


Markov Processes and Controlled Markov Chains



Markov Processes
and Controlled
Markov Chains

Edited by

Zhenting Hou

Research Department,
Changsha Railway University,
Changsha, China

Jerzy A. Filar

School of Mathematics,
University of South Australia,
Mawson Lakes, SA, Australia

and

Anyue Chen

School of Computing and Mathematical Sciences,
University of Greenwich,
London, U.K.

KLUWER ACADEMIC PUBLISHERS
DORDRECHT / BOSTON / LONDON



A C.LP. Catalogue record for this book is available from the Library of Congress.

ISBN-13:978-1-4613-7968-3 €-ISBN-13:978-1-4613-0265-0
DOI:10.1007/978-1-4613-0265-0

Published by Kluwer Academic Publishers,
P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

Sold and distributed in North, Central and South America
by Kluwer Academic Publishers,
101 Philip Drive, Norwell, MA 02061, U.S.A.

In all other countries, sold and distributed
by Kluwer Academic Publishers,
P.O. Box 322, 3300 AH Dordrecht, The Netherlands.

Printed on acid-free paper

All Rights Reserved
© 2002 Kluwer Academic Publishers
Softcover reprint of the hardcover 1st edition 2002

No part of this work may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording
or otherwise, without written permission from the Publisher, with the exception
of any material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work.



Contents

Preface

Part I Markov processes

1

Branching exit Markov system and their applications to partial
differential equations

E.B. Dynkin

2

Feller transition functions, resolvent decom{msition theorems, and
their application in unstable denumerable Markov processes

Anyue Chen, Hanjun Zhang and Zhenting Hou

3
Identifying QQ-processes with a given finite y-invariant measure
P.K. Pollett

4
Convergence property of standard transition functions
Hanjun Zhang, Qiziang Mei, Xiang Lin and Zhenting Hou

5
Markov skeleton processes
Hou Zhenting, Liu Zaiming, Zou Jiezhong and Chen Xuerong

6

Piecewise deterministic Markov processes and semi-dynamic
systems

Guozin Liu

Part II Controlled Markov chains and decision processes

7

Average optimality for adaptive Markov control processes with un-
bounded costs and unknown disturbance distribution

J. Adolfo Minjdrez-Sosa

ix

15

41

57

69

93

111



vi MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

8
Controlled Markov chains with utility functions
Setichi Twamoto, Takayuki Ueno and Toshiharu Fujita

9
Classification problems in MDPs
L.C.M. Kallenberg

10
Optimality conditions for CTMDP with average cost criterion
Xianping Guo and Weiping Zhu

11

Optimal and nearly optimal policies in Markov decision chains with
nonnegative rewards and risk-sensitive expected total-reward
criterion

Rolando Cavazos—Cadena and Rail Montes—de-Oca

12
Interval methods for uncertain Markov decision processes
Masami Kurano, Masami Yasuda and Jun-ichi Nakagami

13
Constrained discounted semi-Markov decision processes
Eugene A. Feinberg

14
Linear program for communicating MDPs with multiple constraints
Jerzy A. Filar and Xianping Guo

15
Optimal switching problem for Markov chains
A.A. Yushkevich

16

Approximations of a controlled diffusion model for renewable re-
source exploitation

Sara Pasquali and Wolfgang J. Runggaldier

Part IIT  Stochastic processes and martingales

17
A Fleming-Viot process with unbounded selection, II
S. N. Ethier and Tokuzo Shiga

18
Boundary theory for superdiffusions
Kuznetsov, S.E.

135

151

167

189

223

233

245

255

287

305

323



Contents vii
19

On solutions of backward stochastic differential equations with 331
jumps and stochastic control

Situ Rong

20

Doob’s inequality and lower estimation of the maximum of martin- 341
gales

Li Zhichan

21

The Hausdorff measure of the level sets of Brownian motion on the 351
Sierpinski carpet
Yuan Chenggui and Chen Xuerong

22
Monotonic approximation of the Gittins index 363
Xikui Wang

Part IV Applications to finance, control systems and other related fields

23

Optimal consumption-investment decisions allowing for bankrupt- 371
cy: A brief survey

Suresh P. Sethi

24
The hedging strategy of an Asian option 389
Zhaojun Yang and Jiezhong Zou

25
The pricing of options to exchange one asset for another 397
Chao Chen, Jiezhong Zou and Zhenting Hou

26
Finite horizon portfolio risk models with probability criterion 405
Yuanlie Lin, Jerzy A. Filar and Ke Liu

27
Long term average control of a local time process 425
Marta S. Mendiondo and Richard H. Stockbridge

28

Singularly perturbed hybrid control systems approximated by 443
structured linear programs

A. Haurie, F. Moresino and J.-P. Vial

29
The effect of stochastic disturbance on the solitary waves 465
Junping Li, Zhenting Hou, Weiguo Zhang and Zaiming Liu



viii MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS
30

Independent candidate for Tierney model of H-M algorithms 475
Peide Chen

31

How rates of convergence for Gibbs fields depend on the interaction 489
and the kind of scanning used

Yuzhi Cai

32
Expected loss and availability of multistate repairable system 499
Yubo GE



Preface

The general theory of stochastic processes and the more specialized
theory of Markov processes evolved enormously in the second half of
the last century. In parallel, and to a large extent independently, the
theory of controlled Markov chains (or Markov decision processes) was
being pioneered by control engineers and operations researchers. Since
researchers in Markov processes and controlled Markov chains have been,
for a long time, aware of the synergies between these two subject areas
it was generally recognized that time was ripe to organize a conference
that would bring together the leading practitioners in these fields.

In view of the above it could be argued, that an international con-
ference devoted to the twin topics of Markov processes and controlled
Markov chains was inevitable and that the only questions that needed
to be settled were: when and where should such a meeting take place.
We felt that 1999, the last year of the 20th century, the century during
which the entire subject of probability has been formalized as a rigor-
ous branch of mathematics was the right year to stage this conference.
Furthermore, we felt that by holding it in China we would accomplish
the important goal of facilitating a fruitful exchange of ideas between
the international research community and the members of the vibrant
Chinese school of probability. As a result, a decision was made to or-
ganize the International Workshop on Markov Processes and Controlled
Markov Chains in Changsha, China, 22-28 August 1999.

The conference was a great success. It was attended by eminent schol-
ars in their relevant disciplines, from eleven countries spanning four con-
tinents, including some of the leading Chinese experts. Stimulating ple-
nary lectures by Professors Dynkin (Cornell University, USA), Watanabe
(Kyoto University, Japan), Haurie (University of Geneva, Switzerland)
and Hernandez-Lerma (CINVESTAV-PIN, Mexico) exposed the partic-
ipants to some of the most important recent developments in Markov
processes and controlled Markov chains. In total 94 research papers
were presented at the workshop. There were also many lively discus-
sions and new collaborative projects that resulted from this workshop.

X
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A number of younger researchers and graduate students also actively
participated in the conference.

Authors of the most interesting papers presented at the workshop
were invited to submit their contributions for possible publication in
this edited volume. All papers were refereed. The final selection which
appears in the body of this book reflects both the maturity and the
vitality of modern day Markov processes and controlled Markov chains.
The maturity can be seen from the sophistication of the theorems, proofs,
methods and algorithms contained in the selected papers. The vitality
is manifested by the range of new ideas and new applications in such
fields as finance and manufacturing.

As editors and workshop organizers we are very happy to express
our thanks and appreciation to many people who have worked hard to
make the workshop and this volume so successful. In particular, we are
indebted to all the members of the International and Local Program
Committees (IPC and LOC, respectively), and especially to the work-
shop secretary, Mr. Xiaobin Fang and Professor Hanjun Zhang who also
helped to edit this volume. We are indebted to the many colleagues
who reviewed the manuscripts and made suggestions for improvements.
Ms Angela McKay and Mr Paul Haynes from the University of South
Australia played an important role in converting the manuscripts into a
consistent format. The thoughtful editorial oversight from Mr John Mar-
tindale from Kluwer is also gratefully acknowledged. Last but not least,
the workshop was generously supported by Changsha Railway Univer-
sity, University of South Australia, Changsha Municipal Government,
Xiangcai Securities Co., Ltd, National Science Foundation of China and
the Bernoulli Society for Mathematical Statistics and Probability. With-
out their support the workshop and this volume would not have been
possible.

ZHENTING Hou
JERZY A. FILAR

ANYUE CHEN
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Chapter 1

BRANCHING EXIT MARKOV SYSTEM
AND THEIR APPLICATIONS TO
PARTIAL DIFFERENTIAL EQUATIONS*

E.B. Dynkin

Cornell University

1. Introduction

Connections between linear partial differential equations involving
second order uniformly elliptic operators L and diffusion processes are
known for a long time. Superdiffusions are related, in an analogous way,
to equations involving semilinear differential operators Lu — 9 (u).

Superdiffusions are a special case of superprocesses which were intro-
duced (under the name continuous state branching processes) in pioneer-
ing work of Watenabe in 1968 [9]. Deep results on super-diffusion were
obtained by Dawson, Perkins, Le Gall and others. Partial differential
equations involving the operator Lu — 1(u) were studied independently
by analysts, including Keller, Osserman, Loewner and Nirenberg, Brezis,
Marcus and Veron, Baras and Pierre.

In earlier papers, a superdiffusion was interpreted as a Markov process
X; in the space of measures. This is not sufficient for the probabilistic
approach to boundary value problems. A reacher model based on the
concept of exit measures has been introduced in [1]. A model of a su-
perprocess as a family of exit measures from time-space open sets was
developed systematically in [3]. In particular, branching and Markov
properties of such family were established and used for solving analytical
problems. The central point of the present talk is to show that these two
properties are sufficient to develop the entire theory of superprocesses.

*Partially supported by National Science Foundation Grant DMS-9970942

3

Z. Hou et al. (eds.), Markov Processes and Controlled Markov Chains, 3-13.
© 2002 Kluwer Academic Publishers.
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2. Exit systems associated with a diffusion

To every second order uniformly elliptic differential operator L there
corresponds a Markov process (&, 11, ;) in R? with continuous paths and
infinitesimal generator L. We call it L—diffusion. The process with the
generator L = %A has the transition density

p(r,z;t,y) = [2n(t — r)]"42e 1oyl /20=7)

It is called the Brownian motion.

To every open set @ in time-space S = R x R? there corresponds a
random point (7,&;) where 7 = inf{¢ : (¢,&;) ¢ Q} is the first exit time
from Q. If a particle starts at time r from a point z and if (r,z) € Q,
then the probability distribution of the exit point, given by the formula

k(r,z; B) =11, 4(7,&;) € B,

is concentrated on the boundary 7 of ). Moreover, it is concentrated on
the set ? of regular points [a point (s,c) € is called regular if, for s' >
s, 1L 2{(t,&) e Q forall s < t < sl} =0]If (r,z) ¢ Q, then k(r, z;e) is
concentrated at (r,z). For every bounded continuous function f,

u(""z) = Hr,:cf(Tv éT) = /k('f‘, x5 dsv dy)f(svy)
is a solution of the boundary value problem

Ouf/Or+Lu = 0 in Q,
u = f on OregQ. (2.1)

the family of random points ((7,&;), 7, ;) has the following strong Mar-
kov property: for every pre-r X > 0 and every post-7 Y > 0,

I, (XY) =1L, (XTI, ., Y). (2.2)

Pre-7 means depending only on the part of the path before 7. Similarly,
post-7 means depending on the path after 7. To every measurable p > 0,
there correspond a pre-7 random \va.riable

X= [ pls,6ds
-0
and a post-7 random variable
o0
Y= [ olsds

Let 7 and 7 be the first exit times from Q and Q. Then f (’r',frf) is
a pre-7 random variable if Q' C Q and it is a post-r random variable if

Qcq.
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3. Exit systems associated with branching
diffusion

Consider a system of particles moving in R? according to the following
rules:

(i) Each particle performs an L-diffusion.

(ii) It dies during time interval (¢,¢ + h) with probablility kh + o(h),
independently on its age.

(iii) If a particle dies at time ¢ at point z, then it produces n new
particles with probability p, (¢, z).

(iv) The only interaction between the particles is that the birth time
and place of offspring coincide with the death time and place of
their parent.

(Assumption (ii) implies that the life time of every particle has an
exponential probability distribution with the mean value 1/k.)

We denote by P, ; the probability law corresponding to a process
started at time ¢ by a single particle located at point z. Suppose that
particles stop to move and to procreate outside an open subset ) of
S. In other words, we observe each particle at the first, in the family
history (by the family history we mean the path of a particle and all
its ancestors. If the family history starts at (r,z), then the probability
law of this path is I, ), exit time from Q. The exit measure from Q is
defined by the formula

XQ =0ty + -+ 6(tn,yn)

where (t1,1),--- , (tn,yn) are the states of frozen particles and
means the unit measure concentrated at (¢,y). We also consider a process
started by a finite or infinite sequence of particles that “immigrate” at
times r; at points z;. There is no interaction between their posterities
and therefore the corresponding probability law is the convolution of
Py, z;- We denote it P, where

b= Z 6(ri,z,-)

is a measure on S describing the immigration. We arrive at a family
X of random measures (Xq,P,),Q € O,u € M where O is a class of
open subsets of S and M is the class of all integer-valued measures on
S. Family X is a special case of a branching exit Markov system. A
general definition of such systems is given in the next section.
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4. Branching exit Markov systems

A random measure on a measurable space (s, Bg) is a pair (X, P)
where X (w, B) is a kernel (a kernel from a measurable space (Ey,Bi)
to a measurable space (E3, B2) is a function K (z, B) such that K(z,e)
is a measure on B; for every x € F; and K(z, B) is a Bj—measurable
function for every B € By) from an auxiliary measurable space (Q, F) to
(S,Bs). We assume that S is a Borel subset of a compact metric space
and Bg is the class of all Borel subsets of S.

Suppose that:

(i) O is a subset of c—algebra Bg,

(ii) M is a class of measures on (S, Bs) which contains all measures
6y7 y €S,

(iii) to every @ € O and every p € M, there corresponds a random
measure (Xq, P,) on (S, Bs).

Condition (ii) is satisfied, for instance, for the class M(S) of all finite
measures and for the class A'(S) of all integer-valued measures.

We use notation < f,u > for the integral of f with respect to a
measure 4. Denote by Z the class of functions

7 =exp {Z < fi, Xo, >} (4.1)
1

where (); € O and f; are positive measurable functions on S. We say
that X = (Xg, Py),Q € O,u € M is a branching system if:

4.A For every Z € Z and every pu € M,

P,Z = e~ <wr> (4.2)
where

u(y) = —logPyZ (4.3)
and P, = P;,.
Condition 4.A (we call it the continuous branching property) im-
plies that

P,Z=1IP, Z

forall Z € Z if yp,n=1,2,--- and u = 5_ u,, belong to M.
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A family X is called an exit system if:

4.B Forallpe M and Q €O,
Pu{Xq(Q) =0} =1
4.C If p € M and p(Q) =0, then
P{Xo=n}=1

Finally, we say that X is a branching exit Markov [BEM] system, if
Xg € M for all Q € O and if, in addition to 4.A-4.C, we have:

4.D Markov property Suppose that X > 0 is measurable with re-
spect to the o—algebra Fcq generated by X/, CQandY >0

is measurable with respect to the o—algebra F- generated by
XQ/’Q C Q . Then

P,(XY) = P,(XPx,Y). (4.4)

It follows from the principles (i)-(iv) stated at the beginning of Sec-
tion 3 that conditions 4.A-4.D hold for the systems of random measures
associated with branching diffusions. For them § = R x R%, M = N(S)
and O is a class of open subsets of S. In future, we deal with special
classes Og C O;: an open set @) belongs to O if Q C Sa for a finite
interval A, and it belongs to O; if Q@ C S5, for some ¢, € R. (We put
5S4 = A x R® for every A C R.)

5. Transition operator

Let X = (Xg,P,), Q € O, u € M be a family of random measures.
Denote by B the set of all bounded positive Bg—measurable functions.
The transition operator of X is defined by the formula

Vo(f)(y) = —log Pye™</X@> for f € B (5.1)

Note that
Vo(0) =0 for all Q (5.2)

Recall that the Laplace transform
¢(A) = Pe, x>0

determines uniquely the probability distribution of a positive random
variable Z relative to P. Therefore the transition operator (5.1) defines
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uniquely the probability distribution of X¢ relative to P,. If X is a
branching system, then, for all uy € M,

Pﬂe—<f7XQ> — e~ <Vo(f)p> (5.3)
and therefore Vj determines the probability distribution of X¢ relative
to P,.

Theorem 5.1
(i) A branching system X is a branching ezit system if and only if:
a) . .
Vo(f)=Vo(f) f f=f on Q%
b) For every Q € O,
Vo(f) =f on Q°.
(1i) A branching ezit system is a BEM system if and only if:

For all Q C Q,
VoVo = Vo

If X is a BEM system associated with a branching diffusion, then

Vo(f) = —logw
where
w(r,z) = P ze~<[¥Xe>, (5.4)
Consider the offspring generating function

o(r, z; 2) Epnr:p

The four principles stated at the beglnnmg of Section 3 lead to an equa-
tion

w(r,z) =1, [e"k“—”e-f(ﬂff) +k / e ¥ ds (s, &5; w(s,és))]

r
(5.5)
where 7 is the first exit time from ). The first term in the brackets
corresponds to the case when the particle started the process is still
alive at time 7, and the second term corresponds to the case when it
dies at time s € (r, 7).
Formula (5.5) implies that v = Vg(f) satisfies the equation

e—U(”z) = Hr,z [ / ( Es s ) + e_f(T’ET):I (56)

where ®(r,z;2) = ¢(r,z;2) — 2.
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6. B—transforms of BEM systems and their
limits
To every BEM system X = (Xg,P,), Q€ O, p€ M and to every
constant 8 > 0, there correspond a system X? = (X s p P, ), QeO0, ue
MP where
MP = BM, X, =pXq, P} = Py.

We call it the f—transform of X.

Put
VS (W) = B Va(B5)() (6.1)
where V(f) is given by (5.1). Note that

Pue‘<f’X3> — o~ <Vo(Dm> (6.2)

We construct a BEM system X0 = (XQ,PO) which is, in a certain

sense, the limit of X# as f = 0. (If X is a BEM system associated
with a branching diffusion, then X# describes the evolution of the mass
distribution assuming that all particles have mass 8. The limit as 8 — 0
reveals the behavior of a system of very small particles with very short
lives.)

We put ||f|| = supg |f(y)| and we denote by B, the set of all positive
Bs-measurable functions f such that ||f|| <ec.

Theorem 6.1 Suppose that operators Vg defined by (6.1) satisfy, for
every Q € O, the conditions:

i) VP f) converge, as B — 0, to a limit V) and the convergence
QN ! Q
s uniform on every set B, that is

e(c,B) = sgpllVé’(f) —V3HII—»0  asB—0  (63)

(i1) VQo(f) satisfies the Lipschitz condition on every B, i.e., for every
¢, there exists a constant a(c) such that

V() —Vo@ll <a()llf —gll ~ forall fgeB.  (64)

Then there exists a« BEM system X° = (Xg,PS) QeO0, uce
M(S) such that

Pue—<f,X8> — e_<VQ0(f)7u> (6.5)

for allye M(S), Qe O, f€B.
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7. Superdiffusion

We apply Theorem 6.1 to a BEM system X = (Xg,P,), Q€ 0, p €
N(S) associated with a branching diffusion.

It follows from (5.6) that v? = Vg (f) satisfies the equation

e PP — 11, , [ / k® (s,és;e‘ﬁ”(s’ﬁs)) ds+e_ﬁf(7’§’)] (7.1)

T

which is equivalent to the equation

B0+ Te [ 9 (s.600(6.8)) ds = Taf’(ne) (72
where
4 = [1-¢"]/8,
7= -8,
WPirme) = [Frol-puw -1+ 88 (73)

(We assume that k and ¢ depend on £3.)
Note that, as 8 =0, FF — f. If ¢® — 4, then we expect that
u? — u where u is a solution of the equation

u(r,z) + Ty / "0 (s, Euls, &) ds = o f(r, &) (74)

We say that a BEM system X = (Xqg,P,), @ € O, p € M is an
(L, )—superdiffusion if O is a class of open subsets of S = R x R? and
if transition operators Vg satisfy the condition: for every f € B, u =
Vo(f) is a solution of the equation (7.4).

Equations (7.2) and (7.4) can be rewritten in the form

u? + GoUP(uf) = Ko fP (7.5)

and

u+ Go¥(u) = Kg(f). (7.6)

where the Poisson operator K¢ and the Green operator Gg are defined
by the formulae

KQf(T’J") = Hr,zf(T7<T)7 (77)
Gop(r,z) = H'r,x/ p(s,&s)ds (7.8)
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and
Wh(f)(rne) = [1-e?0)] 8
V(f)rz) = 47 (r,5f(r,2), (7.9)
Y(f)(rz) = ¢(rzf(rz).
We prove:
Theorem 7.1 Suppose that:
(i) ¥¥ >0,
(i) P converges to 1 uniformly on every set {(r,z) € S,u € [0,c]},
and

(111) for every c, there exists a constant g(c) such that
[ (r, 25 u1) = (r, z;u2)| < qlc)jur — ugf
for all (r,z) € S and all uy,uy € [0,¢|.

Then operators Vg satisfy Theorem 6.1(i) and (ii), and VQO are transition
operators of an (L,v)— superdiffusion X. Finite-dimensional distribu-
tions of X are uniquely defined by 1.

By Theorem 7.1, an (L, 1)) —superdiffusion 1 exists (with O = Oy, M =
M(S)) if ¢ satisfies condition (iii) and if there exist generating functions
and constants k? for which

YA (r,z;u) = [qbﬁ(r, z;1—Pu) -1+ ,Bu] K2/ (7.10)
satisfy Theorem 7.1(i) and (ii). By constructing appropriate ¢® and k¥,
we prove the following theorem:

Theorem 7.2 An (L,)—superdiffusion exists for every function
o o]
W(r, z;u) = b(r, z)u? +/ (e_’\" -1+ )\,u) n(r, z; du) (7.11)

0

where b 1s a positive function and n is a kernel from (S, Bg) to R subject
to the conditions

1 00
b, / u’n(r,z; du) and / un(r, z; du) (7.12)
0 1

are bounded on A x R% for every finite interval A.

We also prove that superdiffusions can be defined for wider classes
O; (defined in Section 4) and M; which consists of all measures p on S
subject to the condition: p(Sa) < oo for every finite interval A.
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8. Applications to PDEs

Suppose that X is the (L, 1) —superdiffusion described in Theorem 7.2.
Then, for every @Q € O; and every f € B,

u(r,z) = Vo(f)(r,z) = —log P, ze~</¥e> (8.1)

is a solution of the integral equation (7.6). If f is bounded and contin-
uous, then (7.6) implies

Ou/dr + Lu = (u)in Q,
u = fon 0OregQ (8.2)

See [2] or [4]. This is basis of a probabilistic theory of semi-linear
parabolic and elliptic equations involving operator Lu — 1(u)
For instance, the first boundary value problem

Lu—¢(u) = 0inD,
v = fondD (8.3)

in a bounded domain DR? with a smooth boundary can be solved by
the formula
u(z) = — log P~ </Xp> (8.4)

where P, = Py ; and Xp is the exit measure from cylinder Q = (0, 00) x
D.

The next step is a description of all positive solutions of equation
Lu = 9(u) in an arbitrary domain D. It was shown in (3] that all such
solutions can be obtained by the formula

u(z) = —log P % (8.5)

where
Z=lim<u,Xp, >. (8.6)

Here D,, is a sequence of bounded smooth domains such that D, C Dpy1
and the union of D, is equal to D. Formulae (8.5)—(8.6) establisha 1—1
correspondence between the set U of all positive solutions in D and a
closed convex cone Z of functionals of X. In particular,

P Bl if X hits 0D
~ 1 0, otherwise

corresponds to the maximal solution.
A more explicit description of ¢ is based on the concept of a trace of
u on D (for a general domain, D means its Martin boundary). This
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direction of research is a subject of Kuznetsov’s article in the present
volume.

Another important direction is the study of subsets of D U dD which
are removable singularly for v € Y. It turns out that a set I' belongs to
this class if and only if it is not hit by the superdiffusion. An analytic
characterization of removable singularities is done in terms of capacities.
Recent results in this direction and references to earlier work can be
found in [5, 6, 7, 8].
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Abstract  This paper surveys the recent progresses made in the field of unstable
denumerable Markov processes. Emphases are laid upon methodology
and applications. The important tools of Feller transition functions and
Resolvent Decomposition Theorems are highlighted. Their applications
particularly in unstable denumerable Markov processes with a single
instantaneous state and Markov branching processes are illustrated.

1. Introduction

Around 50 years ago Kolmogorov [29] raised the following challenging
question.
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Question 1.1 (Kolmogorov [29]) Given a matriz Q = {g;;} on the
non-negative integer Z, = {0,1,2,---} with the off-diagonal elements
(here only the non-zero elements are specified )

;=1 (Vj21) (1.1)

and
0 < gjp=a; < +00 (VZ > 1) (1.2)

together with the diagonal elements
%= —qi = a; (Vi > 1) (1.3)

then under what conditions does there exist an honest continuous time
Markov Chain (CTMC) whose transition function P(t) satisfies P'(0) =

Q°

Why is this question challenging? One of the reasons is, if there
exists an honest transition function P(t) such that P'(0) = @Q, then
condition (1.1) forces

go= — goo = +00. (1.4)

That is, the state {0} is an instantaneous state and thus the CTMC is an
unstable one. Although fruitful results have been obtained for CTMC,
they are almost all concerned with stable CTMC. Indeed, few results
have been obtained for unstable CTMC even until now. See later.

Kendall and Reuter [27] provided the following answer to Question
L.1.

Theorem 1.1 (Kendall and Reuter [27]) If >°,(1/a;) < +oo
then there exists an honest transition function P(t) such that P'(0) = Q.

It should be noted that (1.2) and (1.3) are assumed to be true in
Kolmogorov’s original question. That is, all positive states are assumed
to be stable and conservative. Hence another interesting and challenging
question naturally arises.

Question 1.2 If there exists an honest function P(t) whose (infinitesi-
mal) intensity matriz Q = {qi;} satisfies (1.1), will all the positive states
be stable and conservative?

One has to wait for many years before Williams [46] answered ‘yes’
strongly in obtaining the following remarkable result.
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Theorem 1.2 (Williams [46]) Suppose a matriz Q = {g;;} defined on
a countable set E satisfies the condition that there exists a state b € E
such that
lim inf g > 0. (1.5)
1—00

If there exists an honest transition function P(t) = {p;;(t);i,j,€ E}
such that

lim(pyi(t)/t) =g (0 # D) (1.6)
then we have
@ = —qop=+00 (L.7)
¢ = —qy<+oo (Vi#Db) (1.8)
G = Z(Iij (Vi #b) (1.9)
JFi

YN k(N < +oo (VA >0) (1.10)

j#b k#b

where ®(A\) = {¢ij(A);4,5 # b, X > 0} is the minimal Qp-resolvent and
Qb is the restriction of Q on E\{b}. Conversely, suppose a matriz Q =
{4i;} defined on E satisfies (1.5) and (1.7)-(1.9), and if (1.10) holds
true then there exists an honest transition function P(t) = {pi;(t)} such
that
lim(P(t) - I)/t=Q (1.11)
t—0
Note that condition (1.5) means that there exists a finite subset F C E
and a positive number ¢ > 0 such that for all i € E\F,

Qpi >0 >0 (1.12)

which forces (1.7) to hold true under the condition that Q is an infinites-
imal g-matrix. The interesting thing here is that (1.5) (or (1.12)) also
forces (1.8) and (1.9) to be true, that is, all states except {b} must be sta-
ble and conservative. Moveover, if (1.5) and (1.7)-(1.9) hold true, then
Q becomes an infinitesimal g-matrix of some honest transition function
if and only if (1.10) holds true.

Note also that if the requirement of an honest transition function is
relaxed to be a transition function (not necessarily honest), then (1.8)
must still hold true (i.e. all states except {b} are stable), though (1.9)
(conservativeness) may not be necessarily true.

Obviously, (1.1) is a special case of (1.5). From now on, a matrix
Q = {qi;} satisfying (1.5) and (1.7) to (1.9) will be called a Kolmogorov—
Williams g-matrix, or simply, K-W g-matrix. We use the same name for
the corresponding g-processes.
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William’s proof for the existence of the K-W g-processes was a proba-
bilistic one. The advantage is that the initiative meaning is clear. How-
ever it seems not easy to give more results from this proof. Therefore an
analytic proof is hoped and more results are expected for such processes.
We shall return to these questions later.

Reuter [38] once considered an example which is slightly more gen-
eral than the Kolmogorov’s q-matrix in replacing go; = 1,(Vj > 1) by

E?; goj = +00.

Theorem 1.3 (Reuter [38]) Suppose a matriz Q = {gi;} on the non-
negative integer Z, 1is given by (1.2)—(1.4) (here, again, only the non-
zero elements are specified) together with

o0
Y b =+o0 (1.13)
i=1
where b; = qoj. Then if
o
> (bi/a;) < +o0 (1.14)
j=1

then there exists an honest transition function such that (1.11) holds
true. That is there exists an honest Q-process.

Notice that the common feature in all the above examples is that there is
one and only one unstable (or instantaneous) state. Before proceeding
further, we first give the precise meaning of this term. Recall that a
matrix Q = {¢;;} defined on a countable set E is called a pre-q-matrix
if the following D-K conditions are satisfied

0 < gij < 400 (i # jsi,7 € E) (1.15)
-0 < ¢i <0 (i € E) (1.16)
and
Y i <-qizq (i€ E). (1.17)
J#

If ¢; < +00, then 7 € E is called stable while if ¢; = +00, ¢ € E is called
instantaneous. If all i € E are stable then Q is called totally stable (TS).
The meaning of totally instantaneous (TI) should be then clear. In the
case of the existence of both stable and instantaneous states, Q is called
a mixing pre-g-matrix. Both TI and mixing cases are called unstable.
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Furthermore, a pre-g-matrix Q is called Conservative Uni-Instantaneous
(CUI) if there exists a state b € F such that

> =a5 = +00 (1.18)
J#£b
and that
Z‘ﬁj =¢q; < 400 (Vi #b) (1.19)

J#i

Note that all the above examples considered until now are special
cases of CUI pre-q-matrix.

Also recall that a matrix @ = {g;;} defined on E is called a q-matrix
if there exists a Markov transition function P(t) such that (1.11) is
satisfied. We shall apply all the above terms to g-matrix as well as the
corresponding g-process (g-function, g-resolvent etc).

It is well-known that a g-matrix is a pre-g-matrix. However the con-
verse may not be always true. Now several basic questions arise.

Question 1.3 (Existence) Under what conditions does a given pre-q-
matriz become a g-matriz?

Question 1.4 (Uniqueness) If a given Q is a g-matriz, under what
conditions does there exist only one corresponding @Q-process?

Question 1.5 (Construction) How do we construct all the Q-pro-
cesses via a given g-matriz Q¢

Question 1.6 (Property) How do we study all kinds of properties of
Q-process in terms of the given g-matriz Q?

No doubt, Question 1.6 is the most important question which has con-
siderable significance both in theory and applications. However, Ques-
tions 1.3-1.5 are also of great importance since without solving them it
is of little hope we could tackle Question 1.6 successfully.

If @ is totally stable, then the above questions were firstly systemat-
ically studied by J.L. Doob and W. Feller in the 1940s and then contin-
uously investigated by many world-leading probabilists, including D.G.
Kendall, G.E.H. Reuter, D. Williams, J.F.C. Kingman, Samuel Karlin
and K.L. Chung. In particular, Feller [18] showed that a totally sta-
ble pre-g-matrix must be a g-matrix and constructed a solution for any
totally stable g-matrix, which has a minimal property and bears his
name today. Thus the existence Question 1.3 was solved completely.
Doob [17] observed and investigated the non-uniqueness property of
totally stable g-processes and then the uniqueness Question 1.4 was
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solved by Reuter [36], [37] for the conservative case and Hou [22] for
the non-conservative case respectively. The construction Question 1.5
is closely related to the boundary theory (Feller boundary and Matrix
boundary) of continuous time Markov chains, to which K.L. Chung and
D. Williams contributed significantly. As to Question 1.6, fruitful results
have been obtained and there are plenty of monographs and books to
discuss totally stable g-processes. Until the publishing of Chung’s foun-
dation book [15], the theory of totally stable g-processes were viewed,
by and large, as completed, though many other important topics such
as reversibility, strong and exponential ergodicity, quasi-stationary dis-
tributions, monotonicity, duality, coupling, large deviation, and spectral
theory have emerged and flourished since then and lasted even until
today.

Now, how about the unstable case? It may be hard to believe that the
above Theorems 1.1, 1.2 and 1.3 are essentially the only results obtained
for the mixing case until the early 1980’s. The picture of the totally
instantaneous case is no better. Surprisingly, however, an elegant result
was obtained by Williams [47] regarding the existence problem for TI
g-processes. That is

Theorem 1.4 (Williams [47]) Suppose Q = {g;;} is a totally instan-
taneous pre-q-matriz, then it becomes a g-matriz if and only if the fol-
lowing two conditions hold true.

(i) Zj;é{a,b} (9aj A @pj) < +o00 (Va # b,a,b € E);
(i1) there exists an infinite subset I of E such that for alli € E

Zqi]‘ < 400

Jjel

See also Rogers and Williams [41]. Analysis of some examples of
the totally instantaneous case can also be seen in Blackwell [4] and
Kendall [26].

Of course, there exist a few books discussing the general theory con-
cerning instantaneous states. The path behaviour of CTMC with in-
stantaneous states is discussed in Chung [15]. Using the method of
taboo probability to study properties of CTMC can also be found in
Chung [15]. Another very important book containing discussion of in-
stantaneous states is Rogers and Williams [42]. The monograph written
by Freedman [19] is, perhaps, the only book to discuss instantaneous
states exclusively.
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Notwithstanding, the picture of the unstable case is still very poor, in
particular, when compared with the stable case. This reflects the fact
that the topic of unstable q-processes has essentially mathematical diffi-
culty. This does not mean of course, that to study unstable g-processes
has little significance in practical applications. On the contrary, to study
unstable g-processes is of considerable significance both in theory and
applications. Therefore, the right thing we should do is to find out some
methods and techniques to overcome the mathematical difficulty and
this will surely yield considerable progress in this challenging topic.

2. Feller transition function and resolvent
decomposition theorem

Although there are few results obtained for unstable g-processes until
early 1980’s as we mentioned in the previous section, an interesting and
closely related theory, called Feller transition function, has been already
developed long before.

Note first that a countable set E with discrete topology is trivially an
LCCB. Thus we may define the Markov semigroup P = (P(t);t > 0),
induced by a standard substochastic transition function (p;;(t);4,j € E),
as a Feller semigroup if P(t)z € Cyo(FE) whenever z € Cy(E) where
Co(FE) denote the Banach space of continuous functions on E vanished
at infinity. The corresponding transition function is also called Feller.

Although this Feller property, one of the many kinds of Feller prop-
erties is well-known in the general theory of Markov processes, it is the
only Feller property which may yield more interesting results for the
countable state space. Indeed the more commonly used Feller property
for general Markov semigroup, i.e., mapping C(E) to C(E), only yields
unsatisfactory theory in the countable state space case.

The following interesting and important result was first announced
(without proof) by Jurkat [25] and then proved and developed by Reuter
and Riley [39].

Theorem 2.1 The following statements are equivalent:
(i) P(t) is Feller, i.e., P(t)z € Cy(E) whenever z € Cy(E),
() pij(t) = 0 as i — oo for all j € E and all t > 0,
(4) r;j(A) =0 asi — oo forallj € E and all X >0

where {p;;(t)} and {r;;(\)} are transition and resolvent functions respec-
tively. Moreover, if P(t) is Feller, then its g-matriz Q must be totally
stable and this P(t) is actually the Feller minimal Q-function.
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The relationship between this remarkable result and Theorem 1.2 (and
then Theorems 1.1 and 1.3) seems transparent. However, this result
did not immediately lead to the research in the direction of unstable
denumerable Markov processes. It reflects the fact that a gap exists
between these two topics. The following decomposition theorem fills
this gap and bridges the way to study the latter.

Theorem 2.2 Suppose Q = {q;;} is a g-matriz on the state space E
(that is there ezists a transition function P(t) such that P'(0) = Q).
Suppose further that R(A) = {r;;(A);i,5 € E,X > 0} is a Q-resolvent.
Let F be a finite subset of E and denote G = E\F. Then R()\) may be
uniquely decomposed as follows

(0 0 A(N) A(Mn(X)
=0 agy ) * (e eovatomy ) @D

where

() A(X) is the restriction of R(A) on F x F, i.e., A(A) = {rij(A);4,5 €
F} and
|A(A)| >0 (VA >0) (2.2)

and thus A()\) is invertible for all A > 0.

(i) ¥(X) = {9;;(A); 4,7 € G} is a Qg-resolvent where Qg = (gs5;4,7 €
G) is the restriction of @ on G x G.

(i) n(A) = {ni;(A);i € F,j € G} satisfies
n(A) = nlp) = (b= Nn(A)¥(), (YA, 4> 0) (2.3)

and
0<n.(A\) el (Vi e F,YA>0) (2.4)

(iv) £&(A) = {&;(A);i € G,j € F} satisfies
§(A) = &(p) = (k= AT (N)E(p), (VA,p > 0) (2.5)

and

0<€(N1<1-Mp(M)1 (2.6)

(Here 1 is a column vector whose elements are all 1 and the di-
mension of which depends. For example, the first 1 in (2.6) is
a finite dimensional vector on F while the other two are infinite
dimensional vectors on G)
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(v)
/\li)l{.lo Aan(A) = Qrc (2.7)
lim A(A) = Qer (2.8)

where Qrg = (¢ij,1 € F,j € G) and Qgr = (g5, € G,j € F) are
the restriction of @ on F x G and G x F respectively.

(vi)
Jim AZ% —¢i) <40 (VieF) (2.9)

(vii) There ezists a constant matriz C = {c;;;1,j € F} such that
AT (N) = C + AT+ \n()), €] (2.10)

and (thus the right hand side of (2.10) is invertible)

—Cij = Qij + ,\IHIOIO)‘Z Mik(MNék;  (Vi,j € Fi#3) (2.11)

keG
Z ¢;j 2 lim A > m(N)(1 - Zﬁkj) (Vie F) (2.12)
JeEF keG JEF

(viii) If i € F is unstable, i.e., g; = +00, then
lim A ni(\é =+00 (Vi€ F) (2.13)
A—00
keG
or, equivalently
i ; = € F .14
,\ll»n;o)‘gmk()‘) +00 (Vi e F) (2.14)

while if 1 € F is stable i.e., q; < 00, then

Jlim A Z Nik (M) €ki < +00 (2.15)
keG
and
¢i = cii + lim A > nik(N)éki (2.16)

keG
Here, £ = {&5;1 € G,j € F} in (2.10)-(2.13) and (2.15)—(2.16) is
¢ = /{1_{%{()\) (2.17)
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Moveover, if R()\) is honest, then (2.12) and the second inequality in
(2.6) become equalities, that is

D= lm Ay mk(N(1-) &)  (iEF)  (218)

JjeF keG JEF

and
Y &N =1-2) ()  (Vi€G) (2.19)

JEF keG

This extremely useful theorem has a very clear probabilistic mean-
ing. It is just the Laplace transform version of first entrance — last exit
decomposition theorem. Indeed, £(A) and n(A) are simply the Laplace
transforms of the first entrance time to, and last exit time from, the
subset F of the corresponding Markov chain and ¥()) is just the taboo-
resolvent. See Chung [15] for the celebrated idea of taboo probabil-
ity. This idea has been extensively developed by Syski [43], though the
latter book concentrated on the Feller minimal chains and thus the g-
matrix concerned is totally stable. It should be emphasized that the
A(X) in (2.1) is the Laplace transform of the“transition function” of a
quasi-Markov chain, a theory brilliantly developed by Kingman [28], in
which the “Markov characterization problem” was tackled and solved.

Surely, the decomposition theorem 2.2 has a long history which can
be at least traced to Neveu [30]-[32]. Based on Neveu and Chung’s
works, Williams systematically studied and raised it to a considerable
high level, see Rogers and Williams [42].

However, it seems that people have paid less attention to the converse
of theorem 2.2, which, in our opinion, has more applications, particularly,
in the study of unstable chains. That is the following result.

Theorem 2.3 Let Q = (gi;i,j € E) be a pre-g-matriz and F is a
finite subset of E. Suppose there ezists a Qg-resolvent U()) and a n(A)
and £(\) such that (2.3)-(2.8) and (2.13)—(2.15) are satisfied, where
G = E\F and Qg is the restriction of Q on G x G, then Q is a g-matriz,
that is there exists a Q-process. Moveover, if the above U()),£(N) and
n(\) further satisfy

Y N =1-2) 9x()) (Vi€ E) (2.20)

Y oai=- Um A > 1) (2.21)

JEF keG
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then there exists an honest QQ-process. The corresponding Q-resolvent
(honest and dishonest) may be constructed in using (2.10)-(2.17).

The important thing in Theorem 2.3 is that it not only gives the
existence conditions but also yields uniqueness criteria. It also provides
a method to construct the g-resolvents, by which the property of the
corresponding g-processes may be analysed. This makes Theorems 2.2
and 2.3 useful even for the totally stable g-processes. In particular, if
the underlying Q¢ resolvent ¥()) is known, then the property of the Q-
process may be easily derived. This idea stimulated some new research
works. See, for example, Chen and Renshaw [10] in which the underlying
structure is an M/M/1 (queue), and Chen and Renshaw [5, 8] in which
the underlying structure is a simple branching process.

As existence conditions are concerned, Theorem 2.3 does not provide
further information for the totally instantaneous chains. For the mixing
case, however, Theorem 2.3 is quite informative. For example, if the
instantaneous states form a finite (non-empty) set, then much more in-
formation may be obtained. In order to state such results, let us first
denote F = {t € E;q; = +oo} where F is a finite set and, again, let
G = E\F. Further define a Q-process as almost B-type if

dP;(t)/dt =) quP(t)  (Vi€GVj€E)  (222)
keE

or almost F-type if

dP;;(t)/dt =) Pi(t)qe (Vie ENjeG) (2.23)
keE

Now we have the following conclusion.

Theorem 2.4 Let Q = {g;;} be a pre-g-matriz with a finite set F =
{i € E,qi = +o0}.

(i) R()\) is an almost B-type Q-resolvent if and only if the restricting
Q¢-resolvent W()\) is B-type.

(i) R()) is an almost F-type Q-resolvent if and only if the restricting
Qg-resolvent ¥()) is F-type.

(i) Suppose the pre-q-matriz Q satisfies the conditions

Y = +oo (Vi € F) (2.24)
j#i
Z(Iij = g <+oo (Vi € G) (2.25)

J#i
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then Q is a g-matriz (i.e. there exists a Q-process) if and only if
for some (and therefore for all ) A > 0, the following condition

Y qidri(N) <+oo (Vi€ F) (2.26)

JEGEkEG

holds true, where ®(X) = {¢i;(N);1,j € G} is the Feller minimal
Qc-resolvent. Also if (2.26) is true, then there ezists at least one
honest Q-process.

For an elementary and purely analytic proof of all the above Theo-
rems 2.2 to 2.4, see Chen and Renshaw [5, 7] for the case where F is a
single point and consult Hou et al [24] for the general case where F is a
finite set.

As we have already mentioned, Theorems 2.2 to 2.4 are just Laplace
transform versions of the Neveu- Chung- Williams- Kingman’s decom-
position theorem. However, this Laplace transform version seems more
informative and could yield more results, see the next section. To our
knowledge, the above refined version of Theorems 2.2 to 2.4 was first
stated and proved in Chen [9], but unfortunately, in a hardly accessible
language, Chinese! This is one of the reasons we stated Theorems 2.2
to 2.4 in detail here.

3. Unstable chains with a single instantaneous
state

In order to illustrate the application of Feller transition functions
and resolvent decomposition theorems, we now discuss unstable Markov
chains with a single instantaneous state. Recall that a pre-g—matrix
Q is called CUI, if (1.18) and (1.19) are satisfied. In this case, the set
F = {i € E,q; = +00} becomes a singleton, denoted by {b} say. Again,
let G = E\{b}. Now the following conclusion is a direct consequence of
the resolvent decomposition theorems.

Theorem 3.1 (Chen and Renshaw [7]) Suppose Q is a CUI pre-q-
matriz. Then

(i) It becomes a q—matriz if and only if for some (and therefore for
all) A > 0,
> @idik(A) < +oo (3.1)
keG jeG
where ®(A\) = {¢i;(A);i,j € G} is the Feller minimal Qg—resol-
vent. Futhermore, if (3.1) is satisfied then there exists an honest
almost B N F-type Q-process.
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(it) If (3.1) is satisfied, then there always exist infinitely many of Q—
processes with at least one honest one. The honest QQ-process is
unique if and only if both equations

YOO -Qg)=0, 0<Y(\)el (3.2)
and
A =Qe)U() =0, 0<UN) <1and Y q;U;(N) < +o0
JjEG
(3.3)

have only the trivial solution for some (and therefore for all) A > 0.

Conditions (3.1)—(3.3) are on one hand quite satisfactory. They may,
for example, provide complete solutions for the three examples men-
tioned in section 1 see later. Recall that these three examples are essen-
tially the only results obtained for mixing Markov chains for around 30
years until the early 1980’s. For the general CUI pre-¢-matrix, they also
provide much useful information. For example, the following corollary
is immediate and informative.

Corollary 3.1 (Chen and Renshaw [7]) Suppose Q is a CUI
g-matriz, then

(i) supeg ¢ = +00,
(it) 3 [ani/ (1 + g5)] < oo,
jeG
(i1i) infieg A 3 ¢ij(A) = 0(YA > 0)
jcG

and thus the Qg-process (totally stable chain) is not unique. In partic-
ular, either the equation

(M - Qg)U(X) =0, 0<UM) <1 (3.4)
has a non-trivial solution for some (and therefore for all) A > 0, or
sup > $i;(Ngjp = 1 (3.5)
1€G jeG

which implies that sup;cg gip = +00.

It seems to us that we may not be able to expect much more than
conditions (3.1)—(3.3) for the general CUI g-matrix.

On the other hand, however, condition (3.1) is not totally satisfactory
since the Feller minimal (Qg-resolvent rather than Q itself is involved
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here. It is usually not easy to check this condition. It is therefore useful
if one can give a more exact condition for a possibly narrow sub-class of
CUI g-matrices. See also later.

It is now the time for us to look back at the three examples mentioned
in Section 1. Although this survey paper does not intend to give any
proof for the results stated, we shall briefly explain how simply the proofs
can be given for Theorems 1.1, 1.2 and 1.3 to emphasize the importance
of Feller transition function and resolvent decomposition theorems.

Proof of William’s Theorem 1.2 Suppose there exists an honest
Q-resolvent where Q) satisfies (1.5), then by Theorem 2.2 there is a
Qg-resolvent (G = E\{b}) ¥()) satisfying (2.3) and (2.4). It follows
immediately from (2.3), (2.4) and the Fatou Lemma that

D> aritie(A) < +oo.

keG jeG

Now condition (1.5) implies that ) )" 4;z(A) < 400 and thus, by
k€EG jEG

Theorem 2.1(iii), ¥(A) is Feller and thus any state in G is stable and

U(A) is the Feller minimal Qg-resolvent. We have thus proved (1.8) and

(1.10). (1.7) is a trivial consequence of (1.5) and, finally (1.9) follows

from the fact that R(\) is honest. The proof is now complete. [ |

Proof of Theorem 1.1 Note that for Kolmogorov pre-g-matrix Q,
Q¢ is diagonal and thus the Feller minimal Qg-resolvent is just ¢;;(\) =

[o.°]
24 and so () becomes a g-matrix if and only if ) < 400 (here

1
At-a; i=1 m
we take A = 1 and use the fact g5; = 1). Now this condition implies that

[e 0]
lim; o @; = +00 and thus it holds true if and only if ) (—al—) < +o0o. N

=1

Note that the above simple proof yields more than Theorem 1.1. That
o0

is, condition } (1) < +oo is not only sufficient but also necessary.
i=1
Actually, the following further result is immediate.

Theorem 3.2 Suppose Q = {g;;} is a Kolmogorov pre-q-matriz, i.e. Q
is given in (1.1)-(1.3). Then

o0
(i) Q becomes a g-matriz if and only if 3 (L) < +oo.
=1

(1i)) When Q is a g-matriz, i.e. the condition in (i) is satisfied, then
the honest Q)-process is unique.
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(111) This (unique) honest Q-process is recurrent and, furthermore, pos-
itive recurrent.

(iv) This (unique) honest Q-process is reversible.

(v) The equilibrium distribution I = (m;), say, is given by

e (45 ()) 1w (D) w20

Now, how about Theorem 1.37 Is the condition given by Reuter also
necessary? This time, however, the answer is negative. Actually we have
the following conclusion.

Theorem 3.3 Suppose Q) is a Reuter pre-qg-matriz, then

o0
(i) Q becomes a g-matriz if and only if Zl 1—&—; < +oo.
i=

o0
(1) If Z(%L) < +o0o then Q is a g-matriz. The converse, however, is
i=1
not true.
(111) When Q is a g-matriz, then the honest Q-process is unique.
w) This (unique) honest Q-process is always recurrent.
(1) q p y
(v) This (unique) honest Q-process is positive recurrent if and only if
o0
E(Z—;) < 400, and under this condition, the equilibrium distribu-

i=1
tion Il = (m;), say, is given by

ne(1+55(5) = (B 620

(vi) The (unique) honest Q-process is reversible if and only if
o0

>, (2’;) < 400.
i=1
Therefore, although Reuter’s condition is not necessary for the ex-
istence of @)-process, it is an essential condition in the sense that it is
the “if and only if” condition for reversibility and ergodicity. Of course,
these later two concepts are closely related to each other.
Now we turn our attention to Williams-g-matrix. The existence theo-
rem has been given above. Now two further questions arise namely what
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is the uniqueness condition and (if not unique) how to construct all the
corresponding g-processes. Of course, we are mainly interested in the
honest ones.

The uniqueness criterion has been given in Theorem 3.1(ii) already.
For Williams-¢g-matrix, however, simpler conditions may be obtained.

Theorem 3.4 Suppose Q) is a Williams-pre-q-matriz, then
(i) Q becomes a g-matriz if and only if (3.1) holds true.

(1) If Q is a Williams-q-matriz, then there always exist infinite many
of Q-functions.

(111) The Equation (3.3) always has only the trivial solution for some
(and therefore for all) X > 0, though the equation

(AT = Q)U(N) =0,0<U(N) <1
may still have non-trivial solution for all A > 0.

(iv) There exists only one honest Q-function if and only if Equa-
tion (3.2) has only the trivial solution for some (and therefore
for all) A > 0.

(v) All the Q-resolvents can be easily constructed.

The proof of Theorem 3.4 together with the construction of all Q-re-
solvents can be found in Chen and Renshaw [7].

We may see how easily we could tackle the three examples introduced
in Section 1 (recall, again, these three examples are essentially the only
results obtained for the mixing case until early 1980s) if we use the theory
of Feller transition function and resolvent decomposition theorems. Of
course, the powerfulness of such theory and method is mainly reflected
by the fact that it can handle new and more complicated models.

A particular interesting model is the so-called unstable piecewise birth
and death (PBD) processes, whose pre-g-matrix Q = {gij;%,j € Z4} is
given by (here only the non-zero, off-diagonal elements are specified)

h'ja ’LfZ=0,_721
bi, ifi>1, j=i+1

together with

[e.¢]
do = —goo = »_hj = +00 (3.7)
Jj=1
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and

G = —qi=a;+b (1>1) (3.8)
where a; >0, b; >0 (Vi > 1). (3.9)

Such model was initially considered by Tang [44] and later investigated
by several authors. We shall not list the corresponding results here but
just content ourselves with pointing out the following two facts: firstly,
the existence condition is given in terms of the PBD pre-¢g-matrix @
itself directly and thus easy to check and, secondly, the properties of
such structure are also given. A particular interesting result is that any
honest unstable PBD process is recurrent and ergodic, provided that, of
course, the existence condition is satisfied.

4. Markov branching processes

An interesting application of Feller function is in Markov branching
processes (MBP). A d-type MBP is a continuous time Markov chain
(CTMC) on the state space E = Z¢ which possesses the branching
property, i.e. “independence property”. Standard references on MBP
are Harris [21]. Athreya and Ney [3] and Asmussen and Hering [1]. The
importance and many applications of such processes are so well-known
that it would be superfluous if we should repeat it here.

Note that, however, for such a well-known structure there exist several
basic questions, that seems less well-known. Without loss of generality,
let us consider the case of d = 1.

As the definition of MBP is concerned, there are actually two basic
definitions: a probabilistic one and an analytic one.

Definition 4.1 (Probabilistic) A (one dimensional) MBP is a
CTMC on the state space E = Z whose transition function P(t) =
{pij(t); i,j € Z1} satisfies the branching property, i.e.

i

Y pii(t)sT = | pi(t)s? (Vi >0,[s| <1) (4.1)
i=0 j=0

Definition 4.2 (Analytic) A (one dimensional) MBP is a CTMC on
the state space E = Z whose transition function P(t) = {p;;(t);%,j €
Z} satisfies the Kolmogorov forward equations

P'(t) = P(t)Q (4.2)
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where Q = (gij;1,J € Z4) is a totally stable g-matriz and taking the

form of
) by, ifj 211,
%j = { 0, otherwise (4.3)

where

0<bj <+o0 (G#1) (4.4)
and

0< ) bj < —by < +00 (4.5)

i#1

Relation (4.1) is called “branching property” since it is easy to see
that (4.1) is equivalent to

pij(t) = Z P15, ()« - p1ji(t) (Vi,j € Z4,t > 0) (4.6)
e

which states that different particles are independent in giving birth or
death.

It has been a long history since people understood that Definition 4.2
implies Definition 4.1, see the proof in Harris [21] or Athreya and Ney [3].

However, how about the converse? In particular, if a CTMC satisfies
the branching property, will the g-matrix @ of this CTMC be totally
stable and even if so, will the transition function of the CTMC satisfy
the Kolmogorov forward equation (4.2)? If we could not answer this
question, we might have lost a large class of “new MBP”!

Another related question is whether there exists a so-called totally
instantaneous (but one) branching process. That is, suppose a pre-g-
matrix Q = (g;;) is given as in (4.3)-(4.5) but with the amendment that
—b; = oo in (4.5), then does there exists a standard transition function
P(t) such that P(t) satisfies (4.1) and the condition P'(0) = Q (i.e. P(t)
is a @—process)? Of course, in order to make this question meaningful,
we need first to illustrate that there exists a transition function P(t)
such that P'(0) = @. This, however, can be answer by Williams’ TI
existence theorem (see Williams [47]), by which there exists a P(t) such
that P'(0) = Q if and only if

i(bj/\bj+k) < 400 (Vk > 1) (4.7)

=2

It is fairly easy to find a sequence {b;} such that (4.7) is true. For
example, if we adopt the sequence {1,0,1,0,0,1,0,0,0,1,0,---}, then
this sequence is not summable but satisfies (4.7).
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Thus, the essential question is whether there exists a -function,
where () is a TI branching pre-g-matrix, such that the branching prop-
erty holds true.

The above two questions can, actually, be answered by using the prop-
erty of Feller transition function. Indeed, we have

Theorem 4.1 The two Definitions 4.1 and 4.2 are equivalent.

Sketch of the proof We only need to prove that Definition 4.1 implies
Definition 4.2. By (4.1), we see that for any ¢t > 0 and 0 < s < 1, we
have

pii(1)s? <Y pii(t)s? = O pr;(t)s)’ (4.8)
=0 =0

o0 :
However, ) p1;(t)s’ < 1 since 0 < s < 1 and thus let i—00 in (4.8)
j=0
immediately yields that lim; . pij(t) = O(Vj € E). That is, P(t) is
actually the Feller minimal @-function and thus satisfies the Kolmogorov
forward function. Now an easy algebra yields the result that () must take

the form of (4.3)—(4.5).

Remark 4.1 If the requirement of honesty is imposed to the transition
function, then we can further prove that the (Q matriz must be conser-
vative and thus the second inequality in (4.5) becomes an equality.

Now the following two corollaries immediately follow.

Corollary 4.1 The Markov branching process is always unique no mat-
ter the g-matriz Q) is regular or not.

Corollary 4.2 There exists no totally instantaneous (but one) branch-
ing processes.

All the above results can be easily generalized to the d-type Markov
branching processes.

In spite of Corollary 4.2, it is meaningful to consider the branching
processes with the so-called instantaneous immigration. For example,
we may consider a branching process with instantaneous immigration at
state zero only. This is another interesting example of uni-instantaneous
processes, in connection with the theory developed in the last section.

More specially, a pre-g-matrix @ is called a branching pre-g-matrix
(with or without immigration or called resurrection), if @ = (g;;) takes
the form of

hj, ifi=0
gij = tbj—iy1, 121, 7211 (4.9)
0, otherwise
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where o
0< —hg=) hj<+oo (4.10)
i=1
and
0<—b =) b <+o0 (4.11)
i#1

Furthermore, ) is called “a branching g-matrix without resurrection”
if h; = 0; “a branching ¢-matrix with stable resurrection” if 0 < —hg <
+00, and “a branching pre-g-matrix with instantaneous resurrection”
if —hg = +o00. We shall apply all these terms to the corresponding
processes (Q-functions; Q-resolvents) as well.

In order to guarantee that the underlying structure possesses the
branching property, we shall define the branching process as the one
that is F-type (almost F-type if instantaneous resurrection) i.e. the one
which satisfies the Kolmogorov forward equations.

Branching processes with stable resurrection was considered by Ya-
mazato [48]. This is a continuous version of the discrete time branch-
ing model investigated, nearly at the same time, by Foster [20] and
Pakes [33]. In order to cite Yamazato’s result, it is convenient to intro-
duce generating functions of the two sequences {b;} and {h;} as

B(s) = i b;s’ (4.12)
=0
H(s) = i hjs! (4.13)
j=1
and o
U(s) =ho+ H(s) = Z hjs! (4.14)
j=0

Note that the two sequences {b;} and {h;} are the basic data of the
branching processes with stable resurrection, and thus the above gen-
erating functions provide the full known information. Yamazato’s main
result can now be stated as follows.

Theorem 4.2 (Yamazato [48]) For a branching process with stable
resurrection, the following conclusions may be claimed.
(i) The process is recurrent if and only if B'(1) <0.

1
(ii) The process is positive recurrent if and only if [ g—gi-))-ds > —00.
0
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(111) The moments of the process can be obtained.

The equilibrium distribution for the positive recurrent case was ob-
tained by Pakes [34].

The analysis of branching processes with instantaneous resurrection
has only been available quite recently. Interestingly, however, this model
is still tractable, due to the effect of Chen and Renshaw [5, 6, §].

Theorem 4.3 Suppose Q) is a branching pre-g-matriz with instanta-
neous resurrection. Then we have

(1) There exists a branching process with instantaneous resurrection
if and only if the following two conditions hold true.

a) B'(1) > 0 and thus B(s) = 0 has a unique root on [0,1).
That is, there exists a q such that 0 < g <1 and B(q) =0.

b)

1
H(g)-H(s) . _ .
0/——3(8) ds < + (4.15)

where 0 < g < 1 is given in (a) and B(s) and H(s) are given
in (4.12) and (4.13), respectively.

(11) If the existence condition in (i) is satisfied, then there exists in-
finitely many of branching processes with instantaneous resurrec-
tion but only one of them is honest. That is, the honest branching
process with instantaneous resurrection is unique.

(111) The (unique) honest branching process with instantaneous resur-
rection is not only recurrent but also positive-recurrent.

For the positive recurrence case, the equilibrium distribution is, again,
obtained by Pakes [34].

It is interesting to compare the conclusions in Theorems 4.2 and 4.3.
For the Yamazato’s model, B’(1) < 0 is a necessary condition for the
recurrence while for the Chen-Renshaw model, B’(1) > 0 is required
to guarantee the existence of a branching process with instantaneous
resurrection and once the existence condition is satisfied, then the honest
process is unique, recurrent, and positive recurrent.

Note that for the later model, U(s) in (4.14) can not be defined. How-
ever, it can be proved that, as a necessary condition for the existence
of the g-process, H(s) is well defined for all |s] < 1. Also, the exis-
tence condition implies Harris’ non-honest condition for the underlying
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branching process without resurrection. For the details, see Chen and
Renshaw [5].

More recently, Chen [13] considered a much more general branching
model by replacing the coefficient 7 in (4.9) by the general form v;. Some
interesting results have been obtained by wisely using the techniques
and methods developed by Chen [11], [12]. Of course, only the stable
resurrection has been considered until now. It will be interesting to
investigate such general structure but with instantaneous resurrection.
The general results obtained in Section 3 will be helpful in tackling such
questions.
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Chapter 3

IDENTIFYING Q-PROCESSES WITH
A GIVEN FINITE p-INVARIANT
MEASURE

P.K. Pollett

Department of Mathematics
The University of Queensland
Queensland 4072, Australia
pkp@maths.ug.edu.au

Abstract Let Q = (qi;, i,7 € S) be a stable and conservative @-matrix over a
state space S consisting of an irreducible (transient) class C and a single
absorbing state 0, which is accessible from C. Suppose that @ admits
a finite p-subinvariant measure m = (m;,j € C) on C. We consider
the problem of identifying all Q-processes for which m is a p-invariant
measure on C.

Keywords: Q-processes; quasi-stationary distributions; construction theory

1. Introduction

We begin with a totally stable Q-matrix over a countable set S, that
is, a collection Q = (gij, %,7 € S) of real numbers which satisfies

OSQZ']'<007 275.71 i?jes7
gi = —¢qi; < oo, €S,

Y gi<@ €S (1.1)
J#i

The Q-matrix is said to be conservative if equality holds in (1.1) for all
i € S. For simplicity, we shall assume that @ is conservative. A set of
real-valued functions P(-) = (p;;(+), 1,j € S) defined on (0,00) is called
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a standard transition function (or process) if

pij(t) > 0, i,j €8, t>0, (1.2)
Zpij(t) <1, €S, t>0, (1.3)
jes

pij(s +1t szk pk] ), 1,7 €S, s,t>0, (1.4)
kes
L py; () = 3ij, i,j €S. (1.5)

P is then honest if equality holds in (1.3) for some (and then all) ¢ > 0,
and it is called a Q-transition function (or Q-process) if p};(0+) = g;; for
each 7,7 € S. Under the conditions we have imposed, every Q-process P
satisfies the backward differential equations,

pii(t) = qikp;(t t>0, (BE;;)
kes

for all 4,5 € S, but might not satisfy the forward differential equations,

pz] szk qk‘Ja t > 0’ (FEl])
kesS

for all 4,7 € S. The classical construction problem is to find one and
then all Q-processes. Feller’s recursion (Feller [2]) provides for the ex-
istence of a minimal solution F(-) = (fi;(-), 4,5 € S) to the backward
equations (which also satisfies the forward equations); see also Feller (3]
and Reuter [14]. This process is the unique Q-process if and only if the
system of equations

Jje€Ss

has no bounded, non-trivial solution (equivalently, non-negative solu-
tion) = for some (and then all) » > 0 (Reuter [14]); for the non-
conservative case, see Hou [4]. When this condition fails, there are in-
finitely many Q-processes, including infinitely many honest ones (Reuter
[14]), and the dimension d of the space of bounded vectors z on S satisfy-
ing (1.6), a quantity which does not depend on v, determines the number
of “escape routes to infinity” available to the process. A construction of
all Q-processes was given by Reuter [15], [16] under the assumption that
d =1 (the single-ezit case), and this was later extended to the finite-exit
case (d < 0o) by Williams [22].

If (1.6) has infinitely many bounded non-trivial solutions, the problem
of constructing all Q-processes remains unsolved; there are simply too
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many solutions of the backward equations to characterize. For this rea-
son, variants of the classical construction have been considered in which
various side conditions are imposed. The most recent work centres on
an assumption that one is given an invariant measure for the QQ-matrix,
that is, a collection of positive numbers m = (m;, 1 € S) which satisfy

Zmiqij =0, VRS S.

i€S
The problem is then to identify (}-processes with m as their invariant
measure, that is

Zmipij(t)zmj, jeS, t>0.

1€ES
When does there exist such a Q-process, and, when is it a unique Q-
process with the given invariant measure? This variant of the classi-
cal construction problem has particular significance when m is finite
(3>>m; < o0), for then one is looking for a @Q-process whose station-
ary distribution has been specified. The problem of existence, and then
uniqueness in the single-exit case, was solved by Hou and Chen [5] under
the assumption that @ is m-symmetrizable, that is,

miQi; = M;Qji, i,j €65,

(see Chen and Zhang [1] for the non-conservative case) and by myself in
the general case (Pollett [10], [12]). Recently Han-jun Zhang announced
a solution to the existence problem under more general circumstances;
see Zhang et al. [23], [24].

In this paper we shall look at a slightly different kind of construction
problem, where the state space can be decomposed into an irreducible
class C and a single absorbing state, and we shall suppose, rather than
an invariant measure, a u-invariant measure on C'is specified through Q.
We seek to determine @)-processes for which m is a py-invariant measure
on C. Since here we shall assume that the p-invariant measure is finite,
we are effectively identifying ()-processes with a given quasi-stationary
distribution (van Doorn [20]). And, since we will not necessarily require
these processes to satisfy the forward equations, we shall relax the u-
invariance for @) to u-subinvariance for Q.

Before proceeding, let me remark that in this introductory section I
have restricted my attention to the totally stable case (g; < oo for all
i € S). Of course, the problem of constructing @Q-processes when all
states, or a finite subset of states, are unstable is an important one,
and can be traced back to Lévy and Kolmogorov; for an informative
summary see Rogers and Williams [18].
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2. Preliminaries

We shall suppose that S = {0} U C, where C is an irreducible class
(for the minimal Q-process, and hence for any Q-process) and 0 is an
absorbing state which is accessible from C, that is go = 0 and ¢;o > 0 for
at least one ¢ € C. Then, if u is some fixed non-negative real number,
a collection of strictly positive numbers m = (m;, j € C) is called a
p-subinvariant measure(on C) for Q if

ieC
and p-invariant if equality holds for all 7 € C. We shall suppose that @
admits a p-subinvariant measure on C, and then identify Q-processes P
such that m is a p-invariant (on C) for P, that is,

Z mipij(t) = e_“tmj, je€C, t>0. (2.2)
ieC
The relationship between (2.1) and (2.2) has been divined completely
for the minimal Q-process F. It was shown by Tweedie [19] that if m
is a p-invariant measure for F, then it is p-invariant for Q. Conversely,
Pollett [8, 9], if m is a p-invariant measure for Q, then it is p-invariant
for F if and only if the equations

> wigij=-vy;, 0<y;<my, jEC,

i€C
have no non-trivial solution for some (and then all) v < . If 4 > 0
and the measure m is assumed to be finite, that is ) ,.om; < oo,
then much simpler conditions obtain (Pollett and Vere-Jones [13], Nair
and Pollett [7]). For example, if F is honest (and hence the unique
Q-process), then a finite p-subinvariant measure m for @ is p-invariant

for F if and only if

Mzmi = Zmiqw- (2.3)

1eC ieC

As we shall see, this condition guarantees, more generally, that there ez-
1sts a Q-process P such that m is a y-invariant measure for P; it is honest
and satisfies (FE;) for 1 € C. We note that, in determining such a P,
we are effectively identifying a @Q-process with a given quasi-stationary
distribution (van Doorn [20]): a probability distribution 7 = (7;, j € C)
over C is called a quasi-stationary distribution if p;(t)/ ;e pi(t) = 7;
for all t > 0, where p;(t) = ) ;cc mipij(t), t > 0; so that, conditional
on non-absorption, the state probabilities of the underlying continuous-
time Markov chain are stationary. It was shown by Nair and Pollett [7]
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that a distribution 7 = (7, j € C) is a quasi-stationary distribution if
and only if, for some u > 0, 7 is a py-invariant measure for P, in which
case if P is honest, then p;o(t) — 1 for all € C as t — oo (absorption
occurs with probability 1).

3. The main result

We shall specify transition functions through their resolvents. If P is
a given transition function, then the function ¥(-) = (¢;;(-), 4,7 € S)
given by

Yij(a) = /000 e_atpij(t)dt, a >0, (3.1)

is called the resolvent of P. Ifi,j € C, the integral in (3.1) converges
for all @ > —Ap(C), where Ap(C) is the decay parameter of C (for P);
see Kingman [6]. In particular, since C is irreducible, the integral (3.1)
has the same abcissa of convergence for each i,j € C. Notice also that,
since 0 is an absorbing state, 1;(c) = do;/c. Analogous to properties
(1.2)-(1.5), VU satisfies

$if(@) 20,  i,j€S, a>0, 3.2
Zat/;,j(a)gl, t€S, a>0, (3.3
Jjes
ij(@) = i (B) + (. — B) Y _ tir(c)hi;(B
keS
iLj€S, 08>0,  (3.4)
alg{olo a"/)l]( ) - 6ij7 iaj €S. (35)

(Note that (3.4) is called the resolvent equation.) Indeed, any ¥ which
satisfies (3.2)—(3.5) is the resolvent of a standard transition function (see
Reuter [15], [16]). Further, (3.3) is satisfied with equality if and only if P
is honest, in which case the resolvent is said to be honest. Also, the Q-
matrix of P can be recovered from ¥ using the following identity:

¢ij = lim o(atij(@) = &;). (3.6)
And, a resolvent which satisfies (3.6) is called a Q-resolvent. The re-
solvent ®(-) = (¢;;(-), 4,7 € S) of the minimal Q-process has itself a
minimal interpretation (see Reuter [14], [15]); it is the minimal solution
to the equations

a’l/)l](a) = 61] + Zqik"/)kj(a)’ Z’J € Sa a> 07
kesS
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which are analogous to (BE;;), and @ is called the minimal Q-resolvent.

We can identify p-invariant measures using resolvents. If P is a Q-
process with resolvent ¥ and m = (m;, j € C) is a p-invariant measure
for P, where of necessity u < Ap(C) (see Lemma 4.1 of Vere-Jones [21]),
then, since the integral in (3.1) converges for all @ > —Ap(C), we have,
for all j € C and a > 0, that

D> micpij(e — p) = m;. (37
1€C
We refer to m as being p-invariant for ¥ if (3.7) is satisfied. Finally,
a simple extension of Lemma 4.1 of Pollett [11] establishes that m is
p-invariant for ¥ if it is p-invariant for P, and, if u < Ap(C), then m is
p-invariant for P if it is p-invariant for W.
We are now ready to state our main result.

Theorem 3.1 Let y > 0 and suppose that Q admits a finite p-subin-
variant measure. Then, if

uZmi = Zmiqig, (38)
ieC 1eC

there exists a Q-process P for which m is p-invariant. The resolvent
U(-) = (¥i;(-), 4,5 € S) of one such Q-process has the form

zi(a)d;j(a)
(a+ 1) 3 okec mrzk()

Yij(@) = ¢ij(a) + , i,j €S, (3.9)

where z(-) = (zi(+), ¢ € C) 1is given by
zila) =1-— Zaqﬁij(a), 1€C,

JES

with the interpretation that ¥V = & if z is identically 0, and d(-) =
(di(-), 1 € S) s given by

di(@) =mi = Y_mjla+p)dula), i€C, (3.10)
jec
do(@) = =30 mj = 3" mj(a+p)djo(a). (3.11)
jec jec

This process is honest and satisfies (FE;g) for i € C.

Proof First observe that if z is identically 0, the minimal Q-process F
is honest and, by Theorem 3 of Pollett and Vere-Jones [13], (3.8) is
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necessary and sufficient for m to be p-invariant for F (in which case d
is identically 0 and, by Proposition 2 of Tweedie [19], m is y-invariant
for Q). Trivially, F satisfies (FE;q) for i € C.

Suppose that z is not identically 0. We will first show that m cannot
be p-invariant for F' and, in so doing, establish that d is not identically 0.
Suppose, by contradiction, that m is p-invariant for F', so that

> migij(a) u’ jeC. (3.12)

ieC

Multiplying by a and summing over j € C gives

Z m;adio(a Z m;zi(a) = + p Z m;. (3.13)

1€eC 1eC jec

Now, since F satisfies (FE;;) over S, we have in particular that

agio(@) =Y ¢ij(@)ge, i€C, (3.14)

Jjec

and so, again using (3.12), we get

Z mza¢10 T ot "

1eC

Z m;q;o-

ieC

This expression combines with (3.13) and (3.8) to give >, m;z;(a) =
0, which is a contradiction because z is not identically 0. We deduce
that m cannot be p-invariant for F'. Moreover, we must have

> mi(a + p)dij() <my (3.15)
iec

for at least one j € C, and hence, from (3.14) and (3.8),

Zmz o+ p)dio(a Zmzqw = Zmz

1eC zGC zEC

Thus, do(a) > 0 and dj(a) > 0 for at least one j € C.

Next we shall show that ¥(-) = (¢;5(-), i,7 € S), given by (3.9), is the
resolvent of an honest -process P and that m is a py-invariant measure
for P. Clearly ;;(c) > 0 for all 4,5 € S. Since m is finite, we have,
from the definition of d, that

a Z dj(a) = (a+ p) Z m;z;(a)

Jjes jec
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and so ZjeS a;i(a) =1 for all ¢ € S. In order to prove that ¥ is the
resolvent of a standard transition function P, we need only show that ¥
satisfies the resolvent equation (3.4); see Theorem 1 of Reuter [17]. We
shall use the following identities:

zi(@) —z(B) + (@ = B) D d(@)z(B) =0, i€C,  (3.16)

keC
di(e) — (= B) Y di()ri(B ieC,  (3.17)

keC
ady(c) — Bdo(B) + (e — B) Y dx(a)Bko(B) =0 (3.18)

keC
and
(a+p) Zm,z, —(B+u) Z m;zi(B) = Z di(a (3.19)
i€C ieC ieC

The first three of these can be verified directly using the fact that ®
satisfies the resolvent equation and that zp(a) = 0. The fourth identity
follows from the first on multiplying by m; and summing over :. Using
(3.16)—(3.19), together with the resolvent equation for ®, it is easy to
prove that W satisfies its own resolvent equation.

Next we need to verify that P is indeed a J-process, that is pgj(0+) =
gij for all 4,5 € S. We shall use a remark of Reuter [15, page 83]
(see also Feller [3, Theorem 3.1]): if one is given a standard transition
function P, then it is a Q-process if and only if the backward equations
hold, equivalently,

aii() =6 + Y ques(@), 5 €S
keS

But, this follows almost immediately from the identity

Y ginz(a) = azi(e),  i€S,
kes

which can be deduced from the backward equations for ®.

We have shown that V¥ is the resolvent of a QQ-process P. To show
that m is a p-invariant measure for P, we again use the definition of d:
it is elementary to check that

Y mi(a+ p)ila) =m;,  jeC.
ieC
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We have already seen that P is honest and so it remains only to show
that P satisfies (FE;) for i € C. But, since z is not identically 0, this
happens when and only when

Z d QzO = adO( )
1€C

because it is easily verified that

Y wik(@)gro = epio (@) + Caziler (de )ako — ado(c ))

keC keC

where

Col=(a+p)) mez().
keC

On substituting for d, we find that
ady(a Zd q,o—-uzmk—zmkq/co—o
ieC keC keC

and so the result follows. [ |

Remark 3.1 The final part of the theorem states that the process P
we have identified satisfies (FEj) for i € C. The remaining forward
equations do not necessarily hold. By Nair and Pollett [7, Theorem 3.1],
this happens when and only when m is p-invariant for Q (rather than
merely p-subinvariant). Indeed, a simple calculation shows that, for all
jeC,

Zdhk Q)qrj = oty (@) — 85 + Cozi(a (Z di(a)qr; — ad;(a ))
keC keC

and, for the given P,

Zd a)gij = —pm; — Zmi‘h’j (>0), jeC,
ieC ieC

this later quantity measuring the “u-invariance deficit” of m for Q.

Remark 3.2 A straightforward calculation shows that the given ¥ sat-

isfies
Zmz oa+p "/110 Zmu

ieC ieC
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and hence m satisfies a set of “residual equations” for P, namely

Y mipn(t) =(1-e)> mi, >0, (3.20)

ieC ieC

which can be regarded as a “process counterpart” to (3.8). (Since P is
honest, (3.20) follows more directly on summing (2.2) over j € C.)

4. Necessary conditions

It would be tempting to conjecture that condition (3.8) is necessary for
the existence of a Q-process for which the given measure is p-invariant.
However, while this is not the case, condition (3.8) turns out to be
necessary when extra conditions are imposed.

Let P be a Q-process with C being an irreducible class (the conditions
we have imposed on @ ensure that O is an absorbing state which is
accessible from C) and suppose that m = (m;, j € C) is a finite p-
invariant measure for P. Of necessity, m will be y-subinvariant for @,
but does (3.8) necessarily hold? Under the conditions we have imposed,
the forward integral inequalities are satisfied (Reuter [14]); in particular,

t
po®2 Y [ pulmads,  ieC (4.1)
kec ™0
On multiplying by m; and summing over ¢ € C, we find that
(1—e™) > mrgro < p Y mipio(t) (< 00)- (4.2)
keC i€C

If we divide by p and let ¢t — 0, we may use dominated convergence to

deduce that
p Z mia; 2 Z migio,
ieC ieC

where a; (the probability of absorption starting in state %) is given by
a; = limy_,00 pio(t). Thus, if a; is strictly less than 1 for some (and then
all) i € C, (3.8) cannot hold.

If we were to assume that P satisfies (FE;) over C, then we would
have equality in (4.1) and (4.2), and so

H Z mia; = Z mM;igi0-
ieC i€C

If instead P were assumed to be honest, then we would have a; =1 for
all 7 € C. This can be seen as follows. Since m is a p-invariant measure
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for P, we have, in particular, that m;p;;(t) < e_“tmj for 1,7 € C, and

SO
1 —pio(t sz] ) < e—ut ZmJ’ 1eC.
J€EC ]EC

Since m is finite and g > 0, lim;_,o(1 — pio(t)) = 0, and hence a; = 1
for all 2 € C. Thus, if P were honest, we would have

Nz'mi 2 Z migio-

ieC i€C

Neither the honesty of P, nor an assumption that P satisfies (FE;)
over C, is enough on its own to establish (3.8); it is possible to construct
examples of ()-processes which illustrate this. But, these conditions
together imply (3.8).

We have therefore proved the following variant of Theorem 3.1:

Theorem 4.1 Let 4 > 0 and suppose that Q admits a finite p-subin-
variant measure. Then, there exists an honest QQ-process P satisfying
(FEip) over C for which m is p-invariant if and only if (3.8) holds. The
resolvent of one such Q-process is given by (3.9).

Next we shall examine the question of uniqueness under the assump-
tion that @) is a single-exit @-matrix. This was considered briefly in Sec-
tion 5 of Nair and Pollett [7] under a condition weaker than (3.8). If Q is
single exit and P is an arbitrary Q-process, then (Reuter [15]) either P is
the minimal Q-process or otherwise its resolvent W(-) = (v;5(:), 1,5 € S)
must be of the form

'(/)ij(a) = ¢ij(a) + Zi(a)yj(a)7 iaj € Sa (43)

where y(a) = (y;(a), j € S) is given by

ni(a) .
P S (@)’ jES, (4.4)

yi(@) =

c is a non-negative constant, and n{a) = (n;(), j € S) is a non-negative
vector which satisfies

> " mk(e) < oo, (4.5)
kES
nj(@) — (@—=B) > mla)gr; (B j€s. (4.6)

keS
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Furthermore, ¥ is honest if and only if ¢ = 0. Since we have assumed
that 0 is an absorbing state, zp(a) = 0 and so (4.6) can be written

ni(a) — (= B) Y mklo)dr;(B j€C, (4.7)
keC
amo(a) — Bno(B) + (@ — B) Y m(a)Bebro(B (4.8)
keC

Once 7 is determined, a family of Q-processes, exactly one of which
is honest, is obtained by varying ¢ in the range 0 < ¢ < oo. Thus,
the problem of identifying those ()-processes which satisfy a specified
criterion, in our case, that a given measure is y-invariant on C, amounts
to determining which choices of 7 and ¢ are admissible; the procedure is
purely arithmetical.

Theorem 4.2 Suppose that Q is single exit and suppose that, for a given
@ >0, Q admits a finite p-subinvariant measure. Then, there exists an
honest Q-process P satisfying (FEj) over C for which m is p-invariant
if and only if (3.8) holds. It is the unique honest Q-process for which m
is p-invariant and its resolvent is given by (3.9).

Proof In view of Theorem 4.1, we only need to establish uniqueness.
If the minimal Q)-process F is honest, then it is the unique Q-process,
and, as we have already observed, (3.8) is necessary and sufficient for m
to be p-invariant for F'.

Suppose then that F' is dishonest, so that z is not identically 0. We will
prove that if there is an honest (J-process P for which m is p-invariant,
then its resolvent must necessarily be given by (3.9).

Let d be given by (3.10) and (3.11). Since m is p-invariant for P,
multiplying (4.3) by (o + p)m; and summing over i € C gives

mj = Z mi(a + p)dij(a) + (a+ p)y;(o Z m;zi(a
ieC ieC

for all j € C. Since P is honest, we must set ¢ = 0 and so in view of
(4.4) we require

mile) dj(@)
Yresomk(@)  (a+p) Yiecmizi(a)’
Notice that dj(a) > 0 for at least one j € C: since m is p-invariant

for P, m cannot be p-invariant for F, and so (3.15) holds for at least
one j € C. Furthermore, by the definition of d, we have that

az di(a) = (a+p) Z m;zj(a) < oo, (4.10)

JES jeC

jeC. (4.9)
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which is consistent with (4.5). From (4.9) we see that 7;(a) =
K(a)dj(a), at least for j € C, where K is some positive scalar func-
tion. Using the identity (3.17), together with the fact that 7 must
satisfy (4.7), we find, on substituting n;(a) = K(a)d;(c) in (4.7), that
(K(a)—K(B))d;(B) = 0. Hence, K must be constant, because d;(3) > 0
for at least one j € C. Now, using (4.9) again, we see that K must satisfy

K ((a +u) Y mezk(a) —a Y dk(a)> = amg(a),

keC keC

or equivalently, by (4.10),
Kady(a) = ang(a). (4.11)

It is clear from (3.18) that 7o satisfies (4.8) no matter what the value
of K. It is also clear that there is no loss of generality in setting K =1,
for this is equivalent to replacing ¢ in (4.9) by a different constant ¢/ K.
Hence 7n; = d; for j € C, and, from (4.11), no = dy.

We have proved that if Q) is single exit and P is an honest (J-process
with p-invariant measure m, then its resolvent must be given by (3.9).
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Abstract A standard transition function P = (p;;(t)) is called ergodic (positive
recurrent) if there exists a probability measure © = (m;;¢ € E) such that

lim pi; (t) = 5 >0, Vic E (0.1)

The aim of this paper is to discuss the convergence problem in (0.1).
We shall study four special types of convergence: the so-called strong
ergodicity, uniform polynomial convergence, L?-exponential ergodicity
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and exponential ergodicity. Our main interest is always to characterize
these properties in terms of the g-matrix.

Keywords: strong ergodicity, uniform polynomial convergence, L*-exponential
convergence, exponential ergodicity, stochastic monotonicity

AMS Subject Classification(1991): 60J27

1. Introduction

Let F be a countable set, to be called the state space, and P =
(pi;(t);i,5 € E, t > 0) be a standard transition function with stationary
distribution 7« = (7;;7 € E). Ordinally, we have the following definitions
for convergence:

1. Strong Ergodicity:

supZ|pij(t)—7rj| — 0, t—00 (1.1)
iEEjeE

2. Uniform Polynomial Convergence: If there exists constants C' >
0, v > 0 such that

sup t'|pij(t) — 7] < C<+oo, t2>0 (1.2)
1,jEE

3. L?—exponential Convergence: If there exists a constant v > 0 such
that

I1POf ==l < e If —a(Hll, feL(n),t>0(L3)

where

POf = Y pi(0f

j€E
©(f) = Y mfi

icE
AP = Y miff

icE

L*(n) = {f:|Ifll < oo}
4. Exponential Ergodicity: If there exist v > 0 and C;; > 0 such that

pii(t) — ;| < Cize Vt>0,14, jEE (1.4)
j 3 J
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It is well-known that

Strong ergodicity = Uniform polynomial convergence (1.5)
Strong ergodicity = L?-exponential convergence
= Exponential ergodicity (1.6)

To study the convergence is an important topic in Markov processes,
in particular, in the study of continuous time Markov chains (CTMC)
and interacting particle systems. Good references are, among others,
Chung [8], Hou and Guo [10], Yang [15] and Anderson [1] for the former
and Liggett [11] and Chen [6] for the latter.

The main purpose of this paper is to consider the above convergence
property for an important class of transition function, the stochastically
monotone function. The close link among convergence, stochastically
monotone function and another key concept, Feller-Reuter-Riley func-
tion is revealed.

For simplicity, we shall consider CTMC exclusively in this paper.
Also, in most of cases, the state space E will be always assumed to
be Z, = {0,1,2,...} with natural order. The monotonicity may then
be simply defined as follows

Definition 1.1 A standard transition function P = (p;(t);i,j € E,
t > 0) is called stochastically monotone, if for any fized k € Z, and

t >0, > pij(t) is a non-decreasing function of 1, i.e.,
Jzk

> opit) <) pi;(b), keZy, t20 (1.7)
jzk J2k

Also due to the fact that the state space Z is linear ordered, stochas-
tic monotonicity is equivalent to another important concept, duality, as
was revealed by Siegmund [13].

Proposition 1.1 (Siegmund [13]) A standard transition function P
is stochastically monotone if and only if there exists another standard
transition function P = (p;(t);4,7 € Z4, t > 0), such that

i 0o
zﬁik(t) = Zp]k(t)v Vla] € Z—}-a t>0 (18)
k=0 k=i

For the proof of Proposition 1.1, see Siegmund [13] or Anderson [1].
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Definition 1.2 A stendard transition function P on Z, is called a
Feller-Reuter-Riley transition function (henceforth referring to a FRR
function) if
lim pij(t) = 0, VieZy, t>0 (19)
1—00

For the interesting property of FRR functions, see Reuter-Riley [12].

Note that a transition function P = (p;;(t)) is called standard if
lim;_,0 p;j(t) = d;;, see Chung [8]. In this paper all transition func-
tions are assumed to be standard and thus from now on, the modifier
“standard” will be omitted.

The results of strong ergodicity and the uniform polynomial conver-
gence, together with their proof, obtained in this paper are presented in
Section 2. In Section 3, we have obtained the sufficient and necessary
condition of exponential ergodicity of quadratic branching -processes.

2. Strong ergodicity and uniform polynomial
convergence of monotone g-functions

We are now ready to state our main results and give their proofs.

Theorem 2.1 If P = (p;j(t);i,j € E, t > 0) is an FRR transition
function, then it is neither strongly ergodic and nor uniformly polynomial
convergent.

Proof By (1.5), we need only to prove that if P is an FRR transition
function, then it is not uniform polynomially convergent.

We may assume that the FRR transition function P is ergodic since
otherwise nothing need to be proven. Since P is ergodic, it possesses
an equilibrium distribution = = (m;;17 € E), say. Now suppose that P is
uniformly polynomial convergent, by (1.2), there exist constants C > 0
and v > 0 such that

sup |p;(t) —m| < Ct7™", >0 (2.1)
i,jEE
Now, fix a state jo € E, then (2.1) implies that there exists a T < 400
such that

1
sup |pl]0 (t) - 7l'j0| < 57!']‘0, vt > T
i€FE
hence 1
:ggpzjo(t) > iﬂ-jo, Vi>T

which contradicts the requirement of an FRR transition function since
for an FRR transition function we have p;;(t) — 0, as ¢ — oo for each
j € Eand any t > 0. [ ]
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Interestingly, for monotone transition functions, the converse of The-
orem 2.1 also holds true. This is the following important conclusion.

Theorem 2.2 Suppose P = (p;;(t);i,5 € E, t > 0) is an honest and
stochastically monotone transition function. If P is ergodic, then it is
strongly ergodic (or uniformly polynomial convergent) if and only if it is
not an FRR transition function.

Proof By the conclusion of Theorem 2.1 and (1.5), in order to finish
the proof, we need only to prove that if an ergodic monotone function
is not strong ergodic, then it is a FRR function. Now suppose P =
(pij(t);i,j € E,t > 0) is an ergodic monotone function, then by writing
pij(t) as

(e, ¢]
pii(t) = Y par(t) Z pik(t (2.2)
k=j k=j+1

we see that for any j € E and ¢t > 0, the following limit, denoted by
c;(t), exists

lim p;;(t) = ¢;(t) (2.3)

1—00

since, by monotonicity, both terms in the right hand side of (2.2) are
monotone function of <.

On the other hand, since P is not strongly ergodic, by Anderson [1,
Proposition 6.3.1], we have, for any t > 0

afz?efE (Par (t) Aper(t)) = 0
keE

which trivially implies that for any j € E and ¢ > 0,

lgg pa]( )/\pbj(t) =0 (2.4)

but it is easy to see that (2.4) is equivalent to
inf p,;(t) = 0. 2.5
o’ (t) 0 (2:5)

Combining (2.3) with (2.5) shows that for any ¢ > 0 and j € E,

lim p;;(t) =0

1—00

i.e.,, P = {p;j(t)} is a FRR transition function. |
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As a direct consequence, we immediately obtain the following useful
and interesting result.

Corollary 2.1 Suppose P is a non-minimal stochastically monotone
transition function. Then P is strongly ergodic (or uniformly polyno-
mial convergent) if and only if it is ergodic.

Proof Note that FRR transition function must be Feller minimal, see
Reuter and Riley [12], the conclusion immediately follows from Theo-
rem 2.2.
[ |
As always the case in the study of CTMC, our main interest is to
characterize convergence in terms of the inifinitesimal behaviour, i.e.,
the g-matrix. The following result answers this question satisfactorily
for an important class of g-matrices.

Theorem 2.3 Suppose the given g-matriz Q = (gi;;4,j € E) is stable,
conservative and monotone, i.e.,

0 < gij i# g
Z‘h’j = —¢gi<+oo, 1€E (2.6)
J#i
Z‘h’j < Z‘Imm k#i+1 (2.7)
j>k >k

then

(i) The minimal Feller Q-function is strongly ergodic (uniformly
polynomial convergent) if and only if it is ergodic and at least
one of the following two conditions hold true:

a) Q is not zero-entrance, i.e., the equation
Y(AM-Q)=0, 0<Y, Y1< +oc0 (2.8)

has a non-zero solution for some (and therefore for all )
A>0.

b) Q is not an FRR g-matriz.
(i) If P = (pij(t);i,j € E, t > 0) is a non-minimal stochastically

monotone Q-function, then it is strongly ergodic (uniformly poly-
nomial convergent) if and only if it is ergodic.
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Proof
m For part (ii), see Corollary 2.1.

s We now prove part (i).

Suppose that Feller minimal @-function is strongly ergodic (uni-
formly polynomial convergent), then it is surely ergodic and thus
honest. It then implies the given g-matrix @ is regular, consider-
ing the () is conservative. However, the given () is also monotone
by the assumption and thus by Chen and Zhang [4, Theorem 2.4],
the Feller minimal @)-function is stochastically monotone. Thus by
Theorem 2.2, the Feller minimal )-function is not a FRR transition
function. Now the conclusion follows from Zhang and Chen [16,
Theorem 5.1 since our ¢g-matrix @ is conservative, regular and
monotone. [ ]

Remark 2.1 A g-matriz Q is called a FRR q-matriz if
¢;;—0, as i—oo for every j (2.9)
so condition (b) in Theorem 2.3 is quite easy to check.

Remark 2.2 The results about strong ergodicity and their application in
birth and death processes can be seen in Zhang, Chen, Lin and Hou (17].

3. Exponential ergodicity of quadratic branching
Q-processes

Branching processes form one of the classical fields of probability the-
ory and have a very wide range of applications. There are several spe-
cialized books devoted to this subject (see [2, 3, 9], for instance). On
the other hand, the dual of a measure-valued process often leads to a
modified model of the branching processes. For instance, the following
model comes from a typical measure-valued process (the Fleming-Viot
process), which was introduced to us by D.A. Dawson. The given g-
matrix Q = (g;;;4,7 € E) is as follows:

Ppjiyy, j2i—1, j#4
—?(1-p1), j=i21

Gij = Pis j2i=0 (3.1)
p—-1 j=i=0
0, elsewhere, ¢,7 € Z

where P = (pj;j € E) is a probability distribution. This g-matrix is
called a quadratic branching g-matrix.
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Chen [7] discussed an extended class of g-matrices, that is,

TiDj—it+1, J21—12>0, j#i
—ri{(l—-p1), j=i>1

g; = q0j, ] > Z =0 (3.2)
—4o0; j=1=0
0, elsewhere, 7,7 € Z;

where r; > 0,7 > 1.
Chen obtained the criteria for the uniqueness, recurrence and positive

recurrence (ergodicity) of the Q-processes. For quadratic branching g-
matrix, Chen’s results are as follows:

Theorem 3.1 (Chen [7]) Suppose Q = (¢;j;%,j € E) be a quadratic
branching q-matriz.

o0
(i) The Q-process is unique if and only if My = ) jp; < 1.
=1

(11) If po > 0 and px > 0 for some k > 2, then the Feller minimal
Q-process s recurrent if and only if M1 < 1 and it is ergodic if
and only if M; < 1.

