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Preface 

The general theory of stochastic processes and the more specialized 
theory of Markov processes evolved enormously in the second half of 
the last century. In parallel, and to a large extent independently, the 
theory of controlled Markov chains (or Markov decision processes) was 
being pioneered by control engineers and operations researchers. Since 
researchers in Markov processes and controlled Markov chains have been, 
for a long time, aware of the synergies between these two subject areas 
it was generally recognized that time was ripe to organize a conference 
that would bring together the leading practitioners in these fields. 

In view of the above it could be argued, that an international con­
ference devoted to the twin topics of Markov processes and controlled 
Markov chains was inevitable and that the only questions that needed 
to be settled were: when and where should such a meeting take place. 
We felt that 1999, the last year of the 20th century, the century during 
which the entire subject of probability has been formalized as a rigor­
ous branch of mathematics was the right year to stage this conference. 
Furthermore, we felt that by holding it in China we would accomplish 
the important goal of facilitating a fruitful exchange of ideas between 
the international research community and the members of the vibrant 
Chinese school of probability. As a result, a decision was made to or­
ganize the International Workshop on Markov Processes and Controlled 
Markov Chains in Changsha, China, 22-28 August 1999. 

The conference was a great success. It was attended by eminent schol­
ars in their relevant disciplines, from eleven countries spanning four con­
tinents, including some of the leading Chinese experts. Stimulating ple­
nary lectures by Professors Dynkin (Cornell University, USA), Watanabe 
(Kyoto University, Japan), Haurie (University of Geneva, Switzerland) 
and Hernandez-Lerma (CINVESTAV-PIN, Mexico) exposed the partic­
ipants to some of the most important recent developments in Markov 
processes and controlled Markov chains. In total 94 research papers 
were presented at the workshop. There were also many lively discus­
sions and new collaborative projects that resulted from this workshop. 

IX 
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A number of younger researchers and graduate students also actively 
participated in the conference. 

Authors of the most interesting papers presented at the workshop 
were invited to submit their contributions for possible publication in 
this edited volume. All papers were refereed. The final selection which 
appears in the body of this book reflects both the maturity and the 
vitality of modern day Markov processes and controlled Markov chains. 
The maturity can be seen from the sophistication of the theorems, proofs, 
methods and algorithms contained in the selected papers. The vitality 
is manifested by the range of new ideas and new applications in such 
fields as finance and manufacturing. 

As editors and workshop organizers we are very happy to express 
our thanks and appreciation to many people who have worked hard to 
make the workshop and this volume so successful. In particular, we are 
indebted to all the members of the International and Local Program 
Committees (IPC and LOC, respectively), and especially to the work­
shop secretary, Mr. Xiaobin Fang and Professor Hanjun Zhang who also 
helped to edit this volume. We are indebted to the many colleagues 
who reviewed the manuscripts and made suggestions for improvements. 
Ms Angela McKay and Mr Paul Haynes from the University of South 
Australia played an important role in converting the manuscripts into a 
consistent format. The thoughtful editorial oversight from Mr John Mar­
tindale from Kluwer is also gratefully acknowledged. Last but not least, 
the workshop was generously supported by Changsha Railway Univer­
sity, University of South Australia, Changsha Municipal Government, 
Xiangcai Securities Co., Ltd, National Science Foundation of China and 
the Bernoulli Society for Mathematical Statistics and Probability. With­
out their support the workshop and this volume would not have been 
possible. 

ZHENTING Hou 

JERZY A. FILAR 

ANYUE CHEN 
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Chapter 1 

BRANCHING EXIT MARKOV SYSTEM 
AND THEIR APPLICATIONS TO 
PARTIAL DIFFERENTIAL EQUATIONS* 

E.B. Dynkin 
Cornell University 

1. Introduction 

Connections between linear partial differential equations involving 
second order uniformly elliptic operators L and diffusion processes are 
known for a long time. Superdiffusions are related, in an analogous way, 
to equations involving semilinear differential operators Lu - 'ljJ(u). 

Superdiffusions are a special case of superprocesses which were intro­
duced (under the name continuous state branching processes) in pioneer­
ing work of Watenabe in 1968 [9]. Deep results on super-diffusion were 
obtained by Dawson, Perkins, Le Gall and others. Partial differential 
equations involving the operator Lu - 'ljJ(u) were studied independently 
by analysts, including Keller, Osserman, Loewner and Nirenberg, Brezis, 
Marcus and Veron, Baras and Pierre. 

In earlier papers, a superdiffusion was interpreted as a Markov process 
X t in the space of measures. This is not sufficient for the probabilistic 
approach to boundary value problems. A reacher model based on the 
concept of exit measures has been introduced in [1]. A model of a su­
perprocess as a family of exit measures from time-space open sets was 
developed systematically in [3]. In particular, branching and Markov 
properties of such family were established and used for solving analytical 
problems. The central point of the present talk is to show that these two 
properties are sufficient to develop the entire theory of superprocesses. 

·Partially supported by National Science Foundation Grant DMS-9970942 
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2. Exit systems associated with a diffusion 
To every second order uniformly elliptic differential operator L there 

corresponds a Markov process (et, IIr,x) in Rd with continuous paths and 
infinitesimal generator L. We call it L-diffusion. The process with the 
generator L = !~ has the transition density 

p(r, x; t, y) = [27r(t - r)rd/2e-lx-yI2/2(t-r). 

It is called the Brownian motion. 
To every open set Q in time-space S = R X Rd there corresponds a 

random point (r,e-r) where r = inf{t: (t,et) ~ Q} is the first exit time 
from Q. If a particle starts at time r from a point x and if (r, x) E Q, 
then the probability distribution of the exit point, given by the formula 

k(r, x; B) = IIr,x(r,e-r) E B, 

is concentrated on the boundary? of Q. Moreover, it is concentrated on 
the set? of regular points [a point (s, c) E is called regular if, for s' > 
s,IIr,x{(t,et) E Q for all s < t < s'} = 0]1f (r,x) ~ Q, then k(r, x; e) is 
concentrated at (r, x). For every bounded continuous function /, 

u(r, x) = IIr,xf(r, e-r) = / k(r, x; ds, dy)f(s, y) 

is a solution of the boundary value problem 

au/ar + Lu = 0 in Q, 
u = f on aregQ. (2.1) 

the family of random points (( r, e-r), 7r r,x) has the following strong Mar­
kov property: for every pre-r X ~ 0 and every post-r Y ~ 0, 

(2.2) 

Pre-r means depending only on the part of the path before r. Similarly, 
post-r means depending on the path after r. To every measurable p ~ 0, 
there correspond a pre-r random variable 

\ 

X = i~p(s,es)ds 
and a post-r random variable 

Y = 100 p(s, es)ds 

Let r and r' be the first exit times from Q and Q'. Then f ( r' , e-r') is 
a pre-r random variable if Q' c Q and it is a post-r random variable if 
QcQ'. 
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3. Exit systems associated with branching 
diffusion 

5 

Consider a system of particles moving in Rd according to the following 
rules: 

(i) Each particle performs an L-diffusion. 

(ii) It dies during time interval (i, i + h) with probablility kh + o(h), 
independently on its age. 

(iii) If a particle dies at time i at point x, then it produces n new 
particles with probability Pn (i, x). 

(iv) The only interaction between the particles is that the birth time 
and place of offspring coincide with the death time and place of 
their parent. 

(Assumption (ii) implies that the life time of every particle has an 
exponential probability distribution with the mean value 11k.) 

We denote by Pr,x the probability law corresponding to a process 
started at time i by a single particle located at point x. Suppose that 
particles stop to move and to procreate outside an open subset Q of 
S. In other words, we observe each particle at the first, in the family 
history (by the family history we mean the path of a particle and all 
its ancestors. If the family history starts at (r, x), then the probability 
law of this path is IIr,x), exit time from Q. The exit measure from Q is 
defined by the formula 

XQ = b(h,Yl) + ... + d(tn,Yn) 

where (il,YI),··· ,(in,Yn) are the states of frozen particles and b(t,y) 

means the unit measure concentrated at (i, y). We also consider a process 
started by a finite or infinite sequence of particles that "immigrate" at 
times ri at points Xi. There is no interaction between their posterities 
and therefore the corresponding probability law is the convolution of 
Pri,Xi. We denote it Pp, where 

is a measure on S describing the immigration. We arrive at a family 
X of random measures (XQ' Pp,), Q E 0, I-" E M where 0 is a class of 
open subsets of Sand M is the class of all integer-valued measures on 
S. Family X is a special case of a branching exit Markov system. A 
general definition of such systems is given in the next section. 
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4. Branching exit Markov systems 

A random measure on a measurable space (8,8s ) is a pair (X,P) 
where X(w, B) is a kernel (a kernel from a measurable space (El ,8d 
to a measurable space (E2' 8 2) is a function K (x, B) such that K (x, • ) 
is a measure on 8 2 for every x E El and K(x, B) is a 8 l -measurable 
function for every B E 8 2 ) from an auxiliary measurable space (0, oF) to 
(8,8s ). We assume that 8 is a Borel subset of a compact metric space 
and 8s is the class of all Borel subsets of 8. 

Suppose that: 

(i) ° is a subset of O"-algebra 8s, 

(ii) M is a class of measures on (8, 8 s) which contains all measures 
Oy, y E 8, 

(iii) to every Q E ° and every /-t E M, there corresponds a random 
measure (XQ' P/-l) on (8,8s ). 

Condition (ii) is satisfied, for instance, for the class M(8) of all finite 
measures and for the class N(8) of all integer-valued measures. 

We use notation < j, /-t > for the integral of j with respect to a 
measure /-to Denote by Z the class of functions 

z = exp { t < J;, XQ, > } (4.1) 

where Qi E 0 and Ii are positive measurable functions on 8. We say 
that X = (XQ' P/-l)' Q E 0, /-t E M is a branching system if: 

4.A For every Z E Z and every /-t EM, 

(4.2) 

where 

u(y) = -logPyZ (4.3) 

and Py = Poy . 
Condition 4.A (we call it the continuous branching property) im­
plies that 

P/-lZ = IIP/-lnZ 

for all Z E Z if /-tn, n = 1,2,··· and /-t = L /-tn belong to M. 
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A family X is called an exit system if: 

4.B For alII-" E M and Q E 0, 

4.C If I-" E M and I-"(Q) = 0, then 

PJl{XQ = I-"} = 1. 

Finally, we say that X is a branching exit Markov [BEM] system, if 
XQ EM for all Q E 0 and if, in addition to 4.A-4.C, we have: 

4.D Markov property Suppose that X 2: 0 is measurable with re­
spect to the (T-algebra FCQ generated by X Q" Q' c Q and Y 2: 0 
is measurable with respect to the (T-algebra :F:J generated by 
XQ"Q c Q'. Then 

(4.4) 

It follows from the principles (i)-(iv) stated at the beginning of Sec­
tion 3 that conditions 4.A-4.D hold for the systems of random measures 
associated with branching diffusions. For them S = R X Rd , M = N(S) 
and 0 is a class of open subsets of S. In future, we deal with special 
classes 0 0 COl : an open set Q belongs to 0 0 if Q c StJ,. for a finite 
interval ~, and it belongs to 0 1 if Q c S>to for some to E R. (We put 
SA = A X Rd for every A CR.) 

5. Transition operator 

Let X = (XQ' PJl)' Q E 0, I-" E M be a family of random measures. 
Denote by B the set of all bounded positive 5s-measurable functions. 
The transition operator of X is defined by the formula 

Note that 
VQ(O) = 0 for all Q 

Recall that the Laplace transform 

</J()..) = Pe-).z, ).. 2: 0 

(5.1) 

(5.2) 

determines uniquely the probability distribution of a positive random 
variable Z relative to P. Therefore the transition operator (5.1) defines 
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uniquely the probability distribution of XQ relative to Py • If X is a 
branching system, then, for all p, EM, 

Pp,e-<f,XQ> = e-<vQ(f),p,> (5.3) 

and therefore VQ determines the probability distribution of XQ relative 
to Pw 

Theorem 5.1 

(i) A branching system X is a branching exit system if and only if: 

a) 
VQ(f) = vQ(f) if f = f on QC. 

b) For every Q E 0, 

VQ(f) = f on QC. 

(ii) A branching exit system is a BEM system if and only if: 

For all Q C Q, 

If X is a BEM system associated with a branching diffusion, then 

VQ(f) = -log w 

where 
w(r, x) = Pr,xe-<f,XQ>. 

Consider the offspring generating function 
00 

¢(r,x;z) = LPn(r,x)zn. 
o 

(5.4) 

The four principles stated at the beginning of Section 3 lead to an equa­
tion 

w(r,x) = IIr,x [e-k(T-r)e-f(T,er ) + k iT e-k(S-r)ds¢(s,es;w(s,es))] 

(5.5) 
where T is the first exit time from Q. The first term in the brackets 
corresponds to the case when the particle started the process is still 
alive at time T, and the second term corresponds to the case when it 
dies at time s E (r, T). 

Formula (5.5) implies that v = VQ(f) satisfies the equation 

e-v(r,x) =IIr,x [k iT <I> (s,es;e-V (S,e8») +e-f(T,er )] (5.6) 

where <I>(r, x; z) = ¢(r, x; z) - z. 
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6. ,a-transforms of BEM systems and their 
limits 

9 

To every BEM system X = (XQ' Pjl), Q E 0, /-L E M and to every 
constant (3 > 0, there correspond a system Xf3 = (xg, pt), Q E 0, /-L E 

Mf3 where 
Mf3 = (3M, xg = (3XQ, pt = P~. 

We call it the (3-transform of X. 
Put 

vgU)(y) = (3-1VQ{(3f){y) 

where VQU) is given by (5.1). Note that 

Pjle-<f,X£> = e-<vgU),jl> 

(6.1) 

(6.2) 

We construct a BEM system XO = (X~, P~) which is, in a certain 
sense, the limit of Xf3 as (3 -+ O. {If X is a BEM system associated 
with a branching diffusion, then Xf3 describes the evolution of the mass 
distribution assuming that all particles have mass (3. The limit as (3 -+ 0 
reveals the behavior of a system of very small particles with very short 
lives.) 

We put Ilfll = sups If{y)1 and we denote by Be the set of all positive 
Bs-measurable functions f such that IIfll ~ c. 

Theorem 6.1 Suppose that operators vg defined by (6.1) satisfy, for 
every Q E 0, the conditions: 

(i) vg U) converge, as (3 -+ 0, to a limit V8 U) and the convergence 
is uniform on every set Be, that is 

€(c, (3) = sup IlvgU) - V8(f)11 -+ 0 
Be 

as (3 -+ 0 (6.3) 

(ii) V8U) satisfies the Lipschitz condition on every Be, i.e., for every 
c, there exists a constant a{c) such that 

11V8U) - V8{g) II ~ a{c)lIf - gil for all f, g E Be (6.4) 

Then there exists a BEM system XO = (X~, P~), Q E 0, /-L E 
M (S) such that 

(6.5) 

for all /-L E M(S), Q E 0, fEB. 
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7. Superdiffusion 

We apply Theorem 6.1 to a BEM system X = (XQ' PM)' Q E 0, JL E 
N(S) associated with a branching diffusion. 

It follows from (5.6) that v(3 = vg (f) satisfies the equation 

e-(3v i3 (r,x) = IIr,x [1T kip (s, ~s; e-(3v i3 (S,€s)) ds + e-(3f(T,fr)] (7.1) 

which is equivalent to the equation 

where 

[1- e(3v i3 ] /(3, 

[1- e-(3f] /(3, 

[4>(3(r, X; 1 - (3u) - 1 + (3u] k(3 /(3 

(We assume that k and 4> depend on (3.) 

(7.3) 

Note that, as (3 -+ 0, F(3 -+ f. If 1jJ(3 -+ 1jJ, then we expect that 
u(3 -+ u where u is a solution of the equation 

u(r, x) + IIr,x iT 1jJ (s, ~s; u(s, ~s)) ds = IIr,xf(T, ~T). (7.4) 

We say that a BEM system X = (XQ' PM)' Q E 0, JL E M is an 
(L, 1jJ)-superdiffusion if ° is a class of open subsets of S = R X Rd and 
if transition operators VQ satisfy the condition: for every fEB, u = 
VQ(f) is a solution of the equation (7.4). 

Equations (7.2) and (7.4) can be rewritten in the form 

(7.5) 

and 
u + GQ'l1(u) = KQ(f). (7.6) 

where the Poisson operator KQ and the Green operator GQ are defined 
by the formulae 

KQf(r,x) 

GQp(r, x) 

IIr,xf(T, (T), 

IIr,x 1T p(s, ~s) ds 

(7.7) 

(7.8) 
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and 

We prove: 

Wi3(f)(r,x) 

wi3(f)(r, x) 

w(f)(r, x) 

Theorem 7.1 Suppose that: 

(i) 1/;13 2:: 0, 

[1- e-i3f(r,X)] /{3 

1/;13 ('1', Xj f(r, x)) , 

1/;(r,xjf(r,x)) . 

11 

(7.9) 

(ii) 1/;13 converges to 1/; uniformly on every set {(r, x) E S,u E [O,e]}, 
and 

(iii) for every e, there exists a constant q(e) such that 

11/;('1', Xj ud -1/;('1', Xj u2)1 :::; q(e)lu1 - u21 

for all ('1', x) E S and all U1,U2 E [O,e]. 

Then operators vg satisfy Theorem 6.1(i) and (ii), and v~ are transition 
operators of an (L,1/;)- superdiffusion X. Finite-dimensional distribu­
tions of X are uniquely defined by 1/;. 

By Theorem 7.1, an (L, 1/;)-superdiffusion 1/; exists (with a = 00, M = 
M(S)) if 1/; satisfies condition (iii) and if there exist generating functions 
<Ii and constants ki3 for which 

1/;f3(r,xju) = [<I>f3(r,xj 1- (3u) -1 + {3u] k i3 /(3 (7.10) 

satisfy Theorem 7.1(i) and (ii). By constructing appropriate ¢f3 and ki3 , 
we prove the following theorem: 

Theorem 7.2 An (L,1/;)-superdiffusion exists for every funetion 

1/;(r,xju) = b(r,x)u2 + 100 (e-A/1 -1 + AJ-l) n(r,Xj du) (7.11) 

where b is a positive function and n is a kernel from (S, B s) to R+ subject 
to the conditions 

b, 11 u2n(r,Xj du) and /00 un(r,xj du) (7.12) 

are bounded on ~ x Rd for every finite interval ~. 

We also prove that superdiffusions can be defined for wider classes 
0 1 (defined in Section 4) and M1 which consists of all measures J-l on S 
subject to the condition: J-l(St.) < 00 for every finite interval ~. 
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8. Applications to PDEs 

Suppose that X is the (L, 'I/J) -superdiffusion described in Theorem 7.2. 
Then, for every Q E 0 1 and every fEB, 

u(r,x) = VQ(f)(r,x) = -logPr,xe-<f,xQ> (8.1) 

is a solution of the integral equation (7.6). If f is bounded and contin­
uous, then (7.6) implies 

au/ar + Lu = 'I/J(u) in Q, 
u = f on aregQ (8.2) 

See [2] or [4]. This is basis of a probabilistic theory of semi-linear 
parabolic and elliptic equations involving operator Lu - 'I/J(u) 

For instance, the first boundary value problem 

Lu - 'I/J(u) 
u 

° in D, 
f on aD (8.3) 

in a bounded domain DRd with a smooth boundary can be solved by 
the formula 

u{x) = -logPxe-<f,XD> (8.4) 

where Px = Pa,x and XD is the exit measure from cylinder Q = (O, 00) x 
D. 

The next step is a description of all positive solutions of equation 
Lu = 'I/J{u) in an arbitrary domain D. It was shown in [3] that all such 
solutions can be obtained by the formula 

u{x) = -logPxe-Z (8.5) 

where 
Z = lim < u, XDn > . (8.6) 

Here Dn is a sequence of bounded smooth domains such that Dn C Dn+1 
and the union of Dn is equal to D. Formulae (8.5)-{8.6) establish a 1-1 
correspondence between the set U of all positive solutions in D and a 
closed convex cone Z of functionals of X. In particular, 

Z _ {oo, if X hits aD 
- 0, otherwise 

corresponds to the maximal solution. 
A more explicit description of U is based on the concept of a trace of 

u on aD (for a general domain, aD means its Martin boundary). This 
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direction of research is a subject of Kuznetsov's article in the present 
volume. 

Another important direction is the study of subsets of D U aD which 
are removable singularly for u E U. It turns out that a set r belongs to 
this class if and only if it is not hit by the superdiffusion. An analytic 
characterization of removable singularities is done in terms of capacities. 
Recent results in this direction and references to earlier work can be 
found in [5, 6, 7, 8]. 
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Abstract This paper surveys the recent progresses made in the field of unstable 
denumerable Markov processes. Emphases are laid upon methodology 
and applications. The important tools of Feller transition functions and 
Resolvent Decomposition Theorems are highlighted. Their applications 
particularly in unstable denumerable Markov processes with a single 
instantaneous state and Markov branching processes are illustrated. 

1. Introduction 
Around 50 years ago Kolmogorov [29] raised the following challenging 

question. 
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Question 1.1 (Kolmogorov [29]) Given a matrix Q = {qij} on the 
non-negative integer Z+ = {O, 1,2,··· } with the off-diagonal elements 
{here only the non-zero elements are specified} 

qOj = 1 (Yj ~ 1) (1.1) 

and 

o < qiO=ai < +00 (Yi ~ 1) (1.2) 

together with the diagonal elements 

qi= - qii = ai (Yi ~ 1) (1.3) 

then under what conditions does there exist an honest continuous time 
Markov Chain {CTMC} whose transition function P{t} satisfies P'(O) = 
Q ? 

Why is this question challenging? One of the reasons is, if there 
exists an honest transition function P(t) such that P'(O) = Q, then 
condition (1.1) forces 

qO= - qoo = +00. (1.4) 

That is, the state {O} is an instantaneous state and thus the CTMC is an 
unstable one. Although fruitful results have been obtained for CTMC, 
they are almost all concerned with stable CTMC. Indeed, few results 
have been obtained for unstable CTMC even until now. See later. 

Kendall and Reuter [27] provided the following answer to Question 
1.1. 

Theorem 1.1 (Kendall and Reuter [27]) If 2:~1 (1/ai) < +00 
then there exists an honest transition function P(t) such that P'(O) = Q. 

It should be noted that (1.2) and (1.3) are assumed to be true in 
Kolmogorov's original question. That is, all positive states are assumed 
to be stable and conservative. Hence another interesting and challenging 
question naturally arises. 

Question 1.2 If there exists an honest function P(t) whose {infinitesi­
mal} intensity matrix Q = {qij} satisfies (1.1), will all the positive states 
be stable and conservative? 

One has to wait for many years before Williams [46] answered 'yes' 
strongly in obtaining the following remarkable result. 
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Theorem 1.2 (Williams [46]) Suppose a matrix Q = {qij} defined on 
a countable set E satisfies the condition that there exists a state bEE 
such that 

lim .inf qbi > O. (1.5) 
z-+oo 

If there exists an honest transition function P(t) = {pij(t)j i,j, E E} 
such that 

lim(pbi(t)/t) = qbi 
t-+O 

(i =I b) 

then we have 

qb - -qbb = +00 
qi - -qii < +00 (Vi =I b) 

qi = Lqij (Vi =I b) 
j=/;i 

L L qbk<Pkj(A) < +00 (VA> 0) 
j=/;b k=f.b 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

where <I>(A) = {<Pij(A)ji,j =I b,A > O} is the minimal Qb-resolvent and 
Qb is the restriction of Q on E\ {b}. Conversely, suppose a matrix Q = 
{qij} defined on E satisfies (1.5) and (1.7)-(1.9), and if (1.10) holds 
true then there exists an honest transition function P(t) = {Pij(t)} such 
that 

lim(P(t) - I)/t = Q 
t-+O 

(1.11) 

Note that condition (1.5) means that there exists a finite subset FeE 
and a positive number 8 > 0 such that for all i E E\F, 

(1.12) 

which forces (1.7) to hold true under the condition that Q is an infinites­
imal q-matrix. The interesting thing here is that (1.5) (or (1.12)) also 
forces (1.8) and (1.9) to be true, that is, all states except {b} must be sta­
ble and conservative. Moveover, if (1.5) and (1.7)-(1.9) hold true, then 
Q becomes an infinitesimal q-matrix of some honest transition function 
if and only if (1.10) holds true. 

Note also that if the requirement of an honest transition function is 
relaxed to be a transition function (not necessarily honest), then (1.8) 
must still hold true (i.e. all states except {b} are stable), though (1.9) 
(conservativeness) may not be necessarily true. 

Obviously, (1.1) is a special case of (1.5). From now on, a matrix 
Q = {qij} satisfying (1.5) and (1. 7) to (1.9) will be called a Kolmogorov­
Williams q-matrix, or simply, K-W q-matrix. We use the same name for 
the corresponding q-processes. 



18 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

William's proof for the existence of the K-W q-processes was a proba­
bilistic one. The advantage is that the initiative meaning is clear. How­
ever it seems not easy to give more results from this proof. Therefore an 
analytic proof is hoped and more results are expected for such processes. 
We shall return to these questions later. 

Reuter [38] once considered an example which is slightly more gen­
eral than the Kolmogorov's q-matrix in replacing qOj = 1, (Vj 2': 1) by 
E~l qOj = +00. 

Theorem 1.3 (Reuter [38]) Suppose a matrix Q = {qij} on the non­
negative integer Z+ is given by (1.2)-(1.4) (here, again, only the non­
zero elements are specified) together with 

(1.13) 

where bj = qOj. Then if 

00 

2)bj /aj) < +00 (1.14) 
j=l 

then there exists an honest transition function such that (1.11) holds 
true. That is there exists an honest Q-process. 

Notice that the common feature in all the above examples is that there is 
one and only one unstable (or instantaneous) state. Before proceeding 
further, we first give the precise meaning of this term. Recall that a 
matrix Q = {qij} defined on a countable set E is called a pre-q-matrix 
if the following D-K conditions are satisfied 

0 < Qij < +00 (i =/=j;i,j E E) (1.15) 

-00 < qii < 0 (i E E) (1.16) 

and 

L qij :::; -qii~qi (i E E). ( 1.17) 

#i 

If qi < +00 , then i E E is called stable while if qi = +00, i E E is called 
instantaneous. If all i E E are stable then Q is called totally stable (TS). 
The meaning of totally instantaneous (TI) should be then clear. In the 
case of the existence of both stable and instantaneous states, Q is called 
a mixing pre-q-matrix. Both TI and mixing cases are called unstable. 
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Furthermore, a pre-q-matrix Q is called Conservative Uni-Instantaneous 
(CUI) if there exists a state bEE such that 

and that 

Lqbj = qb = +00 
#b 

(1.18) 

L % = qi < +00 (Vi =f. b) (1.19) 
#i 

Note that all the above examples considered until now are special 
cases of CUI pre-q-matrix. 

Also recall that a matrix Q = {%} defined on E is called a q-matrix 
if there exists a Markov transition function P(t) such that (1.11) is 
satisfied. We shall apply all the above terms to q-matrix as well as the 
corresponding q-process (q-function, q-resolvent etc). 

It is well-known that a q-matrix is a pre-q-matrix. However the con­
verse may not be always true. Now several basic questions arise. 

Question 1.3 (Existence) Under what conditions does a given pre-q­
matrix become a q-matrix? 

Question 1.4 (Uniqueness) If a given Q is a q-matrix, under what 
conditions does there exist only one corresponding Q-process? 

Question 1.5 (Construction) How do we construct all the Q-pro­
cesses via a given q-matrix Q? 

Question 1.6 (Property) How do we study all kinds of properties of 
Q-process in terms of the given q-matrix Q? 

No doubt, Question 1.6 is the most important question which has con­
siderable significance both in theory and applications. However, Ques­
tions 1.3-1.5 are also of great importance since without solving them it 
is of little hope we could tackle Question 1.6 successfully. 

If Q is totally stable, then the above questions were firstly systemat­
ically studied by J.L. Doob and W. Feller in the 1940s and then contin­
uously investigated by many world-leading probabilists, including D.G. 
Kendall, G.E.H. Reuter, D. Williams, J.F.C. Kingman, Samuel Karlin 
and K.L. Chung. In particular, Feller [18] showed that a totally sta­
ble pre-q-matrix must be a q-matrix and constructed a solution for any 
totally stable q-matrix, which has a minimal property and bears his 
name today. Thus the existence Question 1.3 was solved completely. 
Doob [17] observed and investigated the non-uniqueness property of 
totally stable q-processes and then the uniqueness Question 1.4 was 
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solved by Reuter [36], [37] for the conservative case and Hou [22] for 
the non-conservative case respectively. The construction Question 1.5 
is closely related to the boundary theory (Feller boundary and Matrix 
boundary) of continuous time Markov chains, to which K.L. Chung and 
D. Williams contributed significantly. As to Question 1.6, fruitful results 
have been obtained and there are plenty of monographs and books to 
discuss totally stable q-processes. Until the publishing of Chung's foun­
dation book [15], the theory of totally stable q-processes were viewed, 
by and large, as completed, though many other important topics such 
as reversibility, strong and exponential ergodicity, quasi-stationary dis­
tributions, monotonicity, duality, coupling, large deviation, and spectral 
theory have emerged and flourished since then and lasted even until 
today. 

Now, how about the unstable case? It may be hard to believe that the 
above Theorems 1.1, 1.2 and 1.3 are essentially the only results obtained 
for the mixing case until the early 1980's. The picture of the totally 
instantaneous case is no better. Surprisingly, however, an elegant result 
was obtained by Williams [47] regarding the existence problem for TI 
q-processes. That is 

Theorem 1.4 (Williams [47]) Suppose Q = {qij} is a totally instan­
taneous pre-q-matrix, then it becomes a q-matrix if and only if the fol­
lowing two conditions hold true. 

(Va i= b,a,b E E); 

(ii) there exists an infinite subset I of E such that for all i E E 

Lqij < +00 
jEI 

See also Rogers and Williams [41]. Analysis of some examples of 
the totally instantaneous case can also be seen in Blackwell [4] and 
Kendall [26]. 

Of course, there exist a few books discussing the general theory con­
cerning instantaneous states. The path behaviour of CTMC with in­
stantaneous states is discussed in Chung [15]. Using the method of 
taboo probability to study properties of CTMC can also be found in 
Chung [15]. Another very important book containing discussion of in­
stantaneous states is Rogers and Williams [42]. The monograph written 
by Freedman [19] is, perhaps, the only book to discuss instantaneous 
states exclusively. 
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Notwithstanding, the picture of the unstable case is still very poor, in 
particular, when compared with the stable case. This reflects the fact 
that the topic of unstable q-processes has essentially mathematical diffi­
culty. This does not mean of course, that to study unstable q-processes 
has little significance in practical applications. On the contrary, to study 
unstable q-processes is of considerable significance both in theory and 
applications. Therefore, the right thing we should do is to find out some 
methods and techniques to overcome the mathematical difficulty and 
this will surely yield considerable progress in this challenging topic. 

2. Feller transition function and resolvent 
decomposition theorem 

Although there are few results obtained for unstable q-processes until 
early 1980's as we mentioned in the previous section, an interesting and 
closely related theory, called Feller transition function, has been already 
developed long before. 

Note first that a countable set E with discrete topology is trivially an 
LCCB. Thus we may define the Markov semigroup P = (P{t)j t 2': 0), 
induced by a standard substochastic transition function (Pij (t) j i, j E E), 
as a Feller semigroup if P{t)x E Co{E) whenever x E Co{E) where 
Co (E) denote the Banach space of continuous functions on E vanished 
at infinity. The corresponding transition function is also called Feller. 

Although this Feller property, one of the many kinds of Feller prop­
erties is well-known in the general theory of Markov processes, it is the 
only Feller property which may yield more interesting results for the 
countable state space. Indeed the more commonly used Feller property 
for general Markov semigroup, i.e., mapping C{E) to C{E), only yields 
unsatisfactory theory in the countable state space case. 

The following interesting and important result was first announced 
(without proof) by Jurkat [25] and then proved and developed by Reuter 
and Riley [39]. 

Theorem 2.1 The following statements are equivalent: 

(i) P(t) is Feller, i.e., P{t)x E Co(E) whenever x E Co{E), 

(ii) Pij (t) ---t 0 as i ---t 00 for all j E E and all t 2': 0, 

(iii) rij{A) ---t 0 as i ---t 00 for all j E E and all A > 0 

where {pij{t)} and {rij{A)} are transition and resolvent functions respec­
tively. Moreover, if P{t) is Feller, then its q-matrix Q must be totally 
stable and this P{t) is actually the Feller minimal Q-function. 
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The relationship between this remarkable result and Theorem 1.2 (and 
then Theorems 1.1 and 1.3) seems transparent. However, this result 
did not immediately lead to the research in the direction of unstable 
denumerable Markov processes. It reflects the fact that a gap exists 
between these two topics. The following decomposition theorem fills 
this gap and bridges the way to study the latter. 

Theorem 2.2 Suppose Q = {qij} is a q-matrix on the state space E 
(that is there exists a transition function P(t) such that P'(O) = Q). 
Suppose further that R(A) = {rij(A); i, j E E, A > O} is a Q-resolvent. 
Let F be a finite subset of E and denote G = E\F. Then R(A) may be 
uniquely decomposed as follows 

( 0 0 ) (A(A) A(A)ll(A)) 
R(A) = 0 W(A) + e(A)A(A) e(A)A(A)ll(A) (2.1) 

where 

(i) A(A) is the restriction of R(A) on Fx F, i.e., A(A) = {rij(A); i,j E 
F} and 

JA(A)J > 0 (VA> 0) (2.2) 

and thus A(A) is invertible for all A > O. 

(ii) W(A) = {¢ij(A);i,j E G} is a Qa-resolvent where Qa = (qij;i,j E 
G) is the restriction of Q on G x G. 

(iii) ll(A) = {llij(A);i E F,j E G} satisfies 

ll(A) -ll(Jl) = (Jl- A)ll(A)W(Jl), 

and 

(VA, Jl > 0) 

(Vi E F, VA> 0) 

(iv) e(A) = {eij(A); i E G, j E F} satisfies 

e(A) - e(Jl) = (Jl- A)W(A)e(Jl), 

and 

(VA, Jl > 0) 

o ~ e(A)l ~ 1 - A¢(A)l 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(Here 1 is a column vector whose elements are all 1 and the di­
mension of which depends. For example, the first 1 in (2.6) is 
a finite dimensional vector on F while the other two are infinite 
dimensional vectors on G) 
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(v) 

lim ArJ{A) 
A-+oo 

lim A~{A) 
A-+OO 
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(2.7) 

(2.8) 

where QFG = (qij,i E F,j E G) and QGF = (qij,i E G,j E F) are 
the restriction of Q on F x G and G x F respectively. 

(vi) 

(Vi E F) (2.9) 

(vii) There exists a constant matrix C = {Cij; i, j E F} such that 

(2.1O) 

and (thus the right hand side of (2.1O) is invertible) 

-Cij = qij + .lim A L rJik{A)~kj (Vi,j E F,i =1= j) (2.11) 
,,-+00 

kEG 

L Cij ~ .lim A L rJik{A)(l - L ~kj) (Vi E F) (2.12) 
,,-+00 

jEF kEG jEF 

(viii) If i E F is unstable, i.e., qi = +00, then 

lim A ~ rJik(A)~ki = +00 
A-+OO L.J 

kEG 

or, equivalently 

lim A L rJik(A) = +00 
A-+oo 

kEG 

while if i E F is stable i. e., qi < 00, then 

and 

(Vi E F) 

(Vi E F) 

Here, ~ = {~ij; i E G,j E F} in (2.1O)-{2.13) and (2.15)-{2.16) is 

~ = lim ~(A). 
A-+O 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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Moveover, if R(),) is honest, then (2.12) and the second inequality in 
(2.6) become equalities, that is 

(Vi E F) (2.18) 

and 
(Vi E G) (2.19) 

jEF kEG 

This extremely useful theorem has a very clear probabilistic mean­
ing. It is just the Laplace transform version of first entrance - last exit 
decomposition theorem. Indeed, ((),) and 'T]{),) are simply the Laplace 
transforms of the first entrance time to, and last exit time from, the 
subset F of the corresponding Markov chain and 'l1{)') is just the taboo­
resolvent. See Chung [15] for the celebrated idea of taboo probabil­
ity. This idea has been extensively developed by Syski [43], though the 
latter book concentrated on the Feller minimal chains and thus the q­
matrix concerned is totally stable. It should be emphasized that the 
A()') in (2.1) is the Laplace transform of the "transition function" of a 
quasi-Markov chain, a theory brilliantly developed by Kingman [28], in 
which the "Markov characterization problem" was tackled and solved. 

Surely, the decomposition theorem 2.2 has a long history which can 
be at least traced to Neveu [30]-[32]. Based on Neveu and Chung's 
works, Williams systematically studied and raised it to a considerable 
high level, see Rogers and Williams [42]. 

However, it seems that people have paid less attention to the converse 
of theorem 2.2, which, in our opinion, has more applications, particularly, 
in the study of unstable chains. That is the following result. 

Theorem 2.3 Let Q = (qij; i, j E E) be a pre-q-matrix and F is a 
finite subset of E. Suppose there exists a QG-resolvent 'l1()') and a'T]{),) 
and ((),) such that (2.3)-(2.8) and (2.13)-(2.15) are satisfied, where 
G = E\F and QG is the restriction of Q on G x G, then Q is a q-matrix, 
that is there exists a Q-process. Moveover, if the above 'l1()') , ((),) and 
'T](),) further satisfy 

(Vi E E)) (2.20) 
kEF kEG 

and for all stable i E F 

(2.21) 
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then there exists an honest Q-process. The corresponding Q-resolvent 
(honest and dishonest) may be constructed in using (2.10)-(2.17). 

The important thing in Theorem 2.3 is that it not only gives the 
existence conditions but also yields uniqueness criteria. It also provides 
a method to construct the q-resolvents, by which the property of the 
corresponding q-processes may be analysed. This makes Theorems 2.2 
and 2.3 useful even for the totally stable q-processes. In particular, if 
the underlying QG resolvent \II()') is known, then the property of the Q­
process may be easily derived. This idea stimulated some new research 
works. See, for example, Chen and Renshaw [10] in which the underlying 
structure is an M/M/1 (queue), and Chen and Renshaw [5, 8] in which 
the underlying structure is a simple branching process. 

As existence conditions are concerned, Theorem 2.3 does not provide 
further information for the totally instantaneous chains. For the mixing 
case, however, Theorem 2.3 is quite informative. For example, if the 
instantaneous states form a finite (non-empty) set, then much more in­
formation may be obtained. In order to state such results, let us first 
denote F = {i E E; qi = +oo} where F is a finite set and, again, let 
G = E\F. Further define a Q-process as almost B-type if 

d~j(t)ldt = L qikPkj(t) 
kEE 

or almost F-type if 

d~j(t)ldt = L Pik(t)qkj 
kEE 

Now we have the following conclusion. 

(Vi E G,Vj E E) (2.22) 

(Vi E E, Vj E G) (2.23) 

Theorem 2.4 Let Q = {qij} be a pre-q-matrix with a finite set F = 

{i E E,qi = +oo}. 

(i) R()') is an almost B-type Q-resolvent if and only if the restricting 
QG-resolvent \II()') is B-type. 

(ii) R(>.) is an almost F-type Q-resolvent if and only if the restricting 
QG-resolvent \II()') is F-type. 

(iii) Suppose the pre-q-matrix Q satisfies the conditions 

Lqij +00 (Vi E F) {2.24} 

#i 

Lqij qi < +00 (Vi E G) (2.25) 

#i 
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then Q is a q-matrix (i.e. there exists a Q-process) if and only if 
for some (and therefore for all ) A > 0, the following condition 

L L qik¢kj(A) < +00 
jEGkEG 

(Vi E F) (2.26) 

holds true, where <I>(A) = {¢ij(A);i,j E G} is the Feller minimal 
QG-resolvent. Also if (2.26) is true, then there exists at least one 
honest Q-process. 

For an elementary and purely analytic proof of all the above Theo­
rems 2.2 to 2.4, see Chen and Renshaw [5, 7J for the case where F is a 
single point and consult Hou et al [24J for the general case where F is a 
finite set. 

As we have already mentioned, Theorems 2.2 to 2.4 are just Laplace 
transform versions of the Neveu- Chung- Williams- Kingman's decom­
position theorem. However, this Laplace transform version seems more 
informative and could yield more results, see the next section. To our 
knowledge, the above refined version of Theorems 2.2 to 2.4 was first 
stated and proved in Chen [9], but unfortunately, in a hardly accessible 
language, Chinese! This is one of the reasons we stated Theorems 2.2 
to 2.4 in detail here. 

3. Unstable chains with a single instantaneous 
state 

In order to illustrate the application of Feller transition functions 
and resolvent decomposition theorems, we now discuss unstable Markov 
chains with a single instantaneous state. Recall that a pre-q-matrix 
Q is called CUI, if (1.18) and (1.19) are satisfied. In this case, the set 
F = {i E E, qi = +oo} becomes a singleton, denoted by {b} say. Again, 
let G = E\ {b }. Now the following cond usion is a direct consequence of 
the resolvent decomposition theorems. 

Theorem 3.1 (Chen and Renshaw [7]) Suppose Q is a CUI pre-q­
matrix. Then 

(i) It becomes a q-matrix if and only if for some (and therefore for 
all) A> 0, 

L L qbj¢jk(A) < +00 (3.1) 
kEGjEG 

where <I>(A) = {¢ij(A);i,j E G} is the Feller minimal QG-resol­
vent. Futhermore, if (3.1) is satisfied then there exists an honest 
almost B n F -type Q-process. 
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(ii) If {3.1} is satisfied, then there always exist infinitely many of Q­
processes with at least one honest one. The honest Q-process is 
unique if and only if both equations 

Y{A)(AI - QG} = 0, 0::; Y{A} E l {3.2} 

and 

{AI - QG}U{A} = 0, 0::; U{A} ::; 1 and L qbjUj{A} < +00 
JEG 

{3.3} 
have only the trivial solution for some (and therefore for all) A > O. 

Conditions {3.1}-{3.3} are on one hand quite satisfactory. They may, 
for example, provide complete solutions for the three examples men­
tioned in section 1 see later. Recall that these three examples are essen­
tially the only results obtained for mixing Markov chains for around 30 
years until the early 1980's. For the general CUI pre-q-matrix, they also 
provide much useful information. For example, the following corollary 
is immediate and informative. 

Corollary 3.1 (Chen and Renshaw [7]) Suppose Q zs a CUI 
q-matrix, then 

(i) sUPiEE qi = +00, 

(ii) L [qbj/(l + qj)] < 00, 
JEG 

(iii) infiEG A L ¢ij()..} = O{V)" > O} 
JEG 

and thus the QG-process (totally stable chain) is not unique. In partic­
ular, either the equation 

(AI - QG)U{A) = 0, o ::; U{A) ::; 1 {3.4} 

has a non-trivial solution for some (and therefore for all) A > 0, or 

{3.5} 

which implies that sUPiEG qib = +00. 

It seems to us that we may not be able to expect much more than 
conditions (3.1}-{3.3) for the general CUI q-matrix. 

On the other hand, however, condition {3.1} is not totally satisfactory 
since the Feller minimal QG-resolvent rather than Q itself is involved 
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here. It is usually not easy to check this condition. It is therefore useful 
if one can give a more exact condition for a possibly narrow sub-class of 
CUI q-matrices. See also later. 

It is now the time for us to look back at the three examples mentioned 
in Section 1. Although this survey paper does not intend to give any 
proof for the results stated, we shall briefly explain how simply the proofs 
can be given for Theorems 1.1, 1.2 and 1.3 to emphasize the importance 
of Feller transition function and resolvent decomposition theorems. 

Proof of William's Theorem 1.2 Suppose there exists an honest 
Q-resolvent where Q satisfies (1.5), then by Theorem 2.2 there is a 
QG-resolvent (G = E\{b}) \lI('x) satisfying (2.3) and (2.4). It follows 
immediately from (2.3), (2.4) and the Fatou Lemma that 

L L qbj'l/Jjk('x) < +00. 
kEGjEG 

Now condition (1.5) implies that 2: 2: 'l/Jjk('x) < +00 and thus, by 
kEGjEG 

Theorem 2.1(iii), \lI('x) is Feller and thus any state in G is stable and 
\lI('x) is the Feller minimal QG-resolvent. We have thus proved (1.8) and 
(1.10). (1.7) is a trivial consequence of (1.5) and, finally (1.9) follows 
from the fact that R('x) is honest. The proof is now complete. • 

Proof of Theorem 1.1 Note that for Kolmogorov pre-q-matrix Q, 
QG is diagonal and thus the Feller minimal QG-resolvent is just <Pij('x) = 

>.~~. and so Q becomes a q-matrix if and only if f l";a. < +00 (here 
• i=l • 

we take ,X = 1 and use the fact qbj = 1). Now this condition implies that 
00 

liIDi-too ai = +00 and thus it holds true if and only if 2: (;.) < +00 .• 
i=l • 

Note that the above simple proof yields more than Theorem 1.1. That 
00 

is, condition 2: (;.) < +00 is not only sufficient but also necessary. 
i=l ' 

Actually, the following further result is immediate. 

Theorem 3.2 Suppose Q = {qij} is a Kolmogorov pre-q-matrix, i.e. Q 
is given in (1.1)-(1.3). Then 

00 

(i) Q becomes a q-matrix if and only if 2: (;.) < +00. 
i=l ' 

(ii) When Q is a q-matrix, i.e. the condition in (i) is satisfied, then 
the honest Q-process is unique. 
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(iii) This (unique) honest Q-process is recurrent and, furthermore, pos­
itive recurrent. 

(iv) This (unique) honest Q-process is reversible. 

(v) The equilibrium distribution II = (1l"i), say, is given by 

Now, how about Theorem 1.3? Is the condition given by Reuter also 
necessary? This time, however, the answer is negative. Actually we have 
the following conclusion. 

Theorem 3.3 Suppose Q is a Reuter pre-q-matrix, then 

00 

(i) Q becomes a q-matrix if and only if L: l!ia . < +00. 
i=l • 

00 

(ii) If L: (~) < +00 then Q is a q-matrix. The converse, however, is 
i=l • 

not true. 

(iii) When Q is a q-matrix, then the honest Q-process is unique. 

(iv) This (unique) honest Q-process is always recurrent. 

(v) This (unique) honest Q-process is positive recurrent if and only if 
00 

L: (~) < +00, and under this condition, the equilibrium distribu-
i=l • 
tion II = (1l"i), say, is given by 

(i ~ 0). 

(vi) The (unique) honest Q-process is reversible if and only if 
00 

L:(~) < +00. 
i=l • 

Therefore, although Reuter's condition is not necessary for the ex­
istence of Q-process, it is an essential condition in the sense that it is 
the "if and only if; condition for reversibility and ergodicity. Of course, 
these later two concepts are closely related to each other. 

Now we turn our attention to Williams-q-matrix. The existence theo­
rem has been given above. Now two further questions arise namely what 
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is the uniqueness condition and (if not unique) how to construct all the 
corresponding q-processes. Of course, we are mainly interested in the 
honest ones. 

The uniqueness criterion has been given in Theorem 3.1(ii) already. 
For Williams-q-matrix, however, simpler conditions may be obtained. 

Theorem 3.4 Suppose Q is a Williams-pre-q-matrix, then 

(i) Q becomes a q-matrix if and only if (3.1) holds true. 

(ii) If Q is a Williams-q-matrix, then there always exist infinite many 
of Q-functions. 

(iii) The Equation (3.3) always has only the trivial solution for some 
(and therefore for all) A > 0, though the equation 

(AI - Qb)U(A) = 0,0 :s; U(A) :s; 1 

may still have non-trivial solution for all A > O. 

(iv) There exists only one honest Q-function if and only if Equa­
tion (3.2) has only the trivial solution for some (and therefore 
for all) A > O. 

(v) All the Q-resolvents can be easily constructed. 

The proof of Theorem 3.4 together with the construction of all Q-re­
solvents can be found in Chen and Renshaw [7]. 

We may see how easily we could tackle the three examples introduced 
in Section 1 (recall, again, these three examples are essentially the only 
results obtained for the mixing case until early 1980s) if we use the theory 
of Feller transition function and resolvent decomposition theorems. Of 
course, the powerfulness of such theory and method is mainly reflected 
by the fact that it can handle new and more complicated models. 

A particular interesting model is the so-called unstable piecewise birth 
and death (PBD) processes, whose pre-q-matrix Q = {qij; i, j E Z+} is 
given by (here only the non-zero, off-diagonal elements are specified) 

together with 

if i = 0, j ~ 1 
if i ~ 1, j = i - 1 
if i ~ 1, j = i + 1 

00 

qo = -qoo = Lhj = +00 
j=l 

(3.6) 

(3.7) 
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and 

qi 

where 
= -qii = ai + bi 

ai > 0, bi > ° 
(i ~ 1) 
(\Ii ~ 1). 
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(3.8) 

(3.9) 

Such model was initially considered by Tang [44] and later investigated 
by several authors. We shall not list the corresponding results here but 
just content ourselves with pointing out the following two facts: firstly, 
the existence condition is given in terms of the PBD pre-q-matrix Q 
itself directly and thus easy to check and, secondly, the properties of 
such structure are also given. A particular interesting result is that any 
honest unstable PBD process is recurrent and ergodic, provided that, of 
course, the existence condition is satisfied. 

4. Markov branching processes 

An interesting application of Feller function is in Markov branching 
processes (MBP). Ad-type MBP is a continuous time Markov chain 
(CTMC) on the state space E = Zi which possesses the branching 
property, i.e. "independence property". Standard references on MBP 
are Harris [21]. Athreya and Ney [3] and Asmussen and Hering [1]. The 
importance and many applications of such processes are so well-known 
that it would be superfluous if we should repeat it here. 

Note that, however, for such a well-known structure there exist several 
basic questions, that seems less well-known. Without loss of generality, 
let us consider the case of d = l. 

As the definition of MBP is concerned, there are actually two basic 
definitions: a probabilistic one and an analytic one. 

Definition 4.1 (Probabilistic) A (one dimensional) MBP is a 
CTMC on the state space E = Z+ whose transition function P{t) -
{pij{t); i,j E Z+} satisfies the branching property, i.e. 

(\Ii ~ 0, lsi ~ 1) (4.1) 

Definition 4.2 (Analytic) A (one dimensional) MBP is a CTMC on 
the state space E = Z+ whose transition function P(t) = {pij(t); i, j E 
Z+} satisfies the Kolmogorov forward equations 

P'{t) = P{t)Q (4.2) 
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where Q = (qij; i, j E Z+) is a totally stable q-matrix and taking the 
form of 

{ ibj-Hb if j ~ i-I, (4.3) qij = ° otherwise , 
where 

0:$ bj < +00 (j i= 1) (4.4) 
and ° < L bj :$ -b1 < +00 (4.5) 

#1 

Relation (4.1) is called "branching property" since it is easy to see 
that (4.1) is equivalent to 

Pij(t) = L Pli1 (t).·· Plji{t) {4.6} 
jl+·+ji=j 

which states that different particles are independent in giving birth or 
death. 

It has been a long history since people understood that Definition 4.2 
implies Definition 4.1, see the proof in Harris [21] or Athreya and Ney [3]. 

However, how about the converse? In particular, if a CTMC satisfies 
the branching property, will the q-matrix Q of this CTMC be totally 
stable and even if so, will the transition function of the CTMC satisfy 
the Kolmogorov forward equation {4.2}1 If we could not answer this 
question, we might have lost a large class of "new MBP"! 

Another related question is whether there exists a so-called totally 
instantaneous {but one} branching process. That is, suppose a pre-q­
matrix Q = {qij} is given as in {4.3}-{4.5} but with the amendment that 
-b1 = 00 in {4.5}, then does there exists a standard transition function 
P{t} such that P{t} satisfies {4.1} and the condition P'{O} = Q {Le. P{t} 
is a Q-process)? Of course, in order to make this question meaningful, 
we need first to illustrate that there exists a transition function P{t) 
such that P'(O) = Q. This, however, can be answer by Williams' TI 
existence theorem (see Williams [47]), by which there exists a P{t} such 
that P'{O) = Q if and only if 

00 

L{bj/\bj+k) < +00 {Vk ~ I} (4.7) 
j=2 

It is fairly easy to find a sequence {bj} such that {4. 7} is true. For 
example, if we adopt the sequence {I, 0,1,0,0,1,0,0,0,1,0, ... }, then 
this sequence is not summable but satisfies {4. 7}. 
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Thus, the essential question is whether there exists a Q-function, 
where Q is a TI branching pre-q-matrix, such that the branching prop­
erty holds true. 

The above two questions can, actually, be answered by using the prop­
erty of Feller transition function. Indeed, we have 

Theorem 4.1 The two Definitions 4.1 and 4.2 are equivalent. 

Sketch of the proof We only need to prove that Definition 4.1 implies 
Definition 4.2. By (4.1), we see that for any t 2: 0 and 0 < s < 1, we 
have 

00 00 

Pij(t}sj s I:Pij(t}sj = (I:Plj(t}sj}i (4.8) 
j=O j=O 

00 

However, ~ Plj(t}sj < 1 since 0 < s < 1 and thus let i-+oo in (4.8) 
j=O 

immediately yields that limi-+ooPij(t) = O('Vj E E}. That is, P(t} is 
actually the Feller minimal Q-function and thus satisfies the Kolmogorov 
forward function. Now an easy algebra yields the result that Q must take 
the form of (4.3}-(4.5). 

Remark 4.1 If the requirement of honesty is imposed to the transition 
function, then we can further prove that the Q matrix must be conser­
vative and thus the second inequality in (4.5) becomes an equality. 

Now the following two corollaries immediately follow. 

Corollary 4.1 The Markov branching process is always unique no mat­
ter the q-matrix Q is regular or not. 

Corollary 4.2 There exists no totally instantaneous (but one) branch­
ing processes. 

All the above results can be easily generalized to the d-type Markov 
branching processes. 

In spite of Corollary 4.2, it is meaningful to consider the branching 
processes with the so-called instantaneous immigration. For example, 
we may consider a branching process with instantaneous immigration at 
state zero only. This is another interesting example of uni-instantaneous 
processes, in connection with the theory developed in the last section. 

More specially, a pre-q-matrix Q is called a branching pre-q-matrix 
(with or without immigration or called resurrection), if Q = (qij) takes 
the form of 

qij = { 
hj, 
ibj - i+1, 

0, 

ifi = 0 
if i 2: 1, j 2: i-I 
otherwise 

(4.9) 
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where 

and 

00 

0::; -ho = L hj ::; +00 
j=1 

o < -b1 = L bj < +00 
#1 

(4.10) 

(4.11) 

Furthermore, Q is called "a branching q-matrix without resurrection" 
if hj = 0; "a branching q-matrix with stable resurrection" if 0 < -ho < 
+00, and "a branching pre-q-matrix with instantaneous resurrection" 
if -ho = +00. We shall apply all these terms to the corresponding 
processes (Q-functions; Q-resolvents) as well. 

In order to guarantee that the underlying structure possesses the 
branching property, we shall define the branching process as the one 
that is F-type (almost F-type if instantaneous resurrection) i.e. the one 
which satisfies the Kolmogorov forward equations. 

Branching processes with stable resurrection was considered by Ya­
mazato [48]. This is a continuous version of the discrete time branch­
ing model investigated, nearly at the same time, by Foster [20] and 
Pakes [33]. In order to cite Yamazato's result, it is convenient to intro­
duce generating functions of the two sequences {b j } and {h j } as 

00 

B(s) = L bjsj (4.12) 
j=O 

H(s) (4.13) 

and 
00 

U{s) = ho + H{s) = L hjsj (4.14) 
j=o 

Note that the two sequences {bj } and {hj} are the basic data of the 
branching processes with stable resurrection, and thus the above gen­
erating functions provide the full known information. Yamazato's main 
result can now be stated as follows. 

Theorem 4.2 (Yamazato [48]) For a branching process with stable 
resurrection, the following conclusions may be claimed. 

(i) The process is recurrent if and only if B'(1) ::; O. 

1 

(ii) The process is positive recurrent if and only if J ~~:~ ds > -00. 
o 
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(iii) The moments of the process can be obtained. 

The equilibrium distribution for the positive recurrent case was ob­
tained by Pakes [34]. 

The analysis of branching processes with instantaneous resurrection 
has only been available quite recently. Interestingly, however, this model 
is still tractable, due to the effect of Chen and Renshaw [5, 6, 8]. 

Theorem 4.3 Suppose Q is a branching pre-q-matrix with instanta­
neous resurrection. Then we have 

(i) There exists a branching process with instantaneous resurrection 
if and only if the following two conditions hold true. 

a) B'{l) > 0 and thus B{s) = 0 has a unique root on [0,1). 

b) 

That is, there exists a q such that 0 ~ q < 1 and B{q) = O. 

1 ! H{q) - H{s)d 
B{s) s < +00 (4.15) 

o 

where 0 ~ q < 1 is given in (a) and B{s) and H{s) are given 
in (4.12) and (4.13), respectively. 

(ii) If the existence condition in (i) is satisfied, then there exists in­
finitely many of branching processes with instantaneous resurrec­
tion but only one of them is honest. That is, the honest branching 
process with instantaneous resurrection is unique. 

(iii) The (unique) honest branching process with instantaneous resur­
rection is not only recurrent but also positive-recurrent. 

For the positive recurrence case, the equilibrium distribution is, again, 
obtained by Pakes [34]. 

It is interesting to compare the conclusions in Theorems 4.2 and 4.3. 
For the Yamazato's model, B'{l) ~ 0 is a necessary condition for the 
recurrence while for the Chen-Renshaw model, B'{l) > 0 is required 
to guarantee the existence of a branching process with instantaneous 
resurrection and once the existence condition is satisfied, then the honest 
process is unique, recurrent, and positive recurrent. 

Note that for the later model, U(s) in (4.14) can not be defined. How­
ever, it can be proved that, as a necessary condition for the existence 
of the q-process, H{s) is well defined for all lsi < 1. Also, the exis­
tence condition implies Harris' non-honest condition for the underlying 
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branching process without resurrection. For the details, see Chen and 
Renshaw [5]. 

More recently, Chen [13] considered a much more general branching 
model by replacing the coefficient i in (4.9) by the general form Vi. Some 
interesting results have been obtained by wisely using the techniques 
and methods developed by Chen [11], [12]. Of course, only the stable 
resurrection has been considered until now. It will be interesting to 
investigate such general structure but with instantaneous resurrection. 
The general results obtained in Section 3 will be helpful in tackling such 
questions. 
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Chapter 3 

IDENTIFYING Q-PROCESSES WITH 
A GIVEN FINITE J.L-INVARIANT 
MEASURE 

P.K. Pollett 
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Abstract Let Q = (qij, i, j E S) be a stable and conservative Q-matrix over a 
state space S consisting of an irreducible (transient) class C and a single 
absorbing state 0, which is accessible from C. Suppose that Q admits 
a finite IL-subinvariant measure m = (mj, j E C) on C. We consider 
the problem of identifying all Q-processes for which m is aIL-invariant 
measure on C. 

Keywords: Q-processes; quasi-stationary distributions; construction theory 

1. Introduction 

We begin with a totally stable Q-matrix over a countable set S, that 
is, a collection Q = (qij, i, j E S) of real numbers which satisfies 

o ::; % < 00, i =I j, i, j E S, 

qi := -qii < 00, i E S, 

L % ::; qi, i E S. 
#i 

(1.1) 

The Q-matrix is said to be conservative if equality holds in (1.1) for all 
i E S. For simplicity, we shall assume that Q is conservative. A set of 
real-valued functions P{·) = (Pij{')' i,j E S) defined on (O, (0) is called 
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a standard transition function (or process) if 

Pij(t) ~ 0, 

LPij (t) ::; 1, 
jES 

i,j E S, t > 0, 

i E S, t> 0, 

(1.2) 

(1.3) 

Pij(S + t) = LPik(S)Pkj(t), i,j E S, s, t > 0, (1.4) 
kES 

limp· ·(t) - J. 
t.j..D ~J - ~J' 

i,j E S. (1.5) 

P is then honest if equality holds in (1.3) for some (and then all) t > 0, 
and it is called a Q -transition function (or Q-process) if P~j (0+) = Qij for 
each i, j E S. Under the conditions we have imposed, every Q-process P 
satisfies the backward differential equations, 

P~j(t) = L qikPkj(t), t> 0, 
kES 

for all i, j E S, but might not satisfy the forward differential equations, 

P~j(t) = LPik(t)qkj, t > 0, 
kES 

for all i, j E S. The classical construction problem is to find one and 
then all Q-processes. Feller's recursion (Feller [2]) provides for the ex­
istence of a minimal solution F(·) = (Jij(·), i,j E S) to the backward 
equations (which also satisfies the forward equations); see also Feller [3] 
and Reuter [14]. This process is the unique Q-process if and only if the 
system of equations 

L qijXj = I/Xi, 
jES 

i E S, (1.6) 

has no bounded, non-trivial solution (equivalently, non-negative solu­
tion) x for some (and then all) 1/ > 0 (Reuter [14]); for the non­
conservative case, see Hou [4]. When this condition fails, there are in­
finitely many Q-processes, including infinitely many honest ones (Reuter 
[14]), and the dimension d of the space of bounded vectors x on S satisfy­
ing (1.6), a quantity which does not depend on 1/, determines the number 
of "escape routes to infinity" available to the process. A construction of 
all Q-processes was given by Reuter [15], [16] under the assumption that 
d = 1 (the single-exit case), and this was later extended to the finite-exit 
case (d < 00) by Williams [22]. 

If (1.6) has infinitely many bounded non-trivial solutions, the problem 
of constructing all Q-processes remains unsolved; there are simply too 
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many solutions of the backward equations to characterize. For this rea­
son, variants of the classical construction have been considered in which 
various side conditions are imposed. The most recent work centres on 
an assumption that one is given an invariant measure for the Q-matrix, 
that is, a collection of positive numbers m = (mi' i E S) which satisfy 

Lmiqij = 0, 
iES 

j E S. 

The problem is then to identify Q-processes with m as their invariant 
measure, that is 

L miPij(t) = mj, 
iES 

j E S, t> o. 

When does there exist such a Q-process, and, when is it a unique Q­
process with the given invariant measure? This variant of the classi­
cal construction problem has particular significance when m is finite 
(l::mi < 00), for then one is looking for a Q-process whose station­
ary distribution has been specified. The problem of existence, and then 
uniqueness in the single-exit case, was solved by Hou and Chen [5] under 
the assumption that Q is m-symmetrizable, that is, 

i,j E S, 

(see Chen and Zhang [1] for the non-conservative case) and by myself in 
the general case (Pollett [10], [12]). Recently Han-jun Zhang announced 
a solution to the existence problem under more general circumstances; 
see Zhang et aL [23), [24]. 

In this paper we shall look at a slightly different kind of construction 
problem, where the state space can be decomposed into an irreducible 
class C and a single absorbing state, and we shall suppose, rather than 
an invariant measure, a f-t-invariant measure on C is specified through Q. 
We seek to determine Q-processes for which m is a f-t-invariant measure 
on C. Since here we shall assume that the f-t-invariant measure is finite, 
we are effectively identifying Q-processes with a given quasi-stationary 
distribution (van Doorn [20)). And, since we will not necessarily require 
these processes to satisfy the forward equations, we shall relax the f-t­
invariance for Q to f-t-subinvariance for Q. 

Before proceeding, let me remark that in this introductory section I 
have restricted my attention to the totally stable case (qi < 00 for all 
i E S). Of course, the problem of constructing Q-processes when all 
states, or a finite subset of states, are unstable is an important one, 
and can be traced back to Levy and Kolmogorov; for an informative 
summary see Rogers and Williams [18]. 
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2. Preliminaries 
We shall suppose that S = {O} U C, where C is an irreducible class 

(for the minimal Q-process, and hence for any Q-process) and 0 is an 
absorbing state which is accessible from C, that is qo = 0 and qiO > 0 for 
at least one i E C. Then, if J-t is some fixed non-negative real number, 
a collection of strictly positive numbers m = (mj, j E C) is called a 
J-t-subinvariant measurer on C) for Q if 

~m·q·· < -11m· 
~ '1J - ,.. J' j E C, (2.1) 
iEC 

and J-t-invariant if equality holds for all j E C. We shall suppose that Q 
admits a J-t-subinvariant measure on C, and then identify Q-processes P 
such that m is a J-t-invariant (on C) for P, that is, 

L miPij(t) = e-J.ltmj , 
iEC 

j E C, t> o. (2.2) 

The relationship between (2.1) and (2.2) has been divined completely 
for the minimal Q-process F. It was shown by Tweedie [19] that if m 
is a J-t-invariant measure for F, then it is J-t-invariant for Q. Conversely, 
Pollett [8, 9], if m is a J-t-invariant measure for Q, then it is J-t-invariant 
for F if and only if the equations 

LYiqij = -vYj, 
iEO 

o S Yj S mj, j E C, 

have no non-trivial solution for some (and then all) v < J-t. If J-t > 0 
and the measure m is assumed to be finite, that is LiEc mi < 00, 

then much simpler conditions obtain (Pollett and Vere-Jones [13], Nair 
and Pollett [7]). For example, if F is honest (and hence the unique 
Q-process), then a finite J-t-subinvariant measure m for Q is J-t-invariant 
for F if and only if 

J-t L mi = L miqiO· (2.3) 
iEC iEC 

As we shall see, this condition guarantees, more generally, that there ex­
ists a Q-process P such that m is a J-t-invariant measure for Pi it is honest 
and satisfies (FEio) for i E C. We note that, in determining such a P, 
we are effectively identifying a Q-process with a given quasi-stationary 
distribution (van Doorn [20]): a probability distribution 7r = (7rj, j E C) 
over C is called a quasi-stationary distribution if pj{t)/ LiEc Pi{t) = 7rj 

for all t > 0, where pj{t} = LiEc 7riPij{t}, t > 0, so that, conditional 
on non-absorption, the state probabilities of the underlying continuous­
time Markov chain are stationary. It was shown by Nair and Pollett [7] 
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that a distribution 1r = (1rj, j E C) is a quasi-stationary distribution if 
and only if, for some p. > 0, 1r is a p.-invariant measure for P, in which 
case if P is honest, then PiO{t) -+ 1 for all i E Cast -+ 00 (absorption 
occurs with probability 1). 

3. The main result 

We shall specify transition functions through their resolvents. If P is 
a given transition function, then the function w(·) = ('l/Jij('), i,j E S) 
given by 

0>0, (3.1) 

is called the resolvent of P. If i,j E C, the integral in (3.1) converges 
for all 0 > -,Xp(C), where ,Xp(C) is the decay parameter of C (for P); 
see Kingman [6]. In particular, since C is irreducible, the integral (3.1) 
has the same abcissa of convergence for each i,j E C. Notice also that, 
since ° is an absorbing state, 'l/JOj(o) = 80j /0. Analogous to properties 
(1.2)-(1.5), W satisfies 

'l/Jij(O)~O, i,jES,o>O, (3.2) 

L o'I/Jij(O) S 1, i E S, 0> 0, (3.3) 
jES 

kES 

i,j E S, 0,(3 > 0, (3.4) 

lim o'l/Jij(O) = 8ij, i,j E S. (3.5) 
Q~OO 

(Note that (3.4) is called the resolvent equation.) Indeed, any W which 
satisfies (3.2)-(3.5) is the resolvent of a standard transition function (see 
Reuter [15], [16]). Further, (3.3) is satisfied with equality if and only if P 
is honest, in which case the resolvent is said to be honest. Also, the Q­
matrix of P can be recovered from W using the following identity: 

(3.6) 

And, a resolvent which satisfies (3.6) is called a Q-resolvent. The re­
solvent <PO = (¢ij('), i,j E S) of the minimal Q-process has itself a 
minimal interpretation (see Reuter [14], [15]); it is the minimal solution 
to the equations 

o'l/Jij(O) = 8ij + L qik'I/Jkj(O), 

kES 

i,j E S, 0> 0, 
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which are analogous to (BEij), and ~ is called the minimal Q-resolvent. 
We can identify J.L-invariant measures using resolvents. If P is a Q­

process with resolvent \II and m = (mj, j E 0) is a J.L-invariant measure 
for P, where of necessity I' :$ Ap(O) (see Lemma 4.1 ofVere-Jones [21]), 
then, since the integral in (3.1) converges for all a > -Ap(C), we have, 
for all j E 0 and a > 0, that 

L mia'I/Jij(a - 1') = mj. 
iEC 

(3.7) 

We refer to m as being J.L-invariant for \II if (3.7) is satisfied. Finally, 
a simple extension of Lemma 4.1 of Pollett [11] establishes that m is 
J.L-invariant for \II if it is J.L-invariant for P, and, if I' :$ Ap(O), then m is 
J.L-invariant for P if it is J.L-invariant for \II. 

We are now ready to state our main result. 

Theorem 3.1 Let I' > ° and suppose that Q admits a finite J.L-subin­
variant measure. Then, if 

I' L mi = L miqiO, (3.8) 
iEC iEC 

there exists a Q-process P for which m is J.L-invariant. The resolvent 
\II(.) = ('l/Jij(')' i,j E S) of one such Q-process has the form 

zi(a)dj(a) 
¢ij ( a) = <Pij ( a) + ( + )" ( )' a J.L L..JkEC mkZk a 

where z(·) = (Zi(-), i E 0) is given by 

Zi(a) = 1 - L mpij(a), 
jES 

i E 0, 

i,j E S, (3.9) 

with the interpretation that \II = ~ if Z is identically 0, and d(·) 
(diU, i E S) is given by 

di(a) = mi - L mj(a + J.L)</>ji(a), i E 0, (3.10) 
jEC 

do(a) = !!.. L mj - L mj(a + J.L)</>jo(a). (3.11) 
a jEC jEC 

This process is honest and satisfies (FEiO) for i EO. 

Proof First observe that if Z is identically 0, the minimal Q-process F 
is honest and, by Theorem 3 of Pollett and Vere-Jones [13], (3.8) is 
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necessary and sufficient for m to be J1.-invariant for F (in which case d 
is identically 0 and, by Proposition 2 of Tweedie [19], m is J1.-invariant 
for Q). Trivially, F satisfies (FEiO) for i E C. 

Suppose that Z is not identically O. We will first show that m cannot 
be J1.-invariant for F and, in so doing, establish that d is not identically O. 
Suppose, by contradiction, that m is J1.-invariant for F, so that 

j E C. 

Multiplying by a and summing over j E C gives 

Now, since F satisfies (FEij) over S, we have in particular that 

a¢iO{a) = L ¢ij{a)qjo, 
jEC 

and so, again using (3.12), we get 

i E C, 

(3.12) 

(3.14) 

This expression combines with (3.13) and (3.8) to give ~iEC mizi(a) = 
0, which is a contradiction because Z is not identically O. We deduce 
that m cannot be J.t-invariant for F. Moreover, we must have 

L mi{a + J1.)¢ij(a) < mj 

iEC 

for at least one j E C, and hence, from (3.14) and (3.8), 

L mi(a + J1.)¢iO(a) < ~ L miqiO = !!.. L mi· 
a a 

iEC iEC iEC 

Thus, do(a) > 0 and dj(a) > 0 for at least one j E C. 

(3.15) 

Next we shall show that \lI(.) = ('l/Jij(·), i,j E S), given by (3.9), is the 
resolvent of an honest Q-process P and that m is a J1.-invariant measure 
for P. Clearly 'l/Jij(a) ~ 0 for all i,j E S. Since m is finite, we have, 
from the definition of d, that 

a L dj(a) = (a + J1.) L mjzj(a) 
jES jEC 
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and so L:jEs o.'l/Jij(o.) = 1 for all i E S. In order to prove that W is the 
resolvent of a standard transition function P, we need only show that W 
satisfies the resolvent equation (3.4); see Theorem 1 of Reuter [17]. We 
shall use the following identities: 

Zi(o.) - Zi((3) + (a. - (3) L ¢ik (o.)Zk ((3) = 0, 
kEG 

di(o.) - di((3) + (a. - (3) L dk(o.)¢ki((3) = 0, 
kEG 

i E G, (3.16) 

i E G, (3.17) 

o.do(o.) - (3do((3) + (a. - (3) L dk(o.)(3¢kO((3) = 0 (3.18) 
kEG 

and 

iEG iEG iEG 

The first three of these can be verified directly using the fact that ~ 
satisfies the resolvent equation and that zo(o.) = O. The fourth identity 
follows from the first on multiplying by mi and summing over i. Using 
(3.16)-(3.19), together with the resolvent equation for ~, it is easy to 
prove that \lI satisfies its own resolvent equation. 

Next we need to verify that P is indeed a Q-process, that is P~j (0+) = 
qij for all i, j E S. We shall use a remark of Reuter [15, page 83] 
(see also Feller [3, Theorem 3.1]): if one is given a standard transition 
function P, then it is a Q-process if and only if the backward equations 
hold, equivalently, 

o.'l/Jij(o.) = dij + L qik'I/Jkj (a.) , 
kES 

i,j E S. 

But, this follows almost immediately from the identity 

L qikZk(o.) = o.Zi(o.), i E S, 
kES 

which can be deduced from the backward equations for ~. 
We have shown that W is the resolvent of a Q-process P. To show 

that m is a JL-invariant measure for P, we again use the definition of d: 
it is elementary to check that 

L mi(o. + JL)'l/Jij(o.) = mj, 
iEG 

j EG. 
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We have already seen that P is honest and so it remains only to show 
that P satisfies (FEiO) for i E G. But, since Z is not identically 0, this 
happens when and only when 

2: di(a)qiO = ado(a), 
iEG 

because it is easily verified that 

2: 'lfJik(a)qkO = mpio(a) + GaZi(a) (2: dk(a)qko - ado(a)) , 
kEG kEG 

where 
G;;1 = (a + 1') 2: mkZk(a). 

kEG 

On substituting for d, we find that 

ado(a) - 2: di(a)qiO = I' 2: mk - 2: mkqkO = 0, 
iEG kEG kEG 

and so the result follows. • 
Remark 3.1 The final part of the theorem states that the process P 
we have identified satisfies (FEiO) for i E G. The remaining forward 
equations do not necessarily hold. By Nair and Pollett [7, Theorem 3.1], 
this happens when and only when m is J.t-invariant for Q (rather than 
merely p.-subinvariant). Indeed, a simple calculation shows that, for all 
j E G, 

2: 'lfJik(a)qkj = a'IfJij(a) - dij + Gazi(a) (L dk(a)qkj - adj(a)) , 
kEG kEG 

and, for the given P, 

j E G, 
iEG iEG 

this later quantity measuring the "J.t-invariance deficit" of m for Q. 

Remark 3.2 A straightforward calculation shows that the given 'IT sat­
isfies 

iEG iEG 



50 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

and hence m satisfies a set of "residual equations" for P, namely 

t > 0, (3.20) 
iEC iEC 

which can be regarded as a "process counterpart" to (3.8). (Since P is 
honest, (3.20) follows more directly on summing (2.2) over j E C.) 

4. Necessary conditions 

It would be tempting to conjecture that condition (3.8) is necessary for 
the existence of a Q-process for which the given measure is JL-invariant. 
However, while this is not the case, condition (3.8) turns out to be 
necessary when extra conditions are imposed. 

Let P be a Q-process with C being an irreducible class (the conditions 
we have imposed on Q ensure that 0 is an absorbing state which is 
accessible from C) and suppose that m = (mj, j E C) is a finite JL­
invariant measure for P. Of necessity, m will be JL-subinvariant for Q, 
but does (3.8) necessarily hold? Under the conditions we have imposed, 
the forward integral inequalities are satisfied (Reuter [14]); in particular, 

PiO(t) 2: L rt Pik(S)qko ds, 
kEc 10 

i E C. 

On multiplying by mi and summing over i E C, we find that 

kEG iEC 

(4.1) 

If we divide by JL and let t --+ 0, we may use dominated convergence to 
deduce that 

JL L miai 2: L miqiO, 
iEC iEC 

where ai (the probability of absorption starting in state i) is given by 
ai = limHoo PiO (t). Thus, if ai is strictly less than 1 for some (and then 
all) i E C, (3.8) cannot hold. 

If we were to assume that P satisfies (FEiO) over C, then we would 
have equality in (4.1) and (4.2), and so 

H~m'a' - ~m·q·o r'D ll-D ll' 

iEC iEC 

If instead P were assumed to be honest, then we would have ai = 1 for 
all i E C. This can be seen as follows. Since m is a JL-invariant measure 
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for P, we have, in particular, that miPij{t) :s; e-lJtmj for i,j E C, and 
so 

i E C. 

Since m is finite and It > 0, limHoo(1- PiO{t)) = 0, and hence ai = 1 
for all i E C. Thus, if P were honest, we would have 

It L mi ~ L miqiO· 
iEC iEC 

Neither the honesty of P, nor an assumption that P satisfies (FEiO) 
over C, is enough on its own to establish (3.8); it is possible to construct 
examples of Q-processes which illustrate this. But, these conditions 
together imply (3.8). 

We have therefore proved the following variant of Theorem 3.1: 

Theorem 4.1 Let It > ° and suppose that Q admits a finite It-subin­
variant measure. Then, there exists an honest Q-process P satisfying 
(FEio) over C for which m is It-invariant if and only if (3.8) holds. The 
resolvent of one such Q-process is given by (3.9). 

Next we shall examine the question of uniqueness under the assump­
tion that Q is a single-exit Q-matrix. This was considered briefly in Sec­
tion 5 of Nair and Pollett [7] under a condition weaker than (3.8). If Q is 
single exit and P is an arbitrary Q-process, then (Reuter [15]) either P is 
the minimal Q-process or otherwise its resolvent \lI{.) = ('l/Jij('), i,j E S) 
must be of the form 

i,j E S, (4.3) 

where y(a) = (Yj{a), j E S) is given by 

j E S, (4.4) 

c is a non-negative constant, and 1]{a) = (1]j{a), j E S) is a non-negative 
vector which satisfies 

L 1]k(a) < 00, (4.5) 
kES 

1]j(a) -1]j([3) + (a - [3) L 1]k(a)c!>kj([3) = 0, j E S. (4.6) 
kES 
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Furthermore, \II is honest if and only if c = O. Since we have assumed 
that 0 is an absorbing state, zo(o) = 0 and so (4.6) can be written 

1Jj(o) -1Jj((3) + (0 - (3) L 1Jk(O)¢kj((3) = 0, j E C, (4.7) 
kEG 

01JO(0) - (31Jo((3) + (0 - (3) L 1Jk(O)(3¢kO((3) = O. (4.8) 
kEG 

Once 1J is determined, a family of Q-processes, exactly one of which 
is honest, is obtained by varying c in the range 0 :::; c < 00. Thus, 
the problem of identifying those Q-processes which satisfy a specified 
criterion, in our case, that a given measure is J.L-invariant on C, amounts 
to determining which choices of 1J and c are admissible; the procedure is 
purely arithmetical. 

Theorem 4.2 Suppose that Q is single exit and suppose that, for a given 
J.L > 0, Q admits a finite J.L-subinvariant measure. Then, there exists an 
honest Q-process P satisfying (FEiO) over C for which m is J.L-invariant 
if and only if (3.8) holds. It is the unique honest Q-process for which m 
is J.L-invariant and its resolvent is given by (3.9). 

Proof In view of Theorem 4.1, we only need to establish uniqueness. 
If the minimal Q-process F is honest, then it is the unique Q-process, 
and, as we have already observed, (3.8) is necessary and sufficient for m 
to be J.L-invariant for F. 

Suppose then that F is dishonest, so that Z is not identically O. We will 
prove that if there is an honest Q-process P for which m is J.L-invariant, 
then its resolvent must necessarily be given by (3.9). 

Let d be given by (3.1O) and (3.11). Since m is J.L-invariant for P, 
multiplying (4.3) by (o + J.L)mi and summing over i E C gives 

mj = L mi{o + J.L)¢ij{O) + (o + J.L)Yj{o) L mizi{o), 
iEG iEG 

for all j E C. Since P is honest, we must set c = 0 and so in view of 
(4.4) we require 

1Jj{o) dj{o) 
~kES 01Jk(O) - (o + J.L) ~iEG mizi{o) ' 

j E C. (4.9) 

Notice that dj(o) > 0 for at least one j E C: since m is J.L-invariant 
for P, m cannot be J.L-invariant for F, and so (3.15) holds for at least 
one j E C. Furthermore, by the definition of d, we have that 

o L dj{o) = (o + J.L) L mjzj{o) < 00, (4.1O) 
jES jEG 
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which is consistent with (4.5). From (4.9) we see that 'TJj{a) = 
K{a)dj{a), at least for j E C, where K is some positive scalar func­
tion. Using the identity (3.17), together with the fact that 'TJ must 
satisfy (4.7), we find, on substituting 'TJj{a) = K{a)dj{a) in (4.7), that 
(K{a)-K{f3))dj{f3) = O. Hence, K must be constant, because dj{f3) > 0 
for at least one j E C. Now, using (4.9) again, we see that K must satisfy 

or equivalently, by (4.1O), 

(4.11) 

It is clear from (3.18) that 'TJo satisfies (4.8) no matter what the value 
of K. It is also clear that there is no loss of generality in setting K = 1, 
for this is equivalent to replacing c in (4.9) by a different constant elK. 
Hence'TJj = dj for j E C, and, from (4.11), 'TJo = do. 

We have proved that if Q is single exit and P is an honest Q-process 
with f.L-invariant measure m, then its resolvent must be given by (3.9) . 
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Abstract A standard transition function P = (Pij(t)) is called ergodic (positive 
recurrent) ifthere exists a probability measure 71" = (7I"i; i E E) such that 

limp' ·(t) = 71"' > 0 t-+O 'J J, 
Vi E E (0.1) 

The aim of this paper is to discuss the convergence problem in (0.1). 
We shall study four special types of convergence: the so-called strong 
ergodicity, uniform polynomial convergence, L2-exponential ergodicity 
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and exponential ergodicity. Our main interest is always to characterize 
these properties in terms of the q-matrix. 

Keywords: strong ergodicity, uniform polynomial convergence, L2-exponential 
convergence, exponential ergodicity, stochastic monotonicity 
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1. Introduction 
Let E be a countable set, to be called the state space, and P = 

(Pij (t); i, j E E, t 2: 0) be a standard transition function with stationary 
distribution 7r = (7ri; i E E). Ordinally, we have the following definitions 
for convergence: 

1. Strong Ergodicity: 

t-+oo (1.1 ) 

2. Uniform Polynomial Convergence: If there exists constants 0 > 
0, v > 0 such that 

sup tVlpij(t) - 7rjl ~ 0 < +00, t 2: 0 (1.2) 
i,jEE 

3. L2 -exponential Convergence: If there exists a constant v > 0 such 
that 

IIP(t)f - 7r(f)11 < e-vtllf - 7r(f)II, f E L2(7r), t 2: 0 (1.3) 

where 

P(t)f ~Pij(t)fj 
JEE 

7r(f) ~ 7rifi 
iEE 

IIfl12 ~7rdl 
iEE 

L2(7r) {J: Ilfll < oo} 

4. Exponential Ergodicity: If there exist v > 0 and Oij > 0 such that 

'It 2: 0, i, j E E (1.4) 
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It is well-known that 

Strong ergodicity ===} Uniform polynomial convergence (1.5) 

Strong ergodicity ===} L2-exponential convergence 

===} Exponential ergodicity (1.6) 

To study the convergence is an important topic in Markov processes, 
in particular, in the study of continuous time Markov chains (CTMC) 
and interacting particle systems. Good references are, among others, 
Chung [8], Hou and Guo [10], Yang [15] and Anderson [1] for the former 
and Liggett [11] and Chen [6] for the latter. 

The main purpose of this paper is to consider the above convergence 
property for an important class of transition function, the stochastically 
monotone function. The close link among convergence, stochastically 
monotone function and another key concept, Feller-Reuter-Riley func­
tion is revealed. 

For simplicity, we shall consider CTMC exclusively in this paper. 
Also, in most of cases, the state space E will be always assumed to 
be Z+ = {O, 1,2, ... } with natural order. The monotonicity may then 
be simply defined as follows 

Definition 1.1 A standard transition function P = (Pij(t)ji,j E E, 
t ;::: 0) is called stochastically monotone, if for any fixed k E Z+ and 
t ;::: 0, L: Pij (t) is a non-decreasing function of i, i. e., 

j?k 

(1. 7) 

Also due to the fact that the state space Z+ is linear ordered, stochas­
tic monotonicity is equivalent to another important concept, duality, as 
was revealed by Siegmund [13]. 

Proposition 1.1 (Siegmund [13]) A standard transition function P 
is stochastically monotone if and only if there exists another standard 
transition function P = (pij(t)j i,j E Z+, t;::: 0), such that 

j 00 

LPik(t) = LPjk(t), (1.8) 
k=O k=i 

For the proof of Proposition 1.1, see Siegmund [13] or Anderson [1]. 
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Definition 1.2 A standard transition function P on Z+ is called a 
Feller-Reuter-Riley transition function (henceforth referring to a FRR 
function) if 

lim p' ·(t) = 0 
i-too 'J , (1.9) 

For the interesting property of FRR functions, see Reuter-Riley [12]. 
Note that a transition function P = (Pij(t)) is called standard if 

limt-toPij(t) = 8ij , see Chung [8]. In this paper all transition func­
tions are assumed to be standard and thus from now on, the modifier 
"standard" will be omitted. 

The results of strong ergodicity and the uniform polynomial conver­
gence, together with their proof, obtained in this paper are presented in 
Section 2. In Section 3, we have obtained the sufficient and necessary 
condition of exponential ergodicity of quadratic branching Q-processes. 

2. Strong ergodicity and uniform polynomial 
convergence of monotone q-functions 

We are now ready to state our main results and give their proofs. 

Theorem 2.1 If P = (Pij(t)ji,j E E, t 2 0) is an FRR transition 
function, then it is neither strongly ergodic and nor uniformly polynomial 
convergent. 

Proof By (1.5), we need only to prove that if P is an FRR transition 
function, then it is not uniform polynomially convergent. 

We may assume that the FRR transition function P is ergodic since 
otherwise nothing need to be proven. Since P is ergodic, it possesses 
an equilibrium distribution 1r = (1rij i E E), say. Now suppose that P is 
uniformly polynomial convergent, by (1.2), there exist constants C > 0 
and v > 0 such that 

t~O (2.1) 

Now, fix a state jo E E, then (2.1) implies that there exists aT < +00 

such that 

Vt ~T 

hence 

i¥kPijO(t) 2 ~1rjO' Vt 2 T 

which contradicts the requirement of an FRR transition function since 
for an FRR transition function we have Pij(t) -+ 0, as i -+ 00 for each 
j E E and any t ~ O. • 
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Interestingly, for monotone transition functions, the converse of The­
orem 2.1 also holds true. This is the following important conclusion. 

Theorem 2.2 Suppose P = (Pij(t); i,j E E, t ~ 0) is an honest and 
stochastically monotone transition function. If P is ergodic, then it is 
strongly ergodic (or uniformly polynomial convergent) if and only if it is 
not an FRR transition function. 

Proof By the conclusion of Theorem 2.1 and (1.5), in order to finish 
the proof, we need only to prove that if an ergodic monotone function 
is not strong ergodic, then it is a FRR function. Now suppose P = 
(Pij(t); i,j E E, t ~ 0) is an ergodic monotone function, then by writing 
Pij(t) as 

00 00 

Pij(t) = LPik(t) - L Pik(t) (2.2) 
k=j k=j+l 

we see that for any j E E and t ~ 0, the following limit, denoted by 
Cj(t), exists 

.lim pdt) = c·(t) 
t-too J J 

(2.3) 

since, by monotonicity, both terms in the right hand side of (2.2) are 
monotone function of i. 

On the other hand, since P is not strongly ergodic, by Anderson [1, 
Proposition 6.3.1], we have, for any t > 0 

which trivially implies that for any j E E and t ~ 0, 

inf Paj(t)I\Pbj{t) = 0 
a,bEE 

but it is easy to see that (2.4) is equivalent to 

inf Paj(t) = O. 
aEE 

Combining (2.3) with (2.5) shows that for any t > 0 and j E E, 

i~~Pij{t) = 0 

i.e., P = {Pij{t)} is a FRR transition function. 

(2.4) 

(2.5) 

• 
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As a direct consequence, we immediately obtain the following useful 
and interesting result. 

Corollary 2.1 Suppose P is a non-minimal stochastically monotone 
transition function. Then P is strongly ergodic (or uniformly polyno­
mial convergent) if and only if it is ergodic. 

Proof Note that FRR transition function must be Feller minimal, see 
Reuter and Riley [12], the conclusion immediately follows from Theo­
rem 2.2. 

• 
As always the case in the study of CTMC, our main interest is to 

characterize convergence in terms of the inifinitesimal behaviour, i.e., 
the q-matrix. The following result answers this question satisfactorily 
for an important class of q-matrices. 

Theorem 2.3 Suppose the given q-matrix Q = (qij; i, j E E) is stable, 
conservative and monotone, i. e., 

0 < qij, i=/=j 

L% -qii < +00, i E E (2.6) 
Hi 

L% < Lqi+1,j, k=/=i+l (2.7) 
j?k j2k 

then 

(i) The minimal Feller Q-function is strongly ergodic (uniformly 
polynomial convergent) if and only if it is ergodic and at least 
one of the following two conditions hold true: 

a) Q is not zero-entrance, i.e., the equation 

Y(AI - Q) = 0, o ::; Y, Yl < +00 (2.8) 

has a non-zero solution for some (and therefore for all ) 
A> o. 

b) Q is not an FRR q-matrix. 

(ii) If P = (Pij(t); i,j E E, t ~ 0) is a non-minimal stochastically 
monotone Q-function, then it is strongly ergodic (uniformly poly­
nomial convergent) if and only if it is ergodic. 
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Proof 

• For part (ii), see Corollary 2.1. 

• We now prove part (i). 

Suppose that Feller minimal Q-function is strongly ergodic (uni­
formly polynomial convergent), then it is surely ergodic and thus 
honest. It then implies the given q-matrix Q is regular, consider­
ing the Q is conservative. However, the given Q is also monotone 
by the assumption and thus by Chen and Zhang [4, Theorem 2.4], 
the Feller minimal Q-function is stochastically monotone. Thus by 
Theorem 2.2, the Feller minimal Q-function is not a FRR transition 
function. Now the conclusion follows from Zhang and Chen [16, 
Theorem 5.1] since our q-matrix Q is conservative, regular and 
monotone. • 

Remark 2.1 A q-matrix Q is called a FRR q-matrix if 

as i-too for every j (2.9) 

so condition (b) in Theorem 2.3 is quite easy to check. 

Remark 2.2 The results about strong ergodicity and their application in 
birth and death processes can be seen in Zhang, Chen, Lin and Hou [17]. 

3. Exponential ergodicity of quadratic branching 
Q-processes 

Branching processes form one of the classical fields of probability the­
ory and have a very wide range of applications. There are several spe­
cialized books devoted to this subject (see [2, 3, 9], for instance). On 
the other hand, the dual of a measure-valued process often leads to a 
modified model of the branching processes. For instance, the following 
model comes from a typical measure-valued process (the Fleming-Viot 
process), which was introduced to us by D.A. Dawson. The given q­
matrix Q = (qij j i, j E E) is as follows: 

'2 
Z Pj-HI, 

-i2{1- pt}, 
qij Pi, 

Po -1, 
0, 

j ~ i-I, j =1= i 
j=i~1 

j~i=O 

j=i=O 
elsewhere, i,j E Z+ 

(3.1) 

where P = (pjjj E E) is a probability distribution. This q-matrix is 
called a quadratic branching q-matrix. 
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Chen [7] discussed an extended class of q-matrices, that is, 

qij = 

where ri > O,i ~ 1. 

riPj-i+1, 
-ri{l- pt}, 

qOj, 
-qo, 

0, 

j ~ i-I ~ 0, jli 
j=i~1 

j>i=O 
j=i=O 
elsewhere, i, j E Z+ 

(3.2) 

Chen obtained the criteria for the uniqueness, recurrence and positive 
recurrence (ergodicity) of the Q-processes. For quadratic branching q­
matrix, Chen's results are as follows: 

Theorem 3.1 (Chen [7]) Suppose Q = (qij;i,j E E) be a quadratic 
branching q-matrix. 

00 

(i) The Q-process is unique if and only if Ml = L jPj ~ 1. 
j=l 

(ii) If Po > 0 and Pk > 0 for some k ~ 2, then the Feller minimal 
Q-process is recurrent if and only if Ml ~ 1 and it is ergodic if 
and only if Ml ~ 1. 

(iii) The Feller minimal Q-process is exponentially ergodic if Ml < 1. 

Our main results are as follows: 

Theorem 3.2 Let Q = (qij; i, j E E) be a quadratic branching q-matrix 
with Po > 0 and Pk > 0 for some k ~ 2, then 

(i) The minimal Q-process is strongly ergodic if Ml < 1. 

(ii) The minimal Q-process is uniformly polynomial convergent if 
Ml < 1. 

(iii) The minimal Q-process is exponentially ergodic if and only if Ml ~ 
1. 

Proof 

• The proof of (i) and (ii) can be found in Zhang, Chen, Lin and 
Hou [18] . 

• Now we prove (iii). By Theorem 3.1, we need only to prove that 
if Ml = 1, then the minimal Q-process is exponentially ergodic. 

Since 
00 00 

LPk = 1 and Ml = LkPk = 1, 
k=O k=l 
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we have 

00 

o < Po = T = L kPk+1 < l. 
k=l 

65 

(3.3) 

First, we show that there exists 0 > 0 such that the inequality 

has a finite solution. 

In fact, let Yo = 0, Yi - Yi-l = .It, 0 = l~ then 

n n 8 In 8 
Yn = L(Yi - Yi-d = L 0 :::; Vx dx = 16v'n. 

z=l z=l 0 

Let 

f(i) Yi+l - Yi - (Yi - Yi-l) 

8(l+r- ~) 
8 

o v'i+I(v'i+I + 0)' 

then 
-4 -4 

iv'i+I < f(i) < (i + 1)0 

and 

so equation (3.4) has a finite solution Y = (Yi; i E Z+). 

Set Yn = .lYn, J = poo, then the following inequalities hold 
Po 
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so for i ~ 1 

00 

L qij(fh - iJi) + 8fh + 1 
j=O 

j>i+1 
j 

i2po(fJi-1 - jJi) + L i2pj_i+1 L (iJk - Yk-l) + 8Yi + 1 
j~i+1 k=i+1 

< i2po(iJi-1 - Yi) + L i2pj_i+1(j - i)(Yi+1 - Yi) + 8Yi + 1 
j>i+1 

00 

i2po(iJi-1 - Yi) + i2 (iJi+1 - Yi) L kPk+1 + 8Yi + 1 
k=l 

i2po(iJi-1 - Yi) + i2po(iJi+1 - yd + 8Yi + 1 
< 0 (3.6) 

Let 0 < 8* < min{l-po, I-PI, 8}, then 8* < 8. By (3.6), we have 

and 

i>l 

00 

Lqij(iJj - iJi) + 8*Yi + 1:::; 0, i ~ 1 
j=O 

i>l i>l 

Hence the minimal quadratic branching Q-process is exponentially 
ergodic, see Tweedie [14] or Anderson [1, Theorem 6.5]. • 

Remark 3.1 By Theorem 3.1 and 3.2, MI = 1 is a critical value, so 
to study the case of MI = 1 is very interesting. 
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Doob processes, Q processes of order one, Markov processes, semi­
Markov processes, piecewise determinate Markov processes, the input 
processes, the queuing lengths and the waiting times of the system 
GI/G/1, the insurance risk models, and the option pricing models, as 
particular cases. The present paper aims to fully expound the back­
ground and the history source of the introduction of Markov skeleton 
processes, and we deduce the forward and backward equation and use 
them as a powerful tool to obtain the criteria of regularity. 

Keywords: Markov skeleton processes; the backward equations; the forward equa­
tions; the criteria for the regularity. 

AMS Subject Classification(1991): 60J 

1. Introduction 
Markov processes are obviously of great importance. They have the Markov prop­

erty at any constant stopping time (i.e. usual time). After further study in Markov 
processes, it was found that most of the Markov processes have the strong Markov 
property. The corresponding subclass of Markov processes is very rich. One may say 
that the research on Markov processes in fact deals with the strong Markov processes. 
Strong Markov processes have the Markov property at any stopping time. In actual­
ity, it is not easy to determine whether a stochastic process is a Markov process or 
strong Markov process. Of course, many stochastic processes do not have the Markov 
property. However, there are many processes {Xt, t < T} that are not (strong) Marko­
vian, but there is a sequence of stopping times: 0 == TO ~ T1 ~ T2 ~ ... ~ Tn t T, such 
that the process {xt} has the Markov property at Tn, n 2:: O. We call this property of 
{Xt} or {Tn} the property (H). The following are some examples: 

Example 1.1 

Ex 1. Let {Xt,t < +oo} be a Markov process, set Tn = n, n = 0, 1, .... Then {Tn,n 2:: 
O} has property (H). 

Ex 2. Let {Xt, t < T} be the minimal homogeneous denumerable Markov process [1), 
Figure 2, denote the nth jump point by Tn, then Tn t T and {Tn,n 2:: O} is of 
property (H). 

Ex 3. Let {Xt, t < T} be a Doob process [1], Figure 3, and denote the nth explosion of 
{xt} by Tn, then Tn t T and {Tn, n 2:: O} has property (H), and the {X(Tn), n 2:: 
1} has the same distribution. 

Ex 4. Let {Xt,t < T} be a Q-process of order one [1], Figure 3, and denote the nth 
flying point of Xt by Tn, then Tn t T and {Tn, n 2:: O} has property (H). 

Ex 5. Let {N(t), t 2:: O} be an input process to a GIIGl1 queue [3]. That is to say, 
N(t) stands for the number of arrivals up to time t. Let TO == 0, Tn, n 2:: 1 
denote the arrival time of the nth customer. Then Tn t +00, and it is easy to 
see that {Tn, n 2:: O} has property (H), but N(t) is not a Markov process unless 
Tn+! - Tn, n 2:: 0 are independent and have exponential distributions. 

Ex 6. Let {L(t), t 2:: O} be a MIGl1 queuing process [3]. L(t) stands for the queuing 
length at t, TO == 0, Tn, n 2:: 1 denotes the exit time of the nth customer. Then 
Tn too, and {Tn,n 2:: O} has property (H). 
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Figure 5.1. Minimal homogeneous denumerable Markov process 
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Figure 5.2. Doob process 

Ex 7. Let {L(t), t ~ O} be a GI/M/l queuing process [3]. TO == 0, Tn, n ~ 1 stands 
for the arrival time of the nth customer. Then Tn too, and {Tn,n ~ O} has 
property (H). 

