest in this
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chapter, the “equation of restriction” arises from the lower boundedness of
energies (E), or the requirement that (in nonrelativistic physics) one must have
E > 0 (where we have arbitrarily chosen the energy lower bound as equal to
ZEero).

Applying to Eq. (4) an integral transform (usually, a Fourier transform) Fj,
one derives by (integral) convolution, symbolized by ®j, the expression

f(k) = Fy[Prp(x ® flk
_ JFk_k/ [Prp ()] (K )dK (5)

For functions of a single variable (e.g., energy, momentum or time) the
projector Prp(x) is simply O(x), the Heaviside step function, or a combination
thereof. When also replacing x, k by the variables E, ¢, the Fourier transform in
Eq. (5) is given by

t

Rl =5.0) =5 |30 - £7(3)] (6)

where P designates the principal part of an integral. Upon substitution into Eq. (5)
(with k replaced by ) one obtains after a slight simplification

f(t)=—PJOO L byt ()

T ot —t

Real and imaginary parts of this yield the basic equations for the functions
appearing in Eqgs. (9) and (10). (The choice of the upper sign in these equations
will be justified in a later subsection for the ground-state component in several
physical situations. In some other circumstances, such as for excited states in
certain systems, the lower sign can be appropriate.)

1. A General Wavepacket

We can state the form of the conjugate relationship in a setting more general
than W(x, r), which is just a particular, the coordinate representation of the
evolving state. For this purpose, we write the state function in a more general
way, through

V() = bu(0)n) (8)

where |n) represent some time-independent orthonormal set and ¢, (¢) are the
corresponding amplitudes. We shall write generically ¢(¢) for any of the
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“component amplitudes” ¢,,(f) and derive from it, in Eq. (15), a new function
¥ (¢) that retains all the fine-structured time variation in In ¥(¢) and is free of the
large-scale variation in the latter. We then derive in several physically important
cases, but not in all, reciprocal relations between the modulus and phase of y(¢)
taking the form

%P f dr'[In [5(¢)[]/ (7 — 1) = +argx() ©)
and
%Pﬁo di'farg y()]/({ — 1) = Fn [y ()] (10)

The sign alternatives depend on the location of the zeros (or singularities) of x(¢).
The above conjugate, or reciprocal, relations are the main results in this section.
When Egs. (9) and (10) hold, In|x(7)| and argy(¢) are “Hilbert transforms”
[245,246].

Later in this section, we shall specify the analytic properties of the functions
involved and obtain exact formulas similar to Egs. (9) and (10), but less simple
and harder to apply to observational data of, say, moduli.

In Section III.C.5, we give conditions under which Egs. (9) and (10) are
exactly or approximately valid. Noteworthy among these is the nearly adiabatic
(slowly evolving) case, which relates to the Berry phase [9].

C. Other Phase-Modulus Relations

As a prelude to the derivation of our results, we note here some of the relations
between phases and moduli that have been known previously. The following is a
list (presumably not exhaustive) of these relations. Some of them are standard
textbook material.

1. The Equation of Continuity

This was first found by Schrodinger in 1926 starting with Eq. (2), which he
called the “‘eigentliche Wellengleichung.” (Paradoxically, this got translated to
“real wave equation” [2].) In the form

Oln | ¥
o |, )

2
ot

+2VIn |U(x, t)|.Varg[¥(x, 1)] + V- Varg[¥(x, )] =0  (11)

(where m is the particle mass), it is clearly a differential relation between the
modulus and the phase. As such, it does not show up any discontinuity in
the phase [125], whereas Eqgs. (9) and (10) do that. We further note that the above
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form depends on the Hamiltonian and looks completely different for, for
example, a Dirac electron.

2. The WKB Formula

In the classical region of space, where the potential is less than the energy, the
standard formula leads to an approximate relation between phase and modulus
in the form of the following path integral ([237], Section 28)

x(1)
arg ¥(x) = £C JO W (x)| 2dx (12)

where C is a normalization constant. This and the following example do not
arise from the time-dependent Schrodinger equation; nevertheless, time enters
naturally in a semiclassical interpretation [205].

3.  Extended Systems

By extending some previous heuristic proposal [238,239], the phase in the
polarized state of a 1D solid of macroscopic length L was expressed in [240] as

L
arg U(x) = Im an AW (x) [Fdx (13)
0

Note [240] that the phase in Eq. (13) is gauge independent. Based on the above
mentioned heuristic conjecture (but fully justified, to our mind, in the light of our
rigorous results), Resta noted that “Within a finite system two alternative
descriptions [in terms of the squared modulus of the wave function, or in terms of
its phase] are equivalent’ [247].

4. Loss of Phase in a Quantum Measurement

In a self-consistent analysis of the interaction between an observed system and
the apparatus (or environment), Stern et al. [241] proposed both a phase-
modulus relationship ([241], Eq. (3.10)) and a deep lying interpretation.
According to the latter, the decay of correlation between states in a superposition
can be seen, equivalently, as the effect of either the environment upon the
system or the back-reaction of the system on its environment. The reciprocal
relations refer to the wave function of the (microscopic) system and not to its
surroundings, thus there is only a change of correlation not a decay. Still it
seems legitimate to speculate that the dual representation of the change that we
have found (viz., through the phase or through the modulus) might be an
expression of the reciprocal effect of the coupling between the system
(represented by its states) and its environment (acting through the potential).
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D. The Cauchy-Integral Method for the Amplitudes

Since the amplitude ¢(7) arises from integration of Eq. (2), it can be assumed to
be uniquely given. We can further assume that ¢(¢) has no zeros on the real
t axis, except at those special points, where this is demanded by symmetry. The
reason for this is that, in general, ¢(¢#) =0 requires the solution of two
equations, for the real and the imaginary parts of ¢(¢) and this cannot be
achieved with a single variable: a real ¢. (Arguing from a more physical angle, if
there is a zero somewhere on a the real ¢ axis, then a small change in some
parameter in the Hamiltonian, will shift this zero to a complex . However, this
small change cannot change the physical content of the problem and thus we
can just as well start with the case where the zeros are away from the real axis.)
We can therefore perform the decomposition of In ¢(z), following [248,249]:

Iné(r)=Ind_ (1) +Ind_(r) (14)

where In ¢_ (¢) is analytic in a portion of the complex ¢ plane that includes the
real axis (or, as stipulated in [248], “including a strip of finite width about the
real axis”’) and a large semicircular region above it and In ¢_(7) is analytic in the
corresponding portion below and including the real axis. By defining new
functions y (¢), we separate off those parts of In ¢ () that do not vanish on the
respective semicircles, in the form:

Ind () = P+(t) +1Iny,(2) (15)

where Iny, () and In y_(r) are, respectively, analytic in the upper and lower half
of the complex ¢ plane and vanish in their respective half-planes for large |¢|. The
choices for suitable P (¢) are not unique, and only the end result for In ¢ (7) is.
In the interim stage, we apply to the functions In y, (¢) Cauchy’s theorem with a
contour C that consists of an infinite semicircle in the upper (+), or lower (—)
half of the complex # plane traversed anticlockwise (+) or clockwise (—) and a
line along the real ¢ axis from —oo to oo in which the point ¥ = 7 is avoided
with a small semicircle. We obtain

1 /
1; Mdl’ = +2wilny (1) or zero (16)
c (=1

depending on whether the small semicircle is outside or inside the half-plane of
analyticity and the sign = is taken to be consistently throughout. Further, writing
the logarithms as

Iny.(f) =1In|x. ()] +iargx. (1) (17)
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and separating real and imaginary parts of the functions in Eq. (16) we derive the
following relations between the amplitude moduli and phases in the wave
function:

Np [ Doglx_ (") —loglx (] ., _ r =ar

L R
(18)

and

(rlc)Pr; = X+(t(/2/:j§g =) ¢ — voghy_ (1) + Toglt. (1) = togl()

(19)

E. Simplified Cases

We shall now concentrate on several cases where relations equations (18) and
(19) simplify. The most favorable case is where In ¢(7) is analytic in one half-
plane, (say) in the lower half, so that In ¢ () = 0. Then one obtains reciprocal
relations between observable amplitude moduli and phases as in Eqgs. (9) and
(10), with the upper sign holding. Solutions of the Schrodinger equation are
expected to be regular in the lower half of the complex ¢ plane (which
corresponds to positive temperatures), but singularities of In ¢(#) can still arise
from zeros of ¢(¢). We turn now to the location of these zeros.

1. The Near-Adiabatic Limit

We wish to prove that as the adiabatic limit is approached, the zeros of the
component amplitude for the ‘“‘time-dependent ground state” (TDGS, to be
presently explained) are such that for an overwhelming number of zeros
tr, Im¢, > 0 and for a fewer number of other zeros |Im#,| < 1/AE < 21/,
where AFE is the characteristic spacing of the eigenenergies of the Hamiltonian,
and 2n/® is the timescale (e.g., period) for the temporal variation of the
Hamiltonian. The TDGS is that solution of the Schrodinger equation (2) that is
initially in the ground state of H(x, 0), the Hamiltonian at # = 0. It is known that
in the extreme adiabatic (infinitesimally slow) limit a system not crossing
degeneracies stays in the ground state (the adiabatic principle). We shall work
in the nearly adiabatic limit, where the principle is approximately, but not
precisely, true.
By expanding ¥(x, ) in the eigenstates |n) of H(x, 0), we have

U(x, 1) =Y Cylt)(xln) (20)
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and we assume (for simplicity’s sake) that the expansion can be halted after a
finite number (say, N + 1) of terms, or that the coefficients decrease in a
sufficiently fast manner (which will not be discussed here). Expressing the
matrix of the Hamiltonian H as Gh,,,(t), where h,,, () is of the order of unity and
G positive, we obtain (with the dot denoting time differentiation)

Calt) = =G> hum(1)C(1) (21)

The adiabatic limit is characterized by
| (1) < |G| (22)

We shall find that in the TDGS [i.e., ¥, (x, )], the coefficient C,() of (x|g) has
the form

Col) = Beg(1)e %%+ By (1)e "% (23)

Here, ¢,, = ¢,,(7) are time integrals of the eigenvalues e,,(7) of the matrix A, ()

t

(Pm(t) = JO em(t/)dtl (24)

In the sum, the value m = g is excluded and (as will soon be apparent) B, /By, is
small of the order of

oo (1)
G

(25)

To find the roots of C,(¢) =0 we divide Eq. (23) by the first term shown and
transfer the unity to the left-hand side to obtain an equation of the form

1 = ci(t)e 9 4 cy(r)e 00 ... to N terms (26)

where de;z, and so on represent the differences ¢,, — ¢, and are necessarily
positive and increasing with ¢, for noncrossing eigenvalues of h,,,(¢). (They are
written in the form shown to make clear their monotonically increasing character
and are exact, by the mean value theorem, with de;, etc., being some positive
function of ¢.) The parameters c; (¢), and so on, are small near the adiabatic limit,
where G is large. It is clear that Eq. (26) has solutions only at points where
Im¢ > 0. That the number of (complex) roots of Eq. (26) is very large in the
adiabatic limit, even if Eq. (26) has only a few number of terms, can be seen
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upon writing e = 7 and regarding Eq. (26) as a polynomial equation in z~".
Then the number of solutions increases with G. Moreover, these solutions can be
expected to recur periodically provided the &e values approach to being
commensurate.

It remains to investigate the zeros of C,(r) arising from having divided out by
ng(t)e’iG"’g. The position and number of these zeros depend only weakly on G,
but depends markedly on the form that the time-dependent Hamiltonian H (x, 7)
has. It can be shown that (again due to the smallness of ¢y, ¢y, . ..) these zeros
are near the real axis. If the Hamiltonian can be represented by a small number
of sinusoidal terms, then the number of fundamental roots will be small.
However, in the ¢ plane these will recur with a period characteristic of the
periodicity of the Hamiltonian. These are relatively long periods compared to
the recurrence period of the roots of the previous kind, which is characteris-
tically shorter by a factor of

it|ym

oo (1)
G

(27)

This establishes our assertion that the former roots are overwhelmingly more
numerous than those of the latter kind. Before embarking on a formal proof, let
us illustrate the theorem with respect to a representative, though specific
example. We consider the time development of a doublet subject to a
Schrodinger equation whose Hamiltonian in a doublet representation is [13,29]

H(t) = G/2<—cos (o) sin (ot) ) (28)

sin (wf)  cos (o)

Here, o is the angular frequency of an external disturbance. The eigenvalues of
Eq. (28) are G/2 and —G/2. If G > 0, then in the ground state the amplitude of
|g) [=the vector (;) in Eq. (28)] is

C, = cos (Kr)cos (01/2) + (w/2K)sin (Kt)sin (01/2)

+ i(G/2K)sin (Kr)cos (o1 /2) (29)
with
K=05vVG+0*=G/2 since G/o>1 (30)

Thus the amplitude in Eq. (29) becomes

C, (1) = exp (iKt)cos (wt/2) + (0/2K)sin (Kt)sin (ot /2)
~ exp (iGt/2)[cos (wt/2) — i(w/2G)sin (wz/2)]
+iexp (—iGt/2)(0/2G)sin (wt/2) (31)
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This is precisely of the form Eq. (23), with the second term being smaller than
the first by the small factor shown in Eq. (25). Equating (31) to zero and dividing
by the first term, we recover the form in Eq. (26), whose right-hand side consists
now of just one term. For an integer value of G/® = M (say), which is large and
exp (—imt) = Z, the resulting equation in Z has ~M roots with |Z| > 1 (or, what
is the same, Im 7 > 0). As noted above, further roots of C,(¢) will arise from the
neighborhood of cos (wz/2) =0, or Z = —1. [The upper state of the doublet
states has the opposite properties, viz., ~M roots with Im¢ < 0. We have treated
this case (in collaboration with Baer) in a previous work [29].]

A formal derivation of the location of the zeros of C,(r) for a general
adiabatic Hamiltonian can be given, following proofs of the adiabatic principle
(e.g., [250-252]). The last source, [252] derives an evolution operator U, which
is written there, with some slight notational change, in the form

U(t) = AP ()W (r) (32)

(Eq. XVIL86 in the reference source [252]). Here A(¢) is a unitary transformation
(Eq. XVIL.70 in [252]) that “takes any set of basis vectors of H(x, 0) into a set of
basis vectors of H(x, t) in a continuous manner” and is independent of G. In the
previously worked example, its components are of the form cos(w¢/2) and
sin (w#/2) [252]. The next factor in Eq. (32) is diagonal [252] Eq. (XVIL.68) and
consists of terms of the form:

(I)(l‘) = exp(_iG(Pl71)8nm (33)

Finally, the unitary transformation W(z) was shown to have a near-diagonal form
([252], Eq. XVIL.97)

W) =m+ (" Yo, 34

The gg component of the evolution operator U is just C, and is, upon collecting
the foregoing,

60 = Awtewp (-iGo, o + ("2 Jowd  39)

This can be rewritten as
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with the summation excluding g. This is again of the form of Eq. (23), establishing
the generality of the location of the eigenvalues for the nearly adiabatic case.

2. Cyclic Wave Functions

This case is particularly interesting for two reasons. First, time-periodic
potentials such that arise from external periodic forces, frequently give rise to
cyclically varying states. (According to the authors of [253]: ““The universal
existence of the cyclic evolution is guaranteed for any quantum system.””) The
second reason is that the Fourier expansion of the cyclic state spares us the
consideration of the convergence of the infinite-range integrals in Eqs. (9) and
(10); instead, we need to consider the convergence of the (discrete) coefficients
of the expansion. In this section, we show that in a broad class of cyclic
functions one-half of the complex ¢ plane is either free of amplitude zeros, or
has zeros whose contributions can be approximately neglected. As already
noted, in such cases, the reciprocal relations connect observable phases and
moduli (exactly or approximately). The essential step is that a function ¢(¢)
cyclic in time with period 2m can be written as a sine—cosine series. We assume
that the series terminates at the Nth trigonometric function, with N finite. We
can write the series as a polynomial in z, where z = exp (it), in the form

2N
o) = emz" " (37)
m=0
=z Neoy (1)
N
=z Ve Z " (38)
m=0 o

If ¢(r) is a wave function amplitude arising from a Hamiltonian that is time-
inversion invariant, then we can choose ¢p(—r) = ¢*(¢) for real ¢, where the star
denotes the complex conjugate. Then, the coefficients ¢, are all real. Next,
factorize in products as

ﬁ (1 —z/z%) (39)

where z; are the (complex) zeros of y(f) or ¢(¢), 2N in number. Then the
decomposition shown in Eq. (15), namely, Iny () = Iny, () + Iny_(z), will be
achieved with

Iny, (1) = Zln(l - 2/%+) |2+ = 1 (40)
k=1

2N

Iny_(¢) = Z In(l—z/z-) lze—| < 1 (41)

k=R+1
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provided that R of the roots are on or outside the unit circle in the z plane and
2N — R roots are inside the unit circle. The results in Eqgs. (18) and (19) for the
phases and amplitudes can now be applied directly. But it is more enlightening to
obtain the coefficients in the complex Fourier series for the phases and
amplitudes. This is easily done for Eq. (40), since for each term in the sum

|2/2k+| = lexp (i1) [zt | <1 (42)

and the series expansion of each logarithm converges. (When, in Eq. (42)
equality reigns, which is the case when the roots are upon the unit circle, the
convergence is “in the mean’ [254].) Then the nth Fourier coefficient is simply
the coefficient of the term exp (int) in the expansion, namely, —(1/n)(1/z4)".

The corresponding series expansion of Iny_(¢) in Eq. (41) is not legitimate,
since now in every term

l2/2-| = lexp (i) 2| > 1 (43)
Therefore, we rewrite
2N 2N
Iny ()=- > In(-z)+@N-Rjit+ > W(l-z_/7) (44)
k=R+1 k=R+1

Each logarithm in the last term can now be expanded and the (—n)th Fourier
coefficient arising from each logarithm is —(1/n)(z—)". To this must be added
the n = 0 Fourier coefficient coming from the first, -independent term and that
arising from the expansion of second term as a periodic function, namely,

it = —2i» (~1)"sin (nt)/n (45)

n

For the Fourier coefficients of the modulus and the phase we note that, because of
the time-inversion invariance of the amplitude, the former is even in ¢ and the
latter is odd. Therefore the former is representable as a cosine series and the latter
as a sine series. Formally,

In (3) = In|(x)| + iarg (x) = Y Aycos (nt) +iy  Bysin (nt) (46)

When expressed in terms of the zeros of y, the sin—cos coefficients of the log
modulus and of the phase are, respectively,

2N

Ag=— Y Inlz | (47)

k=R+1
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[This is written in terms of |z;_|, the moduli of the roots z;_, since the roots are
either real or come in mutually complex conjugate pairs. In any case, this
constant term can be absorbed in the polynomial P(¢) in Eq. (15).]

Ay = [Z VENEDS <z/<>"] / n (48)

k k=R+1

=1
R 2N

[ V) = D [ —2(—1)”]] / n (49)
k=1

k=R+1

B,

Equations (47)—(49) are the central results of this section. Though somewhat
complicated, they are easy to interpret, especially in the limiting cases (a—d), to
follow. In the general case, the equations show that the Fourier coefficients are
given in terms of the amplitude zeros. (a) When there are no amplitude zeros in
one of the half-planes, then only one of the sums in Eq. (48) or (49) is nonzero (R
is either O or 2N). Consequently, the Fourier coefficients of the log modulus and
of the phase are the same (up to a sign) and the two quantities are logically
interconnected as functions of time. The connection is identical with that
exhibited in Egs. (9) and (10). In the two-state problem formulated by Eq. (28),
the solution (29) is cyclic provided K /o is an integer. A “Mathematica” output
of the zeros of Eq. (29) for K/m = 8 gives the following results: None of the
zeros is located in the lower half-plane, seven pairs and an odd one are in the
upper half-plane proper, a pair of zeros is on the real ¢ axis. The reciprocal
integral relations in Egs. (9) and (10) are verified numerically, as seen in Figure 1.
(The equality between the Fourier coefficients A, and B, was verified
independently.) (b) It is a characteristic of the above two-state problem (with
general values of K /®), and of other problems of similar type that there is one or
more roots at or near 7+ = — 1(¢# = =; the generality of the occurrence of these
roots goes back to a classic paper on conical intersection [255].) By inspection of
the second sum in Eq. (49), we find that, if all the roots located in the upper half-
plane are of this type, then A, = B, up to small quantities of the order of
(zx+ + 1). Then again Egs. (9) and (10) can be employed. (c) As a corollary to
the previous observation (and an important one in view of the stipulation in
Section III.C.4, that the wave function has no real zeros) a small shift in the
location of a zero originally at ¢t = 4 into the complex plane either just above or
just below this location, will only have a small consequence on the Fourier
coefficients. Therefore, zeros of this type do not violate the assumptions of the
theory. (d) If either |z | > 1 or || < 1, itis clear from Egs. (48) and (49) that
the contribution of such roots is small. This circumstance is important for the
following reason: Suppose that the model is changed slightly by adding to the
potential a small term, for example, adding ecos 2wz to a diagonal matrix element
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Figure 1. Numerical test of the reciprocal relations in Egs. (9) and (10) for C,; shown in
Eq. (29). The values computed directly from Eq. (29) are plotted upward and the values from
the integral downward (by broken lines) for K/ = 16. The two curves are clearly identical.
(a) In|C,(r)| against (r/period). The modulus is an even function of r. (b) argC,(r) against
(t/period). The phase is odd in 7.
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in Eq. (28), where € is small. (In [256] terms of this type were used to describe the
nonlinear part of a Jahn-Teller effect.) Necessarily, this term will introduce new
zeros in the amplitude. It can be shown that this addition will add new roots of the
order |z | &~ 1/€ or |z_| &~ €. The effects of these are asymptotically negligible.
In other words, the formula (48) and (49) are stable with respect to small
variations in the model. [A similar result is known as Rouche’s theorem about the
stability of the number of zeros in a finite domain ([257], Section 3.42).]

3. Wave Packets

A time-varying wave function is also obtained with a time-independent
Hamiltonian by placing the system initially into a superposition of energy eigen-
states (|n)), or forming a wavepacket. Frequently, a coordinate representation is
used for the wave function, which then may be written as

U(x, 1) = an(t) exp (—iEpt) (x|m) (50)

m

where (x|m) are solutions of the time-independent Schrodinger equation, with
eigenenergies E,, that are taken as nondegenerate and increasing with m. In this
coordinate representation, the “component amplitudes’ in the introduction are
just fancy words for W(x, ¢) at fixed x [so that the discrete state label n that we
have used in Eq. (8) is equivalent to the continuous variable x] and ¢, (7) is
simply (x(7)|¥(x, 7)). The results in the earlier section are applicable to the
present situation. Thus, to test Eq. (9) or (10), one would look for any fixed
position x in space at the moduli (or state populations) as a function of time, as
with repeated state-probing set ups. In turn, by some repeated interference
experiments at the same point x, one would establish the phase and then compare
the results with those predicted by the equations. (Of course, the same equations
can also be used to predict one quantity, provided the time history of the second
is known.)

As in previous sections, the zeros of W(x, f) in the complex ¢ plane at fixed x
are of interest. This appears a hopeless task, but the situation is not that bleak.
Thus, let us consider a wavepacket initially localized in the ground state in the
sense that in Eq. (50), for some given x,

> lan{xlm)|* < lao(x|0)* (51)

m>0

Then, we expect that for this value(s) of the coordinate x, the ¢ zeros of the
wavepacket will be located in the upper ¢ half-plane only. The reason for this is
similar to the reasoning that led to the theorem about the location of zeros in the
near-adiabatic case. (Section IILE.1). Actually, empirical investigation of
wavepackets appearing in the literature indicates that the expectation holds in
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a broader range of cases, even when the condition (51) is not satisfied. It should
be mentioned that much of the wavepacket work is numerical and it is not easy
to theorize about it. (A review describing certain aspects of wavepackets is found
in [258].)

We now present some examples of studied wavepackets for which the
reciprocal relations hold (exactly or approximately), but have not been noted.

1. Free Farticle in 1D. The Hamiltonian consists only of the kinetic energy of
the particle having mass m ([237] Section 28, [259]). The (unnormalized) energy
eigenstates labeled by the momentum index k are

Vi (x) = exp (ikx) (52)

with corresponding energies E; = k*/2m. Initially, the wave packet is centered
on x = 0 and has mean momentum K. As shown in [259], the coefficients a;
appearing in Eq. (50) are

ar = exp [~ (k — K)*A?] (53)

where A(> 0) is the root-mean-square width in the initial wave packet. The
expanding wave packet can be written as

[x* — 4iA2K (x — Kt/2m))
[4A2 + 2it/m]

InU(x, 1) = —1/2In[A + (it/2mA)] — + constant

(54)

which is clearly analytic in the lower half 7 plane. (The singularity arises because
free electron wave functions are not normalizable.) We can therefore identify this
function with In¢(r) =In¢_(r) in Eq. (14), and put Indp_ (1) =0. As a
numerical test we have inserted Eq. (54) in Eqgs. (9) and (10), integrated
numerically and found (for K = 0) precise agreement.

2. “Frozen Gaussian Approximation.” Semianalytical and semiclassical wave-
packets suitable for calculating evolution on an excited state multidimensional
potential energy surface were proposed in pioneering studies by Heller [260]. In
this method (called the frozen Gaussian approximation), the last two factors in
the summand of Eq. (50) were replaced by time-dependent Gaussians. The time
dependence arose through having time varying average energies, momenta, and
positions. Specifically, each coefficient a,, in Eq. (50) was followed by a function
g(x, 1) of the form

Ing(x, 1) = —mo(x — (x),)*/2 +i(p),(x — {x),)

i j;<<p>f/m ~ (glHg) ) (55)
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where o is an energy characteristic of the upper potential surface, the angular
brackets are the average position and momenta of the classical trajectory and
the Dirac bracket of the Hamiltonian H is to be evaluated for each component
g separately.

For a set of Gaussians, it is rather difficult to establish the analytic behavior
of Egs. (55), or of (50), in the ¢ plane. However, with a single Gaussian (in one
spatial dimension) and a harmonic potential surface one classically has

(x), = xo cos ot (56)
(p), = (m)% = —(cxom)sin ot (57)
(¢lH|g), = /2 (58)

By substituting these expressions into Eq. (55), one can see after some algebra
that In g(x, 7) can be identified with Iny_(¢) + P(¢) shown in Section III.C.4.
Moreover, Iny_ (1) = 0. It can be verified, numerically or algebraically, that the
log-modulus and phase of In y_(#) obey the reciprocal relations (9) and (10). In
more realistic cases (i.e., with several Gaussians), Eq. (56-58) do not hold. It still
may be true that the analytical properties of the wavepacket remain valid and so
do relations (9) and (10). If so, then these can be thought of as providing
numerical checks on the accuracy of approximate wavepackets.

3. Expanding Waves. As a further application we turn to the expanding potential
problem [261-263], where we shall work from the amplitude modulus to the
phase. The time-dependent potential is of the form

Vix, 1) =2 (0)V(x/L(1) (59)

Here, Cz(t) = ¢ + 2, which differs from the more general case considered in
[261-263], by putting their timescale factor a = 1 and making the potential real
and regular for real ¢, as well as time-inversion invariant. Then c is positive and,
in [261,262] b = 0. The Hamiltonian is singular at ¢t = +i+/c, away from the real
axis. As first shown in [261], the generic form of the solution of the time-
dependent Schrodinger equation is the same for a wide range of potentials.
We shall consider the ground state for a harmonic potential V(x) = 1/2m2x>.
The log (amplitude-modulus) of the ground-state wave function (in the coor-
dinate representation) is according to [261] for real ¢

In|d(x, )] = —(1/4)In (c + ) — 1/2[mox?/(c + 1*)] (60)

where ®? = a)g + c. Processing the expression in Eq. (60) as in Eq. (14), we can
arbitrarily decompose ¢(x, ¢) into factors that are analytic above and below the
real ¢ axis. Thus, let us suppose that in Eq. (60) a fraction f; of the first term and a
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fraction f, of the second term is analytic in the upper half and, correspondingly,
fractions (1 —f;) and (1 —f,) are analytic in the lower half. Explicitly, for
complex ¢

In[$(x, 1)] = Re{—1/2[filn(v/c — it) + (1 — fi)log(/c + it)]
—1/2(mox?/V/e)[ o/ (Ve —it) + (1 =)/ (Ve +i)]}  (61)

Next, for the log term (which normalizes the wave function), we have to choose,
as in Eq. (15), suitable functions P (¢) that will “correct” the behavior of that
term along the large semicircles. Among the multiplicity of choices, the follow-
ing are the most rewarding (since they completely cancel the log term):

Pl == (3) m(ve - i)
= —(fi/4)[In(£* 4 ¢) — 2iarctan(t//c)]
P = (1= 3 ) oetve-+i)

= _ (%) (1 —f)[In(* 4 ¢) + 2iarctan(t/+/c)]

The right-hand side of Eq. (18) comes from the second term of Eq. (60) alone and
is
arg y(x, 1) = (1 = 2f) [mox’ /(1 + ¢)](1/4/c) (62)

To complete the phase of the wave function, arg ¢(x, ), we have to reinstate
the terms P (7) that were removed in Eq. (15) so as to get y, (x, t). The result is

arg o(x, 1) = —(1 —2f;) (1) arctan(t/+/c) + (1 — 2f) [mox? /(£ + ¢)](t/4+/c)
(63)

This establishes the functional form of the phase for real (physical) times. The
phase of the solution given in [261,262] indeed has this functional form. The
fractions f; and f> cannot be determined from our Egs. (17) and (18). However,
by comparing with the wave functions in [261,262], we get the following values
for them:

1-2fi=0/Ve 1-2H=4/c/o (64)
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In the excited states for the same potential, the log modulus contains higher order
terms in x (x°, x*, etc.) with coefficients that depend on time. Each term can again
be decomposed (arbitrarily) into parts analytic in the ¢ half-planes, but from
elementary inspection of the solutions in [261,262] it turns out that every term
except the lowest [shown in Eq. (59)] splits up equally (i.e., the f’s are just 1/2)
and there is no contribution to the phases from these terms. Potentials other than
the harmonic can be treated in essentially identical ways.

F. Consequences

The following theoretical consequences of the reciprocal relations can be noted:

1.

They unfold a connection between parts of time-dependent wave
functions that arises from the structure of the defining equation (2) and
some simple properties of the Hamiltonian.

The connection holds separately for the coefficient of each state
component in the wave function and is not a property of the total wave
function (as is, e.g., the “dynamical” phase [9]).

. The relations pertain to the fine, small-scale time variations in the phase

and the log modulus, not to their large-scale changes.

One can define a phase that is given as an integral over the log of the
amplitude modulus and is therefore an observable and is gauge invariant.
This phase [which is unique, at least in the cases for which Eq. (9) holds]
differs from other phases, those that are, for example, a constant, the
dynamic phase or a gauge-transformation induced phase, by its satisfying
the analyticity requirements laid out in Section I.C.3.

Experimentally, phases can be obtained by measurements of occupation
probabilities of states using Eq. (9). (We have calculationally verified this
for the case treated in [264].)

Conversely, the implication of Eq. (10) is that a geometrical phase
appearing on the left-hand side entails a corresponding geometric
probability change, as shown on the right-hand side. Geometrical decay
probabilities have been predicted in [162] and experimentally tested in
[265].

An important ingredient in the analysis has been the positions of zeros of
U(x, t) in the complex ¢ plane for a fixed x. Within quantum mechanics
the zeros have not been given much attention, but they have been studied
in a mathematical context [257] and in some classical wave phenomena
([266] and references cited therein). Their relevance to our study is
evident since at its zeros the phase of W(x, t) lacks definition. Future
theoretical work shall focus on a systematic description of the location of
zeros. Further, practically oriented work will seek out computed or
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experimentally acquired time dependent wave functions for tests or
application of the present results.

8. Finally, and probably most importantly, the relations show that changes
(of a nontrivial type) in the phase imply necessarily a change in the
occupation number of the state components and vice versa. This means
that for time-reversal-invariant situations, there is (at least) one partner
state with which the phase-varying state communicates.

IV. NON-LINEARITIES THAT LEAD TO MULTIPLE
DEGENERACIES

In previous sections, we treated molecules and other localized systems in which
a linear electron-nuclear coupling resulted in a single degeneracy, or ci of the
electronic potential energy surfaces. A notable, symmetry-caused example of
this is the linear £ ® € Jahn—-Teller effect (a pair of degenerate electronic states,
that can happen under trigonal or higher symmetry, which is coupled to two
energetically degenerate displacement modes) [47,157,267]. Still, some time
ago nonlinear coupling was also considered within the £ ® € case in [268,269]
and subsequently in [256]. Such coupling can result in a more complex
situation, in which there is a quadruplet of ci’s, such that one ci is situated at the
origin of the mode coordinates (as before) and three further ci’s are located
farther outside in the plane, at points that possess trigonal symmetry.

As of late, nonlinear coupling has become of increased interest, partly
through evidence for a weak linear coupling in the metallic cluster Na; [52,270]
(computations of vibrational levels in a related molecule Liz were performed in
[271,272]), and partly by attempts to computationally locate ci’s in the potential
energy landscape with a view to estimate their effect on intersurface, non-
adiabatic transitions [273]. The method used in the last reference was based on
the acquisition of the geometric phase by the total function as a ci is circled
[9,158,159,274]. Independently, the authors of [54] theoretically found a causal
connection between the number of ci effectively circled (one or four) and the
important question of the nature of the ground state. They showed that, contrary
to what had been widely thought before, the ground state may be either a
vibronic doublet or a singlet, depending on the distance (which is a function of
the parameters in the vibronic Hamiltonian) of these trigonal ci’s from the
centre. (A similar instance of ‘“quantum phase transition” was noted for a
threefold degenerate system in [275] and, earlier, for an icosahedral system, in
[276]).

In a different field, location, and characteristics of ci’s on diabatic potential
surfaces have been recognized as essential for the evaluation of dynamic
parameters, like non-adiabatic coupling terms, needed for the dynamic and
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static properties of some molecules ([193,277-280]). More recently, pairs of ci’s
have been studied [281,282] in greater detail. These studies arose originally in
connection with a ci between the 1A’ and 2%A’ states found earlier in computed
potential energy surfaces for C;H in C; symmetry [278]. Similar ci’s appear
between the potential surfaces of the two lowest excited states 'A, and !B, in
H,S or of 2B, and %A, in Al—H, within C,, symmetry [283]. A further, closely
spaced pair of ci’s has also been found between the 32A’ and 4?A’ states of the
molecule C,H. Here the separation between the twins varies with the assumed
C—C separation, and they can be brought into coincidence at some separation
[282].

In this section we investigate the phase changes that characterize the double
and trigonal (or cubic) ci’s. We shall find that the Berry phases upon circling
around all the ci’s can take the values of 0 or 2Nw (where N is an integer). It can
be shown that the different values of N can be made experimentally observable
(through probing the state populations after inducing changes in the amplitudes
of the components), in a way that is not marred by the fast oscillating dynamic
phase. Apart from the results regarding the integer N in the Berry phase, the
difference between our approach to the phase changes and those in some
previous works, especially in [273,283], needs to be noted. While these consider
the topological phase belonging to the total wave packet, we continue in the
spirit of the previous Section III and treat the open phase belonging to a single
component of the wave packet. (For the topological, full-cycle phase the two are
equivalent, but not for the open phase, that is present at interim stages.)
Explicitly, we write the (in general) time (#)-dependent molecular wave function
U(t) as a superposition of (diabatic) electronic states y; as

U(r) = a(t)u (65)
k

where the amplitudes a; are functions of the nuclear coordinates. In Section III,
we developed and used the reciprocal relations between the phases (arg a;) and
the (observable) moduli (|ax|).

We also describe a “tracing” method to obtain the phases after a full cycling.
We shall further consider wave functions whose phases at the completion of
cycling differ by integer multiples of 2 (a situation that will be written, for
brevity, as “2Nm”’). Some time ago, these wave functions were shown to be
completely equivalent, since only the phase factor (viz., e"3%) is observable
[156]; however, this is true only for a set of measurements that are all made at
instances where the phase difference is 2Nw. We point out simple, necessary
connections between having a certain 2N7 situation and observations made
prior to the achievement of that situation. The phase that is of interest in this
chapter is the Berry phase of the wave function [9], not its total phase, though
this distinction will not be restated.
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A. Conical Intersection Pairs

We treat this case first, since it is simpler than the trigonal case. The molecular
displacements are denoted by x and y (with suitable choice of their origins and
of scaling). Then, without loss of generality we can denote the positions of the
ci pairs in Cartesian coordinates by

x ==+l y=0 (66)
or, in polar coordinates, where x = gcos ¢, y = g sin ¢, by
g=1 b=0,n (67)

To obtain potential surfaces for two electronic states that will be degenerate at
these points, we write a Hamiltonian as a2 x 2 matrix in a diabatic representation
in the following form:

_ —(*=1)  yf(x)
H(x,y) = K< o) 1))
:K<—(qzcos2¢ —1) gsindf(gcosd)

gsingf(geosh)  (q>cos2d — 1) ):H@"“ (68)

whose two eigenvalues are

Ex(x.y) = £K\/ (2 — 1V + [ (x)]

= iK\/(qz cos2p — 1)* + [gsin ¢.f(gcos )]

For K, a (positive) constant and f(x) a function that is nonzero at x = %1, the
Hamiltonian in Eq. (68) can be taken as a model that yields the postulated ci
pairs, since the two eigenvalues coincide just at the points given by Eq. (66) or
(67). There may be more general models that give the same two ci’s. (Note,
however, that if f(x) had a zero at x = 1, the degeneracy of energies would not
be conical.) We now make the above model more specialized and show that
different values of the Berry phase can be obtained for different choices of f(x).
For definiteness we consider specific molecular situations, but these are just
instances of wider categories. (The notation of Herzberg [284] is used.)

1. 1A, and 2A, States in C,, Symmetry (Exemplified by
1A<11> and 1A§2) in Bent HCH)

If the x coordinate represents a mode displacement that transforms as B; (e.g.,
an asymmetric stretch of CH) and y transforms as A; (a flapping motion of the
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H,, this coordinate being the same as y in Fig. 169 of [284]), then f(x) in
Eq. (68) can be taken as a constant. Without loss of generality we put for this
case f(x) = 1 and find that cycling adiabatically counterclockwise around the ci
that is at (—1,0) induces (in the component that is unity at ¢ = 0) a topological
phase of 7, and that around (1,0) yields —m. Cycling either fully inside or
outside g = 1 (the latter case encircling both ci’s), gives zero phase. We now
describe a ““continuous (phase-) tracing method’’ that obtains in an unambiguous
way the phase of a real wave function. The alternative, “‘adiabatic cycling”
method Section III gave the same phase change in terms of the evolution of the
complex solution of the time-dependent Schrodinger equation in the extremely
slow (adiabatic) limit. Other methods will be briefly referred to.

B. Continuous Tracing of the Component Phase

In this method, one notes that real-valued solutions of the time-independent
Hamiltonian of a 2 x 2 matrix form can be written in terms of an 0(¢, ¢), which
is twice the ‘“mixing angle,” such that the electronic component which is
“initially”” 1 is cos [0(¢, ¢)/2], while that which is initially 0 is sin [0(¢d, g)/2].
For the second matrix form in Eq. (68) (in which, for simplicity f(x) = 1),
we get

gsin ¢

e(¢7 q) = arctan m

(70)
One can trace the continuous evolution of 8 (or of 6/2) as ¢ describes the circle
q = constant. This will yield the topological phase (as well as intermediate,
open-path phase during the circling). We illustrate this in the next two figures for
the case g > 1 (encircling the ci’s).

In Figure 2a several important stages in the circling are labeled with Arabic
numerals. In the adjacent Figure 2b the values of 0(¢,q) are plotted as ¢
increases continuously. The labeled points in the two Figures correspond to each
other. (The notation is that points that represent zeros of tan 0 are marked with
numbers surrounded by small circles, those that represent poles are marked by
numbers placed inside squares, other points of interest that are neither zero nor
poles are labeled by free numbers.) The zero value of the topological phase
(0/2) arises from the fact that at the point 3 (at which ¢ = 1/2), 0 retraces its
values, rather than goes on to decrease.

1. Ay and B, States in C,, Symmetry (Exemplified by
2A, and *B, in AlH, [285])

Symmetry considerations forbid any nonzero off-diagonal matrix elements in
Eq. (68) when f(x) is even in x, but they can be nonzero if f(x) is odd, for
example, f(x) = x. (Note that x itself transforms as B, [284].) Figure 3 shows
the outcome for the phase by the continuous phase tracing method for cycling
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Figure 2. Phase tracing for the case of 1A; and 2A, states in C,, symmetry: (a) The left-hand
side shows the labels for the significant stages during the circling the (g, ¢) plane. In this and the
following figures, numbers in circles represent the positions of zeros in the argument of the arctan in
the expression of the angle [Eq. (70)], numbers in squares are poles and free numbers are other
significant stages in the circling. (b) The angle 6 in Eq. (70) as a function of the circling angle. The
numbers correspond to those on the adjacent part (@) of the figure. (Note: The angle 0 is defined as
twice the transformation or mixing angle.) The circling is with ¢ > 1, namely, outside the ci pair.

outside the ci’s (¢ > 1). The difference between the present case and the
previous one [in which f(x) was an even function of x] is that now, in the second
half of circling in the g, ¢ plane, the wave function component angle 6 does not
retrace its path, but goes on decreasing. [It is interesting to remark here on an
analogy between the present results and the well-known results of contour
integration in the complex z plane. An integration of (z*> — 1)71 over a path that
encircles the two poles of the function gives zero result, but the same path
integration of z(z> — 1)71, gives 2mi. However, the analogy does not work fully.
Thus, a simple multiplication of the integrand by a positive constant alters the
residues, but not the phase.]

However, the resulting Berry phase of —2n depends on (1) having reached the
adiabatic limit and (2) circling well away from the ci’s; that is, it is necessary
that the circling shall be done with a value of g that is either < or > 1. A
contrary case not satisfying these conditions, for example, when either ¢ < 3 or
K < 60, would give a Berry phase of ~ 4m, 67, ..., or a number N ~ 2,3, ...
rather than 1, as might have been expected. What is perhaps remarkable is that
even in the not quite adiabatic or not very large g cases, N (though plainly
different from 1) is still close to being an integer. More study may be needed on
this result, especially in view of the possibility of observable consequences of
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Figure 3. Phase tracing for circling outside the ci pair for the model in A and B states in Cy,
symmetry. The Berry phase (half the angle shown at the extremity of the figure) is here —2n.

the value of N. The cases of “1A; and 2A, states in Cy, symmetry” and of “A;
and B, states in C,, symmetry” are, of course, inequivalent, since they arise
from different Hamiltonians. Their nonequivalence results not only in different
topological phases (zero and 2m), but in different state occupation probabilities.
These are defined as the probabilities of the systems being in one of the states
%> of which the superposition in Eq. (65) is made up. In Figure 4, we show
these probabilities as functions of time for systems that differ by their having
different functions f(x) in the off-diagonal positions of the Hamiltonian. The
differences in the probabilities are apparent.

2. Trigonal Degeneracies

The simplest way to write down the 2 x 2 Hamiltonian for two states such that
its eigenvalues coincide at trigonally symmetric points in (x,y) or (g, d), plane
is to consider the matrices of vibrational—electronic coupling of the £ ® € Jahn—
Teller problem in a diabatic electronic state representation. These have been
constructed by Halperin, and listed in Appendix IV of [157], up to the third
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Figure 4. Probabilities in different models during adiabatic circling around ci’s. The square
moduli of component amplitudes as function of time are seen to be different for different models.
Long-dashed lines: the model in 14, and 24, states in C,, symmetry for circling inside the ci’s. Full
lines: the model in 14, and 24, states in C,, symmetry for circling outside the ci’s. Broken lines: the
model in A; and B, states in Cy, symmetry (with the “xy” off-diagonal matrix element) for circling
outside the ci’s. In the latter model, circling inside the ci’s gives probabilities that would be
indistinguishable from unity on the figure (and are not shown).

order in g. The first order or linear coupling in the displacement coordinates is
of the well-known form (shown by the first term in the Hamiltonian presented
below) and yields the familiar ci at the origin, ¢ = 0. When one adds to this the
quadratic coupling, designated I(E) in Section IV.3 (A) of [157] and quoted
below, one obtains three further, trigonally situated ci, namely, at either
¢ =0,+2n/3, or ¢ = w,+4n/3, depending on whether the signs of the linear
and quadratic couplings are the same or opposite. The distance of the trigonal
ci’s from the origin varies with the relative magnitudes of the couplings: The
higher the strength of the quadratic term, the nearer the trigonal ci are to the
center. This was, of course, the physical basis of [54], in which a ground
vibronic singlet state for strong quadratic coupling was found. The resulting
Hamiltonian is of the form (to be compared with the two matrices in Eq. (68)):

—(x = 2K(x* = y%)) y 4 dkxy
oo =x( T )
B K( —(gcosd — 2kg*cos2d)  gsin P + 2xg” sin2¢ )
gsind +2kg*sin2¢  (gcos P — 2kg* cos2¢)
=H(q,9) (71)
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Figure 5. Phase tracing for the case of trigonal degeneracies when the circle encompasses all
four ci’s and the Berry phase is 2.

where k represents the ratio of the strength of the quadratic coupling to the linear
one. The trigonal ci’s are at a distance g = (21{)_1, with angular positions as
described above. Now by employing the continuous phase-tracing method
introduced in Section I.D.1, one again obtains the graphs for the mixing angle.
There are now three cases to consider, namely (1) for cycling that encloses
all four ci’s (¢ > (2k)”") the resulting phase acquired being now 2 (shown in
Fig. 5). This is an even multiple of &, as expected for four ci’s [274], but differs
from 4m (or from zero). Then (2) for intermediate radius cycling ((2]()71 >
g > (4x)™") (which is shown in Fig. 6) that terminates with a Berry phase of —.
Lastly, (3) for small radius cycling (¢ < (2K)71). The last case has also the Berry
phase of rt, but differs from the intermediate case (2), in that the initial increase is
absent.