(111) The Feller minimal Q-process is exponentially ergodic if My < 1.
Our main results are as follows:

Theorem 3.2 Let Q = (gi5;%,7 € E) be a quadratic branching q-matriz
with pg > 0 and px, > 0 for some k > 2, then

(i) The minimal Q-process is strongly ergodic if My < 1.

(ii) The minimal Q-process is uniformly polynomial convergent if
M <1,

(iii) The minimal Q-process is exponentially ergodic if and only if My <
1.

Proof

» The proof of (i) and (ii) can be found in Zhang, Chen, Lin and
Hou [18].

= Now we prove (iii). By Theorem 3.1, we need only to prove that

if My = 1, then the minimal @Q-process is exponentially ergodic.

Since
o0

z)m=1mmmﬂ=§3m%=L
k=0 k=1
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we have
o0
0 < po=T=)» kpep1 <Ll (3.3)
k=1
First, we show that there exists § > 0 such that the inequality
P(yir1 —yi) +2ic1 —¥) + 1+ 0y <0, i>1 (3.4)

has a finite solution.

In fact, let yo =0, y; —yi-1 = %, d= % then

Yn = (¥i — Yic1) = i < /idz = 16y/n.
i=1 =1Vt 4 VT
Let
fG@) = vit1—yi— ¥ —yi-1)
_ 8(,__1___L)
B Vitl i
8
T ViViTI(Wir 14+ Vi)
then . .
ii+1 1) G+ 1)Vi
and
1 by; . 1 1
fO+z+% < fO+g+
-4 11
G+DVi 2 i
< 2|5 (erm)
= Vi \G+ )i
< 0,

so equation (3.4) has a finite solution y = (y;;1 € Z4).
Set g, = pioyn, 8 = pod, then the following inequalities hold

i2po(Fis1 — i) +i%po(Fi1 — i) + 05 +1 <0, Vi >1  (3.5)



66 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

sofori>1

Zqz] yz ‘+'5yz+1

= qi1@i— %)+ Y, @l — %) + 35 +1
i>itl

j
= PpoGici—T)+ D ©pjmiyt D, Wk — Te—1) + 07 +1

>t k=it1
< Ppo(fic1—B) + Y 2pjmis1(f — ) (T — B) + 0% + 1
>t

po(i-1 — §i) + 2 Gerr — i) Y kprer + 05 + 1
k=1
1po(Gi-1 — i) +1°Po(Fir1 — §i) + 07 + 1
< 0 (3.6)

Let 0 < 6* < min{1—po,1—p1,d}, then 6* < &. By (3.6), we have
Zq” Gi)+ 65 +1<0,  i>1

and

Z%iﬂi = Zpiﬂi <16 Zpi\/fz <16 < 400 (3.7)

i>1 i>1 i>1

Hence the minimal quadratic branching @Q-process is exponentially
ergodic, see Tweedie [14] or Anderson [1, Theorem 6.5]. ]

Remark 3.1 By Theorem 3.1 and 3.2, M) =1 s a critical value, so
to study the case of My = 1 is very interesting.
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Doob processes, Q processes of order one, Markov processes, semi-
Markov processes, piecewise determinate Markov processes, the input
processes, the queuing lengths and the waiting times of the system
GI/G/1, the insurance risk models, and the option pricing models, as
particular cases. The present paper aims to fully expound the back-
ground and the history source of the introduction of Markov skeleton
processes, and we deduce the forward and backward equation and use
them as a powerful tool to obtain the criteria of regularity.

Keywords: Markov skeleton processes; the backward equations; the forward equa-
tions; the criteria for the regularity.

AMS Subject Classification(1991): 60J

1. Introduction

Markov processes are obviously of great importance. They have the Markov prop-
erty at any constant stopping time (i.e. usual time). After further study in Markov
processes, it was found that most of the Markov processes have the strong Markov
property. The corresponding subclass of Markov processes is very rich . One may say
that the research on Markov processes in fact deals with the strong Markov processes.
Strong Markov processes have the Markov property at any stopping time. In actual-
ity, it is not easy to determine whether a stochastic process is a Markov process or
strong Markov process. Of course, many stochastic processes do not have the Markov
property. However, there are many processes {X¢,t < 7} that are not (strong) Marko-
vian, but there is a sequence of stopping times: 0 =70 <7 <12 <... <7, 17, such
that the process {z:} has the Markov property at 7, n > 0. We call this property of
{z:} or {rn} the property (H). The following are some examples:

Example 1.1

Ez 1. Let {x:,t < +oo} be a Markov process, set T, =n, n=0,1,.... Then {Tn,n >
0} has property (H).

Ez 2. Let {z:,t < 7} be the minimal homogeneous denumerable Markov process [1],
Figure 2, denote the n* jump point by 7., then 7, + 7 and {T»,n > 0} is of
property (H).

Ez 8. Let {x¢,t < 7} be a Doob process [1], Figure 3, and denote the nth ezplosion of
{z¢} by Ta, then 7» T 7 and {7n, n > 0} has property (H), and the {X(mn),n >
1} has the same distribution.

Ez 4. Let {z:,t < T} be a Q-process of order one [1], Figure 3, and denote the n*"
flying point of ¢ by T, then 7, 1 7 and {7, n > 0} has property (H).

Ez 5. Let {N(t),t > 0} be an input process to a GI/G/1 queue [3]. That is to say,
N(t) stands for the number of arrivals up to timet. Let 0 =0, 7o, n 2> 1
denote the arrival time of the nt* customer. Then 7, T +00, and it is easy to
see that {Tn,n > 0} has property (H), but N(t) is not a Markov process unless
Ta+l — Tn, n > 0 are independent and have ezxponential distributions.

Ez 6. Let {L(t),t > 0} be a M/G/1 queuing process [3]. L(t) stands for the queuing
length at t, 10 =0, 7, n > 1 denotes the ezit time of the nt* customer. Then
7 T 00, and {Tn,n > 0} has property (H).
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Ez 7. Let {L(t),t > 0} be a GI/M/1 queuing process [3]. 70 =0, 7o, n > 1 stands

Ez 8.

Ez 9.

Ez 10.

Fzr 11.

for the arrival time of the nt® customer. Then T, 1 oo, and {mn,n > 0} has
property (H).

Let {L(t),t > 0} be a GI/G/1 queuing process [3]. 70 =0, o, (n > 1) stands
for the starting time of the n'* busy period. Then T, 1 0o, and {rn,n > 0} is
of property (H).

Let {W (t),t > 0} be a waiting process of a GI/G/1 queue (3], i.e. W(t) stands
for the waiting time of the customer who arrives att. 70 = 0, 7a, (n > 1)
denotes the arrival time of the n'* customer. Then 7, 1 oco(n 1 o0) and
{n,n > 0} has property (H). See Figure 9.

Risk decision model, Figure 10.

N(t)

wt)=u+ct— Z:c,'
i=1

where N(t) is the number of claims occurred in [0,t], and z;’s are positive
random variables. u(t) has the property (H).

Risk decision model with random disturbance.
N(t)
u(t) =utct+Wt)— Y

i=1

where W (t) stands for Brownian motion. u(t) has the property (H).
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Ez 12. Option pricing model, Figure 12. The S(t) denotes the price of stock, F[t, S(t)]
1s a dualistic continuous function of t, s and stands for the option price at t.
S(t) and F(t,S(t)) have the property (H).

Ex 13. Reservoir model, Figure 13. V (t) has the property (H).

In fact, from the examples above, we see that many processes in practice have the
property (H) but are usually not Markovian. From the study of Markov processes, it
is easy to see that many results hold for those processes that only have the property
(H). For example, the minimal @-process satisfies both Kolmogorov backward and
forward equations; the transition probability of a minimal Q-process satisfies both
Kolmogorov backward and forward equations; the distributions and moments of the
first arrival time and integral-type functional for minimal @-processes and order 1
@-processes are minimal nonnegative solutions of some nonnegative linear equations;
and so on. All these results can be derived by the property (H) only. For these
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reasons, we consider the processes with the property (H) for a separate study and we
call them Markov skeleton processes.

Next, we review the history from the introduction of Markov processes to that of
Markov skeleton processes.

Markov chains, the original models of Markov processes were introduced in 1906
by the Russian mathematician A.A. Markov [30]. From then on, many scholars began
their continuous investigation on Markov processes and many excellent results have
been obtained, especially for strong Markov processes. The simplest one which we
have studied in great detail is the minimal Markov chains {z(t,w),t < 7}, Figure 2.

0=r<n<n <1<, mlr 7, i=12"-- is the i** jump point, 7 is
the explosion point. As we know,

(i) 7, n=0,1, - has the property (H);

(ii) z(t) = z(mn), T7n Lt < Tng1,n=0,1,2,---;

(iii) The distribution of 7,41 — T is an exponential distribution depending on X, .

i.e.
1—e %" t>0

P(Tn+1—TnSt|X7-n=i)={0 <0

Conversely, if the above three conditions hold, then X(t) must be a Markov process.

But there are many stochastic processes, which have properties (i) and (ii) and
do not have property (iii). In 1955, Levy [3] and some other authors gave up the
property (ii1), but they kept the properties (i) and (ii), and introduced the concept
of semi-Markov processes to take up the study.

Until the 1980’s, M.H.A. Davis [32, 33] relaxed the property (ii): the hypothesis
that z(t) took only one constant on [7,,7n+1) Was replaced by taking a determinate
smooth curve, but kept the Markov property on the jump time. Then with the aid
of an auxiliary variable, he introduced the concept of piecewise deterministic Markov
space, and obtained extended infinitesimal generators of this kind of processes. The
above Examples Ex 9 and Ex 10 are typical examples of this kind. But many other
important stochastic processes are still out of consideration. In general, Ex 9 and
Ex 10 are not Markov processes, let alone piecewise deterministic Markov processes
as defined by Davis. There are also some stochastic processes with property (H), or
the above property (I), their paths between two adjacent Markov time 7, and 7» 41 are
pieces of deterministic smooth curves but pieces of stochastic processes. For example,
Ex 3, Ex 4, Ex 6, Ex 7, Ex 8, Ex 11, Ex 12 and Ex 13 are typical models of such
kind. Ex 3 and Ex 4 are Markov processes, but generally the other six examples are
not Markov processes. As for Ex 6 and Ex 7, in the late 1950s, D.G. Kendall [6, 7]
for the first time noticed that L(r»), n > 0 forms a Markov chain. L. Takaces (1]
studied L(7,) in Ex 6, and used the property (H) to obtain the explicit expression
of the generating function for the Laplace transform of the probability distribution
of L(t) and the expression of the stationary distribution. Later, Wu Fang [9], U.N.
Bhat [11] obtained the same results for Ex 7 by the same method. In 1997, based
on the results of these scholars and by laying an emphasis on the common character
(H) of the above examples, Hou Zhenting, Liu Zaiming, Zou Jiezhong introduced the
concept of Markov skeleton process (MSP), and obtained the backward and forward
equations satisfying the probability distribution of Markov skeleton process. In recent
years, we have carried out a basal study of the theories and applications of MSP, and
thus built up the theoretic framework.

As we know the development process of everything is a repeat and alternate pro-
cess which includes changes in quantity and quality. It makes a fresh start at a
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series of time when quality changes occur (i.e. of property H). The jump processes
characterise the change of quality while diffusion processes characterise the change of
quantity. In other words, at the moments when quality changes occur, things have the
Markov property. It was for this reason that we introduced Markov skeleton process
to provide an appropriate model for the study of these mixed stochastic processes. A
wide application of such processes in queueing system, deposit system, reservoir man-
agement system, insurance and finance system, economy system, demography theory
models and economic market can be found.

2. Definition and properties of Markov skeleton
processes

Let (2, F, P) be a complete probability space, (E, £) a measurable space, {F¢,t >
0} a flow of g-algebras of . Then X = {z(t,w),0 < t < 7(w)} is F;-adaptive
stochastic process defined on (Q, F, P) with values in (E, £).

For convenience, we extend the state space E to E = EU{b} by adding an isolated
state b to E. The process X is also extended to X = {#(¢,w),0 <t < oo}, by

a(t,w), 0<t<r(w),

2(t,w) = { b, T(w) <t < 0. (2.1)

Definition 2.1 The stochastic process X = {X(t,w),0 <t < 1)} is called a process
with Markov skeleton if there ezists a sequence of stopping times {Tn}n>0, satisfying

(i) ™t T withm =0, and for eachn >0, 7, <7 => T < Tn41;

(i) for every T, and any bounded E©%) _measurable function f defined on £1%°
E[f(2(mn + -, w))|Fr.] = E[f(@(7a + -, w))|2(mn)] P-ae. onQ-,, (2.2)
where Q,, = (w: T (w) < 00), and
N, Z{A:Vt2>20,AN(w: Tn(w) < t) € 0{E;,0 < s < t}}
is the o-algebra on Q- .

We say that X is a homogeneous Markov skeleton process if the following equation
holds in (ii)

E[f(&(ra +w)|Nr,] = E(f(&(a +-,w))lir,]
Eir)[f(2(-,w))], P-ae. onQ-,, (2.3)

where E;(-) denotes the expectation corresponding to P(-|£(0) = ).

Remark 2.1 In this article, suppose E to be a Polish space, £ the Borel o-algebra,
and §Q to be a space of right-continuous of functions, defined on Ry with values in E.

Consider a right-continuous stochastic process X = {X(¢,w),0 <t < 7(w)}, de-
fined on (Q, F, P) with values in E. Because E is a Polish space, the Kolmogorov
existence theorem assures that the above restriction of the 2 is reasonable. Let
F® = {F¢,t > 0} be the o-algebra flow generated by the process X initially, where
F' =0(X,,0<5<t), F& = VR, F?. Suppose that there exists a set of probability
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measures P; on (Q,F), ¢ € E, satisfying that VA € F5,,z — P.(A) is £-measurable
andVx € E,
P.(A)=P(A|lXo=1z), VAeFL.
For any probability measure p on (E,£), we define the probability measure P, on
(@, FL,) as follows: VA € FL,, Pu(A) = [, P:(A)u(dz). Let F{ be completion of F}'
about P,, and
Fi=NuepmyFt, t20,

where P(E) denotes the set of all probability measures on (E,£).

Remark 2.2 Since X is a right-continuous process defined on a metric measurable
space, then it is measurable step by step. Hence X(7n,w) and f(X(m + -,w)) are
measurable.

Suppose that X = {X(¢,w),0 <t < 7} is a Markov skeleton process. Let 7, =
(on, X(Tn)), n > 0, where 09 =0, 0, = T — Tu—1, n > 1 (agreeing that co — co = 0),
then {nn,n > 0} is a series of random variables with values in measurable space
(R+ X EA,B(R+) X £A)_

Theorem 2.1 Suppose that X = {X(t,w),0 <t < 7} is a Markov skeleton process,
then {nn,n > 0} is a Markov sequence (Markov process), and the transition probability
P(fho+1 € Bln) = P(fjas1 € B|X-,) (B € B(R4) x Ea,n > 0) is independent of the
first component o, of .

Proof VB € B(R:) X Ea, (n+1 € B) € o(X(mn +t),t > 0). By the definition of
Markov skeleton process (2.2), we have

P(fnt1 € Blno,m, -+ ,Mn) = E[P(nn+1 € B|Fr,)|mo,m, -+, 7n)
E[P(n"+1 € B|Xrn)|770’7717"' 7""«]
P(nat1 € B|Xr,).

So, (.,n > 0) is a Markov process. a

Furthermore, if the Markov skeleton process X is homogeneous, by (2.3),
P(nnt1 € B|X1-,.) = P)Z," (m € B)

andVt€ Ry, z € E,n >0, P(on+1 > t|Fr,) = Pg_ (11 > 1), Ps- as. on §r, where
Q.. = (tn < 00). So we get the statements (i) and (ii) of the following corollary,
while the proof of (iii) is straightforward.

Corollary 2.1 If the Markov skeleton process X = (X(t,w),0 <t < 7(w)) is homo-
geneous, then

(1) {nn,n > 0} is a homogeneous Markov process, and the transition probability is
Py(h+1 € Blnn) = Py (m € B), P;-as., z€E
(i) Vte R,z €E,n>0

Py(ont1 € B|Fr,) =P; (1 >t), Pr-as. onQr,;



Markov skeleton processes 77

(ii) VC; € B(Ry), i=1,2,--- ,n; n >0,

PI(O'l € C],"' ,0n € CanO;XATn"' aXTn)
= P01 € C1|Xo, X;,)P:(02 € Ca|Xry, Xry) -+ P(on € CulXr,_,, Xr0),
P;-a.5.,z €E.

Theorem 2.1, Corollary 2.1, and the Markov property (2.2) and (2.3) with respect
to the sequence of stopping time (74 )»>0 are the reasons we call the stochastic process
X a Markov skeleton process. The sequence (7,,n > 0) is called the Markov skeleton
of the process X and (X-,,n > 0) is called the embedded chain of X. Since (7,)x>0
and (7, X, )n>0 mutually determine each other, (7x, X, )n>0 may also be called the
Markov skeleton of the process X.

Suppose X = {X(t,w),0 <t < 7(w)} is the minimal Q-process, where 7 is the first
explosion. Obviously X is a homogeneous Markov skeleton process, whose Markov
skeleton is (0, X7, Jn>0, where o, = Tn41—T5 and 7, is the n** jump time, and {X, }
is the embedded chain. We feel the Markov skeleton is much more important than the
embedded chain for the minimal @-process, because the embedded chain gives only
the transfer states when a transition occurs without indicating how long the chain
stayed on the state it left. But the Markov skeleton does both. In fact, the Markov
skeleton of a minimal @)-process itself determine each other. Furthermore, from the
viewpoint of the transition kernel, the transition matrix {q;j/¢;} cannot uniquely
determine the Q-matrix (gi;), but the transition kernel of the Markov skeleton and
the @Q-process can uniquely determine each other.

Next, we introduce jump process of the Markov skeleton process.

Definition 2.2 The process Y = (Y (t,w),0 < t < 7(w)) is called the jump process
of the Markov skeleton process X = (X(t,w),0 <t < 7(w)) if

Y(t,w)=X;,, whentmh <t<Tnt1, n>0. (24)

Let (gn(z,dt,dz))n>0 denote the series of the transition kernels of the Markov
series (Nn)n>0. (By Yan Jia’an [1, Note 11.50], we know (s )=>0 exists). And let
Fo(z,dt) = go(z,dt,Epn), n > 0. VB € £, qn(z,dt,dz) € Fo(z,dt), so

qn(l',dt,B) = Q"(m7ta B) F"(xvdt)’

where the Randon-Nikodym derivative Qn(z,t, B) of gn(z,t,B) with respect to
F,(z,dt) may be chosen so that for fixed (z,t), Q- (z,t,-) is a probability measure on
En, and for fixed B € £a, Qn(-,-, B) is £o x B(R4)-measurable. In fact, we have

qn(ffrn ,dt,dz) = P(on4+1 € dt, X,-n+1 € d:c|f(r,,), Pi-as.,z € Epn, n >0
Fo(X,.,dt) = Pu(on €dt|X.,), Ps-as., z € Ea, n > 0;
Qn(X:,,0n41,dx) = PI()A(T"+1 € d:c|f(r,,),an+1), Pr-as.,z € En, n>0.

Before we finish this section, we introduce a set of sub-processes of the Markov
skeleton process X = (X(t,w),0 < t < 7(w)), X™ = (XM (t,w),0 < t < on(w)),
n > 1, as follows

XM (t,w) = X(Ta-1 +t,w), 0<t<on(w)), n>1

Obviously, the Markov skeleton process evolves as follows: starting from the initial
state Xo, it first evolves according to the first sub-process X(*) until the time 7



78 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

(the distribution of the 7, is Fo(Xo, -)), then jumps to the state X, according to the
transition kernel Qo(Xo,71,); and starting from X,, again, evolves according to the
second sub-process X until the time 72 (the distribution of the 72 —7y is F1 (X, , ")),
then jumps to the state X, according to the transition kernel Q1 (X, 72 — 71,°);
continue this way until time 7, when the Markov skeleton process X stops.

3. Definition and the back-forward equations of
normal Markov skeleton processes
Definition 3.1 A homogeneous Markouv skeleton process X = {z(t,w),0 <t < 7(w)}
is satd normal if there erist (h(t,z,A)) and (q(t,z, A)), with the stopping times
{Ta}n>0 in Definition 2.1, satisfying the following conditions:
(i) Plz(rn +t) € A Tny1 — 7o > t|z(m)] = h(t,z(7s), A),P-ae., A€ E,t >0,
n>0,
(11) Plz(tnt1) € A, Tag1 — Tn < tlz(mn] = q(t, (), A),P-a.e., A€ E, t >0,
n 2> 0.

For a fixed A, h(t,z, A) is a measurable function of two variables; for fixed z and
t, h(t,z, A) is a quasi-distribution on (E, ).
In particular,

h(t,z,A) = P(z(t) € A,1 > t|z(0) = z),
g(t,z,A) = P(z(n)e€ A n <tlz(0) =z).
Where q(t,z, A) is the transition probability of (7.), g(t,z, A) = fot I, a(ds, z,dy).

From now on we consider the normal Markov skeleton processes only without
mentioning the term “normal”.

Let M={R|R(z, A) be a nonnegative function defined on E x £; i.e. for fixed A,
R(z, A) is £-measurable; for fixed z, R(z, A) is a nonnegative measure on (E,£)}. It
is well known that convolution on M can be defined as follows: VR, S € M,

R-S(z, A) = / R(z,dy)S(y, A), s€E, A€t (3.1)
E

Obviously, R- S € M and the multiplication in M satisfies the associative law. In
particular, for any R € M

Rz, A) = éa(z)
/E R(z, dy)R" (3, A)

>

Rz, A)

I

/ R™(z,dy)R(y,A), z€E, Ac€ (3.2)
FE

Let

P(t,z, A) P(z(t) € A|z(0) = z) t>0,z€E, A€

/e-“P(t, z, A)dt, A>0,c€E, Ae€
0

1>

P,\(:II,A)
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Theorem 3.1 VA > 0, {Px(z,A),z € E,A € £} is the minimal non-negative solu-
tion of the following non-negative equation

X(z, A) = / (3, d0) X(y, A) + hr(z, A), z€E, AcE (3.3)
E
So o
Py(z,4) =()_Q"- H)(z, A) (3.4)
Where -
H = (h\(z,A),z€E,A€¥),
Q = (e A)zeBAce) } (35)
ha(e,4) = [ e Mh(t,z, A)dt,
% (3.6)
a(z,A) = Je‘“dq(t,x,A)

Remark 3.1 By Theorem 3.1, the distributions of the process X are determined by
H and Q, so X is called the (H,Q)-process. (H, Q) is called the binary characteristics
or (H,Q)-pair of Equation (3.3) and process X.

To prove Theorem 3.1, we need two lemmas.
Lemma 3.1 Vt>0,A€&,n>0

Elz(t) € A,mn <t < Tngi1|e(mn), Tn,2(0)] = At — 7n,2(Tn), A) - Itr. <y P-a.e.
(3.7)

where c
1, €
o) = { 0 weC

Proof First we prove (3.7) for closed set A. Suppose A is a closed set, let

4, = {zld(z,A)(%}, =12
o 1

Noting that the paths of the X are right continuous and 4 = N2, 4; = N2, 4;, we
have
{z(t) € A,7n <t < Tup1}
= {z(tatt—m)€EAmmp1—m>t—Ta}N{m <t}
= N2i({r(mm+t—Tm) €A Tar1 —Ta > t—Ta} N {m < t})

oo oo oo k_ i+ 1 i+ 1
C nl=1 UK=1 ﬂk=K (U?zol {I (Tn + z—-;%—t) € A[,Tn+1 —Tn > L t}

2k

NB® N {r, < t}) (3.8)
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on the other hand,
{Z(tntt—m) €EA 1 — T >t—1}N{m <t})
= N21({x(rn +t—70) € Ay Tng1 —Tn > t—T} N {m < t})
k_ i+ 1
D N2y NE=1 U;;”:K(U?:Ol {x (Tn + %t) €A, Tap1 —Tn D>t — Tn}

NB*® N {r, < t})

k_ t+1 + 1
D M2 NE= Uptk < uig! {I (Tn + %t) € A Tat1 —Tn > s t}
nB* N {r, < t}) (3.9)

Combining (3.8) with (3.9) and using indicator functions we have

Iia(tye A ra<t<rair}
2k
= ,1_‘}{.‘0 kll,“;o Z I{z('rn+%t)€Aprn+l—‘rﬂ>%t} 'IBf") Tir<ty P-ae.
1=0

(3.10)

Note that the limit in (3.10) is decreasing on ! and

2k_1
0 < Z I{I(Tn+ig;}t)EA1,rn+1—rn>'ﬁlt} ) IBE") Az, <y
=0
<1 P-a.e.

By the monotone convergence and dominant convergence theorems and the properties
of the conditional expectation, we have

Elz(t) € A,mn < t < Tnga|2(70), Tn, 2(0)]
2k 1

lim lim Z FE |:ZL‘ (Tn + %;t) € AlyTn+1 — Tn > E‘;F]Ltlz(Tn))Tn, 1:(0)]
=0

2500 k=00 4
i=

Tpr  Irasy

2k -1
. . + 1 i+ 1
= lim lim E FE [z‘ (Tn + Z-: t) € AL Try1 —Tn > —l;;c t|1'("'n)]

l—00 ko0 £ 2
1=0
T Iiragey

2k

. . i+ 1
= lim lim Z h<z; t,z(Tn),A,> U RTSRY I
1=0 *

Is00 ko0 4
= l!}}l{.loh(t—Tnym(Tn))Al) 'I{T'nst}

h (t - Tnyx(‘rn); nglAl) . I{r,.St}
= h(t —7n,z(1a), A) P-ae.
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In the last third equality, we use
2k 1

. T+ 1
Jim Z h( Ta), A,) Tpw Xiru<y

< h(t—m, I(Tn), Az) . I{‘r‘nSt}

h(t = mn,z(ma), A1) - Itz <y

IN

and while [ — oo, both sides have the same limits.

Up to here, we have proved (3.7) for close sets A. Noting that h(t,z, A) is a
quasi-distribution on A and the properties of the conditional expectation, using the
monotone class theorem we can prove that for any A € £, (3.7) holds and this com-
pletes the proof of Lemma 3.1. |

Lemma 3.2 VA€ £,t >0,z € E

P(z(mm) € A1 < tlz(0) =2) = ¢""(¢,x,A) (3.11)
where
7Ot z,4) = da(x),
g'(t,z,A) = q(t,z,A)

M(ted) = / [ s et -5 ), n22 @12
Proof Whenn =1,
P(z(n) € A, < tjz(0) =z) = q(t,2,A) = ¢"'(t,z, A)
Assume that (3.11) holds for n = k. Whenn =k +1,
P(z(tk41) € A, k41 < t|2(0) = 2)

= / E[:c(‘rk+1) € A, k41 — T <t — Tk|x(Th), T, £(0) = I}
Q

T <ty P(dwla:(O) = z)

/Qq(t = Tk, (7k), A) Tir<ey P(dwlz(O) = 1;)
/E/Ot q(t —s,y,4)- P(w(m) € dy, 7, € ds|z(0) = z)

t
= //q(t—s,y,A)'q*’“(ds,w,dy)
E JO

= ¢**(t,z,A)

In the last third equality, we use the integral transformation:
T:Q—Ex|[0,00], T(w)=(X(7),7k)

Thus the Lemma 3.2 is proved. |

Proof The proof of Theorem 3.1 is as follows:
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First, we reduce the demonstration of Theorem 3.1 to proving that

P(z(t) € Alz(0) Z// (t —s,y, A)q""(ds, z,dy) (3.13)

n=0

In fact, taking the Laplace transformation on both sides in (3.13), we have

Pu(z,A) = /0 " e P(a(t) € Ale(0) = z) dt
- i [ m A1 e, (3.14
where |
@ (z,4) = da(z)
W) = [ e d)

/"'/qA(z,dyl)qA(yl,dyZ)"'qA(yn—l,A), "21
E E

So, (3.14) becomes (3.4), i.e., the minimal non-negative solution of (3.3).
Next, we prove (3.13)

P(z(t) € Alz(0) = z)

= > P(a(t) € A, 1 <t < Tn1|z(0) = z)

n=0

= Z/ z(t) € A, Tn <t < Tnya|x(Tn), Tn, 2(0)] P(dw|z(0) = z)

n=0

- /h(t Tar2(ra), A) - Itz <ty - P(dw|2(0) = @)
- z / / h(t = 5,9, 4) - P(x(ra) € dy, T € ds|z(0) = )
= Z/E/o h(t — s,y, A) - " (ds, z, dy)

In the third, the fourth and the last equalities; we have respectively used Lemma 3.1,
integral transformation and the Lemma 3.2.
So (3.13) holds and this completes the proof of Theorem 3.1. |

Definition 8.2 Equation (3.3) is called the backward equation of the (H, Q)-process
X.

Definition 3.3 If for any A > 0, there exists Q = (@(z,A),z € E, A€ ) eM
satisfying H-Q=Q - H, i.e.

/hx(z,dy)éx(y,A) = /Eq,\(w,dy)hx(y,A), te€E, Acé (3.15)
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then the following non-negative Equation (3.16) is called the forward equation of the
(H,Q)-process X,

X(z,4) = /}EX(x,dy)éA(y,A) +ha(s,4), TCE, AcE A>0  (3.16)
Proposition 3.1 If H has right inverse element in M, i.e. for any A > 0, there
ezists H7' € M satisfying

H-H '(z,A) = da(z) Vz€E, A€E
then there exists the forward Equation (3.16), where Q = H7'- Q- H.
Proof VA >0, there exists H, ' € M. Let
Q=H"QH
Noting that the multiplication in M satisfies the associative law, we have
H-Q = H-(H'-Q H)

= (H-H7)-(Q H)
(0a(z)) - (Q- H)

= Q-H
By the Definition 3.3, the forward Equation (3.16) exists. a

Theorem 3.2 If there exists a forward equation of the (H,Q)-process, then the min-
imal non-negative solutions of both the forward equation and the backward equation
are identical. So {Px(z,A),z € E, A € £} is also the minimal non-negative solution
of the forward equation, i.e.

Py(z,A) = (ZHQn) (z,A)
n=0

Proof Obviously the minimal non-negative solutions of Equation (3.3) and Equa-
tion (3.16) can be obtained by the following

X(z,4) = lim X™(z, A),
X(z,A) = lim X.(z,A)
n—oo
where
X%, 4) = 0 t€E, A€E
X0t (z,4) = / (2, dy) XM (y, A) + ha(z,4), z€E, A€E, n>0
E
X9, 4) = 0 t€E, A€
X0z, 4) = / X (z,dy)ga(y, A) + ha(z,4), z€E, A€E, n>0
E

By (3.15), X© = X© and the above equalities, we have
X™(z,4) = X™(z,4) n>0
Thus Theorem 3.2 is proved. ]
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4. Regularity criterion of (H, Q)-process

Definition 4.1 The (H,Q)—process X = {z(t,w),0 <t < 7(w)} is said to be regular
if and only if for any ¢ € E, we have

P(r=o00|z(0)=1z) = 1 (4.1)

Theorem 4.1 The (H,Q)—process X = {z(t,w),0 < t < 7(w)} is regular if and
only if for anyx € E and t > 0,

p(t,z,E) =1 (4.2)
Equivalently, for any x € E and A > 0,
Apa(z,E) =1 (4.3)
Proof The conclusion is obvious. u
Let Be={f : f be a bounded measurable real-value function defined on (F, £)}.

Lemma 4.1 If0 < f € Bg and for some A > 0, there exists 0 < u € Bg such that

f(z) - / o (@, dy)f(y) = / bz, dy)u(y) > 0 (4.4)
then
fz) > / Py(z,dy)u(y), Vo€ E (4.5)
E

Furthermore, if the equation

{ g(x) gqx(w,dy)y(y), t€E (456)
0 < g€Bg

only has a null solution, then (4.5) becomes an equality, i.e.

f(z) = / P\(z,dy)u(y), Vo€ E (47)
E

Proof For A > 0, using the Theorem 3.1, we have that VA € £, {pr(z, A),z € E}
is the minimal non-negative solution of the following equation

X(z) = / 0(z, dy)X(y) + ha(z, A), z € E. (48)
E

Using the method of finding the minimal non-negative solution in the proof of The-
orem 3.2, we can prove that {[ pi(z,dy)u(y),z € E} is the minimal non-negative
E

solution of the following

X(z) = / ax(@,dy) X (y) + / ha(z, dy)u(y), € E. (4.9)
E E
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By the conditions in the lemma, the following equality holds.

f(z) = / ax (2, dy) f(y) + / ha(z dy)u(y), @€ E.

E

So the equality (4.5) holds.
For any z € E, let

o) = f(z) - / pr(z, dy)u(y)
E

Obviously, 0 < g € Bg and g satisfies (4.6). If (4.6) has only a null solution, then
g =0, ie. (4.7) holds. a

Theorem 4.2 The (H,Q)—process X is regular if and only if that the following
equation has only null solution

{ f(=z) Jaor(z,dy)f(y), z€E, A>0
E (4.10)
0 f<1 f € Bg

—_— ?

IA

Proof
Sufficiency: Let u(y) = A in (4.9), we have that {\px(z, E),z € E} is the minimal

non-negative solution of the following equation

{ X(x) = [on(z,dy)X(y)+ Arr(z,E), z€FE
® (4.11)

0 < X <1, X € Bg
As (4.10) has only a null solution, thus (4.11) has the unique solution
{*px(z, E), = € E}.
By Definition 3.1, it is true that for any z € E
q(t,z,E) + h(t,z,E) = 1.

So

> =

/e—’\tdq(t,x,E)+/e_’\th(t,z,E)dt = %
0 0

ie.
(2, E) + Ahp(z,E) = 1 (4.12)

Hence X(z) =1 is also the solution of (4.11), and
Apr(z,E) = 1, V€ E

So by Theorem 4.1, the (H,Q)—process X is regular.

Necessity: Because {\px(z, E),m € F} and X(z) = 1 are respectively the mini-
mal solution and the maximal solution of (4.11), we can conclude that {1 —
Apa(z, E),z € E} is the maximal solution of (4.10). In fact, the maximal
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solution of (4.10) can be obtained by the following recurrent procedure

f(o)(z) = 1

@) = /E o (z,dy) O )
= qA(sz)
= 1—/\h,\(.’l:,E)

fP@) = /E o (2, dy) f (3)
= (@ E) - ) /E 0 (z, dy)hx(y, E)
= V@) -A /E o (z, dy)hx(y, E)

= 12 [ B+ [ o dme,B)

Fo@) = /E o (z, dy) F ™ ()
= ™) -2 /E o (@, dy) /E /E 03 (n1, dyn)r (yn, E)

= 1=\ (Zn:Qk -H) (z, E)

k=0

So

fz) = lim f™(z)

n-—o00

1—,\(oo Q’°-H> (z, E)
k=0
1— APy\(z, E)

Since the (H,Q)-process X is regular, by the Theorem 4.1 it is true that
Apa(z, E) =1, (4.10) has only a null solution. u

The following is a sufficient condition for the (H,Q)-process to be regular which
can be easily verified.

Theorem 4.3 If gx(z, A) satisfies the following condition

B(A) = supgr(z,E) <1, VA>0, (4.13)
r€EFE

then the (H,Q)-process X = {z(t,w),0 <t < 7} s regular.



Markov skeleton processes 87

Proof By (4.13) and the method in solving the maximal solution of (4.10), we have

P = o E)
BN

/qﬂa@ﬁm@)
E

B(Naxr (=, E)
B*(N)

IN

I

fP(z)

IA A

fo(@) = Lmuﬁwﬁ%w

S BH(A)‘I)\(:I:’E)
< B
So
0 < f(z) = li_{n M=) < le B*(A\) =0, VzeE.
And (4.10) has only a null solution. By Theorem 4.2, X is regular. a

Corollary 4.1 If the number of the elements of state space E is finite and for any
zekE
P(ry >0z(0)=z) > 0 (4.14)

Then the (H,Q)-process X = {z(t,w),0 < t < 7} is regular.

Proof By the above conditions (4.13) is true. [ |

5. Some important special conditions

(A) (H,G - q)-processes
The separation condition (D):

q(t,z, A) = G(t,x)q(z,A) (5.1)
i.e.

P(z(n) € A, <tlz(0) =z) = P(n < tjz(0) =z) - P(z(n1) € Alz(0) =(:c))
5.2

Definition 5.1 Ifa (H,Q)-process X satisfies the condition (D), then it is called
a (H,G - q)-process.

By Hou Zhenting and Guo Qingfeng [1, Lemma 9.3.1], the minimal @-processes
are (H,G - q)-processes.
Let

Gr(z) = /0 " e MaG(t, ), (5.3)

then the separation condition (D) becomes

o (z,A) = Gi(z)q(z, A). (5.4)
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The backward equation of the (H,G - g)-process becomes
X(z,A) = G,\(z)/ g(z,dy)X(y,A)+hr(z,A4), A>0,z€E, A€&. (55)
E

Theorem 4.2 (criteria for regularity) becomes the following theorem.

Theorem 5.1 A (H,G - q)-process X is regular if and only if the following
equation has only a null solution.

fz) = Gi(z) [pa(z,dy)f(y) z€E, A>0 (5.6)
0 < f<1, f€Bg :

Generalized Doob processes
If the separation condition (D) holds and

g(z,A) = g(A), z€E, A€ (5.7)

then the process X is called the generalized Doob process. It is obvious that
the Doob processes in traditional Markov processes are the generalized Doob
processes.

The backward equation of the generalized Doob process becomes
2.t) = Gr(e) [ ald)2(4)+ a(z, A). (59)
So
[ at@nxw.a) = [ Grta)- [ a@n)Xw.4)+ [ ha datay). 69

And

_ Jeha(y, A)g(dy)
[aanxw ) = FEREIEES (510)
By (5.8), (5.9), (5.10) and Theorem 3.1, we have
pr(@ A) = ha(z, A) + 2@ M@ Aaldy) (5.11)

1 — [z Ga(y)a(dy)

Semi-Markov processes

Definition 5.2 Suppose that X = {z(t),t < 7} is a Markov skeleton process
and {Tn}n>0 is the time component of its Markov skeleton. If the state space E
is a denumerable set and

z(t) = z(mn), 7w <t<Tny1, n 20, (5.12)
then the X is called semi-Markov process.
Piecewise determinate Markov skeleton processes

Definition 5.3 Suppose that X = {z(t),t < 7} is a Markov skeleton process
(maybe nonhomogeneous). If there exist measurable functions ¢, : [0,00) x E —
E(n > 0) such that for any fized x € E, ¢,(t,x) is right-continuous on t and

oo
X(t,w) = Z Sn(t — 7o, 2(Tn ) (rnctcrnyy (W), 0Lt <,
n=0
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(E)

(F)

(G)

(H)

@

then X 1s called a piecewise deterministic Markov skeleton process.
Piecewise determinate Markov processes

Definition 5.4 If a piecewise deterministic Markov skeleton process X is a
Markov process, then the X 1is called a piecewise deterministic Markov process.

Piecewise deterministic Markov processes in Davis sense (PDMP)

Piecewise determinate Markov processes (PDMP) in Davis [1] is a proper sub-
class of the piecewise determinate Markov processes in Definition 5.4. One of
the most important conditions for the piecewise deterministic Markov processes
to be a PDMP in a Davis sense is that F(z,t) = P(r1 > t|X(0) = z) is abso-
lutely continuous. At first sight, the PDMP model in a Davis sense, is limited by
Markov processes and does not have rich content. While dealing with practical
problems, it displays much generality and many advantages. By means of the
additional variable, a piecewise deterministic Markov skeleton process with the
absolutely continuous F(z,t) = P(my > t|X(0) = z), which is not a Markov
process, can often be transformed to a PDMP model.

Markov-type skeleton processes

If a Markov skeleton process X is a Markov process, then X is called a Markov-
type skeleton process.

Stochastic processes with jumps

The Markov skeleton processes which consist of Brownian motion, diffusion pro-
cesses and denumerable Markov processes (or birth-and-death processes) and
the Markov-type skeleton processes categorize diffusion processes with jump.
Markov-type diffusion processes with jumps, Brownian birth-and-death pro-
cesses, etc. are categorized as stochastic processes with jumps. This provides
appropriate mathematical models to study the so-called evolution law (all things
obey the repetitive and alternating development from change in quantity to
change in quality ) and make it meaningful to work on the theories and applica-
tions.

Denumerable Markov skeleton processes

If the state space E is a denumerable set, then the Markov skeleton processes are
called denumerable Markov skeleton processes. For example, the queue lengths
L(t) of the M/G/1 and GI/G/1 belong to these kind of processes.

The backward equation of these kind of processes becomes

Xi; = Z it (M) Xi; + hij(A), A>0, i,j€E, (5.13)
kEE

and the forward equation becomes

Xij = ) Xadei(NXij +hij()), A>0, 4,j€E, (5.14)
keE
where
hi () = / e MP(X(t) = j, 1 > t|X(0) = 4) dt, (5.15)
0
(A = / e MP(X(n) = j, n < t|X(0) = 1) dt, (5.16)
0
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Q= (Gij (X)) satisfies

ST Ra(NakiD) = Y gx(Whe(X), A>0, i,j€E. (5.17)
keE kEE
6. Supplements and notes

The concept of Markov skeleton processes (Definition 2.1) and their backward and
forward equations were introduced in 1997 by Hou Zhenting, Liu Zaiming and Zou
Jiezhong for the first time [2, 3, 5]. The main results of this paper are Theorems 3.1
and 3.2 which determine the one-dimensional probability distribution of the Markov
skeleton processes . They are the key theorems in the theory of Markov skeleton
processes, for in the study of any stochastic process, the first-line question is to deter-
mine its probability distribution, especially its one-dimensional distribution. As far as
we know, Kolmogorov backward and forward equations were obtained only for pure-
discontinuous (also called “jump”) Markov processes and branching processes, while
for semi-Markov processes, only the backward equation was established. Now all these
become special cases of the backward equation (3.3) or the forward equation (3.16) in
Theorem 3.1. In Hou Zhenting, Guo Qingfeng [1], the very simple formula (9.2.3) for
the computation of the transition probability for minimal Q-processes and the rather
complicated formula (10.2.16) for the computation for order-1 Q-processes are unified
as the backward equation (3.3). The subsequent ones, such as the forward equation
for semi-Markov processes, the backward equation for piecewise deterministic Markov
processes, the queue length L(t) of GI/M/1 queueing system, the waiting time w(t)
of GI/G/1 queueing system, and the forward equation for the queue length L(t) of
G/M/1 queueing system are all the new special cases of (3.3) or (3.6). So we may
say that our backward and forward equations extend greatly the application range of
that of Kolmogorov in Markov processes. In the deduction of the backward equation
for the Markov skeleton processes (or rather, the deduction of Theorem 3.1) we use
the same method as in the deduction of the original Kolmogorov backward equation,
namely, by means of the Markov property of the stopping time 7; as this method
is brief and clear. However, the deduction of the Kolmogorov forward equation for
pure-discontinuous Markov processes use the Markov property thoroughly and with
much difficulty. Since Markov skeleton processes have a much weaker Markov prop-
erty than the traditional Markov processes, we give up the probability method, and
turn to ideas used in operator theory to obtain the forward equation.
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This paper focuses on the generalised piecewise deterministic Markov
processes (PDMPs), introduced by Liu and Hou [14], and studies some
properties of PDMPs connected with the characteristic triple. It is
pointed out that Davis’ PDMP is the special case of the PDMP here,
which restricts all the survivor functions so that they are absolutely
continuous with respect to the time t. Furthermore, the state jump
measure of a PDMP is introduced. When accompanied by the (state)
transition kernal, it plays the same role to PDMPs as Q-matix to Q-
processes.

Piecewise deterministic Markov processes (PDMPs), the state jump
measure of a PDMP, Stieltjes exponential, Stieltjes logarithm.
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1. Introduction

The terminology of piecewise deterministic Markov processes (PDMPs
or PDPs) was initially introduced by Davis [4] as a general class of
stochastic models. Since then, the stochastic control theory of PDMPs
has been extensively studied by many authors. Among them we quote
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Davis [5], Dempster and Ye [7], and Schal [16] and references therein.
The theory of PDMPs is successfully applied in capacity expansion and
risk theory by Davis, Dempster, Sethi and Vermes [6] and Dassios and
Embrechts [3], and Embrechts and Schmidli [8] respectively. The sta-
tionary distribution for a PDMP has been studied by Costa [1]. The
stability of PDMPs has recently been studied by Costa and Dufour [2].

Davis’ PDMPs are a family of Markov processes following determin-
istic trajectories between random jumps. The motion of Davis’ PDMP
depends on three local characteristics, namely the flow ¢, the jump rate
A and the transition measure (), which specifies the post-jump location.
Starting from z the motion of the process follows the flow ¢(¢,z) until
the first jump time 7; which occurs either spontaneously in a Poisson-like
fashion with rate A(¢(¢,z)) or when the flow ¢(¢, z) hits the boundary of
the state space. In either case the location of the process at the random
jump time 7 is selected by the transition measure Q($(r1,),-) and the
motion restarts from this new point as before. It is well known that,
when accompanied by the duration time since the last random jump
as a supplementary variable, a semi-Markov process becomes a Markov
process (refer to Gihman and Skorohod [9, page 295], and the latter is
a Markov process following deterministic trajectories between random
jumps too. Nevertheless, there is no restriction on its random jumps in
so-called Poisson-like fashion. Hence, Davis’ model is not general enough
to cover this important case.

Liu and Hou [14] generalised the concept of Davis’ PDMP by virtue of
the ideas of Hou, Liu and Zou [11, 12, 13], in which they introduced the
concept of Markov skeleton processes (MSPs) to discribe the general
stochastic systems that are of Markov property at least at countable
increasing (fixed or random) times. The generalised piecewise deter-
ministic processes (PDPs) are, just as their name indicated, stochas-
tic processes involving deterministic trajectories punctuated by random
jumps. More precisely, there exists a sequence of random occurrances at
fixed or random increasing times, 71,79, - -, but there is no additional
component of uncertainty between these times, and the only restriction
is the Markov property of the processes at these times. Also they call a
PDP a piecewise deterministic Markov process (PDMP) if it becomes
a Markov process. This generalised PDMP overcame the shortage men-
tioned above. Liu and Hou [14] presented the necessary and sufficient
conditions for a PDP to be a PDMP and pointed out that suitably cho-
sen supplementary variables can make a PDP become a PDMP.

In this paper we provide the general properties of the generalised
piecewise deterministic Markov processes. In Section 2 we give the main
definitions and notations. In Section 3 we study the properties of PDMPs
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connected with the jump time characteristic of PDMP by virtue of the
Stieltjes version of exponentials and logarithms, and present the repre-
sentations of jump time characteristic of a PDMP. It is indicated, by
the way, that the so-called ‘Poisson-like jump’, which is just the form
of the jump time characteristic in Davis’ PDMP model, is equivalent to
restricting the jump time characteristic of a PDMP to being absolutely
continuous with respect to the time ¢, and that the durations between
jumps must be of exponential distribution with jump rate A\(z), z € E
in the cases of Markov jump processes. Section 4 introduces the concept
of the state jump measure and state jump transition kernel of a PDMP,
which play the same role to PDMPs as Q-matrix to Q-processes.

2. Definitions and notations

Let X = {z(¢t,w),0 < t < 7} be a stochastic process defined on
a complete probability space (2, F, P) with state space (E,£), where
(E,£) is a Polish space. Let F' = (F;);>0 be the natural filtration of the
process X, where F; = (25,0 < s <t), Foo = Viop Ft- Suppose that
there exists a family of probability measures, P, z € E, on (€, F) such
that, for any A € F, the function z — P;(A) is £-measurable and, for
allz € E,

P,(A) = P(A|zo = z), A€ Fy.

We add an isolated point A to state space E, and define a stochastic

process X = {#(t,w),0 <t < 0o} on QU {[A]} by

. _J z(tw), f0<t<T(w),
x(t"")—{ A, ifr<t<oo.

Thus the process X can be thought of as a process well defined for all
t > 0. We shall, by convenient use of notation, generally denote it X
whenever 7(w) = 00 a.s. or not.

Definition 2.1 A right continuous process X = {z(t,w),0 <t < 7(w)}
with state space (E,£) is called a (homogeneous) piecewise determin-
istic process (PDPs), if there exist a strictly increasing sequence of
nonnegative r.v.’s {Tp}n>0 with 19 = 0, 7, T 7, and a measurable map
¢: (Ry x E,B(Ry) x ) —= (E, &) with right continuity with respect to
t€ Ry and ¢(0,z) =z, x € E such that

o0
z(t,w) = Z¢(t = Ty T(To) [rp<t<rnin]s 0<t<r, (2.1)
n=0

and the sequence {(Tn — Th—1,%5,)}n>0 (7-1 = 0 by convention) is a
homogeneous Markov sequence with transition probabilities dependent on
the second component only.
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Denote transition kernel of Markov sequence, {(T, — Tn—1,%r,)}n>0,
by G(z,dt,dz). And denote F(z,dt) = G(z,dt,E), n > 0. It follows
from G(z,dt,dz) <« F(z,dt) that, for any B € £,

G(z,dt, B) = Q(z,t, B)F(z,dt),

where Q(z,t, B) is the Radon-Nikodym derivative of G(z,dt, B) with
respect to F(z,dt). Q(z,t,B) can be selected such that Q(z,t,-) is a
probability measure on (E, £) for any fixed (z,t) € Ex Ry and Q(-, -, B)
is £ x B(R4+)-measurable for any fixed B € £. In fact, we have

G(z,dt,dy) = Py(n €dt,z, €dy), Pr—a.s;
F(z,dt) = P,(n €dt), P, —a.s;
Qz,m,dy) = Py(z, € dy|ln), P, —a.s.,

forallz € E.

Now we are in position to see how a PDP evolves. Starting from the
initial state zg, a PDP X moves along ¢(-, o) until time 71 with distri-
bution F(zg,-) and then it jumps instantaneously to state z,, according
to the transition probability Q(zg,71,); and the process restarts from
the state =, and moves along ¢(-,z,,) until time 79,---. The process
repeats in the similar way until it stops at the time 7. We can see that
the motion of a PDP depends only on the three characteristics, ¢,F and
Q.
We call (¢, F, Q) the characteristic triple of a PDP; F and Q the jump
time characteristic and jump transition characteristic respectively.

Definition 2.2 A PDP X = {z(t,w),0 <t < 7} is called a piecewise
deterministic Markov process (PDMP), if it is a Markov process.

It is more convenient to use the following equivalent definition of
PDMP by virtue of Liu and Hou [14, Theorem 3.1].

Definition 2.3 A PDP X = {z(t,w),0 < t < 7} with characteristic
triple (¢, F, Q) is called a PDMP if there ezists a function, c¢: (E,E) —
(R+\{0}, B(R+:\{0}), such that, for anyz € E, s,t € R, and s+t €
(0,¢(z)), we have

(1) ¢ is a semi-flow, i.e.,

$(0,z) =z, 6t é(s,2)) = d(s +1,2). (2.2)

(ii) the jump time characteristic F satisfies the following functional
equation

F(z,0) = 0;  F(z,t+s) = F(z,1)- F($(t,2),5);  (2.3)
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and c(z) = inf{t : F(z,t) = 0}, where the survivor function
F(z,t) = F(z, (t,)).

(111) the jump transition characteristic Q) satisfies
Q(z,t,{¢(t,2)}) = 0; Qz,t+s,dy) = Q((¢,2),5,dy). (2.4)

Remark 2.1 Further more, Theorem 3.1 of Liu and Hou [14] tells us
that the above defined PDMP is also a strong Markov process.

In the following we need the concepts of the Stieltjes version of ex-
ponentials and logarithms. we reserve the term F-function for a right
continuous decreasing function F : Ry — [0,1] such that F(0) =1, and
A-function for a right continuous increasing function A : Ry — Ry
such that A(0) = 0 and AA(t) < 1 for all ¢ with A(t) < A(o0), pos-
sibly AA(t) = 1 if A(t) = A(o0) < oo. (Here A(oo) := supA(t) =

It is easy to see that the survivor function F(z,-) for each z € E is
an F-function.

For F-function F, let cp := inf{t : F(t) = 0} and for A-function A,
let cp := inf{t : A(t) = oo or AA(t) = 1}. The Stieltjes logarithm of
an F-function F is defined to be the function slogF, where

slogF(t) := /(0 e ;d(fis))

If A is a A-function, we may express A in a unique way as A°+ A%, where
A€ and A¢ are A-functions which stop at cp, A® being continuous and
A% purely discontinuous. The Stieltjes exponential sexpA is defined
by
sexpA(t) := e~ A°®) H [1 — AA(u)].
0<u<lt

For the detailed properties of Stieltjes exponentials and Stieltjes log-

arithms, refer to Meyer [15] or Sharpe [17, Appendices].

3. The jump time characteristic of a PDMP

Let ¢ be a semi-flow with the state space (E,£).
An F-function family, {F(z,-) : ¢ € E}, is called ¢-multiplicative
if, for any z € E, s,t € R, and s+t € (0,¢(z)), we have

F(z,t+s) = F(z,t)- F(é(t, ), s).

A A-function family,{A(z,-) : z € E}, is called ¢-additive if, for any
z€E, s, te Ry and s+t € (0,c(z)), we have

Az, t+ s) = Az, t) + A(o(t, ), s).
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Definition 2.3 shows us that the jump time characteristic of a PDMP
is ¢-multiplicative.

Lemma 3.1 If An F-function family {F(z,-)} is ¢-multiplicative, then
the function c(z) := inf{t : F(z,t) = 0}, z € E is Ry\{0}-valued and
satisfies

c(z) = t+c(g(t,x)), t € [0,c(z)). (3.1)

Furthermore, if the state x is periodic for the semi-flow ¢, then c(z) =
00.

Proof The positivity is directly from the right continuity at ¢ = 0 of
an F-function. Note that F(z,t) > 0 for each t € [0, c(z)), we have

c(é(t,z)) = inf{s > 0,F(¢(t,z)),s) =0}
inf{s > 0, F(z,t + s)/F(z t) = 0}

inf{s > 0, F(z,t + s) = 0}

inf{u > 0, F(z,u) =0} —t

= c¢(z) -t

This proves equation (3.1).
Supposed that z € F be a periodic state of the semi-flow ¢, then there
exists a T € (0, c¢(z)) such that ¢(T,z) = z. Hence,

c(z) =T + c(z),

by equation (3.1), and this implies ¢(z) = oo. |

Lemma 3.2 An F-function family {F(z,-)} is ¢-multiplicative, if and
only if the A-function family {A(z,-)} is ¢-additive. Where A(z,") =
slogF(z,-), z € E (i.e. F(z,-) = sezpA(z,-), z € E).

Proof If the F-function family {F(z,-)} is ¢-multiplicative, then we
have by Lemma 3.1 that the A-functlon family {A(z,-)} satisfies, for
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te [O,C(.’E)], s€ R+a

A(z,t+s) = slogF(z,t+ s)

_ / —dF(z,u)
(0,(t+s)ne(z)) F(zu=)

_ / —dF(z,u) +/ —dF(z,u)
Otre@)] F@u=)  Jine) (t+s)nc) F(z,u—)

= A(w,t)+/ ———dF(a:,u)
(t(t+)ne@) Flz,u=)
= Alz,t) + / —dF(z,v)
(0,snc(o(t,x))] F({L‘,’U,—)
= Az,t) + A(g(t, 7), 5).

This proves the ¢-additivity of the family {A(z,-)}.

Conversely, Suppose that the A-function family {A(z,-)} is $-additive.
The ¢-additivity implies that AA(z,t + s) = AA(H(¢t, ), s), for each
z € E and any t € (0,¢(z)] and s € R.. Hence, we have for ¢t € [0, ¢(z)],
CNS R+,

F(z,t+s) = sexpA(z,t+s)
_ e—A(z,t+s) H [1 _ AA(x7u)]eAA(x,u)
0<u<t+s
— e—A(m,t) H [1 _ AA(z,u)]eAA(z,u)
0<u<t
x e~ AM(t:7),5) H 1- AA(:c,u)]eAA(I’“)
t<u<t+s
= F(x,t)e—A(¢(t,z),S) H il —AA(ql)(t,w),u)]eAA(‘b(t’x)’“)
0<u<s

= F(z,t)F(4(t, ), )-

This is the ¢-multiplicativity of the family {F(z,-)} and completes the
proof of the lemma. |

Theorem 3.1 Let {F(z,) : z € E} be ¢-multiplicative. If F(z,t) is
absolutely continuous on [0,c(z)) for some x € E, then so is A(z,-),
the Stieltjes logarithm of F(z,-), and there ezists a nonnegative function
A(:) on the trajectory {$(t,z) : 0 <t < ¢(x)} such that

A(z,t) = /0 Mo(u, z)) du, t €10,c(z)), (3.2)
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or, equivalently,
Flz,t) = e~ hoXowadu 4 g o(z)). (3.3)

Proof It is obviously that A(z,t) is absolutely continuous on [0, ¢(z))
by the definition of Stieltjes logarithm. Let

R
A(y)—lgfg "

, y € {¢(t,z) : 0<t <c(z)},

if the right side limit above exists; and = 0 otherwise. Since {A(z,-)} is
¢-additive, we have

OtA(z,t) . Az, t + 5) — A(z,t)
ot T slﬂ)1 s
o A2,
sl0 S
= ¢t 7).

Also the formula (3.2) follows from the monotonousness and absolutely
continuity of A(z,-), and so does the formula (3.3). This completes the
proof. |

Remark 3.1 Formula (3.3) is just the form in Davis’ PDMP for jump
time characteristic, which indicates that Davis’ PDMP is the special case
of PDMP here. Also the so-called ‘Poisson-like jump’ is just to restrict
the jump time characteristic of PDMP being absolutely continuous with
respect to t.

Theorem 3.2 Let {F(z,-) : x € E} be ¢-multiplicative, and denote E,
the set of all equilibrium states for the semi-flow ¢. Then there exists
a nonnegative and finite function A(-) on E, such that, for any z € E,,
the Stieltjes logarithm of F(z,t),

A(z,t) = Mz)t,  t€ Ry, (3.4)

or equivalently,
F(z,t) = e 2@t teR,. (3.5)

Proof It follows from Lemma 3.1 that ¢(z) = oo for z € E,, since
equilibrium state is the special case of periodic state. In this case, the
¢-additivity of {A(z,-)} yields

Az, t +3) = A(z,t) + Az, s) s,t€ R,
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This functional equation has a unique A-function solution
A(z,t) = M=), te Ry,

where A\(z) = A(z,1) = %-I—’Qltzo. Thus, one can get (3.4). Fur-
ther (3.5) follows directly from the definition of Stieltjes exponential.
This completes the proof. [ |

Corollary 3.1 If a PDMP reduces to a Markov jump process, then there
ezists a nonnegative and finite £-measurable function A(-) on E such that
the survivor function

F(z,t) = e M=)t te Ry,
for each z € E.

Proof Since ¢(t,z) = z, for all z € E, in the case of Markov jump
processes, it follows that E, = E. Hence, there exists a nonnegative and
finite function A(-) on E such that the equation (3.5) is satisfied for
each z € E. The £-measurability of A(-) is due to the £-measurability

of F(-,t) = P(r; >t) for each t € R,. [ ]
4. Jump measure and jump transition kernel of
a PDMP

In this section, we assume that ¢ is a flow on E instead of a semi-flow.
We add ¢(z) to the domain of ¢(-,z) for each z € E, which should
keep ¢ a flow on E U 0 F if needed. Where

0+ E = {¢(c(z),z) : © € E}, (4.1)

represents those boundary points at which the flow exits from E.
Denote c_(z) := inf{t € R : F(¢(t,z),—t) > 0}, z € E, and the
subsets

E(z) :={é(t,z) : c_(z) <t < c(2)}, z€FE. (4.2)

The set E(z) is called a state (or phase) trajectory for any z € E. In
the case of a flow ¢, E(z;) = E(z2) if and only if E(z1) N E(zg) # 0
(z1,z2 € E); and if z € E is a periodic state, then each state y € E(x)
is periodic with same period.

Now we are in position to construct a measure along each state tra-
jectory E(z) for z ¢ E, (i.e. the state z is not an equilibrium state).
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Let {F(z,-),z € E} be a ¢-multiplicative family of F-functions.

Case 1: z € E is a periodic state with minimal period T, > 0.

In this case, ¢(-, ), located on (0, T;], is a one-to-one map of (0, 7]
to E(z). So we get the inherited measure A, along E(z) with

Ar({d(u,z) : 0 < u < t}) = A(z, ), t € (0,T,). (4.3)

Case 2: z € E is an aperiodic state.

Denote
T, :=inf{t > 0: §(t,z) € E.} A c(z),

which represents the hitting time to E, or the boundary 0, F for ¢
starting from z. In Case 2, ¢(-,z) located on (c_(z),T%] is a one-
to-one map of (c_(z),Ty] to E(z). We get the inherited measure
A; along E(z), as for (4.3) and

Az({$(u,7) : s <u < O0}) = A(¢(s,2),—3), s €lc-(2),0] (4.4)

Lemma 4.1 Let z € E\E,. For any y € E(z)\0+E, the measure A,
along E(y) = E(z) coincides with Az.

Proof Let y € E(z)\0+E.
There exists unique ¢y € (0,T;] in Case 1 such that ¢(¢o, ) = y, which

implies ¢(T — to,y) = « in this case. Therefore due to the ¢-additive of
{A(z,-)} we have

Ay({p(u,2) :0<u<t}) = Ay({d(T; —to+u,y):0<u<t})
Ay, To —to +t) — Ay, Tz — to)
AM&(T: - to,y),t)

= A(z,t)

= Az({d(u,z): 0 <u<t}),

for t € (0,T;]. Also there exists unique ty € (c—(z),T;] in Case 2 such
that ¢(to,z) = y. Similarly, we have by (4.3) and (4.4),

Ay({p(u,z) : s <u < t}) = Ae({p(u,z) : s <u < t}),

forc_(z) < s <t<T;.
This completes the proof of the lemma. ]

Therefore, we have defined unique measure along each state trajectory
except for the trajectory E(z) = {z} reducing to a single equilibrium
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point. We will omit the subscript z of the measure A, for this reason
and denote them A only. It is easy to see that,

(i) if z € E\E,, then

a) A(E(z)) < oo in Case 1, and
b) A({#(u,z) : s <u <t} <ooforanyc_(z) <s<t<Tyin
Case 2;
(i) a) if z € E\O+E, then A({z}) < 1;
b) if z € 0, E, then A({z}) =1 if and only if A({p(u,z) : s <
u < 0}) < 0o and ¢(¢(s,z)) < oo for some s < 0.

There are at most countable many states z’s on a trajectory such
that A({z}) > 0.

Definition 4.1 We call A, a measure along each state trajectory, the
state(or phase) jump measure if the condition (i) and (ii) above are
satisfied. A state x € EUO.FE is a positive jump state if A({z}) > 0.

A nonnegative and finite E.-measurable function A(-) on E. is called
a jump rate function on E..

Theorem 4.1 Let ¢ is a flow on (E,E).

(i) Given a ¢-multiplicative family of F-functions, {F(z,-),z € E},
there exists a unique state jump measure A such that (4.3) and
(4.4) are satisfied in Case 1 and Case 2 respectively; and unique

jump rate function on E. such that (3.5) is satisfied in case of
T € E,.

(ii) Conversely, given a state jump measure A and a jump rate func-
tion A on E., there exists a unique ¢-multiplicative family of F-
functions, {F(z,-),z € E}, such that (4.3) and (4.4) are satisfied
in Case 1 and Case 2 respectively, and (3.5) in case of € E,.

Proof

(i) It follows directly from Lemma 4.1 and the discussion above.

(i1) Given a state jump measure A and a jump rate function X on E,

let
( Az)t, ifz e E;
[%] A(E(z)) +A({p(u,2):0 < u < t — [t/Ty|T5}),
if in Case 1;

A(z,t)::ﬁ A({¢(u,z):0 < u < t}),
if in Case 2 and A({d(c(z),z)}) = 1;
A({d(u, 2):0 <u < tH+M(Te, 2)) (¢ — Te) 17, <4);
if in Case 2 and A({$(c(z),z)}) < 1.
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It is easy to see that the family of A-functions {A(z,:) : z €
E}, defined above, is ¢-additive and the family of F-functions
{F(z,-) := sexpA(z,-) : z € E} is the only ¢-multiplicative family
of F-functions such that (4.3) and (4.4) are satisfied in Case 1 and
Case 2 respectively, and (3.5) in case of z € E,.

This completes the proof. |

Remark 4.1 Roughly speaking, the state jump measure A(dz) for a
state = represents the possibility of occurrence of random jump just as
the process hits x.

A simple case is that E C R, E(z) = E for any ¢ € E and ¢ is
continuous with respect t. In this case, the state jump measure A is just
a measure on (E,&) with A([a,b]) < oo for any a,b € E\O;E.

Theorem 4.2 Let {F(z,:) : z € E} be ¢-multiplicative. If F(z,t) is
purely discontinuous on [0,c(z)) for some z € E, then so is A(z,), the
Stieltjes logarithm of F(z,-), and there ezists a [0, 1]-valued function p(-)
on the trajectory E(z) such that

A, t) = Y pld(u2), te€0,c(x)), (4.5)

0<u<t

or, equivalently,

F(z,t) = [] L -p(d(v,2))], t€0,c(z)) (4.6)

O<u<t

Furthermore, p(y) = 0 except for, at most, at countable states y in E(z).

Proof By the definitions, an F-function and its Stieltjes logarithm are
purely discontinuous at same time. Let A be the state jump measure
corresponding to the family of F-functions {F(z,-) : z € E'}, and denote

p(y) = A({y}), y € E(x),

which is a [0, 1]-valued function on E(z). The deduction in the proof
of Theorem 4.1 yields (4.5), (4.6) and p(y) = 0 except, for at most, at
countable states y in E(zx). [

Now let’s turn to the jump transition characteristic ¢, which specifies
the post-jump location of a PDP. In fact, one has

Q(anan—}—l — Tn, dy) = P(xTn.H € dy'anaTn-l-l - Tn)a
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for all n > 0. i.e. the distibution of the post-jump location depends
upon both the last post-jump location and the time since the last jump.
In the case of a PDMP, the jump transition characteristic () also satisfies

Q(xata {¢(taz)}) = O; Q(x,t+s,dy) = Q(d)(t’ z),s,dy), (47)

for any z € E, s,t € R; and s+t € (0,c(z)]. What does this property
mean?

Let K(y,B), y € EUOLE and B € £, be a Markov kernel with
K(y,{y}) =0, and let

Q(z,t,B) := K(¢(t,z),B), x€E, s,t€ Ry (s+t) € (0,c(z)]. (4.8)

It is easy to see that this @, defined by (4.8), satisfies (4.7). This is just
the form of jump transition characteristic ) in Davis’ model. Then, one
may ask whether any jump transition characteristic ) should be in the
form of (4.8). The answer is that it is not exactly.

Theorem 4.3 Let ¢ be a flow on E. There exist a transition kernel
K(y,B),y € EUO+FE and B € E, with K(y,{y}) =0 and a transition
kernel K¢(y,B), y € E. and B € £,K,(y,{y}) = 0 such that for:
Case 1:

Q(z,t,B) = K(¢(t,z), B), s,t >0, (4.9)

Case 2:
Q(z,t,B) = K(¢4(t,z), B), s,t € Ry, (s+1) €(0,Tx], (4.10)
Case 2 or z € E,:
Q(z,t, B) = Kc(é(t, ), B), s,t € Ry, (s+1t) € (T;,00), (4.11)

Proof Ifin Case 1, (4.7) implies that Q(¢(—t,z),t, B) is independent
on the choice of t > 0. Denoting it by K(y, B) we get (4.9).

If z € E., (4.7) implies that Q(z,t, B) is independent on the choice
of t > 0. Denote it by K(z,B) and , noticing that T, = 0 in this case,
we get (4.11).

Suppose that t € (Ty,00) in Case 2, then there exists an s € (T3, 1)
such that Q(z,t,B) = Q(#(s,z),t — s,B) and ¢(t,z) = ¢(s,z) € E,.
Thus one gets

Q("I"’t’B) = Q((,b(s,x),t - S’B) = Ke(¢(3’z)aB) = Ke(d)(ta l’),B)

This is (4.11) in Case 2. Further, suppose that ¢ € (0,T;] in Case 2,
and let y = ¢(t,z), ie. z = ¢(-t,y), (4.7) implies Q(z,¢,B) =
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Q(¢(-u,y),u, B) for any u € (0,t — c_(z)). Denote it by K(y, B) and
one gets (4.10).
This completes the proof. |

Remark 4.2 The jump transition characteristic QQ should be in the form
of (4.8) except for E;UOLE # 0. The distribution of a post-jump location
of a PDMP conditioned on a pre-jump location may be the difference
between just hitting E, and staying in E, for a while.

We call {K(z,B) :z € EUO,E, B € &} the state (or, phase) jump
transition kernel of a PDMP.

Finally, one can see that if ¢ is a flow, then the state jump measure
A accompanied with the jump rate function A on E, plays the same role
as the jump time characteristic F'; and the state jump transition kernels
K and K, play the same role as the jump transition characteristic Q.
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Abstract We study the adaptive control problem for a class of discrete-time
Markov control processes with Borel state and action spaces, and possi-
bly unbounded one-stage costs. The processes evolve according to recur-
sive equations €¢41 = F(z¢,as, &), t = 0,1,..., with i.i.d. ®*— valued
random vectors & with unknown distribution. Assuming observability
of &;, we propose three different sets of conditions each of which allows
us to prove average optimality of a type of adaptive control policies.
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control policies.
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1. Introduction

In this paper we introduce an average cost optimal adaptive policy for
a class of discrete-time Markov control processes (MCPs), with possibly
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unbounded costs, evolving according to the system equation
Tt4+1 ‘:F(-'I"taa’tagt)a t:0,1, (11)

Here, F is a known function, x;, a;, and & are the state, action, and
the random disturbance at time ¢, respectively. We suppose that {¢;},
the so-called “disturbance” or “driving” process, is a sequence of inde-
pendent and identically distributed (i.i.d.) random vectors in R having
an unknown density p. Hence, the adaptive policies combine suitable
statistical methods to estimate p and control actions a; that depend on
the estimators p; of p.

In particular, to construct the adaptive policy in this paper, we take
advantage of the procedure of statistical estimation of p proposed in [9]
to obtain an asymptotically discounted optimal adaptive policy for the
process (1.1), and then, having the estimators p; we apply the “principle
of estimation and control” [18, 20].

The average optimality of the adaptive policy is studied as a limit of
discounted programs. For this, we propose three different conditions,
C1, C2, C3, which, applying the so-called vanishing discount factor ap-
proach, ensure, among other things, the existence of a solution to the
average cost optimality inequality (ACOI). These optimality conditions
are variants of conditions used in previous works to study either non-
adaptive MCPs (see, for instance, [4, 6, 8, 13, 14, 15, 16, 19, 23, 24,
26, 27, 28]) or non-controlled Markov process (see [16, 17]). A condition
similar to C3, but more restrictive, was used in [10] and [21] to study also
the nonparametric adaptive control problem for the average criterion.

On the other hand, it is well-known that to ensure the existence of
average cost optimal stationary policies, under unbounded costs, it suf-
fices to obtain a solution to the ACOI and its minimizers. However,
to get such minimizer, typically we require rather restrictive continu-
ity and compactness conditions on the control system (see, for instance,
6, 8, 12, 13, 14, 15, 16, 23, 24}). In contrast, the construction of the av-
erage cost optimal adaptive policy proposed in this paper is based on the
existence of e— minimizers, for € > 0, of the discounted cost optimality
equation, which implies that, as opposed to previous works [5, 10}, we
need not to impose continuity and compactness conditions on the control
model. That is, it can happen that under our assumptions average op-
timal stationary policies do not exist for the process (1.1) with a known
density p, while our main results guarantee the existence of average cost
optimal adaptive policies.

The remainder of the paper is organized as follows: In Section 2 we
introduce the Markov control model we are concerned with, and some
basic assumptions. Section 3 contains the condition C1 and some pre-
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liminary results, which are used to construct the average cost optimal
adaptive policy in Section 4. Next in Section 5 we present the conditions
C2 and C3, and finally, in Section 6 we illustrate our assumption and
main results with examples on invariant systems [1], an autoregressive-
like control model, and a queueing system with controlled service rate.

2. Markov control processes

Notation. Given a Borel space X (that is, a Borel subset of a com-
plete and separable metric space) its Borel sigma-algebra is denoted
by B(X), and “measurable”, for either sets or functions, means “Borel
measurable”. Let X and Y be Borel spaces. Then a stochastic kernel
Q(dz | y) on X given Y is a function such that Q(- | y) is a probability
measure on X for each fixed y € Y, and Q(B | -) is a measurable function
on Y for each fixed B €I B(X).

Markov control models. Let (X, A,R*, F,p,c) be a discrete-time
Markov control model where the state space X, and the action space A
are both Borel spaces. The dynamics is defined by the system equation
(1.1). Here F : X x AxR* — X is a given (known) measurable function,
and {¢;}, is a sequence of independent and identically distributed (i.i.d.)
random vectors (r.v.’s) on a probability space (2, F, P), with values in
R* and a common distribution with an unknown density p.

To each state x € X, we associate a nonempty measurable subset
A(z) of A, whose elements are the admissible controls (or actions) when
the system is in the state x. The set

K = {(z,0) : z € X, a € A(z)}

of admissible state-action pairs is assumed to be a measurable subset of
the Cartesian product of X and A. Finally, the cost-per-stage c¢(z,a) is
a possibly unbounded, nonnegative, real-valued measurable function on

K.
For each density 4 on R, Q,(- | -) denotes the stochastic kernel on
X given IK, defined as

Qu(B |2,0) = [ 1blF(s,0,9)u(s)ds, B € B(X), (20) €K, (21)
Rk
where 1p(-) stands for the indicator function of the set B. In other words,

@, represent the transition law corresponding to the controlled system
(1.1) if the disturbance variables & have density p.
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Control policies. We define the space of admissible histories up to time
t by Hp := X and H; := (IKxRF)! x X for t €IN:= {1,2,...}. A generic
element of IH; is written as h; = (zg,ag, o, - .., Zt-1,0t-1,&—-1,2¢). A
control policy m = {m;} is a sequence of measurable functions m; :IH; — A
such that m;(hy) € A(z¢), for hy €H; and t > 0. We denote by II the
set of all control policies, and by IFC II the subset of stationary policies.
As usual, every stationary policy m €IF is identified with a measurable
function f : X — A such that f(z) € A(z) for every z € X, so that 7 is
of the form = = {f, f, f,...}. In this case we identify f with 7, and use
the notation

ez, f) == c(z, f(z)), Flz, f,s):=F(z, f(z),s), for z € X, s€RE.

Optimality criteria. When using a policy m € II, given the initial
state g = =, we define the total expected a—discounted cost as

Z a'e(zy, at)} , (2.2)

t=0

Valm,z) :== ET

where a € (0,1) is the so-called discount factor, and ET denotes the
expectation operator with respect to the probability measure P} induced
by the policy m, given the initial state g = z (see, e.g., [3] for the
construction of PT ). We also define the long-run expected average cost
as

n—1

J(n,z) := limsupn ™' ET
n—0o0

c(zy, at)] . (2.3)

t=

The functions

Vo(z) := inf Vo (m,z) and J(z):= inf J(m,z), forz € X, (2.4)
well well
are the optimal a—discounted cost and the optimal average cost, re-
spectively. A policy 7* € II is said to be a—discount optimal (or simply
a—optimal) if V,(z) = V,(7*, z) for all z € X. Similarly, a policy 7* € II
is said to be average cost optimal (AC- optimal) if J(z) = J(n*,z) for
all z € X.

Assumptions. We shall require three sets of assumptions. The first
one, Assumption 2.1, ensures the existence of —optimal (6§ > 0) sta-
tionary policies for the discounted cost criterion (Lemma 2.1). Note
that Assumption 2.1 allows a unbounded cost-per-stage function ¢(z, a)
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provided that it is majorized by a “bounding” function W. Assump-
tions 2.2 and 2.3 are technical requirements on the unknown density p
and the function W.

Assumption 2.1 (Bounds and semi-continuity)

(i) For every x € X the function a — c¢(z,a) is lower semi-continuous
(I.s.c.) on A(z). Moreover, there exists a measurable function

W:X—> [W,oo) such that sup c(z,a) < W (z), for some W > 0.
A(z)

(11) For each z € X, A(z) is a o— compact set.

Assumption 2.2 (On the density p) Fiz an arbitrary ¢ € (0,1/2)
and let g := 1 + 2¢.

(i) p € Ly(RF).
(ii) There exists a constant L such that for each z € R*
181l ey < L1219,
where A,p(s) := p(s+2)—p(s), for s € R, and || is the Euclidean
norm in R*;

(i4) There ezists a nonnegative measurable function p : R¥ — R such
that p(s) < p(s) almost everywhere with respect to the Lebesgue
measure.

Assumption 2.3
(i) For every s € R,
©(s) := sup[W (z)]~! sup W[F(z,a,s)] < c. (2.5)
X A(z)

(it) §Rfk @ (s)p(s)|'* ds < oo.

The function ¢ in (2.5) might be nonmeasurable. In such a case
we suppose the existence of a measurable majorant ¢ of ¢ for which
Assumption 2.3( ii) holds.

To conclude this section we state an important consequence of As-
sumption 2.1 to be used in later sections.

Lemma 2.1 Suppose that Assumption 2.1 holds, and let a € (0,1) be
an arbitrary but fired discount factor.
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(i) [13] If Va(z) < 00 for every z € X, then V, satisfies the dynamic
programming equation

Valz) = aeig{z) c(z,a) + a/Va[F(m,a, s)]p(s)ds| Vz e X.
" (2.6)

(11) For each § > 0, there exists a policy f €IF such that

c(z, )+ a/Va[F(J:,f, s)]p(s)ds < Vu(z)+6 Yz e X. (2.7)
Rk
From the fact that Q,(- | -) is a stochastic kernel (see (2.1)), it is easy

to prove that for every non-negative measurable function u, and every
r € R, the set

(v,a) : / ulF(z,a,5)]p(s)ds < r
Rk

is a Borel subset of IK. Using this fact, part (ii) of Lemma 2.1 is a
consequence of Corollary 4.3 in [25].

3. Optimality conditions

To prove average optimality of the adaptive policy constructed in the
next section, we now need to impose conditions that ensure the existence
of a solution to the ACOI, i.e., a pair (j*, h(-)) consisting of a real number
j* and a measurable function h : X — R, satisfying, for all z € X,

7* + h(z) > ,inf c(z,a) +/h[F(m,a,s)]p(s)ds . (3.1)
(z) o
In this section we state an average cost condition (AC - condition) en-
suring (3.1).
Let V,(-) be the optimal a—discounted cost (see (2.4)). Define mq :=
inf, V,(z) and go(z) := Vo(z) — mg for z € X and o € (0,1).
Condition 3.1 (C1)

(i) There exists o* € [0,1) such that sup ga(z) < 400 for every

a*<a<l
T€eX.
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(11) There exist p > 1, By < 1 and by < 00, such that, for every x € X
and a € A(z),

/W”[F(z,a,s)]p(s)ds < BoWP(z) + bo. (3.2)
Rk

The Condition C1 is a combination of assumptions used in [14] and
[19]. Indeed, supposing that

J(7,z) < oo for some 7 € Il and 7 € X, (3.3)

the Condition C1(i) was used in [14] (see also [4, 27]) to prove the ex-
istence of a solution to the ACOI, while C1(ii) is variant of a condition
used by Lippman in [19] (see also [28]) to study semi-Markov control
processes. Nevertheless, we can use C1 as a sufficient condition for (3.1)
since, as is observed in Remark 3.1(i) below, (3.3) is a consequence of
Condition C1(ii).

A comparison between several AC — optimality conditions has been
presented in [24]. From these results we can deduce the equivalence of
Condition C1 and the following Condition C1'.

Let z € X be an arbitrary, but fixed state. Define

ho(z) := Vo(z) — Vo(2) for z € X, a € (0,1). (3.4)

Condition 3.2 (C1') There ezist nonnegative constants N and M, a
nonnegative (not necessarily measurable) function G on X, and o* €
(0,1) such that

(i) (1 — a)Va(2) < M for all o € [a*,1);
(i) —N < ho(z) < G(z) for every z € X and « € [a*,1);
(iii) Condition C1(ii) holds.
Conditions C1'(i)—(ii) together with the assumption
Va(z) < oo for every z € X and a € (0,1), (3.5)

were introduced in [26] for countable-state MCPs with finite control
sets, and were extended to the Borel space case in [23]. Again, from
Remark 3.1(i) below, (3.5) is a consequence of Condition C1'(iii).

Lemma 3.1 [9] Suppose that Assumption 2.1(i) holds. Then Condi-
tion C1(ii) implies,
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(1) for every (z,a) €K

/ WIF(z,a,5)|p(s)ds < BW (z) + b (3.6)
Rk

where B = BY/? and b = by/?;

(i) supy>y EZ[W(z1)] < 0o and supysy E[WP(zt)] <o Vr€1l, z €
X. -

Remark 3.1

(i) From Assumption 2.1(i) and Lemma 3.1(ii), it is easy to see that
Va(m,z) < 00 and J(m,z) < oo for each z € X, m € II. In
fact, in [13] it is proved that if (3.6) holds, then, under Assump-
tion 2.1(i), we have

Vo(z) < CW(z)/(1 —a)Vz € X, a € (0,1), (3.7)
for some constant C > 0.

(11) Let W be the function introduced in Assumption 2.1. We denote by
LS5 the normed linear space of all measurable functionsu : X — R
with

u(z
lully = sgg |u()] < 00. (3.8)

(z)
Thus, from (3.7), Vo € Ly for all o € (0,1).

(iii) Therefore, by Condition C1 and the fact that ha(-) < gal-) for
a € (a*, 1),
sup [lhally < . (3.9)
a€c(a*,1)
The main conclusion of this section can now be stated as follows:

Theorem 3.1 Suppose that Assumption 2.1 holds. Then the Condition
C1 (or C1') implies the ezistence of a solution (j*,h) to the ACOI (3.1)
with h € L}j. Moreover, j* is the optimal average cost, i.e., j* =

infrenp J(m, z) for all x € X.

Remark 3.2 Fiz an arbitrary state z € X, and let jo := (1 — @) Va(2)

for a € (0,1). Then, following standard arguments in the literature on

average cost MCPs (see, e.g., [6], [15], [23]) it is possible to prove that
Jim jo, = (3.10)

for any sequence {a;} of discount factor such that oy /1.
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4. Adaptive policy

To construct the adaptive policy, we present first a method of statis-
tical estimation of p, and then extend to the estimators p; of p some
assertions in the previous sections. This density estimation scheme was
originally proposed in [9] to obtain an asymptotically discount optimal
adaptive policy, and used again in [10] to construct an average opti-
mal iterative adaptive policy under ergodicity assumption on the control
model.

Density estimation. Let £y,&1,...,&—-1 be independent realizations
(observed up to time ¢t — 1) of r.v.’s with the unknown density p. We
suppose that p satisfies Assumption 2.2 and relation (3.6).

Let py(s) := pi(s; €0, &1, - &—1), for s € RF, be an arbitrary estimator
of p belonging to Lq(%’C ), and such that for some y > 0

o
Elp—pills = O™ as t— oo, (4.1)

where 1/p + 1/p' = 1. To construct an average cost optimal adaptive
policy we can not use, in general, the estimators p; because they might
not satisfy the right assumptions. Therefore, we estimate p by the pro-
jection p; of p; on the set of densities D in L,(R*) defined as follows:

D :={p € Ly(R*) : p is a density function, p(s) < p(s) a.e., and
[WI[F(z,a,s)lu(s)ds < BW (z) +bV(z,a) € K}.
(4.2)
See Lemma 3.1(i) for the constants 8 and b.

The existence (and uniqueness) of the estimator p; is guaranteed be-
cause the set D is convex and closed in Ly(R*) [9]. Moreover, Assump-
tion 2.1(i) and (3.6) ensure that the unknown density p is in D.

Examples of estimators satisfying (4.1) are given in [11]. On the other
hand, from [9, 10] we known the following.

Lemma 4.1 [9, 10] Suppose that Assumptions 2.2 and 2.3 hold. Then

Elloe—pl =O(t™) ast— oo, (4.3)

where ||-|| is the pseudo-norm on the space of all densities y on R* defined
as:

lull == sup[W (z)]™* SUP/W[F(%G, s)lu(s)ds. (4.4)
X A(m)ng

For an arbitrary density p in ®*, the pseudo norm |||| may be infinite.
However, by (4.2), ||g|| < oo for g in D.
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Construction of the adaptive policy. Having the estimators p; of
p, we now define an adaptive control policy as follows.

Let {a;} be an arbitrary nondecreasing sequence of discount factors
such that a; 1. For each fixed ¢, let

Vogft)(ﬁ,z) = EP [Zoo

n=0 a?c(:vn, an)] I

be the total expected oy-discounted cost for the process (1.1) in which
the r.v.’s &, &,..., have the common density p;, and let Vogf”)(x) =
infren Vogf ’)(n,z), z € X, be the corresponding value function. The

sequences hg’t’)(-) and j&’:t) are defined accordingly (see (3.4) and Re-

mark 3.2).
Remark 4.1

(i) The proof of (3.7) (given in [13]) shows that under Assump-
tion 2.1(i) the following relations hold (because only inequality
(3.6) is used here):

C

o Ve, Ve <

W(z), z€ X, t € IN.
(4.5)

Vo (z) <

1—C¥t

(ii) For each t €IN and each density p € D, we define the operator
Tyo, =T, : Ly — LY as

T,u(z) := inf {c(m, a) +at/u[F(z,a, s)|u(s) ds} ,  (4.6)

A(z)
Rk
for z € X, u € LY. Now, under Assumption 2.1, from Lemma
2.1(1) we have T,V,, = Vo, and TptVOEf") = Véf’) for each t €IN.

(1ii) Moreover, from Lemma 2.1(ii), for each t €IN and & > 0, there
exists a policy fy €IF such that

c(x,ft)+at/Vogft)[F(x,ft,s)]pt(s)ds < Vogf‘)(x)+5t, z € X.

§Rk
(4.7)
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We suppose that Condition C1 holds. To define the adaptive policy,
first we fix an arbitrary nondecreasing sequence of discount factors {d;}
on (a*,1) (see C1(a)) such that 1 — & = O(t™") as t = o0, and

lim *) _ g, (4.8)

n—oc n

where 0 < v < v/(3p’) (with y and p’ as in (4.3)) and k(n) is the number
of changes of value of {é;} for t =0,1,...,n.

Definition 4.1 Let {St} be an arbitrary convergent sequence of positive

numbers, and let 6 :=limy_y00 0y. In addition, let {ft} be a sequence of
functions in IF satisfying (4.7) with &, instead of ay. The adaptive policy
7 = {7} is defined as Ty (hy) = Fe(he; pt) := fi(ze) for each t €N, where
7io(z) is any fized action in A(z).

We are now ready to state our main result.

Theorem 4.1 Suppose that Assumptions 2.1, 2.2 and 2.3 hold. Then,
under Condition C1 (or C1'), the adaptive policy 7 is é—average cost
optimal, that is, J(7r,z) < j* + é for all z € X, where j* is the optimal
average cost in Theorem 3.1. In particular, if<§ = 0, then the policy &
15 average cost optimal.

Throughout the proof of this theorem we will repeatedly use the fol-
lowing inequalities. For any u € L{y and any p that satisfies (3.6), we
have

[u(@)| < llully W(z) (4.9)
and
[P0 luts)ds < ully BWE@) +8 (410)
Rk
for all z € X and a € A(z). The relation (4.9) is a consequence of the

definition (3.8) of ||:||;4;, and (4.10) holds because of (3.6) and (4.9).
The proof of Theorem 4.1 is based on the following lemma:

Lemma 4.2 Under Assumptions 2.1, 2.2 and 2.3, and Condition C1
(or C1'), for each z € X and w € II, we have

!

th _ VA(Pt) ”

(22

= 0. (4.11)

lim E]
t—o00
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Proof of Lemma 4.2 For each t €IN, define 6; € (64,1) as 6, := (1 +
é&;)/2, and let Wy(z) := W (z)+d; for = € X, where dy := b(0;/a; —1)7"
Let L{p, be the space of measurable functlons u: X — R with the norm

Uu : oo, t€IN.
“ ”Wt su th( ) <

Using the fact that d; < 2b/(1 — &), t €N, it is easy to see that

lully, < llullw <Glluly,, t€N,
where [y := 1+ 2b/[(1 — &) infzex W (z)]. Thus, (4.11) will follow if we
show that

(A P’
&' EF Vs, — VP =0, ast— oo (4.12)
t

A consequence of Lemma 2 in [28] is that, for each ¢t €IN and p € D, the
inequality [pe W[F(z,a, s)]u(s)ds < W (z) + b implies that the operator
T,, defined in (4.6) is a contraction with respect to the norm [|-||y, , with
modulus &, i.e.,

|Tpv — Tuully, <6 llv—ully, Yv,u € Ly, t € IN. (4.13)

Hence, from (4.13) and Remark 4.1(ii) we can see that

) (pt)
[Ver = V|, < 1TsVer = TouVeul, + 60 Ve = V2
which implies that
It ||Va, — V2 < Ve = T, Ve, Vte IN. (4.14)

On the other hand, from definition (4.4), (4.5), and the fact that
[Wi(-)]7! < [W(-)]7? for all t €N, we obtain

|TpVa, =Ty, Vael,

< o sup{Wi(@)]™ sup / Vel F(z,0,5)] [p(s) — pr(s)| ds
X A(z)wc
C'at
< suplW ()] sup / WIF(z,a,5)]lo(s) - pi(s)] ds
l—at X
C
< —_— —_ . .
< o le-al (4.15)

Now, observe that (by the definition of & and 6;),
1
(1—8,) (1 — @)

= 0O(t%) as t — o0. (4.16)
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Combining (4.14) (4.15), (4.16), and using the definition of l;, we get

v
" ’Vat "

, 1 2% ' ,
< CP — + — . |IP
- [(l—et)(l“at) (1-6,) (1 —&)?infx W(z) lo=pl
= CP O ||p - pel|P’ ast — 0. (4.17)

Finally, taking expectation ET on both sides of (4.17), and observing

that ET ||p — pt||p’ =FEl|p- ptll”’ (since p; does not depend on z and
7), we obtain (4.12) by virtue of Lemma 4.1 and the fact that 3vp’ <~y
(see the definition of &;). This proves the Lemma. |

Remark 4.2 It is easy to prove that

V(p‘)” (zt) =0forze X, mell (4.18)

Indeed, denoting C := (ET [WP(z,)])"/? < 0o [see Lemma 3.1(ii)], ap-
plying Holder’s inequality, and using Lemma 4.2, we obtain

P 1/p
)

Proof of Theorem 4.1. Let {k;} := {(z;,a:)} be a sequence of state-
action pairs corresponding to applications of the adaptive policy 7. We
define

Ef ||Va, = Va! Va, =Vl

WW(wt) < C'(E;f[

— 0ast— o0.

&, = clky) + évt/V@, [F(kt, s)]p(s) ds — Va,(zt) (4.19)
Rk
= c(ke) + GE] [Va, (€e41) | ke] = Vay (221).

From definition of h, and j, (see (3.4) and Remark 3.2), it is easy to
see that

&, = c(ky) + 1By [ha, (@e11) | kel = Jay — Pay (1)
Hence, forn > k>1

> ek - jm]

t=k

n~ ET

n

(ha, (zt) — duhs, (Te41))
t—k

= n_lE;;r 4+ n—lE;;r
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On the other hand, from Lemma 3.1(ii), (3.9) and (4.9), we have
ET [ho(zt)] < C' for a € (a*,1) and a constant C’ < oo. Thus, de-
noting aj,a3,. .. ,a:(n), n > 1, the different values of &; for t < n, and
using that {&;} is a nondecreasing sequence we have (see condition (4.8)
and the definition of hy)
n
n E] Y (hay (%) — Giha, ($t+1))}

t=k

n
~1pfe
n B

(hdt (xt) - dthdg (xt)):|

t=k
n

+n~1ET

& (ha,(xt) — ha, (%—H))}
t=k
K(n)
(1 —ax)C" +n~12C" Z af
=1
(1 —6x)C" +2C"k(n)n ™t
(1—é)C" +0(1), z € X. (4.21)

9) and (2.6) we have

IN

=N IA

Now, from (4.

¢t=dm+m/%ﬁ%wm@w
Rk

— inf {c(zt,a)—l-dt/th[F(mt,a, s)]p(s) ds}

A(ze)
Rk

< L@+ 20)] + 3],

where
RO = a0 [ ValF Ok o) ds = e [ VE(Pb, 9)pls) ds
Rk Rk
B(O) = a0 [ VP s)lo(s)ds o [ VIOLF (ke s)loe(s) d,
Rk Rk

L) = c(ks)+ / VPF(ky, 5))oi(s) ds
§R’°

A(ze)

— inf [c(zt,a)+&t/th[F(mt,a, s)lp(s) ds:l
Rk
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Using (4.9) and (4.10)

ILO] < & | [ValF(ks,5)] = VO [F (R, 9)]| p(s) ds

Rk

< & ||Va, — VI

o 1BV (@2) +0]. (4.22)

Taking expectation ET on both sides of (4.22) and using the Lemma, 4.2
and (4.18), we get A

ET|Li(t)] = 0, as t — 0. (4.23)
Now, from definition of &; and (4.5),
definition (4.4),

(pt)
vl

= O(t”). Thus, from

|12(t)]

IA

m/VW (e, )] 0(s) — pul(s)] ds

IN

W (z:) ‘

o =pell- (4.24)

Hence, taking expectation and applying Holder’s inequality in (4.24) we
get

g0l < (0@ Elo-pl?)"