Ex 8. Let {L(t), t ~ O} be a GI/G/l queuing process [3]. TO == 0, Tn, (n ~ 1) stands 
for the starting time of the nth busy period. Then Tn too, and { Tn, n ~ O} is 
of property (H). 

Ex 9. Let {W(t), t ~ O} be a waiting process of a GI/G/l queue [3], i.e. W(t) stands 
for the waiting time of the customer who arrives at t. TO == 0, Tn, (n ~ 1) 
denotes the arrival time of the nth customer. Then Tn t oo(n t 00) and 
{Tn,n ~ O} has property (H). See Figure 9. 

Ex 10. Risk decision model, Figure 10. 

N(t) 

U1(t) =u+d- LXi 

i=1 

where N(t) is the number of claims occurred in [0, t], and Xi'S are positive 
random variables. u(t) has the property (H). 

Ex 11. Risk decision model with random disturbance. 

N(t) 

u(t) = U + d + W(t) - LXi 

i=1 

where W(t) stands for Brownian motion. u(t) has the property (H). 
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Ex 12. Option pricing model, Figure 12. The S(t) denotes the price of stock, F[t, S(t)] 
is a dualistic continuous function of t, s and stands for the option price at t. 
S(t) and F(t, S(t» have the property (H). 

Ex 13. Reservoir model, Figure 13. V(t) has the property (H). 

In fact, from the examples above, we see that many processes in practice have the 
property (H) but are usually not Markovian. From the study of Markov processes, it 
is easy to see that many results hold for those processes that only have the property 
(H). For example, the minimal Q-process satisfies both Kolmogorov backward and 
forward equations; the transition probability of a minimal Q-process satisfies both 
Kolmogorov backward and forward equations; the distributions and moments of the 
first arrival time and integral-type functional for minimal Q-processes and order 1 
Q-processes are minimal nonnegative solutions of some nonnegative linear equations; 
and so on. All these results can be derived by the property (H) only. For these 
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reasons, we consider the processes with the property (H) for a separate study and we 
call them Markov skeleton processes. 

Next, we review the history from the introduction of Markov processes to that of 
Markov skeleton processes. 

Markov chains, the original models of Markov processes were introduced in 1906 
by the Russian mathematician A.A. Markov [30]. From then on, many scholars began 
their continuous investigation on Markov processes and many excellent results have 
been obtained, especially for strong Markov processes. The simplest one which we 
have studied in great detail is the minimal Markov chains {x(t,w),t < T}, Figure 2. 

0== TO::; T1 ::; T2'" ::; Tn ::; ... , Tn t T, Ti, i = 1,2,··· is the ith jump point, Tis 
the explosion point. As we know, 

(i) Tn, n = 0,1,· .. has the property (H); 

(ii) x(t) = X(Tn), Tn ::; t < Tn +1, n = 0,1,2,···; 

(iii) The distribution of Tn +1 -Tn is an exponential distribution depending on X Tn • 

i.e. 
t::::O 
t::;O 

Conversely, if the above three conditions hold, then X(t) must be a Markov process. 
But there are many stochastic processes, which have properties (i) and (ii) and 

do not have property (iii). In 1955, Levy [3] and some other authors gave up the 
property (iii), but they kept the properties (i) and (ii), and introduced the concept 
of semi-Markov processes to take up the study. 

Until the 1980's, M.H.A. Davis [32, 33] relaxed the property (ii): the hypothesis 
that x(t) took only one constant on [Tn, Tn+d was replaced by taking a determinate 
smooth curve, but kept the Markov property on the jump time. Then with the aid 
of an auxiliary variable, he introduced the concept of piecewise deterministic Markov 
space, and obtained extended infinitesimal generators of this kind of processes. The 
above Examples Ex 9 and Ex 10 are typical examples of this kind. But many other 
important stochastic processes are still out of consideration. In general, Ex 9 and 
Ex 10 are not Markov processes, let alone piecewise deterministic Markov processes 
as defined by Davis. There are also some stochastic processes with property (H), or 
the above property (I), their paths between two adjacent Markov time Tn and Tn +1 are 
pieces of deterministic smooth curves but pieces of stochastic processes. For example, 
Ex 3, Ex 4, Ex 6, Ex 7, Ex 8, Ex 11, Ex 12 and Ex 13 are typical models of such 
kind. Ex 3 and Ex 4 are Markov processes, but generally the other six examples are 
not Markov processes. As for Ex 6 and Ex 7, in the late 1950s, D.G. Kendall [6, 7] 
for the first time noticed that L(Tn), n :::: 0 forms a Markov chain. L. Takaces [1] 
studied L(Tn) in Ex 6, and used the property (H) to obtain the explicit expression 
of the generating function for the Laplace transform of the probability distribution 
of L(t) and the expression of the stationary distribution. Later, Wu Fang [9), U.N. 
Bhat [11] obtained the same results for Ex 7 by the same method. In 1997, based 
on the results of these scholars and by laying an emphasis on the common character 
(H) of the above examples, Hou Zhenting, Liu Zaiming, Zou Jiezhong introduced the 
concept of Markov skeleton process (MSP), and obtained the backward and forward 
equations satisfying the probability distribution of Markov skeleton process. In recent 
years, we have carried out a basal study of the theories and applications of MSP, and 
thus built up the theoretic framework. 

As we know the development process of everything is a repeat and alternate pro­
cess which includes changes in quantity and quality. It makes a fresh start at a 
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series of time when qui,tlity changes occur (i.e. of property H). The jump processes 
characterise the change of quality while diffusion processes characterise the change of 
quantity. In other words, at the moments when quality changes occur, things have the 
Markov property. It was for this reason that we introduced Markov skeleton process 
to provide an appropriate model for the study of these mixed stochastic processes. A 
wide application of such processes in queueing system, deposit system, reservoir man­
agement system, insurance and finance system, economy system, demography theory 
models and economic market can be found. 

2. Definition and properties of Markov skeleton 
processes 

Let (n, F, P) be a complete probability space, (E, £) a measurable space, {Ft, t 2: 
o} a flow of a-algebras of F. Then X = {x(t,w},O :::; t < T(W)} is Ft-adaptive 
stochastic process defined on (n, F, P) with values in (E, £). 

For convenience, we extend the state space E to j; = E U {b} by adding an isolated 
state b to E. The process X is also extended to X = {x(t,w},O:::; t < oo}, by 

x(t,w} = { ~,(t,w), o:::;t< T(W}, 
T(W}:::;t<oo. 

(2.1) 

Definition 2.1 The stochastic process X = {X(t,w},O:::; t < T)} is called a process 
with Markov skeleton if there exists a sequence of stopping times {Tn}n~O, satisfying 

(i) Tn t T with TO = 0, and for each n 2: 0, Tn < T ==> Tn < Tn+l; 

(ii) for every Tn and any bounded j;[0,(0) -measurable function f defined on [[0,(0) 

E[f(X(Tn + ',w))IFTn ) = E[f(x(Tn + ',W))IX(Tn}) P-a.e. on n Tn , (2.2) 

where nTn = (w : Tn(W) < 00), and 

NTn ={A : "It 2: 0, A n (w : Tn(W) :::; t) E a{xs, 0:::; s :::; t}} 

is the a-algebra on n Tn . 

We say that X is a homogeneous Markov skeleton process if the following equation 
holds in (ii) 

E[f(X(Tn + ',w))INTn ) E(J(x( Tn + " W ))lxTn ) 

EX(Tn)[J(X("w}), P-a.e. on n Tn , 

where ExO denotes the expectation corresponding to P(·lx(O) = x). 

(2.3) 

Remark 2.1 In this article, suppose E to be a Polish space, £ the Borel a-algebra, 
and n to be a space of right-continuous of functions, defined on R+ with values in E. 

Consider a right-continuous stochastic process X = {X(t,w),O :::; t < T(W)}, de­
fined on (n, F, P) with values in E. Because E is a Polish space, the Kolmogorov 
existence theorem assures that the above restriction of the n is reasonable. Let 
~ = {R, t 2: O} be the a-algebra flow generated by the process X initially, where 
~ = a(X., 0:::; s :::; t), .1! = Vt::.oR. Suppose that there exists a set of probability 
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measures Px on (n,F), x E E, satisfying that VA E F!"x -+ Px(A) is £-measurable 
and 'Ix E E, 

Px(A) = P(AIXo = x), VA E.r!,. 

For any probability measure J.L on (E, £), we define the probability measure PI' on 
(n, F!,) as follows: VA E F!" PIJ.(A) = IE Px(A)J.L(dx). Let Ft be completion of Ft 
about PI" and 

Ft = nIJ.E1'(E)Ft, t 2: 0, 

where P(E) denotes the set of all probability measures on (E, f). 

Remark 2.2 Since X is a right-continuous process defined on a metric measurable 
space, then it is measurable step by step. Hence X(Tn,W) and f(X(Tn + ·,w)) are 
measurable. 

Suppose that X = {X(t,w),O ~ t < T} is a Markov skeleton process. Let TJn = 
(O"n, X(Tn)), n 2: 0, where 0"0 = 0, O"n = Tn - Tn-I, n 2: 1 (agreeing that 00 - 00 = 0), 
then {TJn, n 2: O} is a series of random variables with values in measurable space 
(R+ x E6.,B(R+) x £6.). 

Theorem 2.1 Suppose that X = {X(t,w),O ~ t < T} is a Markov skeleton process, 
then {TJn, n 2: O} is a Markov sequence (Markov process), and the transition probability 
P(TJn+l E BITJ) = P(TJn+l E BIXTn ) (B E B(R+) x £6.,n 2: 0) is independent of the 
first component O"n of TJn. 

Proof VB E B(R+) x £6., (TJn+l E B) E O"(X(Tn + t), t 2: 0). By the definition of 
Markov skeleton process (2.2), we have 

P(TJn+1 E BITJO, TJl, ... ,TJn) 

So, (TJn, n 2: 0) is a Markov process. 

E[P(TJn+l E BIFTn )ITJO, TJl, ... ,TJn] 

E[P(17n+l E BIXTn )1170, 171,· .. ,17nJ 

P(17n+l E BIXTn ). 

Furthermore, if the Markov skeleton process X is homogeneous, by (2.3), 

• 

and Vt E R+, x E E, n 2: 0, P(O"n+l > tiFTn) = PXrn (Tl > t), Px - a.s. on nTn where 
nTn = (Tn < 00). So we get the statements (i) and (ii) of the following corollary, 
while the proof of (iii) is straightforward. 

Corollary 2.1 If the Markov skeleton process X = (X(t,w),O ~ t < T(W)) is homo­
geneous, then 

(i) {TJn,n 2: O} is a homogeneous Markov process, and the transition probability is 
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(iii) VC; E 8(R+), i = 1,2,··· ,n; n ;::: 0, 

P,,(UI E Cl ,··· ,Un E CnIXo,XTl>··· ,XTn ) 

= P,,(UI E Cl IXo,XT1 )P.,(U2 E C2IXTl>XT2) .. ·P(Un E CnIXTn_l>XTn), 

P.,-a.s., X E E. 

Theorem 2.1, Corollary 2.1, and the Markov property (2.2) and (2.3) with respect 
to the sequence of stopping, time ( Tn )n~o are the reasons we call the stochastic process 
X a Markov skeleton process. The sequence (l1n,n;::: 0) is called the Markov skeleton 
of the process X and (XTn , n ;::: 0) is called the embedded chain of X. Since (l1n)n>O 
and (Tn, X Tn )n>O mutually determine each other, (Tn, XTn )n>O may also be called the - -
Markov skeleton of the process X. 

Suppose X = {X(t,w), 0 ~ t < T(W)} is the minimal Q-process, where T is the first 
explosion. Obviously X is a homogeneous Markov skeleton process, whose Markov 
skeleton is (Un, X Tn )n~O, where Un = Tn+l-Tn and Tn is the nth jump time, and {XTn } 
is the embedded chain. We feel the Markov skeleton is much more important than the 
embedded chain for the minimal Q-process, because the embedded chain gives only 
the transfer states when a transition occurs without indicating how long the chain 
stayed on the state it left. But the Markov skeleton does both. In fact, the Markov 
skeleton of a minimal Q-process itself determine each other. Furthermore, from the 
viewpoint of the transition kernel, the transition matrix {qij / qi} cannot uniquely 
determine the Q-matrix (qij), but the transition kernel of the Markov skeleton and 
the Q-process can uniquely determine each other. 

Next, we introduce jump process of the Markov skeleton process. 

Definition 2.2 The process Y = (Y(t,w),O ~ t < T(W» is called the jump process 
of the Markov skeleton process X = (X(t,w),O ~ t < T(W» if 

Y(t,w) = X T", when Tn:::; t < Tn+l, n;::: O. (2.4) 

Let (qn(x,dt,dx»n>o denote the series of the transition kernels of the Markov 
series (l1n)n~o. (By Y~n Jia'an [1, Note 11.50], we know (l1n)n~o exists). And let 
Fn(x,dt) = qn(x,dt,Ell.), n;::: O. VB E Ell., qn(x,dt,dx) <t: Fn(x,dt), so 

qn(x,dt,B) = Qn(x,t,B)Fn(x,dt), 

where the Randon-Nikodym derivative Qn(X, t, B) of qn(X, t, B) with respect to 
Fn(x, dt) may be chosen so that for fixed (x, t), Qn(X, t,·) is a probability measure on 
tll., and for fixed B E tll., Qn(-,·, B) is Ell. x 8(R+)-measurable. In fact, we have 

qn(XTn,dt,dx) P,,(un+l E dt,XTn +1 E dxIXTn), P.,-a.s., x E Et::., n;::: OJ 

Fn(XTn,dt) = p,,(un+l E dtIXTn ), P.,-a.s., x E Et::., n;::: OJ 

Qn(XTn,un+l,dx) p,,(XTn+l E dxIXTn),un+I), P.,-a.s., x E Ell., n;::: o. 
Before we finish this section, we introduce a set of sub-processes of the Markov 

skeleton process X = (X(t,w),O ~ t < T(W», x(n) = (x(n)(t,w),O ~ t < Un(W», 
n ;::: 1, as follows 

X(n)(t,w) = X(Tn-l +t,w), 0 ~ t < un(w», n;::: 1 

Obviously, the Markov skeleton process evolves as follows: starting from the initial 
state Xo, it first evolves according to the first sub-process X(l) until the time 1"1 
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(the distribution of the Tl is Fo(Xo, .», then jumps to the state X T1 according to the 
transition kernel Qo(Xo, Tl, .)j and starting from X T1 again, evolves according to the 
second sub-process X(2) until the time T2 (the distribution of the T2 -Tl is Fl(XT1 , .», 
then jumps to the state X T2 according to the transition kernel Ql (XTll T2 - Tl, .)j 
continue this way until time T, when the Markov skeleton process X stops. 

3. Definition and the back-forward equations of 
normal Markov skeleton processes 

Definition 3.1 A homogeneous Markov skeleton process X = {x(t,w),O:$ t < T(W)} 
is said normal if there exist (h(t,x,A» and (q(t,x,A», with the stopping times 
{Tn}n~O in Definition 2.1, satisfying the following conditions: 

(i) P[X(Tn + t) e A, Tn+l - Tn > tIX(Tn)] = h(t,X(Tn),A),P-a.e., A e E, t ~ 0, 
n ~ 0; 

(ii) P[X(Tn+l) e A,Tn+l - Tn :$ tIX(Tn] = q(t,x(Tn),A),P-a.e., A e E, t ~ 0, 
n~O. 

For a fixed A, h(t, x, A) is a measurable function of two variablesj for fixed x and 
t, h(t, x, A) is a quasi-distribution on (E, E). 

In particular, 

h(t, x, A) P(x(t) e A, Tl > tlx(O) = x), 

q(t,x,A) = P(X(Tt} e A,Tl :$ tlx(O) = x). 

Where q(t, x, A) is the transition probability of (l1n), q(t, x, A) = f~ fA q(ds, x, dy). 
From now on we consider the normal Markov skeleton processes only without 

mentioning the term "normal". 
Let M={RIR{x, A) be a nonnegative function defined on E x E; i.e. for fixed A, 

R(x, A) is E-measurable; for fixed x, R(x, A) is a nonnegative measure on (E, E)}. It 
is well known that convolution on M can be defined as follows: VR,S e M, 

R·S{x,A) = LR(x,dy)S(y,A), xeE, AeE. (3.1) 

Obviously, R· S e M and the multiplication in M satisfies the associative law. In 
particular, for any ReM 

RO(x,A) - 5A(X) 

Rn+l(x,A) - L R(x,dy)Rn(y,A) 

= 1 Rn(x, dy)R(y, A), x e E, A e E (3.2) 

Let 

P(t, x, A) = P(x(t) e Alx(O) = x) t ~ 0, x e E, A e E 
00 

P",(x,A) - ! e->.tP(t,x,A)dt, oX > 0, x e E, A e E 

° 
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Theorem 3.1 V)' > 0, {P~(x, A}, x E E, A E £} is the minimal non-negative solu­
tion of the following non-negative equation 

X(x, A} = I q~(x, dy}X(y, A} + h~(x, A}, x E E, A E £ (3.3) 
E 

So 
00 

P~(x,A} = (LQn. H)(x,A) (3.4) 
n=O 

Where 

H = (h~(x,A},x E E,A E £), } Q = (q~(x,A},x E E,A E £) (3.5) 

00 

} 
h~(x,A} = J e-Mh(t, x, A}dt, 

0 
00 

q~(x,A} = J e-~tdq(t, x, A} 
0 

(3.6) 

Remark 3.1 By Theorem 3.1, the distributions of the process X are determined by 
Hand Q, so X is called the (H, Q}-process. (H, Q) is called the binary characteristics 
or (H, Q}-pair of Equation (3.3) and process X. 

To prove Theorem 3.1, we need two lemmas. 

Lemma 3.1 Vt ~ 0, A E £, n ~ 0 

E[x(t) E A, Tn :$ t < Tn+1IX(Tn}, Tn, X(O}] = h(t - Tn, X(Tn}, A} ·I{Tn 9} P-a.e. 
(3.7) 

where 
I ( ) _ {I, wEe 
c w - 0, wE C 

Proof First we prove (3.7) for closed set A. Suppose A is a closed set, let 

AI ~ {x1d(x,A} < ~ }, 1= 1,2,··· 

AI - { xld(x, A} :$ ~ } 1= 1,2"" 

B~k) {i i+l } i = 0, ... ,2k - 1; k ~ 1 , - wEn, 2k t:$ t -Tn < 2kt 

Noting that the paths of the X are right continuous and A = n~lAI = n~lAI, we 
have 

{x(t} E A, Tn :$ t < Tn+d 

= {x (Tn + t -Tn} E A, Tn+1 - Tn> t - Tn} n {Tn :$ t} 

= n~l ({x( Tn + t - Tn) E AI, Tn+l - Tn > t - Tn} n {Tn :$ t}} 

00 00 00 ( 2- -1 {( i + 1) A i + 1 } C nl=l UK=l nk=K Ui=o X Tn + 2kt E I, Tn+1 -Tn> 2kt 

nBfk) n {Tn :$ t}) (3.8) 
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on the other hand, 

{X(Tn +t - Tn) E A,Tn+1 - Tn> t - Tn} n {Tn ~ t}) 

= n~l{{X{Tn +t - Tn) E AI,Tn+l- Tn> t - Tn} n {Tn ~ t}) 

00 00 00 ( 2k -1 {( i + 1) A } :> n/=l n K=l Uk=K Ui=o X Tn + ~t E I, Tn+1 - Tn > t - Tn 

nB~k) n {Tn ~ t}) 
00 00 00 ( 2k -1 {( i + 1) A i + 1 } :> n/=l n K=l Uk=K Ui=o X Tn + ~t E !, Tn+1 - Tn > ~t 

nB~k) n {Tn ~ t}) (3.9) 

Combining (3.8) with (3.9) and using indicator functions we have 

P-a.e. 

(3.10) 

Note that the limit in (3.10) is decreasing on I and 

2k_1 

o ~ L I{:V(Tn+Wt)EA/,Tn+l-Tn>Wt}· IB?) ·I{Tn9} 
i=O 2 2 

< 1 P-a.e. 

By the monotone convergence and dominant convergence theorems and the properties 
of the conditional expectation, we have 

E[x{t) E A, Tn ~ t < Tn+dX{Tn), Tn, X{O)] 

2k -1 [( . + 1 ) . + 1 ] 
= I~~ kl~~ ~ E X Tn + ¥t E AI, Tn+1 - Tn > ¥tIX{Tn), Tn, X(O) 

.IB!k) ·I{Tn9} 

2k_1 [( . + 1 ) . + 1 ] 
= l~~ kl~~ ~ E X Tn + ¥t E AI, Tn+1 - Tn > ¥tIx{Tn) 

·1 B!k) ·I{Tn9} 

= 
2k_1 (. + 1 ) 

lim lim "'h '2k t,x{Tn),AI .IB(k)·I{Tn<t} 
1-+00 k-+oo ~ ;-.=0 
lim h(t - Tn,X(Tn),AI)· I{Tn<t} 

1-+00 -
= 

= h(t - Tn,X(Tn),n~lAI)· I{Tn~t} 

= h(t - Tn, X(Tn), A) P-a.e. 
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In the last third equality, we use 

and while l -+ 00, both sides have the same limits. 
Up to here, we have proved (3.7) for close sets A. Noting that h(t, x, A) is a 

quasi-distribution on A and the properties of the conditional expectation, using the 
monotone class theorem we can prove that for any A E £, (3.7) holds and this com­
pletes the proof of Lemma 3.1. • 

Lemma 3.2 \fA E £, t 2: 0, x E E 

P(x( Tn) E A, Tn ::; tlx(O) = X) 

where 

q*O(t, x, A) ""- OA (x), 

q*l(t,x,A) ""- q(t, x, A) 

q*n(t, x,A) ""- Ie lt q*n-l (ds, x, dy)q(t - s, y, A), 

Proof When n = 1, 

P(X(TI) E A,Tl ::; tlx(O) = x) = q(t,x,A) 

Assume that (3.11) holds for n = k. When n = k + 1, 

P(x( Tk+I) E A, Tk+l ::; tlx(O) = x) 

n2:2 

In E[X(Tk+1) E A,Tk+l - Tk ::; t - Tklx(Tk),Tk,X(O) = x] 

·I{Tk<::;t} . p( dwlx(O) = x) 

In q(t - Tk,x(rk), A) . I{Tk9} . p( dwlx(O) = x) 

Ie lt q(t - s,y,A)· P(X(Tk) E dy,Tk E dslx(O) = x) 

Ie lt q(t - s, y, A) . q*k(ds, x, dy) 

q*k+l (t, x, A) 

In the last third equality, we use the integral transformation: 

(3.11) 

(3.12) 

Thus the Lemma 3.2 is proved. • 

Proof The proof of Theorem 3.1 is as follows: 
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First, we reduce the demonstration of Theorem 3.1 to proving that 

P(x(t) E Alx(O) = x) = ~ 1 lot h(t - s, y, A)q*n (ds, x, dy) (3.13) 

In fact, taking the Laplace transformation on both sides in (3.13), we have 

where 

PA(x,A) = L)O e-AtP(x(t) E Alx(O) = x)dt 

~l hA(y,A)q~n(x,dy) 

q~n(x,A) 8A(X) 

q~n(x, A) = 1000 e-Atq*n(dt, x, A) 

= l .. ·lqA(x,dYI)qA(Yl,dy2 ) ... qA(Yn-l,A), n;:::l 

So, (3.14) becomes (3.4), i.e., the minimal non-negative solution of (3.3). 
Next, we prove (3.13) 

P(x(t) E Alx(O) = x) 
00 

L p(x(t) E A, Tn:::; t < Tn+lIX(O) = x) 
n=O 

f 1 E[x(t) E A,Tn :::; t < Tn+lIX(Tn), Tn, x(O)]P(dwlx(O) = x) 
n=O !1 

f 1 h(t - Tn,X(Tn),A)· I{Tk~t}' p(dwlx(O) = x) 
n=O !1 

flIt h(t - s, y, A) . P(X(Tn) E dy, Tn E dslx(O) = x) 
n=O E 0 

flIt h(t - s, y, A) . q*n(ds, x, dy) 
n=O E 0 

(3.14) 

In the third, the fourth and the last equalities; we have respectively used Lemma 3.1, 
integral transformation and the Lemma 3.2. 

So (3.13) holds and this completes the proof of Theorem 3.1. • 

Definition 3.2 Equation (3.3) is called the backward equation of the (H, Q)-process 
X. 

Definition 3.3 If for any A > 0, there exists Q = (qA(x,A),x E E,A E [;) E M 
satisfying H· Q = Q. H, i.e. 

l hA(x,dy)ijA(y,A) = l qA(x,dy)hA(y,A), x E E, A E [; (3.15) 
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then the following non-negative Equation (3.16) is called the forward equation of the 
(H,Q)-process X, 

X(x,A) = lX(x,dy)q>.(y,A) + h>.(x, A), xeE, Ae£", >'>0 (3.16) 

Proposition 3.1 If H has right inverse element in M, i.e. for any>. > 0, there 
exists H;l eM satisfying 

H· H;l(X,A) = 6A(X) 'Vx e E, A e £" 

then there exists the forward Equation (3.16), where Q = H;l . Q. H. 

Proof 'V>. > 0, there exists H;l e M. Let 

Q = H;l·Q.H 

Noting that the multiplication in M satisfies the associative law, we have 

H· Q H· (H;l . Q . H) 

= (H· H;l). (Q. H) 

= (6A(X»· (Q. H) 

Q·H 

By the Definition 3.3, the forward Equation (3.16) exists. • 
Theorem 3.2 If there exists a forward equation of the (H, Q)-process, then the min­
imal non-negative solutions of both the forward equation and the backward equation 
are identical. So {P>.(x,A),x e E,A e £"} is also the minimal non-negative solution 
of the forward equation, i.e. 

Proof Obviously the minimal non-negative solutions of Equation (3.3) and Equa­
tion (3.16) can be obtained by the following 

where 

X(x,A) = 

X(x,A) = 

lim X(n) (x, A), 
n-+oo 

lim Xn(x,A) 
n-+oo 

X(O)(x,A) 0 x e E, A e £" 

X(n+l)(x,A) = I q>.(x,dy)X(n)(y, A) + h>.(x, A), xeE, Ae£", n~O 
E 

X(O)(x,A) 0 x e E, A e £" 

X(n+l)(x,A) = 1 X(n)(x,dy)q>.(y,A)+h>.(x,A), xeE, Ae£", n~O 

By (3.15), x(O) == X(O) and the above equalities, we have 

X(n)(x,A) == X(n)(x,A) n ~ 0 

Thus Theorem 3.2 is proved. • 



84 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

4. Regularity criterion of (H, Q)~process 
Definition 4.1 The (H,Q)-process X = {x(t,w),O ~ t < r(w)} is said to be regular 
if and only if for any x E E, we have 

P(r = oolx(O) = x) = 1 (4.1) 

Theorem4.1 The (H,Q)-process X = {x(t,w),O ~ t < r(w)} is regular if and 
only if for any x E E and t > 0, 

p(t,x,E) = 1 (4.2) 

Equivalently, for any x E E and A > 0, 

Ap)..(x,E) = 1 (4.3) 

Proof The conclusion is obvious. • 
Let BE={/ : f be a bounded measurable real-value function defined on (E, E)}. 

Lemma 4.1 IfO ~ f E BE and for some A > 0, there exists ° ~ u E BE such that 

then 

f(x) -I q)..(x,dy)f(y) 
E 

1 h)..(x,dy)u(y) > ° 
E 

f(x) > 1 P)..(x,dy)u(y), 'Vx E E 

E 

Furthermore, if the equation 

{ g(X~ = J q)..(x,dy)g(y), x E E 
E 

< g EBE 

only has a null solution, then (4.5) becomes an equality, i.e. 

f(x) = 1 P)..(x,dy)u(y), 'Vx E E 

E 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Proof For A > 0, using the Theorem 3.1, we have that 'VA E E, {p)..(x,A),x E E} 
is the minimal non-negative solution of the following equation 

X(x) = 1 q)..(x, dy)X(y) + h)..(x, A), x E E. (4.8) 

E 

Using the method of finding the minimal non-negative solution in the proof of The­
orem 3.2, we can prove that {f p)..(x,dy)u(y),x E E} is the minimal non-negative 

E 
solution of the following 

X(x) = ! q)..(x,dy)X(y) + ! h)..(x,dy)u(y), x E E. (4.9) 
E E 
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By the conditions in the lemma, the following equality holds. 

f{x) = J q>.{x,dy)f{y) + J h>.{x,dy)u{y), x E E. 
E E 

So the equality (4.5) holds. 
For any x E E, let 

g{x) == f{x) - J p>.{x,dy)u{y) 
E 
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Obviously, 0 :5 9 E BE and 9 satisfies (4.6). If (4.6) has only a null solution, then 
9 == 0, i.e. (4. 7) holds. • 

Theorem 4.2 The {H, Q)-process X is regular if and only if that the following 
equation has only null solution 

Proof 

{ 
f{x) = i q>.{x,dy)f{y), 

o < f:5 1, 

x E E, oX> 0 

fE BE 
(4.1O) 

Sufficiency: Let u{y) == oX in (4.9), we have that {oXp>.{x,E),x E E} is the minimal 
non-negative solution of the following equation 

{ 
X{x) = E!q>.{x,dy)X{y) + oXh>.{x, E), xEE 

o :5 X:5 1, X E BE 
(4.11) 

As (4.10) has only a null solution, thus (4.11) has the unique solution 
{oXp>.(x,E), x E E}. 

By Definition 3.1, it is true that for any x E E 

q(t, x, E) + h(t, x, E) = 1. 

So 
00 00 

~ J e->'tdq(t,x,E) + J e->'th(t,x,E)dt 

o 0 

i.e. 

q>.{x,E)+oXh>.{x,E) = 1 

Hence X(x) == 1 is also the solution of (4.11), and 

oXp>.(x,E) = 1, 'r/x E E 

So by Theorem 4.1, the (H, Q)-process X is regular. 

1 
oX 

(4.12) 

Necessity: Because {Ap>. (x, E), x E E} and X (x) = 1 are respectively the mini­
mal solution and the maximal solution of (4.11), we can conclude that {1 -
oXp>.{x,E),x E E} is the maximal solution of (4.10). In fact, the maximal 
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solution of (4.10) can be obtained by the following recurrent procedure 

,(O)(x) -
,(I) (x) = 

= 

= 

,(2)(X) = 

1 

Ie q>.(x,dy)f(O)(y) 

q>.(x,E) 

1- Ah>.(x,E) 

Ie q>.(X,dy)j<l)(y) 

q>.(x,E) - A Ie q>.(x,dy)h>.(y,E) 

j<l)(X) - A Ie q>.(x,dy)h>.(y,E) 

1- A [h>.(X, E) + Ie q>'(X,dY)h>.(y,E)] 

,(n+l)(X) = Ie q>.(x,dy)f(n)(y) 

= j<n)(x) - A Ie q>.(X,dYl) Ie··· Ie q>.(Yn-l,dYn)h>.(Yn,E) 

1- A (~Qk . H) (x,E) 

So 

f(x) = lim ,(n)(x) 
n-+oo 

= 1- A (~Qk. H) (x,E) 

= 1- AP>.(x,E) 

Since the (H, Q)-process X is regular, by the Theorem 4.1 it is true that 
AP>.(x,E) = 1, (4.10) has only a null solution. • 

The following is a sufficient condition for the (H, Q)-process to be regular which 
can be easily verified. 

Theorem 4.3 If q>.(x, A) satisfies the following condition 

[3(A) == sup q>.(x, E) < 1, VA> 0, (4.13) 
zeE 

then the (H,Q)-process X = {x(t,w),O:5 t < r} is regular. 
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Proof By (4.13) and the method in solving the maximal solution of (4.10), we have 

1(1) (x) = q>.(x, E) 

~ {j()..) 

1(2) (x) = L q>.(X,dy}t'l)(y} 

< {j()..)q>. (x, E) 

< {j2()..) 

l(n+l)(X} = L q>.(x,dy}t'n)(y} 

~ {jn ()..)q>. (x, E) 

< {jnH()..) 

So 
o ~ I(x} = lim rex) 

n-+oo 
~ lim {jn()..} = 0, 

n-+oo 
\Ix E E. 

And (4.10) has only a null solution. By Theorem 4.2, X is regular. • 
Corollary 4.1 If the number of the elements of state space E is finite and for any 
xEE 

perl > Olx(O} = x} > 0 

Then the (H, Q}-process X = {x(t,w}, 0 ~ t < r} is regular. 

Proof By the above conditions (4.13) is true. 

5. Some important special conditions 
(A) (H, G . q}-processes 

The separation condition (D): 

q(t,x,A) G(t, x} q(x, A} 

i.e. 

(4.14) 

• 

(5.1) 

P(x(rd E A,rl ~ tlx(O} = x) = pb ~ tlx(O) = x) . P(x(n} E Alx(O} = x) 
(5.2) 

Definition 5.1 If a (H, Q)-process X satisfies the condition (D), then it is called 
a (H, G . q)-process. 

By Hou Zhenting and Guo Qingfeng [1, Lemma 9.3.1], the minimal Q-processes 
are (H, G . q}-processes. 

Let 

G>.(x) = 100 e->.t dG(t, x}, 

then the separation condition (D) becomes 

q>.(x,A) = G>.(x}q(x,A}. 

(5.3) 

(5.4) 
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The backward equation of the (H, G . q)-process becomes 

X(x,A) = G>.(x) l q(x,dy)X(y,A)+h>.(x,A), ,\ > 0, x E E, A E E. (5.5) 

Theorem 4.2 (criteria for regularity) becomes the following theorem. 

Theorem 5.1 A (H, G . q)-process X is regular if and only if the following 
equation has only a null solution. 

{ f(x) = G>.(x)fEq(x,dy)f(y) x E E, ,\ > 0 (5.6) 
o ::::; f::::; 1, f E BE 

(B) Generalized Doob processes 
If the separation condition (D) holds and 

q(x,A) = q(A), x E E, A E E (5.7) 

then the process X is called the generalized Doob process. It is obvious that 
the Doob processes in traditional Markov processes are the generalized Doob 
processes. 
The backward equation of the generalized Doob process becomes 

Z(x,t) = G>.(x) lq(dY)Z(y,A)+h>.(x,A). (5.8) 

So 

l q(dy)X(y, A) = l G>.(y)q(dy)·l q(dy)X(y, A) + l h>.(y, A)q(dy). (5.9) 

And 
r q(dy)X(y, A) = IE h>.(y, A)q(dy) (5.10) 

iE 1 - IE G>.(y)q(dy) 

By (5.8), (5.9), (5.10) and Theorem 3.1, we have 

p>.(x, A) h (x A) + G>.(X)fE h>.(y, A)q(dy) (5.11) 
>., 1- IE G>.(y)q(dy) 

(C) Semi-Markov processes 

Definition 5.2 Suppose that X = {x(t),t < T} is a Markov skeleton process 
and {Tn}n>O is the time component of its Markov skeleton. If the state space E 
is a denumerable set and 

x(t) = X(Tn), Tn::::; t < Tn+l, n::::: 0, 

then the X is called semi-Markov process. 

(D) Piecewise determinate Markov skeleton processes 

(5.12) 

Definition 5.3 Suppose that X = {X(t),t < T} is a Markov skeleton process 
(maybe nonhomogeneous). If there exist measurable functions rpn : [0,00) x E -* 
E(n::::: 0) such that for any fixed x E E, rpn(t,X) is right-continuous on t and 

00 

X(t,w) = Lrpn(t-Tn,x(Tn))I{Tn9<Tn+d(W), O::::;t<T, 
n=O 
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then X is called a piecewise deterministic Markov skeleton process. 

(E) Piecewise determinate Markov processes 

89 

Definition 5.4 If a piecewise deterministic Markov skeleton process X is a 
Markov process, then the X is called a piecewise deterministic Markov process. 

(F) Piecewise deterministic Markov processes in Davis sense (PDMP) 

Piecewise determinate Markov processes (PDMP) in Davis [1] is a proper sub­
class of the piecewise determinate Markov processes in Definition 5.4. One of 
the most important conditions for the piecewise deterministic Markov processes 
to be a PDMP in a Davis sense is that F(x, t) = P(71 > tIX(O) = x) is abso­
lutely continuous. At first sight, the PDMP model in a Davis sense, is limited by 
Markov processes and does not have rich content. While dealing with practical 
problems, it displays much generality and many advantages. By means of the 
additional variable, a piecewise deterministic Markov skeleton process with the 
absolutely continuous F(x,t) = P(71 > tIX(O) = x), which is not a Markov 
process, can often be transformed to a PDMP model. 

(G) Markov-type skeleton processes 

If a Markov skeleton process X is a Markov process, then X is called a Markov­
type skeleton process. 

(H) Stochastic processes with jumps 

The Markov skeleton processes which consist of Brownian motion, diffusion pro­
cesses and denumerable Markov processes (or birth-and-death processes) and 
the Markov-type skeleton processes categorize diffusion processes with jump. 
Markov-type diffusion processes with jumps, Brownian birth-and-death pro­
cesses, etc. are categorized as stochastic processes with jumps. This provides 
appropriate mathematical models to study the so-called evolution law (all things 
obey the repetitive and alternating development from change in quantity to 
change in quality) and make it meaningful to work on the theories and applica­
tions. 

(I) Denumerable Markov skeleton processes 

If the state space E is a denumerable set, then the Markov skeleton processes are 
called denumerable Markov skeleton processes. For example, the queue lengths 
L(t) of the M/G/1 and GI/G/1 belong to these kind of processes. 

The backward equation of these kind of processes becomes 

Xij = L qik(),.)Xij + hij(),.), ),. > 0, i,j E E, 
kEE 

and the forward equation becomes 

where 

Xij = L Xikqkj (),.)Xij + hij (),.), ),. > 0, i, j E E, 
kEE 

1000 e-AtP(X(t) = j, 71 > tIX(O) = i) dt, 

100 e-,XtP(X(Tl) =j, Tl S tIX(O) = i)dt, 

(5.13) 

(5.14) 

(5.15) 

( 5.16) 
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Q = (qij{A)) satisfies 

L hik{A)qkj{A) = L qik{A)hkj{A), A> 0, i,j E E. (5.17) 
kEE kEE 

6. Supplements and notes 
The concept of Markov skeleton processes (Definition 2.1) and their backward and 

forward equations were introduced in 1997 by Hou Zhenting, Liu Zaiming and Zou 
Jiezhong for the first time [2, 3, 5]. The main results of this paper are Theorems 3.1 
and 3.2 which determine the one-dimensional probability distribution of the Markov 
skeleton processes. They are the key theorems in the theory of Markov skeleton 
processes, for in the study of any stochastic process, the first-line question is to deter­
mine its probability distribution, especially its one-dimensional distribution. As far as 
we know, Kolmogorov backward and forward equations were obtained only for pure­
discontinuous (also called "jump") Markov processes and branching processes, while 
for semi-Markov processes, only the backward equation was established. Now all these 
become special cases of the backward equation (3.3) or the forward equation (3.16) in 
Theorem 3.1. In Hou Zhenting, Guo Qingfeng [1], the very simple formula (9.2.3) for 
the computation of the transition probability for minimal Q-processes and the rather 
complicated formula (10.2.16) for the computation for order-1 Q-processes are unified 
as the backward equation (3.3). The subsequent ones, such as the forward equation 
for semi-Markov processes, the backward equation for piecewise deterministic Markov 
processes, the queue length L{t) of GI/M/1 queueing system, the waiting time w{t) 
of GI/G/1 queueing system, and the forward equation for the queue length L{t) of 
G/M/1 queueing system are all the new special cases of (3.3) or (3.6). So we may 
say that our backward and forward equations extend greatly the application range of 
that of Kolmogorov in Markov processes. In the deduction of the backward equation 
for the Markov skeleton processes (or rather, the deduction of Theorem 3.1) we use 
the same method as in the deduction of the original Kolmogorov backward equation, 
namely, by means of the Markov property of the stopping time 71 as this method 
is brief and clear. However, the deduction of the Kolmogorov forward equation for 
pure-discontinuous Markov processes use the Markov property thoroughly and with 
much difficulty. Since Markov skeleton processes have a much weaker Markov prop­
erty than the traditional Markov processes, we give up the probability method, and 
turn to ideas used in operator theory to obtain the forward equation. 
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Abstract This paper focuses on the generalised piecewise deterministic Markov 
processes (PDMPs), introduced by Liu and Hou [14], and studies some 
properties of PDMPs connected with the characteristic triple. It is 
pointed out that Davis' PDMP is the special case of the PDMP here, 
which restricts all the survivor functions so that they are absolutely 
continuous with respect to the time t. Furthermore, the state jump 
measure of a PDMP is introduced. When accompanied by the (state) 
transition kernal, it plays the same role to PDMPs as Q-matix to Q­
processes. 

Keywords: Piecewise deterministic Markov processes (PDMPs), the state jump 
measure of a PDMP, Stieltjes exponential, Stieltjes logarithm. 
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1. Introduction 
The terminology of piecewise deterministic Markov processes (PDMPs 

or PDPs) was initially introduced by Davis [4] as a general class of 
stochastic models. Since then, the stochastic control theory of PDMPs 
has been extensively studied by many authors. Among them we quote 
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Davis [5], Dempster and Ye [7], and Schal [16] and references therein. 
The theory of PDMPs is successfully applied in capacity expansion and 
risk theory by Davis, Dempster, Sethi and Vermes [6] and Dassios and 
Embrechts [3], and Embrechts and Schmidli [8] respectively. The sta­
tionary distribution for a PDMP has been studied by Costa [1]. The 
stability of PDMPs has recently been studied by Costa and Dufour [2]. 

Davis' PDMPs are a family of Markov processes following determin­
istic trajectories between random jumps. The motion of Davis' PDMP 
depends on three local characteristics, namely the flow ¢, the jump rate 
). and the transition measure Q, which specifies the post-jump location. 
Starting from x the motion of the process follows the flow ¢( t, x) until 
the first jump time TI which occurs either spontaneously in a Poisson-like 
fashion with rate ).( ¢( t, x)) or when the flow ¢( t, x) hits the boundary of 
the state space. In either case the location of the process at the random 
jump time TI is selected by the transition measure Q(¢(TI' x),,) and the 
motion restarts from this new point as before. It is well known that, 
when accompanied by the duration time since the last random jump 
as a supplementary variable, a semi-Markov process becomes a Markov 
process (refer to Gihman and Skorohod [9, page 295], and the latter is 
a Markov process following deterministic trajectories between random 
jumps too. Nevertheless, there is no restriction on its random jumps in 
so-called Poisson-like fashion. Hence, Davis' model is not general enough 
to cover this important case. 

Liu and Hou [14] generalised the concept of Davis' PDMP by virtue of 
the ideas of Hou, Liu and Zou [11, 12, 13], in which they introduced the 
concept of Markov skeleton processes (MSPs) to discribe the general 
stochastic systems that are of Markov property at least at countable 
increasing (fixed or random) times. The generalised piecewise deter­
ministic processes (PDPs) are, just as their name indicated, stochas­
tic processes involving deterministic trajectories punctuated by random 
jumps. More precisely, there exists a sequence of random occurrances at 
fixed or random increasing times, TI, T2," " but there is no additional 
component of uncertainty between these times, and the only restriction 
is the Markov property of the processes at these times. Also they call a 
PDP a piecewise deterministic Markov process (PDMP) if it becomes 
a Markov process. This generalised PDMP overcame the shortage men­
tioned above. Liu and Hou [14] presented the necessary and sufficient 
conditions for a PDP to be a PDMP and pointed out that suitably cho­
sen supplementary variables can make a PDP become a PDMP. 

In this paper we provide the general properties of the generalised 
piecewise deterministic Markov processes. In Section 2 we give the main 
definitions and notations. In Section 3 we study the properties ofPDMPs 
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connected with the jump time characteristic of PDMP by virtue of the 
Stieltjes version of exponentials and logarithms, and present the repre­
sentations of jump time characteristic of a PDMP. It is indicated, by 
the way, that the so-called 'Poisson-like jump', which is just the form 
of the jump time characteristic in Davis' PDMP model, is equivalent to 
restricting the jump time characteristic of a PDMP to being absolutely 
continuous with respect to the time t, and that the durations between 
jumps must be of exponential distribution with jump rate ),(x), x E E 
in the cases of Markov jump processes. Section 4 introduces the concept 
of the state jump measure and state jump transition kernel of a PDMP, 
which play the same role to PDMPs as Q-matrix to Q-processes. 

2. Definitions and notations 

Let X = {x(t,w),O ::; t < T} be a stochastic process defined on 
a complete probability space (0, F, P) with state space (E, c), where 
(E, £) is a Polish space. Let F = (Ft)t>o be the natural filtration of the 
process X, where Ft = u(xs, 0 ::; s ::; t), Foo = v~o Ft. Suppose that 
there exists a family of probability measures, Px, x E E, on (0, F) such 
that, for any A E Foo , the function x t-+ Px(A) is £-measurable and, for 
all x E E, 

Px(A) = P(Alxo = x), 
We add an isolated point ~ to state space E, and define a stochastic 

process X = {x(t,w),O::; t::; oo} on ° U {[~]} by 

x(t w) = { x(t, w), ~f 0::; t < T(W), 
, ~,lf T ::; t ::; 00. 

Thus the process X can be thought of as a process well defined for all 
t ~ O. We shall, by convenient use of notation, generally denote it X 
whenever T(W) = 00 a.s. or not. 

Definition 2.1 A right continuous process X = {x(t,w),O::; t < T{W)} 
with state space (E, £) is called a (homogeneous) piecewise determin­
istic process (PDPs) , if there exist a strictly increasing sequence of 
nonnegative r.v. 's {Tn}n>O with TO = 0, Tn t T, and a measurable map 
4> : (R+ x E, B{R+) x £) -+ (E, £) with right continuity with respect to 
t E R+ and 4>{0, x) = x, x E E such that 

00 

x{t,w) = L4>(t-Tn,x{Tn))I[Tn~t<Tn+d' o ::; t < T, (2.1) 
n=O 

and the sequence {{Tn - Tn-l,XTn)}n::::O (Ll = 0 by convention) is a 
homogeneous Markov sequence with transition probabilities dependent on 
the second component only. 
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Denote transition kernel of Markov sequence, {(Tn - Tn-l,XTn )}n>O, 

by G(x,dt,dx). And denote F(x,dt) = G(x,dt,E), n ~ 0. It follows 
from G(x,dt,dx) «F(x,dt) that, for any BEE, 

G(x, dt, B) = Q(x, t, B)F(x, dt), 

where Q(x, t, B) is the Radon-Nikodym derivative of G(x, dt, B) with 
respect to F(x, dt). Q(x, t, B) can be selected such that Q(x, t,·) is a 
probability measure on (E, E) for any fixed (x, t) E Ex R+ and Q(.,., B) 
is E x B(R+)-measurable for any fixed BEE. In fact, we have 

G(x, dt, dy) = Px (TI Edt, X T1 E dy), Px - a.s.; 

F(x, dt) Px (TI Edt), Px - a.s.; 

Q(x, T1, dy) = PX(XT1 E dyITt}, Px - a.s., 

for all x E E. 
Now we are in position to see how a PDP evolves. Starting from the 

initial state Xo, a PDP X moves along 4>(., xo) until time Tl with distri­
bution F(xo,·) and then it jumps instantaneously to state X T1 according 
to the transition probability Q(xo, T1, .); and the process restarts from 
the state X T1 and moves along 4>(., XTJ until time T2,···. The process 
repeats in the similar way until it stops at the time T. We can see that 
the motion of a PDP depends only on the three characteristics, 4>,F and 
Q. 

We call (4), F, Q) the characteristic triple of a PDP; F and Q the jump 
time characteristic and jump transition characteristic respectively. 

Definition 2.2 A PDP X = {x(t,w),O ~ t < T} is called a piecewise 
deterministic Markov process (PDMP), if it is a Markov process. 

It is more convenient to use the following equivalent definition of 
PDMP by virtue of Liu and Hou [14, Theorem 3.1]. 

Definition 2.3 A PDP X = {x(t,w),O ~ t < T} with characteristic 
triple (4), F, Q) is called a PDMP if there exists a function, c: (E, E) ~ 
(R+\{O},B(R+\{O}), such that, for any x E E, s,t E R+ and s + t E 
(0, c(x)) , we have 

(i) 4> is a semi-flow, i.e., 

4>(O,x) = x; 4>(t, 4>(s, x)) = 4>(s + t, x). (2.2) 

(ii) the jump time characteristic F satisfies the following functional 
equation 

F(x,O) = 0; F(x,t+s) = F(x,t)·F(4>(t,x),s); (2.3) 
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and c(x) = inf{t : F(x, t) = O}, where the survivor function 
F(x, t) = F(x, (t, 00)). 

(iii) the jump transition characteristic Q satisfies 

Q(x,t,{</>(t,x)}) = 0; Q(x,t+s,dy) = Q(</>(t,x),s,dy). (2.4) 

Remark 2.1 Further more, Theorem 3.1 of Liu and Hou [14] tells us 
that the above defined PDMP is also a strong Markov process. 

In the following we need the concepts of the Stieltjes version of ex­
ponentials and logarithms. we reserve the term F-function for a right 
continuous decreasing function F : R+ ~ [0,1] such that F(O) = 1, and 
A-function for a right continuous increasing function A : R+ ~ R+ 
such that A(O) = 0 and .6.A(t) < 1 for all t with A(t) < A(oo), pos­
sibly .6.A(t) = 1 if A(t) = A(oo) < 00. (Here A(oo) := supA(t) = 

limttoo A(t).) 
It is easy to see that the survivor function F (x, .) for each x E E is 

an F -function. 
For F-function F, let Cp := inf{t : F(t) = O} and for A-function A, 

let CA := inf{ t : A(t) = 00 or .6.A(t) = I}. The Stieltjes logarithm of 
an F-function F is defined to be the function slogF, where 

1 -dF(s) 
slogF(t) := ( ). 

(O,tACF] F s-

If A is a A-function, we may express A in a unique way as AC+Ad, where 
AC and Ad are A-functions which stop at CA, AC being continuous and 
A d purely discontinuous. The Stieltjes exponential sexpA is defined 
by 

sexpA(t) := e-AC(t) II [1 - .6.A(u)]. 

For the detailed properties of Stieltjes exponentials and Stieltjes log­
arithms, refer to Meyer [15] or Sharpe [17, Appendices]. 

3. The jump time characteristic of a PDMP 

Let </> be a semi-flow with the state space (E, e). 
An F-function family, {F(x,·) : X E E}, is called ¢-multiplicative 

if, for any x E E, s, t E R+ and s + t E (0, c(x)), we have 

F(x, t + s) = F(x, t) . F(</>(t, x), s). 

A A-function family,{A(x,') : x E E}, is called ¢-additive if, for any 
x E E, s, t E R+ and s + t E (O,c(x)), we have 

A(x,t+s) = A(x,t)+A(</>(t,x),s). 
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Definition 2.3 shows us that the jump time characteristic of a PDMP 
is 4>-multiplicative. 

Lemma 3.1 If An F-function family {F(x, .)} is ¢-multiplicative, then 
the function c(x) := inf{t : F(x, t) = O}, x E E is R+ \{O}-valued and 
satisfies 

c(x) = t + c(<!>(t, x)), t E [O,c(x)). (3.1) 

Furthermore, if the state x is periodic for the semi-flow ¢, then c(x) = 
00. 

Proof The positivity is directly from the right continuity at t = 0 of 
an F-function. Note that F(x, t) > 0 for each t E [0, c(x)), we have 

c(¢(t,x)) = inf{s > O,F(¢(t,x)),s) = O} 

= inf{s>O,F(x,t+s)/F(x,t)=O} 

inf{s > O,F(x, t + s) = O} 

= inf{u > O,F(x,u) = O} - t 
c{x) - t. 

This proves equation (3.1). 
Supposed that x E E be a periodic state of the semi-flow ¢, then there 

exists aTE (O, c{x)) such that ¢(T, x) = x. Hence, 

c(x) = T + c(x), 

by equation (3.1), and this implies c(x) = 00. • 
Lemma 3.2 An F-function family {F(x,·n is ¢-multiplicative, if and 
only if the A-function family {A(x,·n is ¢-additive. Where A{x,·) := 
slogF(x, .), x E E (i.e. F(x,·) = sexpA(x, .), x E E). 

Proof If the F-function family {F(x, .)} is 4>-multiplicative, then we 
have by Lemma 3.1 that the A-function family {A(x,·n satisfies, for 
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t E [0, c(x)], s E R+, 

A(x,t+s) slogF(x, t + s) 
( -dF(x,u) 

i(O,(Hs)I\C(X)] F(x, u-) 

( -dF(x, u) ( -dF(x, u) 

i(o,tl\c(x)] F(x, u-) + i(tl\c(x),(Hs)I\C(X)] F(x, u-) 

A(x, t) + ( -dF(x, u) 
i(t,(Hs)l\c(x)] F(x, u-) 

A(x, t) + ( -dF(x, u) 
i(o,sl\c(4>(t,x))] F(x, u-) 

A(x,t) +A(¢(t,x),s). 

This proves the ¢>-additivity of the family {A(x, ·n. 
Conversely, Suppose that the A-function family {A(x, .)} is ¢>-additive. 

The ¢>-additivity implies that ~A(x, t + s) = ~A(¢(t, x), s), for each 
x E E and any t E (0, c(x)] and s E R+. Hence, we have for t E [0, c(x)], 
s E R+, 

F(x,t+s) sexpA(x, t + s) 
e-A(x,t+s) II [1 - ~A(x, u)]e'~A(x,u) 

e-A(x,t) II [1 - ~A(x, u)le~A(x,u) 

xe-A(4)(t,x),s) II [1 - ~A(x, u)le~A(x,u) 

F(x, t)e-A(4)(t,x),s) II [1 - ~A(¢(t, x), u)le~A(4)(t,x),u) 

F(x, t)F(¢(t, x), s). 

This is the ¢>-multiplicativity of the family {F(x,·n and completes the 
proof of the lemma. • 

Theorem 3.1 Let {F(x,·) : x E E} be ¢-multiplicative. If F(x, t) is 
absolutely continuous on [0, c(x)) for some x E E, then so is A(x, .), 
the Stieltjes logarithm of F(x, .), and there exists a nonnegative function 
).(-) on the trajectory {¢(t, x) : 0 S t < c(xn such that 

A(x, t) = lot >.( ¢( u, x)) du, t E [0, c(x)), (3.2) 
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or, equivalently, 

F(x, t) = e- f~ .\(cf>(u,x» du, t E [O,c(x)). (3.3) 

Proof It is obviously that A(x, t) is absolutely continuous on [0, c(x)) 
by the definition of Stieltjes logarithm. Let 

'( ) -1. A(y, t) ",y - 1m , 
t.j..O t 

Y E {r/>(t,x): 0 ~ t < c(xn, 

if the right side limit above exists; and = 0 otherwise. Since {A(x, . n is 
c!>-additive, we have 

a+ A(x, t) 
at 

._ lim A(x, t + s) - A(x, t) 
s.j..O s 

1. A(r/>(t, x), s) 
- 1m ---'---'--'---'-

s.j..O S 

= >'(r/>(t, x)). 

Also the formula (3.2) follows from the monotonousness and absolutely 
continuity of A(x, .), and so does the formula (3.3). This completes the 
proof. • 

Remark 3.1 Formula (3.3) is just the form in Davis' PDMP for jump 
time characteristic, which indicates that Davis' PDMP is the special case 
of PDMP here. Also the so-called 'Poisson-like jump' is just to restrict 
the jump time characteristic of PDMP being absolutely continuous with 
respect to t. 

Theorem 3.2 Let {F(x,·) : x E E} be r/>-multiplicative, and denote Ee 
the set of all equilibrium states for the semi-flow r/>. Then there exists 
a nonnegative and finite function >.(.) on Ee such that, for any x E Ee, 
the Stieltjes logarithm of F(x, t), 

A(x, t) = >.(x)t, (3.4) 

or equivalently, 
F(x, t) = e-.\(x)t, (3.5) 

Proof It follows from Lemma 3.1 that c(x) = 00 for x E Ee , since 
equilibrium state is the special case of periodic state. In this case, the 
c!>-additivity of {A(x,·n yields 

A(x, t + s) = A(x, t) + A(x, s) 
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This functional equation has a unique A-function solution 

A(x, t) = A(X)t, 

where A(X) = A(x,l) = a+~x,t) It=o. Thus, one can get (3.4). Fur­
ther (3.5) follows directly from the definition of Stieltjes exponential. 
This completes the proof. • 

Corollary 3.1 If a PDMP reduces to a Markov jump process, then there 
exists a nonnegative and finite & -measurable function A(·) on E such that 
the survivor function 

F(x, t) = e-A(x)t, 

for each x E E. 

Proof Since ¢(t, x) == x, for all x E E, in the case of Markov jump 
processes, it follows that Ee = E. Hence, there exists a nonnegative and 
finite function A(·) on E such that the equation (3.5) is satisfied for 
each x E E. The &-measurability of A(·) is due to the &-measurability 
of F(·, t) = P(TI > t) for each t E R+. • 

4. Jump measure and jump transition kernel of 
aPDMP 

In this section, we assume that ¢ is a flow on E instead of a semi-flow. 
We add c(x) to the domain of ¢(., x) for each x E E, which should 

keep ¢ a flow on E U 8+E if needed. Where 

8+E:= {¢(c(x), x) : x E E}, (4.1) 

represents those boundary points at which the flow exits from E. 
Denote c_(x) := inf{t E R : F(¢(t,x), -t) > O}, x E E, and the 

subsets 

E(x) := {¢(t, x) : c(x) < t ~ c(x)}, xEE. (4.2) 

The set E(x) is called a state (or phase) trajectory for any x E E. In 
the case of a flow ¢, E(xt} = E(X2) if and only if E(xt} n E(X2) =1= 0 
(Xl, X2 E E); and if x E E is a periodic state, then each state y E E (x) 
is periodic with same period. 

Now we are in position to construct a measure along each state tra­
jectory E(x) for x ~ Ee (Le. the state x is not an equilibrium state). 
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Let {F (x, . ), x E E} be a if>-multiplicative family of F -functions. 

Case 1: x E E is a periodic state with minimal period Tx > O. 

In this case, </Jh x), located on {O, Tx], is a one-to-one map of (O, Tx] 
to E{x). So we get the inherited measure Ax along E{x) with 

Ax{{</J{u,x): 0 < u ~ t}) = A{x,t), t E (O, Tx]. (4.3) 

Case 2: x E E is an aperiodic state. 

Denote 
Tx := inf{ t > 0 : </J{t, x) E Ee} !\ c{x), 

which represents the hitting time to Ee or the boundary 8+E for </J 
starting from x. In Case 2, </J{', x) located on (c_ (x), Tx] is a one­
to-one map of (c{x), Tx] to E{x). We get the inherited measure 
Ax along E{x), as for (4.3) and 

Ax{ {</J{u,x) : s < u ~ O}) = A{</J{s, x), -s), s E [c_{x), 0]. (4.4) 

Lemma 4.1 Let x E E\Ee. For any y E E{x)\8+E, the measure Ay 
along E{y) = E{x) coincides with Ax. 

Proof Let y E E{x)\8+E. 
There exists unique to E (O, Tx] in Case 1 such that </J{to, x) = y, which 

implies </J(Tx - to, y) = x in this case. Therefore due to the ¢>-additive of 
{A(x,·)} we have 

Ay{{</J{u,x) : 0 < u ~ t}) Ay({</J(Tx - to + u,y) : 0 < u ~ t}) 
- A(y, Tx - to + t) - A(y, Tx - to) 
- A(</J(Tx - to, y), t) 

A{x, t) 

Ax({</J(u,x) : 0 < u ~ t}), 

for t E {O,Tx]' Also there exists unique to E (c_{x),Tx] in Case 2 such 
that </J(to, x) = y. Similarly, we have by (4.3) and (4.4), 

Ay({</J(u,x) : s < u ~ t}) = Ax({</J(u,x) : s < u ~ t}), 

for c_{x) < s ~ t ~ Tx. 
This completes the proof of the lemma. • 

Therefore, we have defined unique measure along each state trajectory 
except for the trajectory E{x) = {x} reducing to a single equilibrium 
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point. We will omit the subscript x of the measure Ax for this reason 
and denote them A only. It is easy to see that, 

(i) if x E E\Ee, then 

a) A(E(x)) < 00 in Case 1, and 
b) A({¢>(u,x) : s < u::; t} < 00 for any c_(x) < s ::; t < Tx in 

Case 2; 

(ii) a) if x E E\8+E, then A{ {x}) < 1; 

b) if x E 8+E, then A{{x}) = 1 if and only if A({¢>{u,x) : s < 
u < O}) < 00 and c{¢>(s, x)) < 00 for some s < O. 

There are at most countable many states x's on a trajectory such 
that A({x}) > O. 

Definition 4.1 We call A, a measure along each state trajectory, the 
stater or phase) jump measure if the condition (i) and (ii) above are 
satisfied. A state x E E U 8+E is a positive jump state if A( {x}) > o. 

A nonnegative and finite ce-measurable function oX(·) on Ee is called 
a jump rate function on Ee. 

Theorem 4.1 Let ¢> is a flow on (E,c). 

(i) Given a ¢>-multiplicative family of F-functions, {F(x, .), x E E}, 
there exists a unique state jump measure A such that (4.3) and 
(4.4) are satisfied in Case 1 and Case 2 respectively; and unique 
jump rate function on Ee such that (3.5) is satisfied in case of 
x E Ee. 

(ii) Conversely, given a state jump measure A and a jump rate func­
tion oX on Ee, there exists a unique ¢>-multiplicative family of F­
junctions, {F(x, ·),x E E}, such that (4.3) and (4.4) are satisfied 
in Case 1 and Case 2 respectively, and (3.5) in case of x E Ee. 

Proof 

(i) It follows directly from Lemma 4.1 and the discussion above. 

(ii) Given a state jump measure A and a jump rate function oX on Ee, 

let 

A{x, t):= 

oX{x)t, if x E Ee; 

[i.,] A(E(x))+A({¢>(u,x):O < u::; t- [t/Tx]Tx}), 

if in Case 1; 
A({¢>(u,x):O < u::; t}), 

if in Case 2 and A( {¢>{c(x) , x)}) = 1; 
A( {¢>(u, x):O < u ::; t} )+oX(¢>(Tx, x))(t - Tx)I[T",<tj, 

if in Case 2 and A( {¢>(c(x), x)}) < 1. 
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It is easy to see that the family of A-functions {A(x,·) : x E 
E}, defined above, is ¢-additive and the family of F-functions 
{F(x,·) := sexpA(x,·) : x E E} is the only ¢-multiplicative family 
ofF-functions such that (4.3) and (4.4) are satisfied in Case 1 and 
Case 2 respectively, and (3.5) in case of x E Ee. 

This completes the proof. • 
Remark 4.1 Roughly speaking, the state jump measure A(dx) for a 
state x represents the possibility of occurrence of random jump just as 
the process hits x. 

A simple case is that E c R, E(x) = E for any x E E and ¢ is 
continuous with respect t. In this case, the state jump measure A is just 
a measure on (E, £) with A([a, b]) < 00 for any a, bE E\8+E. 

Theorem 4.2 Let {F(x,·) : x E E} be ¢-multiplicative. If F(x, t) is 
purely discontinuous on [0, c(x)) for some x E E, then so is A(x, .), the 
Stieltjes logarithm of F(x, .), and there exists a [0, 1]-valued function p(.) 
on the trajectory E(x) such that 

A(x, t) = L p(¢(u, x)), t E [0, c(x)), (4.5) 
O<u:::;t 

or, equivalently, 

F(x, t) = II [1 - p{¢{u, x))], t E [0, c{x)). (4.6) 
O<u:::;t 

Furthermore, p(y) = a except for, at most, at countable states y in E{x). 

Proof By the definitions, an F-function and its Stieltjes logarithm are 
purely discontinuous at same time. Let A be the state jump measure 
corresponding to the family of F -functions {F (x, .) : x E E}, and denote 

p(y) := A({y}), Y E E(x), 

which is a [O,I]-valued function on E(x). The deduction in the proof 
of Theorem 4.1 yields (4.5), (4.6) and p(y) = a except, for at most, at 
countable states y in E(x). • 

Now let's turn to the jump transition characteristic Q, which specifies 
the post-jump location of a PDP. In fact, one has 
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for all n ~ O. i.e. the distibution of the post-jump location depends 
upon both the last post-jump location and the time since the last jump. 
In the case of a PDMP, the jump transition characteristic Q also satisfies 

Q(x, t, {¢(t, x)}) = OJ Q(x,t+s,dy) = Q(¢(t,x),s,dy), (4.7) 

for any x E E, s, t E R+ and s + t E (0, c(x)]. What does this property 
mean? 

Let K(y,B), y E E U 8+E and B E £, be a Markov kernel with 
K(y, {y}) = 0, and let . 

Q(x, t, B) := K(¢(t, x), B), x E E, s, t E R+ (s+t) E (0, c(x)]. (4.8) 

It is easy to see that this Q, defined by (4.8), satisfies (4.7). This is just 
the form of jump transition characteristic Q in Davis' model. Then, one 
may ask whether any jump transition characteristic Q should be in the 
form of (4.8). The answer is that it is not exactly. 

Theorem 4.3 Let ¢ be a flow on E. There exist a transition kernel 
K(y,B), y E E U 8+E and BEE, with K(y, {y}) = 0 and a transition 
kernel Ke(Y, B), y E Ee and BE £,Ke(Y, {y}) = 0 such that for: 
Case 1: 

Q(x, t, B) = K(¢(t, x), B), s,t> 0, (4.9) 

Case 2: 

Q(x,t,B) = K(¢(t,x),B), s, t E R+, (s + t) E (0, Tx ], (4.10) 

Case 2 or x E Ee: 

Q(x,t,B) = Ke(¢(t,x),B), 

Proof If in Case 1, (4.7) implies that Q(¢(-t,x),t,B) is independent 
on the choice of t > O. Denoting it by K(y, B) we get (4.9). 

If x E Ee, (4.7) implies that Q(x, t, B) is independent on the choice 
of t > O. Denote it by Ke(x, B) and, noticing that Tx = 0 in this case, 
we get (4.11). 

Suppose that t E (Tx, 00) in Case 2, then there exists an s E (Tx, t) 
such that Q(x,t,B) = Q(¢(s,x),t - s,B) and ¢(t, x) = ¢(s,x) E Ee. 
Thus one gets 

Q(x, t, B) = Q(¢(s, x), t - s, B) = Ke(¢(s, x), B) = Ke(¢(t, x), B). 

This is (4.11) in Case 2. Further, suppose that t E (0, Tx] in Case 2, 
and let y := ¢(t, x), i.e. x = ¢( -t, y), (4.7) implies Q(x, t, B) = 
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Q(¢(-u,y),u,B) for any u E (O,t - c_(x)). Denote it by K(y,B) and 
one gets (4.10). 

This completes the proof. • 

Remark 4.2 The jump transition characteristic Q should be in the form 
of (4.8) except for EeUfhE i= 0. The distribution of a post-jump location 
of a PDMP conditioned on a pre-jump location may be the difference 
between just hitting Ee and staying in Ee for a while. 

We call {K(x,B) : x E E U 8+E, BE £} the state (or, phase) jump 
transition kernel of a PDMP. 

Finally, one can see that if ¢ is a flow, then the state jump measure 
A accompanied with the jump rate function A on Ee plays the same role 
as the jump time characteristic Pi and the state jump transition kernels 
K and Ke play the same role as the jump transition characteristic Q. 
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Abstract We study the adaptive control problem for a class of discrete-time 
Markov control processes with Borel state and action spaces, and possi­
bly unbounded one-stage costs. The processes evolve according to recur­
sive equations Xt+l = F(Xt, at, et), t = 0,1, ... , with i.i.d. Rk - valued 
random vectors et with unknown distribution. Assuming observability 
of et, we propose three different sets of conditions each of which allows 
us to prove average optimality of a type of adaptive control policies. 
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unbounded costs, evolving according to the system equation 

(1.1) 

Here, F is a known function, Xt, at, and et are the state, action, and 
the random disturbance at time t, respectively. We suppose that {et} , 
the so-called "disturbance" or "driving" process, is a sequence of inde­
pendent and identically distributed (i.i.d.) random vectors in !Rk having 
an unknown density p. Hence, the adaptive policies combine suitable 
statistical methods to estimate p and control actions at that depend on 
the estimators Pt of p. 

In particular, to construct the adaptive policy in this paper, we take 
advantage of the procedure of statistical estimation of p proposed in [9] 
to obtain an asymptotically discounted optimal adaptive policy for the 
process (1.1), and then, having the estimators Pt we apply the "principle 
of estimation and control" [18, 20]. 

The average optimality of the adaptive policy is studied as a limit of 
discounted programs. For this, we propose three different conditions, 
C1, C2, C3, which, applying the so-called vanishing discount factor ap­
proach, ensure, among other things, the existence of a solution to the 
average cost optimality inequality (ACOI). These optimality conditions 
are variants of conditions used in previous works to study either non­
adaptive MCPs (see, for instance, [4, 6, 8, 13, 14, 15, 16, 19, 23, 24, 
26, 27, 28]) or non-controlled Markov process (see [16, 17]). A condition 
similar to C3, but more restrictive, was used in [10] and [21] to study also 
the nonparametric adaptive control problem for the average criterion. 

On the other hand, it is well-known that to ensure the existence of 
average cost optimal stationary policies, under unbounded costs, it suf­
fices to obtain a solution to the ACOI and its minimizers. However, 
to get such minimizer, typically we require rather restrictive continu­
ity and compactness conditions on the control system (see, for instance, 
[6, 8, 12, 13, 14, 15, 16, 23, 24]). In contrast, the construction of the av­
erage cost optimal adaptive policy proposed in this paper is based on the 
existence of c- minimizers, for c > 0, of the discounted cost optimality 
equation, which implies that, as opposed to previous works [5, 10], we 
need not to impose continuity and compactness conditions on the control 
model. That is, it can happen that under our assumptions average op­
timal stationary policies do not exist for the process (1.1) with a known 
density p, while our main results guarantee the existence of average cost 
optimal adaptive policies. 

The remainder of the paper is organized as follows: In Section 2 we 
introduce the Markov control model we are concerned with, and some 
basic assumptions. Section 3 contains the condition C1 and some pre-
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liminary results, which are used to construct the average cost optimal 
adaptive policy in Section 4. Next in Section 5 we present the conditions 
C2 and C3, and finally, in Section 6 we illustrate our assumption and 
main results with examples on invariant systems [1], an autoregressive­
like control model, and a queueing system with controlled service rate. 

2. Markov control processes 

Notation. Given a Borel space X (that is, a Borel subset of a com­
plete and separable metric space) its Borel sigma-algebra is denoted 
by IB(X), and "measurable", for either sets or functions, means "Borel 
measurable". Let X and Y be Borel spaces. Then a stochastic kernel 
Q(dx I y) on X given Y is a function such that Q(. I y) is a probability 
measure on X for each fixed y E Y, and Q(B I .) is a measurable function 
on Y for each fixed B EIB(X). 

Markov control models. Let (X, A, ~k, F, p, c) be a discrete-time 
Markov control model where the state space X, and the action space A 
are both Borel spaces. The dynamics is defined by the system equation 
(1.1). Here F : X x A X ~k ~ X is a given (known) measurable function, 
and {~t}, is a sequence of independent and identically distributed (i.i.d.) 
random vectors (r.v.'s) on a probability space (0,.1", P), with values in 
~k and a common distribution with an unknown density p. 

To each state x EX, we associate a nonempty measurable subset 
A(x) of A, whose elements are the admissible controls (or actions) when 
the system is in the state x. The set 

lK = ((x,a) : x E X, a E A(x)} 

of admissible state-action pairs is assumed to be a measurable subset of 
the Cartesian product of X and A. Finally, the cost-per-stage c(x, a) is 
a possibly unbounded, nonnegative, real-valued measurable function on 

lK. 
For each density I-" on ~k, Q I-' (. I .) denotes the stochastic kernel on 

X given lK, defined as 

QI-'(B I x, a) := ! IB[F(x, a, s)]I-"(s) ds, BE IB(X), (x, a) ElK, (2.1) 

!Rk 

where 1 B (.) stands for the indicator function of the set B. In other words, 
Q I-' represent the transition law corresponding to the controlled system 
(1.1) if the disturbance variables ~t have density 1-". 



114 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

Control policies. We define the space of admissible histories up to time 
t by nIo := X and nIt := (IKx~k)t X X for t E1N:= {l, 2, ... }. A generic 
element of nIt is written as ht = (xo, ao, ~o,· .. ,Xt-l, at-I, ~t-}' Xt). A 
control policy 11" = {1I"t} is a sequence of measurable functions 1I"t :nIt ~ A 
such that 1I"t(ht) E A(xt), for ht EnIt and t ~ o. We denote by II the 
set of all control policies, and by lFe II the subset of stationary policies. 
As usual, every stationary policy 11" ElF is identified with a measurable 
function j : X ~ A such that j(x) E A(x) for every x E X, so that 11" is 
of the form 11" = {j, j, j, ... }. In this case we identify j with 11", and use 
the notation 

C(x,J):= c{x,j{x)), F{x,j,s):= F{x,j{x),s) , for x E X, s E ~k. 

Optimality criteria. When using a policy 11" E II, given the initial 
state Xo = x, we define the total expected a-discounted cost as 

Va:{1I",x):= E: [fatc{xt,at)] , 
t=o 

(2.2) 

where a E (0,1) is the so-called discount factor, and E; denotes the 
expectation operator with respect to the probability measure P; induced 
by the policy 11", given the initial state Xo = x (see, e.g., [3] for the 
construction of P; ). We also define the long-run expected average cost 
as 

[
n-l 1 

J(1I", x) := limsupn- l E: L c{Xt, at) . 
n-+oo t=o 

(2.3) 

The functions 

Va:{x) := inf Va:{1I", x) and J(x):= inf J(1I", x), for x E X, (2.4) 
1TEII 1TEIT 

are the optimal a-discounted cost and the optimal average cost, re­
spectively. A policy 11"* E II is said to be a-discount optimal (or simply 
a-optimal) if Va: (x) = Va: (11"* , x) for all x EX. Similarly, a policy 11"* E II 
is said to be average cost optimal (AC- optimal) if J{x) = J(1I"*, x) for 
all x E X. 

Assumptions. We shall require three sets of assumptions. The first 
one, Assumption 2.1, ensures the existence of 8-optimal (8 > 0) sta­
tionary policies for the discounted cost criterion (Lemma 2.1). Note 
that Assumption 2.1 allows a unbounded cost-per-stage function c(x, a) 
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provided that it is majorized by a "bounding" function W. Assump­
tions 2.2 and 2.3 are technical requirements on the unknown density p 
and the function W. 

Assumption 2.1 (Bounds and semi-continuity) 

(i) For every x E X the function a ---t c(x, a) is lower semi-continuous 
(l.s.c.) on A(x). Moreover, there exists a measurable function 

W : X ---t [W, 00) such that sup c(x, a) ~ W(x), for some W > 0. 
A(x) 

(ii) For each x E X, A(x) is a a- compact set. 

Assumption 2.2 (On the density p) Fix an arbitrary £ E (0,1/2) 
and let q := 1 + 2£. 

(i) p E Lq(rRk). 

(ii) There exists a constant L such that for each z E rRk 

IIL).zpIILq()Rk) ~ L Izl 1/ q , 

where L).zp( s) := p( s + z) - p( s), for s E rRk, and 1·1 is the Euclidean 
norm in rRk. , 

(iii) There exists a nonnegative measurable function p : rRk ---t rR such 
that p{s) ~ p{s) almost everywhere with respect to the Lebesgue 
measure. 

Assumption 2.3 

(i) For every s E rRk, 

cp(s) := sup[W(x)t1 sup W[F(x, a, s)] < 00. (2.5) 
x A(x) 

(ii) I cp2(s) Ip(s)1 1- 2c ds < 00. 
)Rk 

The function cp in (2.5) might be nonmeasurable. In such a case 
we suppose the existence of a measurable majorant ij; of cp for which 
Assumption 2.3( ii) holds. 

To conclude this section we state an important consequence of As­
sumption 2.1 to be used in later sections. 

Lemma 2.1 Suppose that Assumption 2.1 holds, and let a E (0,1) be 
an arbitrary but fixed discount factor. 
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(i) [13] If Va(x) < 00 for every x E X, then Va satisfies the dynamic 
programming equation 

Va(X) = inf [c(x,a) +a/Va[F(X,a'S)]p(S)dsj Vx E X. 
aEA(x) 

~k 

(2.6) 

(ii) For each 8 > 0, there exists a policy f ElF such that 

c(x,f)+a / Va[F(x,f,s)]p(s)ds~Va(x)+8 VxEX. (2.7) 
~k 

From the fact that Qp(' I .) is a stochastic kernel (see (2.1)), it is easy 
to prove that for every non-negative measurable function u, and every 
r E iR, the set 

{ (x, a) i u[F(x, a, s)[p(s )ds S; r } 

is a Borel subset of lK. Using this fact, part (ii) of Lemma 2.1 is a 
consequence of Corollary 4.3 in [25]. 

3. Optimality conditions 

To prove average optimality of the adaptive policy constructed in the 
next section, we now need to impose conditions that ensure the existence 
of a solution to the ACOI, i.e., a pair (j*, h(·)) consisting of a real number 
j* and a measurable function h : X -+ iR, satisfying, for all x EX, 

j* + h(x) ~ inf [C(X, a) + / h[F(x, a, S)]P(S)dsj. (3.1) 
A(x) 

~k 

In this section we state an average cost condition (AC - condition) en­
suring (3.1). 

Let Va (·) be the optimal a-discounted cost (see (2.4)). Define rna := 
infx Va(x) and ga(x) := Va(x) - rna for x E X and a E (0,1). 

Condition 3.1 (C1) 

(i) There exists a* E [0,1) such that sup ga(x) < +00 for every 
a*<a<1 

xEX. 
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(ii) There exist p > 1, (30 < 1 and bo < 00, such that, for every x E X 
and a E A(x), 

! WP[F(x,a,s)]p(s)ds ~ (3oWP(x) + boo (3.2) 

!Rk 

The Condition Cl is a combination of assumptions used in [14] and 
[19]. Indeed, supposing that 

J(if, x) < 00 for some if E II and x E X, (3.3) 

the Condition Cl(i) was used in [14] (see also [4, 27]) to prove the ex­
istence of a solution to the ACOI, while Cl(ii) is variant of a condition 
used by Lippman in [19] (see also [28]) to study semi-Markov control 
processes. Nevertheless, we can use Cl as a sufficient condition for (3.1) 
since, as is observed in Remark 3.1(i) below, (3.3) is a consequence of 
Condition Cl(ii). 

A comparison between several AC - optimality conditions has been 
presented in [24]. From these results we can deduce the equivalence of 
Condition Cl and the following Condition Clf. 

Let Z E X be an arbitrary, but fixed state. Define 

ha(x) := Va(x) - Va(z) for x E X, 0 E (0,1). (3.4) 

Condition 3.2 (Cl f ) There exist nonnegative constants Nand M, a 
nonnegative (not necessarily measurable) function G on X, and 0* E 
(0,1) such that 

(i) (1- o)Va(z) ~ M for all 0 E [0*, I}; 

(ii) -N ~ ha(x} ~ G(x} for every x E X and 0 E [0*, I}; 

(iii) Condition C1 (ii) holds. 

Conditions Clf (i}-(ii) together with the assumption 

Va(x) < 00 for every x E X and 0 E (0,1), (3.5) 

were introduced in [26] for countable-state MCPs with finite control 
sets, and were extended to the Borel space case in [23]. Again, from 
Remark 3.1(i} below, (3.5) is a consequence of Condition Cl f (iii}. 

Lemma 3.1 [9] Suppose that Assumption 2.1(i) holds. Then Condi­
tion Cl(ii) implies, 
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(i) for every (x, a) EIK 

/ W[F(x, a, s)]p(s)ds ::; ,BW(x) + b, (3.6) 

Rk 

where ,B = ,B~/p and b = b~/p; 

(ii) SUPt>1 E;[W(xt)] < 00 and SUPt2:1 E;[WP(xd] < 00 V1r E II, x E 
X. -

Remark 3.1 

(i) From Assumption 2.1(i) and Lemma 3.1(ii)' it is easy to see that 
Va (1r,x) < 00 and J(1r,x) < 00 for each x E X, 1r E II. In 
fact, in [13] it is proved that if (3.6) holds, then, under Assump­
tion 2.1(i)' we have 

Va(x) ::; CW(x)j(l - a) \Ix E X, a E (0,1), (3.7) 

for some constant C > 0. 

(ii) Let W be the function introduced in Assumption 2.1. We denote by 
Lw the normed linear space of all measurable functions u : X -+ ~ 
with 

lu(x)1 
Ilullw := sup W( ) < 00. 

xEX X 
(3.8) 

Thus, from (3.7), Va E Lw for all a E (0,1). 

(iii) Therefore, by Condition C1 and the fact that haO :::; gaO for 
a E (a*, 1), 

sup Ilhall w < 00. (3.9) 
aE(a* ,1) 

The main conclusion of this section can now be stated as follows: 

Theorem 3.1 Suppose that Assumption 2.1 holds. Then the Condition 
C1 (or C1') implies the existence of a solution (j*,h) to the ACOI (3.1) 
with h E Lw. Moreover, j* is the optimal average cost, i.e., j* = 
inf1rEII J(1r, x) for all x E X. 

Remark 3.2 Fix an arbitrary state Z E X, and let ja := (1 - a)Va(z) 
for a E (0,1). Then, following standard arguments in the literature on 
average cost MCPs (see, e.g., [6], [15], [23]) it is possible to prove that 

lim jat = j* (3.10) 
t-+oo 

for any sequence {at} of discount factor such that at /" 1. 
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4. Adaptive policy 

To construct the adaptive policy, we present first a method of statis­
tical estimation of p, and then extend to the estimators Pt of P some 
assertions in the previous sections. This density estimation scheme was 
originally proposed in [9J to obtain an asymptotically discount optimal 
adaptive policy, and used again in [IOJ to construct an average opti­
mal iterative adaptive policy under ergodicity assumption on the control 
model. 

Density estimation. Let eo, 6, ... , et-l be independent realizations 
(observed up to time t - 1) of r.v.'s with the unknown density p. We 
suppose that p satisfies Assumption 2.2 and relation (3.6). 

Let Pt{s) := Pt{S; eo, 6, ... , et-t}, for s E Rk, be an arbitrary estimator 
of p belonging to Lq{Rk), and such that for some 'Y > 0 

(4.1) 

where lip + lip' = 1. To construct an average cost optimal adaptive 
policy we can not use, in general, the estimators Pt because they might 
not satisfy the right assumptions. Therefore, we estimate p by the pro­
jection Pt of Pt on the set of densities D in Lq{Rk) defined as follows: 

D := {JL E Lq{Rk) : JL is a density function, JL{s) ~ ,o{s) a.e., and 
J W[F{x, a, s)JJL{s)ds ~ ,6W{x) + b V{x, a) E nq . 

(4.2) 
See Lemma 3.1{i) for the constants ,6 and b. 

The existence (and uniqueness) of the estimator Pt is guaranteed be­
cause the set D is convex and closed in Lq{Rk) [9J. Moreover, Assump­
tion 2.1{i) and (3.6) ensure that the unknown density p is in D. 

Examples of estimators satisfying (4.1) are given in [l1J. On the other 
hand, from [9, IOJ we known the following. 

Lemma 4.1 [9, IOJ Suppose that Assumptions 2.2 and 2.3 hold. Then 

(4.3) 

where 11·11 is the pseudo-norm on the space of all densities JL on Rk defined 
as: 

IIJLII := sup[W{x)r1 sUP! W[F{x, a, s)JJL{s)ds. (4.4) 
X A(x) 

Rk 

For an arbitrary density JL in Rk, the pseudo norm IIJLII may be infinite. 
However, by (4.2), IIJLII < 00 for JL in D. 
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Construction of the adaptive policy. Having the estimators Pt of 
p, we now define an adaptive control policy as follows. 

Let {at} be an arbitrary nondecreasing sequence of discount factors 
such that at ? 1. For each fixed t, let 

V (pt} { ) ._ E7r,Pt [,,",00 n ( )] 
CIt 1r, X .- x L.....n=o at c xn, an , 

be the total expected ardiscounted cost for the process (1.1) in which 

the r.v.'s ~o,6, ... , have the common density Pt, and let V~~t}{x) := 

inf7rEil V~~t} (1r, x), x E X, be the corresponding value function. The 

sequences h~t\) and j~t} are defined accordingly (see (3.4) and Re­
mark 3.2). 

Remark 4.1 

(i) The proof of (3.7) (given in [13]) shows that under Assump­
tion 2.1 (i) the following relations hold (because only inequality 
(3.6) is used here): 

V(pt}{x) < ~W{x) x E X, t E IN. 
CIt - 1 - at ' 

(4.5) 

(ii) For each t EIN and each density J1. ED, we define the operator 
TiL,Clt == Til : Lw -+ Lw as 

TiLu{x):= inf {c{x,a) + at jU[F{x,a,s)lJt{s)dS} , (4.6) 
A(x) 

)Rk 

for x E X, U E Lw' Now, under Assumption 2.1, from Lemma 

2.1{i) we have TpVClt = VClt and Tpt V~~t} = v~~t} for each t EIN. 

(iii) Moreover, from Lemma 2.1{ii)' for each t EIN and bt > 0, there 
exists a policy It ElF such that 

c{x,It) +at j V~~t}[F{x,lt,s)lpt{s)ds::; V~~t}{X)+bt, xEX. 

)Rk 

(4.7) 
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We suppose that Condition C1 holds. To define the adaptive policy, 
first we fix an arbitrary nondecreasing sequence of discount factors {at} 
on {a*, 1} {see C1{a}} such that 1- at = O{rV} as t -+ 00, and 

lim K{n} = 0, 
n--+oo n 

{4.8} 

where 0< v < 'Y/{3p'} {with'Y andp' as in {4.3}} and K{n} is the number 
of changes of value of {at} for t = 0,1, ... , n. 

Definition 4.1 Let {8t } be an arbitrary convergent sequence of positive 

numbers, and let 8 := limHoo 8t . In addition, let {it} be a sequence of 

functions in IF satisfying {4. 7} with at instead of at. The adaptive policy 

7r = {7rt} is defined as 7rt{ht} = 7rt{ht; Pt} := it{xt} for each t EIN, where 
7ro{x} is any fixed action in A{x}. 

We are now ready to state our main result. 

Theorem 4.1 Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Then, 
under Condition C1 (or C1'), the adaptive policy 7r is 8-average cost 

optimal, that is, J{7r, x} ~ j* + 8 for all x E X, where j* is the optimal 

average cost in Theorem 3.1. In particular, if 8 = 0, then the policy 7r 
is average cost optimal. 

Throughout the proof of this theorem we will repeatedly use the fol­
lowing inequalities. For any u E LiV and any J.t that satisfies {3.6}, we 
have 

lu{x}1 ~ lIullw W{x} {4.9} 

and ! u[F{x, a, s}]J.t{s}ds ~ Ilullw [,BW{x} + b] {4.10} 

)Rk 

for all x E X and a E A{x}. The relation {4.9} is a consequence of the 
definition {3.8} of 1I·lIw, and {4.10} holds because of {3.6} and {4.9}. 

The proof of Theorem 4.1 is based on the following lemma: 

Lemma 4.2 Under Assumptions 2.1, 2.2 and 2.3, and Condition C1 
(or C1'), for each x E X and 7r E II, we have 

lim E1f 11v:· - v5pt) IIPI 
= 0. t--+oo x (tt (tt W 

{4.11} 
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Proof of Lemma 4.2 For each t EIN, define Ot E (at, 1) as Ot := (1 + 
ad/2, and let Wt{x) := W{x)+dt for x E X, where dt := b {Ot/at _1)-1. 
Let L~t be the space of measurable functions u : X -+ ~ with the norm 

lu{x)1 
lIullwt := sup TXT ( ) < 00, t E IN. 

xEX rrt x 

Using the fact that dt ~ 2b/{1 - ad, t EIN, it is easy to see that 

Ilullwt ~ Ilullw ~ It Ilullwt, t E IN, 

where It := 1 + 2b/ [(1 - ad infxEx W{x)]. Thus, (4.11) will follow if we 
show that 

If' E; IIV(it - vl:t} lI:
t 

-+ 0, as t -+ 00. (4.12) 

A consequence of Lemma 2 in [28] is that, for each t EIN and p E D, the 
inequality J~k W[F{x, a, s)]p{s)ds ~ W{x) + b implies that the operator 
Til defined in (4.6) is a contraction with respect to the norm 11·llwt , with 
modulus Ot, i.e., 

Vv,u E L~, t E IN. (4.13) 

Hence, from (4.13) and Remark 4.1{ii) we can see that 

IIVat - vl:t} IIWt ~ IITp Vat - Tpt Vat Il wt + Ot IIVat - v1:t} IIWt ' 
which implies that 

It IIVat - vl:t} IIWt ~ 1 ~ Ot IITpVat - Tpt Vat Ilwt Vt E IN. (4.14) 

On the other hand, from definition (4.4) , (4.5), and the fact that 
[WtOt 1 < [W{·)tl for all t EIN, we obtain 

IITpVat - Tpt Vat Ilwt 

< at sup[Wt{x)r1 sUP! Vat [F(x, a, s)] Ip{s) - pt{s)1 ds 
x A(x) 

~k 

Cat I! < --A sup[w{x)r sup W[F{x,a,s)] Ip{s) - pt{s)1 ds 
1 - at X A(x) 

~k 

C 
< 1 _ at lip - Ptll· (4.15) 

Now, observe that (by the definition of at and Ot), 

1 
-----~2 = O(t3v) as t -+ 00. (4.16) 
(1 - Ot) (1 - at) 
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Combining (4.14), (4.15), (4.16), and using the definition of It, we get 

If' IlvOt - v~~t) II:t 

< Cpl 1 2b II _ IIP' [ ] ~ 
(1 - (It) (1 - ad + (1 - Ot) (1 - at)2 infx W(x) P Pt 

CpI O(t3plv) lip - ptllpl as t -+ 00. (4.17) 

Finally, taking expectation E; on both sides of (4.17), and observing 
I I 

that E; lip - PtllP = E lip - PtllP (since Pt does not depend on x and 
1l"), we obtain (4.12) by virtue of Lemma 4.1 and the fact that 3vp' < I 
(see the definition of ad. This proves the Lemma. • 

Remark 4.2 It is easy to prove that 

lim E; IIVOt - v~Pt)11 W(Xt) = 0 for x E X, 1l" E II. (4.18) 
t~oo t W 

Indeed, denoting C := (E; [WP(Xt)])l/P < 00 [see Lemma 3.1(ii)}, ap­
plying Holder's inequality, and using Lemma 4.2, we obtain 

-+ 0 as t -+ 00. 

Proof of Theorem 4.1. Let {kd := {(Xl, ad} be a sequence of state­
action pairs corresponding to applications of the adaptive policy fr. We 
define 

<Pt .- c(kd + at ! Vot[F(kt , s)Jp(s) ds - VOt(Xt) (4.19) 

Rk 

c(kd + atE; [Vot (xt+d I ktJ - VOt (Xt). 

From definition of ha and ia (see (3.4) and Remark 3.2), it is easy to 
see that 

<Pt = c(kd + atE; [hot (xt+d I ktJ - iot - hot (xd· 

Hence, for n :2: k :2: 1 

n-1 E; [t c(kt ) - iot] 
t=k 

~ n-1 E; [t. (h., (Xt) - ath., (XtH))] + n-1 E; [t. <l>t ].(4.20) 
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On the other hand, from Lemma 3.1{ii), (3.9) and {4.9}, we have 
E! [ha{xt)] < C' for a E (a*, 1) and a constant C' < 00. Thus, de­
noting ai, a2"'" a:(n) , n ~ 1, the different values of at for t :::; n, and 
using that {at} is a nondecreasing sequence we have (see condition (4.8) 
and the definition of ha ) 

n-1E! [t (h&t{:et) - ath&t{Xt+l))] 
t=k 

n-1E! [t (h&t{xt) - ath&t{Xt})] 
t=k 

+n-1 E! [t at{h&t {xt} - hat (Xt+l))] 
t=k 

"(n) 
< {1 - ak)C' + n-12C' L ai 

i=l 

< {1- ak)C' + 2C'~{n)n-l 
< (1 - ak)C' + 0(1), x E X. 

Now, from (4.19) and (2.6) we have 

where 

<Pt = c{kt} +at j V&t[F{kt,s)]p{s)ds 
~k 

- inf [C{Xt, a) + at jV&t[F(xt,a, s)]p{s)dS] 
A(xt) 

~k 

< Ih{t)1 + II2{t)1 + Ih{t)l, 

(4.21) 

h{t) at j V&t[F{kt , s)]p{s) ds - at j V~:t)[F{kt, s)]p{s) ds, 

~k ~k 

h{t) .- at / v~:t)[F{kt, s)]p{s) ds - at / V~:t)[F{kt, s)]Pt{s) ds, 

~k ~k 

h{t) .- c{kt) +at / V~:t)[F{kt,s)]pt{s)ds 
~k 

- inf [C{Xt,a)+atjV&t[F{Xt,a,s)]p(S)dS] 
A(xt) 

~k 
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Using (4.9) and (4.10) 

Ih(t)1 < at /IVat[F(kt,s)]- V~~t}[F(kt,s)]lp(s)ds 
~k 

< at IIVat - v~~t) Ilw [t3W(Xt) + b]. (4.22) 

Taking expectation E! on both sides of (4.22) and using the Lemma 4.2 
and (4.18), we get 

E! Ih(t)l-+ 0, as t -+ 00. (4.23) 

Now, from definition of at and (4.5), IIV~:t} Ilw = O(tV). Thus, from 

definition (4.4), 

Ih(t)1 < at / V~~t}[F(kb s)]lp(s) - pt(s)1 ds 
~k 

< atW(Xt) IIV~~t} Ilw lip - Ptll· (4.24) 

Hence, taking expectation and applying Holder's inequality in (4.24) we 
get 

(4.25) 

due to the fact l/ < "( /p' (see definition of at). 
For the term Ih(t)l, from the definition of the policy it and combin­

ing (2.6) and (4.7), adding and subtracting the term 

inf {C(Xt, a) + at / V~pt}[F(Xt, a, s)]Pt(s) dS} A(xt} t 

~k 

in h(t), we get 

Ih(t)1 < Jt + at sup V V~~t}[F(Xt, a, s)]Pt(s) ds 
A(xt} 

k 

- / Vat [F(Xt, a, s)]p(s) ds 
~k 
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The latter inequality yields 

II3(t)1 ~ Jt + at sup ! V~~t)[F(xt, a, s)]lp(s) - pt(s)1 ds 
A(xt) 

!Rk 

+at sup ! Iv~~t)[F(Xt' a, s)]- Vat [F(xt, a, s)]1 p(s) ds. 
A(xt) 

!Rk 

Thus, from (4.4), 

Ih(t)1 < Jt + atW(xt) Ilv~~t)llw lip - ptll 

+at IIVat - v~~t}llw [f3W(x) + b]. 

Hence, from (4.22), (4.23), (4.24) and (4.25), we get E; II3(t)1 -t J, as 
t -t 00. Therefore 

E; [<pt]-t J, as t -t 00. (4.26) 

Finally, from (4.20), (4.21) and (4.26), we have for any k ~ 1 and n -t 00, 

n-1 E; [t c(kt ) - jat] = (1 - ak)C' + 0(1) + J, x E X. 
t=k 

It follows that (from (3.10), the fact that limt-*<:Xl at = 1, and (2.3)) 

J{fr,x) ~ j* + 8, x E X. 

This completes the proof of the theorem. 

5. Additional optimality conditions 

• 
Besides Assumptions 2.1-2.3, the proof of the Theorem 4.1, as well as 

Lemma 4.2, is based on the following: 

(i) the existence of a solution (j*, h) to the ACOI (3.1) where j* 
satisfies {3.10}; 

(ii) the Lippman-like hypotheses (3.2) which yields the results of 
Lemma 3.1; 

(iii) the relation {3.9} in Remark 3.1{iii). 

Thus, the average optimality of the adaptive policy constructed in the 
previous section (see Definition 4.1) can be proved under any condition 
ensuring the points (i}-{iii) (for instance C1 or C1'). In this section we 
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state two additional sets of such conditions (C2 and C3), which are vari­
ants of conditions used in previous works to study either non-adaptive 
MCPs or non-controlled Markov processes. We illustrate the Conditions 
C1-C3, as well as our assumptions and main result, with three examples 
given in the next section. 

Let us denote by Mw the space of all signed measure m on I8(X) 
with a finite W -norm (see [16, 17]), which is defined as 

IImllMW := ! W(x) Iml (dx), 
x 

where Iml denotes the variation of the measure m. 

Condition 5.1 (C2) 

(i) There is a number !3o < 1 such that, for some p > 1, 

for each x, x' E X, a E A(x}, a' E A(x'). 

(ii) There are x* EX, a* E A(x*) such that 

(5.1) 

Observe that Condition C2(i) is a generalization, to unbounded costs 
case, of the well-known ergodicity assumption (see, for instance, [12, 16]): 

for each x, x' E X, a E A(x), a' E A(x'), where !3o < 1 and II·IIT denotes 
the variation norm for signed measures, which is the same as (5.1) with 
W(·) == 1. 

Condition 5.2 (C3) There exists a probability measure m on 
(X,IB(X)) and a nonnegative number!3o < 1 and, for every f ElF', 
a nonnegative function tP f : X --t !R such that for any x E X and 
B EIB(X), 

(i) Qp(B I x, J) ~ tPf(x)m(B); 

(ii) J WP[F(x, f, s)]p(s) ds ~ !3oWP(x) +tPf (x)bo for some p > 1, with 
)Rk 

bo := J WP(y)m(dy) < 00; 
x 
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(iii) inf J'ljJf(x)m(dx) := ;p > 0. 
fElF'X 

Hypotheses of the type C2 and C3 were introduced in [17] for non­
controlled Markov processes. For discrete-time average cost MCPs, Con­
ditions similar to C2 and C3 were used, respectively, in [8] and [6] to 
show the existence of a solution to the ACOI, (see also [16] for a detailed 
study of these conditions). The procedure used in those works [6, 8, 16] 
is the so-called vanishing discount factor approach. 

In contrast to C1, the key feature of C2, as well as C3, is that it 
ensures the geometric ergodicity of the state process with respect to 
the norm (5.1), when using stationary policies. Now, having geometric 
ergodicity we obtain (3.9) and (3.10) by a standard procedure (see [6, 8, 
16]). 

Finally, straightforward calculations show that each of the Conditions 
C2 and C3 implies the Lippman-like hypotheses (3.2). 

6. Examples 

In this section we consider special cases of the controlled system (1.1). 
To simplify the exposition we shall assume that the random disturbances 
eo, 6,···, are real-valued, i.i.d. random variables with an unknown 
density p E Lq(lR) that satisfies Assumption 2.2(ii). 

