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Supervisor’s Foreword

With the advent of the expected first detection of gravitational waves in the near
future, a completely new window will be opened up to the Universe. By then,
gravitational waves, as a new powerful tool, will lead to the prosperity of gravi-
tational wave astronomy. The proposed space-borne detector (e)LISA, whose
pathfinder is to be launched later in 2015, aims at detection of gravitational waves at
mHz band, which comprise the richest fascinating sources of gravitational waves:
galactic white dwarf binaries, super-massive black hole binaries, extreme mass ratio
inspirals (a stellar mass compact object orbiting a massive black hole), and
stochastic background radiation from the early Universe. Detection and precise
parameter estimation of such sources will improve our understanding of the
Universe to an unprecedented level.

The major part of this monograph makes the first ever step to bridge the missing
link between the O-level satellite raw data and the pre-processed data that can be
used to extract astrophysical information. It paves the way to establishing an entire
first-stage data analysis of (e)LISA, which monitors the data quality, deals with
various emergent issues, and prepares the O-level data for subsequent astrophysical
data analysis. Specifically, the framework and the algorithms designed in this
monograph successfully improved the inter-satellite ranging accuracy and reduced
the time errors of the clocks in the three satellites of (e)LISA, which is crucial to the
success of the detector.

Since gravitational wave signals are usually very weak, buried deeply in the
detector noise, it is challenging and computationally expensive to extract the signal
from the measured data. The second part of the monograph focuses on novel
space-borne gravitational wave detector design and methods of efficient detection
and parameter estimation in the astrophysical data analysis stage. These innovative
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novel algorithms are completely new in gravitational wave data analysis. They try
to tackle the difficult problem from a new angle and should be followed by further
investigation in the future.

November 2015 Prof. Karsten Danzmann
Director at the Max Planck Institute

for Gravitational Physics

Albert Einstein Institute

Hannover, Germany



Preface

In brief, the first half of this book is about first-stage data analysis—the analysis of
0O-level data, of the space-based gravitational wave detector (e)LISA, with the help
of various types of Kalman filters and other algorithms, and to achieve ultra-precise
inter-satellite ranging and clock synchronization for (e)LISA. The second half is
about the design of a novel space-based gravitational wave detector and a few novel
gravitational wave data analysis algorithms.

Gravitational waves are propagating space-time ripples on the static space-time
background. Laser Interferometer Space Antenna (LISA) is a space-based GW
detector concept, which consists of three spacecraft forming an equilateral triangle
orbiting the Sun trailing the Earth. The proper distances between the spacecraft are
modulated by gravitational waves, which will be measured by (e)LISA through
heterodyne interferometers. Thus, the gravitational wave signals are encoded in the
phase evolution of the lasers. The phasemeter raw data of (e)LISA are not directly
usable for time-delay interferometry techniques and astrophysical data analysis,
since clock jitter contaminates the ranging measurements and introduces noise into
the time stamps of the measurements. This has been a long-lasting gap and needs to
be solved in the first-stage data analysis of (e)LISA.

Chapters 2-9 focus on the development of O-level data analysis algorithms for
(e)LISA, which calibrate and synchronize the phasemeter raw data, estimate the
inter-spacecraft distances and the clock errors, and hence make the raw measure-
ments usable for time-delay interferometry techniques and astrophysical data
analysis algorithms. An introduction to an entire LISA data processing chain is
presented in Chap. 2, followed by an exemplary application of the basic Kalman
filter on a single laser link of LISA in Chap. 3. In Chaps. 4 and 5, the inter-satellite
measurements are precisely modelled and a hybrid-extended Kalman filter is
applied to the (e)LISA problem. In Chaps. 6 and 8, different state vectors and their
corresponding dynamic equations are designed and investigated, which has been
found to be crucial to the efficiency and success of the first-stage data analysis.
Emergent cases with different combination of broken laser links are studied in
Chap. 7 via a sequential Kalman filter, while the posterior measurements are used to
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improve the estimates via an RTS filter. In Chap. 9, the effect of the clock errors on
both the measurements and recording time stamps is studied. A combination of
different algorithms is designed and investigated, in order to make the Kalman filter
variant work for measurements sampled at different time, with erroneous time
stamps contaminated by different timing errors of the three different clocks. The
relative ranging accuracy achieved is around 10~!! in the end.

In the second part, several aspects of gravitational wave detection and data
analysis, in general not restricted to (¢)LISA, are studied. For the first time, an
octahedral displacement-noise-free space-based GW detector is proposed and
studied in Chap. 10. A phenomenological waveform is proposed for the most
challenging type of sources for (e)LISA—extreme-mass-ratio inspirals in Chap. 11.
A data analysis pipeline, including particle swarm optimization, Markov chain
Monte Carlo, genetic algorithm, and clustering algorithms is designed to search for
the extreme-mass-ratio inspiral signals. As an innovation, the detection and the
parameter estimation are in two separatestages. In Chap. 12, a novel method based
on compressed sensing is designed, which can quickly detect gravitational wave
signals with moderate to high signal-to-noise ratios and estimate the parameters
automatically. In the final chapter, the likelihood transform is defined, which
gradually modifies and traces the geometry of the likelihood surface, and hence
makes the search for weak signals in noisy data, such as gravitational wave signals,
easier.
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Chapter 1
Introduction

Abstract This first chapter begins with a brief introduction to gravitational waves,
and their basic formulas in linearized general relativity, followed by a short review
of various types of gravitational wave sources and current gravitational wave detec-
tors. In the rest part, the basics of gravitational wave data analysis is described in a
pedagogical way.

1.1 Gravitational Wave Physics

Albert Einstein’s general theory of relativity was published in 1916. It predicts the
existence of gravitational waves (GWs). Analogous to electromagnetic waves, which
are time-varying electromagnetic fields, GWs are nothing but varying gravitational
fields. Phenomenologically, a GW can be viewed as a space-time ripple propagating
on the static space-time background as a wave, see Fig. 1.1.

The existence of GW was predicted almost a century ago, and the mathematical
description as well as the foundations were being refined for many more years [1, 2].
Due to the extreme mathematical complexity, especially the nonlinearity, of general
relativity, we still do not even have a full solution of a two-body system today. In
many cases, it seems impossible to find the exact solution. Instead, people constructed
many approximate solutions and are continuously trying to extend and improve them.

Peters and Mathews derived the gravitational radiation from a nonrelativistic
binary system of two point masses in 1963 [3], where they assumed Keplerian orbits
and computed the GW with the so-called quadrupole formula. Mark Zimmermann
and Eugene Szedenits, Jr. first computed the gravitational radiation from rotating and
processing bodies with a simplified model in 1979 [4].

The post-Newtonian treatment of the source leads to more accurate results. Non-
relativistic sources are characterized by v/c « 1, which is a small quantity. Thus,
one can in principle expand the Einstein equations in orders of v/c and solve them
order by order. Although the post-Newtonian approximation was already introduced
by Einstein himself almost a century ago, there were still many practical difficulties
when applying it to gravitational radiation. Early works on this aspect were done
after the 1970s [5-7]. Many techniques have been invented to compute additional

© Springer International Publishing Switzerland 2016 1
Y. Wang, First-stage LISA Data Processing and Gravitational Wave Data Analysis,
Springer Theses, DOI 10.1007/978-3-319-26389-2_1
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Fig. 1.1 Tllustration of
gravitational waves from a
binary as a space-time ripple
propagating on the static
space-time background.
(Image: T. Carnahan)

terms and extend the results to higher post-Newtonian order, such as the DIRE (direct
integration of the relaxed Einstein equation) method [8—12], the Blanchet-Damour
approach [13-18], the ADM-Hamiltonian formalism [19-21], etc. Post-Newtonian
waveforms have been calculated to the third post-Newtonian order in the conserved
energy [22-27] and 3.5 post-newtonian order in the energy flux [25, 28-30]. Since
there are still other free choices, the same post-Newtonian order can lead to different
phase evolutions in gravitational waveforms. T. Damour et al. [31] and A. Buonanno
et al. [32, 33] have compared different waveforms for data analysis consideration.

As one goes to higher and higher post-Newtonian order, post-Newtonian wave-
forms are more and more accurate in the non-relativistic case (or even in mildly
relativistic cases). But in the strongly relativistic case, when the typical velocity is
approaching a significant fraction of the speed of light, the post-Newtonian approxi-
mation fails. The effective-one-body approach [34—37] has been developed to effec-
tively solve for the behaviour near the last stable orbit, bridging the adiabatic [38]
inspiral and the plunge.

In the extreme-mass-ratio inspiral (so-called EMRI) case with mass ratios of about
1:100,000—-1:1000,000, one can also expand the Einstein equation in term of the small
mass ratio. This approach is valid even when the velocity of the small compact body
is a large fraction of the speed of light. But there are other issues to be solved in this
approach. We will come to EMRISs in detail later.

One can also try to solve the Einstein equations numerically, which leads to
an important branch of general relativity—numerical relativity [39—42]. Although
numerical relativity can in principle solve a relativistic system accurately and provide
precise gravitational waveforms, it is computationally very expensive, hence often
requiring supercomputers. The first stable, relatively long-term evolution and merger
of a binary black hole system was obtained in 2005 by Frans Pretorius [39]. Up to
now, numerical relativity waveforms are still too expensive for data analysis use.

The very short review of gravitational waveform calculation above is by no means
exhaustive. There are still many aspects left in this field, which I did not have a chance
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to mention in this introduction. Instead, I will describe the very basic formulae in
the next section.

1.2 Gravitational Waves in Linearized General Relativity

The famous Einstein equations read as follows

1 &rG

R/u/ - _g/u/R = C_4

3 T, (1.1)

where the cosmological constant has been set to zero for what is to follow. It basically
says that matter (7, ) tells the spacetime how to curve and the spacetime (R ., g,)
curvature tells the matter how to move. In linearized theory, Eq. (1.1) can be cast into
the following form

- 167G
Uhyy = ——Tu, 1.2
© C4 H ( )

where w = Ry — %mwh, and we have assumed the harmonic gauge (sometimes
also called the Lorentz gauge) B
0"h,, =0. (1.3)

Notice that the linearization takes place around the Minkowski space and the indices

are raised and lowered by using the Minkowski metric. Equation 1.2 can be solved
with the help of the so-called retarded Green’s function [43], and the solution is

- N 4G 3 l |)_é_-;/| -
h,,(t, = — d/TT,, t— N ). 1.4
w09 64/x|x_x,,#( s 14

In GW physics, itis convenient to work in the transverse-traceless gauge (TT gauge),

WOt =0, (1.5)
ht, =0, (1.6)
dihy; = 0. (1.7)

These conditions reduces the 10 degrees of freedom of 4, to 2 degrees of free-
dom, namely A, iy, which are usually referred to as the ‘plus’-polarization and
the ‘cross’-polarization. In the transverse plane, the GW in the TT gauge takes the
following form

hy hy
Rl = (h+ _h+) (1.8)
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For a certain propagation direction 71, we can define a projector
Pij =5ij—ninj, (19)

where ¢;; is the Kronecker delta function. With the help of this projector P;;, GWs
in TT gauge can be easily expressed as

TT 1
hi;" =\ PuPji — EPij Py ) h, (1.10)
1 _
=\ PiPji — EPiijl hig. (1.11)
Therefore, we have the solution of the linearized Einstein equation in the TT gauge

.. 4G 1 ;1 X — x| .
hiTjT(Z‘,X) = C_4 (Pi Pj[ — EPiijl) /d)C/2 |)_C. _£,|Tkl (l — B ,X/).

(1.12)

Usually, one can make use of the following condition: the distance between the
detector and the gravity source is much longer than the scale of the gravity source,
i.e. |[X¥ — X'| > |X’|. This would allow us to replace the distance |X — ¥'| by a single
averaged distance r and to make a Taylor expansion to the leading order of |X’|/r.
For non-relativistic sources, the typical velocity inside the gravity system is much
smaller the speed of light. Basically, this tells us that the wavelength of the GW is
much longer than the size of the gravity source. Hence, we do not need to know the
finer structure of the gravity source. In this approximation, it gives rise to the famous
quadrupole formula [3]

sr . 126G 1 .

hij (8. %) = —— | PuPji = 5 PijPu ) Qu(t —r/c), (1.13)
12G ..

= ;C—4QiTjT(t—r/c), (1.14)

where the traceless quadrupole moment Q;; is defined as
ij 1 370000, = i Loy
Q]=—2 dx°T™ (@, X)) | x'x) — =r-6" ). (1.15)
c 3

It is instructive to make an order of magnitude estimation

12G GM GM
h~=""Muv>~2 —, 1.16
P Y (czr)(czR) (1.16)
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which is roughly the product of the dimensionless internal gravitational potential
and the dimensionless external gravitational potential. The external potential mainly
depends on the distance from the gravity source. The internal potential depends on
how compact the gravity source is. So compact gravity sources tend to be easier to
detect by a GW detector.

For a compact binary in fixed circular orbit, the GW form in Newtonian approxi-
mation reads [43]

4 (GM.\" 23 2

h+0)=-—(——7—) (35) LS s fr 4 Bg),  (1L17)
r c c 2
4 (GMN\ 2/3

hy(t) = — ( > ) (ﬂ) cos tsin(2m ft + D), (1.18)
r c c

where
(mymy)3°

o \mma) 1.19
(my +my)'/3 (119

is the so-called chirp mass, and ¢ is the inclination angle. The GW frequency f is
twice the orbital frequency. In practice, the orbit is shrinking due to the energy loss
caused by the emission of GWs. As a result, there will be a frequency drift

.96 GM.\"?
f==mr{==) fus. (1.20)
5 c3

It depends only on f and M,. That is why M, is named chirp mass. From Eqs. (1.17)

and (1.18), we find that ‘;‘ (%)5/3 serves as a common amplitude in the two polar-
izations. This implies that one cannot distinguish between the distance r and the
chirp mass M.. Luckily, there is always a frequency chirp in the GW signal. After
determining this chirp, Eq. (1.20) helps to break the degeneracy between the distance
and the chirp mass.

1.3 Gravitational Wave Astronomy and Sources

GW astronomy aims at collecting information about astrophysical sources using
GWs. The significance of GW astronomy is undoubted. In fact, the GW spectrum
provides very distinct and complementary astrophysical information compared to
electromagnetic waves (vy-ray, X-ray, optical, infrared, radio, etc.). See the GW spec-
trum in Fig. 1.2. Sathyaprakash and Schutz gave a nice explanation as follows,

The primary emitters of electromagnetic radiation are charged elementary particles, mainly
electrons; because of overall charge neutrality, electromagnetic radiation is typically emitted
in small regions, with short wavelengths, and conveys direct information about the physical
conditions of small portions of the astronomical sources. By contrast, GWs are emitted by
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THE GRAVITATIONAL WAVE SPECTRUM
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Fig. 1.2 The GW spectrum from extremely low frequency to high frequency. (Image: Chris Henze)

the cumulative mass and momentum of entire systems, so they have long wavelengths and
convey direct information about large-scale regions. Electromagnetic waves couple strongly
to charges and so are easy to detect but are also easily scattered or absorbed by material
between us and the source; GWs couple extremely weakly to matter, making them very hard
to detect but also allowing them to travel to us substantially unaffected by intervening matter,
even from the earliest moments of the Big Bang [2].