It might be asked what happens when one adds further couplings beyond the
quadratic one? In the next higher order one finds a scalar cubic term of the form:

q’cos 3nl (72)

where I is the unit matrix. This gives rise to three trigonally aligned degeneracies
([157], Appendix IV). However, these are parabolic (touching) degeneracies, not
conical intersections, and do not cause changes of sign in the wave function upon
circling round them. Higher order terms (not listed in that appendix) can give rise
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Figure 6. Phase tracing for the trigonal degeneracies. The drawings (which are explained in the
caption to Fig. 3) are for intermediate radius (g) circling.

to additional ci’s of trigonal symmetry, but the strength of these terms is expected
to be less and therefore the resulting ci’s will be farther outside, where they are
without importance for low-lying states. Still, their presence is of interest for
revealing the connection between the Berry angle and the number of ci’s circled
and we shall presently obtain nonlinear coupling terms to an arbitrarily high
power of q.

C. The Adiabatic-to-Diabatic Transformation (ADT)

Several years ago Baer proposed the use of a matrix A, that transforms the
adiabatic electronic set to a diabatic one [72]. (For a special twofold set this was
discussed in [286,287].) Computations performed with the diabatic set are much
simpler than those with the adiabatic set. Subject to certain conditions, A is the
solution of a set of first order partial differential equations. A is unitary and has
the form of a ‘““path-ordered” phase factor, in which the phase can be formally
written as

R

[ - a (73)

Ro
Here, the integrand is the off-diagonal gradient matrix element between adiabatic
electronic states,

fY(R) = 1|VI) (74)
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(V is the derivative with respect to R.) We stress that in this formalism, I and J
denote the complete adiabatic electronic state, and not a component thereof.
Both |I) and |J) contain the nuclear coordinates, designated by R, as parameters.
The above line integral was used and elaborated in calculations of nuclear
dynamics on potential surfaces by several authors [273,283,288-301]. (For an
extended discussion of this and related matters the reviews of Sidis [48] and
Pacher et al. [49] are especially informative.)

The possibility of a nongradient component in the integrand introduces some
difficulty and an alternative formulation has been proposed [273,283]. [At
positions that are close to a ci, the alternative approximates well to the angle
shown above in Eq. (73).]

The ADT phase, computed for ci pairs in [56] and denoted (in their Figs. 1-3) by
v(d | q), is related to the “open-path phase” defined below in Eq. (75), but is
identical with it (and with Berry’s angle) only at ¢ = 2. At this value, the
computed results of [56] are in agreement with those that were derived with
the model Hamiltonian in Eq. (68). However, in some of the cases, when the
coupling terms became zero, the sign that the phase y(¢ | ¢) acquires might
become ambiguous (e.g., whether it is even or odd under reflection about the
line ¢ = m). In the above analytic models the signs are given unambiguously.

Since to date summaries about the practical implementation of the line
integral have been given recently (in [108,282]; as also in the chapter by Baer in
the present volume), and the method was applied also to a pair of ci’s [282], we
do not elaborate here on the form of the phase associated with one or more ci’s,
as obtained through this method.

D. Direct Integration

The open-path phase [11,14] associated with a component amplitude can be
obtained as the imaginary part of an integral

w0 =t [ a %0 o) (75)

0

where, as before at several places in this chapter, a,(z) is the amplitude of the k
component in the solution of the time-dependent Schrodinger equation in the
near-adiabatic limit. The (complex) amplitude in the integrand is (in general)
non-vanishing (unlike the real wave function amplitude in the strictly adiabatic
solution) and thus the integral is nondivergent. However, in practice, even fairly
close to the adiabatic limit, the convergence is very slow, due to oscillations in
the amplitude, noted in Section IV.C and in [29-32]. For this reason, the formula
in Eq. (75) is not a convenient one to use. Still, using the formula for increasing
values of the adiabaticity parameter [i.e., increasing K in Eq. (68) to K > 107],
we have evaluated the topological phase for the case with trigonal symmetry and
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have found it to converge close to the value 2Nw, with N =1 (and not 0).
Because of the difficulties in its practical implementation, we shall not further
consider the direct integration method.

E. Higher Order Coupling in Some Jahn-Teller and
Renner-Teller Effects

A systematic derivation of forms of coupling that is superlinear in the nuclear
motion amplitude was given, partly based on Racah coefficients, in [157],
Appendix IV, but these went up only as far as the third order in the amplitudes q.
As will shortly be made apparent, there is some theoretical need to obtain higher
order terms. For the E ® € Jahn-Teller case, the form of coupling to arbitrary
powers was given in [302]. Here we give a different and arguably simpler
derivation using the vector-coupling formalism of Appendix IV in [157], the
complex representation form given in [303], and a mathematical induction type
of argument.

1. Complex Representation

The mode coordinates, transforming, respectively, as the —1 and 1 components
of the E (doubly degenerate) modes, have the form:

(e == () el ( 7] 1) = () 00

where the extreme right-hand member recalls the “modulus” ¢ and the “phase”
¢ used in the real representation. The vector coupling coefficients for for
example, octahedral symmetry, can be obtained from Table A.20 in Appendix 2
of [304], upon performing the transformation shown (76) on the real
representation. In the following Table we show the Clebsch—Gordan coefficients
defined in equation (79) below.

TABLE I
The Coupling—Coefficients U(ABC|abc) for the Complex Form of a Doubly Degenerate
Representation in the Octahedral Group, Following G. F. Koster et al., Properties of
the Thirty-Two Point Groups, MIT Press, MA, 1963, pp. 8, 52.

A B: C: A A; E
E E
a: b: c: ay ar -1 -1
U:
1 1 0 0 1 0
1 —1 1/v2 —i/\V?2 0 0
-1 1 1/V2 i/V2 0 0
-1 -1 0 0 0 1
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To obtain nonlinear coupling terms, we consider two linearly independent,
not identical £ modes, namely,

(8-1,81) (77)
(G-1,Gy) (78)

and construct bilinear expressions from these. The combination that transforms
as components of an £ mode is given by

Y(El) = 3 U(EEE|abx)g,Gy (79)
a,b

The above table for U immediately shows that there are only two bilinear
combinations of g and G, namely, those a=1, b=1 and a = —1, b = —1.
These lead to the quadratic terms belonging to the components —1 and 1:
X(E| —1) = £1G and (E|1) = g-1G_.

Equation A IV.4 of [157] tells us which ket-bra operator |d)(e| is multiplied
by the above combinations or, equivalently, where in the 2 x 2 electronic-
nuclear coupling matrix each of these terms sit. Here again we adopt for the
electronic kets a complex representation, analogous to that shown in Eq. (76).
To use the vector coupling coefficients for these, we recall that in the complex
representation the bra’s transform as the corresponding “‘minus-label ket’s’ [cf.
Eq. (2.34) in [303]). By using again the vector coupling coefficients, we see that
x(E| —=1) is the factor that multiplies |1)(—1| (and x(E|1) is the factor that
multiplies | —1)(1|). In the usual matrix notation [in which rows and columns
are taken in the order (—1, 1)] this means that in the upper right corner one has
(for linear coupling) g_; and G_;, and (for quadratic coupling), g;G;, and
similarly in the lower left corner g;, G| , as well as g_;G_;. Both linear and
quadratic terms will be multiplied by different constants, whose values depend
on the physical situation and cannot be given by symmetry considerations,
except that the electronic—nuclear interaction must be Hermitean and invariant
under the symmetry operations of the group. The same construction can be
employed to derive bilinear terms on the diagonal part of the coupling matrix.
By again using the U coefficients in the above table, one obtains the forms (not
normalized)

(8161 +g1G)(I){1] + [=1){=1]) (80)
where each factor belongs to the A; representation and
(81G-1 = g-1G)(|1){1] = [=1)(~1]) (81)

where each factor belongs to the A, representation.



COMPLEX STATES OF SIMPLE MOLECULAR SYSTEMS 245

2. Squaring of Off-Diagonal Elements

The method shown affords easy generalization to higher order coupling in the
important case where a single mode is engaged, that is, Gi| =g =
+(1/iv/2)ge™™. Then the two off-diagonal terms derived above are, after
physics-based constant coefficients have been affixed, in the upper right corner

(ge™" = 2xq*e*®)|1)(~1] (82)

with another Hermitean conjugate expression on the other (lower left) off-
diagonal position. These were previously given in a similar form in, for example,
[157,256]. The A; term in Eq. (80) only renormalizes the vibrational frequency.
The A, term vanishes (for terms up to second-order in ¢*). Proceeding in the
same way to get further terms by cross-multiplying the second-order expression
in Eq. (82), and continuing the procedure, we obtain the following terms in the
upper right corner correct up to the fourth order in g

q3€7i¢, ‘14621'(1)7 q4ef4i¢ (83)

The first and second terms contain phase factors identical to those previously met
in Eq. (82). The last term has the “new”” phase factor e ~#®. [Though the power of
q in the second term is different from that in Eq. (82), this term enters with a
physics-based coefficient that is independent of x in Eq. (82), and can be taken
for the present illustration as zero. The full expression is shown in Eq. (86) and
the implications of higher powers of ¢ are discussed thereafter.] Then a new off-
diagonal matrix element enlarged with the third term only, multiplied by a (new)
coefficient A, is

(qeiid’ — 2Kq2€2i¢ + kq4674i¢) = qeiiq)(l - ZquSid’ + kq3(373"¢) (84)

There is going to be an A; (scalar) term of the form that is well known in the
literature (e.g., [157]), ¢°cos3d, and an A, (pseudoscalar) term of the form
¢*sin3¢. We may once again suppose that the coefficients of all these terms are
independent (i.e., their physical origins are different) and that we may discuss
terms in diagonal and off-diagonal positions separately. Let us consider the off-
diagonal term, as given on the right-hand member of Eq. (84). The vanishing of
the first factor gives the traditional ci at the origin. The zeros of the second factor
give additional ci’s. These are all trigonally positioned, due to the phase factors
e which induce trigonal symmetry. The maximum number of trigonal ci’s (to
this, fourth-order approximation in ¢g) is clearly 3 x 3 =9. Thus, to give a
numerical example in which k¥ = 0.15, A = 0.003, we obtain the following nine
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trigonal roots of Eq. (84)

Zn 4r
—3.95 —o
9 "33
o 4
g=1742 - ?” ?’T (85)
T 51
— 1137 T
q ¢ = 303

(Clearly, the pseudoscalar term vanishes at these points; so the ci character at the
roots is maintained, no matter whether there are or are not A, terms. Also, the
vanishing of A, terms will not lead to new ci’s.) On the other hand, by circling
over a large radius path ¢ — oo, so that all ci’s are enclosed, the dominant term in
Eq. (84) is the last one and the acquired Berry phase is —4(2n)/2 = —4m.

To see that this phase has no relation to the number of ci’s encircled (if this
statement is not already obvious), we note that this last result is true no matter
what the values of the coefficients k , A, and so on are provided only that the
latter is nonzero. In contrast, the number of ci’s depends on their values; for
example, for some values of the parameters the vanishing of the off-diagonal
matrix elements occurs for complex values of g, and these do not represent
physical ci’s. The model used in [270] represents a special case, in which it was
possible to derive a relation between the number of ci’s and the Berry phase
acquired upon circling about them. We are concerned with more general
situations. For these it is not warranted, for example, to count up the total
number of ci’s by circling with a large radius.

3. General Off-Diagonal Coupling

The construction given above to obtain off-diagonal nonlinear couplings up to
order g* can be generalized to arbitrary order. Only the final result is given. This
gives for the off-diagonal term in the upper right corner

qu_id’[l-i-q_z Z Clstm+€3mi¢+ Z q3QOfe_3mi¢] (86)
m=1,.

m=1,...

where Q,,, and Q,,_ are polynomials in ¢ with coefficients that depend on the
physical system and whose leading terms will be ¢°. When transformed back to
the real representation, by applying the inverse of the transformation in Eq. (76),
one regains the expressions of [302]. Normally, for stable physical systems, it is
expected that, with increasing m , Q,,,. and Q,,— will numerically decrease and so
will, in each polynomial, the coefficients of successively higher powers ¢>. If we
assume only a finite number of summands in the above sums and that the highest
power of g in Eq. (86) has the phase factor ¢*® (where M is a positive or
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negative integer), then the path along a very large circle will add a topological
phase of (3M — 1)r. In general, 3|M| is different (either smaller or larger) than
the number of ci’s enclosed by the large contour, though it equals the number of
ci’s for the case M = +1 treated in [270]. When there are two or more different
phase factors with the same highest power of ¢, then the amount of topological
phase is not simply given, but can be determined, using the continuous phase-
tracing method described in Section IV.B.

4. Nonlinear Diagonal Elements

Their forms are

Ay Z ¢ D1 n(q)cos 3md (87)
m=0,...

Ay: Z ¢’ Dy n(q)sin 3md (88)
m=0,...

where D, ,, and D, ,, are polynomials in ¢* with coefficients that again depend on
the physical system and whose leading terms is ¢°. The scalar term evidently
does not produce a ci. The zeros of the A, term (which is applicable for systems
not invariant under time reversal) by themselves do not add to or subtract from
the ci’s.

5.  Generalized Renner—Teller Coupling

The foregoing formulas in Egs. (86 and 88) can be applied immediately to two
physically interesting situations (not treated in [302], but very recently
considered for a special model in [305]). The first is the vibronic interaction
in a system having inversion symmetry between a doubly degenerate electronic
state and an odd vibrational mode. The second situation is the more common
one of Renner-Teller coupling (e.g., a linear molecule whose doubly degenerate
orbital is coupled to a bending-type distortion) [47], formally identical to the pre-
vious. To write out the coupling to any order, one simply removes in the
previous formulas all terms having odd powers of ¢. In the real representation,
the coupling matrix correct to the fourth harmonics in the angular coordinate
has the following form

R1g%cos2d + Ryg*cosd b+ - Rig*sin2 ¢ — Rog*sindd + - -
Rig*sin2$ — Ryg*sindd + -+ —(R;q?> cos2d + Rag* cosdd + - +)
(89)
where, as in the instances of Egs. (86 and 88) above, R; and R, are polynomials

in g* with coefficients that again depend on the physical system and whose
leading terms are of order ¢°.



248 R. ENGLMAN AND A. YAHALOM

6. Interpretation

The key of constructing vibronic coupling terms for doubly degenerate states
and modes to an arbitrary order is the use of a complex representation. The
formal essence of the method is that in the complex representation U(EEE|xyz)
is nonzero only for a single z. (In Table I there is only one entry in a row.
Figuratively speaking: All coupled ‘“‘coaches’ travel to a unique ‘‘train station”
and all trains in that station consist of coupled coaches. Moreover, this goes also
for the coupling of coupled trains, and so on. From our result, we conclude that the
Berry phase around more than one conical intersection is not uniquely given by
the number of conical intersections enclosed, but is model dependent. This has
consequences for experimental tracing of the phase, as well as for computations
of line integrals with the purpose of obtaining non-adiabatic surface jumping in
chemical rearrangement processes (e.g., in [186-195,300,301]) and as discussed
in Section II.

F. Experimental Phase Probing

Experimental observation of topological phases is difficult, for one reason
(among others) that the dynamic-phase part (which we have subtracted off in
our formalism, but is present in any real situation) in general oscillates much
faster than the topological phase and tends to dominate the amplitude behavior
[306-312]. Several researches have addressed this difficulty, in particular, by
neutron-interferometric methods, which also can yield the open-path phase
[123], though only under restricted conditions [313].

The continuous tracing method and other methods for cycling reviewed in
this section can be used in several very different areas. An example is a
mesoscopic system composed of quantum dots that is connected to several
capacitors. For this, a network of singularities was described in the parameter
space of the gate voltages [314]. It has been suggested that the outcome of
circling around these singularities, through a phased alteration of the charges on
the capacitors, is formally similar to that of circling around ci’s [211]. Although
the physical effects are different (i.e., the acquisition of a © phase by the wave
function has the effect of transferring a single electronic charge), the results of
circling obtained in this section can be associated with quantized charges
passing between quantum dots. Some related topics, for which the results of this
section can be used or extended are phase behavior in a different type of
multiple ci’s, located in a single point but common to several states. This was
studied in [169] and for an electronic quartet state in [36,59,61]. A further future
extension of the theory is to try to correlate the topological phase with a general
(representation-independent) property of the system (or of the Hamiltonian).

The phases studied in the present work are those of material, Schrodinger
waves, rather than of electromagnetic, light waves. Recently, it has been shown
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that it is possible to freeze coherent information (= phases) from light into
material degrees of freedom and vice versa [315,316]. This development extends
the relevance of this section to light, also. Among fields of application not
directly addressed in their recent work, let us quote from the authors of [315]
quantum information transfer [317] and Bose—Einstein condensates.

V. MOLECULAR YANG-MILLS FIELDS

A. A Nuclear Lagrangean

One starts with the Hamiltonian for a molecule H(r,R) written out in terms of
the electronic coordinates (r) and the nuclear displacement coordinates (R, this
being a vector whose dimensionality is three times the number of nuclei) and
containing the interaction potential V(r, R). Then, following the BO scheme, one
can write the combined wave function ¥(r, R) as a sum of an infinite number of
terms

U(r,R) =) G(r, R (R) (90)
k

Here, the first factor {;(r, R) in the sum is one of the solutions of the electronic
BO equation and its partner in the sum, x,(R) is the solution of the following
equation for the nuclear motion, with total eigenvalue Ej

_L bsk k _l k b L k bn m _ k
{ M aba 8m + Vm(R) M’Cbm(R)a M Tbn(R)Tm (R) X (R) - EkX (R)
o1

The symbol M represents the masses of the nuclei in the molecule, which for
simplicity are taken to be equal. The symbol 65; is the Kronecker delta. The
tensor notation is used in this section and the summation convention is assumed
for all repeated indexes not placed in parentheses. In Eq. (91) the NACT r’,jm
appears (this being a matrix in the electronic Hilbert space, whose components
are denoted by labels k, m, and a “vector”” with respect to the b component of the

nuclear coordinate R). It is given by an integral over the electron coordinates
5, (R) = [ ety RIL, (1. R) i= (Koslm) = —(mleull)  (92)

The effective potential matrix for nuclear motion, which is a diagonal matrix for
the adiabatic electronic set, is given by

V,,(R) = (k|V(r,R)|m) (93)
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In the algebraic, group-theoretical treatments of non-Abelian systems [66,67—
70,77-80] the NACT is usually written in a decomposed form as

Th(R) = d? (R)(1), (94)

where #, is one of the set of constant (noncommuting) matrices (the ‘““‘gene-
rators’’) that define the Lie group of the system. So far, with the summation in
Eq. (90) over k running over the full electronic Hilbert space spanned by ,(r, R),
the Hamiltonian treatment is exact. Shortly, we shall see that the truncation of the
summation in Eq. (90), which in practice is almost inevitable, has far-reaching
effects in the YM theory. Before that, we turn to an equivalent description,
standardly used in field theories but that has not been in use for the BO treatment
of molecules, namely, to write down a “nuclear” Lagrangean density £, for the
vector Y(R) whose (transposed) row vector form is

U= (1, %2 Kzs -5 Aw)* (95)

(The mixed, \y — y notation here has historic causes.) The Schrodinger equation
is obtained from the nuclear Lagrangean by functionally deriving the latter with
respect to \r. To get the exact form of the Schrédinger equation, we must let NV in
Eq. (95) to be equal to the dimension of the electronic Hilbert space (viz., 00),
but we shall soon come to study approximations in which N is finite and even
small (e.g., 2 or 3). The appropriate nuclear Lagrangean density is for an
arbitrary electronic states

Ly (,020) = 2M) ™ (@) @aVr), — M~ (),
— 2M) " () e (), — WV, (96)

The non-Abelian nature of the formalism is apparent from the presence of
nondiagonal matrices T and V. The parameter V can be diagonalized, leading to
adiabatic energy surfaces and states, but not simultaneously with the (t0) term.
Requiring now only global gauge invariance of the Lagrangean, we obtain the
usual phase-gauge theories [76,163], incorporating a vector potential. However,
by requiring invariance under a local gauge transformation, we obtain the
extension of the vector potential to a YM field [66,67]. [Actually, the local
gauge invariance is not a “luxury’” because, if the Lagrangean is invariant under
global (constant) transformation, then it is also invariant under a gauge trans-
formation with general position dependent parameters (Section 15.2 in [70]). [A
remark on nomenclature: “field”” and ‘““fields” are used interchangeably.] Before
obtaining the equation for the field, we return for a moment to the (simpler)
Abelian case.
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B. Pure versus Tensorial Gauge Fields

To start, it is useful to put the previous result in a more elementary setting,
familiar in the context of electromagnetic force between charged particles, say
electrons. Thus, we recapitulate as follows.

In an Abelian theory [for which ¥(r,R) in Eq. (90) is a scalar rather than a
vector function, N = 1], the introduction of a gauge field g(R) means
premultiplication of the wave function y(R) by exp (igR), where g(R) is a
scalar. This allows the definition of a “‘gauge’’-vector potential, in natural units

Ay, =048 (97)
and if we define a field intensity tensor, as in electromagnetism, by
Fpe = ahAc - acAh (98)

we find that Fj, is 0, excluding singularities of A,. Therefore, a vector potential
arising from a gauge transformation g does not give a true field (since it can be
transformed away by another gauge —g). Conversely, a vector potential A, for
which Fp. in Eq. (98) is not zero, gives a true field and cannot be transformed
away by a choice of gauge.

In a non-Abelian theory (where the Hamiltonian contains noncommuting
matrices and the solutions are vector or spinor functions , with N in Eq. (90) >1)
we also start with a vector potential A,. [In the manner of Eq. (94), this can be
decomposed into components A%, in which the superscript ¢ labels the matrices
in the theory). Next, we define the field intensity tensor through a “‘covariant
curl” by

Fi = 0,A% — 9.A% + C4 AJAC (99)

Here, Cj. are the structure constants for the Lie group defined by the set of the
noncommuting matrices ¢, appearing in Eq. (94) and which also appear both in
the Lagrangean and in the Schrddinger equation. We further define the “covariant
derivative” by

(DaW);, = (BaW)y, — AL (1) Vi (100)
and write the field equations for A and F as
ac < e . S‘CM(\P? D\lj) m
0uFyy = FdfCZeAf + IW(tb)n 7 (101)

If the vector potential components Aj have the property that the derived field
intensity, the YM field in Eq. (99) is nonzero, then the vector potential cannot be
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transformed away by a gauge phase g(R) through premultiplication of the wave
function %" (R) by the (unitary) factor exp (ig(R)). There is no g(R) that will do
this. Conversely, if there is a g(R), one obtains a vector potential-matrix A,
whose km components satisfy

Aby = (exp (8(R)) ™), dulexp (ig(R))], (102)

Thus, the existence of a (matrix-type) phase g represents the ‘“pure-gauge case”
and the nonexistence of g represents the nonpure YM field case, which cannot be
transformed away by a gauge.

C. The “Curl Condition”

‘We now return to the nuclear BO Eq. (91) in the molecular context. Consider the
derivative coupling term in it, having the form

M1, (R)D 1" (R) (103)

Suppose that we want this to be transformed away by a pure gauge factor having
the form

[exp (ig(R))],, = [G(R)], (104)
where g and G are matrices. That is, we require

u(R) = [GR)T[{0[GR),

(105)
for all b, or
[G(R)];7},,(R) = 3[G(R)],, (106)

The consistency condition for this set of equations to possess a (unique) solution
is that the field intensity tensor defined in Eq. (99) is zero [72], which is also
known as the “curl condition” and is written in an abbreviated form as

curlt=—tx1 (107)

Under circumstances that this condition holds an ADT matrix, A exists such that
the adiabatic electronic set can be transformed to a diabatic one. Working with
this diabatic set, at least in some part of the nuclear coordinate space, was the
objective aimed at in [72].

Starting from a completely different angle, namely, the nuclear Lagrangean
and the requirement of local gauge invariance, we have shown in Section IV.B
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that if the very same curl condition is satisfied, there is a pure gauge field. If it is
not satisfied, then the field is not a gauge field, but something more complicated,
namely, the YM field. The set of equations that give the pure gauge g is identical
to that which yields the ADT matrix A, which was introduced in [72]. The
equivalence between a (pure) gauge phase factor and the ADT matrix does not
seem to have been made in the literature before, though the conditionality of a
pure gauge on the satisfaction of the *“‘curl relation” was common knowledge.
(Indeed, they are regarded as tautologously the same.) The reason for the
omission may have been that, possibly, the ADT matrix was not thought to have
the respectability of the pure gauge. (From a naive, superficial angle it is not
evident, why one and the same condition should guarantee the elimination of the
cross-term in the molecular Schrodinger equation, which is a nonrelativistic,
second-order differential equation, and the possibility of a pure gauge for a
hadron field, which obeys entirely different equations, for example, relativistic,
first-order ones.)

D. The Untruncated Hilbert Space

Now, we recall the remarkable result of [72] that if the adiabatic electronic set in
Eq. (90) is complete (N = c0), then the curl condition is satisfied and the YM
field is zero, except at points of singularity of the vector potential. (An algebraic
proof can be found in Appendix 1 in [72]. An alternative derivation, as well as an
extension, is given below.) Suppose now that we have a (pure) gauge g(R), that
satisfies the following two conditions:

1. The electronic set (represented in the following by Greek indexes) is
complete.

2. The vector potential-matrix A present in the Hamiltonian (or in the
Lagrangean) arises from a dynamic coupling: meaning, that it has the
form

Agp < (01[0a[B) (108)

Then, two things (that are actually interdependent) happen: (1) The field
intensity F = 0, (2) There exists a unique gauge g(R) and, since F = 0, any
apparent field in the Hamiltonian can be transformed away by introducing a new
gauge. If, however, condition (1) does not hold, that is, the electronic Hilbert
space is truncated, then F' is in general not zero within the truncated set, In this
event, the fields A and F cannot be nullified by a new gauge and the resulting YM
field is true and irremovable.

Attention is directed to a previous discussion of what happens when the
electronic basis is extended to the complete Hilbert space, [79] p. 60; especially
Eqgs. (2.17)—(2.18). It is shown there that in that event the full symmetry of the
invariance group is regained (in effect, through the cancellation of the
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transformation matrix operating on the electronic and on the nuclear functions
spaces). From this result, it is only a short step to conclude that the YM field
coming from electron—nuclear coupling must be zero for a full set. However,
this conclusion is not drawn in the article, nor is the vanishing of the YM field
shown explicitly.

As was already noted in [9], the primary effect of the YM field is to induce
transitions (§,, — ;) between the nuclear states (and, perhaps, to cause finite
lifetimes). As already remarked, it is not easy to calculate the probabilities of
transitions due to the derivative coupling between the zero-order nuclear states
(if for no other reason, then because these are not all mutually orthogonal).
Efforts made in this direction are successful only under special circumstances,
for example, the perturbed stationary state method [64,65] for slow atomic
collisions. This difficulty is avoided when one follows Yang and Mills to derive
a mediating tensorial force that provide an alternative form of the interaction
between the zero-order states and, also, if one introduces the ADT matrix to
eliminate the derivative couplings.

E. An Alternative Derivation

The vanishing of the YM field intensity tensor can be shown to follow from the
gauge transformation properties of the potential and the field. It is well known
(e.g., Section II in [67]) that under a unitary transformation described by the
matrix

U=U(R) (109)

(which induces a rotation in the nuclear function space) the vector potential
transforms as

Ay =A,R) = U AU+ U'0,U (110)
whereas the field intensity transforms covariantly, homogeneously as
Fu — U 'FuU (111)
If now there exists a representation in which A, is zero, then in this representation
F,p is also zero [by Eq. (99)]. Now, in a U-transformed representation (which can
be chosen to be completely general), one finds that

A, — U'0,U (112)

since the first term in Eq. (110) is zero, but not the second. Thus A, is not zero.
However, the transformed F;; has no such inhomogeneous term [see Eq. (111)]
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and therefore, in the transformed representation F,;, = 0 and this is true in all
representations, that is, generally true. The crucial assumption was that there is a
representation in which A, are all zero, and this holds in any diabatic
representation (where the electronic functions ,(r,R) are independent of R).
Then, also, derivative matrices, defined in Eq. (92), are zero and so are the
potentials A, depending linearly on the derivative matrices. On the other hand,
the possibility of a diabatic set is rigorously true only for a full electronic set. The
existence of such a set is thus a (sufficient) condition for the vanishing of the YM
field intensity tensor F .

F. General Implications

The foregoing indicate that there are three alternative ways to represent the
combined field in the degrees of freedom written as r, R.

1. By starting with a Lagrangean having the full symmetry, including that
under local gauge transformations, and solving for ¥(r, R) (this being a
solution of the corresponding Schrédinger equation in the variables r, R).
The solutions can then be expanded as in Eq. (90), utilizing the full
electronic set [the first factor on the sum Eq. (90)], or, for that matter,
employing any other full electronic set.

2. Projecting the nuclear solutions y;(R) on the Hilbert space of the
electronic states {;(r, R) and working in the projected Hilbert space of the
nuclear coordinates R. The equation of motion (the nuclear Schrodinger
equation) is shown in Eq. (91) and the Lagrangean in Eq. (96). In either
expression, the terms with r’gm represent couplings between the nuclear
wave functions yx;(R) and y,,(R), that is, (virtual) transitions (or
admixtures) between the nuclear states. (These may represent transitions
also for the electronic states, which would get expressed in finite
electronic lifetimes.) The expression for the transition matrix is not
elementary, since the coupling terms are of a derivative type.

Now the Lagrangean associated with the nuclear motion is not invariant
under a local gauge transformation. For this to be the case, the
Lagrangean needs to include also an “interaction field.” This field can
be represented either as a vector field (actually a four-vector, familiar
from electromagnetism), or as a tensorial, YM type field. Whatever the
form of the field, there are always two parts to it. First, the field induced
by the nuclear motion itself and second, an “externally induced field,”
actually produced by some other particles r’, R’, which are not part of the
original formalism. (At our convenience, we could include these and then
these would be part of the extended coordinates r,R. The procedure
would then result in the appearance of a potential interaction, but not
having the “field.””) At a first glance, the field (whether induced internally
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or externally) is expected to be a YM type tensorial field since the system is
non-Abelian, but here we meet a surprise. When the couplings t’gm are of
the derivative form shown in Eq. (92) and when a complete set is taken for
the electronic states (i (r,R), then the YM field intensity tensor F%¢
induced by the r,R system vanishes and the induced field is a “pure
gauge field.” Just as the induced four-vector potential in the Abelian case
can be transformed away by a choice of gauge, so also can the I’,jm
interaction terms. (See our previous proof, which shows that the vanishing
of the YM tensor is the condition for the possibility to transform away the
interaction term.) This serves as a reminder that with choice of a full
electronic set, the solutions ¥(r,R) are exact and there is no residual
interaction between different W(r,R)’s. Such interaction can, of course,
be externally induced by an “external” YM field intensity tensor F’¢,
which is rooted, as before, in r', R’, and it could be got rid off by including
these in the Hamiltonian.

3. Finally, there is the case that the electronic set {,(r, R) is not a complete
set. Then, neither ¥(r,R) in Eq. (90), nor the nuclear equation (91) is
exact. Moreover, the truncated Lagrangean in Eq. (96) is not exact either
and this shows up by its not possessing a full symmetry (viz., lacking
invariance under local gauge transformation). We can (and should)
remedy this by introducing a YM field, which is not now a pure gauge
field. This means that the internally induced YM field cannot be
transformed away by a (local) gauge transformation and that it brings in
(through the back door, so to speak) the effect of the excluded electronic
states on the nuclear states, these being now dynamically coupled between
themselves.

At this stage, it would be too ambitious to extrapolate the implications of the
above molecular theory for to elementary particles and forces but, by analogy
with the fully worked out molecular model and disregarding any complications
due to the fully relativistic covariance, one might argue that particle states are
also eigenstates of some operators (Hamiltonians) and constitute full sets.
Interactions between different particles (leptons, muons, etc.) exist and when
these interactions (in their minimal form) are incorporated in the formalism, one
gets exact eigenstates (and at this stage, as yet, no interaction fields ). It is only
when one truncates the particle state manifolds to finite subsets, which may
have some internal symmetry [as the SU(2) multiplets: “neutron, proton,” or
“electron, neutrino’’], that one finds that one has to pay some price for the
approximation involved in this truncation. Namely, the Lagrangean loses its
original gauge invariance, which is the formal reflection of the fact that the
original interaction field is not fully accounted for in the truncated
representation. To remedy both the formal deficiency and the neglect of part
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of the interaction, one has to introduce some new forces (electromagnetic, or
YM types and possibly others). These do both jobs.

Moreover, if the molecular analogy is further extended, these residual forces
play a further role, in addition to the two already mentioned (viz., restoring
formal invariance and reinstating the missed interaction). They bring in extra
degrees of freedoms (e.g., photons), which act on the particles (but, supposedly,
not between themselves). (In a vernacular locution, the tail that was wagged by
the dog, can also wag the dog.) In the consistent scheme that we describe here,
these extra degrees of freedom are illusory in that the residual forces are only
convenient expressions of the presence of some other particles, and would be
eliminated by including these other particles in a broader scheme. Evidently, the
above description steers clear of field theory and is not relativistic (covariant).
These, as well as other shortcomings that need to be supplied, require us to stop
our speculations at this stage.

G. An Extended (Sufficiency) Criterion for the Vanishing
of the Tensorial Field

We define the field intensity tensor Fp. as a function of a so far undetermined
vector operator X = X}, and of the partial derivatives 0,

Fbc mn (X) = ab)(c mn acxb mn — [Xb kac kn — Xc kah kn] (113)

(The summation convention for double indices, for example, k in Eq. (113), is
assumed, as before. However, we no longer make distinction between covariant
and contravariant sets.) We set ourselves the task to find anti-Hermitean
operators X, such that

Fpenn(X) =0 (114)

The matrix elements are given by
Xb km = <m|Xb|n> = JdrCm(r, R)ngn(l', R) (115)

that is, the brackets represent integration over the electron coordinate r. The
,.(r,R) are a real orthonormal set for any fixed R. By anti-Hermiticity of the
derivative operator 0,, we have already noted that

{m[Bp|n) = —(n0p|m) (116)

Now (with O, designating a differential that operates to the right until it
encounters a closing bracket symbol) one finds that

0p(m[Xeln) = ((@pm)[Xe|n) + (m[0y(Xc|n)) (117)
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and, further, that

0pXe mn = 0cXp mn = ((Opm)[Xc|n) — ((Ocm)|Xp|n) + (m|X,(0pn))
— (n|X,(0.m)) + Commut (118)

where we designate
Commut = (m|[0,X, — 0. X} |n) (119)

By subtracting the derivatives in the first four terms from the X’s and adding to
compensate, we have for Eq. (118)

= ((@m)[(Xc — 0c)[n) — ((8cm)[(Xp — Bp)|n) + (m|(Xc — 8c)|(Dpn))

— (nl(X, — 8)[(@cm)) + ((@pm)|(Bcn)) — {(@m)|(Dpn)) + Commut ~ (120)
We have ignored a term (m| (0.0, — 0,0, )|}, which is zero by the commutativity
of derivatives. The crucial step is now, as in [72] and in other later derivations,

the evaluation of the fifth and sixth terms by insertion of |k) (k| (which is the unity
operator, when k is summed over a complete set)

(@m)[(8cn)) — ((Bem)|(@pn)) = ((Bpm)|k) (k[Oc|n) — ((@crm) k) (K[Op|n)
= —(ml[Bp[k) (k[Oc|n) + (m|Oc[k) (k|Dp[n) ~ (121)
where Eq. (116) has been used. We replace any derivative 0 by 0 — X and
compensate, so as to get for Eq. (121) the expression
= <m|ab - Xc|k> <k|ac - Xb‘n> - <m|aL - Xc|k> <k|ab - Xb|n>

+ (m|Xp|k) (k[0 — Xc|n) — (m|Xc[k) (k[Op — Xy|n)

+ (mldy — X [k) (k[Xe|n) — (m|0c — Xelk) (k|Xp )

+ (m|Xp k) (kX |n) — (m|Xc|k) (K|Xp |n) (122)

We now put
X, =0 +fb(R) (123)

where the function f; (R) is a ¢ number (not an operator) and can be taken outside
brackets (where the integration variable is r). Then we find that the first three lines in
Eq. (122) cancel, and so do the four matrix elements in Eq. (120) (involving
0. — Xp). The surviving contributions to the right-hand side of Eq. (118) are,
first, the last line of Eq. (122), which is nothing else than the square brackets in
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the expression Eq. 113 for the field intensity tensor and, second, the term
in Eq. (118), defined in the line following Eq. (118). For this term to vanish for all
values of n, m, we require

X, —0.X, =0 (124)
or, in view of Eq. (123), that the function f,(R) be the gradient of a scalar G(R)
/»(R) = 0,G(R) (125)

In conclusion, we have shown that the non-Abelian gauge-field intensity
tensor Fp.(X) shown in Eq. (113) vanishes when

1. The electronic set is complete.
2. The X operator has the form X, = 0, + 9,G(R).

It will be recognized that this generalizes the result proved by Baer in [72].
Though that work did establish the validity of the curl condition for the
derivative operator as long as some 25 years ago and the validity is nearly trivial
for the second term taken separately, the same result is not self-evident for the
combination of the two terms, due to the nonlinearity of F(X). An important
special case is when G(R) = R?/2. Then

X, =0, +R, (126)

and the last expression is recognized as a multiple of the creation operator a; .
This result paves the way for second-quantized or field theoretic treatments. An
additional extension is to the time derivative operator, appropriate when the
electronic states are time dependent. This extension is elementary (though this
has not been noted before), since the key relation that leads to the vanishing of
the field intensity, Fj. = 0, is Eq. (116), and this also holds when the subscript b
stands for the time variable. What makes this result of special interest is the way
that it provides an extension of the results to relativistic theories, in particular to a
combination of Hamiltonians that (for the electron) is the Dirac Hamiltonian and
(for the nuclear coordinates) is the Schrodinger Hamiltonian.

H. Observability of Molecular States in a Hamiltonian Formalism

We now describe the relation between a purely formal calculational device, like a
gauge transformation that merely admixes the basis states, and observable effects.

Let us start, for simplicity, with a Hamiltonian H(r,R) for two types of
particles. The particles can have similar or very different masses, but for clarity
of exposition we continue to refer to the two types of particle as electrons (r)
and nuclei (R). As before, we posit solutions of the time independent
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Schrodinger equation that have the form shown in Eq. (90) but, for complete-
ness, we attach an energy label e to each solution

U(r,R) =Y G(rR)x{(R) e=0,1,... (127)
k

The electronic factor in the sum ;(r, R) arises from the familiar BO electronic
Hamiltonian defined for a fixed R. Since this Hamiltonian is independent of the
nuclear set xi(R), it does not carry the e label. As is well known, with each k
there is associated a potential surface V;(R) (the eigenenergies of the electronic
Hamiltonian). Therefore, by holding the nuclear positions fixed for a sufficiently
long time and choosing an excitation wavelength appropriate to Vi(R), it is
possible to excite into any of the mutually orthogonal electronic states, {,(r, R).
The dependence of these functions on both of their variables can therefore be
experimentally obtained. Turning now to the nuclear equation, Eq. (91), when
the derivative terms are excluded, this equation yields the nuclear set y;(R) with
a set of (constant) eigenenergies Ef for any given diagonal V. The set x5 (R) is
orthogonal for different e’s and the same k, but not orthogonal for different k’s
and the same e (say, the lowest energy e = 0) or different e’s. By returning to
Eq. (127), it becomes clear that we can select any stationary eigenstate U¢(r, R)
of the combined system by exciting with the proper wavelength for a sufficiently
long time (in this case, of course, without constraint on R). Thus, the dependence
of any of these superpositions on the two variables r, R can also be ascertained
and U°(r, R) thereby operationally obtained. By computing the projections

(G (r, R)[W¢(r, R)) (128)

(in which both factors have been experimentally determined) we obtain the
nuclear cofactors y{(R). [See again Eq. (127).] Actually, one could have written,
instead of Eq. (127), a different superposition, sometimes called the “crude BO”
wave function

U(r,R) = G(r,Ro)x{(RRy)  e=0,1,... (129)
k

in which the electronic state refers to a fixed nuclear position Ry rather than to all
values of the nuclear coordinate. This electronic state can be operationally
obtained in a manner similar to, but actually more simple, than that which has
already been proposed to obtain {,(r,R) in Eq. (127), namely, by exciting at a
wavelength corresponding to V(Ry) and probing the r dependence of {; (r, Ry).
Determining ¥¢(r, R) as before and forming the projection ({;(r, Ro)|¥°(r,R))
we again obtain (gedanken experimentally) the nuclear factors x¢(R|Ry). While
this procedure is legitimate (and even simpler than the previous), it suffers from
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the more problematic convergence of the superposition (129) in comparison to
(127). One could next try Eq. (127) with a truncated superposition, say involving
only N summand terms (in practice N =2 or 3 are common), rather than an
infinite number of terms. The electronic functions {,(r,R) (k =1,..., N) can
be determined as before, and so can be the associated nuclear factors x4 (R),
but here one risks to come upon inconsistencies, when from the observatio-
nally obtained full wave function ¥¢(r,R) one computes the overlaps
(Ce(r,R)|¥¢(r,R)) for any k above N. Then, the truncated sum on the right-
hand side vanishes, while the computed overlap on the left-hand side will in
general be nonzero. In a sense, it may be said that it is this inconsistency that the
introduction of the YM field tries to resolve. The resulting eigen state ¥¢(r, R) is
an ‘“‘entangled state,” in the terminology of measurement theory [242]. While
there appears to be no problem in principle to extract by experiment any {, (r, R)
(as already indicated), the question arises whether one can put the nuclear part
into any particular & state x¢(R). This does not appear possible for the form in
Eq. (127) and the source of the difficulty may again be the presence of derivatives
in the nuclear equation. Can one select some observable nuclear set? It turns out
that the set ¢j,(R) in the transformed eigenstate

¥é(r,R) = ZCk(n R)[G(R)il}khd);(R) e=0,1,... (130)
kh

is observable. The matrix G(R) is the gauge factor introduced in Eq. (104). The
product &, (r, R)G(R) " is independent of R. [Recall that G(R) is identical with
the ADT matrix A]. Then ¢; (R) can be selected by exciting an e state such as in
Eq. (128) and then selecting one of the r states. The coefficient of the selection
will be (apart from a phase factor) the nuclear state ¢;(R).

However, this procedure depends on the existence of the matrix G(R) (or of
any pure gauge) that predicates the expansion in Eq. (90) for a full electronic
set. Operationally, this means the preselection of a full electronic set in
Eq. (129). When the preselection is only to a partial, truncated electronic set,
then the relaxation to the truncated nuclear set in Eq. (128) will not be complete.
Instead, the now truncated set in Eq. (128) will be subject to a YM force
F. It is not our concern to fully describe the dynamics of the truncated set under
a YM field, except to say (as we have already done above) that it is the
expression of the residual interaction of the electronic system on the nuclear
motion.

I. An Interpretation

As shown in Eq. (92), the gauge field A is simply related to the non-adiabatic
coupling elements ¥, . For an infinite set of electronic adiabatic states [N = oo
in Eq. (90)], F. = 0. This important results seems to have been first established
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by [72] and was later rederived by others. [In the original formulation of [72]
only the contracted form of the field Af (appearing in the definition of F)

A = Al),, (131)
enters. This has the form
A, =1, (R) (132)

If the intermediate summations are over a complete set, then
(Foc)y = Féye(ta)y, = 0] (133)

This result extends the original theorem [72] and is true due to the linear
independence of the -matrices [67]. The meaning of the vanishing of F is that, if
%x(R) is the partner of the electronic states spanning the whole Hilbert space,
there is no indirect coupling (via a gauge field) between the nuclear states; the
only physical coupling being that between the electronic and nuclear coordinates,
which is given by the potential energy part of H(r, R). When the electronic N set
is only part of the Hilbert space (e.g., NV is finite), then the underlying electron—
nuclei coupling gets expressed by an additional, residual coupling between the
nuclear states. Then F9_,# 0 and the Lagrangean has to be enlarged to
incorporate these new forces.

We further make the following tentative conjecture (probably valid only
under restricted circumstances, e.g., minimal coupling between degrees of
freedom): In quantum field theories, too, the YM residual fields, A and F, arise
because the particle states are truncated (e.g., the proton-neutron multiplet is an
isotopic doublet, without consideration of excited states). Then, it is within the
truncated set that the residual fields reinstate the neglected part of the
interaction. If all states were considered, then eigenstates of the form shown in
Eq. (90) would be exact and there would be no need for the residual interaction
negotiated by A and F.

VI. LAGRANGEANS IN PHASE-MODULUS FORMALISM

A. Background to the Nonrelativistic and Relativistic Cases

The aim of this section is to show how the modulus-phase formulation, which is
the keytone of our chapter, leads very directly to the equation of continuity and to
the Hamilton—Jacobi equation. These equations have formed the basic building
blocks in Bohm’s formulation of non-relativistic quantum mechanics [318]. We
begin with the nonrelativistic case, for which the simplicity of the derivation has
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mainly pedagogical merits, but then we go over to the relativistic case that
involves new results, especially regarding the topological phase. Our conclusions
(presented in VI.H) are that, for a broad range of commonly encountered
situations, the relativistic treatment will not affect the presence or absence of the
Berry phase that arises from the Schrodinger equation.