In fact, when k = 1 it is not difficult to show (see [22, page 13]) that 
a sufficient condition for Assumption 2.2(ii) is the following: There is a 
finite set He lR (possibly empty) and a constant M 2:: ° such that: 

(i) p has a bounded derivative p' on lR\H that belongs to Lq(lR); 

(ii) the function 1P'(x)1 is non-increasing for x 2:: M and nondecreasing 
for x:::; -M. 

Note that H might include points of discontinuity of p if such points 
exist. 

6.1 Invariant problems 

A control problem is called invariant ifthe transition kernel Qp(. I x, a) 
depends only on the control a; that is Qp(. I x, a) = Qp(. I a) (see, e.g., 
[1, 27]). In this case the dynamics of the system can be represented as 
Xt+l = F(at, et) for t = 0,1, .... 

We consider a invariant control problem with state space X = [0, 00) 
and finite actions set A(x) = A, x E X. We suppose that the random 
variables eo, 6, ... , are non-negative with a density p satisfying 

p(s) :::; Ml exp( -as), s 2:: 0, 
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for some constants Ml < 00 and ° < a < l. 
Assumption 2.2{iii) is satisfied with p{s) := Ml exp{-as), s ~ OJ 

and taking, in particular, W{x) := M2 exp{ -AX), X E [0,00) for some 
constants M2 > ° and A < a{1-2c)/2, and supposing that F{a*, s) < s, 
s ~ 0, with a* := maxA, it is readily seen that Assumption 2.3{ii) (as 
well as Assumption 2.3{i) is satisfied. 

The Assumption 2.1 is satisfied taking the one-stage cost c as any non­
negative, l.s.c. function satisfying sUPA c{x, a) ~ M2 exp{ -AX) for X E 

[0,00). 

Proposition 6.1 The invariant problem satisfies the Condition C1 (or 
C1'). 

Proof From Lemma 2.1{i) and the fact that A is finite, there exists 
a E A such that 

Va{x) = c{x, a) + a j Va [F{a, s)]p{s) ds, X E X. 

!R 

Thus, from definition of 9a, we have 

9a{X) = Va{x) - rna 

= c{x, a) + a j Va[F{a, s)]p{s) ds 

!R 

- inf c{x, a) - aj Va[F(a,s)]p(s) ds 
xEX 

!R 

= c(x, a) - inf c{x, a) 
xEX 

< W(x) < 00, a E (0,1), x E X. 

Therefore, sUPaE(O,l) 9a(x) < 00 for every x E X. This yields Condi­
tion C1(i). 

To conclude, the Condition C1{ii) follows from the fact 

j WP[F(a,s)]p(S)dS ~ maxjWP[F(a,s)]p{s)dS < bo, 
aEA 

!R !R 

for some p > 1 and constant bo < 00. • 
6.2 An autoregressive-like control process 

We consider a process of the form 

Xt+1 = ("p{at)xt + ~t)+, t = 0,1, ... , (6.1) 
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Xo = x given, with state space X = [0,00), admissible controls set 
A{x) = A for every x E X, where A c !R is a compact set, and'ljJ : A -t 
{O,,] is a given measurable function with, < 1/2. We suppose that the 
density p of the random variables (0, 6, ... , is a continuous function on 

!R, satisfying p{s) ~ p{s) for s E !R, where p{s) := Ml min {I, 1/ Isl1+T}, 
for some constants Ml < 00 and r > 0, and moreover E{(o) ~ 1/4- (,-
1)2. The one-stage cost c is an arbitrary nonnegative, l.s.c., measurable 
function satisfying sUPaEA c{x,a) ~ {x + 8)1/p, x E X, for some p > 1, 
where 8 = (I - 2,)/2. 

For the latter, Assumptions 2.1, 2.2 and 2.3 are satisfied choosing 
W{x) = (x + 8)1/p for x E [0,00) and appropriate r > ° in pO. 

Proposition 6.2 The autoregressive-like control process satisfies Con­
dition C2. 

Proof First, observe that 

! WP [('ljJ{a)x + s)+] p{s) ds < 8P['ljJ{a)x + (0 ~ 0] +,x + 8 + E[(o] 

!R 

< (, + 1/2)(x + 8) for x E [0,00), 

aEA. 

Thus, straightforward calculations of IIQp{' I x, a) - Qp{' I x', a')II Mwp 

show that Condition C2{i) holds with f30 = , + 1/2. Moreover, since 
E[(o] < O() the Condition C2{ii) is satisfied. • 

6.3 Controlled queueing systems 

We consider a control process of the form 

Xt+1 = (Xt + at - (t)+, t = 0, 1, ... , (6.2) 

Xo = x given, with state space X = [0,00) and actions set A{x) = A for 
every x E X, where A is a compact subset of some interval {O,O], with 
OEA. 

Equations (6.2) describe, in particular, the model of a single server 
queueing system oftype G I / D /1/00 with controlled service rates at E A. 
In this case Xt denotes the waiting time of the tth customer, while (t 
denotes the interarrival time between the tth and the {t+ l)th customers. 

We suppose the random variables (0,6, ... , having continuous density 
p such that E{(o) exist, and moreover 

E{(o) > O. (6.3) 



A verage optimality for adaptive Markov control processes 131 

The latter assumption ensures ergodicity of the system when using the 
slowest services: at = () t :2: o. 

Proposition 6.3 The controlled queuezng systems satisfies Assump­
tions 2.1-2.3 and Condition C3. 

Proof Defining the function w(s) := e(Js E(e-S~O) we find that (6.3) 
implies W'(O) < 0, and so there iSA > 0 for which W(A) < 1. Also, by 
continuity of W we can choose p > 1 such that 

W(pA) := /30 < 1. (6.4) 

To meet Assumption 2.1, we suppose that the one-stage cost c(x, a) is 
any nonnegative measurable function which is l.s.c. in a and satisfying 

supc(x,a):::; be>'x, for all x E [0,00), 
A 

where b is an arbitrary positive constant. 
Now, supposing that p(s) :::; p(s), where p(s) := Ml min{l, Ijs1+r} for 

all s E [0,00) and some constants Ml < 00, r > 0, and taking W(x) = 
be>'x for all x E [0,00) easy calculations shows that Assumptions 2.2 
and 2.3 hold. 

Finally, in [7] were taken advantages of (6.4) and definition 'l/Jf(x) := 

P[x + f(x) - eo :::; 0], f ElF, to verify, for this example, the Condition 
C3. • 

7. Concluding remarks 

In this paper we have constructed an average cost optimal adaptive 
policy for a class of discrete-time Markov control processes with un­
bounded costs assuming unknown density of the random disturbance. 
The basic idea has been to show the existence of E- minimizers, for 
E > 0, of the discounted cost optimality equation, for which we need not 
to impose restrictive continuity and compactness assumptions on the 
control model. The average optimality of the adaptive policy was stud­
ied under three different optimality conditions applying the vanishing 
discount factor approach. The assumptions as well as the conditions of 
this work have been illustrated with examples of invariant systems, an 
autoregressive-like control process and a queueing system with controlled 
service rate. 

In general, to construct an adaptive policy for systems of the form 
(1.1) when the disturbance distribution (say G) is unknown, we must 
combine statistical estimation methods of G and control procedures. A 
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way to estimate G is to assume that it possesses a density function p on 
!Rk , as in our work, that is, 

G(B) = / p(s) ds, BE 1B(X). 
B 

In this sense, the estimation of G is based on the estimation of the 
density function p, which in turn can be analyzed in a number of ways. 
This method has the disadvantage of excluding the case in which the 
disturbance distribution G is discrete, as can happen in some queueing 
systems. 

Another way to estimate G is by means of the well-known empirical 
distribution: 

t-l 

Gt(B) := rl L 1B(~i)' t ~ 1, BE 1B(X), 
i=O 

where ~o, 6, ... , ~t-l are independent realizations (observed up to time 
t -1) of r.v.'s with the unknown distribution G. The construction of an 
adaptive policy via the empirical distribution is very general in the sense 
that G can be arbitrary. To the best of our knowledge, except when the 
one-stage cost is bounded and the discounted criterion is considered (see, 
e.g., [2, 12]), there are no works which treat construction of adaptive 
policies applying this approach. Thus future works in this direction 
might be of interest. 
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Abstract In this paper we consider finite-stage stochastic optimization problems 
of utility criterion, which is the stochastic evaluation of associative re­
ward through a utility function. We optimize the expected value of 
a utility criterion not in the class of Markov policies but in the class 
of general policies. We show that, by expanding the state space, an 
invariant imbedding approach yields an recursive relation between two 
adjacent optimal value functions. We show that the utility problem 
with a general policy is equivalent to a terminal problem with a Markov 
policy on the augmented state space. Finally it is shown that the utility 
problem has an optimal policy in the class of general policies on the 
original state space. 
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1. Introduction 
In the theory of Markov decision process, the object is to maximize the 

expected value of additive function among the class of Markov policies 
{Markov class} {[I, 2, 3, 4, 8, 24, 25], and others}. In this paper, we 
optimize the expected value of the utility function not in the Markov 
class but in the class of general policies {general class}. The basic idea 
is how to use an invariant imbedding technique ([12, 14, 17]). 

In Section 2, we propose a formulation of stochastic optimization prob­
lem with a utility criterion {utility problem} in general class. 

In Section 3, we review the basic result on additive problem within 
Markov class, which is applied in the last section. 

In Section 4, by use of the invariant imbedding method, we transform 
the utility problem into a terminal problem on an augmented state space. 

In the last section we show that the utility problem with general 
class is equivalent to the terminal problem with Markov class on the 
augmented state space. Finally we show that the utility problem has an 
optimal policy in general class. 

2. Utility problem 
Throughout the paper, let {Xn, Un} be a controlled Markov chain on 

a finite state space X and a finite control space U with a transition law 
P = {p(Ylx, u)}: 

p(Ylx,u) 
t:,. 

P(Xn+1 = Y I Xn = X, Un = u). 

Then we write 

Given the data: 

r: XxU -+ Rl 

k: X -+ Rl 
o : RlXRl -+ Rl 

1 ~ n ~ N. 

reward function, 

terminal function, 

associative binary operation 

with left-identity element );, 

'ljJ : Rl -+ Rl utility function, 

we use the following notations: 

rn .- r{Xn, Un), k := k{XN+1) 

(2.1) 

Pn p{xn+1IXn,un), X n := XxXx·· ·xX (n-times), 

Hn .- XxUxXxUx·· ·XXXUXX {{2n - 1}-factors}, {2.2} 

hN+1 .- (Xl, Ul, X2, U2, ... , XN+1) E HN+1. 
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We consider three classes of policies. A Markov (resp. general, prim­
itive) policy, 7r = {7rI,7r2, ... ,7rN} {resp. a = {al,a2, ... ,aN}, /-L = 
{/-LI, /-L2,··· , /-LN} ) is a sequence of Markov (resp. general, primitive) 
decision functions: 

7rn : X -+ U (resp. an : Xn -+ U, /-Ln : Hn -+ U), 1 ~ n ~ N. 

Let II (resp. II{g), II{p)) denote the set of all Markov (resp. general, 
primitive) policies. We call II (resp. II{g), II{p)) a Markov (resp. 
general, primitive) class. Then we note that 

II C II{g) c II{p). (2.3) 

Further, for n (I ~ n ~ N), let IIn (resp. IIn{g), IIn{P)) denote 
the set of all corresponding policies which start from nth stage on. For 
instance, IIn (p) denotes the set of all primitive policies /-L = {/-Ln, ... , /-L N } 
which begin at stage n. Now, let us consider the stochastic optimization 
problem of utility function: 

E~l [ 1jJ{rl 0 r2 0 ••. 0 rN 0 k) 1 
{

Optimize 

subject to (i)n X n+1 ""' p(-Ixn,un), } 1 ~ n 'S N, 
{ii)n Un E U, 

(2.4) 

where E~l is the expectation operator on the product space X N +1 in­
duced from the Markov transition law p, a general policy a = {aI, a2, ... , 
aN} E II{g), and an initial state Xl EX: 

(2.5) 
where 

PI = p{x2I x I, ud, P2 = p{x3I x2, U2), ... , PN = p{XN+llxN, UN), 
UI=al{XI), U2=a2{XI,X2), ... ,UN=aN{XI,X2, ... ,XN). 

3. Markov policies 
In this section we review the basic results on additive problem in 

Markov class II. The additive problem has always an optimal Markov 
policy in II ([2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 22, 23]). This fact plays an 
impotant role at the last section. 



138 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

3.1 Additive problem 
Now, let us consider the additive problem in II: 

{
Optimize 

subject to 

E:1 [rl + r2 + ... + r N + k j 

(i)n Xn+1 '" p('1 Xn, un), 

(ii)n Un E U, 
} 1 ~ n ~ N, 

(3.1) 

where E:1 is defined through Markov policy 7r. Thus we have 

E:1 [rl+···+ rN+kj= LL··I)rl+···+rN+kjpIP2···PN (3.2) 
(X2, ... ,XN+1)EXN 

where 
Ul = 11"1 (xI), U2 = 1I"2(X2), ... , UN = 1I"N(XN)' (3.3) 

The conventional dynamic programming method solves the problem 
(3.1) as follows. It regards Al(xI) as one of the family of subproblems 
A = {An(xn)}: 

{
Optimize E:n [rn + ... + rN + kj 
subject to (i)m, (ii)m, n ~ m ~ N, 

Xn E X, 1 ~ n ~ N + 1. 

(3.4) 

Let fn(xn) be the optimum value of An{xn). Then we have the recursive 
formula between the optimum value fn{xn) and its adjacent optimal 
value function fn+10: 

Theorem 3.1 

fn(x) Opt [r(x,u) + L fn+1(y)p(YIX,U)] , 
uEU yEX 

X E X, n = 1,2, ... ,N 

fN+1(X) = k(x), xEX. 

Further, we have an optimal policy as follows. 

(3.5) 
(3.6) 

Theorem 3.2 Let 1I"~{x) be an opimizer of (3.5). Then policy 11"* is 
optimal in Markov class; for all 11" E II 
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3.2 Terminal problem 

In this subsection, as a special case of the additive problem, we take 
the terminal problem: 

{
Optimize E:1 [k 1 
subject to (i)n, (ii)n, 1::; n ::; N. 

This is the case 

r(x, u) = 0, \/(X, u) E XxU, 

in (3.1). We imbed Tl(xd into the family 7 = {Tn(xn)}: 

{
Optimize 

subject to 
E:n[kl 
(i)m, (ii)m, n::; m ::; N, 

Xn E X, 1 ::; n ::; N + 1. 

(3.8) 

(3.9) 

Then the optimum value tn(xn) ofTn(xn) satisfies the recursive formula: 

Corollary 3.1 

tn(X) = Opt L tn+1(y)p(ylx, u), x E X, 1::; n ::; N, (3.10) 
uEU yEX 

tN+1(X) = k(x), x E X. (3.11) 

Corollary 3.2 Let 7I"~(x) be an opimizer of (3.10). Then the policy 71"* 

is optimal in Markov class; for all 71" E II 

(3.12) 

To conclude this section, we remark that the model is stationary; the 
state space, control space, reward function, and transition probability 
are all independent of stage n. However, all the results in this section 
are valid for non-stationary models. 

4. . Invariant imbedding approach 

In this section we show how to imbed the original problem into an ap­
propriate family of subproblems. Our imbedding process has two phases. 
The first phase is to introduce the past-value sets up to current stage. 
The second is to expand the original state space and to reduce the utility 
problem to a terminal problem over there. Both phases involve policies 
in a transliteration. 



140 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

4.1 Past-value sets up to today 

Now, we note that the left-identity element 5. implies 

t/J{5. 0 rIo··· 0 rN 0 k) = t/J{rl 0 ···0 rN 0 k). 

For further discussion we take the past-value set up to the first stage: 

/::,. -
0 1 = {>.}. 

We define the past-value set up to nth stage (2 ::; n ::; N): 

On ~ {5.or{xI,ud o ... o r{Xn-I,Un-dl 

{Xl, Ub···, Xn-l, un-d E XxUX·· .xXxU}. (4.1) 

Then we have the forward recursive formula: 

Lemma 4.1 

{>. 0 r{x, u) I A E On, (x, u) E XxU}. 

Proof It is straightforward. 

4.2 Terminal problem on augmented state 
spaces 

(4.2) 

• 

By attaching On, we expand the state space X to an augmented state 
spaces {Yn}: 

/::,. 
Yn = XxOn, (n = 1, 2, ... ,N), (4.3) 

and define a new Markov transition law q = {qn} there by 

/::,. { p(ylx u) if A 0 r(x, u) = 11., 
qn{{Y; /-t) I (x; A), u), = 0, ' 'otherwise. ,.. (4.4) 

Symbolically we express (4.4) as 

def { Y '" p( ·Ix u) (y.lI.) '" q (·I{x· A) u) {:::=} , , ,,.. n " /-t=Aor(x,u). (4.5) 

Now, we consider Markov policy for the augmented process {}Tn, Un} 
where }Tn = (Xn; An). For the process, a Markov policy "I = {"II, "12, ... , 
"IN} is a sequence of Markov decision functions 

"In: Yn -+ U, (n = 1, 2, ... , N). 
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Let IT denote the set of all Markov policies (augmented Markov class). 
We define the terminal function T : Y N +1 ---t Rl by 

Now we consider a relatively but not so large family of parametric 
subproblems Q = {Qn(Xn; An)}: 

Optimize 

subject to 

EJn[T] 

(i)~ Ym+l "'-' qm(·1 Ym, um), } n < m < N 
(ii)m U m E U, - - , 

Xn E X, An EOn, 1 ::; n ::; N. 

(4.7) 

Here EJn is the expectation operator on the product space YnxYn+1x···x 
YN+1 induced from the Markov transition law q = {qn, qn+!,'" ,qN}, a 
Markov policy "I = {"In, "In + 1 , ... ,"IN}, and an initial state Yn = (xn; An): 

EJJT] = L L .. 'LT(YN+l)qJq~+1 ... q1, (4.8) 
(Yn+l, .. ·,YN+l) 

where 

q'/n := qm(Ym+1IYm, um), Um := "1m (Ym), Ym = (Xm; Am), n::; m ::; N. 
(4.9) 

We note that the multiple summation in (4.8) is taken over Yn+ P<Yn+¥ . ~ 
YN+l and that the optimization in (4.7) is taken over all Markov policies 
"I E fIn. Thus we define the maximum value functions as follows: 

Un(Yn) := M;~,x EJJT], 
"(EIIn 

(4.10) 

where 

(4.11) 

First we remark that the augmented subproblems Q = {Qn(xn; An)} 
have a few equivalent forms. 
Now let us in turn, decompose the unified transition law: 

(i)~ : Ym+1 "'-' qm(·1 Ym, um) in Qn(xn; An), 

into the original transition law: 
(i)m : X m+1 "'-' p('1 Xm, um), 



142 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

and the deterministic transition Am IUm) Am+!. Then, from (4.3) and 
(4.4), we see that the problem Q1{X1; 5.) is also written in the form: 

Optimize EJl ['I/J{5. 0 r1 0 ···0 rN 0 k)] 

- subject to {i)n Xn+! "'" P (·I Xn, un), } 
Q1{X1;A) 

{ii)n Un E U, 1 :s; n :s; N. 

(iii)n An+! = An 0 r{xn, un), 

(4.12) 

Here we note that the additional sequential condition {{iii)n} implies the 
equality 

'I/J{5. 0 r1 0 ···0 rN 0 k) = 'I/J{AN+! 0 k). (4.13) 

Therefore, QdX1; 5.) is expressed as a terminal problem: 

Q (x .5.) {Optimize EJ1['I/J{AN+! ok)] (4.14) 
1 1, subject to {i)n, {ii)n, {iii)n, 1:S; n :s; N, 

provided that we view the pair (xn; An) as a new state-variable Yn and 
that we consider the probability measure p~ (.) on the augmented state 
spaces {Yn}. Thus we can also imbed Q1{X1; 5.) into the family of sub­
problems Q = {Qn(Xn; An)}: 

Q (x .5.) {Optimize EJn[ 'I/J(An 0 rn 0 ···0 TN 0 k)] (4.15) 
1 1, subject to (i)m, (ii)m, (iii)m, n :s; m :s; N. 

We note that un{xn; An) denotes the optimum value of Qn(xn; An) (see 
(4.10)). Then we have the backward recursive relation: 

Theorem 4.1 

Opt L un+!{ Y; A 0 r{x, u) )p{ylx, u), 
uEU yEX 

x E X, A EOn, n = 1,2,··· ,N, (4.16) 

UN+! {X; A) = 'I/J{A 0 k{x)), x E X, A EON+!. (4.17) 

Proof It suffices to note that the family of subproblems Q = 
{Qn(Xn; An)} is a terminal problem on {Yn}. Thus, from Corollary 3.1, 
we have the desired recursive formula (4.16),{4.17). • 

Theorem 4.2 Let 'Y~{x; A) be the set of all maximizers in (4.16). Then 
policy "(* is optimal in augmented Markov class: for any Markov policy 
"( E IT, 

(4.18) 
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Proof This is a direct transliteration of Corollary 3.2. • 
Remark 4.1 There are two definitions: the set of all maximizers and a 
maximizer. As for optimal value, there is not much to choose between the 
former definition and the latter. For the clarification of optimal policies 
in the next section, we prefer the former to the latter. 

4.3 Subproblems associated with histories 
In this subsection, we consider a larger family of subproblems n = 

{Rn(hn)}: 

Optimize 

subject to 

(4.19) 

The subproblem Rn(hn) starts at a given history hn E Hn on the nth 

stage (see also [13, 16]). The expectation operator Et is induced from 
the transition law p, a primitive policy J.L = {J.Ln,' .. ,J.LN} E IIn(P), and 
a history hn = (Xl, UI, ... ,Un-I, Xn) E Hn: 

where 

Un = J.Ln{hn), Un+1 = J.Ln+1{hn+1), ... , UN = J.LN(hN}, 

hm = (hn' Un, Xn+l, Un+l,··· ,Xm-I, Um-I, xm). 

The objective function, 

W:= 'I/J{rl 0'" 0 rN 0 k) 

(4.20) 

{4.21} 

is the evaluation of the process starting from a pair of stage and history 
(n, hn ) to the final stage (N + I), and the conditional probability law on 
the product space X N -n+1 , 

Phn (xn+1,"" XN+1), 

is induced from the triplet (p, J.L, hn): 

Pt (Xn+b'" ,xN+d 
.- pl-'(Xn+1 = Xn+b ... ,XN+1 = XN+1 I hn), 

.- P(Xn+1 = Xn+l, Un+l = Un+l, 
... ,XN+1 =XN+1,UN+1 =uN+1lhn), (4.22) 
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where Urn = {Lrn(hrn ), n ~ m ~ N. Thus we see that 

P!:n (xn+1,"" XN+I) = PnPn+1'" PN, (4.23) 

where 

We note that the multiple summation in (4.20) is taken over x N-n+1, 
and that the optimization in (4.19) is taken over all primitive policies 
{L E IIn (P). Thus we define, 

wn(hn):= Max E~ [¢(rl 0··· 0 rN 0 k)], hn E Hn, 1 ~ n ~ N, 
j.tEIIn{P) n 

(4.24) 
where 

(4.25) 

Then we have the backward recursive relation: 

Theorem 4.3 

wn(h) = Max ~ W n+1(h,u,y)p(ylx,u), hE Hn, 1 ~ n ~ N, 
uEU L.t 

yEX 

WN+1(h) = 'ljJ(rl 0 ••• 0 rN 0 k), hE HN+1' 

Proof This is straightforward. 

(4.26) 

(4.27) 

• 
Theorem 4.4 Let {L~(h) be the set of all maximizers in (4.26). Then 
policy {L* is optimal in primitive class; for all {L E II(P), 

E:;[¢(rlo ... orNok)] ~E:l[¢(rlo ... orNok)], YXl EX. (4.28) 

5. Equivalences and Optimality 

In this section we establish two equivalent relations among the three 
related problems. Further, by use of the equivalences, we show that 
the desired optimal general policy is obtained by solving a recursive 
equation on the augmented process and by transforming the resultant 
optimal Markov policy. 

5.1 Two Equivalent Relations 

Now let us focus our attention on optimality relations among three 
optimization problems Pl(xI), Q = {Qn(xn; An)} and n = {Rn(hn)}. 
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Let VI {xd denote the maximum value of the original problem PI {xd in 
(2.4). The first equivalence is among the policy classes. 

Lemma 5.1 (Equivalence I) 

(i) Any primitive policy JL generates a general policy a which satisfies 

and vice versa. Thus we have 

Max E:1 ['l/J{rl 0 .. • 0 rN 0 k)] = Max E~l ['l/J{rl 0 .. · 0 rN 0 k)], 
UEII(g) /-IEII(p) 

Xl EX. (5.2) 

(ii) Any Markov policy 'Y of QI{XI;~) generates a general policy a of 
PI {xd which satisfies 

'VXI EX, YI = (Xl; ~). 
(5.3) 

Proof 

(i) Any JL E II{p) is compressed to the a E II(g) by deletion of the 
dependency on the intermediate control{s). Conversely, any a 
generates a JL with the same expected value. 

(ii) Given 'Y, we define an {Xl, X2," ., xn) as follows: 

UI .- 'YI{XI; ~), A2 .- ~ 0 r{xI' ud, 
U2 .- 'Y2{X2; A2), A3 .- A2 0 r{x2, U2), 

(5.4) 

Un-l .- 'Yn-I{Xn-l, un-d, An .- An-I 0 r{Xn-l, un-d, 
an{XI,x2, ... ,Xn) .- 'Yn{xn; An). 

Then a has the same expected value as 'Y. • 
We remark that both the probability measures are coincident: 

P:10=P!:lO onXN , xIEX. (5.5) 

That is, (5.1) holds for any reward function: 

(5.6) 
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The second equivalence is between the optimal primitive policy and 
the optimal augmented Markov policy. 

Theorem 5.1 (Equivalence II) Let J.t*E II(p) and 'Y*E IT be optimal, 
respectively. Then both optimal values are equal: 

E~:["p{rlo ... orNok)] =EJ:[T], "Ix I EX, YI={XI))' (5.7) 

Further, both optimal policies coincide on histories: 

J.t~{hn) = 'Y~{xn; r{xI, UI) 0'" 0 r{Xn-l, un-d) 

"Ihn = (XI, UI,···, Xn-!, Un-I, Xn) E Hn, 1 ~ n ~ N. (5.8) 

Proof This is a backward induction on stage number. • 
Corollary 5.1 (Equivalence between primitive and augmented 
Markov classes) 

(i) The optimal policy 'Y* E IT satisfies 

E~J "p{rl 0" 'orNok)] ~ EJ: [T], "II' E II(p), Xl EX, YI = (Xl)). 
(5.9) 

(ii) Thus we have 

Max E~l[ "p{rl 0·' 'orNok)] = MC1?CEJl [T], "Ixi EX, YI = (Xl)). 
IlETI(P) 'YETI 

To summarize these results we have: 

Corollary 5.2 (Equivalence among three problems) 

(i) Three optimal value functions are equal: 

(5.1O) 

I - -VI(Xt} = wt{xt} = U (Xl; 'x), "IXI EX, YI = (Xl; ,x). (5.11) 

(ii) Let 'Y* E IT and 1'* E II(p) be the optimal policies obtained by solv­
ing the recursive equations (4.16) and (4.26) respectively. Then 
both optimal policies coincide on histories: 

J.t~(hn) = 'Y~(xn; r(xI, UI) 0 ••• 0 r{Xn-l, un-d) 

"Ihn = (XI,UI,'" ,Xn-I,Un-I,Xn) E Hn, 1 ~ n ~ N.{5.12) 

The general policy a*. compressed from 1'* through the deletion, 
is optimal in II{g). Furthermore the three optimal policies a*, 1'* 
and 'Y* have the same expected value: 

E~: ["p{rl 0'" 0 rN 0 k)] E~: ["p(rl 0'" 0 rN 0 k)] 

= EJ: [T], "Ixi EX, YI = (Xl)). 
(5.13) 
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5.2 Optimal policies 

Now we show that the optimal policy for Q in IT yields an optimal 
policy for Pl(xt} in class II(g). The optimum value Vl(Xt} of problem 
Pl(xt} is Ul(Xl; 'x): 

(5.14) 

Further, the optimal Markov policy 1* generates a general policy a* of 
(2.4) through (5.4). 

Theorem 5.2 The policy a* is optimal in general class; for any general 
policy a E II (g) , 

E~:['IjJ(rlo ... orNok)] ~E~l['IjJ(rlo ... orNok)J, \:Ixl EX. (5.15) 

Proof This follows from Lemma 5.1(ii), Theorem 5.1 and Lemma 
5.1(i). • 
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Chapter 9 

CLASSIFICATION PROBLEMS IN MDPS 

L.C.M. Kallenberg 
University of Leiden 

The Netherlands 

Abstract In this paper we investigate classification problems for Markov deci­
sion processes (MDPs). These MDPs can be classified in several ways. 
One way is based on the concept communicating, and distinguishes be­
tween communicating, weakly communicating and noncommunicating. 
Another way of classification is based on the ergodic structure. In this 
approach the distinction between completely ergodic, unichain and mul­
tichain is made. Furthermore, there is a classification based on decom­
position of the state space. This decomposition distinguishes between 
several levels. At each level there is a set of recurrent classes and a 
(perhaps empty) set of transient states. 

Classification of an MDP may be of interest, e.g. for undiscounted 
MDPs both in the unconstrained as in the constrained case. We review 
all these classification problems and present old and new results. It 
turns out that these problems, except one, can be solved in polynomial 
time; algorithms and complexity results are given. The only problem for 
which, to our knowledge, no polynomial-time algorithm is known, is the 
distinction between a unichain and a multichain MDP. For this problem, 
we have some partial results which can be obtained in polynomial time. 

1. Introduction 
Consider a discrete Markov decision problem (MDP) with finite state 

space E, finite action sets A(i), i E E, and transition probabilities Pij(a), 
a E A(i) and i,j E E. Rewards are no subject of our study, so they are 
not mentioned here. A deterministic policy f is a function which assigns 
in a deterministic wayan admissible action to each state, i.e. f(i) E A(i), 
i E E. Any deterministic policy f induces a transition probability ma­
trix P(f) of a Markov chain with (i,j)th entry given by Pij(f(i)); we 
shortly say the Markov chain of policy f, or the Markov chain P(f). A 
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randomised policy 7r is a function which assigns in a randomised wayan 
admissible action to each state, i.e. in state i action a E A( i) is chosen 
with probability 7ri(a). Hence, a deterministic policy is a special case 
of a randomised policy. Any randomised policy 7r induces a transition 
probability matrix P(7r) of a Markov chain with the (i,j)th entry given 
by ~aPij(a)7ri(a); we shortly say the Markov chain of policy 7r, or the 
Markov chain P(7r). We assume the reader familiar with concepts from 
(finite) Markov chains as accessible, communicating, recurrent (or er­
godic) state, transient state, ergodic (or recurrent) class, closed set and 
complete ergodicity (or irreducibility). 

There are several ways to classify MDPs. A first one, introduced by 
Bather [1], distinguishes between communicating and noncommunicating 
MDPs. An MDP is communicating if for every i,j E E there exists a 
deterministic policy f, which may depend on i and j, such that in the 
Markov chain P(J) state j is accessible from state i. An MDP is weakly 
communicating if E = El U E2, where El n E2 = 0, El is a closed 
communicating set under some randomised policy and E2 is a (possibly 
empty) set of states which are transient under all (randomised) policies. 
The concept of weakly communicating was proposed by Platzman [8] 
under the name simply connected. 
A second kind of classification concerns the ergodic structure. We dis­
tinguish between completely ergodic (or irreducible), unichain and mul­
tichain MDPs. An MDP is completely ergodic (or irreducible) if the 
Markov chain P(J) is completely ergodic (or irreducible) for every de­
terministic policy f. We say that an MDP is unichain if for every deter­
ministic policy f the Markov chain P(J) has exactly one ergodic class 
plus a (possibly empty) set of transient states. An MDP is multichain 
if there exists a deterministic policy f for which the Markov chain P(J) 
has (at least) two ergodic classes. 

It is simple to verify the following relations: 

1. irreducible ~ communicating ~ weakly communicating; 

2. irreducible ~ unichain. 

A reason to classify MDPs is, for instance, that a special structure may 
lead to simplified algorithms for solving these MDPs under the average 
reward criterion. MDPs with this criterion are also called undiscounted 
Markov decision problems. 

For a single Markov chain it is easy to determine whether or not 
the Markov chain belongs to a certain class. Easy means polynomially 
solvable, i.e. the problem belongs in terms of complexity to the class P 
of polynomial-time problems. The classification of single Markov chains 
will be discussed in Section 2. 
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For an MDP we have TIiEE #A( i) different deterministic policies and 
each policy induces a Markov chain. Therefore, MDPs are also called 
Markov decision chains. Even in the case that #A(i) = 2 for every 
i E E, there are 2#E policies which is exponential in #E. Since, usually, 
#E is large, the approach to analyse all Markov chains separately is 
prohibitive. The problem to determine whether or not an MDP belongs 
to a certain class is a combinatorial problem. 

These MDP problems are easy (i.e. polynomially solvable), except 
one, which belongs to the complexity class NP of non-deterministic 
polynomial-time problems; it is an open problem whether it belongs to 
P, to Npc (the class of NP-complete, i.e. the most difficult, problems) 
or to NPI := NP - (P u NPC). In Section 3 the classification of 
MDPs is studied. It is also possible to use simplified algorithms after a 
decomposition of the state space. This kind of approach was proposed 
by Bather [2] and by Ross and Varadarajan [9] who introduced the term 
strongly communicating classes. Both methods are similar. Section 4 
deals with this decomposition. 

2. Classification of Markov chains 

Consider a Markov chain with transition matrix P. The classification 
of a Markov chain can be executed in the associated directed graph G (P). 
G(P) has as nodes, the states of the Markov chain, and (i,j) is an arc 
in G(P) if and only if Pij > o. The recurrent classes R1,R2 ,.·· ,Rm 
and the set T of transient states can be determined by the following 
algorithm. 

Algorithm 1 
(Recurrent classes and transient states of a Markov chain) 

1. Determine the strongly connected components of G(P), say 
G1, G2, ... , Gk· 

2. Set m = 0 and T = 0. 

3. For i = 1 to k do: 
if G1 is closed: m = m + 1 and Rm = Gl ; 

else: T = T U Gi . 

For a single Markov chain we have the following properties: 

(i) the concepts of a irreducible and communicating Markov chain 
coincide and correspond to m = 1 and T = <P; 

(ii) the concepts of a unichain and weakly communicating Markov 
chain coincide and correspond to m = 1; 
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(iii) the concept of a multichain Markov chain corresponds to m ~ 2. 

A subgraph of a directed graph is strongly connected if for every pair 
of distinct vertices i and j, there exists a path from i to j as well as a 
path from j to i. A maximal strongly connected subgraph of a directed 
graph is called a strongly connected component. 

The determination of the strongly connected components of a graph 
can be done in O(M), where M is the number of positive entries in 
the matrix P. This algorithm was proposed by Tarjan [10] (in Moret 
and Shapiro [7] a Pascal program can be found). A related approach 
was introduced by Fox and Landi [5]. There is also an elegant O(M) 
algorithm for the computation of the period and the cyclic sets of an 
ergodic class. This algorithm is due to Denardo [3]. 

Let N = #E. Notice that M = O(N2). It is easy to verify that 
Algorithm 1 is correct and has complexity O(M). Hence, all classifica­
tion problems of a single Markov chain are of O(M) = O(N2), so they 
are polynomial and belong to the class P. 

3. Classification of Markov decision chains 
The methods for the determination of the chain structure of an MDP 

use two directed graphs, G1 and G2, both with E as vertex set. In G1 

there is an arc (i,j) if all Markov chains of the MDP have a positive 
one-step transition from ito j, i.e. Pij(a) > 0 for every action a E A(i) : 
minaEA(i)Pij(a) > O. G2 has an arc (i,j) if at least one of the Markov 
chains of the MDP has a positive one-step transition from i to j, i.e. 
Pij(a) > 0 for at least one action a E A(i) : maxaEA(i) Pij(a) > O. Loops 
have no sense for classification problems, so they are deleted. Notice 
that G1 is a subgraph of G2. 

Let A = LiEE #A(i), the total number of actions in the MDP. Since 
for the construction of G1 and G2 each action has to be considered and 
this action can generate positive one-step transitions to all N states, the 
construction of G1 and G2 has complexity O(A· N). 

We also introduce the concept of the condensed graph G~. The con­
densed graph G~ has a (compound) vertex for each strongly connected 
component of G1. Let i and j be compound vertices of G~ correspond­
ing to the strongly connected components Ck and CR., and let Vk and VR. 
be the vertex sets in G1 of Ck and Cf respectively. Then, there is an 
arc from i to j in G~ if every Markov chain of the MDP has a positive 
one-step transition from some vertex of Vk to some vertex of Ve, i.e. 
maxrEVk {minaEA(r) LSEVi Prs(a)} > O. States in the same strongly con­
nected component are mutual accessible under any policy. Hence, the 
arc (i,j) in G~ means that any sEve is accessible from any r E Vk under 
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any policy. The construction of this condensed graph is of O(A· N). The 
operation 'condensation' can be repeated until there are no changes in 
the graph. Let (G~)* be the last graph that is obtained after repeated 
condensation. 

Example 3.1 Let 
E = {1,2,3,4}; A(I) = {1,2}, A(2) = A(3) = A(4) = {I}. 
P12(I) = 1; P13(2) = 1; P23(1) = P24(1) = 0.5; P32(1) = P34(1) = 0.5; 
P4l (1) = 0.5, P42 = P43 = 0.25. 
Consider Gl = (VI, AI): 
VI = {1,2,3,4}; Al = {(2,3),(2,4),(3,2),(3,4),(4,1),(4,2),(4,3)}. 

The strongly connected components of G l are: C l = {I} and C2 = 
{2,3,4}. G~ = (VeI,A~) with Vel = {1*,2*}, where 1* corresponds to 
vertex 1 and 2* to the vertices {2, 3, 4}, and A~ = {(I *,2*), (2*,1 *)}. If 
the graph G~ is condensed then we obtain (G~)* consisting of a single 
vertex. 

The next theorem shows that irreducibility is equivalent to the prop­
erty that (G~) * consists of a single vertex. 

Theorem 3.1 An MDP is irreducible if and only if the ultimate con­
densation (G~)* consists of a single vertex. 

Proof Suppose that (G~)* consists of a single vertex. From the defini­
tion of condensation it follows that each two states communicate under 
any deterministic policy, i.e. the Markov chain is irreducible. Next, 
suppose that (G~)* has at least two vertices. Each component is a 
(compound) vertex and there is a vertex, say i, without an incoming 
arc (since the compound vertices are strongly connected components). 
Therefore, in every state of the compound vertices j i- i an action can 
be chosen with transistion probabilities 0 to the states of the compound 
vertex i. The Markov chain under this policy is not irreducible. • 

Theorem 3.1 yields the following algorithm for the irreducibility prop­
erty. 

Algorithm 2 (Irreducibility) 

1. Construct the graph G l and let G = G l 

2. Determine the strongly connected components of G, 
say Gl , C2, ... , Gk . 

3. If all components consist of one vertex: go to step 4; 
Otherwise: construct the condensed graph Ge, let G = Ge and go 
to step 2. 
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4. If k = 1: the MDP is irreducible; 
If k ~ 2: the MDP is not irreducible. 

Theorem 3.2 The time-complexity of Algorithm 2 is O(A . N 2). 

Proof The construction of G l and G~ has complexity O(A . N). The 
determination of the strongly connected components has as order the 
total number of arcs, which is O(N2) ~ O(A· N). Hence, it is sufficient 
to show that the number of iterations is at most N. Each new iteration 
starts with a condensed graph for which the strongly connected com­
ponents have to be determined. If each component consists of a single 
vertex, the algorithm terminates; if not, the next condensed graph has 
at least one fewer vertex. • 

Next, we consider the problem to decide whether an MDP is commu­
nicating. The result is based on the following theorem. 

Theorem 3.3 An MDP is communicating if and only if the graph G2 

is strongly connected. 

Proof Notice that (i,j) is an arc in G2 if and only ifmaxaEA(i)Pij(a) > 
O. Hence, for any completely mixed stationary strategy 1f (i.e. 1fi(a) > 0 
for all i and a) Pij (1f) > 0 if and only if (i, j) is an arc in G2 . With this 
interpretation it is obvious that the concept of a communicating MDP 
is equivalent to the strongly connectness of G2 . • 

Note In Filar and Schultz [4] it is shown that communicating is also 
equivalent to the following condition: For every b E ]RN with 2:~1 bi = 
0, there exists Y = {Yi(a) I a E A(i), i E E}, where Y may depend on b, 
such that Yi(a) ~ 0 for all a E A(i), i E E, and 2:i a [<5ij - Pij (a)]Yi (a) = 
bj , j E E. This last system is related to linear programs to solve undis­
counted MDPs (see e.g. Kallenberg [6]). 

Algorithm 3 (Communicating) 

1. Construct the graph G2• 

2. Determine the strongly connected components of G2, 

say Gl , G2 , ••• , Gk. 

3. If k = 1: the MDP is communicating; 
If k ~ 2: the MDP is not communicating. 

Theorem 3.4 The time-complexity of Algorithm 3 is O(A. N). 
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Proof The construction of G2 has complexity O(A . N) and the de­
termination of the strongly connected components has order O(N2) ~ 
O(A·N). • 

The investigation of the property weakly communicating can be done 
analogously by the following algorithm which was proposed in Platz­
man [8]. 

Algorithm 4 (Weakly communicating) 

1. Construct de graph G2 

2. Determine the strongly connected components of G2, 

say (71,(72, ... ,(7k. 

3. a) Set m = 0 and T = 0. 
b) For i = 1 to k do: 

if (7i is closed: m = m + 1 and Rm = (7i; 

else: T = T U (71. 

4. If m 2 2: the MDP is not weakly communicating; 
Ifm = 1: 
if T = 0: the MDP is communicating, implying weakly communi­
cating; 
else: go to step 5. 

5. a) Let Ci = 1 for i ¢ T and Ci = 0 for i E T; 

b) S = 0; 
c) For every i E T do: 

if Ej Pij(a)Cj > 0 for every a E A(i) : Ci = 1 and S = sui i}. 
d) If S = 0: the MDP is not weakly communicating; 

else: T = T\S and go to 5e; 

e) if T = 0: the MDP is weakly communicating; 
else: go to 5b. 

Theorem 3.5 
Algorithm 4 is correct and the time-complexity is O(A . N 2). 

Proof Weakly communicating means that each state is either tran­
sient under all policies or an element of a communicating class under 
some policy. If the algorithm ends in step 4 with m = 1 and T = 0, 
then the MDP is communicating, so certainly weakly communicating. 
If the algorithm terminates in step 4 with m 2 2, then there are two 
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ergodic sets under all policies: the MDP is not weakly communicating. 
If the algorithm terminates in step 5d, then there is a state which does 
not belong to the maximal communicating class and will not reach this 
maximal communicating class under all policies, so it is recurrent for 
some policy: the MDP is not weakly communicating. Finally, when T 
becomes empty in step 5e, the states of the original set T are transient 
under all policies, so the MDP is weakly communicating. 

For the complexity we remark that the steps 1 until 4 are executed 
only once and have complexity O(A . N) as shown before. Step 5 can 
be executed at most N times, since at each iteration the set T becomes 
strictly smaller. In each iteration the computation ~j Pij(a)Cj has to 
be executed for every i E T and a E A(i). Each computation is O(N) 
and has to be done O(A) times: the overall computation of step 5 is 
O(A. N 2 ). • 

We can conclude that the classification problem to decide whether an 
MDP is irreducible, communicating, weakly communicating or noncom­
municating is polynomially solvable. Next, we continue with the distinc­
tion between unichain and multichain. Before we present the algorithm 
we first give some ideas of the method. We start with a description of 
the operation for states with out degree 1. 

States with outdegree 1 
Suppose that Algorithm 2 (the algorithm for irreducibility) terminates 

with the conclusion 'not irreducible'. If there is a (compound) vertex 
with out degree 1, say from i to j, then the states corresponding to the 
(compound) vertex j are accessible from the states of the (compound) 
vertex i under any policy. Therefore, if the MDP is multichain, then the 
states of i and j can not belong to different recurrent classes. Hence, 
the states of i and j can be merged into a new compound vertex. Then, 
it has to be considered whether there are new arcs in the new graph, 
similar as we did for condensation. 

Starting with the graph Gl, the ultimate condensed graph (G~)* is 
constructed and the operation for states of out degree 1 is executed. 
These two procedures are repeated sequentially. By (G1)+ we denote 
the graph which is finally obtained. 

Theorem 3.6 Let k+ be the number of strongly connected components 
of the graph (G1)+. 

(i) If k+ = 1, then the MDP is unichained. 

(ii) If k+ = 2, then the MDP is multichained. 

(iii) If k+ :;::: 3, then the MDP is either multichained or unichained. 
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Proof 

(i) Suppose that k+ = 1 and the MDP is not unichain, i.e. there is a 
policy f such that the Markov chain P(J) has at least two ergodic 
sets. By the above described construction these two ergodic sets 
will never be combined into one compound vertex. Hence, k+ :2: 2: 
contradiction. 

(ii) Suppose that k+ = 2 and that the final graph has the (compound) 
vertices i* and j*. Remark that there is no arc from i* to j* or 
vice versa. That implies that there are policies fl and f2 such 
that p(Jl) is closed in i* and p(J2) in j*. Hence, fl and f2 can 
be combined in a policy f3 which is multichained. 

(iii) Consider the following model: E = {l, 2, 3}; A(l) = A(2) 
A(3) = {1,2}; P12(1) = P13(2) = P2l(1) = P23(2) = P3l(1) 
P32(2) = 1. Notice that this model is unichain and that G l 

(vl,Al): VI = {1,2,3};Al = 0. Hence, (Gl )+ = Gl and k+ = 3. 
So, k+ :2: 3 and the MDP is unichained, is possible (that k+ can 
be at least 3 for a multichain model is obvious). • 

Example 3.2 Let 
E = {1,2,3,4,5}; A(l) = A(2) = {1,2},A(3) = A(4) = A(5) = {I}. 
P13(l) = 1; Pll(2) = P14(2) = 0.5; P23(1) = 1; P22(2) = 1; P32(1) 
P3l(1) = 0.5; P43(1) = 1; P53(1) = P55(1) = 0.5. 
Consider G I = (Vl,AI): VI = {1,2,3,4,5};A I = {(3,1),(3,2),(4,3), 
(5,3)}. The strongly connected components of G l are: Ci = {i}, 1 ~ i ~ 
5· (GD* = Gl . 

Then, since the vertices 4 and 5 have outdegree 1 (both to state 3), they 
are merged into the compound vertex 3* consisting of the states {3, 4, 5}. 
For the remaining problem we have Gl = (VI, A I ) with VI = {I, 2, 3*} 
and Al = {(1,3*),(3*,1),(3*,2)}. The strongly connected components 
ofGl are: Cl = {1,3*}, C2 = {2}. (G~)* = (Vel,A~) with Vel = {1*,2} 
where 1* corresponds to the vertices 1 and 3*, and A~ = {(1*,2)}. Then, 
the vertices 1* and 2 are merged into one final compound vertex 2* : k+ = 
1. From Theorem 3.6 it follows that the MDP is unichain. 

Note The counterintuitive difference between the property that k+ = 2 
yields a multichain MDP and k+ :2: 3 can result in a unichain MDP is 
caused by the fact that in k+ = 2 no arcs from 1* means that 1* can 
be a closed (compound) vertex and in k+ :2: 3 no arcs from 1* can mean 
that arcs go either to a (compound) vertex 2* or to a (compound) vertex 
3*. 
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Algorithm 5 (Unichain or multichain) 

1. Construct, by Algorithm 2, from graph a l the (repeatedly) con­
densed graph (a~)*. 

2. If there are (compound) vertices with out degree 1: 

a) execute the merging operation; 

b) add actions from and to the new compound vertex 
(if they exist corresponding to the definition of a l for the 
new graph a l ). 

3. a) Let (al )+ be the graph obtained after the steps 1 and 2. 

b) If (al )+ = al : go to step 4; 
else: al = (al )+ and go to step 1. 

4. If k+ = 1, then the MDP is unichained; 
if k+ = 2, then the MDP is multichained; 
if k+ 2:: 3, then no decision can be made. 

Theorem 3.7 The complexity of Algorithm 5 is O(A· N 2). 

Proof The construction of a l , a~ and the determination of the strongly 
connected components are of order O(A· N). This can be done at most 
N times (because each time this has to be done, the number of states 
is strictly smaller). Furthermore, the total work for merging states and 
adding actions during one iteration is of order O(A). Hence, the overall 
complexity is O(A· N 2). • 

Proof 

1. It is obvious that the recognition problem 'is the MDP multi­
chained' is in NP: the certification can be done in O(N2). 

2. If the algorithm ends in step 4 with k+ 2:: 3, then each policy 
corresponding to the (in general smaller) MDP of the last graph 
(al )+ can be analysed (as in Section 2) to decide whether the 
MDP is unichain or multichain. 

3. If the MDP is deterministic, i.e. all transition probabilities Pij(a) 
are 0 or 1, then there is a one-to-one correspondence between the 
arcs of the graph a2 and the action set of the MDP. Furthermore, 
the MDP is multichain if and only if the graph a2 has two vertex­
disjoint simple cycles. The simple cycles of a directed graph can 
be detected by the method described in Weinblatt [11]. Since a 
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graph may have an exponential number of simple cycles, the deter­
mination of all simple cycles is JVP-hard. However, the algorithm 
has experimentally been tested, and the tests indicate that the 
algorithm is reasonable fast (see Weinblatt [11]). 

4. Decomposition of Markov decision chains 

In Bather [2] a decomposition of the state space is described based 
on the accessibility between the states. The state space is divided into 
several levels. The first level Ll contains the closed, communicating 
subsets of the state space. Hence, Ll consists of the closed, strongly 
connected components of G2 and can be determined in O(A· N). 

For the next step in the decomposition, we consider El := E\L1, 

i.e. the states in the open strongly connected components of G. It will 
be useful to distinguish between the states from which for any policy 
absorption in Ll will occur (the transient set T1) and the states from 
which absorption in Ll can be avoided by an appropriate choice of the 
policy (the 'new' set Ed. Tl and the 'new' El can be computed similarly 
to step 5 of Algorithm 4. 

Algorithm 6 (Determination of T1) 

1. Let Ci = 1 for i E Ll and Ci = 0 for i E E1: let Tl = 0. 

2. S= 0. 

3. For every i E El do: 
if ~jPij(a)Cj > 0 for every a E A(i) : Ci = 1 and S = S U {i}. 

4. If S = 0: stop; 
else: Tl = Tl uS, El = El \8 and go to step 5. 

5. if El = 0: stop; 
else: go to step 2. 

If the 'new' El =1= 0 then, by an appropriate choice of the deterministic 
policy j, El is closed under P(J). Hence, after deleting for i E El 
the actions a E A(i) with ~jELIUTl Pij(a) > 0, the resulting (to Ed 
restricted model is again an MDP and can be treated in the same way, 
i.e. we can construct a second level with L2 and a (possibly empty) set 
transient set T2. In this way we proceed until all states are assigned to 
an L- or T-set. 
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Algorithm 7 (Bather decomposition of the state space) 

1. a) m = 0; Em = E. 

b) Construct the graph G2 for the MPD corresponding to state 
space Em. 

c) m = m + 1. 

d) Determine the set Lm of strongly connected and closed com­
ponents of G2. 

e) Em = Em- 1 \Lm. 

2. a) Let Ci = 1 for i ELm and Ci = 0 for i E Em; let Tm = 0. 
b) 8 = 0. 
c) For every i E Em do: 

if L:jEEm-l Pij(a)Cj > 0 for every a E A)i) : Ci = 1 and 
8=8U{i}. 

d) If 8 = 0: go to step 3; 
else: Tm = Tm U 8, Em = Em \8 and go to step 2e. 

e) if Em = 0: stop; 
else: go to step 2b. 

3. a) For i E Em do 
for a E A(i) do if L:jELmUT", Pij(a) > 0: A(i) = A(i)\{a}. 

b) go to step lb. 

Example 4.1 Consider the following MDP: 
E = {I, 2, 3, 4,5, 6}; A(l) = A(3) = {1,2}, A(2) = A(5) = A(6) = 
{1},A(4) = {1,2,3}; P12(1) = P14(2) = P23(1) = P32(1) = P35(2) = 
P43(1) = P45(2) = P44(3) = P56(1) = P66(1) = 1. 

Level 1: G2 = (V, A) with V = {I, 2, 3, 4, 5, 6} and 

A = {(I, 2), (1,4), (2,3), (3, 2), (3,5), (4, 3), (4,5), (4,4), (5,6), 
(6,6)}. G2 has as strongly connected components: 

C1 = {I}, C2 = {2,3}, C3 = {4}, C4 = {5} and C5 = {6}. 

L1 = {6}; E1 = {1,2,3,4,5}. C6 = 1,c1 = C2 = C3 = C4 = C5 = 
o. T1 = 0. 
8 = 0; C5 = 1; 8 = {5}; T1 = {5}; E1 = {1,2,3,4}. 

S = 0; A(3) = {I}, A(4) = {1,3}. 

Level 2: G2 = (V, A) with V = {I, 2, 3, 4} and 

A = {(1,2),(1,4),(2,3),(3,2),(4,3),(4,4)}. 
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G2 has as strongly connected components: C1 = {I}, C2 

{2,3}, C3 = {4}. 

L2 = {2,3}; E2 = {1,4}. C2 = C3 = 1; Cl = C4 = o. T2 = 0. 
8 = 0. A(l) = {2}, A(4) = {3}. 

Level 3: G2 = (V, A) with V = {1,4} and A = {(1,4), (4,4)}. 

G2 has as strongly connected components: C1 = {I}, C2 = {4}. 

L3 = {4};E3 = {I}. C4 = 1,c1 = o. T3 = 0. 
8 = 0. C1 = 1;8 = {1};T3 = {1};E3 = 0. 

The decomposition ends with the following levels: 
E1: T1 = {5} -+ {6} 
E2: {2,3} 
E3: T3 = {I} -+ {4} 

Theorem 4.1 The complexity of the Bather decomposition is 0(A·N2). 

Proof Since in each iteration m := m + 1 and Lm i- 0, the algorithm 
terminates after at most N iterations. Consider the complexity of one 
iteration. 

Step 1: part b is of O(A· N), part c of 0(1) and part d of 0(N2). 

Step 2: part a is of O(N), part b of 0(1), part c of O(N . A), part d of 
O(N) and part e of 0(1). 

Step 3: part a is of O(A· N) and part b of 0(1). 

Hence, the complexity of one iteration is O(A· N). Therefore, the overall 
complexity is O(A . N 2 ). • 

Ross and Varadarajan [9] have presented a similar decomposition 
method. In this decomposition the state space is partitioned into strong­
ly communicating classes CI, C2, ... , Cm and a set T of transient states 
with the following properties: 

(i) the states of T are transient under all stationary policies; 

(ii) suppose R(7r"} is a recurrent class under some stationary policy 7r, 

then R(7r) ~ Ci for some 1 ~ i ~ m; 

(iii) there exists a policy 7r such that CI, C2, ... , Cm are the recurrent 
states of the Markov chain P(7r). 

A set states 8 ~ E is called a strongly communicating set if there ex­
ists a stationary policy 7r such that 8 ~ Ri(7r), where ~(7r) is a recurrent 
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class of the Markov chain P{ 7r). Hence, strongly communicating implies 
communicating. Example 4 (see below) shows that the reverse statement 
is not true. A (strongly) communicating set S is a (strongly) commu­
nicating class if S is maximal with respect to the property (strongly) 
communicating. Notice that a closed communicating class is a strongly 
communicating class. 

Example 4.2 Consider the Markov chain 

( 0 1 0) 
P = 0.5 0 0.5 

001 

S = {I, 2} is a communicating class, but not strongly communicating. 

The sets Ei in the Bather decomposition are the strongly communi­
cating classes Ci of Ross and Varadarajan. The union of the transient 
sets Ti in the Bather decomposition is the transient set T in the approach 
of Ross and Varadarajan. Hence, Algorithm 7 also gives the decompo­
sition by Ross and Varadarajan. A formal proof of these properties can 
be found in Ross and Varadarajan [9]. 

References 

[1] Bather, J.(1973a). "Optimal decision procedures for finite Markov 
chains. Part II: Communicating systems", Advances in Applied 
Probability 5, 521-540. 

[2] Bather, J. (1973b). "Optimal decision procedures for finite Markov 
chains. Part III: General convex systems", Advances in Applied 
Probability 5, 541-553. 

[3] Denardo, E.V. (1977). "Periods of connected networks and powers 
of nonnegative matrices", Mathematics of Operations Research 2, 
20-24. 

[4] Filar, J.A. and T.A. Schultz (1988). "Communicating MDPs: equiv­
alence and LP properties", Operations Research Letters 7, 303-307. 

[5] Fox, B.L. and D.M. Landi (1968). "An algorithm for identifying 
the ergodic subchains and transient states of a stochastic matrix", 
Communications of the ACM 11, 619-62l. 

[6] Kallenberg, L.C.M. (1983). "Linear programming and finite Marko­
vian control problems", Mathematical Centre Tract 148, Amster­
dam. 



Classification problems in MDPs 165 

[7] Moret, B.M.E. and H.D. Shapiro {1990}. " Algorithms from P to 
NP, Volume I: Design and efficiency", Benjamin/Cummings, Red­
wood City. 

[8] Platzman, L.K. {1977}. "Improved conditions for convergence in 
undiscounted Markov renewal programming", Operations Research 
25, 529-533. 

[9] Ross, K.M. and R. Varadarajan {1991}. "Multichain Markov de­
cision processes with a sample path constraint: a decomposition 
approach", Mathematics of Operations Research 16, 195-207. 

[10] Tarjan, R.E. {1972}. "Depth-first search and linear graph algo­
rithms", SIAM Journal of Computing 1, 146-160. 

[11] Weinblatt, H. {1972}. "A new search algorithm for finding the simple 
cycles of a finite directed graph", Journal Association for Comput­
ing Machinery 19, 43-56. 



Chapter 10 

OPTIMALITY CONDITIONS FOR CTMDP 
WITH AVERAGE COST CRITERION* 

Xianping Guo 
Department of Mathematics 

Zhongshan University, 

China 

gxp@z5u.edu.cn 

Weiping Zhu 
Department of Computer Science and Electrical Engineering 

The University of Queensland, 

Australia 

weiping@csee.uq.edu.au 
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decision processes (MDPs). It has been studied by many researchers, 
such as Bather [1], Bertsekas [2], Doshi [3], Howard [4], Kakumanu [5], 
Lippman [6], Miller [7], Puterman [8], Yushkevich and Feinberg [9], Wal­
rand [10], etc .. Both average and discounted reward (or cost) criteria are 
often used in the study of CTMDPs. This paper deals with the average 
{possibly unbounded} cost criterion for CTMDPs. We are concerned 
with axioms that guarantee the existence of an average cost optimal 
stationary policy. In [1]-[13], many sets of conditions for this purpose 
r ave been provided and the existence of optimal policies is proved using 
the optimality equation (OE). Guo and Liu [14] replaced the OE by the 
optimality inequality {OlE}. They not only proved the existence of aver­
age optimal stationary policies under conditions weaker than those used 
in [5, 11, 12, 13] for the OE, but also gave an example to show that the 
conditions that ensure the existence of a solution of the OlE do not imply 
the existence of a solution of the OE. In the spirit of [8, 15, 16] on dis­
crete time MDPs, we provide a new set of conditions, based on optimal 
discounted cost values, which is weaker than those used in [5, 11, 12, 14], 
and prove the existence of both the average cost optimal stationary poli­
cies and solutions to the OlE. Moreover, an admission control queueing 
model and controlled birth and death processes are given for which the 
new set of conditions holds, whereas the conditions in [5, 11, 12, 14] 
fail to hold. The conditions and results in this paper are very similar 
to those in Puterman [2] and Sennott [15, 16] on discrete time MDPs. 
Hence, this paper extends recent work to CTMDPs. 

In Section 2, we present the model, notation and definitions. In Sec­
tion 3 some results for CTMDPs with discounted cost criterion are pro­
vided. In Section 4, we present the conditions to establish OlE for 
CTMDPs with average cost criterion and prove the existence of optimal 
stationary policies. In Section 5 we give an admission control queueing 
model and controlled birth and death processes to illustrate the results 
of this paper. 

2. Model, notation and definitions 
We observe continuously a controlled system in which, when the sys­

tem is at state i of a denumerable space S, a decision maker chooses an 
action a from a set A{ i} of available actions. There are two consequences 
for the action: 

1. the decision maker pays a cost rate r(i, a), and 

2. the system moves to a new state j, j E S, according to a transition 
rate q(jii, a}. 
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The goal of the decision maker is to choose a sequence of actions to 
make the system perform optimally with respect to some predetermined 
performance criterion V. So the model can be described by a five-element 
tuple {S, (A{i),i E S), r,q, V} having the following properties: 

(i) the state space S is denumerable; 

(ii) every available action set A{i) is a measurable subset of a measur­
able action space A, with a-algebra T; 

(iii) the cost rate r is a function bounded below on K := {(i, a)li E S, 
a E A{i)}; 

(iv) the transition rate q satisfies: q(jli, a) ~ 0 Vi =J j, a E A{i), 
i,j E S, and furthermore, 2:jEs q(jli, a) = 0 Vi E S, a E A{i), 
and q{i) := sUPaEA(i) { -q{ili, a)) < 00 for i E S; 

(v) V is a discounted (or average) cost criterion, which is defined be­
low. 

A randomized Markov policy 7r is a family {7rt, t ~ O} satisfying: 

1. for any t ~ 0 and i E S, 7rt{·li) is a probability measure on A such 
that 7rt{A{i)li) = 1; 

2. for all BET and i E S, 7rt{Bli) is a Lebesgue measurable function 
in t on [0,(0). 

The set of all randomized Markov policies is denoted by IIm. A policy 
7r = {7rt, t ~ O} is called randomized stationary if 7rt{Bli) == 7ro{Bli) \It ~ 
0, BET, i E S. We denote this policy by 7r(f. The set of all randomized 
stationary policies is denoted by IIs. A policy 7r = 7r(f E IIs is called 
stationary if there exists f E F := {lif : S ~ A, f{i) E A{i), i E S} 
such that 7ro(J{i)li) = 1 for every i E S. We denote this policy by foo 
(or f, for short). The set of all stationary policies is denoted by II~. 

For any 7r = {7rt, t ~ O} E IIm , let 

qij{t,7r) .- L q(jli, a)7rt{dali), i,j E S, t ~ 0, (2.1) 

r{t, i, 7r) . - L r{i, a)7rt{dali), i E S, t ~ o . (2.2) 

In particular, when 7r = foo E II~, we write qij{t,7r) and r{t, i, 7r) as 
q(jli, f{i)) and r{i, f{i)) respectively. 

For each 7r = {7rt,t ~ O}, let {Q{t,7r) := {qij{t,7r)),t ~ O} be the 
CTMDP infinitesimal generator. The minimum transition matrix with 
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respect to {Q(t,7I"),t ~ O} is denoted by pmin(s,t, 71") = (pijin(s,t,7I")). 

Let pmin(t, 71") := pmin(o, t, 71") for t ~ O. 
In this paper, we propose the following conditions. 

Assumption 2.1 There exist m nonnegative functions Wn, n = 1,2, 
... , m, such that: 

(i) for all i E S, a E A(i), and n = 1,2, ... ,m -1, 

Lq(jli,a)wn(j)::; wn+l(i)j 
jES 

(ii) for all i E S and a E A(i), 

Lq(jli,a)wm(j) ::; O. 
jES 

(2.3) 

(2.4) 

Definition 2.1 A function h on S is said to satisfy Assumption 2.1 if 
Ihl ::; (WI + ... + wm ). 

Assumption 2.2 

(i) R := (WI + ... + W m ) ~ 1; 

(ii) for all i E S, t > s ~ 0 and 71" E TIm, 

it ~pijin(s, U, 7I")qj(U, 7I")R(j)du < 00, (2.5) 
S jES 

where qj(u, 71") := -qjj(u, 71") for j E S, U ~ 0, and Wn comes from 
Assumption 2.1. 

Assumption 2.3 

Ir(i, a)1 ::; MR(i), i E S, a E A(i), for some M ~ O. 

Assumption 2.4 Assumptions 2.1, 2.2 and 2.3 hold. 

Remark 2.1 In Lemma 3.2 below, we provide some conditions and ex­
amples that guarantee that Assumption 2.4 holds. 

Now we define the discounted cost criterion Va and the average cost 
criterion V, as well as the optimal cost values based on these two criteria. 
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For any 7r E IIm, i E S and a > 0, let 

(2.6) 

V(7r, i) .- lim sup ~ iT LPi]in(t, 7r)r(t,j, 7r) dt, (2.7) 
T-+oo 0 jES 

inf Va(7r,i), and V*(i) inf V(7r, i). (2.8) 
7rEIIm 7rEIIm 

A policy 7r* E IIm is called discounted cost optimal if Va (7r* ,i) = V; (i) 
for all i E S. Average cost optimal policies are defined similarly. 

Remark 2.2 Under Assumptions 2.1 and 2.2, we know that pmin(t, 7r) 
is honest for every 7r E IIm. Hence, by (2.6), (2.7) and (2.8), we may 
increase r by adding constant without affecting the discussion on the 
existence of optimal policies. Therefore, we always assume r ;::: 0. 

Remark 2.3 Throughout this paper, a function on S is regarded as a 
column vector, and operations on matrices and vectors are component­
wzse. 

3. Discounted cost optimality 

In this section we provide some results on the discounted cost criterion, 
which are essential to the discussion on the average cost criterion. 

Lemma 3.1 If Assumption 2.1 holds, then for any 7r E IIm and t ;::: 
s ;::: 0, we have 

(i) pmin(s, t, 7r)R ::; f (k ~ I)! (t - s)k-l Rk; 
k=l 

(3.1) 

m 

(ii) 100 e-a(t-s) pmin(s, t, 7r)Rdt ::; L a-k Rk 

k=l 

< (~,,-,) R (3.2) 

where, Rk := Wk + Wk+l + ... + Wm for k = 1,2, ... ,m, and Rl := R. 

Proof See [18, Lemma 2 ]. • 
Lemma 3.2 If one of the following conditions holds, then Assump­
tion 2.4 holds. 
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(i) IIrll := SUPiES,aEA(i) r(i, a) < 00, IIqll := SUPiES q(i) < 00. 

(ii) Assumption 2.1 holds, r ::; MR for some M > 0, and IIqll < 00. 

(iii) Assumption 2.1 holds, r(i,a) ::; MR(i) Vi E S and a E A(i), for 
some M > 0, and the function qR(i) := q(i)R(i) on S satisfies 
Assumption 2.1. 

(iv) For all i E S == {O, 1,··· }, A(i) := {O, I}: 

let q(OIO, 0) = ° and for i ~ 1, 

{ 

/1:t 

( ·1· 0) - -(J.L + A)i 
q J Z, - Ai 

° 

if j = i-I, 
if j = i, 
if j = i + 1, 
otherwise; 

let q(OIO, 1) = -v, q(ll0, 1) = v, and for i ~ 1, 

{ 
J.Li if j = i-I, 

q(jli,l) = -:.(J.L++ A)i - v i!f~ = ~'+ 1 
I\Z V Z J = Z , ° otherwise; 

where ° ::; A ::; J.L, v ~ 0, there are k positive numbers bn, n = 
1,2, ... k such that r(i, a) ::; E~=l bnin for all a E A(i), i E S. 

(v) S == {O, 1, ... }, A(i) = {O, I}, i E S: 

let q(OIO, 0) = ° and for i ~ 1, 

{ 
J.L if j = i-I, 

q(jli,O) = -J.L if j = i, ° otherwise; 

let q(OIO, 1) = -(E~l Ak), q(kIO, 1) = Ak Vk ~ 1, and for i ~ 1, 

{ 
J.L if j = i-I, 

q(jli,l) = -:(J.L + E~l Ak) ~ff ~ = ~'+ k 
I\k Z J = Z , ° otherwise; 

where E~l kAk < 00; r(i,O) = pi+c, r(i, 1) = pi, i E S, p,c > 0. 

Proof Under condition (i), this lemma is obviously valid. Under (ii), 
the lemma follows from Lemma 3.1 and the condition EjEs q(jli, a) = ° 
Vi E S, a E A(i). On the other hand, since qj(u,7r) ::; q(j) Vj E S, 
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7r E TIm, and u 2:: 0, by Lemma 3.1, we can also prove this lemma under 
condition (iii). Similarly, under condition (iv) or (v), this lemma can be 
proved by applying Lemma 3.1. The calculation is straightforward, but 
lengthy, and we shall omit the details here. • 

By Assumption 2.1, we can define 

B(5) := {u: lu(i)1 ::; cR(i) Vi E 5, for some constant c> O}. (3.3) 

Lemma 3.3 If Assumption 2.4 holds, then for all i E 5 and 7r E TIm, 
we have: 

(i) 

(ii) 

LPijin(s, t, 7r) = 1, 
jES 

t> s 2:: 0; 

m 

!Va(7r, i)1 < La-kRk(i) 
k=l 

m 

< (L a-k)R(i); 
k=l 

(3.4) 

(3.5) 

(iii) 7r E TIm is discounted cost optimal if and only if Va (7r) is a solution 
of the following dynamic programming equation within B(5), 

au(i) = inf {r(i,a) + I:q(jli,a)u(j)}; (3.6) 
aEA(i) . S 

JE 

(iv) V;(i) = inf/EF Va(f,i), and V; is the unique solution of (3.6) 
within B(S); 

(v) Any f(E F) realizing the minimum on the right-hand of (3.6) is 
discounted cost optimal. 

Proof See [18, Theorem 1 and Lemmas 2 and 4]. • 
Remark 3.1 Lemma 3.3(i) shows that the minimum transition matrix 
pmin(s, t, 7r) is honest and unique for every 7r E TIm, and will be denoted 
by P(s, t, 7r). That is, pmin(s, t, 7r) = P(s, t, 7r) for t 2:: s 2:: 0, and, 
pmin(t,7r) = P(t, 7r) for t > s 2:: o. 
Lemma 3.4 
If 

(i) Assumption 2.4 holds; and 
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(ii) for every i E S, A(i} is compact, and r(i, a) and :EjEs q(jli, a)R(j) 
are continuous in a on A( i}, 

then, for each ex > 0 there exists a discounted cost optimal stationary 
policy f~. 

Proof For every i E S, by [17, Lemmas A.2 and A.3] and Lemma 3.3, 
we can obtain that :EjEs q(jli, a}V;(j) is continuous in a on A(i). Thus, 
by (ii), there exists f E F realizing the minimum on the right-hand side 
of (3.6). By Lemma 3.3, the result follows. • 

To study monotonicity properties of the discounted cost optimal value 
V;, we take an arbitrary, but fixed, function m on S such that m( i) ~ 
q(i), and m(i) > 0 Vi E S. 

Let ij(kli, a) := :Ej~k [q~~i) + 8ij ], k, i E S, a E A(i}j here 8ij = 0 

for i i- j, 8i j = 1 for i = j, i,j E S. 

Lemma 3.5 Suppose that Assumption 2.4 holds and let A(i) be finite 
for each i E S. 

(i) Let uo(i) := 0, and 

u n+1(i} 

._ . f { r(i, a) m{i) ~ [q(jli, a) i: .. J } ( .) 

.- III ( .) + ( .) 6 ( .) + U~J Un J 
aEA(i) m l + ex m l + ex jES m l 

for iE Sand n ~ O. Then liilln-too un(i) = V;(i) for any i E S, 
ex> o. 

(ii) If A(i) == A Vi E S := {O, 1,··· }; and :: :)~a' m(i) and ij(kli, a) 
are increasing functions in i for any fixed k E S, and a E A, then 
V; (i) is increasing on S. 

Proof 

(i) For u E B(S), let 

Tu(i) 

. { r(i, a)· m(i) L [q(jli, a) i: .. J (.)} 
.- mIll +. . + U~J U J . 

aEA(i) m(i} + ex m(l) + ex . S m(l) 
JE 

(3.7) 
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Then we have Un+! = TUn, Un = TnO and Un ~ Un+! for n 2 0. 
By induction, we can get, for any n 2 1, 

k 

Un < LO'-1{Wl+···+Wk)M 
1=1 

< (!+~+ ... +~)MW. a 0'2 O'k 

Hence, liIlln--+ Un := U exists and U E B{S). By monotone con­
vergence and noting that A{i) is finite for i E S, we see that U 

satisfies (3.6). Thus, (i) follows from Lemma 3.3{iv). 

(ii) By (i), to prove (ii), it suffices to show that, for iI, i2 E S, il 2 i2, 
and n 20, 

(3.8) 

By induction, when n = 0, (3.8) is obviously valid. Suppose now 
that (3.8) holds for n = N. With the notation UN{ -1) := 0, for 
any a E A, i l 2 i2, iI, i2 E S, we have 

00 

j=O 
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Hence, 

Then, uN+1(it} ;:::: UN+l(i2), and so (3.8) is valid for n = N + l. 
This yields (ii). • 

Corollary 3.1 Suppose that Ilqll < 00 and that Assumption 2.4 holds. 
In addition suppose that for any i E S == {O, 1, 2,··· }, A(i) = A, r(i, a) 
is increasing (or decreasing), and there exists a positive constant C ;:::: Ilqll 
such that 

Pc(kli, a) := L (q(j~, a) + bij) 
">k J_ 

is increasing in i for any fixed k E S and a E A. Then V; (i) is increasing 
(or decreasing). 

Proof Take m( i) := C Vi E S. The result then follows from Lemma 3.5 . 

• 
In Lemma 3.4 we provided conditions under which there exists a dis­

counted cost optimal stationary policy. Now we shall investigate more 
detailed results concerning the structure of an optimal policy. 

Lemma 3.6 Suppose that following conditions hold: 

(i) The hypotheses of Lemma 3.4 are satisfied. 

(ii) For any i E S == {O, 1, 2,· .. }, A(i) = A, A is a partially ordered 
set, and r(i, a) is nondecreasing in i, for any a E A. 

(iii) Iql ::; C, for some positive constant C and for any fixed k E S, 
and a E A, Pc(kli, a) is increasing in i. 

(iv) r(i, a) is a superadditive (subadditive) function (refer to [8, page 
103], for instance) on K. 

(v) Pc(kli, a) is a superadditive (subadditive) function on K for all 
fixed k E S. 

Then there exists a discounted cost optimal stationary policy f~ which is 
non decreasing (non-increasing) in i on S. 



Optimality conditions for CTMDP with average cost criterion 177 

Proof We prove the result in the superadditive case. 
By condition (v) and the definition of superadditivity, for i1 < i2, 

al < a2, and all k E S, we have: 

By Lemma 3.5, V~(i) is nondecreasing in i for all a. Applying [8, Lemma 
4.7.2]' we have 

Thus, for each a > 0, l:~o (q(I~I,a) + 6ij) V~(j) is superadditive on K. 

On the other hand, by condition (iv), r is superadditive. Hence, since 
the sum of superadditive functions is superadditive, the result follows 
from [8, Lemma 4.7.1]. • 

4. A verage cost criterion 

In this section we establish the optimality inequality (OlE for short) 
for the average cost criterion if and prove the existence of average cost 
optimal policies. Throughout this section, we assume that the conditions 
in Lemma 3.4 hold. So, by Lemma 3.4, we can let f~ be a discounted 
cost optimal stationary policy with respect to the discounted rate a > o. 

By the Tychonoff Theorem we have that F is a compact metric space. 
Hence, each sequence {f~n' n ~ 1} C F, has a convergent subsequence. 
This means that there is a limit point f* E F for {f~n' n ~ 1}. 

Let ko E S be fixed, and for any a > 0 and i E S, define 

Assumption 4.1 For some decreasing sequence {an} tending to zero 
and some ko E S, there exists a nonnegative function h and a constant 
N such that 

(i) N:S; uQn(i):S; h(i) for all n ~ 1 and i E S; 
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(ii) there exists an action a' E A(ko) satisfying 

L q(jlko, a')h(j) < 00. 

jES 

Theorem 4.1 Suppose that the following conditions hold, 

(i) Assumptions 2.4 and 4.1 hold; and 

(ii) for every i E S, A(i) is compact, and r(i, a) and EjEs q(jli, a)R(j) 
are continuous in a on A( i). 

Then we have: 

(i) there exists a constant g*, a function U on S, and a decreasing 
sequence {am} tending to zero, such that for i E S: 

a) g* lim am V; (i), 
m-too m 

u(i) = lim uam (i); 
m-too 

b) g* > r(i,j*(i)) + Lq(jli,j*(i))u(j) 
jES 

> min {r(i,a) + Lq(jli,a)U(j)}, (4.1) 
aEA(i) . S 

JE 

c) N ~ U ~ h. (4.2) 

(ii) f* is an average cost optimal stationary policy and satisfies 

V(J*OO, i) = g* Vi E S. 

(iii) Any policy f E F realizing the minimum of the right-hand side of 
(4.1) is average cost optimal. 

Proof 

(i) For any n ;::: 1, i E S and a E A(i), by Lemma 3.3 we have 

r(i,f~Ji)) + Lq(jli,f~Ji))V;Jj). 
jES 

Hence, 

jES 
(4.3) 
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Since!* is a limit point of {J~n}' there exists a subsequence {an'} 
of {an} such that limn' --+00 f~ , (i) = !* (i) for all i E S. By As-

n 

sumptions 4.1{ii) and (4.4), we have, for any n' > 0, 

o < Ian' V:n , (ko) I 
< Ir(ko,a')1 + L Iq(jlko,a')1 (h(j) + INI) 

jES 

r (ko, a') + L q (ilko, a') h(j) 
jES 

-2q (kolko, a') (h{ko) + INI) 
< 00. 

Hence, there exists a subsequence {am' } of {an'} such that 

lim am' VQ , (ko) ~ g*. 
m'--+oo m 

By Assumption 4.1(i) and the Tychonoff Theorem, we have that 
{uQm,} is a sequence of the compact metric space I1iEs[N,h(i)]. 
Thus, there exists a subsequence {am} of {am' } such that limm--+oo 
uQm (i) := u(i) 'Vi E S. By Assumption 4.1, we have limm--+oo am = 
OJ hence limm--+oo amuQm (i) = 0 for i E S. We can then obtain 
that 

'Vi E S. 

Hence, the conclusions (i)(a) and (i)(c) are valid. 

To prove conclusion (i)(b), from (4.4), for any m ~ 1, we have 

am V;m (ko) amuQm (i) (.) 
m(i) + m(i) + uQm 't 

= r(i,f~m(i)) +""' [q(jli'f~m(i)) +800] (O) 
m{i) f:s m{i) lJ UQm J . 

(4.4) 

Since lillm--+oo f~m (i) = !*(i), we have that 

lim r(i,f~ (i)) =r(i,j*(i)) m--+oo m 

and 

J~oo L q (iIi, f~m (i)) u(j) = L q (jli, j*(i)) u(j). 
jES jES 
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By (4.4) and Fatou's Lemma, for i E S, we have 

g* (.) > r (i, f*(i)) + '" [q (jli, f*(i)) + ~ .. J (.) (45) 
m(i) + u Z - m(i) ~ m(i) UZ) U J. . 

)ES 

Hence, 

g* > r (i, f*(i)) + L q (jli, f*(i)) u(j) 
jES 

min {r(i' a) ~ L q(jli, a)u(j)} . 
aEA(i) jES 

> (4.6) 

This means that (i)(b) is valid. 

(ii) To prove (ii), from (4.6), there is a nonnegative function c(f*) on 
S such that 

g* = r (i, j*(i)) + c (f*) (i) + L q (jli, j*(i)) u(j). (4.7) 
jES 

By (4.2), (4.7) and Bather [1, Theorem 2.1.3], we have 

limsup~ rT LPij (t,j*)(r(j,j*(j) +c(f*)(j)) dt < g*, 
T--+ Jo jES 

i E S. (4.8) 

Noting that c(f*) ~ 0, from (2.7) and (4.8), we have 

V(f*, i) ::; g*, i E S. (4.9) 

On the other hand, by a Tauberian Theorem [25, pp. 181-182], 
for 1f E IIm and i E S, we have 

g* lim am V; (i) 
m--+oo m 

< 

= lim am roo e-omt (LPij(t, 1f)r(t,j, 1f)) dt 
Om \,0 Jo jES 

< limsup~ rT 
(LPij(t'1f)r(t,j'1f)) dt 

T--+oo T Jo jES 

= V(1f, i). (4.10) 
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From (4.9) and (4.10), we have V(J*oo, i) = g* ~ V(7l", i), for all 
7l" E IIm and i E S. The proof of (ii) is complete. 

(iii) Similarly, we can prove (iii). • 
Theorem 4.2 Suppose that the following conditions hold: 

(i) The hypotheses of Lemma 3.4 and Assumptions 4.1 hold. 

(ii) For any i E S == {O, 1,2" .. }, A(i) = A, A is a partially ordered 
set, and r(i, a) is non decreasing in i for any a E A. 

(iii) IIqll ~ C, for some positive constant C, and for each fixed k E S, 
ftdkli, a) is increasing in i. 

(iv) r(i, a) is a superadditive (subadditive) function on K. 

(v) ftdkli, a) is a superadditive (subadditive) function on K, for all 
fixed k E S. 

Then there exists an average cost optimal stationary policy which is in­
creasing (or decreasing) in state i. 

Proof By Lemma 3.6, we have that f~ is increasing (or decreasing) 
on S for any a > O. Hence, the limit point J* is also increasing (or 
decreasing) on S. By Theorem 4.1, J* is also average cost optimal. The 
proof is complete. • 

5. Examples 

In this section we provide two examples in which our Assumptions 2.4 
and 4.1 hold, whereas the conditions in [5, 11, 12, 14] fail to hold. 

Example 1 

We observe continuously an admission control model for queueing sys­
tem M X /M/!. Let Pk, k = 0,1,2, ... , denote the arrival probability of k 
customers, and such that L:~o Pk = 1 and L:~o kPk < 00. The arrival 
rate of the system is A. Let J-L denote the exponential service rate of the 
system. At any arrival time, the controller decides whether to admit 
or reject all arriving customers. Rejected tasks are lost. Each accepted 
task generates a reward c. A nondecreasing function r(i) denotes the 
cost rate for serving i customers. Let p > 0 denote the cost rate of 
serving a customer. Hence, we have r(i) = pi. 

We formulate this model as a continuous-time Markov decision pro­
cess. The system state i denotes the number of customers available 
for service in the system at any time (Le., the queue length). So, 
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s = {O, 1, ... ,i, ... }. For each i E S, A(i) = {O, I}, with action 0 
corresponding to rejecting and action 1 corresponding to accepting all 
arriving customers. The cost rate function r satisfies r(i,O) = r(i), 
r(i, 1) = r(i) - CA. By Remarks 2.2 and 3.1, the cost function r(i, a) 
may be increased by adding a constant without affecting the discussion 
of average optimality. So, we may take that r(i,O) = r(i) + CA, and 
r(i, 1) = r(i). The transition rate q satisfies: 

q(OIO,O) = 0 and for i ~ 1, 

q(jli,O) = { 
/1 if j = i-I, 
-/1 if j = i, 
o otherwise; 

q(OIO,I) = - (L:~l APk) = -A(1 - po), q(kIO,I) = APk Vk ~ 1, and 
for i ~ 1, 

( ·1· 1) - { ~(/1 + A(1 - po)) 
q J Z, - APk 

o 

For this model, we can derive that: 

if j = i-I, 
if j = i, 
if j = i + k, 
otherwise. 

1. Assumption 2.4 holds. In fact, for all i E S, we let wdi) := 

pi + 1 + CA, and w2(i) := pA(L:r=l kpk), i E S. By Lemma 3.2(v), 
we can then verify Assumption 2.4. 

2. Assumption 4.1 holds. In fact, by Lemma 3.3, we have, for any 
a> 0, 

aV;(i) mi~ {r(i' a) + L q(jli, a)V;(j)} 
aEA(z) . S 

JE 

< r(i,O) + /1V;(i -1) - /1 V; (i), i > O. 

< r(O,O) 
= CA. 
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So we have, for i > 0, 

V; (i) < r(i,O) + V*(i -1) 
f1. a 

< r(i,O) + r(i -1,0) + V*(i _ 2) 
f1. f1. a 

< ........... . 

< t r(s,O) + V;(O) 
s=l f1. 

pi(i + 1) ic).. V*() 
2 +-+ an' 

f1. f1. 

Hence, we take ko = ° to get that ua(i) :::; Pi~;l) + i~>" := h(i), 
for all i E S and a > 0. By Lemma 3.5, we see that V; (i) is an 
increasing function on S. Thus, we have ua(i) 2:: ° for all i E Sand 
a > 0, and l:jES q(jlo, O)h(j) = ° < 00. Thus, Assumptions 4.1(i) 
and 4.1(ii) hold. 

Hence, by Theorem 4.1, we have the following conclusion. For this 
admission control queue model, there exists an average cost optimal 
stationary policy. 

Remark 5.1 In Example 1, the cost rate is obviously unbounded. 
Hence, the assumption of bounds of the reward rate in [7, 11, 12] fails 
to hold. If we take Pk > ° for all k :2': 0, then we can verify that the 
conditions in [14] fail to hold. 

We give next another example in which Assumptions 2.4 and 4.1 hold. 
Moreover, both the cost and the transition rates are unbounded. 

Example 2 

We consider an admission control birth and death process as follows: 
Let S= {0,1,2, ... }, A(i) == {0,1}, i E S: 

q(OIO, O) = 0, and for i 2:: 1, 

{ 
f1.i if j = i - 1, 

q(jli,O) = -f1.i if j = i, ° otherwise; 

q(OIO,l) = -v, q(ll0, 1) = v, and for i 2:: 1, 

{ 

J.l2 

( 'Ii 1) = -.(j.j + )..)i - v 
q J , )..~ + v 

° 

if j = i-I, 
if j = i, 
if j = i + 1, 
otherwise; 
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J-L ~ A ~ 0. r(i,O) = ali2 + a2i + c, r(i, 1) = bl i 2 + ~i, i E S, (c-
2ad(A+J-L):::; v(3al +a2), c,al,a2,bl,b2 ~ 0. 

Obviously, both the cost and the transition rates in this model are 
unbounded. On the other hand, we can obtain the following. 

1. Assumption 2.4 holds. In fact, we verify this conclusion as follows: 

Let wl(i) := (al + bdi2 for all i E S, then 

2: q(jli, O)Wl (j) :::; 0, 'Vi E S; 
jES 

and, 

for i = 0: 

jES 

for i ~ 1: 

Let 

2: q(jli, l)wl (j) 
jES 

= J-LiWl(i -1) - J-Liwdi) - Aiwl(i) + Aiwdi + 1) 

+vwl(i + 1) - vWl(i) 

= 2(al + bd( -J-L + A)i2 + (al + bd(J-L + A)i 

+v(al + bl )(2i + 1) 

< ((al + bd(J-L + A + 3v) + (a2 + ~))(i + 1). 

w2(i) := ((al + bd(J-L + A + 3v) + (a2 + ~))(i + 1), i E S. 

Then we have 

2: q(jli, a)wl (j) < w2(i), 'Vi E S, a E {O, 1}. (5.1) 
jES 

Moreover, 

and, 

2: q(jli, 0)W2(j) < 0, 'Vi E S; 
jES 
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for i = 0: 

Lq(jlo,1}W2(j} = v((al+bI)(J.t+A+3v}+(a2+ b2}); 
jES 

for i ~ 1: 

jES 

= J.tiW2(i -1} - J.tiW2(i} - Aiw2(i} + Aiw2(i + 1} 
+vw2(i + 1} - vW2(i} 

((al + bI)(J.t + A + 3v) + (a2 + b2}) (-J.ti + Ai) 

+v((al + bl)(J.t + A + 3v} + (a2 + ~}) 
< v((al + bI)(J.t + A + 3v} + (a2 + ~}). (5.2) 

Let w3(i} := v((al + bI)(J.t + A + 3v} + (a2 + ~}) + c + 1 for all 
i E S. Then we have 

Lq(jli,a}W2(j} ~ w3(i}, 'ViES, aE{0,1}, (5.3) 
jES 

and 

L q(jli, a}w3(j} ~ 0, i E S, a E {O, 1}. (5.4) 
jES 

Hence, from (5.1},(5.3),(5.4), we get that Assumption 2.1 holds. 

By a similar argument, we can obtain that the function qR on S 
satisfies Assumption 2.4(Assumption 2.1), where R := WI +W2+W3. 
By Lemma 3.2, we can also get Assumption 2.2. Obviously R ~ 1 
and r ~ R. Combining these facts we conclude that Assump­
tion 2.4 holds. 

2. Now, let m(O} := 2(A + I' + v), and m(i) = 2((A + J.t+)i + v) for 
i ~ l. 

m(i}, :: :'~o: and q(kli, a} all are increasing in i for any a > ° 
and a E {O, 1}. In fact, m is obviously an increasing function on 
S. Likewise, as (c - 2al)(A + J.t) ~ v(3al + a2}, we can verify 

that ::t:)~o: is increasing on S for any a > ° and a E {O, 1}. By 
definitions of q , we can also verify that q(kli, a) is increasing on S 
for any a > 0, a E {0,1} and k E S. 

3. uo:(i) ~ 0, with ko = 0. In fact, by Lemma 3.5 and conclusion (2), 
we have that V;(i) is increasing in i. Hence, uo:(i) ~ 0. 
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4. ua(i) ~ h(i) Vi E S, a > 0, and 2:jEs q(jIO, O)h(j) = ° < 00, 

where h(i) .- (a2+c)i + ali(i+1) for i E S In fact by Lemma 3 3 .- /-I 2/-1 ., • , 

we have ° ~ aV;(O) ~ r(O, 0) = c, and for i ~ 1, 

Hence, 

V; (i) < r(~, 0) + V*(i _ 1) 
~I-" a 

< ial a2 + c V* C 1) -+--+ ~-
I-" I-" a 

< ......... 

< i(a2 + c) a1i(i + 1) V*(O) + 2 + a . 
I-" I-" 

ua(i) = V;(i) - V;(O) 

< 
i(a2 + c) ali(i + 1) 

+ 
Jl. 21-" 

h(i). 

5. Assumption 4.1 holds. This follows from the conclusions (3) and 
(4). 

Hence, by conclusions (1) to (5) and Theorem 4.1, we have the following. 
For the given controlled birth and death process, there exists an average 
cost optimal stationary policy. 

Remark 5.2 Obviously, in Example 2, the conditions in [1]-[13] are 
not satisfied, but our assumptions do hold. 
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Abstract This work considers Markov decision processes with discrete state space. 
Assuming that the decision maker has a non-null constant risk-sensitiv­
ity, which leads to grade random rewards via the expectation of an 
exponential utility function, the performance index of a control policy 
is the risk-sensitive expected total-reward criterion corresponding to a 
nonnegative reward function. Within this framework, the existence of 
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optimal and approximately optimal stationary policies in the absolute 
sense is studied. The main results can be summarised as follows: 
(i) An optimal stationary policy exists if the state and actions sets are 
finite, whereas an c:-optimal stationary policy is guaranteed when just 
the state space is finite. 
(ii) This latter fact is used to obtain, for the general denumerable state 
space case, that c:-optimal stationary policies exist if the controller is 
risk-seeking and the optimal value function is bounded. 
In contrast with the usual approach, the analysis performed in the paper 
does not involve the discounted criterion, and is completely based on 
properties of optimal value function, particularly, on the the strong 
optimality equation. 

Keywords: Utility function,constant risk-sensitivity, Ornstein's theorem, strong op­
timality equation, risk-seeking controller. 

1. Introduction 
This note concerns Markov decision processes (MDPs) with discrete 

state space and nonnegative rewards. The fundamental assumption is 
that the attitude of the controller before a random reward is charac­
terised by a constant risk-sensitivity coefficient A =f:. 0, which is associ­
ated to an exponential utility function (Pratt [13], Fishburn [7]). The 
performance of a control policy is measured by the corresponding risk­
sensitive expected total-reward criterion introduced in Section 2, and the 
paper analyses the existence of optimal and c-optimal stationary poli­
cies, i.e., stationary policies whose performance index differs from the 
optimal value by less than c > o. 

Recently, there has been a great interest in controlled stochastic pro­
cesses endowed with a risk-sensitive criterion; see, for instance, Flem­
ming and Hermilldez-Hermindez [8], Brau-Rojas [2], Avila-Godoy [1], 
Cavazos-Cadena and Montes-de-Oca [4], as well as the references there­
in; the first two works deal with the risk-sensitive average index which, 
under a strong simultaneous Doeblin condition (Thomas [17]), was stud­
ied in Cavazos-Cadena and Fermindez-Gaucherand [3] via the total­
reward criterion considered in this article. Among other topics, the work 
by Avila-Godoy generalizes results in risk-neutral negative dynamic pro­
gramming to the risk-sensitive context; for instance, she has shown that 
if the reward function is non-positive (the negative dynamic program­
ming framework), then a stationary policy obtained by maximising the 
right-hand side of the optimality equation is risk-sensitive optimal, ex­
tending a classical theorem by Strauch [16]. However, even under strong 
continuity-compactness conditions, this result does not hold for non­
negative rewards (Cavazos-Cadena and Montes-de-Oca [4]) so that, as 
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in risk-neutral positive dynamic programming, searching for €-optimal 
stationary policies is also an interesting problem within a risk-sensitive 
framework. 

For MDPs with nonnegative rewards, the existence of optimal or €­
optimal stationary policies has been widely studied in the literature on 
the risk-neutral expected total-reward criterion. A key fact in the anal­
ysis of this problem is that if the state and action spaces are finite, then 
an optimal stationary policy exists, a result that is usually obtained via 
the discounted criterion (Puterman [14]). Using this result, the problem 
for MDPs with more general state space is approached by constructing 
approximations that allow one to obtain €-optimal stationary policies 
(Ornstein [12], Hordijk [11, Chapter 13]). These ideas, based on the 
discounted criterion, were recently extended in Cavazos-Cadena and 
Montes-de-Oca [5], where for the risk-sensitive expected total-reward 
criterion and nonnegative rewards, the existence of optimal stationary 
policies was established for finite models, whereas, for general denumer­
able state space, the €-optimality results were obtained whenever the 
optimal value function is bounded and the controller is risk-averse, i.e., 
when'\ < o. 

This work has two main objectives: The first one is to establish the 
existence of risk-sensitive €-optimal stationary policies for MDPs with 
denumerable state space when the controller is risk-seeking, a feature 
that corresponds to a positive risk-sensitivity coefficient. The result on 
this direction is stated below as Theorem 7.1, and is obtained under the 
assumption that the optimal value function is bounded. The second goal 
refers to the approach used establish Theorem7.1, which is based on the 
existence of optimal stationary policies for the finite state space case; 
the idea is to obtain this latter result focusing on the properties of the 
risk-sensitive expected total-reward criterion. The corresponding results, 
extending the analysis in Cavazos-Cadena and Montes-de-Oca [6] for 
risk-neutral dynamic programming, are contained in Sections 3-5. The 
approach is entirely based on the (usual) optimality equation, as well as 
on its strong version (see Lemmas 2.1 and 2.2). The idea behind this 
part of the work is to gain a better understanding of the properties of 
the risk-sensitive expected total-reward index. 

The organization of the paper is as follows. In Section 2 the decision 
model is introduced, and the basic facts concerning the risk-sensitive 
optimality equations are stated. The effect of modifying a stationary 
policy at a single state is analysed in Section 3, whereas in Section 4 the 
optimal value functions of different MDPs are compared. These tools are 
used in Sections 5 and 6 to prove the existence of optimal and oS-optimal 
stationary policies for MDPs with finite state space, and this result is 
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the basic ingredient to obtain E-optimal stationary policies for models 
with general denumerable state space in Section 7. Finally, the paper 
concludes in Section 8 with some brief comments. 

Notation Throughout the article, nt and IN stand for the set of real 
numbers and nonnegative integers, respectively. Given a function 
G: B --+ nt, the corresponding supremum norm is denoted by 

IIGII : = sup IG(w)l· 
wES 

Finally, if W is an event, then I[W] stands for the associated indicator 
function. 

2. Decision model 
Let M = (B,A, {A(x)},R,P) be the usual MDP, where the state 

space B is a (nonempty and) denumerable set endowed with the discrete 
topology, the metric space A is the control (or action) set, and for each 
x E B, 0 i- A(x) c A is the measurable subset of admissible actions at 
state x. On the other hand, R: IK --+ nt is the reward function, where 
IK: = {(x, a) I a E A (x), x E B} is the set of admissible pairs, and P = 
[Pxy(·)] is the controlled transition law. This model M has the following 
interpretation. At each time t E IN the state of a dynamical system is 
observed, say X t = x E B, and an action At = a E A(x) is chosen. 
As a consequence, a reward R{x, a) is earned and, regardless of which 
states and actions were observed and applied up to time t, the state of 
the system at time t + 1 will be X t+1 = yES with probability pxy{a), 
description that corresponds to the Markov property of the decision 
model. 

Assumption 2.1 For every x, YES, 

(i) a H R(x, a) and a H pxy{a) are measurable functions on A{x), 
and 

(ii) the reward function is nonnegative: R(x, a) 20, (x, a) E IK. 

Utility function Given a real number A, hereafter referred to as the 
(constant) risk-sensitivity coefficient, the corresponding utility function 
U).: nt --+ nt is determined as follows. For x E nt, 

U(x): = {sign(A)e).x, if Ai-O, 
). x when A = O· , , (2.1) 

it is not difficult to verify that U).(-) is always a strictly increasing func­
tion which satisfies the basic relation, 

U).{c + x) = e).cU).(x), Ai- 0, x, cEnt. (2.2) 
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It is assumed that the controller grades a random reward Y via the ex­
pectation of U>..(Y), in the following sense: if two decision strategies <>1 
and <>2 lead to obtaining random rewards Y1 and Y2, respectively, <>1 will 
be preferred if E[U>..(Yd] > E[U>..(Y2 )], whereas the decision maker will 
be indifferent between <>1 and <>2 when E[U>..(Yd] = E[U>..(Y2 )]. Let Y 
be a given a random reward for which U>..(Y) has a well defined expec­
tation, conditional that it is always valid when >. i= O. In this case, the 
certain equivalent ofY with respect to U>..(-) is denoted by E(>', Y) and 
is implicitly determined by the 

U>..(E(>., Y)) = E[U>..(Y)] (2.3) 

equality that, via (2.1), leads to the explicit formula 

E(>' Y) = { :tIog (E [e>"Y]) " >. i= 0 
, E[Y] >. = 0, (2.4) 

where the usual conventions log(oo) = 00 and log(O) = -00 are en­
forced. Thus, for an observer with risk sensitivity>', the opportunity of 
getting the random reward Y can be fairly interchanged by the certain 
amount E(>', Y). Suppose now that Y is a nonconstant random variable. 
When>. > 0 (resp. >. < 0) the utility function U>..(-) in (2.1) is convex 
(resp. concave), and Jensen's inequality yields that E(>', Y) > E[Y] 
(resp. E(>', Y) < E[Y)). A decision maker grading a random reward Y 
according to the certain equivalent E(>', Y) is referred to as risk-seeking 
if>. > 0, and risk-averse if>. < O. If >. = 0, the controller is risk-neutral. 