The most important category of GW sources is binary systems. The frequency of
the emitted GW largely depends on the mass of the binary. A super massive black hole
(SMBH) is indicated by observations to reside in the center of every galaxy. Since
SMBH binaries have a total mass of 10°~10° M, they are the strongest binary GW
sources. Usually, SMBH binaries can be detected from a cosmological distance. Thus,
SMBH binary signals provide cosmological information as well as information of the
SMBHs. The frequency range of these sources is from nHz to mHz. An intermediate-
mass black hole (IMBH) lies in the mass range 100-10° M, with a frequency in
the mHz—10 Hz range. Currently, IMBH is still a hypothetical class of black hole s.
Observations of GWs from such sources bring information about galaxy formation,
merger trees [44—46] etc. Stellar mass black hole binaries are in the frequency range
of 1 Hz—kHz. They are important sources for ground-based interferometric detectors.

Extreme-mass-ratio inspirals (EMRIs) stand for the systems that consist of an
MBH or SMBH and a stellar mass compact object captured by it. The mass ratio is
about 1:10°. Near the SMBH in the galactic center there are expected to be a large
amount of stellar mass neutron stars and black holes. So it is very likely that from
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time to time one of these compact objects is captured by the SMBH, forming an
EMRI system. A more extensive introduction to EMRISs is given in Chap. 11.

White dwarf binaries are believed to be important GW sources in the frequency
range 0.1 mHz-0.1 Hz. Since the GWs from these sources are weaker than those
from the sources mentioned above, these sources are only visible within our galaxy
to the space-based detector LISA. There are so many such systems in our galaxy that
the unresolved can form a stochastic astrophysical gravitational foreground [47].
One other stochastic GW signal is the cosmological background. It was generated
by various mechanisms in the early universe [48—-50]. We will talk about this later
in detail.

The neutron star—neutron star binary coalescence, neutron star—(stellar-mass)
black hole binary coalescence and (stellar-mass) black hole—(stellar-mass) black
hole binary coalescence are the main GW sources for ground-based detectors, such
as LIGO. Since these systems are more massive than white dwarf binaries and a binary
system in the merger phase emits much stronger GWs than in the inspiral phase, the
event horizon of these compact binary coalescence for ground-based detectors, such
as LIGO and VIRGO, is about a few tens of Mpc.

Spinning neutron stars are also GW sources. When there is asymmetry in the mass
distribution of the spinning neutron star, it radiates GWs. They are important sources
for ground-based detectors. Since the asymmetric mass distribution is constrained to
be very small (e < 107% [51]), this kind of GWs is relatively weak. So it needs to be
observed for quite a long time to accumulate sufficient SNR. Beside the GW sources
mentioned above, there are other sources, such as burst gravitational radiation from
gravitational collapses, cosmic string cusps, quasi-normal modes of black holes, etc.

1.4 Gravitational Wave Detectors

Due to the weakness of typical GWs i ~ 2AL/L ~ 10722, there is no direct detec-
tion yet since the first attempt by Joseph Weber in the 1960s, when he built resonant-
bar detectors to search for cosmic GWs [52, 53]. During those early years, people
had very limited knowledge about the strength of the cosmic GWs. A resonant-bar
detector has a relatively narrow detection band and poor sensitivity. In today’s point
of view, there is almost no matching source of GWs except the very unexpected
violent events. Later on, people started to use large interferometers as GW observa-
tories, which in general have much better sensitivities and broader detection bands.
However, they were still not sensitive enough to have a reasonable detection rate.
After decades of hard work, the sensitivity of the large interferometers is improved
dramatically, and close to the guaranteed GW sources for the first time. In this section,
we will briefly review different kinds of existing and planned GW detectors.


http://dx.doi.org/10.1007/978-3-319-26389-2_11
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Fig. 1.3 MiniGrail, the first
spherical GW detector, is
operating in 2-4 kHz high
frequency range at Leiden
University in the Netherlands

1.4.1 Bar Detectors

The first GW detector was built by Joseph Weber in the 1960s. It was a large metal
bar, hence being referred as a bar detector or Weber bar. The metal bar is well
isolated from outside perturbing forces. When there are GW's of proper frequencies
passing by, the bar will be exited at the resonant frequency, thus amplifying the effect
and allowing the detection of GWs through sensitive displacement sensors. Modern
bar detectors are even cryogenically cooled down to extremely low temperatures
(e.g. a few K to mK) to reduce the thermal noise, e.g. the ALLEGRO detector [54—
56]. MiniGrail [57-59] is the first spherical GW detector operating in 2—4 kHz high
frequency range at Leiden University in the Netherlands, see Fig. 1.3. Generally, bar
or spherical metal detectors aim at high frequency sources (around or above kHz).

1.4.2 Ground Based Interferometers

Currently, large laser interferometers are the most sensitive GW detectors. There are
already several existing ground-based detectors all around the world.

LIGO (Laser Interferometer Gravitational-Wave Observatory) [60, 61] is the
largest ground-based GW detector for the time being. LIGO has two sites: One
is located in Hanford near Richland in Washington state, see Fig. 1.4; the other is in
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Fig. 1.5 Laser Interferometer Gravitational-Wave Observatory (LIGO) at Livingston

Livingston, Louisiana, see Fig. 1.5. Each site has an L-shape ultra high vacuum cham-
ber, holding a 4km armlength Michelson-type laser interferometer in it. Figure 1.6
shows the strain sensitivity of the LIGO detectors from science run 1 to science run 6.
Notice that each curve is the sensitivity of either LIGO Livingston or LIGO Hanford
(but not the joint sensitivity). Science run 1 began in 2002, and science run 6 ended
in 2010. Each science run has an improved sensitivity compared to previous sensi-
tivity, by implementing better techniques. Science run 5 roughly fulfilled the design
sensitivity of initial LIGO. Science run 6 has outperformed the initial LIGO sensi-
tivity high-frequency range with the help of techniques such as homodyne detection,
output mode cleaner, in-vacuum readout hardware, increased laser power etc. [62].
Thus, science run 6 is sometimes referred to as enhanced LIGO. LIGO has many
noise sources. Contributions from all these noise sources add up to the sensitivity
curve in Fig. 1.6. The main limiting noise sources for initial LIGO and most other
current ground-based interferometric detectors are: 1. seismic noise, which limits the
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Strain Sensitivity of the LIGO Detectors
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Fig. 1.6 Strain sensitivity of the LIGO detectors from science run 1 to science run 6 [63]

low-frequency sensitivity; 2. shot noise, which is the quantum mechanical photon
counting noise at the photon detector, limiting the sensitivity at high frequency; 3.
thermal noise, which limits the sensitivity in the middle frequency range. Currently,
LIGO is being upgraded to advanced LIGO. Advanced LIGO intends to outperform
the initial LIGO sensitivity by a factor of 10, hence increasing the detectable volume
by a factor of 1000, see Fig. 1.6. Hopefully, advanced LIGO will have the first GW
detection when it reaches its design sensitivity. This will open up a new era of GW
astronomy.

VIRGO [64, 65] is an L-shape Michelson interferometer located in Italy with
an armlength of 3km, see Fig. 1.7. VIRGO has been operating since 2007. It has a
sensitivity comparable to LIGO. Currently, it is being upgraded to advanced VIRGO.

GEOG600 [66] is another GW detector with an armlength of 600 m, located near
Sarstedt in Hannover, Germany, see Fig. 1.8. Since GEO600 has a shorter armlength
than LIGO and VIRGO, its sensitivity is worse than LIGO’s and VIRGO’s at low
frequencies and comparable to LIGO at high frequencies. Many advanced techniques
have been developed at and applied to GEO600, such as squeezing etc.

TAMA300 is a Japanese GW detector. Since it has an arm length of 300 m, its
sensitivity is not comparable to any of the above detectors.

There are also planned second-generation ground-based GW detectors. Besides
advanced LIGO and advanced VIRGO mentioned before, GEO-HF [67] is an upgrade
version of GEO 600. LIGO-India, a joint India-US advanced GW detector to be
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Fig. 1.8 GEO600 detector,
with an armlength of 600 m,
located at Sarstedt near
Hannover, Germany

located in India, has been proposed. The Kamioka Gravitational Wave Detector
(KAGRA) [68], formerly called the Large Scale Cryogenic Gravitational Wave Tele-
scope (LCGT), is aplanned Japanese GW detector. It has been approved in 2010. Now
it is under construction. Einstein Telescope (ET) [69] is a proposed third-generation
ground-based GW detector. Unlike other ground-based detectors, ET forms an equi-
lateral triangular shape underground. See Fig. 1.9 for the comparison of sensitivity
curves of different existing and planned ground-based GW detectors.

1.4.3 Space-Borne Interferometers

LISA [71, 72] is short for Laser Interferometer Space Antenna, which is a space-
based detector with three spacecraft forming an equilateral triangular constellation
with 5 x 10° m arm length orbiting the Sun trailing behind the Earth, see Fig. 1.10.
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Fig. 1.10 Orbits and configuration of classic LISA [78]. (Image: S. Barke)

Some variations of the LISA concept are called eLISA [73, 74] or NGO (New
Gravitational wave Observatory). Unlike ground-based detectors, LISA operates at
the richest GW signal band 0.1 mHz—0.1 Hz, where there are plenty of gravitational
wave signals, including massive black hole mergers, extreme mass ratio inspirals,
white dwarf binaries, GW cosmic background etc. LISA data analysis is more a
question of astrophysical parameter estimation than of mere detection. As for the
experimental preparation, LISA/eLISA is much more mature than other space-based
detectors (or space-based detector concepts) that we are going to talk about below.
We will discuss LISA in more details in the next chapters. LISA pathfinder [75-77]
is planned to be launched by the end of 2015. When it is successful in demonstrating
the key technologies required by LISA, LISA itself (or eLISA) will hopefully be
launched in twenty years.
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DEcIGO (DECI-Hertz Interferometer Gravitational wave Observatory) [79, 80] is
a proposed Japanese space-borne GW detector. It consists of four equilateral triangu-
lar constellations, with an armlength of 1000 km each. It plans to use a Fabry—Pérot
cavity along each arm to increase the effective armlength and the sensitivity. How-
ever, Fabry—Pérot cavities in space set much more demanding requirements. DECIGO
is designed to be sensitive in the 0.1 Hz—10 Hz band.

ALIA (Advanced Laser Interferometer Antenna) and BBO (Big Bang Observer)
[81] are follow-on concepts to LISA. ALIA requires moderately better techniques
than LISA, while BBO requires much better techniques than LISA. So, BBO is
actually a far-future space-borne concept, which gives excellent sensitivity. ALIA is
an intermediate concept bridging the LISA concept and BBO.

ASTROD-GW (Astrodynamical Space Test of Relativity using Optical Devices)
[82] is also a proposed space-based detector. It consists of three spacecraft, that are
located near Lagrange points L3, L4, and LS. Thus, ASTROD-GW has a much longer
armlength (about 1.7 AU) compared to other space-based detectors. So, it is sensitive
in a lower frequency band than LISA.

OGO (Octahedral Gravitational Observatory) is a recently proposed space-borne
gravitational wave detector [83]. Unlike other space-borne detectors, OGO consists
of 6 spacecraft forming a 3-dimensional octahedron configuration with an armlength
of about 1400km, see Fig. 1.11. The acceleration noise is a limiting noise for space-
borne detectors; and, the drag-free system for space detectors is one of the bottleneck
difficult technologies. With 6 spacecraft, OGO has the ability to remove the acceler-
ation noise while retaining GW signals. Thus, in principle, OGO needs no drag-free
systems, which greatly simplifies the engineering technology. An alternative OGO
configuration with 2 x 10° m armlengths is also proposed in paper [83].
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Fig. 1.11 OGO (Octahedral Gravitational Observatory), a newly proposed space-borne GW detec-
tor [83]
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1.4.4 Pulsar Timing Array

A PTA (Pulsar Timing Array) uses a set of millisecond pulsars to detect GWs [84].
Since millisecond pulsars are emitting pulses to the Earth extremely regularly, they
can be viewed as an emitter and the Earth’s radio telescope can be viewed as a
receiver. So each pulsar forms an arm with the Earth (more precisely, with the radio
telescope). When there is a GW passing through these arms, the time of arrival of
the pulses is altered. Thus, the GW signal is encoded in the time of arrival of these
pulses. Since the distance between the Earth and the pulsar is astronomically long, the
armlength formed by them is in turn much longer than man-made GW detectors. In
principle, the sensitive frequency range determined by these armlengths can extend
to extremely low frequencies. However, in practice, the observation time is limited
to the order of 10 years. Therefore, the actual sensitive frequency range of PTA is
usually from nHz to pHz.

Currently, there are three major PTAs operating and recording data: (i) the Euro-
pean Pulsar Timing Array (EPTA) [85], (ii) the North American Nanohertz Obser-
vatory for Gravitational waves (NANOGrav) [86] and (iii) the Parkes Pulsar Timing
Array (PPTA) [87]. The collaboration of these three PTAs is called the International
Pulsar Timing Array (IPTA) [84], which has better sensitivity than any of the three
individual PTAs.

1.4.5 Doppler Tracking

Doppler tracking of spacecraft has been also used to search for GWs [88, 89]. Similar
to PTA, the method takes the Earth as one end and the deep space spacecraft as the
other, hence forming an arm between the two by sending and receiving signals. The
distance between the spacecraft and the Earth is of the order of about 1 AU, thus the
sensitive frequency band of Doppler tracking is similar to that of ASTROD-GW.

1.4.6 High Frequency Detectors

There are two high frequency GW detectors for the time being. One of them is located
at INFN Genoa, in Italy. The other [90] is located at the University of Birmingham in
England. They are aiming at MHz to GHz range GW signals. Another high frequency
detector [91] is proposed by Fangyu Li at Chongqing University, China. This detector
aims to detect relic gravitational radiation around 10'° Hz.
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1.5 Gravitational Wave Data Analysis

GW data analysis [92, 93] is a crucial integral part of GW astronomy. Due to the
weakness of GWs, most of the time GW signals are buried in strong detector noise.
One needs to design sophisticated algorithms and efficient codes to detect GW sig-
nals. Even when the signal is strong (e.g. massive black hole mergers for LISA),
one still needs to design sophisticated data analysis algorithms to extract physical
information (e.g. the masses of the black holes, the spins, the sky positions) from the
observed signals. Generally speaking, the analysis of the measurement data of GW
detectors mainly involves two stages:

1. The pre-processing stage (or the data preparation stage), whose main task is to
use various auxiliary measurement data (e.g. the data channel that is used to mon-
itor the environment surrounding the GW detectors) or additional information to
calibrate the science data (i.e. the data stream that is supposed to contain GW
signals and used to detect GW signals) and to reduce or remove various noise in
the science data. Chapters 29 of this thesis are devoted to this kind of data analy-
sis for (e)LISA. Since the pre-processing stage is different for different kinds of
GW detectors, such as space-borne interferometers, ground-based interferome-
ters, PTAs, the background knowledge for LISA data preparation is specific. Its
introduction will be given in Chaps.?2 and 3.