The earliest appearance of the nonrelativistic continuity equation is due to
Schrodinger himself [2,319], obtained from his time-dependent wave equation.
A relativistic continuity equation (appropriate to a scalar field and formulated in
terms of the field amplitudes) was found by Gordon [320]. The continuity
equation for an electron in the relativistic Dirac theory [134,321] has the well-
known form [322]:

o' =0 (134)
where the four-current JV is given by
P =0y (135)

(The symbols in this equation are defined below). It was shown by Gordon [323],
and further discussed by Pauli [104] that, by a handsome trick on the four current,
this can be broken up into two parts J' =J <"0> +J (Vl) (each divergence-free),
representing, respectively, a conductivity current (Leitungsstrom):

Ty = L{[(hav—iSAV)ﬂ\p—\I/[(haVJriSAV)\pH (136)

" 2me

and a polarization current [324]
Ty ==, (bry) v (137)
D) = T oK vy p

Again, the summation convention is used, unless we state otherwise. As will
appear below, the same strategy can be used upon the Dirac Lagrangean density
to obtain the continuity equation and Hamilton—Jacobi equation in the modulus-
phase representation.

Throughout, the space coordinates and other vectorial quantities are written
either in vector form x, or with Latin indices x; (k = 1,2,3); the time (¢)
coordinate is xo = ct. A four vector will have Greek lettered indices, such as x,
(v=0,1,2,3) or the partial derivatives 0,. m is the electronic mass, and e the
charge.

B. Nonrelativistic Electron

The phase-modulus formalism for nonrelativistic electrons was discussed at
length by Holland [324], as follows.
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The Lagrangean density £ for the nonrelativistic electron is written as

L o o ety — A v - vt 4 i —
— VY eV = A (VY = V) = )
(138)

Here dots over symbols designate time derivatives. If now the modulus a and
phase ¢ are introduced through

U = ae™® (139)

the Lagrangean density takes the form
2

i [(Va)* + a*(V$)*] — ea®V +

hoo 200
. a’Vo - A — ha”— (140)

e
cm ot
The variational derivative of this with respect to ¢ yields the continuity equation

5L op
$_0—>5+V-(DV)—O (141)

in which the charge density is defined as: p = ea” and the velocity is
1 e
y== (th]) — 7A)
m c
Variationally deriving with respect to a leads to the Hamilton—Jacobi equation

BVia A’
2ma  2mc?

5C s 1 e \2
g—0—>§+%<VS—EA> teV =

(142)

in which the action is defined as: § = id. The right-hand side of Eq. (142)
contains the “‘quantum correction” and the electromagnetic correction. These
results are elementary, but their derivation illustrates the advantages of using the
two variables, phase and modulus, to obtain equations of motion that are sub-
stantially different from the familiar Schrodinger equation and have straight-
forward physical interpretations [318]. The interpretation is, of course,
connected to the modulus being a physical observable (by Born’s interpretational
postulate) and to the phase having a similar though somewhat more problematic
status. (The “observability” of the phase has been discussed in the literature by
various sources, e.g., in [28] and, in connection with a recent development, in
[31,33]. Some of its aspects have been reviewed in Section II.)
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Another possibility to represent the quantum mechanical Lagrangian density
is using the logarithm of the amplitude L = Ina, a = ¢*. In that particular
representation, the Lagrangean density takes the following symmetrical form

Eze”‘{—%[(V%)z—I—(Vd))z]—h%—eV—&—%Vd)-A} (143)

C. Similarities Between Potential Fluid Dynamics
and Quantum Mechanics

In writing the Lagrangean density of quantum mechanics in the modulus-phase
representation, Eq. (140), one notices a striking similarity between this
Lagrangean density and that of potential fluid dynamics (fluid dynamics without
vorticity) as represented in the work of Seliger and Whitham [325]. We recall
briefly some parts of their work that are relevant, and then discuss the
connections with quantum mechanics. The connection between fluid dynamics
and quantum mechanics of an electron was already discussed by Madelung [326]
and in Holland’s book [324]. However, the discussion by Madelung refers to the
equations only and does not address the variational formalism which we discuss
here.

If a flow satisfies the condition of zero vorticity, that is, the velocity field v is
such that V x v = 0, then there exists a function v such that v = Vv. In that case,
one can describe the fluid mechanical system with the following Lagrangean
density

ov 1 2
L=|-——=(W)" —¢(p)— 144

5 5 (Y —elp) P (144)
in which p is the mass density, € is the specific internal energy and ® is some
arbitrary function representing the potential of an external force acting on the
fluid. By taking the variational derivative with respect to v and p, one obtains the
following equations

—%f +V-(pVv) =0 (145)
ov 1 2

e (WP —h-0 14
5 = 5V —h (146)

in which & = 0(pe)/0p is the specific enthalpy. The first of those equations is the
continuity equation, while the second is Bernoulli’s equation.

Going back to the quantum mechanical system described by Eq. (140), we
introduce the following variables v = /i /m, p = ma®. In terms of these new
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variables the Lagrangean density in Eq. (140) will take the form

Lo |- Lggp I (VWO eyl (147)

in which we assumed that no magnetic fields are present and thus A = 0. When
compared with Eq. (144) the following correspondence is noted

h2 V ~\2
Ve pep W( \'5/6) &€ %V@@ (148)

The quantum “internal energy” (i*/ 2mz)(V\/B)2 /p depends also on the
derivative of the density, unlike in the fluid case, in which internal energy is a
function of the mass density only. However, in both cases the internal energy is a
positive quantity.

Unlike classical systems in which the Lagrangean is quadratic in the time
derivatives of the degrees of freedom, the Lagrangeans of both quantum and
fluid dynamics are linear in the time derivatives of the degrees of freedom.

D. Electrons in the Dirac Theory

(Henceforth, for simplicity, the units ¢ = 1, i = 1 will be used, except at the end,
when the results are discussed.) The Lagrangean density for the particle is in the
presence of external forces

L= L@+ A — (O — ieA)TN] — by (149)

Here, \ is a four-component spinor, A, is a four potential, and the 4 x 4 matrices
v* are given by

0 __ 1 0 k 0 Gk o
Y= (0 —I) v = (—Gk 0 (k_ 17273) (150)

where we have the 2 x 2 matrices

N SR (151)
i 0 0 -1
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By following [323], we substitute in the Lagrangean density, Eq. (149), from the
Dirac equations [322], namely, from

V=lp@ i)y G=-l@ i)y (%)

and obtain

L= %(av — iAWy Y (B + ieA, )V — ) (153)

We thus obtain a Lagrangean density, which is equivalent to Eq. (149) for all
solutions of the Dirac equation, and has the structure of the nonrelativistic
Lagrangian density, Eq. (140). Its variational derivations with respect to \s and \s
lead to the solutions shown in Eq. (152), as well as to other solutions.

The Lagrangean density can be separated into two terms

L=L0+r (154)

according to whether the summation symbols v and p in (149) are equal or
different. The form of £ is

£ =L@ iean)i@, + iea, )y -+ iy (155)

Contravariant V* and covariant V|, four vectors are connected through the metric
gpv = dlag (17 _17 _17 _1) by

VE = gy, (156)

The second term in Eq. (154), L' will be shown to be smaller than the first in
the near nonrelativistic limit.

Introducing the moduli a; and phases ¢; for the four spinor components \y;
(i=1,2,3,4), we note the following relations (in which no summations over i
are implied):

;= ae'®
\Li = Ygai€7i¢i
Vil = afvy; (157)

The Lagrangean density eqaution (153) rewritten in terms of the phases and
moduli takes a form that is much simpler (and shorter), than that which one
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would obtain by substituting from Eq. (139) into Eq. (149). It is given by
1
£l = %Z Yo[0vaid a; + a7 ((Qyd; + eAy) (0", + eA¥) — m?)] (158)

When one takes its variational derivative with respect to the phases ¢;, one
obtains the continuity equation in the form
8L’ sL!
= = (159)
39; o
The right-hand side will be treated in a following section VL.E, where we shall
see that it is small in the nearly nonrelativistic limit and that it vanishes in the
absence of an electromagnetic field. The left-hand side can be evaluated to give

3L° 2
Fr Z0,[a2("d; + eAY)] = 20,7 (no summation over i)  (160)
The above defined currents are related to the conductivity current by the relation

By = S (te1)

Although the conservation of JY separately is a stronger result than the result
obtained in [104], one should bear in mind that the present result is only
approximate.

The variational derivatives of £° with respect to the moduli a; give the
following equations:

oL’ 2

da; m

[0,8"a; — ai((0u; + A )@ +ed”) — )] (162)

The result of interest in the expressions shown in Egs. (160) and (162) is that,
although one has obtained expressions that include corrections to the non-
relativistic case, given in Eqs. (141) and (142), still both the continuity equations
and the Hamilton—Jacobi equations involve each spinor component separately.
To the present approximation, there is no mixing between the components.

E. The Nearly Nonrelativistic Limit

In order to write the previously obtained equations in the nearly nonrelativistic
limit, we introduce phase differences s; that remain finite in the limit ¢ — oo.
Then

b =vi(—mxo+s;) o =vy(—m+si) Vb, =7v;Vsi  (163)
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We reinstate the velocity of light ¢ in this and in Section VLF in order to
appreciate the order of magnitude of the various terms. When contributions from
L' are neglected, the expression in Eq. (162) equated to zero gives the following
equations, in which the large (i = 1,2) and small (i = 3,4) components are
separated.

1 e . Via; e, 1 0%a; 2
Ousi+5—(Vsi ——A)” + eAg = - Oisi
s +Zm( s c )"+ edo 2ma;  2mc? 2mc? a; + (Ois:)
+ 2eA00;s; + €*Af — e2A2} (i=1,2) (164)
1 (—e) , » Vi, &, 1 0%
Ousi + = (Vs =2 A + (—e)Ag = -
s +2m( s c )"+ (=e)0 2ma;  2mc? 2mc? a;
+ (0s51)” + 2(—e€)Agdys; + 2A% — ezAZ} (i=3,4) (165)

In the same manner, we obtain the following equations from Eq. (160)

1 [ [Osi+eA
Op; + V- (pivi) =50 |pi <r5+€0>]
L m
Vs — <A
(i=1,2) p; = ma? Vi:S—C (166)
m
LT (Osi —e)A
Oop; + V- (pvi) = _zat p; (M)}
S m
Vi_ﬂA
(i=3,4) p;,=mad vo VST A 167)
m

The terms before the square brackets give the nonrelativistic part of the
Hamilton—Jacobi equation and the continuity equation shown in Egs. (142) and
(141), while the term with the square brackets contribute relativistic corrections.
All terms from £° are of the nonmixing type between components. There are
further relativistic terms, to which we now turn.

F. The Lagrangean-Density Correction Term

As noted above, £' in Eq. (154) arises from terms in which p # v. The
corresponding contribution to the four current was evaluated in [104,323] and
was shown to yield the polarization current. Our result is written in terms of the
magnetic field H and the electric field E, as well as the spinor four-vector | and
the vectorial 2 x 2 sigma matrices given in Eq. (151).

c-- o Vv ieo(] o) e

mc
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These terms are analogous to those on p. 265 of [7]. It will be noted that the
symbol ¢ has been reinstated as in Section VLF, so as to facilitate the order of
magnitude estimation in the nearly nonrelativistic limit. We now proceed based
on Eq. (168) as it stands, since the transformation of Eq. (168) to modulus
and phase variables and functional derivation gives rather involved expressions
and will not be set out here.

To compare £' with £° we rewrite the latter in terms of the phase variables
introduced in Eq. (163)

1 Os;
0= 23 0 — —[(Va) + @ (Vs,)] — (Yoe)a?A® — a2 =
‘C - 'Y” 2m [(Val) +az (VS,)] (yzze)at al at
2e ’ 1
N BVs A+ 0= 169
e Vs At () (169)

which contains terms independent of ¢ as well as terms of the order O(1/c¢) and
o(1/c*).

In Eq. (168), the first, magnetic-field term admixes different components of
the spinors both in the continuity equation and in the Hamilton—Jacobi equation.
However, with the z axis chosen as the direction of H, the magnetic-field term
does not contain phases and does not mix component amplitudes. Therefore,
there is no contribution from this term in the continuity equations and no
amplitude mixing in the Hamilton—Jacobi equations . The second, electric-field
term is nondiagonal between the large and small spinor components, which fact
reduces its magnitude by a further small factor of O(particle velocity/c). This
term is therefore of the same small order O(1/c?), as those terms in the second
line in Egs. (164) and (166) that refer to the upper components.

We conclude that in the presence of electromagnetic fields the components
remain unmixed, correct to the order O(1/c¢).

G. Topological Phase for Dirac Electrons

The topological (or Berry) phase [9,11,78] has been discussed in previous
sections. The physical picture for it is that when a periodic force, slowly
(adiabatically) varying in time, is applied to the system then, upon a full periodic
evolution, the phase of the wave function may have a part that is independent of
the amplitude of the force. This part exists in addition to that part of the phase
that depends on the amplitude of the force and that contributes to the usual,
“dynamic”’ phase. We shall now discuss whether a relativistic electron can have
a Berry phase when this is absent in the framework of the Schrodinger equation,
and vice versa. (We restrict the present discussion to the nearly nonrelativistic
limit, when particle velocities are much smaller than c.)



COMPLEX STATES OF SIMPLE MOLECULAR SYSTEMS 271

The following lemma is needed for our result. Consider a matrix Hamiltonian

h coupling two states, whose energy difference is 2m
he m+ E, cos (oot + o) E; sin (1) (170)
E; sin (ot) —m — Ejcos (of + o)

The Hamiltonian contains two fields, periodically varying in time, whose
intensities E; and E, are nonzero. The parameter o is their angular frequency and
is (in appropriate energy units) assumed to be much smaller than the field
strengths. This ensures the validity of the adiabatic approximation [33]. The
parameter o is an arbitrary angle. It is assumed that initially, at r = 0, only the
component with the positive eigenenergy is present. Then after a full revolution
the initially excited component acquires or does not acquire a Berry phase (i.e.,
returns to its initial value with a changed or unchanged sign) depending on
whether |E}| is greater or less than m (= half the energy difference).

Proof: When the time-dependent Schrodinger equation is solved under
adiabatic conditions, the upper, positive energy component has the coefficient:
the dynamic phase factor xC, where

C = cos Barctan( £ sin (1) )} (171)

m + Ejcos (of + o)

Tracing the arctan over a full revolution by the method described in Section
IV and noting the factor 1/2 in Eq. (171) establishes our result. (The case that
|E1| = m needs more careful consideration, since it leads to a breakdown of the
adiabatic theorem. However, this case will be of no consequence for the results.)

We can now return to the Dirac equations, in which the time varying forces
enter through the four-potentials (Ap,A). [The “two states” in Eq. (28) refer
now to a large and to a small (positive and negative energy) component in the
solution of the Dirac equation in the near nonrelativistic limit.] In the expres-
sions (164 and 165) obtained for the phases s; and arising from the Lagrangean
L£°, there is no coupling between different components, and therefore the small
relativistic correction terms will clearly not introduce or eliminate a Berry
phase. However, terms in this section supply the diagonal matrix elements in
Eq. (28). Turning now to the two terms in Eq. (168), the first, magnetic field
term again does not admix the large and small components, with the result that
for either of these components previous treatments based on the Schrédinger or
the Pauli equations [321,324] should suffice. Indeed, this term was already
discussed by Berry [9]. We thus need to consider only the second, electric-field
term that admixes the two types of components. These are the source of the off-
diagonal matrix elements in Eq. (28). However, we have just shown that in order
to introduce a new topological phase, one needs field strengths matching the
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electronic rest energies, namely electric fields of the order of 10"V /cm. (For
comparison, we note that the electric field that binds an electron in a hydrogen
atom is four orders of magnitudes smaller than this. Higher fields can also be
produced in the laboratory, but, in general, are not of the type that can be used to
guide the motion of a charged particle during a revolution.) As long as we
exclude from our considerations such enormous fields, we need not contemplate
relativistically induced topological phases. Possibly, there may be cases (e.g.,
many electron systems or magnetic field effects) that are not fully covered by
the model represented in Eq. (28). Still, the latter model should serve as an
indicator for relativistic effects on the topological phase.

H. What Have We Learned About Spinor Phases?

This part of our chapter has shown that the use of the two variables, moduli and
phases, leads in a direct way to the derivation of the continuity and Hamilton—
Jacobi equations for both scalar and spinor wave functions. For the latter case, we
show that the differential equations for each spinor component are (in the nearly
nonrelativistic limit) approximately decoupled. Because of this decoupling
(mutual independence) it appears that the reciprocal relations between phases
and moduli derived in Section III hold to a good approximation for each spinor
component separately, too. For velocities and electromagnetic field strengths that
are normally below the relativistic scale, the Berry phase obtained from the
Schrodinger equation (for scalar fields) will not be altered by consideration of the
Dirac equation.

VII. CONCLUSION

This chapter has treated a number of properties that arise from the presence of
degeneracy in the electronic part of the molecular wave function. The existence
of more than one electronic state in the superposition that describes the
molecular state demands attention to the phase relations between the different
electronic component amplitudes. Looked at from a different angle, the phase
relations are the consequence of the complex form of the molecular
wave functions, which is grounded in the time dependent Schrodinger equation.
Beside reviewing numerous theoretical and experimental works relating to
the phase properties of complex wave functions, the following general points
have received emphasis in this chapter: (1) Relative phases of components that
make up, by the superposition principle, the wave function are observable.
(2) The analytic behavior of the wave function in a complex parameter plane
is in several instances traceable to a physics-based “‘equation of restriction.”
(3) Phases and moduli in the superposition are connected through reciprocal
integral relations. (4) Systematic treatment of zeros and singularities of
component amplitudes are feasible by a phase tracing method. (5) The molecular
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Yang-Mills field is conditioned by the finiteness of the basic Born—-Oppenheimer
set. Detailed topics are noted in the introductory Section 1.
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I. INTRODUCTION

Electronic transitions (excitations or deexcitations) can take place during the
course of a chemical reaction and have important consequences for its
dynamics. The motion of electrons and nuclei were first analyzed in a quantum
mechanical framework by Born and Oppenheimer [1], who separated the
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motion of the light electrons from that of the heavy nuclei and assumed that
the nuclei moved on a single adiabatic electronic state or potential energy
surface (PES). This Born—Oppenheimer (BO) approximation can break down
due to the presence of strong nonadiabatic couplings between degenerate
electronic states (due to conical or glancing intersections between those states)
or between the near-degenerate ones (due to avoided crossings). These
couplings allow for the motion of nuclei on coupled multiple adiabatic
electronic states, with the BO approximation replaced by the Born—-Huang
expansion [2,3] in which an arbitrary number of electronic states can be
included.

These nonadiabatic couplings that give rise to electronic transitions can be
classified into two categories: (1) Radial couplings, which have been treated by
Zener [4], Landau [5], and others [6—11], arise due to translational, vibrational,
and angular motions of the atomic or molecular species involved in the chemical
process. These couplings allow for transitions to occur between electronic states
of the same symmetry. (2) Rotational couplings, which have been studied by
Kronig [12] and others [13-19], arise as a result of a transformation of
molecular coordinates from a space-fixed (SF) frame to a body-fixed (BF) one
due to the conservation of total electron plus nuclear angular momentum. These
couplings allow for transitions between electronic states of the same as well as
of different symmetries.

An important consequence of the presence of degenerate electronic states is
the geometric phase effect. For a polyatomic system involving N atoms, where
N > 3, any two adjacent adiabatic electronic states can be degenerate for a set
of nuclear geometries even if those electronic states have the same symmetry
and spin multiplicity [20]. These intersections, occur more frequently in such
polyatomic systems than was previously believed. The reason is that these
systems possess three or more internal nuclear motion degrees of freedom, and
only two independent relations between three electronic Hamiltonian matrix
elements (in a simple two electronic state picture) are sufficient for the existence
of doubly degenerate electronic energy eigenvalues. As a result, these relations
can easily be satisfied explaining thereby the frequent occurrence of
intersections. If the lowest order terms in the expansion of these elements in
displacements away from the intersection geometry are linear (as is usually the
case), these intersections are conical, the most common type of intersection.
Assuming the adiabatic electronic wave functions of the two intersecting states
to be real and as continuous as possible in nuclear coordinate space, if the
polyatomic system is transported around a closed loop in that space (a so-called
pseudorotation) that encircles one conical intersection geometry, these
electronic wave functions must change sign [20,21]. This change of sign
requires the adiabatic nuclear wave functions to undergo a compensatory
change of sign, known as the geometric phase (GP) effect [22-26], to keep the
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total wave function single valued. This sign change of the nuclear wave
function, which is a special case of Berry’s geometric phase [25], is also
referred to as the molecular Aharonov—Bohm effect [27] and has important
consequences for the structure and dynamics of the polyatomic system being
considered, as it greatly affects the nature of the solutions of the corresponding
nuclear motion Schrédinger equation [26].

The dynamics of chemical reactions on a single ground adiabatic electronic
PES has been studied extensively over the last few decades using accurate
quantum mechanical time-dependent and time-independent methods. These
studies have been successfully applied to triatomic [28-30] and tetraatomic
[31,32] reactions in the absence of conical intersections. In the last few years,
these studies have been extended to triatomic reactions on a single adiabatic
PES including the geometric phase effect [33—37] and to include one or more
excited adiabatic electronic PESs [38—42]. These latter studies have been made
possible by the availability of ab initio non-adiabatic couplings, the calculation
of which has been reviewed previously by Lengsfield and Yarkony [43]. The
singular nature of these couplings at the conical intersections of two electronic
states, introduces numerical difficulties in the solution of the corresponding
coupled adiabatic nuclear motion Schrodinger equations. These difficulties are
circumvented by transforming the electronically adiabatic representation into a
quasidiabatic one [44-55], in which couplings still exist but do not display the
singular behavior of the adiabatic representation.

In this chapter, we present a rigorous quantum formalism for studying the
dynamics of a polyatomic system (comprising of N atoms) on n electronically
adiabatic states, in the absence of spin—orbit interactions. These can be
introduced subsequently as perturbative corrections, if they are not too large. In
Section II, we present the adiabatic n-electronic-state coupled nuclear motion
Schrodinger equations and discuss the properties of first- and second-derivative
non-adiabatic couplings in this adiabatic representation. Section III deals with
the adiabatic-to-diabatic transformation that produces an optimal diabatic
representation, in which the nonremovable couplings are minimized. The
application of this transformation to the lowest two adiabatic electronic states of
Hj; [55] is also presented. In Section IV, we introduce the full three-dimensional
(3D) quantum reactive scattering formalism for a triatomic system on two
adiabatic electronic PESs, capable of providing state-to-state differential and
integral cross-sections. This formalism is an extension of the time-independent
hyperspherical formalism of Kuppermann and co-workers [33] for a triatomic
reaction on a single adiabatic electronic PES, that has been used to perform
accurate quantum mechanical reactive scattering calculations (with and without
the GP effect included) on the H 4+ H, system and its isotopic variants (D + H,
and H+ D,) [33-37] to obtain differential and integral cross-sections. The
cross-sections obtained with the GP effect included were in much better
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agreement with the experimental results [S6-59] than those obtained with the
GP effect excluded. The two-electronic-state reactive scattering formalism and
the associated nuclear motion hyperspherical coordinate coupled equations
presented in Section IV should provide cross-sections that can be compared
with those obtained from a one-electronic-state formalism and yield the energy
range of validity of the one-electronic-state BO approximation.

II. »#-ELECTRONIC STATE ADIABATIC REPRESENTATION

A. Born-Huang Expansion

Consider a polyatomic system consisting of Ny, nuclei (where N,, > 3) and N
electrons. In the absence of any external fields, we can rigorously separate the
motion of the center of mass G of the whole system as its potential energy
function V is independent of the position vector of G (rg) in a laboratory-fixed
frame with origin O. This separation introduces, besides rg, the Jacobi vectors
R, =R ,R},,....,R] ~)andr =(r},r;, ... ,ry ) for nuclei and electrons,
respectively [26]. These Jacobi vectors are simply related to the position vectors
of those nuclei and electrons in the laboratory-fixed frame. The parameter A
refers to an arbitrary clustering scheme for the Ny, nuclei [60,61] and helps
specify different product arrangement channels during a chemical reaction.

We will omit the kinetic energy operator TG of the center of mass G, since no
external fields act on the system and consider only its internal kinetic energy
operator 7™ given by [26]

v T4 7, m

where, Tr‘;'l’f and Te] are, respectively, internal nuclear and electronic kinetic
energy operators in the Jacobi vectors mentioned above. If these Jacobi vectors
R, (i=1,2,...,Noyw—1) and 1} (j=1,2,...,Ng) are transformed to their
mass- scaled counterparts [61] Rk and rj, the kinetic energy operators have
relatively simple expressions given by

Fmin hz
T = — z—uvg and Tg=--—-V: (2)

where

nu71

Nel
Z Vi, and  Vi=>"V} (3)
j=1

with the Laplacians on the left of these equivalence relations being independent
of the choice of the clustering scheme A. The transformation of Jacobi vectors to
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the mass-scaled ones is defined by
172 N 1/2
My, ViV
R, = (7> R, and 1= (VJ) v (4)

where

1 Ny 1/(Nnu71) M 1/1\751
=(=1|M and V=mg| —"— 5
w=\wll ! <M n Nelmel) ®)

are the effective reduced masses of the nuclei and electrons, respectively, with
M; being the mass of the ith nucleus. y,. and v; in Eq. (4) are the effective
masses [26] associated with the corresponding vectors R;»,» and rJ’., with

M+ (j — 1)mei]me

Vi = (6)

! M +jmel

In Egs. (5) and (6), M is the total mass of the nuclei and m is the mass of one
electron. By using Eq. (2), the system’s internal kinetic energy operator is given
in terms of the mass-scaled Jacobi vectors by

W, P,

j—vint: ” _r
2u Ry T

(7)

If V is the total Coulombic potential between all the nuclei and electrons in
the system, then, in the absence of any spin-dependent terms, the electronic
Hamiltonian H¢ is given by

- n
A (r;q;) = — Evi +V(rq,) (8)

where, q; is a set of 3(Np, —2) internal nuclear coordinates obtained by
removing from the set R; three Euler angles that orient a nuclear body-fixed
frame with respect to the laboratory-fixed (or space-fixed) frame. Due to the
small ratio of the electron mass to the total mass of the nuclei, v & m,. This
approximation is used in the ab initio electronic structure calculations that use
the electronic Hamiltonian given in Eq. (8) but with the v replaced by m.
Figure 1 illustrates for a three-nuclei, four-electron system, the corresponding
nonmass-scaled Jacobi vectors. The nuclear center of mass G is distinct from
the overall system’s center of mass G. This distinction of the centers of mass and
the difference between v and m, is responsible for the so-called mass
polarization effect in the electronic spectra of these systems that produces
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Figure 1. Jacobi vectors for a three-nuclei, four-electron system. The nuclei are P, P,, P3, and
the electrons are e, e, €3, €4.

relative shifts in the energy levels of 107 or less. In actual scattering
calculations, these differences are normally ignored as they introduce relative
changes in the cross-sections of the order of 10~ or less [26].

The electronically adiabatic wave functions \ijl’ad(r; q;) are defined as
eigenfunctions of the electronic Hamiltonian A" with electronically adiabatic
potential energies £24(q, ) as their eigenvalues:

H (1 @) V5 (r5.0,) = €8 ()05 (r: @) ©)

The electronic Hamiltonian and the corresponding eigenfunctions and
eigenvalues are independent of the orientation of the nuclear body-fixed frame
with respect to the space-fixed one, and hence depend only on q;. The index i
in Eq. (9) can span both discrete and continuous values. The \I/?l’ad(r; q, ) form
a complete orthonormal basis set and satisfy the orthonormality relations

l,ad l,ad
(W (s @) G (5 q5)),
iy for iand i discrete
= 38(i—1) for iand{ continuous

0 for i discrete and i’ continuous or vice versa
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The total orbital wave function for this system is given by an electronically
adiabatic n-state Born—Huang expansion [2,3] in terms of this electronic basis

set i (r; qy) as

WO(r,R,) = jx 4R )Y (r: q,) (11)

d

where, ', is a sum over the discrete and an integral over the continuous values
of i. The %2(Ry), which are the coefficients in this expansion, are the adiabatic
nuclear motion wave functions. The number of electronic states used in the
Born—Huang expansion of Eq. (11) can, in most cases of interest, be restricted to
a small number n of discrete states, and Eq. (11) replaced by

(r,R;) ZX Vi (r; qp) (12)

where n is a small number. This corresponds to restricting the motion of nuclei
to only those n electronic states. In particular, if those n states constitute a sub-
Hilbert space that interacts very weakly with higher states [62], this would be a
very good approximation. The orbital wave function WO satisfies the
Schrodinger equation

H™(r, Ry )¥°(r,Ry) = EV(r,Ry) (13)
where
H™(r,Ry) = T™(r,Ry) + V(r; q) (14)

is the internal Hamiltonian of the system that excludes the motion of its center
of mass and any spin-dependent terms and E is the corresponding system’s total
energy.

B. Adiabatic Nuclear Motion Schrodinger Equation

Let us define xad(R;L) as an n-dimensional nuclear motion column vector, whose
components are 34 (R, ) through %24(R,,). The n-electronic-state nuclear motion
Schrodinger equation satisfied by %% (R;,) can be obtained by inserting Egs. (12)
and (14) into Eq. (13) and using Eqgs. (7)—(10). The resulting Schrédinger
equation can be expressed in compact matrix form as [26]

W , ‘ . .
N {IVg, +2WH(Ry) - Vg, + WE(R,)} + {£%(q,) — ET} | (Ry)

=0 (15)
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where I, W44, W®ad "and £2d are n x n matrices and Vg, is the column vector
gradient operator in the 3(N,, — 1)-dimensional space- -fixed nuclear configura-
tion space. The parameter I is the identity matrix and £%(q; ) is the diagonal
matrix whose diagonal elements are the n electronically adiabatic PESs
€4(q,) (i=1,...,n) being considered. All matrices appearing in this
n-electronic state nuclear motion Schrodinger equation (15) are n-dimensional
diagonal except for Wad and W which are, respectively, the first- and
second-derivative [26,43,63—-68] nonadiabatic coupling matrices discussed
below. These coupling matrices allow the nuclei to sample more than one
adiabatic electronic state during a chemical reaction, and hence alter its
dynamics in an electronically nonadiabatic fashion. It should be stressed that the
effect of the geometric phase on Eqs. (15) must be added by either appropriate
boundary conditions [26,33] or the introduction of an appropriate vector
potential [23,26,69].

C. First-Derivative Coupling Matrix

The matrix W(1>ad(Rx) in Eq. (15) is an n x n adiabatic first-derivative coupling
matrix whose elements are defined by

wl (R = (U (5 q) Ve V() ij=1,.n (16)

These coupling elements are 3(Ny, — 1)-dimensional vectors. If the Cartesian
components of R; in 3(N,, — 1) space-fixed nuclear congifuration space are
Xa1, X2, - - - s X33(Np—1)» the corresponding Cartesian components of w( >ad(R;L)
are

{Wg,lj)ad(Rx)L < petad p ‘_\l]elad )> 1=1,2,...,3(Now — 1)
(17)

The matrix W(a 1s 1n general skew-Hermitian due to Eq. (10), and hence its
diagonal elements w (Rx) are pure imaginary quantities. If we require that
the \|Jel “ be real, then the matrix W% becomes real and skew-symmetric with
the diagonal elements equal to zero and the off-diagonal elements satisfying the
relation

R) = -w R %) (18)

it

As with any vector, the above nonzero coupling vectors (wfb)ad(R;L), i #j) can
be decomposed, due to an extension beyond three dimensions [26] of the
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(1)ad

Helmholtz theorem [70], into a longitudinal part w; /.,

one ngj)tri(Rx) according to

(Ry) and a transverse
wi (R = wiie (Ry) + wi i (Ry) (19)

where, by definition, the curl of wl( 1on(Rk) and the divergence of wf j>tra (Ry)
vanish

curl wii (Ry) = 0 (20)
Ve, W (Rs) =0 (21)

The curl in Eq. (20) is the skew-symmetric tensor of rank 2, whose k, / element
is given by [26,71]

[curl wf}lon(R;\)L‘l = a)a(x, [ f,>1on(Rk)} —% |:wl<1])?:H(R7\,):|

kl=1,2,...,3(Npu — 1)
As a result of Eq. (20), a scalar potential o; ;j(Ry) exists for which

Wi on (R2) = Vi, (Ry) (23)

At conical intersection geometries, wl( i 1on(RK) is singular because of the q; -
dependence of {¢*!(r; q; ) and \erl “(r;qy) in the vicinity of those geometries
and therefore so is the W(! )ad(Rk) VR, term in Eq. (15). As a result of Eq. (19),
W can be written as a sum of the corresponding skew-symmetric matrices
W and W that s,

lon

WORR,) = Wi (Ry) + W™ (R) (24)
This decomposition into a longitudinal and a transverse part, as will be
discussed in Section III, plays a crucial role in going to a diabatic representation
in which this singularity is completely removed. In addition, the presence of the
first derivative gradient term W()¥(R;) - Vg x*4(R;) in Eq. (15), even for a
nonsingular W(l)ad(Rk) (e.g., for avoided intersections), introduces numerical
inefficiencies in the solution of that equation.

D. Second-Derivative Coupling Matrix

The matrix W®*(R;) in Eq. (15) is an n x n adiabatic second-derivative
coupling matrix whose elements are defined by

wR) = (U q,) VR U (), j=1....n (25
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These coupling matrix elements are scalars due to the presence of the scalar

Laplacian V%{) in Eq. (25). These elements are, in general, complex but if we
el,ad

require the ;" to be real they become real. The matrix W(z)ad(R;L) unlike its
first-derivative counterpart, is neither skew-Hermitian nor skew-symmetric.

The wz)dd(Rk) are also singular at conical intersection geometries. The
decomposmon of the first-derivative coupling vector, discussed in Section II.C,
also facilitates the removal of this singularity from the second-derivative
couplings. Being scalars, the second-derivative couplings can be easily included
in the scattering calculations without any additional computational effort. It is
interesting to note that in a one-electronic state BO approximation, the first-
derivative coupling element w<111> is n%orously zero (assuming real
adiabatic electronic wave functlons) but w1 is not and might be
important to predict sensitive quantum phenomena llke resonances that can be
experimentally verified.

III. ADIABATIC-TO-DIABATIC TRANSFORMATION

A. Electronically Diabatic Representation

As mentioned at the end of Section IL.C, the presence of the W(')ad(R;L)~
Vg, x*(R;,) term in the n-adiabatic-electronic-state Schrédinger equation (15)
introduces numerical inefficiencies in its solution, even if none of the elements
of the W(V*(R; ) matrix is singular.

This makes it desirable to define other representations in addition to the
electronically adiabatic one [Eqs. (9)—(12)], in which the adiabatic electronic
wave function basis set used in the Born—Huang expansion (12) is replaced by
another basis set of functions of the electronic coordinates. Such a different
electronic basis set can be chosen so as to minimize the above mentioned
gradient term. This term can initially be neglected in the solution of the
n-electronic-state nuclear motion Schrodinger equation and reintroduced later
using perturbative or other methods, if desired. This new basis set of electronic
wave functions can also be made to depend parametrically, like their adiabatic
counterparts, on the internal nuclear coordinates (; that were defined after
Eq. (8). This new electronic basis set is henceforth referred to as “diabatic”
and, as is obvious, leads to an electronically diabatic representation that is not
unique unlike the adiabatic one, which is unique by definition.

Let \L/fll’d(r; q; ) refer to that alternate basis set. Assuming that it is complete
in r and orthonormal in a manner similar to Eq. (10), we can use it to expand the
total orbital wave function of Eq. (11) in the diabatic version of Born—Huang
expansion as

TO(r,R;) jx RV (r: ) (26)

1
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where, the \|Jfl’d(r; q,) form a complete orthonormal basis set in the electronic
coordinates and the expansion coeffecients x¢(R,,) are the diabatic nuclear wave
functions.

As in Eq. (12), we also usually replace Eq. (26) by a truncated n-term version

(r,Ry) ~ ZX, Vi (r; q;) (27)

In the light of Egs. (12) and (27), the dlabatlc electronic wave function column
vector ¥ (r; q,) (with elements \IJ Yr;q,), i=1,...,n) is related to the
adiabatic one Y™ (r; q,) (with elements & (r;q;), i=1,...,n) by an n-
dimensional unitary transformation

V() = Ul )4 (r;q;) (28)

where

U'(q,)U(q,) =1 (29)

U(q, ) is referred to as an adiabatic-to-diabatic transformation (ADT) matrix. Its
mathematical structure is discussed in detail in Section III.C. If the electronic
wave functions in the adiabatic and diabatic representations are chosen to be
real, as is normally the case, U(q, ) is orthogonal and therefore has n(n — 1)/2
independent elements (or degrees of freedom). This transformation matrix
U(q; ) can be chosen so as to yield a diabatic electronic basis set with desired
properties, which can then be used to derive the diabatic nuclear motion
Schrodinger equation. By using Egs. (27) and (28) and the orthonormality of the
diabatic and adiabatic electronic basis sets, we can relate the adiabatic and
diabatic nuclear wave functions through the same n-dimensional unitary
transformation matrix U(q; ) according to

1(R) = U(q) 7 (Ry) (30)

In Eq. (30), x*(R;.) and x?(R;,) are the column vectors with elements x*(R;,)
and y¢(R,), respectively, where i = 1,...,n.

B. Diabatic Nuclear Motion Schrodinger Equation

We will assume for the moment that we know the ADT matrix of Egs. (28) and
(30) U(q,), and hence have a completely determined electronically diabatic
basis set \If’l’d(r; q,). By replacing Eq. (27) into Eq. (13) and using Egs. (7) and
(8) along with the orthonormality property of Y (r; q; ), we obtain for x?(R;,)
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the n-electronic-state diabatic nuclear motion Schrodinger equation

hZ
o {IVg, +2WR;) - Vi, + WO(R,)} + {e(a)) — ET} |1/ (Ry)

=0 (31)

which is the diabatic counterpart of Eq. (15). The parameter £%(q, ) is an n x n
diabatic electronic energy matrix that in general is nondiagonal (unlike its
adiabatic counterpart) and has elements defined by

8?](‘17\.) = <\II?1’d(r; q)\,)|1:lel(r; q}.)NI;Ld(r; q?»)>r i,j= 17 ceh (32)

WW4(R,) is an n x n diabatic first-derivative coupling matrix with elements
defined using the diabatic electronic basis set as

wi(Ry) = (U(r; @) VRV (r @)y Gj=1,.con (33)

Requiring J¢"(r; q;) to be real, the matrix W()?(R;,) becomes real and skew-
symmetric (just like its adiabatic counterpart) with diagonal elements equal to
zero. Similarly, W®4(R;) is an n x n diabatic second-derivative coupling
matrix with elements defined by

wR) = (W (5 q) VR V), =10 (34)

An equivalent form of Eq. (31) can be obtained by inserting Eq. (30) into
Eq. (15). Comparison of the result with Eq. (31) furnishes the following
relations between the adiabatic and diabatic coupling matrices

WR,) = U(q;)[Vr,U(g,) + W™ (R;)U(q)] (35)
WE(R,) = U(q;) [V, Ulg,) +2W™(R;) - Vg, U(g;)
+ WE(R; )U(q;)] (36)

It also furnishes the following relation between the diagonal adiabatic energy
matrix and the nondiagonal diabatic energy one

Sd((h) = ﬁ(‘lx)aad(Qx)U(%) (37)

It needs mentioning that the diabatic Schrodinger equation (31) also contains
a gradient term whd (Ry) - Vg, % (Ry) like its adiabatic counterpart [Eq. (15)].
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The presence of this term can also introduce numerical inefficiency problems in
the solution of Eq. (31). Since the ADT matrix U(q, ) is arbitrary, it can be
chosen to make Eq. (31) have desirable properties that Eq. (15) does not
possess. The parameter U(q;) can, for example, be chosen so as to auto-
matically minimize W()¥(R;) relative to W()*(R;) everywhere in internal
nuclear configuration space and incorporate the effect of the geometric phase.
Next, we will consider the structure of this ADT matrix for an n-electronic-state
problem and a general evaluation scheme that minimizes the magnitude of
WW4(R,).

C. Diabatization Matrix

In the n-electronic-state adiabatic representation involving real electronic wave
functions, the skew-symmetric first-derivative coupling vector matrix
WWH(R,) has n(n—1)/2 independent nonzero coupling vector elements
WE‘II)ad(Rx), (i #j). The ones having the largest magnitudes are those
that couple adjacent adiabatic PESs, and therefore the dominant wl(‘lj)ad(R;L)
are those for which j =i+ 1, that is, lying along the two off-diagonal lines
adjacent to the main diagonal of zeros. Each one of the Wﬁ‘lj)ad (Ry.) elements is
associated with a scalar potential o; ;(R;) through their longitudinal component
[see Eqgs. (19) and (23)]. A convenient and general way of parametrizing the
n X n orthogonal ADT matrix U(éh) of Egs. (28) and (30) is as follows. Since
the coupling vector element Wl('lj)a (Ry.) couples the electronic states i and j, let
us define an n x n orthogonal i, j-diabatization matrix [u; j(q;), with j > i]
whose row k and column [ element (k,/=1,2,...,n) is designated by
ufj(qx) and is defined in terms of a set of diabatization angles B; ;(q;) by the
relations

ufjl(qx) = cosP; ;(qy) fork=iand /=i
= cosf; ;(qy) fork=jand [ =
= —sinf; ;(q;) fork=iand [ =j (38)
= sinf; ;(q,) fork=jand /=i
=1 fork=[1#iorj
=0 for the remaining k and [

This choice of elements for the w;;(q,) matrix will diabatize the adiabatic
electronic states i and j while leaving the remaining states unaltered.

As an example, in a four-electronic-state problem (n =4) consider the
electronic states i = 2 and j = 4 along with the first-derivative coupling vector
element Wgﬁad(R;h) that couples those two states. The ADT matrix wp4(q; ) can
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then be expressed in terms of the corresponding diabatization angle B, 4(q;,) as

1 0 0 0
0 cos 0 —sin

u214(qx) _ 0 B2(54(q)») 1 BS.A(qX) (39)
0 sinB, 4(q;,) 0 cos By 4(qz)

This diabatization matrix only mixes the adiabatic states 2 and 4 leaving the
states 1 and 3 unchanged.

In the n-electronic-state case, n(n — 1)/2 such matrices u; ;(q; ) (j > i with
i=1,2,...,n—1and j=2,...,n) can be defined using Eq. (38). The full
ADT matrix U(q;) is then defined as a product of these n(n — 1)/2 matrices
w(q) (> i) as

n—1 n
U(q,) = H H u; ;(q;,) (40)

i=1 j=it1

which is the n-electronic-state version of the expression that has appeared
earlier [72,73] for three electronic states. This U(q, ) is orthogonal, as it is the
product of orthogonal matrices. The matrices u;j(q,) in Eq. (40) can be
multiplied in any order without loss of generality. A different multiplication
order leads to a different set of solutions for the diabatization angles B; ;(q;,).
However, since the matrix U(q; ) is a solution of a set of Poisson-type equations
with fixed boundary conditions, as will be discussed next, it is uniquely
determined and therefore independent of this choice of the order of
multiplication, that is, all of these sets of B, ;(q;) give the same U(q,) [73].
Remembered, however, that these are purely formal considerations, since the
existence of solutions of Eq. (44) presented next, requires the set of adiabatic
electronic states to be complete; a truncated set no longer satisfies the conditions
of Eq. (43) for the existence of solutions of Eq. (44). These formal
considerations are nevertheless useful for the consideration of truncated
Born—Huang expansion which follows Eq. (46).

We want to choose the ADT matrix U(q; ) that either makes the diabatic first-
derivative coupling vector matrix W“)d(R;L) zero if possible or that minimizes
its magnitude in such a way that the gradient term W()4(R;) - Vg x?(Ry) in
Eq. (31) can be neglected. By rewriting the relation between W4 (Ry) and
Wad(R; ) of Eq. (35) as

W(Ry) = U(q,) [Vr,U(gy) + W (R ) U(ay)] (41)
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we see that all elements of the diabatic matrix W(¢(R;,) will vanish if and only
if all elements of the matrix inside the square brackets in the right-hand side of
this equation are zero, that is,

Vi, U(q,) + W (R;)U(q,) = 0 (42)

The structure of W(V%(R;) discussed at the beginning of this section, will
reflect itself in some interrelations between the f; ;(q; ) obtained by solving this
equation. More importantly, this equation has a solution if and only if the
elements of the matrix W(l)ad(Rx) satisfy the following curl-condition
[26,47,74-76] for all values of Ry:

curl Wi (Ry)], = —[w, " (Ry), WP R)] k=12, 3 (Ve — 1)

(43)
In this equation, wé,”ad(Rk) (with p =k, 1) is the n X n matrix whose row i and
column j element is the p Cartesian component of the ngj)ad(Rx) vector, that is,
[wgﬁlj)ad(Rx)] ,» and the square bracket on its right-hand side is the commutator of
the two matrices within. This condition is satisfied for an n X n matrix
W“)ad(RU when n samples the complete infinite set of adiabatic electronic

states. In that case, we can rewrite Eq. (42) using the unitarity property
[Eq. (29)] of U(q,) as

[Vi, U(q,)]U(q;) = ~W(R;) (44)

This matrix equation can be expressed in terms of individual matrix elements on
both sides as

S (Vr, FislB@)) ik [B(a)] = —wi ' (Ry) (45)

k

where B(qk) = (Bl,Z(qX)v ceey Bl,n(q)»)7 B2,3(q7»)= B B2,n(qk)7 BN Bn—l,n(qk)) is
a set of all unknown diabatization angles and f, ,[B(q; )] with p,q =i, j, k are

matrix elements of the ADT matrix U(q;), which are known trignometric
functions of the unknown f(q, ) due to Egs. (38) and (40). Equation (45) are a
set of coupled first-order partial differential equations in the unknown dia-
batization angles B, ;(q,) in terms of the known first-derivative coupling vector
elements wl(’l]-)ad(R;\) obtained from ab initio electronic structure calculations
[43]. This set of coupled differential equations can be solved in principle with
some appropriate choice of boundary conditions for the angles B; j(qx).
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The ADT matrix U(q,) obtained in this way makes the diabatic first-
derivative coupling matrix W“)d(R;L) that appears in the diabatic Schrodinger
equation (31) rigorously zero. It also leads to a diabatic electronic basis set that
is independent of q, [76], which, in agreement with the present formal
considerations, can only be a correct basis set if it is complete, that is, infinite. It
can be proved using Eqgs. (35), (36), and (42) that this choice of the ADT matrix
also makes the diabatic second-derivative coupling matrix w2 (Ry.) appearing
in Eq. (31) equal to zero. As a result, when n samples the complete set of
adiabatic electronic states, the corresponding diabatic nuclear motion
Schrodinger equation (31) reduces to the simple form

- g—ulvz o {s(q,) - BT} 2/(Ry) = 0 (46)

where the only term that couples the diabatic nuclear wave functions x¢(R;,) is
the diabatic energy matrix £/(q; ).