Remark 2.1 The following simple properties of the certain equivalent 
E(>', Y) will be useful, Cavazos-Cadena and Femandez-Gaucherand [3}: 

(i) If pry = c) = 1 for some c E lR, then E(>', Y) = c. 

(ii) Let Y and W be two random variables satisfying pry ~ W] = 1. 
Since U>..(-) is increasing, it follows that 

U>..(E(>', Y)) = E[U>..(Y)] ~ E[U>..(W)] = U>..(E(>', W)), 

and then E(>', Y) ~ E(>', W). 

(iii) In particular, if pry ~ 0] = 1 then E(>', Y) ~ O. 

Policies For each t E 1N, the space lHt of admissible histories up to 
time t is recursively defined by 

lHo: = S, lHt = 1K x lHt- 1, t ~ 1, and 
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a generic element of lHt is denoted by ht = (xo, ao, ... ,Xt-}, at-I, Xt). 
An admissible control policy for model M is a special sequence 7r = {7rt} 
of stochastic kernels: For each t E IN and ht E lHt, 7rt( ·Iht ) is a probabil­
ity measure on the Borel subsets of A satisfying 7rt(A(xt)lht) = 1, and 
for each Borel subset B of the space A, ht t-t 7rt(Blht) is a measurable 
mapping on lHt; the class of all policies is denoted by P. Given the 
initial state Xo = x and the policy 7r E P being used to drive the sys­
tem, under Assumption 2.1 (i) the distribution of the state-action process 
{(Xt, At)} is uniquely determined via the Ionescu Tulcea's theorem (see, 
for instance, Hinderer [10], Ross [15], Hermindez-Lerma [9], or Puter­
man [14]). Such a distribution is denoted by P: [ .], whereas E; [ .] stands 
for the corresponding expectation operator. Define 1F: = IlxEs A( x), so 
that 1F consists of all (choice) functions f: S ~ A satisfying f (x) E A (x) 
for all xES. A policy 7r is stationary if there exists f E 1F such that for 
each t E IN and ht E lHt, the probability measure 7rt(·lht) is concentrated 
on {J(Xt)}. The class of stationary policies is naturally identified with 
1F, and with this convention 1F C P. 

Performance index Given A E JR., the A-sensitive expected-total re­
ward at state xES under policy 7r E P is defined by 

Thus, when the system is driven by policy 7r starting at x, V;\(7r,x) is the 
certain equivalent (with respect to U;\) of the total reward 
E:o R(Xt, At). Observe that the nonnegativity of the reward func­
tion implies that V;\(7r, x) ~ 0 always hold (see Remark 2. 1 (iii». The 
A-optimal value function is given by 

V; (x) : = sup V;\(7r, x), xES, 
rrEP 

(2.6) 

and a policy 7r* is A-optimal if V;\(7r*, x) = V;(x) for all xES. The 
case A = 0 of this criterion has been widely studied in the literature (see, 
for instance, Puterman [14] and the references therein) and this paper 
concentrates in the risk-sensitive context A i= O. 

Under Assumption 2.1, the expected value in (2.5) is well defined and 
the inequalities 0 ~ V;\ (7r, .) ~ V; (.) always hold, but it is possible to 
have that V;(x) is not finite for some xES which is excluded from the 
discussion. 

Assumption 2.2 For each XES, V;(x) is finite. 
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As already noted, even when the state space is finite and Assump­
tion 2.1 is strengthened to require the continuity of the transition law 
and the reward function, as well as the compactness of the action sets, 
the finiteness of V; (.) does not generally ensures the existence of an opti­
mal stationary policy (Cavazos-Cadena and Montes-de-Oca [4]). Under 
the present Assumptions 2.1 and 2.2, the following notion of 'nearly' op­
timal stationary policy, used by Hordijk [11] in the risk-neutral context, 
will be used. 

Definition 2.1 Let A =J 0, c > 0 and f E 1F be fixed. 

(i) Policy f is c-optimal at state x ifV)..(j,x) 2 V; (x) - c; 

(ii) f is c-optimal if it is c-optimal at every state xES. 

The existence of optimal and c-optimal stationary policies will be 
analysed using the basic properties of the optimal value function stated 
in the following two lemmas. 

Lemma 2.1 Let A =J 0 be fixed. Under Assumptions 2.1 and 2.2, the 
following assertions are valid. 

(i) The optimal value function V;O in (2.6) satisfies the following 
A-optimalityequation (A-DE). 

U)..(V;(x)) = sup [e)"R(X,a) LPxy(a)U).. (V; (Y))] , xES. 
aEA(x) y 

(2.7) 

(ii) Moreover, if the function W: S -+ [0,00) is such that 

U)..(W(x)) 2 sup [e)"R(X,a) LPxy(a)U).. (W(Y))] , XES, 
aEA(x) y 

(2.8) 
then W(·) 2 V;(·). 

A proof of this result, using parallel arguments to those employed in 
the risk-neutral case, can be found, for instance, in Avila-Godoy [1], 
Cavazos-Cadena and Fernandez-Gaucherand [3], or in Cavazos-Cadena 
and Montes-de-Oca [4, 5]. The following generalization of Lemma 2.1 
gives a strenghtened version of (2.7). 

Lemma 2.2 For each n E :IN, let Fn be the u-field generated by 
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suppose that the positive random variable T is a stopping time with re­

spect to {Fn }, i.e., P;[T E {I, 2, 3, ... } U {oo}] = 1 for every xES and 
7r E P, and for each k E IN \ {O}, the event [T = k] belongs to Fk. In 
this case, the following strong A-optimality equation is valid. 

UA(V;(x}} = supE; [eAL.i':ol R(Xt ,At} UA (V; (XT))] , xES. (2.9) 
7rEP 

Remark 2.2 Throughout the paper the following convention is used. If 
T is a stopping time and W: S -t 1R is a given function, then W (X T) = 
o on the event [T = 00]. Thus, the expectation in the right hand side of 
(2.9) equals 

E; [eAL.i':ol R(Xt ,At} UA (V;(XT}) I[T < 00]] 

+E; [eAL.~oR(Xt,At}UA(O}I[T = 00]] . 

A proof of Lemma 2.2, following the arguments presented in Hordijk [11], 
can be found in Cavazos-Cadena and Montes-de-Oca [5]. The above 
strong A-OE, which will play an important role in the analysis of the 
existence of optimal and nearly optimal stationary policies, will be used 
when T is the first (positive) arrival time to a subset G of the state 
space. For G c S, define 

Ta = min{n > 0IXn E G}, (2.10) 

where the minimum of the empty set is 00. By convenience, the following 
notation is used when G = {x} is a singleton. 

(2.11) 

3. A basic tool 

As already mentioned, one of the objectives of this article is to anal­
yse the existence of A-optimal stationary policies for finite MDPs via the 
fundamental properties of the risk-sensitive expected total-reward crite­
rion. In this section, the basic preliminary result to achieve this goal is 
stated as Theorem 3.1. First, let A =f:. 0, f E 1F and Xo E S be arbitrary 
but fixed, and consider the MDP MI = (S,A, {AI(x)},R,P}, where 
AI(x) = {J(x)} for every xES, i.e., f(x} is the single admissible action 
at state x with respect to model MI. For every policy 7r in the class 
PI of admissible policies for model MI, it is clear that 7rt(AI(x)lht } = 1 
always holds. Therefore it is not difficult to see that f is, essentially, the 
unique member of PI, in the sense that P;[.] = pl[·] for every xES 
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and 7r E Pf. Consequently, V>.(f,·) is the A-optimal value function asso­
ciated to MI. Applying Lemma 2.2 with Txo and Mf instead of T and 
M, respectively, it follows that for every state x 

u>. (V(f,x)) = El [e>'E~~g-l R(Xt,At}U>. (V(f,XTxo))] 

El [e>. E~~g-l R(Xt ,At} U>. (V(f, xo)) J[Txo < 001] 

+El [e>'E~~g-l R(Xt ,At} U>. (0) J[Txo = 001], (3.1) 

where the second equality is due to the convention in Remark 2.2. The 
main purpose of the section is to analyse the changes in this equality 
when policy f is modified at the gi~en state Xo. Let a E A(xo) be a fixed 
action, and define the new policy f E 1F by 

j(x) = {f(X), x =1= Xo 
a, x = Xo 

(3.2) 

Since V>.(f,·) is the optimal value function for model Mf' this definition 
of policy j and Lemma 2.1(i) applied to Mf together yield 

U>. (V>. (f, x)) = e>'R(x,j(x)) L Px,y(i(x) )U>. (V>. (f, y)), xES \ {xo}. 
y 

Although this equality is not generally satisfied when x = xo, under 
Assumptions 2.1 and 2.2, it is not difficult to see that there exists 8 E lR 
be such that 

U>. (V>.(f, xo)) = e>'[HR(xo,j(xo))] LPx,y(i(xo))U>.(V>.(f, y)). (3.3) 
y 

In the argument contained in Section 5, this equality will be satisfied for 
some 8 ;:::: O. The following result extends Cavazos-Cadena and Montes­
de-Oca [6, Lemma 3.1] to the present risk-sensitive framework. 

Theorem 3.1 Suppose that Assumptions 2.1 and 2.2 are valid, and let 
the policy j E 1F and 8 E lR be as in (3.2) and (3.3), then 

U>. (V>. (f, xo)) 

eAli (U>.(V>.(f, xo))EL [e>'E~~g-l R(Xt,At) J[Txo < 00]] 
+U>.(O)E£o [e>'E~oR(Xt,At}J[Txo = 00]]). (3.4) 
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Proof Notice that (3.3) can be equivalently written as 

U>.(V>.(J, xo)) 

- e),[HR(xo';(xo))) (PXO' Xo (j(XO) )U>. (V), (J, XO)) 

+ 2: PXO,y(j(XO))U),(V),(J, y))) 
y#xO 

e),[HR(XO';(XO)))pxO,xo (j(XO) )U), (V)'(J, XO)) 

+e),[HR(xo';(xo»] 2: Pxo, y(j (XO)) 

y#xO 

Et [e),L~~8-1 R(Xt ,At) U), (V(J,XO)) J[TxO < 00]] 

+e),[HR(xo';(xo»] 2: PxO,y(j(XO)) 

y#xO 

Et [e),L~oR(Xt,At)U), (0)) J[Txo = 00]] , (3.5) 

where (3.1) was used to obtain the second equality. On the other hand, 
since V),(XTzo ) = V),(xo) on the event [Txo < 00] (see (2.10) and (2.11)), 
it is clear that 

Eto [e),L~~8-1 R(Xt,At}U),(V),(XTzo)I[Txo = 1]] 
= U>.(V>.(f, xo))e),R(xo,i(xo)pxo,xo(j(xo)), (3.6) 

whereas, using the definition of the stopping time Txo ' the Markov prop­
erty yields 

Eto [e),E~~g-l R(Xt,At)U),(V),(XTzo ))I[l < Txo < 00]1 Xl = Y] 

= U),(V),(xo))e),R(xo';(xo)) (3.7) { 
0, ify = Xo 

Et [e),L~~8-1 R(Xt,At}J[l ~ Txo < 00]], if y # Xo. 

Observe now that the expectation in right-hand side of this equality 
depends only on the actions selected at times t < Txo and that X t # Xo 
when 1 ~ t < Txo (see (2.10) and (2.11)), and in this case !(Xt ) = j(Xt ). 

When Xo = y # Xo, the latter equality also occurs at time t = 0, so that 

Et [e>'E~~g-l R(Xt,At ) 1[1 ~ Txo < 00]] 

= Et [e),L~~g-l R(Xt,At} 1[1 ~ Txo < 00]] . 
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Therefore, in the expectation in the right-hand side of (3.7), policy j 
can be replaced by f, and taking the expected value with respect to Xl 
in both sides of the resulting equation, it follows that 

Eto [eAE;;;g-l R(Xt,At}UA(VA(XTxo ))I[l < Txo < 00]] 

UA(VA(xo))eAR(Xo,J(xo)) L PXO,y(/(xo)) 
y#xO 

Et [eAE;;;g-l R{Xt,At} 1[1 ~ Txo < 00]] 

UA(VA(xo))eAR(xo,J{xo)) L PXO,y(/(xo)) 
y#xO 

Et [eAE;;;g-l R(Xt,At} I[Txo < 00]] . (3.8) 

Recall that the inequality Txo ;2: 1 always holds. Similarly, it can be 
proved that 

Eto [eAE~oR{Xt,At}I[Txo = 00]] 
= eAR{XO,j(xo)} L PXO,y(j(xo))Et [eAE~oR{Xt,At}I[Txo = 00]] 

y#xO 

Using this equation, together with (3.6) and (3.8), equation (3.5) yields 
that 

UA(VA(XO)) 

eAOUA (VA (xo)) Eto [eAE;;;g-l R(Xt,At) J[Txo = 1]] 

+eAOUA (VA(xo)) Eta [eAE;;;g-l R{Xt,At) 1[1 < Txo < 00]] 

+eAOUA (VA(O)) Eto [eAE;;;g-l R{Xt,At} I [Txo = 00]] 

from which (3.4) follows. 

4. Comparison of optimal value functions 

• 
This section presents an additional consequence of the strong optimal­

ity equation in Lemma 2.2, namely, if the action sets of several MDPs 
coincide except at some distinguished state Xo, then the corresponding 
optimal value functions can be compared. 
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Theorem 4.1 Let>. i= 0 and Xo E S be fixed, and consider two MDPs 
Mk = (S,A,{Ak(X)},R,P), k = 1,2, where Adxo) and A2(xo) are 
nonempty (measurable) subsets of A(xo), and 

xES \ {xo}. (4.1) 

Let Pk be the class of admissible policies for model Mk and denote by 
V; k the corresponding optimal value function, i. e., , 

v; k(x) = sup v), (11", x), xES. 
, 7rEP k 

In this case, 

(i) If 0 is a nonnegative number, 

(ii) In particular, 

Proof Let 11" E PI be an arbitrary policy, select a stationary policy h 
for. model M2, and define a new policy 11"' E P2 as follows: 1I"~(·lhd = 

1I"t(lhd if Xk i= Xo for k = 0,1, ... , t, whereas 11"~( {h(xt)}lhd = 1 if 
Xk = Xo for some k ::; t. In other words, if Xo i= Xo, policies 11" and 11"' 

coincide before the first visit to state Xo (at time Txo), but once Xo is 
reached at some time k, 11"' chooses actions according to h from time k 
onwards. From (4.1) it follows that 11"' E P2. Thus, given Xo = x i= Xo, 
the fact that 11" and 11"' coincide before time Txo implies that 

U), (V;,2(X)) > E;' [e),E~~8-1 R(Xt,At)U), (V;,2(XTxo ))] 

E; [e),E~~8-1 R(Xt,At)U), (V;,2(XTxo ))] , (4.3) 

where Lemma 2.2 applied to model M2 was used to obtain the inequality. 
Suppose now that 

v; 2(xO) + 0 ~ V; 1 (xo), , , where 0 ~ O. 

In this case, 
(4.4) 

In fact, 

v; 2(xO) + 0 > V; 1 (xo) , , 
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on the event [Txo < 00] whereas, by the convention in Remark 2.2, 
V;, 2 (XTxo) + 8 = 8 ~ 0 = V;, I (XTxo ) when Txo = 00. Thus, multiplying 
both sides of (4.3) by eM, (2.2) implies that, for x #- xo, 

u).. (V,{,2(X) + 8) > E; [e)..L~~g-l R(Xt,At)U).. (V;, 2 (XTxo + 8))] 

> E; [e)..L~~g-l R(Xt,At}U).. (V;,I(XTxo))] 

where the second inequality uses (4.4) and the fact that the utility func­
tion is strictly increasing. Since 7r E PI is arbitrary, from another appli­
cation of Lemma 2.2, then for model MI , it follows that 

which is equivalent to 

(4.5) 

In short, it has been proved that when 8 ~ 0, the inequality V; 2(xO) + 
8 ~ V; I (xo) implies (4.5), establishing part (i), and then part (ii) equa­
tion (4'.2) is obtained by setting 8 = 0 in part (i). • 

Corollary 4.1 Given A #- 0, consider an MDP 

M = (8, A, {A(x)}, R, P) 

satisfying Assumptions 2.1 and 2.2, and let Xo E 8 be a fixed state for 
which the corresponding action set is finite and has r > 1 elements, say 

A(xo) = {aI, a2, .. · ,ar }. 

For each k = 1,2, ... , r, define a new MDP Mk = (8, A, {Ak(X)}, R,P) 
by setting 

Ak(X) = A(x), x E 8\ {xo}, and Ak(XO) = A(xo) \ {ad. (4.6) 

Let Pk be the class of admissible policies for model Mk, and let V; k be 
the corresponding optimal value function, i. e., ' 

V; k(x) = sup V)..(7r,x), x E 8, 
, 7rE1'k 

so that V; k(x) E [0, V; (x)), x E 8. In this case, there exists a permuta­
tion (kb k~, ... ,kr) of the set {1, 2, ... ,r} such that 

V,{, kl (.) ~ V;, k2 (.) ~ V;, ka (.) ~ •.• ~ V;, kr (. ). (4. 7) 
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Proof Notice that the action sets for the different models Mk coincide 
except at the distinguished state Xo. Consider now the sequence of 
nonnegative numbers (VA,l(XO), VA,2(XO), ... , VA,r(XO)). Since this is a 
sequence of real numbers, there exists a permutation (kl' k2, ... , kr ) of 
the set {1, 2, ... ,r} satisfying 

V;,kl (xo) ~ V;,k2(XO) ~ ... ~ V;,kr(XO), 

and then Theorem 4.1 yields that (4.6) is satisfied by this permutation . 

• 
5. Optimality for finite models 

In this section the existence of A-optimal stationary policies for MDPs 
with finite state and action sets is established. As previously noted, this 
result has been recently obtained via a discounted dynamic operator as­
sociated to an auxiliary stochastic game (Cavazos-Cadena and Montes­
de-Dca [5]). In contrast, the induction argument presented below de­
pends solely on the the properties derived from the strong optimality 
equation in the previous sections. 

Theorem 5.1 Let A =1= 0 be a fixed real number, and suppose that the 
MDP M = (8, A, {A(x)}, R, P) satisfies Assumptions 2.1(ii) and 2.2, 
and 

181 + L IA(x)1 < 00 (5.1) 
xES 

where, for each set B, IBI denotes the number of elements of B. In this 
case, there exists a A-optimal stationary policy. 

Proof Consider the class M consisting of MDPs 

M = (8, A, {A(x)}, R, P) 

for which Assumptions 2.1(ii) and 2.2 are valid, and 181 is a fixed positive 
number n. It will be proved, by induction of the value of ~xES IA(x)l, 
that an optimal stationary policy exists for each model M E M whenever 
the summation is finite. To begin with, notice that, since each set A(x) 
is nonempty, the inequality ~xES IA(x)1 ~ 181 always holds. 

Initial step 

The conclusion is valid when ~xES IA(x)1 = 181 = n. In fact, 
in this case each set A(x) is a singleton, and then 1F contains 
a single member, say 1F = {fl. Moreover, f is essentially the 
unique element of P, so that f is optimal; see the comments at the 
beginning of Section 3. 
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Induction step 

Suppose that an optimal stationary policy exist for each MDP 
M = (S,A, {A(x)},R, P) EM satisfying that 2:xES IA(x)1 = m-
1 ~ lSI = n. It will be proved that an optimal stationary policy 
exists for a model M = (S,A,{A(x)},R,P) EM satisfying that 
2:xES IA(x)1 = m > n = lSI. To achieve this goal, first notice 
that, since m > lSI, there exists Xo E S such that IA(xo)1 = r ~ 2, 
and write A(xo) = {aI, a2, ... , ar }. For each k = 1,2, ... ,r, let 

Mk = (S,A, {Ak(x)},R,P) 

be the MDP defined in the statement of Corollary 4.1, and let the 
permutation kl' k2, ... , kr of the set {1, 2, ... , r} be such that (4.7) 
holds. Observe now the following facts (i) and (ii): 

(i) From the definition of the sets AkO in (4.6), it follows that 
2:xES IAk(x)1 = m - 1, so that, by the induction hypothe­
sis, each model Mk admits an optimal stationary policy. In 
particular, there exists a stationary policy f such that 

f(x) E Akl (x), XES, and V>.(J,·) = V;,kl (.). (5.2) 

(ii) As it will be shown below, 

V;,kl (.) = V;(·). (5.3) 

From this equality and (5.2) it follows that V>.(J,·) = V;O, so 
that f is optimal for model M, completing the induction argu­
ment. Thus, to conclude the proof it is necessary to verify (5.3). 
Since V>.(J,·) ~ V;O (see (2.6)), it is sufficient to show that 
V>.(J,·) ~ V;O, an inequality that, using Lemma 2.1(ii) and the 
nonnegativity of V>.(J, .), follows from 

y 

(5.4) 
To show that this statement is satisfied, observe that using the 
optimality equation for model Mkl together with the equality in 
(5.2), it follows that the inequality in (5.4) occurs whenever (x, a) E 
]I{ \ {(xo, akl)}' so that to verify (5.4) it is sufficient to show that 

U>. (V>. (J, xo)) ~ e>.R(xO,akl) LPXy(akl)U>.(V>.(J, y)). (5.5) 
y 
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With this in mind, observe that the two numbers being compared 
in this inequality are finite and have the same sign, so that there 
exist 8 E IR such that 

UA{VA(J,Xo)) = eA[HR(xo,akl)] LPXy{akl)UA{VA(J,y)), (5.6) 
y 

and it is not difficult to verify that, regardless of the sign of A, 
(5.5) is equivalent to 

8 ~ 0, (5.7) 

an assertion that can be verified as follows. Using akl instead 
of a, construct the policy j in (3.2) and observe that 1 is not 
an admissible policy for model Mkl' but belongs to the space of 
stationary policies for model Mk2 ; notice that akl E A{ xo) \ {ak2} = 

Ak2 {XO). Thus, V;,k2 0 ~ VA(j, .), so that (4.7) and (5.2) together 
yield that 

VA(J,·) = V;,kl 0 ~ V;,k20 ~ VA(j, .). (5.8) 

On the other hand, (3.1) with j and Xo instead of f and x, respec­
tively, yields that 

UA (VA{j,XO)) (1- EL [eAE~~g-l R(Xt,At)J[Txo < 00]]) 
= UA{O)E£o [eAE~oR(Xt,At)J[Txo = 00]] , (5.9) 

whereas, by equation (3.4) established in Theorem 3.1, 

UA (VA(J,xo)) (1- eME£o [eAE~~g-l R(Xt,At)J[Txo < 00]]) 
= eA6UA(0)E£o [eAE~oR(Xt,At)J[Txo = 00]], 

which is equivalent to 

UA (VA(J, xo)) (e-M - E£o [eAE~~g-l R(Xt,At) J[Txo < 00]]) 
= UA{O)E£o [eAE~o R(Xt,At) J[Txo = 00]] . 

Combining this equation with (5.9) and using the expression for 
the utility function in (2.1), it follows that 

eA[V),(i,XO)-v),(f,xo)] (1- E£o [eAE~~g-l R(Xt,At) J[Txo < 00]]) 
= e-M - E£o [eAE~oR(Xt,At) J[Txo < 00]] . (5.10) 
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Observe now that Eto [e>'E~~g-l R(Xt,At}I[Txo < 00]] ~ 1. Indeed, 

the occurrence of the reverse inequality leads to the contradiction 
that both sides of (5.9) have different signs. To establish (5.7), 
consider the following three cases, which are exhaustive: 

Case 1 Eto [e>'E~~g-l R(Xt,At)I[Txo < 00]] = 1. 

In this situation (5.1O) implies that 

e->.6 Eto [e>'E~~g-l R(Xt,At}I[Txo < 00]] 
= 1, 

and then, recalling that A =I 0, it follows that 6 = 0, so that 
(5.7) is certainly valid. 

Case 2 Eto [e>'E~~g-l R(Xt,At}I[Txo < 00]] < 1 and A > O. 

Since A > 0, (5.8) implies that e>'[V>.(],xo)-v>.(f,xo») ~ 1, and 
then (5.1O) yields 

1 - Eto [e>'E~~g-l R(Xt,At} I [Txo < 00]] 
> e->.6 -Ei [e>'E~oR(Xt,At}I[T = 00]] 
- Xo XO' 

i.e, 1 ~ e->'6, and {5.7} follows combining this inequality with 
the positivity of A. 

Case 3 Eto [e>'E~~g-l R(Xt,At}I[Txo < 00]] < 1 and A < O. 

In this context, it follows from {5.8} that 

e>,[v>.(i,xo)-v>.(f,xo») > 1 - , 
since A < O. Then (5.1O) implies 

1 - Eto [e>'E~~g-l R(Xt,At} I [Txo < 00]] 
< e->.6 - Ei [e>'E~oR(Xt,At}I[T = 00]] 
- Xo XO' 

that is, el>'16 = e->.6 ~ 1, inequality that yields {5.7}. 

In short, it has been proved that 6 in (5.6) is nonnegative, which, as 
already noted, implies (5.5) and concludes the proof of the theorem .• 
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Under Assumptions 2.1 and 2.2, Theorem 5.1 ensures that a A-optimal 
policy exists when condition (5.1) holds. If the state space is finite 
but some action set is infinite, the existence result may fail even un­
der strong continuity conditions on the transition-reward structure of 
the model (Cavazos-Cadena and Montes-de-Oca [4]); as a complement 
to this point, an example is now provided in which all the action sets 
are finite, the state space is denumerable and infinite, but an optimal 
stationary policy does not exist. 

Example 5.1 Suppose that S = :IN and A = {O, I} = A{x) for every 
xES, and define the transUion law and the reward function as follows: 

Pxx+1{O) 1 = Pxo{l), 

poo{a) = 1, 

R{x, 0) 

R{x, 1) 

0, 
1 

1- -
x' 

R{O, 1) = 0. 

x =1= 0, and 

a = 0,1; 

x E:IN, 

x =1= 0, and 

Proposition 5.1 In Example 5.1, assertions (i) and (ii) hold, where 
W: :IN -+ R is given by W{x) = 1 for x =1= ° and W{O) = O. 

(i) V;O = W{·), and 

(ii) A A-optimal policy does not exist. 

Proof Since state 0 is absorbing and R(O,') == 0, it is clear that 
P<f[R(Xt,At ) = 0] 1 and then VA(7r,O} = 0 for every policy 7r, so 
that 

V;(O} = 0 = W(O}; (5.11) 

see (2.5) and (2.6). Next, suppose that Xo = x E :IN \ {O}, let 7r E P be 
arbitrary be fixed, and set 

7 = min{n ~ OIAn = I}. 

In this case, it is clear that, on the event [7 = 00], At = ° for every 
t E :IN, whereas the definition of the transition law yields on the event 
[7 < 00], At = 0, 

X T = X + 7, for t < 7, and X t = 0, for t > 7. 

Therefore, from the the definition of the reward function, it follows that 

t=o 
(1 -_1_) 1[7 < 00] 

X+7 

< 1 P;[}almost surely, 
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then, since U,\ (-) is increasing, 

U,\(V,\(7r,x)) E; [U'\ (1- X: 7) 1[7 < 00] + U,\ (0)1[7 = 00])] 
< U(l), (5.12) 

so that, 
(5.13) 

Consider now the stationary policy In defined by In (y) = 0 if y # x + n 
and In(x+n) = 1. In this case p!n[7 = n] = 1, and then the equality in 

(5.12) with In instead of 7r yields that U,\(V,\(fn, x)) = U,\ (1 __ 1_), 
x+n 

I.e., 
1 

V'\(fn,x) = 1- --. 
x+n 

Since n E IN and 7r E P are arbitrary, this equality and (5.13) together 
yield, via (2.6), that V;(x) = 1 = W(x). Since x E IN\ {O} was arbitrary 
in this argument, part (i) follows from this latter equality and (5.11), 
then part (ii) is obtained from the inequality in (5.13) which is valid for 
every x # 0 and 7r E P. • 

In the remainder of the paper, attention concentrates on the existence 
of E-optimal policies; see Definition 2.1. 

6. Approximate optimality: part I 

This section concerns MDPs with finite state space but, in contrast 
with Section 5, the action sets are assumed to be arbitrary (measurable) 
subsets of the action space. As previously noted, within this context, the 
existence of a stationary policy can not be generally ensured. However, 
as stated in Theorem 6.1 below, an E-optimal stationary policy exists 
under Assumptions 2.1 and 2.2. 

Theorem 6.1 Suppose that Assumptions 2.1 and 2.2 hold, and that the 
state space is finite. In this case, given E > 0, there exists a stationary 
policy I which is E-optimal, i.e., 

V'\(f'x) > V;(x) - E, xES. 

The idea to establish this result consists in approximating the original 
MDP M by models whose action sets are appropriate finite sets, showing 
that in this reduction process, the optimal value function does not change 
'substantially'. Although Theorem 6.1 was obtained in Cavazos-Cadena 
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and Montes-de-Oca [5], the proof presented below, relying on the results 
of Section 4 and on the dominance property in Lemma 2.1(ii), is simpler. 

Lemma 6.1 Suppose that Assumptions 2.1 and 2.2 hold and let Xo E S 
be fixed. For each nonempty and finite set G c A(xo), consider the new 
MDP MG = (S, A, {AG(x)}, R, P) obtained by setting 

AG(x) = A(x), xES \ {xo}, and AG(xo) = G. (6.1 ) 

Let PG be the class of admissible policies of MG and denote by V; GO 
the corresponding optimal value function, i. e., ' 

v; G(x) = sup V.x(1T,X), xES. 
, rrEPc 

(6.2) 

With this notation, assertions (i)-(iii) below are valid, where G and H 
are nonempty and finite subsets of A(xo). 

(i) G c H ==} V; GO :=:; V; H(')' , , 
Set 

L(x) = sup {V;,H(X) 10 f= H c A(xo), H is finite}, xES. 
(6.3) 

(ii) Given f > 0, there exists a nonempty and finite set G = G(f) C 
A(xo) such that 

V;'G(x) 2: L(x) - f, xES. 

(iii) For each f > 0, the set G = G(f) in part (ii) satisfies 

V;,G(x) 2: V;(x) - f, XES, 

Proof 

(6.4) 

(6.5) 

(i) Using (6.1), it is clear that G C H ==} PG C PH, and the assertion 
follows from (6.2). 

(ii) Given f > 0, select a finite set G such that 0 f= G c A(xo) and 
V; dxo) + f 2: L(xo). In this case, from the definition of L(·) in 
(6.'3), it follows that V; G(xo) + f 2: L(xo) 2: V; H(xO) whenever 
H is a finite and nonempty subset of A(xo). Sinc~ models MG and 
MH have the same action sets, except at Xo, the above inequality 
implies, via Theorem 4.1 (i), that V;, G (.) + f 2: V;, H (. ), and, since 
the nonempty and finite subset H of A(xo) is arbitrary, (6.3) yields 
V; GO + f 2: L(·). , 
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(iii) By part (ii), it is sufficient to show that L(·) ~ V~(-). With this 
in mind, given c > 0 select a set G = G(c) as in (6.4), so that for 
every finite set H satisfying G c H C A(xo), part (i) and (6.2) 
together yield 

L(·) ~ V~,H(-) ~ V~,G(-) ~ L{·) - c. 

Combining this fact with the optimality equation for model MH 
and the monotonicity property of the utility function, it follows 
that 

u~ (L{x)) > U~ (V~,H(X)) 

> e~R(x,a) LPxy(a)U~ (V~,H(Y)) 
y 

> e~R(x,a) LPxy(a)U~ (L{y) - c) 
y 

e~E:e~R(x,a) LPxy{a)U~ (L(y)) , 
y 

XES, a E AH{X), (6.6) 

where (2.2) was used to obtain the equality. Since AH(X) = A(x) 
for x i- Xo, this yields that 

y 

(6.7) 
whereas AH(XO) = Hand (6.6) together imply that 

U~ (L(xo)) ~ e-~E:eAR(xo,a) LPxoy(a)U~ (L(y)) , a E H. 
y 

However, the finite set set H satisfying G c H C A(xo) is arbi­
trary, so that the above displayed relation implies 

U~ (L(xo)) ~ e-~E:e~R(xo,a) LPxoy(a)U~ (L(y)) , a E A{xo), 
y 

and combining this statement with (6.7), it follows that for every 
xES and a E A(x), U~ (L(x)) ~ eAE:e~R(x,a) ~ypxy{a)U~ (L(y)). 
Since c > 0 is arbitrary, this yields 

U~ (L(x)) ~ e~R(x,a) LPxy(a)U~ (L(y)) , XES, a E A(x) 
y 
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and then, since L{·) is nonnegative, from Lemma 2.1{ii) it follows 
that L{·) ~ V;O. • 

Proof of Theorem 6.1 Given an MDP M = (S,A,{A{x)},R,P), set 

NFAS{M) = number of finite sets among the class {A{x) Ix E S}. 

Within the family M of MDPs for which Assumptions 2.1 and 2.2 hold, 
and whose state space has n ~ 1 members, consider the following propo­
sition: 

Proposition 6.1 
IP{k): If ME M is such that NFAS{M) = k, then for every c > 0 there 
exists an c-optimal stationary policy for model M. 

To establish Theorem 6.1 it is clearly sufficient to prove that 1P(k) 
occurs for k = 0, 1,2, ... , n, which will be verified by backward induction. 

Initial step IP (n) is valid. 

When ME M satisfies NFAS(M) = n, for every action set, A(x) is 
finite, so that, by Theorem 5.1, there exists an optimal stationary 
policy f for model M. Clearly, such an f is c-optimal for every 
c > o. 

Induction step If 1P(k) holds for some k > 0, then 1P(k - 1) occurs. 

Suppose that IP(k) is valid and assume that the MDP 

M = (S,A, {A(x)},R,P) E M{where lSI = n), 

satisfies NFAS(M) = k - 1. 
Write S = {Xl,X2, ... ,Xk-l,Xk, ... ,Xn } and without loss ofgen­
erality suppose that A(xs ) is finite for s < k. Given c > 0, 
Lemma 6.1 applied to this model M with Xk instead of Xo yields 
a nonempty and finite set G such that the new MDP Me = 
(S, A, {Ae(x)}, R, P) satisfies Assumptions 2.1 and 2.2, as well as 
the following properties (i) and (ii): 

(i) Ae(x) = A(x) for x -=I Xk and A(Xk) = G, and 

(ii) 

where V; cO is the optimal value function of Me. , 

(6.8) 

Since NFAS(M) = k - 1, the definition of the action sets Ae(x) 
in (i) above yields that NFAS(Me) = k, so that, by the induction 
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hypothesis, there exists a stationary policy f such that V;(J,·) ~ 
V; a{·) - E/2 and combining this inequality with (6.8) it follows 
th~t 

V)'(J,·) ~ V),{·) - E, 

i.e., f is E-optimal for model Mj since M was an arbitrary MDP 
in the family M satisfying that NFAS{M) = k -1, it follows that 
1P{k - 1) is valid, completing the induction argument. • 

7. Approximate optimality: part II 
This section concerns the existence of E-optimal stationary policies 

for MDPs with general denumerable state space. The main objective 
is to establish Theorem 7.1 below, which extends results obtained in 
Cavazos-Cadena and Montes-de-Oca [5] for the risk-averse case A < o. 

Theorem 7.1 Let the risk-sensitivity coefficient A be a positive number, 
and consider an MDP 

M = (S,A,{A{x)},R,P) 

with general denumerable state space satisfying Assumption 2.1 as well 
as the condition that 

IIV;OIl < 00. (7.1) 

Then for every E > 0 there exists a stationary policy f which is E­
optimal, i. e., 

V),(J·) ~ V;O - E. (7.2) 

Remark 7.1 

(i) For the risk-neutral case A = 0, Ornstein [12] obtained the follow­
ing result (see also Hordijk [11]). 

Under Assumption 2.1, the finiteness of the optimal value function 
implies that, for each E E (0,1), there exists a stationary policy 
which is E-optimal in the relative sense, i.e., 

Vo(J,·) ~ (I - E)VO*{·). 

When 11'\'0*011 < 00, this implies that for every E > 0 it is possible 
to find a policy f E :IF which is E-optimal in the (absolute) sense 
of Definition 2.1{ii). Thus, Theorem 7.1 is an extension of this 
latter result to the risk-seeking context A > o. 

(ii) When A < 0, and the other conditions in Theorem 7.1 occur, 
it was proved in Cavazos-Cadena and Montes-de-Oca [5] that for 
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each c E (0,1) there exists a stationary policy f which is c-optimal 
in the relative sense, that is, V;U,·) ~ {1- c)V;O. Under (7.1), 
this result implies that the conclusion of Theorem 7.1 also occurs 
for in the risk-averse case. 

(iii) The proof of Theorem 7.1 presented below follows the route sig­
naled by Ornstein [12] (see also Hordijk [11, Chapter 13]). This 
approach was adapted to the risk-averse case >. < ° in Cavazos­
Cadena and Montes-de-Oca [5], and it is interesting to point out 
that the key step of the proo/, namely, Lemma 7.2{iii) below, re­
quires a substantially different treatment in the risk-seeking and 
risk-averse cases. 

The strategy to prove Theorem 7.1 needs two preliminary steps. 

Step 1 It will be proved that, given a fixed state xo, there exists 
a stationary policy which is c-optimal at xo, see Lemma 7.1 
below. 

Step 2 It will be shown in Lemma 7.2 that, for an appropriate 
subset E of S containing xo, the action sets at states in E 
can be reduced to singletons without altering 'substantially' 
the optimal value function. 

Finally, The proof of Theorem 7.1 is obtained by the successive 
application of this reduction process. 

Lemma 7.1 Consider an MDP satisfying Assumptions 2.1 and 2.2, 
where the state space is an arbitrary denumerable set. Let Xo E S, the 
risk sensitivity coefficient>. =1= 0, and c > 0, be fixed. Then there exists 
a stationary policy f which is c-optimal at Xo: 

V.x(f, xo) ~ V;{xo) - c. 

A proof of this Lemma, extending well-known ideas in risk-neutral 
dynamic programming to the risk sensitive context, was provided in 
Cavazos-Cadena and Montes-de--Oca [5]. For completeness, a short 
outline is given. 

Proof of Lemma 7.1 Refer to (2.6) and select a policy 1r E P such 
that 

V.x{1r, xo) + ~ > V;{xo). (7.3) 

Consider a finite set G C S containing xo, and observe that Tee /" 
00 as G /" S, where GC = S \ G. Since 

UA (VA (1r, xo)) ~ E;, [UA (t, R(Xt, At)) 1 ' 
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the continuity and monotonicity of the utility function together imply, 
via the dominated convergence theorem, that 

U,(V,(1r,xo)) ~ J%E:. [U, C~' R(X"A,))]. 
Then by (7.3), for some finite set G containing xo, the following inequal­
ity holds, 

E:. [u, cr R(X, , A,)) ] > U, (V;(xo) -~). (7.4) 

Consider the new MDP M = (8, A, {A(x)}, R, P) specified as follows. 
For some object A outside of S, 8 = G U {~}, A(x) = A(x) (resp.= 

{~}) when x E G (resp., when x = ~). On the other hand, the tran­
sition law P = [Pxy(·)] is given as follows. For x E G and a E A(x), 
pxy(a) = px,y(a) if y E G and pXLl(a) = 1 - Ey~GPx,y(a) if Y = ~j 

whereas PLl,LlO = ~ Finally, R(x,.) = R(x,·) for x E G, and R(~,·) = 

O. Models M and M are closely related. In fact, starting at x E G, the 
transitions and the reward streams of both models are identical as soon 
as the state stays in G, but once the system falls outside G, in model M 
the state remains equal to ~ and a null reward is ~ned forever. Given 
the policy 7r in (7.4), an admissible policy ii" for M can be constructed 
as follows. If ht = (xo, ito, .... , Xt) is an admissible history up to time t 
for model M, then ii"t{·lht) = 7rt{·lht) if Xs E G for all s ~ t, whereas 
ii"t{ {~}Iht) = 1 if Xs = ~ for some s ~ t. Since Xo E G, from the re­
lation between M and M, it is not dificult to verify that VA (ii", xo), the 
A-sensitive expected total-reward at Xo corresponding to ii", satisfies 

So that, by (7.4) and the strict monotonicity of UA (.), 

V;{xo) ~ VA (ii", xo) > V;(xo) - ~, 

(7.5) 

(7.6) 

where V; (.) is the optimal value function of model M. The latter MDP 
has a finite state space, so that Theorem 5.1 yields an admissible sta­
tionary policy j for M satisfying V>.(j,·) > V;O - c/2. Then by (7.6), 

(7.7) 
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To conclude, let g E W be arbitrary and define the stationary policy f 
by setting f(x) = j(x) for x E G, and f(x) = g(x) if xES \ G. In this 
case, it is not difficult to verify that equation (7.5) holds with j and f 
replacing 1i" and 7r, respectively, so that 

u, (V,(!,xo)) = E£. [U{~l R(Xt,Atl) 1 

< E£. [u, (t, R(Xt, At)) 1 
- U>.(V>.(f,xo))· 

Recall that R(·,·) ~ ° and (2.5). Thus, V>.(f, xo) ~ V>.(j, xo), by the 
strict monotonicity of U>.. Hence f is c-optimal at Xo for model M, by 
(7.7). .. 

Lemma 7.2 Let the risk-sensitivity coefficient be positive, and suppose 
that Assumption 2.1 and condition (7.1) are valid. Given Xo E Sand 
c E (0,1), consider the following construction. For a stationary policy f 
and E C S, define the MDP 

M = (S, A, {A(x)}, R, P), (7.8) 

where 
A(x} _ {A(x), if x fJ. E, 

- {f(x)}, if x E E. {7.9} 

Let f3 and V; (.) be the class of admissible policies and the optimal value 

function for M, respectively, so that 

V;(x) = sup V>.(7r, x), 
'/rEP 

xES. 

In this case, the policy f and the set E can be chosen so that the following 
assertions (i)-(iii) are valid. 

(i) Xo E E, 

(ii) V;O ~ V;O - c. 

(iii) Moreover, for every policy 7r E $, 

V>.(7r, xo) ~ V;O - c. 

Proof Given 8 E (0,1), select a policy fEW satisfying 

V>.(f,xo) ~ (1-82 )V;(xo). (7.10) 
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When V; (xo) > 0, the existence of such a policy follows from Lemma 7.1 
with c = 82V;(xo). Whereas if V;(xo) = 0, then (2.6) yields that (7.10) 
is satisfied for every f ElF. Define the set E by 

E = {x E S I V)Jf,x) ~ (1- 8)V;(x)}. (7.11) 

It will be shown that the conclusions in the lemma are satisfied when f 
and E are selected in this way. 

Assertion (i) Since 8 E (0,1) and V;O is nonnegative, (7.10) implies 
that Xo E E. 

Assertions (ii) and (iii) In the remainder of the proof, it will be 
shown that if 8 is chosen appropriately assertions (ii) and (iii) are 
satisfied when model Ai is constructed with f and E as in (7.10) 
and (7.11). 

1. It will be proved that 

VA(x) ~ V(x) - 811V;1I, xES. (7.12) 

To verify this assertion, n;?!ice that f is an admissible sta­
tionary policy for model M, so that, from the definition of 
E, 

xEE. (7.13) 

Since.A > 0 and recalling (2.1), the strong optimality equation 
in Lemma 2.2 yields, 

eAV;(x) = supE; [eA~;!o-l R(Xt,AdeAV;(XTE)] , \Ix E S. 
7rEP 

(7.14) 
As XTE belongs to the set E when TE < 00, using (7.11) and 
the fac1~_!hat f belongs to the space of stationary policies for 
model M, 

(1- 8)V;(XTE) ~ VA(f,XTE ) ~ V;(XTE)' 

By the convention in Remark 2.2, this inequality remains 
valid when TE = 00. Therefore, (7.14) yields 

eAV;(x) 

sup E; [eA~;!o-l R(Xt,AdeA(l-O)V;(XTE)eMV;(XTE)] 

7rEP 

< sup E; [eA~;!o-l R(Xt,Ad eAV; (XTE)] eM11V;OIl. 
7rEP 

(7.15) 
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Now suppose that Xo = x ~ E, and notice 

depends only on the actions prescribed by 7r at times k E 

{O, 1, ... ,TE - I}, and that Xk ¢ E for these values of k. 
Since models M and M have the same sets of admissible 
actions at the states in E C = S \ E, the supremum over P 
after the inequality in (7.15) coincides with the supremum 
over P. Thus, if x ~ E 

e'xV;(x) < supE; [e'x}:;~o-l R(Xt,At}e'xV;(XTE )] eM11V;OIl 
?rEP 

where the second equality stems from Lemma 2.2 applied to 
model M. Thus, since ,\ > 0, V;(x) ~ V;(x) + 811V;OIl if 
x rt E, which combined with (7.13) establishes (7.12). 

2. As in Section 3, consider the MDP 

M, = (S,A, {A,(x)},R,P) 

obtained by setting A,(x) = {J(x)}, for which V,X(f,') is the 
corresponding optimal value function. Applying Lemma 2.2 
to this model with the stopping time TEc, and using the con­
dition'\ > 0, it follows that 

e,XV,x(f,x) = E£ [e,X}:;~~-l R(Xt,At}e,XV,x(f,XTEC )] , xES. 

(7.16) 
Now observe that V,X(f,XTEc) ~ (1- 8)V;(XTEc), which fol­
lows from the definition of E when TEc < 00, and from the 
convention in Remark 2.2 for TEc = 00. Therefore, using that 
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A > 0, (7.10) and (7.16) together imply 

e).(1-62 )V;(xo) 

< Eto [e).E;~~-l R(Xt,At}e).(1-6)V;(XTEC)] 

E f [ )'(1-6)[E;~~-1 R(Xt,At)+V;(XTEC)] 
= Xo e 

e)'6E;~~-1 R(Xt,At}] 

< (Eto [e).E;~~-l R(Xt,At}+>'V;(XTEC)]) (1-6) 

(Eto [e).E;~~-l R(Xt,At}]) 6 

By Holder's inequality 

~ e).(1-6)V;(xo) (Et [e). E;~~-l R(Xt,At}]) 6, 

where the last inequality comes from the strong optimality 
equation. Consequently, since 8 E (0,1), it follows that 

(7.17) 

Alternatively, the definition of the action sets A(x) yields that 
a policy 7r in f3 prescribes the same actions as f on the set 
E. Since Xo E E, E;o [e>'E;~~-l R(Xt,At}] depends only on 

the actions selected while the state of system remains in E, 
so that 

Then, the positivity of A and the nonnegativity of the reward 
function together yield that 

e).V>.(1r,xo) E:o [e>' E~o R(Xt,At}] 

> E:o [e).E;~~-l R(Xt,At}] 

Eto [e>'Ei!~-l R(Xt,At)] 

by (7.17) 
> e).(1-6)V;(xo). 
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Thus, 

VA (11", XO) > (1 - 8) V\, (xo) 
~ 

> V;(xo) - 811V;OII, 11" E P. (7.18) 

3. To conclude, set 
E 

8= l+IIVAOII' 
and observe that assertions (ii) and (iii) follow from (7.12) 
and (7.18). • 

Proof of Theorem 7.1 Given E E (0,1), set En = 2nE+I and write 

S={XO,XI,X2, ... }. (7.19) 

Consider now the following recursive construction of a sequence 

{Mn = (S,A,{An(x)},R,P)}. 

1. Set Mo = M, the original MDP described in Section 2. 

2. Given Mk with k 2': 0, let Mk+1 be the MDP Ai constructed in 
Lemma 7.2 with Mk, Xk and Ek instead of M, Xo and E respectively. 
Then by Lemma 7.2, the following assertions (a)-{d) are valid for 
every k E IN. 

a) Ak+1{x) C Ak{X) for every xES; 

b) Ak+ I (x k) is a singleton. 

c) If Pk and V; k (.) denote the class of admissible policies and 
the optimal ~alue function of Mk, respectively, then 

d) for each policy 11" E PHI, VA (11", Xk) 2': V;,k(Xk) - Ek· 

By a simple induction argument, (c) clearly implies that 

k-I 

V;, k (-) 2': V;, 0 (-) - L En 
n=O 

k-I 

V;(·) - LEn, k E IN; (7.20) 
n=O 
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8. 

For the equality, recall that Mo = M. On the other hand, from (a) 
and (b) it follows that for each xES = {xo, Xl, X2, ... }, the inter­
section of the action sets An (x) is a singleton, say 

00 n An(x} = {ax}. 
n=O 

Define f(x} = ax, XES, and observe that the inclusion f(x} E 
Ak(x} always holds, so that f is an admissible stationary policy 
for each model Mn. 

To conclude, let xES be arbitrary. In this case X = Xk for 
some k E:IN by (7.19), and assertion (d) implies that V>.(J,Xk} ~ 
V; k(Xk} - ek, which combined with (7.20) yields , 

V>.(J,X} = V>.(J, Xk} 
k 

> V;(Xk} - Len 
n=O 

> V;(Xk} - e 

V;(x} - e. 

Hence f is e-optimal. • 
Conclusion 

Under the basic structural assumption that the controller has a con­
stant risk-sensitivity coefficient, this work considered MDPs with dis­
crete state space and nonnegative rewards. When the performance index 
of a control policy is the risk-sensitive expected total-reward criterion, 
the paper addressed the existence of optimal and e-optimal stationary 
policies assuming the finiteness of the optimal value function and the 
mild measurability condition in Assumption 2.1(i}. In contrast with the 
usual approach to this problem, based on the discounted criterion, the 
arguments used in this work rely on the comparison of the optimal value 
functions associated to MDPs whose action spaces coincide, with the 
exception of a single state; see Theorems 3.1 and 4.1. Therefore, the 
paper faced a problem on the expected total-reward criterion, entirely 
within the framework of this performance index. 

After establishing the existence of optimal stationary policies for 
MDPs with finite state and actions sets in Section 5, the result was 
used in Section 6 to obtain e-optimal stationary policies, when only the 
state space is supposed to be finite, which are valid regardless of the 
sign of the risk-sensitivity coefficient. In Section 7 it was supposed that 
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the decision maker is risk-seeking, and when the optimal value function 
is bounded, it was proved in Theorem 7.1 that the existence of an c­
optimal stationary policy is guaranteed, complementing results recently 
obtained for the risk-averse case; see Remark 7.l. 

However, extending the result in Theorem 7.1 to the case of an un­
bounded optimal value function seems to be an interesting problem, and 
research on this direction is presently in progress. 
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1. Introduction and notation 

In a real application of Markov decision processes (MDPs in short, 
see [7, 10, 16]), the required data must be estimated. The mathematical 
model of MDPs can only be viewed as approximations. It may be useful 
that the model is ameliorated so to be "robust" in the sense that it's 
reasonably efficient in rough approximations. How can be this situation 
modelled? One realistic answer to such a problem is to apply certain 
intervals containing the required data. 

By Hartfiel's [4, 5, 6] interval method, Kurano et al. [13] has intro­
duced a decision model, called a controlled Markov set-chain, which is 
robust for approximation of the transition matrix in MDPs. The dis­
counted reward problem was developed in [12, 13]. The non-discounted 
case was treated in Hosaka et al. [8] and the average reward problem 
under contractive properties was studied Hosaka et al. [9]. However, the 
functional characterization of optimal policies is not given. 

In this paper, applying an interval arithmetic analysis, we develop the 
functional characterization of Pareto optimal policies which maximize 
the discounted or average expected rewards over all stationary policies 
under some partial order. 

In the remainder of this section, we shall introduce several notions 
referring to the works [4, 5, 6] on Markov set-chain. Refer [15] and [12, 13] 
for the interval arithmetic and formulation of a controlled Markov set­
chain respectively. 

Let R+*n be the set of entry-wise non-negative m * n-matrix (m, n ~ 
1). For any B, BE R+*n with B ~ B (component-wise), we denote by 
< B, B > the set of stochastic matrices B such that B ~ B ~ B. 

The set of all bounded and closed intervals on the non-negative num­
bers is denoted by C (R+), and C (R+) n is the set of all n-dimensional 
column vectors whose elements are in C(R+), i.e., 

where d' denotes the transpose of a vector d. 
If D = ([fh, d1], ... , [4n , dn ])', then it will be denoted by D = [4, d], 
where 4 = (41,···,4n )', d = (d1, ... ,dn ), and [4,d] = {d E R+ I 4 ~ 
d ~d}. 

We will give a partial order >-, t on C(R+) by the definition: 
For [CI' C2], [dl , d2] E C(R+), 



Interval methods for uncertain Markov decision processes 225 

For v = (VI,V2, ... ,Vn)' and w = (WI,W2, ..• ,Wn)' E C(R+)n, we use 
the notation: 

• v >- w if v t wand v f. w. 

A controlled Markov set-chain consists of five objects: 

(8, A, R, q, r), 

where 8 = {I, 2, ... ,n} and A = {I, 2, ... ,k} are finite sets and for each 
(i, a) E 8 x A, R = R(·li, a) E R~xn, q = q(·li, a) E R~xn with R ::; q, 
(q, q) f. 0, and r = r(i, a) a function on 8 x A with r ~ O. Note that 
the notation used here obey the previous one ([8, 9]). We interpret 8 as 
the set of states of some system, and A as the set of actions available at 
each state. 

When the system is in state i E 8 and we take action a E A, we move 
to a new state j E 8 selected according to the probability distribution 
on 8, q(·li, a), and we receive an immediate return, r(i, a), where we 
know only that q(·li, a) is arbitrarily chosen from (q(·li, a), q(·li, a)). This 
process is then repeated from the new state j. Denote by F the set of 
functions from 8 to A. 

A policy 7r is a sequence (iI, 12, ... ) of functions with It E F, (t ~ 
1). Let II denote the class of policies. We denote by rXJ the policy 
(hI, h2, ... ) with ht = f for all t ~ 1 and some f E F. Such a policy is 
called stationary, denoted simply by f, and the set of stationary policies 
is denoted by F. 

We associate with each f E F the n-dimensional column vector r(f) E 
R+. whose ith element is r(i, f(i)) and the set of stochastic matrices 
Q(f) := (Q(f), Q(f)) where the (i, j) elements of Q(f) and Q(f) are 
q(jli, f(i)fand q(jli, f(i)) respectively. -
- First, we define the set of discounted total expected rewards. For any 
7r = (fl, 12,·· . ) E II, and discount factor f3 (0 < f3 < 1), let 

Since it is shown in [13] that {cf>r(7r)}~=1 is a Cauchy sequence with 
respect to a metric on C(R+)n, the set of discounted expected total 
rewards from 7r in the infinite future can be defined by 
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where 1!.{7r) , ¢(7r) E R+ n. 
Now, we define the set of average expected rewards. For any 7r = 

(h, 12,···) E II, let Vl{7r) = r{h) and, by setting Qo = identity, 

VT(") ~ {r(h) + t Q, Q2 ... Qir(fH 1) I Vi, Q, E Q([;) } (1.3) 

for T ~ 2. It holds that VT{7r) E C{R+)n for all T ~ 1. Let 

lim infvT{7r)/T 
T-+oo 

(1.4) 

{ X E Rnllimsup inf 8{x, y) = o} 
T-+oo yEVT(7r)/T 

where 8 is a metric in Rn. Since v{7r) E C{R+)n ([13]), v{7r) is written as 
v{ 7r) = [Q{ 7r), v{ 7r)]. As the meaning of the values in (1.2) of a discounted 
case, (1.4) of an average case, they are the expected rewards under the 
corresponding behaviour in the worst or in the best respectively. 

Definition 1.1 A policy f* E IIF is called discounted (average) optimal 
if and only if for each i E S, there does not exist f E F such that 

¢(J*)i -< ¢(J)i (V(J*)i -< V(J)i) . 

where ¢(J)i (v(J)d is the ith element of ¢(J) (v(J)). 

(1.5) 

In the above definition, we confine ourselves to the stationary policies, 
which simplifies our discussion in the sequel. In Section 2, discounted 
optimal policies are characterized by maximal solutions of optimality 
equation. The characterization of average optimal policies is done in 
Section 3. 

2. Optimality for the discount case 

In this section, we derive the optimality equation, by which discounted 
optimal policies are characterized. Associated with each f E F and 
f3 E (0,1) is a corresponding operator L{f), a mapping from C{R+)n 
into itself, defined as follows. For v E C{R+)n, 

L(J)v := r(J) + f3Q(J)v = [L(J)Q, I(J)v] E C{R+)n. (2.1) 

Note that v = [Q, v] with Q ~ v, Q, v E R+., and Land L are operators 
from R+. into R+., defined by: 

{ l!:.(J)v = r(J) + f3 minQEQ(f) Qv, 
L(J)v = r(J) + f3maxQEQ(f) Qv. 

(2.2) 
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In (2.2), each min/max represents component-wise minimization/maxi­
mizing. The following results are given in Kurano et al. [13]. 

Lemma 2.1 ([13]) For any f E F, we have: 

(i) L(f) is monotone and contractive with modulus (3, and ¢(f) is a 
unique fixed point of L(f), that is, 

¢(f) = L(f)¢(f). 

(ii) For any h E R+, ¢(f) = limt-too L(f)th with respect to 8. 

We have the following. 

(2.3) 

Lemma 2.2 For f,g E F, suppose that ¢(f) -< L(g)¢(f). Then, it 
holds ¢(f) -< ¢(g). 

Proof By Lemma 2.1(i}, we have that 

¢(f) -< L(g)¢(f) ~ L(g)t¢(f), for all t ~ 2. 

By t -+ 00 in the above, from Lemma 2.1(ii) it follows that ¢(f) -< ¢(g), 
as required. • 

Let q(i, a) := (q('li, a), q(·li, a)) for i E S and a E A. When f == 
a for some a E A~ the operator L(f) will be denoted by La, that is, 
for v E C(R+}n and i E S, (LaV}i = r(i, a) + {3q(i, a}v, and Lav = 
((Lavh, ... , (Lav}n). For any D c C(R+), a point u E D is called an 
efficient element of D with respect to ~ on C(R+) if and only if it holds 
that there does not exist v E D such that u -< v. We denote by eff(D) 
the set of all efficient elements of D. Let 

C(u)(i) = eff({(Lau)ila E A}), iES={1,2, ... ,n}, 

C(u) .- (C(u)(1), C(u)(2), ... ,C(u)(n)) 

for any u E C(R+)n. We note that C(u) c C(R+)n holds. 
Here, let us consider the following interval equation including efficient 

set-function C on C(R+)n: Find u E C(R+)n such that 

u E C(u). (2.4) 

The equation (2.4) may be called an optimality equation for the dis­
counted case in this formulation of our model, by which discounted op­
timal policies are characterized. A solution u of the optimality equation 
is called maximal if at each i E S there does not exist any solution v 
such that Ui ~ Vi, where u = (UI, ... , un) and v = (VI"'" Vn). 
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In Theorem 2.1 below, discounted optimal policies are characterized 
by maximal solutions of the optimality equation. Lemmas 2.1 and 2.2 
make the proof of Theorem 2.1 possible and the proof can be entirely 
done analogously to that of [3, Theorem 5.1] through a simple modifica­
tion. So the proof is omitted. 

Theorem 2.1 A policy I E F is discounted optimal il and only il ¢(J) 
is a maximal solution to the optimality equation. 

3. Optimality for the average case 

In this section, we will give the optimality equation for the average 
case. Henceforth, the following assumption will remain operative. 

Assumption 3.1 (Primitivity) For any I E F, each Q E Q(J) is 
primitive, i. e., Qt > 0 lor some t ~ 1. 

Obviously, if Q(J) is primitive in the sense of non-negative matrix 
(see [17]), Assumption 3.1 holds. 

The following facts on Markov matrices are well-known (see [2, 11]). 

Lemma 3.1 For any I E F, let Q be any matrix in Q(J). 

(i) The sequence (J + Q + ... + Qt)j(t + 1) converges as t -+ 00 to a 
stochastic matrix Q* with Q* Q = Q*, Q* > 0 and rank( Q*) = 1. 

(ii) The matrix Q* in (i) is uniquely determined by Q*Q = Q and 
rank(Q*) = 1. 

Associated with each I E F is a corresponding operator U(J), map­
ping C(R+)n into C(R+)n, defined as follows. 

For v = [Q, v] E C(R+)n with Q ~ v, Q, v, 

U(J)v := r(J) + Q(J)v = [U(J)Q, U(J)v] . (3.1) 

where U and U are operators from Rn into itself, defined by: 

{ U(J)v = r(J) + minQEQ(f) Qv, 
U(J)v = r(J) + maxQEQ(f) Qv. 

(3.2) 

Let e := (1,1, ... ,1)'. Here, for any I E F, we consider the interval 
equation: 

r(J) + Q(J)h = v + h, (3.3) 

where v := [Qe, vel, Q, v E Rand h = [l!, Ii] E C(R)n, l!, h E Rn with 
Q ~ v, l! ~ h. 
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Obviously, the interval equation can be rewritten by their extremal 
points as 

{ r{f) + minqeQ(f) Q~ = !!.e + Il 
r{f) + maxQEQ(f) Qh = ve + Ii 

with !!. ~ v, Il ~ Ii where !!., v E R, Il, Ii E Rn. 
We have the following lemma. 

(3.4) 

Lemma 3.2 ([1, 8]) For any / E P, the interval equation (3.3) de­
termines v uniquely and h up to an additive constant [CI e, C2e] with 
CI, C2 E R(CI < C2). 

Since the unique solutions v and h of (3.3) are dependent on / E P, 
we will denote them respectively by v{f) := v and h{f) := h. The 
following lemma can be proved similarly to [9, Corollary 3.1]. 

Lemma 3.3 ([9]) For any / E P, it holds that: 

(i) v{f) = [!!.{f)e, v{f)e] . 

(ii) !!.{f)e = minQEQ(f) Q*r{f) and v{f)e = maxQEQ(f) Q*r{f). 

Lemma 3.4 For any /,g in P, suppose that 

v{f) + h{f) { ~ } r(g) + Q(g)h{f). 

Then, it holds that 

v(J) { ~ } v(g). 

(3.5) 

(3.6) 

Proof The left and right extremal equation of (3.5) are given as follows. 

!!.(J)e + 1l(J) 

v(J)e + Ii{f) 

r(g) + min QIl(J) 
QEQ(f) 

r(g) + max QIi(J). 
QEQ(f) 

(3.7) 

(3.8) 

By Lemma 3.3, there exists Q E Q(g) with !!.(g)e = Q*r(g). Multiplying 
the both sides of (3.7) by Q* , we get from Q* Q = Q* and Q* > 0 that 

!!.(J)e { ~ } Q*r(g). Thus !!.(J)e { ~ } !!.(g)e follows. Similarly, we 

get v(J)e { ~ } v(g)e, which proves (3.6). • 
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From Lemma 3.3, we observe that all elements of v(J) are equal, 
which implies that the set of average expected reward from f E F is 
independent of the initial state. So, a policy f E F is average optimal if 
and only if there is no 9 E F such that v(f) -< v(g). Keeping the above 
in mind, we can define an efficient point with respect to the partial order 
~ on C(R)n. 

Let D be an arbitrary subset of C(R)n. A point u E D is called an 
efficient element of D with respect to ~ on C(R)n if and only if it holds 
that there does not exist v E D such that u -< v. We denote byeff(D) 
the set of all elements of D efficient with respect to ~ on C(R)n. For 
any u E C(R)n, let 

U(u) := eff( {U(J)u I f E F}), 
where U(J)u E C(R)n is defined in (3.1). We note that U(u) c C(R)n 
for any u E C(R)n. 

Here, we consider the following interval equations inducing efficient 
set-function U(·) on C(R)n. 

v + hE U(h), (3.9) 

where v = [12.e, ve), h = [b., Ii] E C(R)n and 12. S; v, b. s; Ii, 12., v E R, 
b., Ii ERn. The equation (3.9) is called an optimality equation for the 
average case, by which average optimal policies can be characterized. A 
solution (v, h) of the optimal equation is called maximal if there does 
not exist any solution (v', h') of (3.9) such that v -< v'. 

Theorem 3.1 A policy f E F is average optimal if and only if the pair 
(v(J), h(J)) given by Lemma 3.2 is a maximal solution to the optimality 
equation (3.9). 

Proof 
The proof of the "only if" part is easily obtained from Lemma 3.4. 
In order to prove the "if" part, suppose that (v(J), h(J)) is a maximal 

solution of (3.9) but foo is not average optimal. Then, there exists 9 E F 
with v(J) -< v(g). If (v(g), h(g)) tt U(h(g)), there exists f(1) E F 
such that v(g) + h(g) -< L(J(1))h(g), which implies from Lemma 3.4 
that v(g) -< v(J(1)). Since F is a finite set, by repeating this method 
successively, we come to the conclusion that there exists f{l) E F such 
that v(J) -< v (I{l)) and (v (1(1)) ,h (1(1))) satisfies (3.9). However, this 
contradicts that (v(J), h(J)) is maximal. • 

Remark 3.1 For vector-valued discounted MDPs, Furukawa [3] and 
White [18] derived the optimal equation including efficient set-function 
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on Rn , by which optimal policies are characterized. The form of the op­
timality equation (3.9) is corresponding to the average case of controlled 
Markov set-chains. 

As a simple example, a machine maintenance problem ([14, p.1, pp.17-
18)], in the typical Markov decision processes can be formulated as this 
Markov set-chain version and possible to find a discounted or an average 
optimal policy by applying Theorems 2.1 or 3.1 respectively. However 
the details are omitted here. 
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Abstract This paper reduces problems on the existence and the finding of optimal 
policies for multiple criterion discounted SMDPs to similar problems for 
MDPs. We prove this reduction and illustrate it by extending to SMDPs 
several results for constrained discounted MDPs. 

Keywords: Semi-Markov decision process, constrained optimization, discounted re­
wards. 
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1. Introduction 
This paper deals with multiple criterion discounted Semi-Markov Decision Pro­

cesses (SMDPs). SMDPs are continuous-time generalizations of Markov Decision 
Processes (MDP). The main difference between these two models is that time inter­
vals between jumps have arbitrary distributions in SMDPs and they all are equal to 
one in MDPs. Another difference is that strategies for SMDPs can use the infor­
mation about the real time in addition to the information about the step numbers. 
For a discrete time MDP, the step number is the only time parameter. For many 
production, service, and telecommunication problems, SMDPs provide more realistic 
models than MDPs. 

One-criterion discounted SMDPs can be reduced to discounted MDPs. This fact 
is well-known and its proof is based on the properties of optimality equations for 
discounted SMDPsj see Puterman [18, Section 11.3]. For multiple criterion models, 
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this proof fails because the optimality equation arguments are not valid anymore. 
The main focus of this paper is to establish the reduction of SMDPs to MDPs for 
multiple discounted criteria. 

We prove this reduction in Section 3. In particular, for a given initial distribution 
and for an arbitrary policy, we construct a randomized Markov policy with the same 
performance vector; see Lemma 3.1. For a randomized Markov policy each decision 
depends only on the current state and on the current step number. 

The mentioned construction generalizes the well-known construction of the equiva­
lent randomized Markov policy for an MDP by Derman and Strauch; see Corollary 3.1 
below. However, for a discrete-time MDP, such construction does not depend on the 
discount factor, and the resulting randomized Markov policy is the same for all dis­
count factors including the discount factor equal to 1. For an SMDP, our construction 
leads to different equivalent randomized Markov policies for different discount rates. 
For an SMDP, a randomized Markov policy, which performance vectors are equal 
under all discount rates to performance vectors of a given arbitrary policy, may not 
exist. 

For a multiple criterion discounted SMDP, we consider a discounted MDP with 
the same state and action sets, and with the same reward functions. In addition, the 
performance vectors coincide for these two models. Therefore, a randomized Markov 
policy, which is optimal for the corresponding discounted MDP, is also optimal for 
the original SMDP. 

In Section 4 we illustrate this reduction by showing that several results recently 
established for MDPs hold also for SMDPs. As mentioned above, SMDPs are im­
portant for applications. In addition, the author's interest in SMDPs is motivated 
by their usefulness in studying Continuous Time Jump Markov Decision Processes; 
Feinberg [7, 8]. 

2. Definitions 
The probability structure of an SMDP is specified by the four objects 

{X, A, D(x), Q(t, Ylx, an, where: 

(i) X is a Borel state space; 

(ii) A is a Borel action space; 

(iii) D(x) S; A are Borel sets of actions available at x E X; 

(iv) Q(·lx, a) is a transition probability from X x A into [0,00] xX. 

It is assumed that 

graph(D) = {(x,a): x E X,a E D(x)} 

is a Borel subset of X x A containing the graph of a Borel mapping from X to A. We 
denote by X and A the Borel u-fields on X and A respectively. 

We denote Q(t, Ylx, a) = Q([O, t] x Ylx, a) for any ° ::; t < 00 and for any Borel 
Y ~ X. If action a is selected in state x then Q(t, Ylx, a) is the joint probability 
that the sojourn time is not greater than t E R+ and the next state y is in Y, where 
R+ = [0,00). 

Let e be the sojourn time. Then Pie ::; t} = Q(t,Xlx,a). Everywhere in this 
paper, we make the following standard assumption that implies that the system does 
not have accumulation points: 
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At. There exist f> ° and f> ° such that Q(f, Xix, a) < 1 - €for all x E X and for 
all a E A. 

Let Hn = X x (A x R+ x xt, n = 0,1, ... ,00, be the set of all histories up to 
nth jump. Then H = U Hn is the set of all histories that contain a finite number of 

O$n<oo 
jumps. The sets H n , n = 0,1, ... ,00, and H are endowed with the a-fields generated 
by the a-fields X, A, and 8(R+); everywhere in this paper, for a Borel space Ewe 
denote by 8(E) its Borel a-field. A (possibly randomized) strategy 'If' is defined as 
a transition probability from H to A such that 'If'(D(xn) I Wn) = 1 for each Wn = 
xoaoeo ... xn-lan-len-lXn E H, n = 0, 1, .... 

To define a sample space that includes trajectories that have finite numbers of 
jumps over R+, we add an additional point x i X to X and an additional point 
a i A to A. Let X = X U {x} and ..4. = A U {a}. We also define D(x) = {a}, 
Q«oo,x)lx,a) = 1- Q(R+ x Xlx,a) for x E X, a E A, and Q«oo,x)lx,a) = 1 when 
either x = x or a = a. We have that Q is a transition probability from X x ..4. to 
R+ x X, where R+ = [0,00). 

Let Hn = X x (..4. x R+ x xt, n = 0,1, ... ,00. We also consider 8(Hn) = 
8(X) x (8(..4.) x 8(R+) x 8(X)t. Any strategy 'If' defines transition probabilities 
from Hn to Hn x ..4. and Q defines transition probabilities from Hn x ..4. to Hn+1, 

n = 0, 1, .... Any initial distribution p, on X and any strategy 'If' define a probability 
measure on the set (Hoo,8(Hoo)); Neveu [15, Section 5.1). We denote this measure 
by lP; and denote the expectation operator with respect to this measure by IE;. 

Let hoo = (xoaOeOxlalel ... ). We set to = ° and tn = tn-l + en-l, n = 0,1, .... 
Let N(t) = sup{n ~ 0: tn ~ t}. Al implies that N(t) < 00, (lP;-a.s.) for all t E R+ 
and tn -+ 00 (lP;-a.s.) as n -+ 00 for all p, and 'If'. 

We may consider an SMDP as an object that has two time parameters. The first 
parameter is the actual continuous time t = tn at an nth jump epoch. The second 
parameter is the jump number n. We say that a strategy is a policy if at each epoch 
tn, n = 0, 1, ... , the decision does not depend on the times {o, ... ,{n-l. A randomized 
Markov policy 'If' is defined by a sequence of transition probabilities {'If'n : n = 0,1, ... } 
from X into A such that 'If'n(D(x) I x) = 1, x E X, n = 0,1, .... A Markov policy 
is defined by a sequence of mappings 4>n : X -+ A such that 4>n(X) E D(x), x E X, 
n = 0,1, .... A randomized stationary policy 'If' is defined by a transition probability 
'If' from X into A such that 'If'(D(x) I x) = 1, x E X. A stationary policy is defined by 
a mapping 4> : X -+ A such that 4>(x) E D(x), x E X. 

The reward structure of an SMDP is specified by the three objects 
{a,K, Tk{x,a)}, where: 

a) a> ° is a discount rate; 

b) K = 0,1, ... is a number of constraints; 

c) Tk(x,a) is the expected discounted cumulative reward at the state x for the 
criterion k = 0, ... , K if the action a is selected. We assume that rk are 
bounded above Borel functions on X x A. We set Tk(X, a) = 0, k = 0, ... , K. 

Given an initial state distribution p, and a strategy 'If', the expected total discounted 
rewards over the infinite horizon are: 

00 

Wk(p,,'If') = IE; L e-<>t"Tk{Xn, an), k=O, ... ,K. (2.1) 
n=O 

When we consider one criterion, or what we write is true for all criteria, we may omit 
indexes k = 0,1, ... ,K. We assume everywhere that ° x 00 = 0. 
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For a one-criterion problem, a strategy 7r is called optimal if W (It, 7r) 2: W (It, a) 
for any initial distribution It and for any strategy a. For a problem with multiple 
criteria, we fix the initial distribution It and constants Ck, k = 1, ... ,K. A strategy 
7r is called feasible if Wk(lt, 7r) 2: Ck for all k = 1, ... ,K. If there exists at least one 
feasible strategy, the SMDP is called feasible. A feasible strategy 7r is called optimal 
for a problem with multiple criteria if Wo(lt, 7r) 2: Wo(lt, a) for any feasible strategy 
a. 

A discrete time MDP is a particular case of an SMDP when all sojourn times ~i 
are deterministic and equal to 1. In this case, the transition mechanism is defined by 
transition probabilities p(dylx, a) instead of transition kernels Q; p(Xlx, a) = 1. In 
other words, Q( t, Ylx, a) = p(Ylx, a)I {t 2: I}, where I is the indicator function. Since 
all sojourn times are equal to 1, each strategy in an MDP is a policy and strategic 
measures are defined on (Hoo, B(Hoo)). Consider the discount factor (3 = e-a. For 
MDPs, formula (2.1) has a simpler form: 

00 

Wk(It,7r) = lE~ L (3n rk (x n , an), k=O, ... ,K. (2.2) 
n=O 

Remark 2.1 In this section we have defined a homogeneous SMDP. We can also 
consider a non-homogeneous SMDP when the action sets D, rewards rk, and tran­
sition kernels Q depend on the step number. In this case, we have D = D(x, n), 
r = r(x, n, a), and Q = Q(t, Ylx, n, a). A non-homogeneous SMDP can be reduced to 
the homogeneous SMDP by replacing the state space X with X x {O, 1, ... }. Then there 
is a one-to-one correspondence between (randomized) Markov policies for the original 
non-homogeneous SMDP and (randomized) stationary policies for the new homoge­
neous SMDP. Therefore, the existence of optimal (randomized) stationary policies for 
homogeneous SMDPs implies the existence of optimal (randomized) Markov policies 
for non-homogeneous SMDPs. A finite-step SMDP is an important example of a 
non-homogeneous SMDP. An important application of finite-step SMDPs is schedul­
ing of a finite number of jobs with random durations; Ross [19], Pinedo [16]. For a 
finite-step SMDP, the assumption a> ° can be omitted when the functions rk(x,a), 
k = 0, ... , K, are bounded above. 

It is also possible to define SMDPs with parameters depending on time t. We do 
not expect that the results of this paper can be applied to such models. For example, 
optimization of total rewards over the final time horizon [0, T], in general, cannot be 
reduced to a finite-horizon MDP. For such problems, a natural approach is to use 
discrete-time approximations of continuous-time problems. 

3. Reduction of SMDPs to MDPs 
We define the regular nonnegative conditional measures on X, 

(3(Ylx, a) = 100 
e-atQ(dt, Ylx, a). 

For a strategy 7r, initial distribution 11, and epochs n = 0, 1, ... , we define bounded 
non-negative measures M;,n on X x A and m;,n on X, 

M;,n(Y,B) 

m~,n(Y) 

lE~ e-atn I{xn E Y,an E B}, 

lE; e-atn I{xn E Y}, 
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where Y E X and B E A. 
Since m~,n(Y) = M;,n(Y, A), we have that m is a projection of M on X. In view 

of Corollary 7.27.2 in Bertsekas and Shreve [2], there is an (m~,n-almost everywhere) 
unique regular transition probability from X to A such that 

(d I ) _ M;,n(dx,da) 
Un a x - 1< (d) . m,.,n x 

(3.1) 

By definition, (3.1) is equivalent to 

M;,n(Y,B) = i un(Blx)m;,n(dx) 

for all Y E X, B E A. Since M;,n is concentrated on graph(D) then for every 
n = 0,1, ... we can select a version of Un such that u(D(x)lx) = 1 for all x E X. 
Then u = {Un : n = 0,1, ... } is a randomized Markov policy. Let Rn(I-','Tr) = 
IE~ e-otn r(xn, an). 

Lemma 3.1 Consider an SMDP. Let 'Tr be a strategy and I-' be an initial distribution. 
Then for a randomized Markov policy u defined by (3.1), 

n = 0, 1, .... (3.2) 

In addition, Rn (1-', u) = Rn (1-', 'Tr) for all n = 0, 1, . .. and therefore W (1-', u) = W (1-', 'Tr) 
for any bounded above Borel reward function r. 

Proof We notice that the definition of M;,n implies that for any measurable on 
X x A step-function f, 

IE; e-otn f(xn,an) = Ix L f(x,a)M;,n(dx,da). (3.3) 

Therefore, (3.3) holds for any bounded above and measurable function f on X x A. 
Thus, 

Rn(I-','Tr) = Ix L r(x,a)M;,n(dx,da), 

and the second statement of the lemma follows from the first one. 
We shall prove (3.2) by induction. We have that Uo = 'Tro (I-'-a.s.) and thus (3.2) 

is obvious for n = 0. Let (3.2) hold for some n. First we show that 

U 1< 

m,.,(n+l) = m,.,(n+l)· (3.4) 

For any strategy "y, 

m;,(n+l) (Y) = IE~ e -otn+l I {Xn+1 E Y} 

= IE~IE~ [e-O(tnHn)I{xn+l E Y}ltn,xn, an] 

= IE~ e-otn IE~ [e-oen I {xn+1 E Y}ltn, Xn, an] (3.5) 

1E~ e-otn 1000 e-otQ(dt, Ylx n , an) 

= IE~ e-otn .B(Ylxn, an) 

= Ix L ,8(Ylx, a)MJ,n(dx, da). 
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The last equality follows from (3.3) with f(x,a) = ,8(Ylx,a). By setting 'Y = u and 
'Y = 1r we have that (3.2) implies (3.4). 

Now we prove that (3.4) implies 

M:.(n+1) = M;.(n+1)' 

From (3.1) and (3.4) we have 

M;.(n+l)(Y,B) = [un+1(B 1x)m;.(n+1)(dX) 

= [un+1(Blx)m~.(n+l)(dX). 

For a randomized Markov policy u, 

M:.(n+1)(Y,B) = 1E~ e-atn+lI{xn+l E Y,an+1 E B} 

= 1E~ 1E~ [e-atn+lI{xn+l E Y}I{an+1 E B}ltn +l,Xn+d 

(3.6) 

= 1E~ e-otn+1 I{xn+1 E Y}1E~ [I{an +1 E B}ltn +l,Xn+d (3.7) 

= 1E~e-otn+lI{xn+l E Y}P~{an+1 E Blxn+d 

= 1E~ e-otn+1 I{xn+1 E Y}un +1(Blxn+l) 

= [un+l(Blx)m~.(n+l)(dx), 

where the last equality follows from (3.3). So, (3.6) is proved. • 
We notice that, in general, formula (3.1) defines different randomized Markov 

policies u for different discount rates Q. For an MDP, tn = n, (3.1) transforms into 
(3.8), and Lemma 3.1 transforms into the following well-known statement, in which 
in the equivalent Markov policy u does not depend on the discount factor. 

Corollary 3.1 (Derman and Strauch [6]) Consider an MDP. Let 1r be a policy 
and I' be an initial distribution. Consider a randomized . Markov policy u such that 
for all n = 0,1, ... and for all Xn EX, 

(P; - a. s.). (3.8) 

Then P~(dxndan) = P~(dxndan), n = 0, 1, ... , and therefore W(x,u) = W(x, 1r). 

We remark that (3.1) also implies (3.8) if tn and (xn , an) are P~-independent. 
Therefore, Corollary 3.1 also holds for SMDPs in which sojourn times do not de­
pend on states and actions. In particular, this independence holds for uniformized 
Continuous Time Markov Decision Processes; see e.g. [3]. 

Let ,8(x, a) = ,8(Xlx, a), ,8(Xlx, a) = 0, ,8(xlx, a) = 1, and ,8(xlx, a) = 1 - ,8(x, a) 
for x E X, a E D(x). We observe that ,8(x, a) = 0 means that the state x is absorbent 
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under the action a. For i and l from Al 

{j(x, a) = If e-atQ(dt,Xlx,a) + 1'>0 e-atQ(dt,Xlx,a) 

< Q(l,Xlx,a) + e-af (l_ Q(l,Xlx,a» 

< e-af + Q (l,Xlx,a)(I- e-af) 

< e-af +(I_i)(I_e-af) 

= 1 - i (1 - e -af) 

< 1. 
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Given a discounted SMDP, we shall construct an equivalent discounted MDP. We 
shall do it in three steps. At each step we define an MDP. All these MDPs have the 
same reward functions and the same sets of states, actions, and available actions as 
the original SMDP. Similarly to the original SMDP, they have an additional absorbent 
state it with zero rewards at it. In view of Lemma 3.1 and Corollary 3.1, in order 
to establish the equivalency, it is sufficient to show that, for any randomized Markov 
policy, the value of the appropriate criteria remain unchanged in all these models. 
At Step 1 we define a total-reward MDP with transition probabilities {j(Ylx, a) and 
with the expected total rewards. At step 2 we define the transition probabilities of 
the corresponding MDP by 

pa(Ylx,a) = !3(7,a) ' { 
!3(Ylz,a) 

arbitrary, 
if {j(x, a) > OJ 
otherwisej 

and consider the expected discounted total rewards with the discount factor {j(x, a). In 
order to use a constant discount factor, at step 3 we define the transition probabilities 
for the corresponding MDP by 

{ 
{j(Ylx, a)/,B, if Y E X, x E Xj 

p(Ylx, a) = 1-{j(x,a)/,B, ~fY={~}, XE~j 
1, IfY = {x}, X=Xj 

where ,B < 1 and ,B ~ {j(x, a) for all x E X and for all a E A. 
We remark that, in each of these three MDPs, the transition probabilities depend 

on the discount rate Oi. For example, let X be finite and p(ylx,a) be the probability 
that the next state of the SMDP is y if the action a is selected at the current state 
x. Then pa # p if we do not assume that the distribution of the next state does not 
depend on the sojourn time. Except for special cases, this assumption does not take 
place in particular applications such as control of queues. 

Thus, the reduction of a discounted constrained (or, in general, multiple-criterion) 
SMDP to the corresponding MDP can be conducted in the following three steps. 

Step I We define the MDP with transition probabilities {j(Ylx, a). Let p~ be the 
probability measure on the sets of trajectories in this MDP defined by the initial 
distribution I' and policy 1r. Let E; be the expectation operator with respect to 
this measure. The expected total rewards are Wk(l', 1r) = E~ E~=o Tk(Xn, an). 

Let 1r be a randomized Markov policy. The equality M;,o(dx) = I'(dx), and 
formulas (3.5) and (3.7) imply that P~,n (Y, B) = M;,n (Y, B) for all n = 0,1, ... 
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and for all measurable subsets Y and B of X and A respectively. This implies 
that Wk(JL,1I") = Wk(JL,1I"). 

Step 2 Consider the discounted MDP with the transition probability pOl and with 
the total discounted criteria W, 

where :IE is the expectation operator in this MDP and the product from 0 
to -1 is defined as 1. It is obvious that Wk(JL,1I") = Wk(JL,1I"). Therefore 
Wk(JL,1I") = Wk(JL,1I") for any randomized Markov policy 11". Therefore, an 
optimal randomized Markov policy for this MDP is also optimal for the original 
SMDP. 

The theory of discounted MDPs with discount factors depending on states 
and actions is similar to the theory of standard discounted MDPs. The only 
difference is that the optimality operator T, which is usually is defined as 
Taf(x) = r(x,a) + f3fxf(y)p(dYlx,a) for MDPs with a constant discount 
factor f3, has the form 

T a f(x) = r(x,a) + Ix f(y)f3(x,a)pOl(ylx,a). (3.9) 

Condition At implies that f3(x,a) $ 1 - l(1 - e-Olf) < 1. This provides 
contraction properties for the operator T defined in (3.9); see Denardo [51. 
However, the next step reduces an SMDP to a standard discounted MDP. 

Step 3 Consider the discounted MDP with the discount factor /3 and transition prob­
abilities p. Let P;: and 1E: be the corresponding probability and expectation 
operators for this MDP. We consider the expected total discounted rewards 

00 

Wk(JL,1I") = ~ 2":/3nrk(xn,an). 
n=O 

It is obvious that Wk(JL,1I") = Wk(JL,1I"). It is also obvious that p';,(xn E Y,an E 

B) = ~np:(Xn E Y,an E B). The above results on the equivalence of models 
at steps 1-3 imply the following theorem which justifies for multiple criteria 
the reduction of a discounted SMDP to a standard discounted SMPD with the 
transition probabilities p and the discount factor /3. 

We recall that a policy 11" for an SMDP is a policy for the corresponding MDP and 
vice versa. 

Theorem 3.1 Consider an SMDP and let an initial distribution JL and a policy 11" be 
given. Then the following statements hold: 

(i) M:.n(Y,B) = ,BnF;:(Xn E Y,an E B), where n = 0,1, ... , Y E X, and B E A; 

(ii) Wk (JL,1I") = W k(J.&, 11") for all k = 0, ... , K; 

(iii) A policy is optimal for an SMDP if and only if it is optimal for the MDP 
obtained from that SMDP by replacing the transition kernel Q and discount 
rate O! with the transition probabilities p and discount factor /3. 
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Theorem 3.1 provides the justification for the reduction of discounted SMDPs to 
discounted MDPs. It also implies the sufficiency of randomized stationary policies 
for discounted SMDPs. Krylov [14] and Borkar [4] provided a formula, that, for a 
given initial measure, computes for an arbitrary policy a randomized stationary policy 
with the equal occupation measure; see Piunovskiy [17, Lemma 24 on p. 307], where 
this result is presented for Borel MDPs. For an SMDP, the occupation measure is 
v; = E:'=o M;,n' We set v;(Y) = v;(Y,A) for Y E X. Lemma 3.1, Theorem 3.1(i), 
and the Krylov-Borkar theorem, applied to the MDP at step 3, imply the following 
result. 

Corollary 3.2 (The Krylov-Borkar theorem for SMDPs) 
Consider an SMDP. Let 7r be a strategy and I-' be an initial distribution. Then 

(T 1< I d' d' l' t· fy. (d I) ": (d"'da) d vI' = vI' Jor a ran om~ze statwnary po ~cy u sa ~s mg u a x = v;(dz) an 

therefore W(I-',u) = W(I-',7r). 

4. Optimization of discounted SMDPs 
The book by Altman [1] describes countable state constrained MDPs and the 

book by Piunovskiy [17] deals with uncountable constrained MDPs (mostly under 
the additional assumption that the state space is compact). As mentioned in the 
introduction, the optimality equations are not applicable to constrained problems. 
The analysis of multiple criterion problems is based mainly on properties of occupation 
measures. The major mathematical apparatus used for constrained MDPs is linear 
programming. In this section we mention three recent results for MDPs and provide 
their extensions to SMDPs. We shall use q to denote transition probabilities in MDPs. 

Hernandez-Lerma and Gonzalez-Hernandez [13] studied Borel state and actions 
MDPs. They considered the following three additional conditions: 

(i) reward functions rk are upper semi-continuous; 

(ii) for any finite number c the set {(x E X,a E D(x)lro(x,a) > c} is compact; 
and 

(iii) transition probabilities q(dxlx, a) are weakly continuous on graph(D). 

Under these three conditions they proved the existence of optimal policies and, un­
der some additional assumptions, they formulated linear programs and studied their 
properties. In view of the Krylov-Borkar theorem for MDPs ([17, Lemma 24 on p. 
307]), the paper by Hernandez-Lerma and Gonzalez-Hernandez [13] also implies the 
existence of optimal randomized stationary policies when conditions (i)-(iii) hold. 

Theorem 3.1 implies that this existence results hold for SMDPs if conditions (i) and 
(ii) hold and the transition measure ,8('lx, a) is weakly continuous on graph(D). The 
latter is true if Q('lx,a) is weakly continuous on graph(D). In particular, the linear 
programs from Hernandez-Lerma and Gonzalez-Hernandez [13] remain the same for 
discounted SMDPs with the only change being that the product of ,8q(dylx, a) should 
be replaced with ,8(dylx, a), where the constant ,8 is a discount factor for an MDP. 

Feinberg and Piunovskiy [10] considered the following condition for a multiple­
criterion total-reward MDP: I-' is nonatomic and all measures q('lx,a) are nonatomic, 
x E X, a E D(x). It was proved in [10] that this condition implies that for any policy 
there exists a nonrandomized Markov policy with the same performance vector; see 
also [9] for earlier results. Theorem 3.1 implies that if I-' and ,8( 'Ix, a) are nonatomic 
then for any policy in the discounted SMDP there exists a nonrandomized Markov 
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policy with the same performance vector. We remark that x can be an atom of the 
transition measure ,8(·Jx, a). However, x can be substituted with a an uncountable 
Borel set X and the probabilities ,B(·Jx, a) could be corrected in a way that ,8 does not 
have atoms on X. It is also easy to see that if the probability distribution p(dyJx,a) 
of the next state in the SMDP does not have atoms then the measure ,8(·Jx, a) does 
not have atoms on X either. 

If the nonatomic conditions do not hold, nonrandomized optimal policies may 
not exist; see e.g. Altman [IJ and Piunovskiy [I7J. The natural question is how to 
minimize the number of situations when the decision maker uses randomization pro­
cedures. Theorem 2.1 in Feinberg and Shwarts [I2J describes the optimal policies of 
this type. Randomized stationary policies that use no more than K randomization 
procedures are called K-randomized stationary. However, even a I-randomized sta­
tionary policy can use the infinite number of randomization procedures over the time 
horizon. Feinberg and Shwartz [I2J introduces strong (K, n)-policies which satisfy the 
following conditions: 

a) they are randomized Markov; 

b) they are (nonrandomized) stationary from time epoch n onward; and 

c) they use no more than K randomization procedures at all state-time couples 
(x,n). 

The formal definitions of K-randomized stationary and strong (K, n)-policies are given 
in Feinberg and Shwartz [12]. 

Theorem 2.1 in Feinberg and Shwartz [12] establishes the existence of K-random­
ized stationary policies and the existence for some n of strong (K, n)-policies for 
discounted MDPs if the following conditions hold: 

(i) X is countable or finite, 

(ii) all sets of available actions D(x), x E X, are compact; 

(iii) reward functions r k (x, a) are bounded above and continuous in a E D (x); and 

(iv) transition probabilities p(yJx,a) are continuous in a E D(x) for all x,y E X. 

Theorem 3.1 above and Theorem 2.1 in [12] imply Theorem 4.1. We remark that the 
weakly continuity of Q(·Jx,a) on graph(D) implies condition (b) in Theorem 4.1. 

Theorem 4.1 Consider a discounted SMDPs such that: 

a) conditions (i)-(iii) from the previous paragraph hold, and 

b) for allx,y E X the functions ,8(yJx,a) and,8(x,a) are continuous ina E D(x). 

If this SMDP is feasible then 

(i) there exists an optimal K -randomized stationary policy; and 

(ii) for some finite n = 0, 1, ... there exists an optimal strong (K, n)-policy. 

As was mentioned above, Theorem 3.1 implies that the linear programs that are 
used for discounted MDPs can be applied, after a minor modification, to discounted 
SMDPs. If we consider nonhomogeneous SMDPs described in Remark 2.1 then 
Theorem 4.I(ii) implies the existence of randomized Markov policies which use no 
more than K randomization procedures and are nonrandomized after some epoch n. 
For finite-step SMDPs, Theorem 4.I(i) implies the existence of optimal randomized 
Markov policies which use no more than K randomization procedures at all state-time 
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couples. If X and A are finite, these policies and optimal K-randomized stationary 
policies for homogeneous infinite-horizon models can be computed by applying lin­
ear programs; see Feinberg and Shwartz [11] for the LP formulation for a finite-step 
problem and Altman [1] for the infinite horizon case. 
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1. Introduction 
In this short note, we present a technical result for finite state, fi­

nite action space, average expected reward Markov decision processes 
(MDPs) with multiple constraints on average expected costs. This tech­
nical result shows that the communicating properties of MDPs can be 
applied to map variables from the relatively simple linear program LP 
3.2, known to solve average reward unichain MDPs with multiple con­
straints on average expected costs, to more general linear program LP 
3.1, which solves average reward multichain MDPs with multiple con­
straints on average expected costs. In addition to providing a structural 
link between the LP 3.2 and LP 3.1, this mapping can be used to a 
prove that the optimal gain for the communicating MDPs with multiple 
constraints on average expected costs is constant. 

The literature concerning MDPs with average expected costs and lin­
ear programming, especially average reward constrained MDPs with par­
ticular ergodic structure is already quite extensive. Part of this literature 
concerns itself with the two linear programs LP 3.1 and LP 3.2 stated 
in Section 3. A single application of LP 3.1 solves average reward multi­
chain MDPs with multiple constraints on average expected costs. This 
formulation can be found in Kallenberg [4]. It was proved in [4] that an 
optimal solution of LP 3.1 can be used to provide an optimal Markov 
policy. A single application of the simpler LP 3.2 solves average reward 
unichain MDPs with multiple constraints on average expected costs (see 
Kallenberg [4] and Puterman [6], etc.). It was shown in [4, 6] that an 
optimal solution to LP 3.2 provided optimal (deterministic, if desired) 
stationary policies, and a mapping was developed between solutions to 
LP 3.2 and optimal stationary policies. Generally, the assumption of 
unichain structure is difficult to verify. 

In Bather [1], communicating MDPs were introduced (see Defini­
tion 3.1) and it was established that the optimal gain for an average 
reward communicating MDP without a constraint is a scalar (i.e., inde­
pendent of starting state). The differences between communicating and 
unichain MDPs were exhibited in Kallenberg [4] and Ross and Varadara­
jan [7]. The communicating MDP's without constraint and their rela­
tionship to LP problems were investigated in Filar and Schultz [2]. In 
Ross and Varadarajan [7], the average reward communicating MDPs 
with sample path constraints were considered, the existence of € > 0 op­
timal stationary policies was proved, and the difference between a sample 
path constraint and an average expected constraint was discussed. This 
paper will deal with the LP problems and the existence of optimal poli­
cies for average reward communicating MDPs with multiple constraints 
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on average expected costs. It will be shown that an optimal solution 
of the simpler LP 3.2 can be used to provide an optimal Markov policy 
(Theorem 4.1, Lemma 3.1). It will also be proved that the optimal gain 
for an average reward communicating MDP with multiple constraints on 
average expected costs is scalar. 

This paper is organized as follows. In Section 2, the notation and 
the definitions are introduced. Some preparative results are given in 
Section 3. The mapping which proves the simplified linear programming 
solution method for these MDPs is developed in Section 4. 

2. Model, notation and definitions 
For our purpose, an MDP with multiple constraints is defined by a 

finite state space 8 = {I,·" ,181}, finite action sets A{i) = {I"" ,mi}, 
i E 8, a reward law r={r{i, a) : a E A{i), i E 8}, costs laws cn={ cn{i, a) : 
a E A{i), i E 8}, n = 1,2"" ,K, constraint bounds bn, n = 1,2"" ,K, 
and a transition law q = {q(jli,a) : 2:jEsq(jli,a) = l,a E A{i),i E 8}. 
Given that the process is in a state i E 8, the decision maker chooses an 
action a E A{i), receives reward r{i, a), pays for implementing the action 
a n-th type of cost cn{i, a), n = 1,2"" ,K, and the process moves to 
the next stage at state j E 8. The decision maker considers the situation 
where the average expected reward is to be maximized while keeping the 
K types of average expected costs en below the given bounds bn . 

For the average expected reward criterion with constraints on average 
expected costs considered below, a randomized Markov policy for the de­
cision maker, denoted by 1'( = {1'(t, t = 0,1"" }, is sufficient to describe 
the decision maker's course of action, namely, choose action a E A{ i) 
with probability 1'(t{ali), 2:aEA(i) 1'(t(ali) = 1 when the process is in state 
i E 8 at stage t ~ 0. A randomized Markov policy 1'( = {1'(t, t = 0,1", . } 
is called randomized stationary, if 1'(t(ali) = 1'(o{ali} := f{ali}, a E 
A(i), i E 8, t ~ 0, and denoted by f. A randomized stationary policy f 
is called deterministic, if f(ali) = 1, for exactly one a E A(i) and each 
i E 8. The sets of all randomized Markov policies, all randomized sta­
tionary policies, and all deterministic policies, are denoted by lIm, lIms 
and F, respectively. 
W~ assume that f3 = {f3I,'" , f3lsiL is a known initial distribution, 

that IS, f3n ~ 0, n = 1"" ,181, and ~jES f3j = 1. For any 1'( E lIm, by 
Theorem of Ionescu-Tulcea (see Lerma and Laserre [5, pages 16 and 
179]), there exist an unique probability measure p! on ((8 x A)OO, 
(8(8) x 8(A))OO), and state and action variables at stage t denoted 
by Xt and At, respectively. The expectation operator with respect to 
p! is denoted by Ee. The average expected reward criterion Rand 
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average expected cost criteria Cn respectively are defined well as follows: 

(2.1) 

(2.2) 

Then, the average reward multichain MDP with multiple constraints on 
average costs is the following problem (denoted by r(O)) of choosing a 
11"* E IIm to 

maximize R(1I", (3) (2.3) 

subject to 

(2.4) 

Let U((3) = {11" E IIm : Cn (1I", (3) ~ bn , n = 1"" ,K}. A policy 11" E U((3) 
is called feasible. A policy 11"* such that R(1I"*'(3) = sUP1rEU(,B) R(1I",(3) := 
R* ((3) is called optimal. The quantity R* ((3) is called optimal gain with 
respect to initial distribution (3. 