, 1/
= [O(t”p —"’)] " S0ast— 00, (4.25)

due to the fact v < v/p’ (see definition of &).
For the term |I3(¢)|, from the definition of the policy # and combin-
ing (2.6) and (4.7), adding and subtracting the term

Ai(nf) {c(wt, a) + &y / Véft)[F(xt, a, 8)]pe(s) ds}
ot
Rk

in I3(t), we get

B0 < Gt su | [ VPG 0l(0)d
Az
k

—/mm%wmww

Rk
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The latter inequality yields

II3(t)| < &+ éy sup /V pt)[F (zt,a,8)]|p(s) — pe(s)| ds

+dt sup (be) [F(zt, a, 8)] - th [F(‘Tt, a, S)] p(s) ds.

A(Zt)SRk

Thus, from (4.4),

II3(t)] < 5t+atW($t)‘

o llp = el

+éy dt—v(”" [BW (z) + b].

Hence, from (4.22), (4.23), (4.24) and (4.25), we get E7 |I3(t)| — 4, as
t — 0o. Therefore ) R
E7 [®]) — ¢, as t = o0. (4.26)

Finally, from (4.20), (4.21) and (4.26), we have for any £ > 1 and n — oo,

n

> (k) ~ jdt] =(1—-&)C" +0(1)+4, z€ X.
t=k

—1
n B

It follows that (from (3.10), the fact that lim;_, & = 1, and (2.3))
J(#,z) <j*+0, z € X.
This completes the proof of the theorem. ]

5. Additional optimality conditions

Besides Assumptions 2.1-2.3, the proof of the Theorem 4.1, as well as
Lemma 4.2, is based on the following:

(i) the existence of a solution (5*,h) to the ACOI (3.1) where j*
satisfies (3.10);

(ii) the Lippman-like hypotheses (3.2) which yields the results of
Lemma 3.1;

(iii) the relation (3.9) in Remark 3.1(iii).

Thus, the average optimality of the adaptive policy constructed in the
previous section (see Definition 4.1) can be proved under any condition
ensuring the points (i)—(iii) (for instance C1 or C1'). In this section we
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state two additional sets of such conditions (C2 and C3), which are vari-
ants of conditions used in previous works to study either non-adaptive
MCPs or non-controlled Markov processes. We illustrate the Conditions
C1-C3, as well as our assumptions and main result, with three examples
given in the next section.

Let us denote by My the space of all signed measure m on IB(X)
with a finite W—norm (see [16, 17]), which is defined as

Il yg,, = / W (z) |m] (da), (5.1)
X

where |m| denotes the variation of the measure m.
Condition 5.1 (C2)
(i) There is a number By < 1 such that, for some p > 1,
”QP( l x,a) - Qp( | "I"’va,)”MWp < 60 [Wp(x) + Wp(ml)] ’

for each z, ' € X, a € A(z), o’ € A(Z').

(1) There are z* € X, a* € A(x*) such that
“Qp( | .’E*,a*)“MWp < 0o.

Observe that Condition C2(i) is a generalization, to unbounded costs
case, of the well-known ergodicity assumption (see, for instance, [12, 16]):

||Qp( I x,a) - QP( | .’I,‘l,a,’)HT < 20,

for each z, 2’ € X, a € A(z), @’ € A(z'), where By < 1 and ||-||, denotes
the variation norm for signed measures, which is the same as (5.1) with

W()=1

Condition 5.2 (C3) There ezists a probability measure m on
(X, B(X)) and a nonnegative number By < 1 and, for every f €IF,
a nonnegative function ¥y : X — R such that for any x € X and
B € B(X),

(1i) §Rfk WP[F(z, f,s)]p(s) ds < BoWP(z)+1ps(z)bo for some p > 1, with
bo :=){W”(y)m(dy) < 005
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i) inf dz) = > 0.
(i1i) fglp){ Yr(z)m(dz) ==

Hypotheses of the type C2 and C3 were introduced in [17] for non-
controlled Markov processes. For discrete-time average cost MCPs, Con-
ditions similar to C2 and C3 were used, respectively, in [8] and [6] to
show the existence of a solution to the ACOI, (see also [16] for a detailed
study of these conditions). The procedure used in those works [6, 8, 16]
is the so-called vanishing discount factor approach.

In contrast to C1, the key feature of C2, as well as C3, is that it
ensures the geometric ergodicity of the state process with respect to
the norm (5.1), when using stationary policies. Now, having geometric
ergodicity we obtain (3.9) and (3.10) by a standard procedure (see [6, 8,
16]).

Finally, straightforward calculations show that each of the Conditions
C2 and C3 implies the Lippman-like hypotheses (3.2).

6. Examples

In this section we consider special cases of the controlled system (1.1).
To simplify the exposition we shall assume that the random disturbances
o, &1, .., are real-valued, i.i.d. random variables with an unknown
density p € L,(R) that satisfies Assumption 2.2(ii).

In fact, when k& = 1 it is not difficult to show (see (22, page 13]) that
a sufficient condition for Assumption 2.2(ii) is the following: There is a
finite set H C R (possibly empty) and a constant M > 0 such that:

(1) p has a bounded derivative p’ on R\H that belongs to L,(R);

(ii) the function |p’(z)| is non-increasing for z > M and nondecreasing
forz < -—-M.

Note that H might include points of discontinuity of p if such points
exist.

6.1 Invariant problems

A control problem is called invariant if the transition kernel Q,(: | z, a)
depends only on the control a; that is Q,(- | z,a) = Q,(- | a) (see, e.g.,
[1, 27]). In this case the dynamics of the system can be represented as
Ti4+1 — F(at,&) fort = 0, 1, ceen

We consider a invariant control problem with state space X = [0, 00)
and finite actions set A(x) = A, z € X. We suppose that the random
variables &, &1, ..., are non-negative with a density p satisfying

p(s) < M) exp(~as), s >0,
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for some constants M; < oo and 0 < a < 1.

Assumption 2.2(iii) is satisfied with p(s) := Mjexp(—as), s > 0;
and taking, in particular, W(z) := Myexp(—Az), z € [0,00) for some
constants My > 0 and A < a(1—2¢)/2, and supposing that F(a*,s) < s,
s > 0, with a* := max A, it is readily seen that Assumption 2.3(ii) (as
well as Assumption 2.3(i) is satisfied.

The Assumption 2.1 is satisfied taking the one-stage cost ¢ as any non-
negative, l.s.c. function satisfying sup 4 c(z,a) < Myexp(—Az) for z €
[0, 00).

Proposition 6.1 The invariant problem satisfies the Condition C1 (or
cl).

Proof From Lemma 2.1(i) and the fact that A is finite, there exists
a € A such that

Volz) = c(z,a) + a/Va[F(d,s)]p(s) ds, z € X.
R
Thus, from definition of g,, we have
ga(z) = Valz) —ma

= ¢(z,a) +a/Va[F(d,s)]p(s) ds

R

— inf ¢(z /Va[Fas]p()

z€X
= c(z,a) - zlél)f( c(:c,a)
< W(zr)<oo, a€(0,1), z€ X.

Therefore, sup,e(o,1) ga(T) < 0o for every z € X. This yields Condi-
tion CL(i).
To conclude, the Condition C1(ii) follows from the fact

/W”[Fas s)ds < max/W”[Fas]p( ds < by,

for some p > 1 and constant by < 0. |

6.2 An autoregressive-like control process

We consider a process of the form

Te1 = (P(ag)ze + &), t=0,1,..., (6.1)
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o = z given, with state space X = [0,00), admissible controls set
A(z) = A for every z € X, where A C R is a compact set, and ¢ : A —
(0,] is a given measurable function with v < 1/2. We suppose that the
density p of the random variables &y, &1, ..., is a continuous function on
R, satisfying p(s) < p(s) for s € R, where p(s) := M; min{l, 1/ |s|l+r},
for some constants M; < oo and r > 0, and moreover E(§y) < 1/4—(y—
1)2. The one-stage cost c is an arbitrary nonnegative, l.s.c., measurable
function satisfying sup,c 4 c(z,a) < (z + &P, ¢ € X, for some p > 1,
where § = (1 — 2y)/2.

For the latter, Assumptions 2.1, 2.2 and 2.3 are satisfied choosing
W(z) = (z + 8)/? for z € [0, 00) and appropriate 7 > 0 in p(-).

Proposition 6.2 The autoregressive-like control process satisfies Con-
dition C2.

Proof First, observe that

/ WP [(p(a)z + )] p(s)ds < SPY(a)z + & < O] + 7z +6 + Eléo]
R

IN

(v +1/2)(z + 6) for z € [0, 00),
a € A.

Thus, straightforward calculations of |Qp(- | z,a) = Q,(- | ')y, ,
show that Condition C2(i) holds with Sy = v + 1/2. Moreover, since
E[¢] < oo the Condition C2(ii) is satisfied. ]

6.3 Controlled queueing systems

We consider a control process of the form
Ti+1 = (xt+a't_€t)+’ = 0’1""7 (62)

zo = z given, with state space X = [0,00) and actions set A(z) = A for
every £ € X, where A is a compact subset of some interval (0, 6], with
0 A

Equations (6.2) describe, in particular, the model of a single server
queueing system of type GI/D/1/oo with controlled service rates a; € A.
In this case z; denotes the waiting time of the #** customer, while &
denotes the interarrival time between the t* and the (¢+1)®* customers.

We suppose the random variables &g, €1, . . ., having continuous density
p such that F(&p) exist, and moreover

E(&) > 0. (6.3)
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The latter assumption ensures ergodicity of the system when using the
slowest services: a; =0 t > 0.

Proposition 6.3 The controlled queueing systems satisfies Assump-
tions 2.1-2.3 and Condition C3.

Proof Defining the function ¥(s) := e’ E(e™*%) we find that (6.3)
implies ¥'(0) < 0, and so there is A > 0 for which ¥()\) < 1. Also, by
continuity of ¥ we can choose p > 1 such that

T(pA) := o < 1. (6.4)

To meet Assumption 2.1, we suppose that the one-stage cost ¢(z, a) is
any nonnegative measurable function which is l.s.c. in a and satisfying

sup c(z,a) < be*®, for all z € [0,00),
A

where b is an arbitrary positive constant.

Now, supposing that p(s) < p(s), where p(s) := M; min{1,1/s'*"} for
all s € [0,00) and some constants M; < oo, r > 0, and taking W (z) =
be’® for all z € [0,00) easy calculations shows that Assumptions 2.2
and 2.3 hold.

Finally, in (7] were taken advantages of (6.4) and definition ¥¢(z) :=
Plz + f(z) — & < 0], f €[, to verify, for this example, the Condition
C3. |

7. Concluding remarks

In this paper we have constructed an average cost optimal adaptive
policy for a class of discrete-time Markov control processes with un-
bounded costs assuming unknown density of the random disturbance.
The basic idea has been to show the existence of é— minimizers, for
€ > 0, of the discounted cost optimality equation, for which we need not
to impose restrictive continuity and compactness assumptions on the
control model. The average optimality of the adaptive policy was stud-
ied under three different optimality conditions applying the vanishing
discount factor approach. The assumptions as well as the conditions of
this work have been illustrated with examples of invariant systems, an
autoregressive-like control process and a queueing system with controlled
service rate.

In general, to construct an adaptive policy for systems of the form
(1.1) when the disturbance distribution (say G) is unknown, we must
combine statistical estimation methods of G and control procedures. A
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way to estimate G is to assume that it possesses a density function p on
RE. as in our work, that is,

G(B) = /p(s)ds, B € B(X).
B

In this sense, the estimation of G is based on the estimation of the
density function p, which in turn can be analyzed in a number of ways.
This method has the disadvantage of excluding the case in which the
disturbance distribution G is discrete, as can happen in some queueing
systems.
Another way to estimate G is by means of the well-known empirical

distribution:

t—1

Gy(B):=t"'> 1p(&), t >1, B € B(X),

=0
where &, £&1,...,&—1 are independent realizations (observed up to time
t—1) of r.v.’s with the unknown distribution G. The construction of an
adaptive policy via the empirical distribution is very general in the sense
that G can be arbitrary. To the best of our knowledge, except when the
one-stage cost is bounded and the discounted criterion is considered (see,
e.g., [2, 12]), there are no works which treat construction of adaptive
policies applying this approach. Thus future works in this direction
might be of interest.
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Abstract

In this paper we consider finite-stage stochastic optimization problems
of utility criterion, which is the stochastic evaluation of associative re-
ward through a utility function. We optimize the expected value of
a utility criterion not in the class of Markov policies but in the class
of general policies. We show that, by expanding the state space, an
invariant imbedding approach yields an recursive relation between two
adjacent optimal value functions. We show that the utility problem
with a general policy is equivalent to a terminal problem with a Markov
policy on the augmented state space. Finally it is shown that the utility
problem has an optimal policy in the class of general policies on the
original state space.
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1. Introduction

In the theory of Markov decision process, the object is to maximize the
expected value of additive function among the class of Markov policies
(Markov class) ([1, 2, 3, 4, 8, 24, 25|, and others). In this paper, we
optimize the expected value of the utility function not in the Markov
class but in the class of general policies (general class). The basic idea
is how to use an invariant imbedding technique ({12, 14, 17]).

In Section 2, we propose a formulation of stochastic optimization prob-
lem with a utility criterion (utility problem) in general class.

In Section 3, we review the basic result on additive problem within
Markov class, which is applied in the last section.

In Section 4, by use of the invariant imbedding method, we transform
the utility problem into a terminal problem on an augmented state space.

In the last section we show that the utility problem with general
class is equivalent to the terminal problem with Markov class on the
augmented state space. Finally we show that the utility problem has an
optimal policy in general class.

2. Utility problem

Throughout the paper, let {X,,U,} be a controlled Markov chain on
a finite state space X and a finite control space U with a transition law

p={p(ylz,uw)}:
N
p(ylz,u) = P(Xpy1=y|Xn=1z,Up =u).
Then we write
Xn+1Np('|xnaun)7 1<n<N.
Given the data:

r: XxU — R} reward function,
k:X — R! terminal function,
o: R'xR! - R! associative binary operation
with left-identity element X,  (2.1)
¢:R!' - R! utility function,
we use the following notations:
T'n = ’I’(Xn, Un), k = k(XN+1)
Pn = P(Tns1|Tn,un), X" = XxXx---xX (n-times),
H" = XxUxXxUx---xXxUxX ((2n — 1)-factors), (2.2)

— N+1
hN+1 = (mlvulax27u27"'a1"N+1) €eH .
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We consider three classes of policies. A Markov (resp. general, prim-
itive) policy, m = {m,m2,...,7n} (resp. 0 = {01,02,...,0n8}, B =
{p1,p2,...,un} ) is a sequence of Markov (resp. general, primitive)
decision functions:

m:X >U (resp.op: X" 2 U, up: H" - U), 1<n<N.

Let I (resp. II(g), II(p)) denote the set of all Markov (resp. general,
primitive) policies. We call IT (resp. II(g), II(p)) a Markov (resp.
general, primitive) class. Then we note that

I C II(g) C (p). (2.3)

Further, for n (1 < n < N), let II, (resp. II,(g), II,(p)) denote
the set of all corresponding policies which start from n'* stage on. For
instance, II,, (p) denotes the set of all primitive policies u = {ftn, ..., 4N}
which begin at stage n. Now, let us consider the stochastic optimization
problem of utility function:

Optimize EJ [¢(riorpo---oryok)]
Pl(xl) subject to (l)n Xn+1 Np('lxnaun)7 }1 <n<N,
(ll)n Un € U’
(2.4)

where E7 is the expectation operator on the product space X N+1 jn-
duced from the Markov transition law p, a general policy o = {01, 09,. ..,
on} € II(g), and an initial state z; € X:

Egl[W] = ZZ "ZW(hN+1)p1p2 -+ DN, YW : HN+1 - Rl,

(zz,..,,xN+1)€XN

(2.5)
where
p1 = p(x2|z1, u1), p2 = p(x3|ze, u2), ..., pv = p(TN41]|ZN, uN),
Uy = 0'1(1131), Ug = 0‘2((1)1,(1)2), e, UN = O'N(.’I}l,il,‘g, . ,iL‘N).
3. Markov policies

In this section we review the basic results on additive problem in
Markov class II. The additive problem has always an optimal Markov
policy in II ([2, 3, 4, 5, 6, 7, 8, 9, 10, 18, 19, 22, 23}). This fact plays an
impotant role at the last section.
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3.1 Additive problem

Now, let us consider the additive problem in II:

Optimize ET [ri+7ro+---+7N + k]
A subject to Do Xpt1 ~ p(- | Zn, un),
1) : W Xner ~p(:|n, ) }1snsN,
(ll)n un e U,
(3.1)

where E7 is defined through Markov policy 7. Thus we have

Ef [+ +rn+k =) > [ri+-+ry+klpipe--py (3:2)

(mz,...,l’N+1)EXN

where
U1 =7T1(.’L‘1), u2=7r2(:1c2), ey UNITFN(:L‘N). (33)

The conventional dynamic programming method solves the problem
(3.1) as follows. It regards A;(z;) as one of the family of subproblems

A= {An(zn)}:
Optimize EJ [rp +---+ 7N + k]
An(l'n) SUbjeCt to (l)mv (ll)m, n S m S N? (34)
T, € X, 1<n<N+1.
Let fn(z,) be the optimum value of A, (z,). Then we have the recursive

formula between the optimum value f,(z,) and its adjacent optimal
value function f4+1():

Theorem 3.1

fal®) = Opt |r(z,u) + ) far(®plyle,v)|,

uel vex
zeX, n=12---,N (3.5)
fra(z) = k(z), T € X. (3.6)

Further, we have an optimal policy as follows.

Theorem 3.2 Let w)(z) be an opimizer of (3.5). Then policy 7 is
optimal in Markov class; for all m € I1

Effri+--+ry+k] > Effri+---+ry+k, Vzi€X. (3.7)
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3.2 Terminal problem

In this subsection, as a special case of the additive problem, we take
the terminal problem:

Optimize ET [k]
T o .
1(z1) { subject to (i)p, (ii)n, 1 <n < N. (3.8)
This is the case
r(z,u) =0, V(z,u) € XxU,
in (3.1). We imbed T1(z;) into the family 7 = {T,(z,)}:
Optimize E7 [k
Th(zn) subject to (i), (ii)m, n <m <N,
Ty € X, 1<n<N+1L
(3.9)

Then the optimum value ¢, (z,) of T,(z,) satisfies the recursive formula:

Corollary 3.1

ta(z) = Opt Y tnr1()p(yle,u), z€X, 1<n<N, (3.10)
uel
yeX

tn+1(z) = k(z), z € X. (3.11)

Corollary 3.2 Let 7} (z) be an opimizer of (3.10). Then the policy ©*
s optimal in Markov class; for all 7 € I1

Ej k] > Ef[K, VeieX (3.12)

To conclude this section, we remark that the model is stationary; the
state space, control space, reward function, and transition probability
are all independent of stage n. However, all the results in this section
are valid for non-stationary models.

4. Invariant imbedding approach

In this section we show how to imbed the original problem into an ap-
propriate family of subproblems. Our imbedding process has two phases.
The first phase is to introduce the past-value sets up to current stage.
The second is to expand the original state space and to reduce the utility
problem to a terminal problem over there. Both phases involve policies
in a transliteration.
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4.1 Past-value sets up to today
Now, we note that the left-identity element A implies
Pp(Aorjo---oryok) = (rio---oryok).

For further discussion we take the past-value set up to the first stage:
A ~
0 ={\}.

We define the past-value set up to nt* stage (2 < n < N):

A .
Qn = {A ° T(:L'I,Ul) 6---0 T(mn—laun—l) |

(Z1,U1,-- s Tn-1,Un—1) € XxUx---xXxU}. (4.1)

Then we have the forward recursive formula:

Lemma 4.1
& o= {3},
Qi1 = {ror(z,u)| A € Qp, (z,u) € XxU}. (4.2)
Proof It is straightforward. ]
4.2 Terminal problem on augmented state
spaces

By attaching (2,,, we expand the state space X to an augmented state
spaces {Yn}:

Y, 2 XxQn, (n=1,2 ...,N), (4.3)
and define a new Markov transition law q¢ = {gn} there by
A z,u), if Aor(z,u)=u,
anll) | @), ), 2 { DO BT =g

Symbolically we express (4.4) as

Y Np( |$a U),

p=Aor(z,u). (45)

(Vip) ~ gal- (: N), u) &5 {

Now, we consider Markov policy for the augmented process {f’n, Un}
where Y, = (X,; \n). For the process, a Markov policy v = {y1,72,- .-,
v~} is a sequence of Markov decision functions

Yn:Y, 2 U, (n=1,2, ...,N).
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Let II denote the set of all Markov policies (augmented Markov class).
We define the terminal function T : Yy, — R! by

Tlyn+1) = T(an+idve1) = $Onok(mni)).  (4.6)

Now we consider a relatively but not so large family of parametric

subproblems Q = {Qn(zn; M\n)}:

Optimize Ej,[T]

subject to (;y Vv ~ .
Qn(xn;)\n) (l)m Yis1 Qm( ‘ymaum)v n<m<N,
(i)m um €U,
n € X, A € Qy, 1<n<N.
(4.7)

Here E';n is the expectation operator on the product space Y,xYy 1 1x- - X
Yn 41 induced from the Markov transition law ¢ = {gn,qn+1,---,9n}, @
Markov policy ¥ = {Yn, Yn+1,---,7N}, and an initial state y, = (z,; An):

BYIT) = ) > - Tlyn)aaps - ak (4.8)

(Yn+1,YN+1)

where

& = G (Ym41|Yms Um), Um = Ym(Um)s Ym = (Tm;Am), n <m < N.
(4.9)
We note that the multiple summation in (4.8) is taken over Y, &y 9% - X
Yn+1 and that the optimization in (4.7) is taken over all Markov policies
~v € II,. Thus we define the maximum value functions as follows:

u(yn) = MaxE] [T], y, €Yy, 1<n<N, (4.10)
'7€Hn
where
Wt yni1) = T(yn+1), yn+1 € Vil (4.11)

First we remark that the augmented subproblems Q = {Q,(zn; )}
have a few equivalent forms.
Now let us in turn, decompose the unified transition law:

(i)m : ?m+1 ~ gm(* | Ym, Um) in Qn(Zn; An),
into the original transition law:
(l)m : Xm+1 ~ p( |-'L'm7'u'm),
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and the deterministic transition A, lf—"’% Am+1- Then, from (4.3) and
(4.4), we see that the problem Q;(z;;A) is also written in the form:

Optimize E’;l[zp(j\ orjo---oryok)]
- subject to i ~ (-
Qi(z1; M) J (l)n Xny1~p( |$naun)7
(il)p up €U, 1<n<N.
(lll)n >‘n+1 = >‘n o T($n,un),
(4.12)

Here we note that the additional sequential condition {(iii), } implies the
equality

p(Aorio-—-oryok) = PAns1ok). (4.13)

Therefore, Q1(z1; ) is expressed as a terminal problem:

- [ Optimize EJ,[v(Ans10k

Qularsd) § Oume Balvdniioh)] (1.19)
subject to (i)p, (ii)n, (il))p, 1 <n <N,

provided that we view the pair (zn;An) as a new state-variable y, and

that we consider the probability measure P}, () on the augmented state

spaces {Y,}. Thus we can also imbed Q;(z;;A) into the family of sub-

problems Q = {Qn(zn; An)}:

Optimize E;]n[z/)()\n orpo---oryok)]

: : ) (4.15)
subject to (), (i)m, (iii)m, n<m<N.

Qi(z1;A) {

We note that u"(zn; A\,) denotes the optimum value of Q,(zn; An) (see
(4.10)). Then we have the backward recursive relation:

Theorem 4.1

u'(z;0) = Opt > u"'(y;Aor(z,u))p(yle,u),
ueUyex
$€X7 )‘EQna n:]-az,"' 7N’ (416)
uN Ttz )) = (Ao k(x)), T€X, A€ Qny1- (4.17)

Proof It suffices to note that the family of subproblems Q =
{Qn(zn; An)} is a terminal problem on {Y;,}. Thus, from Corollary 3.1,
we have the desired recursive formula (4.16),(4.17). [ |

Theorem 4.2 Let v} (x;\) be the set of all mazimizers in (4.16). Then
policy v* is optimal in augmented Markov class: for any Markov policy
vell, . ~ i

EIIT) > B(T), Vmeh (4.18)
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Proof This is a direct transliteration of Corollary 3.2. [ |

Remark 4.1 There are two definitions: the set of all maximizers and a
maximizer. As for optimal value, there is not much to choose between the
former definition and the latter. For the clarification of optimal policies
in the next section, we prefer the former to the latter.

4.3 Subproblems associated with histories

In this subsection, we consider a larger family of subproblems R =
{Rn(hn)}:
Optimize Ej [¢(ri0---oryok)]

Ro(hn) subject to (1)m X1 ~ D0 | Ty Um), n<m<N,
(ll)m Um € U’ - -
hn€ Hy,, 1<n<N+1
(4.19)

The subproblem R, (hy,) starts at a given history h, € H, on the nth
stage (see also [13, 16]). The expectation operator E} is induced from
the transition law p, a primitive policy g = {un,...,un} € I,(p), and

a history h, = (z1,u1,...,Un—1,Zp) € Hy:
Ef W] = Y 3 > Wlhn,un, Ty, -, UN, TN 11)
@n41,e@n ) EXNTITE P (g1, Tg),  (4.20)
where
un = pin(hn); Un41 = pnt1(hns1), ..., un =pn(hy),
hm = (hn,un,zn+1,un+1,...,xm_l,um_l,xm).

The objective function,
W :=¢(rio---oryok) (4.21)

is the evaluation of the process starting from a pair of stage and history
(n, hy) to the final stage (N + 1), and the conditional probability law on
the product space XN-7+1

P’i‘n($n+1, cee ,.’L‘N+1),

is induced from the triplet (p, u, hy):

P} (Tni1,. - TN41)
= P¥(Xn41 = 2Zns1,-- - XN41 = ZN41 | Bn),
= P(Xn41 = Tng1, Ungr = Ung1,
.. "XN+1 = TN+1, UN+1 = UN+1 lhn), (4.22)
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where v, = pm(hm), n < m < N. Thus we see that
P (Tnt1s---1TN+1) = PnPn+1° PN, (4.23)
where
Pm = P(Tm+1|Tm, Um), Um = pm(hm), n<m<N.

We note that the multiple summation in (4.20) is taken over XV—"+1,
and that the optimization in (4.19) is taken over all primitive policies
p € I1,,(p). Thus we define,

wr(hy) := Max Eﬁn[i/)(rlo---owok)], hn € Hp, 1<n <N,

ﬂenn (P)
(4.24)
where

wN+1(hN+1) = w(rl 0:---O0TNO k'), hn+1 € Hy41. (4.25)

Then we have the backward recursive relation:

Theorem 4.3
wn(h) = I}L/Ieai)/( Z 'wn+1(h7ua y)p(ylw,u), he H,, 1<n <N,
yeX
(4.26)
wnyt1(h) = WP(rio---oryok), h€ Hyi. (4.27)
Proof This is straightforward. |

Theorem 4.4 Let p)(h) be the set of all mazimizers in (4.26). Then
policy p* is optimal in primitive class; for all p € I1(p),

EY [$(rio---oryok)] > B [¢p(rio---oryok)], V&€ X. (4.28)

5. Equivalences and Optimality

In this section we establish two equivalent relations among the three
related problems. Further, by use of the equivalences, we show that
the desired optimal general policy is obtained by solving a recursive
equation on the augmented process and by transforming the resultant
optimal Markov policy.

5.1 Two Equivalent Relations

Now let us focus our attention on optimality relations among three
optimization problems Pi(z1), @ = {Qn(zn;A\n)} and R = {Ryp(hs)}.
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Let v1(z1) denote the mazimum value of the original problem Py(z;) in
(2.4). The first equivalence is among the policy classes.

Lemma 5.1 (Equivalence I)
(i) Any primitive policy p generates a general policy o which satisfies
EJ [¢(ry0---ornok)] = E¥ [¢(ri0---ornok)], Vz € X, (5.1)
and vice versa. Thus we have

Max E° k)]l = Max E* k)],
g B8 [¥tri o ory o] = Mg BE [dlrio o o]

T, € X. (52)

(ii) Any Markov policy v of Qi(z1;\) generates a general policy o of
Py(z1) which satisfies

EJ [¢(rio---oryok)| =EJ[T], Vz €X, y1=(z1; ). |
(5.3

Proof

(1) Any p € II(p) is compressed to the o € II(g) by deletion of the
dependency on the intermediate control(s). Conversely, any o
generates a u with the same expected value.

(ii) Given v, we define oy (z1,22,...,z,) as follows:
up = vi(z; ), do = Aor(zy,uy),
ug = yo(z2; Aa), A3 = A or(xe,us),
: (5.4)
Up-1 = 7n—1($n—laun——1)a An = Apo10 "'(xn~laun—l)a
on(21,Z2,...,Zn) = Yn(Tn; An)-
Then o has the same expected value as 7. [
We remark that both the probability measures are coincident:
PI()=Pt() on XN, z;€X. (5.5)

That is, (5.1) holds for any reward function:

EZ lg]=EFlgl, Vg:Hyy1 —RY z1€X. (5.6)
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The second equivalence is between the optimal primitive policy and
the optimal augmented Markov policy.

Theorem 5.1 (Equivalence II) Let u*e II(p) and v*c II be optimal,
respectively. Then both optimal values are equal:

Eé‘; [¢¥(rio---orNok)] = E;’: [T], Vi € X, y1 = (z1;A). (5.7)
Further, both optimal policies coincide on histories:
tn(hn) = Yp(Tn;T(21,01) 0 - 0 7(Tp1, Un—1))
Vhy, = (z1,u1,--+ ,Tp-1,Un-1,Zp) € Hy, 1 <n < N. (5.8)
Proof This is a backward induction on stage number. [

Corollary 5.1 (Equivalence between primitive and augmented
Markov classes)

(i) The optimal policy v* € I1 satisfies
EE [4(rio- - -ornok)] < E;l [T], Vi € TI(p), 1 € X, y1 = (z1; ).
(5.9)
(i1) Thus we have

Max Eg‘c‘l[d)(no---or]\rok)] = Math;1 [T), Vz1 € X, 11 = (ml;j\).
nell(p) yell
(5.10)

To summarize these results we have:

Corollary 5.2 (Equivalence among three problems)

(i) Three optimal value functions are equal:

v (z1) = wi(z1) = u(z;N), Va1 € X, y1 = (z1;0). (5.11)

(ii) Letv* € 11 and p* € II(p) be the optimal policies obtained by solv-
ing the recursive equations (4.16) and (4.26) respectively. Then
both optimal policies coincide on histories:

fin (hn) = Yn(Zn;r(T1,81) 0 -+ - 0 T(Tp_1, Un-1))
Vhy = (21, u1,- - yTn—1,Un—1,Tn) € Hy, 1 <n < N-(5-12)
The general policy o*. compressed from p* through the deletion,

is optimal in [1(g). Furthermore the three optimal policies o*, u*
and v* have the same ezpected value:

EZ [¢(rio--oryok)] = EY[¢(rio---oryok)]
= EJ[T], Vz1€X, y1=(z1;)).
(5.13)
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5.2 Optimal policies

Now we show that the optimal policy for Q in II yields an optimal
policy for P1(z;) in class II(g). The optimum value vi(z,) of problem
Pi(z1) is u'(z1;)): N

1)1(.’1:1) = ul(:zl; )\) (5.14)
Further, the optimal Markov policy v* generates a general policy o* of
(2.4) through (5.4).

Theorem 5.2 The policy o* is optimal in general class; for any general
policy o € II{g),

E [¢(rio---oryok)] > EJ [¢(r10---oryok)], ¥z € X. (5.15)

Proof This follows from Lemma 5.1(ii), Theorem 5.1 and Lemma
5.1(i). [ ]
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Chapter 9

CLASSIFICATION PROBLEMS IN MDPS

L.C.M. Kallenberg
University of Leiden
The Netherlands

Abstract In this paper we investigate classification problems for Markov deci-
sion processes (MDPs). These MDPs can be classified in several ways.
One way is based on the concept communicating, and distinguishes be-
tween communicating, weakly communicating and noncommunicating.
Another way of classification is based on the ergodic structure. In this
approach the distinction between completely ergodic, unichain and mul-
tichain is made. Furthermore, there is a classification based on decom-
position of the state space. This decomposition distinguishes between
several levels. At each level there is a set of recurrent classes and a
(perhaps empty) set of transient states.

Classification of an MDP may be of interest, e.g. for undiscounted
MDPs both in the unconstrained as in the constrained case. We review
all these classification problems and present old and new results. It
turns out that these problems, except one, can be solved in polynomial
time; algorithms and complexity results are given. The only problem for
which, to our knowledge, no polynomial-time algorithm is known, is the
distinction between a unichain and a multichain MDP. For this problem,
we have some partial results which can be obtained in polynomial time.

1. Introduction

Consider a discrete Markov decision problem (MDP) with finite state
space E, finite action sets A(7), ¢ € E, and transition probabilities p;;(a),
a € A(i) and i,j € E. Rewards are no subject of our study, so they are
not mentioned here. A deterministic policy f is a function which assigns
in a deterministic way an admissible action to each state, i.e. f(z) € A(7),
1 € E. Any deterministic policy f induces a transition probability ma-
trix P(f) of a Markov chain with (¢,j)th entry given by p;;(f(¢)); we
shortly say the Markov chain of policy f, or the Markov chain P(f). A
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randomised policy w is a function which assigns in a randomised way an
admissible action to each state, i.e. in state ¢ action a € A(i) is chosen
with probability m;(a). Hence, a deterministic policy is a special case
of a randomised policy. Any randomised policy 7 induces a transition
probability matrix P(m) of a Markov chain with the (7, )th entry given
by >, pij(a)mi(a); we shortly say the Markov chain of policy 7, or the
Markov chain P(7). We assume the reader familiar with concepts from
(finite) Markov chains as accessible, communicating, recurrent (or er-
godic) state, transient state, ergodic (or recurrent) class, closed set and
complete ergodicity (or irreducibility).

There are several ways to classify MDPs. A first one, introduced by

Bather (1}, distinguishes between communicating and noncommaunicating
MDPs. An MDP is communicating if for every 4,5 € E there exists a
deterministic policy f, which may depend on ¢ and j, such that in the
Markov chain P(f) state j is accessible from state i. An MDP is weakly
communicating if E = E; U Ey, where E; N Ey = 0, E; is a closed
communicating set under some randomised policy and E» is a (possibly
empty) set of states which are transient under all (randomised) policies.
The concept of weakly communicating was proposed by Platzman (8]
under the name simply connected.
A second kind of classification concerns the ergodic structure. We dis-
tinguish between completely ergodic (or irreducible), unichain and mul-
tichain MDPs. An MDP is completely ergodic (or irreducible) if the
Markov chain P(f) is completely ergodic (or irreducible) for every de-
terministic policy f. We say that an MDP is unichain if for every deter-
ministic policy f the Markov chain P(f) has exactly one ergodic class
plus a (possibly empty) set of transient states. An MDP is multichain
if there exists a deterministic policy f for which the Markov chain P(f)
has (at least) two ergodic classes.

It is simple to verify the following relations:

1. irreducible = communicating — weakly communicating;

2. irreducible — unichain.

A reason to classify MDPs is, for instance, that a special structure may
lead to simplified algorithms for solving these MDPs under the average
reward criterion. MDPs with this criterion are also called undiscounted
Markov decision problems.

For a single Markov chain it is easy to determine whether or not
the Markov chain belongs to a certain class. Easy means polynomially
solvable, i.e. the problem belongs in terms of complexity to the class P
of polynomial-time problems. The classification of single Markov chains
will be discussed in Section 2.
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For an MDP we have [], . #A(¢) different deterministic policies and
each policy induces a Markov chain. Therefore, MDPs are also called
Markov decision chains. Even in the case that #A(i) = 2 for every
i € E, there are 2#F policies which is exponential in #E. Since, usually,
#F is large, the approach to analyse all Markov chains separately is
prohibitive. The problem to determine whether or not an MDP belongs
to a certain class is a combinatorial problem.

These MDP problems are easy (i.e. polynomially solvable), except
one, which belongs to the complexity class NP of non-deterministic
polynomial-time problems; it is an open problem whether it belongs to
P, to N'PC (the class of N'P-complete, i.e. the most difficult, problems)
or to NPZ := NP — (PUNPC). In Section 3 the classification of
MDPs is studied. It is also possible to use simplified algorithms after a
decomposition of the state space. This kind of approach was proposed
by Bather [2] and by Ross and Varadarajan [9] who introduced the term
strongly communicating classes. Both methods are similar. Section 4
deals with this decomposition.

2. Classification of Markov chains

Consider a Markov chain with transition matrix P. The classification
of a Markov chain can be executed in the associated directed graph G(P).
G(P) has as nodes, the states of the Markov chain, and (3, j) is an arc
in G(P) if and only if p;; > 0. The recurrent classes Ry, Rs,...,Rp
and the set T of transient states can be determined by the following
algorithm.

Algorithm 1
(Recurrent classes and transient states of a Markov chain)

1. Determine the strongly connected components of G(P), say
C1,Cy,...,Ck.

2. Set m=0and T = 0.

3. For i =1 to k do:
if Cy is closed: m = m + 1 and R,, = Cy;
else: T =T UC;.

For a single Markov chain we have the following properties:

(i) the concepts of a irreducible and communicating Markov chain
coincide and correspond to m =1 and T = ¢;

(ii) the concepts of a unichain and weakly communicating Markov
chain coincide and correspond to m = 1;
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(iii) the concept of a multichain Markov chain corresponds to m > 2.

A subgraph of a directed graph is strongly connected if for every pair
of distinct vertices ¢ and j, there exists a path from ¢ to j as well as a
path from j to 7. A maximal strongly connected subgraph of a directed
graph is called a strongly connected component.

The determination of the strongly connected components of a graph
can be done in O(M), where M is the number of positive entries in
the matrix P. This algorithm was proposed by Tarjan [10] (in Moret
and Shapiro [7] a Pascal program can be found). A related approach
was introduced by Fox and Landi [5]. There is also an elegant O(M)
algorithm for the computation of the period and the cyclic sets of an
ergodic class. This algorithm is due to Denardo [3].

Let N = #E. Notice that M = O(N?). It is easy to verify that
Algorithm 1 is correct and has complexity O(M). Hence, all classifica-
tion problems of a single Markov chain are of O(M) = O(N?), so they
are polynomial and belong to the class P.

3. Classification of Markov decision chains

The methods for the determination of the chain structure of an MDP
use two directed graphs, G! and G2, both with E as vertex set. In G*
there is an arc (i,7) if all Markov chains of the MDP have a positive
one-step transition from i to j, i.e. pij(a) > 0 for every action a € A(i) :
minge 4(;) Pij(a) > 0. G? has an arc (4,j) if at least one of the Markov
chains of the MDP has a positive one-step transition from ¢ to j, i.e.
pij(a) > 0 for at least one action a € A(3) : max,e 4(;) pij(a) > 0. Loops
have no sense for classification problems, so they are deleted. Notice
that G! is a subgraph of G°.

Let A =3, . #A(:), the total number of actions in the MDP. Since
for the construction of G' and G? each action has to be considered and
this action can generate positive one-step transitions to all N states, the
construction of G! and G? has complexity O(A - N).

We also introduce the concept of the condensed graph G}. The con-
densed graph G} has a (compound) vertex for each strongly connected
component of G. Let i and j be compound vertices of G correspond-
ing to the strongly connected components Cy and Cy, and let Vi and V,
be the vertex sets in G of Ci and C; respectively. Then, there is an
arc from 4 to j in G} if every Markov chain of the MDP has a positive
one-step transition from some vertex of Vi to some vertex of Vj, l.e.
maXyev, {minge o(r) Zsew prs(a)} > 0. States in the same strongly con-
nected component are mutual accessible under any policy. Hence, the
arc (4,7) in G} means that any s € Vj is accessible from any r € Vi under
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any policy. The construction of this condensed graph is of O(A-N). The
operation ‘condensation’ can be repeated until there are no changes in
the graph. Let (Gl)* be the last graph that is obtained after repeated
condensation.

Example 3.1 Let

E={1,2,3,4}; A(1) = {1,2}, A(2) = A(3) = A(4) = {1}.

p12(1) = 1; p13(2) = 1; pas(l) = p2a(1) = 0.5; p32(1) = p3a(1) = 0.5;

p41(1) = 0.5, pgo = ps3 = 0.25.

Consider G = (V1, Al):

Vi=1{1,23,4}; A ={(2,3),(2,4),(3,2),(3,4),(4,1),(4,2),(4,3)}.
The strongly connected components of G' are: C; = {1} and C; =

{2,3,4}. GL = (V}, AL) with V! = {1*,2*}, where 1* corresponds to

vertez 1 and 2* to the vertices {2,3,4}, and Al = {(1*,2%),(2*,1*)}. If

the graph G is condensed then we obtain (GL)* consisting of a single

vertez.

The next theorem shows that irreducibility is equivalent to the prop-
erty that (G1l)* consists of a single vertex.

Theorem 3.1 An MDP is irreducible if and only if the ultimate con-
densation (GLl)* consists of a single verter.

Proof Suppose that (GL)* consists of a single vertex. From the defini-
tion of condensation it follows that each two states communicate under
any deterministic policy, i.e. the Markov chain is irreducible. Next,
suppose that (Gl)* has at least two vertices. Each component is a
(compound) vertex and there is a vertex, say ¢, without an incoming
arc (since the compound vertices are strongly connected components).
Therefore, in every state of the compound vertices j # i an action can
be chosen with transistion probabilities 0 to the states of the compound
vertex ¢. The Markov chain under this policy is not irreducible. ]

Theorem 3.1 yields the following algorithm for the irreducibility prop-
erty.
Algorithm 2 (Irreducibility)

1. Construct the graph G! and let G = G*

2. Determine the strongly connected components of G,

say 01,02,...,Ck.

3. If all components consist of one vertex: go to step 4;
Otherwise: construct the condensed graph G, let G = G, and go
to step 2.
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4. If k = 1: the MDP is irreducible;
If £ > 2: the MDP is not irreducible.

Theorem 3.2 The time-complezity of Algorithm 2 is O(A - N?).

Proof The construction of G! and G! has complexity O(A - N). The
determination of the strongly connected components has as order the
total number of arcs, which is O(N?) < O(A- N). Hence, it is sufficient
to show that the number of iterations is at most N. Each new iteration
starts with a condensed graph for which the strongly connected com-
ponents have to be determined. If each component consists of a single
vertex, the algorithm terminates; if not, the next condensed graph has
at least one fewer vertex. [

Next, we consider the problem to decide whether an MDP is commu-
nicating. The result is based on the following theorem.

Theorem 3.3 An MDP is communicating if and only if the graph G?
is strongly connected.

Proof Notice that (%, 5) is an arc in G? if and only if max,e 4(;) pij(a) >
0. Hence, for any completely mixed stationary strategy = (i.e. m;(a) > 0
for all ¢ and a) p;;(m) > 0 if and only if (5, 7) is an arc in G2. With this
interpretation it is obvious that the concept of a communicating MDP
is equivalent to the strongly connectness of G2. ]

Note In Filar and Schultz [4] it is shown that communicating is also
equivalent to the following condition: For every b € RY with Zfil b, =
0, there exists y = {y;(a) | a € A(%),i € E}, where y may depend on b,
such that y;(a) > 0 for all a € A(i), i € E, and ), ,[6i; — pij(a)]yi(a) =
b;j, 7 € E. This last system is related to linear proérams to solve undis-
counted MDPs (see e.g. Kallenberg [6]).

Algorithm 3 (Communicating)
1. Construct the graph G2.

2. Determine the strongly connected components of G2,

say 01,02,. . .,Ck.

3. If k = 1: the MDP is communicating;
If £ > 2: the MDP is not communicating.

Theorem 3.4 The time-complezity of Algorithm 3 is O(A- N).
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Proof The construction of G2 has complexity O(A - N) and the de-
termination of the strongly connected components has order O(N?) <
O(A-N). [ ]

The investigation of the property weakly communicating can be done
analogously by the following algorithm which was proposed in Platz-
man [8].

Algorithm 4 (Weakly communicating)

1. Construct de graph G?

2. Determine the strongly connected components of G2,
say Cl, CQ, ca ,Ck.

3. a)Setm=0and T=0.

b) For i =1 to k do:
if C; is closed: m =m + 1 and Ry, = Cj;
else: T =T UC(C;.

4. If m > 2: the MDP is not weakly communicating;
Ifm=1:
if T = 0: the MDP is communicating, implying weakly communi-
cating;
else: go to step 5.

5. a) Let ¢;=1fori €T and ¢; =0 for i € T;
b) S =0;
c¢) For every i € T do:
if ), pij(a)e; > 0 forevery @ € A(i) : ¢; =1and § = SU{s}.
d) If S = 0: the MDP is not weakly communicating;
else: T =T\S and go to Se;

e) if T = 0: the MDP is weakly communicating;
else: go to 5b.

Theorem 3.5
Algorithm 4 is correct and the time-complezity is O(A - N?).

Proof Weakly communicating means that each state is either tran-
sient under all policies or an element of a communicating class under
some policy. If the algorithm ends in step 4 with m = 1 and T = 0,
then the MDP is communicating, so certainly weakly communicating.
If the algorithm terminates in step 4 with m > 2, then there are two
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ergodic sets under all policies: the MDP is not weakly communicating.
If the algorithm terminates in step 5d, then there is a state which does
not belong to the maximal communicating class and will not reach this
maximal communicating class under all policies, so it is recurrent for
some policy: the MDP is not weakly communicating. Finally, when T
becomes empty in step 5e, the states of the original set T' are transient
under all policies, so the MDP is weakly communicating.

For the complexity we remark that the steps 1 until 4 are executed
only once and have complexity O(A - N) as shown before. Step 5 can
be executed at most N times, since at each iteration the set 7' becomes
strictly smaller. In each iteration the computation }_; pij(a)c; has to
be executed for every i € T and a € A(i). Each computation is O(N)
and has to be done O(A) times: the overall computation of step 5 is
O(A- N?). |

We can conclude that the classification problem to decide whether an
MDP is irreducible, communicating, weakly communicating or noncom-
municating is polynomially solvable. Next, we continue with the distinc-
tion between unichain and multichain. Before we present the algorithm
we first give some ideas of the method. We start with a description of
the operation for states with outdegree 1.

States with outdegree 1

Suppose that Algorithm 2 (the algorithm for irreducibility) terminates
with the conclusion ‘not irreducible’. If there is a (compound) vertex
with outdegree 1, say from 7 to j, then the states corresponding to the
(compound) vertex j are accessible from the states of the (compound)
vertex 1 under any policy. Therefore, if the MDP is multichain, then the
states of ¢ and j can not belong to different recurrent classes. Hence,
the states of 7 and j can be merged into a new compound vertex. Then,
it has to be considered whether there are new arcs in the new graph,
similar as we did for condensation.

Starting with the graph G!, the ultimate condensed graph (Gl)* is
constructed and the operation for states of outdegree 1 is executed.
These two procedures are repeated sequentially. By (G')T we denote
the graph which is finally obtained.

Theorem 3.6 Let k™ be the number of strongly connected components
of the graph (G')*.

(i) If k* =1, then the MDP is unichained.
(i1) If k™ = 2, then the MDP is multichained.
(i11) If k™ > 3, then the MDP is either multichained or unichained.
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Proof

(i) Suppose that k* =1 and the MDP is not unichain, i.e. there is a
policy f such that the Markov chain P(f) has at least two ergodic
sets. By the above described construction these two ergodic sets
will never be combined into one compound vertex. Hence, k™ > 2:
contradiction.

(ii) Suppose that k™ = 2 and that the final graph has the (compound)
vertices ¢* and j*. Remark that there is no arc from * to j* or
vice versa. That implies that there are policies f! and f2 such
that P(f!) is closed in i* and P(f?) in j*. Hence, f! and f2 can
be combined in a policy f3 which is multichained.

(iii) Consider the following model: = {1,2,3}; A(1) = A(2)
AGB) = {1,2} pi2(1) = p13(2) = P21(1) = p(2) = pai(1) =
p32(2) = 1. Notice that this model is unichain and that G! =
(VI,AY : V1 ={1,2,3}; A' = 0. Hence, (G!)* = G' and k+ = 3.
So, k* > 3 and the MDP is unichained, is possible (that k% can
be at least 3 for a multichain model is obvious). [ |

Example 3.2 Let

B=1{1,2,3,4,5); A(1) = A(2) = {1,2}, A(3) = A(4) = A(5) = {1}.
p13(1) = 1; p11(2) = p1a(2) = 0.5; pas(1) = 1; p22(2) = 1; p3a(l) =
p31(1) = 0.5; pa3(1) = 1; ps3(1) = pss(1) = 0.5.

Consider G = (V1,A') : V! = {1,2,3,4,5}; A' = {(3,1),(3,2),(4,3),
(5,3)}. The strongly connected components of G! are: C; = {i},1 <i <
5-(Gl)* = GL.

Then, since the vertices 4 and 5 have outdegree 1 (both to state 3), they
are merged into the compound vertex 3* consisting of the states {3,4,5}.
For the remaining problem we have G! = (V!, A') with V! = {1,2,3*}
and A = {(1,3%),(3*,1),(3%,2)}. The strongly connected components
of Gt are: Cy = {1 3* }, Cy = {2}. (G = (V}, AL) with V! = {1*,2}
where 1* corresponds to the vertices 1 and 3*, and AL = {(1*,2)}. Then,
the vertices 1* and 2 are merged into one final compound vertez 2* : k* =
1. From Theorem 3.6 it follows that the MDP is unichain.

Note The counterintuitive difference between the property that k* = 2
yields a multichain MDP and k% > 3 can result in a unichain MDP is
caused by the fact that in k™ = 2 no arcs from 1* means that 1* can
be a closed (compound) vertex and in k* > 3 no arcs from 1* can mean
that arcs go either to a (compound) vertex 2* or to a (compound) vertex
3*.
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Algorithm 5 (Unichain or multichain)

1. Construct, by Algorithm 2, from graph G' the (repeatedly) con-
densed graph (Gl)*.

2. If there are (compound) vertices with outdegree 1:

a) execute the merging operation;

b) add actions from and to the new compound vertex
(if they exist corresponding to the definition of G! for the
new graph G!).

3. a) Let (G!)™ be the graph obtained after the steps 1 and 2.

b) If (G')* = G': go to step 4;
else: G! = (G!)* and go to step 1.

4. If k* =1, then the MDP is unichained;
if k¥ = 2, then the MDP is multichained,;
if kT > 3, then no decision can be made.

Theorem 3.7 The complezity of Algorithm 5 is O(A - N?).

Proof The construction of G!, Gl and the determination of the strongly
connected components are of order O(A - N). This can be done at most
N times (because each time this has to be done, the number of states
is strictly smaller). Furthermore, the total work for merging states and
adding actions during one iteration is of order O(A). Hence, the overall
complexity is O(A - N?). [ ]

Proof

1. It is obvious that the recognition problem ‘is the MDP multi-
chained’ is in N'P: the certification can be done in O(N?).

2. If the algorithm ends in step 4 with k™ > 3, then each policy
corresponding to the (in general smaller) MDP of the last graph
(GH)* can be analysed (as in Section 2) to decide whether the
MDP is unichain or multichain.

3. If the MDP is deterministic, i.e. all transition probabilities p;;(a)
are 0 or 1, then there is a one-to-one correspondence between the
arcs of the graph G? and the action set of the MDP. Furthermore,
the MDP is multichain if and only if the graph G2 has two vertex-
disjoint simple cycles. The simple cycles of a directed graph can
be detected by the method described in Weinblatt [11]. Since a
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graph may have an exponential number of simple cycles, the deter-
mination of all simple cycles is N'P-hard. However, the algorithm
has experimentally been tested, and the tests indicate that the
algorithm is reasonable fast (see Weinblatt [11]).

4. Decomposition of Markov decision chains

In Bather {2] a decomposition of the state space is described based
on the accessibility between the states. The state space is divided into
several levels. The first level L; contains the closed, communicating
subsets of the state space. Hence, L; consists of the closed, strongly
connected components of G? and can be determined in O(4 - N).

For the next step in the decomposition, we consider E; := E\Lj,
i.e. the states in the open strongly connected components of G. It will
be useful to distinguish between the states from which for any policy
absorption in L; will occur (the transient set T7) and the states from
which absorption in L; can be avoided by an appropriate choice of the
policy (the ‘new’ set E1). T and the ‘new’ E; can be computed similarly
to step 5 of Algorithm 4.

Algorithm 6 (Determination of T})
1. Let ¢; =1fori € Ly and ¢; =0 for ¢ € Eq: let Ty = 0.
2. S=0.

3. For every ¢ € Ey do:
if °; pij(a)ej > 0 for every a € A(i) :¢c; =1and S = SU {i}.

4. If S = §: stop;
else: Ty =T, U S, E; = E1\S and go to step 5.

5. if E; = 0: stop;
else: go to step 2.

If the ‘new’ E # 0 then, by an appropriate choice of the deterministic
policy f,Ey is closed under P(f). Hence, after deleting for i € E;
the actions @ € A(3) with > ¢/ 1, pij(@) > 0, the resulting (to E)
restricted model is again an MDP and can be treated in the same way,
i.e. we can construct a second level with Ly and a (possibly empty) set
transient set T5. In this way we proceed until all states are assigned to
an L- or T-set.
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Algorithm 7 (Bather decomposition of the state space)
1. aym=0;E,=E.
b) Construct the graph G? for the MPD corresponding to state
space E,,.
c) m=m+ L

d) Determine the set L,, of strongly connected and closed com-
ponents of G2.

m— l\L

) E
2. a)Letcl—lforzEL and ¢; =0 for i € E; let T, = 0.
b) §
c) For every i € E,;, do:
if 3 ek, , Pijla)c; > 0 for every a € A)i) : ¢ = 1 and
S=Su{i}.
d) If S = 0: go to step 3;
else: T, =T, US, Ep, = E,\S and go to step 2e.
e) if E,, = {: stop;
else: go to step 2b.
3. a)ForieE,do
fora € A(i) doif 3 ;o ur, Pij(a) > 0: Ae (1)\{a}-
b) go to step 1b.

e

Example 4.1 Consider the following MDP:

E = {1,2,3,4,56}; A(1) = AQ3) = {1,2}, A(2) = A(5) = A(6)
{1}, A(4) = {1,2,3}; p12(1) = p14(2) = pa3(1) = P32( ) = p35(2)
P43(1) = p45(2) = p44(3) = pse(1) = pes(l) = 1.

Level 1: G% = (V, A) with V = {1,2,3,4,5,6} and

A =1{(1,2),(1,4),(2,3),(3,2),(3,5), (4, 3), (4,5), (4,4), (5,6),
(6,6)}. G? has as strongly connected components:

C1 = {1}, C2 = {2,3}, Cs = {4}, C4 = {5} and Cs = {6}.

L, ={6}; E1 ={1,2,3,4,5}. cs =l,cr=co=c3=c4 =C5 =
0.7y =0.

S=0;cs=1; S={5}; Th = {5}; E1 ={1,2,3,4}.
S=0; A3) = {1}, A(4) = {L1,3}.

= (V,A) with V ={1,2,3,4} and
={(1,2),(1,4),(2,3),(3,2),(4,3), (4. 4)}-

Level 2: G
A
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G? has as strongly connected components: C; = {1}, Cy =
{2,3}, C3 = {4}.
Ly={2,3}; Ea={1,4}. o =c3=1;c1=¢,=0. T, = 0.
S=0. A(1) ={2}, A(4) = {3}.
Level 3: G? = (V, A) with V = {1,4} and A = {(1,4), (4,4)}.
G? has as strongly connected components: C, = {1},C, = {4}.
Ly={4};E5={1}. ca=1,c,=0. T3 = 0.
S=0.=1S={1}T5={1}; E3s = 0.
The decomposition ends with the following levels:
E;: Th = {5} = {6}
E,: {2,3}
E3: T3 = {1} — {4}

Theorem 4.1 The complezity of the Bather decomposition is O(A-N?).

Proof Since in each iteration m := m + 1 and L,, # 0, the algorithm
terminates after at most N iterations. Consider the complexity of one
iteration.

Step 1: part b is of O(A - N), part ¢ of O(1) and part d of O(N?).

Step 2: part a is of O(N), part b of O(1), part ¢ of O(N - A), part d of
O(N) and part e of O(1).

Step 3: part a is of O(A - N) and part b of O(1).
Hence, the complexity of one iteration is O(A-N). Therefore, the overall

complexity is O(A - N?). |

Ross and Varadarajan [9] have presented a similar decomposition
method. In this decomposition the state space is partitioned into strong-
ly communicating classes C;,Cs,...,C,, and a set T of transient states
with the following properties:

(1) the states of T are transient under all stationary policies;

(i1) suppose R(w) is a recurrent class under some stationary policy =,
then R(r) C C; for some 1 < i < m;

(iii) there exists a policy 7 such that Cy,Cy,...,Cy, are the recurrent
states of the Markov chain P(r).

A set states S C FE is called a strongly communicating set if there ex-
ists a stationary policy m such that S C R;(r), where R;(7) is a recurrent
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class of the Markov chain P(r). Hence, strongly communicating implies
communicating. Example 4 (see below) shows that the reverse statement
is not true. A (strongly) communicating set S is a (strongly) commu-
nicating class if S is maximal with respect to the property (strongly)
communicating. Notice that a closed communicating class is a strongly
communicating class.

Example 4.2 Consider the Markov chain

0 1 0
P=105 0 05
0 0 1

S ={1,2} is a communicating class, but not strongly communicating.

The sets E; in the Bather decomposition are the strongly communi-
cating classes C; of Ross and Varadarajan. The union of the transient
sets T; in the Bather decomposition is the transient set T in the approach
of Ross and Varadarajan. Hence, Algorithm 7 also gives the decompo-
sition by Ross and Varadarajan. A formal proof of these properties can
be found in Ross and Varadarajan [9].
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decision processes (MDPs). It has been studied by many researchers,
such as Bather [1], Bertsekas [2], Doshi [3], Howard [4], Kakumanu [5],
Lippman [6], Miller [7], Puterman [8], Yushkevich and Feinberg [9], Wal-
rand [10], etc.. Both average and discounted reward (or cost) criteria are
often used in the study of CTMDPs. This paper deals with the average
(possibly unbounded) cost criterion for CTMDPs. We are concerned
with axioms that guarantee the existence of an average cost optimal
stationary policy. In [1]-[13], many sets of conditions for this purpose
Fave been provided and the existence of optimal policies is proved using
the optimality equation (OE). Guo and Liu [14] replaced the OE by the
optimality inequality (OIE). They not only proved the existence of aver-
age optimal stationary policies under conditions weaker than those used
in [5, 11, 12, 13] for the OE, but also gave an example to show that the
conditions that ensure the existence of a solution of the OIE do not imply
the existence of a solution of the OE. In the spirit of [8, 15, 16] on dis-
crete time MDPs, we provide a new set of conditions, based on optimal
discounted cost values, which is weaker than those used in [5, 11, 12, 14],
and prove the existence of both the average cost optimal stationary poli-
cies and solutions to the OIE. Moreover, an admission control queueing
model and controlled birth and death processes are given for which the
new set of conditions holds, whereas the conditions in [5, 11, 12, 14]
fail to hold. The conditions and results in this paper are very similar
to those in Puterman [2] and Sennott [15, 16] on discrete time MDPs.
Hence, this paper extends recent work to CTMDPs.

In Section 2, we present the model, notation and definitions. In Sec-
tion 3 some results for CTMDPs with discounted cost criterion are pro-
vided. In Section 4, we present the conditions to establish OIE for
CTMDPs with average cost criterion and prove the existence of optimal
stationary policies. In Section 5 we give an admission control queueing
model and controlled birth and death processes to illustrate the results
of this paper.

2. Model, notation and definitions

We observe continuously a controlled system in which, when the sys-
tem is at state 7 of a denumerable space S, a decision maker chooses an
action a from a set A(z) of available actions. There are two consequences
for the action:

1. the decision maker pays a cost rate r(i,a), and

2. the system moves to a new state j, j € S, according to a transition
rate q(j|i, a).
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The goal of the decision maker is to choose a sequence of actions to
make the system perform optimally with respect to some predetermined
performance criterion V. So the model can be described by a five-element
tuple {S, (A(z),7 € S), r,q,V} having the following properties:

(i) the state space S is denumerable;

(i) every available action set A(i) is a measurable subset of a measur-
able action space A, with o—algebra T;

(ii1) the cost rate r is a function bounded below on K := {(i,a)|i € S,
a€ A@@)}

(iv) the transition rate gq satisfies: ¢(j|i,a) > 0 Vi # j, a € A(5),
1,7 € S, and furthermore, Zjesq(ﬂi,a) =0Vi €85, ac€ A),
and q(7) := sup,¢ 43y (—q(i]i, a)) < oo for i € S;

(v) V is a discounted (or average) cost criterion, which is defined be-
low.

A randomized Markov policy = is a family {7, ¢ > 0} satisfying:

1. for any ¢ > 0 and 1 € S, m(+|i) is a probability measure on A such
that m(A(2)]7) = 1;

2. forall B € T and ¢ € S, m;(B|t) is a Lebesgue measurable function
in ¢ on [0, c0).

The set of all randomized Markov policies is denoted by II,. A policy
7 = {m, t > 0} is called randomized stationary if m;(B|i) = mo(B|i) Vt >
0, BeT,ic S. We denote this policy by m5°. The set of all randomized
stationary policies is denoted by II;. A policy 7 = n§° € Il; is called
stationary if there exists f € F := {f|f : S = A, f(i) € A(9),i € S}
such that mo(f(¢)|7) = 1 for every i € S. We denote this policy by f*
(or f, for short). The set of all stationary policies is denoted by I1¢.
For any 7 = {m,t > 0} € II,,, let

ailt,m) = /A a(ili,a)mi(dali),  i,j €S, t>0, (21)

r(t,i,m) = /Ar(i,a)m(daﬁ), i€S, t>0. (2.2)

In particular, when 7 = f* € I, we write g;;(¢t,7) and 7(t,i,7) as

q(j|i, f(3)) and r(i, f (7)) respectively.
For each # = {m,t > 0}, let {Q(¢,7) := (g;;(t,m)),t > 0} be the
CTMDP infinitesimal generator. The minimum transition matrix with
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respect to {Q(t,7),t > 0} is denoted by P™"(s,t,7) = (p:;”"(s,t, 7r))

Let P™n(t, ) := P™"(0,t,7) for t > 0.
In this paper, we propose the following conditions.

Assumption 2.1 There ezist m nonnegative functions w,, n = 1,2,
.,m, such that:

(i) foralli € S, a € A(7), andn=1,2,...,m—1,

> q(ili, a)wn () < w41 (3); (2.3)
JE€S

(i1) for alli € S and a € A(7),

S q(ili, @)wm (5) < 0. (2.4)

JES
Definition 2.1 A function h on S is said to satisfy Assumption 2.1 if
|l < (wy + - + wm).
Assumption 2.2
(i) R:= (w14 +wn) > 1;

(ii) for alli € S, t>s>0 and 7 € Il p,

/ mem s, u, 7)g;(u, T)R(j)du < oo, (2.5)
8 jes
where g;(u,n) := —q;;(u,7) for j €S, u >0, and w, comes from

Assumption 2.1.
Assumption 2.3
Ir(4,a)| < MR(1), i1 €S, a€ A1), for some M > 0.
Assumption 2.4 Assumptions 2.1, 2.2 and 2.3 hold.

Remark 2.1 In Lemma 3.2 below, we provide some conditions and ex-
amples that guarantee that Assumption 2.4 holds.

Now we define the discounted cost criterion V,, and the average cost
criterion V, as well as the optimal cost values based on these two criteria.
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For any w € I1,,, 1 € S and a > 0, let

Va(mi) = /0 ~at Syt wyrt,5,7) dt, (2.6)

j€ES
V(n,i) := limsup — / mem r(t, 7, ) dt, (2.7)
T—o0
JjES
Vi(E) = 1€nf Val(m,i), and V*(i) = IGIIlIf V(m,i). (2.8)

A policy m* € Il,, is called discounted cost optimal if V,, (7*,1) = V*(7)
for all 1 € S. Average cost optimal policies are defined similarly.

Remark 2.2 Under Assumptions 2.1 and 2.2, we know that P™"(t, )
is honest for every m € Il,,. Hence, by (2.6), (2.7) and (2.8), we may
increase T by adding constant without affecting the discussion on the
ezistence of optimal policies. Therefore, we always assume r > 0.

Remark 2.3 Throughout this paper, a function on S is regarded as a
column vector, and operations on matrices and vectors are component-
wise.

3. Discounted cost optimality

In this section we provide some results on the discounted cost criterion,
which are essential to the discussion on the average cost criterion.

Lemma 3.1 If Assumption 2.1 holds, then for any m € I, and t >
s >0, we have

(1) P™"(s t, )R i t — s)F 1Ry (3.1)

w .
(i) / e~elt=s)pmin(s ¢ T)Rdt < Za-kRk
§ k=
m
< (Za ) . (32)
k=1

where, Ry := wg + wg41 + -+ +wy, for k=1,2,...,m, and Ry := R.
Proof See [18, Lemma 2 ]. |

Lemma 3.2 If one of the following conditions holds, then Assump-
tion 2.4 holds.
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(i) lIrll :== supies acagiyr(é; @) < 0o, llgl| := sup;eg q(é) < oo.
(it) Assumption 2.1 holds, r < MR for some M > 0, and ||q|| < oo.

(i11) Assumption 2.1 holds, 7(i,a) < MR(:) Vi € S and a € A(7), for
some M > 0, and the function qR(t) := q(i)R(i) on S satisfies
Assumption 2.1.

(iv) For allie S={0,1,---}, A(3) := {0,1}:
let ¢(0]0,0) = 0 and fori > 1,

pi fj=i-1,
ey ) (A ifi=1,
90,0 =3 n ifj=i+1,
0 otherwise;

let ¢(0|0,1) = —v, ¢(1]0,1) = v, and for i > 1,

pi fj=i-1,
. _ —(p+Ai—v ifj=1,
ULD =9 xito ifj=i+1,
0 otherwise;

where 0 < XA < u, v > 0, there are k positive numbers b,, n =
1,2,...k such that r(i,a) < Zfl:l bi® for all a € A(3), i € S.

(v) §={0,1,...}, A()) ={0,1}, e € S:
let ¢(0]0,0) =0 and fori > 1,

0 otherwise;

let ¢(0]0,1) = —(3"72; Ak),q(k|0,1) = A\ V& > 1, and fori > 1,

p fj=1-1,
2o ) X M) i =1,
0 otherwise;

where Y po i kA, < 00; 7(1,0) = pi+e, r(i,1) =pi, i € S, p,c > 0.

Proof Under condition (i), this lemma is obviously valid. Under (ii),
the lemma follows from Lemma 3.1 and the condition ;. q(jli,a) =0
Vi € S, a € A(i). On the other hand, since g;(u, ) < ¢(j) Vj € S,
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7 € I, and u > 0, by Lemma 3.1, we can also prove this lemma under
condition (iii). Similarly, under condition (iv) or (v), this lemma can be
proved by applying Lemma 3.1. The calculation is straightforward, but
lengthy, and we shall omit the details here. [

By Assumption 2.1, we can define
B(S) := {u: |u(s)| < cR(3) Vi € S, for some constant ¢ > 0}. (3.3)

Lemma 3.3 If Assumption 2.4 holds, then for alli € S and 7 € 1II,,,
we have:

(1) Zp"”"s t,m) = 1, t>s>0; (3.4)
J€ES
(i) Valm, i) < Y a*R(i)
< O a™)R(); (3.5)
k=1

(1ii) © € I, is discounted cost optimal if and only if Vo (7) is a solution
of the following dynamic programming equation within B(S),

ou(i) = aeigfi){T(i,a)+ZQ(jli7a)U(j)}; (3.6)

jes
(i) Vi(i) = infrer Vo(f,1), and V} is the unique solution of (3.6)
within B(S);

(v) Any f(€ F) realizing the minimum on the right-hand of (3.6) is
discounted cost optimal.

Proof See [18, Theorem 1 and Lemmas 2 and 4]. ]

Remark 3.1 Lemma 3.3(1) shows that the minimum transition matriz
P™in (st ) is honest and unique for every € Il,,,, and will be denoted
by P(s,t,w). That is, P™"(s,t,m) = P(s,t,m) for t > s > 0, and,
P™n(t 1) = P(t,m) fort > s> 0.

Lemma 3.4
If
(i) Assumption 2.4 holds; and
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(i1) for everyi € S, A(7) is compact, and r(i,a) and Zjes q(jlt,a)R(j)
are continuous in a on A(i),

then, for each a > 0 there exists a discounted cost optimal stationary
policy fX.

Proof For every i € S, by [17, Lemmas A.2 and A.3] and Lemma 3.3,
we can obtain that ;. ¢ 9(j|i,a)V; (5) is continuous in a on A(7). Thus,
by (ii), there exists f € F realizing the minimum on the right-hand side
of (3.6). By Lemma 3.3, the result follows. |

To study monotonicity properties of the discounted cost optimal value
Vs, we take an arbitrary, but fixed, function m on S such that m(:) >
q(7), and m(i) >0 Vi€ S.

Let G(kli,a) == ¥4 [ﬂgﬁl + a,-j], ki € 8, a € Ali): here &;j = 0

fori;éj,6ij=1fori=j,i,j€S.

Lemma 3.5 Suppose that Assumption 2.4 holds and let A(i) be finite
for eachi € S.

(i) Let ug(i) := 0, and

un+1(i)

— r(3,a) m(s) a(jli,a) | . o
- aenfllf(‘i) {m(") +a * m(i) + a Z ': m(z) + 5”] } n(7)

jes

fori€ S and n > 0. Then lim,_, oo un(i) = V(i) for anyi € S,
a>0.

(ii) If A(G) = AVie §:={0,1,---}; and ZBL, m(i) and §(kli,a)
are increasing functions in 1 for any fized k € S, and a € A, then
V(i) is increasing on S.

Proof
(i) For u € B(S), let

Tu(7)
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Then we have upy; = Tuy, up = T"0 and u, < upy; for n > 0.
By induction, we can get, for any n > 1,

k
u, < Za_l(wl+---+wk)M
1 1 1
(Lo )
a a 0e%

Hence, lim,_, u, := u exists and v € B(S). By monotone con-
vergence and noting that A(¢) is finite for 1 € S, we see that u
satisfies (3.6). Thus, (i) follows from Lemma 3.3(iv).

By (i), to prove (ii), it suffices to show that, for i1,ip € S, 41 > 49,
and n > 0,

un(i1) > up(i2). (3.8)

By induction, when n = 0, (3.8) is obviously valid. Suppose now
that (3.8) holds for n = N. With the notation uy(—1) := 0, for
any a € A, 11 > 19, 11,12 € S, we have

i (% + 511]) 'U'N(])
Jj=
[ q(j tzl, m] [2]: ) —un 1-1))}

i=0
(un(j) —un(i—1)) i [M + 52'11']

= L m(i)

L 1M8

<.
I
=}

I
WK

(un(7) —un (s — 1))4(jlir, a)

<.
i
=

NE

(un(5) —un(j — 1))q(jliz, a)

(% + 6,-2,) un(j)-

<.
Il
=}

I
NE

<.
I
=}
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Hence,

r('z'l,a) N m(il) Z<M+6i1j> un (7))

m(i1) +a  m(i) +aj€S m(i1)

rbne)  _mla) g [dGii

m(iz) +a  mliz) +a m(iz) + 5i2j] un(9)-

JES
Then, 'U'N+1('£1) > uN+1('i2), and so (3.8) is valid for n = N + 1.
This yields (ii). |

Corollary 3.1 Suppose that ||q|| < oo and that Assumption 2.4 holds.
In addition suppose that for any 1 € S = {0,1,2,---}, A(¢) = A, r(i,a)
is increasing (or decreasing), and there exists a positive constant C > ||q||

such that Gli.a)
. i,a
Pelkli,a) == Z <g—JC— + 5,-]-)

i>k

is increasing in i for any fited k € S and a € A. Then V} (i) is increasing
(or decreasing).

Proof Takem(i) := C Vi € S. Theresult then follows from Lemma 3.5.
n

In Lemma 3.4 we provided conditions under which there exists a dis-
counted cost optimal stationary policy. Now we shall investigate more
detailed results concerning the structure of an optimal policy.

Lemma 3.6 Suppose that following conditions hold:
(i) The hypotheses of Lemma 3.4 are satisfied.

(ii) For any i € S = {0,1,2,---}, A(i) = A, A is a partially ordered
set, and r(i,a) is nondecreasing in i, for any a € A.

(iii) |q| < C, for some positive constant C and for any fired k € S,
and a € A, p.(k|i,a) is increasing in i.

() r(i,a) is a superadditive (subadditive) function (refer to [8, page
103], for instance) on K.

(v) pc(kli,a) is a superadditive (subadditive) function on K for all
fized k € S.

Then there exists a discounted cost optimal stationary policy f} which is
nondecreasing (non-increasing) in i on S.
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Proof We prove the result in the superadditive case.
By condition (v) and the definition of superadditivity, for i; < i,
a1 < a9, and all k € S, we have:

2 [(et o)« (o)

j=k

- Elee)- (o)

j=k

By Lemma 3.5, V() is nondecreasing in i for all . Applying [8, Lemma
4.7.2], we have

> 3 (M ' a,-”-) " (q‘j"'%‘“) +ai2]-) V2.

=\l llgll

Thus, for each & >0, 3°22, (% + Jij) VZ(j) is superadditive on K.

On the other hand, by condition (iv), r is superadditive. Hence, since
the sum of superadditive functions is superadditive, the result follows
from [8, Lemma 4.7.1]. |

4. Average cost criterion

In this section we establish the optimality inequality (OIE for short)
for the average cost criterion V and prove the existence of average cost
optimal policies. Throughout this section, we assume that the conditions
in Lemma 3.4 hold. So, by Lemma 3.4, we can let f} be a discounted
cost optimal stationary policy with respect to the discounted rate o > 0.

By the Tychonoff Theorem we have that F is a compact metric space.
Hence, each sequence {f; ,n > 1} C F, has a convergent subsequence.
This means that there is a limit point f* € F for {f; ,n >1}.

Let ko € S be fixed, and for any a > 0 and ¢ € S, define

ua(d) = Vo (i) = Vg (ko).

Assumption 4.1 For some decreasing sequence {cy,} tending to zero

and some ko € S, there exists a nonnegative function h and a constant
N such that

(i) N <uq,(1) <h() foralln>1andi€ S;
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(i) there exists an action o' € A(ky) satisfying
> q(jlko, a")h(j) < oo.
Jje€S
Theorem 4.1 Suppose that the following conditions hold,
(1) Assumptions 2.4 and 4.1 hold; and
(ii) for everyi € S, A(3) is compact, and r(i,a) and 3, q(jli, a) R(j)
are continuous in a on A(i).

Then we have:

(i) there exists a constant g*, a function u on S, and a decreasing
sequence {am} tending to zero, such that fori € S:

o) g = limenVy (1), u@) = lm ug,(D);

b) g = r(i,£76) + Y a(ili, £16))uls)

j€ES
> mi i,a) + 4.1
> g o] oy

c) N < u<h (4.2)

(1i) f* is an average cost optimal stationary policy and satisfies
V(f*®,i) = g¢g*Vies.

(111) Any policy f € F realizing the minimum of the right-hand side of
(4.1) is average cost optimal.

Proof
(i) Forany n > 1, i € S and a € A(7), by Lemma 3.3 we have
Ve, @) = (i fa,®) + D a(ilis f2, ) Va, 0)-
JjES
Hence,
anVy, (ko) + antg, (i) = fan + Zq jlé, fa, (8) Uan( )
Jjes

(4.3)
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Since f* is a limit point of {f5_}, there exists a subsequence {o,}
of {an} such that limy 0 f3 (1) = f*(:) for all i € S. By As-
sumptions 4.1(ii) and (4.4), we have, for any n' > 0,

0 < |awVy, (ko)‘
JES
= r(ko,a') +Y_q(jlko, @
JES
—2q (kolk‘o, a') (h(k()) + INI)
< o0.

Hence, there exists a subsequence {ay,} of {an } such that

im oV (ko) = g*.

m'—o00

By Assumption 4.1(i) and the Tychonoff Theorem, we have that
{uq_,} is a sequence of the compact metric space [[;cs[V,h(i)].
Thus, there exists a subsequence {ay, } of {ayy } such that limy,
Ua,, (1) := u(i) Vi € S. By Assumption 4.1, we have limy, 00 o =
0; hence limy, o0 AmUg,, (i) = 0 for ¢ € S. We can then obtain
that

Tim_ oV, () = lim anVy (k) = g7, Vi€S.
Hence, the conclusions (i)(a) and (i)(c) are valid.

To prove conclusion (i)(b), from (4.4), for any m > 1, we have

amVy (ko)  amua, (i)

m(s) m(i) + o, (1)
r (i, f&, (1)) q (i, fa ) o w (i
) +]§ T+ [t 0,

(4.4)

Since limy 00 fa, (1) = f*(i), we have that

lim r (i, f5 (3)) =r(i, f*(5))

m—00
and

Jim > g (jli, £2, () w(@) = D_ a (ili, £ () u(s)-

jes JES
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By (4.4) and Fatou’s Lemma, for ¢ € S, we have

m(i)

Hence,

+u(i) >

m(i) m(i)

r (i, f*(3)) +y [M + 5ij] u(4). (4.5)
JES

> )+ i, £5(0)) u(j)
j€s
> arenjg) {T(’i,a) +j€X;Q(jli,a)u(j)}- (4.6)

This means that (i)(b) is valid.

(i) To prove (ii), from (4.6), there is a nonnegative function c¢(f*) on
S such that

= 7, @) + () 6 + ) aGli @) ul). @47

g

J€S

By (4.2), (4.7) and Bather [1, Theorem 2.1.3], we have

hmsup / > pis & )G FRG) +e(F)G) dE < gt

JES
i€S. (4.8)

Noting that ¢(f*) > 0, from (2.7) and (4.8), we have

V(fri) < ¢, i€S (4.9)

On the other hand, by a Tauberian Theorem [25, pp. 181-182],
for # € I, and ¢ € S, we have

g

*

<

IN

lim o, Vy (i)

m—oo

lim oV, (7,1)

m—o0

o0
QEI{I‘O am/o e—amt (Z pl](t, 7T)’!‘(t,j, 71')) dt

JES

limsu / (t,m)r(t, 7, dt
msup 7 (ZPU s ))

JES
V(m,i). (4.10)
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From (4.9) and (4.10), we have V(f*®,i) = ¢* < V(m,1), for all
7 € I, and i € S. The proof of (ii) is complete.

(iii) Similarly, we can prove (iii). [
Theorem 4.2 Suppose that the following conditions hold:
(i) The hypotheses of Lemma 3.4 and Assumptions 4.1 hold.

(ii) For anyi € S ={0,1,2,---}, A(i) = A, A is a partially ordered
set, and r(i,a) is nondecreasing in i for any a € A.

(iii) |lgll < C, for some positive constant C, and for each fized k € S,
Dc(k|i, a) is increasing in 1.

(iv) r(i,a) is a superadditive (subadditive) function on K.

(v) pe(kli,a) is a superadditive (subadditive) function on K, for all
fized k € S.

Then there exists an average cost optimal stationary policy which is in-
creasing (or decreasing) in state i.

Proof By Lemma 3.6, we have that f} is increasing (or decreasing)
on S for any a > 0. Hence, the limit point f* is also increasing (or
decreasing) on S. By Theorem 4.1, f* is also average cost optimal. The
proof is complete. [

5. Examples

In this section we provide two examples in which our Assumptions 2.4
and 4.1 hold, whereas the conditions in [5, 11, 12, 14] fail to hold.

Example 1

We observe continuously an admission control model for queueing sys-
tem MX/M/l. Let px, k = 0,1,2,..., denote the arrival probability of &
customers, and such that Y ;2 ;px =1 and Y o, kpi < co. The arrival
rate of the system is A\. Let u denote the exponential service rate of the
system. At any arrival time, the controller decides whether to admit
or reject all arriving customers. Rejected tasks are lost. Each accepted
task generates a reward c¢. A nondecreasing function 7(z) denotes the
cost rate for serving i customers. Let p > 0 denote the cost rate of
serving a customer. Hence, we have r(i) = pi.

We formulate this model as a continuous-time Markov decision pro-
cess. The system state ¢ denotes the number of customers available
for service in the system at any time (i.e., the queue length). So,



182 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

S ={0,1,...,4,...}. For each i € S, A(i) = {0,1}, with action 0
corresponding to rejecting and action 1 corresponding to accepting all
arriving customers. The cost rate function r satisfies r(i,0) = r(7),
7(i,1) = r(é) — cA. By Remarks 2.2 and 3.1, the cost function (i, a)
may be increased by adding a constant without affecting the discussion
of average optimality. So, we may take that r(7,0) = r(i) + cA, and
r(i,1) = r(7). The transition rate g satisfies:
q(0]0,0) =0 and for 1 > 1,

po ifj=1i-1,
q(jli,0) = —p ifj =1,
0  otherwise;

q(010,1) = — (32521 Apk) = —A(L — po), q(k[0,1) = Apx Vk > 1, and
fori > 1,

“ ifj=i-1,
oy ) B+ A1 =po)) ifj =1,
Gl 1) =4 if 5 =i+k,

0 otherwise.

For this model, we can derive that:

1. Assumption 2.4 holds. In fact, for all ¢ € S, we let wi(z) :=
pi+1+ch, and wo(i) := pA(Y 5o, kpk), 1 € S. By Lemma 3.2(v),
we can then verify Assumption 2.4.

2. Assumption 4.1 holds. In fact, by Lemma 3.3, we have, for any
a>0,

aVg(@) = min {r(i,a)+ Y q(ili,a)Va(5)

a€A(3) jes
< r(60) +uVe (@i -1) - uVe (@),  i>0.
aVy(0) < r(0,0)

c).
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So we have, for i > 0,

1,0
e < Biva-

r(:,0) r(i—1,0) -
< + V(-2
< 20 v
S ............
< 10y

s=1 K
Copilitl) e .
= Bt R0

Hence, we take kp = 0 to get that u, (i) < ’—’i(TiI—ll + % = h(i),
for all 2 € S and o > 0. By Lemma 3.5, we see that V}(¢) is an
increasing function on S. Thus, we have u4 (i) > 0 for all i € S and
o >0,and };c59(4]0,0)h(j) = 0 < co. Thus, Assumptions 4.1(i)
and 4.1(ii) hold.

Hence, by Theorem 4.1, we have the following conclusion. For this
admission control queue model, there exists an average cost optimal
stationary policy.

Remark 5.1 In Example 1, the cost rate is obviously unbounded.
Hence, the assumption of bounds of the reward rate in (7, 11, 12] fails
to hold. If we take pr, > 0 for all k > 0, then we can verify that the
conditions in [14] fail to hold.

We give next another example in which Assumptions 2.4 and 4.1 hold.
Moreover, both the cost and the transition rates are unbounded.
Example 2

We consider an admission control birth and death process as follows:
Let $=1{0,1,2,...}, A(i) ={0,1},i € S:
q(0]0,0) =0, and for ¢ > 1,

pi ifj=i-1,

q(jl3,0) = § —pi i j =1,
0 otherwise;
q(0]0,1) = —v, ¢(1]0,1) = v, and for 1 > 1,
pi ifj=i—1,
ooy ) —(pHANi—v ifj=1,
qUlLD =9\ ifj=i+1,

0 otherwise;
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p>A>0. r(i,0) = a1i® + agi + ¢, r(3,1) = bi® + boi, i € S, (c —
2a1)(A + p) < v(3a; + a3), ¢,a1,az,b1,b2 > 0.

Obviously, both the cost and the transition rates in this model are
unbounded. On the other hand, we can obtain the following.

1. Assumption 2.4 holds. In fact, we verify this conclusion as follows:
Let w1 (3) := (a1 + b )i? for all i € S, then

Y q(ili,0)wi(j) < 0, VieS;

JES
and,
for : = 0:
> 4010, )wi() = v(e1+b1)
Jes
< (o +01)(p + A+ 3v) + (a2 + by);
for i > 1:
> q(ili; Dw (4)
JjES
= piwy (i — 1) — piw (1) — Mwy (2) + dw (i + 1)
+ow; (2 + 1) — vw; (7)
= 2(ay +b1)(—=p + Ni2 + (a1 + by)(u + V)i
+v(a; + b1)(21 + 1)
< (a1 +b1) (s + A +30) + (ag + b)) (i + 1).
Let

wa(i) := ((a1 +b1)(p + A +3v) + (a2 + b2))(i + 1), i€S.
Then we have

Y qili,awi() < we(i), VieS, a€{0,1}. (5.1)
JjES

Moreover,

> a(ili,0we(j) < 0, VieS;
JES

and,
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for 2 = 0:
ZQ(jlﬂ, Dwz(j) = v((a1+b1)(k+A+3v) + (a2 + b2));
JES
forz > 1:
> a(ili, Dwa(5)
jES
= piwe(i — 1) — piwy(i) — Mwo(2) + Aiwa(i + 1)
+ows(i + 1) — vwa (1)
= ((a1+b1)(p+ X +3v) + (a2 + b2)) (—pi + i)
+v((a1 + b1) (s + A + 3v) + (a2 + b2))
< v((a1 +b1) (e + A+ 3v) + (ag + bz)). (5.2)

Let w3(z) := v((a1 + b1) (s + A + 3v) + (a2 + b2)) + ¢ + 1 for all
i € S. Then we have

Y a(lia)wa(j) < ws(i), Vi€S, a€{0,1}, (53)
JES

and

> q(li,a)ws(j) < 0, i€S, a€{0,1}. (5.4)
JjeSs

Hence, from (5.1),(5.3),(5.4), we get that Assumption 2.1 holds.

By a similar argument, we can obtain that the function gR on S
satisfies Assumption 2.4(Assumption 2.1), where R := w; +we+ws.
By Lemma 3.2, we can also get Assumption 2.2. Obviously R > 1
and r < R. Combining these facts we conclude that Assump-
tion 2.4 holds.

2. Now, let m(0) := 2(A + p + v), and m(z) = 2((A + p+)i + v) for
12> 1.
m(i), Hrg% and §(k|i,a) all are increasing in % for any a > 0
and a € {0,1}. In fact, m is obviously an increasing function on
S. Likewise, as (¢ — 2a1)(A + p) < v(3a; + ag), we can verify
that mi((;—)’% is increasing on S for any o > 0 and a € {0,1}. By
definitions of § , we can also verify that §(k|i, a) is increasing on S
for any @ >0, a € {0,1} and k € S.

3. uqa(i) >0, with ky = 0. In fact, by Lemma 3.5 and conclusion (2),
we have that V(i) is increasing in 3. Hence, uq4(z) > 0.
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4. ug(i) < h(i) Vi € S, @ > 0, and } 7,5 q(jl0,0)h(j) = 0 < oo,
where h(7) := (“2:c)i + alig’:l) for i € S. In fact, by Lemma 3.3,
we have 0 < aV}(0) < r(0,0) =c¢, and for i > 1,

aVy(i) < 7(5,0) +ipVy(i — 1) —ipV, (3).

Hence,
* (- T(i’o) L N
Vali) < Tin +Va(—-1)
< M BRTC oy
©
< e
< i(az2 +¢) 4 ari(i +1) LVA0).
p 2p
ua(i) = Vg(i) —Vg(0)
< i(ag + ¢) 4 a1i(i + 1)

7 2p
h(i).

5. Assumption 4.1 holds. This follows from the conclusions (3) and
(4).

Hence, by conclusions (1) to (5) and Theorem 4.1, we have the following.
For the given controlled birth and death process, there exists an average
cost optimal stationary policy.

Remark 5.2 Obviously, in Example 2, the conditions in [1]-[13] are
not satisfied, but our assumptions do hold.
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optimal and approximately optimal stationary policies in the absolute
sense is studied. The main results can be summarised as follows:

(i) An optimal stationary policy exists if the state and actions sets are
finite, whereas an e-optimal stationary policy is guaranteed when just
the state space is finite.

(ii) This latter fact is used to obtain, for the general denumerable state
space case, that e-optimal stationary policies exist if the controller is
risk-seeking and the optimal value function is bounded.

In contrast with the usual approach, the analysis performed in the paper
does not involve the discounted criterion, and is completely based on
properties of optimal value function, particularly, on the the strong
optimality equation.

Keywords: Utility function,constant risk-sensitivity, Ornstein’s theorem, strong op-
timality equation, risk-seeking controller.

1. Introduction

This note concerns Markov decision processes (MDPs) with discrete
state space and nonnegative rewards. The fundamental assumption is
that the attitude of the controller before a random reward is charac-
terised by a constant risk-sensitivity coeficient A # 0, which is associ-
ated to an exponential utility function (Pratt [13], Fishburn [7]). The
performance of a control policy is measured by the corresponding risk-
sensitive expected total-reward criterion introduced in Section 2, and the
paper analyses the existence of optimal and e-optimal stationary poli-
cies, i.e., stationary policies whose performance index differs from the
optimal value by less than ¢ > 0.

Recently, there has been a great interest in controlled stochastic pro-
cesses endowed with a risk-sensitive criterion; see, for instance, Flem-
ming and Hernandez-Hernandez [8], Brau-Rojas [2], Avila-Godoy [1],
Cavazos—Cadena and Montes—de-Oca [4], as well as the references there-
in; the first two works deal with the risk-sensitive average index which,
under a strong simultaneous Doeblin condition (Thomas {17]), was stud-
ied in Cavazos-Cadena and Ferndndez-Gaucherand (3] via the total-
reward criterion considered in this article. Among other topics, the work
by Avila-Godoy generalizes results in risk-neutral negative dynamic pro-
gramming to the risk-sensitive context; for instance, she has shown that
if the reward function is non-positive (the negative dynamic program-
ming framework), then a stationary policy obtained by maximising the
right-hand side of the optimality equation is risk-sensitive optimal, ex-
tending a classical theorem by Strauch [16]. However, even under strong
continuity-compactness conditions, this result does not hold for non-
negative rewards (Cavazos—Cadena and Montes—-de-Oca [4]) so that, as
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in risk-neutral positive dynamic programming, searching for e-optimal
stationary policies is also an interesting problem within a risk-sensitive
framework.

For MDPs with nonnegative rewards, the existence of optimal or e-
optimal stationary policies has been widely studied in the literature on
the risk-neutral expected total-reward criterion. A key fact in the anal-
ysis of this problem is that if the state and action spaces are finite, then
an optimal stationary policy exists, a result that is usually obtained via
the discounted criterion (Puterman [14]). Using this result, the problem
for MDPs with more general state space is approached by constructing
approximations that allow one to obtain e-optimal stationary policies
(Ornstein [12], Hordijk [11, Chapter 13]). These ideas, based on the
discounted criterion, were recently extended in Cavazos-Cadena and
Montes—de-Oca [5], where for the risk-sensitive expected total-reward
criterion and nonnegative rewards, the existence of optimal stationary
policies was established for finite models, whereas, for general denumer-
able state space, the ¢-optimality results were obtained whenever the
optimal value function is bounded and the controller is risk-averse, i.e.,
when A < 0.

This work has two main objectives: The first one is to establish the
existence of risk-sensitive c-optimal stationary policies for MDPs with
denumerable state space when the controller is risk-seeking, a feature
that corresponds to a positive risk-sensitivity coefficient. The result on
this direction is stated below as Theorem 7.1, and is obtained under the
assumption that the optimal value function is bounded. The second goal
refers to the approach used establish Theorem?7.1, which is based on the
existence of optimal stationary policies for the finite state space case;
the idea is to obtain this latter result focusing on the properties of the
risk-sensitive expected total-reward criterion. The corresponding results,
extending the analysis in Cavazos—Cadena and Montes-de-Oca [6] for
risk-neutral dynamic programming, are contained in Sections 3-5. The
approach is entirely based on the (usual) optimality equation, as well as
on its strong version (see Lemmas 2.1 and 2.2). The idea behind this
part of the work is to gain a better understanding of the properties of
the risk-sensitive expected total-reward index.

The organization of the paper is as follows. In Section 2 the decision
model is introduced, and the basic facts concerning the risk-sensitive
optimality equations are stated. The effect of modifying a stationary
policy at a single state is analysed in Section 3, whereas in Section 4 the
optimal value functions of different MDPs are compared. These tools are
used in Sections 5 and 6 to prove the existence of optimal and e-optimal
stationary policies for MDPs with finite state space, and this result is
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the basic ingredient to obtain e-optimal stationary policies for models
with general denumerable state space in Section 7. Finally, the paper
concludes in Section 8 with some brief comments.

Notation Throughout the article, R and IN stand for the set of real
numbers and nonnegative integers, respectively. Given a function
C: S — IR, the corresponding supremum norm is denoted by

IC|l : = sup|C(w).
wES

Finally, if W is an event, then I[W] stands for the associated indicator
function.

2. Decision model

Let M = (S,A,{A(z)}, R, P) be the usual MDP, where the state
space S is a (nonempty and) denumerable set endowed with the discrete
topology, the metric space A is the control (or action) set, and for each
z € S, 0 # A(z) C A is the measurable subset of admissible actions at
state . On the other hand, R: IK — IR is the reward function, where
K: ={(z,a)|a € A(z),z € S} is the set of admissible pairs, and P =
[pzy(+)] is the controlled transition law. This model M has the following
interpretation. At each time t € IN the state of a dynamical system is
observed, say X; = z € S, and an action A; = a € A(z) is chosen.
As a consequence, a reward R(z,a) is earned and, regardless of which
states and actions were observed and applied up to time ¢, the state of
the system at time ¢+ 1 will be X;; = y € § with probability p;,(a),
description that corresponds to the Markov property of the decision
model.