2. The astrophysical data analysis stage (or the ‘usual’ GW data analysis), in which
we try to detect GW signals from the science data and estimate the physical para-
meters of the detected GW signals. The works in Chaps. 10-13 are of this type
of data analysis. Since the astrophysical data analysis for space-borne interfer-
ometers, ground-based interferometers and PTAs, relies on more or less common
background knowledge and techniques, we will give a general introduction below.

1.5.1 The General Problem in Astrophysical Data Analysis

The general problem in the astrophysical data analysis stage is to detect the GW signal
from the detector output x (¢) and estimate the (physical) parameters 0 that describe
the GW signal. For a compact binary, these parameters 6 can be the masses, the spins,
the sky position of the binary, the angle between the orbital momentum of the binary
and the line of sight, etc. The detector output x(¢) can usually be expressed as

x(t) = s(t, 8) + n(r), (1.21)

where n () denotes the noise time series, s(z, 6) the detector response to a gravita-
tional wave signal A (¢, 0). For linear measurement system, s(z, 0) equals the convo-
lution of the gravitational wave signal / (¢, 0) and the impulse response of the system.
In the next subsections, we will look in detail into the detector response and the noise,
which are the two important elements of the detector output.


http://dx.doi.org/10.1007/978-3-319-26389-2_2
http://dx.doi.org/10.1007/978-3-319-26389-2_9
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1.5.2 Properties of a Random Process

The detection and parameter estimation algorithms depend largely on the property
of the noise n(t), which is a random process. The property of a random process is
usually characterized by its moments. The first moment is defined as the mean of the
process

u(t) =< n(t) >, (1.22)

where < - - - > denotes the ensemble average. The second moment is also known as
the autocorrelation

A, 1) =<nOnt +171) > . (1.23)
The higher moments are defined as

<nt)n(t + m)nt +m) >,
<nn(t +7m)n + m)n(t + 13) >,

A random process is said to be stationary if its joint probability distribution is invariant
under a shift in time. Therefore, for a stationary random process, its moments do not
depend on the time 7. If only its mean and autocorrelation do not change when shifted
in time, the random process is call wide-sense stationary (WSS).

The Wiener—Khinchin theorem [94, 95] states that if a noise process n(¢) is WSS,
the Fourier transform of its autocorrelation A(7) exists

[e¢]

/ AT/ Tdr,

—00

Su(f)

oo

/ <nOnit +71) > > 7dr, (1.24)

—00

where S, (f) is usually called the two-sided power spectral density (PSD) of the noise
process, and we have adopted the following convention of the Fourier transform
x(f) = f x(t)e'*™/1ds. With the help of inverse Fourier transform, we can easily
obtain the variance of the noise process

<n()? > = A0),

o]

_ / Su(f)df. (125)

—00
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A random process is called Gaussian, if it is uniquely characterized by its first and
second moments. In GW data analysis, the noise process n(t) is usually assumed to be
Gaussian stationary with a zero mean. Such a noise process is uniquely characterized
by its autocorrelation function, hence by its PSD.

In the following, we will discuss the noise process in a more intuitive and less
rigorous way, which assumes the Fourier transform 7( f) of the Gaussian stationary
noise process n(t) exists. It is easy to verify that

< A" (fHa(f) > = / / <n(n(t) > e 27 M2 24 dp,,

- // <n()n(t +71) > 2 =10 eI drdr,
= SO = [, (1.26)

which is the usual definition of the two-sided PSD of the Gaussian stationary noise
in GW literatures. For a total observation time 7', the above equation leads to

1
&m=7<mmfx (1.27)

which can be used to quickly estimate the PSD of the noise. For white-Gaussian
stationary noise process, another useful formula can be obtained from Eq. (1.25)

Si(f) = a?At, (1.28)

where o is the standard deviation of the noise process, At the sampling interval. This
can be used to simulate white-Gaussian noise at a given PSD level. Simulation of
noise with arbitrary PSD will be discussed in Chap. 9.

1.5.3 Detector Responses

Now let us calculate the response of the basic element of an arbitrary interferometer—
asingle (laser) link to a gravitational wave signal. Suppose the emitter locates at X (;,,
where subscript j = 1, 2, 3 ... indicates the jth spacecraft for space-borne detectors,
the jth vertex of ground-based detectors, or the jth pulsar for PTAs. Similarly, we
denote the location of the receiver as X ) and the unit vector pointing from the
emitter to the receiver by njx) = (X ) — X)) /L jx), where the so-called armlength
Ljxy = X« — X ;| is the distance between the emitter and the receiver. Without
loss of generality, we assume the gravitational wave propagates along e, direction,
which can be expressed as

h(t, X) =hi(t —e, - X/c)es + hy(t —e, - X/C)ex, (1.29)


http://dx.doi.org/10.1007/978-3-319-26389-2_9
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wheree, = (e, ®e,—e,®e,)/2, e, = (e;RQe,+e,Re,)/2 are the two polarization
tensors, c is the speed of light. The detector response to gravitational radiations can
be strictly derived with the help of the three Killing vectors of the radiation field,
which lead to three constants of motion. See [89, 96] for more details. Up to the
leading order in A, the phase change induced by GWs to a single-way laser link is

Lin/e
Adn(te) = D Fly / hol(te —e.- X (jy/c) + (1 — e, - ngjpy)t |wrdt’
p=+,X% 0

(1.30)

where F(J]Tk) = [ngy @ ngrl : ey, F(jk) = [njiy ® niyl : ey are the antenna
pattern functions of the single-way link, ‘> denotes tensor contraction, w; is the
angular frequency of the laser, and ¢, is the time of emission. The reception time
can be written as t, = t, + L;x)/c. Physically, this equation means the total phase
change results from the summation of gravitational perturbation of different phases
along the laser link. The dimensionless response of the detector is also quite useful
in many cases, which is given by

Lw/e
» .. cdt
S(jk)(te) = Z F(jk) hp[(te — ;- X(j)/c) + (1 - e; - n(jk))t ]L -
p=t,x 0 (k)

(1.31)

The antenna pattern functions in these responses basically indicate which direc-
tions the gravitational wave detector is sensitive to. Figure 1.12 shows the antenna

0.5

-0.5
0.5

Fig. 1.12 Antenna pattern functions of a single laser link. (Left) Antenna pattern function for /4
polarization, F+ = % (cos? A cos? p—sin? ). (Right) Antenna pattern function for /. polarization,
F* = cosfcospsinp
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Fig. 1.13 Antenna pattern
functions of a Michelson
interferometer. (Left)
Antenna pattern function for
h polarization, F* =
%(COS(Z@)(] + cos? 0)).
(Right) Antenna pattern
function for 4 x polarization,
F>* =sin(2¢) cos 0

pattern functions of a single laser link. Figure 1.13 shows the antenna pattern func-

tions of a Michelson interferometer, which has two orthogonal arms. It is apparent

from these figures that gravitational wave detectors are sensitive to a very large

fraction of the sky, hence they are usually referred to as omni-directional detectors.
The Fourier transform of the dimensionless response can be obtained easily

exp{2mif[l —e; - n¢nlL(n/c} —1
2mif[1 — e, - nglLin/c

g(jk) (f) — Z ng) e*Zﬂiez-X(j)il'p(f).

p=+,X

(1.32)

Let us consider a special case when the laser beam is along x-axis (e, ), GWs prop-
agate in e, direction and have only the plus polarization 4 = h(t)e+. Then the
detector response in frequency domain can be simplified as

S (f) = T(HR)
_ 16Xp{271’ifL(jk)/C} —1

— —27TieZ~X(j)il , 1.33
2 amifLgfe R

where

Lexpl2mif Lyn/e) =1 e x,

: (1.34)
2 27TlfL(jk)/C

()=

is the transfer function. Figure 1.14 shows the amplitude of the transfer function for
an arm length L = 5 x 10°m (LISA arm length). If the detector is limited by some
noise floor with a PSD S ( £), the effective strain sensitivity can then be written as

_ /Ssoor(f)
\/Sn(f)—Tf)l~ (1.35)

Figure 1.15 shows an example of the strain sensitivity.
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Fig. 1.14 Transfer function of a single-link one-way detector
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Fig. 1.15 Strain sensitivity of a single-link one-way detector with an arm length of L = 5 x 10%m.
Here we assume the sensitivity of the detector is limited only by white noise

In more general case, the transfer function depends on the propagation direction
of GWs, while the noise floor usually does not. We need to average the gravitational
wave transfer function over all directions. The strain sensitivity of a GW detector is

then given by
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_ Srijoor(f)
D=\ (PR ey (150

where < --- >g, means averaging over all sky positions. Next we give an simple
example of the sensitivity of a GW detector. According to [97], mock LISA data
challenge (MLDC) adopts a simplified model to characterize LISA noise. The one-
sided PSD of the position noise is modelled as

S2(£)y =20 x 107?m/~/Hz. (1.37)

pos

The one-sided PSD of the acceleration noise is modelled as

SY2(£) =3 x 10751+ (10*Hz/f)? m/s®/v/Hz. (1.38)

acc

Then, the total noise floor can be calculated as

SET(F) =\ Spos (/L2 + Suce 1)/ (42 2L (1.39)

By inserting this into Eq.(1.36), we obtain LISA strain sensitivity of a single-link
averaged over all sky positions plotted in Fig. 1.16. In practice, we need to eliminate
the otherwise overwhelming laser frequency noise through post-processing, which
will be discussed in Chap. 2. The post-processing algorithms will introduce a small
correction to the sensitivity curve, which accounts for the small difference between
the single-link sensitivity curve here and the official LISA sensitivity curve.

e LISA sensitivity curve
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Fig. 1.16 Strain sensitivity of a single-link one-way detector with an arm length of L = 5 x 10°m
averaged over all sky positions
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1.5.4 Detection Statistic

In the following, we follow the Bayesian approach to construct a detection statis-
tic [98, 99]. We denote the conditional probability of realizing x (¢) in the absence of
the signal as P (x]0). The conditional probability of realizing x (¢), when a signal s (¢)
is present, is denoted by P (x|s). Similarly, the conditional probability of realizing
x(t), when the signal s(#, ) characterized by parameters 0 is present, is denoted by
P (x|s(B)). The a priori probabilities that no signal is present in the data and a signal
s(t) is present in the data are denoted by P(0) and P (s) respectively. The a priori
probability density of the signal parameters is denoted by P(0). According to the
law of total probability, we can express the probability of measuring x(¢) as

P(x) = P(x|0)P(0) + P(x]s) P(s),
= P(x|0)P(0) + P(s)/dN(BP(®)P(x|s((B)), (1.40)

where N is the dimension of the parameter space. By inserting this into the relation
given by the Bayes’ theorem, we obtain the probability that a signal is present given
the data x(t)

P(x|s)P
P(slx) = %

- A~ (1.41)
A+ P0)/P(s)

where we have defined

A= /dN(BA(@), (1.42)

A = P(@)%S'((;e))). (1.43)

Since P (0)/P(s) is apositive constantin Eq. (1.41), P (s|x) is a monotone increasing
function of the likelihood ratio A. In addition, since P(0)/ P (s) does not depend on
any physical parameters, A is a sufficient statistic. Ideally, it is nice to use A as a
detection statistic. However, the high dimensional integral over the signal parame-
ters B is usually computationally prohibitive. Instead, one uses A (B) as a detection
statistic. In practice, one calculates this likelihood ratio A (B) for many possible para-
meters 0. If the maximum A (B) is above a certain prescribed threshold, we claim a
detection. And the parameter set 6, that maximize the likelihood ratio is usually taken
as the estimate of the parameters. This procedure is called the maximum likelihood
estimator in statistics.
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1.5.5 Matched Filtering

Now we try to express the probability densities explicitly. In the absence of the
signal, the data should follow the probability distribution of the noise, which is
usually assumed to be Gaussian with a zero mean. Suppose there are M discrete
measurements x;, where j = 1,2, ..., M. Notice that these measurements can be
nonuniform in time. The autocorrelation matrix of the corresponding noise n; is
denoted by

Ajk =< I’ljl’lk >, (144)

-1

whose inverse matrix is denoted by A ik which satisfies

M
> AjAy =61 (1.45)
k=1

Then the probability density of the data x; in the absence of the signal is

P(x]0) = (1.46)

1 1 _1
———exp | —= XA x|,
V2w A 2% I

where || --- || denotes the determinant. Similarly, the probability of observing x;,
when the signal s; is present, can be expressed as

1 1
P(x|s) = ——=——=vexp | =5 D> (x; = s)A} (i — 1) |- (1.47)
27 A P

The likelihood ratio can be easily calculated from the above two equations. If this
likelihood ratio is above a prescribed threshold, a detection is claimed. In this proce-
dure, the calculation of the inverse of the large autocorrelation matrix and the matrix
production is computationally expensive, especially when the number of samples is
large. PTA data analysis, whose data is unevenly sampled, usually adopts the above
procedure.

For ground-based and space-borne interferometers, the measurements are usually
uniformly sampled. Assuming the noise is Gaussian stationary, there is a much more
efficient way to evaluate the exponents in the above two equations. In the limit
of the total observation time 7 — oo and the sampling interval At — 0, it is
straightforward to prove [98]

. [ # (D)
x-AAlxk—>/x—df, (1.48)
% TS
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where S, (f) is the two-sided PSD of the noise. In this way, one can avoid calculating
the inverse of large matrices. It is convenient and traditional to define a inner product
of two time series a(t), b(t) as follows

[e¢]

[ @ (b i (f)b
<a|b>=/%f§f)df=21{e /%)f()f)df , (1.49)
0

—00

where Re denotes the real part. Insert the data and the GW signal into this inner
product, we have

o0

(xls®) = /i*(f) x

—00

5(f.0)
Su(f)

af, (1.50)

which can also be written in time-domain as a convolution. This is a linear time-
invariant filter, which is the optimal linear filter in the sense that it maximizes the
signal-to-noise ratio (SNR). It is usually called the matched filter in GW literatures.
Essentially, it is a Wiener filter [100]. The optimal SNR for a signal s(B) present in
the data is

T 502

2 _ —
SNR” = (s(B)|s(®)) = 5, ()

df. (1.51)

—00

With the help of the inner product, the probability of observing the measurements
x(t) in the absence and presence of the signal can be reexpressed as

P(x|0) = e 20 (1.52)

P(x|s(®)) ox e~z s@—s@) (1.53)

Up to a constant, the likelihood ratio can be reexpressed as

P(x]s(6))
P(x]0)
o P(@)emf(@))*%<S(@)|S(‘B)>. (1.54)

A(®)  P(0)

Since the exponential function is a monochromatically increasing function, one usu-
ally uses the log likelihood ratio as the detection statistic

L(6) = log A(0),

= (x|s(0)) (s(B)|s(®)) + log P (0). (1.55)

1
2

For a uniform a priori probability density, the last term in the above equation vanishes.
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1.5.6 Parameter Estimation

For a given parameter space, one needs to evaluate the log likelihood ratio at all
possible parameter sets 0 in the parameter space and identify the parameters 0, that
maximize the log likelihood ratio as the most probable parameters of the signal
(assuming its likelihood ratio is above some threshold). As mentioned before, this is
called the maximum likelihood estimator. In practice, it is computationally extremely
intensive to do this for all the parameters. Actually, some of the parameters in the
parameter set B can be maximized over analytically. These parameters are usually
called extrinsic parameters in GW literatures. The parameters that cannot be max-
imized over analytically are called intrinsic parameters. The extrinsic parameters
usually do not modulate the phase of the GW signals, while the intrinsic parameters
do. In the following, we give a few typical examples of maximization over extrinsic
parameters.