The curl condition given by Eq. (43) is in general not satisfied by the n x n
matrix W¥(R;), if n does not span the full infinite basis set of adiabatic
electronic states and is truncated to include only a finite small number of these
states. This truncation is extremely convenient from a physical as well as
computational point of view. In this case, since Eq. (42) does not have a
solution, let us consider instead the equation obtained from it by replacing
Wad(R,) by its longitudinal part

Vi, U(q,) + Wi (R,)U(q;) = 0 (47)

This equation does have a solution, because in view of Eq. (20) the curl
condition of Eq. (43) is satisfied when W(V*(R;) is replaced by Wfér)lad(R;L).

We can now rewrite Eq. (47) using the orthogonality of U(q; ) as

[V, U(,)]0(q;) = ~Wh™ (R;) (48)

The quantity on the right-hand side of this equation is not completely specified
since the decomposition of W(l)ad(R;L) into its longitudinal and transverse parts
given by Eq. (24) is not unique. By using that decomposition and the property of
the transverse part Wfrla)ad(Rx) given by Eq. (21), we see that

Vi, - Wi, (Ri) = Ve, - WH(Ry) (49)
and since W(”ad(RU is assumed to have been previously calculated,
VR, -W(l)ad(Rk) is known. If we take the divergence of both sides of

lon
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Eq. (48), we obtain [using Eq. (49)]
Vi, U(@)]0(q) + [Vr,U(q,)] - V&, U(q,)] = =V, - WHR)  (50)

By using the parametrization of U(q, ) given by Egs. (38) and (40) for a finite n,
this matrix equation can be expressed in terms of the matrix elements on both
sides as

> (Vi firlBla)))fixlBla)] + (Ve fialB(2)]) - (Vr, fix[Blan)])]

k
= Vg, wJR;) (51)

ij

where f, , are the same as defined after Eq. (45). Equations (51) are a set of
coupled Poisson-type equations in the unknown angles f; j(qx). For n = 2, this
becomes Eq. (68), as shown in Section III.D. The structure of this set of
equations is again dependent on the order of multiplication of matrices w; ;(q;.)
in Eq. (40). Each choice of the order of multiplication will give a different set of
B j(q,) as before but the same ADT matrix U(q,) after they are solved using
the same set of boundary conditions.

By using the fact that for a finite number of adiabatic electronic states n, we
choose a U(q; ) that satisfies Eq. (47) [rather than Eq. (42) that has no solution],
Eq. (35) now reduces to

W4(R,) = U(q, ) Wiy (R)U(q;) (52)

This can be used to rewrite the diabatic nuclear motion Schrédinger equation for
an incomplete set of n electronic states as

n? .
‘Z{Iv; +20(q, )W (R)U(qy) - Vi, + WP(R;)}

+{e(q) — EI} |’ (Ry) = 0 (53)

In this equation, the gradient term U(q, )W\ (Ry)U(qy) - Vi, x(R;) =

W4(R,;) - Vg, 2/ (Ry) still appears and, as mentioned before, introduces
numerical inefficiencies in its solution. Even though a truncated Born—-Huang
expansion was used to obtain Eq. (53), Wt(rg)ad(Rx), although no longer zero, has
no poles at conical intersection geometries [as opposed to the full W(IW(R;L)
matrix].

The set of coupled Poisson equations (50) can, in principle, be solved with
any appropriate choice of boundary conditions for B; ;(qy ). There is one choice,



300 ARON KUPPERMANN AND RAVINDER ABROL

however, for which the magnitude of Wt(rlffad(R;L) is minimized. If at the
boundary surfaces Rtx) of the nuclear configuration space spanned by R; (and
the corresponding subset of boundary surfaces g} in the internal configuration
space spanned by (), one imposes the following mixed Dirichlet-Neumann
condition [based on Eq. (48)],

Ve U(@)]U(q7) = ~WH(R?) (54)

it minimizes the average magnitude of the vector elements of the transverse
coupling matrix Wsra) (Ry) over the entire internal nuclear configuration space
as shown for the n = 2 case [55] and hence the magnitude of the gradient term
W4(R,) - Vg, x¢(R;.). To a first very good approximation, this term can be
neglected in the diabatic Schrodinger Eq. (53) resulting in a simpler equation

*—{IVZ + WOR)} + {e%(q,) — EL} |2/ (Ry) = 0 (55)

In this diabatic Schrédinger equation, the only terms that couple the nuclear
wave functions X, (Rk) are the elements of the W?“(R;) and £¢(q, ) matrices.
—(R?/20)W?4(R,) matrix does not have poles at conical intersection
geometrles [as opposed to Ww2)ad (Ry.)] and furthermore it only appears as an
additive term to the diabatic energy matrix £(q,) and does not increase the
computational effort for the solution of Eq. (55). Since the neglected gradient
term is expected to be small, it can be reintroduced as a first-order perturbation
afterward, if desired.
In this section, it was shown how an optimal ADT matrix for an n-electronic-
state problem can be obtained. In Section III.D, an application of the method
outlined above to a two-state problem for the H; system is described.

D. Application to Two Electronic States

In the two-electronic-state case (with real electronic wave functions as before),
Egs. (12) and (27) become

VO(r, Ry) = xRV (5 qp) + x5 (RS (15 @) (56)

= 1{(R) eld(l‘ @) + 13 (RS (r; @) (57)

Equations (28) and (30) are unchanged, with ¢ (r; q; ), ¥ (r; q;), 24 (Ry.)
and x*(R;) now being two-dimensional (2D) column vectors, and Eq. (40)

having the much simpler form

_ COSB(q ) —SiHB(q )
UB(an)] = (sinﬁ(qb cosB(qu) > o

involving the single real diabatization or mixing angle B(q; ).
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Equations (31) and (32) are unchanged, with W(l)d(R;L), W<2>d(Rx), and
£?(q, ) now being 2 x 2 matrices. The adiabatic-to-diabatic transformation, as
for the n-state case, eliminates any poles in both the first- and second-derivative
coupling matrices at conical intersection geometries but in this case Eq. (52)
yields

W(R,) = Wi (Ry) (59)
Elements of the matrix —(%/2p)W® are usually small in the vicinity of a
conical intersection and can be added to & to give a corrected diabatic energy
matrix. As can be seen, whereas in Eq. (15) W4 contains both the singular
matrix WI(OB1 and the nonsingular one Wl(m) , Eq. (31) contains only the latter.
Nevertheless, the residual first-derivative coupling term Wfra) - Vg, does not
vanish.

A “perfect” diabatic basis would be one for which the first-derivative
coupling W“)‘Z(RU in Eq. (31) vanishes [10]. From the above mentioned
considerations, we conclude, as is well known, that a “perfect” diabatic basis
cannot exist for a polyatomic system (except when the complete infinite set of
electronic adiabatic functions is included [26,47,74,76]), which means that
W“)“d(Rx) cannot be ‘‘transformed away” to zero. Consequently, the
longitudinal and transverse parts of the first-derivative coupling vector are
referred to as removable and nonremovable parts, respectively. As mentioned in
the introduction, a number of formulations of approximate or quasidiabatic (or
‘locally rigorous’) diabatic states [44,45,47-54] have been considered. Only
very recently [77-82] have there been attempts to use high quality ab initio
wave functions to evaluate the nonremovable part of the first-derivative
coupling vector. In one such attempt [81], a quasidiabatic basis was reported for
the triatomic HeH, system by solving a 2D Poisson equation on the plane in 3D
configuration space passing through the conical intersection configuration of
smallest energy. It seems that no attempt has been made to get an optimal
diabatization over the entire configuration space even for triatomic systems
until now [55], aimed at facilitating accurate two-electronic-state scattering
dynamics calculations for such systems. Conical intersections being omnipre-
sent, such scattering calculations will permit a test of the validity of the one-
electronic-state BO approximation as a function of energy in the presence
of conical intersections, by comparing the results of these two kinds of
calculations.

The ADT matrix for the lowest two electronic states of H; has recently been
obtained [55]. These states display a conical intersection at equilateral triangle
geometries, but the GP effect can be easily built into the treatment of the reactive
scattering equations. Since, for two electronic states, there is only one nonzero
first-derivative coupling vector, wg % (Ry.), we will refer to it in the rest of this
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section as w()2(R;). For a triatomic system, this vector is six dimensional
(6D).

As discussed in Section IL.A, the adiabatic electronic wave functions ;"
and \JJEI ad depend on the nuclear coordinates R; only through the subset q;
(Wthh in the triatomic case consists of a nuclear coordinate hyperradius p and a
set of two internal hyperangles &), this permits one to relate the 6D vector
w()2(R,) to another one w(1*(q,) that is 3D. For a triatomic system, let

a’ = (™ b, c™) be the Euler angles that rotate the space-fixed Cartesian
frame into the body-fixed principal axis of inertia frame I\, and let V“ be the
6D gradlent vector in this rotated frame. The relation between the space fixed
Vg, and V R, 18 given by

el,ad

Vi, = R(a™) Vg (60)

where R(a'™) is a 6 x 6 block-diagonal matrix whose two diagonal blocks are
both equal to the 3 x 3 rotational matrix R(a’*). The V{%}“ operator can be
written as [83]

Vi, = G"(&)p™ () + H ()™ (a™) (61)

In this expression, G™ and H™ are both 6 x 3 rectangular matrices whose
elements are known functions of the internal hyperangles &,. p’* is a 3 x 1
column vector operator whose elements contain first derivatives with respect to
the three q, coordinates and J™ is the 3 x 1 column vector operator whose
elements are the components J“‘ J” and J”‘ of the system’s nuclear motion
angular momentum operator Jin the I frame From these properties, it can be
shown that

wad(R, ) = R(a™)G™ (&, )w V¥ (q, ) (62)
and that

WORR,) - Ve, 2 (Ry) = G (&)W (@) - VR 7 (Ri)  (63)
where

w0 (q,) = (4 (e ) D™ (@ VS (1 @), (64)

is a 3D column vector and W(V*(q, ) is a 2 x 2 skew-symmetric matrix whose
only nonzero element is the w()%(q,) vector. By using the symmetrized
hyperspherical coordinates defined in Section IV.A for a triatomic system, the
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elements of p’ are the spherical polar components of the 3D gradient
associated with the polar coordinates p, 0, ¢; [84]:

0
Rl

hel

. 2

=l @ (65)

_1 0

psin 0 0o,

The corresponding cartesian gradient V¢, is given by
sin6 cos ¢;, cosB cos ¢, —sin
Vg, = | sinOsind; cos0sind, cosd, |p™ (66)
cos0 —sin6 0

in a space whose polar coordinates are p, 0, ;.
The w(M%(q,) vector can also be decomposed into a longitudinal and a
transverse part

w1 (q;) = Vg, (q;) + Wi ™ (a,) (67)

where, a(q; ) is a scalar potential. It can be shown using Eq. (58) and the two-
electronic-state counterpart of Eq. (47) that B(q; ) = a(q; ). The diabatization
angle B(q; ) can be obtained by taking the divergence of Eq. (67) and solving for
the resulting Poisson equation

Ve B(a) = o(qy) (68)
where

o(q,) = Vg, - w(q,) (69)

is known because w(1)*(q, ) has been accurately calculated and fitted over the
entire q, space of interest [84]. The nuclear—electronic rotational couplings
associated with the rotation of the H; molecular plane relative to a space-fixed
frame vanish identically if the mass-scaled nuclear and electronic coordinates of
Eqgs. (4) and (5) are used and the electronically adiabatic PESs are calculated
accordingly. This is not, however, done in standard electronic structure
calculations, as mentioned after Eq. (8), and as a result such couplings do not
vanish. We have, however, in our electronic wave function calculations [84],
found them to be at least two orders of magnitude smaller than the |w(1%(q, )|.
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(@p=2b () p=4b

B/deg

Figure 2. The diabatization angle B(p, 6, ¢, ), in degrees, for the Hz system at (a) p =2 b, (b)
p=4b,(c) p=6D, and (d) p = 8 b. The equatorial view of B contours is also given at (¢) p =2 b,
Hp=4b,(g) p=6Db,and (h) p=8b.

This justifies the use of the simpler q; language over the R; one. The solution of
the Poisson equation and the boundary conditions used are explained in detail
elsewhere [55]. Here, we will present some selected results.

The internal coordinates used in the calculation are the hyperradius p, and
the hyperangles 6 and ¢,, described in Section IV.A. The equation 6 = 0°
corresponds to conical intersection geometries and 6 = 90° to collinear ones.
For a fixed p and 6, as ¢, _is varied from 0 to 2, the system executes a loop in
internal configuration space around the corresponding conical intersection
geometry. In Figure 2, the diabatization angle B is displayed for several values
of p as a function of 0 and ¢,. Use of this B and Eq. (67), furnishes the

(1)ad . . . .
transverse part W, (q;) over the entire dynamically important region of
internal configuration space. This is displayed in Figure 3. These sets of § and
Wfrla)ad(qk) were obtained using an optimal mixture of Dirichlet and Neumann
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Figure 2 (Continued)

conditions for the solution of the above-mentioned Poisson equation. Using pure
Dirichlet conditions instead gives a different transverse part, displayed in
Figure 4. Comparison with Figure 3 clearly shows that the optimal boundary
conditions significantly reduce the magnitude of the transverse part as compared
to all-Dirichlet condition. Comparison of the average magnitude of the
transverse vector over the entire internal configuration space for both the
optimal and the all-Dirichlet boundary conditions, shows that the optimal
condition average was ~4.7 times smaller than the all-Dirichlet one. This
result indicates that use of the optimal mixed set of Neumann and Dirichlet
boundary conditions for solving the Poisson Eq. (68) does indeed significantly
reduce the average magnitude of the transverse part of the first-derivative
coupling vector.
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Figure 3. Transverse (nonremovable) part of the ab initio first-derivative coupling vector,
wi,‘;““(p, 0, d,) as a function of ¢, for p =4, 6, and 8 b and (a¢) 6 = 1° (near-conical intersection

geometries), (b) 8 = 30°, (¢) 8 = 60°, and (d) 6 = 90° (collinear geometries).
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P=4b P=6b P=8b
(1)ad (1)ad {1)ad
Wtra,GD tra,6D tra,6D

0.001b™

Figure 4. Same as Figure 3 for transverse (nonremovable) part of the ab initio first-derivative

(1)

‘ra;‘f)(p7 0, ¢, ), obtained using the all-Dirichlet boundary conditions.

coupling vector w,
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The vector w()*(q,) [or w{)*(q;)] can also provide a good first
approximation to the second-derivative coupling matrix W®4(q;, ), which in
a two-electronic-state approximation is given by

(2)ad (2)ad
2)ad [ Wi (qz) Wis (q5)
W (@) = < (2)ad (2)ad (70)
Wy (gy) W5 (q)

In the two-electronic-state Born—-Huang expansion, the full-Hilbert space of
adiabatic electronic states is approximated by the lowest two states and furni-
shes for the corresponding electronic wave functions the approximate closure
relation

W0 @) (U (s @) |+ W™ (s ) (5™ (s @) [ = 1 (71)

By using this equation and the fact that for real electronic wave functions the
diagonal elements of W1 (q;, ) vanish, it can be shown that

2)ad 2)ad 1)ad 1)ad

ng) (q) = wé% (@) = —W(L; (q) wﬁz) (q2) (72)
(2)ad _ (2)ad -0

Wis (q) =Wy (gy)

For the H; system, since ngad(qk) is known over the entire q, space [84],

Eq. (72) can be used to obtain the two equal nonzero diagonal elements of the
W24 (q, ) matrix. Since this matrix appears with a multiplicative factor of
(—h%/2p) in the adiabatic nuclear motion Schrodinger equation giving it the
units of energy, both (—A%/2u) W(f])ad(qx) and (—h?/2p) Wgz)ad(qx) can be
labeled as €24, In Figure 5, this quantity is displayed in units of kilocalories
per mole (kcal/mol) for several values of p as a function of 0 and ¢, . It shows
the singular behavior of the diagonal elements of W®(q,) at conical
intersection geometries (8 = 0°). Being a repulsive correction to the adiabatic
energies, this singular behavior prevents any hopping of the nuclei from one
electronic state to another in the close vicinity of the conical intersection.

By using the diabatic version of the closure relation (71), and Eq. (59), the
elements of the diabatic second-derivative coupling matrix W<2)d(qx) of Eq. (36)
can be expressed as

1)ad 1)ad
@) = W (@) = —wi (a) - wihl (a)
(
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b)p=4b

Figure 5. Second-derivative coupling term £®%4(q;, ) defined at the end of Section IILD for
the H; system at (a) p=2b, (b)) p=4Db, (c) p=06D, and (d) p =8 b. The following contours
are displayed 0-0.1 kcal/mol every 0.01 kcal/mol, 0.1-1.0 kcal/mol every 0.1 kcal/mol and
1.0-10.0 kcal/mol every 0.5 kcal/mol.

where, both (—4%/2p) W(la)d(qx) and (—h*/2p) wfﬁ"(qk) can be labeled as

£4(q,). The values of this (approximate) £?(q;) calculated from this
equation are smaller than 0.08 kcal/mol over the entire nuclear configuration
space involved, and to a very good approximation can be neglected.

IV. TWO-ELECTRONIC-STATE QUANTUM REACTION DYNAMICS
FORMALISM FOR TRIATOMIC REACTIONS

In a two-lowest-electronic-state Born—Huang description for a chemical
reaction, the nuclei can move on both of two corresponding PESs during the
reaction, due to the electronically non-adiabatic couplings between those states.
A reactive scattering formalism for such a reaction involving a triatomic system
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is presented below. This formalism is an extension of the time-independent
coupled-channel hyperspherical method [26,33-37] that has been used in the
past to study triatomic reactions on a single adiabatic electronic state.

A. Symmetrized Hyperspherical Coordinates

Consider a triatomic system with the three nuclei labeled A,, Ag, and A,. Let
the arrangement channel A; + A, A, be called the A arrangement channel,
where Avk is a cyclic permutation of afy. Let R}, r} be the Jacobi vectors
associated with this arrangement channel, where 1} is the vector from A, to A,
and R;\ the vector from the center of mass of AyA, to A,. Let Ry, 1) be the
corresponding mass-scaled Jacobi coordinates defined by

M 1/2 m 1/2
R, = (ﬂ) R, and 1, = (—K> r, (74)
W M

where p,, is the reduced mass of AyAg, 1, ,, the reduced mass of the A;, Ay A
pair, and p the system’s overall reduced mass given by

1/2
(M
" <ma +mp + mv)
m;, being the mass of atom A; (A = a,,7). We define a set of symmetrized
hyperspherical coordinates p, ;,v; [85,86] by

1/2

p= (R +7) (75)

and

Ry = pcos(w,/2) r, = psin(w/2) 0<m,<m (76)

where p is independent of the arrangement channel [60,61]. The corresponding
internal configuration space Cartesian coordinates are defined by

X = psinmy cos v,
Y = psinwy siny, (77)

Z) = pcosmy

where 7, is the angle between R; and r; (or R’k and r’k) in the 0 to « range and
y,7Y, are the polar angles of a point in this space. The alternate internal
configuration space symmetrized hyperspherical coordinates 0, ¢, are defined
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as the polar angles associated with the interchanged axes OX; = 0Z;,
0Y, = 0X,, and OZ, = OY,, for which

Xp. = 7)., = psinOcos P,
Y, = X). = psin0sino,; (78)
Z =Y = pcosH

The coordinates p, 0 and ¢, are limited to the ranges

0<p<oo 0<0<m/2 0< ¢, <2n (79)
The relation between 0, ¢, and w;, v, is [using Egs. (77) and (78)]

sin6 cos ¢; = cosmy
sinB sin ¢, = sinw;, cosy; (80)

cos0 = sinw, siny,

Let Gx'*y'z"* be a body-fixed frame I, whose axes are the principal axes of
inertia of the three nuclei and whose Euler angles with respect to the space-fixed
frame Gx*'y*'z*" are ay, by, c; with G being the center of mass of the three
nuclei. The senses of these axes are chosen to result in a 1:1 correspondence
between p, 0, d,,ay, by, c) coordinates and the space-fixed Cartesian coordi-
nates of R; and r). In addition, the I\ axes are labeled so as to order the
corresponding principal moments of inertia according to

<<l (81)

Furthermore, let T, refer collectively to the five hyperangles (8, &, , ax, by, 1),
q,, to the three internal coordinates (p, 0, ¢;) and R, to all six hyperspherical
coordinates.

The coordinates p, T, are called the principal axes of inertia symmetrized
hyperspherical coordinates. The nuclear kinetic energy operator in these
coordinates is given by

3 P, . A2(71y)
To(Ry) = —Z_HVR;~ =Ty(p) + 2t (82)
where, Tp(p) is the hyperradial kinetic energy operator
R P19 50
To(p) = —5-—=-p (83)

2upSdp’ dp
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and /A\Z(T;L) is the grand canonical angular momentum operator
55 5 JIX2
A*(03) = A5(0,,) +

n 2
1 +sin6

cos20
TG GG N
JE_ g ey g _j,#]

2 4 :

4
0
0,

I A R
sin O 2

cos0

—2h (I =Ty —

4
sinZ 0 (84)

where

) 19 o, 1 @
2 — 452 2 Sin20 2 4+ =
m@m>%<mmwmm%+m%wa )
and
=g i (86)

J, J’ *, and J/* are the components of the total orbital angular momentum J of
the nuclel in the 7). frame. The Euler angles ay., by, ¢), appear only in the J2, J’ »

and J’iX angular momentum operators. Since the results of their operation on
Wigner rotation functions are known, we do not need their explicit expressions
in terms of the partial derivatives of those Euler angles.

B. Partial Wave Expansion

In the two-adiabatic-electronic-state Born—Huang description of the total orbital
wave function, we wish to solve the corresponding nuclear motion Schrodinger
equation in the diabatic representation

h2
-5 0%+ W) ¢ () - B RO =0 (87)
for the diabatic orbital nuclear wave function column vector x¢(R;,)

(R, — ("7("“> (88)

In Eq. (87), the gradient term containing the transverse coupling has been
dropped because its inclusion in this formalism leads to numerical inefficiencies
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in the very efficient logarithmic derivative propagator [87,88] used in solving
Eq. (103). In the process of obtaining the ADT matrix, the magnitude of the
transverse coupling vector is minimized over the entire internal nuclear
configuration space following the procedure described in Section III. This
makes dropping the gradient term a very good approximation. After the
diabatization, since we know the transverse coupling vector, the effect of
the gradient term on the scattering results obtained without it can be assessed
using perturbative or other methods. In Eq. (87), £(q;) is a 2 x 2 diabatic
energy matrix

dioy (Eh(@)  eh(a)
“a=(Jfe) o) ®)

and W(z)d(qk) is a 2 x 2 second-derivative diabatic coupling matrix

wi (q) w (q,)
(2)d _ 1,1 12
W)= (e i) %0)

The W and wﬁd (i,j = 1,2) now depend on q, only rather than on the full
R;. The reason is as follows. The V%} appearing in the three body and two-
electronic-state version of Eq. (36) contains terms in P, 0, d, as well as in the
a’, the latter through the angular momentum operators .7)1(7‘ , J;kz, j?" , which
are the squares of the components of the total angular momentum vector J in the
principal axes of inertia frame that also appeared in Eq. (61). Since, as discussed
in Section ILA, y¢"*® and therefore " (i = 1,2) depend only on g, (rather on
the full R;), the result of the application of those angular momentum operators
on these diabatic electronic wave functions is zero. Therefore, the only

contributions to V%) \lﬁl’d(r; q;) come from the terms in V%{; that contain q,

only, which is different from the first-derivative Vg, coupling elements for
which the R(a™) factor in the right-hand side of Eq. (60) results in a
dependence of W4 on a’ when using Eq. (61).

Since the second-derivative coupling matrix W is only an additive term in
Eq. (87), we can merge it with the diabatic energy matrix and define a 2 x 2

diabatic matrix

h2

£(q;) = &'(q,) — EW@M(QA) (91)

By using Eq. (91), we can rewrite Eq. (87) as

- ZIV%;V +{&(qy) — ETI} [ xY(R;) = 0 (92)
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The two diabatic nuclear wave functions X1 and ¢ can be expressed as linear
JMTIT d JMTIT

combinations of auxiliary nuclear wave functions y;’ and ' , respec-

tively (the linear combinations referred to as partial wave expansions and the

individual x’“MHF nd deMHF referred to as partial waves), such that if we

define another nuclear wave function column vector

dJMIIT MRy
M
2 (Ry.)
then 9/ is a simultaneous eigenfunction of the diabatic matrix H™ (given

by the expression inside the square brackets in the left-hand side of Eq. (87)
with the ET term omitted), of the square of the total nuclear orbital angular
momentum J, of its space-fixed z-component J. and of the inversion operator [
of the nuclei through their center of mass G according to the expressions

Ay, d JMIT _ d,JMIIT
H"y = EY

jZXd,JMHF — ](J+ l)hzxdﬁ./MHF
jzxd,]MHF — thdJMHF
Iy,

dJMIT _ (_1)de,JMHr

In these equations, J and M are quantum numbers associated with the angular
momentum operators J2 and J,, respectively. The number IT = 0, 1 is a parity
quantum number that specifies the symmetry or antisymmetry of the y¢-/M1C
column vector with respect to the inversion of the nuclei through G. Note that
the same parity quantum number II appears for xd M and ngMHF. Also, the
same irreducible representation symbol I' in these two components of ¥,
appears, which does not mean that these diabatic nuclear wave functions
transform according to the irreducible representation I'. Its meaning instead is
as follows. The electronuclear Hamiltonian of the system is invariant under the
group of permutations of identical A A,A atoms. For Aj it is the P3 group, for
A;B it is the P, group and for three distinct atoms ABC it is the trivial identity
group. As a result, the ¥O(r,R;) that appears in Eq. (56) must transform
according to an irreducible representation I' of the corresponding permutation
group. The superscript I signifies that the transformation properties of y¢/M1T
are such that when taken together with the transformation properties of
U (r, q; ), they make WO(r, Ry belong to I'. The separate factors """ and
\I/?l’d(r, q;) do not individually belong to I" but that their product does. In
addition, it is important to stress that these diabatic deMHF are single valued,
that is, are unchanged under a pseudorotation [26]. This behavior is the opposite
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to that of the adiabatic y“*™"  which must change sign under such
pseudorotations, due to the geometric-phase effect.
. . d,JMTIT d,JMTIT
Let us now expand the two nuclear motion partial waves y; and y,
according to the following vector equation:

d JMIIT 0! Q)

7 AT
X] ! (p7 T?»)

d,JMl'[F,n;Q;L

%2 (P, 15)
dJUrW Y\ 4 TIT 2. =
_ —S/ZZDJH (T(1>) Znu bl,nu,,ﬂx (p; p)q)lm;,vﬂx (T373p) (95)
p MO\ L dJTTm Q) 2 dTIT 2). 5
o Do, by, 0r " (PiP)PY, o, (T375P)

where, Tgbl) refers to the set of three Euler angles a*, T(Kz) refers to the set of

two hyperangles 0, ¢, and €2 > 0 is the absolute magnitude of the quantum
number for the projection of the total angular momentum onto the body-fixed
Gz axis. Furthermore, the Djff, (Y\") are the parity-symmetrized Wigner
rotation functions defined as [33]

1/2
2J + 1
DJH. T(]) —
MQ,V( 2) 16m2[1 + (—1)J+H5sz},,o]

X Dl (T0) + (=10, o (1)) (96)

where Dzjvzm(T(xl)) is a Wigner rotation function of the Euler angles Tgbl) [89].
The symmetrized Wigner functions have been orthonormalized according to

M ~JII _ JTIM
JDL'QQDMQLCIT = )1, (97)

where dt is the volume element for the Euler angles.

In Eq. (95), <I>[]ljrrflF o, (T;z); p) and @gj,rg 0, (T3 ); p) are the diabatic 2D (in
0,d,) local hyperspherical surface functions (LHSFs) that depend parame-
trically on p and are defined as the eigenfunctions of a diabatic reference

hamiltonian flg’*. This Hamiltonian can be chosen to be block diagonal, that is,

. _ 1 [ 402077 (1 0
B0, 059) = 5.5 (42000 + 2o (1)

é‘lil (97 d)k; ‘_)) 0
98
! ( 0 é%(em;p)) %)
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or have the off-diagonal diabatic couplings built in, that is,

-0, _ 1 [s 42r* (10
B0, 0159) = 303 | 420,000 + v (o 1)

cos2 0 1

éfl (67 (bk; }3) é12(67 (bM 5)
99
+<%®@u@8%ﬂ%ﬁ) )

In the former case, @f}}lr (T&z),()) and @gg o (Tg),ﬁ) are solutions of
uncoupled second-order partlal differential equatlons whereas in the latter case
they are solutions of coupled differential equations and therefore their
calculation requires a larger computational effort than to obtain the former.
Since, however, the reference Hamiltonian fli}" is independent of the total
energy E of the system, the LHSFs need to be evaluated only once whereas the
resulting scattering equations given by Eq. (101) must be solved for many
values of E. As the off-diagonal diabatic couplings are built into Eq. (99), a
smaller number of the corresponding LHSFs will be needed for convergence of
the solutions of the scattering equations, as opposed to the ones resulting from
Eq. (98), which do not have this off-diagonal coupling built in. Given the fact
that the computational effort for solving those scattering equations scales with
the cube of the number of LHSFs used, it is desirable to use LHSFs obtained
from Eq. (99) rather than Eq. (98).

With either of these diabatic reference Hamiltonians, the LHSFs satisfy the
eigenvalue equation

[ 0, (0.02:P) Far 0, PPV o, (0,055p)
by (0, ¢1; p) = ;
(I)g Ezr 0 (0, dy; l_)) Eggr 0 (p)@ (zijrrg,gzk (ea $25P)
(100)

The diabatic LHSFs are not allowed to diverge anywhere on the half-sphere of
fixed radius p. This boundary condition furnishes the quantum numbers nj, and
ny,, each of which is 2D since the reference Hamiltonian h has two angular
degrees of freedom. The superscripts nj, €2} in Eq. (95), w1th n;_refering to the
union of n1 and n2 , indicate that the number of linearly independent solutions
of Egs. (94) is equal to the number of diabatic LHSFs used in the expansions of
Eq. (99).
In the strong interaction region, the diabatic eigenfunctions @f{nnrgb

(0,d,;p), i =1,2 are themselves expanded in a direct product of two
orthonormal basis _sets [90], f% (0;p) and gnmﬂ(d)x, p), where n;, =

ﬂg
(ni, , nig, ). Both f“' and gnm are chosen to be 51mple linear combinations

of trignometric functlons [33] such that the resulting diabatic nuclear wave
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functions transform under the operations of the permutation symmetry group of
identical atoms as described after Eqs. (94). Equations (100) are then
transformed into an algebraic eigenvalue eigenvector equation involving the
coefficients of these expansions, which is solved numerically by linear algebra
methods. In the weak interaction region, where the coordinates p,®;,7y; of
Eq. (77) are used, the diabatic LHSFs are eigenfunctions of the appropriate
reference hamiltonian expressed in those coordinates [33,90] and are labelled
@f’f o, (@, 725p), i=1,2. These new LHSFs are expanded in the direct
product of the associated Legendre functions of cosvy, and at a set of functions
of ) determined by the numerical solution of a one-dimensional (1D)
eigenfunction equation in m;, [33,90]. Once the diabatic LHSFs are known, they
provide the basis of functions in terms of which the expansion in Eq. (95) is
defined. The diabatic nuclear wave function vector of that equation is then inserted
into the first equation of Egs. (94). Use of the orthonormality of the symmetrized
Wigner functions (Eq. (97)) and integration over the 2D diabatic LHSFs, yields

a set of coupled hyperradial second-order ordinary differential equatlons (also
d,JI'n, Q}\

called coupled-channel equations) in the coefficients b’ o Q) (p;p) and
dJn, JTTn
2, . “(p:p). Let us define the column vectors b “(p;p) (i=1,2) as

the vectors whose elements are scanned by n;,, con51dered as a single row
index.

Letus also define a matrlx B4/ (p: p) whose nj , €2} column vector is obtained

dJIIn 2, dJITn,

by stacking the vector b2 (p; p) under the vector b, “ (p; p). These
vectors, for different n}, €Y, are then placed side-by- s1de thereby generating a
square matrix B whose dimensions are the total number of LHSFs
(channels) used. The coupled hyperradial equation satisfied by this matrix has

the form

W &2
I_

75 de + Vd.,/HF(p; p):| BdJHF(p; ()) —_ EBd’JHF(p; [5) (101)

where V4’1 (p: 5) is the interaction potential matrix obtained by this derivation
procedure and that encompasses £/(p):

Vd,JHF(

= dJIT
VdJHF(p_p)< 11 ) Vi ( §P)>
’ d JIT
Vo (

p p
pip) Vi (pip)
Its dimensions are those of B/ (p; p).
C. Propagation Scheme and Asymptotic Analysis

The strong and weak interaction regions of the internal configuration space is
divided into a certain number of spherical hyperradial shells. The 2D diabatic
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LHSFs are determined at the center p of each shell. These LHSFs are then used
to obtain the coupling matrix V*/'(p: p) given in Eq. (102). The coupled
hyperradial equations in Eq. (101) are transformed into the coupled first-order
nonlinear Bessel-Ricatti logarithmic matrix differential equation

) )+ 2V =0 (109)
where
F () = [(d/dp)B™ (o p) B (pip) T (104)

is the logarithmic derivative matrix and associated with B*/!''. Equation (103)
is integrated from the beginning of each sector to its end using a highly efficient
fourth-order logarithmic-derivative method [87,88] , and matched smoothly
from one shell to another.

By using this method, the F*/'"" matrix is propagated from a very small
value of p = p,, where a WKB solution is applicable, through a value p, that
separates the strong and weak interaction regions, to an asymptotic value
p = p, where the interactions between different arrangement channels A has
become negligible. At this asymptotic p,, the diabatic x*/""T" is transformed to
its adiabatic representation using the ADT matrix and matched to the
asymptotic atom—diatom wave functions. This asymptotic analysis furnishes
the reactance matrix R”™ and from it the scattering matrix g/tr [91,92]. For
total energies E at which no electronically excited states of the isolated atoms or
diatomic molecules are open, the elements of the open parts of these matrices
correspond to the ground electronic atom and diatom products only. This is done
for all I' and both parities (I =0, 1) and for a sufficiently large number of
values of J (i.e., of partial waves) for the resulting differential and integral
cross-sections to be converged. This numerical procedure for the current two-
electronic-state case is closely related to that for a single-electronic-state
described in [33].

V.  SUMMARY AND CONCLUSIONS

A general treatment of quantum reaction dynamics for multiple interacting
electronic states is considered for a polyatomic system. In the adiabatic
representation, the n-electronic-state nuclear motion Schrodinger equation is
presented along with the structure of the first- and second-derivative
nonadiabatic coupling matrices. In this representation, the geometric phase
must be introduced separately and the presence of a gradient term introduces
numerical inefficiencies for the solution of that Schrodinger equation, even if
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the nonadiabatic couplings do not display any singular behavior at the
intersections of adjacent electronic states. This makes it desirable to go to a
diabatic representation that incorporates automatically the geometric phase
effect. In addition, appropriate boundary conditions can be chosen so as to
impart desired properties on the diabatic version of the n-electronic-state
nuclear motion Schrodinger equation. One such property is the minimization of
the magnitude of that gradient term. If a complete (infinite) set of adiabatic
electronic wave functions is used in a Born—-Huang expansion of the system’s
electronuclear wave function (which is not possible in practice), this term
vanishes automatically. In practice, a finite number n of adiabatic states are
included for the treatment of chemical reactions. For this case, the gradient term
survives in the diabatic representation as a nonremovable derivative coupling
term, which, however, does not diverge at conical intersection geometries. A
general method is presented that minimizes this nonremovable coupling term
over the entire internal nuclear configuration space, leading to an optimal
diabatization. As a very good first approximation, this gradient term can be
neglected in the diabatic nuclear motion Schrodinger equation. Since that
nonremovable coupling is obtained as a part of the diabatization process, its
effect on the scattering cross-sections can be studied subsequently by
perturbative or other methods.

A reactive scattering formalism for a triatomic reaction on two interacting
electronic states is also presented. This formalism is an extension of the time-
independent hyperspherical method [26,33] for one adiabatic electronic state.
The extended formalism involves obtaining diabatic local hyperspherical
surface functions (LHSFs) for each hyperradial shell. The partial wave diabatic
nuclear wave functions are expanded in terms of these diabatic surface functions
and the coefficients of the expansion propagated to an asymptotic value of the
hyperradius, where the diabatic nuclear wave function is transformed to its
adiabatic counterpart. An asymptotic analysis of the adiabatic nuclear wave
function gives the partial wave scattering matrices needed to obtain the desired
differential and integral cross-sections. A comparison of the cross-sections
obtained using this two-electronic-state formalism with those obtained using
only the adiabatic ground electronic state with the geometric phase included,
should provide an estimation of the energy range for which the one-electronic-
state BO approximation is valid.
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I. INTRODUCTION

Reactive atomic and molecular encounters at collision energies ranging from
thermal to several kiloelectron volts (keV) are, at the fundamental level,
described by the dynamics of the participating electrons and nuclei moving under
the influence of their mutual interactions. Solutions of the time-dependent
Schrodinger equation describe the details of such dynamics. The representation
of such solutions provide the pictures that aid our understanding of atomic and
molecular processes.

Traditionally, for molecular systems, one proceeds by considering the
electronic Hamiltonian He|, which consists of the quantum mechanical operators
for the kinetic energy of the electrons, their mutual Coulombic repulsions, and
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their attractions to each of the atomic nuclei. Commonly, the nuclear—nuclear
repulsion energy is included in H,;. The time-dependent Schrodinger equation
with this Hamiltonian describes the electron dynamics in a field of stationary
nuclei. Methods of solving the time-independent electronic Schrodinger
equation, commonly referred to as electronic structure theory, have reached
considerable refinement and accuracy over the past decades. The bulk of such
work consists of development of approximate many-electron theory and its
implementation in terms of sophisticated computer software for solution of

Heln) = E,(R)|n) (1)

that is, finding approximate stationary state solutions |n) with characteristic
electronic energies E,(R) for one fixed nuclear geometry at a time.

While experiments by their very nature are carried out in a laboratory
coordinate frame, theory commonly proceeds via the introduction of internal
coordinates in terms of molecule fixed axes. Done properly, this means that the
kinetic energy of the center-of-mass motion is first separated from the other
degrees of freedom. The origin of the internal coordinates, of course, can be
chosen in a number of ways. The center of mass of the nuclei is a convenient
choice that does not introduce kinetic energy coupling terms between electronic
and nuclear degrees of freedom. No matter what is the choice of origin of the
internal system of coordinates the result is a set of modified kinetic energy
operators with reduced particle masses and so-called mass polarization terms.
The latter, which are sums of products of momenta of different particles, are as a
rule small and usually neglected.

For some systems consisting of two-to-four atoms of light elements it is
currently feasible to consider enough points for, say, the ground-state electronic
energy Eo(R) such that appropriate interpolation techniques can produce the
energy for all nuclear geometries below some suitable energy cutoff. The
resulting function Ey(R) is the Born-Oppenheimer (BO) potential energy
surface (PES) of the system. Traditional molecular reaction dynamics proceeds
by considering such a PES to be the potential energy for the nuclear dynamics,
which, of course, may be treated classically, semiclassically, or by employing
quantum mechanical methods. The other energy eigenvalues E,(R) similarly
yield potential energy surfaces for electronically excited states. Each PES
usually exhibits considerable structure for a polyatomic system and can provide
instructive pictures with reactant and product valleys, local minima identifying
stable species, and transition states providing gateways for the system to travel
from one local minimum to another. Avoided crossings or more generally
conical intersections and potential surface crossings are regions of dramatic
chemical change in the system. The PES in this way provides attractive pictures
of dynamical processes, which since the very beginning of molecular reaction
dynamics have dominated our ways of thinking about molecular processes.
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Quantum mechanical methods using high-quality potential energy surfaces have
produced results in excellent agreement with the best experiments for small
systems of the lightest elements at low energies. However, high quality potential
energy surfaces exist only for a few systems. The difficulty of their determi-
nation increases rapidly with the number of atoms in the system. The deter-
mination of a PES in 3n — 6 dimensions for an n-atom system is not only costly,
but a PES in six or more dimensions is very hard to visualize and thus less useful.
One way to proceed for larger systems is to identify active modes and to freeze
or discretize other degrees of freedom. Such procedures tend to be subjective,
and may introduce artificial features into the dynamics. In this traditional ap-
proach to dynamics, each process is studied at a fixed total angular momentum.

Many molecular beam experiments are performed at collision energies from
a fraction of an electron volt to tens of electron volts. In such cases two or more
stationary molecular electronic states and their potential energy surfaces can
provide an adequate description provided also the effects of the nonadiabatic
coupling terms are taken into account. Even in cases where a single PES is
sufficient to describe the relevant forces on the participating nuclei one should
augment the Born—-Oppenheimer PES with the diagonal kinetic energy
correction to produce the so-called adiabatic approximation, something that is
only rarely done in practice.

Ton—atom and ion-molecule collisions at energies in the kiloelectron volts
range are common in studies of energy deposition and stopping of swift
particles in various materials. Theoretical treatments of such processes often
employ stationary electronic states and their potential energy surfaces. At such
elevated energies the relevant state vector of the system is an evolving state,
which may be expressed as a superposition of a number of such energy states. In
fact, the system moves on an effective PES, which is the dynamical average of a
number of adiabatic surfaces and should in principle also include effects of the
nonadiabatic coupling terms.

Obviously, the BO or the adiabatic states only serve as a basis, albeit a useful
basis if they are determined accurately, for such evolving states, and one may
ask whether another, less costly, basis could be just as useful. The electron
nuclear dynamics (END) theory [1-4] treats the simultaneous dynamics of
electrons and nuclei and may be characterized as a time-dependent, fully
nonadiabatic approach to direct dynamics. The END equations that approximate
the time-dependent Schrodinger equation are derived by employing the time-
dependent variational principle (TDVP).

II. STRUCTURE AND DYNAMICS

The most accurate information about quantum systems is obtained via
spectroscopic measurements. Such measurements have, until quite recently,
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been capable of only rather long-time averages of molecular events. Such
studies emphasize structure and the associated electronic structure theory can
successfully calculate molecular spectra and properties by applying the time-
independent Schrodinger equation and focusing on stationary electronic states.
The methods and techniques of electronic structure theory have a long history,
and coupled with the development of ever more powerful computers this area of
study has reached a very high degree of sophistication.

Development of laser technology over the last decade or so has permitted
spectroscopy to probe short-time events. Instead of having to resort to the study
of reactants and products and their energetics and structures, one is now able to
follow reactants as they travel toward products. Fast pulsed lasers provide
snapshots of entire molecular processes [S] demanding similar capabilities of
the theory. Thus, explicitly time-dependent methods become suitable theoretical
tools.

The dominant theoretical approaches to study molecular processes break the
problem down into separate parts, the first being the determination of one or
more potential energy surfaces. This involves electronic structure calculations
for a large number of nuclear geometries and interpolation techniques [6-8] to
provide as accurate as possible a functional form of each PES. Electronic
structure methods and algorithms have been developed into efficient codes such
as Gaussian [9], and ACES II [10], which can be used with minimal knowledge
of electronic structure theory. These and many other codes have made
computational chemistry a working tool for the bench chemist on an equal
footing with various spectroscopic methods.

Given a ground-state PES the dynamics methods that have dominated the
field since the beginning proceed by treating the nuclear motion with quantum
mechanics, semiclassical or quasiclassical techniques, or with classical
trajectory methods. For processes where more than one electronic stationary
state is involved one needs preconstructed PESs for all states and also
nonadiabatic coupling terms in order to study the dynamics. Several workers
have contributed significantly to the developments of a variety of methods for
molecular dynamics with active electronic degrees of freedom [11-17]. The
electronic basis employed for the evolution of approximate solutions to the
time-dependent Schrodinger equation may consist of the electronic energy
eigenstates and the nonadiabatic effects can be accounted for by calculated and
interpolated coupling terms or simulated by phenomenological surface hopping.

A major drawback to the approaches that use preconstructed PESs is that
there are many more interesting systems undergoing reactive dynamical
processes than there are available PESs. It would be much better if the
electronic structure part of the problem, which provides the forces for the
nuclear dynamics, could be performed simultaneously with the dynamics part,
thus making possible the treatment of systems for which preconstructed PESs
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do not exist. Such approaches are referred to as direct dynamics methods.
The popularity of the Car—Parinello method [18] is ample evidence for the
need of such theoretical dynamics treatments. Car—Parinello uses density
functional theory for the electronic degrees of freedom and may be considered
to be a direct dynamics method for processes that strictly follow the electronic
ground state.