3. Multichain and unichain linear programs 

In order to solve the problems of the existence and calculation of 
optimal policies, Kallenberg [4] proposed the following multichain linear 
programming. 
LP 3.1 

max L L r(i,a)x(i,a) (3.1) 
iES aEA(i) 

subject to 

L L (8ij - q(jli, a))x(i, a) = 0, j E S (3.2) 
iES aEA(i) 

L x(j, a) + L L (8ij - q(jli, a))y{i, a) = (3j, j E S (3.3) 
aEA(j) iES aEA(i) 

LL Cn(i, a)x(i, a) < bn , n = 1, .. ·K (3.4) 
iES aEA(i) 

x(i, a), y(i, a) > 0, a E A(i), i E S. (3.5) 

and obtained the following results 
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Lemma 3.1 

(i) U(f3) -10 if and only if LP 3.1 is feasible. 

(ii) The optima of the problems r(O) and LP 3.1 are equal. 

(iii) Let F = {h, 12,'" ,fm}, and P*(h)(1 ~ k ~ m) be the Cesaro 
limit of powers of transition matrix P(Jk) = (q(jli, fk(i))). Sup­
pose that ((x(i,a),y(i,a)), a E A(i), i E S) is an optimal solution 
of LP 3.1, and let x(i, a) = L~=l D:kxk(i, a), where xk(i, fk(i)) := 
(f3P*(h))i when a -I h(i), then, xk(i, a) = 0 and D:k ~ 0, k E 
5, L~=l D:k = 1. If 1f E IIm is the policy, introduced by D:k and 
h, such that 

iES 
m 

= L f3i L D:kPi (Xt = j, Yt = alxl = i), 
iES k=l 

t ~ 1,a E A(i),i E 5, 

then 1f is an optimal policy of r(o). 

Proof See Theorem 4.7.3 in Kallenberg [4]. • 
Remark 3.1 Lemma 3.1 shows that LP 3.1 solves average reward multi­
chain MDPs with multiple constraints on average expected costs. From 
Lemma 3.1, we can find that only x(i, a) from the optimal solution to 
LP 3.1 is needed to construct an optimal policy. An algorithm for con­
structing the above optimal policy can be found in Kallenberg [4]. Un­
fortunately, this algorithm is computationally prohibitive. 

For the case of unichain MDPs, since it has particular ergodic struc­
ture, Kallenberg [4] and Puterman [6] give the simpler unichain linear 
programming formulation: 
LP 3.2 

max L L r(i, a)x(i, a) (3.6) 
iES aEA(i) 
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subject to 

LL (tSij - q(jli, a))x{i, a) 0, jES (3.7) 
iES aEA(i) 

L L x{i,a) I (3.8) 
iES aEA(i) 

L L cn{i, a)x{i, a) < bn,n= I,···K (3.9) 
iES aEA(i) 

x{i, a), y{i, a) > 0, a E A{i),i E S. (3.1O) 

and obtained many strong results (see [4, 6]). In particular an optimal 
stationary policy is easily constructed. 

Now, we consider the case of communicating structure. 

Definition 3.1 An MDP is communicating if, for every pair of states 
i, j E S, there exists a stationary policy f E F and an integer I 2: I (both 
f and I may depend on i and j) such that Pi~ (f) (the (i, j) -th entry of 
[p(f)]l) is strictly positive. 

To establish that an MDP is communicating, we have 

Lemma 3.2 

(i) An MDP is communicating if and only if there exists a f E IIms 
such that P(f) is irreducible. 

(ii) An MDP is communicating if and only if P(f) is irreducible for 
every randomized stationary policy f that satisfies f{ali) > 0, a E 
A(i), i E S. 

Proof See [2, 6, 7]]. • 
Hence, we have that communicating MDPs are more restrictive than 

multichain MDPs, but rather different from unichain MDPs in that the 
communicating property can be easily verified. 

4. Linear program relationships 

To solve average reward communicating MDPs with mutiple con­
straints on average expected costs, we set 

I 
a E A{i), i E S, 

(( L. q(jli,a)f*{a1i)) ,i,j E s) . 
aEA(l) 
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By Lemma 3.2, we have that P(f*) is irreducible. Let v(f*) := 

[4] (VI,··· ,VISI) > ° be the equilibrium distribution for P(f*). Hence, 

~j(f*) = Vj, i,j E S, and Z(f*) := [I - P(f*) + p*(f*)r I exists 
(see [3], [6]). Let IIZ(f*)1I := max{IZij(f*)1 : i,j E S} be the maxi­
mal value of absolute values of the elements of Z(f*), v(f*)(min) := 
min{vk : 1 :::; k :::; lSI}. For any b = (bI ,··· ,blsl ) (all bk E R, being the 
set of real numbers), we define a map T as follows: 

T(b)(i, a) := W(b)i!*(ali), a E A(i), i E S. (4.1) 

where W(b)·- bZ(f ) + oXv(f) oX·- ISllIbllllz(f.)1I Ilbll·- max{lbkl 1 < , .- * *,.- v(f.)(min)'·- , -

k:::; lSI}. 
Obviously, we can derive that: T(b)(i, a) ~ 0, a E A(i), i E S, b E 

Risi. 
We now derive our main results. 

Theorem 4.1 For a communicating MDP, we have that 

(i) If{(x*(i,a),y*(i,a)),a E A(i),i E S} is an optimal solution to LP 
3.1, then {x*(i,a),a E A(i),i E S} is an optimal solution to LP 
3.2. 

(ii) If{x*(i,a),a E A(i),i E S} is an optimal solution to LP 3.2, then 
{(x*(i, a), Tea - x*)(i, a)), a E A(i), i E S} is an optimal solution 
to LP 3.1, where x* := (xi,i E S) and xi := EaEA(i) x*(i,a),i E 
s. 

Proof 

(i) From (3.2), (3.3), (3.4) and (3.5), we can obtain that {x*(i, a) : 
a E A(i), i E S} is a feasible solution to LP 3.2. Suppose that 
{x*(i, a) : a E A(i), i E S} is not an optimal solutions to LP 3.2. 
Let {x(i,a) : a E A(i),i E S} be an optimal solutions to LP 3.2, 
then 

L L r(i,a)x(i,a) > L L r(i,a)x*(i,a). (4.2) 
iES aEA(i) iES aEA(i) 

Since 
v(f*)[I - P(f*)] = 0, 

P(f*)P*(f*) = P*(f*)P(f*) = P*(f*)P*(f*) = P*(f*), 

and 
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we have Z(f*)[1 - P(f*)] = [I - P*(f*)]. 
Recalling that LiES(f3i - Xi) = 0, and Pij(f*) = Vi, i,j E S, we 
observe that 

W(f3 - x)[1 - P(f*)] - [(f3 - x)Z(f*) + Av(f*)][1 - P(f*)] 
- (f3 - x)[1 - P*(f*)] 

= f3 - X, 

where the last equality follows from the fact that P*(f*) has iden­
tical rows. Hence, 

W(f3 - x)j - L W(f3 - X)iPij(f*) 
iES 

= f3j - Xj,j E S, 

L T(f3-x)(j,a) - LW(f3- X)i L q(jli,a)!*(ali) 
aEA(j) iES aEA(i) 

= f3j - L x(j,a),j E S, 
aEA(j) 

L T(f3-x)(j,a) - L L T(f3-x)(i,a)q(jli,a) 
aEA(j) iES aEA(i) 

= f3j - L x(j,a),j E S, 
aEA(j) 

L x(j, a) + L L (dij - q(jli, a))T(f3 - x)(i, a) 
aEA(j) iES aEA(i) 

= f3j,j E S. (4.3) 

Then, by (3.7), (3.9), (3.10) and (4.3), we can derive that {(x(i, a), 
T(f3 - x)(i, a)) : a E A(i), i E S} is a feasible solution to LP 3.1. 
This with (4.2) contradict the optimality of {(x*(i, a), y*(i, a)), a E 

A(i), i E S} to LP 3.1. Hence, (i) is valid. 

(ii) To prove (ii), from the proof of (i), we have that {(x*(i, a), T(f3-
x*)(i, a)), a E A(i), i E S} is a feasible solution to LP 3.1. Assume 
{(x(i,a),y(i,a)),a E A(i),i E S} is any feasible solution to LP 
3.1. By (3.2), (3.3), (3.4) and (3.5), {x(i,a),a E A(i),i E A} is 
a feasible solution to LP 3.2. By the optimality of {x* (i, a), a E 
A(i),i E A} for LP 3.2, we have 

L L r(i,a)x*(i,a) ~ L L r(i,a)x(i,a). 
iES aEA(i) iES aEA(i) 
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So, (ii) is proved. • 

When fJi = 1, fJj = 0, j =I- i, j E S, we denote R* (fJ) by R* (i), and 
call R*(i) the optimal gain for starting state i, R*(i)(i E S) the optimal 
gain. 

Theorem 4.2 Suppose that the MDP is communicating. Then, 

(i) U(fJ) =I- 0 if and only if LP 3.2 is feasible; 

(ii) the optima of problems of r(0), LP 3.1 and LP 3.2 are equal; 

(iii) the optimal gain is a scalar (i.e., independent of starling state). 

Proof 

(i) From the proof of Theorem 4.1, we can obtain that LP 3.2 is 
feasible if and only if LP 3.1 is feasible. This with Lemma 3.1 
show that (i) is valid. 

(ii) From Theorem 4.1 and Lemma 3.1 , we can derive that (ii) holds. 

(iii) To prove (iii), since the optimal solutions of LP 3.2 are indepen­
dent of initial distribution fJ, the optimal gain of LP 3.2 is free 
of initial distribution fJ. By (ii), the optimal gain R*(fJ) is also 
independent of initial distribution fJ, and denoted by R*. Hence, 
R*(i) = R*, i E S. This means that (iii) is proved. • 

Remark 4.1 Theorem 4.1 and Remark 3.1 show that average reward 
communicating MDPs with multiple constraints on average costs can be 
solved by the simpler LP 3.2. 
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Chapter 15 

OPTIMAL SWITCHING PROBLEM 
FOR MARKOV CHAINS 

A.A. Yushkevich 
University of North Carolina at Charlotte, 

Department of Mathematics, 

Charlotte, NC 28223, USA 

Abstract We consider the following multi-step version of the optimal stopping 
problem. There is a Markov chain {Xt} with a Borel state space X, and 
there are two functions f < 9 defined on Xj one may interpret f (Xt) 
and 9 (Xt) as the selling price and the purchase price of an asset at the 
epoch t. A controller selects a sequence of stopping times n ::; 72 ::; ... , 

and can be either in a position to sell or in a position to buy the asset. 
By selecting 7 = 7k, the controller, depending on the current position, 
either gets a reward f (Xr) or pays a cost 9 (xr ), and becomes switched 
to the opposite position. The control process terminates at an absorbing 
boundary, and the problem is to maximize the expected total rewards 
minus costs. 

We find an optimal strategy and the value functions, and establish a 
connection to Dynkin games. 

1. Introduction 
We consider a generalization of the well-known optimal stopping prob­

lem for a Markov chain to the case when one may stop and get rewards 
many times1. It turned out that an interesting nontrivial generalization 
appears if there are two reward functions j and -9, with 9 > j, and 
every "stop" switches them. If f > 0, the scheme has the following fi­
nancial interpretation: j (x) and 9 (x) are, respectively, the selling and 
purchase price of an asset when the system is at the state x, and a con-

IThe literature on optimal stopping is enormous. Basic references are Snell [14], Chow, 
Robbins and Sigmund [2] and Shiryayev [12]. For an introductory exposition see Dynkin and 
Yushkevich [4, Chapter 3] 
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troller, who observes the Markovian evolution of the system, may sell or 
buy the asset at any time, but only in an alternating order; the aim of 
the controller is to maximize the expected profit. It also turned out that 
this model is closely related to stochastic games called Dynkin games. 
In this article we consider the expected total rewards criterion in the 
case of a discrete-time Markov chain with a Borel state space and an 
absorbing boundary. Other cases will be treated in subsequent papers. 

The paper is organized in the following way. In Section 2 we state the 
optimal switching problem, define strategies and two value functions, 
corresponding to the selling and the buying positions of the controller. 
In Section 3 we discuss two ways to imitate the switching model by 
a Markov decision process, formally introduce the first of them called 
MDP1, and prove the measurability of the value functions of MDP1 by 
value iterations {Theorem 3.1}. The goal of Section 4 is to establish a 
correspondence between policies in MDP1 and strategies in the switching 
problem, sufficient to reduce one optimization problem to the other. In 
Section 5 we shift the problem to MDP2, which is more convenient for 
further analysis {Theorem 5.1}, justify the value iteration for MDP2 
{Lemma 5.2}, and characterize the value functions in terms of excessive 
envelopes {Theorem 5.2, Remark 5.1}. In Section 6 we define a preference 
function as the difference of the two value functions, characterize this 
function by variational inequalities which coincide with those known in 
Dynkin games {Theorem 6.1}, and describe it in terms of two supporting 
sets (Corollary 6.1). In Section 7 we prove that the supporting sets 
generate an optimal policy in MDP1, and that they are optimal switching 
sets in the original problem {Theorems 7.1, 7.2}. In Section 8 we find 
the value functions {Theorem 8.1}. The connection to a Dynkin game 
is treated in Section 9. In Section 10 we present examples in which the 
variational sense of the optimality inequalities is visual: the symmetric 
random walk and the birth and death process. 

2. The optimal switching problem 
To make the rewards and costs finite, we suppose that the underlying 

Markov chain reaches an absorbing boundary where the control actually 
stops. Keeping in mind an extension to the continuous-time case, we 
assume that every switching is performed instantaneously, so that it 
moves the controller from the selling position to the buying position or 
vice versa, but does not change the state of the Markov chain. As in the 
optimal stopping problem one may stop at the initial time 0, so in the 
switching problem we allow to switch at t = 0 and therefore, to have 
the Markov property of the system, we also allow two (and thus any 
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denumerable number of} consecutive switchings at the time t = 0, and 
hence at any time t > 0. 

We now turn to formal definitions. Let {X, B} be a standard Borel 
space and let P {x, E} {x E X, E E B} be a measurable stochastic kernel 
in X {everywhere measurability means Borel measurability, if not stated 
otherwise}. By {Xt} we denote the corresponding Markov chain on X; 
P x and Ex are the distribution and the expectation corresponding to 
the initial state Xo = x of this chain. As usual, P f denotes the function 

Pf{x} = ! f{y}P{x,dy}, xEX 

x 

{if only this integral is well defined}. By B {X} we denote the space of 
all bounded real-valued measurable functions on X. We assume that X 
consists of a boundary B E B of absorbing states: 

P{x,x} = 1, xEB, {2.1} 

and of the set Xo = X \ B of interior points. As a sample space 0 we 
take, for simplicity, the set of all paths absorbed at B, i.e. the subset of 
XOO defined by the condition: 

Xt+! = Xt if Xt E B. {2.2} 

In n we consider the minimal a-algebra N and filtration {Nt}: Nt is 
generated by the random variables Xo, ... , Xt (t ~ O), N is generated by 
all variables Xt. All stopping times T (w), wEn are understood with 
respect to this filtration, the range of T consists of the integers 0, 1, 2, ... 
and 00. By TE we denote the first entrance time into a set E E B. There 
are also a reward function fEB (X) and a cost function 9 E B (X). 

Assumption 2.1 The sets Band Xo are nonempty, and 

x E Xo. {2.3} 

Under this assumption 

Px{Oo} = 1, 0 0 = {w EO: TB {w} < oo}, x E X. {2.4} 

Assumption 2.2 The reward and cost functions satisfy conditions 

-c ~ f < 9 ~ C, 

f {x} ~ 0, x E B, 

(2.5) 

(2.6) 
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and 
inf g{x) < sup f{x). 

xEXo xEXo 
(2.7) 

Denote by S the set of all sequences {Tk' k = 1,2, ... } of stopping 
times such that 

o ~ Tl (w) ~ T2 (w) ~ ... , wEn. (2.8) 

Let So be the subset of S specified by the condition 

Tk (w) < Tk+l (w) if only Tk (w) < 00. 

We consider two random reward functionals 

00 

J1 = J1 (T,w) = LFk (XTk ) 1 {Tk < oo}, (2.9) 
k=1 
00 

h = h (T,w) = LFk+l (XTk ) 1 {Tk < oo}, T E S, wEn, (2.10) 
k=1 

where 
f if k = 1,3,5, ... , 

-g if k = 2,4,6, ... . 

Lemma 2.1 For every T E Sand wE no the series Ji (i = 1,2) either 
contains a finite number of nonzero terms or diverges to -00, and 

Ji(T,w)~C[TB{w)+ll, wEno, i=1,2. (2.11) 

(In the case of divergence, both the sums of positive and negative terms 
can be infinite.) 

Proof We consider J1 (h is treated in a similar way). Let w E no be 
fixed. Then 

where all tj are finite, and 0 ~ tl ~ t2 ~ .... Let N (w) be the finite 
or infinite number of terms in the series (2.12), and let T = TB (w); by 
(2.4) T < 00. 

If N (w) < 00, the series (2.12) has a finite number of terms. If 
N (w) = 00 and tj t 00, then, after tj exceeds T, all Xtj are equal to 
XT by (2.2). If N (w) = 00 and lim tj = t* is finite, then all tj are 
equal starting from some j, and again Xtj are equal for large numbers j. 
Thus in any case the series (2.12) consists of two parts: an initial finite 
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sum of the same shape (2.12) and a (maybe absent) infinite remainder 
of the form f (z) - 9 (z) + f (z) - ... [or -g (z) + f (z) - 9 (z) + ... J. 
The remainder diverges to -00 by (2.5), and in this case (2.11) trivially 
holds. Otherwise, the right side of (2.12) has a finite number of terms. 
By erasing any pair f (XtJ - 9 (Xtj+l) [or -g (XtJ + f (Xtj+!)J with 
Xtj = Xtj+! we may only increase the sum of all terms. After repeating 
this "cleaning", we get a sum of type (2.12) with 0 ~ tl < t2 < ... ~ T, 
i.e. a sum with no more than T = TB (w) terms, and the upper bound 
(2.11) follows from (2.4). • 

Lemma 2.2 For every T E S there exists T' E So with the property 

JdT,w)~JdT',w), wEno, i=1,2. (2.13) 

Proof Let nt (w), t = 0, 1, 2, ... , wEn, be the number of stopping times 
Tk in T such that Tk (w) = t. The possible values of the functions nt are 
0,1,2, ... and 00, each nt is Nt-measurable, and if nto(wo) = 00 for some 
to and Wo then nt(wo) = 0 for all t > to; this follows from the structure of 
T and the definition of a stopping time. It is easy to see that conversely, 
any collection of functions nt with such properties uniquely determines 
the corresponding element T E S: namely, Tk (w) = t if 2:!::1 ns(w) < 
k ~ 2:!=0 ns(w), t = 0,1,2, ... and Tk (w) = 00 if 2::0 ns(w) < k. One 
may define the needed T' by the corresponding functions 

'( ) = {o if nt(w) is even or is infinite, 
nt w 1 if nt{w) is odd. 

This results in a "cleaning" of the functionals Ji similar to that in 
Lemma 2.1, and can only increase them. Since n~{w) never exceeds 
1, T' E So. • 

Lemma 2.3 For every T E S the expected rewards 

v (x, T) = ExJl (T) , W (x, T) = ExJ2 (T) , x E X, (2.14) 

are well defined, less than +00, and measurable. 

Proof The existence of expectations (2.14) less than +00 follows from 
(2.3), (2.5) and Lemma 2.1. From (2.9)-(2.10) and the definition of 
stopping times it follows that Ji (T, w) is N -measurable as a function 
of wEn (i = 1,2). By general properties of Markov chains in Borel 
spaces, this implies measurability of V and W in x EX. • 

Any pair a = (Tl,~) of elements of S is a strategy of the controller. 
By (2.9)-(2.10), if Tl = 00 then V (x, T) = W (x, T) = O. Therefore and 
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by Lemmas 2.2 and 2.3 the value functions 

v (x) 

W (x) 

sup V (x, I) = sup V (x, I), x E X, (2.15) 
'TES 'TESo 

sup W (x, I) = sup W (x, I), x E X, (2.16) 
'TES 'TESo 

are well defined and nonnegative. By (2.1), (2.5) and (2.6), on the 
boundary 

V (x) = f (x) , W (x) = 0, x E B. 

A strategy (5* = (11, '(2) is optimal if 

The optimal switching problem is to find an optimal policy and to eval­
uate the value functions V, W. 

The following elements I E So play an important role in solving the 
optimal switching problem, and we introduce for them a special notation. 

Definition 2.1 For any two disjoint sets F, G E B, IFG is an element 
of So in which 71 = 7F, 72 is the first entrance time into G after 71, 73 

is the first entrance time into F after 72, etc. in the alternating order. 

Remark 2.1 If condition (2.7) fails to hold, the switching problem is 
still meaningful, but is of no independent interest. 

Indeed, in that case there is no sense to ever switch in the buying 
position, so that w = O. In the selling position the problem becomes an 
optimal stopping problem with the reward function f. The solution of 
this problem under Assumptions 2.1-2.2 is well known (cf. references 
cited in the Introduction footnote). Namely, the value function v is 
a unique solution of the optimality equation v = max(Pv,1) with the 
boundary condition v(x) = f(x), x E B, and also is the excessive enve­
lope of f, (i.e. the minimal function v with the properties v 2 0, Pv :::; v 
majorizing 1). The supporting set F = {x : v(x) = f(x)} :J B defines an 
optimal stopping time 7* = 7F. Also, v is the unique harmonic function 
(i.e. a function with Pv = v) on the set X"",,F satisfying the boundary 
condition v(x) = f(x), x E F. All these features find their analogues in 
the optimal switching problem. 

3. First imitating Markov decision process 

To use the theory of Markov decision processes (MDPs), we imitate 
by them the switching problem of Section 2. This can be done in two 
ways. In the first MDP, let it be MDP1, the state of the Markov chain 
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changes from Xt to Xt+! at every switchingj in MDP2 the state Xt of 
the chain remains frozen while switching. In MDP2 all strategies of 
the switching problem are taken into account, and indeed we need the 
optimality equations of MDP2 to solve the switching problem. However, 
in MDP2 every stop requires an additional unit of time in comparison 
with the Markov chain, so that the time scales in these two processes 
become different, related in a random way, and this makes a formal 
description of the correspondence between the controls in them highly 
technical. Therefore we formally reduce our problem to MDP1, in spite 
of the fact that strategies a with Tk+! = Tk < 00 have no counterparts in 
it. Later, in Section 5, we transform the optimality equations of MDP1 
into those of MDP2 by simple algebra. 

An MDP is given by a state space, an action space, a transition func­
tion and a reward function2. The state space ofMDP1 is Y = X x {I, 2}. 
For brevity, we use notations Xi for X x {i}, and xi for y = (x,i) E Y, 
i = 1,2. The action space A = {a, I}, and both actions are admit­
ted at every state Yj here a = 1 corresponds to switching, a = ° to 
nonswitching. Let 

w = yoaIYIa2Y2 ... , Yt-I E Y, at E A, (3.1) 

be a path of MDPl, with Yt = (Xt, it). The transition function is given 
by 

P {Xt+l E E, it+! = ilXt = x, it = i, at+! = o} =P (x, E), 
P {Xt+l E E, it+! = i + (-I)i-1Ixt = x, it = i, at+! = 1}=P(x,E), 

(3.2) 

x E X, E E B, i = 1,2 (for other combinations of it, it+! and at+! 
the probabilities are zeros). In words, the x-component of {yt} develops 
precisely as the Markov chain {Xt}, while the i-component changes each 
time the action 1 is used. The reward function r (y, a) is 

r (y,O) = ° 
r(x\l)=f(x), 

yEY, 

r(x2,1)=-g(x), xEX. (3.3) 

For the sample space fi of MDPI we take, for simplicity, only those 
paths (3.1) in which 

(i) the i-component of Yt+! differs from the i-component of Yt if and 
only if at+! = 1, and 

2In the terminology and notations we follow mostly Dynkin and Yushkevich [5]. Some other 
basic references on MDPs are Bertsekas and Shreve [1], Puterman [11], Hernandez-Lerma 
and Lasserre [9] 
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(ii) similar to 0, the x-component of Yt+l is equal to the x-component 
of Yt if the latter belongs to the boundary B. 

A history ht is any initial segment 

ht = yoal .. , Yt 

of the path (3.1). 
An arbitrary (in general, randomized and history dependent) policy 

7r in MDPI is defined by the (measurable in ht) probabilities 

(and the complimentary probabilities of the action 0), and this together 
with (3.2), as usually, determines the probability P; in the space n 
corresponding to a policy 7r and an initial state Y E Y. The expectation 
corresponding to P; is denoted E; = E~,i' Y = xi. 

A policy 7r is called nonrandomized or deterministic, if the probabili­
ties (3.4) assume only the values 0 and 1. Such a policy is specified by 
measurable functions 7rt+1 (ht) so that 

A stationary (deterministic) policy is determined by a measurable func­
tion <p : Y -+ A (a selector), so that at+! = <P (Yt); such a policy we 
identify with <po We denote by IT the set of all policies, and by q> the set 
of all stationary policies (selectors). Let 

in words, <p E <1>0 if, for every x EX, the selector <p prescribes the action 
a = 1 at most at one of the states xl, x2 • Each selector <p E <1> is specified 
by switching sets 

If <p E <1>0, the sets Fcp and Gcp are disjoint. 
The random total reward in MDPI is 

00 00 

J{w) = Lrt = Lr{Yt-l,ad, (3.7) 
t=l t=l 

the expected rewards (if well defined) are 

v (x, 7r) = E~,l J (w) , w (x, 7r) = E~,2J (w) , x EX, 7r E IT. (3.8) 
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The value functions are 

v (x) = sup v (x, 71") , w (x) = supw (x, 11') , x E X, (3.9) 
~Err ~ 

and a policy 71" is optimal, if v (x, 71") = v (x), w (x, 71") = w (x), x EX. 
By discarding in (3.1) all elements at and all components i of Yt-l, 

we get a natural mapping A : n -+ n, and we merely write w instead of 
A (w) where there should be no confusion. Functions on n, in particular 
the first entrance time TB (w), wEn into the boundary, can be treated 
as functions on n with w = A (w). 

Lemma 3.1 For every policy 71" E II and initial state Y = xi E Y, the 
~ i-distribution on n induced by the mapping A coincides with the Px -

distribution as defined in Section 2 for the Markov chain {Xt}. 

Proof Follows directly from (3.2). • 
Lemma 3.2 The expected rewards (3.8) are well-defined and measumble 
in x for every 71" E II. The value functions (3.9) satisfy bounds 

o ~ w (x), v (x) ~ G (I + ExTB), x E X. (3.1O) 

Proof The sum of terms rt in (3.7) over 1 ~ t ~ TB (w) does not exceed 
GTB (w) {cf. (3.3) and (2.5)). The sum over t> TB is either 0 or of one 
of the forms f (z) - 9 (z) + f (z) - 9 (z) + ... or -g (z) + f (z) - ... 
(the number of terms may be finite or infinite); in any case it does not 
exceed C. Since ExTB < 00, and by Lemma 3.1, the expectations in 
(3.8) are well-defined and satisfy the upper bound in (3.1O). By (3.9), 
the value functions satisfy the same bound. On the other hand, v and w 
are nonnegative because v (x, <p) = w (x, <p) = 0 for the stationary policy 
<p (y) = 0, Y E Y. • 

To prove that the value functions v, ware measurable and satisfy the 
Bellman optimality equations, we approximate them by value iterations. 
Let vn , Wn be the expected rewards and value functions in the same 
model with a horizon n, i.e. with 

n 

In{w) = Lrt 
t=l 

instead of J (w) in formulas (3.8) and (3.9). Let T be the one-step Bell­
man operator defined on pairs (~, ".,) of nonnegative measurable functions 
on X by the formula 

(e) = T (~) = ( max(f + P"." P~) ) 
".,' "., max{P~ - g, p".,) 

(3.11) 
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corresponding to the transition function (3.2) and the rewards (3.3). 
Evidently, T transforms such pairs (~, 11) into similar pairs if we allow 
for nonnegative functions the value +00. It follows by induction from 
(3.2) and (3.3) (and general facts concerning optimality equations in 
MDPs with a Borel state space, a finite action space, and a bounded 
measurable reward function), that the value functions 'On, Wn are given 
by the formulas 

( vn+I) = T(vn), n = 0,1,2, ... , 
Wn+I Wn 

(3.12) 

and are measurable. Here, by (3.11), VI ~ PVI = 0 = '00, WI ~ PWo = 
o = Wo , and by the monotonicity of T 

o = '00 ~ VI ~ '02 ~ ... , 0 = Wo ~ WI ~ W2 ~ . .. . (3.13) 

Theorem 3.1 The value functions v, W of MDPl are equal to the limits 

v (x) = lim 'On (x), W (x) = lim Wn (x), x E X, (3.14) 
n~oo n~oo 

and are measurable. They satisfy bounds (3.10), optimality equations 

v max(J + Pw,Pv) , 

W = max(Pv - g,PW) , 

and boundary conditions 

v(x)=f(x), w(x)=O, xEB. 

(3.15) 

(3.16) 

(3.17) 

Proof We prove (3.14) for Vi the case of W is similar. Inequalities 
(3.13) imply the existence of the limit ii (x) = lim Vn (x), x E X. For 

n~oo 

arbitrary nand 1r E II, let 1r' be a policy equal to 1r at the initial steps 
t = 1,2, ... ,n, and assigning the action at = 0 at the steps t > n. Then 

'On (x, 1r) = V (x, 1r') ~ V (x) , xEX, 

so that 'On (x) ~ V (x), and hence ii ~ v. 
To obtain the inverse inequality, observe that after the process {;rtl 

reaches a point z E B at the time TB, the forthcoming reward is eit.her 
0, or -00, or a finite sum of alternating terms f (z) and -g (z); it.s 
maximum is f (z) if iTB = 1 and is 0 if iTB = 2, and this ma.xilllullI CitH 

be gathered at the first step of the control after the t.ime Tn. It. li,lIows 
that 

V (x) = sup V (x,1r) = sup v(x,1f), :/: EX, (:I.lK) 
7rEII 7rEllo 
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where ITo is the set of all policies for which at = 0 at the steps t > 
7B (w) + 1, W = A (&:I). For a policy 7r E ITo all terms rt in (3.7) with 
t > 7B + 1 are zeros, and since Irl ::; G, we have by Lemma 3.1 

00 00 

E~,l L Irtl ~ GLPx {7B ~ t}, n = 0,1, ... , 7r E ITo. (3.19) 
n+1 t=n 

For every policy 7r E IT evidently 
00 

v (x, 7r) ~ Vn (x) + E~,l L Irtl, 
n+1 

and therefore (3.18) and (3.19) imply 

00 

v{x)~Vn{X)+GLPx{7B~t}, n=I,2, ... , xEX. (3.20) 
t=n 

Since Ex7B < 00, the sum in (3.20) converges to 0 as n -+ 00, and in 
the limit (3.20) becomes v ~ v. Thus, v = v, and (3.14) is proved. 

Measurability of v, w follows from (3.14) and Lemma 3.2. Relations 
(3.15)-{3.16) follow from the monotone convergence (3.14) and (3.11)­
(3.12). Boundary conditions (3.17) follow from (2.1), (2.5)-{2.6) and 
(3.3). .. 

4. Correspondence between strategies and 
policies 

To show that a solution of MDPI provides a solution to the switching 
problem, we establish a correspondence between some strategies and 
policies under which the expected rewards do not change. We perform 
this for classes of strategies and policies, sufficient to approximate the 
value functions. 

Lemma 4.1 To every strategy u = (r1,~) with r i E So, i = 1,2, 
there corresponds a nonrandomized policy 7r such that 

V (x,7r) = V (x, r1), w (x,7r) = W (x,~), x EX. (4.1) 

Proof We construct the functions 7rt+! for histories ht = yoa1 ... Yt 
with Yo = (xo, 1), so that the first ofthe relations (4.1) holds; the second, 
corresponding to Yo = (xo,2)' is treated similarly. 

We refer to the correspondence W = A (&:I) and Lemma 3.1. Given the 
component r1 = {71 < 72 < ... } of the strategy u, we define a mapping 
J.L : n -+ fi by setting 

J.L (w) = J.L (XOX1 X2··· ) = yoa1Y1a2Y2··· 
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where 

Yo = (xo, 1) , 
at = 0, 
at = 1, 
at = 0, 
at = 1, 
at = 0, 
... , 

Yt = (Xt, 1) 
Yt = (xt,2) 
Yt = (Xt, 2) 
Yt = (Xt, 1) 
Yt = (Xt, 1) 

if 0< t ~ 71 (w) , 
ift=7l{W)+1, 
if 7d w) + 1 < t ~ 72 (W) , 
if t = 72 (w) + 1, 
if 72 (w) + 1 < t ~ 73 (W) , 

(4.2) 

until we cover all t = 0,1,2, .... The paths w E f.-L (O) we call marked 
pathsj marked histories ht are initial segments of marked paths. 

For a marked history ht we set 7ft+l (ht ) = at+! where at+! is given 
in (4.2). In general, a marked history can belong to different marked 
paths. However, since 7k are stopping times with respect to the minimal 
filtration in 0, at+! is uniquely defined by xo, Xl ... ,Xt (together with all 
7k ::; t). For every unmarked history ht we set, to be definite, 7ft+! {hd = 
0. The same argument shows that 7ft+! are measurable functions of 
histories ht . Thus 7f = {7fl' 7f2, ... } is a nonrandomized policy. 

By the construction (4.2) and by the definition of the reward J (w) 
{see (3.3) and (3.7)), we have for a marked path 

J (w) = f (XTJ - g (X T2 ) + f (XT3 ) - ... = Jdw) (4.3) 

if w = f.-L (w) {see (2.9)). Evidently, A (f.-L (w)) = w for every w E O. Also, 
from the construction (4.2) and by induction in t, it is easy to see that 
P~l {f.-L(On = 1. Hence, by Lemma 3.1 and (4.3)' E~lJ(w) = ExJ{w). 

, '. 
Lemma 4.2 To every selector cp E <Po there corresponds a strategy a = 
(Tl,~) with Ti E So, i = 1,2, such that 

V (x,Tl) =v{x,cp), W(x,T2) =w{x,cp), xEXj 

namely, one may set Tl = Tpc, ~ = Tcp where F = Frp, G = Grp (see 
Definition 2.1). 

Proof For Tl = Tpc and at+! = cp (Yt) (i.e. 7ft+l = cp) we have the 
same correspondence (4.2) between the marked paths and histories on 
one side and sample points won the other, as in the proof of Lemma 4.1, 
with the P~ I-probability of the set n\f.-L (O) of non-marked paths equal 
to 0. Thus 'the concluding part of the proof of Lemma 4.1 extends to 
the present case, and V (x, Tpc) = v (x, cp). The case of W (x, Tcp) is 
similar. • 
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Remark 4.1 It follows from Lemmas 2.2 and 4.1, that v 2:: V, w 2:: W. 
If 

sup v (x, <p) = sup v (x, 11") , sup w (x, <p) = sup w (x, 11") , x EX, 
rpE<Po 1l"Eil rpE<Po 1l"Eil 

(4.4) 
then also v < V, w ::; W, so that indeed v = V, w = W, and an 
optimal selector <p E <Po generates an optimal strategy (J = (TFC, TCF) 
(see Lemma 4.2). 

Relations (4.4) will be justified in Section 7. 

5. Second imitating Markov decision process 

In this section we show that optimality equations (3.15)-{3.16) of 
MDP1 are equivalent to optimality equations of MDP2, and obtain a 
characterization of the value functions in terms of excessive envelopes. 

MDP1 was formally defined in the second paragraph of Section 3. 
The definition of MDP2 coincides with the above definition except at 
one point: the second of formulas (3.2) should be replaced by 

P{Xt+1EE, it+1=i+{-1)i-1 Ixt =x, it=i, at+1=l} 

= {1 if x E E, 
o if x (j: E. 

In words, if the action a = 1 is used in a state y = xi in MDP2, then 
the system moves with probability 1 to the state x j , while in MDPI it 
moves to a state zj, where z has the distribution P{x, .); in both cases 
j is different from i. We have no need to analyze MDP2 in detail, as we 
did in Section 3 with MDPI. However, equations (5.1)-{5.2), formally 
obtained below for the value functions ofMDP1, and crucial for the opti­
mal switching problem, are indeed Bellman equations of MDP2. In fact, 
we got them originally from MDP2 by a naive dynamic programming 
reasoning. 

Theorem 5.1 For finite, nonnegative measurable functions v and w on 
X, equations (3.15)-{3.16) imply the equations 

v = max(j+w,Pv) , 

w = max {v - g,Pw) , 

(5.1) 

(5.2) 

and vice versa. In particular, (5.1)-{5.2) are true for the value functions 
of MDP1. 

Proof First assume (3.15)-{3.16). Fix Xo E X, and to simplify the 
writing, skip Xo in f (xo), v (xo), w (xo), Pv (xo), etc. There are 4 cases 
compatible with (3.15)-{3.16). 
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Case 1 v = Pv, w = Pw. 

Then (5.1)-{5.2) coincides with (3.15)-{3.16). 

Case 2 v> Pv, w > Pw. 

Then from (3.15) v = f + Pw < f + wand from (3.16) w = 
Pv - 9 < v - g. Hence v < f + v - 9 or 9 < f, and we have a 
contradiction with (2.4). 

Case 3 v = Pv, w > Pw. 

Here (5.2) coincides with (3.16). Since w > Pw, from (5.2) we get 
w = v-g, hence v = w+g ~ w+ f, and this together with v = Pv 
proves (5.1). 

Case 4 v > Pv, w = Pw. 

Now (5.1) follows from (3.15). Since v > Pv, (5.1) implies v = 
f + w ~ 9 + w, and this together with w = Pw proves (5.2). 

Now assume (5.1)-{5.2). We have the same 4 cases. 

Case 1 Is again trivial. 

Case 2 We get from (5.1)-(5.2) v = f + w = f + v - g, thus f = g, and 
this contradicts to (2.4). 

Case 3 (3.16) holds automatically, while (3.15) reduces to v ~ f + Pw. 
This holds because w > Pw and v ~ f + w by (5.1). 

Case 4 (3.15) holds automatically, and (3.16) reduces to w ~ Pv - g. 
The last inequality holds because Pv < v and w ~ v - 9 by (5.2). 

The last assertion of the theorem follows from Theorem 3.1. • 

Let U be the Bellman operator corresponding to the optimality equa­
tions (5.1)-(5.2): for nonnegative measurable function ~,'f/ on X 

(e) = U (~) = (max (f + 'f/, P~)) 
'f/' 'f/ max(~-g,P'f/) 

(5.3) 

(cf. the definition (3.11) of T). U is also a monotone operator, and 
analogous to 

(wvnn) = Tn (00) , n = 0,1,2, ... (5.4) 

(cf. (3.12)), we set 

(!:) =un(~), n=0,1,2, .... (5.5) 
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Lemma 5.1 If e,'f/ ~ 0 and 

{5.6} 

then 

Proof By {5.3} 'f/' ~ P'f/ and e' ~ pe, by {5.6} Pe' ~ pe, P'f/' ~ P'f/. 
Thus 

• 
Lemma 5.2 The functions Vn , wn defined in {5.5} are non decreasing 
in n and converge to the value functions of MDP1: 

Vn tv, Wn two (5.7) 

Proof By (5.5) and (5.3) 

{5.8} 

and therefore, since U is a monotone operator, vn+1 ~ Vn , wn+1 ~ w n . 

Multiplying by un the inequality 

we get by {5.1}-{5.2} 

{5.9} 

On the other hand, Lemma 5.1 and {5.8} imply the inequality 

{5.1O} 
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{see (5.4)). Similarly, Lemma 5.1 and the inequalities V3 ~ V2, W3 ~ W2, 

and after that (5.10), imply 

so that by an evident induction V2n ~ vn , W2n ~ wn . This together with 
(5.9) and (3.14) proves (5.7). • 

Theorem 5.2 The pair (v, w) of the value functions of MDPl is the 
minimal nonnegative measurable solution of the inequalities 

{ v~max(f+w,Pv), 
w ~ max {v - g,Pw). 

(5.11) 

Proof For any pair (ii, 'Ill) ~ 0 satisfying (5.11) we have, in notations 
(5.5), 

(5.12) 

From (5.5), (5.12)' and (5.11) applied to (ii, 'Ill), by an evident induction 
in n 

and by Lemma 5.2 v :::; ii, w:::; w. • 
In other words, (v, w) is the minimal pair of excessive functions sat­

isfying inequalities 
v ~ w + j, w ~ v-g. 

Remark 5.1 Similar to the reasoning used in Theorem 3.1, one may 
show that v, ware also the value functions of MDP2. 

6. Preference function 

We define the preference function as 

u (x) = v (x) - w (x), x E x. (6.1) 

Since indeed the value functions of the switching problem and MDP1 
are equal (Theorem 7.2 below), the preference function shows to what 
extent the selling position is more advantageous than the buying position 
at any state x. 

From now on, it is convenient to use, instead of the transition operator 
P, the generator A of the Markov chain {xt}: 

A=P-I (6.2) 
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where I is the identity operator. Harmonic functions are solutions of the 
equation Ah = 0, excessive functions are nonnegative functions h with 
Ah::::; o. 

Theorem 6.1 The preference function u is the unique bounded measur­
able solution of the inequalities 

f(x) ::::; u(x) ::::; g(x), 

Au (x) ~ 0 

Au (x) ::::; 0 

together with the boundary condition 

xEX, 

if f (x) < u (x) , 
if u (x) < 9 (x), 

u(x)=f(x), xEB. 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

Relations (6.3)-(6.5) are known in some stochastic games, the so­
called Dynkin games (see Section 9 for more details). In connection 
with those games, the uniqueness of the solution to the system (6.3)­
(6.6) was proved at various levels of generality, including the continuous­
time case. For completeness of the paper, and since we do not have a 
proper reference covering the discrete-time case with a Borel state space, 
we present a simple proof of the uniqueness too. 

Proof The measurability of u follows from (6.1) and Theorem 3.1. By 
Theorems 3.1 and 5.1, v and w satisfy equations (5.1)-{5.2). Subtracting 
w from both sides of (5.1) and using (6.2) on one hand, and multiplying 
(5.2) by -1, adding v and using (6.2) on the other, we get 

max (j,Av +u) = u = min{g,u - Aw). (6.7) 

Now (6.3) follows immediately from (6.7), and (6.3) shows that u is 
bounded (cf. (2.5)). If f (x) < u (x) at some point x, then by (6.7) 
Av (x) + u (x) = u (x), so that Av (x) = 0; on the other hand, Aw ::::; 0 
everywhere by (5.1), and hence Au (x) = Av (x) - Aw (x) ~ O. This 
proves (6.4). To get (6.5), use that Av ::::; 0 by (5.1) and that Aw (x) = 0 
if u (x) < 9 (x) by (6.7). The boundary condition (6.6) follows from the 
boundary conditions (3.17) for v and w. 

To prove the uniqueness, we observe that for any u E B(X) the process 
{et} : 

t-l 

eo = u (xo) , et = u (Xt) - L Au (Xk) , (t ~ 1) (6.8) 
k=O 

is a martingale (with respect to the minimal filtration {Nt} generated by 
the Markov chain {Xt}, see Section 2). Indeed, by the Markov property 
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and (6.2), for any t ;::: 0 and x E X 

t 

Ex [et+1INtl = Ex [u (Xt+1) IM]- L Au (Xk) 
o 

t 

Pu (Xt) - L Au (Xk) 
o 

t-l 

u (xt} - LA (u (Xk)) 
o 

By Doob's theorem, for a stopping time T 

ExeT = eo = u (x), x E X, 

if only 
lim Ex letl! {T > t} = O. 

t-too 

(6.9) 

(6.10) 

(See, for instance, Shiryayev [13]). We verify (6.10) for any stopping 
time T ~ TB. By (6.3) and (2.4), lui ~ C , hence by (6.2) IAul ~ 2C, 
and therefore by (2.2) 

Ex leTI ~ C (1 + 2ExTB) < 00, x E X. 

Also, 

Ex letl! {T > t} ~ C (2t + 1) Px {TB > t} -+ 0 as t -+ 00, x E X, 

because the expectation 

converges and 

00 

ExTB = LnP{TB = n} 
1 

00 

tPx{TB > t} ~ L nPx {TB = n}. 
n=t+l 

Thus, (6.9) holds for any T ::; TB. 
We now suppose that there are two different solutions Ul and U2 to 

(6.3)-(6.6), and get a contradiction. Assume that Ul (z) < U2 (z) at 
some z E X. Let 

(6.11) 
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The set D is measurable together with Ul and U2, so TD is a stopping 
time. By (6.6), Ul = U2 on the boundary, so that BCD, TD ::; TB, and 
therefore (6.9) is applicable to T = TD. On the set E = X"'-.D we have 
by (6.3) and (6.11) 

f (x) ~ U d x) < U2 (x) ~ 9 (x) , 

hence by (6.4) and (6.5) 

AU2 (x) ~ 0, AUl (x) ~ 0, x E E. (6.12) 

Since Xt E E for ° ~ t < TD and Xt E D for t = TD, we obtain from 
(6.8), (6.9), (6.11) and (6.12) for T = TD 

Ul (z) ~ EzUl (xT ) ~ EzU2 (xT ) ~ U2 (z) 

in contradiction with the assumption Ul (z) < U2 (z). • 
Another description of the preference function U can be given in terms 

of the support sets 

F={xEX:u(x)=f(x)}, G={XEX:u(x)=g(x)}. (6.13) 

Corollary 6.1 The support sets F and G are disjoint, measurable, and 
F contains the boundary B and therefore is nonempty. The preference 
function U is the unique bounded measurable solution of the equation 

Au (x) =0, x E X"'-. (F U G) , (6.14) 

with boundary conditions 

u(x)=f(x), xEF, u(x) =g(x), x E G. (6.15) 

Moreover, 

Au(x) ::; 0, xEF, Au(x) ;::: 0, xE G. (6.16) 

Proof Theorem 6.1 and the condition f < 9 imply all the assertions 
except the uniqueness of the solution to (6.14)-(6.15). The latter follows 
from the representation of any bounded solution of (6.14) in the form 

u(x) = ExU(xT } , T=TFuG, x EX"'-.(FUG), 

obtained from (6.8), (6.9), and (6.14), combined with (6.15). Formula 
(6.9) is applicable because B C F U G so that ExT ~ ExTB < 00. • 

In other words, u is the unique bounded function harmonic III 

X"'-. (F U G) and satisfying boundary conditions (6.15). 
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7. Optimal policy and optimal strategy 

We now show that the stationary policy 

(X i) = {I if i = 1, x E F or i = 2, x E G, 
r.p, 0 otherwise, (7.1) 

where F and G are the support sets (6.13), is optimal in MDPl. 
To shorten formulas, we write v'P, w'P in place of v (., r.p), w ( ., r.p). 

Consider in parallel to the Bellman operator T (see (3.11)) a similar 
operator T'P corresponding to r.p: 

( f(X)+Pry(x)) ifxEF, 
Pry (x) 

( P~(x) ) ifxEG, 
P~(x)-g(x) 

(P~ (x)) 
Pry (x) 

if x E X", (F U G) . 

(7.2) 

Lemma 7.1 The value functions v and w satisfy equations 

v (x) 

w (x) 

{ f (x) + w (x) = f (x) + Pw (x) 
Pv (x) 

{
V (x) - g (x) = Pv (x) - g (x) 
Pw(x) 

if x E F, 
if x E X",F, (7.3) 

if x E G, 
if x E X",G. (7.4) 

Proof Relations (7.3) with w (x) and (7.4) with v (x) follow directly 
from formulas (5.1)-(5.2) of Theorem 5.1, the definition (6.13) of the sets 
F and G, and the equation u = v - w. If x E F, then x tI. G, therefore 
w (x) = Pw (x) by the already proven part of (7.4), and hence we may 
replace w (x) by Pw (x) in (7.3). Similarly, if x E G, then v (x) = Pv (x) 
by (7.3), and this proves the remaining part of (7.4). • 

Lemma 7.2 The operator T'P is conserving in MDP1, i.e. 

(7.5) 

Proof Evaluate the left side of (7.5) using (7.2) and compare with 
(7.3)-(7.4). • 

Lemma 7.3 The policy r.p is equalizing in MDP1, i.e. with Xn = x (Yn) 

lim E~[v (xn) 1 {in = I} + w (xn) 1 {in = 2}] = 0, Y E Y. (7.6) 
n-too 



Optimal switching problem for Markov chains 275 

Proof We suppose that y = (x, I); the case of y = (x,2) is similar. If 
(7.6) does not hold, then, since v ~ 0 by Lemma 3.2, there exist x E X 
and E > 0 such that 

n E N = N (x,£), 
(7.7) 

where the set N = {nl < n2 < ... } of integers is infinite. As in the 
proof of Theorem 3.1 (see (3.19}), it follows from Assumption 2.1 that 
the tail of the rewards converges to 0 uniformly in policies 7r E ITo, and 
therefore there exists an integer no such that 

00 

E~,l 2: Irt+11 < E for n ~ no, 7r E ITo. (7.8) 
n 

Let n be fixed, no ~ n E N, so that both (7.7) and (7.8) hold. Accord­
ing to general results on upper summable Borelian MDPs, for any E > 0 
and any probability measure I" on the state space X, there exists an 
(a.e. I") E-optimal policy; see, for example, Dynkin and Yushkevich [5, 
Chapters 3 and 5] (formally the MDP we consider is summable in the 
sense of Lemma 3.2, different from the upper or lower summability as­
sumed in Dynkin and Yushkevich [5], but this causes no impact on the 
applicability of the general measurable selection theorems). Let a' E IT 
be such a policy for the measure I" (dz) = P x {xn E dz}. The same rea­
soning as used in the proof of (3.18) shows that a' can be adjusted to a 
policy a E ITo without diminishing the random and hence the expected 
rewards. So we have a policy a E ITo with 

where z E X. 

{
V (z, a) ~ v (z) - E (a.e. I"), 
w (z, a) ~ w (z) - E (a.e. 1"), 

(7.9) 

Consider now a policy 7r = cpn a; this policy coincides with cp on the 
n initial steps of the control, and after that coincides with a; in the 

notations of Section 3, P~+Hl (hHn ) = pf+l (h~) where h~ is obtained 
from hn+t by erasing the initial elements yoal ... Yn. Since a E ITo, also 
7r E ITo, and (7.8) holds. On the other hand, by the structure of the 
policy 7r, Lemma 3.1 and the Markov property of the chain {Xt}, 

where 
I"ddz) = P~ Ii in = i, Xn E dz}, i = 1,2, (7.11) , 
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so that 1-'1 + 1-'2 = 1-'. Using firstly (7.9) and (7.10), and secondly (7.11) 
and (7.7), we obtain 

E~,1 (~r'+I) ;;. Ix v (z) I'ddz) + W (z) 1'2 (dz) - £ 

E~,1 [v (xn) 1 {in = 1} + w (xn) 1 {in = 2}] - c 

~ 2c - c = c. 

This contradicts to (7.8), and we are done. • 
Theorem 7.1 The stationary policy cp defined in (7.1) is an optimal 
policy in MDP1. 

Proof Follows from Lemmas 7.2 and 7.3 and the general fact in the 
theory of MDPs that a conserving and equalizing stationary policy is 
optimal. Namely 

from (7.5), and this equation means that 

v (x) ~ E~,1 [~r, + V (x,)1 {in ~ I} + W (Xn) 1 {in ~ 2} l (7.12) 

W (x) ~ E~,2 [~r, + V (xn) 1 {in ~ I} + W (xn) 1 {in ~ 2}]. (7.13) 

(as follows from (7.2) and the structure (3.3) of rewards). Due to (7.6), 
in the limit (7.12) and (7.13) turn into v (x) = v'P (x) and w (x) = w'P (x) . 

• 
We now return to the switching problem and refer to Definition 2.1 

for notations. 

Theorem 7.2 

(i) The value functions (2.15)-(2.16) of the switching problem and 
(3.9) of MDPl (and hence also of MDP2) are equal: V = v, W = 
w. 

(ii) The strategy (T = (IFG, IGF) is optimal in the switching problem. 
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Proof 

(i) Since the sets F and G are disjoint, the policy cp in (7.1) belongs 
to the class ~o (see (3.5)). Also, cp is optimal in MDP1, and it 
remains to refer to Remark 4.1. 

(ii) By Lemma 4.2 and (i) V (x, TFG) 
x E X. Similarly, W (., TGF) = W. 

v (x, cp) = v (x) = V (x), 

• 
8. The value functions 

Theorems 3.1 and 5.2 give an implicit characterization of the value 
functions V = v and W = w. In this section we get explicit formulas in 
terms of the preference function u and the support sets F and G. 

Let 

xEX, DeB, DEB, (8.1) 

be the exit measures corresponding to the Markov process {xt}; by As­
sumption 2.1 Q(x, B) = 1 for every x. Consider also the occupational 
measures 

00 

R(x,D) = LPx{Xt ED}, x E X, DEB, (8.2) 
t=o 

and the corresponding operator R (the resolvent for >. = 1) defined for 
any nonnegative measurable function h on X: 

Rh(x) := 1 h{y)R{x, dy) = f pth{x), 
x t=o 

xEX. (8.3) 

Mention that R(x, Xo) = ExTB < 00 for every x by Assumption 2.1, and 
that if h is bounded and h = 0 on the boundary B, then Rh(x) is finite 
for every x. 

Lemma 8.1 We have 

lim pnw(x) = 0, lim pnv(x) = Qf(x):= r f(y)Q(x, dy), x E X. 
n-+oo n-+oo } B 

(8.4) 

Proof Given x, consider the corresponding state y = (x,l) of MDP1. 
By Lemma 3.1, the following formula is valid for any policy 7r in MDP1, 
in particular for the optimal policy cp defined in (7.1): 
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Now, since w(z) = 0 on the boundary B, and since everywhere 1 v-w 1= 
1 u I~ C (as follows from (6.3) and (2.5)), 

. { 0 ~ v(z) if z E B, 
w(z)l{~n = 1} ~ v(z)l{in = 1} + C if z E Xo. 

Therefore 

pnw(x) ~ E~[v(xn)l{in = 1} + w(xn)l{in = 2}] + CP~{xn E X o}. 

Here the expectation tends to zero by (7.7), and the probability tends 
to zero by Assumption 2.1. Since w ~ 0, this proves (8.4) for w. For v 
we have 

Using the inequality 1 v - w I~ C, we obtain 

As in the case of w, both terms here converge to zero as n -+ 00. Since 
v ~ 0, the last expectation in (8.5) tends to O. On the boundary B we 
have v = f, and because all boundary states are absorbing states, and 
Xn reaches the boundary at the state XTB ' the first expectation in (8.5) 
converges to the integral in (8.4). • 

Consider now the functions 

h(x) _ {-AU(X) if x E F, l(x) _ {AU(X) if x E G, 
- 0 if x E X",F, ' - 0 if x E X",C. 

(8.6) 
These functions are known together with u, and by (6.16) they are non­
negative. On the boundary they both vanish (by (2.1), on the boundary 
Af(x) = 0 for any function J). 

Theorem 8.1 In the notations (8.1)-(8.4) and (8.6), the value func­
tions v and w satisfy equations 

Av = -h, Aw=-l (8.7) 

and are given by the formulas 

v = Rh+Qf, w=Rl. (8.8) 

Proof By (7.3) Av = 0 on the set X"'F. On the set F c X"'C we 
have Aw (x) = 0 by (7.4), and therefore Av = Aw+Au = Au (remember 
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that u = v - w). By (8.6) this proves the first of equations (8.7). The 
second equation follows in a similar way from the relations: Aw = 0 on 
X"'-.G (cf.(7.4)), and Av = 0 on G c X"'-.F. 

Equations (8.7) mean that v = h + Pv, w = 1 + Pw. By iterations we 
get for any natural n 

n-l 

V = Lpth+pnv, 
t=o 

n-l 

W = L ptl +pnw. 
t=o 

Here all terms are nonnegative and finite. Due to (8.3) and (8.4), these 
relations turn into (8.8) as n ~ 00. • 

9. Relation to a Dynkin game 

Zer(}-sum stochastic games with stopping times as strategies of the 
players were proposed by Dynkin [3], and one often calls them Dynkin 
games. Frid [6] studied the solution of the Dynkin game for a Markov 
chain with a finite number of states, Gusein-Zade [8] studied it for the 
Brownian motion process in a domain in Rn (as mentioned by Frid, 
Gusein-Zade solved also the Dynkin game for a finite Markov chain with 
an absorbing boundary). In those initial works, the stopping actions 
of the two players were restricted to two disjoint subsets E I , E2 of the 
state space, so that both players could never stop the process at the same 
time t. Correspondingly, there was only one reward function g, and the 
random gain of the first player (equal to the loss of the second player) 
was R(1',O') = g(xp), P = min (1', 0'), where l' and 0' are the stopping 
times chosen by the players I and II. The value function of the game 
appeared to be a two-sided analogue of the value function of the optimal 
stopping problem, namely, a solution of a variational problem between 
two obstacles: an upper bound 9 on the set E2 and a lower bound 9 on 
the set E I . 

It seems that Krylov [10] was the first who, in his study of the Dynkin 
game for a general diffusion process, replaced the two sets E I , E2 by two 
functions f < g, so that there remained no restriction on the stopping 
times l' and 0', but the gain of Player I took on a form 

R(1',O') = f (xr) 1 {1' ~ 0',1' < oo} + 9 (xu) 1 {a < 1'}. (9.1) 

Indeed, the original Dynkin's setting with the sets E I , E2 can be reduced 
to the form (9.1) by renaming 9 into f on the set EI, and defining f 
close enough to -00 on the complement of E I , and 9 close enough to +00 

on the complement of E2 • The corresponding variational problem has 
precisely the form of inequalities (6.3)-(6.5) for the preference function 
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u we treated in Theorem 6.1, with A being the generator ofthe diffusion 
process. For an extensive exposition of such stochastic games in the 
continuous-time case we refer to Friedman [7, Chapter 16]. 

As an auxiliary result of our solution of the switching problem, we 
obtain a solution of the corresponding Dynkin game. This is not a new 
result but a new approach. We return to the setting of Section 2 and 
introduce the necessary definitions. The expected gain of the Player I is 

u{x,T,a} = ExR{T,a} , x E X. 

The two functions 

Y. {x} = supinf u {x, T, a} , u{x} = infsupu{x,T,a} , xEX, 
T U U T 

are, respectively, the lower and upper values of the game. Always Y. ~ u, 
and if they are equal then the game has a value function u = U = Y.. A 
pair of stopping times {T*, a*} is a saddle point if 

maxu {x, T, a*} = u {x, T*, a*} = min u {x, T*, a}, x E X. {9.2} 
T U 

If a saddle point {T*, a*} exists, then the value function u of the game 
also exists and is equal to 

u {x} = u {x, T*, a*}, x E X. {9.3} 

The stopping times T*, a* satisfying (9.2}-(9.3) are optimal strategies of 
the players, and the triple {u, T*, a*} is called a solution of the game. 

Theorem 9.1 The preference function u defined in Section 6 is the 
value function of the game. The stopping times TF and TG (cf. (6.13}) 
are optimal strategies of the players I and II. 

The proof is based on the following verification lemma for the optimal 
stopping problem. It is not a new result, but it is easier to give a proof 
than to find an exact reference. 

Lemma 9.1 Let X, B, {Xt} and stopping times T be the same as in 
Section 2. If a measurable set E c X and measurable bounded functions 
hand u on X satisfy conditions: BeE, 

then 

u {x} = Pu {x} ~ h {x}, x E X"",,E, 

u {x} = h (x) ~ Pu (x), x E E, 

{9.4} 
(9.5) 

u (x) = Exh (XTE ) = sup Exh (xT ) , x E X. (9.6) 
T~TB 
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Proof As in the proof of Theorem 6.1, the process 

t-l 

et = u (Xt) - L Au (Xk) , t ~ 0, (9.7) 
k=O 

is a martingale satisfying the conditions (6.10) because U is bounded, so 
that similar to (6.9) 

U (x) = Exen x E X, (9.8) 

for every T :::;; TB. By (9.4)-(9.5) Au = Pu - u :::;; 0, hence (9.7) and 
(9.8), and then again (9.4)-(9.5) imply 

(9.9) 

if only T :::;; TB. On the other hand, TE :::;; TB because BeE, so 
that (9.8) is valid for T = TE, and for this stopping time Au (Xk) = 
Pu (Xk) - U (Xk) = 0 for t < T by (9.4). Thus (9.7) and (9.8) imply 

u (x) = EXeTE = Exu (XTE ) = Exh (XTE ) , x E X, (9.10) 

where the last expression follows from the fact that X TE E E and (9.5). 
Relations (9.9) and (9.10) prove (9.6). • 

Proof of Theorem 9.1 Suppose that the second player uses the stop­
ping time a = Te (recall that G may be empty). Then the first player is 
in the following situation. On the set X",,-B' where B' = BUG, the pro­
cess {Xt} can be stopped only by him (or her), and if it is stopped at a 
state x E X""-B' the reward is f (x). On the set B he (she) may stop the 
process or not, but it is optimal to stop and get the reward f (x), x E B 
because f ~ 0 on the boundary B (see (2.5)), and because any state 
x E B is absorbing. On the set G, if he (she) stops, the reward is f (x), 
if not, than the second player stops and the reward is 9 (x) > f (x), 
x E G (see (9.1) and (2.5)). Hence it is definitely better for I not to 
stop and get the reward 9 (x). The same happens if we forget about the 
player II, change every state x E G into an absorbing state, and change 
the reward of the first person from f (x) to 9 (x) at this state. Thus, 
indeed, if II uses the strategy Te, I faces an optimal stopping problem 
on the space X with an enlarged absorbing boundary B' = BUG, a 
modified reward function 

h (x) = {f(X), x E X",,-G, 
g(x), x E G, 

(9.11) 

and the choice of stopping times T reduced by the condition T :::;; TB', 
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Let now E = B'UF = BUGUF = GUF (by Corollary 6.1, B c F), 
and let U be the preference function from Section 6. By Corollary 6.1 
U (x) = Pu (x) if x E X""-E {see (6.14)), U (x) ~ h (x) if x E X""-E {see 
(9.11) and (6.3)), U (x) = h (x) if x E E {see (6.13) and (6.15)). To 
get all the conditions (9.4)-{9.5) of Lemma 9.1, it remains to check the 
inequality U (x) ~ Pu (x) on the set E. It does not hold in a literal sense 
because we deal with a modified problem with an enlarged absorbing 
boundary B' = BuG. In this new process the kernel P (x, dy) has 
changed from the original one, now we have P (x, x) = 1 for x not only 
in B, but also in G c B', and for this new kernel the last condition in 
(9.5) holds. Thus we have all conditions of Lemma 9.1 with B changed 
to B' = BuG. By this lemma, TE is an optimal stopping time for Player 
I in the modified problem. By the relation between the just described 
optimal stopping problem and the original game with strategies of the 
second player reduced to the single stopping time a = TG, TF is the best 
reply of I to the choice TG of II, so that for T* = TF, a* = TG the left of 
the equations (9.2) holds. 

The right of the equations (9.2) is proved in a symmetric way, with 
the player II maximizing the reward - R ( TF, a) over stopping times a 

subject to the constraint a ~ TF (actually, Player I stops the process on 
the set F, mandatory for the player II, and in place of (9.11) we now 
have h (x) = -g (x) if x E X""-F, h (x) = -I (x) if x E F). • 

10. Examples 

10.1 Symmetric random walk 

In this example the state space X is {O, 1,2, ... , k, ... ,n}, the states 1 
and n are absorbing states, the transitions k -+ (k ± 1) occur with prob­
abilities 1/2, the reward and cost functions are vectors {fo, iI, .. · ,In} 

and {gO, gl, ... ,gn}, where fk < gk for all k, and 10 ~ 0, In ~ 0. The 
optimality inequalities (6.3)-{6.5) of Theorem 6.1 take on the form 

fk < Uk ~ gk, (1O.1) 
1 1 

if Uk> Ik' (1O.2) 2"Uk-l + 2"Uk+1 > Uk 

1 1 
if Uk < gk (1O.3) 2"Uk-l + 2"Uk+1 < Uk 

(here k = 1, ... , n - 1), and the boundary conditions (6.6) become 

Uo = 10, Un = In, (1O.4) 
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(the values of go and gn are unessential). Consider the functional 

n-l 

<p[u] = 2: 1]{Uk+! - Uk) 

k=O 

where 1]{x) is any twice differentiable function with 1]" (x) > 0, -00 < 
x < 00. For such 1], the partial derivative 

0<P I I 

-0 = 1] {Uk - uk-d -1] (Uk+! - Uk) 
Uk 

is a strictly increasing function of Uk, 1 ~ k ~ n - 1. It follows that 

1 
Uk = 2{Uk-l + Uk+!) 

is the unique solution of the equation :~ = 0, and that relations (10.2)­
(10.3) are necessary conditions of a minimum of the functional <P subject 
to the constraints (10.1). In particular, one may take 1](x) = VI + x2. It 
is convenient to represent the functions f, u, 9 by broken lines connecting 
the points (k,f(k)), resp. (k,u{k)), resp. (k,g(k)) from k = ° to k = n. 
It follows that the graph of U is the shortest path between two obstacles: 
the graphs of f and g, connecting the points (0, f(O)) and (n, f{n)). The 
optimal switching sets F and G consist of those k at which the graph of 
U touches the graphs of f, resp. g. 

The exit probabilities and occupational measures in this example are 
known (or can be easily found from the corresponding difference equa­
tions). They are 

Q(k,O) -
n-k 

n 

R(k,j) = { 
2(n-k)j 

n ' 2k(n-j) 
n ' 

k 
Q(k,n) =-, 

n 

if 1 ~ j ~ k, 

ifk~j~n-1. 

By (8.6) and (8.8), we have for k = 0, ... ,n 

- k [ k] k [ n-l 1 v{k) = 7 fo + 2 ~jhj +;;; 2 2:(n - j)hj + fn , 
J=l k+l 

(1O.5) 

(1O.6) 
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where 

2h· J { 2Uk-{Uk-I+Uk+d~0, ifkEFn{1,2, ... ,n-1}, 
0, otherwise, 

2[· 
J { (Uk-l + Uk+1) - 2Uk ~ 0, if kEG, 

0, otherwise. 

10.2 Birth and death process 

(10.7) 

(1O.8) 

This model is similar to the preceding one, only the transition prob­
abilities from k to k + 1 and k - 1 are now arbitrary numbers Pk and qk 
satisfying conditions Pk > 0, qk > 0, Pk + qk = 1 (k = 1, ... ,n - 1). The 
picture becomes very similar to that in Example 10.1 if we introduce in 
X the so-called natural scale (cf. Dynkin and Yushkevich [4, Chapter 
4]). We re-scale the states k = 0,1, ... ,n as Xo, Xl, ... xn where 

Xo = 0, 

and 
~l = 1, 

k 

Xk = L ~i, k = 1, ... ,n, 
i=l 

A . _ ql q2 ... qi-l 
llz - . 

PIP2·· ·Pi-l 

Instead of optimality inequalities (10.2)-{10.3) we now have 

qkuk-l + PkUk+1 > Uk if Uk > fk' 

qkuk-l + PkUk+1 < Uk if Uk < 9ki 

(10.9) 

(10.10) 

(10.11) 

relations (10.1) and (10.4) remain unchanged. The appropriate func­
tional is 

«p[U] = I: ~k+1'" [t!--(Uk+l - Uk)] 
k=O k+l 

where again r/' > O. Relations (10.10)-{10.11) again are necessary con­
ditions of a minimum of «P under constraints (1O.1). Indeed, 

a«p = ",' [_1 (Uk _ Uk-I)] - ",' [_l_{Uk+1 - Uk)] , 
aUk ~k ~k+l 

and at a minimum point this partial derivative should be zero if fk < 
Uk < 9k, nonpositive if fk < Uk = 9k, and nonnegative if fk = Uk < 9k· 
Since r/ is strictly increasing, the equation %! = 0 means that 

(1O.12) 
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and this, by (1O.9), is equivalent to Uk = qkuk-l + PkUk+1, so that both 
(1O.1O) and (1O.11) hold. Similarly, g! ~ ° implies (1O.12) with the in-

equality ~, i.e. (1O.1O), while g! ~ ° implies (1O.12) with the inequal­

ity ~,i.e. (10.11). In particular, for 1J{x) = VI + x2 the functional 
becomes 

n-l 

~[u] = L J ~~+1 + {Uk+1 - Uk)2; 
k=O 

this is the length of the graph of U in the natural scale. Thus the 
preference function has the same geometrical interpretation as in Exam­
ple 1O.l. 

Exit probabilities are now (cf. [4]) 

Q{k,O) = Xn - Xk, 
Xn 

Xk 
Q{k,n) =-. 

Xn 

Occupational measures can be found from difference equations, and they 
are 

{ 
(Xn-Xk)Xj if 1 < . < k 

R k . fl. ·q·x' - J - , 
( ,J) = Xk(~':-;j) if k < . < n-l. 

fl.jqjXn' - J -

Hence, analogous to (1O.5)-{1O.8), the value functions are 

v{k) = 

w(k) 

where 

h· J {
Uk - (qkUk-l + PkUk+1) ~ 0, if kEF n {I, 2, ... , n - I}, 
0, otherwise, 

l. _ {qkUk-l + PkUk+1 - Uk ~ 0, if kEG, 
J 0, otherwise. 
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Abstract We study the problem of a renewable resource exploitation as a problem 
of optimal stochastic control with the renewable resource being managed 
for social benefit. 

The aim is to maximize the finite horizon total discounted utility 
by controlling the per capita consumption and extraction capacity. We 
suppose that the state is not directly observable, so we have an optimal 
stochastic control problem with partial observations. The exact solution 
is difficult to obtain, so we aim at a nearly optimal control determined 
via an approximation approach involving a discretization procedure in 
time and space. 
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1. Statement of the problem 
Let (0, F, P) be a probability space. 
Let us ~enote by Xt the resource and by Yt the population at time t. 

Assume that x and Y satisfy the following equations: 

dXt - [g (Xt) - F (Xt, S (Yt) ,Dt )] dt + 0"1 dwP: (1.1) 

dYt [OtF (Xt, S (Yt) , Dt) - (vDt + Ct) S (Yt)] dt + 0"2 dw?: (1.2) 

with initial condition x(O} = Xo and y(O} = Yo respectively. Where g(Xt} 
is the renewal rate of the resource, F(xt, s(Yt}, Dt} is the total harvest 
of the resource, Ot is the proportion of harvested resource used by each 
member of Yt, Dt is the potential harvest capacity, vDt is the harvest 
cost, Ct is per-capita consumption, and s(y} is a Coo transformation, 
bounded and Lipschitz in y. Moreover, 0"1 and 0"2 are two positive con­
stants with 0"2 small, while wP) and w~2) are independent Wiener pro­
cesses. We observe that in equations (1.1) and (1.2) there is an additive 
noise term because both resource and population can be subject to ran­
dom variations. We also remark that in equation (1.2), we have a small 
noise term because random fluctuations in population are smaller than 
those in the resource; in fact sharp variations in population are due only 
to a catastrophe. Model (1.1), (1.2) is a stochastic extension of a deter­
ministic model studied by Regev, Gutierrez, Schreiber and Zilbermann 
in [2]. 

Furthermore, 0 satisfies the following equation. 

dO = (Ot - >.)( 1 - >. - Ot} ( 1 - 20t ) d 
t 1 _ 2>' I-' + 2(1 _ 2>.) t 

(Ot - >')(1 - >. - Ot) d (3) 
+ 1-2>' ~ , (1.3) 

with initial condition 0 (0) = 00 and where I-' is a constant parameter: 

dl-'t = 0, 1-'(0) = 1-'0, (1.4) 

and w(3) is a Wiener process independent of w(1) and w(2). Drift and 
diffusion coefficients of equation (1.3) are such that 0 E (>',1 - >.) with 
>. small (this is possible by modelling 0 by a Coo transformation from IR 
to (>',1 - >.) - see, for example, [4]) because 0 represents a percentage. 
In order to have (J in a compact set, we restrict the interval (>.,1 - >.) 
by considering the interval [>' + €, 1 - >. - €] with € --+ O. In what follows 
we shall denote, improperly, this closed set by [>', 1 - >.]. 
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Assumption 1.1 g is bounded and Lipschitz in x. 

Assumption 1.2 F has the form F(xt, s(Yt), Dt ) = Dts(Yt)h (D~S(~t)), 
where h is the proportion of the potential demand for resources actually 
required, Lipschitz in (x,y) uniformly in D, and a (positive constant) 
is the technology parameter of resource harvesting (it represents the re­
source harvesting efficiency). 

Let ~t := D~(~t) and assume that the function h(~) is concave, 

lim ~h'(~) = 0 and h'(O) = lim h(~) = 1. 
boo boo 

Assumption 1.3 
d ~ Dt ~ D 'Vt E [0,00), for D > 0, and for some 0 < d < D. 

We consider the extended state (see [6]) Xt = (XP) , J.tt), with XP) = 

(Xt, Yt, Ot). The components of the vector X t satisfy the equations (1.1), 

(1.2), (1.3) and (1.4). As a consequence, XP) satisfies an equation of 
the form: 

(1.5) 

with the obvious meaning of the symbols and with Ut = (Ct , Dt ) being 
the control at time t. 

Equations (1.1), (1.2), (1.3) and (1.4) represent the dynamics for a 
stochastic control problem in which we want to find the supremum, over 
the controls Ct and D t , of the reward, 

(1.6) 

where U (Ct ) is the per-capita utility function which is supposed to be 
Lipschitz in C and 8 > 0 is the discount factor. 

The state is not fully observable, in particular for the first component 
(representing the renewable resource) we do not have precise informa­
tion about the quantity of the available resource due both to errors in 
measurement and to incorrect information supplied by exploiters of the 
resource. We, thus, introduce the following assumption. 

Assumption 1.4 We suppose to have information on the state only 
through the observation process "'t satisfying the equation, 

",(0) = ifo, € > 0, (1.7) 

where Wt is a Wiener process independent of w~l), w~2) and w~3), and € 

is a small positive constant. 
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Control space Recall that, by Assumption 1.3 , d ~ Dt ~ D. As for 
Ct, one can find, by simple calculation, that Ct ~ Dt , so we can take for 
Ct the upper bound of Dt . Thus the control space is 

v = [O,D) x [d,D), (1.8) 

which is a compact metric space. 

State space The processes Xt and Yt are modelled as solutions of 
stochastic differential equations, so their trajectories are continuous 
functions a.s., with values in 1R; Ot takes values in the interval [A,l - A] 
and 1-'0 is uniformly distributed over an interval [a, b]. Consequently the 
state space is 

x = 1R x 1R x [A,l - A] x [a, b]. (1.9) 

Nevertheless, we are interested only in solutions of (1.1) and (1.2) sat­
isfying the constraints 0 ~ Xt ~ x and il ~ Yt ~ Y for all t, namely 
such that the renewable resource does not become negative (otherwise 
we have exhaustion ofthe resource), and that the population does not go 
below level il (otherwise we have extinction of the species). Moreover, 
the resource must not exceed a level X and the population a level y, 
for X and Y sufficiently large. Since we are over a finite interval, both 
resource and population cannot explode. We observe that the upper 
limitations are introduced only in order to have x and Y in a compact 
space, but it is possible to choose X and Y so large that in practice 
resource and population never reach these values. 

Therefore we are interested in the trajectories contained in the space 

x = [O,X] x [il, Y] x [A, 1- A] x [a,b] (1.10) 

instead of in X. We consider the following part of the boundary of X: 

ax:= ({O,X} x [il,y] x [A,l-A] x [a,b]) 

u( [0, X] x {il, Y} x [A, 1- A] x [a,b]) , 

which we shall improperly call boundary of X. 
The aim is to maximize the total utility over the set X, since outside 

this set the problem has no economic meaning. In order to achieve this 
goal, we introduce a new control component, the stopping time T (with 
respect to the a-algebra generated by the observations). We want the 
optimal T to be near the hitting time of the boundary of X and near the 
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final time T, otherwise we would have too quickly the exhaustion of the 
resource or the population extinction. 

To this end we consider a penalization function Q (r, X T ) which de­
pends both on the stopping time r and on the state evaluated at the 
stopping time. We choose Q in such a way that it penalizes a r far from 
both the hitting time of the set X and the final time T. Furthermore, 
we choose Q bounded by Q and Lipschitz in X. 

Therefore, the new functional is 

J(u, r) = E {foTM e-5t L (Xt, Ut) dt - Q (r, X T )} , (1.11) 

where L (Xt, Ut) := S (Yt) U (Ct), with L : X x V -+ IR continuous in 
the state and the control and, for U bounded, L is bounded over the 
interval [0, T] because s(y) is bounded (we shall denote by L its bound). 
Moreover, since s(y) is Lipschitz, we have that L is Lipschitz in X. 
Owing to the fact that U is Lipschitz in C, it follows that L is Lipschitz 
also in the control. 

The aim is to find 
sup J(u,r), 

u(·)EV,TE[O,Tj 

where V is the set of the admissible controls u(·) (that is the set of the 
controls taking values in V and adapted to Fi = ()" { ""s, s ::; t}); the state 
equation is given by (1.4)-(1.5) where the function f(1) : X x V -+ IR3 
is a continuous function of the state, Borel bounded and Lipschitz in X 
uniformly in U; and the function ()" : X -+ Md(3 x 3), where Md(3 x 3) 
denotes the space of the diagonal 3 x 3 matrices with values in JR., is 
Borel bounded and Lipschitz in X. 

The exact solution is difficult to obtain, so we aim at a nearly op­
timal control determined via an approximation approach involving a 
discretization procedure. 

2. Discretization in time 

In this section we approximate the continuous problem by a time 
discretized stochastic control problem. 

2.1 Discretization of the state and of the control 

For each fixed N, we consider the subset V N C V of step controls 
corresponding to the deterministic splitting 0 = to < tl < ..... < tN = T 
of the time interval with Iti - ti-Il = ~, Vi = 1, ... , N. 

Therefore we have Ut = Un, for t E [tn, tn+1[, with Un E V and 
Ft -measurable (Ft = ()" (""t, t ::; tn) where ""t is the observation process 
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defined in (1.7)). We discretize also the r-space and, instead of [0, T], 
we consider the discrete set of time points {to, tl, ... , tN}, so that r E 

{n~jn = 0, ... ,N}. 
Proposition 2.1 Given E> 0, for N sufficiently large 

sup sup J{u, r) - sup sup J{u, r) ~ E. (2.1) 
rEi nfl, n=O,I"."N} UEVN rE[O,T] uEV 

Proof The left hand side of (2.1) is equivalent to 

sup sup J{u, r) - sup sup J{u, r) , {2.2} 
rEi nfl, n=O,I, ... ,N} uEV N rERT uEV s 

where RT = [0, T] n Q and V s = UN V N (see [4]). 
It can be shown (see [4]) that, given E > 0, there exists N such that, 

for N ~ N, (2.2) is less than E. • 

Proposition 2.1 states that we can restrict ourselves to consider only 
controls u E VN and controls r E {n~jn = O, .. ,N}, for N sufficiently 
large. Therefore we have a simpler problem than the original one. The 
optimal step control of the corresponding time-discretized stochastic 
control problem will be shown to be an E-optimal control for the original 
problem. 

Corresponding to the splitting of the time interval into subintervals 
of the same width ~, for each N E lN, we consider a time discretized 
state: 

X N _ { X f for t E [j ~, (j + I) ~ [ 
t - X~ for t = T 

{2.3} 

where Xf (j = 0, ... , N -1) and X~ depend on j and on T, respectively, 
and are obtained from an Euler discretization of {1.5} and (1.4). 

What one usually does in these cases is a Girsanov change of measure 
in order to transform the original problem into a problem in which state 
and observations are independent. This allows one to work in a product 
space in which the distribution of the state is furthermore the same as 
in the original space (see, e.g., [4] and [6]). 

We shall denote by po the measure under which 'TIt is a Wiener process 
independent of X t and xf, and by pN the measure under which 'TIt has 
the same form as under P, but as a function of the discretized state. 
More precisely, 
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with wN a pN-Wiener process and xN the first component of XN (see 
(1.7)). 

It can be shown that the process xf converges to the continuous 
state X t in fourth mean, both in the original measure P and in the 
transformed measure pO (see [4] or [6]). 

2.2 Discretization of the reward functional 
For each N E IN we define the following functional: 

IN (u, 7) := EO {zN (T) [foTAT e-5t L (xf, Ut) dt - Q (7, X:)]} , 

(2.4) 
where zN (T) = ~~~, U E V N, that is U = Uj in the interval (j %, 
(j + 1) % [ with Uj measurable with respect to the a-algebra generated 
by the increments of 'fit up to time j -1 and 7 E {n %; n = 0,1, ... , N} is 
a stopping time with respect to this same a-algebra. It is important to 
notice that here we use the a-algebra Ff.:!l generated by the increments 

'fIj-l := 'fI U%) - 'fI ((j -1) %), while in the continuous time case we 
used the a-algebra Fi generated by the continuous process 'fit. In [4] 
we show that, for the time discretized problem, there is no difference in 
taking controls adapted to Fi or to Ff.:!l since this does not modify the 
solution (see also [1]). 

Proposition 2.2 

(2.5) 

uniformly in the control (u, 7), with K constant. 

Proof Applying the change of measure, Jensen's inequality, Tonelli's 
theorem, an~ the Iiolder inequality, and recalling that Land Q are 
bounded by Land Q respectively and Lipschitz, we obtain that the left 
hand side of (2.5) is bounded above by: 
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where z(T) = :::0' L' and Q' are the Lipschitz constants relative to L 
and Q, respectively. 

As mentioned, the sequence xi' converges to X t in fourth mean under 
both P and pO; furthermore the sequence zN (T) converges to z(T) in 

mean square under pO. In particular we have E IIXt - Xi'114 SKI (%)2 
where Kl is a constant (and the same upper bound is valid for the 

expectation EO) and EO Ilz(T) - zN (T) 112 S K2 % with K2 constant (see 
[1, 4]), so we immediately obtain the thesis. • 

Thanks to Proposition 2.2, we can approximate the initial reward J 
by the discretized reward J N, for N sufficiently large. In this way, the 
discretized problem consists in maximizing IN by choosing the controls 
U E V Nand T E {n % : n = 0, ... , N}. Due to the uniformity, in (u, T), 

of the bound in (2.5), these controls are nearly optimal for the original 
problem. 

We have now, a partially observable discrete time stochastic control 
problem over a finite horizon with discounted reward. We shall write 
the so-called separated problem associated to it, namely a corresponding 
problem with fully observed state, and then apply the DP algorithm to 
this problem after discretizing also in space. 

2.3 The separated problem 

Let 

(2.6) 

where 

P (Xn+1 IXn, Un) 

= <1>1 (Xn+1; X n, Un) <1>2 (Yn+l; X n, Un) <1>3 (I'Jn+1; X n, Un) 

is the transition kernel obtainable as product of the conditional distribu­
tions of each component of X(I). The factors <1>1, <1>2 and <1>3 are obtained 
from the discretization of the state equation (1.5) and, using an Euler 
discretization of the state equation, <1>1 and <1>2 are normal and <1>3 can be 
transformed into a normal distribution by a change of variable (we have 
to consider the same Coo transformation mentioned in Section 1-see 
[4]). 

Let 'fin = ('flO, ... , 'fin) be the observation vector up to step n and un = 
(uo, ... , un) be the sequence of controls up to step n. Consider the process 
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{qn (.)} defined recursively as follows. 

qo (Xo) = Po (Xo) 

qn+1 (Xn+1;17n,Un) = Ix P(Xn+1,Xn,Un,17n)qn (Xn;17n-t,Un- I) dXn 

(2.7) 

for n = 0, ... , N -1, where Po (Xo) is the initial distribution ofthe process 
{Xn }. 

Assuming that the initial values of resource, population and percent­
age of the resource that is being used are known, and that the parameter 
J1. is uniformly distributed over the interval [a, b], the initial distribution 
of the state is: 

1 
po(X) = 8 (x - xo) 8 (y - Yo) 8 (0 - (0) b _ a. (2.8) 

We observe that (2.7) corresponds to a recursive Bayes' formula for 
computing an unnormalized conditional distribution qn+l (Xn+1; 17n, un) 
of X n+1 given the observations 17n and the controls un. 

Proposition 2.3 Any function ~ (Xj-I, Uj-I, 7), of one of the follow­
ing types: 

~'(Xj+1' Uj+1) I]{~,T] (7); or 

~"(Xj+1' Uj+1) I[j~,(j+1)~[(7), 

satisfies the property: 

where the control Uj+1 is adapted to the a-algebra generated by the incre­
ments 'fJn of the observations up to time j and the control 7 is a stopping 
time with respect to this same a-algebra. We recall that zN (T) = cr; . 

For the proof see [1]. 
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Going back to the functional IN (u) in (2.4), recalling (2.3) and ap­
plying Proposition 2.3, we have: 

o{ N-I ( [e-D{{f) _ e-D{(j+1)~) 
IN (u, r) = E ~ ix ~ L (X, Uj) I]j~,T]{r) 

-Q (; ~, X) 1[;1<,(;+1)1<[(7)]1Jj (X; qi-" ";-1) dX 

-Ix Q(T,X)I{T}(7)qN (X;~N-l,,,N-l) dX}. (2.10) 

Now we have a completely observable stochastic control problem where 
the new state is the unnormalized conditional density qn (Xn; TIn-I, 
un-I). The aim is to find the supremum of (2.1O) subject to the state 
equation (2.7). 

3. Further discretizations 

At this point we are not yet able to apply the dynamic program­
ming algorithm to the separated problem because the state is infinite­
dimensional and takes a £ontinuum of possible values. Therefore we 
discretize the state space X. 

3.1 State discretization 
~ 

First we note that the state X can leave the set X so we have to 
define the problem on all of X, but one can show that there exists 
a finite band B such that, with probability close to 1, X never leaves 
XUB. Consequently, for each positive integer m, we consider a partition 
{Bh}~l (with M = 24m) of the state space XU B such that each Bh 
has width going to zero as we refine the partition and, from each of 
these subsets Bh , we select a representative element. The set of these 
representative elements forms the discretized state space. 

Define the process {q~m) (Xn; TIn-I, un-I) } having the same form as 

(2.7), but with P substituted by p(m), that is the analogue of (2.6) 
discretized in the state in such a way that 

• EO lip (Xn+1' X n, Un, TIn) - p(m) (Xn+1' X n, Un, TIn) II ~ Hm 
where 11·11 is a norm in Ll with respect to X n+1 and the expectation 
is with respect to TIn; 

• limm-tooH m = O. 
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With these assumptions we can show the following result: 

Proposition 3.1 For N sufficiently large, for each n = 0,1, ... , N, we 
have 

uniformly in the control u, where KI is a constant, the norm (which is 
a norm in LI) is with respect to X n , the expectation is with respect to 
n-I 'f] . 

Proof We proceed by induction. For n = 0, (3.1) is immediately 
verified. Suppose that (3.1) is true for n and consider n + 1: we obtain 

that EO [llqn+1 (Xn+I;'f]n, un) - q~~~ (Xn+1;'f]n,un)IIJ is bounded above 

by 

EO Ix Ix p(m) (Xn+I' X n, Un, 'f]n) 

Iqn (Xn; 'f]n-I, un-I) - q~m) (Xn; 'f]n-I, un-I) I dXn dXn+1 (3.2) 

+EO Ix Ix Ip (Xn+I' X n, Un,'f]n) - p(m) (Xn+I,Xn, Un, 'f]n)1 

·qn(Xn;'f]n-\un- l ) dXn dXn+1' (3.3) 

By Tonelli's theorem and observing that EO IIp(m) (Xn+I' X n, Un, 'f]n) II ~ 
HI where HI is a constant, (3.2) can be bounded above by 

H EO Ilq (X . 'Tln-I un-I) - q(m) (X . 'Tln-I un-I) II < H H Inn,·" n n, ", _ 2 m, (3.4) 

where we have applied the induction hypothesis. H2 is a constant. 
Applying again Tonelli's theorem, it can be shown (see [4]) that (3.3) 

is bounded above by H3H m, where H3 is a constant. From here and 
(3.4) we obtain the thesis. • 

We denote by IN,m(U,7) the functional corresponding to (2.10) for 

the discretized state, that is obtained substituting the qj by the qJm ) in 
(2.10). 

Proposition 3.1 allows us to state the following: 

Proposition 3.2 For N sufficiently large we have, 
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uniformly in u E V Nand T E {n ~;n = 0,1, ... ,N} and where KI is a 
constant. 

It follows that for Nand m sufficiently large we can approximate J N 

by IN,m and look for an optimal control for the discretized problem. 
Again, by the uniformity of the bound in (u, T), this latter control is 
nearly optimal for the original problem. 

3.2 The discretized problem in alternative form 

Just as qn, also q~m) is infinite-dimensional but, since the function 
p(m) can be expressed as product of a function of the state at time 
n + 1 and a function of the state and observation at time n, then the 
functions qr,;n) can be written in terms of finite-dimensional statistics of 
(1]n-l,un- I). 

In fact, if we define, for h = 1,··· ,M, 

(h) [ 1 X TJ 1 x2 T] 
dl (1]0):= e ~ 0 0-2;2" oN 17rz (Bh) (XO) 17ry (Bh) (Yo) 17rs (Bh) (OO), (3.6) 

where 'Trk (Bh) is the projection of the set Bh on the kth component, 

M 

d(h) (n n-l) ""' d(h') (n-l n-2) ( ) n+l 1] ,u := ~ n 1] ,u i.ph,h' 1]n, Un-l , (3.7) 

h' = 1 
'Trp. (Bh') == 'Trp. (Bh) 

and 

i.ph,h' (1], u) := L e[~XTJ-~x2~] 'lIh,((x, y, O}, u} dxdy dO, 

with A = 'Trx (Bh) X 'Try (Bh) x 'Tro (Bh) and 'lIh ((xn+1' Yn+1, On+d, un) := 
cI>1 (xn+1; X h, un) cI>2 (Yn+1; Xh, un) cI>3 (On+1; X h) and where Xh is the 
representative point of the set Bh, then it follows: 

Proposition 3.3 For each n = 1, ... , N we have 

q~m) (Xn; 1]n-l, un-I) 

M 1 
~ d~h) (1]n-l, un- 2) 'lIh ((xn, Yn, On), Un-I} b _ a 17rI'(Bh) (/Ln) , 
h=l 

(3.8) 
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The objective functional IN,m can be expressed as 

~ ~ (h) ( 1 2) e N - e N 
N-l M [-<5nT.. -<5(n+l) I. 

+ ~ ~dn 'T}n- ,un- 6 l]n~,T] (T)U(Cn) 

· r S(Y)~2 (Yi X h, un-d dy 1 -b 1 dp - l[nT.. (n+l)T..[( T) ilR 1r1J.(Bh) - aN' N 

· Ix Q (n ~, X) W. ((x, y, 9), un-ll b ~ /'.{B')(~) dX 1 
M 

-L d~) ('T}N-l, uN- 2) 

h=l 

· r Q(T, X)I{T} (T)Wh ((x, y, 0), uN-I) -b 1 l1r (Bh)(P) dX} (3.9) ix -a IJ. 

where the expectation is with respect to the sequence {'T}n}. We note 
that, under the measure pO, {'T}n} is a sequence of i.i.d. random variables, 
normally distributed with mean 0 and variance €2 ft. 

The process {d~h) ('T}n-l,un- 2)} is now finite-dimensional, but it still 

takes an infinite number of possible values since 'T}n and Un do. It is then 
necessary to make some further approximations. 

3.3 €-optimality 
The controls take values in a compact space V. We can assume that 

also the observations take values in a compact space S since the expec­
tation in (3.9) is finite, and if we restrict the values of'T}n to a sufficiently 
large compact set S, then, due to the boundedness of the costs, the cor­
responding change in the value of IN,m is, uniformly in u, negligible (see 
[6]). 

Take finite partitions {V df=l and {SZ}~=l of the compact sets V 
and S, respectively, and choose a representative element for each of the 
sets Vk E Vk (k = 1, ... ,K) and Sz E Sz (z = 1, ... ,Z). 

We denote by V fS the set of the control sequences, taking as possible 
values the representative elements Vk and by V fS es the set of the controls 
obtained from the controls of VfS by a step interpolation relative to the 
partition of the time interval into subintervals of the same width %. 
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Let IN,m,Z be the functional obtained from IN,m by substituting the 
observations and the controls with their discretized values. 

From Propositions 2.1, 2.2 and 3.2, and the continuity in u and y of 
the functions in (3.9), we have the following two theorems (see [4]): 

Theorem 3.1 For E > 0 fixed, taking N, m, Z and K sufficiently large, 
we have 

sup sup IN,m,Z (u, r) - sup sup J( u, r) ~ E. 

TE{ n~jn=O, ... ,N} UEVJ5 TE[O,T] uEV 

Theorem 3.2 For each control (u, r) E V N X {n ~; n = 0, ... , N}, for 
N, m, Z, K sufficiently large, we have 

Consequently, we have the following corollary. 

Corollary 3.1 An optimal control for the discretized control problem, 
extended in the sense given above (that is by a step interpolation), is 
E-optimal for the original problem. 

From here it follows immediately that it sufficies to find an optimal 
control for the problem discretized in time and space; and the control 
obtained from the latter by a step interpolation (which is a control in 
vffes) will be nearly optimal for the original continuous time problem. 

3.4 DP algorithm 

Since the functional IN,m,Z has the same form as (3.9) but with 
the observations substituted by their discretized values, and since fur­
thermore, the optimal value of the functional is calculated for controls 
u E V~ with (3.6) and (3.7) as the state equations, we can write the DP 
algorithm to obtain an optimal control for this problem, in the following 
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way: 

J'" (-N-l -N-l) N TJ ,U 

M 

= - Ld~) (77N - 1,uN - 2) 

h=1 

301 

[Ix Q(T, X)I{T} (r)Wh ((x, y, 8), uN-d b ~ a 111"I'(Bh)(J.t) dX] ; 

(3.10) 

J'" (=11-1 =-1&-1) n TJ ,U 

- max { 'W!" [t. d~h) (1)"-1, lJ"-2) u ( en) 

e-c5n~ - e-c5(n+1)~ !. 1 1 
. 6 S(Y)~2 (y; X h, Un-I) dy -b - dJ.t 

R 1I"1'(Bh) - a 

+ ~ pO (~ E S,) 1;.+1 ((1)"-" 8,) ,(lJ"-I, Un)) l; 

- ~1 ~) (1)"-1, lJ"-2) [Ix Q (n ~X ) >Ii h ((x, y, 9), Un-I) 

. b ~ /'.(B,) (I') dX]}, (3.11) 

for n = N - 1, ... , l. 

10 = max h'!" [1- ~-'ii 8 (Yo) u (Co) 

+ ~ pO (~ E S,) J; (8" uo) ] ; -Q (0, Xo) }. (3.12) 

By 77n we denote the discretized observations and by Un the discretized 
controls. We have used the fact that 77n can take only a finite number Z 
of possible values. We observe also that the dependence on the current 
control is in the term U (en). 
Remark 3.1 At each step it is necessary to calculate two rewards: one 
in the case in which we stop at that moment and the other in the case 
in which we decide to go on. We then choose the maximum between the 
two rewards in order to know the optimal stopping time T for each pair 
of observations and controls. 
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The DP algorithm provides us with the sequence of optimal controls 
(that is the optimal strategy) to be applied at times {n ~; n = 0,1, ... , 

N - I} as function of the current statistic (d~) (rr-1, un-2) ,Un-I). 
Extending this sequence in the sense described previously we obtain a 
nearly optimal strategy for the initial problem. 

This DP algorithm can be implemented in order to determine the 
optimal strategy. In [4] one can find a discussion of the numerical aspects 
as well as numerical results. 
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A FLEMING-VIOT PROCESS WITH 
UNBOUNDED SELECTION, II 

S. N. Ethier 
University of Utah 

Tokuzo Shiga 
Tokyo Institute of Technology 

Abstract In a previous paper the authors studied a Fleming-Viot process with 
house-of-cards mutation and an unbounded haploid selection intensity 
function. Results included existence and uniqueness of solutions of an 
appropriate martingale problem, existence, uniqueness, and reversibility 
of stationary distributions, and a weak limit theorem for a corresponding 
sequence of Wright-Fisher models. In the present paper we extend these 
results to the diploid setting. The existence and uniqueness results carry 
over fairly easily, but the limit theorem is more difficult and requires 
new ideas. 

1. Introduction 
In a previous paper (Ethier and Shiga [1]), the authors studied a 

Fleming-Viot process with house-of-cards (or parent-independent) mu­
tation and an unbounded haploid selection intensity function. More 
specifically, the set of possible alleles, known as the type space, is a 
locally compact, separable metric space E, so the state space for the 
process is a subset of P(E), the set of Borel probability measures on E; 
the mutation operator A on B(E), the space of bounded Borel functions 
on E, is given by 

AI = ~O( (j, vo) - I), 
305 
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where () > 0, Vo E P(E), and (j, fL) := IE f dfLi and the selection inten­
sity (or scaled selection coefficient) of allele x E E is h(x), where h is a 
Borel function on E. 

Assuming the existence of a continuous function ho : E t-+ [0, 00) and 
a constant Po E (1, 00] such that 

(ephO , vo) < 00 whenever 0 < P < Po, (1.2) 

existence and uniqueness of solutions of an appropriate martingale prob­
lem were established, and a weak limit theorem for a corresponding se­
quence of Wright-Fisher models was proved (at least when h is continu­
ous). Assuming also that Po > 2, existence, uniqueness, and reversibility 
of stationary distributions were obtained as well. 

In the present paper we extend these results to the diploid setting, in 
which case h is replaced by a symmetric Borel function h on E2 := E x 
E, with h(x, y) representing the selection intensity (or scaled selection 
coefficient) of the genotype {x, y}. We replace the first inequality in 
(1.2) by 

Ih(x,y)1 ::; ho(x) + ho(y), (1.3) 

but the other assumptions in (1.2) remain unchanged. This condition is 
in effect throughout the paper. 

Overbeck et al. [2] introduced a more general type of selection, called 
interactive selection, in which h is allowed to depend on fL. (Diploid 
selection is just the special case hp.(y) := (h(·, y), fL}.) They too allowed 
for unbounded selection intensity functions. It seems unlikely that our 
results can be extended to this level of generality. 

Our previous paper was motivated by the nearly neutral mutation 
model (or normal-selection model) of Tachida [3], which assumed addi­
tive diploid selection, that is, 

h(x, y) = h(x) + h(y), (1.4) 

This is, of course, mathematically equivalent to the haploid case treated 
in [1]. 