Consider b = (®, A), where the amplitude A of the signal is an extrinsic parame-
ter. The rest parameters are denoted by ®. The signalis s = Ah(¢, ®) and the detector
output is x = Ah(t, ®) + n, where h(t, ®) is the normalized signal (h|h) = 1. We
assume a uniform a priori probability density P (8) throughout this subsection. Then,
the log likelihood ratio is

L(©) = (x[s®) — 5(s(®)|s(0)),

1
2
— (x[h(©))A %AZ. (156)

Let OL/OA = 0, we obtain A = (x|h(®)). Therefore, we have

L(®) = max L) = %(x|h(®))2. (1.57)
This implies that L'(®) = (x|h(®)) is a sufficient statistic for the maximum like-
lihood estimator, hence we only need to calculate the inner product of the data and
the normalized signal.

Now let us consider 6 = (®, A, ¢,, t,), where the initial phase ¢, of the signal is
also an extrinsic parameter, ¢, denotes the time of arrival, and the rest parameters are
denoted by ®. (Notice that the following algorithm works equally for the coalescence
time ¢, and the coalescence phase ¢..) The Fourier transform of the signal can now
be expressed as

5(f:0, A, ¢u, ta) = Ah(f; @) 2™ 1utid, (1.58)

The maximization over the extrinsic parameters and the fast parameter 7, can be done
as follows
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max L(B) — max L'(®, ¢, t,),
A ba,tq Pasta

= r(;lax < x|h(@, Qbas ta) >,
(17[(1

[e¢]

— 2 maxRe /wenﬂ'fffri@adf ,
S (f)

a»la

= 2max /i*(f)h(f—; ®)e"2”f"

df |, 1.59
Su(f) / (159

which is simply twice the largest absolute value of the Fourier transform of
xX*(f Ya( f:©)/S,(f). Therefore, the maximization over the parameter ¢, can be
efficiently calculated via a fast Fourier transform.

Next we consider 6 = (®, A*), where A* = (A', A2, ..., A") are extrinsic
parameters, and the signal is in the following form

s(t,0) = Al'h,(t, ©), (1.60)

where we have assumed Einstein summation convention, and %, (¢, ®) are functions
of the intrinsic parameters ®. The corresponding log likelihood ratio of this type of
signals can be expressed as

L®) = (xIs®) — - (s®1s(®)),

1
2
1
= A(x|h,(©)) — Ez“”(%(@)lhu(@))f\”,
1
= Al'x, — EA”MH,,A”, (1.61)
where we have defined x,(®) = (x|h,(®)) and M, (®) = (h,(©)|h,(®)). This

is a quadratic form of the parameters A*, hence it can be maximized easily. Let
OL/OA" = 0, we obtain A* = (M~")*x,,. Therefore, we have

max L(®) = %xu(®)(M_])‘“’(®)x,,(®). (1.62)

This is the so-called F-statistic in GW literatures. See more discussions on it in
Chap. 11.

All in all, the maximization over extrinsic parameters helps a lot in accelerating
the search for the signal. However, the exploration in the intrinsic parameter space
is still computationally very expensive. There are mainly two categories of search
algorithms for the intrinsic parameters: (i) the incoherent and semi-coherent search
and (ii) the coherent search. The incoherent and semi-coherent search are compu-
tationally more efficient, but they are less sensitive to the signals. Time-frequency
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methods (see Chap. 11 for more details about this method), short Fourier transforms,
and wavelet transforms all belong to this category. The coherent search is more sen-
sitive to the signals, but it is computationally more expensive. There are mainly two
types of algorithms in this category: (i) grid-based algorithms and (ii) stochastic
algorithms. The grid-based algorithms employ a mesh grid in the intrinsic parame-
ter space, and calculate the likelihood ratio for each of the parameter set on the
grid. This kind of algorithms is very sensitive to the signals, but it is computation-
ally extremely expensive. Therefore, it is usually run on big clusters. Sometimes,
grid-based algorithms are computationally prohibitive. In this case, one could turn
to stochastic algorithms, which are computationally more efficient. These heuristic
algorithms include Markov chain Monte Carlo, particle swarm optimization, genetic
algorithms, etc. See more discussions about these algorithms and coherent searches
in Chaps. 11-13.

The uncertainty of the parameter estimation is usually characterized by the Fisher
matrix [101], which is defined by

Fix(6) =< 0;1og P(x|s(B))0 log P(x|s()) >, (1.63)

where §; = 9/060/ denotes the partial derivative with respect to the jth component in
0. With the help of the definitions of P (x|s(6)) and the noise PSD, it is straightforward
to prove that

ij(@) = ((9_,'S|(9k5>. (164)

The inverse of the Fisher matrix F ]7(1((9) serves as a lower bound, which is well-
known as the Cramér—Rao bound [101], for the parameter-estimation error of all
unbiased estimators.

One other important concept, that is closely related to the Fisher matrix, is the
metric on the likelihood surface [102]. Let us consider the mismatch between two
normalized signals (which satisfy (s|s) = 1) separated by a small distance dB in the
parameter space.

(s(®)]s(©®+dB)) = 1+ %<s(®)|ajaks(®)>d0fd0’< +aen, (1.65)

where the linear order vanishes due to the fact that the inner product has its maximum
atd® = 0, and we have assumed Einstein summation over repeated indices. By taking
the second partial derivative of (s|s) = 1, it is easily obtained that

(5(8)|0; 05 () = —(9;5(8)| 95 (8)). (1.66)
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Therefore, the mismatch up to the second order in d6 can be expressed as

1 — (s(®)[s(®+ db))

1 .
z(a,s(qa)|aks(aa)>defdek,
= G jd6/do*, (1.67)

where the metric G j is one half of the Fisher matrix Fj;. At a given mismatch (say
0.03), the metric describes a hyper ellipse in the parameter space, which is used to
place the templates in the parameter space [102]. The hyper ellipse determines the
resolution of a template bank, and the ratio between the volume of the parameter and
the volume of the hyper ellipse determines the number of templates required by a
given mismatch. See more discussions in Chap. 13.
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Chapter 2
LISA Data Processing Chain

Abstract The complete LISA data processing chain is described in this chapter,
which consists of the simulation of the orbits, the simulation of gravitational wave
signals, the simulation of various LISA measurements, the pre-processing stage,
the time-delay interferometry techniques, and the astrophysical data analysis. The
role and the goal of the pre-processing stage—first stage of LISA data analysis—is
established and discussed for the first time.

2.1 Introduction

LISA (Laser Interferometer Space Antenna) [1, 2] is a proposed space-borne gravi-
tational wave (GW) detector, aiming at various kinds of GW signals in the low fre-
quency band between 0.1 mHz and 1 Hz. LISA consists of three identical spacecraft
(S/C), each individually following a slightly elliptical orbit around the sun, trailing
the Earth by about 20°. These orbits are chosen such that the three S/C retain, as
much as possible, an equilateral triangular configuration with an arm length of about
5 x 10° m. This is accomplished by tilting the plane of the triangle by about 60° out
of the ecliptic. Graphically, the triangular configuration makes a cartwheel motion
around the Sun. As mentioned before, eLISA [3, 4] is a (evolving) variation of LISA,
which consists of one mother S/C and two daughter S/C, separated from each other
by 1 x 10° m. Although the configurations are slightly different, the principles and
the techniques are equally applicable. Therefore, we will mainly focus on LISA
hereafter.

Since GWs are propagating spacetime perturbations, they induce proper distance
variations between test masses (TMs) [5], which are free-falling references inside
the S/C shield. LISA measures GW signals by monitoring distance changes between
the S/C. Spacetime is very stiff. Usually, even a fairly strong GW still produces only
spacetime perturbations of order about 1072! in dimensionless strain. This strain
amplitude can introduce distance changes at the pm level in a 5 x 10° m arm length.
Therefore, a capable GW detector must be able to monitor distance changes with this
accuracy. The extremely precise measurements are supposed to be achieved by large
laser interferometers. LISA makes use of heterodyne interferometers with coherent
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offset-phase locked transponders [6]. The phasemeter [7] measurements at each end
are combined in postprocessing to form the equivalent of one or more Michelson
interferometers. Information of proper-distance variations between TMs is contained
in the phasemeter measurements.

Unlike the several existing ground-based interferometric GW detectors [8—12],
the armlengths of LISA are varying significantly with time due to celestial mechanics
in the solar system. As a result, the arm lengths are unequal by about 1 % (5 x 10’ m),
and the dominating laser frequency noise will not cancel out. The remaining laser
frequency noise would be stronger than other noises by many orders of magnitude.
Fortunately, the coupling between distance variations and the laser frequency noise
is very well known and understood. Therefore, we can use time-delay interferometry
(TDI) techniques [13-21], which combine the measurement data series with proper
time delays, in order to cancel the laser frequency noise to the desired level.

However, the performance of TDI [18, 22] depends largely on the knowledge of
armlengths and relative longitudinal velocities between the S/C, which are required
to determine the correct delays to be adopted in the TDI combinations. In addition,
the raw data are referred to the individual spacecraft clocks, which are not physically
synchronized but independently drifting and jittering. This timing mismatch would
degrade the performance of TDI variables. Therefore, they need to be referred to
a virtual common “constellation clock” which needs to be synthesized from the
inter-spacecraft measurements. Simultaneously, one also needs to extract the inter-
spacecraft separations and synchronize the time-stamps properly to ensure the TDI
performance.

2.2 Simulating the Whole LISA Data Processing Chain

In this section, I will talk about the perspective of a complete LISA simulation. The
future goal is to simulate the entire LISA data processing chain as detailed as one
can, so that one will be able to test the fidelity of the LISA data processing chain,
verify the science potential of LISA and set requirements for the instruments. The
flow chart of the whole simulation is shown in Fig. 2.1. In the following, I will discuss
the role and the main task of each step.

2.2.1 LISA Orbits Simulator

The first step is to simulate LISA orbits under the solar system dynamics. It should
provide the position and velocity of each TM, or roughly S/C, as functions of some
nominal time, e.g. UTC (Coordinated universal time) for subsequent simulations.
Since TDI requires knowledge of the delayed armlengths (or light travel times)
to meter accuracies [23], and the pre data processing algorithms could hopefully
determine the delayed armlengths to centimeter accuracies, the provided position
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information should be more accurate than centimeters. Recall that 1 AU is of order
10"" m. The dynamic range here is 13 orders of magnitude, which is smaller than the
machine accuracy (15-16 digits). However, the GW-induced arm-length variation
for LISA is at the picometer level [23], which is 25 orders of magnitude smaller than
1 AU. One could in principle use extended precision, but that might be computation-
ally too expensive. Luckily, GWs in the TT gauge do not change the coordinates of
the TMs. Thus, one can ignore GWs when simulating LISA orbits.

One other issue is the sampling rate. The LISA onboard measurements will be
down-sampled and transferred to the Earth at about Hz sampling rate (e.g. 3 Hz). So
the position and velocity information should be provided to the centimeter precision
at Hz sampling rate. In one year, there are about 10 samples at this sampling rate.
One can design an orbit integrator with sub second integration time-steps, but it is
inefficient. Instead, one can design an orbit integrator with adaptive large integration
steps and then interpolate the orbits to centimeter precision. However, the accuracy
of the interpolation scheme needs to be checked carefully.

The lastissue in this step is to choose a model of dynamics. In principle, one should
use the best known ephemeris (with trajectories of all the solar system planets) and
the solar system dynamics to a sufficient PN order [24]. For simplicity and speed
concern, sometimes one can also use Kepler orbits, or even simpler, analytical orbits
(Taylor expansion of Kepler orbits to certain order of eccentricity) in the right place.
One should make sure that it is consistent with all other steps.

2.2.2 Simulating GWs

The second step is to simulate GWs. There are various kinds of GW sources
[23, 25] in the LISA band, such as massive black hole (MBH) binaries, extreme-
mass-ratio inspirals (EMRIs), intermediate-mass-ratio inspirals (IMRIs), galactic
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white dwarf binaries (WDBs), gravitational wave cosmic background etc. In the
source frame, these GW waveforms are generated either from the dynamic equations
or phenomenological waveform models. For some purposes, one can also simply use
sinusoidal GW signals as test signals.

2.2.3 Simulating Measurements

The third step is to simulate the measurements as detailed as needed, which in turn
requires the simulation of the evolution of the S/C internal environments, e.g. how
does the attitude of TMs evolve, how does the frequency of the ultra-stable oscillator
(USO) evolve, how does the temperature evolve, how does the laser frequency evolve?
Since there are many sources of disturbance [26-28], one should first only take into
account the critical ones. The less critical features can be ignored selectively. The
irrelevant features should be ignored.

The TMs are drag-free in only one dimension each, which is along the direction
of the laser beam. The other two transverse dimensions are controlled. Hence, their
actual orbits may deviate from geodesics (i.e. orbits of three dimensional drag-free
TMs). The deviation is small over short periods, but sizable after a few months
accumulation.

Usually, these deviations are ignored in simulations. If one wants to simulate this
effect, the orbits calculation and the measurements simulation must be integrated.
Whenever the TMs tends to fall off the orbits, one should make corrections and
calculate the new orbits. Mathematically, the equations of motion are augmented with
the equations of the active control and the disturbances. The whole set of differential
equations should be solved and evolved together.

There are many measurements in LISA. The main ones are science measurements,
ranging measurements, clock side band beatnotes, S/C positions and clock offsets
observed by the deep space network (DSN). There are many more measurements,
such as various auxiliary measurements, incident beam angle measured by differen-
tial wavefront sensing (DWS). In principle, all the relevant measurements need to be
simulated. The simulation in turn can guide the experiments and the design, telling
us which measurements are useful and which ones need to be transferred back to the
Earth at which sampling rate.

Another important issue is to simulate various kinds of noise sources, such as the
laser-frequency noise, clock jitters, the readout noise, the acceleration noise. These
noises are generated either from their PSD or from physical models. In the end,
the noises and the GWs signals are both added to the measurements. For simplicity,
usually stationary Gaussian noise (white or colored) is used, although real instruments
in general produce more complicated noise.
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2.2.4 Down Link

The ‘down link’ is referred to as a procedure of transferring the onboard measurement
data back to Earth, which is also an important step in the simulation. Since the beat-
notes between the incoming laser beam and the local laser are in the MHz range,
the sampling rate of ADCs should be at least twice that, i.e. at least 40-50 MHz.
The phasemeter prototype developed in the Albert Einstein Institute Hannover for
ESA uses 80 MHz [29]. Due to the limited bandwidth of the down link to Earth,
measurement data at this high sampling rate cannot be transferred to Earth. Instead,
they are low-pass filtered and then down-sampled to a few Hz (e.g. 3 Hz). The raw
data received on Earth are at this sampling rate.