Potential energy surfaces, although purely theoretical constructs, are
extremely useful and attractive tools in providing illustrative pictures of
molecular processes and are essential for understanding the energetics. When
the dynamics takes place on a single surface one can picture the dynamics
moving from a reactant valley to a product valley passing through a transition
state region. When several PESs are involved one tends to picture the dynamics
as following one surface or another with the nonadiabatic coupling terms
providing the means for transitions from one surface to the other. Strictly
speaking, nonadiabatic dynamics takes place between PESs and one can very
well use a different basis from that of electron energy eigenstates in describing
the evolving system. The challenge is then to develop simple and illustrative
alternative pictures of the molecular process to that provided by PESs.

Electron nuclear dynamics theory is a direct nonadiabatic dynamics approach
to molecular processes and uses an electronic basis of atomic orbitals attached
to dynamical centers, whose positions and momenta are dynamical variables.
Although computationally intensive, this approach is general and has a
systematic hierarchy of approximations when applied in an ab initio fashion.
It can also be applied with semiempirical treatment of electronic degrees of
freedom [4]. It is important to recognize that the reactants in this approach are
not forced to follow a certain reaction path but for a given set of initial
conditions the entire system evolves in time in a completely dynamical manner
dictated by the interparticle interactions.

III. TDVP AND END

The TDVP employs the quantum mechanical action

A—ruwwwr @

1

where the Lagrangian is (h = 1)

L= (4li0 — HI)/ 1Y) 3
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with H the total Hamiltonian of the system and requires the action to be
stationary under variations of the wave function, that is,

54 — r SLOU*, \)dt = 0 ()

31

The total molecular system wave function is subject to the boundary conditions
S[y) = 3(y| =0 (5)

at the endpoints #; and 7,.

When the wave function is completely general and permitted to vary in the
entire Hilbert space the TDVP yields the time-dependent Schrodinger equation.
However, when the possible wave function variations are in some way
constrained, such as is the case for a wave function restricted to a particular
functional form and represented in a finite basis, then the corresponding action
generates a set of equations that approximate the time-dependent Schrodinger
equation.

The time dependence of the molecular wave function is carried by the wave
function parameters, which assume the role of dynamical variables [19,20].
Therefore the choice of parameterization of the wave functions for electronic
and nuclear degrees of freedom becomes important. Parameter sets that exhibit
continuity and nonredundancy are sought and in this connection the theory of
generalized coherent states has proven useful [21]. Typical parameters include
molecular orbital coefficients, expansion coefficients of a multiconfigurational
wave function, and average nuclear positions and momenta. We write

) = (2) = |2) (6)

where z denotes an array of suitable, and in general complex, wave function
parameters.
By using Eq. (5), we can write the Lagrangian in a more symmetric form as

i

L= |3 (aid) - (ola) ~ (alta)| /(e )

where the dot denotes differentiation with respect to the time parameter t.
Variation of the Lagrangian, 5L, with respect to all the parameters introduces |5z)
and (0z|, which can be eliminated by the introduction of the total time derivatives

d (z|dz)
dt (z|z)

(3)
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and

d (dz|z)
dt (z|z) ©)

and the boundary conditions Eq. (5). This results in a set of equations

5]
O:SA:J OL dt

4]
lnS OE 52"
6z 61;3 0z, “

0*InS .. OF
+Y D i s 5] 61a>dt (10)

o p

where S = S(z*,z) = (z|z) and E = E(z*,z) = (z|H|z)/(z|z), and where the
chain rule has been applied to the time differentiation.
Since 0z, and 9z}, are independent variations it must follow that

. . OE
ZZC&BZB:§ (11)

where Cy,p = o’ In S§/0z},0zp. These equations govern the time evolution of the
wave function parameters. The time evolution of the overall phase factor exp iy
is controlled by the equation

. . 0 ., 0

Note that for a stationary state all parameters satisfy z = 0 and thus y = —FE¥,
yielding the phase-factor exp — iEt as expected.

In matrix block form the equations that govern the time evolution of the
parameters can be expressed as

(5 o) ()= (5 1
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If the wave function parameters are chosen appropriately, then the Hermitian
matrix C = [C,p] has an inverse and we can write

(-5 () w

It is possible to introduce a generalized Poisson bracket by considering two
general differentiable functions f(z,z*) and g(z,z*) and write

T J —iC! 0 dg/0z*
o /ea ef/o 1( ) _I.C*_l)[ i

. o i 0g 08 i of

{f.e}

It follows straightforwardly that

i={z,E} (17)
it = {z",E} (18)

which shows that the time evolution of the wave function parameters is governed
by Hamilton-like equations. The time evolution of the molecular system can then
be viewed as occurring on a phase space made up of the complex wave function
parameters z and z* acting as conjugate positions and momenta and E(z,z")
being the Hamiltonian or the generator of infinitesimal time translations. This is
obviously not a flat phase space. Such coupled sets of first-order differential
equations can be integrated by a great variety of methods (see [22]).

A. The Basic END Ansatz

The END theory can be implemented at various levels of approximation.
The simplest approximation develops a Lagrangian for classical nuclei or
distinguishable atomic nuclei represented by traveling Gaussian wavepackets in
the narrow width limit, and for quantum electrons represented by a single
determinant built from nonorthogonal, complex spin orbitals [23]. The principle
of least action using this Lagrangian yields the dynamical equations of minimal
END.

At this level of approximation, the molecular wave function can be expressed
as

(W(2)) = |R(2), P(1))|z(2), R(1), P(1)) (19)
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where
X — R
(X|R(1) Hexp[ ( d - ") +iP; - (X; — Ry (20)
and
(x[z(2), R(2), P(1)) = det y;(x;) (1)
with the spin orbitals
K
ni=uit+ Y, uzit) (22)

J=N+1

expanded in terms of atomic spin orbitals

{w}y (23)

which in turn are expanded in a basis of traveling Gaussians,
(6 RY = R = R exp | ~alx~RP — P (xR (9

centered on the average nuclear positions R and moving with velocity P/M.
In the narrow wavepacket limit, b — oo, the Lagrangian may be expressed as

alnS OlnsS alnS O0lnS
L= P+ — "R — | P
Z{ [ it ( OR;  OR, ) it ( oP; P ) 7 }
ij J J

i O0lnS OlnsS
+-> (o2 —E 25
2 Pl <azph Sz *p ph) 23)

with S = (z,R', P'|z,R, P) and

E= Z 2 /2M; + (2, R ,P'|Halz, R, P)/(z,R', P'|z, R, P) (26)

Here, H, is the electronic Hamiltonian including the nuclear—nuclear repulsion
terms, Pj; is a Cartesian component of the momentum, and M; the mass of
nucleus /. One should note that the bra depends on z* while the ket depends on z
and that the primed R and P equal their unprimed counterparts and the prime
simply denotes that they belong to the bra.
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The Euler-Lagrange equations

doL oL

== 27
dtog 0Oq (27)
can now be formed for the dynamical variables
q = Rjt, Pjt, 2pn, 2, (28)
and collected into a matrix equation
iC 0 iCr iCp Z OE/0z*
0 —iC  —iCi —iCp z* | 0E/0z 29)
iCh —iCE  Crr —I+Cre||R| |QE/OR
iCI, —ng I+ Cpr Cpp P OE/0P
where the dynamical metric contains the elements
*InS
Cxy)y.; = —2Im——= 30
(Contey =2zl (30)
o*InsS
Cxi)on = (Cx)opik = aomo— 31
( Xix )ph ( X)ph‘zk aZ?kaXik R—R. P—p ( )
which are the nonadiabatic coupling terms, and
*InS
hiag = 3 (32)
e 025,025 |Ri—g, p—p

In this minimal END approximation, the electronic basis functions are
centered on the average nuclear positions, which are dynamical variables. In the
limit of classical nuclei, these are conventional basis functions used in
molecular electronic structure theory, and they follow the dynamically changing
nuclear positions. As can be seen from the equations of motion discussed above
the evolution of the nuclear positions and momenta is governed by Newton-like
equations with Hellman-Feynman forces, while the electronic dynamical
variables are complex molecular orbital coefficients that follow equations that
look like those of the time-dependent Hartree—Fock (TDHF) approximation
[24]. The coupling terms in the dynamical metric are the well-known
nonadiabatic terms due to the fact that the basis moves with the dynamically
changing nuclear positions.
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The time evolution of molecular processes in the END formalism employs a
Cartesian laboratory frame of coordinates. This means that in addition to the
internal dynamics overall translation and rotation of the molecular system are
treated. The six extra degrees of freedom add work, but become less of a burden
as the complexity of the system grows. The advantage is that the kinetic energy
terms are simple and no mass polarization terms need to be discarded.
Furthermore, the complications of having to choose different internal
coordinates for product channels exhibiting different fragmentations are not
present. One can treat all product channels on an equal footing in the same
laboratory frame. Since the fundamental invariance laws with respect to overall
translation and rotation are satisfied within END [4] it is straightforward to
extract the internal dynamics at any time in the evolution.

Better END approximations are defined by the introduction of more
general molecular wave functions leading to larger and more involved
parameter spaces.

B. Free Electrons

In this context, it is interesting to explore the possibilities of the END theory to
describe molecular processes that involve free electrons either as reagents or as
products. Electron-molecule scattering or ionization processes in molecular
collisions are commonly treated separately from general molecular reaction
dynamics. The principal idea in extending END to include free electron
capabilities is to center electronic basis functions on independent positions in
space. This means that such basis centers, so-called free centers, move on their
own and are not associated with nuclear positions, however, the positions and
conjugate momenta of these free centers are dynamical variables, which evolve
according to the appropriate Euler—Lagrange equations.

The electronic basis for the free centers is similar to that in Eq. (24) and more
precisely can be written as

(= p) (v —p,)"(z—p.)" exp| —c(x — p)* — %Tr “(x—p)|  (33)

with x = (x,y,z) an electron coordinate, p the center coordinate, and 7 the
average electronic momentum. We can add such electronic orbitals to the
minimal END wave function considered in Section III.A. The electronic basis
centered on the atomic nuclei are standard basis functions u; suitable for the
particular element, while on the free centers the basis is the union w; = u; U v;,
where v; is a set of diffuse functions. In order to create an initial state for an
ionizing atomic or molecular collision, one performs an self-consistent field
(SCF) calculation in the bound state basis u; to obtain the orbitals ¢; = > & WkChi-
The initial state component on a free center is then constructed using the



334 YNGVE OHRN AND ERIK DEUMENS

projector [w)(w|w) " (w| to obtain

be =D _wi(A™),, (Wnldy) (34)
Ik

In an electron scattering or recombination process, the free center of the in-
coming electron has the functions w; = u; Uv; and the initial state of the free
electron is some function v; the width of which is chosen on the basis of the
electron momentum and the time it takes the electron to arrive at the target. Such
choice is important in order to avoid nonphysical behavior due to the natural
spreading of the wavepacket.

In a completely general and flexible application of END one may choose to
include some number, say Ny, of nuclei described as in Eq. (20) completely
void of electronic basis functions, and some number (N4) of nuclei with
electronic basis functions, as well as some number (Nr) of free centers.

C. General Electron Nuclear Dynamics

When constructing more general molecular wave functions there are several
concepts that need to be defined. The concept of geometry is introduced to mean
a (time-dependent) point in the generalized phase space for the total number of
centers used to describe the END wave function. The notations R and P are used
for the position and conjugate momenta vectors, such that

RZ(Rk,kzl,...,NA +NF+Nion) (35)

These notations are used for positions and momenta, when the nuclei are treated
as classical particles and denote average positions and momenta when they are
treated quantum mechanically.

Another concept is that of electronic structure, which is defined as an
electronic wave function associated with a geometry. For the case that the
electrons are described by a single determinantal wave function it would be
meaningful to consider multiple different electronic structures associated with
the same geometry. In general, it would also be meaningful to consider multiple
geometries, each evolving with its own electronic structure. The reason for this
particular definition of electronic structure is that it would not be meaningful to
consider multiple geometries with a single electronic structure, since the BO
approximation provides a very good description. In Table I, we list the three
possible combinations of geometry and electronic structure.

The wave function for the electronic structure can in principle be any of the
constructions employed in electronic structure theory. The preferred choice in
this context is a wave functions that can be classified as single and multi-
configurational, and for the latter type only complete active space (CAS) wave
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TABLE I
The Three Meaningful Combinations of Electronic Structure ¢
SG MG
SES U(X,x,R,P) Not meaningful
MES >ow e Pu(X,x, R, P) Dy Gy Vu (X, x, Ry, Py)

“single electronic structure (SES), multiple electronic structure (MES), single geometry (SG), and
multiple geometry (MG).

The symbols X and x denote the quantum mechanical coordinates of the nuclei and electrons,
respectively. The index p runs over electronic structures and y over geometries.

functions are really useful. The reason for this is that such constructions have a
well-established coherent (or vector coherent) state description, so that the
parameters define a well-behaved phase space for a dynamical Hamiltonian
system. Because in the END formulation of molecular dynamics the wave
function parameters are the dynamical variables it is essential that they are
nonredundant and continuous.

The Thouless determinantal electronic wave function |z) = det y;(x;) in
Eq. (21) is an example of such proper parametrization. The dynamical spin
orbitals are expressed in terms of atomic spin orbitals centered on the various
nuclei

Xi = U; + Z I/lijl‘ (36)
J

with time-dependent complex coefficients z;; being the dynamical variables. This
parameterization guarantees that all possible determinantal wave functions in
terms of the atomic orbitals are accessible during imposed dynamical changes of
the system. Numerical stability is ensured as long as the z coefficients are small
in comparison to unity. This can be assured by the capability to switch from one
local parameterization or chart that during the dynamics may have led to large
parameter values and therefore numerically unstable equations, to another chart
more suitable for that part of the dynamics. Such change of charts must be
possible without introduction of any artificial discontinuities in trajectories and
various calculated properties.

We consider the example of a particular trajectory of the H™ 4+ H,(0,0) —
H,(v,j) + H at an energy of 1.2 eV in the center-of-mass frame. By using an
atomic orbital basis and a representation of the electronic state of the system in
terms of a Thouless determinant and the protons as classical particles, the
leading term of the electronic state of the reactants is

‘(1S1 + 1S2)O((1S1 + 1S2)B1S30€| (37)
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where 1 and 2 label the protons of the reactant molecule and 3 that of the pro-
jectile atom, and 1s; is an atomic orbital centered on proton i. Let the reactive

trajectory proceed by exchange of protons 2 and 3 making the leading term of the
product electronic state

[(1s1 + Ls3)a(1sy + Ls3)Blsaal (38)
The original chart or Thouless parameterization

Isjo0 + ]SzOLZCIIZ

1s1B + lszBZ[fz + 1S3BZ?3 (39)

1s30 + ISQO(Zgz

represents the state in Eq. (37) with

=1
=0
(40)
but cannot properly represent the state in Eq. (38), that is,
7§, = undefined
25y =00
(41)
Z?z =0
1?3 =1

Numerically, it shows up in z{, and z3, coefficients becoming very large in
comparison to unity making the integration of the dynamical equations less
accurate. The ENDyne code then automatically switches to a new chart with the
coefficients more suitable to the product side, that is,

Lsjo+ 1301255

LIs1B + 1S2521132 + 153[31[133 (42)

ISZOL + 1S3 OLZ;%
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which represents the state Eq. (38) when

=1

53 =0

z?z o (43)
Z[133 =

Although the leading term of the electronic wave function of the system is thus
changed, the total wave function has not and the calculated trajectory and
properties exhibit no discontinuous behavior.

Some details of END using a multiconfigurational electronic wave function
with a complete active space (CASMC) have been introduced in terms of an
orthonormal basis and for a fixed nuclear framework [25], and were recently [26]
discussed in some detail for a nonorthogonal basis with electron translation
factors.

The full dynamical treatment of electrons and nuclei together in a laboratory
system of coordinates is computationally intensive and difficult. However, the
availability of multiprocessor computers and detailed attention to the develop-
ment of efficient software, such as ENDyne, which can be maintained and
debugged continually when new features are added, make END a viable
alternative among methods for the study of molecular processes. Furthermore,
when the application of END is compared to the fotal effort of accurate
determination of relevant potential energy surfaces and nonadiabatic coupling
terms, faithful analytical fitting and interpolation of the common pointwise
representation of surfaces and coupling terms, and the solution of the coupled
dynamical equations in a suitable internal coordinates, the computational effort
of END is competitive.

IV. MOLECULAR PROCESSES

The END equations are integrated to yield the time evolution of the wave
function parameters for reactive processes from an initial state of the system.
The solution is propagated until such a time that the system has clearly reached
the final products. Then, the evolved state vector may be projected against a
number of different possible final product states to yield corresponding transition
probability amplitudes. Details of the END dynamics can be depicted and cross-
section cross-sections and rate coefficients calculated.

The approximations defining minimal END, that is, direct nonadiabatic
dynamics with classical nuclei and quantum electrons described by a single
complex determinantal wave function constructed from nonorthogonal spin
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orbitals with electron translation factors centered on the dynamically changing
nuclear positions, yield results for hyperthermal atomic and molecular reactive
collisions that are usually in agreement with available experimental data. It is
interesting to ask to what extent this level of treatment applies to low energy
processes. The experience gained from several applications is that some
quantities that are not too sensitive to the detailed dynamics, such as integral
cross-sections, can be described quite well, while other properties, notably
differential cross-sections, are not. This is understandable from the fact that at
thermal energies the dynamics follows closely the ground-state potential energy
surface, which for minimal END is the ground-state SCF surface.

In order to make END better suited to the application of low energy events it
is important to include an explicitly correlated description of the electron
dynamics. Therefore multiconfigurational [25] augmentations of the minimal
END are under development.

However, for molecular events involving more than one electronic state, even
when they take place at low energies, minimal END direct dynamics appear to
do well. Electron transfer is an example of such processes. lon—atom collisions
have been studied at a great variety of energies [27-29], ranging from a few tens
of an electron volt to hundreds of kiloelectron volts, usually achieving
agreement with available experimental data. Minimal END for HJ + H, at 0.5—
4.0 eV [30] yields integral cross-sections for formation of H; and for electron
transfer in good agreement with experiment.

A. Reactive Collisions

Bimolecular reactive encounters, atom—molecule, ion—-molecule, and ion—-atom
collisions at a great variety of energies and initial states can be studied with the
END theory. If we use classical nuclei this means that in addition to the initial
electronic state of the system the nuclear geometries or internal states of the
participating molecular species must be chosen. Several END trajectories have to
be calculated, which means that for, say, gas-phase processes a sufficient number
of relative orientations of the reactants must be considered so that directional
averages can be obtained. Also, a range of impact parameters must be employed
ranging from zero for head on collisions to such values that produce nonreactive
trajectories. This simply corresponds to studying the processes for a range of
total angular momenta.

The general problem of molecular reactive scattering can be studied with the
machinery of formal time-dependent (or time-independent) scattering theory.
However, for the implementation of END theory with classical nuclei it is useful
to remind ourselves of some of the concepts of classical potential scattering.
The consideration of the scattering of two structureless particles interacting via
a potential energy U(R) can suffice for reminding the reader of some of the
features of classical scattering. The collision energy is E = pv?/2 with p the
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reduced mass and v the relative speed. The angular momentum of the system is

J = wb with b the impact parameter. The scattering angle 0 in the laboratory
frame is the absolute value of the deflection function ©(b) as [31]

6 =10() =

n—2b JOO R2[1 = U(R)/E — b*/R*|""dR (44)
Ro

The classical scattering cross section for a given process is simply

bmax

o(E) =2mn L P(E,b)bdb (45)

where P(E, b) is the so-called opacity function, which can be directly obtained
from the evolved END wave function and the appropriate final state in the same
basis, giving the fraction of collisions leading to the considered reaction products
for a given collision energy and impact parameter. The corresponding classical
differential cross-section is

b

or when more than one impact parameter b; produces the same scattering angle

b;
ZPEb 016/ db] (47)

The well-known glory scattering or forward peak scattering for small 6 and
rainbow scattering at angles for which d6/db = 0 causes singularities in the
classical differential cross-sections for which semiclassical corrections [32—34]
usually work well. The particular considerations of semiclassical corrections in
END theory have been thoroughly treated by Morales et al. [35]. A particularly
elegant and useful semiclassical treatment of the scattering amplitude for small
angle scattering at higher energies has been developed by Schiff [36]. He sums
the infinite Born series for the scattering amplitude by approximating each term
in the sum by the stationary phase method. This approach has been applied to
minimal END [27] with great success for ion—atom, atom—atom, and ion—
molecule collisions in the kiloelectron volt range. The scattering amplitude in
the small angle Schiff (semiclassical) approximation is

7(0) = ik | {1 expl-i5(6)]}o(ab) o (48)
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with Jj a Bessel function of order zero, and where g = |k; — K| is the momentum
transferred during the collision, 0 is the angle between the initial wave vector
of the projectile k; and final wave vector in the direction of the detector ky.
The semiclassical phase shift §(b) is related to the deflection function through
(see [31])

_ 2d5(b)

o) = ki db

(49)

The END trajectories for the simultaneous dynamics of classical nuclei and
quantum electrons will yield deflection functions. For collision processes with
nonspherical targets and projectiles, one obtains one deflection function per
orientation, which in turn yields the semiclassical phase shift and thus the
scattering amplitude and the semiclassical differential cross-section

dG . lz 2
o =Tis) (50)

For a particular process, this expression should be multiplied with the probability
for that process as determined by projection of the END evolved state \s(¢) for the
system on the appropriate final state s, described within the same basis set and at
the same level of approximation as the evolved state, that is, the amplitude
{(Us[W(7)) at a sufficiently large time .

It is interesting to note the similarity of the expression in Eq. (48) with the
result obtained through a WKB or eikonal type of argument [37,38]. The
eikonal approximation resorts to straight-line trajectories, while the END
application of the Schiff approximation uses fully dynamical trajectories. Schiff
[36] demonstrates that the scattering wave function obtained through his
procedure of summing the Born series contains an additional term, which is
essential for the correct treatment of the scattering and is not present in the
eikonal or WKB approaches to the problem. This formula of the scattering
amplitude [Eq. (48)] is also considered to be in principle valid for all scattering
angles (see [38], p. 604).

Many experimental techniques now provide details of dynamical events on
short timescales. Time-dependent theory, such as END, offer the capabilities to
obtain information about the details of the transition from initial-to-final states
in reactive processes. The assumptions of time-dependent perturbation theory
coupled with Fermi’s Golden Rule, namely, that there are well-defined
(unperturbed) initial and final states and that these are occupied for times,
which are long compared to the transition time, no longer necessarily apply.
Therefore, truly dynamical methods become very appealing and the results from
such theoretical methods can be shown as movies or time lapse photography.
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We have found that display of nuclear trajectories and the simultaneous evolu-
tion of charge distributions to yield insightful details of complicated processes.
Such descriptions also map more readily to the actual experimental conditions
than do the more conventional time-independent scattering matrix descriptions.

As an illustration of how results from time-dependent treatments of reactive
molecular collisions can be represented, we present some recent results [61] on
the D, + NHJ reaction at energies from 6 to 16 eV in the center-of-mass frame.
Recent molecular beam experiments have been carried out on this system in
the group of Zare [39—41] at energies from 1 to 10 eV in the center of mass.
These studies seek to gain insight into the mechanisms of the reaction by
considering several different initial conditions with varying amounts of energy
in translational and vibrational degrees of freedom of the reactants. At these
energies the two main mechanisms are the abstraction

NH; + D, — NH;D* +D (51)
and the competing exchange reaction
NH; + D, — NH,D* + HD (52)

In applying minimal END to processes such as these, one finds that different
initial conditions lead to different product channels. In Figure 1, we show a
somewhat truncated time lapse picture of a typical trajectory that leads to
abstraction. In this rendering, one of the hydrogens of NH3D™ is hidden. As an
example of properties whose evolution can be depicted we display interatomic
distances and atomic electronic charges. Obviously, one can similarly study the
time dependence of various other properties during the reactive encounter.

At low energies the abstraction process dominates and at higher energies the
exchange mechanism becomes more important. The cross-sections for the two
processes crossing at ~10 eV. The END calculations yield absolute cross-
sections that show the same trend as the experimentally determined relative
cross-sections for the two processes. The theory predicts that a substantial
fraction of the abstraction product NH;D™", which are excited above the
dissociation threshold for an N—H bond actually dissociates to NH,D" + H or
NH; during the almost 50-ps travel from the collision chamber to the detector,
and thus affects the measured relative cross-sections of the two processes.

One can note some interesting features from these trajectories. For example,
the Mulliken population on the participating atoms in Figure 1 show that the
departing deuterium carries a full electron. Also, the deuterium transferred to
the NH{ undergoes an initial substantial bond stretch with the up spin and down
spin populations separating so that the system temporarily looks like a biradical
before it settles into a normal closed-shell behavior.
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Figure 1. The trajectory of ground-state D, colliding with ground-state NH7 at 8 eV leads to
abstraction with the NH;D™ ion highly vibrationally excited. The time evolution of the interatomic
distances (c) and of the atomic charges (b) show which product species are generated.

B. Final-State Analysis

The determinantal wave function in Eq. (21) is built [23] from complex
dynamical spin orbitals y;. Even when the basis orbitals u; in Eq. (22) are
orthogonal these dynamical orbitals are nonorthogonal, and for a basis of
nonorthogonal atomic orbitals based on Gaussians as those in Eq. (24) the metric
of the basis becomes involved in all formulas and the END theory as
implemented in the ENDyne code works directly in the atomic basis without
invoking transformations to system orbitals.

The product analysis of the END system wave function is quite general, but
for simplicity we consider the case of two product fragments, A and B. As these
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fragments separate the corresponding dynamical spin orbitals may be expressed
as

%= a0+ (53)

with negligible overlap of the atomic orbitals centered on the nuclei of fragment
A with those on fragment B. At any given point in time ¢ after which the
separation of products has taken place, a particular molecular product fragment
has a particular nuclear geometry and its electronic wave function can be
projected on an electronic eigenstate of that geometry determined in the same
electronic basis set to obtain probabilities for state-to-state events. Specifically, a
molecular orbital basis is obtained for each fragment by performing an SCF
calculation at the geometry for a given final time 7. Then Slater determinants are
formed with these local fragment orbitals for the entire system exhibiting various
degrees of intrafragment excitations. These Slater determinants are orthogonal
and can be sorted according to charge and spin state depending on the number
and spin of system electrons assigned to each fragment. Projection of the END
evolved determinant against each of these determinants then yields the desired
probabilities.

In many ion—atom and ion—-molecule collisions, one is often only interested
in the projections on various charge states, which can be given a very simple
treatment. The Thouless determinant at separation of the two product fragments
can be expressed as

(xlz(2), R(2), P(t)) = {Ixtxs - a1+ Ll anly + - A - )
(54)

where each curly bracket contains all (Z) determinants with M =0,1,...,N
fragment B orbitals, respectively. A canonical orthonormalization of the atomic
orbitals of each fragment, that is,

¢; = Z".}'(Usil/z)ﬁ (55)

with the atomic orbital metric A being diagonalized by a unitary transformation
U, such that

s = U'AU (56)

makes it possible to write

C= Zulcl, Z(I)C l/2UCT WCli = Zd)kdkl (57)
7
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For each of the fragment determinants in Eq. (54), the following expansion or its
analogues applies:

|Xf\)€]2-3 : "le?/| = dﬁldgz e 'diw|¢ﬁ¢g s 4)3 (58)

01502500l

in terms of orthonormal determinants. The relevant transition probability to a
particular charge state can then be obtained by squaring the coefficients
dMdP,---d, add them up, and divide by the total normalization of the
Thouless determinant.

Rovibrational final-state analysis can also be achieved even for the case of
classical nuclei. A product fragment with classical nuclei rotates and vibrates as
a classical object. A classical quantum correspondence is adopted, such that this
classical object is described by an evolving coherent state. For the case of a
diatomic fragment when rotational excitations can be neglected or decoupled,
the dynamics can be resolved into quantum states [42]. For low excitations with
near equidistant splittings between consecutive vibrational energy levels the
harmonic oscillator coherent state provides an excellent basis for obtaining
vibrationally resolved cross-sections [43]. As a general approach valid for
polyatomic molecular product fragment a multidimensional Prony [44] method
has been developed [45], which can produce rovibrationally resolved cross-
sections for the case of weak coupling between rotation and vibrational modes.

The mass weighted position of a single nucleus v in the center-of-mass frame
of a molecule with N atomic nuclei at time points 7 is obtained from an END
trajectory and can be expressed as

P
R[] = Ot — 1] |[Ey + ) T, jeje®H-Date) (59)
j=1

Jj=

where the interval (time step) between data points is Af, p is the number of
vibrational modes of the molecule, O[¢] is a rotation matrix (O[0] = 1), E, is the
equilibrium position of nucleus v. The direction and magnitude of the
displacement of nucleus v in the jth normal mode is T, ;, the weight of this
normal mode is ¢;, and its frequency and phase is {); and ¢;, respectively.

The generalized Prony analysis can extract a great variety of information
from the ENDyne dynamics, such as the vibrational energy E,; and the
frequency for each normal mode. The classical quantum connection is then made
via coherent states, such that, say, each normal vibrational mode is represented
by an evolving state

o) =exp( -5 ) o (60)
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in terms of the harmonic oscillator eigenstates |n), and where o is a time-
dependent complex parameter. Since the energy of such an evolving state above
the ground state is Eyyp, = hco\oc|2 we find \oc|2 = Eyip/ho and we can conclude
that the probability of the fragment occupying a particular eigenstate |n) is

P, =

MCXP(_EVib/E(D) oy

By using this approach, it is possible to calculate vibrational state-selected
cross-sections from minimal END trajectories obtained with a classical descri-
ption of the nuclei. We have studied vibrationally excited H,(v) molecules
produced in collisions with 30-eV protons [42,43]. The relevant experiments
were performed by Toennies et al. [46] with comparisons to theoretical
studies using the trajectory surface hopping model [11,47] (TSHM). This
system has also stimulated a quantum mechanical study [48] using diatomics-
in-molecule (DIM) surfaces [49] and invoking the infinite-order sudden
approximation (IOSA).

In Figure 2, we show the total differential cross-section for product
molecules in the vibrational ground state (no charge transfer) of the hydrogen
molecule in collision with 30-eV protons in the laboratory frame. The
experimental results that are in arbitrary units have been normalized to the END

4
10 ' ' ' END v=0 ——

10° |

10°

NT DCS do/dQ (A%/sr)

100 b H" + Hy(v=0) > H' + Hy(v) 1

10-1 L L 1 1 1 S
2 4 6 8 10 12

Scattering Angle 6,,,(deg)

Figure 2. Total differential cross-section versus laboratory scattering angle for vibrational
ground state of hydrogen molecules in single collisioins with 30-eV protons.
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Figure 3. State resolved differential cross-section versus laboratory scattering angle for
vibrational excitation of hydrogen molecules into state v = 4 in single collisions with 30-eV protons.

results at the rainbow angle. The experimental estimate of the rainbow angle
and the END calculated one are very close, ~7°. The theoretical results using
THSM and IOSA are shown for comparison. In Figure 3, the vibrational state
resolved differential cross-section is shown for the fourth excited state (v = 4).
Results of similar quality are obtained for products in other vibrational states as
long as the use of the harmonic oscillator coherent state can be justified.

State resolved differential cross-sections for H,O in collisions with 46-eV
protons in the center of mass were deduced [50] from time-of-flight energy loss
spectra. The vibrational states are labeled [vi,Va, Vs3], where v denotes the
number of quanta in the symmetric stretch mode, and v, and vj, similarly
denote the bending and asymmetric stretch, respectively. The experimental
analysis assumes that the progressions [vi,0,0] and [vy, 1,0] are the principal
final states of the water molecules. This assumption is corroborated by our
calculations. We show in Figure 4 the total differential cross-section for vibra-
tional excitation (NT) and the state-resolved differential cross-sections for
[0,0,01, [0, 1,0], and [1, 0, 0]. The experimental energy resolution is such that it
is not possible to distinguish between the symmetric and asymmetric stretching
modes, so only one stretching mode is considered and denoted by v;.

The generalized Prony analysis of END trajectories for this system yield total
and state resolved differential cross-sections. In Figure 5, we show the results.
The theoretical analysis, which has no problem distinguishing between the
symmetric and asymmetric stretch, shows that the asymmetric mode is only
excited to a minor extent. The corresponding state resolved cross-section is
about two orders of magnitude less than that of the symmetric stretch.
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Figure 4. The experimental [50] total and three-state resolved differential cross-sections of
vibrational excitations of the water molecule in collisions with 46-eV protons.
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Figure 5. The theoretical total and state resolved differential cross-sections of vibrational
excitations of water molecules in collisions with 46-eV protons.
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One reason that the symmetric stretch is favored over the asymmetric one
might be the overall process, which is electron transfer. This means that most of
the END trajectories show a nonvanishing probability for electron transfer and
as a result the dominant forces try to open the bond angle during the collision
toward a linear structure of H,O™. In this way, the totally symmetric bending
mode is dynamically promoted, which couples to the symmetric stretch, but not
to the asymmetric one.

Also, rotational state resolution of cross-sections can be obtained by
employing a coherent state analysis [51] for the situation of weak coupling
between rotational and vibrational degrees of freedom. A suitable rotational
coherent state can be expressed as

1/2
o, B,v,8,68) =e 2y DL (a,B,0)D: ,S,eC—
lot, B,y 9 ; B, 0) D, (= )\/ﬁ

where D4 (o, B, v) = e ™Md!, e~"K are rotational matrices [52], and where the
angle parameters are related to the average values of the body fixed L and space-
fixed J angular momentum components calculated with this coherent state, that
is,

IMK)  (62)

(Ly) = Ccosysind (Jx) = Ccosasin B
(Ly) = {sinysind (Jy) = (sinosin B (63)
(L) = Leos (1.) = Geos B
and
(L) = () =L(L+2) (64)

From these relations it follows that { is related to the angular momentum
modulus, and that the pairs of angle o,  and v, 6 are the azimuthal, and the polar
angle of the (J?) and the (L?) vector, respectively. The angle € is associated with
the relative orientation of the body-fixed and space-fixed coordinate frames. The
probability to find the particular rotational state [IMK) in the coherent state is

2 ¢
Pk (G, B, 8) = diyy (B )" Sy e (65)
The use of the rotational coherent state is then analogous to the use of the
vibrational coherent state and can be used to study rotational state resolved

properties. We note that the resolution of the identity applies here as well, that is,

ZOC:Z ZPIMKC»B5 ) =1 (66)

I=0M=-1 —
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Final state analysis is where dynamical methods of evolving states meet the
concepts of stationary states. By their definition, final states are relatively long
lived. Therefore experiment often selects a single stationary state or a statistical
mixture of stationary states. Since END evolution includes the possibility of
electronic excitations, we analyze reaction products in terms of rovibronic states.

C. Intramolecular Electron Transfer

Minimal END has also been applied to a model system for intramolecular
electron transfer. The small triatomic system LiHLi is bent C,, structure. But the
linear structure presents an unrestricted Hartree—Fock (UHF) broken symmetry
solution with the two charge localized structures

Li—-H-Li" = Li'—H—Li (67)

These charge-transfer structures have been studied [4] in terms a very limited
number of END trajectories to model vibrational induced electron transfer. An
electronic 3-21G+ basis for Li [53] and 3-21G for H [54] was used. The
equilibrium structure has the geometry with a long Li(2)—H bond (3.45561 a.u.)
and a short Li(1)—H bond (3.09017 a.u.). It was first established that only the
Li—H bond stretching modes will promote electron transfer, and then initial
conditions were chosen such that the long bond was stretched and the short
bond compressed by the same (%) amount. The small ensemble of six
trajectories with 5.6, 10, 13, 15, 18, and 20% initial change in equilibrium bond
lengths are sufficient to illustrate the approach.

The END approach to electron-transfer processes is quite different from the
current paradigm of Marcus theory, which due to its conceptual simplicity has
guided much theoretical and experimental development. Introduced in the late
1950s [55], this theory has been extensively reviewed, revised, and extended
[56-59]. This approach is characterized by the assumptions that there is a
reaction coordinate that the reactants travel to the products and that there is a
coupling Hj, between the donor and acceptor states. Figure 6 shows a typical
picture of participating adiabatic and diabatic states along a reaction coordinate
for normal electron transfer according to the Marcus theory. END by its very
nature constructs dynamical trajectories in wave function phase space, including
the electronic degrees of freedom, from which transition probabilities are
obtained. In this approach, there is no need to break the transfer process into two
separate steps, that is geometry change and electronic transition. Instead END
describes the full evolution and the coupling of these two aspects of the process.
Initiation of electron transfer is accomplished by simply distorting the molecule
and letting the system evolve in time.

A simple measure of the electron density distribution over the participating
atoms is the Mulliken population [60]. For linear Li—H—Li the alpha spin is
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Figure 6. Diabatic and corresponding adiabatic potential energy along a relevant reaction
coordinate for normal electron transfer.

arbitrarily chosen in excess in the single determinantal electronic state. In
Figure 7, the alpha Mulliken populations are shown for the six END trajectories
over 10,000 a.u. of time.

A transfer rate constant can be obtained by applying a Boltzmann
distribution, and by writing the concentration of reactant present as

X(t) =Y P, (1) (68)
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Figure 7. Alpha Mulliken population on Li(2) as functions of time for different initial
conditions.
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Figure 8. Concentration of the product species as a function of time.

where E, is the energy above the ground state and P, the probability of electron
transfer for initial state n. The electron transfer in this case is effectively a one-
electron process and since for such a case the transfer probability is directly
related to the Mulliken population one may write

Pu(f) = 2 — 2M, (1) [ M™ (69)

where M, is the alpha Mulliken population on Li(2) for initial state n, and M}"**
is the maximum value of this population. In this case, My** = 2 and P, becomes
a number between 0 and 1 yielding the probability that an electron will move
from Li(2) to Li(1).

The small statistical sample leaves strong fluctuations on the timescale of the
nuclear vibrations, which is a behavior typical of any detailed microscopic
dynamics used as data for a statistical treatment to obtain macroscopic
quantities.

However, as can be seen from Figure 8 a simple exponential expected from
first-order kinetics can be fitted to the data yielding a limiting concentration of
0.003, and a rate constant of 0.0003 a.u., which translates to 1.25 x 103 s~ ! at
300 K.
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I. INTRODUCTION

Knowledge of the underlying nuclear dynamics is essential for the classification
and description of photochemical processes. For the study of complicated
systems, molecular dynamics (MD) simulations are an essential tool, providing
information on the channels open for decay or relaxation, the relative popula-
tions of these channels, and the timescales of system evolution. Simulations are
particularly important in cases where the Born—Oppenheimer (BO) approxima-
tion breaks down, and a system is able to evolve non-adiabatically, that is, in
more than one electronic state.

In this chapter, we look at the techniques known as direct, or on-the-fly,
molecular dynamics and their application to non-adiabatic processes in
photochemistry. In contrast to standard techniques that require a predefined
potential energy surface (PES) over which the nuclei move, the PES is provided
here by explicit evaluation of the electronic wave function for the states of
interest. This makes the method very general and powerful, particularly for the
study of polyatomic systems where the calculation of a multidimensional
potential function is an impossible task. For a recent review of standard non-
adiabatic dynamics methods using analytical PES functions see [1].

Direct dynamics methods are, however, still in their infancy, and have a
number of difficulties that need to be solved. One is the sheer size of the
problem—all nuclear and electronic degrees of freedom are treated explicitely.
A second is the restriction placed on the form of the nuclear wave function as a
local, trajectory-based, representation is required. This introduces the problem
of including quantum effects into methods that are often based on classical
mechanics. For non-adiabatic processes, there is the additional complication of
the treatment of the non-adiabatic coupling. In this chapter, we will show how
progress has been made in this new and exciting field, highlighting the different
problems and how they are being solved. Complimentary reviews on applying
direct dynamics to adiabatic problems are given in [2,3].

Interaction with light changes the quantum state a molecule is in, and in
photochemistry this is an electronic excitation. As a result, the system will no
longer be in an eigenstate of the Hamiltonian and this nonstationary state
evolves, governed by the time-dependent Schrodinger equation

ih%\IJ(R,r, 1) =H(R,r)V(R,r 1) (1)
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Central to the description of this dynamics is the BO approximation. This
separates the nuclear and electronic motion, and allows the system evolution to
be described by a function of the nuclei, known as a wavepacket, moving over a
PES provided by the (adiabatic) motion of the electrons.

Coupling between the electronic and nuclear motion can, however, result in
the breakdown of the BO approximation, which leads to an effective coupling
between the adiabatic states of the system, providing pathways for fast, radia-
tionless, electronic transitions. The wavepacket in non-adiabatic systems, as
these are known, must therefore be described as evolving over a manifold of
coupled PES. Non-adiabatic coupling is particularly important in regions where
the PES are degenerate, or near-degenerate, and it can lead to an interesting
topology of the surfaces. Typical features are avoided crossings, where the
surfaces seem to repel one another, or conical intersections, where the surfaces
meet at a point or seam. While avoided crossings are well established in
chemical ideas through the noncrossing rule, it is only in recent years that the
importance of conical intersections in photochemistry has emerged [4-8].
The idea of conical intersections has a long history [9-14]. Their general
acceptance was delayed by the difficulties in conclusively demonstrating their
existence in large molecules, due to the problems in calculating wave functions
for excited states.

If the PES are known, the time-dependent Schrédinger equation, Eq. (1), can
in principle be solved directly using what are termed wavepacket dynamics
[15-18]. Here, a time-independent basis set expansion is used to represent the
wavepacket and the Hamiltonian. The evolution is then carried by the expansion
coefficients. While providing a complete description of the system dynamics,
these methods are restricted to the study of typically 3—-6 degrees of freedom.
Even the highly efficient multiconfiguration time-dependent Hartree (MCTDH)
method [19,20], which uses a time-dependent basis set expansion, can handle no
more than 30 degrees of freedom.

For larger systems, various approximate schemes have been developed,
called mixed methods as they treat parts of the system using different levels of
theory. Of interest to us here are quantum-semiclassical methods, which use full
quantum mechanics to treat the electrons, but use approximations based on
trajectories in a classical phase space to describe the nuclear motion. The prefix
quantum may be dropped, and we will talk of semiclassical methods. There are
a number of different approaches, but here we shall concentrate on the few that
are suitable for direct dynamics molecular simulations. An overview of other
methods is given in the introduction of [21].

As mentioned above, the correct description of the nuclei in a molecular
system is a delocalized quantum wavepacket that evolves according to the
Schrodinger equation. In the classical limit of the single surface (adiabatic)
case, when effectively & — 0, the evolution of the wavepacket density
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(amplitude squared) can be simulated by a “swarm’ of trajectories, each driven
by classical (e.g., Newtonian) mechanics. Note that this does not mean that the
nuclei are being treated as classical particles, each is being represented by a set
of classical pseudoparticles that together simulate the behavior of the nucleus.
Methods based on this approximation are sometimes termed quasiclassical.

A different approach is to represent the wavepacket by one or more Gaussian
functions. When using a local harmonic approximation to the true PES, that is,
expanding the PES to second-order around the center of the function, the
parameters for the Gaussians are found to evolve using classical equations of
motion [22-26]. Detailed reviews of Gaussian wavepacket methods are found in
[27-29].

To add non-adiabatic effects to semiclassical methods, it is necessary to
allow the trajectories to sample the different surfaces in a way that simulates the
population transfer between electronic states. This sampling is most commonly
done by using surface hopping techniques or Ehrenfest dynamics. Recent
reviews of these methods are found in [30-32]. Gaussian wavepacket methods
have also been extended to include non-adiabatic effects [33,34]. Of particular
interest here is the spawning method of Martinez, Ben-Nun, and Levine [35,36],
which has been used already in a number of direct dynamics studies.

In traditional dynamics calculations, the first step is to find a representation
of the PES. For accurate calculations, this involves fitting a function to ab initio
data, maybe with final adjustments using experimental data. A major hurdle to
the calculation of information about the excited state PES of molecules,
required for a description of photochemistry, is the development of appropriate
quantum chemical methods. Probably the most general method is the complete
active space self-consistent field (CASSCF) method [37]. This is a multi-
configuration self-consistent field (MCSCF) method that uses a full configura-
tion interaction (CI) within an active space of the important molecular orbitals.
As it is an MCSCF method, both the orbitals and the CI coefficients are
optimised. Unlike other, maybe more powerful methods, calculation of analytic
gradients is relatively straightforward using CASSCF, which makes it suitable
for direct dynamics. Although care is needed in its application, accurate results
are possible, particularly when combined with perturbation theory to correct for
the missing so-called dynamic electron correlation [38—41].

Techniques have been developed within the CASSCF method to characterize
the critical points on the excited-state PES. Analytic first and second derivatives
mean that minima and saddle points can be located using traditional energy
optimization procedures. More importantly, intersections can also be located
using constrained minimization [42,43]. Of particular interest for the
mechanism of a reaction is the minimum energy path (MEP), defined as the
line followed by a classical particle with zero kinetic energy [44—46]. Such
paths can be calculated using intrinsic reaction coordinate (IRC) techniques
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[47,48]. For systems in which conical intersections play a role, however, the
concept of an IRC must be extended. Due to the topology of the region more
than one path may be accessible after crossing from the upper electronic state to
the lower one (i.e., the wavepacket may bifurcate). For this situation, the initial
relaxation direction (IRD) method has been developed [49,50] to identify the
open channels on the ground-state PES moving away from the minimum energy
intersection point. The MEP can then be used to explore each channel to the
products. For more information on the study of PES critical points using
quantum chemistry techniques, see the recent reviews [51,52].