Assumption 2.1 For every z,y € S,
(i) a — R(z,a) and a — pzy(a) are measurable functions on A(z),
and
(i1) the reward function is nonnegative: R(z,a) >0, (z,a)€ K.

Utility function Given a real number A, hereafter referred to as the
(constant) risk-sensitivity coefficient, the corresponding utility function
Uy: R — IR is determined as follows. For z € R,

[ sign(\)ere, if A#£0,
Uz): = {x, when X =0; (2.1)

it is not difficult to verify that Uy (-) is always a strictly increasing func-
tion which satisfies the basic relation,

Urc+z) = erUy(z), A#0, z,c€R. (2.2)
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It is assumed that the controller grades a random reward Y via the ex-
pectation of Uy(Y'), in the following sense: if two decision strategies d;
and 2 lead to obtaining random rewards Y; and Ys, respectively, ¢; will
be preferred if E[U,(Y1)] > E[Ux(Y2)], whereas the decision maker will
be indifferent between ¢; and d; when E[Uy(Y1)] = E[Ux(Y2)]. Let Y
be a given a random reward for which U,(Y') has a well defined expec-
tation, conditional that it is always valid when A # 0. In this case, the
certain equivalent of Y with respect to Uy(-) is denoted by E(\,Y) and
is implicitly determined by the

UME(\Y)) = E[UA(Y)] (2.3)

equality that, via (2.1), leads to the explicit formula

+log (E [e*Y]), A#0
=32 ’
E()\Y) { E[Y] A=0, (2.4)
where the usual conventions log(co) = oo and log(0) = —oo are en-

forced. Thus, for an observer with risk sensitivity A, the opportunity of
getting the random reward Y can be fairly interchanged by the certain
amount E(\,Y). Suppose now that Y is a nonconstant random variable.
When XA > 0 (resp. A < 0) the utility function Uy(-) in (2.1) is convex
(resp. concave), and Jensen’s inequality yields that E()\,Y) > E[Y]
(resp. E(\,Y) < E[Y]). A decision maker grading a random reward Y’
according to the certain equivalent E(),Y) is referred to as risk—seeking
if A > 0, and risk-averse if A < 0. If A = 0, the controller is risk—neutral.

Remark 2.1 The following simple properties of the certain equivalent
E(\,Y) will be useful, Cavazos-Cadena and Ferndndez-Gaucherand [3]:

(i) If P[Y =c] =1 for some c € R, then E(A,Y) =c.

(it) Let Y and W be two random variables satisfying P[Y > W] = 1.
Since Uy(-) is increasing, it follows that

UAE(AY)) = E[UNY)] 2 E[UNW)] = UxEQXW)),
and then E(\,Y) > E(\,W).
(iii) In particular, if P[Y > 0] =1 then E()\,Y) > 0.

Policies For each ¢t € IN, the space IH; of admissible histories up to
time t is recursively defined by

Hy: = S, H = ]KX]Ht_l, t>1, and
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a generic element of H; is denoted by h; = (zo,aq,...,%t—1, -1, Tt)-
An admissible control policy for model M is a special sequence m = {m;}
of stochastic kernels: For each ¢t € IN and h; € IH;, m;(-|h;) is a probabil-
ity measure on the Borel subsets of A satisfying 7 (A(z;)|h:) = 1, and
for each Borel subset B of the space A, h; — m(B|h;) is a measurable
mapping on IH;; the class of all policies is denoted by P. Given the
initial state Xy = z and the policy 7 € P being used to drive the sys-
tem, under Assumption 2.1(i) the distribution of the state-action process
{(Xt, At)} is uniquely determined via the Ionescu Tulcea’s theorem (see,
for instance, Hinderer [10], Ross [15], Herndndez—Lerma [9], or Puter-
man [14]). Such a distribution is denoted by P7| -], whereas E7| -] stands
for the corresponding expectation operator. Define IF: = [ .5 A(z), so
that IF consists of all (choice) functions f: S — A satisfying f(z) € A(z)
for all z € S. A policy = is stationary if there exists f € IF such that for
each ¢ € IN and h; € IH;, the probability measure 7(-|h;) is concentrated
on {f(z;)}. The class of stationary policies is naturally identified with
IF, and with this convention IF C P.

Performance index Given A € IR, the A-sensitive expected-total re-
ward at state £ € S under policy © € P is defined by

Llog (E;r [e/\Z?io R(Xt,At)]) , ifA#£0

W(m,z): =
me) Ez [Z;’ia R(Xt,At)], ifA=0.

(2.5)

Thus, when the system is driven by policy 7 starting at z, V)\(m, z) is the
certain equivalent (with respect to U)) of the total reward
Yoo R(Xt, Ar). Observe that the nonnegativity of the reward func-
tion implies that V) (m,z) > 0 always hold (see Remark 2.1(iii)). The
A-optimal value function is given by

Vi(z): = sgg Wi(m,z), z€S, (2.6)
U

and a policy 7* is A-optimal if Vy(7*,z) = V{(z) for all z € S. The
case A = 0 of this criterion has been widely studied in the literature (see,
for instance, Puterman [14] and the references therein) and this paper
concentrates in the risk-sensitive context A # 0.

Under Assumption 2.1, the expected value in (2.5) is well defined and
the inequalities 0 < Vj(m,-) < Vy¥(-) always hold, but it is possible to
have that V' (z) is not finite for some z € S which is excluded from the
discussion.

Assumption 2.2 For each x € S, V(x) is finite.
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As already noted, even when the state space is finite and Assump-
tion 2.1 is strengthened to require the continuity of the transition law
and the reward function, as well as the compactness of the action sets,
the finiteness of Vy¥(-) does not generally ensures the existence of an opti-
mal stationary policy (Cavazos—Cadena and Montes-de-Oca [4]). Under
the present Assumptions 2.1 and 2.2, the following notion of ‘nearly’ op-
timal stationary policy, used by Hordijk [11] in the risk-neutral context,
will be used.

Definition 2.1 Let A#0, € > 0 and f € IF be fized.
(i) Policy f is e-optimal at state z if V\(f,z) > V() —¢;
(11) f is e-optimal if it is e-optimal at every state z € S.

The existence of optimal and e-optimal stationary policies will be
analysed using the basic properties of the optimal value function stated
in the following two lemmas.

Lemma 2.1 Let A # 0 be fized. Under Assumptions 2.1 and 2.2, the
following assertions are valid.

(i) The optimal value function VY (-) in (2.6) satisfies the following
A-optimality equation (A\-OE).

, T€ES.

Ux(Vx(z)) = sup [e”“z’“) > pey(@)Ux (V3 ()
a€A(z) y

(2.7)
(11) Moreover, if the function W: S — [0,00) is such that

U,\(W(fl))) > sup [e,\R(z,a) szy(a)Uz\ (W(y))} , TES,
acA(z) Y

(2.8)
then W(-) > Vy(-).

A proof of this result, using parallel arguments to those employed in
the risk—neutral case, can be found, for instance, in Avila—Godoy [1],
Cavazos-Cadena and Ferndndez—Gaucherand [3], or in Cavazos-Cadena
and Montes-de—Oca [4, 5]. The following generalization of Lemma 2.1
gives a strenghtened version of (2.7).

Lemma 2.2 For each n € IN, let F,, be the o-field generated by
(XO,AO,---an—laAn—laXn), and
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suppose that the positive random variable T is a stopping time with re-
spect to {Fn}, i.e., PI[T €{1,2,3,...} U{oc}] =1 for every z € S and
n € P, and for each k € IN\ {0}, the event [T' = k] belongs to F. In
this case, the following strong A\-optimality equation is valid.

U(Vi(z)) = sup ET [6*2?3 R(Xe, 407, (v;(xT))] , zeS.  (29)
weP

Remark 2.2 Throughout the paper the following convention is used. If

T is a stopping time and W : S — R is a given function, then W(Xr) =

0 on the event [T = oo]. Thus, the ezpectation in the right hand side of

(2.9) equals

B} [XZi=d RX0AYY, (v (X)) 1T < o

+E [} EZo FEAM ()T = o0

A proof of Lemma 2.2, following the arguments presented in Hordijk [11],
can be found in Cavazos-Cadena and Montes-de-Oca [5]. The above
strong A-OE, which will play an important role in the analysis of the
existence of optimal and nearly optimal stationary policies, will be used
when T is the first (positive) arrival time to a subset G of the state
space. For G C S, define

Te = min{n > 0| X,, € G}, (2.10)

where the minimum of the empty set is 0co. By convenience, the following
notation is used when G = {z} is a singleton.

Tizy =T, TES. (2.11)

3. A basic tool

As already mentioned, one of the objectives of this article is to anal-
yse the existence of A-optimal stationary policies for finite MDPs via the
fundamental properties of the risk-sensitive expected total-reward crite-
rion. In this section, the basic preliminary result to achieve this goal is
stated as Theorem 3.1. First, let A # 0, f € IF and =y € S be arbitrary
but fixed, and consider the MDP M; = (S, A,{A;(z)}, R, P), where
Af(z) = {f(z)} for every z € S, i.e., f(z) is the single admissible action
at state x with respect to model M;. For every policy 7 in the class
P; of admissible policies for model My, it is clear that m;(Af(z)|hs) =1
always holds. Therefore it is not difficult to see that f is, essentially, the
unique member of Py, in the sense that P7[| = P[] for every z € S
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and w € Py. Consequently, Vy(f,) is the A-optimal value function asso-
ciated to M;. Applying Lemma 2.2 with T, and My instead of T and
M, respectively, it follows that for every state z

Uy(V(f,z)) = Ef [e*zﬁg_l RXeAy, (V(f, XT,O))]

TzO l

= m[*z RXe. 400, (V(f, z0)) I[Tm0<oo]]

Tpp—1
+Eaf: [e,\ Yo R(Xt,At)U/\ (0) I[Ty, = oo]} , (3.1)

where the second equality is due to the convention in Remark 2.2. The
main purpose of the section is to analyse the changes in this equality
when policy f is modified at the given state zo. Let a € A(zo) be a fixed
action, and define the new policy f € IF by

Fa) :{ f(z), @+ 62)

a, T = I

Since Vi\(f,-) is the optimal value function for model M, this definition
of policy f and Lemma 2.1(i) applied to My together yield

Ux (Va(f,2)) = ”“”f‘”pr F(2))U(Va(£:)), = €S\ {zo}-

Although this equality is not generally satisfied when z = zp, under
Assumptions 2.1 and 2.2, it is not difficult to see that there exists § € R
be such that

Us (Va(f, 20)) = eXF+RE0, (o)) > oy (f@o)Ur(alf,9))  (3:3)
Yy

In the argument contained in Section 5, this equality will be satisfied for
some § > 0. The following result extends Cavazos—Cadena and Montes—
de-Oca [6, Lemma 3.1] to the present risk-sensitive framework.

Theorem 3.1 Suppose that Assumptions 2.1 and 2.2 are valid, and let
the policy f € IF and § € R be as in (3.2) and (3.3), then

Ux(VA(f,20))
= M (U,\(V)‘(f, xo))Eaf;O |:e)\ 228_1 R(Xt’A')I[TIO < oo]}

+UA0)Bf, [} ER0 RXAI [T, = oo]] ). (3-4)
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Proof Notice that (3.3) can be equivalently written as
Ux(Va(f, z0))
= RN (4 (F(z0))Un(VA(f, 20))

+ Z Dxy, y -'L'O U/\(V/\(f7 )))

y#To
_ e’\[5+R(x°’f(I°))]on, 20 (F(£0))Ur(VA(F, z0))

1 A5+ (z0,f(z0))] )" Peo,y(F(20))
y#zo

[*Zto ROA, (v (f,xo))I[Tzo<°°]]

+eMO+R(zo0,f(z0))] Z Pao,y(f(20))
y#xo

B} [*ERoRXANY, (0)) 1Ty, = ]|, (3.5)
where (3.1) was used to obtain the second equality. On the other hand,

since V) (Xr,, ) = Va(zo) on the event [Ty, < oo] (see (2.10) and (2.11)),
it is clear that

- Tz
E{ [,\Z 0~ (Xt,At)U)\(V)‘(XTIO)I[TIO = 1]]

= Ur(Va(f, 20))?RES@p o (F(2o)), (3.6)

whereas, using the definition of the stopping time T}, the Markov prop-
erty yields

- Ty
E£ [ A= 0 R(Xt’At)U,\(V,\(XTzO))I[]- < TZ() < oo]‘ X = y]

0, ] ify =z
- UA(V,\(wo)) '\R(x"’f (o)) 3.7)
[ ’\Zt (X"At)I[l <Tp < OO]] if y # x¢.
Observe now that the expectation in right-hand side of this equality
depends only on the actions selected at times ¢ < Ty, and that X; # zo

when 1 < t < Ty, (see (2.10) and (2.11)), and in this case f(X;) = f(X).
When X = y # xy, the latter equality also occurs at time ¢t = 0, so that

= Trg—1
Eg [6A2t=8 R(XtaAt)I[l S TJ:O < w]]

- B [exzf:8’lR(XhAt)I[1 < Ty < ]|
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Therefore, in the expectation in the right-hand side of (3.7), policy f
can be replaced by f, and taking the expected value with respect to X;
in both sides of the resulting equation, it follows that

o

= Un(Va(z0)eR@ @) §™ g (F(0))

Yy#Zo

- Ty
B [Az 3" R(XuA»UA(VA(XT,O))I[l<Txo<°°]}

Tzo-l

Eg [e)‘ o RXeAI[N < Ty < oo]:l

- (V)\(I )) AR zo,f(zo)) Z Do y ))
Y#£To

Tra—1
Ef [e)‘Zt=g RXeA) T, < oo]] : (3.8)

Recall that the inequality T, > 1 always holds. Similarly, it can be
proved that

Ea]:o [6)‘ > R(Xt,At)I[T — OO]]
R 7 e (Flao) B [ 0 PXCAT, = oo
Yy#£To

Using this equation, together with (3.6) and (3.8), equation (3.5) yields
that

Uxr(Va(zo))
= MU (Va(zo)) EL, [*ET"’ R(X“Af’I[Txﬁl]]

. Tep—1

+eMUy, (Va(zo)) EZ, [e’\Zt=8 RXe A0 < Ty, < oo]]
. Ty

£ (4(0) B, | ZE R, = ol

from which (3.4) follows. ]

4. Comparison of optimal value functions

This section presents an additional consequence of the strong optimal-
ity equation in Lemma 2.2, namely, if the action sets of several MDPs
coincide except at some distinguished state g, then the corresponding
optimal value functions can be compared.
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Theorem 4.1 Let A # 0 and xy € S be fized, and consider two MDPs
M, = (S,A,{Ax(z)},R,P), k = 1,2, where Ai(zy) and Az(zo) are
nonempty (measurable) subsets of A(zo), and

Ai(z) = As(z), z € S\ {0} (4.1)

Let Py be the class of admissible policies for model My and denote by
Vi the corresponding optimal value function, i.e.,

Vx k(z) = sup Vj(m,z), z€S.
TEP)

In this case,

(i) If 6 is a nonnegative number,

Via(@o) +4 2 Vii(mo) = V() +6 2 Vi)

(i) In particular,

Vaa(o) 2 Vyi(zo) = Vya() 2 VXi()- (4.2)

Proof Let m € P; be an arbitrary policy, select a stationary policy fo
for model M», and define a new policy 7’ € P, as follows: m;(-|ht) =
ne(|he) if Tk # zo for k = 0,1,...,t, whereas mi({fo(zs)}he) = 1 if
zy = xo for some k < t. In other words, if Xy # xo, policies 7 and =’
coincide before the first visit to state zg (at time T,), but once zg is
reached at some time k, 7’ chooses actions according to fo from time k
onwards. From (4.1) it follows that «' € Py. Thus, given Xo = = # xo,
the fact that m and 7’ coincide before time T, implies that

, Tra—1
Ux(Vxolz) > Ef [eAEtz?) R(Xe,A0) (], (V;,2(XT10))]
T,;O—l

= ET {ez\zt=o R(Xt,At)U/\ (V,\*,2(XTz0))j|v (4.3)

where Lemma 2.2 applied to model Ms was used to obtain the inequality.
Suppose now that

Vx o(z0) +6 > V5 1 (z0), where § > 0.

In this case,
Vx o(X1,) +6 2 Vi (X1, ) (4.4)

In fact,

V,\*,Q(XTIO)'*“S = V,\*,2($0)+5 2 V,\*,l(IO) = V/\tl(XTzo)
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on the event [T, < oo] whereas, by the convention in Remark 2.2,
Vyo(X1, ) +6=62>0=Vy,(Xr, ) when Ty, = co. Thus, multiplying
both sides of (4.3) by €, (2.2) implies that, for = # x,

Tzg-1
U (Vi o(z) +48) > Ef [exzmg KAy (Vi“,a(XTzo”))]
Try—1
> E;r |:6AE¢=8 R(X"At)U)\ (V):l(XTro))]

where the second inequality uses (4.4) and the fact that the utility func-
tion is strictly increasing. Since 7w € P, is arbitrary, from another appli-
cation of Lemma 2.2, then for model Mj, it follows that

Ux (Vxa(z) +68) 2 U (V3 1(z)), = # =0,
which is equivalent to
Violz) +0 > V) (z), = # 0. (4.5)

In short, it has been proved that when § > 0, the inequality VY ,(z0) +
6 > Vy 1(zo) implies (4.5), establishing part (i), and then part (ii) equa-
tion (4.2) is obtained by setting § = 0 in part (i). [ ]

Corollary 4.1 Given X\ # 0, consider an MDP
M = (S,A,{A(z)}, R, P)

satisfying Assumptions 2.1 and 2.2, and let zo € S be a fized state for
which the corresponding action set is finite and has r > 1 elements, say

A((E()) = {al, as, ... ,ar}.

For each k =1,2,...,r, define a new MDP M. = (S, A,{Ax(z)}, R, P)
by setting

Ap(z) = A(z), € S\{zo}, and Ag(zo) = A(zo) \ {ar}.  (4.6)

Let Py be the class of admissible policies for model My, and let V/\*, p be
the corresponding optimal value function, i.e.,

Vx k(z) = sup WVi(m,z), z€S,
TEP

so that V' (z) € [0,V (z)], £ € S. In this case, there exists a permuta-
tion (ki,ka,... k) of the set {1,2,...,7} such that

V;,kl(') Z V):kz(') 2 VA*,kg(') 2 e 2 V,\*,k,.() (47)
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Proof Notice that the action sets for the different models M} coincide
except at the distinguished state z3. Consider now the sequence of
nonnegative numbers (V) 1(2o), Vi 2(0), ..., V) r(z0)). Since this is a
sequence of real numbers, there exists a permutation (ki, ks, ..., k) of
the set {1,2,...,r} satisfying

Vi b (@0) 2 VX g, (m0) 2 -+ 2 V3 (0),

and then Theorem 4.1 yields that (4.6) is satisfied by this permutation.
]

5. Optimality for finite models

In this section the existence of A-optimal stationary policies for MDPs
with finite state and action sets is established. As previously noted, this
result has been recently obtained via a discounted dynamic operator as-
sociated to an auxiliary stochastic game (Cavazos—Cadena and Montes—
de-Oca [5]). In contrast, the induction argument presented below de-
pends solely on the the properties derived from the strong optimality
equation in the previous sections.

Theorem 5.1 Let A # 0 be a fized real number, and suppose that the
MDP M = (S, A, {A(z)}, R, P) satisfies Assumptions 2.1(ii) and 2.2,

and
15|+ " 1A(z)| < oo (5.1)
€S
where, for each set B, |B| denotes the number of elements of B. In this
case, there ezists a A-optimal stationary policy.

Proof Consider the class M consisting of MDPs
M = (S,A,{A(z)}, R, P)

for which Assumptions 2.1(ii) and 2.2 are valid, and |S] is a fixed positive
number n. It will be proved, by induction of the value of ) ¢ |A(z)],
that an optimal stationary policy exists for each model M € M whenever
the summation is finite. To begin with, notice that, since each set A(x)
is nonempty, the inequality }° s |A(z)| > |S| always holds.

Initial step

The conclusion is valid when ) o |A(z)] = |S| = n. In fact,
in this case each set A(z) is a singleton, and then IF contains
a single member, say IF = {f}. Moreover, f is essentially the
unique element of P, so that f is optimal; see the comments at the
beginning of Section 3.
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Induction step

Suppose that an optimal stationary policy exist for each MDP
= (S, A, {A(z)}, R, P) € M satisfying that > ozes |A(z)| = m—
1 > 1S = n.‘ It will be proved that an optimal stationary policy
exists for a model M = (S, A, {A(z)}, R, P) € M satisfying that
Y ses|A(x)] = m > n = |S]. To achieve this goal, first notice
that, since m > |S|, there exists g € S such that |A(zg)| =1 > 2,
and write A(zo) = {a1,a2,...,a,}. Foreach k =1,2,...,r, let

Mk = (SvAa {Ak(m)}aRa P)

be the MDP defined in the statement of Corollary 4.1, and let the
permutation ki, ko, . ..,k of the set {1,2,...,r} be such that (4.7)
holds. Observe now the following facts (i) and (ii):

(i) From the definition of the sets Ax(-) in (4.6), it follows that
Y ses |Ak(z)] = m — 1, so that, by the induction hypothe-
sis, each model M} admits an optimal stationary policy. In
particular, there exists a stationary policy f such that

f(z) € Ak (z), z€S, and Wi(f,") =VX4 () (5.2)
(i1) As it will be shown below,
Vik () =VX(): (5.3)

From this equality and (5.2) it follows that V)(f,) = Vy(:), so
that f is optimal for model M, completing the induction argu-
ment. Thus, to conclude the proof it is necessary to verify (5.3).
Since VA(f,-) < V() (see (2.6)), it is sufficient to show that
WA(f,-) > V¥(:), an inequality that, using Lemma 2.1(ii) and the
nonnegativity of V) (f, ), follows from

U(Va(f, ) 2 DY " p (@) Ur(Va(f,9)), 2 €S, a € Alz).
Y

(5.4)
To show that this statement is satisfied, observe that using the
optimality equation for model My, together with the equality in
(5.2), it follows that the inequality in (5.4) occurs whenever (z,a) €
K\ {(z0, ak, )}, so that to verify (5.4) it is sufficient to show that

Ur(Va(f, 20)) > @000 N " p (ag, UA(VA(F59)). (5.5)
Yy
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With this in mind, observe that the two numbers being compared
in this inequality are finite and have the same sign, so that there
exist 0 € IR such that

Us(Va(f,z0)) = @0HEE8IIY “pp (0 )UAVA(S,9)), (5.6)
Yy

and it is not difficult to verify that, regardless of the sign of A,
(5.5) is equivalent to
0 >0, (5.7)

an assertion that can be verified as follows. Using ai, instead

of a, construct the policy f in (3.2) and observe that f is not
an admissible policy for model My, , but belongs to the space of
stationary policies for model M, ; notice that ag, € A(zo)\{ar,} =
Ag, (o). Thus, Vi () > Va(f,), so that (4.7) and (5.2) together
yield that

Wa(f,) = Vi () > Vi) > W(f,). (5.8)

On the other hand, (3.1) with f and z, instead of f and z, respec-
tively, yields that

- ~ Tea—1
U (V)\(f, 11:0)) (1 - Ea{g [e)‘ PO R(XtyAt)I[Tzo < OO]])
= V0B [ == FAT,, = ool (5.9

whereas, by equation (3.4) established in Theorem 3.1,
0 (f,a0) (1= EL, |22 R AT, < o)
= e>“5U>\(0)1*J'_,,f;0 [e’\ Yizo RXeAd i, = oo]] ,
which is equivalent to
0 (il fya0) (e = B, [P Bz, < o )
= UM\(0)EL, [ ERRXAIT,, = o).

Combining this equation with (5.9) and using the expression for
the utility function in (2.1), it follows that

AMVA(f20)=Wa(f,20)] (1 _ E{o [exzfig—l RXeA) 1T, < OO]D

= N Efo [e,\zgo R(Xt,At)I[TIO < oo]] . (5.10)
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F Tzn—1
Observe now that EJ, [e)‘ Te=s  RXeA) [T, < oo]] < 1. Indeed,

the occurrence of the reverse inequality leads to the contradiction
that both sides of (5.9) have different signs. To establish (5.7),
consider the following three cases, which are exhaustive:

H Tpn—1
Case 1 Ef, [e’\ Ti=o  RXuAIIT, < oo]] =1.
In this situation (5.10) implies that

e = Bl [exzfzg“mxwt)nﬂo < ool]

= 1,

and then, recalling that A # 0, it follows that § = 0, so that
(5.7) is certainly valid.

: Tpn—1
Case 2 Ef, [e)‘ Yo BXeANT, < oo]] <land A >0.

Since A > 0, (5.8) implies that eXVA(fiz0)-Va(fizo)l < 1. and
then (5.10) yields

- Tzg—1

i.e, 1> e and (5.7) follows combining this inequality with
the positivity of A.

F Tza—1
Case 3 Ei, [e*2a=8 R(X6A) [T, < oo]] <1land A<0.
In this context, it follows from (5.8) that

VA (F20)=Va(f,20)] > 1,
since A < 0. Then (5.10) implies
= Tzn—1
< M~ Bf, [P RROIT, = o]

that is, el!® = e~ > 1, inequality that yields (5.7).

In short, it has been proved that § in (5.6) is nonnegative, which, as
already noted, implies (5.5) and concludes the proof of the theorem. W
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Under Assumptions 2.1 and 2.2, Theorem 5.1 ensures that a A-optimal
policy exists when condition (5.1) holds. If the state space is finite
but some action set is infinite, the existence result may fail even un-
der strong continuity conditions on the transition-reward structure of
the model (Cavazos-Cadena and Montes-de-Oca [4]); as a complement
to this point, an example is now provided in which all the action sets
are finite, the state space is denumerable and infinite, but an optimal
stationary policy does not exist.

Example 5.1 Suppose that S = IN and A = {0,1} = A(z) for every
z € S, and define the transition law and the reward function as follows:

Pzz+1(0) = 1 = pzo(l), z#0, and
pOO(a‘) = 1 a=0,1;
R(z,0) = O, reN,

1
R(z,1) = 1—;, z #0, and
R(0,1) = 0.

Proposition 5.1 In Example 5.1, assertions (i) and (ii) hold, where
W:IN — R is given by W(z) =1 for z # 0 and W(0) = 0.

(i) Vi) = W(), and
(1) A X-optimal policy does not exist.

Proof Since state 0 is absorbing and R(0,-) = 0, it is clear that
PJ[R(X:,A:) = 0] = 1 and then Vy(#,0) = 0 for every policy , so
that
Vy(0) =0 =W(0); (5.11)
see (2.5) and (2.6). Next, suppose that Xo =z € IN'\ {0}, let 7 € P be
arbitrary be fixed, and set
T =min{n > 0|4, =1}.

In this case, it is clear that, on the event [T = oo], A; = 0 for every
t € IN, whereas the definition of the transition law yields on the event
[r < 0], 4¢ =0,

X;=z+71, fort<7, and X; =0, fort> 7.

Therefore, from the the definition of the reward function, it follows that

ad 1
R(X,4) = ([1——— ) I[r < o
; bt ( z+7’> [ o

< 1  P7[]-almost surely,
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then, since U, (+) is increasing,

U\(Va(r,z)) = ET [UA (1 - ﬁ) Ir < o0] + Uy (0)I[r = o0))
< UW), (5.12)

so that,
Wi(m,z) <1=W(z). (5.13)

Consider now the stationary policy f,, defined by fr(y) =0ify #z+n
and fp(z+n) = 1. In this case P [t =n] =1, and then the equality in

(5.12) with f, instead of 7 yields that Ux(V\(fn, z)) = Ua (1 - x_j——n—)’

ie.,
1

z+n

V,\(fn,iL') =1-

Since n € IN and 7 € P are arbitrary, this equality and (5.13) together
yield, via (2.6), that Vy¥(z) = 1 = W(z). Since z € IN\ {0} was arbitrary
in this argument, part (i) follows from this latter equality and (5.11),
then part (ii) is obtained from the inequality in (5.13) which is valid for
every £ # 0 and 7 € P. [ ]

In the remainder of the paper, attention concentrates on the existence
of e-optimal policies; see Definition 2.1.

6. Approximate optimality: part 1

This section concerns MDPs with finite state space but, in contrast
with Section 5, the action sets are assumed to be arbitrary (measurable)
subsets of the action space. As previously noted, within this context, the
existence of a stationary policy can not be generally ensured. However,
as stated in Theorem 6.1 below, an ¢-optimal stationary policy exists
under Assumptions 2.1 and 2.2.

Theorem 6.1 Suppose that Assumptions 2.1 and 2.2 hold, and that the
state space 1is finite. In this case, given € > 0, there ezists a stationary
policy f which is e—optimal, i.e.,

W(f,z) > Vy(z)—e, z€S.

The idea to establish this result consists in approximating the original
MDP M by models whose action sets are appropriate finite sets, showing
that in this reduction process, the optimal value function does not change
‘substantially’. Although Theorem 6.1 was obtained in Cavazos—Cadena
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and Montes—de—Oca [5)], the proof presented below, relying on the results
of Section 4 and on the dominance property in Lemma 2.1(ii), is simpler.

Lemma 6.1 Suppose that Assumptions 2.1 and 2.2 hold and let xy € S
be fized. For each nonempty and finite set G C A(zy), consider the new
MDP Mg = (S, A,{Ag(z)}, R, P) obtained by setting

Ag(z) = A(z), z € S\{zo},and Ag(zo) =G. (6.1)

Let Pg be the class of admissible policies of Mg and denote by Vy ()
the corresponding optimal value function, i.e.,

Vx g(z) = sup Vi(m,z), z€S. (6.2)
me€Pg

With this notation, assertions (i)-(iii) below are valid, where G and H
are nonempty and finite subsets of A(xzy).
(i) GCH=V; () <V{ x()
Set

L(z) = sup {Vy y(z) |0 # H C A(zo), H is finite}, z€S.
(6.3)

(i1) Given € > 0, there exzists a nonempty and finite set G = G(g) C
A(zg) such that

Vig(®z) > L(z)—¢, z€S. (6.4)

(iii) For each € > 0, the set G = G(g) in part (ii) satisfies
Viglz) 2 Vi(z)—¢e, z€S5, (6.5)

Proof

(i) Using (6.1), it is clear that G C H = Pg C Py, and the assertion
follows from (6.2).

(i) Given £ > 0, select a finite set G such that § # G C A(zo) and
Vy g(z0) + € > L(zo). In this case, from the definition of L(:) in
(6.3), it follows that VY ;(z0) +& > L(zo) > Vy y(z0) Whenever
H is a finite and nonempty subset of A(zy). Since models Mg and
My have the same action sets, except at zg, the above inequality
implies, via Theorem 4.1(i), that VY 5(-) +& > V3 y(-), and, since
the nonempty and finite subset H of A(z) is arbitrary, (6.3) yields
V3 g() +e 2= L(:).
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(iii) By part (ii), it is sufficient to show that L(-) > V)(-). With this
in mind, given € > 0 select a set G = G(¢) as in (6.4), so that for
every finite set H satisfying G C H C A(zo), part (i) and (6.2)
together yield

L() 2 V\u() 2 Wel() 2 L() —-

Combining this fact with the optimality equation for model My
and the monotonicity property of the utility function, it follows
that

Uy (L(z)) Ux (Vy, m(z))

A M(z.0) szy(a)U)\ (W, m(y))
v

AR(z,0) pry(a)U,\ (L(y) —¢)
Yy

= M R(z0) pr(a)U,\ (L(y)),
y

z €S, a€ An(z), (6.6)

v v

v

where (2.2) was used to obtain the equality. Since Ay (z) = A(z)
for z # x, this yields that

Uz (L(z)) > el @) szy(a)UA (L(y)), =z # z0, a € A(x)
’ 6.7)

whereas Ay (z9) = H and (6.6) together imply that

Ui (L(wO)) 2> e~ e erle0,a) szoy(a)U)\ (L(y)) , a€H.
Yy

However, the finite set set H satisfying G C H C A(xy) is arbi-
trary, so that the above displayed relation implies

Ux (L(zo)) > e 0N "p . (a)Us (L(y), @€ Alzo),
y

and combining this statement with (6.7), it follows that for every
z € S and a € A(z), Uy (L(z)) > e E@0) >y Pzy(@)Ux (L(y))-
Since € > 0 is arbitrary, this yields

Ur (L(x)) 2 7Y " poy (a)Un (Ly)), z €S, a€ Ax)
y
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and then, since L(-) is nonnegative, from Lemma 2.1(ii) it follows
that L(-) > Vy(:). ]

Proof of Theorem 6.1 Given an MDP M = (S, A, {A(z)}, R, P), set
NFAS(M) = number of finite sets among the class {A(z) |z € S}.

Within the family M of MDPs for which Assumptions 2.1 and 2.2 hold,
and whose state space has n > 1 members, consider the following propo-
sition:

Proposition 6.1
IP(k): If M € M is such that NFAS(M) = k, then for every e > 0 there
exists an e-optimal stationary policy for model M.

To establish Theorem 6.1 it is clearly sufficient to prove that P(k)
occurs for k = 0,1,2,...,n, which will be verified by backward induction.

Initial step IP(n) is valid.

When M € M satisfies NFAS(M) = n, for every action set, A(z) is
finite, so that, by Theorem 5.1, there exists an optimal stationary
policy f for model M. Clearly, such an f is e-optimal for every
e>0.

Induction step If IP(k) holds for some k& > 0, then IP(k — 1) occurs.
Suppose that IP(k) is valid and assume that the MDP

M = (S,A,{A(2)}, R, P) € M(where |S| =n),

satisfies NFAS(M) =k — 1.
Write S = {z1,%2,...,Tk-1,%k,.--,Zn} and without loss of gen-
erality suppose that A(z;) is finite for s < k. Given ¢ > 0,
Lemma 6.1 applied to this model M with zj instead of z( yields
a nonempty and finite set G such that the new MDP Mg =
(S,A,{A¢(z)}, R, P) satisfies Assumptions 2.1 and 2.2, as well as
the following properties (i) and (47):

(i) Ag(z) = A(z) for = # z; and A(zx) = G, and

(i)

Viel) 2 W() - 27

where V' .(-) is the optimal value function of Mg.

(6.8)

Since NFAS(M) = k — 1, the definition of the action sets Ag(z)
in (i) above yields that NFAS(M¢) = k, so that, by the induction
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hypothesis, there exists a stationary policy f such that Vy*(f,-) >
Vx g(*) — €/2 and combining this inequality with (6.8) it follows
that

V/\(fa ) 2> V/\() )
i.e., f is e-optimal for model M; since M was an arbitrary M DP

in the family M satisfying that NFAS(M) = k — 1, it follows that
IP(k — 1) is valid, completing the induction argument. [ ]

7. Approximate optimality: part II

This section concerns the existence of e-optimal stationary policies
for MDPs with general denumerable state space. The main objective
is to establish Theorem 7.1 below, which extends results obtained in
Cavazos-Cadena and Montes—de-Oca [5] for the risk-averse case A < 0.

Theorem 7.1 Let the risk-sensitivity coefficient X be a positive number,
and consider an MDP

M = (5,4,{A(z)}, R, P)

with general denumerable state space satisfying Assumption 2.1 as well
as the condition that

VX Ol < oo (7.1)
Then for every € > 0 there exists a stationary policy f which is -

optimal, i.e.,

W) = V() —e (7.2)
Remark 7.1

(i) For the risk-neutral case A = 0, Ornstein [12] obtained the follow-
ing result (see also Hordijk [11]).

Under Assumption 2.1, the finiteness of the optimal value function
implies that, for each ¢ € (0,1), there exists a stationary policy
which is e-optimal in the relative sense, i.e.,

Vo(f,) 2 (1 - e)V5 ().

When ||[Vy'(-)]| < oo, this implies that for every € > 0 it is possible
to find a policy f € TF which is e-optimal in the (absolute) sense
of Definition 2.1(ii). Thus, Theorem 7.1 is an extension of this
latter result to the risk-seeking context X > 0.

(1)) When A < 0, and the other conditions in Theorem 7.1 occur,
it was proved in Cavazos—Cadena and Montes-de—-Oca [5] that for
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each € € (0,1) there exists a stationary policy f which is e-optimal
in the relative sense, that is, VY (f,-) > (1—€)Vy¥ (). Under (7.1),
this result implies that the conclusion of Theorem 7.1 also occurs
for in the risk-averse case.

(i1i) The proof of Theorem 7.1 presented below follows the route sig-
naled by Ornstein [12] (see also Hordijk [11, Chapter 13]). This
approach was adapted to the risk-averse case A < 0 in Cavazos-
Cadena and Montes-de-Oca [5], and it is interesting to point out
that the key step of the proof, namely, Lemma 7.2(iii) below, re-
quires a substantially different treatment in the risk-seeking and
risk-averse cases.

The strategy to prove Theorem 7.1 needs two preliminary steps.

Step 1 It will be proved that, given a fized state xg, there exists
a stationary policy which is e-optimal at zy, see Lemma 7.1
below.

Step 2 It will be shown in Lemma 7.2 that, for an appropriate
subset E of S containing xy, the action sets at states in E
can be reduced to singletons without altering ‘substantially’
the optimal value function.

Finally, The proof of Theorem 7.1 is obtained by the successive
application of this reduction process.

Lemma 7.1 Consider an MDP satisfying Assumptions 2.1 and 2.2,
where the state space is an arbitrary denumerable set. Let zo € S, the
risk sensitivity coefficient A # 0, and € > 0, be fized. Then there exists
a stationary policy f which is e-optimal at zp:

VA(f, 2o) = VX (z0) — €.

A proof of this Lemma, extending well-known ideas in risk-neutral
dynamic programming to the risk sensitive context, was provided in
Cavazos—-Cadena and Montes—de-Oca [5]. For completeness, a short
outline is given.

Proof of Lemma 7.1 Refer to (2.6) and select a policy m € P such
that c
V)\(ﬂ',(L‘o) + 5 > V,\*(:L'o). (7.3)

Consider a finite set G C S containing zy, and observe that Tg-
oo as G NS, where G°= S\ G. Since

Uy (Z R(Xt,At)>

t=0

I

Ux (Va(m, z0)) = Ez,
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the continuity and monotonicity of the utility function together imply,
via the dominated convergence theorem, that

Tge—1
Uy ( > R(Xt,At))
t=0

Then by (7.3), for some finite set G containing z¢, the following inequal-
ity holds,

Uy (Va(m, z0)) = él}{}g EZ,

ET > Uy (v;(xo) - %) . (714)

t=0

Tge—1
Uy ( Y, R(Xt,At))

Consider the new MDP M = (S, A, {A z)}, R, P) spemﬁed as follows.
For some object A outside of S, § = GU {A}, A(z) = A(z) (resp.=
{A}) when z € G (resp., when z = A). On the other hand, the tran-
sition law P = [Pzy(+)] is given as follows. For z € G and a € A(z),
Pzy(a) = pryla) if y € G and pyafe) =1~ Zygapm,y(a) ify =4
whereas pa A(-) = 1. Finally, R(z,-) = R(z,") for z € G, and R(A,-) =
0. Models M and M are closely related. In fact, starting at z € G, the
transitions and the reward streams of both models are identical as soon
as the state stays in G, but once the system falls outside G, in model M
the state remains equal to A and a null reward is earned forever. Given
the policy 7 in (7.4), an admissible policy 7 for M can be constructed
as follows. If hy = (Zo, dg,- - - ,Z¢) is an admissible history up to time ¢
for model M, then 7(-|ht) = me(-|hs) if 5 € G for all s < t, whereas
T {A}|ht) =1if z; = A for some s < t. Since zg € G, from the re-
lation between M and M, it is not dificult to verify that V,\(7r, Zo), the
A-sensitive expected total-reward at zo corresponding to 7, satisfies

Tge—1
Us (V,\(ir,xo)) = B |U, ( Y R(Xt,At)> (7.5)
t=0
So that, by (7.4) and the strict monotonicity of U (),
17* ~ * €
Vx (zo) > Va(T, zo) > Vi (20) — > (7.6)

where ‘7,\ (-) is the optimal value function of model M. The latter MDP
has a finite state space, so that Theorem 5.1 yields an admissible sta-
tionary policy f for M satisfying V(f,-) > V,\( ) — €/2. Then by (7.6),

VA(f, m0) > V3 (z0) — €. (7.7)
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To conclude, let g € IF be arbitrary and define the stationary policy f

by setting f(x) = f(z) for z € G, and f(z) = g(x) if z € S\ G. In this
case, it is not difficult to verify that equation (7.5) holds with f and f
replacing 7 and 7, respectively, so that

[ Tge—1
Ux (‘7,\(];,960)) = Ef UA(Z R(Xt,At))]
I t=0

< EL |U (iR(XtyAt))]

[ \i=0
= Ux(VA(f,20)) -

Recall that R(-,-) > 0 and (2.5). Thus, VA(f,z0) > Va(f,z0), by the
strict monotonicity of Uy. Hence f is e-optimal at zo for model M, by
(7.7). [ |

Lemma 7.2 Let the risk-sensitivity coefficient be positive, and suppose
that Assumption 2.1 and condition (7.1) are valid. Given zo € S and
e € (0,1), consider the following construction. For a stationary policy f
and E C S, define the MDP

M = (5,4, {A(2)},R, P), (7.8)
where 4 _
A ={ (), FoEE 9

Let P and 17;‘() be the class of admissible policies and the optimal value

——

function for M, respectively, so that

V;(x) = sup V)\(7, z), z €S.
7rE1A’

In this case, the policy f and the set E can be chosen so that the following
assertions (i)—(i11) are valid.

(i) zo € E,
(ii) V() 2 V() e
(111) Moreover, for every policy w € 'ﬁ,
Va(m,zo) > Vi (-) —e.
Proof Given § € (0,1), select a policy f € IF satisfying
Va(f, @) 2 (1= 8%V (o). (7.10)
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When V¥(z0) > 0, the existence of such a policy follows from Lemma 7.1
with £ = 62V} (zo). Whereas if V}*(zg) = 0, then (2.6) yields that (7.10)
is satisfied for every f € IF. Define the set E by

E={zeS|V(f,z) > (1- V(@) (7.11)

It will be shown that the conclusions in the lemma are satisfied when f
and E are selected in this way.

Assertion (i) Since ¢ € (0,1) and V)*(-) is nonnegative, (7.10) implies
that o € E.

Assertions (ii) and (iii) In the remainder of the proof, it will be
shown that if § is chosen appropriately assertions (ii) and (iii) are
satisfied when model M is constructed with f and FE as in (7.10)
and (7.11).

1. It will be proved that
Va(z) > V(z) = 8|lVX]l, z€S. (7.12)

To verify this assertion, notice that f is an admissible sta-

tionary policy for model M , so that, from the definition of
E,

Va(z) > Va(f,2) 2 Vi() - ollVyll, ze€E.  (7.13)

Since A > 0 and recalling (2.1), the strong optimality equation
in Lemma 2.2 yields,

VX = sup ET [e’\ SiE R(Xe,Ae) AVY (XTE)] , Vxes.
weP
(7.14)

As X, belongs to the set E when T < 0o, using (7.11) and
the fact that f belongs to the space of stationary policies for
model M,

(1= )V (X1g) < Valfy Xrp) < V3 (X )-

By the convention in Remark 2.2, this inequality remains
valid when Tg = oo. Therefore, (7.14) yields

AV (@)

— supET [eA YTES R(X1,Ar) HM=0V; (X15) e,\ov;(xTE)]

B wEP
< supET [e/\ZtTfo_l R(X:,At)e,\V;(XTE)] MV O
wEP
(7.15)
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Now suppose that Xo = z ¢ E, and notice

Tp—-1 5w
ET [e,\ CoEy ! R(Xe,A) AV (XTE)]

depends only on the actions prescribed by 7 at times k €
{0,1,...,Tg — 1}, and that Xy ¢ E for these values of k.
Since models M and M have the same sets of admissible
actions at the states in E€ = S \ E, the supremum over P
after the inequality in (7.15) coincides with the supremum
over P. Thus, if z ¢ E

M@ < sup BT [BAETEJIR(xt,At)eW;(xTE)] RO

wEP
Tp—1 . .
= supE" [ez\tho R(Xe,A0) V3 (XTE)] ANV Ol
reP

— eA[V;(r)MIIVf(‘)II]’

where the second equality stems from Lemma 2.2 applied to
model M. Thus, since A > 0, V¥ (z) < Vi(z) + ||V ()| if
z ¢ E, which combined with (7.13) establishes (7.12).

2. As in Section 3, consider the MDP
My = (S, A, {Af(z)}, R, P)

obtained by setting A¢(z) = {f(z)}, for which V)(f,-) is the
corresponding optimal value function. Applying Lemma 2.2
to this model with the stopping time Tge, and using the con-
dition A > 0, it follows that

M) = B [exszé“R(xt,At)eAvx(f,XTEc)  zes

(7.16)
Now observe that V)(f, Xr,.) < (1 — 8)Vy¥(Xrg), which fol-
lows from the definition of £ when Tge < 0o, and from the
convention in Remark 2.2 for Tgc = oo. Therefore, using that
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A >0, (7.10) and (7.16) together imply
AM1=82)V3 (20)
< Ef [ ATET ‘R(xt,At)eA(l—a)V;(xTEc)]

- g/ [ek(l—é)[ ,TEJ“IR(Xt,AtH—V;(XTEC)]
To

Tgec—
MEET R(Xt,Ag)]

- (1-5)
< (Ef [exztfo R(Xt,At)+AV;(XTEc)D
= g

(i, [ mexond] )
By Holder’s inequality

< e,\(1—5)v;(x0)< [,\z

TEe! R(Xt,At)] ) d

7

where the last inequality comes from the strong optimality
equation. Consequently, since § € (0,1), it follows that

TEc 1

e)\(l——J)V;(zo) < Eaf: [ A D (X"A‘)] . (717)

Alternatively, the definition of the action sets ;1\(:1:) yields that

a policy 7 in P prescribes the same actions as f on the set
Tpe—-1

E. Since o € E, EJ, [ A5 (X"A‘)] depends only on

the actions selected while the state of system remains in F,
so that

By, [ 5

TEc 1

(X,,A,)] — B/, [ Ay TES lR(xt,At)] .

Then, the positivity of A and the nonnegativity of the reward
function together yield that

AMalmzo)  _ ol [e,\ PN R(Xg,At)]

Zo

> ET [AET” ‘ (Xt,At)]

_ E£ [)‘ZTEC IR(Xt,At)]

by (7.17)
> A1=8V5 (@0)
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Thus,

Vi(m, zo) (1 = 9)Vy (o)

Vi(zo) = OIVX()l, meP. (7.18)

(AVARAVS

3. To conclude, set

5= €
L+ Ol
and observe that assertions (ii) and (iii) follow from (7.12)
and (7.18). ]
Proof of Theorem 7.1 Given ¢ € (0,1), set ¢, = ;ﬁ and write
S = {zo,z1,22,...}. (7.19)

Consider now the following recursive construction of a sequence
{M, = (S,A,{4.(2)}, R, P)}.
1. Set My = M, the original MDP described in Section 2.

2. Given M} with k > 0, let My, be the MDP M constructed in
Lemma 7.2 with My, zx and ¢ instead of M, z( and € respectively.
Then by Lemma 7.2, the following assertions (a)-(d) are valid for
every k € IN.

a) Agy1(z) C Ak(z) for every z € S;
b) Aky1(zk) is a singleton.

c) If Py and V' ;(-) denote the class of admissible policies and
the optimal value function of My, respectively, then

Vyke1() 2 VX k() — ek, and
d) for each policy m € Py11, Va(m,zx) > VY ((zk) — &

By a simple induction argument, (c) clearly implies that

Vee() 2 Vxol) an

= V() - Z en, keN; (7.20)
n=0
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For the equality, recall that My = M. On the other hand, from (a)
and (b) it follows that for each z € S = {zo, z1, z2, ...}, the inter-
section of the action sets A,(z) is a singleton, say

) 4n(z) = {as}.
n=0

Define f(z) = a;, = € S, and observe that the inclusion f(z) €
Ak(z) always holds, so that f is an admissible stationary policy
for each model M,,.

To conclude, let £ € S be arbitrary. In this case £ = z; for
some k € IN by (7.19), and assertion (d) implies that V\(f,zx) >
V3 k(zk) — €, which combined with (7.20) yields

V)\(f,il?) = V)\(fvxk)
k
> Vi) - Y en
n=0

> V;(:L‘k) —€

Hence f is e-optimal. |

8. Conclusion

Under the basic structural assumption that the controller has a con-
stant risk-sensitivity coefficient, this work considered MDPs with dis-
crete state space and nonnegative rewards. When the performance index
of a control policy is the risk-sensitive expected total-reward criterion,
the paper addressed the existence of optimal and e-optimal stationary
policies assuming the finiteness of the optimal value function and the
mild measurability condition in Assumption 2.1(i). In contrast with the
usual approach to this problem, based on the discounted criterion, the
arguments used in this work rely on the comparison of the optimal value
functions associated to MDPs whose action spaces coincide, with the
exception of a single state; see Theorems 3.1 and 4.1. Therefore, the
paper faced a problem on the expected total-reward criterion, entirely
within the framework of this performance index.

After establishing the existence of optimal stationary policies for
MDPs with finite state and actions sets in Section 5, the result was
used in Section 6 to obtain e-optimal stationary policies, when only the
state space is supposed to be finite, which are valid regardless of the
sign of the risk-sensitivity coefficient. In Section 7 it was supposed that
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the decision maker is risk-seeking, and when the optimal value function
is bounded, it was proved in Theorem 7.1 that the existence of an e-
optimal stationary policy is guaranteed, complementing results recently
obtained for the risk-averse case; see Remark 7.1.

However, extending the result in Theorem 7.1 to the case of an un-
bounded optimal value function seems to be an interesting problem, and
research on this direction is presently in progress.
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1. Introduction and notation

In a real application of Markov decision processes (MDPs in short,
see [7, 10, 16]), the required data must be estimated. The mathematical
model of MDPs can only be viewed as approximations. It may be useful
that the model is ameliorated so to be “robust” in the sense that it’s
reasonably efficient in rough approximations. How can be this situation
modelled? One realistic answer to such a problem is to apply certain
intervals containing the required data.

By Hartfiel’s [4, 5, 6] interval method, Kurano et al. [13] has intro-
duced a decision model, called a controlled Markov set-chain, which is
robust for approximation of the transition matrix in MDPs. The dis-
counted reward problem was developed in [12, 13]. The non-discounted
case was treated in Hosaka et al. [8] and the average reward problem
under contractive properties was studied Hosaka et al. [9]. However, the
functional characterization of optimal policies is not given.

In this paper, applying an interval arithmetic analysis, we develop the
functional characterization of Pareto optimal policies which maximize
the discounted or average expected rewards over all stationary policies
under some partial order.

In the remainder of this section, we shall introduce several notions
referring to the works [4, 5, 6] on Markov set-chain. Refer [15] and [12, 13]
for the interval arithmetic and formulation of a controlled Markov set-
chain respectively.

Let RT*" be the set of entry-wise non-negative m * n-matrix (m,n >
1). For any B, B € RT*" with B > B (component-wise), we denote by
< B, B > the set of stochastic matrices B such that B > B > B.

The set of all bounded and closed intervals on the non-negative num-
bers is denoted by C(Ry), and C(R4+)" is the set of all n-dimensional
column vectors whose elements are in C(R,), i.e.,

C(Ry)" :={D = (D1,Dy,...,Dpn)' | D; € C(Ry)(1 <4 < m)}.

where d' denotes the transpose of a vector d.
If D = ([dy,d1),---,[dy,dn))’, then it will be denoted by D = [d,d],
where d = (dy,...,d,)", d = (d1,...,d,)" and [d,d] = {d € R} | d <
d <d}.

We will give a partial order >, > on C(R;) by the definition:

For [61, Cg], [dl, d2] € C(R+),

w [c1,¢2] = [di,d2] if e1 > dy, ¢a > d2, and

" [c1,c) > [di,d2] if [c1,¢2) = [d1,d2] and [c1, 2] # [d1, da).
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For v = (v1,vs,...,v,)" and w = (wy,we,...,w,) € C(Ry)", we use
the notation:

m v-wifvy; > w;, 1 <i<n,and
m v>wifv>wandv#w.

A controlled Markov set-chain consists of five objects:

(SvA72’ qﬂ'),

where S = {1,2,...,n} and A = {1,2,...,k} are finite sets and for each
(i,a) € S x A, q—q(|z a) ERlX",ﬁ—q(h a) € Ry with ¢ < g,
(¢,9) # 0, and r = r(i,a) a function on S x A with r > 0. Note that
the notation used here obey the previous one ([8, 9]). We interpret S as
the set of states of some system, and A as the set of actions available at
each state.

When the system is in state ¢ € S and we take action a € A, we move
to a new state j € S selected according to the probability distribution
on S, q(-]7,a), and we receive an immediate return, r(%,a), where we
know only that ¢(-|, a) is arbitrarily chosen from (q(-|¢, a), g(+|¢, a)). This
process is then repeated from the new state j. Denote by F' the set of
functions from S to A.

A policy 7 is a sequence (f1, fo,...) of functions with f; € F, (¢t >
1). Let IT denote the class of policies. We denote by f* the policy
(h1,ha,...) with hy = f for all £t > 1 and some f € F. Such a policy is
called stationary, denoted simply by f, and the set of stationary policies
is denoted by F.

We associate with each f € F the n-dimensional column vector 7(f) €
R? whose i*" element is r(, f(4)) and the set of stochastic matrices

(f) := (Q(f),@(f)) where the (i,7) elements of Q(f) and Q(f) are

q(jli, f(i)) and g(3]s, f (7)) respectively.
FlI‘St we define the set of discounted total expected rewards. For any

T = (f1,f2, ---) € II, and discount factor 8 (0 < 8 < 1), let

T
¢r(7) = {T‘(fl) + > B Q1Q2- - Qir(firr) | Vi, Qs € Q(fi)}- (1.1)
=1

Since it is shown in [13] that {¢r(7)}3F_, is a Cauchy sequence with
respect to a metric on C(R4)", the set of discounted expected total
rewards from 7 in the infinite future can be defined by

#r) = lim pr(r) = [8(m), 3()] € C(R)",  (12)
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where ¢(7), ¢(7) € R".
Now, we define the set of average expected rewards. For any m =
(f1, f2,...) € II, let vi(n) = r(f1) and, by setting Qo = identity,

T
vr(r) = {"'(fl) +Y Q1@ Qir(fir1) | Vi, Qi € Q(fi)} (1.3)
=1

for T > 2. It holds that vp(w) € C(R4+)" for all T > 1. Let
v(m) := liminfvy(r)/T (1.4)
T—oo

= {m € R"|limsup inf é(z,y) = 0}
T—oo YEVT(m)/T
where § is a metric in R™. Since v(r) € C(R4)™ ([13]), v(n) is written as
v(r) = [u(n),v(r)]. As the meaning of the values in (1.2) of a discounted
case, (1.4) of an average case, they are the expected rewards under the
corresponding behaviour in the worst or in the best respectively.

Definition 1.1 A policy f* € Il is called discounted (average) optimal
if and only if for each i € S, there does not exist f € F' such that

(f*)i = o(f)i (v(f7)i = v(f)i)- (1.5)
where ¢(f); (v(f);) is the ith element of ¢(f) (v(f)).

In the above definition, we confine ourselves to the stationary policies,
which simplifies our discussion in the sequel. In Section 2, discounted
optimal policies are characterized by maximal solutions of optimality
equation. The characterization of average optimal policies is done in
Section 3.

2. Optimality for the discount case

In this section, we derive the optimality equation, by which discounted
optimal policies are characterized. Associated with each f € F and
B € (0,1) is a corresponding operator L(f), a mapping from C(R)"
into itself, defined as follows. For v € C(R,)",

L(f)v :=r(f) + BAf)v = [L(f)v, L(f)7] € C(R4)"™. (2.1)

Note that v = [v,7] with v <7, v, € R, and L and L are operators
from R? into R}, defined by:

{é(f)v = r(f) +Bmingeg(y) QV, 2.2)
L(f)v = r(f)+ Bmaxqeg(s) QV- '
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In (2.2), each min/max represents component-wise minimization/maxi-
mizing. The following results are given in Kurano et al. [13].

Lemma 2.1 ([13]) For any f € F, we have:

(i) L(f) is monotone and contractive with modulus B, and ¢(f) is a
unique fized point of L(f), that is,

¢(f) = L(f)¢()- (2.3)

(it) For any h € R, ¢(f) = im0 L(f)'h with respect to 6.

We have the following.

Lemma 2.2 For f,g € F, suppose that ¢(f) < L(g)d(f). Then, it
holds ¢(f) < ¢(g).

Proof By Lemma 2.1(i), we have that

$(f) < L(9)d(f) = L(g)'p(f), forallt>2.

By t — oo in the above, from Lemma 2.1(ii) it follows that ¢(f) < &(g),
as required. |

Let q(i,a) := (q(‘|¢,a),q(|i,a)) for i € S and a € A. When f =
a for some a € A, the operator L(f) will be denoted by L,, that is,
for ve C(Ry)" and i € S, (Lyv); = 7(i,a) + Bq(i,a)v, and Lov =
((Lgv)1,---,(LaV)p). For any D C C(R4), a point u € D is called an
efficient element of D with respect to < on C(R, ) if and only if it holds
that there does not exist v € D such that u < v. We denote by eff(D)
the set of all efficient elements of D. Let

Lu)(@) = eff({(Leu)ila€ A}), i€eS={1,2,...,n},
Lu) = (L{u)(1),L(u)(2),...,L(u)(n))

for any u € C(R4+)". We note that £(u) C C(R4)™ holds.
Here, let us consider the following interval equation including efficient
set-function £ on C(R;)™: Find u € C(R;)™ such that

u € L(u). (2.4)

The equation (2.4) may be called an optimality equation for the dis-
counted case in this formulation of our model, by which discounted op-
timal policies are characterized. A solution u of the optimality equation
is called maximal if at each ¢ € S there does not exist any solution v
such that u; < v;, where u = (uy,...,u,) and v = (vq,...,v,).
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In Theorem 2.1 below, discounted optimal policies are characterized
by maximal solutions of the optimality equation. Lemmas 2.1 and 2.2
make the proof of Theorem 2.1 possible and the proof can be entirely
done analogously to that of [3, Theorem 5.1] through a simple modifica-
tion. So the proof is omitted.

Theorem 2.1 A policy f € F is discounted optimal if and only if ¢(f)
s a mazimal solution to the optimality equation.

3. Optimality for the average case

In this section, we will give the optimality equation for the average
case. Henceforth, the following assumption will remain operative.

Assumption 3.1 (Primitivity) For any f € F, each Q € Q(f) is
primitive, i.e., Q° > 0 for some t > 1.

Obviously, if Q(f) is primitive in the sense of non-negative matrix
(see [17]), Assumption 3.1 holds.
The following facts on Markov matrices are well-known (see [2, 11]).

Lemma 3.1 For any f € F, let Q be any matriz in Q(f).

(i) The sequence (I +Q +---+ Q')/(t + 1) converges as t — oo to a
stochastic matriz Q* with Q*Q = Q*, Q* > 0 and rank(Q*) = 1.

(ii) The matriz Q* in (i) is uniquely determined by Q*Q = Q and
rank(Q*) = 1.

Associated with each f € F' is a corresponding operator U(f), map-
ping C(R4)™ into C(R4)", defined as follows.
For v = [v,7] € C(R4)" with v <7, v,7,

U(f)v = r(f)+ Q(f)v = [U(f)w, U(f)v] - (3.1)
where U and U are operators from R™ into itself, defined by:

{g(f)v = r(f) +mingeg(y) Qu, (3.2)
U(fljv = r(f)+maxgegs) Q- .

Let e := (1,1,...,1)". Here, for any f € F, we consider the interval
equation:
r(f) +Q(f)h=v+h, (3.3)
where v := [ve,ve], v,7 € R and h = [h, h] € C(R)", h,h € R" with
v<v,h<h
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Obviously, the interval equation can be rewritten by their extremal
points as

= (3.4)

{ r(f) + mingeg(y) Qb = ve+h
r(f) -+ maxgeg(f) Qh = Te+h

with v <%, h < h where v,¥ € R, h,h € R™.
We have the following lemma.

Lemma 3.2 ([1, 8]) For any f € F, the interval equation (3.3) de-
termines v uniquely and h up to an additive constant [cie,coe] with
c1,¢2 € R(c1 < ¢g).

Since the unique solutions v and h of (3.3) are dependent on f € F,
we will denote them respectively by v(f) := v and h(f) := h. The
following lemma can be proved similarly to [9, Corollary 3.1].

Lemma 3.3 ([9]) For any f € F, it holds that:
(i) v(£) = [u(F)e,v(f)e].
(i) v(f)e = mingeg(y) Q*r(f) and ¥(f)e = maxqeq(s) Q*r(f).

Lemma 3.4 For any f,g in F, suppose that

v +1(){ 3 }rio)+ Qom(s), (35)

Then, it holds that
vn{ 3} (36)
Proof The left and right extremal equation of (3.5) are given as follows.
wpe+n(s) {31 o)+ gmin Quo) (37)
e+ {3} ro)+ mw di). 69

By Lemma 3.3, there exists Q € Q(g) with v(g)e = Q*r(g). Multiplying
the both sides of (3.7) by Q, we get from Q*Q = Q" and Q* > 0 that

y(f)e{ 3 }Q*r(g). Thus y(f)e{ 3 }y(g)e follows. Similarly, we

get 6(f)e{ 3 }E(g)e, which proves (3.6). [ |
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From Lemma 3.3, we observe that all elements of v(f) are equal,
which implies that the set of average expected reward from f € F' is
independent of the initial state. So, a policy f € F is average optimal if
and only if there is no g € F such that v(f) < v(g). Keeping the above
in mind, we can define an efficient point with respect to the partial order
=< on C(R)".

Let D be an arbitrary subset of C(R)™. A point u € D is called an
efficient element of D with respect to < on C(R)" if and only if it holds
that there does not exist v € D such that u < v. We denote by eff(D)
the set of all elements of D efficient with respect to < on C(R)™. For
any u € C(R)", let

u(w) = ({U(Hul € F})

where U(f)u € C(R)" is defined in (3.1). We note that U(u) C C(R)"
for any u € C(R)".

Here, we consider the following interval equations inducing efficient
set-function U(-) on C(R)™.

v+hel(), (3.9)

where v = [ve,ve], h = [h,h] € C(R)" and v < 7, h < h, 1,7 € R,
h,h € R™. The equation (3.9) is called an optimality equation for the
average case, by which average optimal policies can be characterized. A
solution (v,h) of the optimal equation is called mazimal if there does
not exist any solution (v/,h’) of (3.9) such that v < v'.

Theorem 3.1 A policy f € F is average optimal if and only if the pair
(v(f),h(f)) given by Lemma 3.2 is a mazimal solution to the optimality
equation (3.9).

Proof

The proof of the “only if” part is easily obtained from Lemma 3.4.

In order to prove the “if” part, suppose that (v(f),h(f)) is a maximal
solution of (3.9) but f* is not average optimal. Then, there exists g € F
with v(f) < v(g). If (v(g),h(g)) ¢ U(h(g)), there exists f() € F
such that v(g) + h(g) < L(f)h(g), which implies from Lemma 3.4
that v(g) < v(fV). Since F is a finite set, by repeating this method
successively, we come to the conclusion that there exists f(!) € F such
that v(f) < v (f®) and (v (f®) ,h (f®)) satisfies (3.9). However, this
contradicts that (v(f),h(f)) is maximal. |

Remark 3.1 For vector-valued discounted MDPs, Furukawa [3] and
White [18] derived the optimal equation including efficient set-function
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on R™, by which optimal policies are characterized. The form of the op-
timality equation (3.9) is corresponding to the average case of controlled
Markov set-chains.

As a simple example, a machine maintenance problem ([14, p.1, pp.17-
18)], in the typical Markov decision processes can be formulated as this
Markov set-chain version and possible to find a discounted or an average
optimal policy by applying Theorems 2.1 or 3.1 respectively. However
the details are omitted here.
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Chapter 13
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Abstract  This paper reduces problems on the existence and the finding of optimal
policies for multiple criterion discounted SMDPs to similar problems for
MDPs. We prove this reduction and illustrate it by extending to SMDPs
several results for constrained discounted MDPs.

Keywords: Semi-Markov decision process, constrained optimization, discounted re-
wards.
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1. Introduction

This paper deals with multiple criterion discounted Semi-Markov Decision Pro-
cesses (SMDPs). SMDPs are continuous-time generalizations of Markov Decision
Processes (MDP). The main difference between these two models is that time inter-
vals between jumps have arbitrary distributions in SMDPs and they all are equal to
one in MDPs. Another difference is that strategies for SMDPs can use the infor-
mation about the real time in addition to the information about the step numbers.
For a discrete time MDP, the step number is the only time parameter. For many
production, service, and telecommunication problems, SMDPs provide more realistic
models than MDPs.

One-criterion discounted SMDPs can be reduced to discounted MDPs. This fact
is well-known and its proof is based on the properties of optimality equations for
discounted SMDPs; see Puterman [18, Section 11.3]. For multiple criterion models,
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this proof fails because the optimality equation arguments are not valid anymore.
The main focus of this paper is to establish the reduction of SMDPs to MDPs for
multiple discounted criteria.

We prove this reduction in Section 3. In particular, for a given initial distribution
and for an arbitrary policy, we construct a randomized Markov policy with the same
performance vector; see Lemma 3.1. For a randomized Markov policy each decision
depends only on the current state and on the current step number.

The mentioned construction generalizes the well-known construction of the equiva-
lent randomized Markov policy for an MDP by Derman and Strauch; see Corollary 3.1
below. However, for a discrete-time MDP, such construction does not depend on the
discount factor, and the resulting randomized Markov policy is the same for all dis-
count factors including the discount factor equal to 1. For an SMDP, our construction
leads to different equivalent randomized Markov policies for different discount rates.
For an SMDP, a randomized Markov policy, which performance vectors are equal
under all discount rates to performance vectors of a given arbitrary policy, may not
exist.

For a multiple criterion discounted SMDP, we consider a discounted MDP with
the same state and action sets, and with the same reward functions. In addition, the
performance vectors coincide for these two models. Therefore, a randomized Markov
policy, which is optimal for the corresponding discounted MDP, is also optimal for
the original SMDP.

In Section 4 we illustrate this reduction by showing that several results recently
established for MDPs hold also for SMDPs. As mentioned above, SMDPs are im-
portant for applications. In addition, the author’s interest in SMDPs is motivated
by their usefulness in studying Continuous Time Jump Markov Decision Processes;
Feinberg {7, 8].

2. Definitions
The probability structure of an SMDP is specified by the four objects
{X,A,D(z),Q(t,Y|z,a)}, where:
(i) X is a Borel state space;
(ii) A is a Borel action space;
(iii) D(z) C A are Borel sets of actions available at = € X;
(iv) Q(|z,a) is a transition probability from X x A into [0, 00] X X.

It is assumed that
graph(D) = {(z,a): = € X,a € D(z)}

is a Borel subset of X x A containing the graph of a Borel mapping from X to A. We
denote by X and A the Borel o-fields on X and A respectively.

We denote Q(t,Y|z,a) = Q([0,t] x Y|z,a) for any 0 < ¢t < oo and for any Borel
Y C X. If action a is selected in state x then Q(t,Y|z,a) is the joint probability
that the sojourn time is not greater than t € R4 and the next state y is in Y, where
R+ = [O, OO)

Let £ be the sojourn time. Then P{¢ < t} = Q(t, X|z,a). Everywhere in this
paper, we make the following standard assumption that implies that the system does
not have accumulation points:
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A1l. There exist € > 0 and £ > 0 such that Q(f, X|z,a) < 1—¢€ for all z € X and for
all a € A.

Let H, = X x (Ax Ry x X)*, n=0,1,...,00, be the set of all histories up to

n‘* jump. Then H = |J H,, is the set of all histories that contain a finite number of
0<n<oo

jumps. The sets Hn,—n =0,1,...,00, and H are endowed with the o-fields generated

by the o-fields X, A, and B(R4); everywhere in this paper, for a Borel space E we

denote by B(E) its Borel o-field. A (possibly randomized) strategy = is defined as

a transition probability from H to A such that n(D(zn) | wn) = 1 for each w, =

Ioaogo . zn_lan_lﬁn_lxn € H, n=0,1,....

To define a sample space that includes trajectories that have finite numbers of
jumps over Ry, we add an additional point Z ¢ X to X and an additional point
ag¢ Ato A Let X = XU {z} and A = AU {a}. We also define D(z) = {a},
Q((00,Z)|z,0) =1 — Q(R+ % X|z,a) for z € X, a € A, and Q((c0,Z)|r,a) = 1 when
either £ = % or a = a. We have that Q is a transition probability from X x A to
R: x X, where Ry = [0, o0).

Let H, = X x (Ax Ry x X)", n = 0,1,...,00. We also consider B(H,) =
B(X) x (B(A) x B(R}) x B(X))". Any strategy = defines transition probabilities
from H, to H, x A and Q defines transition probabilities from H, x A to H, 1,
n=20,1,.... Any initial distribution p on X and any strategy = define a probability
measure on the set (Hoo, B(Hoo)); Neveu [15, Section 5.1]. We denote this measure
by IP}; and denote the expectation operator with respect to this measure by IEj.

Let h = (zoaofozlalﬁl .. ) Weset to =0and t, =tn-1+6&n-1,n=0,1,....
Let N(t) = sup{n > 0:t, <t}. Al implies that N(t) < oo, (IP;-a.s.) for all t € Ry
and ¢, — oo (IPg-a.s.) as n — oo for all y and 7.

We may consider an SMDP as an object that has two time parameters. The first
parameter is the actual continuous time ¢t = ¢, at an n'" jump epoch. The second
parameter is the jump number n. We say that a strategy is a policy if at each epoch
tn,n =0,1,..., the decision does not depend on the times &o,...,{n—1. A randomized
Markov policy = is defined by a sequence of transition probabilities {m, : n =10,1,...}
from X into A such that 7,(D(z) | z) =1,z € X, n =0,1,.... A Markov policy
is defined by a sequence of mappings ¢, : X — A such that ¢,(z) € D(z), ¢ € X,
n=0,1,.... A randomized stationary policy = is defined by a transition probability
m from X into A such that n(D(z) | z) =1, z € X. A stationary policy is defined by
a mapping ¢ : X — A such that ¢(z) € D(z), z € X.

The reward structure of an SMDP is specified by the three objects
{a, K,r(z,a)}, where:

a) a > 0 is a discount rate;
b) K =0,1,... is a number of constraints;

¢) r(z,a) is the expected discounted cumulative reward at the state z for the

criterion k¥ = 0,..., K if the action a is selected. We assume that rj are

bounded above Borel functions on X x A. We set r+(%,a) =0,k =0,...,K.

Given an initial state distribution g and a strategy , the expected total discounted
rewards over the infinite horizon are:

Wi(p,m) =} > e *""ri(en,aa), k=0,.. K. (2.1)

n=0

When we consider one criterion, or what we write is true for all criteria, we may omit
indexes k = 0,1, ..., K. We assume everywhere that 0 x oo = 0.
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For a one-criterion problem, a strategy = is called optimal if W(pu,7) > W{(u, o)
for any initial distribution g and for any strategy o. For a problem with multiple
criteria, we fix the initial distribution p and constants Cx, k = 1,..., K. A strategy
m is called feastble if Wi(u,w) > Cy for all k = 1,..., K. If there exists at least one
feasible strategy, the SMDP is called feasible. A feasible strategy = is called optimal
for a problem with multiple criteria if Wo(u, ) > Wo(u, o) for any feasible strategy
.

A discrete time MDP is a particular case of an SMDP when all sojourn times &;
are deterministic and equal to 1. In this case, the transition mechanism is defined by
transition probabilities p(dy|z,a) instead of transition kernels @Q; p(X|r,a) = 1. In
other words, Q(¢,Y |x,a) = p(Y|z,a)I{t > 1}, where I is the indicator function. Since
all sojourn times are equal to 1, each strategy in an MDP is a policy and strategic
measures are defined on (Hy, B(Hw)). Consider the discount factor 8 = e™®. For
MDPs, formula (2.1) has a simpler form:

Wk(u,ﬂ)zlEZZﬂ"rk(zn,an), k=0,...,K. (2.2)

n=0

Remark 2.1 In this section we have defined a homogeneous SMDP. We can also
consider a non-homogeneous SMDP when the action sets D, rewards ri, and tran-
sition kernels Q depend on the step number. In this case, we have D = D(z,n),
r=r(z,n,a), and Q = Q(t,Y|z,n,a). A non-homogeneous SMDP can be reduced to
the homogeneous SMDP by replacing the state space X with X x{0,1,...}. Then there
is a one-to-one correspondence between (randomized) Markov policies for the original
non-homogeneous SMDP and (randomized) stationary policies for the new homoge-
neous SMDP. Therefore, the ezistence of optimal (randomized) stationary policies for
homogeneous SMDPs implies the existence of optimal (randomized) Markov policies
for non-homogeneous SMDPs. A finite-step SMDP 1is an important example of a
non-homogeneous SMDP. An important application of finite-step SMDPs is schedul-
ing of a finite number of jobs with random durations; Ross [19], Pinedo [16]. For a
finite-step SMDP, the assumption o > 0 can be omitted when the functions ri(z,a),
k=0,...,K, are bounded above.

It is also possible to define SMDPs with parameters depending on time t. We do
not expect that the results of this paper can be applied to such models. For example,
optimization of total rewards over the final time horizon [0, T], in general, cannot be
reduced to a finite-horizon MDP. For such problems, a natural approach is to use
discrete-time approximations of continuous-time problems.

3. Reduction of SMDPs to MDPs

We define the regular nonnegative conditional measures on X,

B(Ylz,a) = / " et Qdt, Y1z, a).

For a strategy m, initial distribution x, and epochs n = 0,1, . . ., we define bounded
non-negative measures M; , on X x A and mj, , on X,

M].(Y,B) = Ej e *"I{z, €Y,an € B},
my.(Y) = Ej e *"I{z, €Y},
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whereYGXandBEA

Since my; ,(Y') = M, »(Y, A), we have that m is a projection of M on X. In view
of Corolla.ry "7.27.2 in Bertsekas and Shreve [2], there is an (m]; ,-almost everywhere)
unique regular transition probability from X to A such that

M .(dz,da)

™y (d) (3.1)

on(dalz) =
By definition, (3.1) is equivalent to
MEn(Y,B)= [ on(Ble)m (o)
Y

for al Y € X, B € A Since M, , is concentrated on graph(D) then for every
n = 0,1,... we can select a version of o, such that o(D(z)|z) =1 for all z € X.
Then ¢ = {on, : n = 0,1,...} is a randomized Markov policy. Let Rn(p,7) =
E} e~ **"r(zn,an).

Lemma 3.1 Consider an SMDP. Let 7 be a strategy and p be an initial distribution.
Then for a randomized Markov policy o defined by (3.1),

o
Mg, =M;,,

n=0,1,... . (3.2)

In addition, Rn(u,0) = Rp(p, ) foralln = 0,1, ... and therefore W (u,0) = W(u, )
Jor any bounded above Borel reward function r.

Proof We notice that the definition of M , implies that for any measurable on
X x A step-function f,

El e f(2n, an) = / / f(z, )M (dz, da). (3.3)

Therefore, (3.3) holds for any bounded above and measurable function f on X x A.
Thus,

Ra(p,7) = /X /A r(z,a) M7 (dz, da),

and the second statement of the lemma follows from the first one.
We shall prove (3.2) by induction. We have that oo = 7o (u-a.s.) and thus (3.2)
is obvious for n = 0. Let (3.2) hold for some n. First we show that

My (n41) = My (nt1)- (34)
For any strategy -+,
My yn(Y) = Ele "+ g, €Y}
= EJE] [e—a(t"+£")l{zn+1 € Y}|tn,wn,an]
= E]e *"E] [e_"‘{" Hznt1 € Y}tn, zn, an] (3.5)

oo
= Eleot / e~ Q(dt, Y |zm, an)
0

= ]EZ e‘““ﬂ(Y]wn, an)

- /X /A B(Y|z, a) M (dz, da).
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The last equality follows from (3.3) with f(z,a) = B(Y|z,a). By setting v = o and
7 = m we have that (3.2) implies (3.4).
Now we prove that (3.4) implies

M (n+1) = My (1) (3.6)

From (3.1) and (3.4) we have

M, (n+1) (Y, B)

/;, On+1 (le)mz,(nA-l) (d(l))

| o (Ble)ms oy (da).
Y
For a randomized Markov policy o,

M iy(Y,B) = Ej e *"*'I{zn41 €Y,anp1 € B}
= E,E] [e *" ' I{zns1 € Y} {an41 € B}tns1,Zns1]
= EJe """t {zns1 € Y}E] [I{ant1 € B}{tnt1,2n+1] (3.7)
= Eje *" ' I{zns1 € Y}Pi{ant1 € Blzns1}
= Eje "t I{zn41 € Y}0n41(B|Tn+1)

/;, an+1(B|-'L')mZ,(n+l)(dz)7

where the last equality follows from (3.3). So, (3.6) is proved. a

We notice that, in general, formula (3.1) defines different randomized Markov
policies o for different discount rates o. For an MDP, ¢, = n, (3.1) transforms into
(3.8), and Lemma 3.1 transforms into the following well-known statement, in which
in the equivalent Markov policy o does not depend on the discount factor.

Corollary 3.1 (Derman and Strauch [6]) Consider an MDP. Let 7 be a policy
and p be an initial distribution. Consider a randomized Markov policy o such that
foralln=0,1,... and for allz, € X,

P’ (dzaday)

crn(da,,|zn) = W,
M n

(P, — a.s.). (3.8)

Then P§ (dzndar) = P} (dzndarn), n=0,1,..., and therefore W(x,0) = W(z, ).

We remark that (3.1) also implies (3.8) if t» and (xn,as) are IPj-independent.
Therefore, Corollary 3.1 also holds for SMDPs in which sojourn times do not de-
pend on states and actions. In particular, this independence holds for uniformized
Continuous Time Markov Decision Processes; see e.g. [3].

Let B(z,a) = B(X|z,a), B(X|Z,a) = 0, B(Z|Z,a) = 1, and B(Z|z,a) = 1 - B(z,a)
for z € X, a € D(z). We observe that 8(z,a) = 0 means that the state z is absorbent
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under the action a. For € and ¢ from A1l

B = [ QU Xlow+ [ etQut X0
0 t

< Q@ X|z,a) + e (1 - QF, Xz, a))
< e +Q(f Xz, a)(1 ~ ™)

< efi(1-9) (1 - e—"f)

=1 —e(l—e‘af)

< 1.

Given a discounted SMDP, we shall construct an equivalent discounted MDP. We
shall do it in three steps. At each step we define an MDP. All these MDPs have the
same reward functions and the same sets of states, actions, and available actions as
the original SMDP. Similarly to the original SMDP, they have an additional absorbent
state T with zero rewards at it. In view of Lemma 3.1 and Corollary 3.1, in order
to establish the equivalency, it is sufficient to show that, for any randomized Markov
policy, the value of the appropriate criteria remain unchanged in all these models.
At Step 1 we define a total-reward MDP with transition probabilities 3(Y|z,a) and
with the expected total rewards. At step 2 we define the transition probabilities of
the corresponding MDP by

8(Y|z.a) if B(x,a) > 0;

a Yiz,a) = B(z,a)
p"(Ylz,a) arbitrary, otherwise;

and consider the expected discounted total rewards with the discount factor 8(z,a). In
order to use a constant discount factor, at step 3 we define the transition probabilities
for the corresponding MDP by

B(Y|z,a)/B, Y €X, z€X;
p(Y|z,a) = ¢ 1-p(z,0)/B, Y ={z}, z€X;
1, ifY ={z}, ¢ =1z;

where 3 < 1 and 3 > B(z,a) for all z € X and for all a € A.

We remark that, in each of these three MDPs, the transition probabilities depend
on the discount rate @. For example, let X be finite and p(y|z,a) be the probability
that the next state of the SMDP is y if the action a is selected at the current state
z. Then p® # p if we do not assume that the distribution of the next state does not
depend on the sojourn time. Except for special cases, this assumption does not take
place in particular applications such as control of queues.

Thus, the reduction of a discounted constrained (or, in general, multiple-criterion)
SMDP to the corresponding MDP can be conducted in the following three steps.

Step 1 We define the MDP with transition probabilities 3(Y|z,a). Let P} be the
probability measure on the sets of trajectories in this MDP defined by the initial
distribution g and policy 7. Let E] be the expectation operator with respect to
this measure. The expected total rewards are Wy (p, ) = Ej 3" r(zn, an).

Let m be a randomized Markov policy. The equality M o(dz) = p(dz), and
formulas (3.5) and (3.7) imply that P}, (Y, B) = M ,(Y,B) foralln=0,1,...
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and for all measurable subsets Y and B of X and A respectively. This implies
that Wg(u, ) = Wi(u, 7).

Step 2 Consider the discounted MDP with the transition probability p* and with
the total discounted criteria W,

Wi(u,m) =B, ) [1:[ ﬂ(xi,ai)] T(Tn, @),

n=0 Li=0

where IE is the expectation operator in this MDP and the product from 0
to —1 is defined as 1. It is obvious that Wi(u,n) = Wi(u, 7). Therefore
Wi(p,7) = Wi(p, ) for any randomized Markov policy 7. Therefore, an
optimal randomized Markov policy for this MDP is also optimal for the original
SMDP.

The theory of discounted MDPs with discount factors depending on states
and actions is similar to the theory of standard discounted MDPs. The only
difference is that the optimality operator T, which is usually is defined as
T*f(x) = r(z,a) + B f f(y)p(dy|z,a) for MDPs with a constant discount
factor 3, has the form

T*f(z) = r(z,a) + /X F()B(z, a)p (yl, ). (3.9)

Condition A1 implies that 8(z,a) < 1 — &1 — %) < 1. This provides
contraction properties for the operator T defined in (3.9); see Denardo [5].
However, the next step reduces an SMDP to a standard discounted MDP.

Step 3 Consider the discounted MDP with the discount factor B and transition prob-
abilities p. Let F: and ]ELr be the corresponding probability and expectation
operators for this MDP. We consider the expected total discounted rewards

Wk(l“: 71') = EZ Z Bnrk(mna an)-

n=0

It is obvious that Wy (p, ) = Wi(p, 7). It is also obvious that ﬁ: (zn €Y,a, €
B) = B"PI (zn € Y,a, € B). The above results on the equivalence of models
at steps 1-3 imply the following theorem which justifies for multiple criteria
the reduction of a discounted SMDP to a standard discounted SMPD with the
transition probabilities p and the discount factor 3.

We recall that a policy 7 for an SMDP is a policy for the corresponding MDP and
vice versa.

Theorem 3.1 Consider an SMDP and let an initial distribution p and a policy 7 be
given. Then the following statements hold:

(i) M .(Y,B) = ﬂ_"ﬁ:(xn €Y,a, € B), wheren=0,1,..., Y € X, and B € A;
(ii) Wi(p, ) = Wi(u,w) for allk =0,...,K;

(1ii) A policy is optimal for an SMDP if and only if it is optimal for the MDP
obtained from that SMDP by replacing the transition kernel Q and discount
rate o« with the transition probabilities p and discount factor (3.
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Theorem 3.1 provides the justification for the reduction of discounted SMDPs to
discounted MDPs. It also implies the sufficiency of randomized stationary policies
for discounted SMDPs. Krylov [14] and Borkar [4] provided a formula, that, for a
given initial measure, computes for an arbitrary policy a randomized stationary policy
with the equal occupation measure; see Piunovskiy [17, Lemma 24 on p. 307], where
this result is presented for Borel MDPs. For an SMDP, the occupation measure is
vp =3 0 oM, Weset 7 (Y) =v;(Y,A) for Y € X. Lemma 3.1, Theorem 3.1(i),
and the Krylov-Borkar theorem, applied to the MDP at step 3, imply the following
result.

Corollary 3.2 (The Krylov-Borkar theorem for SMDPs)
Consider an SMDP. Let w be a strategy and p be an initial distribution. Then
o v™ (dxda)

v; = v, for a randomized stationary policy o satisfying o(dalz) = ZACE) and
n

therefore W (pu,0) = Wy, ).

4. Optimization of discounted SMDPs

The book by Altman [1] describes countable state constrained MDPs and the
book by Piunovskiy [17] deals with uncountable constrained MDPs (mostly under
the additional assumption that the state space is compact). As mentioned in the
introduction, the optimality equations are not applicable to constrained problems.
The analysis of multiple criterion problems is based mainly on properties of occupation
measures. The major mathematical apparatus used for constrained MDPs is linear
programming. In this section we mention three recent results for MDPs and provide
their extensions to SMDPs. We shall use ¢ to denote transition probabilities in MDPs.

Hernandez-Lerma and Gonzilez-Hernandez [13] studied Borel state and actions
MDPs. They considered the following three additional conditions:

(i) reward functions ry are upper semi-continuous;

(ii) for any finite number ¢ the set {(z € X,a € D(z)|ro(z,a) > c} is compact;
and

(ili) transition probabilities g(dz|z,a) are weakly continuous on graph(D).

Under these three conditions they proved the existence of optimal policies and, un-
der some additional assumptions, they formulated linear programs and studied their
properties. In view of the Krylov-Borkar theorem for MDPs ({17, Lemma 24 on p.
307]), the paper by Hernandez-Lerma and Gonzéilez-Herndndez [13] also implies the
existence of optimal randomized stationary policies when conditions (i)-(iii) hold.
Theorem 3.1 implies that this existence results hold for SMDPs if conditions (i) and
(i1) hold and the transition measure S3(-|z,a) is weakly continuous on graph(D). The
latter is true if Q(-|z,a) is weakly continuous on graph(D). In particular, the linear
programs from Hernandez-Lerma and Gonzilez-Hernandez [13] remain the same for
discounted SMDPs with the only change being that the product of 8q(dy|z, a) should
be replaced with 3(dy|z,a), where the constant 8 is a discount factor for an MDP.
Feinberg and Piunovskiy [10] considered the following condition for a multiple-
criterion total-reward MDP: p is nonatomic and all measures ¢(-|z, a) are nonatomic,
z € X, a € D(z). It was proved in [10] that this condition implies that for any policy
there exists a nonrandomized Markov policy with the same performance vector; see
also [9] for earlier results. Theorem 3.1 implies that if 4 and 3(:|z,a) are nonatomic
then for any policy in the discounted SMDP there exists a nonrandomized Markov
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policy with the same performance vector. We remark that Z can be an atom of the
transition measure ((-|z,a). However, Z can be substituted with a an uncountable
Borel set X and the probabilities 3(-|z, a) could be corrected in a way that 3 does not
have atoms on X. It is also easy to see that if the probability distribution p(dy|z,a)
of the next state in the SMDP does not have atoms then the measure §(-|z,a) does
not have atoms on X either.

If the nonatomic conditions do not hold, nonrandomized optimal policies may
not exist; see e.g. Altman [1] and Piunovskiy [17]. The natural question is how to
minimize the number of situations when the decision maker uses randomization pro-
cedures. Theorem 2.1 in Feinberg and Shwarts [12] describes the optimal policies of
this type. Randomized stationary policies that use no more than K randomization
procedures are called K-randomized stationary. However, even a 1-randomized sta-
tionary policy can use the infinite number of randomization procedures over the time
horizon. Feinberg and Shwartz [12] introduces strong (K, n)-policies which satisfy the
following conditions:

a) they are randomized Markov;
b) they are (nonrandomized) stationary from time epoch n onward; and
c) they use no more than K randomization procedures at all state-time couples
(z,n).
The formal definitions of K-randomized stationary and strong (K, n)-policies are given
in Feinberg and Shwartz [12].
Theorem 2.1 in Feinberg and Shwartz [12] establishes the existence of K-random-

ized stationary policies and the existence for some n of strong (K,n)-policies for
discounted MDPs if the following conditions hold:

(i) X is countable or finite,
(ii) all sets of available actions D(z), z € X, are compact;

(iii) reward functions ri(z,a) are bounded above and continuous in a € D(z); and
(iv) transition probabilities p(y|z,a) are continuous in a € D(z) for all z,y € X.
Theorem 3.1 above and Theorem 2.1 in [12] imply Theorem 4.1. We remark that the

weakly continuity of Q(-|z,a) on graph(D) implies condition (b) in Theorem 4.1.
Theorem 4.1 Consider a discounted SMDPs such that:

a) conditions (i)-(iii) from the previous paragraph hold, and

b) for allz,y € X the functions B(y|z,a) and B(x,a) are continuous in a € D(z).
If this SMDP is feasible then

(i) there ezists an optimal K -randomized stationary policy; and

(i1) for some finite n =0,1,... there exists an optimal strong (K, n)-policy.

As was mentioned above, Theorem 3.1 implies that the linear programs that are
used for discounted MDPs can be applied, after a minor modification, to discounted
SMDPs. If we consider nonhomogeneous SMDPs described in Remark 2.1 then
Theorem 4.1(ii) implies the existence of randomized Markov policies which use no
more than K randomization procedures and are nonrandomized after some epoch n.
For finite-step SMDPs, Theorem 4.1(i) implies the existence of optimal randomized
Markov policies which use no more than K randomization procedures at all state-time
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couples. If X and A are finite, these policies and optimal K-randomized stationary
policies for homogeneous infinite-horizon models can be computed by applying lin-
ear programs; see Feinberg and Shwartz [11] for the LP formulation for a finite-step
problem and Altman [1] for the infinite horizon case.
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1. Introduction

In this short note, we present a technical result for finite state, fi-
nite action space, average expected reward Markov decision processes
(MDPs) with multiple constraints on average expected costs. This tech-
nical result shows that the communicating properties of MDPs can be
applied to map variables from the relatively simple linear program LP
3.2, known to solve average reward unichain MDPs with multiple con-
straints on average expected costs, to more general linear program LP
3.1, which solves average reward multichain MDPs with multiple con-
straints on average expected costs. In addition to providing a structural
link between the LP 3.2 and LP 3.1, this mapping can be used to a
prove that the optimal gain for the communicating MDPs with multiple
constraints on average expected costs is constant.

The literature concerning MDPs with average expected costs and lin-
ear programming, especially average reward constrained MDPs with par-
ticular ergodic structure is already quite extensive. Part of this literature
concerns itself with the two linear programs LP 3.1 and LP 3.2 stated
in Section 3. A single application of LP 3.1 solves average reward multi-
chain MDPs with multiple constraints on average expected costs. This
formulation can be found in Kallenberg [4]. It was proved in [4] that an
optimal solution of LP 3.1 can be used to provide an optimal Markov
policy. A single application of the simpler LP 3.2 solves average reward
unichain MDPs with multiple constraints on average expected costs (see
Kallenberg [4] and Puterman [6], etc.). It was shown in [4, 6] that an
optimal solution to LP 3.2 provided optimal (deterministic, if desired)
stationary policies, and a mapping was developed between solutions to
LP 3.2 and optimal stationary policies. Generally, the assumption of
unichain structure is difficult to verify.

In Bather [1], communicating MDPs were introduced (see Defini-
tion 3.1) and it was established that the optimal gain for an average
reward communicating MDP without a constraint is a scalar (i.e., inde-
pendent of starting state). The differences between communicating and
unichain MDPs were exhibited in Kallenberg [4] and Ross and Varadara-
jan [7]. The communicating MDP’s without constraint and their rela-
tionship to LP problems were investigated in Filar and Schultz [2]. In
Ross and Varadarajan [7], the average reward communicating MDPs
with sample path constraints were considered, the existence of ¢ > 0 op-
timal stationary policies was proved, and the difference between a sample
path constraint and an average expected constraint was discussed. This
paper will deal with the LP problems and the existence of optimal poli-
cies for average reward communicating MDPs with multiple constraints
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on average expected costs. It will be shown that an optimal solution
of the simpler LP 3.2 can be used to provide an optimal Markov policy
(Theorem 4.1, Lemma 3.1). It will also be proved that the optimal gain
for an average reward communicating MDP with multiple constraints on
average expected costs is scalar.

This paper is organized as follows. In Section 2, the notation and
the definitions are introduced. Some preparative results are given in
Section 3. The mapping which proves the simplified linear programming
solution method for these MDPs is developed in Section 4.

2. Model, notation and definitions

For our purpose, an MDP with multiple constraints is defined by a
finite state space S = {1,---,|S|}, finite action sets A(z) = {1,--- ,m;},
i € S, a reward lawr={r(i,a) : a € A(i),i € S}, costs laws c,={cn(i,0a) :
a€ A(i),ie€Sh,n=12,--- ,K, constraint bounds by, n=1,2,--- , K,
and a transition law g = {q(jli,a) : }_;c5q(jli,a) =1,a € A(i),i € S}.
Given that the process is in a state 7 € S, the decision maker chooses an
action a € A(), receives reward r (i, a), pays for implementing the action
a n-th type of cost ¢,(i,a), n = 1,2,--- | K, and the process moves to
the next stage at state j € S. The decision maker considers the situation
where the average expected reward is to be maximized while keeping the
K types of average expected costs c, below the given bounds b,.

For the average expected reward criterion with constraints on average
expected costs considered below, a randomized Markov policy for the de-
cision maker, denoted by m = {m,t = 0,1,--- }, is sufficient to describe
the decision maker’s course of action, namely, choose action a € A(7)
with probability m(alt), 3= ,e ;) me(alé) = 1 when the process is in state
i € S at stage t > 0. A randomized Markov policy # = {m;,t =0,1,---}
is called randomized stationary, if m(ali) = mo(ali) := f(ali), a €
A(7), i € S, t >0, and denoted by f. A randomized stationary policy f
is called deterministic, if f(ali) = 1, for exactly one a € A(%) and each
1 € S. The sets of all randomized Markov policies, all randomized sta-
tionary policies, and all deterministic policies, are denoted by II,,, s
and F), respectively.