For simulation concerns, generating measurement data at S0 MHz with a total
observation time of a few years is computationally expensive and unnecessary.
Instead, these measurements are simulated at a few tens to a few hundreds of Hz.

It is worth clarifying that, up to this point, the simulation of the S/C and GWs was
done with complete knowledge of ‘mother nature’. From the next subsection ‘pre
data processing’ on, comes the the simulated processing of the down-linked data,
where we have only the raw data received on Earth, but other informations such as
the S/C status are unknown.

2.2.5 Pre Data Processing

The next step is the so-called pre data processing. The main task is to synchronize the
raw data received at the Earth station and to determine the armlength accurately. In
addition, pre data processing aims to establish a convenient framework to monitor the
system performance, to compensate unexpected noise and to deal with unexpected
cases such as when one laser link is broken for a short time.

The armlength information is contained in the ranging measurements, which com-
pare the laser transmission time at the remote S/C and the reception time at the
local S/C. Since these two times are measured by different clocks (or USOs), which
have different unknown jitters and biases, the ranging data actually contain large
biases. For instance, high-performance (not necessarily the best) space-qualified
crystal oscillators, such as oven controlled crystal oscillators [30], have a frequency
stability of about 10~7~~8, This would lead to clock biases larger than one second
in three years, which would result in huge biases in the ranging measurements.

In fact, all the measurements taken in one S/C are labeled with the clock time
in that S/C. This means all the time series contain clock noise. Time series from
different S/C contain different clock noise. These unsynchronized, dirty and noisy
time series need to be pre-processed in order to become usable for TDI.

Pre data processing has been ignored for long. It is one of the main topics of this
thesis.
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2.2.6 TDI Simulation

As mentioned previously, TDI has been well studied in the literature [14-21]. Laser
frequency noise is the frequency instability of the laser source. For a normal Michel-
son interferometer, the laser beams travelling in the two arms originate from the
same laser source, thus they share common laser frequency noise. At the photon
detector, one measures the phase (or frequency) variation of the beatnote of the two
laser beams. The frequency noise is canceled out when the two arms have the same
length, hence not degrading the measurements.

However, in the LISA case, the S/C are far apart. The telescope can capture only a
very small fraction of the remote laser beam, thus it is impossible to reflect the same
laser light back to the remote S/C. The local photon detector measures the beatnote
between the received weak laser beam and the local laser. Without the offset phase
locking scheme, the two laser beams are generated by different laser sources, hence
they contain different frequency noise. As a consequence, the laser frequency remains
in the measurements. With the offset phase locking scheme [6], the laser frequency
noise still remains, due to the unequal arm lengths. Its power spectral density is
about 8-9 orders of magnitude higher than the designed sensitivity. Currently, the
only solution is to phase-lock the remote laser, record each single-way measurement,
properly recombine these single-way measurements in the TDI post-processing stage,
virtually forming an equal-arm Michelson interferometer. In this step, one uses the
ranging and the time information from pre data processing to properly shift the
phasemeter measurements accordingly and recombine them.

2.2.7 Astrophysical Data Analysis

In this final step, the task is to dig out GW signals from the data and extract astro-
physical information—in short, detection and parameter estimation. At this stage,
we have relatively clean and synchronized data labeled with UTC time stamps. Still,
the GW signals are weak compared to the remaining noise. As a result, one needs
to implement matched filtering techniques to obtain optimal SNR. We will come to
this again in detail in other chapters.
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Chapter 3
Applying the Kalman Filter to a Simple Case

Abstract The very basic formulas of a Kalman filter with discrete time are derived in
this chapter. A simplified LISA problem is considered as an introductory example,
where the pseudo-ranging measurements and the Doppler measurements from a
single laser link of LISA are processed via a standard Kalman filter. The clock errors
have been ignored in this simple example. The simulation results show that the
Kalman filter is able to reduce the ranging noise under these assumptions.

3.1 Introduction

As mentioned in the previous chapter, in the whole LISA data processing chain, pre
data processing is a crucial step, which has been ignored for long time. It is one
of the main tasks of this thesis. The main goal of this step is to synchronize the
clocks and to extract the ranging information. We expect this problem to be solved
by an optimal filter (Kalman-like) [1, 2], since we know the dynamic model of the
whole LISA constellation (i.e. solar system dynamics, the power spectral density
of clock jitters, etc.). This kind of knowledge is complementary to phasemeter raw
measurements [3]. Thus, if one combines the information from the measurements and
that from the system model, it is possible to continuously calculate optimal estimates
for the armlengths, the Doppler velocities and the clock jitters. In this chapter, we
will introduce the basic form of Kalman filter, and then apply it to a simplified LISA
ranging problem.

3.2 Kalman Filter

A very natural and clever way to combine complementary information is the famous
Kalman filter, a data analysis technique named after Rudolf E. Kalman. Kalman filter
is the optimal linear filter in the least square error sense on condition that both the
dynamics of the system and the observation function are linear and the noises are
white Gaussian. To be specific, the linearly dependent dynamics can be expressed as
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Xk = Froixi—1 + Br_qug—1 + wi— (3.1)

where x; is the state vector (a column vector here) of the system at time ¢ = #,
describing the instantaneous state of the system (e.g. the positions, the velocities,
the clock jitters); uy is the so-called control vector with known components, which
can be ignored in the simplified case; wy is the process noise vector and assumed
to be a zero-mean white-Gaussian random variable with known covariance matrix;
Fy and By are matrices of proper size (determined by the dimension of x; and uy)
which describe how the control input and the state at an earlier time affect the state at
present. Furthermore, if the observations are linearly dependent on the state vector,
they can be modeled as

Y = Hyxp + vg (3.2)

where Hj is a matrix of proper size, describing the relation between the state vec-
tor x; and the measurements y;; v; is the measurement noise which is also zero-
mean, white-Gaussian, and in addition uncorrelated with wy. Hereafter, we denote
the covariance matrices of wy; and v, respectively by W; and V;. Furthermore, we
denote the estimates of the state vector along with their covariance matrices at time
1, excluding and including the measurements at that time respectively by

X = Elxelyn, y2, - yi—1l, (3.3)

P = E[Ox — 3) n — 5)7] (3.4
and

xA]j_ == E[Xkb’l’ }’2’-~~»yk], (35)

P = E[(xq — D)0 — D71 (3.6)

If we can propagate the estimate from £, , to £, then to £;, we should be able to
filter all the data set step by step starting from an initialization such as £ = E[xo],
Pi" = E[(xo — X7 ) (xo — X3 )T 1. It’s quite straightforward to calculate £, from %" ;.
In this step, there are no additional measurements taken, hence the only thing we
can make use of is the dynamic equation. Since wy, is zero-mean white Gaussian, its
most probable value is wy = 0. Therefore,

= Fea X + Biojug, 3.7
P. = F Pl Fl | + W (3.8)
To obtain £;” from £, , we need to minimize the trace of P;", which is the sum of the
squares of the estimation errors after including the measurements at time #;. A linear

filter can be put into the following form

)22_ = )ek_ + Ky (yr — Hk)gk_), 3.9)
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which means that if the prediction H X, perfectly matches the measurements y, the
estimates after the observation of y; should be the same as before this observation.
K is a matrix to be determined. (It is usually called Kalman gain when determined.)
It can be easily shown that

Pl = E[(q — D) — D71
= (I — KeH) Py (I — KeHy)' + Ky ViKy (3.10)

Letting O (tr P,") /0K = 0, we obtain
Ky = P, HI (H P H] + Vi)™ (3.11)
With this Kalman gain, we can update X, and P, to i,j and Pk+. Up to now, we have

derived all the formulae of the standard Kalman filter.
For a given discrete system model,

X = Fro1Xe—1 + Br_qug—1 + w1, (3.12)

Y = Hixp + vy, (3.13)
E(wew]) = Widyj, (3.14)
E(vv]) = Vidy ), (3.15)
E(wv]) =0, (3.16)

we summarize the basic Kalman filter formulae as follows:

1. Initialize the state vector and the covariance matrix
)ES’ , P0+ . (3.17)
2. Calculate the a priori estimate of the subsequent state

£ = FaiXt + By, (3.18)
P. = Fe PYFL + Wi, (3.19)

3. Calculate the Kalman gain
Ky = Py HI (H PO H] + Vi)™ (3.20)
4. Correct the a priori estimate with the new measurements

)?lj_ = xAk_ + K (yr — ijek_), (3.21)
Pl =-KH)P, (I —-KH)" + KiK. (3.22)
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3.3 A GPS Example

The Kalman filter derived above is extremely useful in the tracking problem in global
positioning system (GPS) [4, 5] user data processing. The goal here is to estimate the
user’s position and clock bias continuously. The measurements can be formulated as
follows

pi = |(Xi — X,)| + cdty, (3.23)

where the so-called pseudo-range p; (i = 1,2, ..., ng, Withng, > 4) are the rang-
ing measurements from four different satellites, X; are the position of these satellites,
X, and 6t, are the position and clock bias of the user. There are four unknowns in the
state vector (three components of X, and dz,) to be estimated and at least four mea-
surements. These unknowns are functions of the same time or time step. Thus, the
problem is quite well posed for a Kalman filter after a straightforward linearization
of the observation equations. However, we will see in the next section that the LISA
system is way more complicated.

3.4 The LISA Case

LISA consists of three identical spacecraft sending laser beams to each other. Each
spacecraft in the constellation follows a nearly ellipsoidal orbit. For that reason, the
whole constellation appears to proceed in a cartwheel motion. Hence, the travel time
of the laser beam transmitted from spacecraft i to spacecraft j differs from that of
the laser beam traveling in the opposite direction (the so-called Sagnac effect). Con-
sequently, there are six laser links in total, monitoring the inter-spacecraft quantities.
For the convenience of data analysis, we model these quantities respectively as the
arm lengths L;; , the longitudinal Doppler velocities v;; , the differences of clock jit-
ters (derived from clock sideband to clock sideband beat note) c;; , measured by the
laser traveling from spacecraft i to spacecraft j, where i, j = 1,2, 3,i # j. There
is additive measurement noise in all of these quantities. In addition, ¢;; contains the
difference of clock bias, which also can be treated as noise sometimes. The final goal
is now to suppress all this noise and estimate the difference of the clock bias in order
to make TDI variables work properly.

In principle, if we want to reduce the noise in the measurements purely through
data analysis techniques, we need additional information or knowledge. What we
have in hand are the LISA orbits, which are determined by the dynamics of the
solar system, as well as the power spectral density (PSD) of the clock jitter, which
can be measured on the earth before launch. Besides, we temporarily assume all the
measurement noise to be zero-mean white Gaussian noise. Under this assumption, we
may somehow roughly estimate the covariance matrices of the noise by analyzing the
raw data, because gravitational wave signals are much weaker than the noise sources
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before the cancelation of laser frequency noise and the annual change caused by
the solar system dynamics is out of band. In fact, we can also get some very rough
idea of these noise spectra even from the experiments on the earth. With the help of
this additional information, we have somehow complementary knowledge about the
whole LISA system.

The next thing to do is to fuse all the information to get less noisy estimates
with a Kalman filter. As indicated before, the Kalman filter for LISA is much more
complicated than that for GPS ranging. The raw ranging measurements of LISA in
Newton limit can be put into the following form

pij = |(X;(T +0t;(T)) — X; (T + 0t;(T) — L;;/c)|
4 (01T + 6t(T) — Li; /¢)) — 61;(T)) (3.24)

where p;;, (i, j = 1,2,3,i # j) stands for the raw ranging data measured by the
laser link from spacecraft i to spacecraft j, T is the unknown fiducial time, J¢; is the
clock jitter of each clock, c is the speed of light and the position of spacecraft i is
denoted by X; which of course is a function of time. Obviously, the position and the
clock jitter of each spacecraft appear at three different unknown times. Thus, there
are in total 3 x 4 x 3 = 36 unknowns while only 6 measurements are performed.
Mathematically, this means the system is not fully determined. Physically, the change
in position and orientation of the LISA triangle as a whole in fact does not affect
the results of ranging measurements, so they can not be determined purely from
ranging measurements. Another problem is that the state of each spacecraft (the
position and the clock jitter as functions of time) appears several times at different
unknown time. This makes the LISA problem significantly different from the standard
Kalman filter model. Furthermore, the strong nonlinearity also make the problem
more complicated.

3.5 Simulation Results

As a first step, we build a separate Kalman filter for each link. Therefore, there are
in total six Kalman filters running separately. The state vector in each Kalman filter
consists of the position, velocity and clock jitter of the receiver spacecraft at present
and that of the transmitter spacecraft at an unknown delayed time. If we artificially
shift the time of the transmitter to make it roughly the same as the receiver, the state
vector specified for each laser link involves only the status of two spacecrafts at
the same time step. The advantage of this method is that it fits in the Kalman filter
form (3.1) and (3.2) while keeps closely tracking the states of the pair of spacecrafts.
However, it has the disadvantage that different Kalman filters for different laser
links do not exchange information even though they have at least one spacecraft in
common. The number of components of the state vector is still much bigger than the
number of measurements for each laser link.
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In the simulation, we temporarily ignore the DC values of all clock biases and
focus on the noise suppression in armlengths and Doppler velocities, since six sep-
arate Kalman filters without communication between the small filters would not be
adequate for clock biases correction.

Figures 3.1 and 3.2 show the simulation results of noise reduction for armlength
measurements and Doppler velocity measurements. In Fig. 3.2, the blue points dis-
play the deviation of the raw measurements from the true longitudinal velocities,
while the red points show the differences between the filter outputs and the true val-
ues. It can be seen clearly that the filter outputs converge very fast to the true Doppler
velocities. The standard deviation of the filtered Doppler velocities is more than an
order of magnitude below the raw measurements. Figure 3.1 shows roughly the same
behavior for the armlength estimation except for the small bump of the red line in
the beginning part. This is because the influence of the dynamics on the armlengths
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is weaker than that on the Doppler velocities, which leads to a slower convergence
in armlength estimation. What can be done is to take the last filtered state as the new
initial state and run the Kalman filter backward in time, since the dynamical model
is reversible. This technique is usually called ‘smoothing’.
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Chapter 4
The Inter-spacecraft Measurements

Abstract The inter-satellite laser communication of LISA provides three types of
measurements, (i) the beatnote between the carrier frequencies of the local laser and
the remote laser, called the science measurements or the Doppler measurements,
which measures the gravitational wave signal, (ii) the beatnotes of the clock side
bands modulated onto the laser, which tries to measure the relative frequency drift of
the clocks, (iii) the correlation of the pseudo-random code modulated onto the laser,
called the ranging measurements, which intends to measure the absolute distance
between the spacecraft. These measurements are described and modelled in details
in this chapter. The timing errors and the frequency errors of the clocks are also
introduced.

4.1 Introduction

Previously, we have designed a Kalman filter for a single link of LISA, where we
have assumed Newtonian links (meaning that we calculate the light travelling time
between spacecraft purely under Newtonian dynamics) and ignored clock noise. In
this chapter, we start to build a Kalman filter for all the laser links of LISA with clock
noise in the measurements.