An alternative method that can be used to characterize the topology of PES
is the line integral technique developed by Baer [53,54], which uses pro-
perties of the non-adiabatic coupling between states to identify and locate
different types of intersections. The method has been applied to study the
complex PES topologies in a number of small molecules such as H; [55,56] and
C,H [57].

Information about critical points on the PES is useful in building up a picture
of what is important in a particular reaction. In some cases, usually thermally
activated processes, it may even be enough to describe the mechanism behind a
reaction. However, for many real systems dynamical effects will be important,
and the MEP may be misleading. This is particularly true in non-adiabatic
systems, where quantum mechanical effects play a large role. For example, the
spread of energies in an excited wavepacket may mean that the system finds an
intersection away from the minimum energy point, and crosses there. It is for
this reason that molecular dynamics is also required for a full characterization of
the system of interest.

Calculating points on a set of PES, and fitting analytic functions to them is a
time-consuming process, and must be done for each new system of interest. It is
also an impossible task if more than a few (typically 4) degrees of freedom are
involved, simply as a consequence of the exponential growth in number of ab
initio data points needed to cover the coordinate space.

For this reason, there has been much work on empirical potentials suitable
for use on a wide range of systems. These take a sensible functional form with
parameters fitted to reproduce available data. Many different potentials, known
as molecular mechanics (MM) potentials, have been developed for ground-state
organic and biochemical systems [58—60]. They have the advantages of simpli-
city, and are transferable between systems, but do suffer from inaccuracies and
rigidity—no reactions are possible. Schemes have been developed to correct for
these deficiencies. The empirical valence bond (EVB) method of Warshel
[61,62], and the molecular mechanics—valence bond (MMVB) of Bernardi et al.
[63,64] try to extend MM to include excited-state effects and reactions. The
MMVB Hamiltonian is parameterized against CASSCF calculations, and is thus
particularly suited to photochemistry.
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A further model Hamiltonian that is tailored for the treatment of non-
adiabatic systems is the vibronic coupling (VC) model of Koppel et al. [65].
This provides an analytic expression for PES coupled by non-adiabatic effects,
which can be fitted to ab initio calculations using only a few data points. As a
result, it is a useful tool in the description of photochemical systems. It is also
very useful in the development of dynamics methods, as it provides realistic
global surfaces that can be used both for exact quantum wavepacket dynamics
and more approximate methods.

Direct dynamics attempts to break this bottleneck in the study of MD,
retaining the accuracy of the full electronic PES without the need for an analytic
fit of data. The first studies in this field used semiclassical methods with
semiempirical [66,67] or simple Hartree—Fock [68] wave functions to treat the
electrons. These first studies used what is called BO dynamics, evaluating
the PES at each step from the electronic wave function obtained by solution of
the electronic structure problem. An alternative, the Ehrenfest dynamics
method, is to propagate the electronic wave function at the same time as the
nuclei. Although early direct dynamics studies using this method [69-71]
restricted themselves to adiabatic problems, the method can incorporate non-
adiabatic effects directly in the electronic wave function.

Major impetus in the field was given by the introduction of the Car—
Parrinello method [72-74]. Related to the Ehrenfest dynamics method, this is a
very efficient algorithm that propagates the electronic wave function using a
fictitious mass to produce classical equations of motion for the expansion
coefficients. For full efficiency, however, it requires a plane-wave basis set,
which is inefficient for the description of isolated molecules. Recent work using
Gaussian functions points the way to the solution of this problem [75]. The
method is usually restricted to adiabatic dynamics, although the method has
been applied to excited states using a very simple wave function [76]. We shall
ignore Car—Parrinello methods in the following.

An important step forward in the study of molecular systems was afforded by
the introduction of an efficient propagation algorithm by Helgaker et al. [77]
and further improved by Chen et al. [78]. With the large step-size made possible
by this method it became feasible to simply reevaluate the electronic wave fun-
ction at each step, thus opening up all the power of electronic structure
calculations for direct BO dynamics. By combining the Helgaker—Chen
algorithm with a surface hopping method, a number of dynamics studies of
photochemical systems have been made using the MMVB empirical Hamiltonian
[79-85]. These studies have allowed us to gain much experience in the behavior
of trajectories over coupled PES. The method has then been applied to direct
dynamics study using CASSCF wave functions [86,87].

The Gaussian wavepacket based spawning method, mentioned above, has
also been used in direct dynamics where it is called ab initio multiple spawning
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(AIMS) [88]. The inclusion of quantum effects directly in the nuclear motion
may be a significant step, as the motion near a conical intersection is known to
be very quantum mechanical.

The present state of the art is not able to use direct dynamics to calculate
accurate dynamical properties: For this many trajectories are required, and it is
simply too expensive. Even so, as we shall show, mechanistic information can
be gained directly from the calculations, extending the minimum energy path
picture to include a dynamical term, which is certainly important in the study of
excited molecules. A further use, still to be explored fully, is to use the
information from direct dynamics trajectories to efficiently generate the PES
for more accurate calculations. The ground work for this has been laid by the
work of Collins and co-workers [89-93], who developed a scheme to generate a
PE function by interpolating information on the surface (the energy, and its
first and second derivatives) at a set of points. These points could be generated
by direct dynamics, thus sampling only the areas of configuration space
important for the system dynamics. The accuracy of the method has been
shown recently in state-of-the-art four-dimensional (4D) quantum scattering
calculations [94].

By its nature, the application of direct dynamics requires a detailed
knowledge of both molecular dynamics and quantum chemistry. This chapter is
aimed more at the quantum chemist who would like to use dynamical methods
to expand the tools at their disposal for the study of photochemistry, rather than
at the dynamicist who would like to learn some quantum chemistry. It tries
therefore to introduce the concepts and problems of dynamics simulations,
stressing that one cannot strictly think of a molecule moving along a trajectory
even though this is what is being calculated.

To demonstrate the basic ideas of molecular dynamics calculations, we shall
first examine its application to adiabatic systems. The theory of vibronic
coupling and non-adiabatic effects will then be discussed to define the sorts of
processes in which we are interested. The complications added to dynamics
calculations by these effects will then be considered. Some details of the
mathematical formalism are included in appendices. Finally, examples will be
given of direct dynamics studies that show how well the systems of interest can
at present be treated.

Throughout, unless otherwise stated, R and r will be used to represent the
nuclear and electronic coordinates, respectively. Boldface is used for vectors
and matrices, thus R is the vector of nuclear coordinates with components R,.
The vector operator V, with components
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forms the derivative vector when applied to a function, for example,

oV ov
VV—(a_Iel7a—R27...> (3)

If the nuclear coordinates are mass-scaled Cartesian coordinates,

R, = \/Il‘/I; Xy (4)

where M, is the mass associated with the coordinate, then the kinetic energy
operator can be written

7= —— = V?
; M, 2 ®)

The full system Hamiltonian is partitioned so as to define an electronic
Hamiltonian, Hy

I:I(er) :Tn(R)+Hel(er) (6)

Here, T, is the nuclear kinetic energy operator, and so all terms describing the
electronic kinetic energy, electron—electron and electron—nuclear interactions,
as well as the nuclear—nuclear interaction potential function, are collected
together. This sum of terms is often called the clamped nuclei Hamiltonian as it
describes the electrons moving around the nuclei at a particular configuration R.

II. ADIABATIC MOLECULAR DYNAMICS

In this section, the basic theory of molecular dynamics is presented. Starting
from the BO approximation to the nuclear Schrddinger equation, the picture of
nuclear dynamics is that of an evolving wavepacket. As this picture may be
unusual to readers used to thinking about nuclei as classical particles, a few
prototypical examples are shown.

In the full quantum mechanical picture, the evolving wavepackets are
delocalized functions, representing the probability of finding the nuclei at a
particular point in space. This representation is unsuitable for direct dynamics as
it is necessary to know the potential surface over a region of space at each point
in time. Fortunately, there are approximate formulations based on trajectories in
phase space, which will be discussed below. These local representations, so-
called as only a portion of the PES is examined at each point in time, have a
classical flavor. The delocalized and nonlocal nature of the full solution of the
Schrodinger equation should, however, be kept in mind.
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In what is called BO MD, the nuclear wavepacket is simulated by a swarm of
trajectories. We emphasize here that this does not necessarily mean that the
nuclei are being treated classically. The difference is in the chosen initial
conditions. A fully classical treatment takes the initial positions and momenta
from a classical ensemble. The use of quantum mechanical distributions instead
leads to a semiclassical simulation. The important topic of choosing initial
conditions is the subject of Section IL.C.

Finally, Gaussian wavepacket methods are described in which the nuclear
wavepacket is described by one or more Gaussian functions. Again the
equations of motion to be solved have the form of classical trajectories in phase
space. Now, however, each trajectory has a quantum character due to its spread
in coordinate space.

A. Quantum Wavepacket Propagation

Using the BO approximation, the Schrodinger equation describing the time
evolution of the nuclear wave function, ¥ (R, ), can be written

ih%!x(R,tD = (T + V(R))[x(R, 1)) @

In this picture, the nuclei are moving over a PES provided by the function V(R),
driven by the nuclear kinetic energy operator, Ty. More details on the derivation
of this equation and its validity are given in Appendix A. The potential function
is provided by the solutions to the electronic Schrédinger equation,

Ha(r;R)|V(r;R)) = V(R) [V (r; R)) (8)

where H, is the electronic (clamped nucleus) Hamiltonian defined in Eq. (6). In
this equation it must be remembered that R is a parameter defining the nuclear
configuration, and /(r; R) an electronic eigenfunction at this configuration. A
PES is thus formed by following one of the roots of this equation (e.g., the second
root for the first excited state) as the nuclear geometry changes. Approximate
solutions to this equation are the results of the standard quantum chemistry
computer packages, such as GAUSSIAN [95], GAMESS [96], MOLCAS [97],
MOLPRO [98], and COLUMBUS [99].

To solve this equation, an appropriate basis set {¢,(R)} is required for the
nuclear functions. These could be a set of harmonic oscillator functions if the
motion to be described takes place in a potential well. For general problems, a
discrete variable representation (DVR) [100,101] is more suited. These functions
have mathematical properties that allow both the kinetic and potential energy
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operators to be easily represented. In coordinate space, they are effectively o
functions, and so the potential can be represented on a grid of points. The wave
function is then expanded in this set

LR, 1) = calt)dy(R) )

and Eq. (7) transformed to a matrix equation,
iy = Hy, (10)

where the nuclear function is a vector in the space provided by the basis, that is,
the components are the expansion coefficients ¢y, and the Hamiltonian matrix
elements are

Hayg = (d,|Ty + V(R))|dp) (11)

If V(R) is known and the matrix elements H,p are evaluated, then solution of
Eq. (10) for a given initial wavepacket is the numerically exact solution to the
Schrodinger equation.

Efficient techniques for the direct solution of Eq. (10) have been developed
using either a DVR or FFT-based method [102] to generate a representation of the
wavepacket and Hamiltonian on a grid in coordinate space [15,16,18,103]. In
principle, the differential equation can be directly solved, using a standard
integrator (predictor—corrector, Runge—Kutte, etc.) to propagate the vector y
forward in time using the time derivative, which is calculated using simple
matrix—vector multiplication. Alternatively, for a time-independent Hamilto-
nian, Eq. (10) can be written in integral form

20 = exp(~ 111 )10 (12)

The problem is then reduced to the representation of the time-evolution operator
[104,105]. For example, the Lanczos algorithm could be used to generate the
eigenvalues of H, which can be used to set up the representation of the exponen-
tiated operator. Again, the methods are based on matrix—vector operations, but
now much larger steps are possible.

Unfortunately, the resources required for these numerically exact methods
grow exponentially with the number of degrees of freedom in the system of
interest. Without the use of clever algorithms to optimize the basis set used
[106,107], this limits the range of systems treatable to 4—-6 degrees of freedom
(3—4 atoms). For larger systems, the MCTDH method [19,20,108] provides a
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flexible, yet accurate method. This method uses a time-dependent basis set, and
has treated, for example, the dynamics of the pyrazine molecule after
photoexcitation including all 24 vibrational modes and 2 coupled electronic
states [109]. A time-dependent basis is efficient because it follows the
evolving wavepacket, and does not waste effort in describing regions of empty
space. In effect, the semiclassical methods described below are using a set of
classical trajectories or Gaussian wavepackets as a time-dependent basis set.
The connection between the MCTDH basis functions and trajectories has
recently been explored [110], and it has been shown that a set of coupled
trajectories can act as a basis set for full quantum dynamics calculations. The
connection between a time-dependent basis set and the Gaussian wavepacket
methods is more obvious.

Before progressing, it is useful to review the dynamics of typical molecular
systems. We consider three types: scattering (chemical reaction), photodissocia-
tion, and bound-state photoabsorption (no reaction).

The H+H, — H,; +H hydrogen atom exchange reaction is the simplest
atom—molecule scattering system. Molecules and atoms colliding is a basic step
in chemical reactivity, and much work has been made to understand this system
in all its details [111,112]. As well as experimental work, extensive calculations
have been made using both a time-independent framework [113] and
wavepacket methods [114-116] to obtain fully state resolved cross-sections
for the reaction. This system is best described by Jacobi coordinates, shown in
Figure la, and the reaction is dominated by the colinear configuration. The
PES for this configuration (i.e., a cut with 6 = 0°) has a C-shaped minimum
energy channel, with a saddle point as a transition region at the apex. This is
shown in Figure 2.

The evolution of a wavepacket representing the H+ H, scattering reaction
for a particular set of initial conditions is plotted on Figure 2 as a series of snapshots.
To display the three-dimensional (3D) wavepacket on a two-dimensional (2D)
plot, the reduced density

21

p(Ri,R,) = J d0%(Ra, Ry, 0)" (Ra, Ry, 6) (13)
0

is plotted. The system stays close to the colinear configuration, and so integrating
over the angular coordinate does not lead to significant loss of information. Note,
however, that the results from a 2D calculation in which the angle is kept fixed
would be different.

In the reactant channel leading up to the transition region, motion along R,
represents the H atom approaching the molecule, while motion along R, is the
vibrational motion of the atom. The initial wavepacket is chosen to represent the
desired initial conditions. In Figure 2, the H, molecule is initially in the ground
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()

Figure 1. Coordinates used for describing the dynamics of (a¢) H + H, (b) NOCI, (c)
butatriene. (a), (b) Are Jacobi coordinates, where R; and R, are the dissociative and vibrational
coordinates, respectively. (c¢) Shows the two most important normal mode coordinates, Qs and Q)4
which are the torsional and central C—C bond stretch, respectively.

vibrational state, and the atom is located relative to the molecule by a
Gaussian distribution of positions, moving with an initial momentum toward the
molecule. The initial packet is thus close to a product of Gaussian functions.
The quantum mechanical nature of the system means that the wavepacket
possesses a distribution of momenta, and therefore energies. The figure shows
how the wavepacket moves along the reactant channel, and is split as it hits the
energy barrier representing the molecule—atom collision. Part of the packet
moves on into the product channel (hydrogen atom exchange), and part is
reflected back to the reactants (no exchange). The wavepacket can then be
analyzed to obtain information about the transfer of population from the initial
state to the final states over the energies contained in the packet.

A different category of dynamics is found in photodissociation processes, in
which a molecule breaks up after absorbing a photon. A simple example is
found in the NOCI molecule after excitation to the first singlet, S, state [117].
The molecule is initially in the ground vibrational state on the ground electronic
surface. After the photoexcitation, this nuclear wave function is moved
vertically onto the excited state. The S; PES as calculated by Schinke et al.
[118] is shown in Figure 3. This is again in Jacobi coordinates, which are shown
in Figure 1b. For the plot the angular coordinate, which plays only a minor role
in the process, is at the ground-state equilibrium value of 127°.

The evolution of the nuclear wavepacket is also traced by a number of
snapshots of the absolute values of the wavepacket, again integrating over the
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Figure 2. Wavepacket dynamics of
the H + H — H, + H scattering reaction,
shown as snapshots of the density (wave
packet amplitude squard) at various times.
The coordinates, in au, are described in
Figure 1a, and the wavepacket is initially
moving to describe the H atom approach-
ing the H, molecule. The density has been
integrated over the angular coordinate.
The PES is plotted for the collinear
interaction geometry, 6 = 180°.
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Figure 3. Wavepacket dynamics of the
photodissociation of NOCI, shown as snap-
shots of the density (wavepacket amplitude
squared) at various times. The coordinates, in
au, are described in Figure 1b, and the
wavepacket is initially the ground-state
vibronic wave function vertically excited
onto the §; state. Increasing R; corresponds
to chlorine dissociation. The density has been
integrated over the angular coordinate. The
S| PES is ploted for the geometry, 6 =127°,
the ground-state equilibrium value.
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angular coordinate. The wavepacket evolves away from its initial Gaussian-like
form down the valley, which leads to direct dissociation. The structure formed in
the wavepacket leads to structure in the absorption spectrum, which is absent if
the angle 0 is frozen, and is thus due to the flow of energy between the bend and
stretch motions. Even more complicated behavior would be found if the PES
contained a barrier to the dissociation, which would lead to a break up of the

packet.
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The third major category of processes are dynamics after bound-bound
transitions, such as photoexcitation to a bound state. In Figure 4, the system
dynamics of the butatriene radical cation are shown after excitation from the
neutral molecule ground state to a simple model of the cationic first excited
state, a process related to the first excited band in the photoelectron spectrum.
The dynamics are dominated by two vibrational modes, the central C—C stretch,
labeled Q14 and the torsion, Qs. These coordinates are shown in Figure 1c. In
this simple model, the PES is taken as a harmonic approximation around the
minimum energy point, which is found to be shifted along the Q4 mode. Here,
non-adiabatic effects have been ignored. As will be shown in Section III.D,
there is in fact strong vibronic coupling to the cationic ground state via the
torsional mode, and the true dynamics after excitation into this state is radically
altered. This model is, however, a reasonable representation of a bound state in which
vibronic coupling does not play a role. The systems dynamics in the space of the
two normal modes shown is fairly simple. The initial Gaussian shaped wavepacket
representing the neutral ground-state wave function moves back and forth across
the well, driven by the initial force due to the shifted energy minimum.

For bound state systems, eigenfunctions of the nuclear Hamiltonian can be
found by diagonalization of the Hamiltonian matrix in Eq. (11). These functions
are the possible nuclear states of the system, that is, the vibrational states. If
these states are used as a basis set, the wave function after excitation is a
superposition of these vibrational states, with expansion coefficients given by
the Frank—Condon overlaps. In this picture, the dynamics in Figure 4 can be
described by the time evolution of these expansion coefficients, a simple
phase factor. The periodic motion in coordinate space is thus related to a
discrete spectrum in energy space.

B. Born-Oppenheimer Molecular Dynamics

In a classical limit of the Schrodinger equation, the evolution of the nuclear wave
function can be rewritten as an ensemble of pseudoparticles evolving under
Newton’s equations of motion

MR = —-VV (14)

where V/(R) is the potential and R is the second-derivative with respect to time of
the position, that is, the acceleration. They are referred to as pseudoparticle
trajectories as, as explained above, the ensemble might be simulating the motion
of a quantum wavepacket, in which case a single particle is being represented by
a number of pseudoparticles.

This picture is often referred to as “swarms of trajectories,” and details are
given in Appendix B. The nuclear problem is thus reduced to solving Newton’s
equations of motion for a number of different starting conditions. To connect
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Q. Ofs
Q. 5fs
Q4 10fs
Q4 151s
Figure 4. Wavepacket dynamics of
photoexcitation, shown as snapshots of the ~ Qy, 20fs
density (wavepacket amplitude squared)
at various times. The model is a 2D model
based on a single, uncoupled, state of the
butatriene redical cation. The initial struc-

ture represents the neutral ground-state
vibronic wave function vertically excited
onto the A state of the radical cation.
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this picture to the delocalized quantum mechanical one, the wavepacket is being
represented by a time-dependent basis set of “‘functions” that are the points
describing the trajectory of the classical pseudoparticle. The nuclear wave-
packet is then being approximated by a vector, the elements of which are the
populations of the trajectories in the initial ensemble.

The force experienced by a pseudoparticle is simply

F.(R) = ~V,V(R) (15)
= V(U (r:R) Ha i (r: R)) (16)

where V, is a component of the derivative operator in coordinate space. The
obvious approach is thus to calculate the electronic wave function at time #, and
then directly calculate the required derivatives. The nuclei can then be pro-
pagated forward a step, and the process repeated. This algorithm is usually
termed BO dynamics, and it was the method used in the first direct dynamics
studies [66—68].

While it is conceptually simple, however, the method suffers from the exp-
ense of requiring the full electronic wave function at each step, for example, by
solving the electronic structure problem using an SCF technique. For the me-
thod to be feasible, a large time-step is therefore required to minimise
the number of these expensive evaluations that need to be made. Classical MD
simulations typically use integration schemes based on either the Gear
predictor-corrector [119] or the Verlet [120] algorithms (see [121] for overview
of these methods, and [122] for other useful integrators). These give reasonable
time-steps with low memory requirements for large systems, and require only
first derivatives of the potential, the forces, at each step.

A different approach comes from the idea, first suggested by Helgaker et al.
[77], of approximating the PES at each point by a harmonic model. Integration
within an area where this model is appropriate, termed the trust radius, is then
trivial. Normal coordinates, Q, are defined by diagonalization of the mass-
weighted Hessian (second-derivative) matrix, so if

A=R-R, (17)

where Ry is the present position, then

0 = Lm’A (18)
g=Lm>G (19)
o’ =Lm *Hm L' (20)

where o is the (diagonal) matrix of eigenvalues from transforming the mass-
weighted Hessian, H, using the unitary matrix L, and g and G are the forces (first
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derivatives) in the two coordinate sets. The diagonal matrix m contains the
masses associated with each coordinates. If Rj is a minimum on the PES, then @
are the vibrational frequencies, and Q the vibrational modes of the molecule.

In this representation, Newton’s equations of motion separate to 3N — 6
equations

ro = —8a — miQa (21)

that have different analytical solutions depending on whether the “frequency” ®
is real, zero, or imaginary. These solutions are used to integrate the equations of
motion from R, to R,, where ¢ is controlled by the trust radius. This radius
changes, guided by the difference between the information about the PES
calculated at x,, and that estimated from the harmonic model.

This algorithm was improved by Chen et al. [78] to take into account the
surface anharmonicity. After taking a step from R, to R, using the harmonic
approximation, the true surface information at R) is then used to fit a (fifth-
order) polynomial to form a better model of the surface. This polynomial model
is then used in a corrector step to give the new R,.

The Helgaker—Chen algorithm results in very large steps being possible, and
despite the extra cost of the required second derivatives, this is the method of
choice for direct dynamics calculations. A number of systems have been treated,
and a review of the method as applied to chemical reactions is given in [2].

The gradient of the PES (force) can in principle be calculated by finite
difference methods. This is, however, extremely inefficient, requiring many
evaluations of the wave function. Gradient methods in quantum chemistry are
fortunately now very advanced, and analytic gradients are available for a wide
variety of ab initio methods [123—-127]. Note that if the wave function depends
on a set of parameters {1}, for example, the expansion coefficients of the basis
functions used to build the orbitals in molecular orbital (MO) theory,

V= V(R ) (22)
then a component of the force, F, is

v ov o,

F
* aRm+ — O); ORy,

(23)

where V is defined in Egs. (15) and (16). If the wave function is derived using a
variational method, then 0V /0A; = 0. Further, if the basis set is independent of
R, which is the case when it is complete, then Eq. (23) can be used to show that

V(U[Ha V) = (V|VHa|) (24)
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This, the well-known Hellmann—-Feynman theorem [128,129], can then be used
for the calculation of the first derivatives. In normal situations, however, the use
of an incomplete atom-centered (e.g., atomic orbital) basis set means that further
terms, known as Pulay forces, must also be considered [130].

C. Choosing Initial Conditions

The time-dependent Schrodinger equation governs the evolution of a quantum
mechanical system from an initial wavepacket. In the case of a semiclassical
simulation, this wavepacket must be translated into a set of initial positions and
momenta for the pseudoparticles. What the initial wavepacket is depends on the
process being studied. This may either be a physically defined situation, such as
a molecular beam experiment in which the particles are defined in particular
quantum states moving relative to one another, or a theoretically defined
situation suitable for a mechanistic study of the type ‘“what would happen
if ....”

In photochemistry, we are interested in the system dynamics after the
interaction of a molecule with light. The absorption spectrum of a molecule is
thus of primary interest which, as will be shown here, can be related to the
nuclear motion after excitation by the capture of a photon. Experimentally, the
spectrum is given by the Beer—Lambert law

I(z) = Ipe™°™ (25)

where I(z) is the intensity of the light, propagated along the z axis, as it changes
from Iy due to absorption by molecules at a density of p. The molecular
interaction with the light is contained here in the cross-section for the capture of a
photon, &, which describes the absorption properties of the sample.

The simplest theoretical description of the photon capture cross-section is
given by Fermi’s Golden Rule

() ~ of (1 (R) 15 (R) |7 (R)) >3 (w5 — ) (26)
where
By = <\L’f|e -d|\;) (27)

is the transition dipole moment, which connects the initial electronic state, \s;, to
the final state, \]/f, by the component of the molecular dipole moment operator, d,
along the electric field vector of the incident light, e. The delta function ensures
that spectral density is found only when the frequency of the incident light, o,
equals the frequency difference between the initial and final vibronic states,
®; = oy — ;. This expression is valid for the usual light strengths used in
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spectroscopy, which act as a weak perturbation on the molecules. For more
details on the derivation of this expression, and the time-dependent version
below see [131].

Using the Condon approximation, the transition dipole moment is taken to be
a constant with respect to the nuclear coordinates. Equation (26) then reduces to
the familiar expression

o(®) ~ 0| (1 (R)[1;(R))[*8(c2s — ) (28)

where (3,(R)|x;(R)) is called the Frank—Condon factor. The spectral lines thus
appear at a frequency of wg, with an intensity related to the overlap between
initial- and final-state functions.

To make a clearer connection to the molecular dynamics, this expression can
be transformed to the time domain. In this picture, which was initially deve-
loped by Heller and co-workers [132,133], the absorption spectrum is given by
the expression

(0) ~ o Jm dr e C (1) (29)

—00

which is the Fourier transform of the autocorrelation function

C(1) = ((0)[x(1)) (30)

It is interesting to note that the use of correlation functions in spectroscopy is an
old topic, and has been used to derive, for example, infrared (IR) spectra, from
classical trajectories [134,135]. Stock and Miller have recently extended this
approach, and derived expressions for obtaining electronic and femtosecond
pump—probe spectra from classical trajectories [136].

Equation (29) directly incorporates our ideas about molecular dynamics after
photoexcitation. The system is initially in a particular state at ¢t =0, for
example, the ground vibrational state on the ground-state PES. On interacting
with a photon, this state is vertically excited into the upper electronic state, that
is, the electronic state changes while the nuclear function remains unchanged.
Dynamics then takes place with this nuclear wavepacket, no longer an eigen-
function of the Schrddinger equation, driven by the appropriate Hamiltonian.
The examples in Section II.B use this picture. Other functions have been derived
for other spectra, for example, emission and Raman [133].

As it stands, the picture of dynamics from Eq. (29) is derived from the inter-
action of molecules with a continuous light source, that is, the system is at
equilibrium with the oscillating light field. It is also valid if the light source is an
infinitely short laser pulse, as here all frequencies are instantaneously excited.
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Problems arise if a light pulse of finite duration is used. Here, different frequen-
cies of the wave packet are excited at different times as the laser pulse passes,
and thus begin to move on the upper surface at different times, with resulting
interference. In such situations, for example, simulations of femtochemistry
experiments, a realistic simulation must include the light field explicitely [1].

To return to the simple picture of vertical excitation, the question remains as
to how a wavepacket can be simulated using classical trajectories? A classical
ensemble can be specified by its distribution in phase space, p,(p,q), which
gives the probability of finding the system of particles with momentum p and
position ¢g. In contrast, it is strictly impossible to assign simultaneously a
position and momentum to a quantum particle.

A number of procedures have been proposed to map a wave function onto a
function that has the form of a phase-space distribution. Of these, the oldest and
best known is the Wigner function [137,138]. (See [139] for an exposition using
Louiville space.) For a review of this, and other distributions, see [140]. The
quantum mechanical density matrix is a matrix representation of the density
operator

p=[Px){(¥(x) (31)

where x is the variable being used here for the system particle coordinates. The
density operator is used to link quantum mechanics to statistical mechanics, and
effects of temperature are easily included via the concept of “mixed states”
[141]. In coordinate space the matrix representation of the density operator is

plx,x") = (x|plx) (32)

which at x = x’ gives the probability of finding the particle at this point in space.
The Wigner distribution uses the new coordinates g = %(x +x') and 5=
1 (x — ) along with the momentum, p, conjugate to s to make the transforma-

tion, in one dimension (1D),

o0

) =j ds 7 (g + s|plg — 5) (33)

—00

Extension to the multidimensional case is trivial. Wigner developed a complete
mechanical system, equivalent to quantum mechanics, based on this distribution.
He also showed that it satisfies many properties desired by a phase-space
distribution, and in the high-temperature limit becomes the classical distribution.

Note that despite the form this cannot be interpreted as the probability of
finding a particle at a point in phase space, and in fact the function can become
negative. Obtaining p,, for a system is also not straightforward. For a harmonic
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oscillator, which can be taken as an approximation to the ground-state vibratio-
nal function, there is, however, an analytic expression

1 1 2 1
pw(p q; B) = Etanh (E ma) exp {— %tanh (5 ma) HHO} (34)
where = 1/kT is the thermodynamic temperature, and

1 mo
Huyo = —p* +—¢° 35
HO sz 3 (35)
is the harmonic oscillator Hamiltonian. At zero temperature, when only the
ground-vibrational state is occupied this expression becomes

Pw (pa q; B) = %exp |:_ %HHO] (36)
and the distribution is a product of Gaussian functions in p and gq.

For many applications, it may be reasonable to assume that the system
behaves classically, that is, the trajectories are real particle trajectories. It is then
not necessary to use a quantum distribution, and the appropriate ensemble of
classical thermodynamics can be taken. A typical approach is to use a
microcanonical ensemble to distribute energy into the internal modes of the
system. The normal-mode sampling algorithm [142—144], for example, assigns
a desired energy to each normal mode, Q, as a harmonic amplitude

2E,
Ay =—— 37
= (37)

where ®y, is the harmonic frequency. The momentum and initial position are then
sampled by adding a random phase, &,

0, = A, cos(2nk,) (38)
Qy = —Ay 0y sin(27E,) (39)

After transforming to Cartesian coordinates, the position and velocities must be
corrected for anharmonicities in the potential surface so that the desired energy is
obtained. This procedure can be used, for example, to include the effects of zero-
point energy into a classical calculation.

One of the basic problems in molecular dynamics is how to sample
infrequent events. Typically a reaction must pass over a barrier, and effort would
be wasted if many trajectories are run that do not reach the reactant channel.
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One way to overcome this problem is to start by setting up the ensemble of
trajectories (or wavepacket) at the transition state. If these trajectories are then
run back in time into the reactants region, they can be used to set up the
distribution of initial conditions that reach the barrier. These can then be run
forward to completion, that is, into the products, and by using transition state
theory a reaction rate obtained [145]. These ideas have also been recently
extended to non-adiabatic systems [146].

In a mechanistic study, the aim is not to quantitatively reproduce an
experiment. As a result it is not necessary to use the methods outlined above.
The question here is what drives a reaction in a particular direction, or what
would happen if the molecule is driven in different ways. The initial conditions
are then at the disposal of the investigator to be chosen in a way to answer the
relevant question, using a suitable spread of positions and energies.

D. Gaussian Wavepacket Propagation

A different approach that also leads to a representation of the nuclear wave
function suitable for direct dynamics is to follow the work of Heller on the time
evolution of Gaussian wavepackets. The nuclear wave function in Eq. (7) is
represented by one or more Gaussian functions. Equations of motion for the
parameters defining these functions are then determined, which are found to
have properties that can be related to classical mechanics. The underlying idea
is the observation that a wavepacket with a Gaussian form retains this form
when moving in a harmonic potential, and under these circumstances the
method can be equivalent to full quantum mechanical wavepacket propagation
[147]. In more complicated cases, a harmonic approximation to the true
potential is used, and the method becomes a semiclassical one. The dynamics
shown in Figures 3 and 4 support the idea, as the wavepacket retains a form that
is approximately a distorted Gaussian at all times.

The fundamental method [22,24] represents a multidimensional nuclear
wavepacket by a multivariate Gaussian with time-dependent width matrix, A,,
center position vector, R,, momentum vector, p,, and phase, v,

G(R,1) = exp% [(R—R)"A,(R—R,)+p"(R—R,)+7v,] (40)

where the superscript 7 denotes the transpose of a vector. Note that the width
matrix allows the Gaussian to distort in any direction. The potential surface is
represented by a harmonic expansion about the center point of the wavepacket,

H——iv:h—za—z—kV+(R—R)TV’—i—l(R—R)TV”(R—R) (41)
= T ! 2 ! !
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where V,, V', and V" are the value, first derivative vector, and second derivative
matrix of the potential surface at R,. This is known as the local harmonic
approximation (LHA). By using this approximate Hamiltonian, equations of
motion for the parameters in Eq. (40) can be obtained using the time-dependent
Schrodinger equation. These are

R, = m'p, (42)
Pt ==V (43)
(44)
(45)

) 1
A, =-24,m'A, — 3 v 44

¥, = ih Tr(m™"-A,) +p'R, — E 45
where m is the diagonal matrix of masses associated with each coordinate, Tr
denotes the trace over the matrix product, and E = (H(R,,p,)) is the expectation
value of the Hamiltonian at the center of the packet.

The center of the wavepacket thus evolves along the trajectory defined by
classical mechanics. This is in fact a general result for wavepackets in a
harmonic potential, and follows from the Ehrenfest theorem [147] [see
Egs. (154,155) in Appendix C]. The equations of motion are straightforward
to integrate, with the exception of the width matrix, Eq. (44). This equation is
numerically unstable, and has been found to cause problems in practical
applications using Morse potentials [148]. As a result, Heller introduced the
P-Z method as an alternative propagation method [24]. In this, the matrix A, is
rewritten as a product of matrices

1

A, = EP, -z (46)
with the definition that
Z,=m"-P, (47)
From Eqgs. (46), (47), and (44),
P=-V".Z (48)

and so P,,Z; have the form of equations of motion for a matrix harmonic
oscillator. These new equations are stable and soluble.

The big advantage of the Gaussian wavepacket method over the swarm of
trajectory approach is that a wave function is being used, which can be easily
manipulated to obtain quantum mechanical information such as the spectrum, or
reaction cross-sections. The initial Gaussian wave packet is chosen so that it
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describes the quantum mechanical function as well as possible, rather than
selecting the initial momentum and position, p,,Ry, from a phase-space
distribution. A second advantage is the efficiency. Again looking at the
dynamics of Figures 3 and 4 a qualitatively correct result would be expected
propagating a single Gaussian function, a total of N>+ 2N + 1 parameters,
where N is the number of degrees of freedom. In contrast, hundreds of
trajectories may be required in the swarm to attain reasonable results.

One drawback is that, as a result of the time-dependent potential due to the
LHA, the energy is not conserved. Approaches to correct for this approximation,
which is valid when the Gaussian wavepacket is narrow with respect to the
width of the potential, include that of Coalson and Karplus [149], who use a
variational principle to derive the equations of motion. This results in replacing
the function values and derivatives at the central point, V,, V', and V" in Eq. (41),
by values averaged over the wavepacket.

The method will, however, fail badly if the Gaussian form is not a good
approximation. For example, looking at the dynamics shown in Figure 2, a
problem arises when a barrier causes the wavepacket to bifurcate. Under these
circumstances it is necessary to use a superposition of functions. As will be seen
later, this is always the case when non-adiabatic effects are present.

Sawada et al. [26] made a detailed study of the methodology and numerical
properties of the method. They paid particular attention to the problem of using
a superposition of Gaussian wavepackets

X(th) = ZGn(Rat) (49)

In earlier work, the Gaussian functions were always taken to be independent of
each other, the independent Gaussian approximation (IGA). Here the case was
also studied for interacting Gaussians, and equations of motion worked out for
the parameters. The minimum energy method (MEM) was used in the derivation,
which like the variational methods used by Coalson and Karplus goes beyond the
LHA approximation. The accuracy of both the IGA and the LHA were then
tested, and found to be inadequate in a few cases. They also dealt with the
problem of how to choose the initial Gaussians, as the flexibility in Eq. (49)
allows many different ways in which the Gaussian parameters can be chosen.
There is of course a balance between flexibility of the wave function (large
numbers of functions) and efficiency (small number of functions). Furthermore,
when using interacting Gaussians it was found that a large number of functions
can lead to numerical instability if the overlap between the functions becomes
too large.

The lack of generality and the numerical problems [150] seem to have
effectively stopped this otherwise attractive and pictorial method. This line of
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investigation has, however, recently been reopened by Burghardt et al. [34], who
have incorporated general Gaussian functions into the MCTDH wavepacket
propagation method. How well this mixed scheme will perform is to be seen.

An alternative to using a superposition of Gaussian functions is to extend the
basis set by using Hermite polynomials, that is, harmonic oscillator functions
[24]. This provides an orthonormal, in principle complete, basis set along the
trajectory, and the idea has been taken up by Billing [151,152]. The basic
problem with this approach is the slow convergence of the basis set.

To deal with the problem of using a superposition of functions, Heller also
tried using Gaussian wave packets with a fixed width as a time-dependent basis
set for the representation of the evolving nuclear wave function [23]. Each
“frozen Gaussian™ function evolves under classical equations of motion, and
the phase is provided by the classical action along the path

’.Yt =D 'Rt - H(p,,Rt) (50)

Singly, these functions provide a worse description of the wave function than the
“thawed” ones described above. Not requiring the propagation of the width
matrix is, however, a significant simplification, and it was hoped that collectively
the frozen Gaussian functions provide a good description of the changing shape
of the wave function by their relative motions.

Coming from a different line of research, Herman and Klux [25] showed the
relationship between the frozen Gaussian approximation and rigorous semi-
classical mechanics. The initial wave function is represented by a superposition
of an (overcomplete) set of Gaussian functions, which thus cover elements in
phase space. Replacing the quantum mechanical propagator [shown in a matrix
representation in Eq. (12)] by a semiclassical propagator

exp (- %Ht) ~ C(S)exp (% s) (51)

where S is the classical action along a path in Eq. (50), and C is a preexponential
factor depending on the action, then leads to a formula for the propagation of a
wave packet in terms of the evolution of the fixed Gaussians. The initial
conditions are taken from the classical phase space, typically using Monte Carlo
integration to sample the space.

The Herman—Kluk method has been developed further [153—155], and used
in a number of applications [156—159]. Despite the formal accuracy of the
approach, it has difficulties, especially if chaotic regions of phase space are
present. It also needs many trajectories to converge, and the initial integration is
time consuming for large systems. Despite these problems, the frozen Gaussian
approximation is the basis of the spawning method that has been applied to
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non-adiabatic systems with much success. This approach is described below in
Section IV.C.

III. VIBRONIC COUPLING AND NON-ADIABATIC EFFECTS

The adiabatic picture developed above, based on the BO approximation, is basic
to our understanding of much of chemistry and molecular physics. For example,
in spectroscopy the adiabatic picture is one of well-defined spectral bands, one
for each electronic state. The structure of each band is then due to the shape of
the molecule and the nuclear motions allowed by the potential surface. This is in
general what is seen in absorption and photoelectron spectroscopy. There are,
however, occasions when the picture breaks down, and non-adiabatic effects
must be included to give a faithful description of a molecular system [160-163].

Non-adiabatic coupling is also termed vibronic coupling as the resulting
breakdown of the adiabatic picture is due to coupling between the nuclear and
electronic motion. A well-known special case of vibronic coupling is the
Jahn-Teller effect [14,164-168], in which a symmetrical molecule in a doubly
degenerate electronic state will spontaneously distort so as to break the
symmetry and remove the degeneracy.

The majority of photochemistry of course deals with nondegenerate states,
and here vibronic coupling effects are also found. A classic example of non-
Jahn-Teller vibronic coupling is found in the photoelectron spectrum of
butatriene, formed by ejection of electrons from the electronic eigenfunctions
(approximately the molecular orbitals). Bands due to the ground Xszg and first
excited A2B,, states of the radical cation are found at energies predicted by
calculations. Between the bands, however, is a further band, which was termed
the mystery band [169]. This band was then shown to be due to vibronic
coupling between the states [170].

A different example of non-adiabatic effects is found in the absorption
spectrum of pyrazine [171,172]. In this spectrum, the S state is a weak
structured band, whereas the S, state is an intense broad, fairly featureless band.
Importantly, the fluorescence lifetime is seen to dramatically decrease in the
energy region of the S, band. There is thus an efficient nonradiative relaxation
path from this state, which results in the broad spectrum. Again, this is due to
vibronic coupling between the two states [109,173,174].

Another example of the role played by a nonradiative relaxation pathway is
found in the photochemistry of octatetraene. Here, the fluorescence lifetime is
found to decrease dramatically with increasing temperature [175]. This can be
assigned to the opening up of an efficient nonradiative pathway back to the
ground state [6]. In recent years, nonradiative relaxation pathways have been
frequently implicated in organic photochemistry, and a number of articles
published on this subject [4-8].
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In this section, the adiabatic picture will be extended to include the non-
adiabatic terms that couple the states. After this has been done, a diabatic
picture will be developed that enables the basic topology of the coupled surfaces
to be investigated. Of particular interest are the intersection regions, which may
form what are called conical intersections. These are a multimode phenomena,
that is, they do not occur in 1D systems, and the name comes from their shape—
in a special 2D space it has the form of a double cone. Finally, a model
Hamiltonian will be introduced that can describe the coupled surfaces. This
enables a global description of the surfaces, and gives both insight and
predictive power to the formation of conical intersections. More detailed review
on conical intersections and their properties can be found in [1,14,65,176—-178].

A. The Complete Adiabatic Picture

In Section II, molecular dynamics within the BO approximation was introduced.
As shown in Appendix A, the full nuclear Schrédinger equation is, however,

(T4 Vl) — 3 Agl) = i ) (52)

Comparison with Eq. (7) shows that the the non-adiabatic operator matrix, f\, has
been added. This is responsible for mixing the nuclear functions associated with
different BO PES.

The non-adiabatic operator matrix, A can be written as a sum of two terms; a
matrix of numbers, G, and a derivative operator matrix

. 2

i
Aj== (Gj+2F;-V) (53)

Both terms on the right are related to the rate of change of the adiabatic electronic
functions with respect to the nuclear coordinates. The first term Gj; is given by

Gy = (V| V*45) (54)

while the second term in Eq. (53) is the dot product of two vectors, the derivative
operator with components

(55)

and the matrix elements with components

Fy = (W[ Vo) (56)
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Importantly, this term is a derivative (nonlocal) operator on the nuclear
coordinate space.
The matrix G can in fact be expressed in terms of F (see Appendix A),

Gj=V-Fj+> Fy Fy (57)
k

And using this equation the nuclear Schrodinger equation can be written in
matrix form [54,179]

i ) 0

The matrix of vectors F is thus the defining quantity, and is called the non-
adiabatic coupling matrix. It gives the strength (and direction) of the coupling
between the nuclear functions associated with the adiabatic electronic states.

The elements of these vectors can be evaluated using an off-diagonal form of
the Hellmann-Feynmann theorem, which in Cartesian coordinates, xy, is

1
R =iy W

Nonscaled coordinates are used here to explicitely include the mass to show that
the coupling is modulated by two factors. The first is the mass associated with the
coordinate, M, (atomic mass in Cartesian coordinates, reduced mass in normal
mode coordinates, etc.), and the larger the mass the smaller the coupling. This is
the basis of the justification for the BO approximation: The mass of the electron
is so much smaller than the mass of the nuclei that the motion of the electrons is
effectively independent of the nuclear motion, and the electrons instantaneously
adjust to the nuclear geometry. The second factor, however, depends inversely on
the energy gap between the adiabatic surfaces. This will overwhelm the mass
factor as the surfaces approach one another, until at a degenerate point the
coupling is infinitely large.

As written, Eq. (52) depends on all the (infinite number of) adiabatic
electronic states. Fortunately, the inverse dependence of the coupling strength
on energy separation means that it is possible to separate the complete set of
states into manifolds that effectively do not interact with one another. In
particular, Baer has recently shown [54] that Eq. (57), and hence Eq. (58) also
holds in the subset of mutually coupled states. This finding has important
consequences for the use of diabatic states explored below.

Choosing a basis set for the nuclear functions {¢,} allows us to write
Eq. (52) in a matrix form, similar to Eq. (10) for the single-surface case, now as

0H,

|¢;‘d) (59)
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a matrix of matrices

H, H_; --- % ):(1
H, H; --- | =inl %2 (60)

where the indexes of H;; and y;, which relate to the adiabatic electronic states,
run over the states included in the manifold.

The supermatrix notation emphasizes the structure of the problem. Each
diagonal operator drives a wavepacket, just as in the adiabatic case of Eq. (10),
but here the motion of the wavepackets in different adiabatic states is mixed by
the off-diagonal non-adiabatic operators. In practice, a single matrix is built for
the operator, and a single vector for the wavepacket. The operator matrix
elements in the basis set {¢,} are

<¢Q|TN+VI_AH"¢B> (61)
dp) (62)

(Hit)yg
(Hi)o = (0a] — Ay

which are arranged in the blocks. All the methods mentioned in Section IL.B for
wavepacket dynamics can then be used.