We assume that 8 = (B1,---,0B)s)) is a known nitial distribution,
that is, 8, > 0,n =1,---,|S], and Zjesﬂj = 1. For any « € II;, by
Theorem of Ionescu-Tulcea (see Lerma and Laserre [5, pages 16 and

179]), there exist an unique probability measure Pf on (S x A)>,

(B(S) x B(A))*™), and state and action variables at stage ¢ denoted
by X; and A, respectively. The expectation operator with respect to
Pf is denoted by E,’? . The average expected reward criterion R and
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average expected cost criteria C, respectively are defined well as follows:

EtN;l Eﬁr(Xtht)

R(m,B) = li;[nsup N , (2.1)
—00
N B
Efc, (X, A
Cp(m,B) = liI{fnjupZt:1 W]cvil( b t). (2.2)
o0

Then, the average reward multichain MDP with multiple constraints on
average costs is the following problem (denoted by I'(0)) of choosing a
n* e Il,, to

mazximize R(m,p) (2.3)
subject to
Cn(m,B) <b,, n=1,--- K. (2.4)

Let U(B) = {7 € I, : Cp(m,B) < bp,n=1,--- ,K}. A policy = € U(B)
is called feasible. A policy 7* such that R(r*, 8) = suprcy(g) R(m, B) :=
R*(B) is called optimal. The quantity R*(8) is called optimal gain with
respect to initial distribution 8.

3. Multichain and unichain linear programs

In order to solve the problems of the existence and calculation of
optimal policies, Kallenberg [4] proposed the following multichain linear

programming.
LP 3.1
max z Z r(i,a)z (i, a) (3.1)
i€S acA(5)
subject to
>, 2 (65 —alili,a)ze) = 0, j€S(32)
i€S a€A(d)
> z(Ga)+ > Y (65 —q(li,e))y(ie) = B;, j€85(3.3)
a€A(j) 1€S a€ A1)
Z Z cn(i,a)z(i,a) < by, n=1,---K (3.4)
1€S a€A(7)
z(i,a),y(i,a) > 0, a€A(),i€S. (3.5)

and obtained the following results
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Lemma 3.1
(i) U(B) # 0 if and only if LP 3.1 is feasible.
(i) The optima of the problems I'(0) and LP 3.1 are equal.

(iii) Let F = {f1, f2, -+, fm}, and P*(fr)(1 < k < m) be the Cesaro
limit of powers of transition matriz P(fx) = (q(jli, fx(3))). Sup-
pose that ((z(i,a),y(i,a)), a € A(i), i € S) is an optimal solution
of LP 3.1, and let z(i,a) = > -, axzk(i,a), where zx(i, fr(2)) =
(BP*(fk))i when a # fi(i), then, zx(i,a) = 0 and o > 0, k €
S, Speiap = 1. If m € I, is the policy, introduced by ay and
fk, such that

> BiPP(zy = j,ye = alzo = i)
icS

m
= Zﬂi Zakpfi(wt = j,yt = a|z1 = 1),

€S k=1
t>1,a€ Ai),i €S,

then 7 is an optimal policy of T'(0).
Proof See Theorem 4.7.3 in Kallenberg [4]. [ ]

Remark 3.1 Lemma 3.1 shows that LP 3.1 solves average reward multi-
chain MDPs with multiple constraints on average ezxpected costs. From
Lemma 3.1, we can find that only z(i,a) from the optimal solution to
LP 3.1 is needed to construct an optimal policy. An algorithm for con-
structing the above optimal policy can be found in Kallenberg [4]. Un-
fortunately, this algorithm is computationally prohibitive.

For the case of unichain MDPs, since it has particular ergodic struc-
ture, Kallenberg [4] and Puterman [6] give the simpler unichain linear
programming formulation:

LP 3.2

max Z Z r(3,a)z(i, a) (3.6)

1€S a€A(2)
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subject to

Y. > (6i—glilia)z(i,e) = 0, jES (3.7)
1€S a€A(1)
SN alie) =1 (3.8)

i€S ac A7)
Z Z cn(i,a)z(i,a) < bpy,n=1,---K (3.9)
i€S a€ A(7)
z(i,a),y(i,a) > 0, a€ A(i),1€S5. (3.10)
and obtained many strong results (see [4, 6]). In particular an optimal

stationary policy is easily constructed.
Now, we consider the case of communicating structure.

Definition 3.1 An MDP is communicating if, for every pair of states
1,7 € S, there exists a stationary policy f € F and an integer l > 1 (both
f and | may depend on i and j) such that Pllj(f) (the (i,7)-th entry of

[P(f)])) is strictly positive.
To establish that an MDP is communicating, we have
Lemma 3.2

(i) An MDP is communicating if and only if there exists a f € Il
such that P(f) is irreducible.

(11)) An MDP is communicating if and only if P(f) is irreducible for
every randomized stationary policy f that satisfies f(ali) >0, a €
A(i), 1 €8S.

Proof See [2, 6, 7]]. ]
Hence, we have that communicating MDPs are more restrictive than

multichain MDPs, but rather different from unichain MDPs in that the

communicating property can be easily verified.

4. Linear program relationships

To solve average reward communicating MDPs with mutiple con-
straints on average expected costs, we set

fulal) = 4, acAl),i€s,

my

P(f.) = Y q(li,a)fulali) | ij €S

a€A(I)



Linear program for communicating MDPs with multiple constraints 251

By Lemma 3.2, we have that P(f.) is irreducible. Let v(fy) :=
[4] (v1,-++ ,v;5)) > 0 be the equilibrium distribution for P(f.). Hence,
Pi(f) = vj, 4,5 € S, and Z(f,) = [I - P(f.) + P*(f.)]"" exists
(see [3], [6]). Let ||Z(f*)|| = max{|Z;;(f)| : 4,7 € S} be the maxi-
mal value of absolute values of the elements of Z(f.), v(fi)(min) :=
min{vg : 1 < k < |S]}. For any b= (by,--- ,bjg)) (all b € R, being the
set of real numbers), we define a map T as follows:

T(b)(3,a) := W (b); f+(ali), a€ A(i), i €8. (4.1)

where, W (b) := bZ(f.) + M(f.), A := EWMZU ) = maxc{fbi], 1 <
k<|S]}.

Obviously, we can derive that: T'(b)(i,a) > 0, a € A(i), 1 € S, b €
RISI,

We now derive our main results.

Theorem 4.1 For a communicating MDP, we have that

(1) If {(z*(i,a),y*(i,a)),a € A(3),7 € S} is an optimal solution to LP
3.1, then {z*(i,a),a € A(:),i € S} is an optimal solution to LP
3.2.

(11) If {z*(7,a),a € A(i),i € S} is an optimal solution to LP 3.2, then
{(z*(2,a), T(B — z*)(i,a)),a € A(i),i € S} is an optimal solution
to LP 3.1, where z* := (z},i € S) and z} := EaEA(i) z*(i,a),1 €

S.
Proof
(i) From (3.2), (3.3), (3.4) and (3.5), we can obtain that {z*(i,a) :
a € A(i),i € S} is a feasible solution to LP 3.2. Suppose that
{z*(i,a) : a € A(¢),i € S} is not an optimal solutions to LP 3.2.

(1),1
Let {z(i,a) : a € A(i),7 € S} be an optimal solutions to LP 3.2,

then
ZZ r(i,a)x za>Zz (4.2)

1€S a€A(1 1€S a€ A(z)

Since

v(f I — P(f.)] =0,
P(f*)P*(f*) = P*(f*)P(f*) = P*(f*)P*(f*) = P*(f*)a

and

[ = P(f£.) + P*(f)II - P*(£)] = [I - P(f.)],
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we have Z(f.)[I — P(f.)] = [I — P*(f.)].
Recalling that ), ¢(8i — i) = 0, and Pj(f.) = v;,4,5 € S, we
observe that

W(B -zl -P(f)] = [(B-2)Z(f.)+ (Il - P(f)]
B -z - P (f.)]
= ,B"iL',

where the last equality follows from the fact that P*(f.) has iden-
tical rows. Hence,

=Y W(B - =)iPy(f)

i€S
=Bj—zj,j €5,
Y. TB-2)Ga)—Y WEB-2): Y, qlilie)fu(ali)
a€A(j) i€s a€A(5)
ZIBJ - z x(jva)aj € S7
a€A(j)
Y. TB-2)Ga) -, Y, T(B-x2)6a)lia)
a€A(j) i€S a€ A1)
=Bi— Y z(j,a),j €S,
a€A(j)
Z z(j,a) + Z Z ij q(jli,a))T(B — z)(i,a)
a€A(j) €S a€ A(z)

Then, by (3.7), (3.9), (3.10) and (4.3), we can derive that {(z(i,a
T(B — z)(i,a)) : a € A(i),i € S} is a feasible solution to LP 3.1.
This with (4.2) contradict the optimality of {(z*(%, a),y*(¢,a)),a €
A(i),1 € S} to LP 3.1. Hence, (i) is valid.

(ii) To prove (ii), from the proof of (i), we have that {(z*(i,a),T(8 —
z*)(t,a)),a € A(t),1 € S} is a feasible solution to LP 3.1. Assume
{(z(%,a),y(i,a)),a € A(i),i € S} is any feasible solution to LP
3.1. By (3.2), (3.3), (3.4) and (3.5), {z(¢,a),a € A(i),7 € A} is
a feasible solution to LP 3.2. By the optimality of {z*(7,a),a €
A(7),1 € A} for LP 3.2, we have

E Z r(i,a)z*(i,a) > Z Z r(i,a)z(1,a)

1€S a€A(D) 1€S a€A(t)
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So, (ii) is proved. [ |
When g; = 1,8; = 0,5 # 4,7 € S, we denote R*(8) by R*(¢), and

call R*(z) the optimal gain for starting state 7, R*(3)(i € S) the optimal
gain.

Theorem 4.2 Suppose that the MDP is communicating. Then,
(i) U(B) # 0 if and only if LP 3.2 is feasible;
(i1) the optima of problems of T'(0), LP 3.1 and LP 3.2 are equal;
(iii) the optimal gain is a scalar (i.e., independent of starting state).
Proof

(1) From the proof of Theorem 4.1, we can obtain that LP 3.2 is
feasible if and only if LP 3.1 is feasible. This with Lemma 3.1
show that (i) is valid.

(ii) From Theorem 4.1 and Lemma 3.1 , we can derive that (ii) holds.

(iif) To prove (iii), since the optimal solutions of LP 3.2 are indepen-
dent of initial distribution 8, the optimal gain of LP 3.2 is free
of initial distribution 8. By (ii), the optimal gain R*(8) is also
independent of initial distribution 3, and denoted by R*. Hence,
R*(i) = R*,i € S. This means that (iii) is proved. [ ]

Remark 4.1 Theorem 4.1 and Remark 3.1 show that average reward
communicating MDPs with multiple constraints on average costs can be
solved by the simpler LP 3.2.
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Chapter 15

OPTIMAL SWITCHING PROBLEM
FOR MARKOV CHAINS

A.A. Yushkevich

University of North Carolina at Charlotte,
Department of Mathematics,

Charlotte, NC 28223, USA

Abstract We consider the following multi-step version of the optimal stopping
problem. There is a Markov chain {z:} with a Borel state space X, and
there are two functions f < g defined on X; one may interpret f (z:)
and g (x¢) as the selling price and the purchase price of an asset at the
epoch t. A controller selects a sequence of stopping times 1 <72 < ...,
and can be either in a position to sell or in a position to buy the asset.
By selecting 7 = 7%, the controller, depending on the current position,
either gets a reward f (z,) or pays a cost g (z-), and becomes switched
to the opposite position. The control process terminates at an absorbing
boundary, and the problem is to maximize the expected total rewards
minus costs.

We find an optimal strategy and the value functions, and establish a
connection to Dynkin games.

1. Introduction

We consider a generalization of the well-known optimal stopping prob-
lem for a Markov chain to the case when one may stop and get rewards
many times!. It turned out that an interesting nontrivial generalization
appears if there are two reward functions f and —g, with ¢ > f, and
every “stop” switches them. If f > 0, the scheme has the following fi-
nancial interpretation: f(z) and g (z) are, respectively, the selling and
purchase price of an asset when the system is at the state z, and a con-

1The literature on optimal stopping is enormous. Basic references are Snell [14], Chow,
Robbins and Sigmund [2] and Shiryayev [12]. For an introductory exposition see Dynkin and
Yushkevich [4, Chapter 3]
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troller, who observes the Markovian evolution of the system, may sell or
buy the asset at any time, but only in an alternating order; the aim of
the controller is to maximize the expected profit. It also turned out that
this model is closely related to stochastic games called Dynkin games.
In this article we consider the expected total rewards criterion in the
case of a discrete-time Markov chain with a Borel state space and an
absorbing boundary. Other cases will be treated in subsequent papers.

The paper is organized in the following way. In Section 2 we state the
optimal switching problem, define strategies and two value functions,
corresponding to the selling and the buying positions of the controller.
In Section 3 we discuss two ways to imitate the switching model by
a Markov decision process, formally introduce the first of them called
MDP1, and prove the measurability of the value functions of MDP1 by
value iterations (Theorem 3.1). The goal of Section 4 is to establish a
correspondence between policies in MDP1 and strategies in the switching
problem, sufficient to reduce one optimization problem to the other. In
Section 5 we shift the problem to MDP2, which is more convenient for
further analysis (Theorem 5.1), justify the value iteration for MDP2
(Lemma 5.2), and characterize the value functions in terms of excessive
envelopes (Theorem 5.2, Remark 5.1). In Section 6 we define a preference
function as the difference of the two value functions, characterize this
function by variational inequalities which coincide with those known in
Dynkin games (Theorem 6.1), and describe it in terms of two supporting
sets (Corollary 6.1). In Section 7 we prove that the supporting sets
generate an optimal policy in MDP1, and that they are optimal switching
sets in the original problem (Theorems 7.1, 7.2). In Section 8 we find
the value functions (Theorem 8.1). The connection to a Dynkin game
is treated in Section 9. In Section 10 we present examples in which the
variational sense of the optimality inequalities is visual: the symmetric
random walk and the birth and death process.

2. The optimal switching problem

To make the rewards and costs finite, we suppose that the underlying
Markov chain reaches an absorbing boundary where the control actually
stops. Keeping in mind an extension to the continuous-time case, we
assume that every switching is performed instantaneously, so that it
moves the controller from the selling position to the buying position or
vice versa, but does not change the state of the Markov chain. As in the
optimal stopping problem one may stop at the initial time 0, so in the
switching problem we allow to switch at ¢ = 0 and therefore, to have
the Markov property of the system, we also allow two (and thus any
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denumerable number of) consecutive switchings at the time ¢ = 0, and
hence at any time £ > 0.

We now turn to formal definitions. Let (X, B) be a standard Borel
space and let P (z, F) (z € X, E € B) be a measurable stochastic kernel
in X (everywhere measurability means Borel measurability, if not stated
otherwise). By {z;} we denote the corresponding Markov chain on X;
P, and E; are the distribution and the expectation corresponding to
the initial state zo = z of this chain. As usual, Pf denotes the function

Pf(w)=/f(y)P(w,dy), reX
X

(if only this integral is well defined). By B (X) we denote the space of
all bounded real-valued measurable functions on X. We assume that X
consists of a boundary B € B of absorbing states:

P(z,z) =1, z € B, (2.1)

and of the set X9 = X \ B of interior points. As a sample space  we
take, for simplicity, the set of all paths absorbed at B, i.e. the subset of
X defined by the condition:

Tyl = Tt if =; € B. (22)

In Q we consider the minimal o-algebra N and filtration {N;}: N; is
generated by the random variables zy, ...,z (¢ > 0), N is generated by
all variables z;. All stopping times 7 (w), w €  are understood with
respect to this filtration, the range of 7 consists of the integers 0, 1, 2, ...
and oo. By 7 we denote the first entrance time into a set E € B. There
are also a reward function f € B (X) and a cost function g € B (X).

Assumption 2.1 The sets B and X are nonempty, and
E,7B < o z € Xj. (2.3)
Under this assumption
P, {Q}=1 Q={we:mp(w) <o}, ze€X. (2.4)
Assumption 2.2 The reward and cost functions satisfy conditions
-C<f<g<C, (2.5)

f(z)>0, =ze€B, (2.6)
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and
inf g(z) < sup f(z). (2.7)
z€Xo T€Xo

Denote by S the set of all sequences {74,k =1,2,...} of stopping
times such that

0<n(w)<nW<..., wel. (2.8)
Let Sy be the subset of S specified by the condition
Tk (W) < Tgt1 (w) ifonly 7 (w) < o0.
We consider two random reward functionals
o0
Ji=Ji(T,w) =) Fi(zr,) 1{n < o0}, (2.9)
k=1

Jo=Jp (T,w) =Y Fipi(zr)1{ms < o0}, TES, weQ, (2.10)
k=1

where

Lemma 2.1 For every T € S and w € Qg the series J; (i = 1,2) either
contains a finite number of nonzero terms or diverges to —00, and

Ji(T,w)<Clrp(w)+1], wey, i=12 (2.11)

(In the case of divergence, both the sums of positive and negative terms
can be infinite.)

Proof We consider J; (J; is treated in a similar way). Let w € Qg be
fixed. Then

Ji(w) = () — 9 (ze,) + f(z5) =+ (2.12)
where all ¢; are finite, and 0 < ¢; < t2 < ---. Let N (w) be the finite
or infinite number of terms in the series (2.12), and let T = 75 (w); by

(24) T < o0.

If N(w) < oo, the series (2.12) has a finite number of terms. If
N (w) = oo and t; 1 oo, then, after ¢; exceeds T, all zy; are equal to
zr by (2.2). If N(w) = oo and lim¢; = ¢* is finite, then all ¢; are
equal starting from some j, and again z; are equal for large numbers j.
Thus in any case the series (2.12) consists of two parts: an initial finite
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sum of the same shape (2.12) and a (maybe absent) infinite remainder
of the form f (2) — g (2) + f (2) - for —g(2) + f(z) —g(z) + -]
The remainder diverges to —oo by (2 5), and in this case (2.11) trivially
holds. Otherwise, the right side of (2.12) has a finite number of terms.
By erasing any pair f (zy;) — g (z1,,,) lor —g (z;) + f (z1;,,)] with
Tt; = Tt;,, we may only increase the sum of all terms. After repeating
this “cleaning”, we get a sum of type (2.12) with0 <t; <ty <--- <T,
i.e. a sum with no more than T = 75 (w) terms, and the upper bound
(2.11) follows from (2.4). ]

Lemma 2.2 For every T € S there exists T' € Sy with the property
Ji(T,w) < Ji (T w), wey, i=12 (2.13)

Proof Letni(w),t=0,1,2,...,w € Q, be the number of stopping times
T, in T such that 74 (w) = t. The possible values of the functions n; are
0,1,2,... and oo, each n; is Nj-measurable, and if ny,(wp) = oo for some
to and wy then ny(wp) = 0 for all ¢ > ty; this follows from the structure of
T and the definition of a stopping time. It is easy to see that conversely,
any collection of functions n; with such properties unlquely determlnes
the corresponding element 7 € S: namely, 7 (w) = ¢ if Z oo Ns(w
k<Y, ), t=0,1,2,. andi(w):oo1st:0ns w) < k. One
may deﬁne the needed T by the corresponding functions

n!(w) = 0 if ny(w) is even or is infinite,
T 1 if my(w) is odd.

This results in a “cleaning” of the functionals J; similar to that in
Lemma 2.1, and can only increase them. Since nj(w) never exceeds
1, T € Sp. |

Lemma 2.3 For every T € S the ezxpected rewards
Viz,T)=E.Ji (T), W (z,T)=E;L(T), z€X, (214)
are well defined, less than +00, and measurable.

Proof The existence of expectations (2.14) less than +oo follows from
(2.3), (2.5) and Lemma 2.1. From (2.9)—(2.10) and the definition of
stopping times it follows that J; (7T,w) is N-measurable as a function
of w e Q (i =1,2). By general properties of Markov chains in Borel
spaces, this implies measurability of V and W in z € X. ]

Any pair o = (Tl, 7'2) of elements of S is a strategy of the controller.
By (2.9)-(2.10), if ; = oo then V (z,7T) = W (z,T) = 0. Therefore and
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by Lemmas 2.2 and 2.3 the value functions

V() = supV(z,7) = sup V(z,T), z€X, (215)

Tes TeSo
W(z) = supW (z,7) = sup W(z,T), z€X, (2.16)
Tes TeSo

are well defined and nonnegative. By (2.1), (2.5) and (2.6), on the
boundary
Viz)=f(z), W(z)=0, z€B.

A strategy o* = (T, T?) is optimal if
V(z, T =V (), W(z,T?)=W(z), z€X.

The optimal switching problem is to find an optimal policy and to eval-
uate the value functions V, W.

The following elements 7 € Sy play an important role in solving the
optimal switching problem, and we introduce for them a special notation.

Definition 2.1 For any two disjoint sets F,G € B, Trg s an element
of Sy in which 1, = 7F, To 1s the first entrance time into G after 7, T3
1s the first entrance time into F after 1o, etc. in the alternating order.

Remark 2.1 If condition (2.7) fails to hold, the switching problem is
still meaningful, but is of no independent interest.

Indeed, in that case there is no sense to ever switch in the buying
position, so that w = 0. In the selling position the problem becomes an
optimal stopping problem with the reward function f. The solution of
this problem under Assumptions 2.1-2.2 is well known (cf. references
cited in the Introduction footnote). Namely, the value function v is
a unique solution of the optimality equation v = max(Puv, f) with the
boundary condition v(z) = f(z), z € B, and also is the ezcessive enve-
lope of f, (i.e. the minimal function v with the properties v > 0, Pv <wv
majorizing f). The supporting set F = {z : v(z) = f(z)} D B defines an
optimal stopping time 7* = 7p. Also, v is the unique harmonic function
(i.e. a function with Pv = v) on the set X\ F satisfying the boundary
condition v(z) = f(z), z € F. All these features find their analogues in
the optimal switching problem.

3. First imitating Markov decision process

To use the theory of Markov decision processes (MDPs), we imitate
by them the switching problem of Section 2. This can be done in two
ways. In the first MDP, let it be MDP1, the state of the Markov chain
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changes from z; to z;y; at every switching; in MDP2 the state z; of
the chain remains frozen while switching. In MDP2 all strategies of
the switching problem are taken into account, and indeed we need the
optimality equations of MDP2 to solve the switching problem. However,
in MDP2 every stop requires an additional unit of time in comparison
with the Markov chain, so that the time scales in these two processes
become different, related in a random way, and this makes a formal
description of the correspondence between the controls in them highly
technical. Therefore we formally reduce our problem to MDP1, in spite
of the fact that strategies o with 7441 = 7, < 0o have no counterparts in
it. Later, in Section 5, we transform the optimality equations of MDP1
into those of MDP2 by simple algebra.

An MDP is given by a state space, an action space, a transition func-
tion and a reward function?. The state space of MDP1isY = X x {1, 2}.
For brevity, we use notations X* for X x {i}, and z* for y = (z,4) € Y,
i = 1,2. The action space A = {0,1}, and both actions are admit-
ted at every state y; here a = 1 corresponds to switching, a = 0 to
nonswitching. Let

@ = yYoa1y102Yy2..., Y—1 €Y, a;€ A, (3.1)

be a path of MDP1, with y; = (z¢,4:). The transition function is given
by
P{zi41 €E, iy =ilzs =2, 4 =14, agy1 = 0}=P(z,E),
P {.’L'H_l €EE, 41 =1+ (—1)1—1|$t =z, {4 =1, Qty] = 1}=P($,E),
(3.2)
z € X, E € B, i = 1,2 (for other combinations of %;, ;41 and a;y;
the probabilities are zeros). In words, the z-component of {y;} develops

precisely as the Markov chain {z;}, while the i-component changes each
time the action 1 is used. The reward function r (y,a) is

T(y,O) =0 yEY,
r(xl,l) = f(z), r(x2,1) =—g(z), z€X. (3.3

For the sample space € of MDP1 we take, for simplicity, only those
paths (3.1) in which

(i) the i-component of y;, differs from the i-component of y; if and
only if a;4; = 1, and

2In the terminology and notations we follow mostly Dynkin and Yushkevich [5]. Some other
basic references on MDPs are Bertsekas and Shreve [1], Puterman [11], Hernandez-Lerma
and Lasserre [9]
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(ii) similar to (2, the z-component of ¥ is equal to the z-component
of y; if the latter belongs to the boundary B.

A history h; is any initial segment

he = yoay -+ -y

of the path (3.1).
An arbitrary (in general, randomized and history dependent) policy
7 in MDP1 is defined by the (measurable in h;) probabilities

Piy1 (he) = P; {at+1 =1m} t=0,1,... (3.4)

(and the complimentary probabilities of the action 0), and this together
with (3.2), as usually, determines the probability Py in the space (2
corresponding to a policy 7 and an initial state y € Y. The expectation
corresponding to Py is denoted Ej = E7 ;, y = .

A policy = is called nonrandomized or deterministic, if the probabili-
ties (3.4) assume only the values 0 and 1. Such a policy is specified by
measurable functions 744 (h¢) so that

atp1 = mp1 (he) .

A stationary (deterministic) policy is determined by a measurable func-
tion ¢ : Y — A (a selector), so that a;y1 = ¢ (y¢); such a policy we
identify with ¢. We denote by II the set of all policies, and by ® the set
of all stationary policies (selectors). Let

(I>0={<p€<1>:<p(ml)<p(3:2)=0,xeX}; (3.5)

in words, ¢ € ® if, for every z € X, the selector ¢ prescribes the action
a = 1 at most at one of the states z!, z2. Each selector ¢ € ® is specified
by switching sets

F‘pz{xGX:go(zl):l}, G¢:{x€X:<p(z2)=l}. (3.6)

If ¢ € Dy, the sets F, and G, are disjoint.
The random total reward in MDP1 is

J@)=) rn=Y r(m1a)), (3.7)
t=1 t=1

the expected rewards (if well defined) are

v(z,m) =E;,J (@), w(z,m)=Ef,J(w), z€X, nell. (3.8)



Optimal switching problem for Markov chains 263

The value functions are

v(z) =supv(z,7), w(z)=suwpw(z,7), z€X, (3.9)

well T
and a policy 7 is optimal, if v (z,7) = v (z), w(z,7)=w(z), z € X.
By discarding in (3.1) all elements a; and all components i of y;_;,
we get a natural mapping A : Q — Q, and we merely write w instead of
A (@) where there should be no confusion. Functions on €2, in particular
the first entrance time 7 (w), w € Q into the boundary, can be treated

as functions on Q with w = A (@).

Lemma 3.1 For every policy m € II and initial state y = z* € Y, the
Py ;-distribution on Q induced by the mapping A coincides with the Py-
distribution as defined in Section 2 for the Markov chain {z:}.

Proof Follows directly from (3.2). [ |

Lemma 3.2 The ezpected rewards (3.8) are well-defined and measurable
in « for every m € Il. The value functions (3.9) satisfy bounds

O0Sw(z), v(z)<C(Q+E;8), z€X. (3.10)

Proof The sum of terms r; in (3.7) over 1 < ¢ < 75 (w) does not exceed
C7p (w) (cf. (3.3) and (2.5)). The sum over ¢ > 7p is either 0 or of one
of the forms f(z) —g(2) + f(2) —g(2) +--- or —g(2) + f(2) — ---
(the number of terms may be finite or infinite); in any case it does not
exceed C. Since E;7p < 00, and by Lemma 3.1, the expectations in
(3.8) are well-defined and satisfy the upper bound in (3.10). By (3.9),
the value functions satisfy the same bound. On the other hand, v and w
are nonnegative because v (z, p) = w (z, p) = 0 for the stationary policy
p(y)=0,y€Y. n

To prove that the value functions v, w are measurable and satisfy the
Bellman optimality equations, we approximate them by value iterations.
Let vy, w, be the expected rewards and value functions in the same
model with a horizon n, i.e. with

Jn(@) =) m
t=1

instead of J (@) in formulas (3.8) and (3.9). Let T be the one-step Bell-
man operator defined on pairs (£,n) of nonnegative measurable functions
on X by the formula

€)-r()-(miT280) o
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corresponding to the transition function (3.2) and the rewards (3.3).
Evidently, T transforms such pairs (£,7) into similar pairs if we allow
for nonnegative functions the value +o0o. It follows by induction from
(3.2) and (3.3) (and general facts concerning optimality equations in
MDPs with a Borel state space, a finite action space, and a bounded
measurable reward function), that the value functions v,,w, are given
by the formulas

(”") - <0>, (”"*1) =T<”"), n=012,.., (312)
wWo 0 Wn+1 Wn

and are measurable. Here, by (3.11), v; > Pv; = 0 = vy, w; > Pwy =
0 = wp , and by the monotonicity of T

O=v<v1<v2e< -, O=wySw Cwp <. (3.13)
Theorem 3.1 The value functions v, w of MDP1 are equal to the limits

v(r) = lim v, (z), w(z)= lim w,(z), z€X, (3.14)

n—oo n—00

and are measurable. They satisfy bounds (3.10), optimality equations

v = max(f+ Pw,Pv), (3.15)
w = max(Pv—g,Pw), (3.16)

and boundary conditions
v(r)=f(z), w(z)=0, =ze€B. (3.17)

Proof We prove (3.14) for v; the case of w is similar. Inequalities
(3.13) imply the existence of the limit o (z) = li_)m vp (z), ¢ € X. For
n—o0

arbitrary n and 7 € II, let 7’ be a policy equal to 7 at the initial steps
t=1,2,...,n, and assigning the action a; = 0 at the steps ¢ > n. Then

vp (z,m) = v (z,7') <v(z), z € X,

so that v, (z) < v (z), and hence 0 < v.

To obtain the inverse inequality, observe that after the process {«;}
reaches a point z € B at the time 7p, the forthcoming reward is either
0, or —oo, or a finite sum of alternating terms f (z) and —g(z); its
maximum is f (z) if i;, = 1 and is 0 if ¢z, = 2, and this maximum can
be gathered at the first step of the control after the time 755, It follows
that

v(z) =supv(z,7m) = sup v(x,m), =€ X, (3.18)
well welly
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where I is the set of all policies for which a; = 0 at the steps t >
T8 (w) + 1, w = A (@). For a policy = € Iy all terms r; in (3.7) with
t > 7p + 1 are zeros, and since |r| < C, we have by Lemma 3.1

o0 oo
ET, ) Inl<CY Po{rg>t}, n=01,..., 7€l (319
n+1 t=n

For every policy 7 € II evidently

00
v(z,m) < vn(2) +E, Y I,
n+1

and therefore (3.18) and (3.19) imply
v(x)gvn(x)+CZPz{Tth}, n=12,...,z€X. (3.20)
t=n

Since E;7p < 00, the sum in (3.20) converges to 0 as n — oo, and in
the limit (3.20) becomes v < ¥. Thus, v = 9, and (3.14) is proved.
Measurability of v,w follows from (3.14) and Lemma 3.2. Relations
(3.15)-(3.16) follow from the monotone convergence (3.14) and (3.11)-
(3.12). Boundary conditions (3.17) follow from (2.1), (2.5)-(2.6) and
(3.3). n

4. Correspondence between strategies and
policies

To show that a solution of MDP1 provides a solution to the switching
problem, we establish a correspondence between some strategies and
policies under which the expected rewards do not change. We perform
this for classes of strategies and policies, sufficient to approximate the
value functions.

Lemma 4.1 To every strategy o = (T*,T?) with T* € S, i = 1,2,
there corresponds a nonrandomized policy m such that

v(z,m) =V (2, T"), w(z,n)=W(z,T?), z€X. (4.1)

Proof We construct the functions myy; for histories hy = ypa; - - y;
with yo = (o, 1), so that the first of the relations (4.1) holds; the second,
corresponding to yg = (zo, 2), is treated similarly.

We refer to the correspondence w = A\ (@) and Lemma 3.1. Given the
component 7! = {r; < 79 < ---} of the strategy o, we define a mapping
g — Qby setting

2 (w) =4 ($0$1$2 v ') = Yoo y1a2y2 - -
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where

[ yo = (20,1),
a; =0, yr = (z4,1) f0<t<n(w),
at=1, yt:($t,2) ift=’7'1 (CLJ)+1,

{ at=0, yt=($t,2) if’l’l (w)+1 <t<7’2 (w), (42)
atzla yt__-(ztal) ift:T? (w)-l—lv
a; =0, yr = (z4,1) fn(w)+1<t<n3(w),

\ b

until we cover all ¢t = 0,1,2,.... The paths @ € () we call marked
paths; marked histories h; are initial segments of marked paths.

For a marked history h; we set w1 (hy) = a;+1 where a4y is given
in (4.2). In general, a marked history can belong to different marked
paths. However, since 7, are stopping times with respect to the minimal
filtration in Q, a;4; is uniquely defined by zg, z; ..., z; (together with all
7 < t). For every unmarked history h; we set, to be definite, 741 (ht) =
0. The same argument shows that m;;; are measurable functions of
histories h;. Thus m = {m1,72,...} is a nonrandomized policy.

By the construction (4.2) and by the definition of the reward J (@)
(see (3.3) and (3.7)), we have for a marked path

J (@) = f (&n) = 9 (@) + [ (Trg) =+ = N1 (W) (4.3)

if 0 = p(w) (see (2.9)). Evidently, A (i (w)) = w for every w € 2. Also,
from the construction (4.2) and by induction in ¢, it is easy to see that
P7, {1 (Q)} = 1. Hence, by Lemma 3.1 and (4.3), EZ ;J (¥) = EgJ (w).

|

Lemma 4.2 To every selector ¢ € ®q there corresponds a strategy o =
(Tl,TZ) with T* € Sy, 1 = 1,2, such that

V(z, T =v(z,¢), W (z,T?) =w(z,9), TE€X;

namely, one may set T' = Tpg, T? = Tgr where F = F,, G=G, (see
Definition 2.1).

Proof For T! = Tpg and a;11 = ¢ (y;) (i-e. m41 = @) we have the
same correspondence (4.2) between the marked paths and histories on
one side and sample points w on the other, as in the proof of Lemma 4.1,
with the P7 |-probability of the set 2\u (§2) of non-marked paths equal
to 0. Thus the concluding part of the proof of Lemma 4.1 extends to
the present case, and V (z,Trg) = v(z, ). The case of W (z, Tgr) is
similar. [
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Remark 4.1 It follows from Lemmas 2.2 and 4.1, thatv >V, w > W.
If

sup v (z,p) = supv(z,7), sup w(z,p) =supw (z,7), z€X,
pedy well pedy w€ell
(4.4)

then also v <V, w < W, so that indeed v =V, w = W, and an
optimal selector ¢ € ®y generates an optimal strategy 0 = (Trg, Tor)
(see Lemma 4.2).

Relations (4.4) will be justified in Section 7.

5. Second imitating Markov decision process

In this section we show that optimality equations (3.15)-(3.16) of
MDP1 are equivalent to optimality equations of MDP2, and obtain a
characterization of the value functions in terms of excessive envelopes.

MDP1 was formally defined in the second paragraph of Section 3.
The definition of MDP2 coincides with the above definition except at
one point: the second of formulas (3.2) should be replaced by

P{z111 € E, iry1 =i+ (1) Moy =z, iy =1, a1 =1}

_ 1 ifz€eE,
B 0 fz¢E.

In words, if the action @ = 1 is used in a state y = z* in MDP2, then
the system moves with probability 1 to the state z7, while in MDP1 it
moves to a state 2/, where z has the distribution P(z,-); in both cases
j is different from 7. We have no need to analyze MDP2 in detail, as we
did in Section 3 with MDP1. However, equations (5.1)—(5.2), formally
obtained below for the value functions of MDP1, and crucial for the opti-
mal switching problem, are indeed Bellman equations of MDP2. In fact,
we got them originally from MDP2 by a naive dynamic programming
reasoning.

Theorem 5.1 For finite, nonnegative measurable functions v and w on
X, equations (3.15)—(3.16) imply the equations
v = max(f+w,Pv), (5.1)
w = max(v—g,Pw), (56.2)
and vice versa. In particular, (5.1)-(5.2) are true for the value functions
of MDP1.

Proof First assume (3.15)—(3.16). Fix zp € X, and to simplify the
writing, skip z in f (z¢), v (zo), w(zo), Pv (zo), etc. There are 4 cases
compatible with (3.15)—(3.16).
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Case 1 v = Pv, w = Pw.
Then (5.1)—(5.2) coincides with (3.15)—(3.16).

Case 2 v > Pv, w > Pw.

Then from (3.15) v = f 4+ Pw < f + w and from (3.16) w =
Pv—g<v—-g. Hencev < f+v-—gorg< f, and we have a
contradiction with (2.4).

Case 3 v = Pv, w > Puw.

Here (5.2) coincides with (3.16). Since w > Pw, from (5.2) we get
w =v—g, hence v =w+g > w+ f, and this together with v = Pv
proves (5.1).

Case 4 v > Pv, w = Pw.

Now (5.1) follows from (3.15). Since v > Pu, (5.1) implies v =
f+w < g+ w, and this together with w = Pw proves (5.2).

Now assume (5.1)—(5.2). We have the same 4 cases.
Case 1 Is again trivial.

Case 2 We get from (5.1)-(5.2) v= f+w = f+v—g, thus f =g, and
this contradicts to (2.4).

Case 3 (3.16) holds automatically, while (3.15) reduces to v > f + Pw.
This holds because w > Pw and v > f + w by (5.1).

Case 4 (3.15) holds automatically, and (3.16) reduces to w > Pv — g.
The last inequality holds because Pv < v and w > v — g by (5.2).

The last assertion of the theorem follows from Theorem 3.1. [ |

Let U be the Bellman operator corresponding to the optimality equa-
tions (5.1)—(5.2): for nonnegative measurable function £, on X

()-0()-(zxidzmiey oo

(cf. the definition (3.11) of T). U is also a monotone operator, and

analogous to
=T" n=01,2 (5.4)
0) ,1,2,... .

(cf. (3.12)), we set

=" =0,1,2,.... .
(wn) (O) n=01,2, (5.5)
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Lemma 5.1 If¢,n7 2> 0 and

O
()o1()

Proof By (5.3) ' > Pnand ¢ > P¢, by (5.6) P¢' > P¢, Py > P,

Thus
(5) = o)
,’7 !
ax
max

(o
(max
()

Lemma 5.2 The functions v,, w, defined in (5.5) are nondecreasing
in n and converge to the value functions of MDP1:

Up T, Wy, T w. (5.7)
Proof By (5.5) and (5.3)

(2)=2(0) > (0) = (&) (55)

and therefore, since U is a monotone operator, Up+1 2> Up, Wnt1 = Wp.
Multiplying by U™ the inequality

(o)< ()
we get by (5.1)~(5.2)

(Z)") v (g> = U"(U> - (Z,) (5.9)

On the other hand, Lemma 5.1 and (5.8) imply the inequality

(&) =0)>rG)=() oo

then

f+1, Pé’))
¢ —g,Pn')
f+ Pn, Pf))
P¢ — g, Pn)
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(see (5.4)). Similarly, Lemma 5.1 and the inequalities v3 > ¥, w3 > w2,
and after that (5.10), imply

(o) =o(2) = 2(2) () - ()

so that by an evident induction 92, > vy, Wo, 2> wy,. This together with
(5.9) and (3.14) proves (5.7). ]

Theorem 5.2 The pair (v,w) of the value functions of MDP1 is the
minimal nonnegative measurable solution of the inequalities

{ v 2 max (f + w, Pv),

w > max (v — g, Pw) . (5.11)

Proof For any pair (9,®@) > 0 satisfying (5.11) we have, in notations

<f> Qe en

) applied to (9, w), by an evident induction
Up—

Wy — w

w<w

In other words, (v, w) is the minimal pair of excessive functions sat-
isfying inequalities

From (5.5), (5.12), and (5

inn
Up
Wn,

and by Lemma 5.2 v < 9,

3

2w+ f, w>2v—g.
Remark 5.1 Similar to the reasoning used in Theorem 3.1, one may
show that v,w are also the value functions of MDP2.
6. Preference function

We define the preference function as
u(z)=v(z) —w(z), ze€X. (6.1)

Since indeed the value functions of the switching problem and MDP1
are equal (Theorem 7.2 below), the preference function shows to what
extent the selling position is more advantageous than the buying position
at any state .

From now on, it is convenient to use, instead of the transition operator
P, the generator A of the Markov chain {z;}:

A=P-1 (6.2)
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where [ is the identity operator. Harmonic functions are solutions of the
equation Ah = 0, excessive functions are nonnegative functions h with
Ah 0.

Theorem 6.1 The preference function u is the unique bounded measur-
able solution of the inequalities

flz) < ulz) < g(2), z € X, (6.3)
Au(z) > 0 if f(z) <u(z), (6.4)
Au(z) < 0 ifu(z) <g(z), (6.5)
together with the boundary condition
u(z)=f(z), z€B. (6.6)

Relations (6.3)-(6.5) are known in some stochastic games, the so-
called Dynkin games (see Section 9 for more details). In connection
with those games, the uniqueness of the solution to the system (6.3)-
(6.6) was proved at various levels of generality, including the continuous-
time case. For completeness of the paper, and since we do not have a
proper reference covering the discrete-time case with a Borel state space,
we present a simple proof of the uniqueness too.

Proof The measurability of u follows from (6.1) and Theorem 3.1. By
Theorems 3.1 and 5.1, v and w satisfy equations (5.1)—(5.2). Subtracting
w from both sides of (5.1) and using (6.2) on one hand, and multiplying
(5.2) by —1, adding v and using (6.2) on the other, we get

max (f, Av + u) = u = min (g, u — Aw). (6.7)

Now (6.3) follows immediately from (6.7), and (6.3) shows that u is
bounded (cf. (2.5)). If f(z) < u(z) at some point z, then by (6.7)
Av (z) + u(z) = u(z), so that Av(z) = 0; on the other hand, Aw < 0
everywhere by (5.1), and hence Au(z) = Av(z) — Aw(z) > 0. This
proves (6.4). To get (6.5), use that Av < 0 by (5.1) and that Aw (z) =0
if u(z) < g(z) by (6.7). The boundary condition (6.6) follows from the
boundary conditions (3.17) for v and w.

To prove the uniqueness, we observe that for any u € B(X) the process

{&} .
fo=u(®), &=u(m)—) Aulzx), (t>1) (6.8)
k=0

is a martingale (with respect to the minimal filtration {N;} generated by
the Markov chain {z;}, see Section 2). Indeed, by the Markov property



272 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

and (6.2), for any t >0 and z € X

t
Eo[6nlM] = Eofu(ze) IV = ) Au(zi)
0

—_— ét.
By Doob’s theorem, for a stopping time 7
E6; =é=u(z), z€X, (6.9)

if only
E; |&] < o0, tl_lglo E;|&|1{r >t} =0. (6.10)

(See, for instance, Shiryayev [13]). We verify (6.10) for any stopping
time 7 < 7p. By (6.3) and (2.4), |u| < C , hence by (6.2) |Au| < 2C,
and therefore by (2.2)

E; (| < C(1+2E;78) <00, z€X.
Also,
E;|&|1{r >t} <C(2t+1)Py{rg >t} 20 ast— o0, z€ X,

because the expectation
o0
E,.7g = Z nP {rg = n}
1

converges and

o 9]

tP.{rp >t} < Z nP, {rg =n}.
n=t+1

Thus, (6.9) holds for any 7 < 75.

We now suppose that there are two different solutions u; and us to
(6.3)-(6.6), and get a contradiction. Assume that u; (2) < ug(2) at
some z € X. Let

D={zeX:u(x) >ux(z)}. (6.11)
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The set D is measurable together with u; and ug, so 7p is a stopping
time. By (6.6), u; = uz on the boundary, so that B C D, 7p < 7, and
therefore (6.9) is applicable to 7 = 7p. On the set E = X\ D we have
by (6.3) and (6.11)

f(z) Sur(z) <uz(z) <g(),
hence by (6.4) and (6.5)
Aug(z) 20, Au;(z) <0, z€E. (6.12)

Since zy € E for 0 < t < 7p and z; € D for t = 7p, we obtain from
(6.8), (6.9), (6.11) and (6.12) for 7 = 7p

u1 (2) 2 Eyup (z7) 2 Eyug (r) = u2 (2)

in contradiction with the assumption u; (2) < ug (2). [ ]

Another description of the preference function u can be given in terms
of the support sets

F={zeX:u(@)=f(z)}, G={zeX:u(z)=g(z)}. (6.13)

Corollary 6.1 The support sets F and G are disjoint, measurable, and
F contains the boundary B and therefore is nonempty. The preference
function u s the unique bounded measurable solution of the equation

Au(z) =0, ze€ X\ (FUG), (6.14)
with boundary conditions
u(z)=f(z), z€F, u(z)=g¢g(z), z€QG. (6.15)
Moreover,
Au(z) <0, =z €F, Au(z) >0, z€Qg. (6.16)

Proof Theorem 6.1 and the condition f < g imply all the assertions
except the uniqueness of the solution to (6.14)—(6.15). The latter follows
from the representation of any bounded solution of (6.14) in the form

u(z) =Egu(z;), 7=1r0g, 2z€X\(FUG),

obtained from (6.8), (6.9), and (6.14), combined with (6.15). Formula
(6.9) is applicable because B C F UG so that E;7 < E;7p < oo. n

In other words, uw is the unique bounded function harmonic in
X\ (F' U G) and satisfying boundary conditions (6.15).
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7. Optimal policy and optimal strategy
We now show that the stationary policy

olai) = {

where F' and G are the support sets (6.13), is optimal in MDP1.

To shorten formulas, we write v#, w? in place of v (-,¢), w(-,¢).
Consider in parallel to the Bellman operator T (see (3.11)) a similar
operator T'¥ corresponding to ¢:

( (f (””;:(l;;’ (z)) ifzeF,

1 ifi=1,z€F or 1i=2, €@,

0 otherwise, (7.1)

T<P(f’) (z) = ¢ (pg (Zf(_”; (m)> ifrea, (7.2)

\ (ﬁf}gg) if 1€ XN\(FUG).

Lemma 7.1 The value functions v and w satisfy equations
o - {fr s e s
o = 3oty

Proof Relations (7.3) with w(z) and (7.4) with v (z) follow directly
from formulas (5.1)—(5.2) of Theorem 5.1, the definition (6.13) of the sets
F and G, and the equation v = v —w. If £ € F, then z ¢ G, therefore
w (z) = Pw (z) by the already proven part of (7.4), and hence we may
replace w (z) by Pw (z) in (7.3). Similarly, if z € G, then v (z) = Pv (z)
by (7.3), and this proves the remaining part of (7.4). [ ]

Lemma 7.2 The operator T¥ is conserving in MDP1, i.e.
v v
T¢ = .
(0)- ()
Proof Evaluate the left side of (7.5) using (7.2) and compare with
(7.3)-(7.4). [

(7.5)

Lemma 7.3 The policy ¢ is equalizing in MDP1, i.e. with z, = z (y,)

lim Ef [v(zn)1{in =1} +w(za)1{in =2}] =0, y€Y. (76)

n—ooo Y
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Proof We suppose that y = (z,1); the case of y = (z,2) is similar. If
(7.6) does not hold, then, since v > 0 by Lemma 3.2, there exist z € X
and € > 0 such that

E? [v(zn) 1{in =1} +w(zn) 1{in =2}] > 26, n€N=N(z,e),
(7.7)
where the set N = {n; <ny <---} of integers is infinite. As in the
proof of Theorem 3.1 (see (3.19)), it follows from Assumption 2.1 that
the tail of the rewards converges to 0 uniformly in policies 7 € Iy, and
therefore there exists an integer ngy such that

o0
E7 Z Ire+1| < € for n > ngy, 7 € Ij. (7.8)
n

Let n be fixed, ng < n € N, so that both (7.7) and (7.8) hold. Accord-
ing to general results on upper summable Borelian MDPs, for any € > 0
and any probability measure p on the state space X, there exists an
(a.e. p) e-optimal policy; see, for example, Dynkin and Yushkevich [5,
Chapters 3 and 5] (formally the MDP we consider is summable in the
sense of Lemma 3.2, different from the upper or lower summability as-
sumed in Dynkin and Yushkevich [5], but this causes no impact on the
applicability of the general measurable selection theorems). Let o' € II
be such a policy for the measure p (dz) = P, {z, € dz}. The same rea-
soning as used in the proof of (3.18) shows that ¢’ can be adjusted to a
policy o € Il without diminishing the random and hence the expected
rewards. So we have a policy o € Iy with

v(z,0) 2 v(z)—¢ (ae p),
{'w(z,a) > w(z)—¢ (ae p) (7.9)

bl

where 2z € X.

Consider now a policy m = ¢"0o; this policy coincides with ¢ on the
n initial steps of the control, and after that coincides with o; in the
notations of Section 3, p} ;.1 (ht+n) = P7y, (h;) where h; is obtained
from h,y; by erasing the initial elements yga; ... y,. Since o € Ilj, also
7 € Ip, and (7.8) holds. On the other hand, by the structure of the
policy 7, Lemma 3.1 and the Markov property of the chain {z:},

EL, (Zrm) - [ v m@)+ [ vEoma (110

where
pi(dz) =Py {in, =14, =, €dz}, 1=1,2, (7.11)
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so that pq + po = p. Using firstly (7.9) and (7.10), and secondly (7.11)
and (7.7), we obtain

ET, (Zrm) > /X v (2) pn (d2) +w (2) pa (d2) — &

= Ef,l[fu(zn)l{in=1}+w(mn)1{in:2}]—5
2 2c—¢ = ¢

This contradicts to (7.8), and we are done. [ |

Theorem 7.1 The stationary policy ¢ defined in (7.1) is an optimal
policy in MDP1.

Proof Follows from Lemmas 7.2 and 7.3 and the general fact in the
theory of MDPs that a conserving and equalizing stationary policy is

optimal. Namely
v v
— (T%)"
(o) = (2)

from (7.5), and this equation means that

v(z) =B |Y ri+v(zn) 1{in =1} +w(en) 1{in =2}|, (7.12)
L 1 J

w(z) =B, | re+v(2a) 1{in =1} + w(za) 1 {in = 2}|, (7.13)
L 1 i

(as follows from (7.2) and the structure (3.3) of rewards). Due to (7.6),
in the limit (7.12) and (7.13) turn into v (z) = v¥ (z) and w (z) = w¥ (z).
]

We now return to the switching problem and refer to Definition 2.1
for notations.

Theorem 7.2

(i) The value functions (2.15)—(2.16) of the switching problem and
(3.9) of MDP1 (and hence also of MDP2) are equal: V =v, W =
w.

(ii) The strategy o = (Tra, Tgr) is optimal in the switching problem.



Optimal switching problem for Markov chains 277

Proof

(1) Since the sets F and G are disjoint, the policy ¢ in (7.1) belongs
to the class @y (see (3.5)). Also, ¢ is optimal in MDP1, and it
remains to refer to Remark 4.1.

(ii) By Lemma 4.2 and (i) V (z,Trg) = v(z,p) = v(z) = V(z),
z € X. Similarly, W (-, Tgr) = W. [ ]
8. The value functions

Theorems 3.1 and 5.2 give an implicit characterization of the value
functions V = v and W = w. In this section we get explicit formulas in
terms of the preference function u and the support sets F' and G.

Let

Q(z,D) = Py{z,, € D}, z€X, DCB, DeB, (8.1)

be the exit measures corresponding to the Markov process {z;}; by As-
sumption 2.1 Q(z,B) = 1 for every z. Consider also the occupational
measures

o0
=) P.{z,eD}, =z€X DeB, (8.2)

and the corresponding operator R (the resolvent for A = 1) defined for
any nonnegative measurable function & on X:

_ / hy)R(zdy) = Y P'h(z), seX.  (83)
X t=0

Mention that R(z, Xy) = E;7p < oo for every z by Assumption 2.1, and
that if h is bounded and h = 0 on the boundary B, then Rh(z) is finite
for every z.

Lemma 8.1 We have

lim P"w(z) =0, lim P"v(z)= / f(y)Q(z,dy), ze€X.

n—oo n—oo
(8.4)

Proof Given z, consider the corresponding state y = (z,1) of MDPL1.
By Lemma 3.1, the following formula is valid for any policy 7 in MDP1,
in particular for the optimal policy ¢ defined in (7.1):

P w(z) = BY [w(zn)1{in = 1} + w(zn)1{in = 2}].



278 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

Now, since w(z) = 0 on the boundary B, and since everywhere | v—w |=
| u |[< C (as follows from (6.3) and (2.5)),

] 0< fu(z) if z € B,
w(z)1{i, =1} < { v(2)1{i, =1} +C if z € X,.

Therefore
PMw(z) < BY [v(zn)1{in = 1} + w(za)1{in = 2}] + CP¥{z, € Xo}.

Here the expectation tends to zero by (7.7), and the probability tends
to zero by Assumption 2.1. Since w > 0, this proves (8.4) for w. For v
we have

P"v(z) = E; [v(zn)1{zn € B}] + Eg[v(zn)1{zs € Xo}]. (8.5)
Using the inequality | v — w |< C, we obtain
E, [v(zn)l{xn € Xo}] <E, [w(mn)l{xn € Xo}] + CP{z, € X0}

As in the case of w, both terms here converge to zero as n — 0. Since
v > 0, the last expectation in (8.5) tends to 0. On the boundary B we
have v = f, and because all boundary states are absorbing states, and
T, reaches the boundary at the state z.,, the first expectation in (8.5)
converges to the integral in (8.4). [

Consider now the functions

—Au(z) ifz € F,

Au(z) ifz €@,
h(z) ={ 0 ifrex g » @) "’{

=10 if 7 € X\G.

(8.6)
These functions are known together with u, and by (6.16) they are non-
negative. On the boundary they both vanish (by (2.1), on the boundary
Af(z) = 0 for any function f).

Theorem 8.1 In the notations (8.1)-(8.4) and (8.6), the value func-
tions v and w satisfy equations

Av = —h, Aw = -l (8.7)
and are given by the formulas
v =Rh+Qf, w = RI. (8.8)

Proof By (7.3) Av = 0 on the set X\ F. On the set F C X\ G we
have Aw (z) = 0 by (7.4), and therefore Av = Aw+ Au = Au (remember
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that u = v — w). By (8.6) this proves the first of equations (8.7). The
second equation follows in a similar way from the relations: Aw = 0 on
X\G (cf.(7.4)), and Av=00n G C X\ F.

Equations (8.7) mean that v = A + Pv, w = | + Pw. By iterations we
get for any natural n

n—1 n—1
v=> Ph+P, w=)Y Pl+Pu

Here all terms are nonnegative and finite. Due to (8.3) and (8.4), these
relations turn into (8.8) as n — oo. [ ]

9. Relation to a Dynkin game

Zero-sum stochastic games with stopping times as strategies of the
players were proposed by Dynkin [3], and one often calls them Dynkin
games. Frid [6] studied the solution of the Dynkin game for a Markov
chain with a finite number of states, Gusein-Zade (8] studied it for the
Brownian motion process in a domain in R"™ (as mentioned by Frid,
Gusein-Zade solved also the Dynkin game for a finite Markov chain with
an absorbing boundary). In those initial works, the stopping actions
of the two players were restricted to two disjoint subsets E;, Ey of the
state space, so that both players could never stop the process at the same
time ¢. Correspondingly, there was only one reward function g, and the
random gain of the first player (equal to the loss of the second player)
was R(r,0) = g(z,), p = min(7,0), where 7 and o are the stopping
times chosen by the players I and II. The value function of the game
appeared to be a two-sided analogue of the value function of the optimal
stopping problem, namely, a solution of a variational problem between
two obstacles: an upper bound g on the set E» and a lower bound g on
the set Ej.

It seems that Krylov [10] was the first who, in his study of the Dynkin
game for a general diffusion process, replaced the two sets E, E» by two
functions f < g, so that there remained no restriction on the stopping
times 7 and o, but the gain of Player I took on a form

R(r,0)=f(z;)1{r < 0,7<0}+g(z,)1{0 < T}. (9.1)

Indeed, the original Dynkin’s setting with the sets E;, E; can be reduced
to the form (9.1) by renaming g into f on the set Ej, and defining f
close enough to —oo on the complement of E, and g close enough to +o00
on the complement of F5. The corresponding variational problem has
precisely the form of inequalities (6.3)-(6.5) for the preference function
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u we treated in Theorem 6.1, with A being the generator of the diffusion
process. For an extensive exposition of such stochastic games in the
continuous-time case we refer to Friedman [7, Chapter 16).

As an auxiliary result of our solution of the switching problem, we
obtain a solution of the corresponding Dynkin game. This is not a new
result but a new approach. We return to the setting of Section 2 and
introduce the necessary definitions. The expected gain of the Player I is

u(z,7,0) = E;R(1,0), z€X.
The two functions

u(z) =supinfu(z,7,0), @(z) = infsupu(z,7,0), z€ X,
T 0 A

are, respectively, the lower and upper values of the game. Always u <

and if they are equal then the game has a value function u = 4 = u.

pair of stopping times (7*,0*) is a saddle point if

,

A

maxu(z,7,0%) = u(z,7*,0*) = minu (z,7%,0), z € X. (9.2)
T a

If a saddle point (7*,0*) exists, then the value function u of the game
also exists and is equal to

u(z) =u(z,7*,0%), z€X. (9.3)

The stopping times 7*, o* satisfying (9.2)—(9.3) are optimal strategies of
the players, and the triple (u, 7*,0*) is called a solution of the game.

Theorem 9.1 The preference function u defined in Section 6 is the
value function of the game. The stopping times Tr and 7 (cf. (6.13))
are optimal strategies of the players I and II

The proof is based on the following verification lemma for the optimal
stopping problem. It is not a new result, but it is easier to give a proof
than to find an exact reference.

Lemma 9.1 Let X, B, {z:} and stopping times T be the same as in
Section 2. If a measurable set E C X and measurable bounded functions
h and u on X satisfy conditions: B C E,

u(z) = Pu(z)2h(z), z€X\EFE, (9.4)
u(z) = h(z)>=Pu(z), z€E, (9.5)

then
u(z) = Egh (zr5) = sup Ezh(z;), z€X. (9.6)

7<TB
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Proof As in the proof of Theorem 6.1, the process

t—1
G=u(zm)— ) Au(z), t>0, (9.7)
k=0

is a martingale satisfying the conditions (6.10) because u is bounded, so
that similar to (6.9)

u(z) =Ez&, z€eX, (9.8)

for every 7 < 7. By (9.4)-(9.5) Au = Pu —u < 0, hence (9.7) and
(9.8), and then again (9.4)—(9.5) imply

u(z) = Byu(z;) 2 Ezh(z,), z€X, (9.9)

if only 7 < 7. On the other hand, 7g < 7p because B C E, so
that (9.8) is valid for 7 = 7g, and for this stopping time Au(zx) =
Pu(zg) —u(zg) =0 for t < 7 by (9.4). Thus (9.7) and (9.8) imply

u(z) = Exérpy = Byu(2,,) = Ezh(27;), z€X, (9.10)

where the last expression follows from the fact that z,, € E and (9.5).
Relations (9.9) and (9.10) prove (9.6). [ ]

Proof of Theorem 9.1 Suppose that the second player uses the stop-
ping time o = 7 (recall that G may be empty). Then the first player is
in the following situation. On the set X\ B’ where B’ = BUG, the pro-
cess {z;} can be stopped only by him (or her), and if it is stopped at a
state £ € X\ B’ the reward is f (z). On the set B he (she) may stop the
process or not, but it is optimal to stop and get the reward f (z), z € B
because f > 0 on the boundary B (see (2.5)), and because any state
T € B is absorbing. On the set G, if he (she) stops, the reward is f (z),
if not, than the second player stops and the reward is g (z) > f(z),
z € G (see (9.1) and (2.5)). Hence it is definitely better for I not to
stop and get the reward g (z). The same happens if we forget about the
player II, change every state z € G into an absorbing state, and change
the reward of the first person from f(z) to g(z) at this state. Thus,
indeed, if II uses the strategy 7¢, I faces an optimal stopping problem
on the space X with an enlarged absorbing boundary B’ = BUG, a
modified reward function

h(z) = { g((;f)) rea e (9.11)

and the choice of stopping times 7 reduced by the condition 7 < 7p'.
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Let now E = B'UF = BUGUF = GUF (by Corollary 6.1, B C F),
and let u be the preference function from Section 6. By Corollary 6.1
u(z) = Pu(z) if z € X\ F (see (6.14)), u(z) > h(z) if z € X\ FE (see
(9.11) and (6.3)), u(z) = h(z) if z € E (see (6.13) and (6.15)). To
get all the conditions (9.4)—(9.5) of Lemma 9.1, it remains to check the
inequality u (z) > Pu (z) on the set E. It does not hold in a literal sense
because we deal with a modified problem with an enlarged absorbing
boundary B’ = BUG. In this new process the kernel P (z,dy) has
changed from the original one, now we have P (z,z) = 1 for z not only
in B, but also in G C B’, and for this new kernel the last condition in
(9.5) holds. Thus we have all conditions of Lemma 9.1 with B changed
to B’ = BUG. By this lemma, 7 is an optimal stopping time for Player
I in the modified problem. By the relation between the just described
optimal stopping problem and the original game with strategies of the
second player reduced to the single stopping time ¢ = 7g, 7F is the best
reply of I to the choice 7¢ of II, so that for 7* = 7, 0* = 7¢ the left of
the equations (9.2) holds.

The right of the equations (9.2) is proved in a symmetric way, with
the player II maximizing the reward —R (7F, o) over stopping times o
subject to the constraint o < 7F (actually, Player I stops the process on
the set F', mandatory for the player II, and in place of (9.11) we now
have h(z) = —g(z) if x € X\F, h(z) =—f (z) ifz € F). |

10. Examples
10.1 Symmetric random walk

In this example the state space X is {0,1,2,...,k,...,n}, the states 1
and n are absorbing states, the transitions kK — (k £ 1) occur with prob-
abilities 1/2, the reward and cost functions are vectors {fo, f1,...,fn}
and {90,91,-.-,9n}, where fi < g for all k, and fo > 0, f, > 0. The
optimality inequalities (6.3)—(6.5) of Theorem 6.1 take on the form

fo < we < ogr, (10.1)
1 1 .
§uk_1 + §uk+1 > ug ifug > fi, (10.2)
1 1 .
k-1t Ukl < if ugp < g (10.3)

(here k = 1,...,n — 1), and the boundary conditions (6.6) become

Up = fO, Up = fn, (10'4)
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(the values of gy and g, are unessential). Consider the functional

n—1

Blu] = ) n(ups1 — uk)

k=0

where 7(z) is any twice differentiable function with 5" (z) > 0, —0o0 <
x < 0o. For such 7, the partial derivative

(i) ' '
aa—uk =1 (up — ug—1) — 7 (Yp41 — Uk)

is a strictly increasing function of ux, 1 <k <n — 1. It follows that
1
Ug = §(Uk—1 + Ugt1)

is the unique solution of the equatlon = 0, and that relations (10.2)-
(10.3) are necessary conditions of a mlmmum of the functlonal ® subject
to the constraints (10.1). In particular, one may take n(z) = v1 + z2. It
is convenient to represent the functions f, u, g by broken hnes connecting
the points (k, f(k)), resp. (k,u(k)), resp. (k,g(k)) from k =0 to k = n.
It follows that the graph of u is the shortest path between two obstacles:
the graphs of f and g, connecting the points (0, f(0)) and (n, f(n)). The
optimal switching sets F' and G consist of those k at which the graph of
u touches the graphs of f, resp. g.

The exit probabilities and occupational measures in this example are
known (or can be easily found from the corresponding difference equa-
tions). They are

Qko) = "=F  Qum="

n
Ao 1< <k
Bl ifk<j<n-—L

3|

R(k,j) =

By (8.6) and (8.8), we have for k =0,...,n

(k) = n;k f0+22]h + = [2271 Dhi+ fn

k+1

I

(10.5)

w(k) = Z]l + — En D, (10.6)

k+1
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where
oh. — 2up — (ug—1 +ug1) >0, ifke FN{1,2,...,n—1},
T 0, otherwise,
(10.7)
o (ug—1 +up1) —2ux >0, ifk€QG,
2 = { 0, otherwise. (10.8)

10.2 Birth and death process

This model is similar to the preceding one, only the transition prob-
abilities from k to k + 1 and k — 1 are now arbitrary numbers p; and g
satisfying conditions px >0, g¢x >0, px+qr =1 (k=1,...,n—1). The
picture becomes very similar to that in Example 10.1 if we introduce in
X the so-called natural scale (cf. Dynkin and Yushkevich [4, Chapter
4]). We re-scale the states k =0,1,...,n as zg,z1,...%, where

k
.Z‘(]‘—‘O, -'L'kZZAia kzl,...,’n,
=1

and
A=1, A= 08-Tm1 (10.9)
p1p2-..pi-1
Instead of optimality inequalities (10.2)-(10.3) we now have
QkUk—1 + PrUk+1 > ug  if ug > fi, (10.10)
Qruk—1 + Pprukr1 < up if ug < gk (10.11)

relations (10.1) and (10.4) remain unchanged. The appropriate func-
tional is

n—1
1
=S"A -
®fu] kz:% k+17] [Ak—H (uk+1 uk)]

where again 7" > 0. Relations (10.10)-(10.11) again are necessary con-
ditions of a minimum of ® under constraints (10.1). Indeed,
0d ! 1

] o[

auk

(upt1 — Uk)] :

and at a minimum point this partial derivative should be zero if f; <
ur < gk, nonpositive if fr < ur = gr, and nonnegative if fi = ux < gi.

Since 7' is strictly increasing, the equation %% = (0 means that
x )= o ) (10.12)
o \Ug —ug—1) = Uk41 — Uk .
Ay Deyr T
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and this, by (10.9), is equivalent to uy = qrux_1 + pruk41, so that both
(10.10) and (10.11) hold. Similarly, 2> aq> < 0 implies (10.12) with the in-

equality <, i.e. (10.10), while 3 ‘I’ > 0 1mp11es (10.12) with the inequal-
ity >, i.e. (10.11). In partlcular for n(z) = V1+z? the functional

becomes .
Olu] = Z \/Z%_H + (ugy1 — uk)?;
k=0

this is the length of the graph of u in the natural scale. Thus the
preference function has the same geometrical interpretation as in Exam-
ple 10.1.

Exit probabilities are now (cf. [4])

In — Tk
Q(k,O) = _71___, Q(kvn) =
Ty Tn
Occupational measures can be found from difference equations, and they

are
(@n—2r)z; if1<j<k,

N Aq Tn
R(lw)-{ ENE) fk<j<n-1
A]q]n, _]_ .

Hence, analogous to (10.5)—(10.8), the value functions are

o(k) = ””’“[f+2 ] [f—(m”_mj)hf+f}
Ajg; Zn Aig; "

k+1 39
n—1
— T (zn — {L’]‘)l]'
w(k) = on 29
Z AJ% et Ajg
where
po = § we— (g +pruen) 20, ke FN{l,2,...,n-1},
j = ]
0, otherwise,
= QU1+ pruks —ug 20, itk € G,
7 0, otherwise.
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Abstract We study the problem of a renewable resource exploitation as a problem
of optimal stochastic control with the renewable resource being managed
for social benefit.

The aim is to maximize the finite horizon total discounted utility
by controlling the per capita consumption and extraction capacity. We
suppose that the state is not directly observable, so we have an optimal
stochastic control problem with partial observations. The exact solution
is difficult to obtain, so we aim at a nearly optimal control determined
via an approximation approach involving a discretization procedure in
time and space.
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1. Statement of the problem

Let (2, F, P) be a probability space.
Let us denote by z; the resource and by y; the population at time ¢.
Assume that z and y satisfy the following equations:

)

dr, = [9(zi) - F (20,5 (5e), Dr)] dt + oy dusf’) (1.1
1.2)

@t=[WW%NMJM—@Q+QN%”ﬁ+®WQ(-

with initial condition z(0) = z¢ and y(0) = yo respectively. Where g(z:)
is the renewal rate of the resource, F(z, s(y:), D) is the total harvest
of the resource, 6, is the proportion of harvested resource used by each
member of y;, D, is the potential harvest capacity, vD; is the harvest
cost, C; is per-capita consumption, and s(y) is a C* transformation,
bounded and Lipschitz in y. Moreover, o; and o2 are two positive con-
stants with o9 small, while wgl) and w§2) are independent Wiener pro-
cesses. We observe that in equations (1.1) and (1.2) there is an additive
noise term because both resource and population can be subject to ran-
dom variations. We also remark that in equation (1.2), we have a small
noise term because random fluctuations in population are smaller than
those in the resource; in fact sharp variations in population are due only
to a catastrophe. Model (1.1), (1.2) is a stochastic extension of a deter-
ministic model studied by Regev, Gutierrez, Schreiber and Zilbermann
in [2].
Furthermore, 8 satisfies the following equation.

(B =1 =X—6) 126,
df; = (u+———2 )) dt

1-2x (1-2x
O: —NA=A—8) , (3
T —2x dw;™’, (1.3)

with initial condition 6 (0) = 6y and where u is a constant parameter:

dpe =0, p(0) = po, (1.4)

and w® is a Wiener process independent of w(!) and w®. Drift and
diffusion coefficients of equation (1.3) are such that 8 € (A, 1 — A) with
A small (this is possible by modelling 8 by a C*° transformation from IR
to (A, 1 — A) - see, for example, [4]) because 6 represents a percentage.
In order to have 6 in a compact set, we restrict the interval (A,1 — })
by considering the interval [A +¢€,1 — X — €] with € = 0. In what follows
we shall denote, improperly, this closed set by [A,1 — A].
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Assumption 1.1 g is bounded and Lipschitz in x.

Assumption 1.2 F has the form F(zy,s(yt), Dt) = Dys(ys)h (ﬁtyt—))’

where h is the proportion of the potential demand for resources actually
required, Lipschitz in (z,y) uniformly in D, and o (positive constant)
is the technology parameter of resource harvesting (it represents the re-
source harvesting efficiency).

Let & := D_ts—(ty_) and assume that the function h(§) is concave,

El_i}m R (€) =0 and R'(0) = £li’m h{¢) = 1.

Assumption 1.3 . .
d< Dy <DVte[0,00), for D >0, and for some 0 <d < D.

We consider the extended state (see [6]) X; = (Xt(l),ut), with Xt(l) =
(zt,yt,6:). The components of the vector X, satisfy the equations (1.1),

(1.2), (1.3) and (1.4). As a consequence, Xt(l) satisfies an equation of
the form:

dXt(l) = fD(X,,u) dt + o (X;) dW;, XW(0) = X(()l)’ (1.5)

with the obvious meaning of the symbols and with u; = (Cy, D;) being
the control at time ¢.

Equations (1.1), (1.2), (1.3) and (1.4) represent the dynamics for a
stochastic control problem in which we want to find the supremum, over
the controls C; and Dy, of the reward,

J(C(), E/ U (Cy) dt, (1.6)

where U (C}) is the per-capita utility function which is supposed to be
Lipschitz in C and 4 > 0 is the discount factor.

The state is not fully observable, in particular for the first component
(representing the renewable resource) we do not have precise informa-
tion about the quantity of the available resource due both to errors in
measurement and to incorrect information supplied by exploiters of the
resource. We, thus, introduce the following assumption.

Assumption 1.4 We suppose to have information on the state only
through the observation process 1, satisfying the equation,

dny =z dt + edwy, n(0) = no, € >0, (1.7
where w; is a Wiener process independent of wg ), w§2) and w§3)
is a small positive constant.

, and €
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Control space Recall that, by Assumption 1.3 , d < D; < D. As for
C}, one can find, by simple calculation, that C; < D, so we can take for
C the upper bound of D,;. Thus the control space is

VvV =[0,D] x [d,D], (1.8)
which is a compact metric space.

State space The processes x; and y; are modelled as solutions of
stochastic differential equations, so their trajectories are continuous
functions a.s., with values in IR; 8, takes values in the interval [A,1 — )]
and py is uniformly distributed over an interval [a, b]. Consequently the
state space is

X=RxRx[\1-)}x]a,b] (1.9)

Nevertheless, we are interested only in solutions of (1.1) and (1.2) sat-
isfying the constraints 0 < z; < 7 and A < y; < Y for all ¢, namely
such that the renewable resource does not become negative (otherwise
we have exhaustion of the resource), and that the population does not go
below level A (otherwise we have extinction of the species). Moreover,
the resource must not exceed a level X and the population a level Y,
for X and Y sufficiently large. Since we are over a finite interval, both
resource and population cannot explode. We observe that the upper
limitations are introduced only in order to have x and y in a compact
space, but it is possible to choose X and Y so large that in practice
resource and population never reach these values.

Therefore we are interested in the trajectories contained in the space

X =[0,X] x [A,Y] x [A\1 -] x [a,0] (1.10)

instead of in X. We consider the following part of the boundary of X:
oR = ({0,7} < [AT] x M 1=A] x [a,b])
U([O,ﬂ x {A,Y} x [A, 1= )] x [a,b]),

which we shall improperly call boundary of X. R

The aim is to maximize the total utility over the set X, since outside
this set the problem has no economic meaning. In order to achieve this
goal, we introduce a new control component, the stopping time 7 (with
respect to the o-algebra generated by the observations). We want the

optimal 7 to be near the hitting time of the boundary of X and near the
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final time T', otherwise we would have too quickly the exhaustion of the
resource or the population extinction.

To this end we consider a penalization function @ (7, X;) which de-
pends both on the stopping time 7 and on the state evaluated at the
stopping time. We choose Q in such a way that it penalizes a 7 far from
both the hitting time of the set X and the final time T'. Furthermore,
we choose Q bounded by @ and Lipschitz in X.

Therefore, the new functional is

J(u,7)=E {/OTM e %L (Xy,ue) dt — Q (r, X,)} , (1.11)

where L (X;,u) := s(y) U (Cy), with L : X x V — IR continuous in
the state and the control and, for U bounded, L is bounded over the
interval [0, T] because s(y) is bounded (we shall denote by L its bound).
Moreover, since s(y) is Lipschitz, we have that L is Lipschitz in X.
Owing to the fact that U is Lipschitz in C, it follows that L is Lipschitz
also in the control.

The aim is to find

sup J(u, ),
u(-)eV,7€[0,T]

where V is the set of the admissible controls u(-) (that is the set of the
controls taking values in V and adapted to F} = o {n,, s < t}); the state
equation is given by (1.4)-(1.5) where the function f(!) : X x V — IR3
is a continuous function of the state, Borel bounded and Lipschitz in X
uniformly in u; and the function o : X — M (3 x 3), where Mg4(3 x 3)
denotes the space of the diagonal 3 x 3 matrices with values in IR, is
Borel bounded and Lipschitz in X.

The exact solution is difficult to obtain, so we aim at a nearly op-
timal control determined via an approximation approach involving a
discretization procedure.

2. Discretization in time

In this section we approximate the continuous problem by a time
discretized stochastic control problem.

2.1 Discretization of the state and of the control

For each fixed N, we consider the subset Vy C V of step controls
corresponding to the deterministic splitting 0 =ty < #; < ..... <ty=T
of the time interval with |t; — ;1| = %, Vi=1,...,N.

Therefore we have u; = uy, for t € [tn,tnt1[, with u, € V and
F{ -measurable (F] = o (n:,t < t,) where 7, is the observation process
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defined in (1.7)). We discretize also the T-space and, instead of [0, T],
we consider the discrete set of time points {to,?1,...,tx}, so that 7 €
{n%;n =0, ...,N}.

Proposition 2.1 Given € > 0, for N sufficiently large

sup sup J(u,7) — sup sup J(u,7)| <e. (2.1)
re{n%, n=0,1,.,N}u€VN T€[0,T)ueV

Proof The left hand side of (2.1) is equivalent to

sup sup J(u,7) — sup sup J(u,7)|, (2.2)
re{n%, n=0,1,.,N} uEVN TERT uEVs

where Ry = [0,T]NQ and Vg = Uy Vv (see [4]). .
It can be shown (see [4]) that, given € > 0, there exists N such that,
for N > N, (2.2) is less than e. [ |

Proposition 2.1 states that we can restrict ourselves to consider only
controls u € Vy and controls 7 € {n%,n =0, ..,N}, for N sufficiently
large. Therefore we have a simpler problem than the original one. The
optimal step control of the corresponding time-discretized stochastic
control problem will be shown to be an e-optimal control for the original
problem.

Corresponding to the splitting of the time interval into subintervals
of the same width %, for each N € IN, we consider a time discretized
state: N T T

X{\]:{ XJN ort € []]—V-,(]+ )7\7[ (23)
Xy fort=T

where XV (j =0,..., N—1) and X depend on j and on T, respectively,
and are obtained from an Euler discretization of (1.5) and (1.4).

What one usually does in these cases is a Girsanov change of measure
in order to transform the original problem into a problem in which state
and observations are independent. This allows one to work in a product
space in which the distribution of the state is furthermore the same as
in the original space (see, e.g., [4] and [6]).

We shall denote by P° the measure under which 7; is a Wiener process
independent of X; and X}V, and by PV the measure under which 7; has
the same form as under P, but as a function of the discretized state.
More precisely,

dne = zl¥ dt + e dw}
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with w" a PN-Wiener process and zV the first component of XV (see

(1.7)).

It can be shown that the process X}¥ converges to the continuous
state X; in fourth mean, both in the original measure P and in the
transformed measure PP (see [4] or [6]).

2.2 Discretization of the reward functional
For each N € IN we define the following functional:

TAT
N (u,7):= E° {zN (T) [/ e %L (XY, u) dt - Q (r, X,ﬂv)] } ,

’ (2.4)
where 2V (T) = W’ u € Vy, that is u = u; in the interval [j %,
G+1)L ~ [ with u; measurable with respect to the o-algebra generated
by the increments of 7; up to time j —1 and 7 € {n%, n=01,.. N} is

a stopping time with respect to this same o-algebra. It is important to
notice that here we use the o-algebra F , generated by the increments

Nj-1 =1 (]N) i ((y -1) ), while in the continuous time case we
used the o-algebra F{ generated by the continuous process 7:. In [4]
we show that, for the time discretized problem, there is no difference in
taking controls adapted to F7 or to F | since this does not modify the
solution (see also [1]).

Proposition 2.2

1
~ (T\3
|J(u,'r) - JN(u,T)| <K <N> (2.5)
uniformly in the control (u,T), with K constant.

Proof Applying the change of measure, Jensen’s inequality, Tonelli’s
theorem, and the Holder inequality, and recalling that L and @ are
bounded by L and Q respectively and Lipschitz, we obtain that the left
hand side of (2.5) is bounded above by:

v oo (B [x - x|} a
+ <@+Z__-_1 - ;‘”) B |2 (@) -2 (T)ﬂ%

+Q [E|x, —X{V||“]%
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where z(T) = ;—;’6, L' and Q' are the Lipschitz constants relative to L
and @, respectively.

As mentioned, the sequence XtN converges to X; in fourth mean under
both P and P?; furthermore the sequence zV(T) converges to z(T) in

mean square under P%. In particular we have E HXt - XtN”4 < Kj (%)2
where K is a constant (and the same upper bound is valid for the
expectation E°) and E° ||2(T) — zN(T)”2 < K, % with K; constant (see
(1, 4]), so we immediately obtain the thesis. ]

Thanks to Proposition 2.2, we can approximate the initial reward J
by the discretized reward JV, for N sufficiently large. In this way, the
discretized problem consists in maximizing J~ by choosing the controls
u€ Vyand 7 € {n% :n =0, ...,N}. Due to the uniformity, in (u,7),
of the bound in (2.5), these controls are nearly optimal for the original
problem.

We have now, a partially observable discrete time stochastic control
problem over a finite horizon with discounted reward. We shall write
the so-called separated problem associated to it, namely a corresponding
problem with fully observed state, and then apply the DP algorithm to
this problem after discretizing also in space.

2.3 The separated problem
Let

1 1 2T
P(Xn+17Xn,'U'n,7ln) = P (Xnt1 I‘Xm'un)e[:facnm1 2z (o) N] (2'6)
where

P(Xn+1 anaun)
= O (znt1;5 Xn,tn) B2 (ynt1; Xn, un) 3 (On41; Xn, un)

is the transition kernel obtainable as product of the conditional distribu-
tions of each component of X (1), The factors &1, 5 and P3 are obtained
from the discretization of the state equation (1.5) and, using an Euler
discretization of the state equation, ®; and ®; are normal and ®3 can be
transformed into a normal distribution by a change of variable (we have
to consider the same C* transformation mentioned in Section 1—see
).

Let ™ = (no, ..., n) be the observation vector up to step n and u™ =
(uo, ..., un) be the sequence of controls up to step n. Consider the process
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{gn (-)} defined recursively as follows.

g0 (Xo) = po (Xo)
@nt1 (Xny1;n",u") = /P(Xn+l:Xnauna"ln)Qn (Xn;"ln_17un_1) dXn
X
(2.7)

forn =0, ..., N—1, where pg (Xj) is the initial distribution of the process
{X.}.

Assuming that the initial values of resource, population and percent-
age of the resource that is being used are known, and that the parameter
p is uniformly distributed over the interval [a, b], the initial distribution
of the state is:

W) =@ -a0)d(y-w)d(0—0) .  (29)

We observe that (2.7) corresponds to a recursive Bayes’ formula for
computing an unnormalized conditional distribution gp+3 (Xp+1; 9", u™)
of X, 41 given the observations n™ and the controls u".

Proposition 2.3 Any function ® (X;_1,uj_1,7), of one of the follow-
ing types:

o' (Xj+1,Uj+1)I]j%,T] (7); or

" (Xj+1, Uj-{-l) I[]%’(]_*_l)%[(’r)’
satisfies the property:

EO [(I) (Xj+11uj+la T) ZN(T) |77j’uj]
- /x & (X, uj41,7) - g1 (X;77,09) dX (2.9)

where the control u;y1 is adapted to the o-algebra generated by the incre-
ments N, of the observations up to time j and the control T is a stopping

time with respect to this same o-algebra. We recall that 2N (T) = %.

For the proof see [1].
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Going back to the functional JV(u) in (2.4), recalling (2.3) and ap-
plying Proposition 2.3, we have:

JN(u,T) = {Z/[ L(X7Uj)1]j%,7’](7')

Now we have a completely observable stochastic control problem where
the new state is the unnormalized conditional density g, (Xn;n""l,

u"—l). The aim is to find the supremum of (2.10) subject to the state
equation (2.7).

3. Further discretizations

At this point we are not yet able to apply the dynamic program-
ming algorithm to the separated problem because the state is infinite-
dimensional and takes a continuum of possible values. Therefore we
discretize the state space X.

3.1 State discretization

First we note that the state X can leave the set X so we have to
define the problem on all of X, but one can show that there exists
a finite band B such that, with probability close to 1, X never leaves
XUB. . Consequently, for each positive integer m, we cons1der a partition
{Bh}h=1 (with M = 2%™) of the state space X U B such that each By,
has width going to zero as we refine the partition and, from each of
these subsets By, we select a representative element. The set of these
representative elements forms the discretized state space.

Define the process {q,(zm) (X gt u"’l)} having the same form as

(2.7), but with P substituted by P(™), that is the analogue of (2.6)
discretized in the state in such a way that

u EO ”P n+1aXnaun7"7n) P(m) ( n+1aXna'u'na7ln “ < H
where ||-|| is a norm in L' with respect to X, +; and the expectation
is with respect to 7,;

" limpsooHm =0.
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With these assumptions we can show the following result:

Proposition 3.1 For N sufficiently large, for each n = 0,1,..., N, we
have

E° [ dn (Xn;nn—l,un—l) - qv(lm) (Xn§nn_17un—l)m < Klﬁm (31)

uniformly in the control u, where K is a constant, the norm (which is

a norm in L) is with respect to X, the expectation is with respect to
-1

n

Proof We proceed by induction. For n = 0, (3.1) is immediately
verified. Suppose that (3.1) is true for n and consider n + 1: we obtain

that E° [“qn+1 (Xns137™u”) — @70 (Xngr; 7% u™)

] is bounded above

y
EO/ / P(m) (Xn+1,Xn7umnn)
X/X

n (Xn; ™ L um 1Y) — g™ (Xps ™Y, u”"l)\ dX,dX,y1 (3.2)

+E0/)(/ \P(XvH—l,Xnaunann) - P(m) (Xn+1aXna'U'mnn)
X
g (X1 u"1) dXn dXnt1 (3.3)

By Tonelli’s theorem and observing that E° HP(m) (Xn+1, Xns Un, n) H <
H, where H; is a constant, (3.2) can be bounded above by

HIEO qn (Xn;nn—l,un—l) - qv(lm) (Xn;nn——l,un—-l)“ < szm, (34)

where we have applied the induction hypothesis. Hs is a constant.
Applying again Tonelli’s theorem, it can be shown (see [4]) that (3.3)

is bounded above by H3H,,, where H3 is a constant. From here and
(3.4) we obtain the thesis. ]

We denote by JV"™(u,7) the functional corresponding to (2.10) for

the discretized state, that is obtained substituting the g; by the qgm) in
(2.10).
Proposition 3.1 allows us to state the following:

Proposition 3.2 For N sufficiently large we have,

IJN(U,T) _ JN,m('u,,'r)| <N (%if + Q) K.\H,, (3.5)
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uniformly inu € Vy and 7 € {n%,n =0,1, ...,N} and where K; is a
constant.

It follows that for N and m sufficiently large we can approximate JV
by JV¥™ and look for an optimal control for the discretized problem.
Again, by the uniformity of the bound in (u,7), this latter control is
nearly optimal for the original problem.

3.2 The discretized problem in alternative form
(m)

Just as g,, also ¢ ’ is infinite-dimensional but, since the function
P(™) can be expressed as product of a function of the state at time
n + 1 and a function of the state and observation at time n, then the

(m)

functions ¢ ’ can be written in terms of finite-dimensional statistics of
(nn—l un—l)'
In fact, if we define, for h=1,--- , M,

12T
xN]

dP) (o) i= elF=om 3

on

It (By) (20) I, (B,) (Y0) Irg(By) (60), (3.6)

where 7, (By) is the projection of the set By, on the k** component,

dﬂl( ") =

h
L (Bn)

‘Msl

d(h') ( ) n—2) on k' (M, Un—1), (3.7)
1

7y (Bh)
and
T
Cnp (mu) == / e[:lm_ﬁzzﬁ] U ((z,y,0),u) dz dy db,
A
with A = m (Bp) X my (Bp) X 79 (Bp) and ¥p, ((Tnt1, Yn+1,Ont1) s un) i=

Dy (zn+1; Xh, un) P2 (Ynt1; X, tn) @3 (On41; Xp) and where Xj is the
representative point of the set By, then it follows:

Proposition 3.3 For eachn =1,...,N we have

(m) (X i —l’un—l)

o 1
ngw (1", w"™) Ch (T, Yn, 6n) s un-1) =T, () (1n)
h=1

(3.8)

where dgh) (% ut) = dgh) (no)-
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The objective functional J¥™ can be expressed as

— e"s% —
E° { 1—5—3 (40) U (Co) Do,1y(7) — 1o, 7[R0, Xo)

N-1 M —nT _ _5(n+1)T
[ N e N
22 ) ) [ 5 Bz 77 (M) U (Cn)
1
'/}RS(y)‘Pz (¥ Xn, un—1) dy /M(Bh) 5o Wt e 3 [(7)

/XQ (nTNaX) Uy, ((xay’o),un—-l) 'l;_i_a'Iwu(Bh)(H') dX:|
M
_ng}) (nN—l,uN—Z)
/ QT, X) i1y (1) ¥4 ((2,9,0),un - l)bi L By (1 )dX} (3.9)

where the expectation is with respect to the sequence {7,}. We note
that, under the measure P°, {n,} is a sequence of i.i.d. random variables,
normally distributed with mean 0 and variance 62 L.

The process {d%h) (n" L un= 2)} is now ﬁnlte-dlmensional, but it still

takes an infinite number of possible values since 7, and u, do. It is then
necessary to make some further approximations.

3.3 e-optimality

The controls take values in a compact space V. We can assume that
also the observations take values in a compact space S since the expec-
tation in (3.9) is finite, and if we restrict the values of , to a sufficiently
large compact set S, then, due to the boundedness of the costs, the cor-
responding change in the value of JV'™ is, uniformly in u, negligible (see
[6])-

Take finite partitions {V;}X_, and {Sz]»ZZ:1 of the compact sets V
and S, respectively, and choose a representative element for each of the
setsvgy € Vi (k=1,..,K)and s, €8S, (z=1,...,2).

We denote by Vﬁ the set of the control sequences, taking as possible
values the representative elements v and by VX¢* the set of the controls
obtained from the controls of Vﬁ by a step interpolation relative to the
partition of the time interval into subintervals of the same width %
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Let J¥™Z be the functional obtained from JV™ by substituting the
observations and the controls with their discretized values.

From Propositions 2.1, 2.2 and 3.2, and the continuity in v and y of
the functions in (3.9), we have the following two theorems (see [4]):

Theorem 3.1 For e > 0 fized, taking N, m, Z and K sufficiently large,
we have

sup sup JV™Z(u, 1) — sup sup J(u,7)| <e

‘re{n—g—;nzo,...,N} ueVg T€[0,T) ueV

Theorem 3.2 For each control (u,7) € Vy X {n%,n =0,..,N}, for
N, m, Z, K sufficiently large, we have

IJN’m’Z(u,T) - J(u,7)| <e

Consequently, we have the following corollary.

Corollary 3.1 An optimal control for the discretized control problem,
extended in the sense given above (that is by a step interpolation), is
e-optimal for the original problem.

From here it follows immediately that it sufficies to find an optimal
control for the problem discretized in time and space; and the control
obtained from the latter by a step interpolation (which is a control in
VI\I,{“) will be nearly optimal for the original continuous time problem.

3.4 DP algorithm

Since the functional J¥™Z has the same form as (3.9) but with
the observations substituted by their discretized values, and since fur-
thermore, the optimal value of the functional is calculated for controls
u € VE with (3.6) and (3.7) as the state equations, we can write the DP
algorithm to obtain an optimal control for this problem, in the following
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way:

j‘N (—N—I,HN—I)
_Zd(h) N1 gN- 2)

| / QUT, X)Ly ()W ((@,9,60),Twv-1) ==L 3y (1) X

(3.10)
j;l(ﬁn l,ﬁn 1)
M
_ max{ - [;dvﬂ( L) U (C)
e—én% _ e—&(n+1)%
/S(y)<1>2 (y; X, Tn-1) dy/ du
d R mu(By) 0~ @

Z
+Y P (n€S:) Tnr (77152), (ﬁ"‘l,ﬂn))};
z=1

A:z:::dh (7,7 ) [/X@(n_;_x> U, ((2,9,6), Tn-1)

'ﬁIwu(Bh)(“) dX] }7 (3'11)

forn=N-1,...,1.

. 1— e % —
Jo = max { max '—'Z—NS (%0) U (Co)
uo

z
+Y PY(n€S;)Ji(sz,T0)
z=1

-Q (0, Xo) } (3.12)

By 7,, we denote the discretized observations and by u, the discretized
controls. We have used the fact that 77,, can take only a finite number Z
of possible values. We observe also that the dependence on the current
control is in the term U (6n)

Remark 3.1 At each step it is necessary to calculate two rewards: one
in the case in which we stop at that moment and the other in the case
in which we decide to go on. We then choose the mazimum between the
two rewards in order to know the optimal stopping time T for each pair
of observations and controls.
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The DP algorithm provides us with the sequence of optimal controls
(that is the optimal strategy) to be applied at times {n%,n =0,1,..,
N — 1} as function of the current statistic (d%h) ("1, un?) ,En_l).
Extending this sequence in the sense described previously we obtain a
nearly optimal strategy for the initial problem.

This DP algorithm can be implemented in order to determine the

optimal strategy. In [4] one can find a discussion of the numerical aspects
as well as numerical results.
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Chapter 17

A FLEMING-VIOT PROCESS WITH
UNBOUNDED SELECTION, I1

S. N. Ethier
University of Utah

Tokuzo Shiga
Tokyo Institute of Technology

Abstract In a previous paper the authors studied a Fleming—Viot process with
house-of-cards mutation and an unbounded haploid selection intensity
function. Results included existence and uniqueness of solutions of an
appropriate martingale problem, existence, uniqueness, and reversibility
of stationary distributions, and a weak limit theorem for a corresponding
sequence of Wright—Fisher models. In the present paper we extend these
results to the diploid setting. The existence and uniqueness results carry
over fairly easily, but the limit theorem is more difficult and requires
new ideas.

1. Introduction

In a previous paper (Ethier and Shiga [1]), the authors studied a
Fleming—Viot process with house-of-cards (or parent-independent) mu-
tation and an unbounded haploid selection intensity function. More
specifically, the set of possible alleles, known as the type space, is a
locally compact, separable metric space F, so the state space for the
process is a subset of P(E), the set of Borel probability measures on FE;
the mutation operator A on B(E), the space of bounded Borel functions
on FE, is given by

Af = 30((f,v0) = ), (1.1)
305
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where § > 0, vy € P(E), and (f, p) := [ f dp; and the selection inten-

sity (or scaled selection coefficient) of allele z € E is h(z), where h is a
Borel function on E.

Assuming the existence of a continuous function hg : E — [0, 00) and
a constant pg € (1, 00] such that

|h| < ho, (e?h0 1g) < 0o whenever 0 < p < pp, (1.2)

existence and uniqueness of solutions of an appropriate martingale prob-
lem were established, and a weak limit theorem for a corresponding se-
quence of Wright-Fisher models was proved (at least when h is continu-
ous). Assuming also that py > 2, existence, uniqueness, and reversibility
of stationary distributions were obtained as well.