The generator of the Fleming-Viot process in question will be denoted 
by Ch. It acts on functions c.p on P(E) of the form 

c.p(fL) = F((h,fL},···, (ik,fL}) = F((f,fL}), (1.5) 
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where k 2:: 1, iI, ... ,fk E C(E) (the space of bounded continuous func­
tions on E), and F E C2 (R k), according to the formula 

k 

(Lhcp)(~) = ! L ((Jdj,~) - (1i,~)(fj,~))FziZj((f,~)) 
i,j=l 

k 

+ L (AIi,~) FZi ((f,~)) 
i=l 

k 

+ L(((h 07r)h,~2) - (1i,~)(h,~2))Fzi((f,~)), (1.6) 
i=l 

where ~2 := ~ X ~ E P(E2 ) and 7r : E2 I--t E is the projection map 
7r(x, y) = x. This suffices if h is bounded, but if not, we need to restrict 
the state space to a suitable subset of P(E). We use the same state 
space as in [1], namely the set of Borel probability measures ~ on E that 
satisfy the condition imposed on lIo in (1.2). 

We therefore define 

PO(E) = {~E P(E) : (ephO,~) < 00 for each p E (0, po)} (1.7) 

and, for ~,lI E PO(E), 

where d is a metric on P(E) that induces the topology of weak con­
vergence. Then (PO(E),dO) is a complete separable metric space and 
dO(~n,~) -t 0 if and only if ~n =} ~ and sUPn(epho,~n) < 00 for each 
P E (0, po). 

Section 2 establishes existence and uniqueness of solutions of the ap­
propriate martingale problem for Lh. Section 4 establishes existence, 
uniqueness, and reversibility of the stationary distribution of the result­
ing Fleming-Viot process. The proofs of these results are similar to those 
in the haploid case, so we point out only the necessary changes. Sec­
tion 3 gives a precise description of the measure-valued Wright-Fisher 
model considered here and proves, assuming continuity of h, a weak con­
vergence result that justifies the diffusion approximation of that model 
by the Fleming-Viot process with generator Lh. The proof is more dif­
ficult than that in the haploid case, so most of the present paper will be 
concerned with this result. 
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2. Characterization of the process 

Let 0 := C(1'(E),d) [0, 00) have the topology of uniform convergence on 
compact sets, let F be the Borel a-field, let {JLt, t ~ O} be the canonical 
coordinate process, and let {Ft } be the corresponding filtration. 

If hI, h2 E B{E2), define iJ!{hI, h2) E B{E3) and ih2 E B{E) by 

The analogue of Lemma 2.1 of [1] is as follows. 

Lemma 2.1 Let hI, h2 E B{E2). If P E P{O) is a solution of the 
martingale problem for ChI' then 

Rt := exp { !(h2, JL;) - !(h2, JL5) 

- lot [!((iJ!{h2,h2)'JL~) - (h2,JL~)2) 
+!((ih2,JLs) - (h2,JL~)) + !O{(h2,JLs x lIO) - (h2,JL~)) 

+(iJ!{hI,h2),JL~) - (hI'JL~)(h2'JL~)] dS} (2.2) 

is a mean-one {Ft}-martingale on (O, F, P). Furthermore, the measure 
Q E P{O) defined by 

dQ = Rt dP on Ft , t ~ 0, (2.3) 

is a solution of the martingale problem for ChI +hz. 

Informally, the integrand in (2.2) is simply e-i(hZ,/LZ) ChI ei(hz,/LZ) at 

JL = JLs· Strictly speaking, ei(hZ,/LZ) does not belong to the domain of 
ChI because it is not of the form (1.5), but the domain can be extended 
to include such functions. Of course, JL3 := JL x JL x JL in (2.2). 

We will need the following simple observation. 

Lemma 2.2 For each 9 E B{E2) and JL E P{E), we have (iJ!{g, g), JL3)­
(g,JL2)2 ~ 0, where iJ!{g, g) is as in (2.1). 
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Proof Let X, Y, Z be i.i.d. Jt. Then, letting g = (g, Jt2), 

Cov(g(X, Y), g(X, Z)) 

Ie E[(g(x, Y) - g)(g(x, Z) - g)] Jt(dx) 

We now define 

Ie E[g(x, Y) - g]E[g(x, Z) - g] Jt(dx) 

Ie (E[g(x, Y) - g])2 Jt(dx) 

> o. (2.4) 

• 

and let n° have the topology of uniform convergence on compact sets. 
The domain of Lh is the space offunctions <p on PO(E) of the form (1.5). 

Theorem 2.1 For each Jt E PO(E), the n° martingale problem for Lh 
starting at Jt has one and only one solution. 

Proof The proof is similar to that of Theorem 2.5 of [1]. The only 
changes necessary are to equations (2.11)-(2.13) and (2.19)-(2.22) in 
the proofs of Lemmas 2.3 and 2.4 of [1]. Lemma 2.2 above disposes of 
the only awkward term, and otherwise the argument is essentially as 
before. • 

3. Diffusion approximation of the Wright-Fisher 
model 

We begin by formulating a Wright-Fisher model with house-of-cards 
mutation and diploid selection. It depends on several parameters, some 
of which have already been introduced: 

• E (a locally compact, separable metric space) is the set of possible 
alleles, and is known as the type space. 

• M (a positive integer) is twice the diploid population size. (Most 
authors use 2N here, but we prefer to absorb the ubiquitous factor 
of 2. In fact, M need not be even.) 

• u (in [0,1]) is the mutation rate (i.e., probability) per gene per 
generation. 
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• Vo (in P(E)) is the distribution of the type of a new mutant; this 
is the house-of-cards assumption. 

• w(x, y) (a positive symmetric Borel function of (x, y) E E2) is the 
fitness of genotype {x, y}. 

The Wright-Fisher model is a Markov chain modelling the evolution 
of the population's composition. The state space for the process is 

PM(E) ,~ {! t.x; E P(E) , (Xl>'" ,XM) E Ex··· x E} (3.1) 
~=1 

with the topology of weak convergence, where 8x E P(E) is the unit 
mass at x. Time is discrete and measured in generations. The transition 
mechanism is specified by 

(3.2) 

where 

YI, .•. , YM are i.i.d. J-L** [random sampling], (3.3) 

J-L** = (1 - u)J-L* + UVo [house-of-cards mutation], (3.4) 

J-L*(r) = Ir (w(·, y), J-L) J-L(dy) / (w, J-L2) [diploid selection]. (3.5) 

This suffices to describe the Wright-Fisher model in terms of the pa­
rameters listed above. 

However, since we are interested in a diffusion approximation, we 
further assume that 

() 

u= 2M' 
{ h(X,y}} 

w(x,y} = exp M ' (3.6) 

where () is a positive constant and h is as in (1.3). 
The aim here is to prove, assuming the continuity of h, that con­

vergence in PO(E) of the initial distributions implies convergence in 
distribution in n° of the sequence of rescaled and linearly interpolated 
Wright-Fisher models to a Fleming-Viot process with generator L,h. We 
postpone a careful statement of the result to the end of the section. 

The strategy of the proof is as in [1]. Lemmas 3.4 and 3.5 of [1] must 
be substantially modified however. For the two corresponding lemmas 
we require, as in [1], the infinitely-many-alleles assumption that every 
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mutant is of a type that has not previously appeared. Mathematically, 
this amounts to 

lIO{{X}} = 0, xEE. {3.7} 

Let BM := PM{E}z+ have the product topology, let F be the Borel u­
field, let {/-tn, n = 0,1, ... } be the canonical coordinate process, and let 
{Fn} be the corresponding filtration. For each /-t E PM {E}, we denote by 

p~M) and Q~M) in P{BM} the distributions of the neutral and selective 
Wright-Fisher models, respectively, starting at /-t. 

Lemma 3.1 Assume {3.7}. Then, for each /-t E PM{E}, 

dQ(M) = R(M) dP(M) on:F, /-I n /-I n, n ~O, {3.8} 

where 

R~M) = exp{t { lsuPp/-Ik_l{y}Mlog(eh(o,y)/M,/-tk_1)/-tk{dy} 
k=l JE 

- t(lsUPP l-lk-l ,/-tk}Mlog (eh/M,/-tL1)}' {3.9} 
k=l 

Proof The proof is as in that of Lemma 3.4 of [1], except that, if 

/-t1 = M-1 ~f!:1 6yj , 

TIl <i<M:YiEsupp /-10 (w{·, Yi), /-to} 
(w, /-t~) l{l~i~M:YiESUPP /-Io}1 

exp{!E l suPP l-lo (y}M log(w(·, y), /-to} /-t1 (dy}} 
(w, /-t~)M(lsUPpI'O'l-Il) 

- exp {L lsuPp/-Io{y}Mlog(eh(o,y)/M,/-to} /-t1{dy} 

- (lsuPp/-IO,/-t1}MIOg(eh/M,/-t5}}' {3.1O} 

• 
We define the map q)M : BM ~ n° by 

q)M{/-to, /-t1,·· .}t = {l-{Mt-[Mt]))/-t[Mt]+{Mt-[Mt])/-t[Mt]+1' {3.11} 

This transformation maps a discrete-time process to a continuous-time 
one with continuous piecewise-linear sample paths, re-scaling time by a 
factor of M. 
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We next show that the Girsanov-type formula for the Wright-Fisher 
model converges in some sense to the one for the Fleming-Viot process. 
Define R~M) on n° for all t ~ 0 so as to satisfy 

A(M) (M) ~ 
R t 0 «PM = R[Mt] on ::::'M, t ~ 0, (3.12) 

where RJ"M) is as in Lemma 3.1. Specifically, we take 

[Mt] 

exp {I: { l SUPP J.I(k_l)/M (y)Mlog (eh(.,Y)/M, lL(k-l)/M) ILk/M(dy) 
k=lJE 

[Mt] 

- I:(lsuPPJ.I(k_l)/M'lLk/M}MIOg(eh/M'IL~k_l)/M)}' (3.13) 
k=l 

We also define Rt on n° for all t ~ 0 as in Lemma 2.1 with hI = 0 and 
h2 = hi specifically, 

Rt := exp {~(h, ILn - ~(h, 1L5) 

- lot a{(\lI{h,h),IL~} - (h,IL~}2) + ~((ih,lLs) - (h,IL~}) 
+ ~O{ (h, ILs x vo) - (h, IL~})) ds}. (3.14) 

Lemma 3.2 Let {IL(M)} C PM{E) c PO(E) and IL E PO(E) be such 

that dO(IL(M),IL) --+ O. For simplicity of notation, denote p~t1J), which is 

defined as in the paragraph preceding Lemma 3.1, by just p(M). Assume 
that h is continuous and (3.7) holds, and let T > 0 be arbitrary. Then 
there exist Borel functions FM, G M : n° t-+ (0,00), a continuous function 
F : n° t-+ (0, 00 ), and a positive constant G such that 

RT=FG; (3.15) 

in addition, FM --+ F uniformly on compact subsets of n°, and G M --+ G 
in p(M)«p"il-probability. 
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Proof From (3.13) we get 

[MTJ 

log 14M) = L { M log (eh(·,Y)/M, J-l(k-1)/M) J-lk/M(dy) 
k=l JE 

First 

Next 

[MTJ 

- L ( l(suPPJL(k_l)/M)c(y) 
k=l JE 

M log (eh(·,Y)/M, J-l(k-1)/M) J-lk/M(dy) 

[MTJ 

- L Mlog (eh/M , J-l[k-1)/M) 
k=l 
[MTJ 

+ L (l(supp JL(k-l)/M)C, J-lk/M}M log (eh/M, J-l[k-1)/M) 
k=l 

=: 81 - 82 - 83 + 84. (3.16) 

[MT] 

84 L {M(I(SUPPJL(k_l)/M)C,J-lk/M} - ~o} 
k=l 

[MT] 

X log (eh/M, J-l[k-1)/M) + ~O L log (eh/M, J-l[k-1)/M) 
k=l 

-. S~ + S~. (3.17) 

By the argument using (3.43)-(3.46) of [1], 8~ goes to 0 in 
p(M) <t>A!-probability. By a slight modification of (3.37) of [1], 8~ 

converges to ~O J[ (h, J-l~) ds uniformly on compact sets (see the 
discussion following (3.39) of [1]). 

[MT] 

82 ~ {Ie l(suPPJL(k_l)/M)c(y) 

xM log(eh(o,y)/M, J-l(k-1)/M} J-lk/M(dy) 

- ~O Ie log (eh(o,y)/M, J-l(k-1)/M) 110 (dy) } 

[MT] 

+~O L (log(eh(o,y)/M,J-l(k_1)/M) 1I0(dy) 
k=l JE 

_. 8~ + S~. (3.18) 
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We can argue as in (3.41) of [1] that 8~ is equal in p(M)cp-;j_ 
distribution to 

1 [MT) (Xk 
M {; t;MIOg(eh(-,~kd/M'JL(k_1)/M) 

-~8M l log (eh(o,y)/M, JL(k-1)/M) Vo(dY)), (3.19) 

where Xk is the number of new mutants in generation k, and ~kl is 
the type of the lth new mutant in generation k. Note that Xk and 
(~k,) are independent binomial(M,8j(2M)) and v~-distributed, 
respectively, and independent of JL(k-1)/M (but not of JLk/M)' It 
can be shown, analogously to (3.42) of [1], that 8~ goes to 0 in 
probability, while of course 8~ goes to ~8 JOT (h, JLs x vo) ds uni­
formly on compact sets. 

Finally 

[MT] 

81 -83 {; {l Mlog(eh(o,y)/M,JL(k_1)/M)JLk/M(dy) 

-(h, JL(k-1)/M x JLk/M) 

- (Mlog(eh/M,JL(k_1)/M) - (h,JL(k-1)/M)) } 

[MT] 

+ L (h,JL(k-1)/M x JLk/M) - (h,JLfk-1)/M)) 
k=l 

-. 8~3 + 8~3' (3.20) 

Using essentially [1, equation (3.37)], we have 

1 [MT] 

8~3 = M L {~ ( ((h2(',y),JL(k_1)/M) - (h(',Y),JL(k_1)/M)2) 
k=l JE 

xJLk/M(dy) - ~ ((h2, JL~k-1)/M) - (h, JL~k-1)/M )2) } 
+O(M-1) 

= -~ loT ((W(h, h), JL~) - (h, JL~)2) ds + 0(1), (3.21) 

and the convergence is uniform on compact sets. 
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It remains to consider Sf3. Note that, in the case of additive diploid 
selection (specifically, (1.4)), Sf3 reduces to the telescoping sum 

[MT] 

L ((h,J-Lk/M) - (h,J-L(k-l)/M)) = (h,J-L[MT]/M) - (h,J-Lo). (3.22) 
k=l 

Here we have to work harder. By the symmetry of h and some algebra, 

SIt • 
13 .= 

[MT] 

L ((h, J-L(k-l)/M ~ J-Lk/M) - (h, J-L~k-l)/M) ) 
k=l 
[MT] 

~ (!(h,I'(.-l)/M X I'./M) 

+ !(h,J-Lk/M X J-L(k-l)/M) - (h'J-L~k-l)/M)) 
[MT] 

- ! L ((h'J-L~/M) - (h,J-L~k-l)/M)) 
k=l 

[MT] 

-! L ((h'J-L~/M) - (h,J-Lk/M X J-L(k-l)/M) 
k=l 

- (h,J-L(k-l)/M X J-Lk/M) + (h'J-L~k-l)/M)) 
[MT] 

- ! ( (h, J-LfMT]/M) - (h, J-L5)) - ! L (h, (J-Lk/M - J-L(k-l)/M )2) 
k=l 

(3.23) 

The last sum, E2 , is the integral of h with respect to the quadratic 
variation of the Markov chain. Let us write 

[MT] 

E2 = L {(h, (J-Lk/M - J-L(k-l)/M )2) 
k=l 

- M-1 ((Th, J-L(k-l)/M) - (h, J-L~k-l)/M)) } 

1 [MT] 

+ M L ((Th,J-L(k-l)/M) - (h'J-L~k-l)/M)) 
k=l 

-. E; + E~. (3.24) 

Of course, E~ goes to JoT ( (T h, J-Ls) - (h, J-L;) ) ds uniformly on compact 
sets. 
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We claim that ~~ goes to 0 in L2(p(M)~;]), hence in p(M)~;]_ 
probability. Given k ~ 1, let YI, ... , YM be, conditionally on ILk-I, i.i.d. 
ILk-1 := (1 - U)ILk-1 + UlIo· Then 

EP(M) [(h, (ILk - ILk_I)2)] 

= EP(M) [(h,ILO - (h,ILk X ILk-I) - (h,ILk-1 X ILk) + (h,ILLI)] 

= EP(M) [E[~I: h(Y;, Yj) - ! I: (h(Y;, -),1'.-1) 
z,]=1 z=1 

-! t.(h(o, Yj),I'.-I) + (h,I'L)]] 

= EP(M) [M-I(Th,ILk_l) + (1- M-I)(h, (ILk_d2) 

- (h,ILk-1 x ILk-I) - (h,ILk-1 x ILk-I) + (h,ILLI)] 

= M-IEP(M) [(Th, ILk-I) - (h, (ILk_d2)] 

+ EP(M) [(h, (ILk-1 - ILk_d2)] 

= M-IEP(M) [(Th,ILk-I) - (h,ILLI)] + 0 (M-2) , (3.25) 

and this holds uniformly in k ~ 1. Consequently, 

EP(M)cI>;\l [(~~)2] 

[MT) 

= EP(M) [ ( {; {(h, (ILk - ILk_I)2) 

_M-I ((Th,ILk-I) _ (h,ILLI))}) 2] 

[MT) 

= t; EP(M) [{ (h, (1" -Pk-d') 

_M- I ((Th, ILk-I) - (h, ILLl)) } 2] + 0 (M-2) 

[MT) 

< 2:E EP(M) [(h, (ILk - ILk_I)2)2] + 0 (M-I) . (3.26) 
k=l 

It will therefore suffice to show that 

EP(M) [(h, (ILk - ILk_I)2)2] = 0 (M-2) , (3.27) 
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uniformly in k ~ 1. 
Let Y1, ... , YM be, conditionally on J1.k-l, i.i.d. J1.k-l := (l-U)J1.k-l + 

UVo, and let 

Hij := h(Yi, lj) - (h(Yi, ·),J1.k-l) - (h(·, lj),J1.k-l) + (h,J1.Ll). (3.28) 

Then 

EP(M) [(h, (J1.k - J1.k_d2)2] 

EP(M) H ( ~2 i~' Hij r] ] 
< 2EP

(M) H (~2 ~~ ),]]+2EP
(M) H (~2 ~HU r]] 

(3.29) 

Now al = O(M-2 ), and we claim that a2 = O(M-2 ) as well. 
To understand the latter, consider first the case in which U = o. 

(Actually, our assumptions rule out this possibility, so this is merely to 
clarify the argument.) Notice that 

EP(M) [E [H?2]] 

- EP(M) [E [{ h(Yb Y2) - (h(Yb .), J1.k-l} 

-(h(·, Y2 ), J1.k-l} + (h, J1.Ll)}]] 
- EP(M) [(h, J1.Ll) - (h, J1.Ll) - (h, J1.Ll) + (h, J1.Ll)] 
= 0 (3.30) 
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and 

EP(M) [E[HP2 HP3ll 

EP(M) [L E [{ h(y., Y2) - (h(Yl, '),1'.-1) 

- (h(·, Y2), 11k-I) + (h, I1LI) } 

{h(YI' Y3 ) - (h(YI, ·),l1k-l) 

- (h(-, Y3 ), 1'.-1) + (h, I'L) } ]1'.-1 (dYd 1 

EP(M) [L E[ {h(Yl, Y2) - (h(y., -),1'.-1) 

- (h(·,Y2),l1k-l) + (h,I1LI)}] 

E [{ h(YI' Y3 ) - (h(YI, .), 11k-I) 

- (h(·, Y3), I'k-l) + (h, I'L) } ]1'.-1 (dYl) 1 
0, (3.31) 

since both of the inner expectations in the last integral are O. (Note 
the similarity between this argument and the proof of Lemma 2.2.) In 
words, HP2 and HP3' although clearly not independent, are uncorrelated, 
mean 0 random variables. This fact allows us to conclude that 

EP(M) H ~4 ~(H~J']] 
o (M-2) , (3.32) 

at least when u = O. Now it remains to show that the same approach 
works when u = fJ/{2M). 
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In general, (3.30)-(3.32) become 

EP(M) [E [Hi2]] = EP(M) [(h, (J-Lk_l)2) - (h, J-Lk-l x J-Lk-l) 

- (h, J-Lk-l x J-Lk-l) + (h, J-LLl)] 
= 0 (M-l) , (3.33) 

EP(M) [E [Hi2H13JJ 

= EP(M) [L E [{ h(Yl, Y,) - (h(Yl,·), I'k-l) 

- (h(·, Y2),J-Lk-l) + (h,J-LLl)} 

{h(Yl' Y3 ) - (h(Yl' ·),J-Lk-l) 

-(h(·, Y'),l'k-l) + (h,1'1-1) } ]l'k_l(dY1)] 

= EP(M) [L E [{ h(Yl, Y,) - (h(Yl,·), I'k-1) 

-(h(·, Y2 ),J-Lk-l) + (h,J-LLl)}] 

E [{ h(Yl, Y3 ) - (h(Yl' .), J-Lk-l) 

-(h(·, Y,),I'k-l) + (h,I'1-1) } ] 1"-1 (dY')] 

= EP(M) [L { (h(Yb ·),1'.-1) - (h(y".), 1'>-1) 

-(h,l'k-l x I'k-l) + (h,I'L) }' I'k-l(dY,)] 

= 0 (M-2) , (3.34) 
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and 

u, .- EP(M) H (~ ~Hij r]] 
EP(M) [E [ ~. ~(Hll)']] + 0 (M-') 

o (M-2) , (3.35) 

as required. 
We have verified the statement of the lemma with 

FM .- exp{S~3 + ~El - ~E~ - S~ + S~}, 
GM .- exp{-~E;-S~+Sa, (3.36) 

F:= RT, and G:= 1. This completes the proof. • 
For each J.L E PM{E), let Q~M) E P{BM) denote the distribution oft he 

selective Wright-Fisher model starting at J.L, and for each J.L E PO{E), 
let Qp. E p{nO) denote the distribution of the selective Fleming-Viot 
process starting at J.L. 

We can now state the main result of this section. 

Theorem 3.1 Assume that h is continuous. Let {J.L(M)} C PM{E) c 
PO{E) and J.L E PO{E) satisfy dO{J.L(M),J.L} -+ O. For simplicity of nota-
tion, denote Q(~) by just Q(M). Then Q(M)q,"il * Qp. on n°. p. 

Proof The proof is similar to that of Theorem 3.7 of [1], except that 
we use Lemmas 3.1 and 3.2 above in place of Lemmas 3.4 and 3.5 of [1] . 

4. Characterization of the stationary 
distribution 

• 

If h is bounded, then it is known that the Fleming-Viot process 
in P{E} with generator £h has a unique stationary distribution IIh E 
P{P{E)), is strongly ergodic, and is reversible. In fact, 

{4.1} 
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where 6,6, ... are i.i.d. Vo and (PI, P2, ... ) is Poisson-Dirichlet with 
parameter () and independent of 6,6, .... Furthermore, 

For h satisfying (1.3), the finiteness of the normalizing constant in 
(4.2) is precisely the condition needed in the work of Overbeck et al. [2]. 
Notice that 

(4.3) 

A sufficient condition for this to be finite is (e2hO , vo) < 00. 
Here we impose a slightly stronger condition: E, vo, and h are ar­

bitrary, subject to the condition that there exist a continuous function 
ho : E f-7 [0,00) and a constant Po E {2,00] such that (1.3) holds and 
(ePho , vo) < 00 whenever 0 < p < Po. In other words, we now require 
Po> 2. 

Theorem 4.1 Under the above conditions, Ilh' defined by (4.2), is a 
reversible stationary distribution for the Fleming- Viot process with gen­
erator c'h, and it is the unique stationary distribution for this process. 

Proof Define hI and h2 on (~ x E)2 not by (4.8) of [1] but by 

hi{{xI,x2), (YI,Y2)) = h{Xi,Yi). (4.4) 

With additional minor changes to equations (4.5), (4.6), and (4.13) of [1], 
the proof is otherwise the same as that of Theorem 4.2 of [1]. • 
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1. Introduction 

Connections between diffusion processes and linear PDE involving 
second order uniformly elliptic operators L are known for a long time. 
Superdiffusions are related, in a similar way, to equations involving semi­
linear differential operators Lu - 'ljJ(u). 

Positive solutions to a linear equation Lu = 0 in a bounded smooth do­
main D C ]Rd, that is positive L-harmonic functions, can be represented 
as a Poisson integral. Corresponding formula establishes 1-1 correspon­
dence between positive L-harmonic functions and finite measures on the 
boundary aD. The measure 1/ that corresponds to a function h is, in 
some sense, a weak boundary value of the function h. It is natural to call 
1/ a trace of the function h on the boundary. If the measure 1/ has a den­
sity with respect to the surface measure on aD, then the corresponding 
function h admits a probabilistic representation in terms of L-diffusion. 
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Analogous theory of a nonlinear equation Lu = ,¢(u) was developed 
independently by analysts, including Keller, Osserman, Loewner and 
Nirenberg, Brezis, Marcus and Veron, Baras and Pierre, and by prob­
abilists, including Watanabe, Dawson, Perkins, Le Gall, Dynkin and 
others. However, the boundary behavior of solutions of a nonlinear 
equation can be more complicate. In particular, a solution may blow 
up on a substantial part of a boundary, even on the whole boundary. 
In 1993, Le Gall [12] found a characterization of all positive solutions 
of equation flu = u 2 in the unit disk D by using the Brownian snake 
- a path-valued process introduced by him in an earlier work. To de­
scribe a boundary behavior of a solution of a nonlinear equation, it is 
necessary to split the boundary of the domain into two parts: a closed 
subset r which is a set of "significant" explosions, and its complement 
where the weak boundary value exists as a Radon measure. Le Gall 
established a 1-1 correspondence between the solutions and pairs (r, v) 
such that r is a closed subset of aD and v is a Radon measure on aD\r. 
Moreover, every solution admits a probabilistic representation in terms 
of the Brownian snake. In [15), the results were extended to all smooth 
domains in ]R2. The pair (r, v) that corresponds to a solution u is called 
the trace of u. 

Numerous attempts to find a proper generalization of this fundamen­
tal result (Marcus and Veron, Dynkin and Kuznetsov) brought a partial 
success. Namely, similar result is valid for the equation flu = uQ in a 
ball if the dimension d of the space satisfies the condition d < ~~~ (so 
called sub critical case). The analytical part of this statement was done 
by Marcus and Veron [16], [17] and the probabilistic representation was 
established by Dynkin and Kuznetsov [8] (the probabilistic part is valid 
in a more general setting). If d 2: ~~~ (the supercritical case), the situ­
ation becomes more delicate because of a new phenomena - polar sets 
on the boundary. For this reason, not every finite measure v may serve 
as a boundary value (Gmira and Veron [9]). Moreover, the example by 
Le Gall [14] shows that the definition of the trace based on the Euclidean 
topology is not sufficient to describe all solutions (there exist different 
solutions with the same traces). 

We present here a new approach to the problem. A breakthrough 
was made possible after we have replaced the Euclidean topology on 
the boundary by another one. Most of the results presented here were 
obtained in joint publications by Dynkin and Kuznetsov. 
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2. Diffusions and linear equations 
Let L be a second order linear uniformly elliptic operator with smooth 

coefficients and no zero order term. Denote by (et, I1x) the corresponding 
L-diffusion in Rd. Let D C Rd be a bounded smooth domain and let 
4J 2:: 0 be a continuous function on aD. The function 

is a unique solution of the boundary value problem 

Lh = 0 in D, 

h = 4J on aD. 

Here T stands for the first exit time from D. 
At the same time, 

h{x) = ( k(x,y)4J(y)a(dy) laD 

(2.1) 

(2.2) 

(2.3) 

where k(x, y) is the Poisson kernel for L in D and a(dy) is the surface 
measure. 

The analytic representation (2.3) can be extended to an arbitrary 
positive L-harmonic function h. Namely, to every positive L-harmonic 
function there corresponds a finite measure v on the boundary such that 

h(x) = ( k(x,y)v(dy) laD (2.4) 

The equation (2.4) establishes a 1-1 correspondence between finite mea­
sures on the boundary and positive L-harmonic functions. However, a 
probabilistic formula (2.1) is possible only if the measure v is absolutely 
continuous with respect to the surface measure. 

3. Superdiffusion and the nonlinear equation 
An (L, a)-superdiffusion is a measure-valued Markov processes 

(XD' PJ.I) related to the nonlinear operator Lu - uo, where a E (1,2] 
is a parameter. Here a family of measures X D is indexed by open sub­
sets of Rd and a measure X D characterizes the accumulation of mass on 
aD if all the particles are instantly frozen at the first exit from D. The 
measure PJ.I stands for the corresponding probability distribution if the 
movement starts from initial mass distribution J.L. As usual, we write 
Px if the corresponding J.L is a unit mass concentrated at x. A detailed 
discussion of the concept of (L, a)-superdiffusion could be found in a pa­
per of Dynkin in this volume. A principal relation between the process 
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(XD, PIL ) and the nonlinear operator Lu - UCl can be stated as follows. 
If ¢(x) is a positive continuous function on the boundary of a bounded 
smooth domain, then the function 

u(x) = -logPxexp(-(¢,XD )) 

is a unique solution of the boundary value problem 

Lu = UCl in D, 

u = ¢ on aD. 

(3.1) 

(3.2) 

(Note that an analytic substitute for (3.1) is not an explicit formula, but 
an integral equation.) 

4. Range of superdiffusion and polar sets on the 
boundary 

The range 'R-D of a superdiffusion in D is a minimal closed set which 
supports all measures XD" D' c D. A compact set reaD is said to 
be polar for (L, a)-superdiffusion if PIL('R-D n r = 0) = 1 for all J-t such 
that supp J-t is disjoint from aD. 

Characterization of polar sets was given by Le Gall [13] in case a = 2 
and by Dynkin and Kuznetsov [4] for general 1 < a ~ 2. It was shown 
that the class of polar sets coincides with the class of removable boundary 
singularities for the equation (5.1), and also with the class of sets of 
capacity o. In particular, we have 

Theorem 4.1 ( Dynkin and Kuznetsov [4]) A closed set reaD 
is polar if and only if 

Iv (Ir K(x, Y)V(dY)) Cl p(x) dx = 00 (4.1) 

for every non-trivial measure v concentrated on r. Here p(x) stands for 
the distance to the boundary aD. 

5. Moderate solutions 

Our goal is to describe all solutions to the equation 

(5.1) 

in a bounded smooth domain D. The equation (5.1) was studied by 
analysts for decades. Keller [10] and Osserman [19] proved that there 
exists no non-trivial entire solution to (5.1) in the whole space. On 
the other hand, if D is a bounded smooth domain, then there exists a 
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maximal solution to (5.1) which dominates all other solutions and blows 
up at the whole boundary. Dynkin [1, 2] proved that every solution 
to (5.1) can be uniquely represented as 

u(x) = -log Pxe-zu (5.2) 

where Zu = lim(u, XDn} is the so called stochastic boundary value of u. 
(Here Dn is an arbitrary increasing sequence of smooth domains such 
that Dn cD and UDn = D.) 

We begin with a subclass of solutions of (5.1) which we call moder­
ate solutions. Namely, a solution u is moderate if it is dominated by 
an L-harmonic function. For every moderate solution u, there exists a 
minimal L-harmonic function h such that h ~ u. We call it the minimal 
harmonic majorant of u. The solution u can be recovered from its min­
imal harmonic majorant as a maximal solution dominated by h. Let v 
be the measure corresponding to h by the formula (2.1). We call v the 
trace of the moderate solution u = U V ' 

Theorem 5.1 ([13, 3, 5, 18]) A measure v is the trace of a moderate 
solution if and only if v(r) = 0 for all polar sets reaD. 

Let now v be a a-finite measure on the boundary such that v(r) = 0 
for all polar sets and let Vn be an increasing sequence of finite measures 
with the limit v. Formula U v = limuvn defines a solution of (5.1). It 
could be shown that U v does not depend on the choice of approximating 
sequence Vn (however, the same solution may correspond to different v). 

We denote by Zv the stochastic boundary value of U V ' 

6. Sub critical case 

If d < ~~~, then there is no non-trivial polar sets on the boundary. 
The complete characterization of all solutions to the equation (5.1) was 
first obtained by Le Gall [12, 15] in case of a = 2, d = 2 and by Marcus 
and Veron [16, 17] for general a > 1 (and D being a ball in r). By 
combining their results with those in [8], we get 

Theorem 6.1 ([15, 17, 8]) Suppose D is a ball in IRd • Formula 

(6.1) 

establishes a 1-1 correspondence between the class of all solutions to (5.1) 
and all pairs (r, v) such that r is a closed subset of aD and v is a Radon 
measure on aD \ r. The pair (r, v) is called the trace of u. 

Remark 6.1 In case a = 2, d = 2, Le Gall proved that the exit mea­
sure XD has a.s. continuous density with respect to the surface measure 
a(dx), and that Zv = (diD, v) a.s. 
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7. Supercritical case 

The situation in the supercritical case is more complicated. Not every 
measure 11 may serve as a component of a trace (cf. Theorem 5.1). Also, 
if r l and r 2 differ by a polar set, then the events {r l n RD = 0} and 
{r2 nRD = 0} coincide a.s. and the solutions defined by (6.1) are equal 
to each other. These difficulties were taken into account in the definition 
of a trace given independently by Marcus, Veron [16], [18] and by Dynkin 
and Kuznetsov [8, 7]. All possible traces have been characterized. It was 
shown that the formula (6.1) gives a maximal solution with the given 
trace. However, an example given by Le Gall [14] shows that it is not 
possible to represent all the solutions of (5.1) in the form (6.1) if we 
restrict ourselves by closed sets r. In particular, different solutions may 
have the same trace. 

8. u-moderate solutions, singular points and fine 
topology 

A new approach to the problem was suggested in [11, 6]. A solution 
U is called a-moderate if there exists an increasing sequence of moderate 
solutions Un such that Un t u. For every Borel subset BeaD, we define 
UB as a supremum of all moderate solutions U v with 11 concentrated on 
B. It could be shown (see [11, 6]) that UB is a a-moderate solution 
of (5.1). 

Let y E aD. Denote by (et, II~) an L-diffusion conditioned to exit 
from D at y. Let ( be the corresponding exit time. We call the point y 

a singular point for a solution U (cf. [2]) if 

IIi-a .s. (8.1) 

for some xED. We denote by SG(u) the set of all singular points of 
the solution u. 

We define finely closed sets as sets reaD with the property 
SG(ur) c r (cf. [11, 6]). 

Finally, for every pair of solutions u, v, we define u EB v as a maximal 
solution dominated by u + v (it could be shown that ZutBv = Zu + Zv 
a.s.). 

9. Fine trace 

Let u be a solution of (5.1). Denote r = SG{u). Next, consider the 
set of all moderate solutions u/.L such that u/.L :::; u and p{r) = O. Put 
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v = sup{JL : up. ~ u, JL(r) = O}. We call the pair (r, v) the fine trace of 
u. 

We prove: 

Theorem 9.1 ([11, 6]) The fine trace of every solution u has the fol­
lowing properties: 

1. r is a Borel finely closed set. 

2. v is a a-finite measure not charging polar sets and such that v(r) = 
o and SG(uv) Cr. 

Moreover, 
ur,v = ur EB Uv (9.1) 

is the maximal a-moderate solution dominated by u. 

We say that pairs (r, v) and (r', v') are equivalent and we write 
(r, v) f"V (r', v') if the symmetric difference between r and r' is polar 
and v = v'. Clearly, ur = Ur' and ur,v = ur/,v' if (r, v) f"V (r', v'). 

Theorem 9.2 ([11, 6]) Let (r, v) satisfy Conditions 1-2. Then the 
fine trace of Ur,v is equivalent to (r, v). Moreover, ur,v is the minimal 
solution with this property and the only one which is a-moderate. 

The existence of a non-a-moderate solution remains an open ques­
tion. If there is no such solutions, then Theorems 9.1 and 9.2 provide 
a complete answer to the problem. If such solutions exist, then we may 
have to refine the definition of the trace. 
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Chapter 19 

ON SOLUTIONS OF BACKWARD 
STOCHASTIC DIFFERENTIAL 
EQUATIONS WITH JUMPS AND 
STOCHASTIC CONTROL * 

Situ Rang 
Department of Mathematics, 

Zhongshan University, 

Guangzhou 510275, China 

Abstract We relax conditions on coefficients given in [7] for the existence of solu­
tions to backward stochastic differential equations (BSDE) with jumps. 
Counter examples are given to show that such conditions can not be 
weakened further in some sense. The existence of a solution for some 
continuous BSDE with coefficients b(t, y, q) having a quadratic growth 
in q, having a greater than linear growth in y, and are unbounded in y 
belonging to a finite interval, is also obtained. Then we obtain an ex­
istence and uniqueness result for the Sobolev solution to some integra­
differential equation (IDE) under weaker conditions. Some Markov 
properties for solutions to BSDEs associated with some forward SDEs 
are also discussed and a Feynman-Kac formula is also obtained. Finally, 
we obtain probably the first results on the existence of non-Lipschitzian 
optimal controls for some special stochastic control problems with re­
spect to such BSDE systems with jumps, where some optimal control 
problem is also explained in the financial market. 

1. Existence of solutions to BSDE with jumps 
under weaker conditions 

Consider the following BSDE with jumps in Rd : 
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where wi = (wl, ... , Wfl), 0 ~ t, is a d1-dimensional standard Brow­
nian motion (BM), wi is the transpose of Wt; kT = (k1, ... , kd2 ) is a 
d2-dimensional stationary Poisson point process with independent com­
ponents, N ki (ds, dz) is the Poisson martingale measure generated by ki 
satisfying 

Nki(ds,dz) = Nki(ds,dz) -7r(dz)ds, i = 1"" ,d2 , 

where 7r(.) is a u-finite measure on a measurable space (Z, ~(Z)), 
Nki (ds, dz) is the Poisson counting measure generated by ki' and T is a 
bounded CSt - stopping time, where CSt is the u-algebra generated (and 
completed) by {ws,ks,s ~ t}. Let us assume that 0 ~ T ~ To, where To 
is a fixed number, and bin (1.1) is a Rd-valued function. It is known 
that the study of (1.1) is useful for the option pricing in the financial 
market [1]. For the precise definition of the solution to (1.1) we need the 
following notation: 

= {f(t,w): f(t,w) is CSt - adapted, Rd - valued} 
such that ESUPtE[O,rjlf(t,w)12 < 00 ' 

{ f(t,w) : f(t,w) is CSt - adapted, Rd®dl - valued} 
- such that E J; If(t, w)1 2 dt < 00 ' 

{ 
f(t, z, w) : f(t, z, w) is Rd®d2 - valued, } 

CSrpredictable such that . 
E J; Jz If(t, z,w)12 7r(dz)dt < 00 

Definition 1.1 (Xt, qt,Pt) is said to be a solution of (1.1), if and only 
if (Xt, qt,Pt) E S~(Rd) x LMRd®d1 ) X F~(Rd®d2), and it satisfies (1.1). 

Assumption 1.1 For discussing the solution of (1.1) we make the fol­
lowing assumptions 

(i) b: [0, To] x Rd X Rd®dl X L~(-) (Rd®d2) x n -+ Rdis jointly measurable 
and CSt-adapted, where 

L2 (Rd®d2) = { f(z) : f(z) is Rd®d2 - valued, and }. 
7r(') IIfll2 = Jz If(z)12 7r(dz) < 00 ' 
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We have 

Theorem 1.1 Assume that b = bl +~, and that 

(i) bo - bo(t x q P w) . [0 110] X Rd X Rd®dl X L2 (Rd®d2 ) X n -+ 
t - 1 , , " • , 11"(0) 

Rd, i = 1,2, are CSt-adapted and measurable processes such that 
P-a.s. 

Ibl(t,x,q,p,w)1 < cI(t)(l + Ix!), 
1~(t,x,q,p,w)1 < cI(t)(l + Ix!) + c2(t)(1 + Iql + IIpl!), 

where cdt) and C2(t) are non-negative and non-random such that 

{TO {TO 
10 C! (t) dt + 10 C2(t)2 dt < 00; 

(ii) (Xl - X2)· (bl(t,XI,ql,PI,W) - bl (t,X2,q2,P2,W)) 

~ c{V(t)pN(lxl - x212)+cf(t) IXI - X21 (Iql - q21+lIpl - P211), and 

Ibl(t,x,q,PI,W) - bl (t,x,q,P2,W)1 ~ cf(t) IIpl - P211, 
Ib2(t, XI, ql,PI,W) - ~(t,x2,q2,p2,W)1 

~ c{V (t) IXI - x21 + cf (t)[lql - q21 + Ilpl - P211], 

as Ixi ~ N, IXil ~ N, i = 1,2;N = 1,2···,. where for each N, 
c{V (t) and cf (t) satisfy the same conditions as in (i),. and for each 
N, pN(u) ~ 0, as u ~ 0, is non-random, increasing, continuous 
and concave such that 

(iii) bl(t,x,q,p,w) is continuous in (x,q,p),. 

(iv) X E CST) E IXI2 < 00. 

Then (1.1) has a unique solution. 

Here conditions in Theorem 1.1 are weaker than that in Theorem 1 
of [7], where it assumes that IXI ~ ko and IoTo ICI(t)12 dt < 00. 

Let us give some counter examples and an example as follows: 
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Example 1.1 (Condition I[o cdt)dt < 00 can not be weakened) 
Consider 

Xt = 1+ [T 1#os-OxsdS- [TqsdWs- [T 1ps(Z)Nk(ds,dZ), 

o ~ t ~ T. 

Obviously, if a < 1, then by Theorem 1.1 it has a unique solution. 
However, if 0 ~ 1, then it has no solution. Otherwise for the solution 
(Xt, qt,Pt) one has 

Ex~ = 00, 'Vi = 1,2"" ,d, as 0 ~ 1. 

Example 1.2 (Condition I[o c2(t)2dt < 00 cannot be weakened) 
Now suppose that all processes appearing in BSDE (1.1) are real­
valued. Let 

X = loT 1#0(1 + s)-1/2(log(1 + S))-02 dws 

+ loT 1 1#0(1 + s)-1/2(log(1 + S))-03 lu(z)Nk(ds, dz), 

b = 1#0(1 + s)-1/2(log(1 + s))-01(kllql + k21Ip(z)1 lu(z)1I'(dz)), 

where kI, k2 ~ 0 are constants, and we assume that 0 < 02, 03 < ~, and 
o < 1I'(U) < 00. Obviously, if 0 < 01 < ~, then by Theorem 1.1, (1.1) 
~as a unique solution. However, if 01 > ~, and kl > 0, 01 + 02 ~ 1, or 

k2 > 0, 01 + 03 ~ 1, then (1.1) has no solution. Otherwise for solution 
(Xt, qt,Pt) 

Exo = 00. 

Example 1.3 Let 

b = - l#os-01 x Ixl-.B + l#os-02 q + l#os-021 p(z)lu(z)1I'(dz), 

where 01 < 1; 02 < 1/2; 0 < (3 < 1; 1I'(U) < 00; and assume that 
X E ~T, EIXI2 < 00. 

Obviously, by Theorem 1.1, (1.1) has a unique solution. However, 
Cl(S) = l#os-01, C2(S) = l#os-02 are unbounded in s, and b1 = 
-1#os-01x Ixl-.B is also unbounded in s and x, and is non-Lipschitzian 
continuous in x. Note that here we have not assumed that X is bounded. 
(cf [7]). 

Theorem 1.1 can be shown by the approximation technique. 
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2. Existence of solutions to BSDE with 
coefficient having a greater than linear 
growth 

335 

Definition 2.1 (Xt, qt,Pt) is said to be a generalized solution of (1.1), 
if and only if Xt and qt are CSt-adapted, Pt is CSt-predictable, and they 
satisfy (1.1). 

Consider BSDE without jumps in (1.1) with d = 1 as follows: 

{ dYt = (b{t, Yt, ift,w)y; +21Yd o liftI2 /Yt) dt+iftdWt, (2.1) 

Yr = Y, ° ~ t ~ T. 

Denote b{t,x,q,w) = b{t,~, -.;,x,w), where b{t,O,q,w) = 
limx-to b{t, x, q, w) is assumed to exist and finite. We have the following 
theorem and example: 

Theorem 2.1 If b satisfies Assumption (i)-{iv) in Theorem 1.1 except 
that condition for bl in (ii) is cancelled and in (i) is weakened to be the 
same as ~, and condition for ~ in (ii) is strengthened to be that all 
cf{t) and cf{t) are the same for all N, moreover, if bl{t,x,q,w) 20, 
bi{t, 0, 0, w) 2 0, i = 1,2; and X = I/Y > 0, then BSDE (2.1) has a 
generalized solution. Furthermore, if X 2 ro > 0, where ro is a constant, 
then BSDE (2.1) has a solution (Yt, ift) E S5{RI) X LMRI®d1 )such that 
to 2 Yt > 0, Vt E [0, TJ, where do is a constant, which exists. 

Example 2.1 

- 2 2 
b(t,y,q,w)y + 21#0 1Q1 /Y 

= l#os-ol lyl1+.B + l#os-02 Iqll-.Bl lyl2.Bl + 21#0 1Q12 /Y 

+CI{S)Y - C2(S)q 

will satisfy all conditions in Theorem 2.1, if in above al < 1, a2 < ~, ° < 
fi, fil < 1; Cl{t), C2{t) satisfy condition in (i) of Theorem 1.1. However, 
such coefficient has a greater than linear growth in y, is unbounded in Y 
belonging to any finite interval (-c, c), and has a quadratic growth in q. 

3. Application to integro-differential equations. 
Some Markov properties of solutions to some 
BSDEs and a Feynman-Kac formula 

Applying Theorem 1.1 we can obtain an existence and uniqueness 
result on the Sobolev solution to some IDE under weaker conditions. 
Such IDE is useful in the stochastic optimal control problem [2]. 



336 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

Suppose that D c Rd is a bounded open region, aD is its boundary, 
and denote DC = Rd - D. Consider the following IDE 

£b,(J,cU(t,X) 

(
a d a 1 d a2 ) 

= -a + Lbi(t,x)-a . + -2 L aij(t,x) a .a. u(t,x) 
t . 1 x~.. 1 x~ x} 

z= Z,}= 

+ L (U(I, x + c(l, x, z)) - u(l, x) - t e;(I, x, zl"U~;ix) ) .. (dz) 

f(t,x,u(t,x),u~(t,x) . u(t,x),u(t,x+c(t,x,.)) -u(t,x)), (3.1) 

u(T, x) = ¢(x), u(t, x)IDc = 'I/J(t, x), 'I/J(T, x) = ¢(x)IDc , (3.2) 

u E Wi,2([0, T] x Rd)(= Wi,2([0, T] x Rd; Rm)). 

Also consider FSDE and BSDE as follows: 
for any given (t, x) E [0, T] x D 

Ys = x+ is b(r,Yr)dr+ is u(r,Yr)dwr 

+ is L c(r,Yr-, z)Nk(dr, dz), as t ~ s ~ T; 

Xs = IT<T'I/J(T,YT)+IT=TCP(YT)-1T f(r,Yr,Xr,qr,Pr)dr 
SI\T 

_1T qrdwr _1T ( Pr(z)Nk(dr, dz), as t :$ s :$ T, 
SI\T SI\Tiz 

where T = T x = inf {s > t : Ys ~ D}, and T = T x = T, for inf { ¢ }. 

Assumption 3.1 Assumptions A.1-A.3, B.1', B.2-B.4 and (A)' in Sec­
tion 4 of [7] hold. 

We have the following theorem, which implies Theorem 10 in [7]. 

Theorem 3.1 Suppose that Assumption 3.1 holds except that the con­
dition If(t,x,r,q,p)1 ~ ko in B.1' is weakened to be that 

If(t, x, r, q,p)1 ~ ko(l + Irl). 

Then (3.1) and (3.2) has a unique solution u(t,x) E W;,2([0,T) x D) 
such that 

lIu ll w;,2([O,TjXRd) 

~ Co (lIguIILp([O,T]XD) + 1I'l/Jllw;,2([O,TjxDC) + 1I¢lIw;<l-l/P)(Rd)) , 
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where Co ~ 0 is a universal constant depending on T, the domain D, the 
dimensions d and m only. Moreover, one has that 

Xs u(s,Ys) , 

qs = u(s, Ys)axu (s, Ys) , 

PsO = u(s,Ys-+c(s,Ys-,·))-u(s,Ys-), 

where Ys is the unique strong solution of the above FSDE, which is a 
Markov process, and 

is the unique solution of the above BSDE. Hence we can say that 
(xs, qs,Ps) has a Markov property. Furthermore, we have a Feynman­
Kac formula u(t,x) = Xs Is=t. 

Theorem 3.1 can be shown by the approximation technique, by using 
Ito's formula and Theorem 1.1. 

4. Application to optimal stochastic control 
In this section we obtain probably the first results on the existence 

of some non-Lipschitzian optimal controls for some stochastic control 
problems with respect to some BSDE systems with jumps. 

Consider the following d-dimensional BSDE system: for 0 ~ t ~ T, 

{ 
u = u(t, x, q,p) : u(t, x, q,p) is jointly measurable } 

U = such that (4.1) has a unique solution (Xt, qt,Pt), and , 
lu(t, x, q,p)1 ~ IxlP 

where 0 < {3 ~ 1 is a given fixed constant. The following Theorem shows 
that a non-Lipschitzian feedback optimal stochastic control exists. 

Theorem 4.1 Define uo(x) = uO(t, x, q,p) = -Ix=j:.ox/ Ixl l - P and let 

J(u) = E (~ IXol2 + ~ loT (lq:12 + h Ip~12 7r(dz))ds + loT Ix~l1+tl dS) , 

where (xf,qf,pf) is the unique solution of (4.1) for u E U. Then 
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(i) uO E U, 

(ii) J{u) ~ J{uO), for all u E u. 

The above target functional J{u) can be explained as an energy func­
tional. Now consider the BSDE system (4.1) with xf,u{s,x~,q~,p~) E 
RI, q~ E R1®d1 , p~{z) E R1®d2 , and consider the admissible control set 
as 

{ 
u = u{t, x, q,p) : u{t, x, q,p) is jointly measurable } 

U = such that (4.1) has at least a solution (Xt, qt,Pt), and 
lu{t, x, q,p)1 ~ Ixlfj 

where 0 < (3 ~ 1 is a given fixed constant. Denote the target functional 
as 

J1(u) Max { E(2 f.T Ix~I1+P ds -Ixgl' 

-f (lq:I' + £ IP~I'1f(dZ)) dS)} 

Max { E[ (f Ix~I1+P ds 

- loT (lq~12 + fz Ip~12 7r(dZ)) dS) 

+ (f Ix=I1+P ds -Ixgl') ]} 

for each u E U" where (xf, qt, pt) is any solution corresponding to the 
same u. We have the following 

Theorem 4.2 Denote uO{x) = lxi-ox/ IxI1-fj. Then 

(i) uO E U, 

(ii) J1{u) ~ Jl{UO), Vu E U. 

Both above theorems can be shown by using the Hamilton-Jacobi­
Bellman equations. 

Now let us explain Theorem 4.2 in the financial market. If we regard 
{4.1} as the equation for the wealth process Xt of a small investor, ex­
plain the control u{t, Xt, qt,Pt) as his feedback generalized consumption 
process, and (qt,Pt(-)) as his some generalized portfolio process for the 
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stocks, then in case f3 = 1, we can illustrate the target functional J1(u) 
as a subtraction of the total summation of the square of wealths and the 
square of money of bonds on the whole time interval from the square of 
initial wealth (or say initial invest) for the investor. So Jd u) can be seen 
as some generalized utility functional for him. Theorem 4.2 tells the in­
vestor that he can get a maximum utility, if he chooses the consumption 
law as u(Xt) = Ixdoxt/ IXtI1-,B, i.e. when the wealth process Xt ;?: 0, he 
should consume the money Ixdoxt/ IXtI1-,B; and when Xt < 0, he should 
borrow the money -xt/ IXtI1-,B. 
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Chapter 20 

DOOB'S INEQUALITY AND LOWER 
ESTIMATION OF THE MAXIMUM OF 
MARTINGALES 

Li Zhichan 
Department of Mathematics, 

Hebei University of Technology, 

Tianjin 30013) 

Abstract For estimation of the maximum of submartingales, there are classical 
Doob's inequalities 

EsuplxtJ 
t 

1 1 < qPElxoolP, p>l, -+-=1, 
p q 

< e ~ 1 (1 + Elxoollog+ IXool), p = 1. 

(0.1) 

(0.2) 

The above two formulas used their ends X oo , but ignored their be­
ginnings Xo. This paper used both ends of {Xt, t ;::: O}, and gave Doob's 
inequality a more accurate improvement. For the maximum of martin­
gales, we seldom see lower estimation except the trivial estimation: 

EsuplxtlP ;::: Elxoo IP , 
t 

(p;::: 1). 

[1] and [4] have given respectively a non-trivial estimation to the non­
negative continuous martingales for p = 1 and 2. This paper considered 
lower estimation for all cases of p ;::: 1, and got the corresponding in­
equalities. 

Keywords: martingale, inequality of martingales, Dubins' and Gilat's conjectures. 

1. Doob's inequality and lower estimation of the 
maximum of martingales 

Suppose {Ft, t ~ O} is a filtration in probability space (0., F, P), 
{Xt, t ~ O} is a martingale (or nonnegative submartingale) which is right 
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continuous in (0, F, P), and adapts to {Ft, t ~ O}. Let x* = SUPt IXtl, 
q> 1 be the conjugate exponent of p > 1; ~ + ~ = 1. 

Theorem 1.1 Suppose {Xt, t ~ O} is a nonnegative submartingale. 
For p > 1, if 

Ex*P < +00, (1.1) 

then 

Ex*P ~ q (q - c*)p-l Ex~ - (q - I)Exb = (q - c*)P Ex~, (1.2) 

where c* ~ :p~\ ::!. In particular, 

Ex*P ~ qPEx~ - (q - I)Ex{;. (1.3) 

Proof If Ex{; = 0, then (1.2) and (1.3) obviously hold, therefore 
we may assume Ex{; > o. Under condition (1.1), there exists a limit 
Xoo = lim Xt (a.s), and Xoo E V. For any ,x > 0, let T>.. = inf(t > 0 : 

t-t+oo 
ti > ,x + xo). From the right continuity of Xt, it's not difficult to prove 
that T>.. is a stopping time, and XT>. ~ ,x + xo, (a.s) on (T>.. < +00) = 
(x* > ,x + xo). By using Fubini's Theorem, 

Ex*P = 1000 EI (x* > ,x) d(,xP) 

= E 100 p,xp-l I (x* > ,x) d,x 

= E [l XO p,xp-l I (x* > ,x) d,x + 1~ p,xp-l I (x* > ,x) d,x] . 

(1.4) 

Since x* ~ Xo (a.s), 

{XO 

E 10 p,xp-l I (x* > ,x) d,x = Ex{;. (1.5) 

Because (x* > ,x+xo) = (T>.. < +00) EFT>., (,x+xo) E Fo eFT>., from 
the submartingality and the Stopping Theorem, 

E(,x + xO)p-1 I (x* > ,x + xo) < EXTJ,x + xo)p-2 I (x* > ,x + xo) 
< Exoo(,x + xO)p-2 I (x* > ,x + xo). 
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Using the Fubini Theorem again, we get 

E rX) p)..p-l I (x* > )..) d)" 
lxo 

E 100 p().. + xO)p-l I (x* > ).. + xo) d)" 

p 100 E().. + xO)p-l I (x* > ).. + xo) d)" 

< p 100 Exoo().. + xO)p-2 I (x* > ).. + xo) d)" 

pExoo roo )"p-2 I (x* > )..) d)" 
lxo 

qExoo rx* d)..p-l 
lxo 

[E *p-l E ~~P-l] q XooX - xoox-o 

< q ( Exoox*p-l - EXb) . 

Synthesize (1.4), (1.5), (1.6), then we get 

Ex*P ~ qExoox*p-l - (q - l)Exb. 

(1.6) 

(1.7) 

Substitute the Holder inequality, Exoox*p-l ~ (ExPoo)l/P (EX*p)l/q, 
into (1.7) and divide both sides by (Ex*p)l/q, to yield 

(Ex*p)l/P ~ q (ExP )l/P _ (q _ 1) Exg . 
00 (Ex~)l/q 

Choose a constant c > 0 such that 

(q - l)Exb/(Ex*P)l/q 2: c(Ex~)l/P, 

which can also be written as 

E *p (q -l)q (EXb)q 
x ~ 1 • 

C (EX~)P-l 
(1.8) 

If (1.8) holds, then we have 

Ex*P ~ (q - c)P Ex~. (1.9) 

Let c' = (q!!~; 1 a, (a = Exg/ Ex~) then it is not difficult to calculate 

( _ )PE p = (q - l)q (Exg)q 
q c xoo ' 1 , 

C (EX~)P-l 
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which shows that if (1.9) holds on c, then (1.8) holds on c'. Hence (1.9) 
holds on c'. In view of the above property, let Co = 0, and Cn+! = 
(q - l)aj(q - Cn)p-l, then (1.9) holds on Cn, (n ~ 0). It is not difficult 
to check 0 < Cn < q - 1, (n > 1), Cn t (n -t (0), therefore there exists 
the limit c* = liII1n-too Cn, 0 < c* ~ q - 1, such that 

and 

* (q-1)a q-1 EXb 
c = >----

(q - c*)p-l - qP-l Ex~' 

Ex*P < (q - c*)P Ex~ 

= q (q - c*)P-l Ex~ - c* (q - c*)P-l Ex~ 

= q (q - c*)P-l Ex~ - (q - l)Exg, 

from which we get (1.2) and (1.3). This ends the proof. • 
Dubins and Gilat conjectured in 1978 that the equality in Doob's 

inequality (0.1) held only if Xt = 0 (a.s) to any t ~ 0 (see [2] or [1, 
page 151]). Pitman [4] has proved the conjecture to be correct for p = 
2. Paper [5] has solved this problem thoroughly and has proved the 
conjecture to be correct for all p > 1. The following corollary will show 
a more simple and direct proof than that given in [5]. 

Corollary 1.1 Suppose {Ft, t ~ O} is right continuous, {Xt, t ~ O} is 
a right continuous martingale (or a nonnegative submartingale) which 
adapts to {Ft, t ~ O} and satisfies (1.1). Then, the equal-sign in (0.1) 
holds if and only if Xt = 0 (a.s) for any t ~ o. 
Proof The sufficiency is obviously correct, we only need to prove the 
necessity. 

Suppose the equality in (0.1) holds. Consider the right continuous 
version of martingale E(lxooll Ft ), t ~ 0 (it must exist under the con­
dition that {Ft, t ~ O} is right continuous). Write Yt = E(lxooll Ft), 
t ~ 0, then Yt ~ 0, Yoo = Ixool (a.s), according to the submartingality of 
Xt, Yt ~ IXtl (a.s), t ~ O. So y* = SUPt Yt ~ SUPt IXtl = x*, from Yoo E V, 
we can conclude y* E V (see [1] or [3]). Because Ex*P = qP ElxoolP, 

qP Elxoo IP = Ex*P ~ Ey*P ~ qP Ey~ = qP Elxoo IP, 

from which we can get Ey*P = qP Eifoo = qP EI~IP. {Yt, t ~ O} satisfies 
Theorem 1.1. Put it into (1.2) or (1.3), then get EVa = 0, but Yo = 

E(lxool \ Fo) ~ 0 (a.s), so Yo = 0 (a.s) and therefore \xoo \ = 0 (a.s). 
From this we can conclude that for any t ~ 0, Xt = 0 (a.s). This ends 
the proof of the necessity. • 
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Theorem 1.2 Suppose {Xt, t ~ O} is a nonnegative submartingale, and 

Ex* < +00, (1.10) 

then 
e 

Ex* ::; -- (Exoo log+ Xoo - Exo log+ Xo + E(xo VI)) , (1.11) 
e-I 

where log+ x = log(x VI). 

Proof Under condition (1.10), there exists the limit Xoo = limHoo Xt 
(a.s.). Without loss of generality, we may assume Exoo log+ Xoo < +00. 
Write x6 = Xo V 1, V>" > 0; let T).. = inf(t > 0: Xt > >.. + X6), T).. is a 
stopping time, and according to the right continuity of Xt, XT). ~ >.. + x6 
(a.s.) on (T).. < +00), 

Ex* = 1000 
EI (x* > >..) d>" 

E [t 1 (x' > A) dH ( 1 (x' > A) dA 1 
< EX6 + E roo I (x* > >..) d>... (1.12) 

Jxb 

Because (x* > >.. + xfi) = (T).. < +00) EFT)., (>.. + xfi) E Fo eFT).' From 
the submartingality and the Stopping Theorem, we get 

E1 (x* > >.. + xfi) < E>..xT). J(x* > >..+xfi) 
+xo 

< E >.. Xoo J (x* > >.. + xfi). 
+xo 

Using the Fubini Theorem and x* ~ Xo, we get 

E 1~ 1 (x* > >..) d>" = E 1000 
1 (x* > >.. + x6) d>" 

1000 
EI (x* > >.. + xfi) d>" 

< {OOE XOOII(x*>>..+xfi)d>" 
Jo >.. + Xo 

roo 1 
Exoo Jx l >.1 (x* > >..) d>" 

o 

< Exoo [log (x* V xb) -logxb] 

Exoo log (x* V 1) - Exoo logxfi 

< Exoo log+ x* - Exo log+ Xo. (1.13) 
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Using the analytical inequality again 

alog+ b:::; alog+ a + bje, a ~ 0, b ~ 0, 

yields Exoo log+ x* :::; Exoo log+ Xoo + Ex* je. Putting it into (1.13) and 
synthesizing with (1.12), we obtain (1.11). • 

Remark 1.1 Compare the right side of (1.11) with that of (0.2), it is 
not difficult to prove 

x~ - Xo log+ Xo :::; 1. 

So we can conclude that (1.11) is more accurate than (0.2). In fact, 
the bigger xo, the more superior formula (1.11) becomes. For exam­
ple, take the martingale {Xt == e2, t ~ O}, then the error of (0.2) is 
(e + e2 + e3 ) j(e - 1), whereas the error of (1.11) is e2 j(e -1). 

We now discuss the lower estimation of the maximum of martingales. 

Theorem 1.3 Suppose {Xt, t ~ O} is a nonnegative continuous mar­
tingale, and Ex*P < +00, (p> 1), then 

Ex*P ~ qEx~ - (q - I)Exg, (p> 1). (1.14) 

Proof For any>. > 0, let T).. = inf(t > 0: Xt > >. + xo), then T).. is a 
stopping time. According to the continuity of Xt, XT>. = >. + Xo (a.s.) on 
(T).. < +(0). Since x* ~ X oo , x* ~ Xo (a.s.), we have 

Ex~ < Exoox*P-l 

Exoo fox o 
d>.p-l 

= (p-l) Exoo fooo >.p-2I(x* > >.) d>' 

= (p - I)Exoo [foXD + 1~ (>.P-2 I (x* > >.) d>')] 

Exooxg-l + (p - I)Exoo roo ),p-2 I (x* > >.) d>.. 
lXD 

(1.15) 

By the martingality, we know Exooxg-1 = Exg. Since (x* > >. + xo) = 
(T).. < +(0) EFT>., >. + Xo E Fo eFT>., and thus by the Stopping 
Theorem, we obtain 

Exoo(>' + xo)P-2I(x* > >. + xo) EXT>. (>. + xo)P-2I(x* > >. + xo) 

= E(>. + xo)P-lI(x* > >. + xo). 
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Using Fubini's Theorem, we have 

Exoo {OO ).,p-2 I (x* > ).) d)' 
lxo 

- 100 Exoo(). + xO)p-2 I (x* > ). + xo) d)' 

= 100 E()' + xO)p-l I (x* > ). + xo) d)' 

E roo ).p-l I (x* > ).) d)' 
lxo 

_ ~E {X· d)'P 

p lxo 
~ (Ex*P - Exg) . (1.16) 
p 

Synthesize (1.15) and (1.16), we then get 

q(Ex~ - Ext) :::; Ex*P - Exg, 

which is also formula (16). • 
Remark 1.2 Let p = 2 in (1.14), we then recover the result in [4]. 

Theorem 1.4 Suppose {Xt, t ;::: O} is a nonnegative continuous martin­
gale, and 

Exoo log+ Xoo < +00, 

then 

Ex* ;::: Exoo log+ Xoo - Exo log+ Xo + Exo. (1.17) 

Proof For any). > 0, let T).. = inf(t > 0: Xt > ). + xi), so T).. is a 
stopping time. From the continuity of Xt, XT>. = ). + xi on (T).. < +00), 
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where xfi = Xo V 1. Write x~ = Xoo V 1, xi = x* V 1, then 

EXoologx~ 
< EXoologxi 

= Exoo i Xi d(log,x) 

{xi 1 
Exoo 11 ~ d,x 

{(X) 1 
= Exoo 11 ~I (xi> ,x) d,x 

{(X) 1 
= Exoo 11 ~I (x* > ,x) d,x 

Exoo [t + 1~ GI(x' >~) d~) 1 
1001 

< Exoo log xfi + Exoo xl ~ I (x* > ,x) d,x 
o 100 1 

= Exo log+ Xo + Exoo ,x 1 I (x* > ,x + xfi) d,x. 
o +xo 

(1.18) 

When calculating the integration of the right side of (1.18), we notice 
that (xi> A + xA) = (T.x < +00) EFT>., so (A + XA)-l E Fo eFT>.. 
Using the Stopping Theorem of martingales, we get: 

Exoo 1 lI(x* > A + xfi) 
A+Xo 

= EXT>.,x 1 lI(x* > ,x + xfi) 
+Xo 

EI(x* > A + xfi). 

Substituting it into the right side of (1.18), gives 

100 1 (* 1) Exoo ,x 1 I x >,x + Xo d,x 
o +xo 

100 EI (x* > ,x + xfi) d,x 

< 1000 EI (x* > ,x + xo) d,x 

Elx
* d,x 

Xo 
Ex* - Exo. (1.19) 

Synthesizing (1.18) and (1.19) yields (1.17). • 
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Remark 1.3 Letting Xo = 1 (a.s) in (1.17), we can get the result ob­
tained by [1, page 149]. 
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Chapter 21 

THE HAUSDORFF MEASURE OF 
THE LEVEL SETS OF 
BROWNIAN MOTION ON 
THE SIERPINSKI CARPET* 

Yuan Chenggui 
Changsha Railway University, 

China 

Chen Xuerong 
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China 

Abstract Let Lf{x E F, t > O} be the local time of Brownian motion B on the 
Sierpinski carpet F, and ",(h) = h.B (loglloghj)l-.B, 'rIh E (0, tl, (3 is a 
constant. In this paper, we show that for each x E F. 

cLf ~",-m{8:8~t,B(8)=x}~CLf, a.e. 'rIt>O. 

for some constants c and C E (0,00). 

Keywords: Local time, Hausdorff measure, Level set. 

1. Introduction 
Let {X(t)h>o be a stable process with order a > 1 on the line, and 

A(t) be its local time at zero. In [2], Taylor and Wendel showed that 

'IjJ - m{s: s < t,X(s) = O} = C1A(t), a.e., 

·Supported by NNSF of China (Grant No.19871006) 
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for some constant C1 E (0,00), where 'ljJ - m(E) denotes the Hausdorff­
'ljJ-measure of the set E, and 

1 
'v'h E (0,1/4], fJ = 1 - -. 

a 

Later, Perkins [3] improved the above result for the case of one dimen­
sional Brownian motion, whereas, Zhou Xin Yin [4] gave the result for 
on the Sierpinski carpet. 

Let Fn denote the nth stage in the construction of the Sierpinski car­
pet, J.tn is the Hausdorff measure on Fn, F = n~=IFn. From [1], we 
know J.tn => J.t, then J.t is a Hausdorff measure on F. 

In this paper, we concern with the Hausdorff measure problem for 
a class of processes defined on the Sierpinski carpet F. We consider 
the Brownian Motion B on F. As for the construction B, we refer 
to [5, 6, 7, 8]. In fact, Barlow and Bass have carried out many investi­
gations about the process B. They showed that the process B, like the 
standard Brownian motion, also has a continuous symmetric transition 
density p(t, x, y) with respect to the Hausdorff measure J.t. Moreover, 
the function p(t, x, y) has the following properties 

Theorem 1.1 There exists a function p(t, x, y), ° < t < 00, x, y E F, 
such that 

(i) p(t, x, y) is the transition density of X with respect to J.t. 

(ii) p(t, x, y) = p(t, y, x) for all x, y, t. 

(iii) (t, x, y) -t p(t, x, y) is jointly continuous on (0,00) x F x F. 

(iv) There exist constants CI, C2, C3, C4 > 0, and dw such that, writing 
ds = 2dtldw, 

(v) p(t, x, y) is Holder continuous of order dw - df in x and y, and 
Coo in ton (0,00) x F x F. More precisely, there exists a constant 
C5 such that 

Ip(t,x,y)-p(t,x',y)1 ~ C5r1Ix-x'ldw-d" for t > 0, x,x',y E F, 
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and for each k;::: 1, 8k p(t,x,y)/8tk is Holder continuous of order 
dw - d f in each space variable. 

df is the Hausdorff dimension of F, ds is the spectral dimension of F, 
dw is unknown - we just have a definition in terms of the limiting resis­
tances ofthe Sierpinski carpet. We also have dw = df+~' which connects 
the Hausdorff and spectral dimensions with the resistance exponent ~. 

2. Preliminary 

In this section, we make an additional study on the local time Lf, 
'lit > 0, Vx E F. In fact, Barlow and Bass showed that Lf is jointly 
continuous with respect to (t, x) E R+ X F. Moreover, the local time Lf 
satisfies the density of occupation formula 

{t/\T ( 
10 g(Bs)ds = 1 F g(x)Lf J-l(dx) 

where J-l is defined in [1], T = inf{t: Bt E 8F} 

Lemma 2.1 
Set 

Then for any p ;::: 1 

'11m;::: 1, Vx E F 

J~oo ILf - [J-l(Am(x))]-l fotI\T I{IB(s)-xl~m-l} dsl
P = 0 

Proof By (2.1) we have 

Since Lf is continuous with respect to y, one easily shows that 

To prove (2.2), it suffices to show that 

(2.1) 

(2.2) 

p;::: 1 (2.3) 
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In fact, by the Markov property, we have 

E lfot I{IB(s)-xl~m-l} dsl P 

~ E [PI f.' f." ... f.tH1{lB( 'p )-xI5m -') ... I{lB( t,)-xI5m-' )dt. ... cit.] 

p! fot foh ... fotp-1 L··· L I{lxp-xl~m-l} ... I{lxl+·+xp-xl~m-l} 
= Ptp (0, Xp) ... Ph -t2 (X2' xl)/-L(dxl) ... /-L(dxp)dto ... dtp (2.4) 

However, Theorem 1.1 tells us that, 

rt rh rtp-1 

the right side of (2.4) ~ (C3)Pp! 10 10 ... 10 

< 00 

The proof is completed. • 
Using this lemma, we can estimate EIL~IP for P 2 1 

Lemma 2.2 There exist finite positive constants c and C such that 

cP(t1- d./2P )(p!)d./2 < EIL~IP 

< CP(t1- d./2)p(p!)d./2, 'tit > 0, Vp 2 1 (2.5) 
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Proof By Lemma 2.1 it is sufficient to show that 

{ 
cP (t1- ds /2)P (p!)ds/2 ~ E IL~IP, Vp 2:: 1, and 

E I [/L(Am(X))] -1 J~ I{/B(s)-x/~m-l} dslP ~ CP(t1-ds/2)p(p!)ds/2 

Vw 2:: 1, p 2:: 1, t > o. 
(2.6) 

From the Proof of Lemma 2.1, the second inequality of (2.6) holds. 
On the other hand, by Theorem 1.1 and (2.4), we have 

E lint I{/B(s)-x/~m-l} dsl
P 

< (C1)Pp! t rh ... r tp- I r ... r r;;ds/2(tp_1 _ tp)-ds/2 
Jo Jo Jo J{/xp-x/~m-l} J{XI + .. +xp-x~m-l} 

... (t1 - t2)-ds/2 exp ( -C2 (Ixpldw /tr/(dw-1») 

···exp (-C2 (IX1-X2Idw/tr/(dw-1») /L(dxd···/L(dxp)dt1···dtp 

(CdPp! (m-dj ) p rt rh ... rp
-

I r 
Jo Jo Jo J/xp-mx/9} 

... r t;ds/2(tp_1 _ tp)-ds/2 ... (t1 _ t2)-ds/2 
J{/XI +·+xp-mx/9} 

exp ( -C2 (m-1Ixpldw It) l/(dw-l») 

... exp (-C2 (m-1Ixl - x21 dw /tf/(dw-1») /L(dX1)·· ·/L(dxp)dlt 

... dtp 

Set x = 0, we can complete our proof. 

The proof of Lemma 2.2 immediately yields that 

• 

E ILo - LOIP < CP (hl-ds/2)P (PI)ds/2 t+h t - . , Vp 2:: 1, Vt > O. (2.7) 

3. Lower bounds for Hausdorff measure 

We begin with Lemmas 3.1 and 3.2. 
Let 

Vh E (0,1/4). 
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Lemma 3.1 Suppose that J.L is a completely additive measure defined on 
the real line Borel set and that E is a Borel set such that for each x E E 

r J.L[x.x + h] ( ) 
h!~+ cp{h) < A < 00 3.1 

Then 
ACP - m{E) > J.L{E) 

Proof See [2]. 

Set 

{ B{u+t)-B{u), O~t~v-u 
B{v) - B{u), t > v - u 

{J : C{[O, 00) -+ Rl) -+ Rl, 
and f is measurable and bounded.} 

r 

L{t) 

Lemma 3.2 Let fEr, A E B[O, 1], then 

(3.2) 

• 

E (L f{tBd dt) = E L f{oB1- t )pt{0, 0) dt, (3.3) 

where Pt{x, y) is the density function of B{t). 

Proof See [4]. • 

Lemma 3.3 For any fixed t > 0, there exists a constant >. E (0,00) 
such that 

. L~+h - L~ 
hm sup (h) < A 

A-tO+ cp 
a.e. (3.4) 

Proof We know from (2.7) that 

sup E exp 2-1C .:.........:..t+-,:-,-h'--;--,;-::----,-{ [ (ILO -L~I)2/d·l} 
hE(O.I) h1- d./2 

<00 (3.5) 

for some constant C E (O,oo). 
Hence 

p [IL~+h - L~I > a] 
h1- d./2 -

< p [exp (2-1C CLii~~/~1Ir') ~exp(2-1ca2/")] 
< Cexp(-4-1Ca2/ d.), 'tiE (0,1). 
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We now choose 
_ e-n/logn an - , 

and set for any c > 0, 

Fn - {L~+an - L~ ~ (20-1 + c) a~~~· /2 (log I log an+11) -d. /2 } 

Gn - {L~+an -L~ ~ (40-1 +c)a~-d./2(loglloganl)-d./2}. 

Obviously, we have 

and from (3.5) 

n=2 

357 

With the help of Borel-Cantelli lemma, we know that there exists an 
integer N (w) for almost all w, and Fn does not occur in case of n ~ N (w). 

If aa+1 < a < an and n ~ N(w), then 

L~+a - L~ L~+a - L~ 1 < < 20- +c. 
<p(.\) - <p(an + 1) 

Which ends the proof. • 
Theorem 3.1 For any T > 0, there exists a constant 01 , such that 

Proof 
Set 

<p - m{t E (O, T) : B{t) = O} ~ 01L~. 

JL{dt) = L{dt) 

by the help of Lemma 3.3, we have 

lim JL[t, t + h) < .\ < 00 

h--+O+ <p( h) 
a.e., 'Vt E [0, T] 

So 
() . JL[t, t + h) 

P-a.e. L dt -a.e. hm sup (h).\ < 00. 
h--+O+ <p 

Hence 

{ ( ) . JL[t, t + h) } 
L tEO, T : h~+ sup <p(h) > .\ = 0. 

Set 

{ ( ) ( ) . JL[t, t + h) \} 
E = tEO, T : B t = 0, h~If1+ sup <p(h) :::;;\. 

(3.6) 
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Then 
L~ = L(O, T) = L(E). 

Therefore 

-Xcp - m{t E (O,T),B(t) = x} > C2L~ a.e .. 

• 
4. Upper bounds for Hausdorff measure 

According to [3], if B(t) is a Brownian motion on F, then there exist 
constants Ml and M 2, such that 

M 1· IB(t) - B(s)1 M 
1 ~ 1m sup 1 l/d < 2· 

0-1-0 0 ~ s < t ~ Tis _ tll/dw (,!Qg.l) - w 
Is - tl < 0 Is-t\ 

(4.1) 

Set 

A = {[k2-mdw (k + l)-mdw] . 0< k < 2mdw m = 1 2 ... } m , , _ _ , , , 

Let I be an interval with length III = 2-m. Define B-l(I) = {t, IB(t)1 E 
I}. If B-l(I) meets one of the intervals of Am, then B(k2-mdw ) falls in 
an interval If, and concentric with I of length « m I-dw . 2-m, 

Lemma 4.1 It is almost surely that if If is an interval of length 
m- 1- 1/ dw • 2-m, then B-l(If) contains «m(1-1/dw)dj+22(1-d./2)mdw of 
the points k . 2-mdw . 

Proof Set ° ~ kl < k2 < ... < km ~ [2mdwl 
Let 

Ckl···km 

{IB (ki+l 2- mdw ) - B (kiTmdw ) I ~ ml-l/dwTm, 1 ~ i ~ m} 
P {IB (ki+l Tmdw ) - B (ki2-mdw ) I ~ ml-l/dwTm } 

{ { Pk;2-mdw (0, x )Pk; 2mdw (0, X )Pki+12-mdw (x, y) J-l(dx )J-l(dy) J F J {\y_x\<ml-l/dw2-m} 

< C(ki+1 - kd-d./2m(l-1/dw)dj 

Then we have 
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Hence 

So we get our result. • 
Lemma 4.2 

Proof 
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So 

The proof is finished. 
Set 

an = 2-n l+cS , 8 E (0,1), 

tA zan, 

SA (i + 1)an, 

D(tA, ak) is the interval [tA - ak, tA + ak], 

A = [ian, (i + 1)an], 

On = {A = [kan, (k + 1)an], 0 ~ k ~ 2n(1+5) } . 

• 

Let Tn be the number of A belonging to On which intersects with {s : 
s ~ 1, B(s) = O}. By Lemma 4.1 

p [Tn ~ m(1-dw)df+22(1-ds/2)m.1+cS] < 2-2m l+cS • 

In view of reference [3] and [6], we have 

lim inf cp(an)Tn = 0, 
n--+oo 

and based on reference [5], cp - m [8 ~ T : B(8) = O} ~ C3L}]. 
We get our result. 
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Chapter 22 

MONOTONIC APPROXIMATION OF 
THE GITTINS INDEX* 
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Abstract The Gittins index is useful in the study of bandit processes and Markov 
decision processes, and can be approximated by finite horizon break­
even values determined in the truncated finite horizon models. These 
break-even values are shown to form a nondecreasing sequence. A finite 
horizon optimal stopping solution is also derived. 

Keywords: Markov decision processes; bandit processes; Gittins index; dynamic 
programming; geometric discounts; optimal stopping. 

1. Introduction 
The celebrated Gittins index, or dynamic allocation index, was in­

troduced in Gittins and Jones [4] for the study of sequential designs 
of experiments. It has been very useful and powerful in the study of 
Markov decision processes and bandit problems (Gittins [3], Berry and 
Fristedt [1]). 

The calculation of the Gittins index involves optimal stopping times 
and is formidable in most practice. Approximations for the Gittins in­
dex and error bounds have been discussed by Berry and Fristedt [1], 
Gittins [3], Wang [6], Chen and Katehakis [2], and Katehakis and Vei-

·This work was completed at the Division of Community Health, Memorial University of 
Newfoundland, and is supported by a grant from NSERC of Canada. 
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nott [5]. Especially, the Gittins index can be approximated by a sequence 
of finite horizon break-even values, which determine optimal strategies in 
finite horizon models obtained by truncating the infinite horizon geomet­
ric discount sequence. These break-even values can be found numerically 
by the method of dynamic programming. 

This paper shows a monotonicity of these break-even values. In sec­
tion 2, we introduce the bandit model, the relevant Markov decision 
process, and the Gittins index. The monotonicity property is shown in 
Section 3. This result accelerates the computations and offers some in­
sight into the finite horizon decision making process. Moreover, a finite 
horizon optimal stopping solution is derived. 

2. The bandit model, Markov decision process, 
and Gittins index 

In a bandit with k independent unknown arms, each arm i (i = 
1,2, ... ,k) consists of a sequence of conditionally independent and iden­
tically distributed random responses {Xi,j,j = 1,2, ... } with an un­
known distribution Gi . One and only one arm is selected for observation 
at each time n = 0,1,2, .... The objective is to maximize the expected 
total discounted responses E1l"(I:~=l anZn), where A = (aI, a2," .), 
an ~ 0, I:~=l an < 00, is the discount sequence, 'fr is a strategy, and Zn 
is the response resulted from the nth selection specified by 'fr. 

For geometric discounts A = (1, a, a2 , •.. ), Gittins and Jones [4] com­
pare each unknown arm with a common known arm and a number called 
the Gittins index is calculated. The Gittins and Jones strategy, which 
selects an unknown arm with the largest Gittins index value, is opti­
mal. It is shown in Berry and Fristedt [1] that the Gittins and Jones 
strategy is optimal if and only if the discount sequence is geometric 
A = (1, a, ... ,an, .. . ), 0 < a < 1. A k-armed bandit process then 
becomes a collection of k two-armed bandit processes. 

Consider the approximation of the Gittins index for each two-armed 
bandit. Suppose that the random responses XI, X 2, ... , on the unknown 
arm (denoted as arm 1) follow an unknown distribution G, which has a 
prior distribution F on V under the Bayesian approach. V is the space 
of all probability distributions on (-00,00). The random responses on 
the known arm (denoted as arm 0) have a known mean A. We call this 
a two-armed (F, A, A)-bandit. 

This two-armed bandit becomes a Markov decision process in the nat­
ural way: the state space consists of all possible F and the action space 
is {i = 1, O}, indicating that arm i is selected for observation. For any 
observation x on the unknown arm, the mapping from the prior distri-
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bution F to the posterior (x)F is measurable (Berry and Fristedt [1]). 
At any state F, the reward is E(XIF) = Iv I~oo xdG(x) dF(G) if arm 1 
is selected or A if arm 0 is selected. 

In the (F,A,A)-bandit, ~(F,A,A) = V(I)(F,A,A) - V(O)(F,A,A) 
determines the optimal initial selection, where V(i) (F, A, A), i = 1,0, 
is the worth of selecting arm i initially and then continuing with an 
optimal strategy. The Gittins index A(F, A) is the solution for A in 
~(F, A, A) = 0 (Berry and Fristedt [1]). 

Let An = (1, a, a2 , .•. , an-I, 0, 0, ... ), n = 1,2, ... , be the trun­
cated discount sequence. By Theorem 5.3.1 in Berry and Fristedt [1], 
there is a A = A(F, An) for ~(F, A, An) = 0 such that the unknown 
(the known) arm is optimal initially in the (F, A, An)-bandit if and 
only if A ::; (~)A(F, An). A(F, AI) = E(X!F) may be found numeri­
cally since the myopic strategy is optimal for one selection. Moreover, 
limn--+oo A(F, An) = A(F, A) (Berry and Fristedt [1]). 

3. The monotonocity of the approximation 

We show that for any F, A(F, An), n = 1,2, ... , form a nondecreasing 
sequence. This indicates that the more selections to make, the more 
opportunity to choose the unknown arm. This is intuitive since we have 
to balance the competing goals of information gathering (understanding 
the unknown arms and making better informed selections in the future) 
and immediate payoff (making selections with high immediate payoffs). 
We need the following lemma. 

Lemma 3.1 Assume a two-armed (F, A, A)-bandit with a geometric dis­
count sequence A = (l,a,a2 , .. . ). 

If ~(F, A, An) = 0, then ~(F, A, An+d ~ o. 
Proof ~(F, A, An) = 0 implies that V(F, A, An) = A + aV(F, A, An-d 
and E(X1!F) - A = aV(F, A, An-d - aE(V((x)F, A, An-d!F)· 
Therefore, 

~(F, A, An+!) 

E(X1!F) - A + aE(V((x)F, A, An)!F) - aV(F, A, An) 

a(1 - a)V(F, A, An-d - aA 

+aE{V((x)F, A, An) - V((x)F, A, An-I)!F}. 

Let 7r* be an optimal strategy for V((x)F, A, An-I) and 7r** be a strategy 
for the ((x)F, A, An)-bandit which follows 7r* for the first n - 1 stages 
and then always select the known arm at the last stage. Then 

V((x)F, A, An) ~ W((x)F, A, An; 7r**) ~ V((x)F, A, An-d + an-1k. 
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So, 
E{V((x)F, A, An) - V((x)F, A, An-dIF} ~ o:n-lk. 

On the other hand, V(F, A, An-d ~ A + O:A + ... + o:n-2 A. Hence, 

.6.(F, A, An+d ~ 0:(1 - 0:)(1 + 0: + ... o:n-2)A - O:A + o:o:n-l A = o . 

• 
Theorem 3.1 
Assume a two-armed (F,A,A)-bandit with A = (1,0:,0:2 , .•• ). Then 

A(F, Ad :::; A(F, A2) :::; ... :::; A(F, An) :::; ... :::; A(F, A). 

Proof .6.(F, A(F, An), An) = 0 implies .6.(F, A(F, An), An+d ~ o. 
Now, .6.(F, A(F, An+1), An+1) = 0 and .6.(F, A, An+d is strictly decreas­
ing in A by Corollary 5.1.1 in Berry and Fristedt [1]. 
So A(F, An) :::; A(F, An+1). • 

Corollary 3.1 
Assume a two-armed (F,A,A)-bandit with A (1,0:,0:2, ... ). If the 
known arm becomes optimal for the (F, A, An)-bandit, then it remains 
optimal for the rest of the stages. 

Proof This is clear since the known arm is optimal if A ~ A(F, An), 
which implies that A ~ A(F, Ad for l = 1, ... , n - 1. 0 

4. A simulation example 

Consider a Bernoulli bandit. The probability of success on the un­
known (known) arm is (J (A). A is known and (J is either a or b,O < b < 
a < 1 with a prior F = pI{a} + (1 - P)I{b}. Even in such a simple case, 
an explicit solution is prohibited for general (a, b) (example 5.4.1, Berry 
and Fristedt [1]). 

Based on 5000 simulations, both the monotonicity and the conver­
gence of the finite horizon break-even values have been observed. A part 
of the result is as follows, where a = 0.8, b = 0.4,0: = 0.6, and p = 0.5. 

Horizon n 1 2 3 4 5 6 
A(F,An) 0.6000 0.6177 0.6531 0.6828 0.7088 0.7273 

Horizon n 7 8 9 10 11 12 
A(F, An) 0.7362 0.7411 0.7444 0.7463 0.7473 0.7473 
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Chapter 23 

OPTIMAL CONSUMPTION-INVEST 
-MENT DECISIONS ALLOWING FOR 
BANKRUPTCY: A BRIEF SURVEY* 

Suresh P. Sethi 
School of Management 

The University of Texas at Dallas 

Abstract This paper surveys the research on the optimal consumption and in­
vestment problem of an agent who is subject to bankruptcy that has a 
specified utility (reward or penalty). The bankruptcy utility, modelled 
by a parameter, may be the result of welfare subsidies, the agent's in­
nate ability to recover from bankruptcy, psychic costs associated with 
bankruptcy, etc. Models with nonnegative consumption, positive sub­
sistence consumption, risky assets modelled by geometric Brownian mo­
tion or semi-martingales are discussed. The paper concludes with sug­
gestions for open research problems. 

1. Introduction 
This paper surveys the research on the optimal consumption-invest­

ment problem facing a utility maximizing agent (an individual or a 
household) that is subject to bankruptcy, the utility being associated 
with consumption and bankruptcy; for an in depth study of the prob­
lem, see Sethi [29]. The problem has its beginning in the classical works 
of Phelps [22], Hakansson [6], Samuelson [28], and Merton [18]. In a 
finite-horizon discrete-time framework, Samuelson [28] showed that for 
isoelastic marginal utility functions (i.e., U'(c) = c5- 1, 8 < 1), the opti-

"This paper is a shortened version of Sethi, S. P., Optimal Consumption-Investment Decis­
ions Allowing for Bankruptcy: A Survey, in Worldwide Asset and Liability Modeling, William 
T. Ziemba and John M. Mulvey (Editors), Cambridge University Press, Cambridge, U.K., 
pp. 397-426. The research was supported in part by SSHRC Grant 410-93-042 and The 
University of Texas at Dallas. 
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mal portfolio decision is independent of wealth in each period and inde­
pendent of the consumption decision. More specifically, the portfolio is 
re-balanced at each period so that the fraction of wealth invested in the 
risky asset remains a constant. Merton [18] confirmed the result in the 
continuous-time infinite horizon case. 

A significant plateau was reached by Merton [19], who formulated 
many interesting problems in continuous time with geometric Brownian 
motions to model the uncertainties in the prices of risky assets. He chose 
the utility of consumption U(c) to belong to the HARA (Hyperbolic 
Absolute Risk Aversion) class and obtained explicit solution in the 
case when the marginal utility at zero consumption is infinite (i.e., 
U'(O) = (0). Among the important findings was the statement of the 
so-called mutual fund theorem that allows, under certain conditions, ef­
ficient separation of the decision to invest in the individual assets from 
the more macro allocational choices among classes of assets. This result 
represents a multi-period generalization of the well-known Markowitz­
Tobin mean-variance portfolio rules. 

Merton's [19, 20] analysis was erroneous in the case of HARA utility 
functions with U'(O) < 00, as identified years later by Sethi and Tak­
sar [32]. What Merton had done was to formally write the dynamic 
programming equation for the value function of the problem and pro­
vided an explicit solution of the equation. In the absence of a verification 
theorem, however, there is no guarantee that the solution obtained is the 
value function. Indeed, when U'(O) < 00, not only his solution not the 
value function, but if it were, it would also imply negative consumption 
levels at some times. Missing in Merton's formulation were an all im­
portant boundary condition that the value function should satisfy, and 
the requirement that consumption be nonnegative. Without a boundary 
condition, it is not possible to obtain a verification theorem and without 
the nonnegativity requirement, negative consumption may occur. 

A simple boundary condition specifies the value function at zero 
wealth. In addition to being mathematically expedient, the value func­
tion at zero wealth signifies the reward or penalty, or more generally 
utility, associated with bankruptcy. The value of the reward or penalty 
associated with bankruptcy will have consequences on agent's decisions. 
Lippman, McCall and Winston [16] underscore the importance of bank­
ruptcy when they write, 

"Valid inferences concerning an agent's neutrality or aversion to risk 
must necessarily emanate from a highly robust model. Failure to include 
a constraint such as bankruptcy might very well produce the maximally 
incorrect inference (italics supplied)." 

The specific value of the utility at bankruptcy depends on what is 
assumed to happen in its wake. In most modern societies, the agent 
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can count on welfare if and when he goes bankrupt. In this case, the 
value may represent the discounted expected utility of future consump­
tion stream provided by the government. In addition, as Gordon and 
Sethi [4, 5] indicate, bankruptcy may carry with it negative or posi­
tive psychic income, the former to the extent that shame attaches to 
going bankrupt or living on the dole and the latter to the extent that 
poverty may be a blessing to devoutly religious people. Mason [17] con­
sidered the case in which the agent might be re-endowed and allowed 
to restart the decision problem. Sethi and Taksar [33] consider a de­
layed recovery model of bankruptcy. Whatever the case, it is sufficient 
for mathematical purposes to assign a utility P to bankruptcy, and in­
clude P as a parameter of the problem. Karatzas, Lehoczky, Sethi, and 
Shreve [9] (KLSS hereafter) do this in their comprehensive treatment 
of the consumption-investment problem with nonnegative consumption 
requirement and bankruptcy. 

We begin our survey with the discussion of the KLSS model in the 
next section. We also indicate how it generalizes the existing results, and 
discuss its implication for the agent's risk-aversion behavior as studied 
in Presman and Sethi [23]. In Section 3, we list models that require a 
subsistence or a minimum positive consumption rate, and the impact of 
this requirement on the risk-aversion behavior of the agent. Section 4 
discusses briefly the influence of imposing borrowing and short selling 
constraints. The constraints can give rise to more complicated value 
functions than the concave ones obtained earlier. See Sethi [30] for 
detailed versions of Sections 3 and 4. Section 5 concludes with a brief 
discussion of related research and open research problems. 

2. Constant market coefficients with 
nonnegative consumption 

In this section, we shall review models that assume constant inter­
est rate, constant average mean rates of return on risky assets, and a 
variance-covariance matrix of constants. The models require nonnega­
tive consumption rates. All models reviewed here allow explicitly for 
bankruptcy. 

2.1 The KLSS model 

KLSS consider a single agent attempting to maximize total discounted 
utility from consumption over an infinite horizon. The agent begins with 
an initial wealth x and makes consumption and investment decisions over 
time, which is assumed to be continuous. The agent has his wealth in 
N + 1 distinct assets available to him. One is riskless (deterministic) with 
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a rate of return r > 0, whereas the others are risky and are modelled 
by geometric Brownian motions. More specifically, the price dynamics 
of the available assets are given by 

dPo(t) 
Po(t) 
dPi(t) 
Pi(t) 

rdt, (2.1) 

(2.2) 

where Po(t) is the price of the riskless asset and P(t) = (PI (t), P2, ... , 
PN(t)) is the vector of prices of N risky assets at time t, with given initial 
prices Po(O) and P(O). Furthermore, {Wt, t ~ O} is an N-dimensional 
standard Wiener process given on the probability space (0,.1', P), ei is 
the unit row vector with a 1 in the ith position, ai is the average rate 
of return on the ith asset, the volatility matrix D is an N x N matrix 
with L: = DDT, a positive definite variance-covariance matrix, and (T) 
denotes the transpose operation. 

The agent specifies a consumption rate Ct, t ~ 0, and an investment 
policy 1f't = (7rI(t), ... , 7rN(t)), t ~ 0, where 7ri(t) denotes the fraction of 
wealth invested in the ith investment at time t. The remaining fraction 
7ro(t) = 1- (7rI(t) + 7r2(t) + ... + 7rN(t)) is invested in the riskless asset. 
The vector 1f't is unconstrained, implying that unlimited borrowing and 
short-selling are allowed. We assume no transaction costs for buying and 
selling assets. The consumption rate must be nonnegative, i.e., 

Ct ~ 0, a.s. w, a.e. t. (2.3) 

Both C ~ {Ct, t ~ O} and IT ~ {1f't, t ~ O} must depend on the price 
vector {P(t), t ~ O} in a non-anticipative way. 

Given C and IT, it can be shown that the dynamics of the agent's 
wealth Xt, t ~ 0, satisfy the Ito stochastic differential equation 

dXt = (0 - rl)1f'; Xt dt + (rXt - Ct) dt + Xt1f'tD dWf, Xo = x, (2.4) 

where 0 = (a1, a2, ... ,aN) and 1 = (1,1, ... ,1). 
A complete formulation of the model requires some assumption con­

cerning the options available to the agent if and when his wealth reaches 
zero, since further consumption would result in negative wealth. One 
possible, and quite general, treatment is to assign a value P E (-00, 00) 
to bankruptcy and include it as a parameter of the model. 

To define the agent's objective function, one needs to specify his utility 
function of consumption. This function U defined on (0,00) is assumed 
to be strictly increasing, strictly concave, and thrice continuously differ­
entiable. Extend U to [0,00) by defining U(O) = liIIlc.j.O U(c). The agent 
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chooses C and II in order to maximize 

Vc,rr(x) ~ Ex [foTX e-f3t U(et} dt + pe-f3Tx ] , (2.5) 

where Tx = inf{tlx(t) = O} is the stopping time of bankruptcy when the 
initial wealth is x and (3 > 0 is the agent's discount rate. P = U(O) j (3 is 
equivalent to continuing the problem indefinitely after bankruptcy with 
only zero consumption, and is termed the natural payment. 

The value function is defined as, 

V(x) = {supc,rr Vc,rr(x), if x > 0, 
P, if x = o. (2.6) 

Define the nonnegative constant, = (~)(a - rl)~-l(a - rl)T and 
consider the quadratic equation ,)..2 - (r - (3 - ,) .. - r = 0 with the 
solutions ).._ < -1 and )..+ > 0 when, > o. When a = rl and (3 < r, 
define ).._ = -rj(r - (3). It is shown that V(x) is finite for every x > 0 
if 

(Xl dO 
lc U'(O)>.- < 00, 

\Ie> O. (2.7) 

Presman and Sethi [27] show that if the agent had an exponentially 
distributed random lifespan with the mortality rate ).., his problem could 
be reduced to the KLSS problem of an infinite horizon agent whose 
discount rate is f3 + )... 

2.2 The mutual fund theorem and the reduced 
model 

In order to simplify the problem, choose any a and (]' > 0 so that 

(a - r)2 
2(]'2 = " (2.8) 

and consider the "reduced" problem with a single risky asset with drift 
a and variance (]'2, and the riskless asset with the rate of return r. The 
term (a - r) is known as the risk premium and ({3 +,) the risk-adjusted 
discount rate. 

The mutual fund theorem states that, at any point in time, the agent 
will be indifferent between choosing from a linear combination of the 
above two assets or a linear combination of the original (N + 1) assets. 
It is termed the mutual fund theorem, because the single risky asset 
can be thought of as a mutual fund. If one constructs a mutual fund 
which trades continuously using a self-financing strategy to maintain 
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the proportions of the riskless and N risky assets given by the (N + 
1}-dimensional vector (1- (a - rI}2:-1IT, (a - rI}2:-1), then the 

mutual fund has mean return 0 = r + 2, and variance (J2 = 2" which 
satisfy (2.8). Moreover, if (a - rI}2:-1IT =f:. 0, then the mutual fund 
consisting only of risky stocks held with proportions (a - rI}2:-1 j(a­
rI}2:-1IT also satisfies (2.8). 

This important theorem was first stated by Merton [19] for the dy­
namic consumption-investment problem without bankruptcy considera­
tions and without a rigorous proof. The rigorous proof is supplied by 
KLSS for all values of P. The theorem generalizes the Markowitz-Tobin 
separation theorem to multiple periods. Moreover, in the special case 
when (a - rI) 2:-1 IT =f:. 0, the derived optimal portfolio policy has the 
same structure as that prescribed in the mean-variance model. 