B. The Diabatic Picture

The adiabatic picture is the standard one in quantum chemistry for the reason
that, not only is it mathematically well defined, but it is also that used in ab initio
calculations, which solve the electronic Hamiltonian at a particular nuclear
geometry. To see the effects of vibronic coupling on the potential energy
surfaces one must move to what is called a diabatic representation [1,65,180,
181].

In a diabatic representation, the electronic wave functions are no longer
eigenfunctions of the electronic Hamiltonian. The aim is instead that the
functions are so chosen that the (nonlocal) non-adiabatic coupling operator
matrix, A in Eq. (52), vanishes, and the couplings are represented by (local)
potential operators. The nuclear Schrodinger equation is then written

) 9
Tulti) + D Wilny) = in = [1a) (63)
J

where W is the new (nondiagonal) potential matrix, and the coupling between
states is now achieved by the off-diagonal elements of this matrix. The adiabatic
surfaces are the eigenfunctions of W.
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The diabatic electronic functions are related to the adiabatic functions by
unitary transformations at each point in coordinate space

d(R) = S(R)W(R) (64)

From the time-dependent Schrédinger equation in the matrix form of Eq. (58), it
can be shown [54] that if S(R) is chosen so that

SI(V+F)S=0 (65)

the basis set transformation changes the operators in Eq. (58) to

> >
—EST(V+F)2S:—EV2:T (66)
Sitvs =w (67)

and the diabatic representation is rigorously equivalent to the adiabatic
representation in the subspace of the coupled states. Baer [53,54] has obtained
solutions to this equation, and analyzed the validity of the transformation in
regions where the non-adiabatic coupling becomes singular. Note that derivative
operators in both terms act on S(R), and so this is not a local transformation.
Note also that the diabatic basis is only defined up to a constant rotation. As a
result, it is possible to select a point at which the diabatic and adiabatic functions
are identical. This simplifies various mathematical manipulations.

Assuming that the diabatic space can be truncated to the same size as the
adiabatic space, Egs. (64) and (65) clearly define the relationship between
the two representations, and methods have been developed to obtain the trans-
formation matrices directly. These include the line integral method of Baer
[53,54] and the block diagonalization method of Pacher et al. [179]. Failure of
the truncation assumption, however, leads to possibly important nonremovable
derivative couplings remaining in the diabatic basis [55,182].

Difficulties in obtaining the non-adiabatic coupling elements for polyatomic
molecules have lead to the development of alternative approaches to provide the
diabatic representation, typically using states that are smooth in a molecular
property [183]. Although there is no formal justification for this approach, it
seems to work well in practice. Properties used include the dipole moment
[184], or retention of the configurational character from an MCSCF wave
function [185], or maximization of the overlap between wave functions at
neighbouring sites [186]. It has also been shown that the CASSCF method
provides a good framework for the definition of diabatic states [187]. A simple
scheme that removes the leading terms of the non-adiabatic coupling matrices
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using information from the adiabatic surfaces only has also been recently
proposed [188]. For a fuller account of ways to construct diabatic states see [1].
Despite the difficulties in obtaining diabatic states they provide an extremely
useful picture for many descriptive purposes. They are in many ways the natural
choice for dynamics calculations as the kinetic energy operator is diagonal in
this basis, and the singularities associated with the non-adiabatic operator where
the adiabatic surfaces meet are not present. In principle, as the electronic basis
set is only weakly dependent on R, the electronic character of a state is
preserved. The range of properties used to define diabatic states shows the sort
of properties that are conserved within them. A typical example is in electron-
transfer theory, which uses smooth diabatic states to define the donor—acceptor
and charge-transfer states. A more important example in photochemistry is that
photoexcitation in the Condon approximation should be modelled as taking
place vertically to a single diabatic state, as in this picture the transition matrix
element is relatively constant with respect to the nuclear geometry [1].

C. Conical Intersections

For a two-state system, the eigenfunctions of the diabatic potential matrix of
Eq. (63) in terms of its elements are

1
Vyi= E(W” + sz) + \/AWz + W122 (68)

where AW = %(sz — Wi1). The functions V. and V_ are the adiabatic PES,
and they will meet when

AW =0 (69)
Wia=0 (70)

In Section III.D, we shall investigate when this happens. For the moment,
imagine that we are at a point of degeneracy. To find out the topology of the
adiabatic PES around this point, the diabatic potential matrix elements can be
expressed by a first order Taylor expansion.

Setting the diabatic basis equal to the adiabatic basis at the degenerate point,
R, the expansions can be written in vector notation as

AW =x -0 (71)
Wi =x-0 (72)

where Q is the vector of nuclear displacements away from the intersection. Note
that the constants in both expansions are zero due to the adiabatic—diabatic
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correspondence at R. The vectors that form the first-order coefficients are

= ag AW (73)
o 0
Xy = @ W12 (74)

evaluated at R. Also due to the adiabatic—diabatic correspondence at this point,
these can be written as the gradient difference (GD) vector

0
00y

oa
X =

(Vi =V) (75)

and the derivative coupling (DC) vector

OH,
0Q,

7= (v

w;d> (76)

This latter relationship is obtained by evaluating

6\|Jj > n < oy,
00, 00,
at Ry. In the diabatic basis, the first two terms on the right are zero. Due once

again to the adiabatic—diabatic correspondence at R the third term on the right-
hand side is

S P aI:Iel
Hel Hel 6Q
o

0 .
o Wilalt) = <¢i

w,~>+<¢i| Wy (77)

aI:I el

oy
0. —> 78)

) = (V; = Vi)<‘lf?d

[see Egs. (130)—(132) in Appendix A]. And so the expansion coefficient vector
lies in the same direction as the adiabatic coupling vector.

The major features of the PES around the degenerate point can now be easily
analysed if we write the vector @ in the basis of (x;,xz,...) where the
unspecified n — 2 basis vectors are orthogonal to the (x;,x;) plane, which is
called the branching space. First, moving in the n — 2-dimensional space
orthogonal to the branching space the degeneracy is retained. Second, moving
in the plane of the branching space, the degeneracy will be lifted. Ignoring the
term % (W11 + Wp,), which is the same for both surfaces, the adiabatic PES have

the form
Vi~ /23 + 23 (79)
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Figure 5. Sketch of a conical intersection. The vectors x; and x; are the GD and DC
respectively, that lift the degeneracy of the two adiabatic surfaces. The plane containing these
vectors is known as the branching space.

where xj,x, are the components of Q along the respective vectors, and so the
topology of the surfaces around the degenerate point is that of a double cone.
Hence, this is called a conical intersection. A sketch of such a point is given in
Figure 5.

Conical intersections can be broadly classified in two topological types:
“peaked” and “‘sloped” [189]. These are sketched in Figure 6. The peaked case
is the classical theoretical model from Jahn-Teller and other systems where the
minima in the lower surface are either side of the intersection point. As
indicated, the dynamics of a system through such an intersection would be
expected to move fast from the upper to lower adiabatic surfaces, and not return.
In contrast, the sloped form occurs when both states have minima that lie on the
same side of the intersection. Here, after crossing from the upper to lower
surfaces, recrossing is very likely before relaxation to the ground-state
minimum can occur.

A final point to be made concerns the symmetry of the molecular system.
The branching space vectors in Egs. (75) and (76) can be obtained by evaluating
the derivatives of matrix elements in the adiabatic basis

o
00,

with i = j required for x; and i # j for x;. These elements are only nonzero if the
product of symmetries of the adiabatic functions I';, I';, and the symmetry of
the nuclear coordinate, I'p, contains the totally symmetric irrep

Fi@l, ®T; D Ay (81)

(W3 | Ha [ W) (80)
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Figure 6. Two-dimensional (top) and 3D (bottom) representations of a peaked (@) and sloped
(b) conical intersection topology. There are two directions that lift the degeneracy: the GD and the
DC. The top figures have energy plotted against the DC while the bottom figures represent the energy
plotted in the space of both the GD and DC vectors. At a peaked intersection, as shown at the bottom
of (a), the probability of recrossing the conical intersection should be small whereas in the case of a
sloped intersection [bottom of ()], this possibility should be high. [Reproduced from [84] courtesy
of Elsevier Publishers.]

If the symmetries of the two adiabatic functions are different at R, then only a
nuclear coordinate of appropriate symmetry can couple the PES, according to the
point group of the nuclear configuration. Thus if Q are, for example, normal
coordinates, x; will only span the space of the totally symmetric nuclear
coordinates, while x, will have nonzero elements only for modes of the correct
symmetry.

D. The Vibronic-Coupling Model Hamiltonian

A more general description of the effects of vibronic coupling can be made
using the model Hamiltonian developed by Koppel, Domcke and Cederbaum
[65]. The basic idea is the same as that used in Section III.C, that is to assume a
quasidiabatic representation, and to develop a Hamiltonian in this picture. It is a
useful model, providing a simple yet accurate analytical expression for the
coupled PES manifold, and identifying the modes essential for the non-adiabatic
effects. As a result it can be used for comparing how well different dynamics
methods perform for non-adiabatic systems. It has, for example, been used to
perform benchmark full-dimensional (24-mode) quantum dynamics calculations
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on the photoabsorption of pyrazine into the S,/S; manifold [109]. Here it will be
used to demonstrate the effect of a conical intersection on a systems dynamics
using the butatriene radical cation as an example.

The Hamiltonian again has the basic form of Eq. (63). The system is
described by the nuclear coordinates, @, which are relative to a suitable nuclear
configuration Q,. In contrast to Section III.C, this may be any point in
configuration space. As a diabatic representation has been assumed, the kinetic
energy operator matrix, T, is diagonal with elements

S 2 A2
n- 0
Ti=)» ——>=— (82)

The potential matrix elements are then obtained by making Taylor expansions
around @, using suitable zero-order diabatic potential energy functions,

vi2(0).
f d
Wy — V08 = (Wl HalV) + Z@wi\mwngu oo (83)
a=1 o

where the integrals and derivatives are evaluated at the point Q. The diabatic
functions are again taken to be equal to the adiabatic functions at 0, and so

f
W, = Vi(o) +E; + Z KS)QQ 4+ .. (84)
o=1

S

Wi= 20+ (85)
a=1

The model is that the ground-state PES is first altered by the electronic
excitations (on-diagonal coupling leads to a change in equilibrium geometry and
frequency), and these smooth diabatic states are then further altered by vibronic
(off-diagonal) coupling.

The eigenvalues of this matrix have the form of Eq. (68), but this time the
matrix elements are given by Eqs. (84) and (85). The symmetry arguments used
to determine which nuclear modes couple the states, Eq. (81), now play a crucial
role in the model. Thus the linear expansion coefficients are only nonzero if the
products of symmetries of the electronic states at O, and the relevant nuclear
mode contain the totally symmetric irrep. As a result, on-diagonal matrix
elements are only nonzero for totally symmetric nuclear coordinates and, if the
electronic states have different symmetry, the off-diagonal elements will only
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be nonzero for a suitable nonsymmetric mode, as given by the product of the
electronic-state symmetries.

For states of different symmetry, to first order the terms AW and W), are
independent. When they both go to zero, there is a conical intersection. To
connect this to Section III.C, take Q, to be at the conical intersection. The
gradient difference vector in Eq. (75) is then a linear combination of the
symmetric modes, while the non-adiabatic coupling vector in Eq. (76) is a linear
combination of the appropriate nonsymmetric modes. States of the same
symmetry may also form a conical intersection. In this case it is, however, not
possible to say a priori which modes are responsible for the coupling. All totally
symmetric modes may couple on- or off-diagonal, and the magnitudes of the
coupling determine the topology.

A conical intersection needs at least two nuclear degrees of freedom to form.
In a 1D system states of different symmetry will cross as W;; = 0 for i # j and
so when W;; = 0 the surfaces are degenerate. There is, however, no coupling
between the states. States of the same symmetry in contrast cannot cross, as
both W and W;; are nonzero and so the square root in Eq. (68) is always
nonzero. This is the basis of the well-known non-crossing rule.

If the states are degenerate rather than of different symmetry, the model
Hamiltonian becomes the Jahn-Teller model Hamiltonian. For example, in
many point groups E ® E D E and so a doubly degenerate electronic state can
interact with a doubly degenerate vibrational mode. In this, the E x € Jahn-
Teller effect the first-order Hamiltonian is then [65]

H(T+Vo)1+1<<gi gﬁ) (36)

where x, y denote the two components of the degenerate vibrational mode, 1 is
the 2 x 2 unit matrix, and the zero-order Hamiltonian

; 62 >
T+VOZZ?(_6—Q2+Qi) (87)

i=x,y

is the unperturbed harmonic state (written here in mass-frequency scaled
coordinates). This model results in the splitting of the degeneracy to form a
symmetrical moat around a central conical intersection.

The Hamiltonian provides a suitable analytic form that can be fitted to the
adiabatic surfaces obtained from quantum chemical calculations. As a simple
example we take the butatriene molecule. In its neutral ground state it is a planar
molecule with D, symmetry. The lowest two states of the radical cation,
responsible for the first two bands in the photoelectron spectrum, are Xszg and
A2B,,. The vibronic coupling model Hamiltonian is set up using the ground-state
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Figure 7. The PES of the Xszg and A2B,, states of the butatriene radical cation. (@) Diabatic
surfaces. (b) Adiabatic surfaces. The surfaces are obtained as eigenfucations of the vibronic coupling
model Hamiltonain that fitted to reproduce quantum chemical calculations. The coordinates are
shown in Figure lc. See Section III. D for further details.

normal modes, of which there are 15, expanding around the neutral equilibrium
geometry using the harmonic ground state as a zero-order surface. Taking
symmetry into account, to first order these states can only be coupled by a
nuclear degree of freedom with A, symmetry, of which there is only one, the
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torsional motion labeled Qs. Four A, modes are present, which may have first-
order expansion coefficients on the diagonal of the diabatic potential matrix.
After the parameters for the Taylor expansions are fitted to quantum chemical
calculations [170,190], it is found that only one symmetric mode, the central
C—C stretch Qy4, has a significant linear coupling constant, k. Thus this system
can be well described considering only two modes, Qs and Q4.

In Figure 7a the diabatic surfaces are plotted, that is, the on-diagonal
functions from the potential matrix. These diabatic PES are interlocking
harmonic wells, and they would be the adiabatic surfaces in the absence of non-
adiabatic coupling. Compared to the neutral ground-state surface, the two
minima have been shifted along the totally symmetric coordinate. Now,
including the off-diagonal vibronic coupling term, the adiabatic surfaces change
dramatically. They are plotted in Figure 7b, where the PES has been cut away to
reveal the conical intersection between the two surfaces. Note also that the
minima are now shifted significantly along the torsional, Qs, axis. This
deformation away from the D,;, symmetry is thus due to non-adiabatic effects.

In Section II.B, the molecular dynamics was examined after excitation to the
A state ignoring the coupling to the X state, that is, the PES in Figure 4 is the
higher energy diabatic well in Figure 7a. Figure 8 shows the same dynamics
including the non-adiabatic coupling. Starting in the A state, the wavepacket is
seen to transfer very fast to the lower X state, with the transfer taking place
around the intersection point. Notice the complicated dynamics of the
wavepacket on the lower surface that runs around the double well. After 40 fs,
the wavepacket has returned to the intersection point, and a small recrossing is
seen to the upper surface.

The vibronic coupling model has been applied to a number of molecular
systems, and used to evaluate the behavior of wavepackets over coupled
surfaces [191]. Recent examples are the radical cation of allene [192,193], and
benzene [194] (for further examples see references cited therein). It has also
been used to explain the lack of structure in the S, band of the pyrazine
absorption spectrum [109,173,174,195], and recently to study the photoisome-
rization of retinal [196].

IV. NON-ADIABATIC MOLECULAR DYNAMICS

As shown above in Section III.A, the use of wavepacket dynamics to study non-
adiabatic systems is a trivial extension of the methods described for adiabatic
systems in Section II.B. The equations of motion have the same form, but now
there is a wavepacket for each electronic state. The motions of these packets are
then coupled by the non-adiabatic terms in the Hamiltonian operator matrix
elements. In contrast, the methods in Section II that use trajectories in phase
space to represent the time evolution of the nuclear wave function cannot be
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Figure 8. Wavepacket dynamics of the butatriene radical cation after its production in the A
state, shown as snapshots of the adiabatic density (wavepacket amplitude squared) at various times.
The 2D model uses the coordinates in Figure I¢, and includes the coupled A and X states. The PES
are plotted in the adiabatic picture (see Fig. 7b). The initial structure represents the neutral ground-
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state vibronic wave function vertically excited onto the diabatic A state of the radical cation.
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easily extended to systems that evolve in a manifold of coupled electronic
states. For this, we need mixed methods that treat the electronic degrees of
freedom using quantum mechanics, while using the classical or semiclassical
methods for the nuclei.

The standard semiclassical methods are surface hopping and Ehrenfest
dynamics (also known as the classical path (CP) method [197]), and they will be
outlined below. More details and comparisons can be found in [30-32]. The
multiple spawning method, based on Gaussian wavepacket propagation, is also
outlined below. See [1] for further information on both quantum and
semiclassical non-adiabatic dynamics methods.

A. Ehrenfest Dynamics

Both the BO dynamics and Gaussian wavepacket methods described above in
Section II separate the nuclear and electronic motion at the outset, and use the
concept of potential energy surfaces. In what is generally known as the
Ehrenfest dynamics method, the picture is still of semiclassical nuclei and
quantum mechanical electrons, but in a fundamentally different approach the
electronic wave function is propagated at the same time as the pseudoparticles.
These are driven by standard classical equations of motion, with the force
provided by an instantaneous potential energy function

ko= (88)
. 0
Pa = = 5 W) Ha (. 1) (89)

and a time-dependent Schrodinger-like equation for the electronic wave function

iy (r, 1) = Ha(R)(r, 1) (90)

Note that the Hamiltonian is time dependent due to the time dependence of R.
There is also a phase corresponding to each trajectory

i = — (W, ) [ Ha (R) N (r, 1)) (1)

Details of the derivation of these equations are given in Appendix C.

The expression for the force on the nuclei, Eq. (89), has the same form as the
BO force Eq. (16), but the wave function here is the time-dependent one. As can
be shown by perturbation theory, in the limit that the nuclei move very slowly
compared to the electrons, and if only one electronic state is involved, the two
expressions for the wave function become equivalent. This can be shown by
comparing the time-independent equation for the eigenfunction of H at time ¢
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with the wave function at time ¢ obtained from time-dependent perturbation
theory expression using a suitable slow perturbation due to the nuclear motion.
Apart from a phase factor the two functions are the same (see e.g., [198]). Away
from this limit, however, (¢) does not remain an eigenfunction of the electronic
Hamiltonian, and this provides correlation between the electronic and nuclear
motion as the electrons do not instantaneously follow the nuclei.

If more than one electronic state is involved, then the electronic wave
function is free to contain components from all states. For example, for non-
adiabatic systems the electronic wave function can be expanded in the adiabatic
basis set at the nuclear geometry R(7)

Vim0 = GO (rR(1) (92)

J

Setting this into Eq. (90) and multiplying from the left by <\|J;‘d (r;R (t))‘ then
gives

“’ad> (93)

where the chain rule for the time-derivative operator has been used to take care of
the implicit time dependence (through R) of the adiabatic functions in the
expansion. This can be rearranged to

ihé; = (V| He (R) W3 )c; — thR< Vi

J

ihic; = ¢;V; — il ZR Fc; (94)

where Fy; are the derivative coupling vector matrices defined in Eq. (56). This
expression for the state amplitudes provides a simple measure for the population
(amplitudes squared) of the different adiabatic electronic states at R(#) as time
progresses.

This method thus leads to the concept of a mixed-state trajectory. A trajectory
starting on one surface starts to evolve driven by this PES. As the non-adiabatic
coupling increases (the surfaces approach one another), population will be
transferred from the initial state to the other. In a region where the non-adiabatic
coupling is negligible, however, there is no population transfer. Thus if a
trajectory comes out of a region of strong non-adiabatic coupling with
appreciable populations in both states, the trajectory will continue in both states
at the same time.

The mixed-state character of a trajectory outside a non-adiabatic region is a
serious weakness of the method. As the time-dependent wave function does not
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depend on R, the Ehrenfest force in Eq. (89) can be evaluated using the wave
function Eq. (92) by

(WOIVHa[ (1)) = > cje (Ui [VHa | ¥;) (95)

Note that the exact adiabatic functions are used on the right-hand side, which in
practical calculations must be evaluated by the full derivative on the left of
Eq. (24) rather than the Hellmann—Feynman forces. This form has the advantage
that the R dependence of the coefficients, c¢;, does not have to be considered.
Using the relationship Eq. (78) for the off-diagonal matrix elements of the right-
hand side then leads directly to

P==|cl’VVi= Y ciei(V; - Vi)dy (96)

i#]

The first term on the right of this equation is the average force from the adiabatic
potential energy surfaces. The second term is a force due to the non-adiabatic
coupling. This mean-field potential is inherent in the method. That it leads to
practical problems can be seen by considering the case of a bound state coupled
to a dissociative state. Non-adiabatic forces will cause the dissociative state to
be populated. The mean-field force, however, gives a bound component to the
experienced potential, which may prevent the trajectory from reaching the
dissociative region. A discussion of this incorrect behavior is found in [199].

B. Trajectory Surface Hopping

The simplest way to add a non-adiabatic correction to the classical BO dynamics
method outlined above in Section II.B is to use what is known as surface
hopping. First introduced on an intuitive basis by Bjerre and Nikitin [200] and
Tully and Preston [201], a number of variations have been developed [202-205],
and are reviewed in [28,206]. Reference [204] also includes technical details of
practical algorithms. These methods all use standard classical trajectories that use
the hopping procedure to sample the different states, and so add non-adiabatic
effects. A different scheme was introduced by Miller and George [207] which,
although based on the same ideas, uses complex coordinates and momenta.

The motivation comes from the early work of Landau [208], Zener [209], and
Stueckelberg [210]. The Landau—Zener model is for a classical particle moving
on two coupled 1D PES. If the diabatic states cross so that the energy gap is
linear with time, and the velocity of the particle is constant through the non-
adiabatic region, then the probability of changing adiabatic states is

—2nH?
Py = ———12 97
21 exp(mn-m) (07)
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where v is the velocity of the particle, F; = —dH;;/dR is the force on the ith
diabatic surface, and H;; is the Hamiltonian matrix elements in the diabatic basis.
All quantities are evaluated at the crossing point. The result is that for high
velocity, or small diabatic coupling, the probability of staying on a diabatic
surface (changing adiabatic state) approaches 1. The opposite happens for low
velocities and strong couplings.

Stueckelberg derived a similar formula, but assumed that the energy gap is
quadratic. As a result, electronic coherence effects enter the picture, and the
transition probability oscillates (known as Stueckelberg oscillations) as the
particle passes through the non-adiabatic region (see [204] for details).

The basic idea is that non-adiabatic interactions occur in localized regions of
configuration space, where the adiabatic surfaces are close together, and away
from these regions the BO description is a useful one. In the interaction regions,
the non-adiabatic interactions are such that they cause population transfer from
one state to the other. This can be simulated by the trajectory ‘“‘hopping”
from one surface to the other with a certain probability. The ensemble of
trajectories on each state thus simulates the relevant wavepackets, with the
population transfer made by the hopping. The trajectories are driven only by a
single potential surface, which means that they are able to behave suitably in the
asymptotic limit.

In principle, the Landau—Zener formula could be used to calculate a hop
probability for a trajectory, but this is often not practical as it requires
knowledge about the position of the crossing point. Studies [32,211] indicate
instead that the best method for accuracy and simplicity is the fewest switches
algorithm [203]. The aim is that the percentage of trajectories in each state
equals the state populations with a minimum number of transitions occurring to
maintain this. The state populations are provided by integrating the equation for
state amplitudes Eq. (94). Changes in the populations over a time step then
mean that for a two-state system the probability of a trajectory changing out of
state 2 into state 1 is

d
Pzﬁl = 7@10g|62|2 (98)

This expression being set to zero if the right-hand side is negative. The switching
probability is then

821 = Py 1At (99)

which achieves the desired result. Notice in particular that no switches occur
when the coupling is weak as then P,_,; ~ 0.

After a hop has been made, adjustments have to be made to conserve the
energy of a trajectory. There is a variety of ways in which this can be done, but
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the most common way is to rescale the momentum in the direction of the
derivative coupling. This has been justified by semiclassical arguments
[205,212] and experience [213]. Other possibilities include the Miller—George
expression, which is used in [214].

The use of the time-dependent Schrodinger equation to calculate the state
populations means that coherence effects due to the electronic states are
correctly accounted for, although this coherence is lost if many passes through a
non-adiabatic region are made. One drawback of the method is that a double
ensemble of trajectories is required for convergence: One is required for the
initial conditions, and then each initial trajectory requires an ensemble of hops
in the non-adiabatic region to generate good statistics. A second problem is that
situations can arise where not enough energy is available to make a predicted
hop. These aborted hops means that the state populations are not correctly
reflected by the ensemble of trajectories. Despite these problems, the methods
have often given good results.

Formulations have also been made that try to combine the best of the
Ehrenfest and surface hopping methods. These effectively use the mixed-state
approach through a non-adiabatic region, and then force the trajectories to exit
the region on a single surface. This can be achieved, for example, by using a
complex Hamiltonian to project the electronic wave function into a single
adiabatic state after coming out of the non-adiabatic region [199]. Alternatively,
a switching function may be used as in the recently proposed continuous surface
switching algorithm [215], where the function is designed to preserve the
electronic populations over the ensemble of trajectories.

C. Gaussian Wavepackets and Multiple Spawning

The first work on generalizing the Gaussian wavepacket methods to account for
non-adiabatic effects was made by Sawada and Metiu [33]. They used a wave
function described by a single Gaussian function for the nuclear wavepacket in
each electronic state, and derived equations of motion for the Gaussian
parameters that are similar to the Heller equations Eqs. (42)—(45), but include
terms with the non-adiabatic coupling. This direct Gaussian wavepacket
approach has been applied to model systems [216], but the inflexibility of the
wave function form makes it unable to obtain more than qualitative information.
Recently, the method has been extended to use a harmonic oscillator (Gauss—
Hermite) basis set representing the packets on each surface [217], which may
add enough flexibility for reasonable results.

A more comprehensive Gaussian wavepacket based method has been
introduced by Martinez et al. [35,36,218]. Called the multiple spawning
method, it has already been used in direct dynamics studies (see
Section V.B), and shows much promise. It has also been applied to adiabatic
problems in which tunneling plays a role [219], as well as the interaction of a
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molecule with an ultrashort laser pulse [220]. The method has two elements.
The first part sets up equations of motion for the nuclear wavepacket using
Gaussian wavepackets as a basis set. The second part is an algorithm to place
basis functions when and where they are required to describe non-adiabatic (or
tunneling) events.

In Section III.A, it was shown that the nuclear wavepacket can be represented

by a packet associated with each electronic state, ;. Each of these packets can
be expanded in a set of Gaussian functions, Xa' R

LR => DYy (R) (100)

where i labels the different electronic states. While the Gaussian functions evolve
along classical trajectories using the Heller equations of motion, Egs. (42), (43),
(45), equations of motion for the expansion coefficients, Dy, are obtained from a
variational solution of the Schrodinger equation. For the expansion coefficients
for the wavepacket on the ith state in vector notation these are

pY = —is ' [(HD —i§)DY) + HDDU] (101)
H are the Hamiltonian matrices
Hy) = (1A} (102)

where the operators ﬁij in the adiabatic picture are those in Eqs. (61) and (62).
The matrix S is the overlap

Sop = (21 (103)

and § is related to the time evolution of the overlap of the Gaussian functions

: 20
Sup = (|5, 1) (104)

The picture here is of uncoupled Gaussian functions roaming over the PES,
driven by classical mechanics. The coefficients then add the quantum
mechanics, building up the nuclear wavepacket from the Gaussian basis set.
This makes the treatment of non-adiabatic effects simple, as the coefficients are
driven by the Hamiltonian matrices, and these elements couple basis functions
on different surfaces, allowing transfer of population between the states. As a
variational principle was used to derive these equations, the coefficients describe
the time dependence of the wavepacket as accurately as possible using the given
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basis, and if the basis is complete at all times the method will deliver the full
quantum wavepacket.

For efficiency the number of Gaussian functions used must be kept as small
as possible, otherwise time spent building and inverting the matrices will
become prohibitive. The big question is where to put the Gaussian functions for
the initially unoccupied state to ensure that they are present in regions of strong
non-adiabatic coupling when required. The multiple spawning method does this
by generating new functions in non-adiabatic regions when required, that is,
when the wavepacket enters the region [218].

For simplicity, imagine that the wavepacket is initially described by a single
Gaussian function, which evolves along a trajectory as in the simple Heller
method. The first problem is to define when it enters a non-adiabatic region. For
a calculation using an adiabatic electronic basis this is done using an effective
non-adiabatic coupling [36]

H'(R) = |R - Fy| (105)

For diabatic calculations, the equivalent expression uses the diabatic potential
matrix elements [218]. When the value of this coupling becomes greater than a
pre-defined cutoff, the trajectory has entered a non-adiabatic region. The
propagation is continued from this time, #,, until the trajectory moves out of the
region at time f,.

The time spent in the non-adiabatic region, #, — 7, is then divided into Nj
equal intervals, where N; is a predefined parameter. At each interval, a new basis
function is “spawned” (generated) on the PES of the initially unoccupied state.
In line with the practices of surface hopping, the function is placed at the same
position as the parent function, adjusting the momentum along the non-adiabatic
coupling vector to conserve energy. Other possible choices for the function
placement are discussed in [218]. To avoid the linear dependence of spawned
functions, the overlap between the new function and all other basis functions is
calculated and the spawn attempt rejected if an overlap is large. The parameter
N; thus controls the number of spawned functions. If it is too small the basis set
will be poor, if it is too large, effort will be wasted in generating rejected
functions. Calculations should be converged with respect to this parameter, to
ensure that the coupling is correctly treated.

The parent and spawned functions provide the basis set for the propagation in
the non-adiabatic region, which now needs to be repeated as the evolution of the
coefficients D have not yet been calculated including the new functions. The
new and old functions are propagated back in time to ¢#;, and the equations of
motion solved anew from this point including coupling between all of them.
Any spawned functions that fail to become populated during the passage
through the region of non-adiabatic events are subsequently removed.
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While it is not essential to the method, frozen Gaussians have been used in
all applications to date, that is, the width is kept fixed in the equation for the
phase evolution. The widths of the Gaussian functions are then a further para-
meter to be chosen, although it appears that the method is relatively insensitive
to the choice. One possibility is to use the width taken from the harmonic
approximation to the ground-state potential surface [221].

As usual there is the question of the initial conditions. In general, more than
one frozen Gaussian function will be required in the initial set. In keeping with
the frozen Gaussian approximation, these basis functions can be chosen by
selecting the Gaussian momenta and positions from a Wigner, or other appro-
priate phase space, distribution. The initial expansion coefficients are then
defined by the equation

DY =384 (u [t = 0)) (106)
B

where S is the overlap matrix for the Gaussian functions associated with the ith
state and (¢ = 0) is the initial wavepacket on the ith state.

A technical difference from other Gaussian wavepacket based methods is that
the local harmonic approximation has not been used to evaluate any integrals, but
instead Martinez et al. use what they term a saddle-point approximation. This
uses the localization of the functions to evaluate the integrals by

(| FR)[xfy) = (i) (R) (107)

where R = <X;{k}xfﬁ> is the center of the function overlap [36]. The quality of
this approximation is difficult to ascertain. It does, however, result in significant
simplification as only first derivatives are now required for the propagation
scheme.

In addition to the full multiple spawning (FMS) described here, in which all
basis functions—original and spawned—are coupled, it is also possible to use
simplified versions [222]. One possibility is to ignore coupling between
spawned functions from different initial starting points. A second possibility,
more radical still, is to run trajectories from different starting points independ-
ently of one another. This method, which is closer to the other mixed methods
discussed above that also use independent trajectories, is called the FMS-M
(M for minimal) method [also called the multiple independent spawning (MIS)
method [35]]. It should still produce qualitative correct results with significant
savings of computational effort due to the smaller size of the matrices H and S
involved in the propagation of the expansion coefficients, Eq. (101).
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D. Validation of Mixed Methods

How well do these quantum-semiclassical methods work in describing the
dynamics of non-adiabatic systems? There are two sources of errors, one due to
the approximations in the methods themselves, and the other due to errors in their
application, for example, lack of convergence. For example, an obvious source
of error in surface hopping and Ehrenfest dynamics is that coherence effects due
to the phases of the nuclear wavepackets on the different surfaces are not included.
This information is important for the description of short-time (few femto-
seconds) quantum mechanical effects. For longer timescales, however, this loss
of information should be less of a problem as dephasing washes out this infor-
mation. Note that surface hopping should be run in an adiabatic representation,
whereas the other methods show no preference for diabatic or adiabatic.

A problem in the evaluation of their validity is the lack of exact quantum
mechanical results for realistic systems. One-dimensional models covering a
range of situations have been used to discuss the performance of the Ehrenfest
and surface hopping methods [30,203,205,223]. The results were found to be
generally of good accuracy compared to exact quantum mechanical calcula-
tions. As expected, Ehrenfest dynamics have problems when trajectories are in
mixed states that have very different characteristics. In contrast, surface hopping
suffers when trajectories have to recross a region of non-adiabatic coupling
many times, due to loss of electronic phase coherence.

Truhlar and co-workers have also made studies of the performance of these
two methods applying them to atom—molecule scattering reactions containing
non-adiabatic effects [32,211,213,224]. The reaction studied is for the
quenching of an excited atom by collision with a diatomic, and these references
provide good sources of how to run and analyze semiclassical scattering cal-
culations. Systems both with avoided crossings and conical intersections were
examined. In these cases, qualitative agreement was found between the exact
calculations and all methods tried. The errors in more detailed properties such
as rearrangement channel probabilities are, however, quite large and system
dependent. It seems that the continuous surface switching method [215] shows
promise, being in general more robust and accurate than the other methods [32].
The same test systems have also been used to test the minimal model of the
multiple spawning method, denoted FMS—M, whereby the initial trajectories are
independent [222]. This method was found to perform at least as well as fewest
switches surface hopping.

Other studies have also been made on the dynamics around a conical
intersection in a model 2D system, both for dissociative [225] and bound-state
[226] problems. Comparison between surface hopping and exact calculations
show reasonable agreement when the coupling between the surfaces is weak,
but larger errors are found in the strong coupling limit.
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Miiller and Stock [227] used the vibronic coupling model Hamiltonian,
Section III.D, to compare surface hopping and Ehrenfest dynamics with exact
calculations for a number of model cases. The results again show that the
semiclassical methods are able to provide a qualitative, if not quantitative,
description of the dynamics. A large-scale comparison of mixed method and
quantum dynamics has been made in a study of the pyrazine absorption
spectrum, including all 24 degrees of freedom [228]. Here a method related to
Ehrenfest dynamics was used with reasonable success, showing that these
methods are indeed able to reproduce the main features of the dynamics of non-
adiabatic molecular systems.

V. DIRECT DYNAMICS OF NON-ADIABATIC SYSTEMS

In the preceeding sections, the dynamics theory required to study non-adiabatic
systems has been outlined. Now, a review will be made of direct dynamics
studies on such systems in the literature. The number of studies is small, but
growing. A range of photochemical systems have been covered, mostly using
MCSCEF electronic wave functions, but semiempirical methods have also been
used to study some large molecules. Studies using the MMVB empirical
Hamiltonian are also included. Although no wave function is explicitely
calculated, the Hamiltonian is a matrix for which the integrals are parametrised
against CASSCEF calculations, and the surfaces are calculated on-the-fly from
this matrix rather than from an analytic function. These are thus direct dynamics
studies in the sense that they simulate CASSCF direct dynamics calculations at
a low cost, so enable valuable experience to be gained in this new field.

The aim here is not to give exhaustive descriptions, but to emphasize the
questions being asked and the information obtained. With a few exceptions the
studies are mechanistic in nature, and we will show the additional, sometimes
critical, insight gained over traditional nondynamics studies.

A. Using CASSCF Methods

To use direct dynamics for the study of non-adiabatic systems it is necessary to
be able to efficiently and accurately calculate electronic wave functions for
excited states. In recent years, density functional theory (DFT) has been gaining
ground over traditional Hartree—Fock based SCF calculations for the treatment
of the ground state of large molecules. Recent advances mean that so-called
time-dependent DFT methods are now also being applied to excited states. Even
so, at present, the best general methods for the treatment of the photochemistry
of polyatomic organic molecules are MCSCF methods, of which the CASSCF
method is particularly powerful.
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MCSCF methods describe a wave function by the linear combination of M
configuration state functions (CSFs), ®x, with CI coefficients, Ck,

K=1

In practice, each CSF is a Slater determinant of molecular orbitals, which are
divided into three types: inactive (doubly occupied), virtual (unoccupied), and
active (variable occupancy). The active orbitals are used to build up the various
CSFs, and so introduce flexibility into the wave function by including
configurations that can describe different situations. Approximate electronic-
state wave functions are then provided by the eigenfunctions of the electronic
Hamiltonian in the CSF basis. This contrasts to standard HF theory in which only
a single determinant is used, without active orbitals. The use of CSFs, gives the
MCSCEF wave function a structure that can be interpreted using chemical pictures
of electronic configurations [229]. An interpretation in terms of valence bond
structures has also been developed, which is very useful for description of a
chemical process (see the appendix in [230] and references cited therein).

The MCSCF method then optimizes both the molecular orbitals, represented
as usual in SCF calculations by linear combinations of atomic orbitals (LCAQO),
and the CI expansion coefficients to obtain the variational wave function for one
state. The optimization of the orbitals for a particular state, however, will not
converge if a degeneracy, or a near degeneracy, of states is present, as the wave
function will have problems following a single state. To overcome this, state-
averaged orbitals (SA—-MCSCF) must be used [231,232]. Rather than optimizing
a single eigenvalue of the Hamiltonian matrix, an averaged energy function is
used so that the orbitals describe all the states of interest simultaneously to the
same accuracy.

CASSCEF is a version of MCSCEF theory in which all possible configurations
involving the active orbitals are included. This leads to a number of simpli-
fications, and good convergence properties in the optimization steps. It does,
however, lead to an explosion in the number of configurations being included,
and calculations are usually limited to 14 electrons in 14 active orbitals.

A simple example would be in a study of a diatomic molecule that in a
Hartree—Fock calculation has a bonded o orbital as the highest occupied MO
(HOMO) and a c* lowest unoccupied MO (LUMO). A CASSCF calculation
would then use the two o electrons and set up four CSFs with single and double
excitations from the HOMO into the o* orbital. This allows the bond
dissociation to be described correctly, with different amounts of the neutral
atoms, ion pair, and bonded pair controlled by the CI coefficients, with the
optimal shapes of the orbitals also being found. For more complicated systems
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the orbitals involved in a particular process must be selected and included in the
captive space. This is both the strength and weakness of the method. Only the
important orbitals are used, so accurate calculations can be made relatively
cheaply. If the active space is, however, badly chosen, this may lead to
qualitatively incorrect results due to imbalances in the basis set.

Importantly for direct dynamics calculations, analytic gradients for MCSCF
methods [124-126] are available in many standard quantum chemistry
packages. This is a big advantage as numerical gradients require many evalua-
tions of the wave function. The evaluation of the non-Hellmann—Feynman
forces is the major effort, and requires the solution of what are termed the
coupled-perturbed MCSCF (CP-MCSCF) equations. The large memory
requirements of these equations can be bypassed if a direct method is used
[233]. Modern computer architectures and codes then make the evaluation of
first and second derivatives relatively straightforward in this theoretical
framework.

Using MCSCF methods it is also possible to obtain the non-adiabatic
coupling terms using analytic procedures [232,234,235]. SA-MCSCF must
again be used in the calculation of the non-adiabatic coupling elements, as the
functions for the two states must be described to the same level of accuracy. One
important point to note is that the derivative coupling matrix elements contain a
relative phase between the functions of the coupled states that must remain
continuous along a trajectory. It is possible that standard computer packages
ignore this phase, as it is not important for static properties, resulting in a
random phase being generated as the geometry is changed. This can be
eliminated by comparison between orbitals at neighboring steps [236].

1. The MMVB Method

The present high cost of full CASSCF direct dynamics means that it is not
possible to use such calculations to run large numbers of trajectories. As a result
it cannot be used to build up experience of the types of effects to be found in
dynamical studies of organic photochemistry, and in their interpretation. This
problem can be remedied by performing calculations using the MMVB force
field [63,64].

MMVB is a hybrid force field, which uses MM to treat the unreactive
molecular framework, combined with a valence bond (VB) approach to treat the
reactive part. The MM part uses the MM2 force field [58], which is well adapted
for organic molecules. The VB part uses a parametrized Heisenberg spin
Hamiltonian, which can be illustrated by considering a two orbital, two electron
description of a sigma bond described by the VB determinants

(&) [0,(1)d4(2)] (109)
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The Hamiltonian in the basis set of these configurations is

Qab Kab

H, =
Kab Qab

(110)

where Q. and K, are the usual Coulomb and exchange integrals in the atomic
basis. The eigenvalues and eigenfunctions of this determinant are the ground-
state singlet and excited-state triplet functions. If the integrals are fitted as
functions of bond length to the full CASSCF values, then this Hamiltonian can be
used as a model of the PES. Adding many determinants, a model Hamiltonian for
a complicated molecular system can be built up.

The method has been validated by comparison against full CASSCF
calculations for a number of systems (see references below and the references
cited therein). In general, the topology of the surface is faithfully reproduced,
although the energetics may sometimes differ. Dynamics calculations have been
made using this force field on a number of systems. In most cases, a simple
surface hopping model, based on the fewest switches method described above,
was used. A trajectory is propagated on the initial (upper) surface until the state
population, calculated by solving Eq. (94), approaches a value of 0.5, when an
unconditional hop is made. No return hop was then considered. The initial
conditions were chosen by adding random energy, up to a given threshold, to the
normal modes. This gives a wavepacket character to the set of trajectories.

For the mechanistic studies made, this protocol is able to give information
about how dynamical properties affect the evolution of a photochemical
reaction, but is not accurate enough for quantitative results. The information
obtained relates to aspects of the surface such as the relative steepness of
regions on the lower slopes of the conical intersection, and the relative width of
alternative channels.

The first study was made on the benzene molecule [79]. The Sy/S;
photochemistry of benzene involves a conical intersection, as the fluorescence
vanishes if the molecule is excited with an excess of 3000 cm~! of energy over
the excitation energy, indicating that a pathway is opened with efficient
nonradiative decay to the ground state. After irradiation, most of the molecules
return to benzene. A low yield of benzvalene, which can lead further to fulvene,
is, however, also obtained.

Calculations indicate that the S; surface does have a conical intersection
leading to the ground state [237], as well as a minimum. The starting point for
the trajectories was then taken as halfway between the minimum and the lowest
energy conical intersection point, and the vector connecting these points taken
as the reaction coordinate. Various trajectories were started with different
random sampling of the normal modes orthogonal to the reaction path, and
adding different excess energy in the form of momentum along this path.
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Trajectories with low excess energies do not reach the conical intersection,
but are trapped in the §; minimum and lead to fluorescence. Increasing the
excess energy leads to nonradiative transfer to the ground state, seen by hops on
the trajectory, which indicates quenching of the fluorescence. Interestingly,
higher excess energies lead to a higher proportion of benzvalene being formed
after crossing between the states. Increasing the width of a packet, however,
leads to a decrease of benzvalene production. This is related to the fine details of
the intersection topology, the benzvalene structure is on a narrow plateau, and
by spreading the wavepacket or reducing the excess energy the wavepacket
“falls off” the plateau back into the benzene minimum.

A second study [80] looked at the anomalous fluorescence of azulene (from
S, rather than §;), which has been known about for many years. Despite a paper
from Beer and Longuet-Higgins [238] suggesting fast S; — Sy internal
conversion via an intersection, this system has a long history of measurements
trying to ascertain the mechanism. These conclusively show that the lifetime of
the S; state is under 1 ps. The MMVB dynamics calculations support these
findings by showing that, not only is there a conical intersection between the
surfaces, but also that a nuclear wave packet would find the intersection within a
single vibrational period. This results in extremely efficient internal conversion.

Trajectories were run from around the Franck—Condon point. Even starting
with no excess energy, that is, at the Franck—Condon point with an initial
momentum of zero, the energy in running down into the §; minimum is enough
to reach the conical intersection and cross to the ground state. Increasing the
excess energy by sampling the normal modes does not change the general
picture as they all find the crossing within a vibrational period. It is, however,
found that at higher energies trajectories cross with increasingly large S;—
So energy gap. This can be simply understood from the effective increase in
non-adiabatic coupling due to the higher momentum [see Eq. (94)]. These
trajectories are thus crossing near to, but not at, the conical intersection.

The dynamics after excitation of fulvene similarly shows that high-energy
starting points can cross away from the minimum energy conical intersection
point [81]. The ground-state equilibrium structure is planar. The S; surface has a
double minima on the crossing where the methyl group is rotated perpendicular
to the ring in either direction. Crossing via these minima could thus lead to
cis—trans isomerization. Increased kinetic energy leads, however, to crossing
where the structure remains planar, and so isomerization is not likely to take
place.

A more demanding dynamical study aimed to rationalize the product
distribution in photochemical cycloaddition, looking at butadiene-butadiene
[82]. A large number of products are possible, with two routes on the excited S;
state leading back to channels on the ground state. The results are promising, as
the MMVB dynamics find the major products found experimentally. They also
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indicate that the distributions depend on the initial conditions, and thus altering
the experimental parameters could lead to different product ratios. As the exact
decay path is unknown, it is assumed that the reaction must go through the two
transitions states on Sj, and so the initial conditions sampled around these
points. No sampling was made along the transition vector, so the trajectory could
find its own (excess energy dependent) path across the PES to the products.