Let us first look at the inter-spacecraft measurements in details. There are alto-
gether six drag-free test masses in LISA constellation, two within each S/C. The
distance variations between remote test masses are measured by heterodyne laser
interferometry (with laser wavelength A = 1064 nm) with a designed noise level of
1-10 pm/Hz'/? [1].

Due to the solar system dynamics, the whole LISA constellation cannot be a
perfect rigid equilateral triangle. In fact, the arm lengths vary by about one percent [2]
annually; the relative longitudinal velocities between S/Cs are minimized to a level
below 15 m/s [3]. This variation can cause a Doppler shift in the frequency beatnote
of about 15 MHz for a A\ = 1064 nm laser. Just to have some margin, it is designed
in LISA that one needs to be able to measure the frequency beatnote at 20 MHz. On
the other hand, the 1 pm/Hz'!/? requirement for the A = 1064 nm laser approximately
translates to 1 pwcycle/Hz!/? precision. To measure a frequency beatnote at 20 MHz at
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1 peycle/Hz!/? accuracy requires the timing stability of the sampler in the phasemeter
to be better than 50 fs/Hz'/2. Such a space-qualified stable clock does not exist. This
isreally a sorry situation. To solve this problem, we try to measure the clock noise and
eliminate it in a post-processing stage. Using about ten percent of the total laser power,
one up-converts the master clock frequency to GHz frequencies and modulates it onto
the carrier laser as phase modulation sidebands. The clock noise is then measured by
the sideband-to-sideband beatnote, which carries identical information as the main
beatnote except that the clock jitter is amplified by the up-conversion factor.

As mentioned in previous sections, one other dominating noise is the laser fre-
quency noise. It is to be eliminated by the postprocessing TDI techniques [4—11].
However, TDI techniques require the knowledge of the arm length information to
about 1 m [12]. This absolute arm length information is determined by the pseudo-
random noise (PRN) phase modulation. The PRN modulation uses about 0.1-1 % of
the light power [1, 13-16]. The distance information is revealed by the correlation
between the received PRN code and the local copy of the same PRN code. Although
the measurement noise of the of ranging signal is below 1 m [1], it has not accounted
for the clock noise. Since the distance is determined by comparing the transmis-
sion time and the reception time, the distance information is contaminated with the
clock noise. The 1 m precision means we can determine the distance plus the relative
clock noise very precisely. But we still need to break the degeneracy of the two and
to extract the absolute arm length and the relative clock noise information. This is
supposed to be addressed by the previously defined pre data processing.

4.2 The Inter-spacecraft Measurements

Now, let us look into these inter-spacecraft measurements. In the middle of Fig. 4.1,
the two peaks are the local carrier and the weak received carrier. They form a carrier-
to-carrier beatnote, which is usually called the science measurement, denoted by

fsci-
fsci = fDoppler + fGW + fnoisea 4.1)

where fpoppler 18 the Doppler shift, fgw is the frequency fluctuation induced by
GWs, foise 1S the noise term, which contains various kinds of noise, such as laser
frequency noise, optical path-length noise, clock noise, etc. As mentioned before,
Jpoppler can be as large as 15 MHz. However, fgw is usually at the pHz level. Among
the noise terms, the laser frequency noise is the dominating one. The free-running
laser frequency noise is expected to be above MHz/Hz!/? at about 10 mHz. After pre-
stabilization, the laser frequency noise is somewhere between 30 and 1000 Hz/Hz'/?
at about 10 mHz [1, 17].

On the two sides of Fig.4.1 are the two clock sidebands. The clock sideband
beatnote is given by the following
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Fig. 4.1 Schematic power spectral density plot of LISA carrier laser beam, clock-sideband mod-
ulation and the PRN modulation. Horizontal direction denotes frequency and vertical direction
denotes power. In the middle, the two peaks are the two beating carriers. Around the carriers are
the PRN modulations. On the sides of the figure are the clock sidebands modulation

fsidebandBN = fDoppler + fGW + fnoise + mAfclocky (42)

where Afeock 1s the frequency difference between the local USO and the remote
USO, m is an up-conversion factor. Except for the intentionally amplified clock term,
the clock sideband beatnote contains the same information as the carrier-to-carrier
beatnote does.

The PRN modulations are around the carriers in Fig.4.1. The two PRN modula-
tions shown in the figure in yellow and in red are orthogonal to each other such that
no correlation exists for any delay time. At the local S/C, one correlates the PRN
code modulated on the remote laser beam with an exact copy, hence obtaining the
delay time between the emission and the reception. This light travel time tells us the
arm length information. However, the PRN codes are labelled by their own clocks
at the transmitter and the receiver, respectively. Thus, the ranging signal 7ranging also
contains the time difference of the two clocks.

Tranging = L/c + ATk + Thoises 4.3)

where L is the arm length, c is the speed of light, A Tjock 1S the clock time difference,
Thoise denotes the noise in this measurement. The ranging measurement noise 7;;se
is around 3 ns (or 1 m) RMS [1]. However, since the clock is freely drifting all the
time, after one year AT,k could be quite large. One needs to decouple the bias from
the true armlength term to a level better than 3 ns.

4.3 Formulation of the Measurements

In this section, we try to formulate the exact expressions of Eqs.4.1-4.3. Let us first
clarify the notation. The positions of the S/C are denoted by X; = (x;, y;, z;)T, their
velocities are denoted by v; = (v, Vyi, v;;)T in the SSB frame, where i = 1, 2, 3 is
the S/C index. Each S/C has its own USO. The measurements taken on each S/C are
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recorded according to their own USO. Let us denote the nominal frequency of the
USO in the ith S/C as f"°™ (the design frequency) and denote its actual frequency
(the true frequency it runs at) as f;. The difference

Sfi = fi — fm 4.4)

is the frequency jitter of each USO. The USOs are thought to be operating at f;"°™.
The actual frequencies f; are unknown to us. Also, we denote the nominal time of
each USO as 7;"°™ (the readout time of the clock) and the actual clock time (the true
time at which the clock reads 7;"°™) as 7;. We have

¢ [ fitdt
27Tfl~n0m - finom ’

T, = / dr, (4.6)

¢ =2m / fi(t)de, 4.7)

nom __
Ti =

4.5)

where ¢; denotes the readout phase in the ith S/C. The time difference
57} — Tinom _ 7*[

1
- i_inomd’
ﬁnom/(f fiomde

1
- W / (Sfldl (48)
is the clock jitter of each USO. This leads to
. 0 fi
0T, = Fom (4.9)

The above two equations mean that the clock jitter (or time jitter) is the accumulative
effect of frequency jitters. For the convenience of numerical simulations, we write
the discrete version of the above formulae as follows

k
STy (k) = ﬁ > 3 fi(@)At, + 6T;(0). (4.10)
i a=1
: 5Ti (k) — 0T (k — 1
5T, (k) = (k) = ( )
_ 0fitk) At/ fom
- Aty

3£k

- f'nom ’
1

A.11)
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where k in the parentheses means the value at the kth step or at time kAt,, d7;(0)
stands for the initial clock bias.

Now, we are ready to write the measurement equations. Ideally, all the measure-
ments should be formulated within the framework of General Relativity. In the solar
system, gravity is relatively weak, so one can expand the relativistic equations in
orders of the small parameter v/c and solve it with a perturbation method [18]. How-
ever, the full relativistic treatment is computationally too expensive for our testing of
Kalman filters. Therefore, we plan to investigate it in future work. Here, we make an
approximation that all the inter-spacecraft measurements are instantaneous, mean-
ing that the laser beam takes no time to travel from one S/C to other S/C. As will
be explained below, this is a better approximation for the inter-spacecraft measure-
ments than calculating everything in Newtonian theory with a finite speed of light.
The whole LISA constellation is trailing the Earth at a speed v, that is much higher
than the relative speed v, within the constellation. Thus, in Newton’s framework with
a finite speed of light, the ranging (or armlength) measurements from S/C i to S/C
Jj differ from the ranging measurements from S/C j to S/C i by a length of about
Lv./c, which is much larger than the true value [18]. The order of magnitude of the
true difference between the forward and the backward ranging measurements can be
quickly estimated within special relativity framework, where only the relative speed
matters. So, the difference in ranging measurements is roughly about Lv, /c, which
is two orders of magnitude smaller than Lv./c.

To this point, we try to formulate the ranging measurements. For convenience, we
write it in dimensions of length and denote the armlength measurements measured
by the laser link from S/C i to S/C j (measured at S/C j) as R;;. Thus, we have

Rij (k) = L,’j (k) + [6Tj(k) - (5T,(k)]€ + HOiSC, (412)

where L;; (k) is the true armlength we want to obtain from the ranging measurements,
[0T;(k) — 0T;(k)]c is the armlength bias caused by the clock jitters, and ‘noise’
denotes the effects of other noise sources.

Next, we want to consider Doppler measurements or science measurements. They
are phase measurements recorded at the phasemeter. For convenience, we formulate
them as frequency measurements, since it is trivial to convert phase measurements
to frequency measurements. First, we take into account only the imperfection of the
USO and ignore other noises. We denote the true frequency we want to measure as
Jirue and the frequency actually measured as fi,e,s- The USO is thought to be running
at f"°™. The recorded frequency fpes is compared to it. However, the frequency at
which the USO is really running is f = f"™ + ¢ f. This is what the true frequency
Jirue 18 actually compared to. Thus, we have the following formula

fmeas — ftrue
fnom f
ftrue
L — 4.1
fnom + 5]0 ( 3)



54 4 The Inter-spacecraft Measurements

For a normal USO, § f/f"™ is usually a very small number (<10~®), therefore the
second order in it is smaller than machine accuracy. Thus, we can write the above
equation in linear order of § f/f"°™ for numerical simulation concern without loss
of precision:

_ ftrue
fmeas - 1+6f/f“0m
of )
= fie (1 - . 4.14
f ( o (4.14)

We denote the average carrier frequency (the average laser frequency over certain
time) as £ the laser frequency noise as  f° and the unit vector pointing from S/C
i to S/C j as ii;;. Let us consider the laser link sent from S/C i to S/C j. When trans-
mitted, the instantaneous carrier frequency is actually ffa"ier + 0 f£. When received
at S/C j, this carrier frequency has been Doppler shifted and the GW signals are
encoded. Therefore, its frequency can be written as

(ficarrier + dfzc) [1 _ W} — GW (415)

t

This carrier is then beat with the local carrier f j‘?*‘“ief +4f 7 of S/C j. The resulting
beatnote is the science measurement

fiSjCi(k) _ |:fjgarrier _ fica.rrier (1 o (W —vi)- nij) + f,(j}w(k)] (1 of; (k))
c

~ " rnom
7

+ |:5fl§ — Gt (] _ M)] (1 — ifr{(frﬁ))—i— noise,
J

_ |:f]garrier _ ficarrier (1 _ M) + fl(]}W(k)] (1 6fj (k)) ~+ noise,
(&

~ “rnom
/i

(4.16)

where in the last step we have absorbed the laser frequency noise into the noise
term. In practice, the carrier frequencies are adjusted occasionally (controlled by a
pre-determined frequency plan) to make sure that the carrier-to-carrier beatnote is
within a certain frequency range. Hence, £ is also a function of time.

Now, let us consider the clock sidebands. At S/C i, the clock frequency f"°™ + 0 f;
is up-converted by a factor m;, which is about 40-50, and modulated onto the carrier
through an electro optical modulator (EOM). Therefore, we have an upper clock
sideband and a lower clock sideband as follows

FUSB = feamer 4§ f¢Lom, (f1O0 4+ 5 f,), 4.17)
fiLSB — ficarrier 4 5flc _ mi(finom 4 6f1) (418)
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When received by S/C j, the Doppler effect and GWs are present

[ficarrier_,r_éfic :I:mi(finom +6fz)] |:1 _ M] — I?W 4.19)

The clock sideband beatnote is obtained by beating this frequency with the local
clock sideband

fisjidebandBN(k) — |:fjca.rrier _ fica.rrier (1 _ (vf — Ic)l) | nij) + fl?w(k)] (1 _ 6.ff (k))

nom
fj

+ [m O™ 48 £5K)) — mi (FF7 + 8 £ (K) (1 - W)]

. (1 — 5;;’10(?) + noise,

_ |:fjg:arrier _ ficarrier (1 _ (U_,‘ B Zl) ) nij) + f,(j}w(k)] (1 _ (Sfl (k))

nom
Jj

103015000 — 08 01+ oy 13— g [ 4y from =200

+ noise, (4.20)

where «; and «/; are some known constants. Notice that we have neglected some
minor terms in the last step. For simulation purposes, we temporarily ignore the con-
stant term m ; f**" —m; £ and the small Doppler term m; f""(v; —v;) - fiij /c.
Furthermore, we write o; and «v; as a uniform up-conversion factor m for simplicity.
Then, we have the simplified formula

isjidebandBN(k) — |:fjcarrier _ ficarrier (1 . (Uj - il) -flij) + flS}W(k)i| (1 _ (5f](k))

nom
fj

+m(8 fj(k) — 6f;(k)) + noise. 4.21)

Up to now, we have formulated all the inter-spacecraft measurements in Eqgs.4.12,
4.16 and 4.21.
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Chapter 5
Design a Hybrid Extended Kalman Filter
for the Entire LISA Constellation

Abstract The hybrid-extended Kalman filter is briefly derived. The three types of
inter-spacecraft measurements of LISA are simulated, whose properties are then dis-
cussed. The clock errors have been simulated in the measurements, but ignored in the
time stamps of the samples. A 24-dimensional state vector is used to describe the sys-
tem. Accordingly, the measurement equation and dynamic equation are formulated.
Then, the hybrid-extend Kalman filter is applied to the simulated data. According to
the simulation, the algorithm has significantly improved the ranging accuracy and
synchronized the clocks, hence it makes the phasemeter raw measurements usable
for time-delay interferometry algorithms.

5.1 Introduction

Previously, we have introduced the basic formulae of Kalman filter and formulated
the inter-spacecraft measurements of LISA. In this chapter, we intend to design a
Kalman filter for the entire LISA constellation. The basic Kalman filter formulae only
apply to discrete and linear systems. Since LISA measurements are not linear and
the dynamics of LISA is neither discrete nor linear, we first introduce the so-called
hybrid extended Kalman filter, and then try to design such a Kalman filter for LISA.