In the present paper we extend these results to the diploid setting, in
which case h is replaced by a symmetric Borel function h on E? := E x
E, with h(z,y) representing the selection intensity (or scaled selection
coefficient) of the genotype {z,y}. We replace the first inequality in
(1.2) by

|h((l),y)| < ho((l)) + hO(y)a (‘Tay) € E27 (13)

but the other assumptions in (1.2) remain unchanged. This condition is
in effect throughout the paper.

Overbeck et al. [2] introduced a more general type of selection, called
interactive selection, in which A is allowed to depend on u. (Diploid
selection is just the special case h,(y) := (h(-,y),1).) They too allowed
for unbounded selection intensity functions. It seems unlikely that our
results can be extended to this level of generality.

Our previous paper was motivated by the nearly neutral mutation
model (or normal-selection model) of Tachida [3], which assumed addi-
tive diploid selection, that is,

h(z,y) = h(z) + h(y),  (z,y) € E*. (1.4)

This is, of course, mathematically equivalent to the haploid case treated
in [1].

The generator of the Fleming—Viot process in question will be denoted
by Lp. It acts on functions ¢ on P(E) of the form

o(u) = F({(f1, 1), (fro ) = F((E, 1)), (1.5)
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where k > 1, fi,..., fx € C(E) (the space of bounded continuous func-
tions on E), and F € C?(R*), according to the formula

k
(['h‘P %Z fzf]a fz, )(f]a )) zzzj((f H))

) k
+ ) (Afi,p) Py (£, 1))
=1
k

+ Y ({(fi 0 m)h, u2) = (fi, )by %)) Py ((F, 1)), (1.6)
1=1

where p? := p x p € P(E?) and 7 : E?> — E is the projection map
7(z,y) = z. This suffices if & is bounded, but if not, we need to restrict
the state space to a suitable subset of P(E). We use the same state
space as in [1], namely the set of Borel probability measures y on E that
satisfy the condition imposed on v in (1.2).

We therefore define

P°(E) = {u € P(E) : (", ) < oo for each p € (0,p0)} (1.7)

and, for u,v € P°(E),

& (u,v) = d(p,v)+ / (14 sup [{e"s, )~ (e, ) ) dr, (1)
(7p0)

0<p<r

where d is a metric on P(E) that induces the topology of weak con-
vergence. Then (P°(E),d°) is a complete separable metric space and
d°(pin, ) = 0 if and only if p, = p and sup,(e”™,u,) < oo for each
pE (07 PO)

Section 2 establishes existence and uniqueness of solutions of the ap-
propriate martingale problem for L£;. Section 4 establishes existence,
uniqueness, and reversibility of the stationary distribution of the result-
ing Fleming—Viot process. The proofs of these results are similar to those
in the haploid case, so we point out only the necessary changes. Sec-
tion 3 gives a precise description of the measure-valued Wright-Fisher
model considered here and proves, assuming continuity of h, a weak con-
vergence result that justifies the diffusion approximation of that model
by the Fleming-Viot process with generator L£;,. The proof is more dif-
ficult than that in the haploid case, so most of the present paper will be
concerned with this result.
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2. Characterization of the process

Let Q := C(p(g),q)[0, 00) have the topology of uniform convergence on
compact sets, let F be the Borel o-field, let {y;, t > 0} be the canonical
coordinate process, and let {F;} be the corresponding filtration.

If hy, hy € B(E?), define (hy,hy) € B(E®) and Thy € B(E) by

\P(hlth)(x’yv‘z) = hl(x,y)hQ(z,z), (Th'Z)(‘T) = hz(:E,:E). (21)

The analogue of Lemma 2.1 of [1] is as follows.

Lemma 2.1 Let hy,hy € B(E?). If P € P(Q) is a solution of the
martingale problem for Ly, , then

Ry := exp {%<h2,ﬂf> by, )

[% (ha h), 13) — (o, 1))
% Th'?ap‘s) <h2,/1,3)) + %9(<h2,ll's X VO) - (h'2nu’§))
Uy, ha) %) — <h1,u§><h2,u§>] ds} (22)

is a mean-one {F;}-martingale on (0, F, P). Furthermore, the measure

Q € P(Q) defined by
dQ = Rt dP on ft, t> 0, (23)

is a solution of the martingale problem for Ly, i, .

Informally, the integrand in (2.2) is simply e‘%<h2’“2)£hle%(h2’“2) at
@ = ps. Strictly speaking, e2(h2#%) does not belong to the domain of
Ly, because it is not of the form (1.5), but the domain can be extended
to include such functions. Of course, 3 := p x p x p in (2.2).

We will need the following simple observation.

Lemma 2.2 For each g € B(E?) and p € P(E), we have (¥(g,g), u3)—
{9, ?)% > 0, where U(g,g) is as in (2.1).
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Proof Let X,Y,Z be ii.d. p. Then, letting g = (g, u?),

(U(g,9),4%) — (g, p*)* = Cov(g(X,Y),9(X,2))
- /E El(g(z,Y) - ){9(z, Z) — 7)) p(da)

[E Elg(c,Y) - IElg(z, Z) — 7] u(dz)

/ (Bly(z,Y) - g))° u(dz)
E

> 0. (2.4)
|

We now define
Q° = Cpo(g),a)[0,0) C 2 = C(p(g),a)[0, ), (2.5)

and let Q2° have the topology of uniform convergence on compact sets.
The domain of L}, is the space of functions ¢ on P°(FE) of the form (1.5).

Theorem 2.1 For each p € P°(E), the Q° martingale problem for Lj,
starting at p has one and only one solution.

Proof The proof is similar to that of Theorem 2.5 of [1]. The only
changes necessary are to equations (2.11)-(2.13) and (2.19)-(2.22) in
the proofs of Lemmas 2.3 and 2.4 of [1]. Lemma 2.2 above disposes of
the only awkward term, and otherwise the argument is essentially as
before. [ ]

3. Diffusion approximation of the Wright-Fisher
model

We begin by formulating a Wright-Fisher model with house-of-cards
mutation and diploid selection. It depends on several parameters, some
of which have already been introduced:

m FE (alocally compact, separable metric space) is the set of possible
alleles, and is known as the type space.

m M (a positive integer) is twice the diploid population size. (Most
authors use 2N here, but we prefer to absorb the ubiquitous factor
of 2. In fact, M need not be even.)

s o (in [0,1]) is the mutation rate (i.e., probability) per gene per
generation.
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» 1 (in P(E)) is the distribution of the type of a new mutant; this
is the house-of-cards assumption.

= w(z,y) (a positive symmetric Borel function of (z,y) € E?) is the
fitness of genotype {z,y}.

The Wright-Fisher model is a Markov chain modelling the evolution
of the population’s composition. The state space for the process is

1 M
Pu(E) := {MZ(YM €P(E): (z1,...,2pm) EE X --- XE} (3.1)
i=1

with the topology of weak convergence, where §, € P(E) is the unit
mass at . Time is discrete and measured in generations. The transition
mechanism is specified by

1 & 1 &
= — = — ) by, 2
where
Y1,..., Yy are iid. p** [random sampling], (3.3)
pr =1 —u)p” +uyy [house-of-cards mutation], (3.4)

pr(T) = /F(w(-,y),u)u(dy)/(w,,uz) [diploid selection]. (3.5)

This suffices to describe the Wright-Fisher model in terms of the pa-
rameters listed above.

However, since we are interested in a diffusion approximation, we
further assume that

U‘:Wa UI(a:,y)=exp{——M——

where 6 is a positive constant and h is as in (1.3).

The aim here is to prove, assuming the continuity of A, that con-
vergence in P°(E) of the initial distributions implies convergence in
distribution in ° of the sequence of rescaled and linearly interpolated
Wright-Fisher models to a Fleming—Viot process with generator £,. We
postpone a careful statement of the result to the end of the section.

The strategy of the proof is as in [1]. Lemmas 3.4 and 3.5 of [1] must
be substantially modified however. For the two corresponding lemmas
we require, as in [1], the infinitely-many-alleles assumption that every
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mutant is of a type that has not previously appeared. Mathematically,
this amounts to

n({z}) =0, ze k. 3.7

Let Zp = PM(E)Z+ have the product topology, let F be the Borel o-
field, let {un, n=0,1,...} be the canonical coordinate process, and let
{Fn} be the corresponding filtration. For each u € Pp(FE), we denote by

PISM) and Q&M) in P(Eps) the distributions of the neutral and selective
Wright-Fisher models, respectively, starting at p.

Lemma 3.1 Assume (3.7). Then, for each u € Py(E),
dQM = RM dPM) on F,,  n >0, (3.8)

where

n

RM = exp { Z /E Loupp gy () M log (e"COM 1y iy (dy)
k=1

n

- Z(lsuppuk_lnu'k>M IOg <eh/M’ /‘%—1)}' (39)
k=1

Proof The proof is as in that of Lemma 3.4 of [1], except that, if
p=M"1 Z]Ail Oy;»

HISiSM:yiESUppuO (’w(v yi)a #0)
(w, u%)l{lﬁiSM:yiESUW o}

exp{fE ]'SUPP Ko (y)M log(w(-, y)a ,u0> /‘1(dy)}
<w, IJ%)M<15‘JPPIJO)/‘1>

- { /E Lsupp o () M log(e"C /M 110} 1y (dy)

VO (ug, 1) o=

_ <1suppuo,u1>Mlog<eh/M,u3>}. (3.10)

[ |
We define the map @ : Ep — Q° by

®ur(po, p1, - - )t = (1—(Mt—[Mt])) pparg +(Mt=[Mt)pprga- - (3.11)

This transformation maps a discrete-time process to a continuous-time

one with continuous piecewise-linear sample paths, re-scaling time by a
factor of M.
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We next show that the Girsanov-type formula for the Wright-Fisher
model converges in some sense to the one for the Fleming—Viot process.

Define fzﬁM) on §2° for all £ > 0 so as to satisfy
EM oy, =RM ongy,  t>0, (3.12)

(M)

where RglM) is as in Lemma 3.1. Specifically, we take

R
[Mt]
= exp { Z/E Lsupp pge—1y/r W) M log (e"CVM e 1 ne) isne(dy)
k=1
(Mt]
- Z(lsupp ek—1y/aa > P /ar) M 108 (MM, iu'%k—l)/M>}' (3.13)
k=1

We also define R; on Q° for all ¢ > 0 as in Lemma 2.1 with h; = 0 and
hs = h; specifically,

R, = eXP{%(h,M?)—%M,u%)
= [ T 13,18 = (1120 + 3T ) = (i)
+ 36((h, s x v0) — (b, 42))] ds }. (3.14)

Lemma 3.2 Let {uM)} c Py(E) C P°(E) and p € P°(E) be such
that d°(u™), 1) — 0. For simplicity of notation, denote P‘EXJ)), which is
defined as in the paragraph preceding Lemma 3.1, by just P(M). Assume
that h is continuous and (3.7) holds, and let T > 0 be arbitrary. Then

there exist Borel functions Fpr, G - 2° = (0,00), a continuous function
F:Q°w (0,00), and a positive constant G such that

R(TM) = FMGM, RT = FG; (3.15)

in addition, Fpy — F uniformly on compact subsets of 2°, and Gpy = G
in PM )<I>X,11 -probability.
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Proof From (3.13) we get
(MT]

logngM) = Z /EMlog (eh("y)/M,M(k—l)/M)Hk/M(dy)

[MT]
- Z / 1(SuPpﬂ(k—1)/M)°(y)
k=17F

M log ("CWM 13 ine) pkyaa(dy)

(MT]
- Z M log <eh/M’“%k—l)/M>
k=1
(MT)
+ Z (1(SUPPM(k—1)/M)°’ “k/M>M log (eh/MH“%k—l)/M>
k=1
=: 81 — 82— S3+84. (316)
First
[MT)
Sy = Z {M<1(suppu(k_1)/M)°a/‘k/M) - %0}
k=1
(MT]
x log (eh/MHu%k—l)/M> + %9 Z log <eh/M’“?k—1)/M>
k=1
. S48 (3.17)

By the argument using (3.43)-(3.46) of [1], S} goes to 0 in
PM)@ L probability. By a slight modification of (3.37) of [1], S}
converges to %9 f(;‘r (h, u2) ds uniformly on compact sets (see the
discussion following (3.39) of [1]).

Next
[MT)

S2 = Z {/El(sul’pﬂ(k—l)/M)c(y)

k=1
x M log(e" WM [y 1 ing) pem(dy)

—%9/15 log ("M 1y /n) Vo(dy)}

(MT)
+36 > /Elog ("M 1y vo(dy)
k=1

= S,+S. (3.18)
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We can argue as in (3.41) of [1] that S} is equal in P(M)® /-
distribution to

1 (MT] , X,
> (ZM log ("4, uie_1y/nr)
k=1 =1

where X}, is the number of new mutants in generation &, and &; is
the type of the [th new mutant in generation k. Note that X; and
(éx1) are independent binomial(M,8/(2M)) and v§°-distributed,
respectively, and independent of y(;_1)/ar (but not of pg/pr). It
can be shown, analogously to (3.42) of [1], that S5 goes to 0 in
probability, while of course Sj goes to %0 fOT (h, us X 1p) ds uni-
formly on compact sets.

Finally
[MT)]
-8 = Z {/EMlog (MM e 1y ne) i /ae (dy)
= (hs -1/ X k)
- (M log <6h/M7H%k_1)/M> - <h’“%k—1)/M>) }
[MT]
+ Z ((h,ﬂ(k—n/M X fk/M) — <h7/l’%k—1)/M>)
k=1
=: Si3+ 513- (3:20)

Using essentially [1, equation (3.37)], we have

[MT)

I3 = u Z { / S Y), bk-1ym ) — (G Y), e-1y/m)?)

XHk/M(dy) - % ((hz?“%k—l)/M> - <h7/‘%k—1)/M>2) }
+O(M™Y)

T
= ‘%/0 ((w(h,h), ) - (h,M§>2) ds + o(1), (3.21)

and the convergence is uniform on compact sets.
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It remains to consider S7;. Note that, in the case of additive diploid
selection (specifically, (1.4)) S’ 13 reduces to the telescoping sum

[MT]
Z (Chy ryar) = (Bs re—1)/m)) = (Popparyym) — (hopo) (3.22)

k=1
Here we have to work harder. By the symmetry of A and some algebra,

(MT]
o= ), ((h'a,u(k——l)/M X pk/m) = <hay’%k—l)/M>)
k=1
(MT)
= Z (%(haﬂ(k——l)/M X B /pr)
k=1
+ 3 (ks bipnr X pge—1y/ma) — (i 1)/M>)
[MT)
= % Z ((h’ “i/M) - (h’y’%k-—l)/M))
k=1
(MT]
-1 Z ((h, Mi/M> — (hy bk ypr X Bk—1)/M)
k=1
2
— (hy k—1)/00 X Brynr) + (h,u(k_l)/M))
(MT]
= 3 ((h,H%MT]/M> - (’%H%)) =5 > (B (mryns = pe—1ya0)?)
k=1
= 3%, - 1%, (3.23)
The last sum, ¥, is the integral of h with respect to the quadratic
variation of the Markov chain. Let us write
(MT]
e o= ) {(h, (k/pt — Bge—1)/00)°)
k=1
-M! ((Th,#(k—l)/M) —(h, N?k—l)/M)) }
[MT]
2
t ; ((Th,#(k—l)/M) - (h,M(k_l)/M))
= X5+ 35 (3.24)

Of course, ¥4 goes to fo ((Yh,ps) — (h,u2)) ds uniformly on compact

sets.
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We claim that ¥} goes to 0 in L?2(P(M)®@}1), hence in P(M)<I>]_V,1-
probability Given k > 1, let Y3,...,Ya be, conditionally on pj_q, i.i.d.
pr_y = (1 —u)ug—1 +urg. Then

e [(hy (k= pr—1)%)]
= EP" [(h,ud) — (bt X i) — (h pk-1 % pi) + (b 1))

M
_ P™ 1
= B [E[Wz (Y3, ¥5) - MZ )s k-1
ij=1
1 M
- M (h("y})vuk—l) + <h,Hz—1>H
Jj=1

- gP™ [M-1<rh, ppo) + (1= M7Y(h, (uh_y)?)

— (hypk_y X pk—1) = (Bypr—1 X ) + (h,uﬁ_ﬁ]

= MEPY [(Th i) — (b (i)
+ B [(h, (uy — pe-)?)]
= MT'EPY [(Th, ) = (b pdi)] + O (M), (3.25)
and this holds uniformly in £ > 1. Consequently,

EP(M)(P;/II [(212)2]
[MT]

- EP““[(Z{«z (1t — e 1)?)

()~ ) ) |

M)
= S EPY [{(h (ke — p-1)*)
k=1
M (O} = (1) | + 0 (179
[MT)
< 2 Z P [ (e = me-1)?)’] + 0 (M), (3.26)

It will therefore suffice to show that
EP [(h, (e — me)?)?] = 0 (M72), (3.27)
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uniformly in & > 1.
Let Yi,...,Y be, conditionally on pug_, iid. pf_; == (1 —u)pp_1+
ury, and let

HY; = h(Y;, Y;) = (h(Yi, ), k1) = (A, Y5), 1) + (B ). (3.28)

Then

+2E E ('1\715 > H
i ] i#]
=: 201 + 2032. (3.29)

Now 07 = O(M~?), and we claim that 03 = O(M~2) as well.

To understand the latter, consider first the case in which u = 0.
(Actually, our assumptions rule out this possibility, so this is merely to
clarify the argument.) Notice that

EPY (B [HY)]
= EF"[E[{h(11, Y2) - (h(11, "), me-1)
—(h(:, Ya), pg—1) + (b, pi_1)}]]

P [(hywz_1) — (hy 1) — (hy 1) + (By 1))
0 (3.30)
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and

(o)
EP [E[HY, H)3)]

[ E[{h(yl,n) ~ (s Yo thn)

Ep(M)

- (h("n)vﬂk—l) + <ha”i—l>}
{0, 10) = on, e
- (h("YEi)a/fl'k—l) + <h7#2—1>}j| »u'k—l(dyl)]

EP(M)

[EE[{h(yl,Yz) — (h(y1, "), tbk—1)
— (h(-, Ya), 1) + <h,u%_1>}]
E[{h(yl,ys) — (o, ) )

_<h('7 Y3)a Nk—l) + <h'7 /‘z—l)}] l"'k—l(dyl):l
= 0, (3.31)

since both of the inner expectations in the last integral are 0. (Note
the similarity between this argument and the proof of Lemma 2.2.) In
words, H ?2 and H ?3, although clearly not independent, are uncorrelated,
mean 0 random variables. This fact allows us to conclude that

2
pM) 1 0 M) 1 012
E [E [(WZH,,) E E WZ(H,-]-) ”
i#] i#]

= 0(M™?), (3.32)

at least when u = 0. Now it remains to show that the same approach
works when u = 6/(2M).
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In general, (3.30)—(3.32) become

(M) (M) * *
EF EBHY] = EP"|(h, (i 1)?) — (hopfoy X pe—1)

~ (Rhy g1 X ph_1) + (h,ui_ﬁ]

= 0 (M-l) , (3.33)

()
EF [B[HLHY))

[ E[{h(yl,Yz) ~ () o)

Ep(M)

- (h('a}/Q)a,u'k—I> + <h7ll‘l%:—l>}
{hn, 1) = (bt )
_(h('aY3)uu'k-—1) + (hhuIQc—l>}] H2—1(dy1)}

EP(M)

/E E[{h(yl,n) — (B, ) 1)

_(h(, Yé),p,k_1> + <haiu’l2c—1>}:|

E[{h(yl,m — (hly1, ), p1)
1+ i)
- gP™ [/E {(h(yl,-),u2_1> — (h(y1,°)s pk—1)

2
_<h’7 Pk—1 X HZ—1> + <h7”%—l>} HZ—l(dyl):l

= 0 (M—2) , (3.34)
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and

PM)

1
oy = E E WZH%
i#j

_ gP™ |g %Z(H;Ljy +0 (M7?)
i £
= 0(M™?), (3.35)

as required.
We have verified the statement of the lemma with

FM = exp{Si:; + %‘21 - %2’2’ - Sg + SZ ’
Gu = exp{—3%5— S5+ 54}, (3.36)
F := Ry, and G := 1. This completes the proof. [ |

For each p € Pp(E), let QELM) € P(Em) denote the distribution of the
selective Wright-Fisher model starting at u, and for each p € P°(E),
let Q, € P(Q°) denote the distribution of the selective Fleming-Viot
process starting at p.

We can now state the main result of this section.

Theorem 3.1 Assume that h is continuous. Let {u™} c Py(E) C
P°(E) and p € P°(E) satisfy d°(u™), ) — 0. For simplicity of nota-
tion, denote QS(\Q) by just QM) Then Q(M)QX,II = Qu on Q°.

Proof The proof is similar to that of Theorem 3.7 of [1], except that
we use Lemmas 3.1 and 3.2 above in place of Lemmas 3.4 and 3.5 of [1].
|

4. Characterization of the stationary
distribution

If A is bounded, then it is known that the Fleming-Viot process
in P(E) with generator £; has a unique stationary distribution I, €
P(P(E)), is strongly ergodic, and is reversible. In fact,

HO(') =P {Zpi‘s& €- } ) (4'1)
=1
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where £1,&,... are i.i.d. vy and (p1, p2,...) is Poisson—Dirichlet with
parameter § and independent of &1,&s, . ... Furthermore,

I (dp) = €4 Ty (dp) / / ") Ty (dv). (4.2)
P(E)

For h satisfying (1.3), the finiteness of the normalizing constant in
(4.2) is precisely the condition needed in the work of Overbeck et al. [2].
Notice that

/ ) My(dv) = E [exp Zpiﬂjh(éi,éj)
P(E)

ij=1

exp {2 > piko(:) }]

=1

IA
=

= E ﬁ(e2”ih°,vo)]. 4.3)

Li=1

A sufficient condition for this to be finite is (€2, 1) < co.

Here we impose a slightly stronger condition: E, vy, and h are ar-
bitrary, subject to the condition that there exist a continuous function
ho : E — [0,00) and a constant py € (2,00] such that (1.3) holds and
(e"ho,uo) < 00 whenever 0 < p < pg. In other words, we now require
po > 2.

Theorem 4.1 Under the above conditions, II, defined by (4.2), is a
reversible stationary distribution for the Fleming—Viot process with gen-
erator Ly, and it is the unique stationary distribution for this process.

Proof Define i, and kg on (E x E)? not by (4.8) of [1] but by

hi((z1,72), (y1,92)) = h(zi, ¥i)- (4.4)

With additional minor changes to equations (4.5), (4.6), and (4.13) of [1],
the proof is otherwise the same as that of Theorem 4.2 of [1]. ]
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1. Introduction

Connections between diffusion processes and linear PDE involving
second order uniformly elliptic operators L are known for a long time.
Superdiffusions are related, in a similar way, to equations involving semi-
linear differential operators Lu — 1(u).

Positive solutions to a linear equation Lu = 0 in a bounded smooth do-
main D C R%, that is positive L-harmonic functions, can be represented
as a Poisson integral. Corresponding formula establishes 1-1 correspon-
dence between positive L-harmonic functions and finite measures on the
boundary dD. The measure v that corresponds to a function A is, in
some sense, a weak boundary value of the function k. It is natural to call
v a trace of the function h on the boundary. If the measure v has a den-
sity with respect to the surface measure on @D, then the corresponding
function h admits a probabilistic representation in terms of L-diffusion.
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Analogous theory of a nonlinear equation Lu = 9(u) was developed
independently by analysts, including Keller, Osserman, Loewner and
Nirenberg, Brezis, Marcus and Véron, Baras and Pierre, and by prob-
abilists, including Watanabe, Dawson, Perkins, Le Gall, Dynkin and
others. However, the boundary behavior of solutions of a nonlinear
equation can be more complicate. In particular, a solution may blow
up on a substantial part of a boundary, even on the whole boundary.
In 1993, Le Gall [12] found a characterization of all positive solutions
of equation Au = u? in the unit disk D by using the Brownian snake
— a path-valued process introduced by him in an earlier work. To de-
scribe a boundary behavior of a solution of a nonlinear equation, it is
necessary to split the boundary of the domain into two parts: a closed
subset I" which is a set of “significant” explosions, and its complement
where the weak boundary value exists as a Radon measure. Le Gall
established a 1-1 correspondence between the solutions and pairs (T, v)
such that T is a closed subset of dD and v is a Radon measure on dD\T.
Moreover, every solution admits a probabilistic representation in terms
of the Brownian snake. In [15], the results were extended to all smooth
domains in R?. The pair (T, v) that corresponds to a solution u is called
the trace of u.

Numerous attempts to find a proper generalization of this fundamen-
tal result (Marcus and Véron, Dynkin and Kuznetsov) brought a partial
success. Namely, similar result is valid for the equation Au = u® in a
ball if the dimension d of the space satisfies the condition d < g—f—} (so
called subcritical case). The analytical part of this statement was done
by Marcus and Véron [16], [17] and the probabilistic representation was
established by Dynkin and Kuznetsov [8] (the probabilistic part is valid
in a more general setting). If d > 21 (the supercritical case), the situ-
ation becomes more delicate because of a new phenomena — polar sets
on the boundary. For this reason, not every finite measure v may serve
as a boundary value (Gmira and Véron [9]). Moreover, the example by
Le Gall [14] shows that the definition of the trace based on the Euclidean
topology is not sufficient to describe all solutions (there exist different
solutions with the same traces).

We present here a new approach to the problem. A breakthrough
was made possible after we have replaced the Euclidean topology on
the boundary by another one. Most of the results presented here were
obtained in joint publications by Dynkin and Kuznetsov.
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2. Diffusions and linear equations

Let L be a second order linear uniformly elliptic operator with smooth
coefficients and no zero order term. Denote by (&, I1,.) the corresponding
L-diffusion in RY. Let D C R¢ be a bounded smooth domain and let
¢ > 0 be a continuous function on @D. The function

h(z) = I¢(¢r) (2.1)
is a unique solution of the boundary value problem
Lh=0 inD,
(2.2)
h=¢ ondD.

Here 7 stands for the first exit time from D.
At the same time,

h(z) = /a K@ n)dl)olds) (2:3)

where k(z,y) is the Poisson kernel for L in D and o(dy) is the surface
measure.

The analytic representation (2.3) can be extended to an arbitrary
positive L-harmonic function h. Namely, to every positive L-harmonic
function there corresponds a finite measure v on the boundary such that

h(z) = /a K@l (2.4)

The equation (2.4) establishes a 1-1 correspondence between finite mea-
sures on the boundary and positive L-harmonic functions. However, a
probabilistic formula (2.1) is possible only if the measure v is absolutely
continuous with respect to the surface measure.

3. Superdiffusion and the nonlinear equation

An (L,a)-superdiffusion is a measure-valued Markov processes
(Xp, P,) related to the nonlinear operator Lu — u®, where a € (1,2]
is a parameter. Here a family of measures Xp is indexed by open sub-
sets of R? and a measure X p characterizes the accumulation of mass on
0D if all the particles are instantly frozen at the first exit from D. The
measure P, stands for the corresponding probability distribution if the
movement starts from initial mass distribution p. As usual, we write
P, if the corresponding u is a unit mass concentrated at z. A detailed
discussion of the concept of (L, a)-superdiffusion could be found in a pa-
per of Dynkin in this volume. A principal relation between the process
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(XD, P,) and the nonlinear operator Lu — u® can be stated as follows.
If ¢(z) is a positive continuous function on the boundary of a bounded
smooth domain, then the function

u(z) = — log Py exp(—(¢, Xp)) (3.1)
is a unique solution of the boundary value problem
Lu=u® inD,
(3.2)
u=¢ on dD.

(Note that an analytic substitute for (3.1) is not an explicit formula, but
an integral equation.)

4. Range of superdiffusion and polar sets on the
boundary

The range Rp of a superdiffusion in D is a minimal closed set which
supports all measures Xp/, D' C D. A compact set I' C 9D is said to
be polar for (L, a)-superdiffusion if P,(Rp NT = @) =1 for all y such
that supp p is disjoint from 0D.

Characterization of polar sets was given by Le Gall [13] in case a = 2
and by Dynkin and Kuznetsov [4] for general 1 < a < 2. It was shown
that the class of polar sets coincides with the class of removable boundary
singularities for the equation (5.1), and also with the class of sets of
capacity 0. In particular, we have

Theorem 4.1 ( Dynkin and Kuznetsov [4]) A closed set I' C 0D
is polar if and only if

[ ([ x@wman) stords = oo W

for every non-trivial measure v concentrated on I'. Here p(z) stands for
the distance to the boundary 0D.
5. Moderate solutions

Our goal is to describe all solutions to the equation
Ly =u® (5.1)

in a bounded smooth domain D. The equation (5.1) was studied by
analysts for decades. Keller [10] and Osserman [19] proved that there
exists no non-trivial entire solution to (5.1) in the whole space. On
the other hand, if D is a bounded smooth domain, then there exists a



Boundary theory for superdiffusions 327

maximal solution to (5.1) which dominates all other solutions and blows
up at the whole boundary. Dynkin {1, 2] proved that every solution
to (5.1) can be uniquely represented as

u(z) = — log Ppe~ 2 (5.2)

where Z, = lim(u, Xp,) is the so called stochastic boundary value of u.
(Here D, is an arbitrary increasing sequence of smooth domains such
that D,, C D and UD,, = D.)

We begin with a subclass of solutions of (5.1) which we call moder-
ate solutions. Namely, a solution u is moderate if it is dominated by
an L-harmonic function. For every moderate solution u, there exists a
minimal L-harmonic function h such that A > u. We call it the minimal
harmonic majorant of u. The solution u can be recovered from its min-
imal harmonic majorant as a maximal solution dominated by h. Let v
be the measure corresponding to h by the formula (2.1). We call v the
trace of the moderate solution u = u,,.

Theorem 5.1 ([13, 3, 5, 18]) A measure v is the trace of a moderate
solution if and only if v(T') = 0 for all polar sets T' C 0D.

Let now v be a o-finite measure on the boundary such that v»(I') =0
for all polar sets and let v, be an increasing sequence of finite measures
with the limit v. Formula u, = limu,, defines a solution of (5.1). It
could be shown that u, does not depend on the choice of approximating
sequence v, (however, the same solution may correspond to different v/).
We denote by Z, the stochastic boundary value of u,.

6. Subcritical case

Ifd < 2—f%, then there is no non-trivial polar sets on the boundary.
The complete characterization of all solutions to the equation (5.1) was
first obtained by Le Gall {12, 15] in case of @ = 2, d = 2 and by Marcus
and Véron [16, 17] for general @ > 1 (and D being a ball in R¢). By

combining their results with those in [8], we get

Theorem 6.1 ([15, 17, 8]) Suppose D is a ball in R?. Formula
u(z) = — log Pye™ %" 1R pAr=p (6.1)

establishes a 1-1 correspondence between the class of all solutions to (5.1)
and all pairs (I',v) such that T is a closed subset of 0D and v is a Radon
measure on 0D \ T. The pair (I',v) is called the trace of u.

Remark 6.1 In case a = 2, d = 2, Le Gall proved that the ezit mea-
sure Xp has a.s. continuous density with respect to the surface measure

o(dz), and that Z, = (%2,1/) a.s.
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7. Supercritical case

The situation in the supercritical case is more complicated. Not every
measure v may serve as a component of a trace (cf. Theorem 5.1). Also,
if ', and Ty differ by a polar set, then the events {I'; N Rp = @} and
{T3NRp = B} coincide a.s. and the solutions defined by (6.1) are equal
to each other. These difficulties were taken into account in the definition
of a trace given independently by Marcus, Véron [16], [18] and by Dynkin
and Kuznetsov [8, 7]. All possible traces have been characterized. It was
shown that the formula (6.1) gives a maximal solution with the given
trace. However, an example given by Le Gall [14] shows that it is not
possible to represent all the solutions of (5.1) in the form (6.1) if we
restrict ourselves by closed sets I'. In particular, different solutions may
have the same trace.

8. o-moderate solutions, singular points and fine
topology

A new approach to the problem was suggested in [11, 6]. A solution
u is called o-moderate if there exists an increasing sequence of moderate
solutions u,, such that u, 1 u. For every Borel subset B C 0D , we define
upg as a supremum of all moderate solutions u, with v concentrated on
B. It could be shown (see [11, 6]) that up is a o-moderate solution
of (5.1).

Let y € 8D. Denote by (&,11%) an L-diffusion conditioned to exit
from D at y. Let ¢ be the corresponding exit time. We call the point y
a singular point for a solution u (cf. [2]) if

¢
/ u* M) ds=o00  IIY-as. (8.1)
0

for some £ € D. We denote by SG(u) the set of all singular points of
the solution u.

We define finely closed sets as sets ' C 0D with the property
SG(ur) C T (cf. [11, 6)).

Finally, for every pair of solutions u, v, we define u @ v as a maximal
solution dominated by u + v (it could be shown that Z,g, = Z, + Z,
a.s.).

9. Fine trace

Let u be a solution of (5.1). Denote I' = SG(u). Next, consider the
set of all moderate solutions u, such that u, < u and u(I') = 0. Put
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v = sup{p : u, < u,p(l') = 0}. We call the pair (I',v) the fine trace of
u.
We prove:

Theorem 9.1 ([11, 6]) The fine trace of every solution u has the fol-
lowing properties:

1. T is a Borel finely closed set.

2. v is a o-finite measure not charging polar sets and such that v(T') =
0 and SG(u,) CT.

Moreover,
urpy = ur ® uy (9.1)

1s the mazimal o-moderate solution dominated by u.

We say that pairs ([,v) and (IV,v') are equivalent and we write
(T,v) ~ (I",v)) if the symmetric difference between I' and I is polar
and v = v/, Clearly, ur = ur and ur, = up  if (T,v) ~ (I, /).

Theorem 9.2 ([11, 6]) Let (T',v) satisfy Conditions 1-2. Then the
fine trace of ur, is equivalent to (I',v). Moreover, ur, is the minimal
solution with this property and the only one which is o-moderate.

The existence of a non-o-moderate solution remains an open ques-
tion. If there is no such solutions, then Theorems 9.1 and 9.2 provide
a complete answer to the problem. If such solutions exist, then we may
have to refine the definition of the trace.
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Chapter 19

ON SOLUTIONS OF BACKWARD
STOCHASTIC DIFFERENTIAL
EQUATIONS WITH JUMPS AND
STOCHASTIC CONTROL*
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Abstract

1.

We relax conditions on coefficients given in [7] for the existence of solu-
tions to backward stochastic differential equations (BSDE) with jumps.
Counter examples are given to show that such conditions can not be
weakened further in some sense. The existence of a solution for some
continuous BSDE with coefficients b(¢,y, ¢) having a quadratic growth
in q, having a greater than linear growth in y, and are unbounded in y
belonging to a finite interval, is also obtained. Then we obtain an ex-
istence and uniqueness result for the Sobolev solution to some integro-
differential equation (IDE) under weaker conditions. Some Markov
properties for solutions to BSDEs associated with some forward SDEs
are also discussed and a Feynman-Kac formula is also obtained. Finally,
we obtain probably the first results on the existence of non-Lipschitzian
optimal controls for some special stochastic control problems with re-
spect to such BSDE systems with jumps, where some optimal control
problem is also explained in the financial market.

Existence of solutions to BSDE with jumps
under weaker conditions

Consider the following BSDE with jumps in R® :
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T T

Tt =X+ b(37$37QSap57w)d5—/ gs dw,

tAT AT
,
—/ /ps(z)Nk(ds,dz), 0<t, (L1)
tnT JZ
where w] = (w},... ,wf 1), 0 < t, is a d;-dimensional standard Brow-
nian motion (BM), w] is the transpose of wy; k7 = (ki,...,kq,) is a

do-dimensional stationary Poisson point process with independent com-
ponents, N, (ds,dz) is the Poisson martingale measure generated by k;
satisfying

Ny, (ds,dz) = Ny, (ds, dz) — n(dz)ds, i=1,--+ ,do,

where 7(.) is a o-finite measure on a measurable space (Z,B(Z)),
Ny, (ds,dz) is the Poisson counting measure generated by k;, and 7 is a
bounded & - stopping time, where S, is the o—algebra generated (and
completed) by {w; ks s < t}. Let us assume that 0 < 7 < Tp, where Tj
is a fixed number, and b in (1.1) is a R%—valued function. It is known
that the study of (1.1) is useful for the option pricing in the financial
market [1]. For the precise definition of the solution to (1.1) we need the
following notation:

sy = |

L2 (RE®H) = ft,w): f(t,w) is Sy — adapted, R¥®% — valued
S such that E [j |f(t,w)|>dt < 0o ’

{ f(t, z,w) : f(t,2,w) is R¥®% — valued,

ft,w): f(t,w) is §; — adapted, R% — valued
such that Esupycjo ] |7 (t,w)|? < o0 ’

Qy-predictable such that
E [] [,1f(t z,w)|* n(dz)dt < o0

Definition 1.1 (z4,q,p;) is said to be a solution of (1.1), if and only
if (T4, qt,pt) € S3(R?Y) x LL(RI®41) x FZ(RI®%2), and it satisfies (1.1).

Assumption 1.1 For discussing the solution of (1.1) we make the fol-
lowing assumptions

(i) b: [0, Ty} x R¢x Ri®% for(_) (R¥®42) x Q) — R%is jointly measurable
and S;—adapted, where

L2, (R®%) = { f(z): ];(z) is Rd®d22— valued, and }
"0 I£17 = [ 1f @) n(dz) <oo [
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(11) Nki({t},U)Nkj({t},U) =0, asi# j, U € B(Z) with n(U) < oo.
We have

Theorem 1.1 Assume that b= by + by, and that
(i) bi = bi(t,z,q,p,w) : [0,To] x R* x R™®% x L2 (R1®%) x Q —

R%, i = 1,2, are S;—adapted and measurable processes such that

P—a.s.
|b1(t,x,(I,P7w)| S cl(t)(l + |.’E|),
b2(t, 2,9, pw)| < ar(t)(1+ |2]) + c2(t) (L + lg| + [|pll),

where ¢1(t) and co(t) are non-negative and non-random such that
To To
/ c1(t) dt +/ ca(t)? dt < oo;
0 0

(”) (:L‘l - -/1;2) : (bl(tvl‘lvqlvplvw) - bl(t7$2aQ27P2,w))
<V ()N (|21 — z2l*) +5 (¢) |21 — 72| (|q1 — @2l +I|p1 — p2l), and

|b1(t, 2, q,p1,w) — bi(t, z,q,p2,w)| < X (t)|lp1—p2ll,
b2 (t, 21, q1,p1, w) — ba(t, T2, g2, P2, w)|
< N@) |z — 22| + ¢ (D)l — g2| + llp1 — p2ll],

as |z| < N, |zj| < N, ¢ =1,2;N = 1,2-.-; where for each N,

cN(t) and c) (t) satisfy the same conditions as in (i); and for each

N, pV(u) > 0, as u > 0, is non-random, increasing, continuous
and concave such that

/ du/p" () = oo;
0+

(1i1) bi(t,z,q,p,w) is continuous in (z,q,p);
(iv) X € Sy, E|X|* < .
Then (1.1) has a unique solution.

Here conditions in Theorem 1.1 are weaker than that in Theorem 1
of [7], where it assumes that | X| < ko and fOTO |e1(8))? dt < oo.
Let us give some counter examples and an example as follows:
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Example 1.1 (Condition fo c1(t)dt < co can not be weakened)
Consider

Ty = 1+/ Ioz0s™ xsds—/ qs dwg — //ps x(ds,dz),
t t

0<t<T.

Obviously, if @« < 1, then by Theorem 1.1 it has a unique solution.
However, if a > 1, then it has no solution. Otherwise for the solution

(zt,qt,pt) one has

Exf):oo, Vi=1,2,---,d, asa>1.

Example 1.2 (Condition f ® ¢y(t)2dt < co cannot be weakened)
Now suppose that all processes appearing in BSDE (1.1) are real-
valued. Let

T
X = / Lzo(1+ 5) 7'/ (log(1 + 5)) ™ duw,
0

T ~
+ [ [ Topod+ )75 (hog(1 + )T (2) Vs, do),
b= Lepa(l+5) (1081 +9) ™ (alal + 2 [ 1ol T (e,

where %1,%2 > 0 are constants, and we assume that 0 < ag, ag < %, and
0 < n(U) < oo. Obviously, if 0 < ay < 3, then by Theorem 1.1, (1.1)
has a unique solution. However, if a; > %, and El >0, a1 +a > 1, or
Ez >0, a; + a3 > 1, then (1.1) has no solution. Otherwise for solution
(zt,qt,pt)

Exy =00

Example 1.3 Let
b= —Iz0s "z |a| ™ + Lzos™%2q + Iy05™* / p(2)Iy(2)m(dz),
z

where o < 1; ap < 1/2;0 < B < 1; n(U) < oo; and assume that
XeSr, E|X | < oo0.

Obviously, by Theorem 1.1, (1.1) has e unique solution. However,
c1(s) = Isx08™*, ca(s) = Is05™*? are unbounded in s, and by =
—Is40s %z |1L'|_ﬂ is also unbounded in s and z, and is non-Lipschitzian
continuous in z. Note that here we have not assumed that X is bounded.

(cf [7)).

Theorem 1.1 can be shown by the approximation technique.
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2. Existence of solutions to BSDE with
coefficient having a greater than linear
growth

Definition 2.1 (x4, g, p;) is said to be a generalized solution of (1.1),
if and only of z; and q; are Si—adapted, p; is Si—predictable, and they
satisfy (1.1).

Consider BSDE without jumps in (1.1) with d = 1 as follows:

dyt = (g(t’ Yt, (’Ivtaw)y? + 2Iyt¢0 |‘7t|2 /yt) dt + (’Itdwta (21)
yr =Y, 0<t<
Denote b(t,z,q,w) = Z(t, %, -4, w), where b(t,0,q,w) =

lim,_,0 b(t, z,q,w) is assumed to exist and finite. We have the following

theorem and example:

Theorem 2.1 If b satisfies Assumption (i)-(iv) in Theorem 1.1 except
that condition for by in (ii) is cancelled and in (i) is weakened to be the
same as by, and condition for by in (i) is strengthened to be that all
N (t) and c} (t) are the same for all N, moreover, if b'(t,z,q,w) > 0,
b'(t,0,0,w) > 0,4 = 1,2; and X = 1/Y > 0, then BSDE (2.1) has a
generalized solution. Furthermore, if X > rg > 0, where ry is a constant,
then BSDE (2.1) has a solution (y,q;) € S4(R') x LL(R'®%)such that
% >y > 0, Vt € [0, 7], where & is a constant, which ezists.

Example 2.1

b(ta Y, ‘77 w)y2 + 2Iy¢0 l‘ﬂQ /y
= Is-,zéOS‘a1 |y|1+ﬂ + Is;wéOS_a2 lqll—ﬂl |yl2ﬂl + 2Iy7$0 |§]2 /y
+c1(s)y — ca(s)q

will satisfy all conditions in Theorem 2.1, if in above a1 < 1, ap < %, 0<
B, B1 < 1; c1(t), c2(t) satisfy condition in (i) of Theorem 1.1. However,
such coefficient has a greater than linear growth in y, is unbounded in y
belonging to any finite interval (—¢,¢€), and has a quadratic growth in q.

3. Application to integro-differential equations.
Some Markov properties of solutions to some
BSDEs and a Feynman-Kac formula

Applying Theorem 1.1 we can obtain an existence and uniqueness
result on the Sobolev solution to some IDE under weaker conditions.
Such IDE is useful in the stochastic optimal control problem [2].
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Suppose that D C R? is a bounded open region, dD is its boundary,
and denote D° = R? — D. Consider the following IDE

Lpocu(t, )

62
( -I-Zb ta: 2Za,]tza amj)u(t,z)

7]_1

d
+/Z (u(t,z +c(t,z,2)) —u(t,z) — Zlci(t,a:,z) aua(;w)) r(d2)
= f(t,z,u(t,z),uy(t,2) - o(t, z),u(t,x + c(t, z,.)) —u(t,z)), (3.1)
’U,(T,(E) = (}5((1/‘), U(t,(l?)‘Dc = '(/J(t,(l?), (va) = ¢(m)|D0 ’ (32)
u € W2([0, T] x R%)(= W,2([0,T] x R% R™)).
Also consider FSDE and BSDE as follows:
for any given (t,z) € [0,T] x D
s = b ' IT d s y Ir d T
y z+/t (ry)r-i—[a(ry)w
T, yr—, 2) N (dr, dz), <s<T;
+/t /Zc<,y )Ni(dr,dz),  ast<s<

r
Ts = IT<T'(/)(Ta y‘r) + IT:T‘P(Z/T) - f(T, YryTry qrapr)d'r
SAT

T T
—/ grdw, — / / pr(2)Ni(dr,dz), ast<s<T,
SAT SATJIZ
where 7 =71, =inf{s > t:ys; ¢ D}, and 7 = 7, = T, for inf {¢}.

Assumption 3.1 Assumptions A.1-A.3, B.1’, B.2-B.4 and (A)’ in Sec-
tion 4 of [7] hold.

We have the following theorem, which implies Theorem 10 in [7].

Theorem 3.1 Suppose that Assumption 3.1 holds except that the con-
dition | f(t,z,7,q,p)| < ko in B.1’ is weakened to be that

|f (¢ z,7,4,p)| < ko(1 +r]).

Then (3.1) and (3.2) has a unique solution u(t,z) € W,([0,T] x D)
such that

Nulla 2o,y me)

< o (||9u“[,,,([o,T]><D) + “¢“WI}’2([0,T]XDC) + ”¢”W3(1_1/”)(R4)) ’
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where ¢y 2> 0 is a universal constant depending on T, the domain D, the
dimensions d and m only. Moreover, one has that

Ty = U (s,ys),
g = U(Svys)azu (57 ys) )
Ds () = u(s’ys— +c(s,y3_,-)) —u(s,ys_),

where y; is the unique strong solution of the above FSDE, which is a
Markov process, and

(zs5,4s,p5) € SE([t, 7]); R™) x L&([t, 7]; R™®%) x F2([t, ]; R™®%)

is the unique solution of the above BSDE. Hence we can say that
(zs,9s,ps) has a Markov property. Furthermore, we have a Feynman-
Kac formula u(t, z) = zs |s=t¢ .

Theorem 3.1 can be shown by the approximation technique, by using
It6’s formula and Theorem 1.1.

4. Application to optimal stochastic control

In this section we obtain probably the first results on the existence
of some non-Lipschitzian optimal controls for some stochastic control
problems with respect to some BSDE systems with jumps.

Consider the following d—dimensional BSDE system: for 0 <t < T,

T T T 5
g =X +/ u(s, zy,qs,py) ds —/ qs dw; —/ /p’s‘(z)Nk(ds,dz),
t t t Jz
(4.1)
where z%, u(s, %, q%,p¥) € R%, ¢* € R¥®4 pY(z) € R¥®% and u € U,

u = u(t,z,q,p) : u(t, z,q,p) is jointly measurable
U = { such that (4.1) has a unique solution (z¢, g, p;), and

|lu(t, z,q,p)| < |z|°

7

where 0 < 8 <1 is a given fixed constant. The following Theorem shows
that a non-Lipschitzian feedback optimal stochastic control exists.

Theorem 4.1 Define u’(z) = u%(t,x,q,p) = — Iy 20T/ lxll_ﬂ and let

1 1 (T T
10 =B (et + 5 [ G+ [ e ntaenas + [ s as)
0 A 0

where (z}, g}, p}) is the unique solution of (4.1) for u € U. Then
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(i) w €U,

(i) J(u) > J(u®), for allu e U.

The above target functional J(u) can be explained as an energy func-
tional. Now consider the BSDE system (4.1) with z}, u(s, z%,q%,p¥) €

R!, ¢* € R®% p¥(z) € R'®%  and consider the admissible control set
as

u = u(t,z,q,p) : u(t,z,q,p) is jointly measurable
U = { such that (4.1) has at least a solution (z:, g;, p¢), and

|u(t, ,q,p)| < |2/

where 0 < 8 <1 is a given fixed constant. Denote the target functional
as

J1(u)

T
Ma:c{E(? / 14 ds — |gt)?
0

- [ (1 [ s wan) ds)}
(/ s

[ (st [ s a)
w ([ o0 s - st ] }

for each u € U,, where (z}, ¢f*,p}") is any solution corresponding to the
same u. We have the following

Maz{E

Theorem 4.2 Denote u’(z) = I z0z/ |z|* 2. Then
(i) W eU,
(4) Ji(u) < Ji(u°), Vu € U.

Both above theorems can be shown by using the Hamilton-Jacobi-
Bellman equations.

Now let us explain Theorem 4.2 in the financial market. If we regard
(4.1) as the equation for the wealth process z; of a small investor, ex-
plain the control u(t, x4, g, p;) as his feedback generalized consumption
process, and (g, p:(-)) as his some generalized portfolio process for the
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stocks, then in case 8 = 1, we can illustrate the target functional J;(u)
as a subtraction of the total summation of the square of wealths and the
square of money of bonds on the whole time interval from the square of
initial wealth (or say initial invest) for the investor. So Ji(u) can be seen
as some generalized utility functional for him. Theorem 4.2 tells the in-
vestor that he can get a maximum utility, if he chooses the consumption
law as u(z;) = I, 207t/ th|1_ﬁ, i.e. when the wealth process z; > 0, he
should consume the money I, 4o/ |$t|1_ﬂ ; and when z; < 0, he should
borrow the money —z;/ lmtll_ﬁ.
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Chapter 20

DOOB’S INEQUALITY AND LOWER
ESTIMATION OF THE MAXIMUM OF
MARTINGALES

Li Zhichan

Department of Mathematics,

Hebei University of Technology,
Tiangin 30013)

Abstract

Keywords:

For estimation of the maximum of submartingales, there are classical
Doob’s inequalities
+

Esup|z:[’° < ¢ E|zool’, p>1, =1, (0.1)
t

SR
Q|-

e
Esup|z:| < ] (1+ Elz|log? o)) , p=1 (0.2)
. _

The above two formulas used their ends oo, but ignored their be-
ginnings zo. This paper used both ends of {z.,t > 0}, and gave Doob’s
inequality a more accurate improvement. For the maximum of martin-
gales, we seldom see lower estimation except the trivial estimation:

Esup|z:|” > Elzcl®, (p21).
t
[1] and [4] have given respectively a non-trivial estimation to the non-
negative continuous martingales for p = 1 and 2. This paper considered

lower estimation for all cases of p > 1, and got the corresponding in-
equalities.

martingale, inequality of martingales, Dubins’ and Gilat’s conjectures.

1. Doob’s inequality and lower estimation of the
maximum of martingales

Suppose

{F;,t > 0} is a filtration in probability space (Q,F,P),

{z4,t > 0} is a martingale (or nonnegative submartingale) which is right
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continuous in (2, F, P), and adapts to {F;,t > 0}. Let z* = sup, |z¢|,
g > 1 be the conjugate exponent of p > 1; % + % =1.

Theorem 1.1 Suppose {z;,t > 0} is a nonnegative submartingale.
Forp>1,if

Ez*? < +o00, (1.1)

then
Ex'? <q(g— ') Ezb, — (- 1)Exf = (¢— )P Ezb,, (12
where ¢* > %%& In particular,
Ez*? < ¢°EzP — (¢ — 1)Ex}. (1.3)

Proof If Ez} = 0, then (1.2) and (1.3) obviously hold, therefore
we may assume Ezf > 0. Under condition (1.1), there exists a limit
Too = lim z; (a.s), and o € LP. For any A > 0, let T), = inf(t > 0:

t—+o00
ti > A+ zo). From the right continuity of z;, it’s not difficult to prove
that T} is a stopping time, and z7, > A+ zo, (a.s) on (T < 4+o0) =
(z* > A + zp). By using Fubini’s Theorem,

o0
Eo*? = / EI(z* > \) d(¥)
0

= E/ pAPTLH (z* > A) dA
0

o o0
= E [/ pAPTI (2* > \) dA +/ PN (2% > X) d)|.
0 Zo

(1.4)

Since z* > z¢ (a.s),
o
E/ pXTU (z* > X) d\ = Exb. (1.5)
0

Because (z* > A+ zp) = (T) < +o0) € Fr,, (A +z0) € Fy C Fr,, from
the submartingality and the Stopping Theorem,

E\+zo)P " (z* > XA+ z0) Ezr, (A + )P 21 (z* > A + 1)

<
< Ezoo(A+z)P 2T (z* > A+ 10) .
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Using the Fubini Theorem again, we get

o0
E/ pAPLH (z* > \) dA
i

0

o0
= E/ p(A 4 zo)P T (2* > X+ zp) dX
o
_ p/ E(\ +20)P~ T (z* > A + o) dA
0

(o o]
< p/ Ezoo(X + z0)P 21 (z* > X + x0) d)
0

o0
= pEzs / P2 (z* > A) dA

0

z*
= qFEzy / di\P~1

0
= gq [Ezooz*p_l - Ea:ooxg_l]
< gq (Ezoox*”"l - Exg) . (1.6)
Synthesize (1.4), (1.5), (1.6), then we get
Ez*? < qEzoox*®™' — (¢ — 1)Exh. (1.7)
Substitute the Holder inequality, Ezez*?~! < (Ea:poo)l/p (Ez*?)Y/9,
into (1.7) and divide both sides by (Ez*?)'/4, to yield
Ex}
(Bz*")'/P < g (Babo)' P ~ (q = 1) —— 2
> (Exh)'/*
Choose a constant ¢ > 0 such that
(q — 1)Exh/(Bz*?)!/? > o(Exk,)'/?,

which can also be written as

Ez*® < (q_ 1),, : (Emg)‘ll . (1.8)

Cc

Exb,)r-1
If (1.8) holds, then we have
Ez*? < (q— ¢)PELE,. (1.9)
Let ¢ = @4:)1—30( (o = Exf/Ex%) then it is not difficult to calculate
- 1)" (Ezp)’
-/

1
¢ Ezb,)7T

(a-cpBat, = (1
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which shows that if (1.9) holds on ¢, then (1.8) holds on ¢'. Hence (1.9)
holds on ¢. In view of the above property, let ¢g = 0, and Cnyl =
(¢ — )a/(q — cp)P~L, then (1.9) holds on c,, (n > 0). It is not difficult
tocheck 0 < ¢, <g—1,(n>1),c, T (n — 00), therefore there exists
the limit ¢* = lim, o ¢cp, 0 < c* < g — 1, such that

.,  (g-1)a _ g-1Ez}

C e 2 T B
and
Ez** < (q-—c*)? Ex?,
= q(g— )P Exb, — ¢ (g— ") Bl
= q(g—¢")"" Bah, — (¢—1)Ex,
from which we get (1.2) and (1.3). This ends the proof. [ ]

Dubins and Gilat conjectured in 1978 that the equality in Doob’s
inequality (0.1) held only if z; = 0 (a.s) to any t > 0 (see [2] or [1,
page 151]). Pitman [4] has proved the conjecture to be correct for p =
2. Paper [5] has solved this problem thoroughly and has proved the
conjecture to be correct for all p > 1. The following corollary will show
a more simple and direct proof than that given in [5].

Corollary 1.1 Suppose {F;, t > 0} is right continuous, {z:, t > 0} is
a right continuous martingale (or a nonnegative submartingale) which
adapts to {F;, t > 0} and satisfies (1.1). Then, the equal-sign in (0.1)
holds if and only if xs =0 (a.s) for any t > 0.

Proof The sufficiency is obviously correct, we only need to prove the
necessity.

Suppose the equality in (0.1) holds. Consider the right continuous
version of martingale E(|zc| | F), ¢ > 0 (it must exist under the con-
dition that {F;, ¢ > 0} is right continuous). Write y; = E(|zo| | Ft),
t >0, then y; > 0, Yoo = |Zoo| (2.8), according to the submartingality of
Ty, Yyt > |zt| (a.s), t > 0. So y* = sup, y; > sup, |z;| = z*, from yo, € L7,
we can conclude y* € LP (see [1] or [3]). Because Ez*? = ¢PE|z P,

¢PElz|P = Ez*? < Ey*? < ¢PEyf, = ¢PElzo|?,

from which we can get Ey*? = q? Eyh, = ¢PE|z5,|P. {y:, t > 0} satisfies
Theorem 1.1. Put it into (1.2) or (1.3), then get Eyf = 0, but yo =
E(|zo| | Fo) > 0 (a.s), so yo = 0 (a.s) and therefore |z,| = 0 (a.s).
From this we can conclude that for any ¢ > 0, z; = 0 (a.s). This ends
the proof of the necessity. |
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Theorem 1.2 Suppose {z;,t > 0} is a nonnegative submartingale, and
Ez* < +oo0, (1.10)

then
Ez* <

e —

€

1 (Ezoo logt 200 — Exg log™ zo + E(zo V1)), (1.11)

where log™ z = log(z V 1).

Proof Under condition (1.10), there exists the limit zoo = limy_,o0 z¢
(a.s.). Without loss of generality, we may assume Ezq, logt o < +00.
Write 25 = 2o V1, VA > 0; let Ty = inf(t >0: 2, > A+ x}), Th is a
stopping time, and according to the right continuity of z;, zp, > A+ x(l)
(a.s.) on (T) < +00),

[o ]
Ez* = / EI(z* > )) dX
0

E

1
0

Zl oo
/OI(x*>A) d>\+/ I(z*> )\ d/\}
0 T

o0

Ex} +E/ I(z* > \) dA (1.12)
T

IN

Because (z* > A+ z}) = (T\ < +o0) € Fp,, (A\+zg) € Fy C Fr,. From
the submartingality and the Stopping Theorem, we get

EI(z*>A+2) < ED I(z*> A+l
( 0) A‘*‘.’E(]j ( 0)

Too * 1

Using the Fubini Theorem and z* > zp, we get

E/ I(z*>MNdx = E/ I(z* > A+2)) d)
z(I) 0

oo
= / EI(z* > XA+ 1() dX
0

© T
< E—= _TI(z*>X+z) d\
/0 Tl (e > M +ai)

= Exoo/ lI(ac">)\)d)\
2l A

1
0

IA

Ezy [log (z* V z5) — log )
Ezylog (z* V1) — Exy, log z}
Ezy logt z* — Exglog™ zo. (1.13)

IN



346  MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS
Using the analytical inequality again
alogt b < alogta+bfe, a>0,b>0,

yields Ezo, logt 2* < Exo logt 7o + Ex* /€. Putting it into (1.13) and
synthesizing with (1.12), we obtain (1.11). [ ]

Remark 1.1 Compare the right side of (1.11) with that of (0.2), it is

not difficult to prove

z(l] —zologT zp < 1.

So we can conclude that (1.11) is more accurate than (0.2). In fact,
the bigger xg, the more superior formula (1.11) becomes. For ezam-
ple, take the martingale {z; = €?, t > 0}, then the error of (0.2) is
(e +€® + €%) /(e — 1), whereas the error of (1.11) is €2 /(e — 1).

We now discuss the lower estimation of the maximum of martingales.

Theorem 1.3 Suppose {z:, t > 0} is a nonnegative continuous mar-
tingale, and Ex*P < +o0, (p > 1), then

Ez*? > qEx? — (¢ — 1)Ex}, (p>1). (1.14)

Proof For any A >0, let T\ =inf(t > 0: z; > A+ z9), then T is a
stopping time. According to the continuity of ¢, z1, = A+ (a.s.) on
(T)\ < +00). Since z* > T, * > zo (a.8.), we have

Ex?, < Exez*?™!
z*
= Ezo / dir~t

= (p-1)Eze / P2 (z* > A) dA

= —lExoo[/ / (W72 (z* > )) d))

= Ezooz? ™' + (p— 1)Eze / N2 (z* > X) dA.
To
(1.15)

By the martingality, we know Ezoozg_l = Ezb. Since (z* > A + x9) =
(Tn < +o0) € Fr,, A+ 29 € Fy C Fr,, and thus by the Stopping
Theorem, we obtain

Ezoo(A+ z0)P2(z* > A+ 20) = Ezp, (A +z0)P 2I(z* > A + z0)
E(\ + zo)P I (z* > A + xp).
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Using Fubini’s Theorem, we have

[o.¢]
Ezro / MNP=2T (2* > )) dA
Zo
o0
= / Ezoo(A 4 z0)P 21 (z* > X + o) dX
000
_ / E(A + 20)P~ M (z* > A + o) d)
0
= E/ NPT (2% > ) dA

= —E/ NP

= L Bz — Ex?). (1.16)

Synthesize (1.15) and (1.16), we then get
q(Ez?, — Ezb) < Ex*? — Exf),

which is also formula (16). B
Remark 1.2 Let p = 2 in (1.14), we then recover the result in [4].

Theorem 1.4 Suppose {z:,t > 0} is a nonnegative continuous martin-
gale, and

Ezlogt 2o < 400,
then

Ex* > Bz logt 2o ~ Exglog zg + Exo. (1.17)

Proof For any A > 0,let Ty = inf(t > 0: z; > A+ x}),s0 T is a
stopping time. From the continuity of z;, z1, = A + 2§ on (T < +00),
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where £} = 7o V 1. Write 2}, = 7, V 1, 27 = 2* V 1, then

Ezylogt zo

IN

Ezo logzl,
Ezlogz]

zy
Ezy / d(log \)

Ez

I(z* > X)dA

['4f; oo

1
Ez,logz) + Ewoo/ )\I(w* > A) dA
2

J 5
/ I(z}>)) dA
B [

Exy

o0

1

Ezglogt z +/ Ezoo——1I(z* > A+ z}) d).
0 10g 0 o oo)\-i-l‘(l] ( 0)

(1.18)

When calculating the integration of the right side of (1.18), we notice

that (z} > A+ 2}) =

(T < +o0) € Fr,, 50 (A +z})"! € Fy C Fr,.

Using the Stopping Theorem of martingales, we get:

Fzy

1 * 1 *

0

= EI(z* > )+ z}).

Substituting it into the right side of (1.18), gives

0

-1 (z* > X+ 3g) dA

o 1
Efo ———
/0 x°°A+w

o0
/ EI(z* > A+ z5) dA
0

IN

o0
/ EI(z* > M+ x0) dA
0

z*
= E/ dA
Zo

= Ez* — Exy. (1.19)

Synthesizing (1.18) and (1.19) yields (1.17). [
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Remark 1.3 Letting 2o = 1 (a.s) in (1.17), we can get the result ob-
tained by [1, page 149].
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Chapter 21

THE HAUSDORFF MEASURE OF
THE LEVEL SETS OF
BROWNIAN MOTION ON

THE SIERPINSKI CARPET*

Yuan Chenggui
Changsha Railway University,
China

Chen Xuerong
Changsha Railway University,
China

Abstract Let L{{z € F,t > 0} be the local time of Brownian motion B on the
Sierpinski carpet F, and ¢(h) = h?(log|logh|)!~*, Vh € (0,1], B is a
constant. In this paper, we show that for each x € F'.

cLf <p—-m{s:s<t,B(s) =z} <CL7, ae. Vt>0.
for some constants ¢ and C € (0, 00).

Keywords: Local time, Hausdorff measure, Level set.

1. Introduction

Let {X(t)}t>0 be a stable process with order o > 1 on the line, and
A(t) be its local time at zero. In (2], Taylor and Wendel showed that

P—m{s:s<t,X(s) =0} =C1A(t), a.e., vt > 0.

*Supported by NNSF of China (Grant No.19871006)
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for some constant C) € (0,0), where 1 — m(FE) denotes the Hausdorff-
1-measure of the set E, and

$(8) = W(og|loghl) %, Vhe (0,1/4], f=1-~.

Later, Perkins [3] improved the above result for the case of one dimen-
sional Brownian motion, whereas, Zhou Xin Yin [4] gave the result for
on the Sierpinski carpet.

Let F, denote the n'” stage in the construction of the Sierpinski car-
pet, pn is the Hausdorff measure on F,, F = NS, F,. From [1], we
know p, = u, then y is a Hausdorff measure on F.

In this paper, we concern with the Hausdorff measure problem for
a class of processes defined on the Sierpinski carpet F. We consider
the Brownian Motion B on F. As for the construction B, we refer
to [5, 6, 7, 8]. In fact, Barlow and Bass have carried out many investi-
gations about the process B. They showed that the process B, like the
standard Brownian motion, also has a continuous symmetric transition
density p(t,z,y) with respect to the Hausdorff measure u. Moreover,
the function p(t, z,y) has the following properties

Theorem 1.1 There exists a function p(t,z,y), 0 <t < oo, z,y € F,
such that

(1) p(t,z,y) is the transition density of X with respect to p.
(111) (t,z,y) = p(t,z,y) is jointly continuous on (0,00) X F' X F.

(iv) There exist constants cy,ce,c3,¢4 > 0, and d,, such that, writing

dy = 2d;/dy,
1/(dw—1)
crt™%/ 2 exp (—62 (]x - y|d’”/t) / )
< p(tz,y)
1/(dw~1)
< st/ exp (—c4 (1= =yl /1) ) -

(v) p(t,z,y) is Holder continuous of order d,, — dy in z and y, and
C*® int on (0,00) x F x F. More precisely, there exists a constant
cs such that

lp(t, z,y)—p(t, ', y)| < C5t_1|$—$'|d‘”‘df, fort>0, z,z’,y € F,
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and for each k > 1, 0*p(t,z,y)/0tF is Holder continuous of order
dy — dj in each space variable.

dy is the Hausdorff dimension of F, d; is the spectral dimension of F,
d,, is unknown — we just have a definition in terms of the limiting resis-
tances of the Sierpinski carpet. We also have dy, = dy +¢&, which connects
the Hausdorff and spectral dimensions with the resistance exponent £.

2. Preliminary

In this section, we make an additional study on the local time Lf,
Vt > 0, Vz € F. In fact, Barlow and Bass showed that L7 is jointly
continuous with respect to (t,z) € Rt x F. Moreover, the local time L7
satisfies the density of occupation formula

tAT
| aBis = [ atwzuao 1)
where y is defined in [1], 7 = inf{t : B; € OF}

Lemma 2.1
Set

Ap(z)={y € F:|ly—z| <m '}, Ym>1, Vz € F

Then for anyp > 1

p
lim =0 (2.2)
m—00

tAT
Lf—[u(Am(w))]_I/O L{|B(s)-2|<m-1} 48

Proof By (2.1) we have

AT
/ LB, —z|<m-1} ds = / L p(dy)
0 Am(z)

Since LY is continuous with respect to y, one easily shows that

m—r0o0

mnwhwm*A(ghmhwa ac.

To prove (2.2), it suffices to show that

t

Y4
S&PE l [1(Am(2))] ! /0 I{B(s)-z|<m-1} 45

<o, p>1 (23)
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In fact, by the Markov property, we have

P
E

t
/0 LiB(e)-al<m=1y ds

t rt tp—1
E p!/ / . -/ I{|B(tp)—:c|§m—1} e I{|B(t1)—$|§m‘1}dt1 “ee dtp
13 tp—1
) p'/ / / / / I{|zp——z|<m—1} I{|1'1+ +zp—z|<m~1}

= ptp(o ‘TIJ) “Pti— tz(z2vz1) dzl) (d.’Dp)dt() d ( )

However, Theorem 1.1 tells us that,

t t1 tp—1
the right side of (2.4) < (C;»,)”p!/ / /
0 Jo 0

/ [ s = P 1 - )
{lzp—z|<m~1} {|I1+ +zp— z|<m—1}

1/(dw—1)
exp (—o4|xp|dw /t) :
(d.’L‘l d.’l,‘p dtl

1/(dw—1)
.- €xp (—04 |z1 — z2|d"’/t)

t1 tp—1
< rn[ [ / g/
{lzp—z|<m= 1} {lz14-+zp—z|<m~1}
t;dsﬂ(p—l_tp) d3/2"'(t1‘t2) 4/2 p(dz1) - p (dmp)dtl"'dtp
t to1  [tp—1
<@ [ [T G —
0 Jo 0 0
--(tl—tQ)‘dsﬂ(m‘dS)P/ --/u(dwl)---u(dwp)dtl---dtp
{lzpl<1} {le1+-+ap|<1}
< oo
The proof is completed. ]

Using this lemma, we can estimate E|L?|P for p > 1

Lemma 2.2 There ezxist finite positive constants ¢ and C such that

P E ) )R < EILYP

<
< CP(E%/2P(ph)%/2 Wt >0, Vp > 1(2.5)
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Proof By Lemma 2.1 it is sufficient to show that

o (t1-4/2)" (p%:/2 < E|LYP, ¥p>1, and
- P
E l [,U;(Am(x))] 1f0t I{IB(s)_x|Sm—1} dsl S Cp(tl—ds/2)P(p!)ds/2

Vo>1,p>1,t>0.
(2.6)

From the Proof of Lemma 2.1, the second inequality of (2.6) holds.
On the other hand, by Theorem 1.1 and (2.4), we have

p

t
B ‘ /0 Lyp(s)—si<m-1y ds

t t1 tp—1
<@ [ [ Py — )
oJo o Jepaiemy  Jiahetapa<m1}
1/(dw—1)
st — 1) "% P exp <—02 (%ldw/t) )

1/(dw-1)
-+ exp (—02 (Izl — $2|dw/t) ) p(dzy)- - - pdzy) dty- - - dty

t rt1 tp—1
= (Cl)pp' (m—df) p/ / N / /
0 Jo 0 |zp—mz|<1}

[ s =) (1 1)
{

|24 +--+zp—ma|<1}
exp (_02 (m—1|$p|dw /t)l/(dw—1)>
exp (~Ca (mor —aaft ) ) utdn)--- sy
- dt,
Set z = 0, we can complete our proof.
The proof of Lemma 2.2 immediately yields that

B|L,, - L) < c* (hl‘d3/2)p (PY%/2, Wp>1, VE>0. (2.7)

3. Lower bounds for Hausdorff measure

We begin with Lemmas 3.1 and 3.2.
Let

B = 1—dg/du,p(h) = h(log|logh|)'™?,  Vhe (0,1/4).
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Lemma 3.1 Suppose that p is a completely additive measure defined on
the real line Borel set and that E is a Borel set such that for each z € E

lim, f‘[i:(”%h] <A< oo (3.1)
Then
Ap—m(E) > p(E) (3:2)
Proof See [2]. ]
Set
By(t) {B(u+t)—B(u), 0<t<v—u
B(v) — B(u), t>v—u
r = {f:€(0,00) = R') - R,
and f is measurable and bounded.}
L) = L;
Lemma 3.2 Let f €T, A € B[0,1], then
5([ seByd) =5 [ Bomo.0d @9
where p(z,y) is the density function of B(t).
Proof See [4]. |

Lemma 3.3 For any fized t > 0, there ezists a constant A € (0, 00)

such that 10 1o
li Ttkh Tt <) e. 4
Jim_sup o) S a.e (3.4)

Proof We know from (2.7) that

/ds

12, - 2]\
sup E{exp |27l 1 < o0 3.5
he(0.1) { p[ h1-ds/2 (3:5)

for some constant C € (0, 00).
Hence

P hl-ds/2

LO _ LO 2/ds
T -

< Cexp(—471Ca¥%), Ve (0,1).

!L(t)-l‘h B L(t)‘ 2 a]
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We now choose
an = e—n/logn, n>2

and set for any ¢ > 0,
Fn = {L?Jran ~ L} > (207" +¢) arlz:isﬂ(log | log an+1|)—d’/2}
Gn = {Lda, = L8 2 (407" +¢) a} /2 (log |log an)*/*} .

Obviously, we have
F,C@G, n>2.

and from (3.5)

i P(F,) < oo.
n=2

With the help of Borel-Cantelli lemma, we know that there exists an
integer N (w) for almost all w, and F;, does not occur in case of n > N(w).
If .41 < a < ap and n > N(w), then

0 _ 0 0 _ 9
P S panrn <20
Which ends the proof. |
Theorem 3.1 For any T > 0, there exists a constant Cy , such that
o —m{t € (0,T): B(t) =0} > CiLS. (3.6)
Proof
Set

u(dt) = L(dt)
by the help of Lemma 3.3, we have

im BEEER oy 0 ae, vie,T]
o+ @(h)
S0 t,t+h
P-a.e. L(dt)-a.e. hl_i)r(r)1+sup %)\ < o0
Hence o+ A
T pit,t + -
L{tE(O,T).hll)r(I)l+sup ) >)\} = 0.
Set

. ult,t + h)
= : = — - < .
E {t € (0,T) : B(¢t) O,hl_l)r(l)l+ sup o) S A
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Then
LY = L(0,T) = L(E).
Therefore
Ap —m{t € (0,T),B(t) =z} > CpL% a.e..
]
4. Upper bounds for Hausdorff measure

According to [3], if B(t) is a Brownian motion on F, then there exist
constants M; and Ms, such that

M, < lim sup [B(t) = Bls)| < M. (4.1)

00 o<s<t<T 1/d., {log1 1-1/dy
ls—tl <o |s — ¢[!/dw [s—t

Set
Am = {[k2"""“,(k+1)‘"‘d“] 0< k<2 m = 1,2,-.-}

Let I be an interval with length [I| = 2~™. Define B~(I) = {t,|B(t)| €
I}. If B~1(I) meets one of the intervals of A,,, then B(k2-™4%) falls in
an interval I’, and concentric with I of length « m!=9% .2—™

Lemma 4.1 It is almost surely that if I' is an interval of length
m~1=1/dw . 2=™ then B~Y(I') contains < m(1~1/dw)ds+29(1—ds/2)mdu ¢
the points k - 2~ ™dw

Proof Set 0 <k <ky<- - <kp<[2mdy]

Let
Chyok
- {‘B (ki+12‘"‘dw) _B (k,-z—mdw) <ml-Vdug—m 1 << m}
P {‘B (k,—+12—mdw) _B (k,-z'mdw) < ml—l/dw2-m}
. / [ Pt (0,9) P27 (0,0)Pr e (3,3) do)play)
{ly—a|<mi-V/dwz=m}
S Z-|-1 k) ds/2 (1 l/dw)df

Then we have

m—1
P(Ciy-km) < (le*l/"wdf ) (k2 — K1) %72 - (ko — k1) ~%/2
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Hence

Y P(Chyy k) < [c"m“—l/‘iw)dffl]m—1 (2mdw)(l_d"/2)m
0<ky <-+-<km<[2mdw]

So we get our result. [ |

Lemma 4.2

P | sup |Latr+to - (Latvo - (L?+to - thlo))| 2 26]

0<s<t
_63ndf g—n )

< 2elexp <—
Pl3wz = 5wy

where p(v) = sup|;_y|<,(1 — P1{z, )M (y, )2, Vv > 0.

1 t '
. _ — -1 d.
= lim ( A (0)) [/0 I{|B(s)—x|§m l}dS /0 I{|B(s)—y|§m 1} S]

] 1 n 9— "t
= A a0, [/0 Ly 3 B(oms) - geal<(am)=1} 48

97"t
- /0 I{|3%B(9"s)—3%y|5(3m)_1} dsj|

. 1 9™t
= ,,}‘_’,‘;o“’—u(Am(o))g"[/o TB(s)- geal<arm)-1y 45

97"t
- /0 I{IB(S)—S%yISB"m)“}dS}

= 9v/3 [Lgl%, - 1)
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So
p ( Sup ILf-I-to - Lfo - (Lty+to - L!tlo)! 2 26)
0<s<t
= / p? ( sup |LS — LY| > 26) P5(0, z)pu(dz)
F 0<s<t
= P sup |LZ% — V3 | > 263% 9*”)
(Ogsl_){t 9—ng 9—ns| —
_53ndf9—n
S Zexp|l o5 —7 |-
Pl3z — 3wyl
The proof is finished. n
Set
o = 277 §e(0,1),
t4 = 1iay,

SA = ('l + 1)0'717
D(t4,ax) is the interval [t4 — ax, ta + ax],
A = [ian, (i +1)ay),
Q, = {A = [kan, (k + 1)a,],0 < k < 2n(1+5)} .

Let T,, be the number of A belonging to €2, which intersects with {s :
s <1,B(s) = 0}. By Lemma 4.1

P [Tn > m(l_dw)df+22(l—ds/2)m’1+5] < g-2mits

In view of reference [3] and [6], we have

lim inf ¢(a,)T, = 0,

n—oo

and based on reference [5], ¢ —m [s < T': B(s) = 0} < C3LY].
We get our result.
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Chapter 22

MONOTONIC APPROXIMATION OF
THE GITTINS INDEX*

Xikui Wang
Department of Statistics,
University of Manitoba
Winnipeg, Manitoba,
Canada R3T 2N2

xikui_wang@umanitoba.ca

Abstract  The Gittins index is useful in the study of bandit processes and Markov
decision processes, and can be approximated by finite horizon break-
even values determined in the truncated finite horizon models. These
break-even values are shown to form a nondecreasing sequence. A finite
horizon optimal stopping solution is also derived.

Keywords: Markov decision processes; bandit processes; Gittins index; dynamic
programming; geometric discounts; optimal stopping.

1. Introduction

The celebrated Gittins index, or dynamic allocation index, was in-
troduced in Gittins and Jones [4] for the study of sequential designs
of experiments. It has been very useful and powerful in the study of
Markov decision processes and bandit problems (Gittins 3], Berry and
Fristedt [1]).

The calculation of the Gittins index involves optimal stopping times
and is formidable in most practice. Approximations for the Gittins in-
dex and error bounds have been discussed by Berry and Fristedt [1],
Gittins [3], Wang [6], Chen and Katehakis [2], and Katehakis and Vei-

*This work was completed at the Division of Community Health, Memorial University of
Newfoundland, and is supported by a grant from NSERC of Canada.
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nott [5]. Especially, the Gittins index can be approximated by a sequence
of finite horizon break-even values, which determine optimal strategies in
finite horizon models obtained by truncating the infinite horizon geomet-
ric discount sequence. These break-even values can be found numerically
by the method of dynamic programming.

This paper shows a monotonicity of these break-even values. In sec-
tion 2, we introduce the bandit model, the relevant Markov decision
process, and the Gittins index. The monotonicity property is shown in
Section 3. This result accelerates the computations and offers some in-
sight into the finite horizon decision making process. Moreover, a finite
horizon optimal stopping solution is derived.

2. The bandit model, Markov decision process,
and Gittins index

In a bandit with k independent unknown arms, each arm ¢ (i =
1,2,...,k) consists of a sequence of conditionally independent and iden-
tically distributed random responses {X;;,j = 1,2,...} with an un-
known distribution G;. One and only one arm is selected for observation
at each time n = 0,1,2,.... The objective is to maximize the expected
total discounted responses E.(} -, anZy,), where A = (a1,ay,...),
an >0, Y0 an < 00, is the discount sequence, = is a strategy, and Z,
is the response resulted from the nt* selection specified by =.

For geometric discounts A = (1, @, @?,...), Gittins and Jones [4] com-
pare each unknown arm with a common known arm and a number called
the Gittins index is calculated. The Gittins and Jones strategy, which
selects an unknown arm with the largest Gittins index value, is opti-
mal. It is shown in Berry and Fristedt [1] that the Gittins and Jones
strategy is optimal if and only if the discount sequence is geometric
A= (la...,a"%...),0 < a < 1. A k-armed bandit process then
becomes a collection of k two-armed bandit processes.

Consider the approximation of the Gittins index for each two-armed
bandit. Suppose that the random responses X1, Xo, ..., on the unknown
arm (denoted as arm 1) follow an unknown distribution G, which has a
prior distribution F' on D under the Bayesian approach. D is the space
of all probability distributions on (—o00,00). The random responses on
the known arm (denoted as arm 0) have a known mean A. We call this
a two-armed (F, A\, A)-bandit.

This two-armed bandit becomes a Markov decision process in the nat-
ural way: the state space consists of all possible F' and the action space
is {i = 1,0}, indicating that arm i is selected for observation. For any
observation z on the unknown arm, the mapping from the prior distri-
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bution F to the posterior (z)F is measurable (Berry and Fristedt [1]).
At any state F, the reward is E(X|F) = [}, [ zdG(z)dF(G) if arm 1
is selected or A if arm 0 is selected.

In the (F,), A)-bandit, A(F,\,A) = VI)(F,)\ A) — VO(F ), A)
determines the optimal initial selection, where V®(F, X\ A),i = 1,0,
is the worth of selecting arm i initially and then continuing with an
optimal strategy. The Gittins index A(F, A) is the solution for A in
A(F,\,A) = 0 (Berry and Fristedt {1]).

Let A, = (1,a,0%,...,0"71,0,0,...), n = 1,2,..., be the trun-
cated discount sequence. By Theorem 5.3.1 in Berry and Fristedt [1],
there is a A = A(F, A,) for A(F,\, A,) = 0 such that the unknown
(the known) arm is optimal initially in the (F,\, A,)-bandit if and
only if A < (>)A(F, A,). A(F,A;) = E(X|F) may be found numeri-
cally since the myopic strategy is optimal for one selection. Moreover,
lim, ,o A(F, A) = A(F, A) (Berry and Fristedt {1]).

3. The monotonocity of the approximation

We show that for any F, A(F, A,),n =1,2,..., form a nondecreasing
sequence. This indicates that the more selections to make, the more
opportunity to choose the unknown arm. This is intuitive since we have
to balance the competing goals of information gathering (understanding
the unknown arms and making better informed selections in the future)
and immediate payoff (making selections with high immediate payoffs).
We need the following lemma.

Lemma 3.1 Assume a two-armed (F, A, A)-bandit with a geometric dis-
count sequence A = (1,0,02,...).
If A(F, )\, Ap) =0, then A(F,\, Apy1) > 0.

Proof A(F, ) Ay) =0 implies that V(F, )\ Ap) = A+ aV(F, X\, Ap-1)
and E(X,|F) — A= aV(F,\, An—1) — ¢E(V((z)F, X\, An—1)| F).
Therefore,
A(F, A An+1)
E(X1|F) = A+ aE(V((2)F, A, An)|F) — aV(F, A, An)
= a(l —a)V(F,\ Ap_1) — aX

+aE{V((z)F, )\, An) — V((z)F, )\, Ap_1)|F}.

Let 7* be an optimal strategy for V((z)F, A, A,—1) and 7** be a strategy

for the ((z)F, A, Ap)-bandit which follows 7* for the first n — 1 stages
and then always select the known arm at the last stage. Then

V((z)F, A Ap) > W((z)F,\, Ap; 7)) > V((z)F, A, Ap—1) + @™ k.
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So,
E{V((z)F,\, Ay) = V((z)F, )\, Ap_1)|F} > o™ k.

On the other hand, V(F,\, Ap_1) > A+ aX +--- + a™ 2\, Hence,
A(F, )\ Ant1) 2 a(l—a)(l+a+--a" ) —ar+ aa™ X =0.

|
Theorem 3.1
Assume a two-armed (F, )\, A)-bandit with A = (1,a,0a?,...). Then
A(F, A1) SA(F,A2) <+ <A(FA) < - SA(FA)

Proof A(F,A(F,Ap), An) =0 implies A(F,A(F, A,), Apt1) > 0.
Now, A(F,A(F, An+t1), An+1) =0 and A(F, A, Ay41) is strictly decreas-
ing in A by Corollary 5.1.1 in Berry and Fristedt [1].

So A(F, An) < A(F, Apta)- |

(F.
(F.
n)
);

Corollary 3.1

Assume a two-armed (F, ), A)-bandit with A = (1,0,0?,...). If the
known arm becomes optimal for the (F,\, Ap)-bandit, then it remains
optimal for the rest of the stages.

Proof This is clear since the known arm is optimal if A > A(F, A4,),
which implies that A > A(F, 4;) forl=1,...,n—1. O

4. A simulation example

Consider a Bernoulli bandit. The probability of success on the un-
known (known) arm is 6 (). A is known and @ is either a or 5,0 < b <
a < 1 with a prior F = pI(,) + (1- p)I(3}- Even in such a simple case,
an explicit solution is prohibited for general (a,b) (example 5.4.1, Berry
and Fristedt [1]).

Based on 5000 simulations, both the monotonicity and the conver-
gence of the finite horizon break-even values have been observed. A part
of the result is as follows, where a = 0.8,b = 0.4, = 0.6, and p = 0.5.

Horizon n 1 2 3 4 5 6
A(F, Ay) 0.6000 0.6177 0.6531 0.6828 0.7088 0.7273

Horizon n 7 8 9 10 11 12
A(F, An) 0.7362 0.7411 0.7444 0.7463 0.7473 0.7473
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Chapter 23

OPTIMAL CONSUMPTION-INVEST
-MENT DECISIONS ALLOWING FOR
BANKRUPTCY: A BRIEF SURVEY*

Suresh P. Sethi

School of Management
The University of Tezas at Dallas

Abstract This paper surveys the research on the optimal consumption and in-
vestment problem of an agent who is subject to bankruptcy that has a
specified utility (reward or penalty). The bankruptcy utility, modelled
by a parameter, may be the result of welfare subsidies, the agent’s in-
nate ability to recover from bankruptcy, psychic costs associated with
bankruptcy, etc. Models with nonnegative consumption, positive sub-
sistence consumption, risky assets modelled by geometric Brownian mo-
tion or semi-martingales are discussed. The paper concludes with sug-
gestions for open research problems.

1. Introduction

This paper surveys the research on the optimal consumption-invest-
ment problem facing a utility maximizing agent (an individual or a
household) that is subject to bankruptcy, the utility being associated
with consumption and bankruptcy; for an in depth study of the prob-
lem, see Sethi [29]. The problem has its beginning in the classical works
of Phelps [22], Hakansson [6], Samuelson [28], and Merton [18]. In a
finite-horizon discrete-time framework, Samuelson [28] showed that for
isoelastic marginal utility functions (i.e., U'(c) = ¢!, < 1), the opti-

*This paper is a shortened version of Sethi, S. P., Optimal Consumption-Investment Decis-
ions Allowing for Bankruptcy: A Survey, in Worldwide Asset and Liability Modeling, William
T. Ziemba and John M. Mulvey (Editors), Cambridge University Press, Cambridge, U.K.,
pp. 397-426. The research was supported in part by SSHRC Grant 410-93-042 and The
University of Texas at Dallas.
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mal portfolio decision is independent of wealth in each period and inde-
pendent of the consumption decision. More specifically, the portfolio is
re-balanced at each period so that the fraction of wealth invested in the
risky asset remains a constant. Merton [18] confirmed the result in the
continuous-time infinite horizon case.

A significant plateau was reached by Merton [19], who formulated
many interesting problems in continuous time with geometric Brownian
motions to model the uncertainties in the prices of risky assets. He chose
the utility of consumption U(c) to belong to the HARA (Hyperbolic
Absolute Risk Aversion) class and obtained explicit solution in the
case when the marginal utility at zero consumption is infinite (i.e.,
U’(0) = oco0). Among the important findings was the statement of the
so-called mutual fund theorem that allows, under certain conditions, ef-
ficient separation of the decision to invest in the individual assets from
the more macro allocational choices among classes of assets. This result
represents a multi-period generalization of the well-known Markowitz-
Tobin mean-variance portfolio rules.

Merton’s [19, 20] analysis was erroneous in the case of HARA utility
functions with U’(0) < oo, as identified years later by Sethi and Tak-
sar [32]. What Merton had done was to formally write the dynamic
programming equation for the value function of the problem and pro-
vided an explicit solution of the equation. In the absence of a verification
theorem, however, there is no guarantee that the solution obtained is the
value function. Indeed, when U’(0) < oo, not only his solution not the
value function, but if it were, it would also imply negative consumption
levels at some times. Missing in Merton’s formulation were an all im-
portant boundary condition that the value function should satisfy, and
the requirement that consumption be nonnegative. Without a boundary
condition, it is not possible to obtain a verification theorem and without

the nonnegativity requirement, negative consumption may occur.

A simple boundary condition specifies the value function at zero
wealth. In addition to being mathematically expedient, the value func-
tion at zero wealth signifies the reward or penalty, or more generally
utility, associated with bankruptcy. The value of the reward or penalty
associated with bankruptcy will have consequences on agent’s decisions.
Lippman, McCall and Winston [16] underscore the importance of bank-
ruptcy when they write,

“Valid inferences concerning an agent’s neutrality or aversion to risk
must necessarily emanate from a highly robust model. Failure to include
a constraint such as bankruptcy might very well produce the mazimally
incorrect inference (italics supplied).”

The specific value of the utility at bankruptcy depends on what is
assumed to happen in its wake. In most modern societies, the agent
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can count on welfare if and when he goes bankrupt. In this case, the
value may represent the discounted expected utility of future consump-
tion stream provided by the government. In addition, as Gordon and
Sethi [4, 5] indicate, bankruptcy may carry with it negative or posi-
tive psychic income, the former to the extent that shame attaches to
going bankrupt or living on the dole and the latter to the extent that
poverty may be a blessing to devoutly religious people. Mason [17] con-
sidered the case in which the agent might be re-endowed and allowed
to restart the decision problem. Sethi and Taksar [33] consider a de-
layed recovery model of bankruptcy. Whatever the case, it is sufficient
for mathematical purposes to assign a utility P to bankruptcy, and in-
clude P as a parameter of the problem. Karatzas, Lehoczky, Sethi, and
Shreve [9] (KLSS hereafter) do this in their comprehensive treatment
of the consumption-investment problem with nonnegative consumption
requirement and bankruptcy.

We begin our survey with the discussion of the KLSS model in the
next section. We also indicate how it generalizes the existing results, and
discuss its implication for the agent’s risk-aversion behavior as studied
in Presman and Sethi [23]. In Section 3, we list models that require a
subsistence or a minimum positive consumption rate, and the impact of
this requirement on the risk-aversion behavior of the agent. Section 4
discusses briefly the influence of imposing borrowing and shortselling
constraints. The constraints can give rise to more complicated value
functions than the concave ones obtained earlier. See Sethi [30] for
detailed versions of Sections 3 and 4. Section 5 concludes with a brief
discussion of related research and open research problems.

2. Constant market coefficients with
nonnegative consumption

In this section, we shall review models that assume constant inter-
est rate, constant average mean rates of return on risky assets, and a
variance-covariance matrix of constants. The models require nonnega-
tive consumption rates. All models reviewed here allow explicitly for
bankruptcy.

2.1 The KLSS model

KLSS consider a single agent attempting to maximize total discounted
utility from consumption over an infinite horizon. The agent begins with
an initial wealth  and makes consumption and investment decisions over
time, which is assumed to be continuous. The agent has his wealth in
N +1 distinct assets available to him. One is riskless (deterministic) with



374 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

a rate of return r > 0, whereas the others are risky and are modelled
by geometric Brownian motions. More specifically, the price dynamics
of the available assets are given by

dPy(t)

rdt, 2.1
Py(t) 1)
dP;(t) , _ T

B a;dt + D dw; , (2.2)

where Py(t) is the price of the riskless asset and P(t) = (Py(t), P, ..,
Py (t)) is the vector of prices of N risky assets at time ¢, with given initial
prices Py(0) and P(0). Furthermore, {w;, ¢t > 0} is an N-dimensional
standard Wiener process given on the probability space (2, F,P), €; is
the unit row vector with a 1 in the i** position, o; is the average rate
of return on the " asset, the volatility matrix D is an N x N matrix
with 3> = DD7 a positive definite variance-covariance matrix, and ()
denotes the transpose operation.

The agent specifies a consumption rate c¢, t > 0, and an investment
policy my = (m1(t),..., 7N (t)), t > 0, where m;(t) denotes the fraction of
wealth invested in the i** investment at time ¢. The remaining fraction
mo(t) =1 — (m1(t) + m2(t) + - - - + 7 (t)) is invested in the riskless asset.
The vector 7; is unconstrained, implying that unlimited borrowing and
short-selling are allowed. We assume no transaction costs for buying and
selling assets. The consumption rate must be nonnegative, i.e.,

¢ >0, a.s. w, a.e. t. (2.3)

Both C 2 {ct,t > 0} and II 2 {m:, t > 0} must depend on the price
vector {P(t),t > 0} in a non-anticipative way.

Given C and II, it can be shown that the dynamics of the agent’s
wealth z;, t > 0, satisfy the Itd stochastic differential equation

dry = (a —rl)wlzy dt + (rz — ¢) dt + zymDdw], zo =1z, (2.4)

where a = (a1,9,...,ay) and 1 = (1,1,...,1).

A complete formulation of the model requires some assumption con-
cerning the options available to the agent if and when his wealth reaches
zero, since further consumption would result in negative wealth. One
possible, and quite general, treatment is to assign a value P € (—o00,00)
to bankruptcy and include it as a parameter of the model.

To define the agent’s objective function, one needs to specify his utility
function of consumption. This function U defined on (0, co) is assumed
to be strictly increasing, strictly concave, and thrice continuously differ-
entiable. Extend U to [0, 00) by defining U(0) = lim¢ o U(c). The agent
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chooses C and II in order to maximize

Ty
Von(z) 2 B, [ / e PtU(c;) dt + Pe PT= | (2.5)
0

where T, = inf{t|z(t) = 0} is the stopping time of bankruptcy when the
initial wealth is z and B > 0 is the agent’s discount rate. P = U(0)/8 is
equivalent to continuing the problem indefinitely after bankruptcy with
only zero consumption, and is termed the natural payment.

The value function is defined as,

_ | supcn Ven(z), ifz>0,
Vie) = { P, if 2 = 0. (26)
1

Define the nonnegative constant v = (3)(a — r1)E7}a — r1)T and

consider the quadratic equation yA%2 — (r — 8 — y)A — r = 0 with the
solutions A_ < =1 and Ay > 0 when vy > 0. Whena =rl and 8 <,

define A\_ = —r/(r — (). It is shown that V'(z) is finite for every z > 0
if
®  df
/c _UW: < 00, Ve > 0. (27)

Presman and Sethi [27] show that if the agent had an exponentially
distributed random lifespan with the mortality rate A, his problem could
be reduced to the KLSS problem of an infinite horizon agent whose
discount rate is 8+ A.