The mutual fund theorem is based on the strict concavity of the value 
function V(x}, which, in turn, is brought about by the assumption that 
the investment vector 1t" t is unconstrained. 

In view of the mutual fund theorem, it suffices to consider the reduced 
problem with the modified wealth dynamics 

dXt = (0 - r}7ftxt dt + (rxt - Ct) dt + Xt7ft(J dWt, Xo = x, (2.9) 

in place of (2.4), where {Wt, t ~ O} is a standard Wiener process and 7ft 
denotes the fraction of the wealth invested in the risky asset. 

2.3 The HJB equation and the solution of the 
problem 

From the theory of stochastic optimal control, it is known that the 
value function V(x} must satisfy the HJB (Hamilton-Jacobi-Bellman) 
equation: 

,BV(X} 

= max [(0 - r)7fxV'(x} + (rx - c)V'(x} + -217f2(J2x2V"(x} + U(C}] , 
C~O,1l" 

x > 0, V(O} = P. (2.1O) 

Assume 0 =f:. rj see Lehoczky, Sethi, and Shreve [14] or Section 4 for the 
special case 0 = r. 

The optimal feedback policies for investment and consumption are 
respectively: . 

7f(x} -

c(x} 

(0 - r)V'(x} 
and (J2XV"(X) , 

max{U' -1 (V' (x)), O}. 

{2.11} 

(2.12) 
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When (2.11) and (2.12) are substituted in (2.1O), it results in a highly 
nonlinear differential equation, which appears to be very difficult to 
solve at first sight. However, KLSS discovered a change of variable that 
allowed them to convert the nonlinear equation into a linear second­
order differential equation in a variable that represents the inverse of 
the marginal (indirect or derived) utility of wealth given by the first 
derivative V' (x) of the value function. Since the resulting equation has 
many solutions depending on the constants of integration, one needs 
to identify the values of the constants that would yield the value func­
tion. Furthermore, when the candidate feedback policies are expressed in 
terms of the solution of the linear differential equation involving the con­
stants, KLSS discovered surprisingly that the candidate marginal utility 
of wealth over time can be written as a process satisfying a linear Ito's 
stochastic differential equation. It is then a simple matter to evaluate 
the objective function value associated with the candidate policies and 
identify the one satisfying the HJB equation. The procedure yields the 
value function in view of the additional fact that any function satisfying 
(2.10) majorizes the value function as shown in KLSS. 

Solutions for the general consumption utility functions have been ob­
tained in KLSS. Because of the space limitation, we characterize the re­
sults in Table 23.1. In this table, q denotes the probability of bankruptcy 
under the optimal policy, and P*, x, and a are given as: 

P* 
1 U'(O)1+>'- {'Xl d() 
{jU(O) - (3)..- 10 U,(())>.-' (2.13) 

(2.14) 

and a is given by the unique positive solution for c in the equation, 

Formulas for the value function V(x), modulo some transcendental 
equations, are derived in KLSS. Given V{x), the optimal feedback poli­
cies can be obtained from (2.11) and (2.12). 
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Table 23.1. Characterization of optimal consumption and bankruptcy probability 

U'(O) = 00 U'(O) < 00 

p ~ !U(O) Ct > 0, Ct = 0, if Xt E (0, xl, 
q =0. Ct > 0, if Xt E (x,oo), q = O. 

!U(O) < p ~ r Ct = 0, if Xt E (0, xl, 
t > 0, if Xt E (x, 00), 

(x when P = r.) 
Ct > a > 0, 0< q < 1, if f3 < r+" 
0< q < 1, if f3 < r +" q = 1, if f3 ~ r +,. 
q = 1, if f3 ~ r +,. 

r < P < !U(oo) 
Ct > a > 0, 
0< q < 1, if f3 < r +" 
q = 1, if f3 ~ r +,. 

!U(oo) ~ P Consume quickly to No optimal policy. 
bankruptcy. V(x) = P, x ~ 0 

2.4 Solutions for the HARA utility class 
The HARA utility functions on (O,oo) have the form: 

u 
u 

(1/8)(c + 7])6, 

log{c + 7]), 

8 < 1, 8 i= 0, 7] ~ 0, 

7] ~ 0. 

(2.16) 

(2.17) 

The log utility function (2.17) is referred to as the HARA function with 
8 = O. In these cases, the growth condition (2.7) specializes to (3 > 
r8 + ,8/(1- 8), which is weaker than (3 > r8 + ,(2 - 8)/(1- 8) imposed 
by Merton [18, condition (41)]. 

Merton [19, 20] provides explicit solutions for V(x) in these cases. His 
solutions, however, are correct only for 7] = 0, i.e., when U'(O) = 00. For 
'fJ = 0, these solutions are: 

Vo(x) 

1 [ 1 - 8 ] 1-6 6 

"8 (3 - r8 - ,8/{1 - 8) x , 

{r - (3 +,) 
(1/ (3) log (3x + (32 ' 

x ~ 0, (2.18) 

x ~ 0, (2.19) 
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for utility functions (2.16) and (2.17), respectively. By (2.11) and (2.12), 
we have the optimal investment and consumption policies, 

a-r 
7r(x) = (1 _ 8)a2 and 1 ( ,8 ) c(x) = -- f3 -r8 - -- x. 

1-8 1-8 
(2.20) 

2.5 Bankruptcy with delayed recovery 

Sethi and Taksar [33] introduced a model of nonterminal bankruptcy 
that is equivalent to the KLSS model. In this model, an agent, upon 
going bankrupt, may recover from it after a temporary but random 
sojourn in bankruptcy. Such recovery may be brought about in a number 
of ways, e.g., the individual may generate an innovative idea having 
commercial value. The rate of such recovery reflects essentially his innate 
ability or resourcefulness. However, such a recovery is not instantaneous. 
The individual must stay in the bankruptcy state for a positive amount 
of time and during this time, his consumption rate must be zero. This 
type of bankruptcy can be modelled by a continuous diffusion process 
with a delayed reflection. 

The wealth equation changes to 

dx(t) = [(a - r)7r(t)x(t) + rx(t) - c(t)]lx(t»odt 
+/-t1x(t)=o dt + x(t)7r(t)a dw(t), x(O) = x. (2.21) 

The equation shows that the recovery rate /-t can be viewed as the rate 
of wealth accumulation during the time when x{t) = OJ this permits the 
investor to leave the bankruptcy state. 

Sethi and Taksar [33] show that for every recovery rate J.L, there is 
a bankruptcy utility P that makes their model equivalent to the KLSS 
model, and vice versa. 

In addition to providing an alternative model of bankruptcy, the non­
terminal bankruptcy may be a way towards an eventual development of 
an equilibrium model that incorporates bankruptcy. Further discussion 
in this regard is deferred to Section 5. 

2.6 Analysis of the risk-aversion behavior 
While KLSS had obtained an explicit solution of the problem, the 

specification of the value function was still too complicated to examine 
the implied risk-aversion behavior in detail. The analysis was made 
possible by yet another change of variable introduced by Presman and 
Sethi [23]. They defined a variable equal to the logarithm of the inverse 
of the marginal utility of wealth. This allowed them to obtain a linear 
second-order differential equation in wealth as a function of the new 
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variable, and whose solution can be obtained in a parametric form with 
the parameter standing for the utility of bankruptcy. In other words, 
given the bankruptcy utility P, there is a unique choice of this parameter 
that makes the solution of the differential equation correspond exactly to 
the value function. Thus, unlike in KLSS, it unifies the cases in which the 
optimal solution mayor may not involve consumption at the boundary. 
Furthermore, it extends the KLSS analysis to utility functions that need 
only to be continuously differentiable rather than thrice so as assumed 
in KLSS. 

Pres man and Sethi [23] studied the Pratt-Arrow risk-aversion mea­
sures, namely the coefficient of the absolute risk aversion, 

dIn V'(x) V" (x) 
lv(x) = - dx = - V'(x) , (2.22) 

and the coefficient of the relative or proportional risk aversion, 

dIn V'(x) 
Lv(x) = - dlnx = xlv(x), (2.23) 

with respect to the value function V(x) denoting the derived utility as­
sociated with the wealth level x. Note for later discussion purposes that 
(2.22) also defines the coefficient lu(c) associated with the consumption 
utility U(c). 

Merton [19] obtained some results relating the nature of the value 
function to the nature of the utility function for a consumption assumed 
to be of HARA type. When "l = 0 (i.e., when U'(O) = (0) and P ~ 
U(O)/f3, the value function of the problem is also of HARA type with 
the same parameter as the one for the HARA utility of consumption used 
in the problem. Thus, the coefficient of absolute risk aversion decreases 
with wealth, while that of relative risk aversion is constant with value 
(1 - 0). 

Merton's results obtained for the HARA case are not correct for "l > 0 
or P > U(O)/f3. In these cases, Presman and Sethi [23] show that the 
agent's value function is no longer ofHARA type; while Merton [21] rec­
ognizes the errors in Merton [19] as pointed out by Sethi and Taksar [32], 
he does not update the risk-aversion implications of the corrected solu­
tions. 

With regards to an agent's relative risk aversion, first we note that 
L~ > 0 for U(c) specified in (2.16) and (2.17) with "l > O. The 
agent's relative risk aversion increases with wealth provided "l > 0 or 
P > U(O)/f3. In other words, while not of HARA type, the value func­
tion inherits the qualitative behavior from the HARA utility of con­
sumption used in the problem. However, for"l > 0 and P ~ U(O)/f3, 
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the inheritance holds only at higher wealth levels, while at lower wealth 
levels, the agent's relative risk aversion remains constant. 

The agent's absolute risk aversion behavior is more complicated for 
'TJ > 0 or P > U(O)/(3. If 8 is sufficiently large, for which it is necessary 
that (3 + 'Y - r > 0, then absolute risk aversion decreases with wealth. 
For smaller values of 8 and (3 + 'Y - r 2 0 however, the absolute risk 
aversion decreases with wealth if the bankruptcy payment is sufficiently 
low; otherwise the risk aversion increases at lower levels of wealth, while 
it decreases at higher levels of wealth. Furthermore, if (3+'Y-r < 0, then 
for every 8 and every P > U(O)/(3, the absolute risk aversion increases 
at lower levels of wealth, while it decreases at higher levels of wealth. 

From the above discussion, one may draw the following general con­
clusion regarding the risk aversion behavior in the HARA case with 
'TJ > o. 

At higher wealth levels, the agent's absolute (relative) risk-aversion 
decreases (increases) with wealth. This qualitative behavior at high 
wealth levels is inherited from the agent's HARA type consumption 
utility, as the agents seem quite immune from the bankruptcy payment 
parameter P. Of course, what is considered to be a high wealth level 
itself may depend on P. 

At lower wealth levels, the agent is no longer immune from the amount 
of payment at bankruptcy. His behavior at these wealth levels is some­
what complicated, and it results from the interaction of his consumption 
utility, the bankruptcy payment, and the relationship of his risk-adjusted 
discount and the risk-free rate of return; see Presman and Sethi [23] for 
details. 

To describe the risk-aversion behavior with general concave utility 
functions, the situation is far more complex. The most surprising obser­
vation is that while the sign of the derivative of the coefficient of local 
risk-aversion depends on the entire utility function, it is nevertheless 
explicitly independent of U" and U'" or even their existence. Both the 
absolute and relative risk aversions decrease as the bankruptcy payment 
P increases. Also derived for all values of P are some necessary and suf­
ficient conditions for the absolute risk aversion to be decreasing and the 
relative risk aversion to be increasing as wealth increases. Furthermore, 
the relative risk aversion increases with wealth in the neighborhood of 
zero wealth. Moreover, if there exists an interval of zero consumption 
(which happens when U(O)/(3 ~ P < P*), then the relative risk aver­
sion increases with wealth in this intervaL In the neighborhood of zero 
wealth and in the interval of zero consumption, the absolute risk aver­
sion increases (decreases) with wealth accordingly as (3 + 'Y - r < 0(> 0) 
for P < P*. 



382 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

Presman and Sethi [23] also show that if f3 + 'Y - r ~ 0, then either the 
absolute risk aversion increases with wealth for all P, or for each wealth 
level there exists a bankruptcy payment P{x} such that at x the risk 
aversion is decreasing for payments smaller than P{x} and increasing 
for payments larger than P{x}. 

Finally, contrary to the intuitive belief that the absolute risk aversion 
is non-increasing as wealth approaches infinity, the limiting behavior at 
infinity is much more complex. 

3. Positive subsistence consumption 

Sethi, Taksar, and Presman [35] provided an explicit specification of 
the optimal policies in a general consumption-investment problem of a 
single agent with subsistence consumption and bankruptcy. In doing so, 
they used the methods developed in KLSS and Presman and Sethi [23]. 
See also Presman and Sethi [24, 25, 26]. 

Cadenillas and Sethi [1] introduce random market parameters in the 
models of KLSS and Sethi, Taksar and Presman [35]; see also Karatzas 
[8]. Thus, their model also extends the models of Karatzas, Lehoczky, 
and Shreve [10] and Cox and Huang [2] to allow for explicit consideration 
of bankruptcy. 

4. Borrowing and short selling constraints 

In this section we briefly discuss models with constrained borrowing 
and short-selling. These constraints give rise to value functions that 
may not be concave. Observe that in regions where value functions 
are convex, the agent will put all his investment in the riskiest asset 
available. 

The model developed by Lehoczky, Sethi, and Shreve [14] can be re­
lated to the model of Sethi, Taksar and Presman [35] as follows. Impose 
an additional constraint that disallows short-selling, i.e., 0 ~ 7rt ~ 1, and 
set o! = r. While 0 ~ 7rt ~ 1 appears to permit no borrowing, a reformu­
lation of the problem transforms it into a model that allows unlimited 
borrowing. Furthermore, O! = r is imposed to simplify the solution and 
to focus entirely on the distortions caused by consumption constraints 
and bankruptcy, and thus eliminate other factors which might induce 
risk-taking behavior. See also Sethi, Gordon and Ingham [31]. 

Lehoczky, Sethi, and Shreve [15] have generalized their 1983 model 
by using the wealth dynamics, 

{4.1} 
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where St is a supermartingale with So- = 0, -1 :::; t < 0 and satisfying 
conditions DL. The condition allows decomposition of St into a mar­
tingale Mt and a cumulative consumption process Ct; see Karatzas and 
Shreve [13, pp. 24-25]. 

5. Open research problems and concluding 
remarks 

We have reviewed the literature on consumption-investment problems 
that explicitly incorporate bankruptcy. This concluding section briefly 
refers to related research on consumption-investment problems that does 
not deal with the bankruptcy issue. This suggests some open research 
problems; see also Sethi [29, Chapter 16]. 

In all the papers discussed in this survey, there is no cost of buy­
ing and selling assets. Davis and Norman [3] and Shreve and Soner [34] 
have considered proportional transition costs in consumption-investment 
models with two assets and nonnegative consumption constraint. It 
would be interesting to incorporate a positive subsistence level and a 
bankruptcy utility in these models. Another extension would be to in­
clude fixed transaction costs; such a cost has not been considered in the 
consumption-investment context. 

Karatzas, Lehoczky, Shreve, and Xu [12] and He and Pearson [7] have 
considered incomplete markets. One would like to incorporate such mar­
kets in consumption-investment models with bankruptcy and a subsis­
tence requirement. 

Finally, Karatzas, Lehoczky, and Shreve [11] have developed equilib­
rium models with many agents consuming and trading securities with 
one another over time. In these models, consumption utilities are chosen 
so that agents do not go bankrupt. This way if one begins with n agents, 
one stays with n agents throughout the horizon. Thus, there is no easy 
way to see how these models can be extended to allow for bankruptcy. 
Sethi and Taksar [33] introduced a concept of nonterminal bankruptcy 
as discussed in Section 2.5. This allows agents to stay in the system and 
may facilitate the eventual development of an equilibrium model with 
bankruptcy. Several important open research problems flow from these 
considerations. 

The Sethi-Taksar nonterminal bankruptcy model needs to be extended 
to allow for random coefficients and subsistence consumption as in Cade­
nillas and Sethi [1]. It is not clear how to prove the equivalence between 
the terminal and nonterminal bankruptcies in the more general setup. 

The Cadenillas-Sethi model treats an almost surely finite horizon 
agent. In addition, it deals with only nearly optimal policies. One needs 
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to extend the model to allow for infinite horizon and to obtain optimal 
policies. If this problem is solved, and if it can be shown to be equivalent 
to a model with nonterminal bankruptcy as mentioned above, then we 
would have a single agent model as a starting point in the development 
of an equilibrium model with bankruptcy. 

Another important consideration is how to provide for the bankruptcy 
value P if it consists of welfare or the subsistence consumption while in 
the state of bankruptcy. This would call for a different kind of agent, 
called the government, who must collect taxes and provide for welfare 
to agents who are in the bankruptcy state. 

We hope that work will be carried out in addressing the open research 
problems described above, and that a suitable equilibrium model that 
allow for bankruptcy and subsistence consumption will eventually be 
developed. 
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1. Introduction 

In financial economics, it is critically important to price options and 
derive the associated hedging strategies. Many results have been ob­
tained in the options pricing, however, they only ascertain the existence 
of the hedging strategies and barely deal with how to construct them. 
Asian options are the common claims which depend on the mean prices 
of the basic assets in their life. Therefore, it is almost impossible for in­
vestors to change their options at will by manipulating the assets' prices 
in the near maturity date. As a result, Asian options avoid flaws of the 
European options in this respect. Asian options fall into two types, the 
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arithmetic type and the geometric type. The problems about their pric­
ing are basically resolved [3, 6, 7], however, we have not found studies on 
constructing their hedging strategies. This paper establishes a hedging 
strategy for geometric Asian options by means of the generalized Clark 
formula. The strategy is uncomplicated and easy to operate. For the 
case of arithmetic Asian option, we refer to article [8]. 

2. The model and conclusions 
Consider a complete probability space (O, F, P) and a standard 1-

dimensional Brownian motion W={W{t)), 0 ::; t ::; T defined on it. We 
shall denote by {Ft } the P-augmentation of the natural filtration 

Ft = a{W{s); 0::; s ::; t), 0::; t ::; T. 

There are two assets on the market. One of the assets is risk-free bond 
with a constant deterministic interest rate r. The other is risky security 
(stock) on the space (O, F, P) with price process S = (S{t)), 0 :::; t :::; T. 
The dynamics of the price process is determined by SDE 

dS{t) = JJS{t)dt + as{t)dW{t), S{O) = So, 0::; t ::; T. (2.1) 

According to the Girsanov theorem we may assume JJ = r without loss 
of generality. Consequently Equation (2.1) can be equivalently to the 
following equation, 

S{t) = So exp {aW(t) - a2tj2 + rt}, 0::; t ::; T, (2.2) 

where the constants r, a, T > o. 
Denote the investor's wealth and the amount invested in the stock at 

time t by V{t) and 7r(t) respectively. Assume the strategy to be self­
financed, then the amount invested in the bond is V{t) -7r{t) . It is easy 
to infer the process V = (V (t)) satisfies 

dV{t) = rV{t) dt + 7r{t)a dW{t), V(O) = Yo, 0::; t ::; T. (2.3) 

Definition 2.1 A portfolio process 7r = {7r{t), Ft , 0 :::; t :::; T} is a mea­
surable, adapted process for which 

loT 7r2{t) dt < 00 a.s. (2.4) 

Condition (2.4) ensures SDE (2.3) has a unique strong solution, which 
satisfies 

V{t)exp{-rt} = Vo + lot exp{-ru}7r{u)adW{u), 0:::; t::; T. (2.5) 
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The payoff at maturity from a geometric Asian option is 

_ [ { JoT log S (t) dt} - 1 + fT - exp T q , (2.6) 

where the constant q > O. The hedging strategy for this option refers 
to a self-financing portfolio satisfying admissible condition [1], by which 
the investor's wealth determined in Equation (2.5) at time T is equal to 
fT almost surely. Assuming that there exists no arbitrage opportunity, 
the article [1] proved 

Vo = E[fT exp{ -rt}]. (2.7) 

The value Vo is the fair price of the option fr at time 0 which is not 
difficult to calculate [7]. We set that 

lot (r a2/2) T2 
A = W(u) du + W(t)(T - t) + ~----'---

o 2a 

T log(q/ so) 
a 

and <I> ( .) is the standard normal distribution function. The main result 
of this paper is as follows. 

Theorem 2.1 The hedging strategy of option fT is that the amount 
invested in the stock satisfies 

() V(t)(T - t) qexp{ -r(T - t)}<I> (V3A/(T - t)3/2) (T - t) 
1[' t = T + T . 

(2.8) 

Consequently, the amount invested in the bond is V(t) - 1['(t) , where 
process V = (V(t)), 0 :::; t :::; T is the value process associated with the 
option, i.e., the investor's wealth process and 

V(O) = Vo = E [fTexp{ -rT}] 

Remark 2.1 When we calculate A, according to identity (2.2), value 
J~ W(u) du is equal to 

rt log(s(u)/so.) + a2u/2 - ru du = 4 J~ log(s(u)/so) du + (a2 - 2r) t2 

Jo a (4a) 

Remark 2.2 V(t) = E(fTexp{-r(T-t)}lFd, in addition, the amount 
invested in the stock is always positive. 
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3. Proof of theorem 2.2 

Lemma 3.1 E({J.) < 00 

Proof It is enough to prove E [exp {2 J[ log S(t) dt/T}] < 00. Con­

sidering that the sample paths of the process S = (S(t)) are continu­
ous almost surely, for the partition II = {to, tI, ... , tn} of [0, T], with 
0= to < tl < ... < tn = T, we conclude that 

where An = maxl::;k::;n Itk - tk-ll is the mesh of the partition. Because 
the arithmetic mean value is greater than or equal to the geometric mean 
value, we have 

{ J[ log S(t) dt} JoT S(t) dt 
O<exp < ""--"----- T - T a.s. 

then the lemma follows from (2.2) and the Holder inequality and Fubini 
theorem. • 

To introduce the generalized Clark formula, we first define Banach 
space Dp,l and its gradient operator D [2, 4]. Consider a smooth func­
tional, i.e., a function F : n ~ R of the form F(w) = f(W(tl,W), ... 
, W(tn, w)) for some n E N, (tI, ... , tn) E [0, T]n and some element f in 
the space Cb(Rn ) ofthe functions with continuous and bounded deriva­
tives of every order. The gradient DF(w) of the smooth functional F is 
defined as the L2([0, T]) - valued random variable showed as follows: 

n a 
DtF(w) = 2: ax )(W(tl,W), ... , W(tn, w))l[o,tj] (t), 0 ~ t ~ T. 

j=l J 

For every p ~ 1, introduce the norm II • IIp,l on the set S of smooth 
functionals by the formula 
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where II-II denote the L2([0, T]) norm. We denote by Dp,l the Banach 
space which is the completion of 8 under II - lip,!. 

Lemma 3.2 For every F E DI,I, we have 

F = E(F) + loT E(DtFIFt} dW(t) a.s. (3.1) 

Equation (3.1) is the generalized Clark formula whose proof can be found 
in article [2J. 

Lemma 3.3 LetF = (FI, ... ,Fk) E (DI,t}k. Letip E CI(Rk) be a 
real-valued function and assume that 

E {lip(F)1 + IlL :: (F)DFill} < 00. 

Then ip(F) E DI,1 and Dip (F) = L(8ip/8xd(F)DFi. 

For its proof, we refer to article [5J. 

Lemma 3.4 Random Variable J~ W(u) du (t > 0) is normally dis­
tributed with mean zero and variance t3 /3. 

Proof Applying Ito's rule, we obtain 

d(uW(u)) = W(u) du + udW(u). 

It is easy to derive 

lot W(u) du = lot (t - u) dW(u). 

The lemma is proved. 

Proof of Theorem 2.1. 
Let 

{ 
JOT [log 80 + aW(t) - a2t/2 + rtJ dt} 

gT = exp T - q, and 

function ip(x) = x+, then iT = ip(gT). Obviously, we have 

[
J[ (log 80 + aW(u) - a2u/2 + ru) dU]_ (T - t)a 

Dt T - T . 

• 
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Consequently, the proof of Lemma 3.1 and of Lemma 3.3 imply 9T E 

DI,}' and Dt9T = 9T(T - t)a/T + qa(T - t)/T, 0 ~ t ~ T. Define Coo 
function p(x) = CI(o,2)(x) exp{I/[(x - 1)2 - In, where C is constant 
satisfying JR p(x) dx = 1. Let Pn(x) = np(nx), <I>n(x) = JR Pn(x -
y)<I>(y) dy. Thus, we have <I>n(x) = JR p(z)<I>(x - z/n) dz, and 0 ~ 
<I>n(x) ~ <I>(x), liffin-+oo <I>n(x) = <I>(x), 0 ~ <I>~(x) ~ 1, limn -+oo <I>~(x) = 
D-<I>(x) (left-derivative). So we conclude 0 ~ <I>n(9T) ~ <I>(9T) = IT, 
1<I>~(9T)Dt9TI ~ ITa(T-t)/T+qa(T-t)/T. It follows from Lemma 3.1 
and Lemma 3.3 that <I>n(9T) E DI,1 and Dt<I>n(9T) = <I>~(9T)Dt9T' 
o ~ t ~ T. We see that liffin-+oo <I>n(9T) = IT a.s., liffin-+oo Dt<I>n(9T) = 
D-<I>(9T )Dt9T a.s .. Therefore, 

by dominated convergence theorem. Because D is a closed operator on 
DI,I, we establish IT E DI,1 and 

DdT = D-<I>(9T)Dt9T 
a(JT + D-<I>(9T)q)(T - t) 

= 
T 

o ~ t ~ T. (3.2) 

By virtue of identity (2.5) and V(T) = IT, the hedging strategy 7r sat­
isfies 

ITexp{-rT} = E(JTexp{-rT}) + loT exp{-ru}7r{u}adW{u} {3.3} 

and corresponding to this strategy, the wealth process, i.e., the value 
process of option IT [1], V satisfies 

V{t)exp{-rt} = E(JTexp{-rT}IFt), o ~ t ~ T. (3.4) 

On the other hand, since IT exp{ -rT} E DI,I, it follows from Lemma 3.2 
that 

IT exp{ -rT} = E (JT exp{ -rT}) + loT E [Dt (fTexp{ -rT} ) 1Ft] dW (t). 

(3.5) 
Comparing {3.3} with {3.5}, we obtain 

7r{t) = exp{rt}E[Dt(fTexp{ -rT} }/Ft] 
a 

a.s. (3.6) 
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Applying (3.2) and (3.4), we have then 

E[Dt(fTexp{ -rT} )\Ft] 
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(J(T - t) [E(fTexp{ -rT}\Fd + qexp{ -rT}E(D-<P(gT)\Ft)] 
T 

(J(T - t) [V(t) exp{ -rt} + qexp{ -rT}P(gT > O\Ft)] 
T 

By solving inequalities and utilizing properties of Brownian motion and 
Lemma 3.4, it can be concluded that 

P (foT-t W(u)du < A) 
<P ( V3A/ (T - t)3/2) . (3.7) 

By summing up identities (3.6), (3.6) and (3.7), it is easy to derive (2.8). 
Because the hedging strategy is self-financed, the remaining part of the 
theorem is obvious. • 

References 

[1] Karatzas, I., Shreve, S.E., 1988. Brownian motion and stochastic 
calculus. Springer, New York. 

[2] Karatzas, 1., Ocone, D.l., Li, J., 1991. An extension of Clark's for­
mula. Stochastics and stochastic reports 37,127-131. 

[3] Milevsky, M.A., Posner, S.E., 1998. Asian options, the sum of log­
normals, and the reciprocal Gama distribution. Journal of Financial 
and Quantitative Analysis. 33, 409-422. 

[4] Nualart , D., Pardoux, E., 1988. Stochastic calculus with anticipat­
ing integrands. Probability Theory and Related Fields 78, 535-581. 

[5] Ocone, D.L., Karatzas, I., 1991. A generalized Clark representa­
tion formula, with application to optimal portfolios, Stochastics and 
Stochastic Reports 34, 187-220. 

[6] Rogers, L.C.G., Shi,Z., 1995. The value of an Asian option. Journal 
of Applied Probability 32, 1077-1088. 

[7] Wilmott, P., Dewynne, j., Howison, S., 1993. Option pric­
ing:mathematical models and computation. Oxford Financial 
Press,UK. 

[8] Yang, Z.J., Zou, J.Z., Hou, Z.T., The hedging strategy of arith­
metic Asian option. Journal of Operations Research, to appear. (in 
Chinese). 



Chapter 25 

THE PRICING OF OPTIONS TO 
EXCHANGE ONE ASSET FOR ANOTHER 

Chao Chen 
Research Center of Mathematical Finance 

Changsha Railway University, 

Changsha 410075, China 

Jiezhong Zou 
Research Center of Mathematical Finance 

Changsha Railway University, 

Changsha 410075, China 

Zhenting Rou 
Research Center of Mathematical Finance 

Changsha Railway University, 

Changsha 410075, China 

Abstract This paper deals with the pricing of options to exchange one asset for 
another. Under the assumption that the asset price processes are jump­
diffusion processes, it deduces the partial equation that the option prices 
must satisfy, and then obtains the pricing formula of options. 
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1. Introduction 
Most of the recent literature on continuous finance has been based 

on an assumption of continuous price processes. The validity of the 
assumption depends on whether or not the change of the asset price 
satisfies a kind of local Markov property, i.e., in a short interval of time, 
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the asset price can only change by a small amount. In fact event studies 
suggest that certain public announcements of information are associated 
with jumps in asset prices. 

Marhrabe obtains the pricing formula of options to exchange one asset 
for another when the price processes of two assets are geometric Brow­
nian motions. This paper deals with the pricing of options to exchange 
one asset for another in the more-general case when the price processes 
are jump-diffusion processes. 

2. The financial market 

We suppose that there are three assets being traded continuously. One 
of these is a risk-free asset, with price so{t) given by 

dso = rdt 
So 

so{O) = 1 (2.1) 

where r is the instantaneous rate of interest. The other two assets are 
risky assets, subject to the uncertainty in the market. The price of the 
ith asset Si{t) (i = 1,2) is governed by a stochastic differential equation 

i = 1,2 (2.2) 

where Ui (i = 1,2) is the instantaneous expected return on the ith asset; 
IJr(i = 1,2) is the instantaneous variance of the return of the ith asset, 
conditional on no arrivals of important new information; Bi{t) (i = 1,2) 
are standard Brownian motions, with a correlation coefficient p; N (t) is 
an Possion process with parameter A; ki = c{xd, where Xi is the random 
variable percentage change in the ith asset price if the jump occurs; and 
c is the expectation operator over the random variable Xi. 

We suppose that Ui, ki' IJi and A are constants (i=1,2), the solution 
to the equation (2.2) is 

2 ) N(t) 

Si(t) = s,(O)exp ( ( U; - AI.; - "; ) t+ ",Bi(t) }l (1 + Xij) (2.3) 

where Xij (i = 1,2,) are independent and identical distributions. 

3. The option price dynamics 
Suppose that the option price, w, can be written as a twice - contin­

uously differentiable function of the assets Sl, S2 and time t: namely, 
w{t) = F{Sl' S2, t). The option return dynamics can be written in a 
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similar form as 

dw 
- = (/-Lw - Akw)dt + O'lwdBl + 0'2wdB2 + xwdN (3.1) 
w 

where /-Lw is the instantaneous expected return on the option; (0'1w,0'2w) 
is the volatility; kw = c(xw), where Xw is the random variable percentage 
change in the option price if a jump occurs. 

Using Ito lemma for the continuous part and analogous lemma for the 
jump part, we have 

[ 1 2 2 1 2 2 
/-Lw = 20'18l Fn + 20'282F22 + PO'l0'28l82F 12 

Xw = 

+(/-Ll - Akt}8l F l + (/-L2 - Ak2)82F2 + Ft 

+Ac(F(8l (1 + Xl), 82(1 + X2), t) - F(8l' 82, t))] 

/F(8l,82,t) 

0'18lFt{8l, 82, t) 
F(8l' 82, t) 

0'282F2(8l, 82, t) 
F(8l' 82, t) 

F(8l (1 + xt), 82(1 + X2), t) - F(8l' 82, t) 
F(8l' 82, t) 

where subscripts on F(81' 82, t) denote partial derivatives. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Consider a portfolio strategy which holds the assets 81, 82 and the 
option w in proportions 7rI, 7r2 and 7r3, where 7rl + 7r2 + 7r3 = 1. If p is 
the value of the portfolio, then the return dynamics on the portfolio can 
be written as 

dp 
- = (/-Lp - Akp)dt + O'lpdBl + 0'2pdB2 + xpdN (3.6) 
p 

where /-Lp is the instantaneous expected return on the portfolio; (0'1p,0'2p) 
is the volatility; kp = E(Xp), where xp is the random variable percentage 
change in the portfolio value if the jump occurs. 

From (2.2) and (3.1), we have that 

/-Lp = 7rl/-Ll + 7r2/-L2 + 7r3/-Lw 

O'lp 7rlO'l + 7r30'2w 

0'2p 7r20'2 + 7r30'2w 

xp = 7rlXl + 7r2X2 

[F(8l (1 + Xl)' 82(1 + X2), t) - F(8l' 82, t)] 
+7r3~~~--~~~--~~----~~~ 

F(8I, 82, t) 

(3.7) 
(3.8) 

(3.9) 

(3.10) 
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We select 71"1 = 7I"i, 71"2 = 71"2 and 71"3 = 71"3 , so that 7I"i 0'1 + 7I"30'2w = 0 
and 71"20'2 + 7I"30'2w = O. Let p* denote the value of the portfolio, then 
from (3.6), we have that 

d * ~ = (11* - >"k*)dt + x*dN p* rp p p 
(3.11) 

We suppose that the jump component of the asset's return represent 
'non-systematic' risk. If the Capital Asset Pricing Model holds, then the 
expected return on the portfolio must equal the riskless rate r. Therefore 
It; = r. Then, we have that 

{ 
7I"i It 1 + 71"2 1t2 + 71"3 Itw = r 
7I"iO'l + 7I"30'1w = 0 
71"20'2 + 7I"30'2w = 0 

(3.12) 

But, (3.12), (3.2)-(3.5), and 7I"i + 71"2 + 71"3 = 1 imply that F must satisfy 
the following differential equation 

1 2 2 1 2 2 
2"O'lSlFll + 2"0'2S2F22 + pO'tO'2S1S2F12 

+(r - >..kt}SlFl + (r - >..k2)S2F2 - rF + Ft 

+>..c:[F(st{l + xt), s2(1 + X2), t) - F(Sl' S2, t))] = 0 (3.13) 

If >.. = 0 i.e., if there are no jumps, then F must satisfy 

122 122 
2"O'lSlFll + 2"0'2 S2F22 + PO'tO'2S1S2F12 

+rslFl + rS2F2 - r F + Ft = 0 (3.14) 

4. The option pricing formula 

Let F(Sl' S2, t) be the value of European call option to exchange one 
asset for another, then F(Sl' S2, t) satisfies equation(3.13), and subject 
to the boundary conditions 

F(Sl' 0, t) 
F(sl, S2, T) 

where T is the expiration time. 

o 
max{s2 - Sl,O} 

(4.1) 

(4.2) 

Define H(sl, S2, t) to be the pricing formula of options to exchange 
one asset for another for the no-jump case. Then H will satisfy equa­
tion (3.14) subject to the boundary conditions (4.1) and (4.2). From 
Marhrabe's paper, H can be written as 

(4.3) 
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where 

where 

Theorem 4.1 Suppose F{81' 82, t) is the value of European call option 
to exchange one asset for another, then 

where en is the expected operation over TI,i=1(1+X1j) and TI?=1(1+X2j). 

5. Proof of the theorem 
Let 

Pn{t) = 
e-A(T-t) (A(T _ t))n 

n! 
n 

Vn - S1 IT (1 + X1j)e- Ak1 (T-t) , and 
j=1 

n 

Un 82 IT (1 + X2j)e- Ak2(T-t). 

j=1 
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Then 

00 

SI F l LPn{t)cn{vnHt}, (5.1) 
n=O 
00 

S~Fll = LPn{t)cn{V~Hll}' (5.2) 
n=O 
00 

S2 F 2 LPn{t)cn{unH2}, (5.3) 
n=O 

00 

S~F22 LPn{t)cn{u;H22 }, (5.4) 
n=O 

00 

S1 S2F 12 = L Pn{t)cn {VnUnHI2 }, (5.5) 
n=O 

and 

00 00 

n=O n=O 
00 

= )'F + )'kl sl F I + )'k2s2F2 + LPn{t)cn{Ht} 
n=O 

00 

-). L Pm {t)cm+l {H(vm+l, Um+l, t)} (5.6) 
m=O 

C(l+xI),(l+x2){F{st{1 + xt), s2{1 + X2), t)} 

- '(1+,,),(1+.,) [t. Po (t),. {H( v.(1 + xll, Un (1 + X2), t)} 1 
00 

- LPn{t)cn+l {H(Vn+b Un+l' t)} (5.7) 
n=O 
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From(5.1}-(5.7}, we have that 

122 122 () } '2O'lSlFll + '20'2S2F22 + PO'l0'2S1S2F12 + r - >'k1 SlF1 + (r - >'k2 S2F2 

-rF+Ft 

~ {I 2 2 1 2 2 - L..JPn(t}cn -0'1 VnHll + -0'2unH22 + PO'l0'2VnunH12 + rvnHl 
n=O 2 2 

+runH2 - rH + Ht } + >'F 

00 

->. L Pm (t)cm+1 {H(Vm+b Um+1, t}} 
m=O 

~ {I 2 2 1 2 2 ;;:oPn(t}cn '20'1 VnHll + '20'2unH22 + PO'l0'2VnunH12 + rvnHl 

+runH2 - r H + Ht } - >.c[F(Sl (1 + Xl), s2(1 + X2}, t}] (5.8) 

because H satisfies equation (3.14) and therefore 

1 2 2 1 2 2 
'20'1 VnHll + '20'2unH22 + PO'l0'2VnunH 12 + rvnHl + runH2 - r H + Ht = 0 

for each n. It follows immediately from (5.8) that F(Sl' S2, t} satis­
fies equation (3.13). S2 = 0 implies that Un = 0 for each n. Further­
more, from {4.3} H{vn, 0, t} = o. Therefore, F{Sl' 0, t} = 0 which satisfies 
boundary condition {4.1}. 

cn{H{vn, Un, T}} = cn{max{un - Vn, O}} ~ cn{un} = s2{1 + k2}n {5.9} 

Therefore, from {5.9} 

00 

lim ~ Pn{t}cn{H{vn, Un, t}} 
t-+T L..J 

n=l 

r 00 s2({1 + k2}>.{T - t}}ne-A(T-t) 
< t~~L n! 

n=l 

lim S2e-A(T-t) (e(1+k2)A(T-t) - I} 
t-+T 
o {5.1O} 

lim [Po{t}co{H{vo, Uo, t}] 
t-+T 
max{s2-s1,0} {5.11} 

therefore F{Sb S2, t} satisfies boundary condition {4.2}. • 
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wealth exceeding a given value at some finite stage T. Our model is 
different from traditional portfolio models in three aspects: Firstly, the 
model is based on discrete time, that is, the investor makes decisions at 
discrete time points and does not change his policy at any other moment. 
Secondly, only finitely many time stages are considered. Finally, the 
criterion is probabilistic which is different from the usual expectation 
criterion. 

Keywords: Portfolio decision, probability criterion, investment decision. 

AMS 1991 Subject Classification: 90A09,90C47 

1. Introduction 
In this paper we consider a single agent, discrete-time multiperiod 

consumption investment decision problem with a special minimum risk 
criterion. The portfolio consists of two kinds of assets, one low-yield 
asset is "risk free" (we call it a "bond"), and the other higher-yield asset 
is "risky" (we call it a "stock"). 

We suppose that the investor's wealth and consumption at stage t are 
denoted by X t and Ct respectively, with the initial wealth at stage zero 
denoted by x. Further, we assume that the investor has a given target 
value which he hopes his wealth should attain by stage T. 

At stages t (t = 0,1, ... ,T - 1) the investor consumes a part of the 
wealth Ct (ct > 0). If at any time t, his wealth X t cannot cover the 
consumption Ct, he is ruined and loses the opportunity to invest at the 
next stage. Otherwise, he distributes the remaining wealth into two 
parts. One part is the amount of the bond asset and the other part is 
the amount of the stock asset. Let (}t denote the fraction allocated to 
the stock asset at stage t (0 ::; (}t ::; 1). In this paper, we suppose that 
borrowing and short-selling is not allowed which means 0 ::; (}t ::; 1. 

The objective is to maximize the probability that the investor does not 
become ruined during the finite horizon and, at the same time, that his 
wealth at stage T exceeds the given target level I. We call the latter the 
target-survival probability and we call this problem, the target-survival 
problem. 

As we know, Markowitz's mean-variance and Merton's Expected util­
ity criteria are widely applied in portfolio selection problems. For in­
stance, see Markowitz [13], Merton [14]. In recent years, there are many 
other authors continuing to do research work in this field (eg., [10], [11], 
[12]). In fact, the expectation criterion is insufficient to characterize the 
variability-risk features of dynamic portfolio selection (see [15], [16], [17] 
and [19]). 
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We assume that investors are interested in an objective that steers 
their wealth towards a given profit level (target) with maximal prob­
ability, over a finite and specified horizon. We also assume that an 
investor prefers to make decisions only at discrete time points (eg., once 
a month, week or day). His aim is to reach a given level by a given time. 
Intuitively, under our maximization of the target-survival probability, 
the decision made by the investor depends not only on system's state 
(his wealth) but also on the target value. By introducing the target into 
the description of the investor's state, we formulate the risk minimizing 
model. This formulation created a suitably constructed Markov Deci­
sion Process with target-percentile criterion, in the sense of [18], [19] and 
[6]. We derive a number of classical dynamic programming properties 
that our target-survival problem possesses. This sets the stage for future 
algorithmic developments. 

2. Description of the model 

2.1 Classical continuous time model 

We first consider a classical continuous-time model of stock portfolio 
selection, sometimes referred to as Merton's portfolio problem [14]. The 
portfolio consists of two assets: one a "risk free" asset (called a bond) 
and the other "risky" asset (called a stock). The price bs per share for 
the bond changes in time according to dbs = absds while the price Ps 
of the stock changes in time according to dps = Ps (ads + adWs). Here 
a, a, a are constants with a > a, a > 0 and Ws is a standard one­
dimensional Brownian motion defined on a complete probability space 
(0, F, P). The agent's wealth Xs at time s is governed by the stochastic 
differential equation 

where 0 < s < T, Os is the fraction of wealth invested in the stock at 
time sand Cs ~ 0 is the consumption rate. Assume that {cs , s ~ O} 

satisfies J[ O;ds < +00, JOT csds < +00. 
We also assume that the investor observes his wealth, X t at time 

s = t, and that at that time he also selects the functions representing 
his current consumption rate Cs ~ 0 and the fraction Os of his wealth 
that he allocates into the risky investment with the remaining fraction 
(1- Os) allocated into the safe one; throughout the time interval [t, t+ 1]. 
Then the investor's wealth Xs satisfies the Ito Stochastic Differential 
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Equation: 

dXs (I - Os)Xsa ds + OsXs{a ds + a dWs) - Cs ds, 

t ~ s ~ t + 1, t E [0, T]. (2.1) 

If Xt = Xt, then the explicit solution of the stochastic differential 
equation (2.1) has the form (to see [12]): 

Xt+! = { exp ([HI [a + Os{a - a) _ ~2 0;] ds + a2 [HI OS dWs) } x 

{ Xt - [HI (exp [-is [a + Ou (a _ a) _ ~2 0;] dU]) Cs ds } 

(2.2) 

2.2 Discrete time investment and consumption 
model 

In reality, most investor's decision making processes are discrete. That 
is, an investor observes the price of a bond, a stock and his wealth 
only at discrete points of time. Similarly, we could assume that he 
makes consumption and allocation decisions only at those times. More 
precisely, our decision-maker (ie., investor) observes his wealth only at 
t = nh and we define Xn~Xnh for each n = 0,1,2, ... ). We also define 
a corresponding pair of decision variables an = (On, en) that will remain 
constant during [nh, (n + l)h). Without the loss of generality, we let 
h = 1. Now, given Xn = x, from the equation (2.2), we have 

Xn+! = p{On)' eU2 {(8n )(Xn - en' (3{On)) , 

for n = 0, 1,2, ... ), where the quantities 

o{On) = a + On {a - a) - a202/2, 

p{On) = e6(8n ) , 
(3{On) (1 - e-6(8n )) /o{On), 

e{On) = in+! On n dW{u) "" N{O, O~) 

are obtained from the natural discretization of (2.2). 

(2.3) 

As mentioned in the Introduction, our goal in this paper is to find a 
policy which maximizes the probability that the wealth reaches a spec­
ified target value at stage n = N. In the following sections we show 
how this goal can be attained with the help of a discrete time Markov 
Decision Process (MDP, for short) with a probability criterion. 
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2.3 MDP model with probability criterion. 
2.3.1 Standard Markov decision model. 

A discrete-time MDP is a four tuple, 

fo = (X,A,Q,r), 

where X = [0, +(0) is the state space, Xn is state of the system at 
stage n (n = 0,1,2, ... N) which denotes the wealth of the investor at 
stage n. Let A = [0, 1] x [0, (0) and the investor's action set in state 
x be denoted by a nonempty measurable subset A(x) C A. Here A(x) 
denotes the set of feasible actions when the system is in state x EX. A 
probabilistic transition law is denoted by q, that is a stochastic kernel 
on X. Given X x A, a measurable function r : X x A -+ R is called the 
reward-per-stage. In the classical formulation the decision-maker wants 
to maximize the expected value of total rewards. Below, we propose an 
alternative criterion that seems particularly relevant in the context of 
financial applications. 

2.3.2 Target based MDP with probability criterion. 
The MDP discussed in this paper belongs to the class of risk sensitive 

models (see [17, 5, 6, 19]). In our model, the decision maker considers not 
only the system's state but also his target value when making decisions 
and taking actions at each stage (see Filar et al [6] and Wu and Lin [18]) 
and wishes to maximize the probability of attaining that target. 

As a consequence, the current decision made by the investor depends 
not only on system's state x, but also on the changing current target level 
y, which represents the difference between the current wealth x and the 
target wealth I which he wants to reach at stage N. More generally, we 
introduce the concept of a target set and denote it by L, for instance 
L = R, L = [II, 12] c R or L = {{it}, {12}}. 

Since the current decisions will now depend on both the state of the 
investor's wealth and the target value, in the MDP model it is helpful 
to extend the decision-maker's state space to E = {e = (x, y) : X E 
X, x + y E L}. Let en = (xn, Yn), an = (On, cn) and A(en) ~ A(On, en) = 
[0,1] x [m,xn . ,8-1] where m > ° is a positive number denoting the 
minimum amount required for consumption and 

,8 = max ,8(0) < 00. 
0<0<1 

The set A(en){Ven E E) will be called the set of feasible actions at 
en = (xn, Yn). 

Suppose the wealth of the investor at stage n is x and his current 
target value is y, that is, x + Y E L. If x . ,8-1 ~ m, he is ruined and 
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loses the opportunity to invest in this stage and all following stages. 
Otherwise, he chooses an action a = (0, c) E A(x, y). That is, if at 
some stage n the decision-maker finds himself in state e = (x, y) and he 
chooses the action a = (0, c) E A(x, y) = A(e) =1= 0, then his wealth at 
stage n + 1 is given by 

Xn+1 = Pn(O) . eu2~n(8) (x - c· {3n(O)). 

Denote the probability density function of ~n(O) by 

g(O, z) = ~e-z2/282 '" N(O, ( 2). 
v21r0 

It follows that, xn+1 is a random variable whose distribution is deter­
mined by the distribution of ~n(O). The probabilities of interest to us 
now have the form: 

p[xn+1 EBlen = (x, y), an = (0, c)] 

= ! IB(p(0)eU2Z (x-c.{3(0)))g(0,z)dz, 

VB E B(X), where B(X) denote the Borel u-algebra. 
With the above notation, we now see that when the investor chooses 

action an in state en he will receive a current reward of r(en, an) = 
Xn+1 - x for that stage. The current target value for the investor now 
changes to Yn+1 = Y - (xn+1 - x) = x + Y - Xn+1· 

Therefore, if the decision-maker's state is en = (x, y) E E, and he 
takes the action an = (0, c), then the next state is en+1 = (xn+1' Yn+d 
with probability 

qn{en+1 E B x Glen = (x,y),an = (O,c)) 

IBxc(x, y), if x ::; bo{3(O), 

= ! IBxc (p(0)eU2Z {x - c· {3(0)) , X + y 

_p(0)eU2Z (x - c· {3(0))) g(O, z) dz, if x> bo{3(O), 

for any B E B(x), C E B(R). 
Let K = {(e, a) : e E E, a E A(e)}, Q = (qn, n ~ 0) be a sequence of 

stochastic kernels on E given K. We call 

r = (E,A,r,Q) 

the target based MDP with probability criterion, or T-MDP for short. 
In order to define the usual hierarchy of policies in T-MDP we now 

define the sets of histories Ho = E, Hn = K x Hn- 1 for 0 ::; n ::; N. In 
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particular Hn denotes the set of all admissible histories up to stage n with 
elements hn = (eo, ao, eI, aI, ... ,en) E Hn, where en = (xn, Yn) E E, 
an = (On, en) E A{en). 

A policy is a sequence 7r = {7rn, n ~ 0) of stochastic kernels 7rn on A 
given hn satisfying the constraint: 7rn{A{en)lhn) = 1, 'Vhn E Hn, n ~ o. 
The set of all policies is denoted by II. 

A Markov policy 7r = (7rn, n ~ 0) is one in which each 7rn depends 
only on the current state at stage n, that is, 7r{·lhn) = 7r(·len) for all 
hn E Hn. 

A stationary policy 7r is a Markov policy in which each decision rule 
7rn = 7rD and hence it is denoted by 7r = 7rIJ. 

A deterministic Markov policy 7r is one in which each 7rn is non­
randomized, that is, 7rn is a measurable mapping from Hn to A such 
that 7rn(·lhn) E A{en) for all hn E Hn; a deterministic stationary policy 
is similarly defined. 

Let IIm, II~, IIs and II~ denote the sets of all Markov-policies, all de­
terministic Markov policies, all stationary policies, and all deterministic 
stationary policies, respectively. 

Let IIo denote the set of all policies which are independent of targets 
value Yn (n ~ 0). For any 7r = (7rn, n ~ 0) E II and a given single 
stage history (e, a) = (x, y, a) E HI, the cut-head policy of 7r with re­
spect to (e,a) is defined by 7r(e,a) = (7r~e,a),n ~ 0), where 7rie,a)(·lhk) = 

7rk+1{·I{e,a),hk) for all hk E Hk, k ~ O. 
Let 0 = Hoo and F = a(Hoo) be the corresponding product a-algebra. 

Given 7r E II and an initial state distribution ao, according to the the­
orem of Ionescu-Tulcea, there exists a unique probability measure P on 
(0, F), which satisfies 

p 1r (eo E B) 

p 1r (an E Dlht ) 

p1r(en+1 E Blhn, an) 

ao(B), 

= 7rn{Dlhn), 

- qn(Blen, an), 

'VB E B{E), D E B{A), and hn E Hn , n ~ o. We call the stochastic 
process (e{7r),a{7r)) = {(xn,Yn,an),t ~ 0,7r E II} target based Markov 
decision process. 

For any given 7r = (7rn, n ~ 0) it will be sometimes convenient to 
suppress the dependence on the policy in the quantities Xn+1{7r), 8n (7r), 
Pn(7r), ~n(7r), f3n{7r), en{7r) and denote them simply by Xn+1, 8n, Pn, ~n, 
f3n. Clearly, from (2.3) these still satisfy 
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where Pn = edn and 

= {8;1 (1 - e-dn ) , 8n # 0; 
f3n 1, 8n = O. 

If ()n = () (n 2:: 0), the random variables (en, n 2:: 0) are independent and 
identically distributed and en '" N (0, ()2). 

Let L be the target level set. Clearly, L C R; take I E L. Given 7r = 
(7rn , n 2:: 0) define the following dynamic programming type quantities 

p1l" {bof3 < Xk, 0 ~. k ~ n - 1, Xn 2:: lleo = (x, y)}, 

o ~ n ~ N; 

Vo(x, y, 7r) = Vo*(x, y) = I(y~o), 

V; (x, y) sup Vn(x, y, 7r), 
1l"EII 

'v'(x, y) E E, 7r E IT; 

'v'(x,y) E E, 0 ~ n ~ N. 

If 7r* E IT is such that VN(X, y, 7r*) = VN(x, y) for all (x, y) = e E E, 
I = x + Y E L, then 7r* is called an N-stage L-optimal policy or an N­
stage optimal policy for minimizing risk with respect to L (or, simply an 
N-stage optimal policy with respect to L). 

Let IT* (L) be the set of all N-stage L-optimal policies, 

IT*(L) = {7r* : VN(X,y,7r*) = VN(x,y), 'v'(x,y) E E,x + Y E L}. 

Obviously, it follows that the following two properties hold: 

(i) If L1 C L2, '* IT*(L2) C IT*(Lt}, 

(ii) For any index set K, 

In particular, three types ofthe target level set L are considered in this 
paper: 

1. L = R for the complete stochastic order optimization model; 

2. L = [It, l2], 0 ~ it < l2 for the local stochastic order optimization 
model; 

3. L = {I} for the single point stochastic order optimization model. 

If 7r* is aN-stage L-optimal policy with respect to L = R (L = [it, l2] 
or L = {I}), we shall also call 7r* an optimal policy for a complete 
stochastic order {local stochastic order, single stochastic order). 
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The three models introduced above can be applied to three differential 
cases. If a decision-maker has a particular profit target in mind, he might 
want to use the single point stochastic order optimal policy, which attains 
that profit target with maximum probability. More generally, he might 
want to use the local stochastic order optimal policy, which ensures the 
maximum probability of attaining any target profit level with respect to 
the interval L = [h, 12], 0 s h < 12. 

For example, the investor may wish that the probability of his wealth 
being more than 12 should be no less than 0.95 at stage N, while the 
probability of the wealth being more than II (l1 < 12) should be no less 
than 0.99. Since these values 0.95 or 0.98 might be impossible to achieve, 
a reasonable approach is to maximize the probability of both XN ~ II 
and XN ~ 12. 

Finally, the complete stochastic order optimization model L = R is 
introduced only for the sake of mathematical completeness. 

3. Finite horizon model 
In this section we demonstrate that our target-survival problem pos­

sesses many of the desirable properties of standard MDPs. We begin by 
considering the properties of the n-stage value function Vn(x, y, 11"). If we 
let 1I"(n) = (11"0,11"1, ••• ,1I"n) denote the truncation of 11" to n stages, then 
it is clear that Vn(x, y, 11") (0 S n S N) is determined by 1I"(n). 

Lemma 3.1 Let 11" = (1I"n, n ~ 0) E II, then V(x, y) E E, 1 S n S N, 

{ 1 ,,(daleo = (x,y)) 1 Vn- 1 (u,.,,,(x,y,a l ) 
Vn(x, y, 11") - A(x,y) E (3.1) 

xq(du x dvlx,y,a), x> bo/3 
o x s bo/3. 

Vo(x, y, 11") = Vo*(x, y) = I(y5;O)· (3.2) 

Proof The Equation (3.1) follows easily from the law of total proba­
bility and the properties of p7r. • 

Let D = {V : E -t [0, 1] IV a measurable function} and 600 E lIs. For 
each u E D, (x, y) E E, a E A(x, y), we define the operators C, T6 and 
T: 
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CU(x,y,a} L U(du,dv}q(du x dvlx,y,a}; 

{ 6(dalx, y} CU(x, y, a}; 
J A(x,y) 

max CU(x, y, a}. 
aEA(x,y) 

It follows from the definitions that 

(TO}OU = U, 
TOU = U, 

(To}nu = T O((To)n-1u}, 
TnU = T(Tn- 1U}, 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

where (To}nu means that the operator TO is applied to Un times and 
(TO}O is defined as the identity operator. Obviously, for any 600 E II~ we 
have TOU(x, y) = CU(x, y, 6(x, y)). We shall say that functions U, V in 
D satisfy the inequality U S V if U (e) S V (e) for every e E E. 

Lemma 3.2 

(i) The operators C, TO, T are monotone. That is, if u, V E D, 
Us V, then CU S CV, TOU S TOV, TU S TV. 

(ii) For any U E D, ifU(x, y} is a non-increasing and a left continuous 
function with respect to y for any x EX, then TU (x, y) is also a 
non-increasing and a left continuous function with respect to y for 
each x E X. 

Proof The proof is obvious. • 
Since the right hand side of (3.1) is a little complex but corresponds to 

the decision maker using 11"0 initially and then expecting a return of Vn - 1 

thereafter, we shall extend the previous notation by setting T1I'o (x, y) 
equal to the right side of (3.1). 

Thus, the equation (3.1) can be re-written in a simpler, operator, form 
as: 

(3.7) 

where 11"-0 = (1I"1,1I"2' ••• ) is the cut-head policy obtained from a Markov 
policy 11" = (1I"0,1I"1,1I"2' ••• ) by deleting the initial decision rule 11"0. 

Similarly, when working with the optimal value function V; (x, y), 
\I(x, y} E E, n ~ 0 defined earlier, we can also use the simpler notation 
V;, n ~ O. The next result establishes the so-called optimality principle 
for V;. 
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Theorem 3.1 

(i) The optimal value function {V;, 0 ::; n ::; N} satisfies the optimal­
ity equations: 

(1 ::; n ::; N). (3.8) 

(ii) For any 0 ::; n ::; N, and 0 ::; V;(x, y) ::; 1, V; (x, y) is a non­
increasing and left continuous function of y for each x EX. 

(iii) For any 0 ::; n ::; N, there exists a policy 7r E II~ such that 
Vn (7r) = V;, 0 ::; n ::; N for any initial state e E E. 

Proof We prove Theorem 3.1 by induction. 
When n = 0 Theorem 3.1 is true by (3.2). 
Assume that Theorem 3.1 holds when n = k. By inductive assumption 

(applied to all parts of the theorem), for any x EX, Vk* (x, y) is a 
non-increasing and left continuous function of y and there exists a = 
(ak' k 2:: 0) E II~ such that Vk* = Vk(a). Also, because our criterion is a 
probability, we have that 0 ::; Vk* ::; l. 

Note that A(x, y) is a closed set for any e = (x, y) E E. By a measur­
able selection theorem (see [1], [7] or [8]), there exists a measurable map­
ping 8 from E to A such that 8(x, y) E A(x, y) and .cVt(x, y, 8(x, y)) = 

TU;(x, y) for all (x, y) E E. That is, 800 E II~ and TclVk* = TVr 
By the inductive assumption, there exists a policy a E II~ such that 

Vk(a) = Vr Let 7r = (<5, a) = (<5, ao, al," .), then 7r E II~. 
By Lemma 3.1 and equation (3.7) we have, 

Vk*+l(x,y) > Vk+l(X,y,7r) 

TclVk(X, y, a) 

TclVt(x,y) 

TVt(x,y). (3.9) 

On the other hand, for any "7 = ("70, "71, ... ) E II, by Lemma 3.1, (3.7) 
and the definition of T we have, 

and hence, by maximizing the left hand side of the above with respect 
to "7 we have, 

Vk*+l (x, y) ::; TVt (x, y). 

Combining the latter with (3.9) we obtain, 

Vk*+l (x, y) = TVt(x, y). 
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It now follows that TV: = V:+1 = Vk+1 (11"). Also it follows from 
Lemma 3.2 that Vk*+1 (x, y) is a non-increasing and left continuous func­
tion of y. 

By the above argument we have that the theorem also holds when 
n = k + 1, thereby completing the induction. • 

Corollary 3.1 It is possible to restrict the policy space to Markov de­
terministic policies. That is, 

V:(x, y) = sup Vk(X, y, 11") = sup Vk(x ,y, 11"), 
~Err ~Err~ 

(x,y) E E, 0 ~ n ~ N. 

Next, we shall discuss some properties of optimal policies. We define: 

A~(x,y) = {ala E A(x,y) and V:(x,y) = .cV:_dx,y,a)}, 

'v'(x, y) E E, (3.10) 

Lx {y : x + y E L}, 

AN(X) = n AN(x, y). 
yEL", 

'v'(x, y) E E, (3.11) 

(3.12) 

By Theorem 3.1 the set of optimal actions at state (x, y), A~(x, y) f:. 0 
for any n ~ 0, (x,y) E E. However, it is possible that A~(x) = 0. 

Theorem 3.2 Let 8n be a measurable mapping from E to A which sat­
isfies 8n (x, y) E A~(x, y) for all (x, y) E E, 0 ~ n ~ N. Then any policy 
11" which satisfies 1I"(N) = (8N , 8N - 1, ... , 81 , 80) is N-stage optimal for the 
target-survival problem with respect to L. 

Proof Note that because of the backward recursion of dynamic pro­
gramming, Tdn V:_ 1 = V; for all n ~ 1 and Vo* is defined as in (3.2). 

For N = 1, we have 11"(1) = (11"0, 1I"t} = (81,80), and also 11"(0) = (11"0) = 
(80). Then by equation (3.7), we have 

VI (11") = T~oVo (11"-0) = Td1VO* = vt, 

where the second last equality follows from Lemma 3.1, which gives 
VO(1I"-0) = Vo*· 

Assume that Theorem 3.2 holds for N = k. Consider the case N = 
k+1. 

Now, 1I"(k + 1) = (11"0, 11"1, ... , 1I"k+d = (8k+l, 8k, ... , 80), Since 
1I"-0(k + 1) = (8k, 8k-1, ... ,80 ) and by inductive hypothesis Vk(1I"-0(k + 
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1)) = V,;, by Lemma 3.1 we obtain 

Vk+1(7I"(k + 1)) = T1I"°Vk (7I"-0(k + 1)) 

T dk+l V;* - V;* k - k+1' 

By induction, Theorem 3.2 is proved. • 
Theorem 3.3 Consider the set of Markov policies lIm. For any given 
(x, y) E E, n ~ 1, Vn(x, y, 71") = V;(x, y) if and only if 71"0 (A~(x, y)lx, y) 
= 1 for every n = O,I, ... ,N and Vn_1(u,V,7I"(x,y,a)) = V;_I(u,v) for 
any (u, v) E B which satisfies, 

r 71"0 (dalx, y) r q(du x dvlx, y, a) > 0, 
JaEA;'(x,y) J(U,V)EB 

BE B(E). 

(3.13) 

Proof Assume that Vn(x, y, 71") = V; (x, y) and 71" = (71"0,71"1, ••• , 7I"n). By 
Theorem 3.1, there exists an optimal policy U = (Uk, k ~ 0) E II, such 
that Vn- 1(x,y,u) = V;_I(x,y) for all (x,y) E E. Hence, by Lemma 3.1, 
we have 

V;(x,y) = Vn(x, y, 71") 

= T1I"°Vn_1 (x, y, 71"-0) 

< T1I"°V:* (x y) n-l , 
r ToVn_l (x, y, u) 

Vn(x, y, (71"0, u)) 

< V;(x,y), 

where (71"0, u) = (71"0, Uo, Ul, ••• ) and so, 

(3.14) 

and 

From (3.14), with help of (3.3), (3.4) and (3.1), we have that V'(x, y) E E, 

o T1I"°V;_I(X,y) - V;(x,y) 

- (7I"0(dalx,y)£V;_I(X,y) - V;(x,y) 
JAn (x,y) 

- r 71"0 (dalx, y) {£V;-1 (x, y, a) - V; (x, y)} . (3.16) 
JAn (x,y) 
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With the help of .cV;_l (x, y) ::; V;{x, y), (3.16), Theorem 3.1 and the 
definition of A~{x,y), we have 

7ro{A~{x, y)lx, y) = 1, (3.17) 

for all (x, y) E E. Using the similar way, from (3.15), we have 

( 7ro{dalx,y) ( q{du x dvlx,y,a) [Vn- 1 (u,V,7r(x,y,a)) - V:_1{u, v)] 
J An(x,y) J E 

= O. (3.18) 

Thus, by (3.18) and (3.17), for any B C B{E) such that 

( 7ro{dalx, y) ( q{du x dvlx, y, a) > 0, 
JaEA;'(x,y) J B 

we have 
V. 1 (u v 7r(x,y,a)) = v.* (u v) n- " n-l , 

when (u,v) E B, a E A~{x,y) for all (x,y) E E. 
Hence the necessity of Theorem 3.3 is proved. Note that the preceding 

proof is reversible and so the sufficiency of the theorem also holds. • 

Remark 3.1 Theorem 3.3 shows that a Markov policy 7r is optimal for a 
finite horizon model if and only if the action taken by 7r at each realizable 
state is an optimal action and the corresponding "cut-head" policy is also 
optimal (tt each stage. In general, Theorem 3.3 also holds for the general 
policies (the proof is similar to the proof of Theorem 4 in [4]. 

Theorem 3.4 

(i) If there exists a policy 7r E ITo such that Vn(x, y, 7r) = V;(x, y) for 
all (x, y) (i.e. Vn{7r) = V;), then A~(x) =J 0 and 7ro(A~ (x)lx) = 1 
for any x E X; 

(ii) If Ak(x) =J 0 for all x E X and 0 ::; k ::; n, then there exists a 
policy 7r E ITo such that Vn (7r) = V;. 

Proof 

(i) Let 7r E ITo and Vn(7r) = V;. Then, by Theorem 3.3, 7ro(A~(x, y)lx) 
= 1 for all x E X and y such that x + y E L. It follows that 
7ro(A~{x)lx) = 1 for all x E X. Hence, A~(x) =J 0 for all x E X. 

(ii) Select Ok : X --t A such that Ok{X) E Ak{x) for all x E X and 
0::; k ::; n. Then, by Theorem 3.3, any policy 0 E ITo constructed 
as 0 = (on' On-I, ... , 01, 00), satisfies Vn(o) = V;. • 
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4. Three risk regions in the decision-maker's 
state space. 

419 

In this section, we demonstrate that the decision-maker's space can 
be divided into three distinct regions: the risk free zone, the ruin zone 
and the risk zone. 

In the risk free region, the investor can find a risk free investment­
consumption policy that reaches the desired target level with probability 
1. In the ruin-zone, the investor cannot meet the minimal consumption 
requirement and is ruined. Hence, the most interesting region is the risk 
zone and the problem of finding an optimal target-survival policy with 
respect to the given target set L. 

Let 1ff (N) denote a riskless investment-consumption policy. That is, 
1ff (N) is a policy that always allocates all of the investment into the 
risk free asset (bonds). Clearly, under this policy, in the notation of 
Section 2.2, we have that On = 0 V n, and hence for all n, 8(0) = 8(On) = 

a and {30 = (3(0) = (3(On) = (1 - e-a)/a and p~p(O) = ea > 1. Now, 
iterating equation (2.3) under this policy yields 

Xn = pnxo - Cn(d), 

where 
n-l 

Cn(d) ~ {30' L Cipn-i. (4.1) 
i=O 

Define 

~n = (pn -1), (4.2) 

for n 2 1. We may interpret Cn (d) as the total discounted consump­
tion from stage 0 to stage n when the investor adopts a riskless policy. 
Clearly, Xn - Xo = ~nXO - Cn (d) under this riskless policy. 

Next, we define the following sets: 

A~(x, y) 

8Rn 

{(x,y)lx > bo,y::; O}, 

{ala = (O,c),bo ::; c < x}, V(x,y) E Ro, 

{(x,y)lx > p-n({3obo + Cn(d)), 
y ::; x~n - Cn(d), (x, y) ERn-I}, n 2 1, 

{ala = (0, c), bo ::; c < x{301}, V(x,y) ERn, 

{(x,y)lx > p-n({3obo + Cn(d)), 
y = x~n - Cn(d), (x, y) ERn-I}, n 2 1. 

(4.3) 
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We shall refer to Rn as the risk free zone, because of the following 
result. 

Theorem 4.1 Consider any state (x, y) ERn, 0::; n ::; N, then under 
the riskless policy trf (n) we have that 

Proof By the definition, we have 

Rn C Rn-l C ... C Rl C Ro. (4.4) 

We prove Theorem 4.1 by induction. 
When n = 0, 't/(x, y} E Ro, we have x > bo and y ::; O. Then for any 

bo ::; c < x, 

a = (O,c) E A~(x,y} =J 0, 

and for any trf (O)(.) , which is a probability distribution on the set of 
A~ (x, y), we have 

Vo (x, y, trf (O)) = I(y~o) = 1, (4.5) 

for all (x, y) E Ro. 
Inductively, assume that when n = k, we have 

Rk = {(x, y}lx > p-k(f3obo + Ck(d)), 

y ::; xllk - Ck(d} and (x, y) E Rk-l }; (4.6) 

Vk (x, y, trf (k)) 

- p7r/(k)(Xj > bo,O::; j::; k -1,Yk::; Oleo = (x,y}) 

= 1, (4.7) 

for all (x, y) E Rk. 
For the case of n = k + 1, 't/(x, y} E Rk+b we have 

x > p-(k+1) (f3o bo + Ck+1(d}) , 

y < xllk+1 - Ck+1(d}, 

(4.8) 
(4.9) 
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and (x, y) E Rk. Because Ci ~ bo, for all i = 0,1, ... , we have the 
following: 

k 
1 + LPk+I- i > pk+l 

i=O 
k 

¢:} 1 + L Ci pk+l-i 
i=O bo 

> pk+l 

k 
¢:} bo L Ci/+1-i > bOpk+1 

i=O 
¢:} p-(k+1) + (f3o bo + Ck+l (d)) > f3obo· 

It follows from (4.5) that: 

f3- 1 x 0 > boo 

That is the interval [bo, xf3ol ) is nonempty. Hence At+1 =J 0. 
From (4.1), we have 

Ck(d) = f30 ( COpk + q/-l + ... + Ck-IP) 

and 

For any policy a = (0, c) E At+1 (x, y), we have 

Xl = px - f3ocp. 

With the help of the following inequalities 

x > p-(k+1) (f3obo + Ck(d) + f3ocl+1) , 

¢:} x - f30c > p-(k+1) {f3o bo + Ck(d)) , 

¢:} p(x - f3o) > p-k{f3obo + Ck(d)); 

and (4.12), we have 

Now let us check the target variable. By assumption, we have 

f30 E (0,1) and p > 1, 

(4.10) 

(4.12) 

(4.13) 
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and 

l(1 + .80) - 2.80 > 0, 

# .8ol - 2.80 + l > 0, 

# .8oclH - 2.8ocp + clH > 0, 

# XpkH - Cpk+l - pX + .8ocp < .8ocpkH - .8ocp + xlH - px, 

# Xpk+l - Cpk+l - pX + .8ocp < (pX + .80Cp) (l- 1) , 
# x + x(pkH -1) - clH - Ck(d) - px + .8ocp 

::; Xl (l-l) - Ck(d). 

(4.14) 

It can now be seen that YI = X + Y - Xl ::; left side of (4.14) which, 
combined with (4.13), leads to 

(Xl, YI) E Rk· 

With the help of the formula of total probability and the inductive 
assumptions it can now be checked that 

VkH (x, y, 7rf (k + 1)) p7rf (kH) (Xj > bo, 0 ::; j ::; k, YkH ::; Ol(x, y)) 

= 1, (4.15) 

for all (x, y) E RkH' • 

Remark 4.1 Theorem 4.1 means for all eo = (x, y) E R"" there exists 
a riskless policy 7rf (7r) such that the investor can reach target level with 
probability 1. Therefore, R", is called the risk free zone. 

Let 

Do {(x, u), 0::; X < bo, Y > O} and more generally define 

Dn {(x, y) : 0 ::; x ::; co.8o + p-Ibo, Y > 0, (x, y) E Dn-I}, n 2 1. 

The above set Dn is called the ruin zone. 
Finally, define 

Jo {(x,y): x > bo,y > O}, 
I n = {(x, y) : X > p-n(bo + cn(d)), y > x~n - Cn(d), (x, y) E I n- l }, 

n21. 

The set I n is called the risk zone. 
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In the risk zone J N, if the investor follows the riskless policy, he will 
fail to reach the target value at stage N and he would not be ruined. 
Thus he will have to allocate some part of his wealth to the risky stock 
asset in order to maximize the probability of reaching target level at 
stage N. 
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Chapter 27 

LONG TERM AVERAGE CONTROL OF 
A LOCAL TIME PROCESS* 

Marta S. Mendiondo 

Richard H. Stockbridge 

Abstract This paper provides a tractable numerical method for long-term average 
stochastic control problems in which the cost includes a term based on 
the local time process of a diffusion. The control problem is reformulated 
as a linear program over the set of invariant distributions for the process. 
In particular, the long-term average local time cost is expressed in terms 
of the invariant distribution. Markov chain approximations are used 
to reduce the infinite-dimensional linear programs to finite-dimensional 
linear programs and conditions for the convergence of the optimal values 
are given. 

Keywords: Linear programming, stochastic control, numerical approximation, 100g­
term average criterion, local time process. 

1. Introduction 

The aim of this paper is to provide a tractable numerical method for 
a class of stochastic control problems in which the decision criterion in­
cludes a cost involving the local time process of a diffusion. We consider 
a long-term average criterion and reformulate the control problem as a 
linear program over the set of invariant distributions for the state and 
control process. In particular , this involves reformulating the long-term 
average cost for the local time process in terms of the invariant distri­
bution. Markov chain approximations are used to reduce the infinite­
dimensional linear programs to finite-dimensional linear programs and 

-This research is partially supported by NSF under grant DMS 9803490. 

425 

Z HOIl et aJ. (eds.), Marlcc~ ProctsU$ and CQfltrolkd Marlccv Chail1.S, 425-441. 
0 2002 Kluwt r ACaMmic Publi$MfS. 



426 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

the corresponding solutions are shown to converge to the optimal solu­
tion of the original problem. 

We focus on a class of problems which arise in the modelling of semi­
active suspension systems. The state x(t) = (Xl(t),X2(t)) satisfies a 
degenerate stochastic differential equation 

dXl(t) = x2(t)dt 
dX2(t) = b(x(t),u(t))dt+adW(t) 

(1.1) 

in which b(x, u) = - ("Y1Xl + UX2 + ,2sign(x2)), u is the control process 
taking values in some interval U = [!!, iLl with!! > 0, W is a standard 
Brownian motion and a > O. The objective is to minimize 

J(u) = lim sup ~ E [ rt Cl (x(s), u(s)) ds + rt C2(X(S)) dA (2) (Sj 0)] 
t--+oo t 10 10 

(1.2) 
in which A<2)(. jX) denotes the local time process of X2(·) at Xj and CI 
and C2 are nonnegative, bounded and continuous. 

This model is obtained from a one-degree-of-freedom shock absorber 
system with dry friction in which y = Xl(t) is the relative displacement 
and satisfies the equation, 

my + viJ + K y + Fsign(iJ) = me. (1.3) 

In this system, the control v is the shock absorber damping constantj 
K y + Fsign(y) represents the restoring force, including the dry friction 
termj and e is the random input of the system due to the road surface. 
The system (1.1) is obtained by setting X2 = y, ,1 = Kim, ,2 = Flm 
and u = vim. 

This model has previously been studied by Campillo [2], Campillo, 
Le Gland and Pardoux [3] and Heinricher and Martins [5]. In [2, 3], 
the running cost was taken to be the absolute acceleration squared, 
Cl (x, u) = 1,IXl + UX2 + ,2sign(x2W, and the local time process did not 
enter the cost. Heinricher and Martins, on the other hand, introduced 
the local time process in the cost function but replaced the long-term av­
erage criterion with a discounted criterion fooo e-ascdA(sj 0). In each of 
these papers, the authors used dynamic programming techniques with a 
Markov chain approximation of the original stochastic processes. Hein­
richer and Martins raised the question of how to determine the long-term 
average cost involving the local time process. 

The motivation for including a cost based on the local time process 
arises from a particular analysis of the smoothness of the ride. Bumpy 
rides occur when the velocity makes significant changes in amplitude and 
direction. Consider a band of width 2€ centered at 0 for the velocity. A 
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"bump" occurs when the velocity cycles from below -E to above E and 
back below -E. If the "level of discomfort" (the cost) of a cycle over 
[-E, E] is proportional to E, then the local time process arises in the limit 
as E -+ 0 (see [10]). The reader is referred to [5] for additional motivation 
and explanation. 

Costs associated with local time processes also arise in the heavy 
traffic diffusion limit for queueing systems. In this setting, the local 
time processes on the boundaries of the regions correspond to wasted 
capacity. 

The main contributions of this paper are the analysis of long-term 
average control problems involving costs based on the local time pro­
cess and the use of equivalent linear programming formulations in the 
solution. The reformulation of stochastic control problems as equivalent 
infinite-dimensional linear programming problems is given under very 
general conditions in [1], [7] and [11]. This paper uses the same ap­
proach but indicates how to include costs associated with the local time 
process. 

The remainder of this paper is organized as follows. In the next sec­
tion, we reformulate the stochastic control problem as an equivalent 
linear programming problem over the space of invariant distributions. 
Section 3 discusses the Markov chain approximations and convergence 
of the approximating solutions. The last section displays numerical ex­
amples. 

2. Linear programming formulation 

We consider, for the class of admissible controls, the set of transition 
functions 1] : lR? xB[!!, u] -+ [0,1] for which the mean u(x) = J U1](x, du), 
as a function of the state x, satisfies the condition that there exists a 
finite number of submanifolds of lR? with dimension less than or equal 
to 1 outside of which u is continuous. The transition function 1] gives 
the conditional distribution on the control space [!!, u] given the state x 
and as such, is considered a randomized or relaxed control. Since the 
control enters linearly into the dynamics in (1.1), the mean u(·) is an 
admisssible control in the sense considered in [3]. Denote the collection 
of admissible controls by U. 

We begin by characterizing the invariant distributions for the pro­
cesses. We require several results given in paper [3], in which the 
uniqueness of the invariant measure J1.1/ for each admissible 1] and the 
existence of a density with respect to Lebesgue measure for this mea­
sure are proved. We summarize this as a proposition and refer the reader 
to [3, Propositions 2.3, 2.6 and Lemma 2.5]. 
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Proposition 2.1 For any 1] E U, the diffusion process (1.1) admits a 
unique invariant measure /-t"., on IR2 which has a density p(x) with respect 
to Lebesgue measure for which p( x) > ° for almost every x. 

Theorem 2.1 (Characterization of invariant distributions) 
Let 1] be an admissible control in U. Then /-t"., E P(IR2) is an invariant 

distribution for the diffusion process (1.1) having control 1] if and only 
if for each f E C~(IR2), 

! ! Af(xl,x2,u) 1](Xl,X2, dU)/-t".,(dxl x dX2) = 0, (2.1) 

where 

Af(xI, X2, u) = x2Ixl (Xl, X2) + b(x, U)fX2 (Xl, X2) + (1/2)(72 fX2x2 (Xl, X2). 
(2.2) 

Proof We begin by showing the necessity of /-t"., satisfying (2.1). 
Let f be a twice-continuously differentiable function having compact 

support. Then Ito's formula implies that the quantity, 

f(Xl(t),X2(t)) - {t ( Af(Xl(S),X2(S),U) 1](Xl(S),X2(S),du) ds, 
Jo Jw,.,u] 

(2.3) 
is a martingale. Define the average occupation measure /-tt, for t > 0, to 
satisfy for each bounded, continuous function ¢, 

! ¢(XI, X2, u) /-tt(dXl x dX2 x du) 

= !E [{t ( ¢(XdS),X2(S),U) 1](Xl(S),X2(S),du) dS]. 
t Jo Jw,.,u] 

Claim: The collection of occupation measures {/-tt : t > o} is tight and 
hence relatively compact. 

Proof By Lemma 2.1 of [3], there exists some constant C such 
that E[lx(t)l21 < C for all t and controls 1] E U. Since the space of 
controls [!!,u] is compact, given f > 0, by choosing K > (C/f)1/2 
an application of Markov's inequality shows that 

/-tt(BK x [!!, u]) > 1 - f, \It> 0, 

in which BK denotes the ball of radius K in IR2 centered at the 
origin, which proves the claim. • 
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Since {I'd is relatively compact, uniqueness of the invariant measure 
implies that J.tt ~ I' as t ~ 00, where 

J.t{dXI X dX2 X du) = 77{XI, X2, du) J.t1/{dXI x dX2). (2.4) 

The fact that (2.3) is a martingale implies that 

! AI{XI, X2, u) J.tt{dXI x dX2 x du) 

= l(E[/(XI(t),X2{t))] -E[/(XI{O),X2{O))]), 

and so letting t ~ 00, the invariant measure I' satisfies 

! AI{XI, X2, u) J.t{dXI X dX2 X du) = 0 (2.5) 

for every I E G;{1R2). Note that we have used the fact that the set 
{(Xl, X2) : X2 = O} is a J.t-null set in passing to the limit since AI is only 
discontinuous on this set. 

To show sufficiency, let 1'1/ be any measure satisfying (2.1) and define 
I' as in (2.4). Theorem 2.2 of [7] gives the existence of a stationary 
process x{t) for which the pair (x{t), 77{X{t),·)) makes (2.3) a martingale 
and I' is the one-dimensional distribution 

E [r _ </>(XI (t), X2{t), u) 77(XI (t), X2{t), dU)] 
Jfy"u] 

= ! </>{XI, X2, u) J.t{dXI X dX2 X du). 

A modification of Theorem 5.3.3 of [4] to include control then implies X 

is a solution of (1.2). • 

We now turn to expressing the long-term average cost associated with 
a control 77 in terms of 77 and the invariant measure 1'1/' 

Theorem 2.2 (Evaluation of the long-term average cost) 
Let 77 be an admissible control and 1'1/ the corresponding invariant 

measure. Then (1.2) is equal to 
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Proof We concentrate on the contribution to the cost due to the local 
time proceSSj the absolutely continuous cost term has been evaluated to 
be J cdx, u) J.L(dx x du) in [7]. The key to reformulating the local time 
cost is the Tanaka-Meyer formula (see Karatzas and Shreve [6, page 
220)): 

IX2(t)1 = IX2(0)1 + lot sign(x2(s))dx2(s) +2A(2)(SjO). 

It then follows that 

lot c2(x(s))dA(2)(SjO) 

~ lot c2(x(s))dlx2(S)1 

-~ {t ( C2(X(S)) sign(x2(s))b(x(s), u) 1](x(s), du) ds 
10 1[y.,uj 

- ~ lot C2 (x(s) ) O'sign(x2 (s )) dW(s) 

which implies that 

~E [lot c2(X(S))dA(2)(SjO)] 

~E [lot C2(X(S)) dIX2(s)l] 

-~ / C2(X) sign(x2) b(x, u) J.Lt(dXl x dX2 x du). 

Letting t -+ 00, Lemma 2.1 of [3] and the fact that C2 is bounded imply 
that the first term becomes negligible yielding 

limsup~E [t ( Cl(X(S),u) 1](x(s),du) ds + (t C2(X(S)) dA(2)(SjO) 
Hoo t 10 1[y.,uj 10 

= / [Cl(X,U) - ~C2(X) Sign(X2)b(X,u)] J.L(dXl x dX2 X du) 

• 
2.1 LP formulation 

The results of Theorems 2.1 and 2.2 imply the following theorem. 



Long term average control of a local time process 431 

Theorem 2.3 The stochastic control problem of minimizing (1.2) over 
all solutions x(t) of (1.1) is equivalent to finding a probability measure 
J-L which minimizes 

! [cI(X,u) - ~C2(X)Sign(X2)b(X,u)] J-L(dXl x dX2 X du) 

subject to the constraints that for each f E C~ (lR?) , 

! Af(xl, X2, u) J-L(dXl X dX2 X du) = O. (2.6) 

Moreover, an optimal control",* is given by the conditional distribution 
on the control space of an optimal measure /-L*; that is, ",* is optimal if 
/-L* is optimal and 

/-L*(dXl x dX2 X du) = "'*(Xl' X2, du) /-LTJ* (dXI X dX2 x [1!, ul). 

This is an infinite-dimensional linear program over the space of invariant 
distributions of the system (1.1). 

3. Markov chain approximations 

In order to obtain a numerical solution, it is necessary to reduce the 
LP problem to finite dimensions. We accomplish this by discretizing the 
state and control spaces and taking finite difference approximations to 
the differential operators. This follows the approach of the previous pa­
pers in that the approximating operators can be viewed as the generators 
of finite-state Markov chains which approximate the diffusion process. 
The approximating LP then gives the associated long-term average cost 
of these Markov chains. 

Though our approximations are the same as in the previous works, 
our convergence results are based on the LP formulation rather than 
dynamic programming arguments. A similar approach was used in the 
setting of a compact state space in r9]. 

For each n 2: 1, let h(n), k(n), m(n) > 0 denote the discretization sizes 

and let Kin) and K~n) be truncation limits of IR2 in the Xl and X2 

coordinates, respectively, where for simplicity we assume Kin) = Min) . 

n·h(n), K~n) = M~n) .n.k(n) and b-a = M~n) ·n·m(n) for some positive 

integers M(n) M(n) and M(n) We assume that as n -+ 00 K(n) K(n) -+ 
1'2 3' '1'2 

00 and h(n), k(n), m(n) \. O. To simplify the notation, we will drop the 
superscript n from discretization parameters and discretized spaces and 
points in these spaces. Define 

E = EI X E2 

= {y = (YI, Y2) = (ih, jk) : -MIn::; i ::; MIn, -M2n ::; j ::; M2n} 
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to be the discretization of the state space m? and 

V = {!! + lm : ° ~ l ~ M3n} 

to be the discretization of the control space U = [!!, u]. 
Recall the generator of the two-dimensional diffusion is given by (2.2). 

For (Yl, Y2) E E, (y!, Y2) not on the boundary, and v E V, we use the 
following approximations: 

{ 
f(Yl + h, Y2) - f(Yb Y2) 

, if Y2 ~ 0, 
h 

f(Yl - h, Y2) - f(Yb Y2) 
, if Y2 < 0, 

h 

{ 
f(Yl, Y2 + k) - f(Yl, Y2) 

, if b(Yl,Y2,V) ~ 0, 
k 

f(Yl, Y2 - k) - f(Yb Y2) 
, if b(Yl,Y2,V) < 0, 

k 

Substituting into (2.2) and collecting the terms involving the test func­
tion at the various states in E we get (for (Yl, Y2) in the interior) 

Anf(Yl, Y2, v) = ((Y~+) f(Yl + h, Y2) + ((Y~-) f(Yl - h, Y2) 

( b(Yl,Y2,V)+ (J'2 ) 

+ k + 2k2 f (Yl, Y2 + k) 

+ (b(Yl, Y2, v)- + (J'2 ) f( _ k) 
k 2k2 Yl,Y2 

_ (1Jm + Ib(Yl,Y2,V)1 + (J'2) f( ) 
h k k2 Yl,Y2 . (3.1) 

An is the generator of a continuous time, finite state Markov chain. 
We need to define the generator on the boundary of E. We adopt the 
approach of Kushner and Dupuis [8] by initially allowing the Markov 
chain to exit E according to (3.1) then projecting the state onto the 
nearest point in E. This has the effect that the Markov chain becomes 
"sticky" at the boundary in that the state could transit to itself before 
it moves to another point in the space. 

Due to the fact that (J' > 0, this Markov chain is aperiodic and irre­
ducible and thus has a unique invariant distribution for each choice of 
control policy. 

We observe that as n -+ 00, sUP(y,v)EExV IAnf(y,v) - Af(y,v)l-+ 0. 
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3.1 Approximating LP 

The approximating linear program could, in fact, have been deter­
mined simply by discretizing the spaces and taking the finite difference 
approximations to the differential operators. However, we will use the 
knowledge of the underlying stochastic processes to provide existence 
and uniqueness of feasible measures for the approximating LP for given 
admissible control policies. 

We state the linear program (for each n) for the approximating Mark­
ov chains which "approximates" the original LP given in Theorem 2.3. 

Approximating linear programs Find a probability measure v on 
E x V which minimizes 

! [CI(YI,Y2,V) - ~C2(YI'Y2) Sign(Y2)b(YI,Y2,V)] V(dYI x dY2 X dv) 

(3.2) 
subject to the constraints that for each f E C;(1R?), 

! Anf(YI, Y2, v) V(dYI X dY2 X dv) = O. (3.3) 

Moreover, an optimal control "7* is given by the conditional distribution 
on the control space of an optimal measure v*; that is, "7* is optimal if 
v* is optimal and 

V*(dYI X dY2 X dv) = "7*(YI, Y2, dv) v1/' (dYl X dY2)' 

Since there are only a finite number of states in the approximating 
problem, it is only necessary to evaluate (3.3) for a finite number of 
functions f. For each point (y!, Y2) = (i, j) E E, consider a function 
iij E C;(1R?) such that iij(i,j) = 1; and for all (XI,X2) for which either 
IXI - il ~ h/2 or IX2 - jl ~ k/2, iij(XI, X2) = O. This choice of f has 
the effect of taking iij E C;(1R?) so that when restricted to EI x E2 the 
function is the indicator of the point (i, j). As a result, the constraints 
(3.3) of the approximating LP become 

! AnI{(i,j)}(YI,Y2,V)v(dYI x dY2 X dv) = 0 

for each (i,j) E E. 

3.2 Convergence results 

It is necessary to relate controls for the original problem to controls 
for the approximating problems and vice versa in order to establish the 
convergence results. 
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Observe that E x V C IR2 X U; that is, the discretized space for 
the controlled Markov chain is a subset of the space for the original 
diffusion process. One aspect of this imbedding is that we can view 
each v E P(E x V) for the approximating problem as a probability 
measure on IR2 x U. Our goal, however, is to define controls for the 
approximating LP corresponding to each admissible control and also to 
define an admissible control for the original problem for each control of 
the approximating LP. 

Define the mapping ¢~ : IR ~ EI by 

-MInh, for x < -MInh + h/2, 

¢~(x) = 
ih, for ih - h/2 ~ x < ih + h/2, 

-MIn + 1 ~ i ~ MIn -1, 

MInh, for MInh - h/2 ~ x, 

similarly define ¢~ : IR ~ E2 , and finally define ¢~ : U ~ V by 

¢~(u) = 

:If, for u < !! + m/2, 

!! + km, for:lf + km - m/2 ~ u < :If + km + m/2, 
1 ~ k ~ M3n -1, 

u, for u - m/2 ~ u. 

The function CPn = (¢~, cp~) takes the partition of IR2 consisting of 
rectangles with each rectangle containing exactly one point of E and 
maps the points of the rectangle to this point of the discretization. In 
like manner, ¢~ maps each interval in U to the unique point in the 
discretization V contained in the interval. We observe that as n ~ 00, 

sup lu - ¢~(u)l-+ 0 and Ix - cpn(x)1 ~ 0 for each x E IR2. 
uEU 

Let '" be an admissible control for the original problem. Define the 
corresponding control "'n for the approximating problems by setting 

(3.4) 

Note that each control on the discretized space E x V is a transition 
function "'n : E x 8(V) ~ [0,1]. 

We now start with a control "'n for the approximating LP and extend 
it to an admissible control "'n on IR2 x U. First extend "'n to a transition 
function on Ex U by setting "'n(E x V C) = o. Now require "'n to satisfy 

i h(u) "'n(XI, X2, du) = i h(u) "'n (¢~(xd, ¢~(X2)' du) (3.5) 
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for each h E C{U). The control 'T/n is piecewise constant. 
Turning to convergence, the paper [3] establishes several results con­

cerning the Markov chain and the diffusion process. In particular, they 
prove the following convergence result (see Lemma 4.8) about the invari­
ant distributions of the approximating Markov chains and the original 
diffusion processes. 

Proposition 3.1 For each admissible control 'T/, let jj", denote the in­
variant measure corresponding to 'T/; and define 'T/n by (3.4) and v",n to 
be the invariant measure of the Markov chain satisfying (3.3). Then 
v"'n ::::} jj",. 

We now use this result to show that the optimal cost of the approx­
imating LP provides an asymptotic lower bound on the value of the 
optimal cost of the original diffusion. We also show that if the optimal 
controls of the approximating LPs converge to an admissible control 
then, in fact, the approximating optimal costs converge to the optimal 
cost of the original LP and the limiting control is optimal. The first re­
sult establishes that for each admissible control 'T/ and induced controls 
'T/n, the costs for the approximating problems converge to the cost of the 
original problem. 

Proposition 3.2 For each admissible 'T/, let'T/n be given by (3.4) and let 
v"'n and jj", denote the invariant distributions satisfying (3.3) and (2.6), 
respectively. Then 

! ! [Cl{Y,v) + c2(y,v)sign(Y2) b(y, v)] 'T/n(y,dv)v"'n(dy) 

--+ ! ! [Cl(X,U) +c2(x,u)sign(x2)b(x,u)] 'T/(x,du)jj",(x,du). 

Proof This follows immediately from Proposition 3.1 and the fact that 
jj",{X2 = O} = o. • 

We now use this result to establish the asymptotic lower bound on 
the optimal cost. 

Theorem 3.1 Let v~ E P(E x V) denote an optimal invariant measure 
for the approximating LP problem. Then 

limsup! [q(y, v) + C2{y, v) sign(Y2) b(y, v)] v~(dy x dv) 
n-+oo 

~ inf !! [Cl (x, u) + C2(X, u) sign(x2) b(x, u)] 'T/(x, du) jj", (dx). 
",EU 
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Proof For each admissible 'fJ, let 1-'1/ denote the invariant distribution 
corresponding to 'fJ. Let 'fJn be given by (3.4) and lI1/n be the invariant 
distribution corresponding to 'fJn. Then by optimality of 1I~, 

I [Cl (y, v) + C2(Y, v) sign(Y2) b(y, v)] lI~(dy x dv) 

::; I [Cl (y, v) + C2 (y, v) sign(Y2) b(y, v)] 'fJn (y, dv) lI1/n (dy). 

It follows that 

lim sup I [Cl(y,V) + c2(y,v)sign(Y2) b(y, v)] lI~(dy x dv) 
n~oo 

< lim II [Cl(Y,V) + C2(y, v) sign(Y2) b(y, v)] 'fJn(y,dv)lI1/n(dy) 
n-+oo 

- I I [Cl(X, u) + C2(X, u) sign(x2) b(x, u)] 'fJ(x, du) 1-'1/(dx) , 

and the result follows upon taking the infimum over the admissible con­
trols. • 

Finally, we consider the case in which the optimal controls of the 
approximating LPs converge to an admissible control for the original 
problem. 

Theorem 3.2 Let 'fJ~ denote an optimal control for the approximating 
LP and define 'fJ~ by (3.5). Suppose there exists an admissible 'fJ* for the 
original problem such that 

'fJ~(x,·) =? 'fJ*(x,·) 

for almost every x (in Lebesgue measure). Then 'fJ* is an optimal control 
for the original problem. 

Proof Let 1-'1/;' and 1-'1/" denote the invariant distributions corresponding 
to 'fJ~ and 'fJ*, respectively. The proof of Lemma 4.8 of [3] establishes the 
tightness of {1-'1/;'} (in fact, it establishes tightness for the collection of all 
invariant distributions of admissible controls). As a result, by defining 
the measures I-'n E 1'(IR x U) as I-'n(dx x du) = 'fJ~(x,du)I-'1/;' (dx), it 
immediately follows that {I-'n} is tight and hence relatively compact. 
Thus there exists some subsequence {nd and some measure I-' which is 
a weak limit of I-'nk. For simplicity of notation, we may assume {nk} is 
the entire sequence. 
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Let J.Lo denote the marginal of J.L and 'fJ a regular conditional distribu­
tion of u given x under J.L so that 

J.L{dx x du) = 'fJ{x, dU)J.Lo{dx). 

Then for every bounded continuous h, 

I I h{x, u) 'fJri (x, du) J.LT/;' (dx) -+ I h{x, u) J.L{dx x du) 

I I h{x,u) 'fJ{x,du) J.Lo{dx) 

Since the Bounded Convergence theorem implies 

II h{x,u)'fJri{x,du) - I h{X,U)'fJ*{X,dU)I-+ 0 a.e. x, 

it follows that 

I I h{x,u) 'fJ*{x,du) J.LT/;.{dx) -+ I I h{x,u) 'fJ{x,du) J.Lo{dx). (3.6) 

Since J.Ln ::} J.L implies J.LT/;' ::} J.Lo, the continuous mapping theorem [4, 
Corollary 3.1.9] implies 

I ! h{x,u) 'fJ*{x,du) J.LT/;.{dx) -+ ! ! h{x,u) 'fJ*{x,du) J.Lo{dx). (3.7) 

Comparing (3.6) and (3.7) and writing h{x, u) = hI (X)h2{U), we have, 
for every bounded continuous hI and h2' 

! hI{x) ! h2{U) 'fJ*{x,du) J.Lo{dx) = ! hI{x) ! h2{U) 'fJ{x,du) J.Lo{dx), 

which implies that I h2{u)'fJ*{x,du) = I h2{u)'fJ{x,du) for almost every 
x and hence 

'fJ*(x,·) = 'fJ(x,·) a.e. x. 

Since the invariant distribution for this control is unique, J.L* = J.Lo and 
hence, for every bounded continuous h, 

I I h{x,u) 'fJri{x,du) J.LT/;.{dx) -+ I I h{x,u) 'fJ*{x, du) J.L*{dx). 

The continuous mapping theorem again implies 

lim II [cdx, u) + C2{X, u) sign{x2) b{x, u)] 'fJri{x, du) J.LT/. (dx) 
n-too n 

= !! [CI(X,U) + C2(X,U) sign(x2) b(x,u)] 'fJ*(x,du)J.LT/.(dx) 

and the result follows from Theorem 3.1. • 
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4. Numerical example 

We now illustrate the LP methods using a particular choice for the 
parameters. We consider the case in which the only cost is that asso­
ciated with the local time process and assume that the cost rate C2 is 
constant. Thus, Cl(X,U) == 0 and C2(X) == C2 for some constant C2. We 
also restrict the model by assuming 12 = O. This is the model studied 
by Heinricher and Martins with a discounted criterion. 

We implemented our numerical approximation in SAS. 

4.1 Test case 

To test the accuracy of the numerical solution, we further restrict the 
model by fixing II = 0 and only allow a single control value u = 1. Thus 
the dynamics are reduced to 

x2(t)dt 
-x2(t)dt + adW(t). 

We take C2 = 2 to compensate for the fraction 1/2 in the objective 
function. The objective function for the test case is 

In this test case, it is clear that only the X2-process is important to the 
analysis. This process is an Ornstein-Uhlenbeck process for which the 
invariant distribution is unique and easily determined to be normally 
distributed with mean 0 and variance a2/2 and the objective function 

I . a 
va ue IS 2Vi' 

Figure 27.1 illustrates the results of the numerical approximations 
when a = 3 using discretization size h = k = 0.6,0.3 and 0.1 together 
with the N(O, 32/2) density function. In addition, Table 27.1 presents 
the objective function values obtained in these three cases. It is very 
clear looking at this data that the approximating invariant distributions 
as well as the approximating objective value are close to the invariant 
distribution and objective value of the original process. 