5.2 The Hybrid Extended Kalman Filter

The hybrid extended Kalman filter [1] is designed for a system with continuous and
nonlinear dynamic equations along with nonlinear measurement equations. First, we
describe the model of such systems as follows

x=f, 1)+ w() S.D

Yk = hy(xe, ve) (5.2)

E[w(t)wT(t +71)] = W.(7) (5.3)

v ~ (0, Vi), (5.4
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where both the dynamic function f(x, t) and the measurement function Ay (x;) are
nonlinear, w(¢) is the continuous noise. As in previous chapters, x, f(x, 1), w, Vi,
hy (x;), vy are column vectors. W,, W, are covariance matrices. If we discretize the
noise with a step size Az, we have

wi ~ (0, Wy), (5.5)

where it can be proven that W, = W, (kAt)/At. In order to fit Eqs.5.1-5.4 into the
standard Kalman filter frame, we need to linearize and discretize the formulae and
solve the dynamic equation. Eq. 5.1 is expanded to linear order in x( as follows

19)
X =~ f(xo, to) + a—f (x —x0) + w()
X X0,%0

= f(x0, to) + F(xo, to) (x — x0) + w(1), (5.6)

, and assumed % <& 1. The expectation
X0,0
of this linearized equation (where E[w(ot)(] = 0 is used) can be solved exactly as

follows

where we have defined F(xg, t)) = %

x(ty) = WAy (1)) + [0 — T [F~ (xo, to)f (x0. t0) — 0], (5.7)

where At = t, — 11, and the matrix exponential is defined as

+00

FA =Y FAD" (5.8)

n!
n=0

Now, let us switch to the standard Kalman filter notation and denote x(#,), x(¢;) and
F(xo, 1) as X, )Ac,j_l and F_1, respectively. Eq.5.7 can be rewritten as

=N 4 @ — D [F f (o, t0) — X0 (5.9)

Notice that xj is a nominal trajectory, around which the Taylor expansion is made.
Based on the above solution, the propagation equation of the covariance matrices is
obtained

Py = MdpE LA Ly (5.10)

where P~, P are the a priori and a posteriori covariance matrices as before. Alter-
natively, Eq. 5.6 can be solved approximately by converting the differential equation
to a difference equation. The corresponding formulae are

X =+ Fio ADRE + [f(xo. o) — Fro1xo] A, (5.11)
P. = (I + Fio  ADPE (I + Fro ADT + Wiy (5.12)
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The above two equations can also be obtained from the exact solutions by replacing
ef-181 with I 4 Fy_ At. The advantage of these formulae is that they are computa-
tionally less expensive. On the other hand, they are less accurate. The measurement
formula can be linearized similarly

Vi = Hixg + [hi (&, 0) — HiX, 14 My, (5.13)
where H; = % o My = % ;- Now, the Kalman filter can be applied without

much effort. We summarize the hyf)rid extended Kalman filter formulae for the model
described by Eqgs.5.1-5.4 as follows:

1. Initialize the state vector and the covariance matrix
)Aco+ , P(J{ . (5.14)

2. Calculate the a priori estimate X, from the a posteriori estimate &, at the previous
step, using the dynamic equation

X =f(x,1). (5.15)
Use either of the following two formulae to update the covariance matrix

P, = M dpE A (5.16)
P. = (I + Fio ADPE (I + Fio ADT + Wiy, (5.17)

3. Calculate the Kalman gain
_ p—gT -T Ty-1
Ky =P H (HP H, +MViM)™". (5.18)

4. Correct the a priori estimate

X=X+ Kl — Gy, 0)], (5.19)
Pf = (I — KH)P,
= (I — KeH)P (I — KeHY)" + K ViK{ (5.20)

5.3 Kalman Filter Model for LISA

In this section, we want to design a hybrid extended Kalman filter for LISA. First,
we define a 24-dimensional column state vector

x = (X1, X2, X3, Uy, V2, U3, 6Ty, 8T, 0T, 8f1, 0f>, 9f3)7, (5.21)
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where X; = (x;, yi, z;)" are the S/C positions, U; = (vy, vy, v;;)7 are the S/C veloci-
ties, 07; and of; are the clock jitters and frequency jitters, i = 1, 2, 3 is the S/C index.
Please note the difference between the state vector x;, the measurements y; and the
position components (x;, y;, z;), since the latter index is the S/C label and can only
take three values 1, 2, 3. For convenience, we rewrite the measurement formulae
derived in previous chapters. The ranging measurements from S/C i to S/C j are

Rj = Ly + (0T; — 6T))c + nf;

-—/W—XN+%x ¥+ (3 — ) + (OT; = 6T)) - ¢ + nj,
(5.22)

where ng. is the ranging measurement noise. The Doppler measurements are denoted
as Dija

carrier carrier (6 - Bt) : ﬁi' (sf
T il (B Rl (1 - )t
J

(5.23)

where n is the Doppler measurement noise. Since the sideband measurements con-
tain the same information as the Doppler measurements, in addition the amplified
differential clock jitters, we take the difference. Then, we divide both sides of the
equation by the up-conversion factor m and denote it as the clock measurements Cj;.

Cyj = 0f; — of; + ng, (5.24)

where nC is the corresponding measurement noise, and the up-conversion factor m

has already been absorbed into n . Altogether, we have 18 measurement formulae,
summarized in the 18- d1mens10nal column measurement vector

y = h(x, v),
= (R31, D31, C31, Ry1, Da1, o1, Rz, Dyp, Cia, . ..
R32, D3y, C3p, Ra3, D3, Co3, Ry, D3, Ci3)7, (5.25)

where v is the measurement noise. The 18-by-24 matrix H; and the 18-by-18 matrix
M can thus be calculated analytically. We omit the explicit expressions of the 432
components in Hy here. As an example, we show the [1, 1] component of H; omitting
the step index k as follows

(9R31

MLH:éM

X1 — X3

= . (5.26)
Voo =32+ 01 —y3)2 + (@1 — )2
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As for My, if the dependence of the measurements y; on the noise is linear and
without cross coupling, it is simply an identity matrix.

Next, we want to construct the dynamic model for the Kalman filter. Let us
consider the solar system dynamics for a single S/C. To Newtonian order the solar
system dynamics can be written as

GM;, -
> —h=x (5.27)

L
where X is the position of one LISA S/C, M;, X; are the mass and the coordinates of
the ith celestial body (the Sun and the planets) in the solar system, 7; = X; — X is a
vector pointing from that S/C to the ith celestial body, r; = |X; — X|. The dynamic
equation can be written in a different form

i3] =re

dt
= v (5.28)
T GMG )/ | '
We denote 6 = (¥, v)7, thus
0, 0; 1
Fo a_g _ [A3 033] , (5.29)

where O3 denotes a 3-by-3 zero matrix, I3 denotes a 3-by-3 identity matrix, and the
3-by-3 matrix A is defined as follows

GM,; 3GM; . . . .

A=->" 5+ > G — DG - HT. (5.30)
i i i

The dynamic equation for the clock jitters and frequency jitters depends on the

specific clock and how well we characterize the clock. A simple dynamic model is

shown as follows
d [éT | of ffrem
il =["07) o

where dT, of denote clock jitters and frequency jitters. For the whole LISA constel-
lation, the dynamic matrix F' = %’ is 24-by-24. We omit its explicit expression

here, since it can be obtained straightforwardly from the above formulae.
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5.4 Simulation Results

We simulated LISA measurements of about 1400 s with a sampling frequency of 3 Hz.
Since there are only two independent clock biases out of three, we set one clock bias
to be zero, thus defining this clock as reference. The other two initial clock biases are
randomly drawn from a Gaussian distribution with a standard deviation of 0.1 s. This
would in turn cause a bias of about 4.2 x 10" m in the ranging measurements. The
(unknown) initial frequency offset of each USO is randomly drawn from a Gaussian
distribution with a standard deviation of 1 Hz. The frequency jitter of each USO has
a linear spectral density (9.2 x 10~°Hz/f) Hz/+/Hz. Additionally, we assume the
ranging measurement noise to be white Gaussian with a standard deviation of 1 m.
The linear spectral density of the pre-stabilized laser is assumed to be 400 Hz/+/Hz.
(The noise of the Doppler measurement is assumed to be white Gaussian with a
standard deviation of 1 kHz.) The clock measurement noise is white Gaussian with
a standard deviation of 1 Hz.

We show the scatter plots of the measurements R;;, D;;, C;; in Figs.5.1,5.2,5.3 and
5.4. Notice that the average of all the measurements has been removed in the plots
for clarity. Fig.5.1 is a scatter plot of the clock measurements C;;. The frequency
drifts within 1400 s are much smaller than the clock measurement noise. Thus, they
are buried in the uncorrelated clock measurement noise in the plot. The diagonal
histograms show that each clock measurement channel behaves like Gaussian noise
during short observation times. The off-diagonal scatter plots are roughly circular
scattering clouds, showing that different clock measurement channels are roughly
uncorrelated within short times. Unlike clock measurements, scatter plots of Doppler
measurements in Fig. 5.2 exhibit elliptical clouds. This is because the Doppler shift
whin 1400 s is sizable, which leads to the trend in the plot. The slope of the major axis
of the ellipse indicates whether the two Doppler measurement channels are positively
correlated or anti-correlated. The real armlength variation is much larger than the
ranging measurement noise. Therefore, we see only lines in the off-diagonal plots
in Fig.5.3, which mainly show the armlength changes. The ranging measurement
noise is too small compared to the armlength change to be visible in the plot. Fig. 5.4
shows scatter plots of different measurements Cj;, Dj;, R;;. It is seen from the plot
that ranging measurements are correlated with Doppler measurements, but neither
of them are correlated with clock measurements.

We then apply our previously designed hybrid extended Kalman filter to these
measurements. The progress of the Kalman filter can be characterized by looking at
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Covariance of clock side band measurements
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Fig. 5.1 Scatter plot of clock measurements Cj;

the uncertainty propagation. Figure 5.5 shows a priori covariance matrices at different
steps k = {1, 2, 5, 10, 50}. The absolute value of each component of the covariance
matrix is represented by a color. The color map indicates the magnitude of each
component in logarithmic scale. The first covariance matrix P is diagonal, since
we do not assume prior knowledge of the off-diagonal components. As the filter
runs, the off-diagonal components emerge automatically from the system model,
which can be seen from Fig.5.5. The initial uncertainties are relatively large. In
fact, the initial positions are known only to about 20 km through the deep space
network (DSN). The uncertainties are significantly reduced after taking into account
the precise inter-spacecraft measurements. However, the uncertainties are not being
reduced continuously. Instead, they stay roughly at the same level. This is because
there are only 18 measurements at each step, whereas there are 24 variables in the
state vector to be determined. There is not enough information to precisely determine
every variable in the state vector.

Similar behavior can be observed from the a posteriori covariance matrices in
Fig. 5.6, where the uncertainties also roughly stay at the same level. By comparing



64 5 Design a Hybrid Extended Kalman Filter for the Entire LISA Constellation

Covariance of Doppler measurements
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Fig. 5.2 Scatter plot of Doppler measurements D;;. Unlike clock measurements, scatter plots of
Doppler measurements exhibit elliptical clouds

Fig.5.6 with Fig.5.5, we find that the uncertainties are only slightly reduced from
P; to P} with the help of the measurements y. This is again because there are fewer
measurements than variables in the state vector. Seemingly, this hybrid extended
Kalman filter does not work well. However, our aim is actually to reduce the noise
in the measurements. Let us denote the Kalman filter estimate of the measurements
Vi as Jx, which can be calculated from the a posteriori state vector as follows

S = H&. (5.32)

It is easy to show that the estimation error of y; can be expressed as HkP,':H T
which is shown in Fig. 5.7. Notice that the color bar shrinks with steps. It is apparent
that estimation errors of the measurements are significantly reduced by the hybrid-
extended Kalman filter. This is what is expected, since the number of the measure-
ments yj is now the same as the number of variables J; to be estimated in this case.

Detailed simulation results are shown in Figs.5.8, 5.9, 5.10. Figure 5.8a shows
a comparison of true armlengths, raw arm-length measurements and Kalman filter
estimates during a short time. The initial clock bias in the raw arm-length measure-
ments is not included in this figure, otherwise the raw arm-length measurements are
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id® Covariance of ranging measurements
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Fig. 5.3 Scatter plot of ranging measurements R;;. The armlength variation is much larger than the
ranging measurement noise. Therefore, we see only lines in the off-diagonal plots, which mainly
show the armlength changes. The ranging measurement noise is too small compared to the armlength
change to be visible in the plot

out of scope of the figure. The armlength variations due to the orbital dynamics are
much larger than the residual measurement noise (excluding the initial clock bias).
Thus, the three curves appear very close to each other. It still can be seen that the
Kalman filter estimates are closer to the true arm-length curve. Fig.5.8b exhibits
histograms of errors of raw armlength measurements and Kalman filter estimates,
where the deviations of both raw arm-length measurements (excluding the initial
clock bias) and the Kalman filter estimates from the true armlengths are shown. The
designed Kalman filter has not only decoupled the arm lengths from the clock biases,
but also reduced the measurement noise by more than one order of magnitude to the
centimeter level. This precise arm-length knowledge is necessary to allow excellent
performance of TDI techniques, which subsequently permits optimal extractions of
the science information from the measurement data.

Fig.5.9a shows typical results of estimates of relative clock jitters and biases,
where the blue curve stands for the raw measurements, the green curve exhibits the
true time difference between the clock in S/C 1 and S/C 2, the red curve plots the
Kalman filter estimates of the clock time differences. It is clear from the figure that
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x10* Covariance of ranging, Doppler and clock side band measurements

28 1
E
& f
A )
— 5000
N
3 _
£ 4
o~
&} -
-5000
i 5
-5
— 1
E
2 8 .
14 ] X
-
E'ﬁ o E
3 ;
-1
— 5
) 5
% o *
5

- 0 15000 0 5000-5 1] 5 4 0 1 < 0 1 5 1] 5
Rymlx10*  DyMHZ C,[Hzl Ry Imly q4g* D,,[Hz] 1g*  C,,Hz]

Fig. 5.4 Scatter plot of different measurements Cjj, Dy, R;;. Ranging measurements are correlated
with Doppler measurements, but neither of them are correlated with clock measurements

the Kalman filter estimates resemble the true values quit well. Fig.5.9b shows the
deviations of the raw measurements and the Kalman filter estimates from the true
values in histograms. Notice that the standard deviations in the legend have been
converted to equivalent lengths. It is apparent that the designed Kalman filter has
reduced the measurement noise by about an order of magnitude. These accurate
clock jitter estimates enable us to correct the clock jitters in the postprocessing step.
Hence, it potentially allows us to use slightly poorer clocks, yet still achieving the
same sensitivity. This would potentially help reduce the cost of the mission.
Fig.5.10a shows the raw measurements, Kalman filter estimates and the true val-
ues of frequency differences between the USO in S/C 1 and the USO in S/C 2. The
Kalman filter estimates are so good that they overlap with the true values. Fig.5.10b
exhibits a zoomed-in plot of Fig. 5.10a. The true USO frequency differences and the
Kalman filter estimates can clearly be seen in this figure. Fig.5.10c shows the his-
tograms of the deviations of the raw measurements and the Kalman filter estimates
from the true values. With the help of the designed Kalman filter, the measurement
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(b)