2.2 The mutual fund theorem and the reduced
model

In order to simplify the problem, choose any a and o > 0 so that

(@ —71)2

202 =7 (28)

and consider the “reduced” problem with a single risky asset with drift
« and variance 02, and the riskless asset with the rate of return r. The
term (o —r) is known as the risk premium and (8 + ) the risk-adjusted
discount rate.

The mutual fund theorem states that, at any point in time, the agent
will be indifferent between choosing from a linear combination of the
above two assets or a linear combination of the original (N + 1) assets.
It is termed the mutual fund theorem, because the single risky asset
can be thought of as a mutual fund. If one constructs a mutual fund
which trades continuously using a self-financing strategy to maintain
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the proportions of the riskless and N risky assets given by the (N +
1)-dimensional vector (1 —(a-r1)Y 1T (a - rl)z_l), then the

mutual fund has mean return & = r + 2y and variance o? = 2, which
satisfy (2.8). Moreover, if (a — r1)>.7'17 # 0, then the mutual fund
consisting only of risky stocks held with proportions (e —r1)> " /(a —
r1)3 7117 also satisfies (2.8).

This important theorem was first stated by Merton [19] for the dy-
namic consumption-investment problem without bankruptcy considera-
tions and without a rigorous proof. The rigorous proof is supplied by
KLSS for all values of P. The theorem generalizes the Markowitz-Tobin
separation theorem to multiple periods. Moreover, in the special case
when (a —rl) E_l 17 =£ 0, the derived optimal portfolio policy has the
same structure as that prescribed in the mean-variance model.

The mutual fund theorem is based on the strict concavity of the value
function V(z), which, in turn, is brought about by the assumption that
the investment vector r; is unconstrained.

In view of the mutual fund theorem, it suffices to consider the reduced
problem with the modified wealth dynamics

dzy = (@ — r)mzy dt + (rzy — ¢¢) dt + zymo dwy, zp = , (2.9)

in place of (2.4), where {w,t > 0} is a standard Wiener process and 7
denotes the fraction of the wealth invested in the risky asset.

2.3 The HJB equation and the solution of the
problem
From the theory of stochastic optimal control, it is known that the

value function V(z) must satisfy the HJB (Hamilton-Jacobi-Bellman)
equation:

BV (x)
= max (a —r)rzV'(z) + (rz — c)V'(z) + %71'2023:2V"($) +U(c)],
0,7
z>0, V(0)=P. (2.10)
Assume a # r; see Lehoczky, Sethi, and Shreve [14] or Section 4 for the
special case a = r.
The optimal feedback policies for investment and consumption are
respectively:.
_(a=r)V'(z)
azV"(z) ’
o(z) = max{U ~Y(V'(z)),0}. (2.12)

and (2.11)
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When (2.11) and (2.12) are substituted in (2.10), it results in a highly
nonlinear differential equation, which appears to be very difficult to
solve at first sight. However, KLSS discovered a change of variable that
allowed them to convert the nonlinear equation into a linear second-
order differential equation in a variable that represents the inverse of
the marginal (indirect or derived) utility of wealth given by the first
derivative V'(z) of the value function. Since the resulting equation has
many solutions depending on the constants of integration, one needs
to identify the values of the constants that would yield the value func-
tion. Furthermore, when the candidate feedback policies are expressed in
terms of the solution of the linear differential equation involving the con-
stants, KLSS discovered surprisingly that the candidate marginal utility
of wealth over time can be written as a process satisfying a linear 1t6’s
stochastic differential equation. It is then a simple matter to evaluate
the objective function value associated with the candidate policies and
identify the one satisfying the HJB equation. The procedure yields the
value function in view of the additional fact that any function satisfying
(2.10) majorizes the value function as shown in KLSS.

Solutions for the general consumption utility functions have been ob-
tained in KLSS. Because of the space limitation, we characterize the re-
sults in Table 23.1. In this table, ¢ denotes the probability of bankruptcy
under the optimal policy, and P*, Z, and a are given as:

.1 U'(0)+*-
o= U0 - / U, A_ (2.13)
P_U H__,\A L i:\f
F = [/B ( [fO f]+)‘0) ] U,(O)/\_‘_
(A+ — A ) (=)t
fO U'( o)— 1A
v wUAUNE (2.14)

and a is given by the unique positive solution for ¢ in the equation,

U’ ( 1+/\_

1+ A A
B )\ ]_+ A_ / UI A_ /B +U( ) +CU’(C) = —,D+P. (215)

Formulas for the value function V(z), modulo some transcendental
equations, are derived in KLSS. Given V(z), the optimal feedback poli-
cies can be obtained from (2.11) and (2.12).
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Table 23.1. Characterization of optimal consumption and bankruptcy probability

U'(0) =0 U'(0) < oo
0 =0, ifz€(0,7]
P<l 0 ct>7 t ) t sy
<3U0 g=0. ¢t >0, ifz €(Z,00), ¢g=0.
. = if z; € (0, z)
1y@©)<P<P =0, iz €03
B O)<P< ¢ >0, if z; € (&, 00),
(Z when P = P*.)
ce>a>0, ' 0<g<l, fB<r+7,
0<g<l, iff<r+7v,| ¢g=1, ifg>r+14.
=1, ifg>r+7.
" 1 ¢t >a>0,
P* <P < 3U(0) 0<g<l, ifB<r+7,
g=1, fg>r+1.
%U (c0) <P Consume quickly to No optimal policy.
bankruptcy. V()=P, >0

2.4 Solutions for the HARA utility class
The HARA utility functions on (0, 00) have the form:

U = (1/8)(c+n), 6<1,8#0, 7>0, (2.16)
U log(c + 1), n>0. (2.17)

f

The log utility function (2.17) is referred to as the HARA function with
d = 0. In these cases, the growth condition (2.7) specializes to 8 >
rd ++6/(1 — 4), which is weaker than 8 > rd + (2 —4)/(1 — 6) imposed
by Merton [18, condition (41)].

Merton [19, 20] provides explicit solutions for V(z) in these cases. His
solutions, however, are correct only for n = 0, i.e., when U’(0) = co. For
n = 0, these solutions are:

Vi(z) = = 1-9 e ex0 (218)
8= 5| B=ro—q8/(1-9) ’ =5

Vo) = (1/ﬂ)logﬂm+""‘§—2+”,

z>0, (2.19)
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for utility functions (2.16) and (2.17), respectively. By (2.11) and (2.12),
we have the optimal investment and consumption policies,

a-—r 1 vé
7(z) = s and ¢(z) = 13 ([3 —rd — 1= 5) z. (2.20)

2.5 Bankruptcy with delayed recovery

Sethi and Taksar [33] introduced a model of nonterminal bankruptcy
that is equivalent to the KLSS model. In this model, an agent, upon
going bankrupt, may recover from it after a temporary but random
sojourn in bankruptcy. Such recovery may be brought about in a number
of ways, e.g., the individual may generate an innovative idea having
commercial value. The rate of such recovery reflects essentially his innate
ability or resourcefulness. However, such a recovery is not instantaneous.
The individual must stay in the bankruptcy state for a positive amount
of time and during this time, his consumption rate must be zero. This
type of bankruptcy can be modelled by a continuous diffusion process
with a delayed reflection.

The wealth equation changes to

dz(t) = [(a@—r)7(t)z(t) +rz(t) — c(t)] 1z >odt
+ulg(py=o dt + z(t)7(t)o dw(t), z(0)=z. (2.21)

The equation shows that the recovery rate u can be viewed as the rate
of wealth accumulation during the time when z(t) = 0; this permits the
investor to leave the bankruptcy state.

Sethi and Taksar [33] show that for every recovery rate u, there is
a bankruptcy utility P that makes their model equivalent to the KLSS
model, and vice versa.

In addition to providing an alternative model of bankruptcy, the non-
terminal bankruptcy may be a way towards an eventual development of
an equilibrium model that incorporates bankruptcy. Further discussion
in this regard is deferred to Section 5.

2.6 Analysis of the risk-aversion behavior

While KLSS had obtained an explicit solution of the problem, the
specification of the value function was still too complicated to examine
the implied risk-aversion behavior in detail. The analysis was made
possible by yet another change of variable introduced by Presman and
Sethi [23]. They defined a variable equal to the logarithm of the inverse
of the marginal utility of wealth. This allowed them to obtain a linear
second-order differential equation in wealth as a function of the new
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variable, and whose solution can be obtained in a parametric form with
the parameter standing for the utility of bankruptcy. In other words,
given the bankruptcy utility P, there is a unique choice of this parameter
that makes the solution of the differential equation correspond exactly to
the value function. Thus, unlike in KLSS, it unifies the cases in which the
optimal solution may or may not involve consumption at the boundary.
Furthermore, it extends the KLSS analysis to utility functions that need
only to be continuously differentiable rather than thrice so as assumed
in KLSS.

Presman and Sethi [23] studied the Pratt-Arrow risk-aversion mea-
sures, namely the coefficient of the absolute risk aversion,

_dlnV'(z) _ V'(z)

l = = 2.22
and the coefficient of the relative or proportional risk aversion,
dlnV'(z)
Ly(z) = iz zly (), (2.23)

with respect to the value function V(z) denoting the derived utility as-
sociated with the wealth level z. Note for later discussion purposes that
(2.22) also defines the coefficient l;7(c) associated with the consumption
utility Uf(c).

Merton [19] obtained some results relating the nature of the value
function to the nature of the utility function for a consumption assumed
to be of HARA type. When n = 0 (i.e., when U'(0) = o0) and P <
U(0)/B, the value function of the problem is also of HARA type with
the same parameter as the one for the HARA utility of consumption used
in the problem. Thus, the coefficient of absolute risk aversion decreases
with wealth, while that of relative risk aversion is constant with value
(1-29).

Merton’s results obtained for the HARA case are not correct for n > 0
or P > U(0)/8. In these cases, Presman and Sethi [23] show that the
agent’s value function is no longer of HARA type; while Merton [21] rec-
ognizes the errors in Merton [19] as pointed out by Sethi and Taksar [32],
he does not update the risk-aversion implications of the corrected solu-
tions.

With regards to an agent’s relative risk aversion, first we note that
Ly > 0 for U(c) specified in (2.16) and (2.17) with > 0. The
agent’s relative risk aversion increases with wealth provided n > 0 or
P > U(0)/B. In other words, while not of HARA type, the value func-
tion inherits the qualitative behavior from the HARA utility of con-
sumption used in the problem. However, for n > 0 and P < U(0)/8,
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the inheritance holds only at higher wealth levels, while at lower wealth
levels, the agent’s relative risk aversion remains constant.

The agent’s absolute risk aversion behavior is more complicated for
n>0or P> U(0)/8. If § is sufficiently large, for which it is necessary
that 8+ vy —r > 0, then absolute risk aversion decreases with wealth.
For smaller values of § and 8 + v — r > 0 however, the absolute risk
aversion decreases with wealth if the bankruptcy payment is sufficiently
low; otherwise the risk aversion increases at lower levels of wealth, while
it decreases at higher levels of wealth. Furthermore, if 8+vy—r < 0, then
for every 6 and every P > U(0)/f, the absolute risk aversion increases
at lower levels of wealth, while it decreases at higher levels of wealth.

From the above discussion, one may draw the following general con-
clusion regarding the risk aversion behavior in the HARA case with
n>0.

At higher wealth levels, the agent’s absolute (relative) risk-aversion
decreases (increases) with wealth. This qualitative behavior at high
wealth levels is inherited from the agent’s HARA type consumption
utility, as the agents seem quite immune from the bankruptcy payment
parameter P. Of course, what is considered to be a high wealth level
itself may depend on P.

At lower wealth levels, the agent is no longer immune from the amount
of payment at bankruptcy. His behavior at these wealth levels is some-
what complicated, and it results from the interaction of his consumption
utility, the bankruptcy payment, and the relationship of his risk-adjusted
discount and the risk-free rate of return; see Presman and Sethi [23] for
details.

To describe the risk-aversion behavior with general concave utility
functions, the situation is far more complex. The most surprising obser-
vation is that while the sign of the derivative of the coefficient of local
risk-aversion depends on the entire utility function, it is nevertheless
explicitly independent of U” and U™ or even their existence. Both the
absolute and relative risk aversions decrease as the bankruptcy payment
P increases. Also derived for all values of P are some necessary and suf-
ficient conditions for the absolute risk aversion to be decreasing and the
relative risk aversion to be increasing as wealth increases. Furthermore,
the relative risk aversion increases with wealth in the neighborhood of
zero wealth. Moreover, if there exists an interval of zero consumption
(which happens when U(0)/8 < P < P*), then the relative risk aver-
sion increases with wealth in this interval. In the neighborhood of zero
wealth and in the interval of zero consumption, the absolute risk aver-
sion increases (decreases) with wealth accordingly as 8+ —r < 0(> 0)
for P < P*.
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Presman and Sethi [23] also show that if 3+~ —r < 0, then either the
absolute risk aversion increases with wealth for all P, or for each wealth
level there exists a bankruptcy payment P(z) such that at z the risk
aversion is decreasing for payments smaller than P(z) and increasing
for payments larger than P(z).

Finally, contrary to the intuitive belief that the absolute risk aversion
is non-increasing as wealth approaches infinity, the limiting behavior at
infinity is much more complex.

3. Positive subsistence consumption

Sethi, Taksar, and Presman [35] provided an explicit specification of
the optimal policies in a general consumption-investment problem of a
single agent with subsistence consumption and bankruptcy. In doing so,
they used the methods developed in KLSS and Presman and Sethi [23].
See also Presman and Sethi [24, 25, 26)].

Cadenillas and Sethi [1] introduce random market parameters in the
models of KLSS and Sethi, Taksar and Presman [35]; see also Karatzas
[8]. Thus, their model also extends the models of Karatzas, Lehoczky,
and Shreve [10] and Cox and Huang [2] to allow for explicit consideration
of bankruptcy.

4. Borrowing and shortselling constraints

In this section we briefly discuss models with constrained borrowing
and short-selling. These constraints give rise to value functions that
may not be concave. Observe that in regions where value functions
are convex, the agent will put all his investment in the riskiest asset
available.

The model developed by Lehoczky, Sethi, and Shreve [14] can be re-
lated to the model of Sethi, Taksar and Presman [35] as follows. Impose
an additional constraint that disallows short-selling, i.e., 0 < 7 <1, and
set o = r. While 0 < m; < 1 appears to permit no borrowing, a reformu-
lation of the problem transforms it into a model that allows unlimited
borrowing. Furthermore, o = r is imposed to simplify the solution and
to focus entirely on the distortions caused by consumption constraints
and bankruptcy, and thus eliminate other factors which might induce
risk-taking behavior. See also Sethi, Gordon and Ingham [31].

Lehoczky, Sethi, and Shreve [15] have generalized their 1983 model
by using the wealth dynamics,

t
Ty =T +/ rTr dT + St, (41)
0
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where S; is a supermartingale with Sp— =0, —1 <t < 0 and satisfying
conditions DL. The condition allows decomposition of S; into a mar-
tingale M; and a cumulative consumption process Ct; see Karatzas and
Shreve [13, pp. 24-25].

5. Open research problems and concluding
remarks

We have reviewed the literature on consumption-investment problems
that explicitly incorporate bankruptcy. This concluding section briefly
refers to related research on consumption-investment problems that does
not deal with the bankruptcy issue. This suggests some open research
problems; see also Sethi [29, Chapter 16).

In all the papers discussed in this survey, there is no cost of buy-
ing and selling assets. Davis and Norman [3] and Shreve and Soner [34]
have considered proportional transition costs in consumption-investment
models with two assets and nonnegative consumption constraint. It
would be interesting to incorporate a positive subsistence level and a
bankruptcy utility in these models. Another extension would be to in-
clude fixed transaction costs; such a cost has not been considered in the
consumption-investment context.

Karatzas, Lehoczky, Shreve, and Xu [12] and He and Pearson [7] have
considered incomplete markets. One would like to incorporate such mar-
kets in consumption-investment models with bankruptcy and a subsis-
tence requirement.

Finally, Karatzas, Lehoczky, and Shreve [11] have developed equilib-
rium models with many agents consuming and trading securities with
one another over time. In these models, consumption utilities are chosen
so that agents do not go bankrupt. This way if one begins with n agents,
one stays with n agents throughout the horizon. Thus, there is no easy
way to see how these models can be extended to allow for bankruptcy.
Sethi and Taksar [33] introduced a concept of nonterminal bankruptcy
as discussed in Section 2.5. This allows agents to stay in the system and
may facilitate the eventual development of an equilibrium model with
bankruptcy. Several important open research problems flow from these
considerations.

The Sethi-Taksar nonterminal bankruptcy model needs to be extended
to allow for random coefficients and subsistence consumption as in Cade-
nillas and Sethi [1]. It is not clear how to prove the equivalence between
the terminal and nonterminal bankruptcies in the more general setup.

The Cadenillas-Sethi model treats an almost surely finite horizon
agent. In addition, it deals with only nearly optimal policies. One needs
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to extend the model to allow for infinite horizon and to obtain optimal
policies. If this problem is solved, and if it can be shown to be equivalent
to a model with nonterminal bankruptcy as mentioned above, then we
would have a single agent model as a starting point in the development
of an equilibrium model with bankruptcy.

Another important consideration is how to provide for the bankruptcy
value P if it consists of welfare or the subsistence consumption while in
the state of bankruptcy. This would call for a different kind of agent,
called the government, who must collect taxes and provide for welfare
to agents who are in the bankruptcy state.

We hope that work will be carried out in addressing the open research
problems described above, and that a suitable equilibrium model that
allow for bankruptcy and subsistence consumption will eventually be
developed.
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1. Introduction

In financial economics, it is critically important to price options and
derive the associated hedging strategies. Many results have been ob-
tained in the options pricing, however, they only ascertain the existence
of the hedging strategies and barely deal with how to construct them.
Asian options are the common claims which depend on the mean prices
of the basic assets in their life. Therefore, it is almost impossible for in-
vestors to change their options at will by manipulating the assets’ prices
in the near maturity date. As a result, Asian options avoid flaws of the
European options in this respect. Asian options fall into two types, the

389

Z. Hou et al. (eds.), Markov Processes and Controlled Markov Chains, 389-395.
© 2002 Kluwer Academic Publishers.



390 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

arithmetic type and the geometric type. The problems about their pric-
ing are basically resolved [3, 6, 7], however, we have not found studies on
constructing their hedging strategies. This paper establishes a hedging
strategy for geometric Asian options by means of the generalized Clark
formula. The strategy is uncomplicated and easy to operate. For the
case of arithmetic Asian option, we refer to article [8].

2. The model and conclusions

Consider a complete probability space (€2, F, P) and a standard 1-
dimensional Brownian motion W=(W(t)), 0 <t < T defined on it. We
shall denote by {F;} the P-augmentation of the natural filtration

FY=0W(s);0<s<t), 0<t<T.

There are two assets on the market. One of the assets is risk-free bond
with a constant deterministic interest rate r. The other is risky security
(stock) on the space (€2, F, P) with price process S = (S(¢)), 0 <t < T.
The dynamics of the price process is determined by SDE

dS(t) = pS(t)dt + oSE)dW (t), S(O0)=Ss, 0<t<T.  (2.1)

According to the Girsanov theorem we may assume p = r without loss
of generality. Consequently Equation (2.1) can be equivalently to the
following equation,

S(t) = Spexp {oW (t) - o°t/2+rt}, 0<t<T, (2.2)

where the constants r,0,7 > 0.

Denote the investor’s wealth and the amount invested in the stock at
time t by V(t) and 7(t) respectively. Assume the strategy to be self-
financed, then the amount invested in the bond is V' (¢) —7(¢) . It is easy
to infer the process V = (V(t)) satisfies

dV(t) =rV(t)dt + n(t)adW(t), V(0)=V, 0<t<T. (23)

Definition 2.1 A portfolio process m = {n(t), F;,0 <t < T} is a mea-
surable, adapted process for which

T
/ 2 (t)dt < oo  a.s. (2.4)
0

Condition (2.4) ensures SDE (2.3) has a unique strong solution, which
satisfies

V(t)exp{—rt} =V + /Ot exp{—ru}n(u)odW(u), 0<t<T. (2.5)
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The payoff at maturity from a geometric Asian option is

T +
fr= [exp {ﬁ)iif_(t_)ﬂ} - q] : (2.6)

where the constant ¢ > 0. The hedging strategy for this option refers
to a self-financing portfolio satisfying admissible condition [1], by which
the investor’s wealth determined in Equation (2.5) at time T is equal to
fr almost surely. Assuming that there exists no arbitrage opportunity ,
the article [1] proved

Vo = Blfr exp{—rt}] (2.7)

The value Vj is the fair price of the option fr at time 0 which is not
difficult to calculate [7]. We set that

(r=o*/2) T* _ Tlogla/so)
20 o ’

t
A= / W (u) du + W (t)(T — t) +
0

and ®(e) is the standard normal distribution function. The main result
of this paper is as follows.

Theorem 2.1 The hedging strategy of option fr is that the amount
invested in the stock satisfies

VIO 1) gexp{—r(T -} (VEA(T — %) (T - )
w(t) = T + T :

(2.8)
Consequently, the amount invested in the bond is V(t) — 7(t) , where

process V = (V(t)), 0 <t < T is the value process associated with the
option, i.e., the investor’s wealth process and

V(0) = Vo = E [frexp{—rT}]

Remark 2.1 When we calculate A, according to identity (2.2), value
fot W (u) du is equal to

/t log(s(u)/so) + 0%u/2 — ru = 4f0t log(s(u)/so) du + (0% — 2r) t?
0 g (40)

Remark 2.2 V(t) = E(frexp{—r(T —t)}|F:), in addition, the amount
invested in the stock is always positive.
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3. Proof of theorem 2.2
Lemma 3.1 E(f%) < o0

Proof It is enough to prove E [exp {2 fOT log S(t) dt/T}] < 00. Con-

sidering that the sample paths of the process S = (S(t)) are continu-
ous almost surely, for the partition [[ = {to,1,...,tn} of [0,T], with
0=ty <ty <---<t, =T, we conclude that

n l/n n
lim [H S(ti)] = lim exp {—Zi:l log 5(t:) }

An—0 An—0 n

T
= exp { M} a.s.

T
n ; S(t)dt

An—0 n T

a.s.

where A\, = max;<k<n [tk — tk—1] is the mesh of the partition. Because
the arithmetic mean value is greater than or equal to the geometric mean
value, we have

|
OSexp{f0 g S } fo T a.s.

T

then the lemma follows from (2.2) and the Hélder inequality and Fubini
theorem. ]

To introduce the generalized Clark formula, we first define Banach
space Dp1 and its gradient operator D [2, 4]. Consider a smooth func-
tional, i.e., a function F : @ — R of the form F(w) = f(W(t1,w),...
,W(tn,w)) for some n € N, (t1,...,t,) € [0,T]" and some element f in
the space Cy°(R") of the functions with continuous and bounded deriva-
tives of every order. The gradient DF (w) of the smooth functional F is
defined as the L?([0,T]) - valued random variable showed as follows:

DtF Z 8;1,-] tl,CU), Cee 7W(t"’w))1[o,tj](t), 0 S t S T

For every p > 1, introduce the norm || e ||, on the set S of smooth
functionals by the formula

1
IFll,. = E[|FI? + | DF|PP] 7,
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where || o || denote the L?([0,T]) norm. We denote by D, the Banach
space which is the completion of S under || o || 1.

Lemma 3.2 For every F € Dy 1, we have
T
F =E(F) +/ E(DF|F;)dW (t) a.s. (3.1)
0

Equation (3.1) is the generalized Clark formula whose proof can be found
in article [2].

Lemma 3.3 Let F = (Fy,...,F;) € (D11)f. Let ® € CY(RF) be a
real-valued function and assume that
} < 00.

Then q)(F) € D171 and D‘I)(F) = Z(atﬁ/aa:,)(F)DF,

B{le(r)+ | g FIDE

For its proof, we refer to article [5].

Lemma 3.4 Random Variable fot W(u)du (t > 0) is normally dis-
tributed with mean zero and variance t3/3.

Proof Applying Itd’s rule, we obtain
d(uW (u)) = W(u) du + udW (u).

It is easy to derive
¢ t
/ W(u)du = / (t — u) dW (u).
0 0

The lemma is proved. [ |

Proof of Theorem 2.1.
Let

{ S llog So + oW (t) — 0%t/2 + ] dt}

gT = €xp —gq, and
T

function ®(z) = z*, then fr = ®(g9r). Obviously, we have

_(T-t)o
=

D [foT(log So + oW (u) — o%u/2 + ru) du
t
T
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Consequently, the proof of Lemma 3.1 and of Lemma 3.3 imply gr €
Dy, and Diygr = gr(T — t)o/T + qo(T — t)/T, 0 <t < T. Define C*®
function p(z) = Cl(gq)(z)exp{1/[(z — 1)® — 1]}, where C is constant
satisfying [ p(z)dz = 1. Let pn(z) = np(nz), Ou(z) = [Lpn(z —
y)®(y)dy. Thus, we have ®,(z) = [,p(2)®(z — z/n)dz, and 0 <
D (z) < B(z), limp_yo0 Pr(z) = (z), 0 < Pl (x) < 1, limyy00 Py () =
D~®(z) (left-derivative). So we conclude 0 < ®,(97) < ®(97) = fr,
|®7,(97) Digr| < fro(T —t)/T+qo(T—t)/T. 1t follows from Lemma 3.1
and Lemma 3.3 that ®,(g9r) € D1y and Dy®,(9r) = @} (9r)D:gr,
0 <t <T. We see that lim,_, ®n(gr) = fr a.s., limpy00 Dt ®r(gr) =
D~ ®(g7)Dygr a.s.. Therefore,

lim E{|®n(gr) — fr| + | D®a(gr) — D~ @(9r)Dyrl|} =0

by dominated convergence theorem. Because D is a closed operator on
D1, we establish fr € Dy, and

Dift = D™ ®(gr)Digr

o(fr + D~®(gr)q)(T - t)

<t<T. .
T ,  0<t<T. (32

By virtue of identity (2.5) and V(T') = fr, the hedging strategy = sat-
isfies

T
frexp{—rT} = E(frexp{-rT}) +/0 exp{—ru}n(u)o dW(u) (3.3)

and corresponding to this strategy, the wealth process, i.e., the value
process of option fr [1], V satisfies

V(t) exp{—rt} = E(frexp{—rT}|F}), 0<t<T. (3.4)

On the other hand, since fr exp{—rT} € Dy, it follows from Lemma 3.2
that

T
frexp{~rT} = E(frexp{~rT}) + /0 E[Dy(freap{~rT})|F.] dWz).

(3.5)
Comparing (3.3) with (3.5), we obtain

_ exp{rt}E[Dt(fT exp{~rT})|Ft]

g

m(t) (3.6)
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Applying (3.2) and (3.4), we have then

E[D:(fr exp{—rT})|F]
o(T — 8) [E(fr exp{—-rT}|F}) + gexp{—rT} E(D~ ®(gr)|F})]
T
o(T —t)[V(t) exp{—rt} + gexp{—rT}P(gr > 0|F3)]
T

By solving inequalities and utilizing properties of Brownian motion and
Lemma 3.4, it can be concluded that

T-t
P(gr >0|F;) = P ( A W(u)du < A)
- 3 (\/§A/(T - t)3/2) : (3.7)

By summing up identities (3.6), (3.6) and (3.7), it is easy to derive (2.8).
Because the hedging strategy is self-financed, the remaining part of the
theorem is obvious. |
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Abstract This paper deals with the pricing of options to exchange one asset for
another. Under the assumption that the asset price processes are jump-
diffusion processes, it deduces the partial equation that the option prices
must satisfy, and then obtains the pricing formula of options.
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1. Introduction

Most of the recent literature on continuous finance has been based
on an assumption of continuous price processes. The validity of the
assumption depends on whether or not the change of the asset price
satisfies a kind of local Markov property, i.e., in a short interval of time,
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the asset price can only change by a small amount. In fact event studies
suggest that certain public announcements of information are associated
with jumps in asset prices.

Marhrabe obtains the pricing formula of options to exchange one asset
for another when the price processes of two assets are geometric Brow-
nian motions. This paper deals with the pricing of options to exchange
one asset for another in the more-general case when the price processes
are jump-diffusion processes.

2. The financial market

We suppose that there are three assets being traded continuously. One
of these is a risk-free asset, with price so(t) given by
ds
= — rdt s0(0) =1 (2.1)
S0
where r is the instantaneous rate of interest. The other two assets are
risky assets, subject to the uncertainty in the market. The price of the

it" asset s;(t) (i = 1,2) is governed by a stochastic differential equation
ds; .
e = (u; — Ak;)dt + 0,dB; + z;dN, 1=1,2 (2.2)
i

where u; (i = 1,2) is the instantaneous expected return on the it* asset;
o2(i = 1,2) is the instantaneous variance of the return of the i** asset,
conditional on no arrivals of important new information; B;(t) (i = 1, 2)
are standard Brownian motions, with a correlation coefficient p; N(t) is
an Possion process with parameter \; k; = €(z;), where z; is the random
variable percentage change in the i** asset price if the jump occurs; and
€ is the expectation operator over the random variable z;.

We suppose that u;, ki, o; and A are constants (i=1,2), the solution
to the equation (2.2) is

N(t)

sit) = siOeap ((ws -3k = %) 4 0i8i(0)) [[0 42 (29

2 o1
where z;; (¢ = 1,2,) are independent and identical distributions.

3. The option price dynamics

Suppose that the option price, w, can be written as a twice - contin-
uously differentiable function of the assets si, so and time t: namely,
w(t) = F(s1,82,t). The option return dynamics can be written in a
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similar form as
dw
w

(i — Aky)dt + 01dB1 + 02y dB2 + 2,,dN (3.1)

where p,, is the instantaneous expected return on the option; (01, 02y)
is the volatility; k,, = £(zy), where z,, is the random variable percentage
change in the option price if a jump occurs.

Using It6 lemma for the continuous part and analogous lemma for the
jump part, we have

1 1
Pw = §af3fF11+§033§F22+P01023132F12

+(p1 — Ak1)s1F1 + (u2 — Ak2)s2F2 + Fy

+)\E(F(31(1 +.’L’1),32(1 + ZL‘Q),t) - F(sl,SQ,t))

/F(s1,52,1) (3.2)
T = al?(Fsll(,s;;,sf)’ ! (3:3)
T = 02?(1221(,8312’ ,sf)’ ! (3.4)
Tty = F(s1(1+ z1), s?(lsj: :22’)£)t) — F(s1,52,1) (3.5)

where subscripts on F'(s1, s2,t) denote partial derivatives.

Consider a portfolio strategy which holds the assets s1, sy and the
option w in proportions 71, m and 73, where 71 + m + 73 = 1. If p is
the value of the portfolio, then the return dynamics on the portfolio can
be written as

dp

p
where 1, is the instantaneous expected return on the portfolio; (01, 02p)
is the volatility; k, = (x,), where z, is the random variable percentage

change in the portfolio value if the jump occurs.
From (2.2) and (3.1), we have that

Pp = mp1+ Tl + T3y (3.7)
Olp = W01+ T302 (3.
Oop = W02+ M302y (3.

Tp = mx1+ M2

[F(s1(1 + z1),82(1 + 29),t) — F(s1,52,t)]
F(shs?’t)

+7r3 (310)



400 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

We select m; = 7], my = 75 and w3 = w3 , so that {01 + 7302, =0
and w309 + m302, = 0. Let p* denote the value of the portfolio, then
from (3.6), we have that

dp*

p*

We suppose that the jump component of the asset’s return represent
‘non-systematic’ risk. If the Capital Asset Pricing Model holds, then the

expected return on the portfolio must equal the riskless rate r. Therefore
pp = 7. Then, we have that

= (pp — Aky)dt + z,dN (3.11)

TIp1 + Topg + T3phy =T
T O] + T30y =0 (3.12)
502 + T30y =0

But, (3.12), (3.2)-(3.5), and #] + 73 + 73 = 1 imply that F' must satisfy
the following differential equation

1 1
50%3%1"11 + 50%3%&2 + po1025152F12

+(’I" - )\kl)lel + (’f‘ — )\]{,‘2)82F2 —rF + F;
+Ae[F(s1(1+ z1),82(1 + 22),t) — F(s1,52,%))] =0 (3.13)

If A =0 i.e., if there are no jumps, then F must satisfy

1 1
EU%S%FH + 50’%8%1722 + po1025152F12
+rs1Fy+rsoFy —rF+F, =0 (314)
4. The option pricing formula

Let F(si,s2,t) be the value of European call option to exchange one
asset for another, then F(s,s9,t) satisfies equation(3.13), and subject
to the boundary conditions

F(s1,0,8) = 0 (4.1)
F(s1,s82,T) = maz{s2 — 51,0} (4.2)

where T is the expiration time.

Define H(si,82,t) to be the pricing formula of options to exchange
one asset for another for the no-jump case. Then H will satisfy equa-
tion (3.14) subject to the boundary conditions (4.1) and (4.2). From
Marhrabe’s paper, H can be written as

H(s1,82,t) = 50®(dy) — 51®(da) (4.3)
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where
® = 7 d ,
W = o= / .
4 = In(sa/s1) + v? (T—-t), and
vvT —t
d2 = d1 - ’UVT —1
where

v? = 0% + 02 — 2p0109

Theorem 4.1 Suppose F(sy, s2,t) is the value of European call option
to exchange one asset for another, then

F(s1,s2,t)

o~ e MTD(\(T —t))
(= -
= §: (n!( { <S1H (1+ 2y, e~ M1 (T—1),

n=0
52 [T (1+ 22) e—*’”‘T—“,t) } (4.4)
Jj=1

where €y, is the ezpected operation over [[}_, (1+x1;) and [T7_, (1+x25).

5. Proof of the theorem
Let

n

vy = H(1+:1: Ne MiT=t) " and
1=1
n

w = Tl ame
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Then
00
31F1 - an(t)en{vnHl}a (51)
o
S%Fll = an(t)sn{viHll}a (5'2)
)
s2Fy = ) pa(t)en{unHa}, (5.3)
o
3%F22 = an(t)gn{u%H22}’ (54)
3132F12 = an(t)en{vnunHH}’ (55)
and

ANT- t) T t))n—l
(n—1)!

o0
+ Ak ) pa(t)en{vnHn }
n=0

F, = M- AZ

+Ako an(t)en{uan} + an(t)sn{Ht}

n=0 n=0

= AF + MeisiFi + MeasaFa + > pr(t)en{Hi}
n=0

—A Z Pm(t)em+1{H (Vm+1, Um+1,t)} (5.6)

m=0

5(1+z1),(1+x2){F(31(1 + ‘Tl)a 52(1 + :132), t)}

[o 0]
= E(ltay)(14a2) | O Pr(t)En {H (Wa (1l + 21),un(1+ 22),1)}
n=0

= an(t)6n+1 {H(vn+1,unt1,1)} (5.7)
n=0
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From(5.1)-(5.7), we have that

1
20282F22 + po1o2s152F12 + (r — Akq)s1F1 + (r — Ak2)sa Py

—T‘F + Ft

1
20151F11 +

1
= an { ~olviHy + 202U 2 Haa + po109vpun Hyg + To, Hy
+ru,Hy —T7H + Ht} + AF

-A Z pm(t)5m+1{H(Um+la Um+1, t)}

m=0

1
= an { alv 2H+ 202u H22 + pooavpun Hig + o Hy

+rup,Hy — rH + Ht} — Xe[F(s1(1 + z1), 52(1 + 72), 1)) (5.8)
because H satisfies equation (3.14) and therefore

1 1
EUfU%Hu + iaguiHn + po1oovpunHio +ropHy +runHy—rH+Hy =0

for each n. It follows immediately from (5.8) that F(si,so,t) satis-
fies equation (3.13). s = 0 implies that u, = 0 for each n. Further-
more, from (4.3) H(vp,0,t) = 0. Therefore, F(s1,0,t) = 0 which satisfies
boundary condition (4.1).

en{H (vp,un,T)} = en{maz(un, — vy,0)} < en(uy) = s2(1 + k2)" (5.9)
Therefore , from (5.9)

hm an En{H Un, Un, )}

— o= AT-t)

< 1im252((1+’“2)A(T t)"e

t—)Tn:1 n!
= lim spe MT0) (e(1+kINT-1) _q)

t—T
=0 (5.10)

tILII%F(Sl’Sz’t) = }LII%[PO(t)ao{H(Uo,Uo,t)]

= maz{sz — s1,0} (5.11)

therefore F(s1, s9,t) satisfies boundary condition (4.2). [ |
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wealth exceeding a given value at some finite stage . Our model is
different from traditional portfolio models in three aspects: Firstly, the
model is based on discrete time, that is, the investor makes decisions at
discrete time points and does not change his policy at any other moment.
Secondly, only finitely many time stages are considered. Finally, the
criterion is probabilistic which is different from the usual expectation
criterion.

Keywords: Portfolio decision, probability criterion, investment decision.

AMS 1991 Subject Classification: 90A09, 90C47

1. Introduction

In this paper we consider a single agent, discrete-time multiperiod
consumption investment decision problem with a special minimum risk
criterion. The portfolio consists of two kinds of assets, one low-yield
asset is “risk free” (we call it a “bond”), and the other higher-yield asset
is “risky” (we call it a “stock”).

We suppose that the investor’s wealth and consumption at stage ¢ are
denoted by X; and c; respectively, with the initial wealth at stage zero
denoted by z. Further, we assume that the investor has a given target
value which he hopes his wealth should attain by stage T'.

At stages t (t = 0,1,...,T — 1) the investor consumes a part of the
wealth ¢; (¢; > 0). If at any time ¢, his wealth X; cannot cover the
consumption c¢;, he is ruined and loses the opportunity to invest at the
next stage. Otherwise, he distributes the remaining wealth into two
parts. One part is the amount of the bond asset and the other part is
the amount of the stock asset. Let 6; denote the fraction allocated to
the stock asset at stage t (0 < 6; < 1). In this paper, we suppose that
borrowing and short-selling is not allowed which means 0 < §, < 1.

The objective is to maximize the probability that the investor does not
become ruined during the finite horizon and, at the same time, that his
wealth at stage T exceeds the given target level . We call the latter the
target-survival probability and we call this problem, the target-survival
problem.

As we know, Markowitz’s mean-variance and Merton’s Expected util-
ity criteria are widely applied in portfolio selection problems. For in-
stance, see Markowitz [13], Merton [14]. In recent years, there are many
other authors continuing to do research work in this field (eg., [10], [11],
[12]). In fact, the expectation criterion is insufficient to characterize the
variability-risk features of dynamic portfolio selection (see [15], [16], [17]
and [19]).
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We assume that investors are interested in an objective that steers
their wealth towards a given profit level (target) with maximal prob-
ability, over a finite and specified horizon. We also assume that an
investor prefers to make decisions only at discrete time points (eg., once
a month, week or day). His aim is to reach a given level by a given time.
Intuitively, under our maximization of the target-survival probability,
the decision made by the investor depends not only on system’s state
(his wealth) but also on the target value. By introducing the target into
the description of the investor’s state, we formulate the risk minimizing
model. This formulation created a suitably constructed Markov Deci-
sion Process with target-percentile criterion, in the sense of [18], [19] and
[6]. We derive a number of classical dynamic programming properties
that our target-survival problem possesses. This sets the stage for future
algorithmic developments.

2. Description of the model
2.1 Classical continuous time model

We first consider a classical continuous-time model of stock portfolio
selection, sometimes referred to as Merton’s portfolio problem [14]. The
portfolio consists of two assets: one a “risk free” asset (called a bond)
and the other “risky” asset (called a stock). The price bs per share for
the bond changes in time according to db; = absds while the price p;
of the stock changes in time according to dps; = ps(ads + 0dW;). Here
a, o, o are constants with o > a, 0 > 0 and W, is a standard one-
dimensional Brownian motion defined on a complete probability space
(Q, F, P). The agent’s wealth X; at time s is governed by the stochastic
differential equation

dXs = (1 -05)Xsads + 0, X;(ads + o dW;) — cy ds,

where 0 < s < T, 6, is the fraction of wealth invested in the stock at
time s and ¢; > 0 is the consumption rate. Assume that {cs,s > 0}
satisfies fOT #2ds < +o0, fOT csds < +00.

We also assume that the investor observes his wealth, X; at time
s = t, and that at that time he also selects the functions representing
his current consumption rate ¢; > 0 and the fraction 65 of his wealth
that he allocates into the risky investment with the remaining fraction
(1—8,) allocated into the safe one; throughout the time interval [¢,¢+1].
Then the investor’s wealth X, satisfies the It6 Stochastic Differential
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Equation:

dX; = (1-65)Xsads+0,X;(ads+ odW;) —csds,
t<s<t+1, tel0,T]. (2.1)

If X; = x4, then the explicit solution of the stochastic differential
equation (2.1) has the form (to see [12]):

t+1 o2 t+1
XH1={mm(/ P+04a—@—~5%]®+19/‘ &dWQ}x
t t
t+1 s o2
{a:t - /t <exp [—/t [a +6y(a—a) — 703] du]) Cs ds}

(2.2)

2.2 Discrete time investment and consumption
model

In reality, most investor’s decision making processes are discrete. That
is, an investor observes the price of a bond, a stock and his wealth
only at discrete points of time. Similarly, we could assume that he
makes consumption and allocation decisions only at those times. More
precisely, our decision-maker (ie., investor) observes his wealth only at
t = nh and we define z,=X,; for each n = 0,1,2,...). We also define
a corresponding pair of decision variables a, = (6,,¢c,) that will remain
constant during [nh,(n + 1)h). Without the loss of generality, we let
h = 1. Now, given z, = z, from the equation (2.2), we have

Tng1 = p(On) - € <) (2, — o - B(6r)), (2.3)
for n =0,1,2,...), where the quantities
56,) = a+0,(a—a)—0%6%/2,
p6n) = &),

BOn) = (1-e7") /660,
n+1

are obtained from the natural discretization of (2.2).

As mentioned in the Introduction, our goal in this paper is to find a
policy which maximizes the probability that the wealth reaches a spec-
ified target value at stage n = N. In the following sections we show
how this goal can be attained with the help of a discrete time Markov
Decision Process (MDP, for short) with a probability criterion.
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2.3 MDP model with probability criterion.

2.3.1 Standard Markov decision model.
A discrete-time MDP is a four tuple,

FO = (XaAa Q’r)v

where X = [0,+00) is the state space, z, is state of the system at
stage n (n = 0,1,2,... N) which denotes the wealth of the investor at
stage n. Let A = [0,1] x [0,00) and the investor’s action set in state
z be denoted by a nonempty measurable subset A(z) C A. Here A(z)
denotes the set of feasible actions when the system is in state z € X. A
probabilistic transition law is denoted by ¢, that is a stochastic kernel
on X. Given X x A, a measurable function r : X x A — R is called the
reward-per-stage. In the classical formulation the decision-maker wants
to maximize the expected value of total rewards. Below, we propose an
alternative criterion that seems particularly relevant in the context of
financial applications.

2.3.2 Target based MDP with probability criterion.

The MDP discussed in this paper belongs to the class of risk sensitive
models (see [17, 5, 6, 19]). In our model, the decision maker considers not
only the system’s state but also his target value when making decisions
and taking actions at each stage (see Filar et al [6] and Wu and Lin [18])
and wishes to maximize the probability of attaining that target.

As a consequence, the current decision made by the investor depends
not only on system’s state z, but also on the changing current target level
y, which represents the difference between the current wealth z and the
target wealth [ which he wants to reach at stage N. More generally, we
introduce the concept of a target set and denote it by L, for instance
L=R,L= [ll,lg] CRor L= {{ll}, {12}}

Since the current decisions will now depend on both the state of the
investor’s wealth and the target value, in the MDP model it is helpful
to extend the decision-maker’s state space to E = {e = (z,y) : ¢ €
X,z+y € L}. Let ey = (Zn,Yn), an = (0n,cn) and A(en) = A(bn,cn) =
[0,1] x [m,z, - B7!] where m > 0 is a positive number denoting the
minimum amount required for consumption and

B = Jgﬁ‘;ﬁﬁ(") < oo.

The set A(e,)(Ve, € E) will be called the set of feasible actions at
€n = (mnyyn)-

Suppose the wealth of the investor at stage n is z and his current
target value is y, that is, z +y € L. If z - 87! < m, he is ruined and
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loses the opportunity to invest in this stage and all following stages.
Otherwise, he chooses an action a = (0,c¢) € A(z,y). That is, if at
some stage n the decision-maker finds himself in state e = (z,y) and he
chooses the action a = (6,c) € A(z,y) = A(e) # 0, then his wealth at
stage n + 1 is given by

Tny1 = pn(f) - eazgn(()) (m —c-fn (0))
Denote the probability density function of &,(8) by
1

0,2) = —

102 = ot

It follows that, z,4; is a random variable whose distribution is deter-
mined by the distribution of &,(0). The probabilities of interest to us
now have the form:

P[zn11 € Blen = (2,9),an = (6,¢)]
= /IB (p(G)e”zz(x —c-B(0))) 908, z) dz,

VB € B(X), where B(X) denote the Borel o-algebra.

With the above notation, we now see that when the investor chooses
action a, in state e, he will receive a current reward of r(e,,a,) =
Zn+1 — « for that stage. The current target value for the investor now
changes to yp11 =y — (Tny1 — ) = T+ Y ~ Tn41.

Therefore, if the decision-maker’s state is e, = (z,y) € E, and he
takes the action a, = (0,c), then the next state is ep+1 = (Tn+1, Yn+1)
with probability

e’ 120" N(0,62).

Qn(en+1 € B x Clep = (z,y),an = (070))
Ipxc(z,y), if £ < bop(8),

= /IBxc(p(O)eazz(:I:—c-ﬂ(@)),l‘—i'y
—p(6)e”* (¢ = c- B(6))) 9(60,2) dz, if & > ba(0),
for any B € B(z),C € B(R).
Let K = {(e,a) : e € E,a € A(e)}, Q@ = (gn,n > 0) be a sequence of
stochastic kernels on F given K. We call

F = (E7 A7 T? Q)

the target based MDP with probability criterion, or T-MDP for short.
In order to define the usual hierarchy of policies in T-MDP we now
define the sets of histories Hy=FE, H, =K xH, 1 for 0 <n<N. In
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particular H, denotes the set of all admissible histories up to stage n with
elements h, = (eg,ao,€1,01,...,6,) € Hy, where e, = (zp,yn) € E,
an = (On,cn) € Alen).

A policy is a sequence m = {mp,n > 0) of stochastic kernels 7, on A
given h, satisfying the constraint: m,(A(e,)|hyn) =1, Vh, € Hp, n > 0.
The set of all policies is denoted by II.

A Markov policy m = (mp,n > 0) is one in which each 7, depends
only on the current state at stage n, that is, 7(-|h,) = 7(-|ep) for all
h, € Hy,.

A stationary policy m is a Markov policy in which each decision rule
7, = 7p and hence it is denoted by m = 7).

A deterministic Markov policy m is one in which each 7, is non-
randomized, that is, 7, is a measurable mapping from H, to A such
that 7, (-|h,) € A(ep) for all h, € Hy; a deterministic stationary policy
is similarly defined.

Let I1,,, H‘fn, II; and Hg denote the sets of all Markov-policies, all de-
terministic Markov policies, all stationary policies, and all deterministic
stationary policies, respectively.

Let Ilp denote the set of all policies which are independent of targets
value y, (n > 0). For any 7 = (mp,n > 0) € II and a given single
stage history (e,a) = (z,y,a) € H;, the cut-head policy of m with re-
spect to (e, a) is defined by 7(®® = (r{*% n > 0), where wke’a)(-|hk) =
mk+1(-|(e, a), hg) for all hy € Hg, k > 0.

Let Q = Ho, and F = 0(H) be the corresponding product o-algebra.
Given 7 € II and an initial state distribution «ag, according to the the-
orem of Ionescu-Tulcea, there exists a unique probability measure P on
(€2, F), which satisfies

P™(eg € B) = ao(B),
P™(an € D|ht) Tn(D|hn),
P"(eny1 € Blhn,an) = qn(Blen,an),

VB € B(E), D € B(A), and h, € H,, n > 0. We call the stochastic
process (e(m),a(n)) = {(zn,yn,an),t > 0,7 € II} target based Markov
decision process.

For any given m = (mp,n > 0) it will be sometimes convenient to
suppress the dependence on the policy in the quantities z,41(m), é,(7),

Pn(m), &n(m), Bn(m), cn(m) and denote them simply by Zni1, dn, pn, én,
Bn. Clearly, from (2.3) these still satisfy

2
Tpyl1 = pnea én (zn —Cp - ,Bn)v
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where p,, = e’ and

= {00 Gt
n 1, b = 0.

If 6, = 6 (n > 0), the random variables (£,,n > 0) are independent and
identically distributed and &, ~ N (0,62).

Let L be the target level set. Clearly, L C R; take [ € L. Given 7 =
(wn,n > 0) define the following dynamic programming type quantities

Va(z,y,m) = P™{bof <ax,0 <k <n—1,a, > lleg = (z,9)},

0<n<N;
Vo(x,y,ﬂ) = %*(x,y)zI(ySO)’ V(iII,y)EE, WEH;
Val(e,y) = supVa(e,y,), V(z,y) € E, 0<n<N.

well

If 7* € II is such that Vy(z,y,7*) = Vy(z,y) for all (z,y) =e € E,
l =2+ 1y € L, then 7* is called an N-stage L-optimal policy or an N-
stage optimal policy for minimizing risk with respect to L (or, simply an
N-stage optimal policy with respect to L).

Let IT*(L) be the set of all N-stage L-optimal policies,

O*(L) = {=* : Vy(z,y,7") = Vy(z,y),V(z,y) € E,z+y € L}.
Obviously, it follows that the following two properties hold:
(i) If Ly C Lo, = TI*(Le) C II*(L,),
(ii) For any index set K,

IT* (U Lk) = () I (Lx)-

keK keK
In particular, three types of the target level set L are considered in this
paper:
1. L = R for the complete stochastic order optimization model;

2. L =1[l},ly], 0 <Ij <l for the local stochastic order optimization
model;

3. L = {i} for the single point stochastic order optimization model.

If 7* is a N-stage L-optimal policy with respect to L = R (L = [ly,l9]
or L = {l}), we shall also call 7* an optimal policy for a complete
stochastic order (local stochastic order, single stochastic order).
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The three models introduced above can be applied to three differential
cases. If a decision-maker has a particular profit target in mind, he might
want to use the single point stochastic order optimal policy, which attains
that profit target with maximum probability. More generally, he might
want to use the local stochastic order optimal policy, which ensures the
maximum probability of attaining any target profit level with respect to
the interval L = [ll,lz], 0<h <l

For example, the investor may wish that the probability of his wealth
being more than Iy should be no less than 0.95 at stage N, while the
probability of the wealth being more than Iy (I; < l3) should be no less
than 0.99. Since these values 0.95 or 0.98 might be impossible to achieve,
a reasonable approach is to maximize the probability of both zy > I3
and zy > Is.

Finally, the complete stochastic order optimization model L = R is
introduced only for the sake of mathematical completeness.

3. Finite horizon model

In this section we demonstrate that our target-survival problem pos-
sesses many of the desirable properties of standard MDPs. We begin by
considering the properties of the n-stage value function V,(z,y, 7). If we
let 7(n) = (mp,71,...,m,) denote the truncation of 7 to n stages, then
it is clear that V,(z,y,7) (0 <n < N) is determined by =(n).

Lemma 3.1 Let 7 = (my,n > 0) €II, then V(z,y) € E, 1 <n < N,

[(daleo = (@) [ Vas (s, 7599)
A E

— (zy)
Va(z,y,m) xq(du x dv|z,y,a), > bof

%($7y77r) = ‘/O*(way):I(ySO)‘ (32)

(3.1)

Proof The Equation (3.1) follows easily from the law of total proba-
bility and the properties of P™. |

Let D ={V : E — [0,1]|V a measurable function} and 6> € II,. For
each u € D, (z,y) € E, a € A(z,y), we define the operators £, T® and
T:
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LU(z,y,a) = /U(du,dv)q(duxdv|a:,y,a); (3.3)
E
UGy = [ o) UGy, (3.4
z,y
TU(z,y) = max LU(z,y,a). (3.5)
a€A(z,y)

It follows from the definitions that

()OU = U, (@)U = T(@)D),
0 n n—1 (36)
T°U = U, T™U = T(T" 'U),
where (T‘s)”U means that the operator T? is applied to U n times and
(T°)° is defined as the identity operator. Obviously, for any §° € I1¢ we
have T°U (z,y) = LU (z,y, d(z,y)). We shall say that functions U, V in
D satisfy the inequality U <V if U(e) < V (e) for every e € E.

Lemma 3.2

(i) The operators L, T®, T are monotone. That is, if UV € D,
U<V, then LU LV, T°U <TV,TU <TV.

(1i) For anyU € D, if U(z,y) is a non-increasing and a left continuous
function with respect to y for any z € X, then TU(z,y) is also a
non-increasing and a left continuous function with respect to y for
each z € X.

Proof The proof is obvious. [ |

Since the right hand side of (3.1) is a little complex but corresponds to
the decision maker using 7 initially and then expecting a return of V,,_
thereafter, we shall extend the previous notation by setting T77°(z,y)
equal to the right side of (3.1).

Thus, the equation (3.1) can be re-written in a simpler, operator, form
as:

Va(m) = T™Vpoq (7%, 0<n<N, (3.7)

where 770 = (1,73, ...) is the cut-head policy obtained from a Markov
policy 7 = (g, 71,2, ...) by deleting the initial decision rule mg.

Similarly, when working with the optimal value function V(z,y),
V(z,y) € E, n > 0 defined earlier, we can also use the simpler notation
V5, n > 0. The next result establishes the so-called optimality principle
for V;.
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Theorem 3.1

(i) The optimal value function {V,*,0 <n < N} satisfies the optimal-
ity equations:

Vs = Iiy<o), V=TV, (1<n<N). (38)

(it) For any 0 < n < N, and 0 < V¥ (z,y) < 1, V¥ (z,y) is a non-
increasing and left continuous function of y for each z € X.

(i) For any 0 < n < N, there exists a policy 7 € %, such that
Va(m) =V, 0<n < N for any initial state e € E.

Proof We prove Theorem 3.1 by induction.

When n = 0 Theorem 3.1 is true by (3.2).

Assume that Theorem 3.1 holds when n = k. By inductive assumption
(applied to all parts of the theorem), for any z € X, V*(z,y) is a
non-increasing and left continuous function of y and there exists o =
(ok,k > 0) € TI4, such that V}* = Vi(o). Also, because our criterion is a
probability, we have that 0 < V7 < 1.

Note that A(z,y) is a closed set for any e = (z,y) € E. By a measur-
able selection theorem (see [1], [7] or [8]), there exists a measurable map-
ping ¢ from E to A such that d(z,y) € A(z,y) and LV (z,y,6(z,y)) =
TU; (z,y) for all (z,y) € E. That is, 6 € II¢ and TV = TV}

By the inductive assumption, there exists a policy o € 1%, such that
Vi(o) = V¥, Let m = (8,0) = (8,00,01,...), then 7 € I1¢,.

By Lemma 3.1 and equation (3.7) we have,

Vivi(z,y) > Viga(z,y,7)
= TVi(z,y,0)
= T°Vy(z,y)
= TV;(z,y). (3.9)

On the other hand, for any n = (1o, n1,...) € II, by Lemma 3.1, (3.7)
and the definition of T' we have,

Vk+1(z,y,n) = TnOVk(x,y"”) S TnOVk*(z’y) S TV]:(iL',y)

and hence, by maximizing the left hand side of the above with respect

to n we have,
Vk*+1($,y) S TV;:(:E,y)

Combining the latter with (3.9) we obtain,

Viri(@y) = TVi(z,y).
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It now follows that TV} = V¥, = Viy1(m). Also it follows from
Lemma 3.2 that V)%, (z,y) is a non-increasing and left continuous func-
tion of y.

By the above argument we have that the theorem also holds when
n = k + 1, thereby completing the induction. ]

Corollary 3.1 It is possible to restrict the policy space to Markov de-
termanistic policies. That is,

Va(z,y) = supVi(z,y,7) = sup Vi(z ,y,7),
mell elld,

(z,y) e E, 0<n<N.
Next, we shall discuss some properties of optimal policies. We define:

An(z,y) = {ala € A(z,y) and V) (z,y) = LV,;_,(z,y,a)},

Y(z,v) € E, (3.10)
L, = {y:z+yelL} V(z,y) € E, (3.11)
Ay@) = ()] Ax(@) (3.12)

yELz

By Theorem 3.1 the set of optimal actions at state (z,y), A} (z,y) # 0
for any n > 0, (z,y) € E. However, it is possible that A} (z) = 0.

Theorem 3.2 Let 4, be a measurable mapping from E to A which sat-
isfies On(z,y) € AL (z,y) for all (z,y) € E, 0 <n < N. Then any policy
7 which satisfies 7(N) = (6n,0N-1,-..,01,00) is N-stage optimal for the
target-survival problem with respect to L.

Proof Note that because of the backward recursion of dynamic pro-
gramming, T4 Vi =V; foralln > 1 and Vj is defined as in (3.2).

For N =1, we have 7(1) = (m, m1) = (41, 0p), and also 7(0) = (mp) =
(dp). Then by equation (3.7), we have

V1(7T) — T’IFOVVO (71,—0) — T(Sl‘/o* — Vl*,

where the second last equality follows from Lemma 3.1, which gives
Vo(n~0) = V5.

Assume that Theorem 3.2 holds for N = k. Consider the case N =
k+1.

Now, n(k + 1) = (m, 71, --., 7gs1) = (041, Ok, ..., 0p). Since
7%k + 1) = (8, 0k_1,.-.,%) and by inductive hypothesis Vi (7~ %(k +
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1)) = V}}, by Lemma 3.1 we obtain

Vin(r(k+1)) = TV (v %k + 1))
TRnVE = Vi)

By induction, Theorem 3.2 is proved. n

Theorem 3.3 Consider the set of Markov policies Il,. For any given
(z,y) € E, n > 1, Va(z,y,7) = V;(z,y) if and only if mo (47 (z,y)|z, y)
=1 for every n = 0,1,...,N and Vp_1(u,v, 7%} = V*  (u,v) for
any (u,v) € B which satisfies,

/ 7r0(da|x,y)/ q(du x dv|z,y,a) > 0, B € B(E).
a€Ar(z,y) (u,v)EB
(3.13)

Proof Assume that V,,(z,y,7) = V¥ (z,y) and 7 = (mg, 71, ..., 7). By
Theorem 3.1, there exists an optimal policy o = (oy,k > 0) € II, such
that V,,_1(z,y,0) = V,*_,(z,y) for all (z,y) € E. Hence, by Lemma 3.1,
we have

Valz,y) = Valz,y,m)

= T™V, 4 (m,y,ﬂ_o)
T™Vy_1(z,y)
T™Va-1(2,y,0)
Va(z,y, (70,0))
Va (z,9),

where (mg, o) = (mg,00,01,...) and so,

A

IA

Valz,y) = T™V; ,(z,y), (3.14)
and
T™V,_ (z,y, 7r_0) = T™V' (z,y). (3.15)
From (3.14), with help of (3.3), (3.4) and (3.1), we have that V(z,y) € E,
0 = TTVi_y(2,y) - Vy(z,9)

_ /A ro(dalz, y) LV, (z,y) — Vi (z,9)

n(l',y)

-/ ro(dale, ) {£V @) - Vile)}. (@16
n\T,Y
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With the help of LV* ;(z,y) < V;¥(z,y), (3.16), Theorem 3.1 and the
definition of A} (z,y), we have

71'O(A:L(:L‘vy)"/l"ay) = 17 (317)

for all (z,y) € E. Using the similar way, from (3.15), we have

| mldalz,) [ ataux dola,,a) [Vacs (1, 0,7559) = V2 u,0)]
A E

n(zyy)
- 0. (3.18)

Thus, by (3.18) and (3.17), for any B C B(F) such that

[ mdale,y) [ atduxlopa) > o
a B

€Az (zy)

we have

Vi1 (u,v,w(z’y’“)) = Vo_1(u,v)

when (u,v) € B, a € A},(z,y) for all (z,y) € E.
Hence the necessity of Theorem 3.3 is proved. Note that the preceding
proof is reversible and so the sufficiency of the theorem also holds. W

Remark 3.1 Theorem 3.3 shows that a Markov policy  is optimal for a
finite horizon model if and only if the action taken by 7 at each realizable
state is an optimal action and the corresponding “cut-head” policy is also
optimal at each stage. In general, Theorem 3.3 also holds for the general
policies (the proof is similar to the proof of Theorem 4 in [4].

Theorem 3.4

(1) If there exists a policy m € Ily such that Vy(z,y,7) =V,
all (z,y) (i.e. Vo(m) =V,y), then A (z) # 0 and mo(Aj(
for any z € X;

(i) If Ax(z) # 0 for all z € X and 0 < k < n, then there erists a
policy m € Iy such that Vy(m) =V .

Vo (z,9) for
z)|z) =

Proof

(i) Let 7 € Iy and V,,(7) = V,;. Then, by Theorem 3.3, mo (4}, (z, y)|z)
= 1 for all x € X and y such that z + y € L. It follows that
no(AX(x)|z) =1 for all z € X. Hence, A%(z) #0 for all z € X.

(ii) Select dx : X — A such that dx(z) € Af(x) for all x € X and
0 <k < n. Then, by Theorem 3.3, any policy é € IIy constructed
as § = (0, 0p—1,...,01,00), satisfies V,(0) = V7. [ ]
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4. Three risk regions in the decision-maker’s
state space.

In this section, we demonstrate that the decision-maker’s space can
be divided into three distinct regions: the risk free zone, the ruin zone
and the risk zone.

In the risk free region, the investor can find a risk free investment-
consumption policy that reaches the desired target level with probability
1. In the ruin-zone, the investor cannot meet the minimal consumption
requirement and is ruined. Hence, the most interesting region is the risk
zone and the problem of finding an optimal target-survival policy with
respect to the given target set L.

Let 7/ (N) denote a riskless investment-consumption policy. That is,
7f(N) is a policy that always allocates all of the investment into the
risk free asset (bonds). Clearly, under this policy, in the notation of
Section 2.2, we have that 6,, = 0V n, and hence for all n, 6(0) = §(6,) =
a and By = B(0) = B(0,) = (1 —e %) /a and p=p(0) = e* > 1. Now,
iterating equation (2.3) under this policy yields

zn, = p"zo— Cp(d),

where

f>

n-1
Cn(d) Bo- > cp™h (4.1)
=0

Define
An = (pn_l)a (42)

for n > 1. We may interpret C,(d) as the total discounted consump-
tion from stage 0 to stage n when the investor adopts a riskless policy.
Clearly, z, — zg = Apzo — Cr(d) under this riskless policy.

Next, we define the following sets:

( RO = {(‘T’y)|z>b07y§0}7
Ag(x,y) = {ala=1(0,¢),bp < c <z}, Y(z,y) € Ry,
Rn = {(.’I),y)|.’1,' > p_n(IBObO + Cn(d))7
< nyAn_On(d)a(I7y) ERn—l}v 77,2 17
A,j;(a:,y) = {ala =(0,¢),bp <c< zﬂo”l}, V(z,y) € Ry,
aR”l = {(l‘,y)ll‘ > p_n(ﬁ()b() + Cn(d))a
\ y=zA, — Cp(d),(z,y) € Rp_1}, n>1.

(4.3)
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We shall refer to R, as the risk free zone, because of the following
result.

Theorem 4.1 Consider any state (z,y) € R,, 0 <n < N, then under
the riskless policy 7/ (n) we have that

Vo (x, Y, 7rf(n)) = 1.
Proof By the definition, we have
R,CR,_1C...C Ry CRy. (4.4)
We prove Theorem 4.1 by induction.

When n = 0, Y(z,y) € Ry, we have £ > by and y < 0. Then for any
by <c<uz,

a = (0,¢) € Af(z,y) # 0,

and for any n/(0)(e), which is a probability distribution on the set of
A(";(x,y), we have

Vo (I,yaﬂf(o)) = Iy<o) = 1, (4.5)

for all (z,y) € Ryp.
Inductively, assume that when n = k, we have

Be = {(@yle> p™*(Bobo + Cild),
y <@l — Ci(d) and (z,) € Re-1 }; (46)

Ve (z,9,7/ (k)

= P"®(g;>b9,0 < j <k~ 1,y < Oleo = (z,))
. (4.7)

for all (z,y) € R.
For the case of n =k + 1, V(z,y) € Ri+1, we have

z > p D (Byby + Crpa(d)), (4.8)
y < zhgg1 — Crsa(d), (4.9)
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and (z,y) € Ry. Because ¢; > by, for all : = 0,1,..., we have the
following:

1+Zpk+l 1 > pk+l
o 1+Z G k+1 - pk+1

- By Z Gpt Tt > pophtl
& p kD 4 (ﬁobo + Ck+l(d)) > Pobo.
It follows from (4.5) that:
zByt > by (4.10)

That is the interval [bg, z(; 1) is nonempty. Hence A{ n 70
From (4.1), we have

Ce(d) = Bo (CoplC tapt 4+ Ck—lP)
and
Ck+1(d) = fo (Cpk+1 +eopt +ept T+ 4 Ck—lP) - (411)
For any policy a = (0,c) € A,{_H(z,y), we have
z1 = pz— Pocp. (4.12)
With the help of the following inequalities
gz > p~*+D (Bobo + Cx(d) + Bocp* 1),
& z— Poc > p_(k+l) (ﬂobo + Ck(d)),
& plz—PF) > pk (,BObo + Ck(d));
and (4.12), we have
z1 > p~* (Bobo + Ci(d)). (4.13)
Now let us check the target variable. By assumption, we have

Bo € (0,1) and p > 1,
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and
pF(L+Bo) — 260 > 0,
& Bop* =260 +pF > 0,
< Bocp*t! — 2Bpcp + cp*t > 0,
& zpbtl— bt —pz 4+ Bocp < Bocptt — Bocp + zp T — pa,
& zpttl—cpttl —pz+ Bocp < (pz + Bocp) (bF - 1),
& z+z(pt! = 1) — ¢! — Ci(d) — pz + Bocp

< o1 (pF — 1) - Culd).
(4.14)

It can now be seen that y; = z +y — z; < left side of (4.14) which,
combined with (4.13), leads to

(x1,71) € Ry.

With the help of the formula of total probability and the inductive
assumptions it can now be checked that

Ver (o,3,7/ (k+1) = P74 (5> 10,0 <5 < Ky < 0/(2,))
= 1, (4.15)
for all (z,y) € Ri+1- [ ]

Remark 4.1 Theorem 4.1 means for all g = (z,y) € Ry, there exists
a riskless policy nf(mw) such that the investor can reach target level with
probability 1. Therefore, Ry, is called the risk free zone.

Let

Dy = {(m,u), 0<z<byy> O} and more generally define
D, = {(z,9):0<z<cofo+p 'bo,y>0,(2,y) € Dpr}, n>L

The above set D, is called the ruin zone.
Finally, define

JO = {(xvy) T > ban > 0}7
Jn = {(z,y) 1z > p " (bo + cn(d)),y > Ay — Cpn(d), (z,y) € Jn-1},
n> 1.

The set J, is called the risk zone.
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In the risk zone Jy, if the investor follows the riskless policy, he will
fail to reach the target value at stage N and he would not be ruined.
Thus he will have to allocate some part of his wealth to the risky stock
asset in order to maximize the probability of reaching target level at
stage N.
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the corresponding solutions are shown to converge to the optimal solu-
tion of the original problem.

We focus on a class of problems which arise in the modelling of semi-
active suspension systems. The state z(t) = (z1(t),z2(t)) satisfies a
degenerate stochastic differential equation

dzy (t) = xz(t)dt (1 1)
dza(t) = b(z(t),u(t)) dt + o dW(2) '
in which b(z,u) = — (1171 + uz2 + Y2sign(z2)), u is the control process
taking values in some interval U = [u,u] with u > 0, W is a standard
Brownian motion and o > 0. The objective is to minimize

t t
J(u) = limsup %E [/0 c1(z(s),u(s))ds +/ ea(z(s)) dA®) (5;0)

t—o0 0
(1.2)
in which A®)(-;z) denotes the local time process of z(-) at z; and ¢;
and ¢y are nonnegative, bounded and continuous.
This model is obtained from a one-degree-of-freedom shock absorber
system with dry friction in which y = z;(¢) is the relative displacement
and satisfies the equation,

my + vy + Ky + Fsign(y) = mé. (1.3)

In this system, the control v is the shock absorber damping constant;
Ky + Fsign(y) represents the restoring force, including the dry friction
term; and € is the random input of the system due to the road surface.
The system (1.1) is obtained by setting z = y, 1 = K/m, v2 = F/m
and u = v/m.

This model has previously been studied by Campillo {2], Campillo,
Le Gland and Pardoux [3] and Heinricher and Martins [5]. In [2, 3],
the running cost was taken to be the absolute acceleration squared,
c1(z,u) = [1121 + uz2 + yesign(zz)|?, and the local time process did not
enter the cost. Heinricher and Martins, on the other hand, introduced
the local time process in the cost function but replaced the long-term av-
erage criterion with a discounted criterion [;°e~*cdA(s;0). In each of
these papers, the authors used dynamic programming techniques with a
Markov chain approximation of the original stochastic processes. Hein-
richer and Martins raised the question of how to determine the long-term
average cost involving the local time process.

The motivation for including a cost based on the local time process
arises from a particular analysis of the smoothness of the ride. Bumpy
rides occur when the velocity makes significant changes in amplitude and
direction. Consider a band of width 2¢ centered at 0 for the velocity. A
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“bump” occurs when the velocity cycles from below —e to above € and
back below —e. If the “level of discomfort” (the cost) of a cycle over
[—¢, €] is proportional to €, then the local time process arises in the limit
as € — 0 (see [10]). The reader is referred to [5] for additional motivation
and explanation.

Costs associated with local time processes also arise in the heavy
traffic diffusion limit for queueing systems. In this setting, the local
time processes on the boundaries of the regions correspond to wasted
capacity.

The main contributions of this paper are the analysis of long-term
average control problems involving costs based on the local time pro-
cess and the use of equivalent linear programming formulations in the
solution. The reformulation of stochastic control problems as equivalent
infinite-dimensional linear programming problems is given under very
general conditions in [1], [7] and [11]. This paper uses the same ap-
proach but indicates how to include costs associated with the local time
process.

The remainder of this paper is organized as follows. In the next sec-
tion, we reformulate the stochastic control problem as an equivalent
linear programming problem over the space of invariant distributions.
Section 3 discusses the Markov chain approximations and convergence
of the approximating solutions. The last section displays numerical ex-
amples.

2. Linear programming formulation

We consider, for the class of admissible controls, the set of transition
functions n : R? x Bu, @] — [0, 1] for which the mean u(z) = [ un(z, du),
as a function of the state x, satisfies the condition that there exists a
finite number of submanifolds of IR? with dimension less than or equal
to 1 outside of which u is continuous. The transition function n gives
the conditional distribution on the control space [u, %] given the state
and as such, is considered a randomized or relaxed control. Since the
control enters linearly into the dynamics in (1.1), the mean u(-) is an
admisssible control in the sense considered in [3]. Denote the collection
of admissible controls by U.

We begin by characterizing the invariant distributions for the pro-
cesses. We require several results given in paper [3], in which the
uniqueness of the invariant measure p, for each admissible 7 and the
existence of a density with respect to Lebesgue measure for this mea-
sure are proved. We summarize this as a proposition and refer the reader
to [3, Propositions 2.3, 2.6 and Lemma 2.5].
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Proposition 2.1 For any n € U, the diffusion process (1.1) admits a
unique invariant measure (i, on IR? which has a density p(z) with respect
to Lebesgue measure for which p(z) > 0 for almost every x.

Theorem 2.1 (Characterization of invariant distributions)

Let 1) be an admissible control inU. Then p, € P(R?) is an invariant
distribution for the diffusion process (1.1) having control n if and only
if for each f € C2(IR?),

//Af(zl,xz,u) n(z1, 2, du) pp(dz, X dz2) =0, (2.1)
where

Af((l:l,mz,’u,) = $2f11 (1"1, T2) + b(x,u)fm (1‘1’ T2) + (1/2)02fx2x2(.’£1,(1‘2).
2.2)

Proof We begin by showing the necessity of u, satisfying (2.1).
Let f be a twice-continuously differentiable function having compact
support. Then It6’s formula implies that the quantity,

f(z1(t), z2(t)) —/0 /[ ; Af(acl(s),xz(s),u) n(z1(s), z2(s), du) ds,

(2.3)
is a martingale. Define the average occupation measure p;, for ¢ > 0, to
satisfy for each bounded, continuous function ¢,

/¢(.’L‘1,1‘2,U) ,U:t(d.’l,‘l X d$2 X du)

- 1g
t

t
/0/[_]¢(.T1(S),.’E2(S),u)7’(1-1(3),1;2(3),(1,“) ds| .

Claim: The collection of occupation measures {u; : t > 0} is tight and
hence relatively compact.

Proof By Lemma 2.1 of 3], there exists some constant C such
that E[|z(t)|?] < C for all ¢ and controls n € Y. Since the space of

controls [u,] is compact, given € > 0, by choosing K > (C/e)!/?
an application of Markov’s inequality shows that

“t(FI; X [’l_[_,ﬂ]) >1-¢ vt > 07

in which By denotes the ball of radius K in IR? centered at the
origin, which proves the claim. |
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Since {ut} is relatively compact, uniqueness of the invariant measure
implies that y; = p as t = 0o, where

p(dzy x dzg x du) = n(z1, 22, du) pp(dz1 X dzs). (2.4)

The fact that (2.3) is a martingale implies that

/Af(zl,xg,u) pe(dzy X dzg X du)
1

- (E [f (xl(t),wz(t))] - E[f (210), “’2(0))])’

and so letting ¢ — oo, the invariant measure p satisfies
/Af(xl,xg,u)u(dxl X drg X du) =0 (2.5)

for every f € C%(IR?). Note that we have used the fact that the set
{(z1,z2) : z2 = 0} is a p-null set in passing to the limit since Af is only
discontinuous on this set.

To show sufficiency, let u, be any measure satisfying (2.1) and define
p as in (2.4). Theorem 2.2 of [7] gives the existence of a stationary
process z(t) for which the pair (z(¢), n(z(t), )) makes (2.3) a martingale
and p is the one-dimensional distribution

E

/ ¢($1(t),x2(t),u) n(zl(t)aJ;Z(t),du)

[u,7]
= /qﬁ(zl,xg,u)u(dzl X dze X du).

A modification of Theorem 5.3.3 of [4] to include control then implies
is a solution of (1.2). |

We now turn to expressing the long-term average cost associated with

a control n in terms of 7 and the invariant measure p,,.

Theorem 2.2 (Evaluation of the long-term average cost)
Let n be an admissible control and p, the corresponding invariant
measure. Then (1.2) is equal to

_a (z,u) — 102(z) sign(z2)b(z,u) | (1, z2, du) py(dz1 X dzs).
[u3] 2
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Proof We concentrate on the contribution to the cost due to the local
time process; the absolutely continuous cost term has been evaluated to
be [ ci1(z,u) p(dz x du) in [7]. The key to reformulating the local time
cost is the Tanaka-Meyer formula (see Karatzas and Shreve [6, page
220]):

t
|z2(t)| = |z2(0)] +/ sign(za(s)) dzo(s) + 272 (s;0).
0
It then follows that

/O ’ e2(2(5))dA® (5:0)

t
- 1/ c2(z(s))d|z2(s)]

2
__/ / ) sign 11:2( ))b($(3)7u)77(x(3)ad“) ds

_5/0 c2(z(s))osign(za(s)) dW (s)

which implies that
15[ [ opai)
= 15[ [ aleto) oo

—%/62(1‘) sign(zq) b(z, u) pe(dzy X dzg X du).

Letting ¢t — oo, Lemma 2.1 of [3] and the fact that ¢y is bounded imply
that the first term becomes negligible yielding

t
lim sup — E[//[ ] ) n(z(s), du) ds+/ c2(z(s)) dA(Q)(s;O)

t—o00 0

= / [cl(z u) — 502( z) sign(z2)b(z, )] p(dzy x dzg x du)

2.1 LP formulation
The results of Theorems 2.1 and 2.2 imply the following theorem.
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Theorem 2.3 The stochastic control problem of minimizing (1.2) over
all solutions z(t) of (1.1) is equivalent to finding a probability measure
p which minimizes

1
/ [cl(z,u) — §c2(x) sign(z2)b(z,u)| p(dzy x dze X du)
subject to the constraints that for each f € C2(R?),

/Af(zl,xz,u)u(dml X dzy X du) = 0. (2.6)

Moreover, an optimal control n* is given by the conditional distribution
on the control space of an optimal measure p*; that is, n* is optimal if

p* is optimal and

p*(dzy % dzg X du) = 1" (21, T2, du) py (dz1 X dzo X [0, T]).

This is an infinite-dimensional linear program over the space of invariant
distributions of the system (1.1).

3. Markov chain approximations

In order to obtain a numerical solution, it is necessary to reduce the
LP problem to finite dimensions. We accomplish this by discretizing the
state and control spaces and taking finite difference approximations to
the differential operators. This follows the approach of the previous pa-
pers in that the approximating operators can be viewed as the generators
of finite-state Markov chains which approximate the diffusion process.
The approximating LP then gives the associated long-term average cost
of these Markov chains.

Though our approximations are the same as in the previous works,
our convergence results are based on the LP formulation rather than
dynamic programming arguments. A similar approach was used in the
setting of a compact state space in EQ}

For each n > 1, let A k(™ m(™ > 0 denote the discretization sizes

and let Kfn) and Kén) be truncation limits of IR? in the z; and zy
coordinates, respectively, where for simplicity we assume K f") = Ml(") .
n-h™, Ké") = MQ(") n-k™ and b—a = Mén) -n-m(™ for some positive
integers Ml("), M2(") and Mé"). We assume that as n — oo, K{"), Ké") —
oo and A, k(™ m() N 0. To simplify the notation, we will drop the
superscript n from discretization parameters and discretized spaces and
points in these spaces. Define
E = E1 X E2

= {y = (y1,92) = (ih, jk) : —Min < i < Myn,—Mon < j < Myn}
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to be the discretization of the state space IR? and
V={_q+lm:0§l§M3n}

to be the discretization of the control space U = [u, .

Recall the generator of the two-dimensional diffusion is given by (2.2).
For (y1,y2) € E, (y1,y2) not on the boundary, and v € V, we use the
following approximations:

( f(y1 + hyy2) —f(yl,yz), ifn >0,
fo(yr,2) = < Fly—h h_

\ 1 ,yziz f(yl,yz)’ £ <0,

(flnye+k) = fnw) o, 0
foalut,us) ~ ¢ » _kk— , if b(y1, y2,v)

\ Y1, 42 ]Z f(yl,yz), i by, g2, 0) <0,

and

flyv,y2 + k) + fy1,y2 — k) — 2f(y1,32)
fzzwz (ylayZ) ~ ( K2 .
Substituting into (2.2) and collecting the terms involving the test func-
tion at the various states in E we get (for (y1,y2) in the interior)

(“2) s+ hoam) + (L) st - )

b(y1,y2,v)T o2
+ (—k—— + o ) Fun v +B)

b(y17 Y2, ’U)u 02
+ (T byl fy1,y2 — k)

Anf(y1,y2,v)

2

b
B (L%Zl + l_(gl,kﬂv')“l + %‘2‘) fy1,42)- (3.1)

A, is the generator of a continuous time, finite state Markov chain.
We need to define thé generator on the boundary of E. We adopt the
approach of Kushner and Dupuis [8] by initially allowing the Markov
chain to exit E according to (3.1) then projecting the state onto the
nearest point in F. This has the effect that the Markov chain becomes
“sticky” at the boundary in that the state could transit to itself before
it moves to another point in the space.

Due to the fact that o > 0, this Markov chain is aperiodic and irre-
ducible and thus has a unique invariant distribution for each choice of
control policy.

We observe that as n — 00, sup(y ,)cpxv [4nf(y,v) — Af(y,v)| = 0.
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3.1 Approximating LP

The approximating linear program could, in fact, have been deter-
mined simply by discretizing the spaces and taking the finite difference
approximations to the differential operators. However, we will use the
knowledge of the underlying stochastic processes to provide existence
and uniqueness of feasible measures for the approximating LP for given
admissible control policies.

We state the linear program (for each n) for the approximating Mark-
ov chains which “approximates” the original LP given in Theorem 2.3.

Approximating linear programs Find a probability measure v on
E x V which minimizes

1 )
/ [Cl (1, Y2,v) — c2(y1,y2) sign(yz) b(y1, yo,v) | v(dy1 x dyz x dv)

2
(3.2)
subject to the constraints that for each f € C?(IR?),
/Anf(yl,yg,v) v(dyy x dya x dv) = 0. (3.3)

Moreover, an optimal control n* is given by the conditional distribution
on the control space of an optimal measure v*; that is, n* is optimal if
v* is optimal and

v*(dy1 x dyz x dv) = n*(y1,y2, dv) vy (dy1 x dyz).

Since there are only a finite number of states in the approximating
problem, it is only necessary to evaluate (3.3) for a finite number of
functions f. For each point (y1,y2) = (i,j) € E, consider a function
fij € C2(IR?) such that f;;(3,5) = 1; and for all (z1,2) for which either
lz1 —i| > h/2 or |z2 — j| > k/2, fij(x1,22) = 0. This choice of f has
the effect of taking fi; € C2(IR?) so that when restricted to E1 X E; the
function is the indicator of the point (7,7). As a result, the constraints
(3.3) of the approximating LP become

/AnI{(i,j)}(y17y2aU)V(dyl X dyy X dv) =0
for each (4,5) € E.

3.2 Convergence results

It is necessary to relate controls for the original problem to controls
for the approximating problems and vice versa in order to establish the
convergence results.
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Observe that E x V < IR? x U; that is, the discretized space for
the controlled Markov chain is a subset of the space for the original
diffusion process. Ome aspect of this imbedding is that we can view
each v € P(E x V) for the approximating problem as a probability
measure on IR? x U. Our goal, however, is to define controls for the
approximating LP corresponding to each admissible control and also to
define an admissible control for the original problem for each control of
the approximating LP.

Define the mapping ¢. : R — E; by

( —Minh, for z < —Minh+ h/2,

6L (z) = ¢ ih, for ih —h/2 <z <ih + h/2,
n\t) = ~Min+1<i<Mn-1,

| Minh, for Minh—h/2 <z,
similarly define ¢2 : IR — Ej, and finally define ¢3 : U — V by
n n

( u, for u < u+m/2,
3 (u) = 4 u+km, foru+kim—m/2<u<u+km+m/2,
nit) = 1<k<Mn-—1,

\ T, foru—m/2 <w.

The function ®, = (¢}, ¢2) takes the partition of IR? consisting of
rectangles with each rectangle containing exactly one point of E and
maps the points of the rectangle to this point of the discretization. In
like manner, ¢3 maps each interval in U to the unique point in the
discretization V contained in the interval. We observe that as n — oo,

sup ju — ¢3(u)| -0  and |z — ®,(x)| = 0 for each z € R2.
uelU

Let 1 be an admissible control for the original problem. Define the
corresponding control 7, for the approximating problems by setting

M (y: {v}) = n(y, (¢3) 7" ({v})). (3-4)

Note that each control on the discretized space E x V is a transition
function i, : E x B(V) — [0,1].

We now start with a control 7, for the approximating LP and extend

it to an admissible control 7, on IR? x U. First extend 7,, to a transition

function on E x U by setting 7, (E x V¢) = 0. Now require 7, to satisfy

/ h() T (1, o2, du) = / h(w) e (Sh(21), 2 (22), du)  (3.5)
U U
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for each h € C(U). The control 7, is piecewise constant.

Turning to convergence, the paper [3] establishes several results con-
cerning the Markov chain and the diffusion process. In particular, they
prove the following convergence result (see Lemma 4.8) about the invari-
ant distributions of the approximating Markov chains and the original
diffusion processes.

Proposition 3.1 For each admissible control ), let p, denote the in-
variant measure corresponding to n; and define n, by (3.4) and vy, to
be the invariant measure of the Markov chain satisfying (3.3). Then

Vp, = Uy-

We now use this result to show that the optimal cost of the approx-
imating LP provides an asymptotic lower bound on the value of the
optimal cost of the original diffusion. We also show that if the optimal
controls of the approximating LPs converge to an admissible control
then, in fact, the approximating optimal costs converge to the optimal
cost of the original LP and the limiting control is optimal. The first re-
sult establishes that for each admissible control # and induced controls
7, the costs for the approximating problems converge to the cost of the
original problem.

Proposition 3.2 For each admissible 1, let n, be given by (3.4) and let
Vn. and py denote the invariant distributions satisfying (3.3) and (2.6),
respectively. Then

[ [ Testw.) + ey, ) sign(un) o, )] (v, ) s ()
— //[cl(x,u)+CQ($,u)sign(x2)b(x,u)] Nz, du) py (z, du).

Proof This follows immediately from Proposition 3.1 and the fact that
pn{z2 =0} =0. [

We now use this result to establish the asymptotic lower bound on
the optimal cost.

Theorem 3.1 Let v}, € P(E x V) denote an optimal invariant measure
for the approzimating LP problem. Then

lim sup / [e1 (4, ) + e2(y,v) sign(y2) b(y, v)] v (dy x do)

n—oo

< 32[5//[Cl(III,U)'i‘CQ(.’II,’U,)Sign(JJg) b(z,u)] n(z, du) py(dz).
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Proof For each admissible 7, let u, denote the invariant distribution
corresponding to 7. Let 7, be given by (3.4) and v, be the invariant
distribution corresponding to 7,. Then by optimality of v;;,

/ [e1(y,v) + caly, v) sign(ys) by, v)] v (dy x dv)
< / [e1(y, ) + e2(y, v) sign(y2) b(y, v)] 7y, dov) vy, (d).
It follows that

imsup [ [e1(4,0) + caly, ) signlye) by, )] v (dy x )

n—oo

n—00

= [ [ la(o,0) + cale wysign(as) o, w)] (e ) ),

< lim / / [c1(y, v) + ca(y, v) sign(y2) b(y, v)] Ma(y, dv) vy, (dy)

and the result follows upon taking the infimum over the admissible con-
trols. B

Finally, we consider the case in which the optimal controls of the
approximating LPs converge to an admissible control for the original
problem.

Theorem 3.2 Let 7, denote an optimal control for the approrimating
LP and define 7, by (3.5). Suppose there exists an admissible n* for the
original problem such that

(@) = 7' (z,)

for almost every z (in Lebesgue measure). Then n* is an optimal control
for the original problem.

Proof Let Hi and p,» denote the invariant distributions corresponding

to ¥ and n*, respectively. The proof of Lemma 4.8 of [3] establishes the
tightness of {¢i7=} (in fact, it establishes tightness for the collection of all
invariant distributions of admissible controls). As a result, by defining
the measures p, € P(R x U) as pn(dz x du) = n3(z, du)py(dz), it
immediately follows that {u,} is tight and hence relatively compact.
Thus there exists some subsequence {n;} and some measure p which is
a weak limit of p5,, . For simplicity of notation, we may assume {ny} is
the entire sequence.
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Let po denote the marginal of 4 and 7 a regular conditional distribu-
tion of u given z under p so that

p(dz x du) = n(z, du)po(dz).

Then for every bounded continuous h,

/ / h(z, u) 75 (@, du) pz=(dz) - / h(z, ) p(dz x du)
[ [ hw w1, du) o)

Since the Bounded Convergence theorem implies

/h(x,u) 7% (z, du) —/h(z,u)n*(z,du)

it follows that

/ / h(z,u) 7° (=, du) pz(dz) — / / h(z, u) n(z, du) po(dz).  (3.6)

Since p, = u implies Pz = 1o, the continuous mapping theorem [4,
Corollary 3.1.9] implies

//h(x,u) n*(m,du),u;m—(dx) —)//h(x,u) n*(z,du) po(dz). (3.7)

Comparing (3.6) and (3.7) and writing h(z, u) = hy(z)ha(u), we have,
for every bounded continuous hy and ho,

[ (@) [ ) (@, du) o) = [ (o) / ha(w) n(z, du) po (),

which implies that [ ho(u)n*(z,du) = [ ha(u) n(z,du) for almost every
z and hence

—0 a.e z,

n*(z,) =n(z,") ae z.
Since the invariant distribution for this control is unique, u* = uy and
hence, for every bounded continuous h,

/ / (e, u) T (z, du) pime(ds) > / / h(z, ) 7 (=, du) 4" (dz).

The continuous mapping theorem again implies

lim // [c1(z, ) + c2(z, u) sign(z2) b(z, u)] 7% (z, du) pipz(dz)

// [cl (z,u) + ca(z, u) sign(z2) b(m,u)] n*(z, du) py+ (dz)

and the result follows from Theorem 3.1. [ |



438 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

4. Numerical example

We now illustrate the LP methods using a particular choice for the
parameters. We consider the case in which the only cost is that asso-
ciated with the local time process and assume that the cost rate c; is
constant. Thus, ¢;(z,u) = 0 and cz(z) = ¢, for some constant co. We
also restrict the model by assuming 7, = 0. This is the model studied
by Heinricher and Martins with a discounted criterion.

We implemented our numerical approximation in SAS.

4.1 Test case

To test the accuracy of the numerical solution, we further restrict the
model by fixing y; = 0 and only allow a single control value © = 1. Thus
the dynamics are reduced to

dzi(t) = z2(t)dt
diL‘z(t) = —322(t)dt+0’dW(t).

We take ¢ = 2 to compensate for the fraction 1/2 in the objective
function. The objective function for the test case is

/|.’L‘2| u(dml X dmg)

In this test case, it is clear that only the x2-process is important to the
analysis. This process is an Ornstein-Uhlenbeck process for which the
invariant distribution is unique and easily determined to be normally
distributed with mean 0 and variance 02/2 and the objective function

. O
value is
2

Figure 27.1 illustrates the results of the numerical approximations
when o = 3 using discretization size h = k = 0.6,0.3 and 0.1 together
with the N(0,32/2) density function. In addition, Table 27.1 presents
the objective function values obtained in these three cases. It is very
clear looking at this data that the approximating invariant distributions
as well as the approximating objective value are close to the invariant
distribution and objective value of the original process.

4.2 General example

In the general setting, v; # 0 and the control is not fixed. We selected
v =2 and o = 2 and used a discretization size of h = k = 0.2 over the
truncated square [—2,2] x [-2, 2]. We chose [u, @] = [0.5, 1.5] and allowed
the control to take the values 0.5, 1.0 and 1.5. Figure 27.2 illustrates



<HEH0nZmO

.20

Long term average control of a local time process 439

Table 27.1. Objective Function Values

Mesh Size | Objective Function Value
Approzimating h=.6 .89189
Markov Chain h=.3 .87102
h=.1 .85505
Diffusion Process .84628

ooo h=.6 »ee h=23 s h=1

Figure 27.1. Invariant distributions for the test case

the resulting optimal control. Notice that the optimal control takes the
smallest possible value of u whenever z3 # 0. The only change in control
occurs where 2 = 0. This behavior of the optimal control was consistent
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throughout both coarser and finer discretizations of the state and control
spaces.

We conjecture that an optimal control for the diffusion process is
to use the maximum control whenever the velocity is zero and to use
minimum control otherwise.

CONTROL

Figure 27.2. Optimal control for general example, h =k = .02, v = 0.5,1,1.5
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tems and the decomposition approach in structured linear programs.
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avoiding the full development of the theorems demonstrations that can
be found in papers already published or to appear shortly. On another
hand, since it corresponds to a new application of a convex optimization
method that has been successfully applied in other contexts, we give
a rather detailed account of the decomposition technique used in the
numerical approximation method and of the comparison with a direct
linear programming method.

The class of systems we are interested in are characterized by an hy-
brid state, the continuous part evolving in a fast time scale according
to controlled diffusion processes and the discrete part evolving in a slow
time scale as a finite state jump process. The diffusion and the jump
processes are coupled. We consider the ergodic control of such a system.
To illustrate this type of structure we propose an economic production
model where the continuous state corresponds to stocks of production
factors whereas the discrete state describes different market structures
that determine the demand for the produced good. When the ratio
between the fast and slow time scale tends to 0 the problem becomes
singular. However, under sufficient ergodicity assumptions, one can ex-
ploit the fact that, between two successive jumps of the slow process,
the fast diffusion process has enough time to reach a steady state, or,
more precisely an invariant state probability measure. This permits us
to define a limit control problem in the form of a finite state controlled
Markov chain that is well behaved and gives a good approximation of
the optimal value when the time scale ratio is close to zero.

When we implement a numerical approach, the singular perturba-
tion generally yields an ill-conditioned problem. This is the case when
one uses an approximation by controlled Markov chains as these chains
will exhibit strong and weak interactions. But here again, we can iden-
tify a limit problem that is well conditioned and which yields a good
approximation to the solution when the time scale ratio is close to 0.
Furthermore, the limit problem yields to a structured block angular lin-
ear program that is amenable to an efficient decomposition technique.
The decomposition technique implements a dialogue between a master
program that distributes a dual information obtained at the analytical
center of a localization set and an oracle that proposes cutting planes
obtained via a policy iteration algorithm run on a local reduced size
MDP.