One transition state involves an intermolecular interaction between the two
butadiene molecules. With low excess energy, half of the trajectories run into
the minimum on the S surface (resulting in fluorescence), while the other half
cross to the ground state—most of which ends as 1,3-divinylcyclobutane, with
some unreacted butadiene. Increasing the excess energy leads to a lower rate of
crossing, indicating that the channel from the transition state to the S; minimum
is wider than that for crossing to Sy. The other transition state involves an
intramolecular (bonded) interaction between the butadiene molecules. Over
90% of trajectories now run to the ground state, and 40% end up as the major
photoproducts. These results are fairly independent of initial conditions, due to
the steepness of the PES at the transition state that produces a large kinetic
energy at the crossing point.

The photochemistry of polyenes is another complicated process. The MMVB
dynamics with surface hopping has also been used to study what happens after
photoexcitation in the alternant hydrocarbons C¢Hg, CgH;9, and C,H;4 [83]. A
conical intersection has been identified between S; and S, that involves an out-
of-plane —(CH);— kink, with four unpaired electrons spread over the three
methyl groups. Two paths have also been identified from this intersection back
to the ground state. One is direct relaxation, with reformation of the ground-
state double bonds. The second is more interesting, and has a plateau with a
n-diradical structure, with a © bond sandwiched between two radical structures,
for example, (C;=C,—C;)*—C4=Cs—(Cg)*. Such structures under the name of
neutral soliton pairs have been used to explain the absorption spectrum in
polyacetylene.

Trajectories starting from structures sampled around the conical intersection
are found to decay by three different mechanisms. The first is direct decay, while the
second and third involve the m-diradical structures. Interestingly, even though
there is no minimum on the PES for these structures, a trajectory can become
locked into this region of configuration space for significant amounts of time—
and in the case of CjoHj, up to 1 ps. This stability is seen to be due to motion of
the —(CH)s;— kink along the chain. “Locked” and ‘‘direct” trajectories have
also been found in ground-state dynamics simulations, where they have been
related to statistical and nonstatistical distributions of products, respectively
[239].

The MMVB force field has also been used with Ehrenfest dynamics to
propagate trajectories using mixed-state forces [84]. The motivation for this is
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that surface hopping may not cope too well with situations where trajectories
pass more than once through a non-adiabatic region. Hexatriene and azu-
lene provide two contrasting conical intersections. In the classification of
Atchity et al. [189] (see Fig. 6), the former has a peaked, while the latter has a
sloped topology. The sloped intersection results in multiple passes.

In both cases, about one-third of the trajectories decay directly to the ground-
state. The remaining trajectories form mixed-states before decaying. For
hexatriene, this decay is a steady process. Studying trajectories around the
peaked conical intersection run separately on the two surfaces, the trajectories
on the lower surface leave the non-adiabatic region immediately. On the upper
surface, however, the trajectory stays near this region. As a result, the mixed-
state trajectory is held near the intersection until decay has progressed far
enough for the ground-state surface to dominate and the system moves away. In
contrast, for azulene the population transfer takes place stepwise, each step
corresponding to a recrossing of the non-adiabatic region. Such a stepwise
transfer is compatible with time-resolved measurements [240]. Averaging over
the trajectories produces a biexponential decay, again a behavior observed
experimentally. These calculations support the idea that Ehrenfest dynamics
perform well for bound-state systems—recrossings ensure that the system is not
trapped in a mixed state.

Ehrenfest dynamics with the MMVB method has also been applied to the
study of intermolecular energy transfer in anthryl-naphthylalkanes [85]. These
molecules have a naphthalene joined to a anthracene by a short alkyl —(CH),—
chain. After exciting the naphthalene moiety, if n = 1 emission is seen from
both parts of the system, if n = 3 emission is exclusively from the anthracene.
The mechanism of this energy exchange is still not clear. This system is at the
limits of the MM VB method, and the number of configurations required means
that only a small number of trajectories can be run. The method is also unable to
model the zwitterionic states that may be involved. Even so, the calculations
provide some mechanistic information, which supports a stepwise exchange of
energy, rather than the conventional direct process.

2. Direct Dynamics

The first study in which a full CASSCF treatment was used for the non-adiabatic
dynamics of a polyatomic system was a study on a model of the retinal
chromophore [86]. The cis—trans photoisomerization of retinal is the primary
event in vision, but despite much study the mechanism for this process is still
unclear. The minimal model for retinal is 2-cis-CsH¢NH;", which had been
studied in an earlier quantum chemistry study [230]. There, it had been
established that a conical intersection exists between the S| and Sy states with
the cis—trans defining torsion angle at approximately o = 80° (cis is at 0°). Two
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paths run away from this intersection, leading to either trans (products) or cis
(reactants) isomers.

Four trajectories were run, starting at the Franck—Condon point, varying the
torsion angle o from 0-20°. In all cases, the same behavior was seen. Initial
motion away from the Franck—Condon region involved stretching motion along
the molecular backbone. After ~ 60 fs, the motion then changes, with energy
being transfered to the torsional mode. This motion then takes the system to the
intersection, and the resulting (diabatic) hop takes the system to the trans
isomer. This dynamic behavior is consistent with calculations on retinal using
semiempirical surfaces [241], and using adiabatic direct dynamics on the
excited state [242]. It also supports the use of low-dimensional models that have
been used in quantum mechanical calculations on retinal [196].

Model systems for cyanine dyes have also been studied [87]. In this case, it is
important to understand the mechanism by which relaxation to the ground-state
occurs so as to design efficient dye molecules, that is, without fast internal
conversion. The simplest model is trans-NH,—(CH);-NH;. Although this
molecule has a structural similarity to the retinal model investigated above, the
dynamics after photoexcitation are quite different. A trajectory starting from
near the Franck—Condon point is sketched in Figure 9. The initial motion is
dominated by conrotatory torsional motion around the C—C bonds, which after
50 fs changes to disrotatory motion. This last only 20 fs until the molecule
reaches the minima on the §; surface. Here, the torsion remains twisted at
~104°, and large amplitude motion involving skeletal stretching and pyra-
midalization of a terminal nitrogen atom. The system oscillates in the minima
for ~ 50 fs, before crossing to the ground-state near the conical intersection.
This crossing leads to the cis conformer, and so isomerization has taken place.

This behavior is consistent with experimental data. For high-frequency
excitation, no fluorescence rise-time and a biexponential decay is seen. The lack
of rise-time corresponds to a very fast internal conversion, which is seen in the
trajectory calculation. The biexponential decay indicates two mechanisms, a
fast component due to direct crossing (not seen in the trajectory calculation but
would be the result for other starting conditions) and a slow component that
samples the excited-state minima (as seen in the trajectory). Long wavelength
excitation, in contrast, leads to an observable rise time and monoexponential
decay. This corresponds to the dominance of the slow component, and more
time spent on the upper surface.

B. Ab Initio Multiple Spawning

The multiple spawning method described in Section IV.C has been applied to a
number of photochemical systems using analytic potential energy surfaces. As
well as small scattering systems [36,218], the large retinal molecule has been
treated [243,244]. It has also been applied as a direct dynamics method,
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" gt
A §5=104.4""
Potential 5 Cl 84/,
energy i

asymm. stretching
+ pyramid, N

torsion

Figure 9. Schematic reprsentation of a classical trajectory moving on the S; and S, energy
surfaces of the NH,—~(CH);—NH; trans—cis photoisomerization, starting near the planar Franck—
Condon geometry. The geometric coordinates are (a) torsion of the C,—C3 and C;—C,4 bonds and
(b) asymmetric stretching coupled with pyramidalization. Both §; and S, intersect at a conical
intersection (S;/S, CI) located near the minimum of the S, surface (Min-C;) where the C,C3C4N5
torsion angle is 104°. [Reproduced with permission from [87]. Copyright © 2000 Amercian
Chemical Society].

combining the basic algorithm with quantum chemical input for the potential
surfaces and non-adiabatic coupling elements, when it is called AIMS.

In contrast to both the surface hopping and Ehrenfest methods, for the
spawning method it is necessary to calculate the full non-adiabatic operator,
Eq. (53), as the equation of motion for the expansion coefficients, Eq. (101)
involves the full Hamiltonian in the matrix elements of H. To simplify the
calculations, the orbital contribution to the derivative coupling was ignored in
the calculation of the non-adiabatic coupling matrix, Fj;. The second-order
derivative terms, Gj;, were also ignored. In fact, in all studies second-derivative
(Hessian) information was not used. A standard Burlisch—Stoer integrator was
used in place of the Helgaker—Chen algorithm, with step sizes ~ 0.25 fs. Small
steps of 0.025 fs were required in non-adiabatic regions. The saddle-point
approximation for the evaluation of the matrix elements in the Gaussian basis
set also means that the Hessian is not required for the description of the
potential surface.



APPLYING DIRECT MOLECULAR DYNAMICS TO NON-ADIABATIC SYSTEMS 413

The first direct dynamics application of the spawning method was on the
collision dynamics of sodium iodide [245,246]. This is a classic diatomic
system in which the lowest two adiabatic electronic states change character on
dissociation. Thus the neutral atoms approach each other on the ground-state,
and when close enough together an electron is exchanged to form the ionic
species. As a 1D nuclear problem this system does not contain a conical
intersection, but the non-adiabatic coupling is still strong where the surfaces
come close together. This is the crossing point, where the electron transfer takes
place.

This system is small enough that the full multiple spawning method, with
coupled trajectories could be applied. The number of spawns, however, was
restricted to one per pass of the intersection. In the system studied, the atoms
cross the non-adiabatic region on their approach. As there is no third body to
remove the energy, after formation of the ionic collision complex the atoms
bounce off the repulsive wall, pass back through the non-adiabatic region, and
separate. Some population is now in the excited state, and so a proportion
separate as ions. The biggest challenge here was to develop a method to
describe the long-range harpoon mechanism that is involved in the electron
exchange. For this a method termed the localized molecular orbital/generalized
valence bond (LMO/GVB) method has been developed, which combines the
pictorial nature of VB theory with the computational efficiency of an MO
method.

The second system studied was the quenching of excited Li(2p) by collision
with Hy [236], which is a simple system for the study of energy transfer. The
electronic wave function was treated using configurations based on Hartree—
Fock molecular orbitals. The orbitals were ‘“‘occupation averaged’, which
means that the lithium valence electron was split between the ground-state
HOMO and LUMO [~ the Li (2s) and Li (2p)]. This is a simplified form of the
state averaging used in the SA—CASSCF methods mentioned above, used to
prevent bias of the basis toward the ground state. The singly occupied HOMO
and LUMO then provide the reference configurations. A basis set with all single
excitations from the references were then used as a basis set for the wave
function. As the reference orbitals were not reoptimized this is termed a CAS—
CI rather than a full SA—CASSCEF calculation.

There is a sloped conical intersection between the adiabatic states. Thus as
the reactants approach on the upper surface, they are seen to cross to the ground
state, followed shortly afterward by a recrossing to the upper state. The system
is thus only partially quenched, parting still in the excited state. Up to 25 initial
functions were included, and up to 15 functions per state were spawned,
resulting in a large nuclear basis set for the description of the problem.
Interestingly, even though a low-impact energy was used, some trajectories were
found to describe reactions of Li +H, — LiH + H.
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After this, Martinez and Ben-Nun applied the method to the photoexcitation
of ethylene [88,247]. The lowest energy excitation is the HOMO-LUMO
n — ©* transition. These states are labeled N'S| and V!X, Close in energy to
the excited state is also the doubly excited Z'A;. The electronic wave function
was again treated using the occupation averaged orbital reference configurations
for the three states to build a set of single excitation configurations. The lowest
two eigenfunctions of this CI space were then taken to form the surfaces of
interest in the AIMS studies, ignoring any non-adiabatic coupling between V
and Z states.

A number of independent trajectories, with up to 10 spawns each, were run to
study the dynamics after excitation, with the initial conditions taken from the
Wigner distribution. The results shows that initial motion is along the torsional
motion to form the D,, twisted conformation. After a slight lag of 50-250 fs,
this structure starts to distort by pyramidalization of one of the ethylene groups.
Crucially for the system dynamics, this leads to a conical intersection between
S1 and Sy. At this point, the system relaxes to the ground-state, but with an
efficiency much less than 100% per pass of the intersection region. Interestingly,
the character of the wave function at this point indicates that in fact the
molecule is in the Z state, which in the distorted structure lies lower than the V.
A study of the ethylene PES using more sophisticated quantum chemical
methods [248] supports the observations from the dynamics that the relaxation
mechanism for this system is not from the twisted structure as conventionally
thought.

In an ambitious study, the AIMS method was used to calculate the absorption
and resonance Raman spectra of ethylene [221]. In this, sets starting with 10
functions were calculated. To cope with the huge resources required for these
calculations the code was parallelized. The spectra, obtained from the auto-
correlation function, compare well with the experimental ones. It was also found
that the non-adiabatic processes described above do not influence the spectra,
as their profiles are formed in the time before the packet reaches the
intersection, that is, the observed dynamic is dominated by the torsional motion.
Calculations using the Condon approximation were also compared to
calculations implicitly including the transition dipole, and little difference
was seen.

C. Other Studies

Jones et al. [144,214] used direct dynamics with semiempirical electronic wave
functions to study electron transfer in cyclic polyene radical -cations.
Semiempirical methods have the advantage that they are cheap, and so a
number of trajectories can be run for up to 50 atoms. Accuracy is of course
sacrificed in comparison to CASSCF techniques, but for many organic
molecules semiempirical methods are known to perform adequately.
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The AM1 Hamiltonian with a 2 x 2 CAS-CI (two electrons in the space of
the HOMO and LUMO) was used to describe the surfaces and coupling
elements. The electron-transfer process studied takes place on the ground-state,
with the upper state providing “‘diabatic effects,”” that is, passage to this surface
can delay, or even hinder, the transfer process. A surface hopping approach was
used for the dynamics with a Landau—Zener hopping probability and using the
Miller-George correction for the momentum after a hop. The charge distri-
bution was used to describe the positions along the reaction coordinate with
charge localization on the left and right corresponding to reactant and product,
and the symmetric delocalized charge denoting the non-adiabatic region. The
studies used trajectories taken from thermalized ensembles to provide detailed
dynamic information for the transfer processes, and the relationship between
energy gap, electronic coupling between states and rates of transfer.

A final study that must be mentioned is a study by Hartmann et al. [249] on
the ultrafast spectroscopy of the NasF, cluster. They derived an expression for
the calculation of a pump—probe signal using a Wigner-type density matrix
approach, which requires a time-dependent ensemble to be calculated after the
initial excitation. This ensemble was obtained using fewest switches surface
hopping, with trajectories initially sampled from the thermalized vibronic
Wigner function vertically excited onto the upper surface.

The process of interest is the photoisomerization taking place via a conical
intersection, which is reached after the breaking of two bonds. The electronic
structure problem was solved using a simplified restricted open-shell Hartree—
Fock (ROHF) procedure, which seems to produce reasonable results for this
system at a low cost, and for which analytic gradients and non-adiabatic
coupling elements are possible. As a result, a connection between the pump-—
probe signal and the underlying dynamics could be made. For example,
timescales for the breaking of the two bonds, and for reaching the conical
intersection could be ascertained.

VI. SUMMARY AND CONCLUSIONS

For the understanding of photochemical systems it is necessary to look carefully
at non-adiabatic effects, as these may provide unexpected pathways for efficient
transitions between electronic states. In cases where non-adiabatic coupling is
strong, which is seen as conical intersections or avoided crossings between
adiabatic PES, dynamic effects also need to be considered. This is because
where a system undergoes interstate crossing depends not only on the PES
topology, but on the initial conditions, that is, the spread of momenta and
positions in the wavepacket after the interaction with the light field.

This dependency is seen in the Landau—Zener expression for the probability
of a classical particle changing states while moving through a non-adiabatic
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region, Eq. (97), and in the Ehrenfest dynamics expression for the state
amplitudes, Eq. (94), which both depend on the particle velocity. It is also seen
in the dynamics calculations reviewed in Section V.A, where higher initial
kinetic energy often leads to crossing away from the lowest energy point on an
intersection seam. Where the crossing occurs is important, as this determines
the outcome of a photochemical process—returning to the ground state at
different points may lead to different products.

Full quantum wavepacket studies on large molecules are impossible. This is
not only due to the scaling of the method (exponential with the number of
degrees of freedom), but also due to the difficulties of obtaining accurate
functions of the coupled PES, which are required as analytic functions. Direct
dynamics studies of photochemical systems bypass this latter problem by
calculating the PES on-the-fly as it is required, and only where it is required.
This is an exciting new field, which requires a synthesis of two existing
branches of theoretical chemistry—electronic structure theory (quantum
chemistry) and mixed nuclear dynamics methods (quantum-semiclassical).

Quantum chemical methods, exemplified by CASSCF and other MCSCF
methods, have now evolved to an extent where it is possible to routinely treat
accurately the excited electronic states of molecules containing a number of
atoms. Mixed nuclear dynamics, such as swarm of trajectory based surface
hopping or Ehrenfest dynamics, or the Gaussian wavepacket based multiple
spawning method, use an approximate representation of the nuclear wavepacket
based on classical trajectories. They are thus able to use the information from
quantum chemistry calculations required for the propagation of the nuclei in the
form of forces. These methods seem able to reproduce, at least qualitatively, the
dynamics of non-adiabatic systems. Test calculations have now been run using
direct dynamics, and these show that even a small number of trajectories is able
to produce useful mechanistic information about the photochemistry of a
system. In some cases it is even possible to extract some quantitative infor-
mation.

Many problems still remain, in particular the question of the best dynamics
method is still not clear. Surface hopping is the simplest method, but suffers
from its ad hoc nature—it is not possible to say when it will fail, although the
fewest switched method seems reasonably reliable as long as a non-adiabatic
region is not recrossed. It may also suffer from slow convergence. Ehrenfest
dynamics has some intuitive appeal, and correctly treats electronic coherences
through the non-adiabatic region. The problem of getting stuck in a mixed state
can, however, be serious, although this does not seem to be the case in bound-
state photochemical systems. The continuous surface switching method may
solve this problem. Using Gaussian wavepackets to include some quantum
effects into the nuclear dynamics using multiple spawning also has some
advantages, although the overhead seems to be large.
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Being able to run direct dynamics calculations will add an extra, important,
tool to help chemists understand photochemical systems. This chapter has
outlined the present standpoint of the theory and practice of such calculations
showing that, although much work remains to be done, they are already bringing
new insight to mechanistic studies of photochemistry.

APPENDIX A: THE NUCLEAR SCHRODINGER EQUATION

The starting point for the theory of molecular dynamics, and indeed the basis
for most of theoretical chemistry, is the separation of the nuclear and electronic
motion. In the standard, adiabatic, picture this leads to the concept of nuclei
moving over PES corresponding to the electronic states of a system.

In its Cartesian form, the Hamiltonian can be written

wn(R) + To(r) + Vee (r) + Ve (R, 7) (A.1)
a(R,r) (A.2)

H(R,r) = T, (R)
=Tu(R)

m> <>

+
+

where T is the kinetic energy operator, and V the potential energy operator with
subscripts n and e relating to the nuclei and electrons, respectively. The second
line sums together the last four terms of Eq. (A.1) to define the clamped nucleus
electronic Hamiltonian, I:Iel, which depends on both the electronic and nuclear
coordinates.

The separation of nuclear and electronic motion may be accomplished by
expanding the total wave function in functions of the electron coordinates, r
parametrically dependent on the nuclear coordinates

U(R,r,1) ZX,Rt W (r; R) (A.3)

Further, the time-independent electronic basis functions are taken to be the
eigenfunctions of the electronic Hamiltonian,

Ha(r;R) (r;R) = Vil (r;R) (A.4)

and there is one set of eigenfunctions for each value of R. This is known as the
Born representation [250]. The superscript ad denotes the functions as
‘““adiabatic.”

Substituting the expansion Eq. (A.3) in the time-dependent Schrodinger
equation, Eq. (1), and multiplying from the left by the bra <\|/?d| leads to

. 0
D T ) + Vi) = il 1) (A.5)

J
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Introducing the non-adiabatic operators

Ay(R) = T = (U T W) (A.6)
= (W [T, )] (A7)

the time-dependent Schrodinger equation can finally be written as
. . 0
(T -+ Vol) = D Aglg) = ini - ) (A8)
J

The familiar BO approximation is obtained by ignoring the operators A
completely. This results in the picture of the nuclei moving over the PES
provided by the electrons, which are moving so as to instantaneously follow the
nuclear motion. Another common level of approximation is to exclude the off-
diagonal elements of this operator matrix. This is known as the Born-Huang, or
simply the adiabatic, approximation (see [250] for further details of the possible
approximations and nomenclature associated with the nuclear Schrédinger
equation).

Finally, we shall look briefly at the form of the non-adiabatic operators.
Taking the kinetic energy operator in Cartesian form, and using mass-scaled
coordinates R, = \/Myx,, where M, is the nuclear mass associated with the ath
nuclear coordinate,

=3 _ Ty (A.9)

the non-adiabatic operators can be written as

R 2
By= 09 ) (10
:h—z(G,-j—i—ZF,;,--V) (A.11)

2

the expression in Eq. (53) in Section III.A. Both G;; and F; involve the first and
second derivatives of the adiabatic electronic functions with the nuclear
coordinates

Gy = (V| Vi) (A.12)
Fy = (U [Va) (A13)

Note that these matrix elements are numbers, in comparison with the term on the
right-hand side of Eq. (A.10), which involves matrix elements of the second
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derivative operator. Notice also that the product of F;; and V results in a nonlocal
operator on the nuclear coordinate space.

The elements of the matrix G can be written in terms of F, which is called
the non-adiabatic coupling matrix. For a particular coordinate, o, and dropping

the subscript for clarity,
d
OR !

W QN o
el )~ (o

As the eigenfunctions form a complete set

alll?d a\ljjld _ a\lj;ld ad ad
< OR | OR >_§k:< OR k>< k

and as the derivative operator is anti-Hermitian,

] 007 oy
()=

Gij:V’Flj+ZFik'ij (A.17)
%

aZ\llz?.d
= > (A14)

all/
Y

qﬁd> (A.16)

we obtain

While this derivation uses a complete set of adiabatic states, it has been shown
[54] that this equation is also valid in a subset of mutually coupled states that do
not interact with the other states.

By using this expression for G, it is possible to write the nuclear Schrodinger
equation (A.8) in matrix form [54,179] as

2

h 0,
~ 5 (VHF) 4V g =ih,

51 (A.18)

where V is the diagonal potential operator matrix, and y is the vector of nuclear
functions. The first term stands for the product

(V+F)?=V1+V.-F+F-V+F-F (A.19)

where 1 is the unit matrix.
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The adiabatic coupling matrix elements, F?: ;j» can be evaluated using an off-
diagonal form of the Hellmann-Feynman theorem

oy P 0H,
oR >+< or |

el

= Vi)
(A.20)

) = <w

wﬁ e

1
particular set of nuclear coordinates reduces to

ol SE) (%

Finally, making use of the anti-Hermitian properties of the derivative operator,

< \Ilad

Thus, as the adiabatic PES become degenerate the adiabatic coupling matrix
elements become singular.

As \Ll‘.‘d and \Ij;ld are eigenvalues of Hg at all values of R, this expression at a

a%w% (A21)

\Ijad> <\|Iad|

ad
) = (a22)

APPENDIX B: SWARMS OF TRAJECTORIES

As described above in Appendix A, within the BO approximation the nuclear
Schrodinger equation is

(T4 V) = i ) (B.1)

with the nuclear kinetic energy operator given by Eq. (A.9) and the potential
provided by the eigenvalues of the electronic Hamiltonian. Subscripts labeling
the state have been dropped for clarity. Following Bohm [251] and Messiah
[147], it is possible to take a classical limit to this equation in which the nuclear
wave function can be represented by a “swarm’ of trajectories.

Making use of the polar representation of a complex number, the nuclear
wave function can be written as a product of a real amplitude, A, and a real
phase, S,

1(R) = A(R)exp (%S(R)) (B.2)
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Inserting this completely general wave function into Eq. (B.1), multiplying by
exp(—£S(R)), and separating the real and imaginary parts leads to

9, s o3

.1
A+ (2VSVA+AVZS) =0 (B.4)
m

In the classical limit, 7 — 0, and so the right-hand side of Eq. (B.3) can be
ignored. Multiplying Eq. (B.4) by 2A and rearranging, the classical equations of
motion are

S+%+ V=0 (B.5)
(A%) —s—%V - (A’VS) =0 (B.6)

The hydrodynamical analogy now follows by comparing Eq. (B.6) to the
conservation law for a classical fluid

P+V-J=0 (B.7)

that is, the rate of change of the density, P, and the divergence of the current
vector, J, is conserved. The quantum fluid “density” is thus defined as

P =A% (B.8)
and the quantum ““current” as

J=Lpvs (B.9)
m

By using the relationship between the fluid current and its velocity field, J = Pv,
a quantum fluid velocity field of

=— B.10

v=- (B.10)
Substituting Eq. (B.10) into Eq. (B.5),
. m’U2

S+—+V=0 (B.11)

2
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and substituting Eq. (B.10) into the gradient in space of this equation, we obtain
my = —-VV (B.12)

This proves that the pseudoparticles in the quantum fluid obey classical mecha-
nics in the classical limit.

APPENDIX C: PROPAGATING THE ELECTRONIC
WAVE FUNCTION

In the classical picture developed above, the wavepacket is modeled by pseudo-
particles moving along uncorrelated Newtonian trajectories, taking the electrons
with them in the form of the potential along the trajectory. In this spirit, a
classical wavepacket can be defined as an incoherent (i.e., noninteracting)
superposition of configurations, y;(R, t)y;(r,?)

U(R,r,1) ZA (R, O (r, 1) (C.1)

Note that, although there is a resemblance, this ansatz is quite different from the
Born representation of Eq. (A.3) due to the time dependence of the electronic
functions. By taking a single configuration,

U(R,r,t) = A(t)x (R, )Y (r,1) (C2)

and inserting this form into the time-dependent Schrodinger equation leads to
equations of motion for the coefficient and the functions.

iA = — (U |He [x)A
b= (UHal)Ww
iy, = (T + (V|He V)% (C5)

If we assume that 7 are localized in space, these reduce to

A = — (4l (R o)
l‘~|/ Hel(R)V (C.7)
iy = (T, + V(R)x, (C8)

In a final step, we follow the ideas of Ehrenfest [252], who first looked for
classical structures in the equations of quantum mechanics, and look at the time
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evolution of the expectation values of the nuclear position and momentum
operators. For a general operator, O

2. -
5,(0) = —i{[0,H]) (C.9)

where (0) = (x|O|x) and [0, H] is the commutator of the operator with the
Hamiltonian. Evaluating the commutators [R,H| and [P,H| leads to the
Ehrenfest theorem

0 . 1 .
a<R> =%<P> (C.10)

§<P>:_<2_X> (C.11)

The localized nature of the nuclear functions means that these reduce to classical
equations of motion

(C.12)

ov

" (C.13)

R=R;

Solving the Egs. (C.6—C.8,C.12,C.13) comprise what is known as the Ehrenfest
dynamics method. This method has appeared under a number of names and deri-
vations in the literature such as the classical path method, eikonal approximation,
and hemiquantal dynamics. It has also been put to a number of different
applications, often using an analytic PES for the electronic degrees of freedom,
but splitting the nuclear degrees of freedom into quantum and classical parts.

In the derivation used here, it is clear that two approximations have been
made—the configurations are incoherent, and the nuclear functions remain
localized. Without these approximations, the wave function form Eq. (C.1)
could be an exact solution of the Schrodinger equation, as it is in 2D MCTDH
form (in fact is in what is termed a natural orbital form as only ‘“diagonal”
configurations are included [20]).
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I. INTRODUCTION

Conical intersections, introduced over 60 years ago as possible efficient funnels
connecting different electronically excited states [1], are now generally believed
to be involved in many photochemical reactions. Direct laboratory observation of
these subsurfaces on the potential surfaces of polyatomic molecules is difficult,
since they are not stationary ‘““points’’. The system is expected to pass through
them very rapidly, as the transition from one electronic state to another at the
conical intersection is very rapid. Their presence is surmised from the following
data [2-5]:

Very rapid (subpicosecond) decay of electronically excited states.
Lack of fluorescence.
Rapid formation of ground-state products.

In recent years, computational testimonies for the existence of conical inter-
sections in many polyatomic systems became abundant and compelling [6—11].
The current consensus concerning the ubiquitous presence of conical intersec-
tions in polyatomic molecules is due in large part to computational “‘experi-
ments.”

In this chapter, we present an analysis of conical intersections, based on
chemical reaction concepts. It is argued that conical intersections leading to
the ground state can be identified and characterized by considering properties of
the ground-state surface only. The basis of the model is the Longuet-Higgins
phase-change rule [12,13] (Section II), which provides a simple criterion for the
existence of a degeneracy on the electronic ground state. Longuet-Higgins
showed that a degeneracy necessarily exists within a region enclosed by a loop,
if the total electronic wave function changes sign upon being transported around
the loop. (For more details, see Section II). We propose to construct the loop
discussed by Longuet-Higgins from reaction coordinates of elementary
reactions converting the reactant to the desired product and other possible
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products. In this sense, our approach is ‘“‘chemical” in nature. In order to
properly search for the elementary reactions, the need for an agreed definition of
common terms such as a molecule and a transition state arises. This reaction is
carried out in this section, based on the concept of electron spin pairing [14,15].
The reacting system (reactant and product) are treated as a two-state system
[16]. The spirit of this strategy is akin to the Evans—Dewar—Zimmerman
approach [17-21], and is closely related to the concept of aromaticity and anti-
aromaticity, which is dealt with in Section III.

The phase change of the total polyelectronic wave function in a chemical
reaction [22-25], which is more extensively discussed in Section III, is central
to the approach presented in this chapter. It is shown that some reactions may be
classified as phase preserving (p) on the ground-state surface, while others are
phase inverting (i). The distinction between the two can be made by checking
the change in the spin pairing of the electrons that are exchanged in the reaction.
A complete loop around a point in configuration space may be constructed using
a number of consecutive elementary reactions, starting and ending with the
reactant A. The smallest possible loop typically requires at least three reactions:
two other molecules must be involved in order to complete a loop; they are the
desired product B and another one C, so that the complete loop is A— B —
C — A. Two types of phase inverting loops may be constructed: those in which
each reaction is phase inverting (an i* loop) and those in which one reaction is
phase inverting, and the other two phase preserving (an ip” loop). At least one
reaction must be phase inverting for the complete loop to be phase inverting and
thus to encircle a conical intersection and lead to a photochemical reaction.
It follows, that if a conical intersection is crossed during a photochemical
reaction, in general at least two products are expected, B and C. A single
product requires the existence of a two-component loop. This is possible if one
of the molecules may be viewed as the out-of-phase combination of a two-
state system. The allyl radical (Section IV, cf. Fig. 12) and the triplet state are
examples of such systems. We restrict the discussion in this chapter to singlet
states only.

In Section IV, the construction of phase inverting loops is described. A
conical intersection is an example of an electronic degeneracy; A well-known
case of electronic degeneracy in polyatomic molecules occurs in the Jahn—Teller
effect. Systems of high symmetry tend to distort to lower symmetry if their
electronic ground state is degenerate. We show (Section V) that the Longuet-
Higgins loop treatment can be applied to these systems, making them part of the
general conical intersections concept.

The method discussed in this chapter allows, in principle, the detection
of all conical intersections connecting the ground with the excited state. Assum-
ing that photochemical products are mainly formed through conical intersec-
tions, it therefore provides a means to design selection rules for photochemistry.
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A. A Chemical Reaction as a Two-State System

The concept of two-state systems occupies a central role in quantum mechanics
[16,26]. As discussed extensively by Feynmann et al. [16], benzene and ammonia
are examples of simple two-state systems: Their properties are best described by
assuming that the wave function that represents them is a combination of two
base states. In the cases of ammonia and benzene, the two base states are
equivalent. The two base states necessarily give rise to two independent states,
which we named twin states [27,28]. One of them is the ground state, the other an
excited states. The twin states are the ones observed experimentally.

The extra stabilization of benzene in the ground state, as compared to a
single Kekulé structure, is assigned to a resonance between the two equivalent
base states. In standard textbooks, the fact that the combination is in-phase (i.e.,
that the two Kekulé structures in the ground-state combination carry the same
sign) is taken for granted. In Section III, it is shown that whether the ground state
is representing by the in-phase or out-of-phase combination of the two states is
determined by the permutational symmetry of the electronic wave function, and
may be traced to Pauli’s principle. Hiickel’s 4n 4 2 rule [29] arises from the fact
that there is an odd number of electron pairs in this system.

Stabilizing resonances also occur in other systems. Some well-known ones are the
allyl radical and square cyclobutadiene. It has been shown that in these cases, the
ground-state wave function is constructed from the out-of-phase combination of
the two components [24,30]. In Section III, it is shown that this is also a necessary
result of Pauli’s principle and the permutational symmetry of the polyelectronic
wave function: When the number of electron pairs exchanged in a two-state
system is even, the ground state is the out-of-phase combination [28]. Three electrons
may be considered as two electron pairs, one of which is half-populated. When
both electron pairs are fully populated, an antiaromatic system arises (Section III).

During a chemical reaction, a chemical system (or substance) A is converted
to another, B. Viewed from a quantum chemical point of view, A and B together
are a single system that evolves with time. It may be approximated by a combi-
nation of two states, A at time zero and B as time approaches infinity. The first is
represented by the wave function |A) and the second by |B). At any time during
the reaction, the system may be described by a combination of the two

R)(#) = ca(r)|A) + ca(1)[B) (1)

where ca(t =0) = 1,cp(t =0) = 0,ca(t = 00) = 0,cp(t = 0) = 1.

Within the Born-Oppenheimer (BO) approximation, |A) and |B) may be
written as the product of an electronic wave function, |M) o1 and a nuclear wave
function |M),.

M) = [M)yM), (M =A,B) (2)
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It is useful to represent the polyelectronic wave function of a compound by a
valence bond (VB) structure that represents the bonding between the atoms.
Frequently, a single VB structure suffices, sometimes it is necessary to use
several. We assume for simplicity that a single VB structure provides a faithful
representation. A common way to write down a VB structure is by the spin-
paired determinant, that ensures the compliance with Pauli’s principle: (It is
assumed that there are 2n paired electrons in the system)

Al =D P1(1)2(2) - 20(2m)[(1)B(2) — B(1)(2)][%(3)B(4)
— BG4 - [o(2n — 1)B(2n) — P(2n — 1) (2n)] (3)

Where the summation is over all 2n! permutations P each with parity €,. We use a
short-hand notation:

IA), = (12— 12)(34 —34)--- (2n — 12n — 2n — 12n) (4)

As the electronic and nuclear wave functions are separated in the BO approxi-

mation, a single electronic wave function may be associated with many different

nuclear configurations. Furthermore, the electronic energy of the system depends

parametrically on the nuclear configuration {Q}. It is convenient to introduce a

term for all systems having a specific spin-pairing scheme, independent of the

nuclear configuration. We use the term anchor to represent this group of systems.
We may now distinguish two classes of reactions:

1. The system does not change the spin-pairing scheme during the process.
In this case, |A), remains put throughout the reaction, and only the
internuclear distances or angles change. Such transformations are called
intraanchor reactions.

2. The spin-pairing scheme of the product, |B),,, is different from that of the

reactant. This happens if at least two pairs of electrons have exchanged
partners. In other words, at least three electrons need to be involved.

If the reaction is elementary, there is only a single transition state between A
and B. At this point the derivative of the total electronic wave function with
respect to the reaction coordinate Qg vanishes:

O|R) ¢y 1s/00a—p =0 (5)

In the transition state region, the spin-pairing change must take place. At this
nuclear configuration, the electronic wave function may be written as

IR)erts = kalA)e + kn[B)g (6)
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If the sign of k, is equal to that of kg, the reaction is phase preserving, if the signs
are different, the reaction is phase inverting.

We shall assume, for simplifying the notation, that the k values are positive.
For a phase-inverting reaction, the wave function of the transition state is
therefore written as

R)ers = kalA)y — ko[B)y  (phase inverting) (7)

It is important to recall, that the reaction takes place on the ground-state surface.
Clearly, at the same nuclear configuration, the other combination

[R)ars = kalA) +k5[B)y  (phase preserving) (8)

lies on an excited state surface.

The distinction between an in-phase and an out-of-phase combination of the
two base states is easy for degenerate two-state systems (such that the two
components are equivalent). In these cases, the transition state has an additional
symmetry element not present in either of the two base states. In other words, it
belongs to a group of higher symmetry. The electronic wave function at the
transition state nuclear configuration transforms as the totally symmetric
representation of the new group if the transition state is the in-phase
combination. If it is the out-of-phase combination, it transforms as one of the
nontotally symmetric representations. In this case, the motion along the reaction
coordinate is antisymmetric with respect to the new symmetry element [28]. For
example, the ground state of the C», allyl radical transforms as B; (not A;), and
the ground state of square cyclobutadiene (D4, symmetry) as B, (not A;,). The
symmetry properties of the transition states are more easily established using
the VB approximation than the molecular orbital-configuration interaction
(MO-CI) one. The character of the bonding before and after the reaction does
not matter: The transfer of electrons from one atom to another to form a
covalent, ionic, or coordinate bond is always accompanied by a change in spin
pairing [31,32], and is clearly represented by the VB structures. The MO-CI
method can also be used successfully, but several configurations are ordinarily
required in the general case, as shown, for example, in [33].

By using the determinant form of the electronic wave functions, it is readily
shown that a phase-inverting reaction is one in which an even number of
electron pairs are exchanged, while in a phase-preserving reaction, an odd
number of electron pairs are exchanged. This holds for Hiickel-type reactions,
and is demonstrated in Appendix A. For a definition of Hiickel and Mobius-type
reactions, see Section III.
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B. Anchors

Intuitively, a molecule is defined as an assembly of atoms bound by chemical
bonds, which lies in a local minimum on the potential surface. The molecule
preserves its identity when the nuclei are transported from their minimum energy
position, as long as the gradient of the electronic energy with respect to the
displacement maintains its sign. As soon as this gradient changes its sign, the
system undergoes a chemical change in an elementary reaction. The idea that a
molecule is defined by the spin-pairing arrangement of the valence electrons
seems to be at odds with this concept of a molecule. In particular, a definite
structure is not assumed.

An anchor, as defined above, contains stable molecules, conformers, all pairs
of radicals and biradicals formed by a simple bond fission in which no spin
re-pairing took place, ionic species, and so on. Figure 1 shows some examples
of species belonging to the same anchor. Thus, an anchor is a more general and
convenient term used in the discussion of spin re-pairing.

C. Anchors, Molecules and Independent Quantum Species

At this point, it is instructive to discuss the distinction between molecules,
anchors, and quantum mechanical wave functions that represent them. The topic
is best introduced by using an example. Consider the Hy system [34].

1. Hydrogen molecule anchor 2. Bicyclobutane anchor

H-H H- H , 4 b

Single-bond fission

3. Butadiene anchor 4. Twisted ethylene anchor
1 1 qo 2 gl %0 H
2 ( j/ K
3 34
X ~° HoA9d  HoA
4 4 HY Sy H
s-cis s-trans I I
Two conformers The conversion from I to II is by the transfer of a

proton from one carbon atom to the other. No
change in spin pairing.

Figure 1. Examples of species residing in the same anchor.



440 YEHUDA HAAS AND SHMUEL ZILBERG
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Figure 2. The H, system. TS are transition 2
states. H()

The most stable nuclear configuration of this system is a pair of H, mole-
cules. There are three possible spin coupling combinations for Hy corresponding
to three distinct stable product H, pairs: HI:H2 with H3:H4, HI1:H3 with
H2:H4, and H1:H4 with H2:H3. Each H atom contributes one electron, the dot
diagrams indicate spin pairing. The three combinations are designated as H(I),
H(II), and H(IIT), respectively. They may be interconverted via square transition
states, Figure 2.

The electronic wave functions of the different spin-paired systems are not
necessarily linearly independent. Writing out the VB wave function shows that
one of them may be expressed as a linear combination of the other two.
Nevertheless, each of them is obviously a separate chemical entity, that can be
clearly distinguished from the other two. [This is readily checked by considering
a hypothetical system containing four isotopic H atoms (H, D, T, and U). The
anchors will be HD + TU, HT + DU, and HU + DT].

In short-hand notation, the electronic wave functions of the three spin-paired
combinations may be written as

234 — 1234 — 1234 + 1234 (9a)
3)(24 —24) = 1324 — 1324 — 1324 + 1324 (9b)
423 — 1423 — 1423 + 1424 (9c)

Since exchanging two columns in a determinant changes its sign, simple algebra
shows that

—[H(I)) = [H(I)) + [H(IT)) (10)

Thus, the electronic wave function of H(III) is (to within a multiplication
constant) equal to the in-phase combination of the electronic wave functions of
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H(I) and H(I). This fact does not provide any information on the nuclear
structure of this species at the energy minimum. By symmetry, it is clear that
the system has three equivalent minima on the ground-state surface, which were
designated as the three diatomic pairs. The nuclear geometry of each of these
minima is quite different from that of the other two.

There are two nuclear configurations on the ground-state surface that are of
special interest to the chemist: One is the energy minimum for the in-phase
combination of [H(I)) and |H(II)), which is the equilibrium geometry of H(III).
The second is also a stationary point on the ground-state surface, but for the out-
of-phase combination of [H(I)) and |H(II))—it is the TS between H(I) and
H(II). Clearly, the geometries (nuclear configuration) of these two species are
quite different. Each of these structures is constructed from two base functions,
and is therefore a two-state system. As for any two-state system, each has a twin
state on the electronic excited surface. Thus, the in-phase combination of the
two electronic wave functions [H(1)) and [H(I)) at the nuclear configuration of
the transition state is found on the excited-state potential surface. Likewise, the
out-of-phase combination at the nuclear geometry of the minimum energy of
[H(III)) also lies on the excited-state potential. Thus a given spin-paired scheme
of the H, system is seen to support very different nuclear geometries on the each
potential surfaces.

We can now proceed to discuss the phase-change rule and its use to locate
conical intersections.

II. THE PHASE-CHANGE RULE AND THE
CONSTRUCTION OF LOOPS

Herzberg and Longuet-Higgins noted the singular behavior of the electronic
wave function around a degeneracy [12,13]. This observation is the basis of the
present approach to molecular photochemistry. Let ¢(r,R) be the total
polyelectronic wave function of a polyatomic molecule, where r and R denote
the electronic and nuclear coordinates, respectively. Within the BO approxima-
tion, this wave function is an explicit function of r for a given set of nuclear
coordinates Ry. It must be continuous everywhere in the electronic coordinates r,
but may change sign in an abrupt, seemingly discontinuous manner when the R’s
are slightly changed. If ¢(r, R) is nondegenerate throughout a certain region of
the nuclear configuration space, it will be a real continuous function of the R’s as
well as of the r’s. If it changes abruptly at some point, there must be two
electronic states with the same energy at this point, in other words the function is
degenerate at that point.

Consider the function at a certain set of R’s, Ry, where ¢(r, R) is nondegene-
rate. When the nuclei move away from that point, and approach it back via a
different route, the wave function must return to its original value. However, in
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Figure 3. Longuet-Higgins’ rule proof.

the process it may change sign, since if ¢(r,R,) is a solution of the electronic
wave, so is —¢(r, R). Thus one can distinguish two kinds of paths leading by a
closed loop from Ry back to itself: sign preserving and sign reversing.

Longuet-Higgins stated and proved the following theorem [13]:

Let S be any simply connected surface in nuclear configuration space,
bounded by a closed-loop L. Then, if ¢(r,R) changes sign when transported
adiabatically round L, there must be at least one point on S at which ¢(r,R) is
discontinuous, implying that its potential energy surface intersects that of
another electronic state.

The proof was by reduction ad absurdum.

Let /; be any line in S that bisects the area enclosed by L, and let L; and M,
be the two loops created (Fig. 3). If L is sign reversing and if ¢(r,R) is
continuous everywhere on S, than either L, or M| must be sign reversing. If L;
and M; were both sign reversing or sign preserving, than L would also be sign
preserving, in contradiction with the assumption. Let L; be the sign reversing
loop. It encloses a simply connected surface S| which is smaller than S. We now
bisect S| by a line /, and repeat the argument. In this fashion, a large number of
successively smaller loops are created, all of them sign reversing. These loops
converge to a point P on the surface, where ¢(r,R) is discontinuous in R,
because of the sign change. Thus, the function cannot be single valued—it must be
degenerate. In other words, two potential surfaces cross at this point. Longuet-
Higgins’ proof assumed that the electronic wave function is real everywhere.
Stone [35] showed that the theorem applies also for a general phase change.
Thus, when the nuclei return to their original configuration R, the wave
function may undergo a change phase Z = ¢, since if ¢(r, R,) is a solution of
the electronic wave equation, so is ¢*¢(r, Ry).

The proof runs analogously to the original Longuet-Higgins one, and is not
reproduced here.
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A. Construction of Loops: Nature of the Coordinates

Herzberg and Longuet-Higgins [12] explicitly discussed the H; system. This is a
three-electron problems, which has the same spin-pairing properties as the four-
electron system Hy. The loop is constructed by considering the three possible
spin-pairing options for these systems (Fig. 4), compare Figure 2. The transition
states for the Hs system are linear [36] and their wave functions are the out-of-
phase combination of the two wave functions of the reactant and product
systems. As mentioned above for H,, Pauli’s principle and the permutational
symmetry of the polyelectronic wave function are the ultimate reason for the fact
that the ground-state surface in this case is the out-of-phase combination, rather
than the in-phase one.

Generalizing on [12], we construct a loop by using a sequence of three
elementary reactions. It is emphasized that 