4.2 General example 

In the general setting, lIf:.O and the control is not fixed. We selected 
I = 2 and a = 2 and used a discretization size of h = k = 0.2 over the 
truncated square [-2,2] x [-2, 2]. We chose [y, u] = [0.5,1.5] and allowed 
the control to take the values 0.5, 1.0 and 1.5. Figure 27.2 illustrates 
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Table 27.1. Objective Function Values 

Mesh Size Objective Function Value 

Approximating h= .6 .89189 
Markov Chain h= .3 .87102 

h =.1 .85505 

Diffusion Process .84628 

0.20 

0.15 

S 0.10 
I 
T 
Y 

0.05 

-9 -7 -5 -3 -1 

X2 

aaa h=.6 ••• h=.3 ••• h=.1 

Figure 27.1. Invariant distributions for the test case 

the resulting optimal control. Notice that the optimal control takes the 
smallest possible value of u whenever X2 f. O. The only change in control 
occurs where X2 = O. This behavior of the optimal control was consistent 
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throughout both coarser and finer discretizations of the state and control 
spaces. 

We conjecture that an optimal control for the diffusion process is 
to use the maximum control whenever the velocity is zero and to use 
minimum control otherwise. 

Figure 27.2. Optimal control for general example, h = k = .02, u = 0.5,1,1.5 
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1. Introduction 
The aim of this tutorial paper is to present the relationship that ex­

ists between the control of singularly perturbed hybrid stochastic sys­
tems and the decomposition approach in structured linear programs. 
The mathematical sophistication is voluntarily kept at a low level by 

*This research has been supported by The Swiss Science Foundation 
(FNRS # 1214-057093.99). 

443 

Z Hou et al. (eds.), Markov Processes and Controlled Markov Chains, 443-463. 
© 2002 Kluwer Academic Publishers. 



444 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

avoiding the full development of the theorems demonstrations that can 
be found in papers already published or to appear shortly. On another 
hand, since it corresponds to a new application of a convex optimization 
method that has been successfully applied in other contexts, we give 
a rather detailed account of the decomposition technique used in the 
numerical approximation method and of the comparison with a direct 
linear programming method. 

The class of systems we are interested in are characterized by an hy­
brid state, the continuous part evolving in a fast time scale according 
to controlled diffusion processes and the discrete part evolving in a slow 
time scale as a finite state jump process. The diffusion and the jump 
processes are coupled. We consider the ergodic control of such a system. 
To illustrate this type of structure we propose an economic production 
model where the continuous state corresponds to stocks of production 
factors whereas the discrete state describes different market structures 
that determine the demand for the produced good. When the ratio 
between the fast and slow time scale tends to 0 the problem becomes 
singular. However, under sufficient ergodicity assumptions, one can ex­
ploit the fact that, between two successive jumps of the slow process, 
the fast diffusion process has enough time to reach a steady state, or, 
more precisely an invariant state probability measure. This permits us 
to define a limit control problem in the form of a finite state controlled 
Markov chain that is well behaved and gives a good approximation of 
the optimal value when the time scale ratio is close to zero. 

When we implement a numerical approach, the singular perturba­
tion generally yields an ill-conditioned problem. This is the case when 
one uses an approximation by controlled Markov chains as these chains 
will exhibit strong and weak interactions. But here again, we can iden­
tify a limit problem that is well conditioned and which yields a good 
approximation to the solution when the time scale ratio is close to o. 
Furthermore, the limit problem yields to a structured block angular lin­
ear program that is amenable to an efficient decomposition technique. 
The decomposition technique implements a dialogue between a master 
program that distributes a dual information obtained at the analytical 
center of a localization set and an oracle that proposes cutting planes 
obtained via a policy iteration algorithm run on a local reduced size 
MDP. 

The paper is organized as follows. In Section 2 we recall the the­
ory of ergodic control for a singularly perturbed, two-time scale hybrid 
stochastic system. In Section 3 we give the main result concerning the 
definition of a limit control problem for a class of well behaved feedback 
controls. This limit control problem is a finite state Markov decision 
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process that gives a good approximation of the optimal value when the 
time scale ratio tends to O. For this we rely mostly on Filar and Hau­
rie, 1997 [6]. In Section 4 we recall the numerical technique that can 
be used for the solution of an ergodic control of an hybrid stochastic 
system. The fundamental reference is Kushner and Dupuis, 1992 [12] 
where an approximating controlled Markov chain is used to compute 
numerically the solution of stochastic control problems. In Section 5 
we observe that the approximating controlled Markov chain has also the 
structure of a singularly perturbed Markov decision process (MDP) with 
strong and weak interactions. This is the occasion to recall the results 
of Abbad, 1991 [1] and Abbad et al., 1992 [2] showing that the limit 
control problem for the singularly perturbed MDP can be formulated 
as a structured block-angular linear program. We are able to show the 
close similarity between the limit control problem defined in Section 3 
and the structured LP obtained in the numerical approach. 

In Section 6 we implement a decomposition technique for the solu­
tion of the limit control problem, using the analytic center cutting plane 
method (ACCPM), initially proposed in Goffin et al., 1992 [9] as a gen­
eral method for solving nondifferentiable convex programming problems. 

2. A two-time-scale hybrid stochastic control 
system 

In this section we describe a control system characterized by an hybrid 
state (y, () where the continuous state variable y is "moving fast" accord­
ing to a diffusion process while the discrete state variable ( is "moving 
slowly" according to a continuous time stochastic jump process. The 
diffusion and controlled processes are coupled. 

2.1 The dynamics 

We consider a hybrid control system described by the hybrid con­
trolled process (y,()(-) where y(.) is "moving faster" than (0 and de­
scribed formally by the stochastic state equation. 

cdy(t) jW)(y(t), v(t))dt + .,fiaW) dw(t), 

v(t) E UW). 

More precisely, we consider the following specifications: 

• A set of Ito equations 

cdy(t) i(y(t), v(t))dt + .,fiaidw(t), 
v(t) E Ui , 
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where y E int(X}, the interior of a compact subset of JR1t, is the 
continuous state variable and i E E, a given finite set, is the dis­
crete state variable. For each i E E, the control constraint set Ui is 
a compact set, ai is an n x n matrix which, for simplicity, is taken 
as diagonal, the function ji(y, v} is continuous in both arguments 
and {w(t} : t ~ O} is an n-dimensional Wiener process. 

• The perturbation parameter c is a positive scalar which will even­
tually tend to O. It can be viewed as the ratio between the fast 
and the slow time scales. 

• Some reflecting boundary conditions, as those detailed in [12], sec­
tion 1.4 are imposed on ax. 

• For each pair (i,j) E E x E, i =I- j, let be given a continuous 
function qij (y, v), where v E Ui, is the conditional transition rate 
from i to j of a jump process {((t) : t ~ O}. We assume that the 
following holds 

P[((t + dt} = jl((t} = i, y(t} = y, v(t} = v] = qij(y, v}dt + o(dt}, 

where 
lim o(dt} = 0 

dHO dt 

uniformly in (y, v). 

• For each i E E, let Li(y, v} be a continuous function of (y, v) 
describing the cost rate for the control system. 

The class U of admissible controls is the set of Ft-adapted processes 
{v(t} : t ~ O}, where {Ft : t ~ O} is the a-field describing the history of 
the hybrid process {(y, ~)(t) : t ~ O} and v(t} E Ui, whenever ~(t) = i. 

2.2 Change of time scale 
It will be convenient to work with a "stretched out" time scale, by 

defining the trajectory 

(x(t), ~(t)) = (y(ct), ((ct)). 

The process dynamics now become 

dx(t} = jW) (x(t), u(t})dt + aW)dz(t} , 

where z(t} = }ew(ct}, and the ~(.) process has transition rates given 

by cqij(X, u}. The differential operator of the (x, ~)(-) process is denoted 
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AU and defined by 

2.3 A restricted control class and the associated 
performance criterion 

The class of controls U is too large for our purpose and we shall 
consider a restricted class of controls defined as follows. 

For each i E E let ei be a compact parameter set. With each () E ei 

is associated a piecewise continuous feedback admissible control, denoted 
1)0(-) : Rn t-+ Ui . We assume that this feedback controls varies contin­
uously with (). A policy is a mapping 'Y : E t-+ e i . Once a policy is 
chosen, the feedback control used between two successive random times 
tn and tn+! is defined by 

We assume that the process has good ergodicity properties and in par­
ticular 

Assumption 2.1 For each admissible feedback control un (-) , () E ei , the 
set of functions {Aii,9(·),h(·) E cg(X)} is measure determining. Equiv­
alently, the equation 

has a unique weakly continuous probability measure valued solution V~9 (.) 
for each initial (probability measure) condition vi(O). 

It will be convenient to permit randomization of the parameter choice 
at any decision time. We consider that for each i E E the parameter set 
e i belongs to a probability space and that a policy associates with each 
possible mode i E E a probability distribution m( i, d(}) over ei . 

Associated with an admissible randomized policy m(·) we define the 
long term average reward 

Jc(m(·)) 

= lim infErnO [..!. {T ( L{(t) (x(t), un(x(t))m(~(t), d(}) dtlx(O), ~(O)] . 
T--?oo T Jo Jew) 
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We are interested in the behavior of the infimum value 

when c -t O. 

J; = sup Jg(m(·)), 
m(·) 

3. Convergence to a limit-control problem 

(2.1) 

In this section we define a limit-control problem, when the time-scale 
ratio c tends to zero and recall the convergence theorem obtained in 
Filar and Haurie, 1997 [6]. This theorem asserts that the optimal aver­
age reward of the perturbed problem converges to the optimal average 
reward of the limit-control problem, when the time-scale ratio tends to 
zero. 

3.1 The fixed-e control process 

Consider the fixed-~ control process x(·I~), when ~ = i, which is asso­
ciated with the Ito equation 

dx(t) i(x(t), u(t))dt + uidz(t). 

u(t) E Ui 

(3.1) 
(3.2) 

The differential operator of the fixed-~ process is denoted Af and defined 
by 

a . la2 '2 
(Af'l/J)(X) = ax 'l/J(x)r(x, u) + 2 ax2 'l/J(x)(u l

) • 

Assumption 3.1 For each admissible feedback control uo(-), () E ei 

and each initial condition x(O) = Xo, (3.1) has a unique, weak sense, 
solution and a unique invariant measure 1I~(-). 

3.2 The limit-control problem 

We make the following strong ergodicity assumption on the ~-process. 

Assumption 3.2 For any x and vector (Ui)iEE E IIiEEUi the discrete 
state continuous time Markov chain with transition rates qij(X, Ui) has 
a single recurrence class. 

For each possible discrete state i E E we consider the fixed-~ con­
trolled diffusion process associated with an admissible feedback control 
uo(-). Its Ito equation is 

dx(t) = fi(x(t), uo(x(t)))dt + uidz(t). 
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According to Assumption 3.1 there corresponds an invariant measure on 
jRn, denoted v~ (dx ), such that 

Ix v~(dx) = 1. 

We can then construct a Markov Decision Process (MDP) with state 
space E and action space e i , i E E, where the transition rates and the 
cost rates are given by 

L(i,O) 

Ix qij(X,U8(X))v~(dx), i,j E E 

Ix Li(x, u8(x))v~(dx), i E E, 

respectively. Now, due to the strong ergodicity property of Assump­
tion 3.2, we can associate with a randomized policy mO, an invariant 
measure on E denoted {J.Li(m); i E E} and verifying 

o L J.Li (m) ~ J'Jij (O)m( i, dO) 
iEE Je 

1 = L J.Li(m). 
iEE 

Since we are interested in the limiting behavior as E --+ 0, the natural 
Limit- Control Problem to solve is the following finite state ergodic cost 
MDP 

J* inf J(m) 
m 

i~tLJ.Li(m) ~i L(i, O)m(i, dO). 
iEE Je 

The two following assumptions are needed to insure convergence in the 
space of probability measures. 

Assumption 3.3 For any sequence of admissible randomized policies 
{mc (.)}, there is a function 0 ~ g(x) --+ 00 when Ixl --+ 00, a Kl < 00 

and ~c --+ 0 as E --+ 0 such that ~e --+ 0 and 

1 [t+Lle 
sUPT E [g (XC(s))] ds < Kl < 00. 
t~O U c t 
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Assumption 3.4 For each cn > 0 of a decreasing sequence cn -+ 0 
there is an optimal (for the reward functional (2.1)) admissible random­
ized policy m;J·) such that the corresponding set {( x;J·), ~:J.)), n = 
0, 1, ... } is tight. 

The proof of the following theorem can be found in [6]. 

Theorem 3.1 Under Assumptions 2.1-3.4 the following holds 

lim 1]* - J:I = O. 
e~O 

This result means that the optimal average reward for the perturbed 
hybrid problem converges, when c tends to zero, to the optimal average 
reward of the limit-control problem. 

4. Numerical approximation scheme 

In this section, following Kushner and Dupuis, 1992 [12], we propose 
a numerical approximation technique for the hybrid control problem. 
Then, following Abbad et al., 1992, [2], we derive a limit problem when 
c tends to zero. 

4.1 The Markov decision problem 

The ergodic cost stochastic control problem identified in the previ­
ous section is an instance of the class of controlled switching diffusion 
studied by Ghost et al., 1997 [8]. The dynamic programming equations, 
established in the previous reference as a necessary optimality condition 
take the form 

J = max {Li(x, u) + c'" %(x, u)[V(x,j) - V(x, i)] 
u>o ~ 
- Hi 

+ :x V(x, i)fi(x, u) + ~a2 ::2 V(x, i)}, i E E (4.1) 

where V(x,·) is C2 in x for each i in E and represents a potential value 
function and J is the maximal expected reward growth rate. 

This system of Hamilton-Jacobi-Bellman (HJB) equations cannot, in 
general, be solved analytically. However a numerical approximation 
technique can be implemented following a scheme described in [12]. 
The space of the continuous state is discretized with mesh h. That 
means that the variable Xk belongs to the grid Xk = {xkin , xkin + 
h, x k in + 2h, ... ,xkax}. Denote ek the unit vector on the Xk axis and 
X = Xl X X2 X •.• X XK. We approximate the first partial derivatives 
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by finite differences, taken "in the direction of the flow", as follows: 

if Xk 2:: 0 

if Xk < o. 

The second partial derivatives are approximated by 

(4.2) 

82 V() V(x + ekh) + V(x - ekh) - 2V(x) (4.3) 
8x~ x -+ h2 

We define the interpolation interval as 

where 

K 

cqi(x, u)h2 + L {O"k + h Ifk(x, u) /} , 

and 

qi(X, u) = L qij(X, u) 
#i 

k=l 

We define transitions probabilities to neighboring grid points as follows 

Ph[(X, i), (x ± ekh, ,i) lu] = 

Ph[(x,i), (x,j)lu] 

Ph[(X, i), (x, i)lu] = 

~ + hfi(x, u)± 

Qh 
h2 qij(X, u) c _ 

Qh 
Q(x,i,u) 1- _ , 

Qh 

(4.4) 

i #j, (4.5) 

(4.6) 

where fi(x, u)+ = max{fi(x, u); O} and fi(x, u)- = max{ - fi(x, u); O}. 
The other transitions probabilities are equal to zero. The possible tran­
sitions are represented in Figure 28.1, for an example with card(E)=3 
and K = 2. 

If we substitute in the HJB-equations (4.1) the finite differences (4.2) 
and (4.3) to the partial derivatives, after regrouping terms and using the 
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l#' i-'" 
....... 

t::::.. :..:::::: 
,/ ....... ...... 

i=l i=2 i=3 

Figure 28.1. Transitions in the grid set. 

transition probabilities (4.4), (4.5) and (4.6), we can formulate the fol­
lowing associated discrete state MDP dynamic programming equation: 

9hD.th + W{x, i) = max {~Ph[(X, i), (x', i)lu]W{X', i) 
u>o ~ 

- x, 

+ LPh[{X, i), (x,j)lu]W{x,j) + D.thLi{x,u)}, 
#i 

x E X, i E E. (4.7) 

In this discrete state MDP, the term 9 approximates the maximal ex­
pected reward growth rate J and the functions W(x,j) approximate, 
in the sense of weak convergence, the potential value functions V{x,j). 
Solving this MDP gives thus a numerical approximation to the solution 
of the HJB-equation (4.1). 

If we discretize the space of the control with mesh hu {Uk E Uk = 
{ukin , ukin + hu, ukin + 2hu,"" ukax } ),we obtain an MDP with finite 
state and action spaces. The optimal control law of this MDP can be 
obtained through the solution of the following linear program (see de 
Ghellinck, 1960 and Manne, 1960 [4] and [14]): 

(4.8) 
x u 

s.t. 

L L L G~[{x, i), (x' ,j)lu]Zi{x, u) = 0 x' E X, j E E (4.9) 
x u 

LLLZi{x,u) = 1 (4.10) 
x u 

Zi(x,u) > 0, (4.11) 
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where Gh[(x,i), (x',j)lu] denotes the generator of the MDP, defined as 
follows: 

0'=[( .) (' ·)I]={Ph[(X,i)'(X,i)IU]-1 if(x, i) = (X',j) 
h x, Z , x, J u Ph[(X, i), (x', j)lu] otherwise. 

Then the steady state probabilities will be defined as 

P[x, i] = L Zi(x, u) 
u 

and the conditional steady-state probabilities, given a mode i are 

[ I.] ~u Zi(x, u) 
P X Z = ~x ~u Zi(x, u)· 

One should notice that the linear program (4.8-4.11) will tend to be ill­
conditioned when c: tends to be small since coefficients with difference 
of an order of magnitude ~ appear in the same constraints. 

4.2 The limit Markov decision problem 

The generator of the MDP can be written 

G,J(x, i), (x', j)lu] = Bh[(X, i), (x', j) lu] + c:Dh[(X, i), (x', j) lu] + o(c:), 

where Bh[(x,i), (x',j)lu] is the generator of a completely decompos­
able MDP, with card(E) subprocesses which do not communicate one 
with the other (i.e. if i =1= j Bh[(x,i),(x',j)lu] == 0 'ix,x') and 
c:Dh[(x, i), (x',j)lu] is a perturbation that links together these card(E) 
sub-blocks. 

For singularly perturbed systems, the optimal solution of the limit 
MDP is, in general, different from the optimal solution of the initial 
MDP where c: has been replaced by zero. However, the theory developed 
by Abbad, Filar and Bielecki (in [1] and [2]) offers tools to handle the 
limit of singularly perturbed MDP. Concretely, when c: tends to zero 
the optimal control law of the MDP (4.7) can be obtained through the 
solution of the following linear program (see [2]): 

(4.12) 
x u 
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s.t. 

L L Bh[(x, i), (x', i)lu]Zi(x, u) - 0 x' E X, i E E (4.13) 
x u 

L L L L Dh[(x, i), (x',j)lu]Zi(x, u) - 0 j EE (4.14) 
i x, x u 

LLLZi(x,u) - 1 (4.15) 
x u 

Zi(x,u) > 0 (4.16) 

Indeed this linear program exhibits a typical bloc-diagonal structure in 
the constraints (4.13). The constraints (4.14-4.15) are the so-called cou­
pling constraints. In Section 5 we will apply a decomposition technique 
to exploit this structure. It should be noticed that the ill-conditioning 
has vanished since the variable c doesn't appear in the linear program. 

5. A decomposition approach for the limit MDP 

In this section, following Filar and Haurie, 1997 [6] and Filar and 
Haurie, 2001 [7], we derive for the MDP (4.12-4.16) a decomposition 
approach which exploits the bloc-diagonal structure. We then explain 
how this decomposition can be implemented using the Analytic Center 
Cutting Plane Method (ACCPM). 

5.1 The dual problem 
The dual problem of the linear program associated with the limit 

MDP (4.12-4.16) writes 

min T 
'I/J,t/J, Y 

s.t. 

(5.1) 

T ~ Li{x,u) - LBh[{x,i),{x',i)lu]¢{x',i) 
x, 

- L L Dh[(X, i), (x',j)lu].,p(j) i E E, x E X, u E U. (5.2) 
j x, 

The constraint matrix in the left-hand-side of (5.2) has a special struc­
ture. The terms associated with the variables ¢(x', i) form independent 
blocks along the main diagonal. The terms associated with the variables 
.,p(j) form a rectangular matrix that links all the blocks together. 

In this formulation we may also recognize the approach proposed in 
[2], under the name Aggregation-Disaggregation. Indeed, if we define the 
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modified costs 

II(t/J,x,i,u) = Li(x,u) - LLDh[(x,i), (x',j)lult/J(j) (5.3) 
j x, 

then the expression (5.2) corresponds to a set of card(E) decoupled 
MDPs. More precisely, the problem can be rewritten as 

min T 
1/J,t/J,T 

s.t. 

(5.4) 

T ~ II(t/J,x,i,u) - LBh[(x,i), (x',i)lulcj>(x', i) 
x, 

i E E, x E X, u E U. (5.5) 

Now, for each i E E, (5.5) defines a decoupled MDP with modified 
transition cost (5.3). 

The formulation (5.4)-(5.5) is also amenable to Benders decompo­
sition (see Benders, 1962 [3]). Indeed, fixing the variables t/J(j) , the 
minimization in cj>(x', i) and T is equivalent to 

where the functions Xi(t/J), given by 

Xi(t/J) = min T 
t/J, T 

s.t. 

(5.6) 

(5.7) 

T ~ II(t/J, x, i, u) - L Bh[(X, i), (x', i)lu]cj>(x', i) x E X, u E U 
x, 

(5.8) 

are the value functions of card(E) independent ergodic MDPs with cost 
II(t/J,x,i,u) and transition kernel Bh[(x,i), (x',i)lu]. It is easy to show 
that the functions Xi(t/J) are convex and so is X(t/J) as the pointwise 
maximum of convex functions. 

Since the functions are also optimal values of linear programs, one 
should realize that the optimal dual variables make it possible to com­
pute a subgradients Xi(¢) E 0Xi at ¢, for i E E as well as a subgradientl 
X(¢) E OX at ¢ with the property 

(5.9) 

IThe elements of aX can be computed as follows: Let A1~) C g, ... , card(E)} b~ the set 
of indices of active functions, i.e. those that satisfy Xi(1/J) = X(1/J) = maxiEE Xi (1/J). Then 
X(~) E aX iff X(~) = EiE.A(,ji) AiXi(~)' for Xi(~) E aXi and Ai ~ 0, EiE.A(,ji) Ai = 1. 
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The optimization problem min,p X( t/J) is convex and nondifferentiable. A 
procedure that computes the value X( t/J) and the associated subgradient 
X(t/J) is called an oracle. The subgradient inequality (5.9) defines a 
so-called cutting plane. 

5.2 ACCPM 
There are many possible approaches for solving the convex nondif­

ferentiable problem min,p X(t/J) (see Goffin and Vial, 1999 [10] for a 
short survey of these methods). In the present case we used ACCPM, 
a method developed by Goffin et al. 1992 [9] around the concept of 
analytic center (Sonnevend 1988)2. This is a cutting plane method, in 
which the query points are the analytic centers of a shrinking sequence 
of localization sets. Let {t/Jn }nEN be a set of query points at which the 
oracle has been called. The answers X( t/Jn) and X (t/Jn) define a piecewise 
linear approximation KN : jRcard(E) -7 jR to the convex function X, 

(5.10) 

Since X(t/J) ~ XN (t/J), any lower bound 7rl 

7r1 ~ minxN(t/J) = min {(I( ~ X (t/Jn) + (X (t/Jn) ,t/J - t/Jn) ,'in E N} 
'I/J - (,'I/J 

(5.11) 
is also a lower bound for X( t/J). 

On the other hand, the best solution in the generated sequence pro­
vides an upper bound 7ru for the convex problem, i.e. 

(5.12) 

For a given upper bound 7ru, we call localization set the following 
polyhedral approximation 

.cN(7ru) = {("t/J): 7r ~ (, (~X (t/Jn) + (X (t/Jn) ,t/J - t/Jn), 'in E N}. 
(5.13) 

Note that, for any optimal solution t/J*, the pair (X(t/J*), t/J*) belongs to 
all the sets .c N (7r u). The analytic center of .c N (7r u) is defined as the 
unique pair (X, t/J) which maximizes the product of the distances to the 
N + 1 linear constraints defining (5.13). 

We can now summarize the ACCPM algorithm for our special case. 

2It is beyond the scope of this paper to detail ACCPM. Interested readers will find a full 
account of the theory in [10]. The implementation is described at length in the thesis of Du 
Merle 1995 [5], while a library of programs to implement the method is presented in [11]. 
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1. Compute the analytic center ((,"if) of the localization set eN (11"u) 
and an associated lower bound 1[. 

2. Call the oracle at ((, 1/J). The oracle returns X(1/J) and an element 
X (1/J) E 8X( 1/J) that defines a valid cutting plane. 

3. Update the bounds: 

a) 11"u = min{x(1/J), 11"u} 

b) 11"l = max{1[,11"l}. 

4. Update the localization set with the new upper bound and the new 
cutting plane. 

These steps are repeated until a point is found such that 11" u - 11"l falls 
below a prescribed optimality tolerance. 

The above procedure introduces one cut at a time. However one 
should note that the oracle always computes the card (E) values Xi(ijJ) 
and the vectors Xi (ijJ). Furthermore the inequalities 

are valid in the sense that they do not exclude optimal solutions. This 
information can therefore be added to the definition of eN (11"u) to accel­
erate convergence. 

6. Example 
We propose to study an example of a plant producing one good with 

the help of two production factors and subject to random changes of 
the market price. This example is a special instance of the class of 
the two-time-scale hybrid stochastic systems we presented in Section 2. 
The discrete variable e describes the state of the market, which influ­
ences the profit derived from the produced good. We suppose that we 
have four different market states, so the e-process takes value in the set 
E = {1,2,3,4}. The continuous variable x E (1R+)2 describes the accu­
mulated stock of the two different production factors. More precisely, 
Xk, k = 1,2 corresponds to the number of employees of type k. 

The output is determined by a CES production function3 

1 

Y(Xl,X2) = (l1[Xl]-.B + (1 -l1)[X2]-.B) -P , 

aSee, for example, Layard and Waters, 1978 [13] Section 9-4 
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where -1 < fJ < 00 is the substitution parameter (fJ f= 0) and 0 < ", < 1 
is the distribution parameter. The profit rate structure is described by 
the function 

L~(t)(XI (t), X2(t), UI(t), U2(t)) 

c(~(t))Y(XI(t),X2(t)) - aIXI(t) - a2X2(t) - AIXr(t) - A2X~(t) 

- bluI(t) - b2U2(t) - BIUr(t) - B2U~(t), 

where c(i) is the selling price, given the market is in state i E E, 
akxk(t) + AkX~(t) is a cost function, related to the holding of a stock 
Xk(t) of employees and bkUk(t) + BkU~(t) is a cost function related to 
the enrollment effort, Uk(t), of new employees. 

We assume that the the price is influenced by the level of production 
of the firm. We rank the 4 market states by increasing selling price and 
we suppose that only jumps to neighboring market states can occur. 
More precisely, the ~-process transition rates are defined by 

cQi(i+1) (Xl, X2) 

cQi(i-l) (Xl, X2) 

c (Ei - eiY(XI, X2)) 

c(Di + diY(XI, X2)) . 

The parameter c is the time-scale ratio that will, eventually, be consid­
ered as very small. The positive terms ei, Ei, di and Di are parameters 
which depend on the market state i E E. We see that the transition 
rate toward a highest market price is negatively correlated to the pro­
duction level, whereas the transition rate toward a lowest market price 
is positively correlated to the production level. 

The dynamics of the employees is described by 

We consider the set of parameter values given in Table 28.1. We solved 
the limit model, when c tends to zero, with the decomposition method 
described in Section 5. 

The steady state probabilities obtained from the solution of the limit 
control problem in the approximating MDP are shown in Figure 28.2. 
As expected, the higher the selling price the higher the production level. 
For comparison, we considered also the model associated with a fixed 
~-process, that is, the model where the selling price stays the same for­
ever. For the fixed ~-process, the steady state probabilities are shown 
in Figure 28.3. Given a market state, the production level is higher for 
the model associated with the fixed ~-process than for the limit model. 
This comes from the fact that, when the price can change, the proba­
bility that it will increase, resp. decrease, is negatively, resp. positively, 
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Table 28.1. List of parameter values for the numerical experiments. 

ei = 0.002 Vi E E 
v = 1.0 Ei = 0.4 Vi E E 

1J = 0.5 di = 0.004 Vi E E 
(3 = -0.6 Di = 0.15 Vi E E 

a1 = a2 = 0.4 01 = 02 = 0.05 
A1 = A2 = 0.004 U1 = U2 = 3.0 
b1 = b2 = 0 xl."ax = x~ax = 100 

B1 - B2 - 0.05 xl."in = X2 in = 0 - -
c(l) = 1.3 h = 10/3 
c(2) - 1.6 ul."ax - u~ax = 10 - -
c(3) = 1.9 ul."in = u~in = 0 
c(4) - 2.2 hu = 2 -

correlated with the production level. The effect of the production level 
on the price can be seen in Figure 28.4. In this Figure, we displayed, for 
the limit model, the steady state probabilities as a function of the state 
for two policies, namely the optimal policy and the optimal policy of the 
model with fixed ~-process (note that this second policy is, in general, 
not optimal for the limit model). We see distinctly that the price tends 
to be higher in the first case (where the production level is lower) than 
in the second case. 

The maximal expected reward growth rate J equals 27.6. The po­
tential value functions are shown in Figure 28.5, for the case when the 
market is in the state i = 3. For the other states, the value functions 
are similar and therefore not displayed. 

The optimal policy for the enrollment of new employees is shown in 
Figure 28.6, when the market is in state i = 3. For the other states, the 
optimal policies are similar and therefore not displayed. 

7. Concluding remarks 
In this paper we have implemented a decomposition method for the 

resolution of hybrid stochastic models with two time scales. This me­
thod, which was proposed by Filar and Haurie, 1997 [6] and by Filar 
and Haurie, 2001 [7], reformulates the initial problem as an approximat­
ing singularly perturbed MDP that can be solved as a structured linear 
programming problem. The originality of this paper was the coupling of 
ACCPM with a policy improvement algorithm to achieve a decomposi­
tion in order to exploit the special bloc-diagonal structure. 



460 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

i = l i=2 

i=3 i = 4 

Figure 28.2. Steady state probabilities for the limit model, given the market state i. 

i = 1 i = 2 

i=3 i = 4 

Figure 28.3. Steady state probabilities for the fixed e-process, given e(t) = i Vt ~ o. 
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Optimal policy Acting as if the price would never change 

Figure 28.4. Steady state probabilities as a function of the state i. 

Figure 28.5. Value function V{x,3) 

Figure 28.6. Optimal policy u{x), i = 3. 
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1. Introduction 
The non-linear wave equation 

(t5 > 0) (1.1) 

is an important mathematical model of studying quantum mechanics, 
vibration of a viscous rod, and nerve conduct, etc. [4, 5, 6, 7, 8]. 

Recently, W.G. Zhang [3] successfully provided the kink profile soli­
tary solution of equation (1.1). It is well known that, the developing 
process of every thing should be a stochastic process because of the dis­
turbance from some random factors around it. This paper is devoted 
to studying the effect of stochastic disturbance on kink profile solitary 
wave solutions of equation (1.1). 

Let (O, F, P) be a complete probability space, (E, £) be a polish space 

and X ~ {X(t,w)j t < T{W)} be a right-continuous and left-limit stochas­
tic process on (O, F, P), with values in (E, E). 

For convenience, we extend the state space E to E = E U {b} by 
adding an isolated state b to E, as usual, we get a new polish space 
(E,t), and the process X is also extended to X = {X{t,w)jO ~ t < oo} 
by 

X{t w) = {X{t,w), 0::; t < T{W) 
, b, T{W)::;t<oo (1.2) 

Definition 1.1 The stochastic process X = {X(t,w)jO ::; t < T(W)} is 
called a Markov Skeleton process if there exists a series of stopping times 
{Tnj n ~ O} such that 

(i) 0 = TO ::; Tl ::; T2··· , T = liffin-+oo Tn, P-a.e .. 

(ii) For each Tn and any bounded t[O,ooLmeasurable function f on 
E[O,oo) , 

P-a.e. on OTn 

where OTn = {Wj Tn{W) < oo}, and 

NTn ~ {AjA n {Tn ~ t} E a{X{s)jO::; S::; t} for any t ~ O} 
is the a-algebra on OTn. 

Definition 1.2 A Markov Skeleton process X is called a non-homogen­
eous (H,Q) - process, if there exist {h(n){t,x,A)jn ~ 1} and 
{q(n){t,x,A)jn ~ 1} such that 
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(i) For n ~ 0, t ~ 0, A E £ 

E[X(Tn + t) E A, Tn+! - Tn > tIX(Tn)] = h(n+!)(t, X(Tn), A) 

(ii) For n ~ 0, t ~ 0, A E £ 

E[X(Tn+d E A, Tn+! - Tn ~ tIX(Tn)] = q(n+!)(t, X(Tn), A) 

where {Tnj n ~ o} is the series of stopping times as in Defi­
nition 1.1, Mn)(t,x,A) and q(n)(t,x,A) are non-negative binary 
measurable functions for fixed A, and pre-distributions for fixed t 
and x. 

Let q(n)(x, A) = limHOO q(n)(t, x, A), then by Definition 1.2(i), one 
can see that {X(Tn)j n ~ o} is a non-homogeneous Markov chain with 
transition probability {q(n)(x,A)jx E E,A E £,n ~ 1}. 

Define 
/\ UE = {RIR(x, A) is non-negative, 

R(·, A) is £ - measurable for fixed A, 

R(x, .) is a measure on (E, £) for fixed x}, 

the product operation in UE is defined by 

R· S(x, A) = 1 R(x, dy)S(y, A), for R,S EUE 

For x E E, A E £, define 

P(t,x,A) P{X{t) E AIX{O) = x) 
pen) (t, x, A) P{X{Tn + t) E AIX{Tn) = x), 

P>.{x, A) = 1000 e->.t P{t, x, A) dt 

pin) (t, x, A) = 1000 e->'tp(n){t,x,A)dt, 

hin) (x, A) = 1000 e->'th(n)(t,x,A)dt, 

qin) (x, A) 1000 e->'tdq(n) (t, x, A), 

Theorem 1.1 (Hou, Liu and Guo [2]) 
{Pin)(x,A)jx E E,A E £,n ~ O} is the minimal non-negative solution 
of non-negative equation 

x(n) {x, A) = 1 qin+!) {x, dy)X(n+!){y, A) + hin+!) {x, A), 

n ~ 0, x E E, A E £ (1.3) 
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thus 

p~n)(x,A) 

in particular 

P>.(x, A) p~o)(x, A) 

t, (g Qk) . Hm+1 (x, A) (1.5) 

where 

Qo (8A (x)) E UE, 

Qm (qim) (x, A)) E UE, m 2: 1, 

Hm (h~m) (x, A)) E UE, m2:1. 

Proof Refer to [2]. • 
From Theorem 1.1, we know that, the distribution of X is determined 

uniquely by (Hm, Qm)~=l' so we also call X a (Hm, Qm)~=l-process. 
In the case that Qm = Ql, Hm = H1(m 2: 1), the associated process 

is homogeneous (H, Q)-process. 

Definition 1.3 A Markov Skeleton process X = {X(t);t < T} is called 
a piecewise deterministic (Hm, Qm)~=l -process, if 

(i) X is a (Hm, Qm):;:;=l-process with respect to {Tn;n 2: O}; 

(ii) There exists a series of measurable functions {fn(x, i); n 2: O} 
defined on E x [0,(0), such that for each n 2: 0, 

2. The effect of stochastic disturbance on the 
solitary waves 

Now we discuss the effect of stochastic disturbance on the kink profile 
solitary wave solutions of equation (1.1). 

It is easy to see that the solitary wave solution u(x, i) = u(x - vi) = 
u(~) of (1.1) must solve the ordinary differential equation 

(2.1) 
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where c is a constant. by [3, Theorem 5.3.1 and Theorem 5.4.2], (1.1) 
has a unique bounded solitary wave solution which is strictly monotone, 
if v2 t= k and 

( 
2 k)2 

v : ~ 4~Ja2 - 2~bc (2.2) 

For convenience, we only consider the stochastic disturbance on the 
half line ~ ~ o. 

Assume v2 t= k and (2.2) hold, we also assume that v2;k < 0 and 
b < 0 without loss of generality. By [3, Theorem 5.3.1], u(~) is strictly 
decreasing and moreover 

{ u(-oo) = lim~-+_oou(~) = -% - iv'a2 - 2~bc (2.3) 
u(+oo) = limu~-++oo(~) = -% + iv'a2 - 2~bc 

Let f(y,~) denote the solitary wave solution satisfying u(O) = y. 
Suppose {Tn; n ~ O} is a series ofrandom times defined on a complete 

probability space (0,.1", P) : 0 = TO < TI < T2 < ... , Tn t +00. At 
each Tn, the solitary wave of (1.1) has a jump. Suppose the distribution 
after nth jump is 7r(n), then the solitary wave solution of (1.1) must be 
a stochastic process, say X(~), thus 

P (X(Tn) E AIX(Tn-d, Tn-I, Tn) = 7r(n)(A), A E 8((u + 00), u( -00)) 

(2.4) 
and for each n ~ 0 

(2.5) 

By Definition 1.3, X(~) is a piecewise deterministic (Hm, Qm)~=r 
process with respect to {Tn; n ~ O}. So the discussion of f(y,~) (~ ~ 0) 
under the effect of stochastic disturbance is equivalent to the discussion 
of X(~). 

so 

Let 

G(n+1)(~, y) II P(Tn+1 - Tn ~ ~IX(Tn) = y), 

Gin+1)(y) II fo~ e->'~dGn+1(~, y), 

h(n+1)(~, y, A) P(X(Tn +~) E A, Tn+1 - Tn > ~IX(Tn) = y) 

= ~A(f(y,~))· (1- G(n+1)(~,y)) (2.6) 

q(n+1)(~, y, A) - P(X(Tn+1) E A, Tn+1 - Tn ~ ~IX(Tn) = y) 
_ G(n+1)(~,y). 7r(n+1) (A). (2.7) 
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Noting that Qo· H1(y,A) = h~l)(y,A) and 

(11 Q.) . Hm+1(y,A) 

{ 
G~l) (y) !'7r(1} (dz)h~2) (z, A), if m = 1 

= G~l)(y) [n~==-/ I 7r(k)(dz)G~k+1)(z)] . I 7r(m)(dz)h~m+1)(z,A), 
ifm> 1 

By Theorem 1.1, we have 

Theorem 2.1 For every y E (u(+oo),u(-oo)), the transition probabil­
ity of X(e) is given by 

P,(y,A) = h~l)(y,A) + G~l)(y) t. [TI ! "(')(dZ)G~k+l)(Z)l 
. / 7r(m) (dz)hr+1) (z, A) (2.8) 

where n~=l = 1. 

Theorem 2.2 Suppose that v2;;k < 0, b < 0 and {2.2}. Let {7r(n)in ~ 
1} be a series of probability measures on (u( +00), u( -00)). Then for 
every y E (u(+oo),u(-oo)) 

Ey,>.X 1\ 1000 e->'{ Ey[X(~)] d~ 

= 1000 e->'{f(y,e)(l- G(1)(e,y))d~ 

+G~l)(y) t. [TI ! "(')(dz)G~k+l)(Z)l 
.100 e->'{ / f(z, e) (1- G(m+1)(e, z)) . 7r(m) (dz) de 

(2.9) 

In particular, if G(n)(e, y) = 1 - e-{Y(n ~ 1), then 

Ey,>.X = 100 e-(>'+Jt){ f(y, e)de 

+ f (_I-L_)ffl rOO! e-(A+Jt){ f(z,e)7r(n)(dz) de 
m=l A + I-L Jo 

(2.10) 
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thus 

EyX{e} = e-P.~f{y,e} 

+e-p.~ ~ I-'m (~ rm-11 f{z, e - r}7r(m) {dz} dr 
~ {m-1}! 10 

{2.11} 

Proof By {2.6} and {2.8} 

Ey,>.X = 100 e->'~ Ey[X{e}] de 

f zh\l)(y, dz) + G~l)(y) f;. [TI~ f ,,(k) (dz)G\k+l) (z) 1 
·11 zhim+1) (u, dZ}7r(m) {du} 

= 100 e->'~f{y,e} (1- a(l){e,y}) de 

+G~l)(y) f;. [11 f ,,(k)(dz)G~k+l)(Z)l 
. 100 e->'~ de I f{u, e) (1 - a(m+1){e, u}) 7r(m) {du} 

In particular, if a(n){e, y} = 1 - e-P.~{n ~ 1}, then G~n){y} = ~, 
this proves {2.10}. Secondly, note that 

( _I-'_)m = roo e-(>'+p.)~ I-'m em- 1 de 
A +1-' 10 {m-1}! 

It is easy to get {2.11} by using Laplace transform. • 
Theorem 2.3 Suppose that the conditions of Theorem 2.2 hold and 
moreover, G(n){e, y} = 1 - e-p.{ {n ~ 1} 

(i) If E[X{Tn}] = I Y7r(n) {dy} -7 u{+oo} as n t 00, then 

lim Ey[X{e}] = u{+oo}, for any y E (u{+oo},u{-oo)) {2.12} 
~-Hoo 

(ii) If 7r(n) 0 = 7r{·)(n ~ 1}, then for any y E (u{+oo},u{-oo)), 

lim Ey[X{e}] = I-' roo e-p.r! f{z, r}7r{dz} dr {2.13} 
{-Hoo 10 

Proof It can be proved from {2.11}. • 
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3. The effect of stochastic disturbance at fixed 
site 

Now we turn to study the effect of stochastic disturbance at fixed site 
x. 

For fixed x, the solitary wave solution of (1.1) is u{x, t) = u{x - vt). 
Let u{x, t, y) denote the solitary wave solution satisfying u{x, 0) = y. 

Suppose {Tn; n ~ O} is a series ofrandom times defined on a complete 
probability space (O, F, P) : 0 = TO < T1 < T2 < ... , Tn t +oo.X = 
{X{t); t ~ O} is a {Hm, Qm)~=cprocess with respect to {Tn; n ~ O} 
such that 

X{t) = u{x, t - Tn, X{Tn)), (3.1) 

and moreover, there exists a series of probability measures {7r(n);n ~ I} 
on (u{+oo),u{-oo)) such that 

Let 

so 

c(n+1){t, y) ~ P(Tn+l - Tn ~ tIX(Tn) = y), and 

G~n+l)(y) 1~ e->'tdC(n+1){t, y), 

P{X{Tn + t) E A, Tn+l - Tn > tIX{Tn) = y) 

OA{U{X, t, y)) . (I - G(n+l)(t, y)), (3.3) 

P{X{Tn+d E A, Tn+l - Tn ::; tIX{Tn) = y) 
c(n+l){t,Y)7r(n+l){A). (3.4) 

Theorem 3.1 Suppose the conditions of Theorem 2.2 hold, and 
{7r(n); n ~ I} is a series of probability measures on (u( +00), u{ -00)). 
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Then for every y E (u{ +00), u{ -00)), 

Ey,>.X 

100 e->.t Ey[X{t)] dt 

- 100 e->'tu{x,t,y)(l- G(1)(t,y))dt 

+Gi1l(y) f; ['IT! ?r(kl(dZ)Gik+1l(Z)] 
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.100 e->.t ! u(x, t, z) (1 - a(m+1)(t, z)) . 7r(m) (dz) dt 

(3.5) 

In particular, if G(n)(t, y) = 1 - e-ttt{n ~ 1), then 

Ey,>.X = 100 e-(A+tt)tu(x, t, y) dt 

+ f (_J-t_) m r+oo e-(A+tt)t! u(x, t, Z)7r(m) (dz) dt 
m=l ). + J-t Jo 

(3.6) 

thus 

Ey[X(t)] = e-ttt . u(x, t,y) 

+e-ttt ~ J-tm rt sm-l!u(x,t-s,z)7r(m)(dZ)dS 
~ (m-l)! Jo 

(3.7) 

Proof The proof is similar to that of Theorem 2.2. • 
Theorem 3.2 Suppose the conditions of Theorem 2.2 hold, and v> 0, 
G(n)(t,y) = 1- e-ttt(n ~ 1). 

(i) Ifliffim~oo E[X(Tm)] = liffim~oo f z7r(m)dz = u{-oo), then 

lim Ey[X{t)] = u{ -00) 
t~oo 

(ii) If 7r(n) 0 = 7r(·)(n ~ 1), then 

lim Ey[X(t)] = J-t roo e-ttS !U(X, s, z)7r{dz) ds 
t~oo Jo 

Proof Note that u(x, s, y) is increasing in s if v > 0, we can get the 
conclusion from (3.7). • 
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TIERNEY MODEL OF H-M ALGORITHMS 
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Abstract In Tierney's extended model, if the candidate kernels are independent of 
the present states, we found all possible acceptance functions, and dis­
tinguished a subclass for which the associated Markov chains converge 
uniformly with some nice rate. We also distinguished some other eas­
ily treated subclasses with some desirable properties of the associated 
chains. 

Keywords: H-M algorithms; Tierney model 
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1. Introduction 

Originally the motivation of H-M algorithm came from the following 
situation: one wants to generate a Monte Carlo sample from a distribu­
tion II either discrete or having density 1[" in Rk. But the distribution 
prod is not easy to sample from directly, and it is quite possible that the 
functional form of IT may be known only up to some unspecified nor­
malizing constant which will be inconvenient to compute directly. One 
strategy is to pick some other distribution (which may depend on the 
"present" state x) q(x,·) which is easy to sample from, and then define 
the Markov transition kernel P(x,·) with density on Rk\{x} 

p(x, y) = a(x, y)q(x, y) 
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and 

P(x,{x})=I- { p(x,y)dy, 
JRk\{x} 

where a(x, y), the so-called acceptance probability, is defined by 

Two special cases have been used much more frequently: one, pro­
posed originally by Metropolis and his co-authors in 1953 [1], requires a 
symmetric candidate q(x, y) = q(y, x)j the other, proposed originally by 
Hastings in 1970 [2], requires an independent candidate q(x, y) = q(y), 
which does not depend on x. 

In papers of recent years, some authors realized that the concepts work 
well for general state spaces with a a-finite reference measure It (see for 
example, Tierney, 1994 [5]). In his paper [6], Tierney even worked on 
general state spaces without reference measure. He studied a general 
acceptance probability a(x, y) ensuring the resulting Markov chain is 
reversible, this implies that n is the invariant measure of the chain, i.e., 
the transition kernel 

P(x, dy) = a(x, y)Q(x, dy) + 8x (dy) ( [1 - a(x, u)]Q(x, du) 
J F\{x} 

satisfies the detailed balance relation 

II (dx)P(x, dy) = P(y, dx) II (dy), 

or equivalently 

II (dx)a(x, y)Q(x, dy) = a(y, x)Q(y, dx) II (dy). 

Here (F ,:F) denotes the general state space, n the target stationary 
distribution, Q the candidate transition probability kernel. 

Let 
>"(dx, dy) = II (dx)Q(x, dy), 

Tierney decomposed F x F into a disjoint union of symmetric subset 
B E :F x :F and its complement BC such that on S, >.. and its transpose 
>..T : >..T(dx, dy) = >"(dy, dx) are mutually absolutely continuous, while 
on BC, they are mutually singular. Thus restricted on S, there exists a 
version of the density 

( ) _ >"s(dx, dy) 
s x, y - >..I(dx, dy) 
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such that 0 < s(x, y) < 00 and s(x, y) = s(;,x) holds for all x, y E F 
(outside S, define s(x,y) = 1), where >"s and >..I denote the restriction 
of >.. and >.. T on S respectively. With these notations, Tierney obtained 
the following sufficient and necessary condition to ensure the reversibility 
of the Markov chain: the detailed balance condition 

a(x,y)>..(dx,dy) = a(y,x)>..(dy,dx) 

holds if and only if a(x, y)s(x, y) = a(y, x) on S, and a(x, y) = 0 on 
se, >.. - a.e. 

For an independent candidate, i.e., when Q(x, dy) = Q(dy) does not 
depend on x, we find in this paper all possible a described by associating 
them with a symmetric function 

1-h~) dTI 
u: u(x, y) = a(x, y) h(y) ,where h(x) = d(TI +Q)' 

A chain is called uniformly ergodic, if the convergence from the n-step 
transition probability measure pn(x,·) to the invariant distribution TI 
is uniformly geometric, i.e., 

for some constants r, C such that 0 < r < 1, 0 < C < 00. We call r a 
convergence rate, and C a controlled coefficient. They are not unique, 
but of course we prefer to choose them as small as possible. If we allow 
the controlled coefficient C to depend on x, the chain is called geometri­
cally ergodic. These definitions are not the original ones but equivalent 
to them. Mengersen and Tweedie (1994) obtained an easy to check con­
dition to ensure the independent Hastings algorithm uniformly ergodic: 
suppose TI « Q, then the chain is uniformly ergodic, if and only if 

7l'(x) = W :::; W < 00, Q - a.s., x E F for some positive real number 
W > 0, if this is the case, 

otherwise the chain is not even geometrically ergodic. It turns out that 
their method works well for general state spaces and even for general 
acceptance probabilities. Thus we need to discuss how to choose an 
acceptance probability making the chain uniformly ergodic with the best 
rate, and we distinguish a subclass of acceptance probabilities making 
the corresponding Markov chains uniformly ergodic with the nice rate 
ensured by this result. 



478 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS 

We also distinguish some other subclasses with special structure which 
are easy to treat in some sense and the corresponding Markov chains 
having some desirable properties. 

2. Independent case in Tierney model 

If the candidate kernel Q(x, dy) = Q(dy) does not depend on the 
present state x, the detailed balance condition becomes 

Let 

a(x, y) II (dx)Q(dy) = a(y, x)Q(dx) II (dy). 

M(dx) = II (dx) + Q(dx), 
dIl 

h(x) = dM' 

then ~ = I-h(x), and it is clear that Sn = {x : h(x) > O} is a support 
of Il and SQ = {x : h(x) < I} is a support of Q. Let 

SA = Sn n SQ = {x : 0 < h(x) < I}, 

then S = SA X SA is the symmetric subset of F x F in Tierney decom­
position for >"(dx, dy) = Il(dx)Q(dy), and the density 

s(x, y) = AI(dx,dy) - h(y)[I-h(x)] on , { 
As(dx.dy) _ h(x)[l-h(y)] S 

s(x, y) = I elsewhere. 

Thus the Tierney's extended acceptance probabilities a(x, y) satisfy 

a(x, y)h(x)[1 - h(y)] = a(y, x)h(y)[1 - h(x)] on S 

and a(x, y) = 0 elsewhere. To solve it, we consider first the case when 
a(x, y) is "factorized", i.e., a(x, y) = al (x)a2(Y). We ignore the "zero" 
solution a(x,y) == 0, so al(x) > 0 for some x E SA, and a2(y) > 0 for 
some y E SA, thus from 

al(x)a2(y)h(x)[1 - h(y)] = ady)a2(x)h(y)[1 - h(x)] 

we know al (y) and a2 (x) > 0 too. Furthermore from 

al(x) h(x) al(y) h(y) 
-- =-- =c 
a2(x) I - h(x) a2(y) I - h(y) 

for all x, y E SA, the constant c is positive, therefore al (x) > 0 for all 

x E SA, and a2(y) > 0 for all y E SA. Also a2(x) = ~1~~~)adx). 
The positive constant c is not important, if a(x, y) = a1 (x)a2(Y) is a 
factorized representation with 

I h(x) 
a2(x) = ~ 1 _ h(x) adx) 
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for c > 0, let ai(x) = jcal(X), a2(x) = y'Ca2(X), then a(x,y) = 

ai(x)a2(Y) is another factorized representation with c = 1. 
It is more convenient to use another choice of c in finding all fac­

torized acceptance probabilities. Notice that al (-) must be bounded 
due to the fact a(x,y) ~ 1, so we may "normalize" ad') by requiring 

sUPxESA adx) = 1, then a2(x) = L~~~)adx), and 

1 h(x) 
a(x,y) = ~al(x)al(Y)1_h(x) ~ 1 

implies SUPXESA al(Y)I~~~) ~ c, in other words, al(y) = 0(1 - h(y» 
for those y such that h(y) close to one. Now we reach the structure 
statement for the factorized acceptance probabilities. 

Proposition 2.1 Given any non-negative function al(x) on F with SA 
as its support and such that 

sup al(x) = 1, 
XESA 

A h(x) 
W= sup al(x) 1 _ h( ) < 00. 

XESA X 

Then for any c ~ W, let a2(x) = L~~~)adx), we get a factorized 
acceptance probability a(x, y) = adx)a2(y), Conversely any factorized 
acceptance probability can be obtained by this approach. 

Usually we take c = W since larger c will make the chain with worse 

rate in uniform convergence. For example, if c = sUPXESA 1~1(~) < 00, 

we may take al == 1, a2(x) = L~~~), and get a factorized acceptance 

probability a(x, y) = L~~(y)" In this example we require h(x) ~ e > 
o for some positive e on SA, which means that we should choose the 
candidate Q not "too far away from" the target n, otherwise the chain 
will not be uniformly ergodic, this is natural. To give another example 
of factorized acceptance probability, we may take al (x) = l_in~-h(x) h(u) 

uESA 

d () hex) 
an a2 x = sup h( ). 

uESA u 
Now turn to the non-factorized case, the structure of general accep-

tance probabilities is similar. 

Proposition 2.2 Given any non-negative symmetric measurable func­
tion a(x, y) on F x F with support S and such that 

h(y) 
M = sup a(x,y) 1 h() < 00, 

(x,y)ES - Y 
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then for any c ~ M, 

1 h{y) 
a{x, y) = ~a{x, y) 1 _ h{y) 

is an acceptance probability. Conversely any acceptance probability can 
be obtained by this approach. 

Proof The first part is straight forward. For the second part, let a{x, y) 
be any given acceptance probability. From 

h(x) 1- h{y) 
a{x, y)s{x, y) = a{x, y) 1 _ h{x) h{y) = a{y, x) 

we know 

~ I-h{y) I-h{x) 
a{x, y)=a{x, y) h{y) = a{y, x) h{x) = a{y, x) 

is a symmetric function on S and satisfies 

h{y) 
sup a{x, y) 1 h{)::; 1 < 00, 

(x,Y)ES - y 

and we extend it to the whole space by defining it as 0 elsewhere. This 
a will give the original a by the approach. • 

For independent candidate, the standard H-M algorithm has accep­
tance probability 

[1 - h{x)]h(y) 
as{x, y) = h{x)[1 _ h{y)] 1\ 1, 

the corresponding symmetric function is as{x, y) = [1 "h(J)] 1\ [1~~(Y)l' 
here the subscription s represents that it is standard but not a general 
one. While for factorized acceptance probability a{x, y) = at{x)a2{x), 
the corresponding symmetric function is ~al (x)al (y), which is factorized 
too. The following lemma shows that the acceptance probability of the 
standard H-M algorithm is usually not a factorized one. 

Proof Suppose as(x, y) = al(x)a2(y), if h attains its maximum at 
some Yo E F, then as{x, Yo) = al{x)a2{Yo) = 1, so at{x) = Q2(YO) does 

not depend on x and we may take al == 1. But then a2(y) = Q~fr~) = 1 
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for all y E F. In the case where sUPXEF h(x) is unreachable, take Yn E F 
such that liII1n~oo h(Yn) = sUPXEF h(x), then 

En = {x : h(x) ~ h(Yn)} t F as n ~ 00, 

• 
Clearly factorized functions are much easier to calculate than others, 

so factorized acceptance probabilities may hopefully provide better al­
gorithms in the sense of reducing the total amount of calculations. Next 
theorem gives this a theoretical support. 

Theorem 2.1 If the acceptance probability is factorized, then for all 
positive integers n, the n-step transition probability densities of the chain 
are also factorized. 

Proof The one-step density is clearly factorized: with PI (x) = al (x) 
and P2(Y) = a2(y)q(y) by 

p(x, y) = a(x, y)q(y) = al(x)a2(y)q(y). 

Then inductively, if the n-step transition probability density is factorized 

then 

p(n+1) (x, y) 

- L PI (X)P2(Z)p~n) (z)p~n) (y)p,(dz) + Pr(x, {x} )p~n) (x)p~n) (y) 

[PI (x) L P2(Z)p~n) (z)p,(dz) + Pr(x, {x} )p~n) (x)] pr)(y) 

shows that the (n + 1 )-step transition probability density is factorized 
~. . 

Here p, is any reference measure on F such that IT « p, and Q « p,j 
while 

Pr(x,{x}) = 1- kp(x,Y)P,(dY) 

is the probability the chain stayed in put by rejection. 
Here we distinguish two kinds of "stay in put": by rejection and by 

acceptance, the later Pa (x, {x}) = p(x, x )p,( {x}) denotes the probability 
that the chain stays at the same state x because it happens to be the 
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"new" state by sampling and we accept it. If the reference measure I-" is 
non-automatic, this does not happen. 

We see that p~n)(y) = P2(y) = a2(y)q(y) does not depend on n. 
Besides if we take al (x) = 1 (or any constant in (0,1), then both 
Pl(X) = at{x) and 

Pr(x, {x}) = I-Pl(X) t P2 (Y)I-"(dY) 

do not depend on x too, then inductively, pin) (x) = Cn are constants for 
all n E N. Therefore p( n) (x, y) = CsP2 (y) for all Y I- x. Thus the study of 
convergence of n-step transition probability reduce to that of a sequence 
of real numbers. 

3. Convergence rate of independence algorithms 
N ow we discuss the convergence of the associated chain. As we know 

from the general theory of Markov chains, to ensure the n-step transition 
probabilities converge to the stationary distribution, the usual starting 
point is to assume that the chain is irreducible and aperiodic. Here and 
later, we follow the concepts and terminology from Meyn and Tweedie [4] 
when our discussion relates to general theory of Markov chains. For the 
standard H-M acceptance probability, the chain is irreducible if and only 
if IT « Q; and if this is the case, the chain is automatically aperiodic 
(in fact it is strongly aperiodic). For general acceptance probabilities, 
to ensure irreducibility, it is still necessary to have IT « Q. In the rest 
of this paper, we will assume so. 

To begin with, we restate the result of Mengersen and Tweedie [3] in 
a version we want, it is an extension, but the demonstration is almost 
the same, so we omit. 

Theorem 3.1 For any acceptance probability a(x, Y), if 

p(x, y) = a(x, y)[l - h(y)] ;::: {3h(y) 

for some positive real number {3 and all (x, y) E S, then the chain is 
uniformly ergodic with the rate 1 - {3. If a(x, y) is "mixfactorized" in 
the sense of having the form 

a(x, y) = min [h(X)gi(Y)], 
l:'Si:'Sk 

the condition is also necessary, in fact if the condition does not hold, the 
chain can not be even geometrically ergodic. 
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Clearly the standard H-M acceptance probability 

[1 - h(x)]h(y) 
as(x,y) = h(x)[1- h(y)] 1\ 1 
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is mix-factorized. For a given a(x, y), if we choose the largest possible 
f3, denoted by f3n, then the chain is uniformly ergodic with the rate 
f3n and controlled coefficient 1. It is natural to choose a so that f3n 
become as large as possible. Denote the largest possible f3n by f3o, an 
acceptance probability a is called "nice" if f3n = f3o. All such acceptance 
probabilities form a subclass, we will call it "the nice rate subclass". 
We use "nice" but not "best", because the best rate 1 - f3n provided 
by Theorem 3.1 may not be "sharp", the following examples shows that 
the chain may uniformly converge at a better rate than the one ensured 
by the theorem. Consider the finite state space with three states, let 
7r = (!,!,!), q = (i,!, ~), then w = (2, 1,~) and f30 = ~. Choose 

then 

t !), and P = (~ ~ 
2" 3 12 12 

~) , 
12 

so the largest possible f3 is 1, because P13 = l2 = !7r3, (for convenience 
of calculation, we use counting measure as the reference measure in the 
case of finite state space, so the condition reduces to Pij 2: f37rj). Then 
it is easy to see 

gives the three eigenvalues 1, ~, and ~. Therefore the convergence rate 
~ is better then i = 1 - f3, the "best" one ensure by Theorem 3.1. 

In general, the supremum of a bounded subset may not be attainable. 
But that of {f3n} is attainable, the following two theorems give a con-

structive way to get f3o. First we define: f30 = infuEsA 1~(J)), then in 
Theorem 3.2, we prove that it is the best f3n in the class of all factorized 
acceptance probabilities. Finally in Theorem 3.3 we prove that it is the 
best f3n in the class of all acceptance probabilities. 
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Theorem 3.2 In the class of all factorized acceptance probabilities, 

h{y) 
a{x, y) = f30 1 _ h{y) on S 

uniquely provides a chain which is uniformly ergodic with the best rate 
1 - f30 ensured by Theorem 3.1. 

Proof Take al{x) = 1 on SA, then 

p{x, y) = a{x, y)[1 - h{y)] = f3oh{y), 

we see that f30t = f3o. We need to prove that for any other factorized 
acceptance probability a, f30t < f3o. Suppose 

1 h{y) 
a{x,y) = al(x)a2(y) = ~al(x)al(Y)I_ h(y) on S, 

where 0 < al :s; 1 on SA, SUPxESA al(x) = 1, p = infxEsA al{x) < 1 and 

c = sUPxESA a1 (x) l~~~)" Clearly c ~ PSUPXESA l~~~) = #0, so 

1 
p{x, y) = a(x, y)[1 - h(y)] = -at{x)at{y)h(y) ~ f3 h{y) 

c 

if and only if al(x)at{y) ~ f3c for all (x,y) E S, if and only if p2 ~ f3c. 
2 

Thus we have f30t = 7- :s; pf30 < f3o· • 

Theorem 3.3 Based on Theorem 3.1, I-f3o is still the best rate even in 
the whole class of all acceptance probabilities. An acceptance probability 
a(x, y) provides a chain with this rate if artd only if 

h(y) [1 - h(x) h(y) ] 
f30 1 _ h(y) ~ a(x, y) ~ h(x) 1 _ h(y) AI, 

i.e. if and only if a(x, y) lies between the best factorized acceptance 
probability and the standard H-M acceptance probability. 

Proof For any acceptance probability a(x,y), we know that 

is symmetric. So on S, 

1 -h{y) 
a{x, y) = a{x, y) h(y) 

p{x,y) - a(x,y)[l-h{y)] 
1 -h{y) 

= a(x, y) h(y) h(y) 

1 -h(x) 
= a(y, x) h(x) h(y) 

> f3h(y) 
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if and only if a(x, y) ~ ,8 1~~1)' Thus,8 ~ l"htJr) for all y E SA, therefore 

,8 ~ ,80. To attain this rate, we must have a(x, y) ~ ,80 1~~1). On the 

other hand, a(x, y) ~ 1 => u(x, y) l "htJr) , and u(x, y) = u(y, x) ~ l "htJ) , 
therefore u(x, y) ~ l"h(J) " 1 "htJr) . Return to a(x, y), we get 

a(x,y) < [1-h(x)" 1-h(y)]. h(y) 
h(x) h(y) 1 - h(y) 

[1 - h(x). h(y) ]" 1 
h(x) 1 - h(y) 

as required for necessity. The sufficiency is a direct consequence of The­
orem 3.1. • 

4. Some other subclasses of acceptance 
probabilities 

We have discussed the subclass of all factorized acceptance prob­
abilities and the nice rate subclass. Their intersection consists of a 
single member, the best one of the factorized acceptance probabilities 

a(x, y) = ,80 1~~1) on S. 
If we regard " as an operation to replace the ordinary multiplica­

tion, we may define another kind of "factorized" acceptance probabili­
ties, called A-factorized acceptance probabilities, with the standard H­
M acceptance probability as a typical example. An acceptance prob­
ability a(x, y) is called A-factorized, if the corresponding symmetric 
function u(x, y) = a(x, y) l"h~r) has the form u*(x) "u*(y). For ex­
ample, the standard H-M acceptance probability is A-factorized with 

*( ) _ I-h{x) 
U x - h{x) . 

The decomposition of a factorized function f (x, y) = h (x) J2 (y) is 
essentially unique (up to a constant multiplier), while the decomposition 
of a A-factorized function f(x, y) = h(x) "J2(Y) is various. But if we 
restrict ourselves on symmetric functions, there exists a unique A-factor 
decomposition, which is the smallest one. 

Lemma 4.1 Suppose A-factorized function f(x, y) = h(x) "J2(Y) is 
symmetric, then there uniquely exists a function 9 on F such that 
f(x, y) = g(x) "g(y). This A-factor decomposition is the smallest one 
in the following sense: if 

f(x, y) = fi(x) "f;(y) 
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is another A-factor decomposition, then 

g(x) ~ J:(x) 1\ f;(x). 

Proof It is straightforward and omitted. • 
We will call the class of all A-factorized acceptance probabilities the 

A-factorized subclass. The members of this subclass are characterized 
not by the acceptance probabilities themselves, but by the associated 
symmetric functions due to the symmetry of the later. Each member 
corresponds to a measurable function u* (x) on (F, F), a measurable 
function u*(x) on (F,F) corresponds to a member of this subclass if 
and only if 

*() 1 -h(x) 
u x ~ h(x) . 

So the standard H-M acceptance probability happens to be the member 
with the largest u*. 

Combine these two kinds of factorized functions, we get the concept 
of mix-factorized functions with the general form 

f(x, y) = min [!i(X)gi(Y)). 
l~i~k 

Clearly both factorized functions and A-factorized functions are all mix­
factorized functions. And the class of all mix-factorized functions if 
closed under both multiplication and the operation of taking minimum. 
The class of all mix-factorized acceptance probabilities will be called 
the mix-factorized subclass. This is obviously a container of both the 
factorized subclass and A-factorized subclass. 

Finally the largest class discussed in this paper is the sign-factorized 
class. A function or an acceptance probability a(x, y) is called sign­
factorized if sgn[a(x, y)] is factorized. Since a(x, y) is non-negative, 
so sgn[a(x, y)] is in fact the indicator of the support Sa = {(x, y) : 
a(x, y) > O} of a. It is trivial to see that an indicator lA is factorized 
if and only if A is a measurable rectangle. So any non-negative mix­
factorized function f(x, y) = minl~i~k[!i(x)gi(y)l is sign-factorized since 
its support 

is a measurable rectangle. For this we state the following proposition to 
end this section and the whole paper. 
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Proposition 4.1 For a sign-factorized acceptance probability a(x, y), 
the chain is IT -irreducible, if and only if IT x IT (So,) = 1. Besides if 
a(x, y) is mix-factorized, then IT x IT(So') = 1 also implies that the chain 
is strongly aperiodic. 
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Abstract In this paper we describe recent empirical work using perfect simulation 
to investigate how rates of convergence for Gibbs fields might depend 
on the interaction between sites and the kind of scanning used. We also 
give some experiment results on Kendall's [8] perfect simulation method 
for area-interaction process, which show that the repulsive case could 
be quicker or slower than the attractive case for different choices of the 
parameters. 

Keywords: McMC, Gibbs sampler, Perfect simulation, coalescence time, attractive, 
repulsive, area-interaction 

1. Introduction 
Development in the area of perfect simulation is rapid. Many perfect 

simulation methods have been proposed. There are mainly two main 
types: one based on the idea of coupling from the past (CFTP) as 
proposed by Propp & Wilson [12], the other is the interruptible method 
proposed by Fill [3]. The majority of recent work has focussed on the 
CFTP idea: Murdoch & Green's [11] work, Kendall [6, 7, 8], Kendall & 
Mr;;ller [9], Kendall & Thonnes [10] and Cai & Kendall [2] work on point 
processes and stochastic geometry, Haggstrom & Nelander [5] work on 
Markov random fields etc. 
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Clearly, perfect simulation is a very powerful tool in the area of sim­
ulation. One direction is to consider how it can be used to investigate 
empirical (and more broadly applicable) methods. For example, can we 
use perfect simulation to investigate how rates of convergence for Gibbs 
fields might depend on the interaction between sites and the kind of 
scanning used? 

Without using perfect simulation, Roberts & Sahu [13] investigated 
many convergence issues concerning the implementation of the Gibbs 
sampler. They conclude that for Gaussian target distribution with in­
verse dispersion matrix satisfying certain conditions, a random scan will 
take approximately twice as many iterations as a lexicographic order 
scan to achieve the same level of accuracy. 

Greenwood et al [4] investigated information bounds (which is the 
minimal asymptotic variance of estimators of E1r [J]) for Gibbs samplers. 
Suppose we want to estimate 

where the Xi are obtained by using a Gibbs sampler based on either a 
random scan or a systematic (deterministic) scan. Empirically the En! 
has noticeable smaller variance for a deterministic scan. The variance 
bound for a random scan is smaller than that for a deterministic scan 
except when 7r is continuous, in which case the bounds coincide. Further­
more, the information bound for a deterministic scan does not depend 
on the details of the order of the sweep. The asymptotic variance of 
the empirical estimator under a random scan is no more than twice that 
under a deterministic sweep. 

Both the Roberts & Sahu and the Greenwood et al results suggest 
that the way of scan does affect the rate of the convergence. Their work 
motivated the current work, i.e. to investigate empirically how rates of 
convergence for Gibbs fields might depend on the interaction and the 
kind of scan used, using perfect simulation. 

The construction of this paper is as follows. In Section 2 we introduce 
perfect simulation methods for Ising model. The empirical simulation 
results will be presented in Section 3. In Section 4 we give some ex­
perimental results on Kendall's [8] perfect simulation method for the 
area-interaction process. Conclusions are presented in Section 5. 

2. CFTP for Ising model 
The Ising model is a simple magnetic model, in which spins Ui are 

placed on the site i of a lattice. Each spin takes two values: + 1 and -1. 
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If there are N sites on the lattice G, then the system can be in 2N states, 
and the energy of any particular state is given by the Ising Hamiltonian: 

H = -JLO"Wj-BLO"i 
irvj 

where J is an interaction energy between nearest neighbor spins, i f"V j 
indicates the existence of an edge connecting i and j, and B is an external 
magnetic field. Many interesting problems about the Ising model can 
be investigated by performing simulations in zero magnetic field B = o. 
We will only consider this case here. Then the Ising measure 7r for G is 
a probability measure on {-I, I} v, where V is the site set of G, which 
to each configuration 0" E {-I, I} v assigns probability 

() 1 -2J ..... ° °EV ° 01" 4" 7r 0" = Je L.J,,} ,,~} ir j 

ZG 
(2.1) 

where J = J / KBf, KB is Boltzmann's constant, T is the temperature, 
Z~ is a normalizing constant. 

We can implement a Gibbs sampler to obtain an approximate sample 
from the equilibrium distribution (2.1) of the Ising model. But how do 
we get a perfect sample from 7r? 

It is noted that the state space of the Ising model considered here is 
finite. We can define a partial order j on the state space as follows: we 
say e j ." if ei ~ "'i for all i E V. Corresponding to this partial order, 
there exists a maximum element I such that Ii = 1 for all i E V, and a 
minimum element 0 in the state space such that Oi = -1 for all i E V. 

There are several well-known results with respect to the partial order, 
see Cai [1]. Using these well-known results, we can construct a mono­
tone CFTP method for Ising model to obtain a perfect sample from 7r. 

The details about the monotone CFTP algorithms for attractive and 
repulsive cases are given in Cai [1]. 

Note that for four neighbouring Ising models on a square lattice, the 
repulsive interaction is actually the same as the attractive interaction 
(so no need for "Ising repulsive CFTP"). However we will consider other 
neighbourhood structures for which there is a difference. In the next 
section, we present our empirical results. 

3. Experimental results for Ising model 

In order to investigate how the rates of convergence for Gibbs fields 
might depend on the interaction between sites and the kind of scan used, 
we consider the coalescence time Tc of our perfect Gibbs sampler. Large 
values of Tc are related (though not exactly so) to a slower convergence 
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rate. The following points, which might effect the convergence rate, have 
been considered. 

We will consider two Ising models: One is an Ising model on a square 
lattice with four neighbours. We call this Model 1. The other is an 
Ising model on a triangular lattice with six neighbours. We call this 
Model 2. For these two models, we know the theoretical critical values 
Jc of J: for Modell, Jc :::::: 0.44, while for Model 2, Jc :::::: 0.27. Propp & 
Wilson [12] showed how to simulate critical Ising models. Their method 
is rather complicated. In fact their perfect samples from the critical Ising 
models are obtained as a byproduct of a perfect simulation for random 
cluster models. Here our experiments will be based on simple cases, i.e. 
sub-critical values of J. 

We will consider the effect of different scans. Two types of scans have 
been considered: one is a random scan, the other is a systematic scan 
which includes scans with lexicographic order, miss one out in lexico­
graphic order (or chess-board scan), miss two out in lexicographic order 
and alternating lexicographic order. 

We will also consider the effect of the interaction on the coalescence 
time, but this will only be done for Model 2, because, as we have pointed 
out in Section 2, for Model 1 the attractive interaction is actually the 
same as that for the repulsive interaction. 

The data is collected in the following way. We set G to be a 100 x 100 
grid. For Modell we take J = 0.05,0.10,0.15,0.2,0.25,0.3. Correspond­
ing to each value of J, we collect 100 independent coalescence times for 
the random scan and 25 independent coalescence times for each system­
atic scan - hence we also have 100 independent coalescence times for 
systematic scan. For Model 2 we take J = ±0.05, ±0.10, ±0.15, ±0.2. 
Then we collect 100 independent coalescence times for random scan and 
100 for systematic scan in the same way as we did for Model 1. 

Plots of the sample mean of the log coalescence times and the cor­
responding 5th and 95th percentiles versus the values of J are given in 
Figure 31.1 for Modell and in Figure 31.2 for Model 2. 

These plots suggest that the random scan is slower than the system­
atic scan. The statistical test on the difference of the two mean coales­
cence times based on large samples confirmed this point. The Roberts & 
Sahu [13] and Greenwood et aI's [4] work suggest that the scan method 
does have an effect on the convergence rate. Our results agree with this. 

But how much slower for the random scan compared with the sys­
tematic scan? Figure 31.3 gives the plots of the ratios of the mean 
coalescence times for the systematic scan to that of the random scan 
versus the value of J for Modell and Model 2. 

Both plots show increased ratio with IJI. 
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Figure 31.1. Graph of the sample mean of the log coalescence times and the corre­
sponding empirical 5th and 95th percentiles versus the values of J for Ising model 
on square lattice with 4 neighbours and J > O. The upper solid curve corresponds 
to random scan, the two dotted curves are the corresponding empirical 5th and 95th 
percentile curves. The lower solid curve corresponds to the systematic scan, the two 
dashed curves are the corresponding empirical 5th and 95th percentile curves. 
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Figure 31.2. Graph of the sample mean of the log coalescence time and the corre­
sponding empirical 5th and 95th percentiles versus the values of IJI for Ising model 
on triangular lattice with 6 neighbours. The upper solid curve corresponds to random 
scan, the two dotted curves are the corresponding empirical 5th and 95th percentile 
curves. The lower solid curve corresponds to the systematic scan, the two dashed 
curves are the corresponding empirical 5th and 95th percentile curves. (1) Attractive 
case: J > O. (2) Repulsive case: J < O. 

Does the interaction effect the coalescence time for Model 2? 
A simple analysis of variance shows that both the scan method and 

the sign of J have a significant effect on the coalescence time at 5% level 
when IJI ~ 1.5. In the case of IJI :::; 0.1, the analysis suggests that 
only the way of scan has a significant effect on the coalescence time at 
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Figure 31.3. Graph of the ratios of the mean coalescence time for the systematic 
scan to that of the random scan versus the values of J. (1) For Modell with J> O. 
(2) For Model 2 with J > O. (3) For Model 2 with J < O. 

5% level. Further statistical tests on the mean difference also suggest 
that when IJI ~ 0.1, there is no significant difference between the mean 
coalescence time of the repulsive and attractive Model 2 at 5% level. 
The following heuristic analysis shows some of the reasons for the the 
above situation. 

In the attractive case, let PI be the probability for the upper process 
to take value -1 at site i, P2 be the probability for the lower process to 
take value -1 at site i. In the repulsive case, define P~ and P~ similarly. 

Then we can prove that PI ~ P2, P~ ~ p~. Furthermore, we have the 
following result. 

Theorem 3.1 Consider Ising model on a triangular lattice with six 
neighbours. Suppose 0 < J < Jc . Let PI = (1 + eI2J )-1 and 'P2 = 
(1 + e-12J)-I. Then PI, P2, p~, p~ E [Ih,P2]. 

The proof of the theorem is given in Cai [1]. • 
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Now it is observed that if the difference (P2 - Pl)( or (p~ - pD) is 
large, then the upper and lower processes tend to stay where they are 
for the attractive (or repulsive) case. If (P2 - PI) ( or (p~ - p~)) is small, 
then the upper and lower processes tend to take the same value. On the 
other hand, it follows from Theorem 3.1 that Pb P2, p~, p~ E uh, P2]. 
Furthermore when J is small, P2 - PI is small, hence P2 - PI and p~ - p~ 
are all small. So the upper and lower processes in both attractive and 
repulsive cases tend to move closer at the same time. Consequently, the 
coalescence time of the attractive case are not significantly different from 
that of the repulsive case when J is small. This is in good agreement 
with our statistical tests above. However, when J is large, P2 - PI is 
large also. Hence the situation becomes very complicated now. It needs 
further investigation in the future. 

4. Experimental results for the area-interaction 
process 

The area interaction point process is a random process X of points 
in Rd with distribution having a Radon-Nikodym density p(X) with 
respect to the unit-rate Poisson process restricted to a compact window, 
where 

p(X) (4.1) 

where a is a normalizing constant, A and, are positive parameters and 
the grain C is a compact (typically convex) subset of Rd. The set X EB C 
is given by 

U{XEBC:XEX}. 

The parameter , controls the area interaction between the points of X: 
, > 1 is attractive case and, < 1 is the repulsive case. 

Kendall [8] developed a perfect simulation method to obtain a perfect 
sample from the area-interaction process. He constructs a maximal and 
a minimal process, both of which are based on a dominated birth and 
death process that is in equilibrium. A perfect sample is obtained once 
the maximal and minimal processes coalesce by time O. He observed 
that the perfect simulation method coalesces quicker for the repulsive 
case than that for the attractive case for the parameters he used. Is this 
true for any repulsive and attractive processes? 

To answer his question, we carried on further experiments on the 
perfect simulation method. 

First note that in the attractive case, we set ,1 = , and in the repul­
sive case, we set ,2 =,. Then,1 > 1 and ,2 < 1. In our experiments 
with the perfect simulation method, we use deliberately chosen values 
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of 'Yl and 'Y2 according to some theory we obtained. Our experiments 
suggest that it is possible to find some regions of ('Yl, 'Y2), such that 
within those regions, we have that the repulsive case is quicker than the 
attractive case. It is also possible to find some other regions of hI, 'Y2) 
within which the repulsive case is slower than the attractive case. The 
experiment results (see Table 31.1) agree with what we expected. For 
the details about the experiments and the analysis about the experiment 
results, see Cai [1]. We hope we will be able to use our theory to give a 
precise answer to Kendall's [8] question in the near future. 

Table 31.1. The mean and the standard deviation of the computation time 
(unit:second) 

Experiments 
1 
2 
3 
4 

5. Conclusion 

Attractive case 
0.2844 (0.0084) 
0.2538 (0.0088) 
0.4624 (0.0139) 
0.5948 (0.0111) 

Repulsive case 
0.0282 (0.0083) 
0.0316 (0.0084) 
0.0198 (0.0068) 
0.9564 (0.0344) 

We have presented our empirical investigation results on the coales­
cence time of perfect Gibbs sampler based on different types of scans and 
different interactions by using perfect simulation method. Also, we have 
presented some experimental results on the perfect simulation method 
for area-interaction process. Our main results can be summarized as 
follows: 

• No matter which types of interactions we have, the way of scanning 
(systematic or random) has a significant effect on the coalescence 
time. Specifically, the sampler with random scan has a larger coa­
lescence time than that with systematic scan. The larger the value 
of 1 JI, the slower the random scan. 

• The sampler for the repulsive case is not necessarily quicker than 
the attractive case. Generally speaking, it is possible to find some 
regions of the parameter space in which the repulsive case is quicker 
than the attractive case; it is also possible to find some regions in 
which the repulsive case is slower than the attractive case. fur­
thermore, the way of deciding the corresponding regions is model 
dependent. 
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Abstract Expected loss and availability of a multistate repairable system, allowing 
bulk-repair and bulk faults, with an overhaul period in the schedule 
are discussed. A new class of integral functional is first considered. 
Their moments and L-transformations are given and two ratio functions 
are defined as numerical indexes of availability of the system and are 
used to find out an optimum overhaul period. Discussion of the paper 
will be useful for traditional industry and control systems, computer 
information science (for example, computer recognition of speech and 
picture) and economy management. The obtained results are not only 
exact but also can be approximated for use on the computer. 

Keywords: System reliability, jump process, integral function. 
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1. Introduction 

In reliability theory the traditional binary theory describing a system 
and components just as functioning or failed is being replaced by the 
theory for multistate system with multistate components (see for exam­
ple [15]). Article [11] studied the association in time when performance 
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process of each component is Markovian. [6] gave the expected loss and 
availability of system, which could be described by a general birth-death 
process. 

Now, this paper discusses the expected loss of a multistate repairable 
system, allowing bulk-repair and bulk faults, with an overhaul period t 
in schedule, and defines two ratio functions to analyze the system avail­
ability and answer the following questions: How should we estimate the 
system availability? To save expenses, when is the opportune moment 
to overhaul completely or even to renew the whole system? It will be 
targeted in the present paper to study a class of integral functional, 

(1.1) 

where V is an arbitrary non-negative function on state space E and hA 
is the first passage time entering state set A. 

Assumption 1.1 Our basic assumptions are following: 

(i) A system state at time s, denoted by x s, indicates the number of 
faults (or, in other cases, a failure level of the system). The state 
space E = {O, I, ... ,}. The state process is a Markov jump process 
X = {xs, s ~ O} with conservative Q-matrix Q = (qij). 

(ii) State 0 shows a perfect functioning and every state in a set A 
is regarded as hardly functioning because of there being too many 
failures in the system or too high expenses for maintenance. So the 
system in the state of A cannot help taking an emergence overhaul 
ahead of schedule. Then tAhA = mini t, hAl is a practical overhaul 
time. Take A = [N,oo) := {N, N + I, ... }. 

As you know, if V (j) is the loss cost of the system with j faults within 
a unit of time, j E E, then YtA indicates a total loss of the system before 
the practical overhaul time. If V(·) = ., YtA is an accumulation of 
duration of every state j before t A hA, weighted by the fault numbers. 

In this paper, Section 2 first shows that the mean loss of the sys­
tem before the practical overhaul time can be expressed in terms of the 
distribution of the relative last quitting time and prohibition potential; 
and then defines two ratio functions regarded as numerical indexes of 
the system availability. Maximizing them, one can find the optimum 
overhaul period t in schedule. All probability quantities concerning the 
theorems given in Section 2 are calculated in Section 3. Finally, Sec­
tion 4 studies the high order moments of these functionals, and provides 
L-transformations. The discussion in this paper will be useful not only 
for traditional industry and control system, but also for computer infor­
mation science (for example, computer recognition of speech and picture) 
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and economy management. These results are exact and convenient to 
approximate and use. 

Integral functionals 

(1.2) 

have been studied since the early 1960s. The first one is also called ad­
ditive functional, see [1, 12]. [17] gave the systems of equations that dis­
tribution functions and L-transforms of YA should satisfy. [11] and [19] 
considered other functionals associated with jump points and problems 
about non-negative solutions corresponding system of equations. [16] 
discussed functional about extremum-times and extreme values for jump 
process. For birth-death processes, refer to [4], [7, 8, 9], [13], [14], [15, 
16], [18], and so on. 

In Section 2, we first show two main theorems to calculate the mean 
loss of the system during the practical overhaul period, which will be 
expressed in terms of a distribution of the relative last quitting time, 
prohibition potential and additive functional of prohibition probability. 
Then we define two ratio functions to be regarded as numerical indexes 
of availability of the system. All probability quantities concerned with 
these theorems are calculated in Section 3. Finally, Section 4 discusses 
the I-order of these functionals. 

2. Expected loss and availability of system 
Firstly, we show two main theorems to calculate mean loss of the sys­

tem during the practical overhaul period, [0, t AhA], which will be ex­
pressed in terms of a distribution of relative last quitting time ALj, pro­
hibition potential Ag(k, j) and additive functional of prohibition proba­
bility APkj (s). Then we'll define two ratio functions that can be regarded 
as numerical indexes of availability of the system. Some quantities con­
cerned in both theorems and ratios will be given in the next section. 
Let 

{ 
APkj(S) = Pk(xs = j, S < hA), Ag(k,j) = Jooo APkj(S) ds, 
APkj('x) = Jooo e-'\s APkj(S) ds, Re('x) > 0, 
Pk(j, A) = Pk(hj < hA), ALj = sup{ S : Xs = j, 0 < S < hAl. 

(2.1) 
And let IB or I(B) be a characteristic function of set B, simply, Ij := 

I{j}. 
Suppose X = {xs, S 2:: O} is a strong Markovian jump process ([15] 

or [2]). Now using a shift operator (}t in [3] and Markov property, one 
can obtain the following exact formulae of mean loss of the system. 
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Theorem 2.1 
For k < N, 

N-l t 

Ek YiA = L V(j) ( APkj{S) ds 
o Jo 

N-l 

EkYA L APkj{t) EjYA, 
o 

(2.2) 

(2.3) 

where APkj{S) and EkYA are given by (3.9) and (3.11) respectively in 
Section 3. 

The mean loss of the system can be also expressed in terms of dis­
tribution of relative last quitting time ALj and prohibition potential 
Ag{k,j). 

Theorem 2.2 
For k < N, 

~~-l V(j) [Ag{k,j) - Ag{j,j) Pk{ALj > t)] (2.4) 

Ek YA - ~~-lEj(JOhA V{xs) Pk{ALx(s) > t) ds) (2.5) 

where Ag{k,j), Pk{ALj > t) and EkYA are given by (3.1O), (3.12) and 
(3.11), respectively. 

Proof 

(i) First prove 

k,j <N. 

In fact, using strong Markov property, we have 

Ag{k,j) - EkJohA Ij{xs) ds 

This is just (2.6). 

(ii) Moreover prove that 

- Ek (J~A Ij{xs) ds, hj < hA) 

= Pk(j,A) EjJohA Ij{xs)ds. 

(2.6) 
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Using (2.6), the left-hand side of (2.7) equals 

Ek(I(t<hA)A9(j,j)Px(t) (j, N)) Ek(I(t<hA) (hI(hj<hA») 

A9(j, j)Pk (t < hA, Ot!"j < 00) 
= A9(j,j)Pk(ALj > t). 

Where hj = inf{ s :< hA, Xs = j}. 

(iii) Finally we have, 

EkYtA = 'L-:-1 V(j) 

Ek (JohA Ij(xs) ds - I(t<hA) JthA Ij(xs) ds ) 

= 'L-:-1 V(j) [ Ag(k,j) - A9(j,j) Pk(ALj > t)]. 

Noting that Ag{i,j) = EdohA Ij{xs) ds, we can immediately ob­
tain (2.5). 

The proof is complete. • 
Using Theorem 2.1, we can obtain the mean practical overhaul time, 

the mean faultless time and the mean accumulation of sojourn at states 
0,1, ... n (< < N), regarding the system as well run, and by taking 
V = I, V = 10 and V = I[O,nj respectively. In fact, taking V = I, then 
from (2.3) obtain 

Ek{t AhA) = EkhA - 'L-:-1 APkj(t) EjhA. (2.8) 

Since Ek{t AhA) = tPk{hA > t) + Ek{hA, t > hA), we can calculate 
the mean of the emergence overhaul time before the overhaul period in 
schedule, t. 

From (2.2) and (2.3), taking V = 10 and V = I[O,nj' we respectively 
have 

EkJ;AhA Io(xs) ds J; APkO{S) ds 

Ag{k,O) -'L-:-1 APkj(t) Ag(j, 0) (2.9) 

EkJ;AhA I[O,nj(xs) ds = 'L-:-1 APkj{t) Ag{j, 0) (2.10) 

Now we define the following ratios 

at EkJ;AhA Io{xs)ds/Ek{t AhA), and (2.11) 

f3t = EkJ;AhA I[O,nj(xs) ds/ Ek(t AhA). (2.12) 
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We suggest regarding them as numerical indexes of availability of the 
system with overhaul period according to schedule, t, and an allowed 
limit to fault number (or failure level), N. Differentiating with respect 
to t one may find maximum values of t, i.e optimum overhaul period 
in schedule maximizing the availability in both two senses above. It is 
also natural and useful to consider other ratios substituting V (j) for Ij 

in (2.11) and (2.12). 

3. Basic probability quantities in above section 
In this section we calculate the following probability quantities con­

cerned in Theorems 2.1 and 2.2 and definitions of the ratios given in the 
preceding section: APkj(S), EkJohA V(x s ) ds, d.f of hA and ALj , from 
which Ag(k,j) and EkhA can be also obtained. Suppose L.j>i qij > 
0, i E [0, N) for the following. 

We first give a useful algebra conclusion as a lemma, which can be 
proved by induction. For this, let 

{ aij ~ 0, i =f. j, -00 < aii = -Ai, Ai ~ L.j:f:iaij > 0, (3.1) 
j E [1, n + m], i E [1, n], and Dn = det(aij)nxn. 

Moreover, substituting the lh column of Dn with 

we denote the obtained determinant by D~)(i), 

where j E [1, n] and i E [1, m]. 

Lemma 3.1 

-Aj- 1 aj-ln+i 
ajn+i 

aj+! n+i - Aj+! 

-An 
(3.2) 

(_l)n+1 D~)(i) > 0, j E [1,nj and i E [I,m], (3.3) 

(-I)nDn > (_l}n+1L.~lD~)(i), jE[I,nj, (3.4) 

{_I)n Dn > 0, ifL.k>iaik > ° and Vi E [l,n]. (3.5) 
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The conclusion given below as Lemma 3.2 is known, for example by 
Keilson [12], which can be proved by using methods similar to those used 
for the proofs of the following Theorems. 

Lemma 3.2 Let AP(t) = (A~j(t) )NxN and QN = (qij)NXN. Then 
AP(t) satisfies forward equation 

(3.6) 

Because QN is finite, (3.6) shows that AP(t) has an exponential form. 
The sign QN will also denote det(qij)NxN where there is no confusion. 

Theorem 3.1 Suppose k, j < N, then 

Re(>.) > 0, (3.7) 

where QN>" denotes the result substituting -qi with -(>. +qi) in QN = 
(qij)NXN, i E [O,N), and Q~~(-b-j) the result substituting the kth col­
umn of QN>" with column vector b-j = (0,0, ... ,0,1,0, ... ,0)' with the 
lh element being 1. 

Proof Let (3 be the first jump of X and (}/3 be the shift operator in 
Dynkin [3]. Noting the conditional independence of (3 and x/3, and the 
strong Markov property of X, and letting real >.> 0, we have 

EkJohA e-'xs Ij{x s ) ds 

EkJt e-'xs Ij{x s ) ds + e-,X/3 (}/3JohA e-'xs Ij{xs ) ds 

bkj/{).. +qk) + 2:i¢AU{k} (qk/{).. +qk)) APij{)..) , 
k,j < N. 

Therefore 

(3.8) 

Letting aki = qki, Ak =>. +qk and fixing j < N, the system of equa­
tions (3.8) has unique system of solutions by Lemma 3.1, which is (3.7) . 

Corollary 3.1 

APkj{S) 

Ag(k,j) 

• 
(3.9) 

(3.10) 
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Where -Oi is the ith zero of order ni of QN)" 0i > 0, ~i ni = Nand 
Q N ( -8-j) is a determination substituting qkj with -8kj in Q N . 

Proof From Lemma 3.1, (-l}NQNA > 0 if real >'> O. So polynomial 
QNA of degree N for complex>. has only negative zero. Taking the 
Laplace inverse transform, (3.9) is verified. Letting >'-+ 0+, one can 
obtain (3.1O) from Lemma 3.1. • 

Since EkIohA V(xs ) ds = ~~-l V(j} Ag(k,j} , using (3.1O) it follows 
that: 

Corollary 3.2 Let V(-) = (V(O), V(l},··· ,V(N -I})', 

Ek YA Q~)(-V(·}}/QN' 
especially Ek hA = Q~)( -I}/QN. (3.11) 

Theorem 3.2 Suppose k, j < N, then 

(3.12) 

(3.13) 

Where QNj is N -1) x (N -1) determination omitted both the lh row 

and the jth column in QN and Q~;(q.j) is a result substituting the kth 

column ofQNj with q-j = (Qlj,q2j,··· ,Qj-lj,Qj+1j,··· ,qN-lj)'. 

Proof 

Pk(ALj > t) - Ek(I(t<hA) OtI(hj<hA)) 

= ~~-l Ek(I(xt=i, t<hA)) EiI(hj<hA). 

So (3.12) is true. If k =J j, 

Pk(j A} Ek Of3 I(hj<hA) 

Ek EX(f3) I(hj<hA) 

= ~i\tAU{k}(qki!qk)Pk(j A} + qki!qk. 

In (3.2), take that 

{ Q .. if i < jj 
aij 

q::lj if i > j. 

Ai = { Q' 
q:+1 

if i < jj 
if i > j. 
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From Lemma 3.1, (3.13) is established. • 
Note: 

Thus up to now, all probabilities connected with both theorems and 
ratios in Section 2 are given. 

4. Lth order moment 

Let us return to discuss the loss of the system and to find the 2nd 
order moment of YtA· For simple, J~ := J~ V(xs)ds. 

Theorem 4.1 For k < N 

Ek(YtA)2 = Ek(YA)2 - 2~f=r/EkYAI(t < hA,Xt = j)EjYA 

+~~-1 APkj(t) Ej(YA)2, k < N. (4.1) 

Proof Since yt~ = (YA - I(t<hA) fth A ) 2, expanding its right hand 
side and using Markov property, we find that 

Ek(YtA)2 = Ek(YA)2 - 2Ek(YA I(t<hA) Ex(t)YA) 

+Ek (I(t<hA) Ext (YA)2) . (4.2) 

From this obtain that just as desired. 
Let 

WtA(k,j) .- Ek (J~V{xs)dsI{t < hA,Xt =j)), 

WtA (WtA{k,j))NxN, P{t) = (APkj{t) )NxN, 

VN = (V{O), V{l),··· , V(N -1))' ·INxN, k,j E [0, N). 
(4.3) 

• 
Theorem 4.2 For k < N 

and WtA satisfies the following differential equation: 

WOA = O. 
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SOWtA = exp{QNt}J~AP(s)VNexp{-QNS}ds. 

Proof 
Ek(YA I(t < hA, Xt = j)) = Ek (J~ + fltJohA ) I(Xt = j, t < hA). 
Using Markov property one can obtain (4.4). 

Bo, Bl and B2 respectively denote the events that there is no jump, 
only unique up-jump and down-jump in the interval (t, t + ~t), then 
omitted o(~t) 

The 1st term of right-hand side equals 

Thus on Bo 

Ek (J~ I(t < hA, Xt = j, Ot!3 > ~t)) 
+V(j)~t EkI(t < hA, Xt = j, Otf3 > ~t). 

(wt+~tA(k,j) - wtA(k,j))/~t 
= V(j) APkj(t) Pj(f3 > ~t) + o(~t)/ ~t 
---t V(j) APkj(t) , as ~t ---t O. 

The 2nd term 

~i<jEk(J~ I(t < hA, Xt = j) Ot I (f3 < ~t, xf3 = j)) 

+~i<jV(i)~t APkj(t) Pi(f3 < ~t, Xf3 = j). 

(wt+~tA(k,j) - wtA(k,j)) / ~t 

- ~i<jWtA(k, i) Pi(f3 < ~t, x(f3) = j)/ ~t 

+ ~i<j V(j) APki(t) Pi(f3 < ~t, x(f3) = j)/ ~t 

- ~i>jWtA(k, i) Pj(f3 < ~t, x(f3) = i)/ ~t 

---t ~i<jqijWtA(k,i) - ~i>jqjiWtA(k,j), as ~t ---t O. 

Similarly, on B2, the limit is 

~i>jqij wtA(k, i) - ~i<jqji wtA(k,j). 

Summing up the above results and noting wtA(k,j) = 0, j E A, (4.4) is 
~~. . 
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Using Theorem 4.2, the second moment of Ek YiA is calculated from 
(4.1). Noting e-'xYA is NhA-measurable (cfWang [15]), it is easy prove 
that e-'xYA 1(t<hA) is M-measurable. For the reasons similar to the proof 
of Theorem 4.1, we have the following conclusion. 

Theorem 4.3 For 1= 1,2"" 

Ek(YiA)1 = Ek(YA)IL:~=l(-l)iCfEk ((YA)I-i1(t<hA)Ext (YA)i). 

(4.5) 

Then calculate Ek(Y11(Xt = j, t < hA) similarly to Theorem 4.2. Fi­
nally, we have the higher ordinal moments of Ek YiA. 

Another way to obtain higher ordinal moments is to consider the L-S 
transforms. Let <PkA(.~) = Eke-XYtA and WkA(>') = Ek e-'xYA. 

Theorem 4.4 The L-8 transformations 

WkA(>') = <PkA(>') + L:f=(/(<PjA(>') - 1) Ek (I(t < hA, Xt = j) 

exp{ - >. YA}), (4.6) 

<PkA(>') Q~~v( -ij.)/QN,XV. (4.7) 

Where QN,XV denotes the result substituting -qi with -(>' V(i) + qi) 
in QN and QN,XV(-ij.) denotes the result substituting the kth column of 

Q N,XV with a column vector of which the kth element is qk - L:~o,~=# qki. 

Proof 

Eke-,XltA = Ek(e-'xYA, t < hA) + Ek(exp{ - >. J~}, t> hA)' 

Using shift and Markovian property, one can show that the right term 
is equal to 

E (I -'xYA E -,XYA) k (t<hA) e x(t)e . 

Substituting and putting right, obtain (4.6). 
Being similar to the proof of Theorem 3.1 and noting <PiA(>') == 1, 

i E A, we have 

L qki<PiA(>') - (>. V(k) + qk) <PkA(>') = - (qk - L qki) , 
i~AU{k} i~AU{k} 

k < N. (4.8) 

Because of qk - ~ qki > 0, from Lemma 3.1, (4.8) has unique system of 
solutions (4.7). • 
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The following theorem is easily checked. Therefore, differentiating 
(4.6) and letting A-+ 0+, one can obtain any ordinal moment of YtA. 

Theorem 4.5 Let Ukj{t) = Ek{I{Xt = j, t < hA) exp{ - A YA}). 
Then Ukj{O) = 8kj «PkA{A) and Ukj{t) satisfies the forward equation. 
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