The paper is organized as follows. In Section 2 we recall the the-
ory of ergodic control for a singularly perturbed, two-time scale hybrid
stochastic system. In Section 3 we give the main result concerning the
definition of a limit control problem for a class of well behaved feedback
controls. This limit control problem is a finite state Markov decision
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process that gives a good approximation of the optimal value when the
time scale ratio tends to 0. For this we rely mostly on Filar and Hau-
rie, 1997 [6]. In Section 4 we recall the numerical technique that can
be used for the solution of an ergodic control of an hybrid stochastic
system. The fundamental reference is Kushner and Dupuis, 1992 [12]
where an approximating controlled Markov chain is used to compute
numerically the solution of stochastic control problems. In Section 5
we observe that the approximating controlled Markov chain has also the
structure of a singularly perturbed Markov decision process (MDP) with
strong and weak interactions. This is the occasion to recall the results
of Abbad, 1991 [1] and Abbad et al., 1992 [2] showing that the limit
control problem for the singularly perturbed MDP can be formulated
as a structured block-angular linear program. We are able to show the
close similarity between the limit control problem defined in Section 3
and the structured LP obtained in the numerical approach.

In Section 6 we implement a decomposition technique for the solu-
tion of the limit control problem, using the analytic center cutting plane
method (ACCPM), initially proposed in Goffin et al., 1992 [9] as a gen-
eral method for solving nondifferentiable convex programming problems.

2. A two-time-scale hybrid stochastic control
system

In this section we describe a control system characterized by an hybrid
state (y, () where the continuous state variable y is “moving fast” accord-
ing to a diffusion process while the discrete state variable ¢ is “moving
slowly” according to a continuous time stochastic jump process. The
diffusion and controlled processes are coupled.

2.1 The dynamics

We consider a hybrid control system described by the hybrid con-
trolled process (y,()(-) where y(-) is “moving faster” than {(-) and de-
scribed formally by the stochastic state equation.

edy(t) = fO(y(t),v(t))dt + Veo® du(t),
o(t) € U®,
More precisely, we consider the following specifications:
= A set of It6 equations

edy(t) = fy(t),v(t))dt + Veo'dw(t),
o(t) € U,
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where y € int(X), the interior of a compact subset of R*, is the
continuous state variable and ¢ € E, a given finite set, is the dis-
crete state variable. For each i € E, the control constraint set U* is
a compact set, o° is an n x n matrix which, for simplicity, is taken
as diagonal, the function f(y,v) is continuous in both arguments
and {w(t) : ¢ > 0} is an n-dimensional Wiener process.

» The perturbation parameter ¢ is a positive scalar which will even-
tually tend to 0. It can be viewed as the ratio between the fast
and the slow time scales.

s Some reflecting boundary conditions, as those detailed in [12], sec-
tion 1.4 are imposed on 0X.

» For each pair (i,j) € E x E, ¢ # j, let be given a continuous
function ¢;;(y,v), where v € U ' is the conditional transition rate
from 7 to j of a jump process {{(t) : ¢t > 0}. We assume that the
following holds

P[¢(t +dt) = j|¢(t) =4, y(t) =y, v(t) = v] = gi;(y, v)dt + o(dt),
where
o(dt)

=0
dtlglo dt

uniformly in (y,v).

» For each i € E, let Li(y,v) be a continuous function of (y,v)
describing the cost rate for the control system.

The class U of admissible controls is the set of F;-adapted processes
{v(t) : t > 0}, where {F; : t > 0} is the o-field describing the history of
the hybrid process {(y,£)(t) : t > 0} and v(t) € U*, whenever {(t) = 1.
2.2 Change of time scale

It will be convenient to work with a “stretched out” time scale, by
defining the trajectory

(z(2),£(t)) = (y(et), C(et)).

The process dynamics now become

dz(t) = f5O (z(t), u(t)) dt + 0¢Ddz(2),

where 2(t) = —\}—Ew(et), and the £(-) process has transition rates given

by egi;j(z,u). The differential operator of the (z,{)(-) process is denoted
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A" and defined by

(A“9)(z, &)
9 ¢ 1 £\2 :
= —a;(rb(xaf)f (.’L‘,U) '2'5—¢(.’L‘,§)(0' ) +EZ(]§J((L‘,U)¢(.’L‘,]).
JEE
2.3 A restricted control class and the associated

performance criterion

The class of controls U is too large for our purpose and we shall
consider a restricted class of controls defined as follows.

For each i € E let ©* be a compact parameter set. With each 6 € ©°
is associated a piecewise continuous feedback admissible control, denoted
g(-) : R* + U'. We assume that this feedback controls varies contin-
uously with 6. A policy is a mapping v : E — ©*. Once a policy is
chosen, the feedback control used between two successive random times
tn and t,41 is defined by

v(t) = Dyc(ea)) (W(2))-

We assume that the process has good ergodicity properties and in par-
ticular

Assumption 2.1 For each admissible feedback control ig(+), 8 € O, the
set of functions {A%(-),h(-) € C3(X)} is measure determining. Equiv-
alently, the equation

W(e,h) = ((0),h) + /O (A%h,i(s))ds, h() € C3(X)

has a unique weakly continuous probability measure valued solution 1/39 ()
for each initial (probability measure) condition v*(0).

It will be convenient to permit randomization of the parameter choice
at any decision time. We consider that for each i € E the parameter set
©' belongs to a probability space and that a policy associates with each
possible mode i € E a probability distribution m(i,d8) over ©°.

Associated with an admissible randomized policy m(-) we define the
long term average reward

Je(m(-))
= liminfEm()[ / /@ LE®)( (z(t))m(£(t), dO) dt|z(0), £(0)

T—o0 £(t)



448 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

We are interested in the behavior of the infimum value
3 = supJ(m()), (2.1)
m(-)

when € = 0.

3. Convergence to a limit-control problem

In this section we define a limit-control problem, when the time-scale
ratio ¢ tends to zero and recall the convergence theorem obtained in
Filar and Haurie, 1997 [6]. This theorem asserts that the optimal aver-
age reward of the perturbed problem converges to the optimal average
reward of the limit-control problem, when the time-scale ratio tends to
Z€ero.

3.1 The fixed-¢ control process

Consider the fixed-£ control process z(-|¢), when & = i, which is asso-
ciated with the It6 equation

dz(t) = fYz(t),u(t))dt + o'dz(t). (3.1)
ut) € U (3.2)

The differential operator of the fixed-{ process is denoted A} and defined
by

0 - 1 92 -
u - t v 112
(A9)E) = 2 Y@f @w) + 5 s(@) o).
Assumption 3.1 For each admissible feedback control iig(-), 6 € ©°
and each initial condition x(0) = xo, (3.1) has a unique, weak sense,
solution and a unique invariant measure vj(-).

3.2 The limit-control problem

We make the following strong ergodicity assumption on the &-process.

Assumption 3.2 For any z and vector (u;)icg € MicgU? the discrete
state continuous time Markov chain with transition rates g;j(z,u;) has
a single recurrence class.

For each possible discrete state 1 € E we consider the fixed-{ con-
trolled diffusion process associated with an admissible feedback control
Ug(-). Its It equation is

dz(t) = fi(z(t),de(z(t)))dt + oida(t).



Singularly perturbed hybrid control systems 449

According to Assumption 3.1 there corresponds an invariant measure on
R", denoted vg(dz), such that

/Xu};(dx) = L

We can then construct a Markov Decision Process (M D P) with state
space E and action space ©%, i € F, where the transition rates and the
cost rates are given by

Bij(ﬂ) = /Xq,-j(x,ﬂg(a:))vé(dz), 1, €EE
L(i,0) = /XLi(z,ﬂg(x))u;(dx), 1€ F,

respectively. Now, due to the strong ergodicity property of Assump-
tion 3.2, we can associate with a randomized policy m(-), an invariant
measure on E denoted {u*(m); 1 € E} and verifying

0 = Sum) [ Byo)mi,d)

icE

1 = Y pi(m)

i€l

Since we are interested in the limiting behavior as ¢ — 0, the natural
Limit-Control Problem to solve is the following finite state ergodic cost
MDP

Jr = 1nfj( )
= mf (¢,8)m(i, db).
£ o

The two following assumptions are needed to insure convergence in the
space of probability measures.

Assumption 3.3 For any sequence of admissible randomized policies
{m&(-)}, there is a function 0 < §(z) — oo when || = o0, a K; < 00
and A, - 0 as € — 0 such thatAiE—)O and

t+AE
sup — / f(s))]ds < K; < oo.
>0 Ac
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Assumption 3.4 For each €, > 0 of a decreasing sequence ¢, — 0

there is an optimal (for the reward functional (2.1)) admissible random-

ized policy m? (-) such that the corresponding set {(z} (-),&: (-)),n =
1,...} is tight.

The proof of the following theorem can be found in [6].
Theorem 3.1 Under Assumptions 2.1-3.4 the following holds
gl_I)I(l) |[J*=JI| = 0.

This result means that the optimal average reward for the perturbed
hybrid problem converges, when ¢ tends to zero, to the optimal average
reward of the limit-control problem.

4. Numerical approximation scheme

In this section, following Kushner and Dupuis, 1992 [12], we propose
a numerical approximation technique for the hybrid control problem.
Then, following Abbad et al., 1992, [2], we derive a limit problem when
€ tends to zero.

4.1 The Markov decision problem

The ergodic cost stochastic control problem identified in the previ-
ous section is an instance of the class of controlled switching diffusion
studied by Ghost et al., 1997 [8]. The dynamic programming equations,
established in the previous reference as a necessary optimality condition
take the form

J = max Li(z, u) +s§quxu[V z,5) — V(z,i)]
VE=)

2
+%V(m,z’)f (z,u) + ;0 %V(m z)} i€ FE (4.1)
where V(z,-) is C? in z for each 7 in E and represents a potential value
function and J is the maximal expected reward growth rate.

This system of Hamilton-Jacobi-Bellman (HJB) equations cannot, in
general, be solved analytically. However a numerical approximation
technique can be implemented following a scheme described in [12].
The space of the continuous state is discretized with mesh h. That
means that the variable zj belongs to the grid X, = {z{i", zit +
h,zP0 + 2h, ..., 202} Denote ey the unit vector on the zj axis and
X =X x Xy x--- x Xg. We approximate the first partial derivatives
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by finite differences, taken “in the direction of the flow”, as follows:

o V(eterh)=V(z) ;¢ i >0
V(@) 2 vig-Vie—erh) s (4.2)
Oxy, —@—h@e—") if ¢ < 0.
The second partial derivatives are approximated by
0? V(z + exh) + V(z — exh) — 2V (x)

We define the interpolation interval as

2
Aty = Q—,
Qn
where
- K -
Qn(z,iu) = eq'(z,wh*+Y_{of +h|fi(z,u)|},
k=1
¢(z,u) = ) gij(z,u)
i
and

Qh = math(a:,z,u)

sy

We define transitions probabilities to neighboring grid points as follows

% 4 hfi(z,u)t

prl(z,1), (z £ exh,,i)lu] = ~ , (4.4)
Qn

pl(,i), (@) = en?B®Y L (4
Qh.

pl(a,i), (@] = 1— L&EY) (46)
Qn

where fi(z,u)" = max{f(z,u);0} and fi(z,u)” = max{—f*(z,u);0}.
The other transitions probabilities are equal to zero. The possible tran-
sitions are represented in Figure 28.1, for an example with card(F)=3
and K = 2.

If we substitute in the HJB-equations (4.1) the finite differences (4.2)
and (4.3) to the partial derivatives, after regrouping terms and using the
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i=1 i=2 i=3

Figure 28.1. Transitions in the grid set.

transition probabilities (4.4), (4.5) and (4.6), we can formulate the fol-
lowing associated discrete state MDP dynamic programming equation:

oty + W(z,i) = max{ D palle,), (&, DlW (a',)

+ 3 pl(a, i), (2, DWW (2,5) + AtaLi(z,w) },
JF
reX, i€E. (4.7)

In this discrete state MDP, the term g approximates the maximal ex-
pected reward growth rate J and the functions W(z,j) approximate,
in the sense of weak convergence, the potential value functions V (z, j).
Solving this MDP gives thus a numerical approximation to the solution
of the HJB-equation (4.1).

If we discretize the space of the control with mesh h, (uy € Uy =
{uin ymin 4 b, uW0 4 2k, ..., ul?*}) we obtain an MDP with finite
state and action spaces. The optimal control law of this MDP can be
obtained through the solution of the following linear program (see de
Ghellinck, 1960 and Manne, 1960 [4] and [14]):

mM;;;Li(z,u)Zi(x,u) (4.8)

st
>3 Y Gillwi) (@ ) Z (@) = 0 o' €X, jER (49)
o ;;;mm%=l (4.10)

Zi(z,u) > 0, (4.11)
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where G5 [(x,%), (', j)u] denotes the generator of the MDP, defined as
follows:

oul(z,4), (z,9)|u] =1 if (z,i) = (2',5)
pil(z, 1), (2, 7)|u] otherwise.

Then the steady state probabilities will be defined as
Pz,i] = Z Z'(z,u)

and the conditional steady-state probabilities, given a mode 7 are

>, 24z, u)
Y22 (mu)

One should notice that the linear program (4.8-4.11) will tend to be ill-
conditioned when ¢ tends to be small since coefficients with difference
of an order of magnitude % appear in the same constraints.

Plz|i] =

4.2 The limit Markov decision problem
The generator of the MDP can be written

il(,9), (2", §)u] = Byl(z,9), (', j)u] + eDn[(z,9), (z, 5)|u] + ofe),

where Bj[(z,1), (¢',7)|u] is the generator of a completely decompos-
able MDP, with card(FE) subprocesses which do not communicate one
with the other (ie. if i # j Bp(z,7),(z',5)|u] = 0 Vz,z’) and
eDy[(z,1), (z',7)|u] is a perturbation that links together these card(E)
sub-blocks.

For singularly perturbed systems, the optimal solution of the limit
MDP is, in general, different from the optimal solution of the initial
MDP where ¢ has been replaced by zero. However, the theory developed
by Abbad, Filar and Bielecki (in [1] and [2]) offers tools to handle the
limit of singularly perturbed MDP. Concretely, when ¢ tends to zero
the optimal control law of the MDP (4.7) can be obtained through the
solution of the following linear program (see [2]):

maxZZZLi(w,u)Zi(m,u) (4.12)
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S.t.
Y Bul(z,i),(@,)luZ (z,u) = 0 o' €X, icE (4.13)
>33 Dille ), (@)l Z (@w) = 0 jeEB (4.14)
222 ey =1 (4.15)

Z(z,u) > 0 (4.16)

Indeed this linear program exhibits a typical bloc-diagonal structure in
the constraints (4.13). The constraints (4.14-4.15) are the so-called cou-
pling constraints. In Section 5 we will apply a decomposition technique
to exploit this structure. It should be noticed that the ill-conditioning
has vanished since the variable ¢ doesn’t appear in the linear program.

5. A decomposition approach for the limit MDP

In this section, following Filar and Haurie, 1997 [6] and Filar and
Haurie, 2001 (7], we derive for the MDP (4.12-4.16) a decomposition
approach which exploits the bloc-diagonal structure. We then explain

how this decomposition can be implemented using the Analytic Center
Cutting Plane Method (ACCPM).

5.1 The dual problem

The dual problem of the linear program associated with the limit
MDP (4.12-4.16) writes

min T (5.1)
v, 6T
s.t.

T> Li(z,u) - Z Bp[(z,1), (z',1)|u]g(’, )

=3 Y Dal(e,i), (@ )ulp(i) i€E, zeX,ucl. (52)
j

The constraint matrix in the left-hand-side of (5.2) has a special struc-
ture. The terms associated with the variables ¢(z’,7) form independent
blocks along the main diagonal. The terms associated with the variables
() form a rectangular matrix that links all the blocks together.

In this formulation we may also recognize the approach proposed in
[2], under the name Aggregation-Disaggregation. Indeed, if we define the
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modified costs

(4, z,4,u) = Li(z,u) - ZZDh[m o lulpG)  (53)

then the expression (5.2) corresponds to a set of card(E) decoupled
MDPs. More precisely, the problem can be rewritten as
min T (5.4)
¥, 6, T
s.t.

T > T(y,,4,u) — Y _ Bul(z,i), («',9)[ulg(z’,7)

i€EEB, zeX, ueld. (55)

Now, for each i € E, (5.5) defines a decoupled MDP with modified
transition cost (5.3).

The formulation (5.4)—(5.5) is also amenable to Benders decompo-
sition (see Benders, 1962 [3]). Indeed, fixing the variables #(j), the
minimization in ¢(z’,7) and T is equivalent to

X(¥) = maxxi(¢) (5.6)
where the functions x;(¢), given by
xi(¥) = min T (5.7)
s.t.

T > (¢, 2,i,u) — ¥ _ Bal(z,i), (z/, ) |u)p(e,i) z€X,ueld

(5.8)

are the value functions of card(F) independent ergodic MDPs with cost
II(v, z,1,u) and transition kernel By[(z,%), (z',7)|u]. It is easy to show
that the functions x;(1) are convex and so is x(v) as the pointwise
maximum of convex functions.

Since the functions are also optimal values of linear programs, one
should realize that the optimal dual variables make it possible to com-
pute a subgradients X;(¥) € Ox; at 9, for i € E as well as a subgradient!
X(v) € Ox at ¢ with the property

X(%) > x(%) + (X($), 9 ~ 9). (5.9)

The elements of dx can be computed as follows: Let A(%) C {1,...,card(E)} be the set
of indices of active functions, i.e. those that satisfy xi(¥) = x(¥) = max;cg xi(¥). Then

X(9) € oy iff X(9) = Z:GA(¢)’\ X; (), for X;(¥) € dx; and X; >0, ZzeA(z/;)’\ =1.
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The optimization problem miny x (1) is convex and nondifferentiable. A
procedure that computes the value x() and the associated subgradient
X(¢) is called an oracle. The subgradient inequality (5.9) defines a
so-called cutting plane.

5.2 ACCPM

There are many possible approaches for solving the convex nondif-
ferentiable problem miny x(1) (see Goffin and Vial, 1999 [10] for a
short survey of these methods). In the present case we used ACCPM,
a method developed by Goffin et al. 1992 [9] around the concept of
analytic center (Sonnevend 1988)2. This is a cutting plane method, in
which the query points are the analytic centers of a shrinking sequence
of localization sets. Let {¢"}n,en be a set of query points at which the
oracle has been called. The answers x (") and X (¢") define a piecewise

linear approximation XN : Reard(E) _, R to the convex function ¥,
X" () = max {x (") + (X ("), 9 - ¥")}. (5.10)

Since x(1) < x¥ (1), any lower bound 7;

m < min XV () = min {CIC > x (9") + (X ("), = ¥") ,¥n € N}
(5.11)
is also a lower bound for x(1).
On the other hand, the best solution in the generated sequence pro-
vides an upper bound m, for the convex problem, i.e.
mu = min {x (47} (5.12)
For a given upper bound m,, we call localization set the following
polyhedral approximation

LV(m) = {(s,%) : m>=¢, ¢ > x (@™ +(X (W), —¢"), Vn E(’svig;)
Note that, for any optimal solution 9*, the pair (x(¢*),1*) belongs to
all the sets £V(m,). The analytic center of £LV(m,) is defined as the
unique pair (x,%) which maximizes the product of the distances to the
N + 1 linear constraints defining (5.13).

We can now summarize the ACCPM algorithm for our special case.

2It is beyond the scope of this paper to detail ACCPM. Interested readers will find a full
account of the theory in [10]. The implementation is described at length in the thesis of Du
Merle 1995 [5], while a library of programs to implement the method is presented in [11].
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1. Compute the analytic center ((,%) of the localization set £V (m,)
and an associated lower bound 7.

2. Call the oracle at ({,%). The oracle returns x(¢) and an element

X () € 0x(v) that defines a valid cutting plane.
3. Update the bounds:

a) my, = min{X(—d;)’ Tu}
b) m = max{m, m}.

4. Update the localization set with the new upper bound and the new
cutting plane.

These steps are repeated until a point is found such that m, — m falls
below a prescribed optimality tolerance.
The above procedure introduces one cut at a time. However one

should note that the oracle always computes the card(FE) values x;()

and the vectors X;(1). Furthermore the inequalities
¢ 2 ) + (Xi(9), ¥~ 9)

are valid in the sense that they do not exclude optimal solutions. This
information can therefore be added to the definition of £V (m,) to accel-
erate convergence.

6. Example

We propose to study an example of a plant producing one good with
the help of two production factors and subject to random changes of
the market price. This example is a special instance of the class of
the two-time-scale hybrid stochastic systems we presented in Section 2.
The discrete variable £ describes the state of the market, which influ-
ences the profit derived from the produced good. We suppose that we
have four different market states, so the &é-process takes value in the set
E = {1,2,3,4}. The continuous variable z € (R")? describes the accu-
mulated stock of the two different production factors. More precisely,
Zk, k = 1,2 corresponds to the number of employees of type k.

The output is determined by a CES production function®

W

Y (e1,22) = (nlz] ™ + (1 = m)lzal ) 7,

33ee, for example, Layard and Waters, 1978 [13] Section 9-4
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where —1 < 8 < oo is the substitution parameter (3 # 0) and 0 < 7 < 1
is the distribution parameter. The profit rate structure is described by
the function

L8O (2 (t), za(t), ua (£), ua(t))
= ¢(&(t)Y (z1(t), 22(t)) — a121(t) — azza(t) — A1z3(t) — Agz3(2)
- b1U1 (t) — b2u2(t) - Blu%(t) - BQU%(t),

where c(¢) is the selling price, given the market is in state ¢+ € E,
arTk(t) + Apzi(t) is a cost function, related to the holding of a stock
zx(t) of employees and byuk(t) + ByuZ(t) is a cost function related to
the enrollment effort, ug(t), of new employees.

We assume that the the price is influenced by the level of production
of the firm. We rank the 4 market states by increasing selling price and
we suppose that only jumps to neighboring market states can occur.
More precisely, the £-process transition rates are defined by

€qi(i+1)(71,22) = €(Bi — &Y (71,72))
eqi(i-1)(z1,22) = €(D; +diY(z1,72)).

The parameter ¢ is the time-scale ratio that will, eventually, be consid-
ered as very small. The positive terms e;, F;, d; and D; are parameters
which depend on the market state 1 € E. We see that the transition
rate toward a highest market price is negatively correlated to the pro-
duction level, whereas the transition rate toward a lowest market price
is positively correlated to the production level.

The dynamics of the employees is described by

dzi(t) = [uk(t) — oz (t))dt + ordwi(t), k=1,2.

We consider the set of parameter values given in Table 28.1. We solved
the limit model, when ¢ tends to zero, with the decomposition method
described in Section 5.

The steady state probabilities obtained from the solution of the limit
control problem in the approximating MDP are shown in Figure 28.2.
As expected, the higher the selling price the higher the production level.
For comparison, we considered also the model associated with a fixed
&-process, that is, the model where the selling price stays the same for-
ever. For the fixed £-process, the steady state probabilities are shown
in Figure 28.3. Given a market state, the production level is higher for
the model associated with the fixed &-process than for the limit model.
This comes from the fact that, when the price can change, the proba-
bility that it will increase, resp. decrease, is negatively, resp. positively,
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Table 28.1. List of parameter values for the numerical experiments.

e; = 0.002 Vie E
v = 1.0 E, = 04 Vie E
n = 0.5 di = 0.004 Vie E
B = -06 D; = 015 Vie E
a; = az = 04 a; = az = 005
A = A2 = 0.004 oy = o2 = 30
bh = b = 0 ¥ = ¥ = 100
Bi = By = 005 |2 = a2 = 0
1) = 1.3 h = 10/3
c(2) = 1.6 uf®* = uP** = 10
c3) = 1.9 uft = Wt = 0
c4) = 2.2 h, = 2

correlated with the production level. The effect of the production level
on the price can be seen in Figure 28.4. In this Figure, we displayed, for
the limit model, the steady state probabilities as a function of the state
for two policies, namely the optimal policy and the optimal policy of the
model with fixed ¢-process (note that this second policy is, in general,
not optimal for the limit model). We see distinctly that the price tends
to be higher in the first case (where the production level is lower) than
in the second case.

The maximal expected reward growth rate J equals 27.6. The po-
tential value functions are shown in Figure 28.5, for the case when the
market is in the state ¢ = 3. For the other states, the value functions
are similar and therefore not displayed.

The optimal policy for the enrollment of new employees is shown in
Figure 28.6, when the market is in state ¢ = 3. For the other states, the
optimal policies are similar and therefore not displayed.

7. Concluding remarks

In this paper we have implemented a decomposition method for the
resolution of hybrid stochastic models with two time scales. This me-
thod, which was proposed by Filar and Haurie, 1997 [6] and by Filar
and Haurie, 2001 [7], reformulates the initial problem as an approximat-
ing singularly perturbed MDP that can be solved as a structured linear
programming problem. The originality of this paper was the coupling of
ACCPM with a policy improvement algorithm to achieve a decomposi-
tion in order to exploit the special bloc-diagonal structure.
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Figure 28.2. Steady state probabilities for the limit model, given the market state i.

Figure 28.3. Steady state probabilities for the fixed £&-process, given £(¢) =i Vit > 0.
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Optimal policy Acting as if the price would never change

Figure 28.4. Steady state probabilities as a function of the state i.

Figure 28.5. Value function V(z, 3)

Figure 28.6. Optimal policy u(z), i = 3.

461



462

MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

References

[1]

[2]

[3]

[4]

[5]

[6]

7]
8]

[9]

[10]

[11]

Abbad, M. (1991). Perturbation and Stability Theory for Markov
Control Problems. Ph.D. thesis, University of Maryland at Balti-
more County, Dept. of Mathematics.

Abbad, M, Filar, J.A. and Bielecki, T.R. (1992). Algorithms for sin-
gularly perturbed limiting average markov control problems. IEEE
Transactions on Automatic Control, 37: 1421-1425.

Benders, J.F. (1962). Partitioning procedures for solving mixed-
variables programming problems. Numerische Mathematik, 4: 238—
252.

de Ghellinck, G.T. (1960). Les problé de décision séquentielles.
Cahier du Centre d’Etudes de Recherche Operationnelle, 2: 161~
179.

du Merle, O. (1995). Interior points and cutting planes: develop-
ment and inmplementation of methods for conver optimization and
large scale structured linear programming. PhD thesis, Department
of Management Studies, University of Geneva, Switzerland. (in
French.)

Filar, J.A., and Haurie, A. (1997). Optimal ergodic control of sin-

gularly perturbed hybrid stochastic systems. Lectures in Applied
Mathematics, 33: 101-126.

Filar, J.A., and Haurie, A. (2001). A two factor stochastic produc-
tion model with two time scales. Automatica, 37: 1505-1513.

Ghost, M.K., Arapostathis, A., and Marcus, S.I. (1997). Ergodic
control of switching diffusion. STAM Journal of Control and Opti-
mization, 35(6): 1952-1988.

Goffin, J.-L., Haurie, A. and Vial, J.-P. (1992). Decomposition and
nondifferentiable optimization with the projective algorithm. Man-
agement Science, 38: 284-302.

Goflin, J.-L. and Vial, J.-P. (1999) Convex nondifferentiable opti-
mization: a survey focussed on the analytic center cutting plane
method. Technical report, Logilab, Department of Management
Studies, University of Geneva, Switzerland. To appear in Optimiza-
tion Methods and Software.

Gondzio, J., du Merle, O., Sarkissian, R., and Vial, J.-P. (1996).
ACCPM—a library for convex optimisation based on an analytic
center cutting plane method. Furopean Journal of Operational Re-
search, 94: 206-211.



Singularly perturbed hybrid control systems 463

[12] Kushner, H.J. and Dupuis, P.G. (1992). Numerical Methods for
Stochastic Control Problems in Continuous Time. Springer Verlag,
New York.

[13] Layard, P.R.G. and Walters, A.A. (1978) Microeconomic Theory,
McGraw Hill, New York.

[14] Manne, A. (1960). Linear programming and sequential decisions.
Management Science, 6 (3): 259-267.



Chapter 29

THE EFFECT OF STOCHASTIC
DISTURBANCE ON THE SOLITARY
WAVES*

Junping Li
Changsha Railway University
Hunan, 410075, P.R.China

Zhenting Hou
Changsha Railway University
Hunan, 410075, P.R.China

Weiguo Zhang
University of Shanghai for Science and Technology
Shanghai, 200000, P.R.China

Zaiming Liu
Changsha Railway University
Hunan, 410075, P.R.China

Abstract  This paper is devoted to studying the effect of stochastic disturbance
on the kink profile solitary wave solution of the equation: wutt — 0uzzt —
kuzz + aus + buuy = 0(6 > 0) by using the theory of Markov Skeleton
processes established recently by Z.T. Hou, Z.M. Liu and J.Z. Zou [1].
The transition probability and stability of the solution are given.

Keywords: Markov Skeleton process, Stochastic disturbance, Kink profile solitary
wave.

*Supported by the national natural science fund of China (19871006).

465

Z. Hou et al. (eds.), Markov Processes and Controlled Markov Chains, 465-474.
© 2002 Kluwer Academic Publishers.



466 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

1. Introduction

The non-linear wave equation
Ut — 5u”t - kum + au; + b’U/U,t = 0, ((5 > 0) (11)

is an important mathematical model of studying quantum mechanics,
vibration of a viscous rod, and nerve conduct, etc. [4, 5, 6, 7, 8].

Recently, W.G. Zhang [3] successfully provided the kink profile soli-
tary solution of equation (1.1). It is well known that, the developing
process of every thing should be a stochastic process because of the dis-
turbance from some random factors around it. This paper is devoted
to studying the effect of stochastic disturbance on kink profile solitary
wave solutions of equation (1.1).

Let (2, F, P) be a complete probability space, (E,£) be a polish space
and X £ {X(t,w);t < 7(w)} be a right-continuous and left-limit stochas-
tic process on (2, F, P), with values in (E, ).

For convenience, we extend the state space E to E=EuU {b} by
adding an isolated state b to E, as usual, we get a new polish space
(E,£), and the process X is also extended to X = {X(t,w);0 < t < oo}
by

N ] X(tw), 0<t<T(w)

X(t,w) = { b, (W) < t< 00 (1.2)
Definition 1.1 The stochastic process X = {X(t,w);0 <t < 7(w)} is
called a Markov Skeleton process if there ezists a series of stopping times
{7n;n > 0} such that

(1)) 0=19<71 <719, T =limp 00 Tn, P-a.e..

(ii) For each T, and any bounded £[0°°)-measurable function f on
E0.00)

E[f(X(ta+)Wr] = E[f(X(a+)|X ()],  P-ae onQ,
where Q= {w; Th(w) < 00}, and

N, 2 {A;Aﬂ {r, <t} € 0{X(5);0 < s <t} for any t > 0}
is the o-algebra on Q.

Definition 1.2 A Markov Skeleton process X is called a non-homogen-
eous (H,Q) — process, if there exist {h™(t,z,A);n > 1} and
{q™(t,z, A);n > 1} such that
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(i) Forn>0,t>0, A€&

E[X (Tn +1) € A, Tug1 — Ta > t|X ()] = B (8, X (1), A)
(i) Forn>0,t>0, A€&

E[X (tn41) € A, g1 — Tn < HX ()] = ¢V (2, X (1), A)

where {Tp;n > 0} is the series of stopping times as in Defi-
nition 1.1, h™(t,z, A) and ¢™(t,x, A) are non-negative binary
measurable functions for fized A, and pre-distributions for fixed t
and x.

Let ¢ (x,A) = lim;_,o0 ¢ (¢, 2, A), then by Definition 1.2(i), one
can see that {X(7,);n > 0} is a non-homogeneous Markov chain with
transition probability {¢™ (z, A);z € E,A € £,n > 1}.

Define

Ug 2 {R|R(z, A) is non-negative,
R(-, A) is £ — measurable for fixed A,
R(z,-) is a measure on (E,£) for fixed z},

the product operation in Ug is defined by
R-S(z,A) =/ R(z,dy)S(y, A), for R,S € Ug
E

For z € E, A € £, define
P(t,z,A) = P(X(t) € A|X(0) =z)
PM(t,z,A) = P(X(1n+1t) € AX(1y) =), n>0

o0
e MP(t,z,A)dt

P)\(.’E,A) = /
000

P™(t,0,4) = / eMpM) (¢ 1. A)dt, n>0
000

W (z,4) = / e MR (¢, 2, A) dt, n>1
OOO

q/(\")(:n,A) = /0 e"’\tdq(")(t,x,A), n>1

Theorem 1.1 (Hou, Liu and Guo [2])
{P)(‘n) (z,A);z € E,A € E,n > 0} is the minimal non-negative solution
of non-negative equation

X(M(z,4) = / ¢\" (2, dy) XD (y, A) + h{* (g, 4),
FE
n>0,reE,Ac& (1.3)



468 MARKOV PROCESSES AND CONTROLLED MARKOV CHAINS

thus

P (e, 4) = (Z (H Qm) -Hn+m+1+Hn+1> (, 4) (14)

m=1 \k=1

in particular

P\(z,4) = P(z,4)

o0 m
S (H Qk> Hia(z, 4) (15)
m=0 \k=0
where
Qo = (da(z)) € UE,
Qm = (qf\m)(w,A)) € UEg, m>1,
Hn, = (W"(z,4)els, m>1
Proof Refer to [2]. |

From Theorem 1.1, we know that, the distribution of X is determined
uniquely by (Hypy, Qm)2_;, so we also call X a (Hp, Qm)se_;-process.

In the case that Q,, = Q1, H,, = Hy(m > 1), the associated process
is homogeneous (H, Q)-process.

Definition 1.3 A Markov Skeleton process X = {X (t);t < 7} is called
a piecewise deterministic (Hp, Qm)So_, -process, if

(i) X is a (Hpy, Qm)So_-process with respect to {T,;n > 0};

(ii) There ezists a series of measurable functions {fn(z,t);n > 0}
defined on E % [0,00), such that for each n > 0,

X(t) = fu(X(1a),t = Tn), € [Tn,Tny1] (1.6)

2. The effect of stochastic disturbance on the
solitary waves

Now we discuss the effect of stochastic disturbance on the kink profile
solitary wave solutions of equation (1.1).

It is easy to see that the solitary wave solution u(z,t) = u(z — vt) =
u(€) of (1.1) must solve the ordinary differential equation

v —k a b _
() - Ju€) - ¥ = ¢ (2])

u'(§) + 55




The effect of stochastic disturbance on the solitary waves 469

where c is a constant. by [3, Theorem 5.3.1 and Theorem 5.4.2], (1.1)
has a unique bounded solitary wave solution which is strictly monotone,
if v? # k and

2 _ 2
(” k) > 46v/a? — 26bc (2.2)

v

For convenience, we only consider the stochastic disturbance on the
half line ¢ > 0.

Assume v? # k and (2.2) hold, we also assume that ”QT_" < 0 and
b < 0 without loss of generality. By [3, Theorem 5.3.1], u() is strictly
decreasing and moreover

{“(‘00) = limg ;oo u(f) = -

a 1
I )
u(+00) =limug, () =-%+ % a? — 26bc 23)

Let f(y,&) denote the solitary wave solution satisfying u(0) = y.

Suppose {7,;n > 0} is a series of random times defined on a complete
probability space (,F,P) : 0 =71 <7 <1 < -, T T +00. At
each 7, the solitary wave of (1.1) has a jump. Suppose the distribution
after n'* jump is 7(™, then the solitary wave solution of (1.1) must be
a stochastic process, say X (£), thus

P (X (1) € AlX (a1, a1, 7) = 7(4), A € B((u + 00), u(~o0))
(2.4)
and for each n >0

X (&) = f(X(7n), € = 7a), € € [n; Tn41) (2.5)

By Definition 1.3, X (£) is a piecewise deterministic (Hpm, Qm)oo—1-
process with respect to {Tn;n > 0}. So the discussion of f(y,&) (£ > 0)
under the effect of stochastic disturbance is equivalent to the discussion

of X(&).
Let
Gm(E,y) £ Pty — T < EX () =),
GE\"“)(y) A /oo e~ MdG™ (¢, y),
S0

= 0a(f(,9)- 1 -G"(¢,y)) (2.6)
q(n+1)(£’y7A) = (X(Tn+1) €A, Thy1 —Ta < ng(Tn) = y)
= Gt y)- (1 (A). (2.7)

W D(E,y, 4) = P(X(1n +8) € A, Tap1 — Tn > €1 X (1) =)
P
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Noting that Qo - H1(y, 4) = hf\l)(y,A) and

(H Qk) Hp1(y, A)

GV(y f7r D(d2)hQ (2 A), if m=1
G( (v) [ [ 7®)(d Hl ] [ 7™ (dz h(m+1)(z,A),
ifm>1
By Theorem 1.1, we have

Theorem 2.1 For every y € (u(+00),u(—00)), the transition probabil-
ity of X (&) is given by

Py(y,4) = h{(y,4 i lmﬂ/ ®)(dz)G5 (= )}
: / 2™ (d2)h™ D (2, 4) (2.8)

where [[h_; = 1.

Theorem 2.2 Suppose that ©=£ < 0, b < 0 and (2.2). Let {7();n >
1} be a series of probability measures on (u(+00),u(~0)). Then for
every y € (u(400), u(—00))

/0 e R, (X (6)) de
_ /0 T e f(y,6)(1 = GU(e, ) de

+G§ 1) °° [H/ ®)(4 (k+1 )]

. /0 e / 72,6 (1= 6™, 2)) - ™ (dz) de
(2.9)

>

Ey X

In particular, if GM(&,y) =1 —e Y (n > 1), then
o0
EpX = [T et o
0

' mi (A—_‘:—ﬁ)m [ et n e ag

(2.10)
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thus
E,X(§) = e"‘gf( ,€)

o0
m 1

+e —r)r{™(dz) dr

m=

(2.11)
Proof By (2.6) and (2.8)

E, X = /0 e M Ey[X(6)) d¢
0o m—1
= /zhs\l)(y,dz G(l) Z {H /W(k)(dz)GE\kH)(Z)]
m=1 Lk=1

: / / 2B (w, dz)n ™ (du)

= [T (1-6Wiew) d

m~—1
+GE\1)(y) Z [H /ﬂ(k)(dz)GE\kH)(z)]
k=1

m=1

[T e [ 1) (1- 6 ) wmau)

0

In particular, if GM(£,y) = 1 — e #(n > 1), then Gg\n)(y) — X—I:_u’
this proves (2.10). Secondly, note that

B\ e BT m
(A+u) /0 T moyt %

It is easy to get (2.11) by using Laplace transform. |

Theorem 2.3 Suppose that the conditions of Theorem 2.2 hold and
moreover, G (€,y) =1 —e # (n > 1)

(i) If E[X ()] = [ yn™(dy) — u(+00) as n 1 0o, then
52:{100 Ey[X(£)] = u(+00), for any y € (u(+00),u(—00)) (2.12)
(i) If T™ () = n(-)(n > 1), then for any y € (u(+00),u(—o0)),

Jim_ B, [X ()] = /O ehr / fr)m(dz)dr  (2.13)

Proof It can be proved from (2.11). [
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3. The effect of stochastic disturbance at fixed
site

Now we turn to study the effect of stochastic disturbance at fixed site
z.
For fixed z, the solitary wave solution of (1.1) is u(z,t) = u(z — vt).
Let u(z,t,y) denote the solitary wave solution satisfying u(z,0) = y.
Suppose {7,;n > 0} is a series of random times defined on a complete
probability space (,F,P) : 0 =719 < 1 <7 < -, T T +00.X =
{X(t);t > 0} is a (Hpm,Qm)X_,-process with respect to {r,;n > 0}
such that

X(t) = u(z,t — 0, X (1)), for t € [Tn, Tnt1) (3.1)

and moreover, there exists a series of probability measures {n(™;n > 1}
on (u(+00),u(—00)) such that

P(X(13) € AlX(Ta-1), Tn-1,7n) = 7™ (4) (3.2)
Let
G (t,y) = P(Tns1—7a < tX(1m) =), and
GE\"H)(y) — /ioe‘)‘th("“)(t,y),
SO

KDty A) = P(X(tn+1) € A, Tny1 — Tn > t|X (1) = )
= (SA(U(-T,t,y ) ' (1 - G(n+1) (ta y))v (33)
@™ (t,y,4) = P(X(rar1) € A Tns1 = Tn S X (1) =)

= GO (t,y)r("t)(4). (3.4)

Theorem 3.1 Suppose the conditions of Theorem 2.2 hold, and
{x™;n > 1} is a series of probability measures on (u(+00),u(—00)).
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Then for every y € (u(+00), u(—00)),
Ey X

= / ” e ME,[X (t)] dt
0

= /oo e Mu(z, t,y)(1 — GY(t,y)) dt
0

+6P(y [H / ) (d)GH ) (2 )}

/ ’\t/ u(z,t,2) (m"'l)(t,z)) -7(™ (dz) dt
(3.5)
In particular, if G™(t,y) = 1 — e~#(n > 1), then

o0
E X = / e~ Oty (z, ¢, y) dt
0

i ( )m /0 " ke / u(z, t, 2)m™ (dz) dt

m=1

(3.6)

thus

Ey[X(t)] = e—ﬂt : u(z, t, y)
et um t
+e Z m/{) sm_l/u(:c,t —s,2)7™ (dz) ds
m=1

(3.7

Proof The proof is similar to that of Theorem 2.2. [ ]

Theorem 3.2 Suppose the conditions of Theorem 2.2 hold, and v > 0,
GM(t,y) =1-e(n>1).

(1) If limy, 00 B[ X (Trm)] = limp 00 fzw(m)dz = u(—00), then
lim B, [X(8)] = u(~o0)

(i) If 1™ () = w(-)(n > 1), then

tl_l}I&E X@)] = u/()°° e ¥ /u(:c,s,z)n(dz) ds

Proof Note that u(z,s,y) is increasing in s if v > 0, we can get the
conclusion from (3.7). u
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Chapter 30

INDEPENDENT CANDIDATE FOR
TIERNEY MODEL OF H-M ALGORITHMS

Peide Chen

Institute of Applied Mathematics, Academia Sinica
Research Institute, Railway Campus,
South-Central University, Changsha

Abstract In Tierney’s extended model, if the candidate kernels are independent of
the present states, we found all possible acceptance functions, and dis-
tinguished a subclass for which the associated Markov chains converge
uniformly with some nice rate. We also distinguished some other eas-
ily treated subclasses with some desirable properties of the associated
chains.

Keywords: H-M algorithms; Tierney model

AMS Classfication: 60J05; 60C05

1. Introduction

Originally the motivation of H-M algorithm came from the following
situation: one wants to generate a Monte Carlo sample from a distribu-
tion II either discrete or having density 7 in R*. But the distribution
prod is not easy to sample from directly, and it is quite possible that the
functional form of [[ may be known only up to some unspecified nor-
malizing constant which will be inconvenient to compute directly. One
strategy is to pick some other distribution (which may depend on the
“present” state z) ¢(z,-) which is easy to sample from, and then define
the Markov transition kernel P(z,-) with density on R*\{z}

p(z,y) = a(z,y)q(z,y)
475
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and
P =1- [ plapiy
RF\{z}
where a(z,y), the so-called acceptance probability, is defined by

alz,y) = %ZL‘Z(Z’,;“ if m(z)q(z,y) > 0,
1 if m(z)q(z,y) = 0.

Two special cases have been used much more frequently: one, pro-
posed originally by Metropolis and his co-authors in 1953 [1], requires a
symmetric candidate q(z,y) = q(y, z); the other, proposed originally by
Hastings in 1970 [2], requires an independent candidate q(z,y) = q(y),
which does not depend on z.

In papers of recent years, some authors realized that the concepts work
well for general state spaces with a o-finite reference measure p (see for
example, Tierney, 1994 [5]). In his paper [6], Tierney even worked on
general state spaces without reference measure. He studied a general
acceptance probability a(z,y) ensuring the resulting Markov chain is
reversible, this implies that [] is the invariant measure of the chain, i.e.,
the transition kernel

P(z, dy) = al(z,5)Q(z, dy) + b.(dy) / 11~ a(e,wjQ(,d)

\{=

satisfies the detailed balance relation
[[(d=)P(z,dy) = P(y,dz) [ ] (dv),

or equivalently

[[(@z)a(z,y)Q(z, dy) = aly,2)Q(y, do) [ [ (dy).

Here (F,F) denotes the general state space, [| the target stationary
distribution, @) the candidate transition probability kernel.
Let

Mdz, dy) = [[(d)Q(=, dy),

Tierney decomposed F' x F into a disjoint union of symmetric subset
S € F x F and its complement S¢ such that on S, A and its transpose
AT 2 \T(dz,dy) = \(dy,dz) are mutually absolutely continuous, while
on S¢ they are mutually singular. Thus restricted on S, there exists a
version of the density

Y= NL(dz, dy)
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such that 0 < s(z,y) < oo and s(z,y) = s(y ) holds for all z,y € F

(outside S, define s(z,y) = 1), where As and A} denote the restriction
of A and AT on S respectively. With these notations, Tierney obtained
the following sufficient and necessary condition to ensure the reversibility
of the Markov chain: the detailed balance condition

a(z,y)A(dz, dy) = a(y, r)M(dy, dz)

holds if and only if a(z,y)s(z,y) = e(y,z) on S, and afz,y) = 0 on
S¢, A —a.e.

For an independent candidate, i.e., when Q(z,dy) = Q(dy) does not
depend on z, we find in this paper all possible a described by associating
them with a symmetric function

1 - h(y) _all
o(z,y) = o(z,y)——7—~—, where h(z) =
h(y) d[1+Q)

A chain is called uniformly ergodic, if the convergence from the n-step
transition probability measure P"(z,-) to the invariant distribution []
is uniformly geometric, i.e.,

e -1 <o

for some constants r, C such that 0 <r <1, 0 < C < o0o. Wecall r a
convergence rate, and C a controlled coefficient. They are not unique,
but of course we prefer to choose them as small as possible. If we allow
the controlled coefficient C' to depend on z, the chain is called geometri-
cally ergodic. These definitions are not the original ones but equivalent
to them. Mengersen and Tweedie (1994) obtained an easy to check con-
dition to ensure the independent Hastings algorithm uniformly ergodic:
suppose [[ <« @, then the chain is uniformly ergodic, if and only if

n(z) = % <W < o0, Q—a.s., z €F for some positive real number
W > 0, if this is the case,

e -TI) < 0 -

otherwise the chain is not even geometrically ergodic. It turns out that
their method works well for general state spaces and even for general
acceptance probabilities. Thus we need to discuss how to choose an
acceptance probability making the chain uniformly ergodic with the best
rate, and we distinguish a subclass of acceptance probabilities making
the corresponding Markov chains uniformly ergodic with the nice rate
ensured by this result.
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We also distinguish some other subclasses with special structure which
are easy to treat in some sense and the corresponding Markov chains
having some desirable properties.

2. Independent case in Tierney model
If the candidate kernel Q(z,dy) = Q(dy) does not depend on the
present state z, the detailed balance condition becomes
a(z,y) [[(d2)Q(dy) = ely, 2)Q(dz) [ [ (ay).
Let

M) = [[(do) + Q). h(w) = 1L,

then g% = 1-h(z), and it is clear that Sj = {z : h(z) > 0} is a support
of [T and Sg = {z : h(z) < 1} is a support of Q. Let

Sp=8qNSq={z:0<h(z) <1},

then S = S x Sy is the symmetric subset of F' x F in Tierney decom-
position for A(dz,dy) = [[(dz)Q(dy), and the density

As(dedy) _ h(@)[1-h(y)] g
(z,y) = ’

AL (dz,dy) — h(y)[1-h(z)]
s(z,y) =1 elsewhere.

Thus the Tierney’s extended acceptance probabilities a(z,y) satisfy

a(z, y)h(z)[1 - h(y)] = aly, 2)h(y)[1 - h(z)] on S
and a(z,y) = 0 elsewhere. To solve it, we consider first the case when
a(z,y) is “factorized”, i.e., a(z,y) = ai(z)a(y). We ignore the “zero”
solution a(z,y) = 0, so ai;(z) > 0 for some z € Sp, and az(y) > 0 for
some y € Sy, thus from

ai(z)ea(y)h(z)[l — h(y)] = cr(y)az(2)h(y)[1 - h(z)]

we know o (y) and az(z) > 0 too. Furthermore from

ai(z) hx) _aly) hly) _
az(z)1 - h(z) oa(y) 1 - h(y)

for all z,y € Sy, the constant c is positive, therefore a;(z) > 0 for all

T
z € Sp, and ay(y) > 0 for all y € Sp. Also ap(z) = L2501 (2).

The positive constant ¢ is not important, if a(z,y) = ai1(z)as(y) is a
factorized representation with




Independent candidate for Tierney model of H-M algorithms 479

for ¢ > 0, let of(z) = \/-al( z), a3(z) = ycaz(z), then a(z,y) =
aj(z)as(y) is another factorized representation with ¢ = 1.

It is more convenient to use another choice of ¢ in finding all fac-
torized acceptance probabilities. Notice that «;(-) must be bounded
due to the fact a(z,y) < 1, so we may “normalize” ;(-) by requiring

SUPgeg, @1(7) = 1, then as(z) = % Mz ())al( ), and

a@y) = sy s <1

implies sup,cg, al(y)th()—) < ¢, in other words, a;(y) = O(1 — h(y))
for those y such that h(y) close to one. Now we reach the structure
statement for the factorized acceptance probabilities.

Proposition 2.1 Given any non-negative function ay(z) on F with Sy
as its support and such that
h(z)

sup a;(z) =1, W= sup ai(z) ——— < co.
erA (@) 9:651'?\ 1 )l“h(f)

Then for any ¢ > W, let as(z) = %%al(z), we get a factorized

acceptance probability a(z,y) = ai(z)as(y). Conversely any factorized
acceptance probability can be obtained by this approach.

Usually we take ¢ = W since larger ¢ will make the chain with worse
rate in uniform convergence. For example, if ¢ = sup,¢g, 1f§f 7y < 0

we may take a1 = 1, as(z) = 1%, and get a factorized acceptance

probability a(z,y) % In this example we require h(z) > € >
0 for some posmve ¢ on Sp, which means that we should choose the
candidate Q not “too far away from” the target [], otherwise the chain

will not be uniformly ergodic, this is natural. To give another example
. . 1—h(x)
of factorized acceptance probability, we may take a;(z) = 1= “Wlucs, A(W)
h(z)
supyes, h(u)’
Now turn to the non-factorized case, the structure of general accep-

tance probabilities is similar.

and as(z) =

Proposition 2.2 Given any non-negative symmetric measurable func-
tion o(z,y) on F x F with support S and such that

M = sup o(z,y) hv)

—_— < 00,
(z,y)€S 1- h(y)
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then for any ¢ > M,

1 h(y)
a(z,y) = —o(z,y) 1= h()

s an acceptance probability. Conversely any acceptance probability can
be obtained by this approach.

Proof The first part is straight forward. For the second part, let a(z, y)
be any given acceptance probability. From

ha) 1-hy) _
Toh@ A o

o(z,y)s(z,y) = a(z,y)

we know

o(e5) 2l ) Sy = alt ) = o)

is a symmetric function on S and satisfies

h(y)
sup o(z,y <1< o0,
(z,y)€S ( )1 - h(y)

and we extend it to the whole space by defining it as 0 elsewhere. This
o will give the original a by the approach. [

For independent candidate, the standard H-M algorithm has accep-
tance probability

ay(z,y) = L= P@IRG) )

hz)[1 - h(y)]
the corresponding symmetric function is a5(z,y) = “;?gn A [1—’f(h221/)]’
here the subscription s represents that it is standard but not a general
one. While for factorized acceptance probability a(z,y) = ai(z)az(z),
the corresponding symmetric function is a (z)a1 (y), which is factorized

too. The following lemma shows that the acceptance probability of the
standard H-M algorithm is usually not a factorized one.

Lemma 2.1 Ifas(z,y) = ,3(;;’[(1“:_,1"(%)/\1 is factorized, then ag(z,y) = 1.

Proof Suppose as(z,y) = ai(z)az(y), if h attains its maximum at
some yo € F, then as(z,y0) = o1(z)aa(yw) =1, so ay(z) = le_oi does

not depend on z and we may take a; = 1. But then as(y) = ‘J?‘yza;ly;y =1
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for all y € F. In the case where sup . h(z) is unreachable, take y, € F
such that limy, o0 h(yn) = sup,¢r h(z), then

E,={z:h(z) <h(y)} 1 F as n — 00,
and a; =1 on E,, so oy(z) = 1. ]

Clearly factorized functions are much easier to calculate than others,
so factorized acceptance probabilities may hopefully provide better al-
gorithms in the sense of reducing the total amount of calculations. Next
theorem gives this a theoretical support.

Theorem 2.1 If the acceptance probability is factorized, then for all
positive integers n, the n-step transition probability densities of the chain
are also factorized.

Proof The one-step density is clearly factorized: with p;(z) = ai(z)
and pa(y) = e2(y)q(y) by

p(z,y) = a(z,y)q(y) = ar(z)o2(y)q(y).

Then inductively, if the n-step transition probability density is factorized

p™(z,y) = p™ (2)p" (),
then

P (z,y)

B /fﬂﬂmwm@<)w<>ua+P<xﬂm@wm@@)
[Pl z) / P2(2py"” (2)u(dz) + Pr(a, {z)pi” (=) | p5” (v)

shows that the (n + 1)-step transition probability density is factorized
too. |

Here p is any reference measure on F such that [] < p and Q < ;
while

(& {z}) =1- /F p(z,y)u(dy)

is the probability the chain stayed in put by rejection.

Here we distinguish two kinds of “stay in put”: by rejection and by
acceptance, the later P,(z, {z}) = p(z,z)u({z}) denotes the probability
that the chain stays at the same state x because it happens to be the
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“new” state by sampling and we accept it. If the reference measure p is
non-automatic, this does not happen.

We see that pg")(y) = pa(y) = a2(y)q(y) does not depend on n.
Besides if we take o3(z) = 1 (or any constant in (0,1), then both

p1(z) = a1(z) and

Py(e, {z}) = 1 - pi(2) /F pa(v)u(dy)

do not depend on z too, then inductively, p(ln)(a:) = ¢, are constants for

alln € N. Therefore p(™ (z,y) = ¢,p2(y) for all y # z. Thus the study of
convergence of n-step transition probability reduce to that of a sequence
of real numbers.

3. Convergence rate of independence algorithms

Now we discuss the convergence of the associated chain. As we know
from the general theory of Markov chains, to ensure the n-step transition
probabilities converge to the stationary distribution, the usual starting
point is to assume that the chain is irreducible and aperiodic. Here and
later, we follow the concepts and terminology from Meyn and Tweedie [4]
when our discussion relates to general theory of Markov chains. For the
standard H-M acceptance probability, the chain is irreducible if and only
if [] < @; and if this is the case, the chain is automatically aperiodic
(in fact it is strongly aperiodic). For general acceptance probabilities,
to ensure irreducibility, it is still necessary to have [[ < Q. In the rest
of this paper, we will assume so.

To begin with, we restate the result of Mengersen and Tweedie [3] in
a version we want, it is an extension, but the demonstration is almost
the same, so we omit.

Theorem 3.1 For any acceptance probability a(z,y), if
p(z,y) = afz,y)[1 - h(y)] = Bh(y)
for some positive real number B and all (z,y) € S, then the chain is

uniformly ergodic with the rate 1 — 8. If a(z,y) is “mizfactorized” in
the sense of having the form

a(z,y) = 1Igz.igk[fi(w)gi(y)],

the condition is also necessary, in fact if the condition does not hold, the
chain can not be even geometrically ergodic.
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Clearly the standard H-M acceptance probability

os(z,y) = [1;___]2(_)_ Al
h(z)[1 — h(y)]
is mix-factorized. For a given a(z,y), if we choose the largest possible
B, denoted by f,, then the chain is uniformly ergodic with the rate
B. and controlled coefficient 1. It is natural to choose a so that 3,
become as large as possible. Denote the largest possible 3, by Sy, an
acceptance probability « is called “nice” if 8, = Bp. All such acceptance
probabilities form a subclass, we will call it “the nice rate subclass”.
We use “nice” but not “best”, because the best rate 1 — 3, provided
by Theorem 3.1 may not be “sharp”, the following examples shows that
the chain may uniformly converge at a better rate than the one ensured
by the theorem. Consider the finite state space with three states, let

m=(3%3),9=(}3%1), thenw=(2,1,%) and fy = }. Choose

1 1 1
111
o=} s 5 5 |,
Tt
I 2 2
then
g 7y
a=|1 5 z |J,andP=| 5 = 1 |,
1§ Y z¥
2 2 3 12 12 12
so the largest possible 3 is %, because Pj3 = i2 47r3, (for convenience

of calculation, we use counting measure as the reference measure in the
case of finite state space, so the condition reduces to P;; > f7;). Then

it is easy to see
1 2
—Pl=(-1 - -2
Al — Pl =(A-1) ()\ 2) ()\ 3)

gives the three eigenvalues 1, g, and 1 . Therefore the convergence rate
% is better then % =1- 3, the “best” one ensure by Theorem 3.1.
In general, the supremum of a bounded subset may not be attainable.

But that of {8,} is attainable, the following two theorems give a con-
structive way to get Bp. First we define: By = inf,¢g, W@ then in
Theorem 3.2, we prove that it is the best 3, in the class of all factorized
acceptance probabilities. Finally in Theorem 3.3 we prove that it is the
best B, in the class of all acceptance probabilities.
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Theorem 3.2 In the class of all factorized acceptance probabilities,

_ o h(y)
a(z,y) - ﬁOl — h(y) on S

uniquely provides a chain which is uniformly ergodic with the best rate
1 — By ensured by Theorem 3.1.

Proof Take a;(z) =1 on Sy, then

p(z,y) = a(z,y)[1 - h(y)] = Boh(y)
we see that B, = fp. We need to prove that for any other factorized
acceptance probability a, 8, < Bp. Suppose

a(@,1) = a1(2)aa(y) = zon(@)on(v) s on S,

where 0 < @1 <1 on Sy, sup,eg, @1(z) = 1, p = infyes, a1(z) <1 and

€ =Sup,cg, a1(x )T—%—(IL) Clearly ¢ > psup,¢g, lhsl&) = 4, 50

p(z,9) = ale, )1 - hy)] = L1 @ (4)h(y) > Bh(y)

if and only if a;(z)a;(y) > Be for all (z,y) € S, if and only if p? > Be.
Thus we have 3, = ”c—2 < pBo < Bo. [ |

Theorem 3.3 Based on Theorem 3.1, 1— /5y is still the best rate even in
the whole class of all acceptance probabilities. An acceptance probability
a(z,y) provides a chain with this rate if and only if

h(y) 1 —h(z) h(y)
— h(y) h(z) 1-h(y)
i.e. if and only if a(x,y) lies between the best factorized acceptance
probability and the standard H-M acceptance probability.

<oafz,y) <

ﬂol /\17

Proof For any acceptance probability a(z,y), we know that

o(e9) = ala)

is symmetric. So on S,

ple,y) = a(z,y)l - h(y)]

= ale ) by

= M%mlhﬁ”mw

> Bh(y)
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ifand only if a(z,y) > ,31 “hiy)” Thus 8 < %)y—) for all y € Sy, therefore
B < Bo. To attain this rate, we must have a(z,y) > ﬂo%. On the
other hand, a(z,y) <1= a(m,y)%jﬂ, and o(z,y) = o(y,z) < -1;—&(5@,

therefore o(z,y) < 1-hiz) A 1—;%@ Return to a(z,y), we get

h(z)
— h(z) —hy), _h@)
a(z,y) < [ 1) A= h(y) ] 1 - h(y)
_ 1-h(x) Ay
- [ h(z) 1-h(y )]Al

as required for necessity. The sufficiency is a direct consequence of The-
orem 3.1. ]

4. Some other subclasses of acceptance
probabilities

We have discussed the subclass of all factorized acceptance prob-
abilities and the nice rate subclass. Their intersection consists of a
single member the best one of the factorized acceptance probabilities

( ) ,301 h( y) on S.
If we regard A as an operation to replace the ordinary multiplica-

tion, we may define another kind of “factorized” acceptance probabili-
ties, called A-factorized acceptance probabilities, with the standard H-
M acceptance probability as a typical example. An acceptance prob-
ability a(z,y) is called A-factorized, if the corresponding symmetric
function o(z,y) = a(z,y)%)y—) has the form o*(z) A 0*(y). For ex-

ample, the standard H-M acceptance probability is A-factorized with

o*(z) = .

The decomposition of a factorized function f(z,y) = fi(z)f2(y) is
essentially unique (up to a constant multiplier), while the decomposition
of a A-factorized function f(z,y) = fi(z) A fa(y) is various. But if we
restrict ourselves on symmetric functions, there exists a unique A-factor
decomposition, which is the smallest one.

Lemma 4.1 Suppose A-factorized function f(z,y) = fi(z) A fa(y) is
symmetric, then there uniquely exists a function g on F such that
f(z,y) = g(z) A g(y). This A-factor decomposition is the smallest one
in the following sense: if

f(z,y) = f{(2) A f3 (y)
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is another A-factor decomposition, then

9(z) < fi(z) A f2(2).

Proof It is straightforward and omitted. ]

We will call the class of all A-factorized acceptance probabilities the
A-factorized subclass. The members of this subclass are characterized
not by the acceptance probabilities themselves, but by the associated
symmetric functions due to the symmetry of the later. Each member
corresponds to a measurable function o*(z) on (F,F), a measurable
function o*(z) on (F,F) corresponds to a member of this subclass if
and only if @

. 1-h(z
o (z) < )
So the standard H-M acceptance probability happens to be the member
with the largest o*.

Combine these two kinds of factorized functions, we get the concept

of mix-factorized functions with the general form

f(z,y) = min [£i(z)g:(v)-
Clearly both factorized functions and A-factorized functions are all mix-
factorized functions. And the class of all mix-factorized functions if
closed under both multiplication and the operation of taking minimum.
The class of all mix-factorized acceptance probabilities will be called
the mix-factorized subclass. This is obviously a container of both the
factorized subclass and A-factorized subclass.

Finally the largest class discussed in this paper is the sign-factorized
class. A function or an acceptance probability a(z,y) is called sign-
factorized if sgnfa(z,y)] is factorized. Since a(z,y) is non-negative,
so sgn[a(z,y)] is in fact the indicator of the support S, = {(z,y) :
a(z,y) > 0} of . It is trivial to see that an indicator 1, is factorized
if and only if A is a measurable rectangle. So any non-negative mix-
factorized function f(z,y) = miny<;<[fi(z)gi(y)] is sign-factorized since
its support o

k k
Sf= {w ] fite) > 0} X {y o) > 0}
=1 i=1

is a measurable rectangle. For this we state the following proposition to
end this section and the whole paper.
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Proposition 4.1 For a sign-factorized acceptance probability o(z,y),
the chain is []-irreducible, if and only if [[ X [[(Sa) = 1. Besides if
a(z,y) is miz-factorized, then [T x [[(Sa) = 1 also implies that the chain
is strongly aperiodic.
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Abstract In this paper we describe recent empirical work using perfect simulation
to investigate how rates of convergence for Gibbs fields might depend
on the interaction between sites and the kind of scanning used. We also
give some experiment results on Kendall’s [8] perfect simulation method
for area-interaction process, which show that the repulsive case could
be quicker or slower than the attractive case for different choices of the
parameters.

Keywords: McMC, Gibbs sampler, Perfect simulation, coalescence time, attractive,
repulsive, area-interaction

1. Introduction

Development in the area of perfect simulation is rapid. Many perfect
simulation methods have been proposed. There are mainly two main
types: one based on the idea of coupling from the past (CFTP) as
proposed by Propp & Wilson [12], the other is the interruptible method
proposed by Fill [3]. The majority of recent work has focussed on the
CFTP idea: Murdoch & Green’s [11] work, Kendall [6, 7, 8], Kendall &
Moller [9], Kendall & Thonnes [10] and Cai & Kendall [2] work on point
processes and stochastic geometry, Haggstrom & Nelander [5] work on
Markov random fields etc.
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Clearly, perfect simulation is a very powerful tool in the area of sim-
ulation. One direction is to consider how it can be used to investigate
empirical (and more broadly applicable) methods. For example, can we
use perfect simulation to investigate how rates of convergence for Gibbs
fields might depend on the interaction between sites and the kind of
scanning used?

Without using perfect simulation, Roberts & Sahu [13] investigated
many convergence issues concerning the implementation of the Gibbs
sampler. They conclude that for Gaussian target distribution with in-
verse dispersion matrix satisfying certain conditions, a random scan will
take approximately twice as many iterations as a lexicographic order
scan to achieve the same level of accuracy.

Greenwood et al [4] investigated information bounds (which is the
minimal asymptotic variance of estimators of E,[f]) for Gibbs samplers.
Suppose we want to estimate

Elfl ~ -3 f@) = Bf
i=1

where the z; are obtained by using a Gibbs sampler based on either a
random scan or a systematic (deterministic) scan. Empirically the E, f
has noticeable smaller variance for a deterministic scan. The variance
bound for a random scan is smaller than that for a deterministic scan
except when 7 is continuous, in which case the bounds coincide. Further-
more, the information bound for a deterministic scan does not depend
on the details of the order of the sweep. The asymptotic variance of
the empirical estimator under a random scan is no more than twice that
under a deterministic sweep.

Both the Roberts & Sahu and the Greenwood et al results suggest
that the way of scan does affect the rate of the convergence. Their work
motivated the current work, i.e. to investigate empirically how rates of
convergence for Gibbs fields might depend on the interaction and the
kind of scan used, using perfect simulation.

The construction of this paper is as follows. In Section 2 we introduce
perfect simulation methods for Ising model. The empirical simulation
results will be presented in Section 3. In Section 4 we give some ex-
perimental results on Kendall’s [8] perfect simulation method for the
area-interaction process. Conclusions are presented in Section 5.

2. CFTP for Ising model

The Ising model is a simple magnetic model, in which spins o; are
placed on the site i of a lattice. Each spin takes two values: +1 and —1.
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If there are N sites on the lattice G, then the system can be in 2V states,
and the energy of any particular state is given by the Ising Hamiltonian:

H = —jZaiaj—BZUi

i~j i

where J is an interaction energy between nearest neighbor spins, 1 ~ j
indicates the existence of an edge connecting i and j, and B is an external
magnetic field. Many interesting problems about the Ising model can
be investigated by performing simulations in zero magnetic field B = 0.
We will only consider this case here. Then the Ising measure 7 for G is
a probability measure on {—1,1}V, where V is the site set of G, which
to each configuration o € {—1,1}" assigns probability

1

= —Z—je—z‘] Lijeving loi#a; (2.1)
G

7(o)

where J = J /K BT, Kp is Boltzmann’s constant, T is the temperature,
Zé is a normalizing constant.

We can implement a Gibbs sampler to obtain an approximate sample
from the equilibrium distribution (2.1) of the Ising model. But how do
we get a perfect sample from 7?7

It is noted that the state space of the Ising model considered here is
finite. We can define a partial order < on the state space as follows: we
say £ X nif & < m; for all 1 € V. Corresponding to this partial order,
there exists a maximum element 1 such that 1; =1 for alli € V, and a
minimum element 0 in the state space such that 0; = —1 for all s € V.

There are several well-known results with respect to the partial order,
see Cai [1]. Using these well-known results, we can construct a mono-
tone CFTP method for Ising model to obtain a perfect sample from 7.
The details about the monotone CFTP algorithms for attractive and
repulsive cases are given in Cai [1].

Note that for four neighbouring Ising models on a square lattice, the
repulsive interaction is actually the same as the attractive interaction
(so no need for “Ising repulsive CFTP”). However we will consider other
neighbourhood structures for which there is a difference. In the next
section, we present our empirical results.

3. Experimental results for Ising model

In order to investigate how the rates of convergence for Gibbs fields
might depend on the interaction between sites and the kind of scan used,
we consider the coalescence time T, of our perfect Gibbs sampler. Large
values of T, are related (though not exactly so) to a slower convergence
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rate. The following points, which might effect the convergence rate, have
been considered.

We will consider two Ising models: One is an Ising model on a square
lattice with four neighbours. We call this Model 1. The other is an
Ising model on a triangular lattice with six neighbours. We call this
Model 2. For these two models, we know the theoretical critical values
Je of J: for Model 1, J, = 0.44, while for Model 2, J. = 0.27. Propp &
Wilson [12] showed how to simulate critical Ising models. Their method
is rather complicated. In fact their perfect samples from the critical Ising
models are obtained as a byproduct of a perfect simulation for random
cluster models. Here our experiments will be based on simple cases, i.e.
sub-critical values of J.

We will consider the effect of different scans. Two types of scans have
been considered: one is a random scan, the other is a systematic scan
which includes scans with lexicographic order, miss one out in lexico-
graphic order (or chess-board scan), miss two out in lexicographic order
and alternating lexicographic order.

We will also consider the effect of the interaction on the coalescence
time, but this will only be done for Model 2, because, as we have pointed
out in Section 2, for Model 1 the attractive interaction is actually the
same as that for the repulsive interaction.

The data is collected in the following way. We set G to be a 100 x 100
grid. For Model 1 we take J = 0.05,0.10,0.15,0.2,0.25,0.3. Correspond-
ing to each value of J, we collect 100 independent coalescence times for
the random scan and 25 independent coalescence times for each system-
atic scan — hence we also have 100 independent coalescence times for
systematic scan. For Model 2 we take J = £0.05,+0.10,+0.15, +0.2.
Then we collect 100 independent coalescence times for random scan and
100 for systematic scan in the same way as we did for Model 1.

Plots of the sample mean of the log coalescence times and the cor-
responding 5th and 95th percentiles versus the values of J are given in
Figure 31.1 for Model 1 and in Figure 31.2 for Model 2.

These plots suggest that the random scan is slower than the system-
atic scan. The statistical test on the difference of the two mean coales-
cence times based on large samples confirmed this point. The Roberts &
Sahu [13] and Greenwood et al’s [4] work suggest that the scan method
does have an effect on the convergence rate. Our results agree with this.

But how much slower for the random scan compared with the sys-
tematic scan? Figure 31.3 gives the plots of the ratios of the mean
coalescence times for the systematic scan to that of the random scan
versus the value of J for Model 1 and Model 2.

Both plots show increased ratio with |J|.
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Figure 31.1. Graph of the sample mean of the log coalescence times and the corre-
sponding empirical 5th and 95th percentiles versus the values of J for Ising model
on square lattice with 4 neighbours and J > 0. The upper solid curve corresponds
to random scan, the two dotted curves are the corresponding empirical 5tk and 95th
percentile curves. The lower solid curve corresponds to the systematic scan, the two
dashed curves are the corresponding empirical 5th and 95th percentile curves.
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Figure 31.2. Graph of the sample mean of the log coalescence time and the corre-
sponding empirical 5th and 95th percentiles versus the values of |J| for Ising model
on triangular lattice with 6 neighbours. The upper solid curve corresponds to random
scan, the two dotted curves are the corresponding empirical 5th and 95th percentile
curves. The lower solid curve corresponds to the systematic scan, the two dashed
curves are the corresponding empirical 5th and 95th percentile curves. (1) Attractive
case: J > 0. (2) Repulsive case: J < 0.

Does the interaction effect the coalescence time for Model 27

A simple analysis of variance shows that both the scan method and
the sign of J have a significant effect on the coalescence time at 5% level
when |J| > 1.5. In the case of |J| < 0.1, the analysis suggests that
only the way of scan has a significant effect on the coalescence time at
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Figure 31.3. Graph of the ratios of the mean coalescence time for the systematic
scan to that of the random scan versus the values of J. (1) For Model 1 with J > 0.
(2) For Model 2 with J > 0. (3) For Model 2 with J < 0.

5% level. Further statistical tests on the mean difference also suggest
that when |J| < 0.1, there is no significant difference between the mean
coalescence time of the repulsive and attractive Model 2 at 5% level.
The following heuristic analysis shows some of the reasons for the the
above situation.

In the attractive case, let p; be the probability for the upper process
to take value —1 at site ¢, ps be the probability for the lower process to
take value —1 at site 7. In the repulsive case, define p] and p5 similarly.

Then we can prove that p; < ps, p} < py. Furthermore, we have the
following result.

Theorem 3.1 Consider Ising model on a triangular lattice with siz
neighbours. Suppose 0 < J < J.. Let py = (1 + €'?))"! and po =
(1 + e '27)"1. Then p1, pa, P}, Ph € [P1,P2]-

The proof of the theorem is given in Cai [1]. ]
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Now it is observed that if the difference (p2 — p1)( or (ph — p})) is
large, then the upper and lower processes tend to stay where they are
for the attractive (or repulsive) case. If (p; — p1)( or (py —p})) is small,
then the upper and lower processes tend to take the same value. On the
other hand, it follows from Theorem 3.1 that p1, p2, p}, Py € [P1, Po]-
Furthermore when J is small, p — p is small, hence ps — p; and p), — p}
are all small. So the upper and lower processes in both attractive and
repulsive cases tend to move closer at the same time. Consequently, the
coalescence time of the attractive case are not significantly different from
that of the repulsive case when J is small. This is in good agreement
with our statistical tests above. However, when J is large, po — py is
large also. Hence the situation becomes very complicated now. It needs
further investigation in the future.

4. Experimental results for the area-interaction
process

The area interaction point process is a random process X of points
in R with distribution having a Radon-Nikodym density p(X) with
respect to the unit-rate Poisson process restricted to a compact window,
where

p(X) = ad#E)ymaXeo) (4.1)

where « is a normalizing constant, A and «y are positive parameters and
the grain C is a compact (typically convex) subset of R?. The set X & C
is given by

XxoC = |J{zoC:zeX}.

The parameter -y controls the area interaction between the points of X:
v > 1 is attractive case and v < 1 is the repulsive case.

Kendall [8] developed a perfect simulation method to obtain a perfect
sample from the area-interaction process. He constructs a maximal and
a minimal process, both of which are based on a dominated birth and
death process that is in equilibrium. A perfect sample is obtained once
the maximal and minimal processes coalesce by time 0. He observed
that the perfect simulation method coalesces quicker for the repulsive
case than that for the attractive case for the parameters he used. Is this
true for any repulsive and attractive processes?

To answer his question, we carried on further experiments on the
perfect simulation method.

First note that in the attractive case, we set y; = v and in the repul-
sive case, we set 7o = 7. Then 71 > 1 and 2 < 1. In our experiments
with the perfect simulation method, we use deliberately chosen values
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of 71 and 2 according to some theory we obtained. Our experiments
suggest that it is possible to find some regions of (y1,72), such that
within those regions, we have that the repulsive case is quicker than the
attractive case. It is also possible to find some other regions of (y1,72)
within which the repulsive case is slower than the attractive case. The
experiment results (see Table 31.1) agree with what we expected. For
the details about the experiments and the analysis about the experiment
results, see Cai [1]. We hope we will be able to use our theory to give a
precise answer to Kendall’s [8] question in the near future.

Table 31.1. The mean and the standard deviation of the computation time
(unit:second)

Experiments Attractive case Repulsive case
1 0.2844 (0.0084) 0.0282 (0.0083)
2 0.2538 (0.0088) 0.0316 (0.0084)
3 0.4624 (0.0139) 0.0198 (0.0068)
4 0.5948 (0.0111) 0.9564 (0.0344)
5. Conclusion

We have presented our empirical investigation results on the coales-
cence time of perfect Gibbs sampler based on different types of scans and
different interactions by using perfect simulation method. Also, we have
presented some experimental results on the perfect simulation method
for area-interaction process. Our main results can be summarized as
follows:

= No matter which types of interactions we have, the way of scanning
(systematic or random) has a significant effect on the coalescence
time. Specifically, the sampler with random scan has a larger coa-
lescence time than that with systematic scan. The larger the value
of |J|, the slower the random scan.

s The sampler for the repulsive case is not necessarily quicker than
the attractive case. Generally speaking, it is possible to find some
regions of the parameter space in which the repulsive case is quicker
than the attractive case; it is also possible to find some regions in
which the repulsive case is slower than the attractive case. Fur-
thermore, the way of deciding the corresponding regions is model
dependent.
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Abstract  Expected loss and availability of a multistate repairable system, allowing
bulk-repair and bulk faults, with an overhaul period in the schedule
are discussed. A new class of integral functional is first considered.
Their moments and L-transformations are given and two ratio functions
are defined as numerical indexes of availability of the system and are
used to find out an optimum overhaul period. Discussion of the paper
will be useful for traditional industry and control systems, computer
information science (for example, computer recognition of speech and
picture) and economy management. The obtained results are not only
exact but also can be approximated for use on the computer.

Keywords: System reliability, jump process, integral function.
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1. Introduction

In reliability theory the traditional binary theory describing a system
and components just as functioning or failed is being replaced by the
theory for multistate system with multistate components (see for exam-
ple [15]). Article [11] studied the association in time when performance
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process of each component is Markovian. [6] gave the expected loss and
availability of system, which could be described by a general birth-death
process.

Now, this paper discusses the expected loss of a multistate repairable
system, allowing bulk-repair and bulk faults, with an overhaul period ¢
in schedule, and defines two ratio functions to analyze the system avail-
ability and answer the following questions: How should we estimate the
system availability? To save expenses, when is the opportune moment
to overhaul completely or even to renew the whole system? It will be
targeted in the present paper to study a class of integral functional,

Yia = {4 V(z,)ds,  tAha=min{t,hy}, (1.1)

where V' is an arbitrary non-negative function on state space E and h4
is the first passage time entering state set A.

Assumption 1.1 Our basic assumptions are following:

(i) A system state at time s, denoted by x, indicates the number of
faults (or, in other cases, a failure level of the system). The state
space E ={0,1,...,}. The state process is a Markov jump process
X = {z,, s > 0} with conservative Q—matriz Q = (g;;)-

(ii) State 0 shows a perfect functioning and every state in a set A
1s regarded as hardly functioning because of there being too many
failures in the system or too high expenses for maintenance. So the
system in the state of A cannot help taking an emergence overhaul
ahead of schedule. ThentAhs = min{t,ha} is a practical overhaul
time. Take A =[N,00) := {N,N +1,...}.

As you know, if V'(j) is the loss cost of the system with j faults within
a unit of time, j € E, then Y;4 indicates a total loss of the system before
the practical overhaul time. If V() = -, Y;a is an accumulation of
duration of every state j before t A h4, weighted by the fault numbers.

In this paper, Section 2 first shows that the mean loss of the sys-
tem before the practical overhaul time can be expressed in terms of the
distribution of the relative last quitting time and prohibition potential;
and then defines two ratio functions regarded as numerical indexes of
the system availability. Maximizing them, one can find the optimum
overhaul period ¢ in schedule. All probability quantities concerning the
theorems given in Section 2 are calculated in Section 3. Finally, Sec-
tion 4 studies the high order moments of these functionals, and provides
L-transformations. The discussion in this paper will be useful not only
for traditional industry and control system, but also for computer infor-
mation science (for example, computer recognition of speech and picture)
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and economy management. These results are exact and convenient to
approximate and use.
Integral functionals

fo (zs)ds and Yy —fo zs)ds. (1.2)

have been studied since the early 1960s. The first one is also called ad-
ditive functional, see [1, 12]. [17] gave the systems of equations that dis-
tribution functions and L-transforms of Y4 should satisfy. [11] and [19]
considered other functionals associated with jump points and problems
about non-negative solutions corresponding system of equations. [16]
discussed functional about extremum-times and extreme values for jump
process. For birth-death processes, refer to [4], [7, 8, 9], [13], [14], [15,
16], [18], and so on.

In Section 2, we first show two main theorems to calculate the mean
loss of the system during the practical overhaul period, which will be
expressed in terms of a distribution of the relative last quitting time,
prohibition potential and additive functional of prohibition probability.
Then we define two ratio functions to be regarded as numerical indexes
of availability of the system. All probability quantities concerned with
these theorems are calculated in Section 3. Finally, Section 4 discusses
the l-order of these functionals.

2. Expected loss and availability of system

Firstly, we show two main theorems to calculate mean loss of the sys-
tem during the practical overhaul period, [0, t Ah4], which will be ex-
pressed in terms of a distribution of relative last quitting time 4Lj, pro-
hibition potential 4g(k,j) and additive functional of prohibition proba-
bility 4Px;(s). Then we’ll define two ratio functions that can be regarded
as numerical indexes of availability of the system. Some quantities con-
cerned in both theorems and ratios will be given in the next section.
Let

aPij(s) = Pu(zs =3, s <ha), aglk,5) = [5° 4Pri(s)ds,
APgi(N) = fo _)‘SAP,c (s)ds, Re(\) >0,
(4, 4) = Pe(h; < hA) ALj = sup{s:zs =70 <s<ha}.
(2.1)
And let Ip or I(B) be a characteristic function of set B, simply, I; :=
Iy
Suppose X = {z5, s > 0} is a strong Markovian jump process ([15]
or [2]). Now using a shift operator 6; in [3] and Markov property, one
can obtain the following exact formulae of mean loss of the system.
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Theorem 2.1
For k < N,

ELYia

N— t
Pyi(s)ds (2.2)
g / A k]

N-1

EyYy Z AP:j(t) E;Yq, (2.3)
0

where APy;(s) and EyY4 are given by (3.9) and (3.11) respectively in
Section 3.

The mean loss of the system can be also expressed in terms of dis-
tribution of relative last quitting time 4L; and prohibition potential
A9 (kvj )

Theorem 2.2
Fork < N,

B Yia = S0 VG) [agkd) — a9Ghd) Pe(aLi >1)] (2.4)
= ExYa — S0 ' Ej(fy* V(2s) Pe(aLags) > t) ds) (25)

where ag(k,j), Pe(aL; > t) and ExYa are given by (3.10), (3.12) and
(3.11), respectively.

Proof
(i) First prove
Pe(s, A) = ag(k,5)/a9(,5), kJ<N.  (26)
In fact, using strong Markov property, we have
ag(k,j) = E/cf i(zs)ds
= E (fh j(z)ds, hj < ha)

Dk ]a E f() j xs d3

This is just (2.6).

(ii) Moreover prove that

Ey (I(t<hA)E-th0 i $3)ds) =49(4,3) Pe(aL; >t). (2.7)
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Using (2.6), the left-hand side of (2.7) equals

Ex(I1<np)a90: D)pzy(3: N)) = Ex(Is<nn) Oed(n; <h )
= 490j,§)Pe(t < ha, 8:h; < )
= 49(3,J)Px(aL; > t).

Where h; = inf{s :< ha, 7, = j}.

(iii) Finally we have,
EYia = Y0 ' V()
E; ( OhA Ii(zs)ds — It<hA)ft .vs)ds)
= S0 VG [ agk,d) — 49(,5) Pu(aLj > 1)].

Noting that ag(i,j) = E; fo i(z5)ds, we can immediately ob-
tain (2.5).

The proof is complete. ]

Using Theorem 2.1, we can obtain the mean practical overhaul time,
the mean faultless time and the mean accumulation of sojourn at states
0,1,...n (<< N), regarding the system as well run, and by taking
V=1V =1Iand V = Iy, respectively. In fact, taking V' = I, then
from (2.3) obtain

Er(t Aha) = Exha— 0 AP(t) Ejha. (2.8)

Since Ei(t Ahg) = tPy(ha > t) + Ex(ha, t > hy), we can calculate
the mean of the emergence overhaul time before the overhaul period in
schedule, t.
From (2.2) and (2.3), taking V = Iy and V = Ijy ), we respectively
have
By [ Ig(zs)ds = [§ aPio(s) ds
= ag(k,0) =071 AP;(t) 49(,0) (2.9)

Eg " Ton(zs)ds = 0" aPy(t) ag(3,0) (2.10)
Now we define the following ratios

a = Epfi" Ip(zs)ds/E(t Aha), and (2.11)
B = EiJg"" Iigpn(zs) ds/Ex(t Aha). (2.12)

Il
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We suggest regarding them as numerical indexes of availability of the
system with overhaul period according to schedule, ¢, and an allowed
limit to fault number (or failure level), N. Differentiating with respect
to ¢t one may find maximum values of ¢, i.e optimum overhaul period
in schedule maximizing the availability in both two senses above. It is
also natural and useful to consider other ratios substituting V'(j) for I;
in (2.11) and (2.12).

3. Basic probability quantities in above section

In this section we calculate the following probability quantities con-
cerned in Theorems 2.1 and 2.2 and definitions of the ratios given in the
preceding section: 4P;(s), E,Cfoh"1 V(zs)ds, d.f. of hy and 4Lj, from
which 49(k,7) and Erh4 can be also obtained. Suppose Zj>iqij >
0, i € [0, N) for the following.

We first give a useful algebra conclusion as a lemma, which can be
proved by induction. For this, let

aij 20, 1 # j, —00 <aii=—A; Ai >3, 40 >0, (3.1)
j€[l,n+m], i €[l,n], and D, = det(aij)nxn- '
Moreover, substituting the j** column of D,, with
(@1n+ir G2ntis =+ * s Gnnti) s
we denote the obtained determinant by DY )(z'),
-4, Gln+ti
. —Aj_1 Gj-1n+i
DY) = det Qjn+ti
Qj+inti —Aj+1
Qn n+i —Ap
(3.2)
where j € [1,n] and i € [1,m].
Lemma 3.1
()™ DYPGE) > o, j€l,n] andi€[l,m], (33)
(-1)"Dn > (-)"™'ELDPGE,  jellnl (34
(-1)"D, > 0, if D g0k > 0 and Vi € [1,n]. (3.5)
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The conclusion given below as Lemma 3.2 is known, for example by
Keilson [12], which can be proved by using methods similar to those used
for the proofs of the following Theorems.

Lemma 3.2 Let 4P(t) = (4P;(t) )nxnv and Qn = (¢ij)nxn- Then
AP(t) satisfies forward equation

SaP@O) = AP()Qw. (35)

Because Qy is finite, (3.6) shows that 4P(t) has an exponential form.
The sign Qn will also denote det(g;;) yx ¥ Where there is no confusion.

Theorem 3.1 Suppose k, j < N, then

AP = Q¥(=55)/Qna Re()) >0, (3.7)

where QN denotes the result substituting —¢q; with —(\ +¢;) in Qn =
(¢ij)NxnN, © € [0,N), and Qg@\(—&.j) the result substituting the k** col-
umn of Qnx with column vector 6.; = (0,0,...,0,1,0,...,0)" with the
ith element being 1.

Proof Let 3 be the first jump of X and 63 be the shift operator in
Dynkin [3]. Noting the conditional independence of 8 and x4, and the
strong Markov property of X, and letting real A> 0, we have

AP () = Epfit e MIi(zs) ds
Ekfo ’\st(z's) ds +e Gﬂfoh" e"’\st(xs) ds

= O/ (X +ak) + Zigavgry (ae/ (A +ax)) aPii(A),
k,j<N.

Therefore

Yigao(ky ki AP (A) = (A +ak) APk () = —bkj, k,j <N.
(3.8)

Letting ax; = qri, Ax =X +¢x and fixing 7 < N, the system of equa-
tions (3.8) has unique system of solutions by Lemma 3.1, which is (3.7).
]

Corollary 3.1
aPii(s) = Tiresa (MQWN(-6)/Qm)  (39)
agk, i) = QW¥(=6,)/Qn. (3.10)
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Where —c; is the it zero of order n; of Qna, a; >0, Y. n; = N and
Qn(=0.) is a determination substituting qx; with —d; in Q.

Proof From Lemma 3.1, (=1)¥Qpyy > 0 if real A> 0. So polynomial
Qn)y of degree N for complex A has only negative zero. Taking the
Laplace inverse transform, (3.9) is verified. Letting A— 04, one can
obtain (3.10) from Lemma 3.1. [ ]

Since Ey [ V(z5)ds = Y0 ' V(§) ag(k,J), using (3.10) it follows
that:

Corollary 3.2 Let V(-) = (V(0),V(1),--- , V(N = 1)),

EYs = Q% (-v())/Qn,

especially Exhy = QS\I,C)(—I)/QN. (3.11)
Theorem 3.2 Suppose k, j < N, then
Pe(aL;>t) = 07" aPult) pild, A), (3.12)
pk(]aA) = { N](q])/QN]’ 'Lfk#], (313)
otherwise.

Where Qnj is N — 1) x (N — 1) determination omitted both the j*" row
and the j** column in Qy and Q%cg(qj) is a result substituting the k"
column of Qnj with ¢.; = (q1j,925, " » Ti-15>Tj+14> "~ 1 IN-15) -

Proof
Pe(aLi>t) = Ep(Iipcny) Olih;<ny))
= X0 _lEk(I(ztzi,t<hA))EiI(h]»<hA)-
So (3.12) is true. If k # j,
pk(§A) = ExbsIpn,<n,

= By Eyg) Ih;<n,)
> igauiey(@ki/ k) Pr (5 A) + Gri/ k-

In (3.2), take that
g = qij ifi < 7;
| gy ifi>

q; ifi < g;
A,‘ = op - .
gi+1 fi>7
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From Lemma 3.1, (3.13) is established. [ ]

Note:
Pk(hA > t) = ngAPk(xt = j7 t< hA) = Zév—l APkJ(t) '

Thus up to now, all probabilities connected with both theorems and
ratios in Section 2 are given.

4. Lt** order moment

Let us return to discuss the loss of the system and to find the 2nd
order moment of Y;4. For simple, fo = fo (z5)ds.

Theorem 4.1 For k < N
Ex(Yia)? = — 2 N By YaI(t < ha,zi = j) E;Ya
+Zo Y AP(t) Ej(Ya)?, k< N. (41)
2
Proof Since Y& = (YA — Lit<hy) fth") , expanding its right hand
side and using Markov property, we find that

Ex(Yia)? = Ex(Ya)® —2Ex(Yalych,) ExpyYa)

+E; (I(t<h4) Ezt(YA)z) . (4.2)

From this obtain that just as desired.
Let
wia(k,j) = Eg (fo (z5)dsI(t < ha,zt = J))
Wia = (wia(k,§))nxn, P(t) = (aPrj(t) )nxn,
Vv = (V(0),V(Q1),--- , V(N -1)) Inxn, k,j €][0,N).
(4.3)
[ ]

Theorem 4.2 For k< N
Ex(Yal(t <ha,ze=3)) = aPi;(t) EjYa+wia(k,j) (4.4)

and W, 4 satisfies the following differential equation:

d
EWtA = WiaQn + aP(t)Vn, Woa = 0.
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So Wia = exp{Qn t} fot AP(s) Vy exp{—Qn s} ds.

Proof
Be(Yal(t <ha,m=7)) = Bk (fy +0uJg* ) Iz =j, ¢ < ha).
Using Markov property one can obtain (4.4).

By, B; and B respectively denote the events that there is no jump,
only unique up-jump and down-jump in the interval (¢,¢ + At), then
omitted o(At)

wernra(k, ) = 2B ( HAL (¢ 4 At < ha, z(t + At) = §, Bi)).
The 1st term of right-hand side equals
t .
Ey (fo I(t < ha, =7, 0,8 > At))
+V(§)At ExI(t < ha, z¢ = j, 0:8 > At).
Thus on By

('wt+AtA(kaj) - th(k,j))/At
= V(]) Aij(t) Pj(ﬂ > At) + O(At)/At
= V(j) aPy;(t), as At — 0.

The 2nd term
YiciBe(fy It < ha, 2 = §) B, 1(B < At, z5 = j))
+2oi; V()AL aP;(t) Pi(B < At, zg = j).
So on By,

(wi+atalk, j) —wea(k, j)) [ At
= Yic;wialk,i) Bi(B < At, z(B) = j)/At
+X i< V(5) aPui(t) Pi(B < At, z(B) = j)/At
=2 isjwea(k, i) Pj(B < At, z(B) = i)/ At
= Yici@ijwealk,)) — X iqiiwea(k,j),  as At —0.

Similarly, on Bj, the limit is
>is % wea(ks ) = 32, ;g1 wea(k, 7).

Summing up the above results and noting w4 (k,j) =0, j € A, (44) is
true. |
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Using Theorem 4.2, the second moment of Ej Y;4 is calculated from
(4.1). Notmg e Y4 is NV}, ,-measurable (cf Wang [15]), it is easy prove
that e Y4 (t<ha) 18 Nt-measurable For the reasons similar to the proof
of Theorem 4.1, we have the following conclusion.

Theorem 4.3 Forl=1,2,---
Ek(Y'tA)l Ek(YA) Zz 1( ) ClEk <( ) I(t<hA)E.’L‘t(YA) )
(4.5)

Then calculate Ex(YY I(z: = j, t < ha) similarly to Theorem 4.2. Fi-
nally, we have the higher ordinal moments of E;Y;4.

Another way to obtain higher ordinal moments is to consider the L-S
transforms. Let ®;4()) = Ere *Y#4 and Uy 4()) = Epe Y4,

Theorem 4.4 The L-S transformations

Upa(A) = Pea(V) + Z — 1) Ex(I(t < hg, 2 = j)
exp{— A YA}), (4.6)
Pra(r) = QN,\V( q)/@nxv. (4.7)

Where Qnav denotes the result substituting —q; with —(\ V(i) + ¢;)
in Qn and Quav(—q.) denotes the result substituting the k™ column of

Qnxv with a column vector of which the k™ element is gy —Ziﬁg}i# Qi
Proof
Epe 14 = Ei(e™4, t <ha) + Eg(exp{= A [}, t > ha).

Using shift and Markovian property, one can show that the right term
is equal to

Ey (I(t<h,4) e AYa Em(t)e_)‘YA) .

Substituting and putting right, obtain (4.6).

Being similar to the proof of Theorem 3.1 and noting ®;4()\) = 1,
1 € A, we have
Y aki®ia(N) — A V() +ar) 2kalh) = — |- Ghi
ig AU{K} ngu{k}
k<N. (4.8

Because of gy — Y qx; > 0, from Lemma 3.1, (4.8) has unique system of
solutions (4.7). |
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The following theorem is easily checked. Therefore, differentiating
(4.6) and letting A— 0., one can obtain any ordinal moment of Y;4.

Theorem 4.5 Let Uy;(t) = Ex(I(z; = j, t < ha) exp{— A Ya}).
Then Uy;(0) = 0kj Pra(A) and Ug;(t) satisfies the forward equation.
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