Fig. 5.5 A priori covariance matrices P, at different steps. The absolute value of each component
of the covariance matrix is represented by a color. The color map indicates the magnitude of each
component in logarithmic scale In(|P ). a P{ . b P, . ¢ P5.d Py,. e Py,
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Fig. 5.6 Posteriori matrices P,’: at different steps. The absolute value of each component of the
covariance matrix is represented by a color. The color map indicates the magnitude of each com-
ponent in logarithmic scale a PT. b P;’ .c P;’ .d Pi'z). e P;E)
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Fig. 5.7 The estimation error of the measurements, HkPk H, I at different steps. The absolute value
of each component is represented by a color. The color map indicates the magnitude of each
component in logarithmic scale a Step 1. b Step 2. ¢ Step 5. d Step 10. e Step 50
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Fig.5.8 Arm-length plots, a shows a comparison of true armlengths, raw arm-length measurements
and Kalman filter estimates during short time, b exhibits histograms of errors of raw armlength mea-
surements and Kalman filter estimates, where the deviations of both raw arm-length measurements
(excluding the initial clock bias) and the Kalman filter estimates from the true armlengths are shown
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Fig. 5.9 Plots of relative clock jitter and biases, a shows typical results of estimates of relative
clock jitters and biases, b shows the deviations of the raw measurements and the Kalman filter
estimates from the true values in histograms. Notice that the standard deviations in the legend have
been converted to equivalent lengths

noise has been reduced by 3—4 orders of magnitude. As shown in previous chap-
ters, frequency jitters are directly related to the first differential of the clock drifts.
Therefore, such precise estimates of the USO frequency differences will allow a very
accurate tracking of the relative clock drifts.
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Fig. 5.10 Plots of USO frequency differences, a shows the raw measurements, Kalman filter
estimates and the true values of frequency differences between the USO in S/C 1 and the USO
in S/C 2. The Kalman filter estimates are so good that they overlap with the true values, b is a
zoomed-in plot of (a). The true USO frequency differences and the Kalman filter estimates can
clearly be seen in this figure, ¢ shows the histograms of the deviations of the raw measurements
and the Kalman filter estimates from the true values

5.5 Discussions

We have modeled LISA inter-spacecraft measurements and designed a hybrid-
extended Kalman filter to process the raw measurement data. In the designed Kalman
filter model, there are 24 variables in the state vector and 18 variables in the mea-
surement vector. Simulations show that our hybrid-extended Kalman filter can well
decouple the arm lengths from the clock biases and significantly improve the relative
measurements, such as arm lengths, relative clock jitters and relative frequency jitters
etc. However, the absolute variables in the state vector cannot be determined accu-
rately. These variables include the absolute positions and velocities of the spacecraft,
the absolute clock drifts and the absolute frequency drifts. This is mainly due to the
fact that only the differences are measured and the number of measurements is lower
than the number of variables in the state vector.
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It can be better understood by taking a closer look at the measurement Eqgs. 5.22—
5.24. In fact, only the relative positions /(x; — x;)2 + (y; — y1)2 + (z; — z;)* and
the relative longitudinal velocities (v; — v;) - 7i;; appear in the measurements. Neither
absolute positions nor absolute velocities are directly measured. Thus, itis impossible
to fully constrain the entire LISA configuration only with these inter-spacecraft
measurements. The clock jitters only appear in Eq.5.22 in the form of 67; — d7;,
which means the common clock drifts are undetermined. The relative USO frequency
jitters &f; — of; are measured in Eq. 5.24. The absolute USO frequency jitters Jf; appear
in Eq.5.23. However, df; /f"*" is far less than 1, hence Eq. 5.23 can provide only very
limited information about Jf;. As a result, the absolute USO frequency jitters Jf; are
poorly determined.

5.6 Supplementary A: A Limitation on the Common Clock
Drift

As mentioned before, the relative clock drifts can be estimated very accurately,
whereas the common clock drift cannot be determined. This would result in errors
in the time labels of the measurements. The errors in the time labels will introduce
modulations to GW signals, hence they may affect the detection and the parameter
estimation of GW signals. In this appendix, we try to estimate this effect and to set
a limit on the permissible common clock drifts.

We define a quantity o7(7) to characterize the timing stability

1
or(t) = \/2—7_2((6T(k + 1) — 8T (k))?), (5.33)

where 7 is the nominal time increment between the sample k and the sample k + 1.
Notice that this is different from the Allan variance [2]

2
() = 1<(6f(k+ D 6f(k)) >

2 fnom fnom

1
= ﬁ((éT(k +2) = 26T (k + 1) + 0T (k))?), (5.34)
J
which characterizes the frequency stability of the clock.
For a GW signal with frequency fgw and a total observation time Tops, if the
mismatch caused by the common clock drift is less than € cycle, the effect on physical
data analysis is negligible. Thus, we have a limitation on the common clock drift

or(T)fowTobs < €. (5.35)
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For physical data analysis concern, a sampling time of 7 = 1s will suffice. By
considering the worst scenario, we take fow = 0.1 Hz, Tops = 108s and € = 0.1,
hence the timing stability should satisfy o7(1) < 1078,

5.7 Supplementary B: A Proof of the Optimality

In the Kalman filter derivation, the Kalman gain K is chosen such that the estimation
error tr(Pk*) in the state vector is minimized. However, in the LISA case we are
interested in reducing the noise in the measured variables rather than reducing the
uncertainties in the state vector. Hence, the optimal filter in this case should minimize
the estimation error in the measurements yy.

In this appendix, we prove that minimizing the estimation error in the state vector
X 1s equivalent to minimizing the estimation error in yj to the linear order. As shown
in previous sections, the estimation error in yy is tr(H,P;” H]) in the linearized model.
To minimize the trace of this covariance matrix, we have

Olu(HPHD]  Olw(H HP)]
19).¢" B OK;
_ O{ulH H (I — KeH) P, (I — K H)" + HEHK VK, )
N 0Ky '
=0 (5.36)

To be concise, we omit the step index k and use the subscripts for the component
indices.

O{r[HTH(I — KH)P~(I — KH)T1}

oK
_ O(u[HLH;(Iy — KyHu)P;, (I — KH)L, 1}
B aKab
_ a{tr[HinHij(Ijl - Kijkl)P/:n(Inm — KycHem)1}
N aKab

= HinHij(_6aj5thkl)P;n([nm — KncHem) + HinHij(Ijl - Kijkl)P];1(_6an5thrm)
= —HLHy (I — KH),wP, | H}, — HLH;(I — KH); P, HY,

ml

= —2H"H(U — KH)P~HT, (5.37)

where we have adopted Einstein summation convention and used the fact that P is
symmetric. Similarly, we have

O{tr(HT HKVK)}

= 2HTHKV. 5.38
9K (5.38)
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By putting back the step index &, we have

Oltr(H P H)]
0= ——F*—
0K,
= 2H! Hy[Ki Vi — (I — Kilw) P, H] 1. (5.39)

The Kalman gain is then solved as follows
Ky = P H! (HyP H! + V)™, (5.40)

which is the same as what we have used.
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Chapter 6
Alternative Kalman Filter Models

Abstract In this chapter, three reduced versions of the state vector for LISA have
been designed and investigated, in order to alleviate the degeneracy problem, i.e.
the number of the measured variables is less than the number of the variables to be
determined by the Kalman filter.

6.1 Introduction

In the last chapter, we have designed a hybrid-extended Kalman filter to pre-process
LISA raw measurements. The noise in the measurements has been significantly
reduced by the filter. The initial clock biases have been decoupled from the arm
lengths. However, the state vector cannot be determined well due to the insufficient
number of measurements. In this chapter, we will explore alternative Kalman filter
models to reduce the ambiguity in the state vector, while using the same measure-
ments. We investigate in detail how different Kalman filter models affect the accuracy
of the estimates.

6.2 A Kalman Filter Model with a 23 Dimensional State
Vector

As mentioned in the last chapter, the initial clock biases d7; appear in the mea-
surement equations only in the form of time difference 67; — T;. Therefore, the
absolute clock biases 07; cannot be determined. To eliminate this degeneracy in the
Kalman filter model, we replace the three clock bias variables 677, dT, and 673 by
two time difference variables 677 — 67> and 67>, — 6T5. Hence, the state vector is
now a 23-dimensional column vector

x = (X1, X2, X3, U1, U2, U3, 6Ty — 0T, 6T» — 6T3, 8 f1, 8 o, 6 f3) 7, (6.1)
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where X; = (x;, yi,z;)" are the S/C positions, ¥; = (vyi, Vyi, V)7 are the S/C
velocities, 7; and  f; are the clock jitters and frequency jitters, i = 1, 2, 3 is the
S/C index as before. The third initial clock bias difference 677 — § 75 can be expressed
as (0T; — 0T») + (6T, — 6T3). The dynamic equation for the clock biases can simply
be modified as

O f; S f;

f;lOm f‘l nom

d
E(aT,» —0Ty) = (6.2)

The dynamic matrix F; and the observation matrix H; are then modified accordingly.

We carried out simulations to compare the performance of this Kalman filter
model with the performance of the model designed in the previous chapter with a
24-dimensional state vector. The two filters have been run over the same simulated
measurement data. Figure 6.1 shows a comparison of the arm length determination
between the two Kalman filter models. It can be seen that the performance of the two
Kalman filter models is comparable in determining the arm lengths. Both models
can successfully decouple the arm lengths from the initial clock biases and reduce
the noise in the arm-length roughly by one order of magnitude. Notice that the
performance of a Kalman filter depends on the specific noise realization. Therefore,
a small difference between the two models in the estimation error is not significant.
Figure 6.2 shows histograms of estimation errors in relative clock jitters. Both models
are able to reduce the noise in the relative clock jitters roughly by an order. The
Kalman filter model with a 23-dimensional state vector performs slightly better.
Figure 6.3 shows histograms of estimation errors in relative USO frequency jitters.
Both Kalman filter models have greatly reduced the noise in the raw measurements.
The performances turn out to be comparable.

All in all, the Kalman filter model with a 23-dimensional state vector designed
in this section performs slightly better than the model with a 24-dimensional state

(a) histogram of arm length deviation (b) histogram of arm length deviation
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Fig. 6.1 A comparison of the arm length determination, a shows histograms of errors in raw arm-
length measurements and Kalman filter estimates with a 24-dimensional state vector, b shows
histograms of errors in raw arm-length measurements and Kalman filter estimates with a 23-
dimensional state vector. Notice that the initial clock biases are not included in the raw measurement
errors for better vision
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Fig. 6.2 Histograms of estimation errors in relative clock jitters, a shows histograms of errors in
the raw data and Kalman filter estimates with a 24-dimensional state vector, b shows histograms of
errors in the raw data and Kalman filter estimates with a 23-dimensional state vector
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Fig. 6.3 Histograms of estimation errors in relative USO frequency jitters, a shows histograms
of errors in the raw data and Kalman filter estimates with a 24-dimensional state vector, b shows
histograms of errors in the raw data and Kalman filter estimates with a 23-dimensional state vector

vector. The reason is that the Kalman filter model with a smaller state vector has
reduced the ambiguity in the system model, while retaining the full information on
the measurement mechanism.

6.3 A Kalman Filter Model with a 22 Dimensional State
Vector

In this section, we try to simplify the state vector further. From the simulation, we
know that the absolute frequency jitters cannot be determined accurately. The only
information about the absolute frequency jitters comes from the term 1 — J f;/f i
of the following measurement equation



78 6 Alternative Kalman Filter Models

carrier carrier (5 - ﬁl) . ﬁl 5f
J

(6.3)

Usually, 6 f;/f }“’m is several orders of magnitude smaller than 1, thus term provides
very limited information about the absolute frequency jitters of the USOs. As we
mentioned before, this is the reason why the absolute frequency jitters cannot be
determined accurately.

We can actually approximate this term by 1 without losing much information.
Then, the Doppler measurement equation becomes

. carrier carrier (l_} — Dl) i ﬁi‘
Dij = |:f] - f (1 - % + i]G~W —I—nf])-. (6.4)

Now, in all the three inter-spacecraft measurement Eqgs.5.22, 6.4 and 5.24 the fre-
quency jitters only appear in the form of frequency difference 6 f; — ¢ f;. Therefore,
we can replace the three frequency jitter variables J f; by two frequency difference
df1 — 6 f> and 0 f, — 6 f3. The state vector is correspondingly reduced to 22 dimen-
sions:

x = (X1, X2, X3, U1, U2, U3, 6Ty — 0T», 6T» — 8T, 8 f1 — 6 f2, 6 f» — 5 f3) .
(6.5)

The dynamic model for the clock jitters and the frequency jitters is approximated as
follows

d [n,» - m} _ [2(51‘,- — /(S f,-“‘““)] 66)
! . .

dr |[6f;—0fi]

The main advantages of this Kalman filter model are (i) the reduction of the near
degeneracy in the system model, (ii) the reduction of the nonlinearity in the measure-
ment equations. On the other hand, the use of approximate measurement equations
could also be disadvantageous at the same time.

We implement this Kalman filter model to process the same simulated measure-
ment data used in the last section. We have set the nominal frequencies of the USOs
in different S/C to be identical in the simulation, i.e. f j'.“’m = f°"m.If the nominal
frequencies are not identical, the performance of this Kalman filter model would be
degraded depending on how different the nominal frequencies are. The simulation
results are summarized in Fig. 6.4, where the estimation errors in the arm lengths,
clock jitters and USO frequency jitters are shown. Comparing these results with
Figs.6.1, 6.2 and 6.3, we find that the estimation errors of this model in the arm
lengths are slight larger than those of the other two Kalman filter models. How-
ever, this Kalman filter model performs slightly better than the other two models in
determining the clock jitters. Overall, the performances are similar.
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Fig. 6.4 Simulation results of the Kalman filter model with a 22-dimensional state vector, a his-
tograms of errors in raw arm-length measurements and Kalman filter estimates, b shows histograms
of errors in the clock jitters, ¢ shows histograms of errors in the USO frequency jitters

6.4 A Simplified Kalman Filter Model with Only Clock
Variables

In this section, we show a greatly simplified Kalman filter model only for the USOs.
The main benefits from such a model are the simplicity of the linear mathematical
model and the efficient implementation. On the other hand, this model is accurate only
when the inter-spacecraft laser links are instantaneous, hence not straightforward
to be generalized to the full-relativistic treatment with relativistic inter-spacecraft
delays. At any rate, in this model we need not to deal with large matrices with
hundreds of nonlinear components but only small constant matrices.
Let us first define a 4-dimensional state vector

(STl —(5T2 X1
5T2 —5T3 X2
0fi—=46f x3 |’
0fr—0f3 X4

6.7)

X =
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which consists of only the relative clock jitters and the relative USO frequency jitters.
The dynamic equations can be simply modeled as

x] x3/fl'10m

d nom

% 2 = x4/{; + noise, (6.8)
X4 0

where we have assumed the nominal frequencies of the three USOs are identical,
ie. f°" = f"°M Since these dynamic equations are linear, the dynamic matrix is
simply

001/frm 0
_Of |00 0 1/frem
T ox |00 o0 0

00 0 0

F (6.9)

Next, let us look into the measurement equations. For instantaneous laser links,
the relative clock jitters can be obtain in the following way

1

where the ranging measurements R;; are given in Eq.5.22. The relative USO fre-
quency jitters are indirectly inferred by the modified clock measurements, see
Eq.5.24. As mentioned before, the Doppler measurements (see Eq.5.23) contain
little information on the frequency jitters, hence for this Kalman filter model with
only clock variables they are nearly irrelevant. Therefore, the measurement equations
are simplified to the following linear form

(5T1 — (5T2 X1
0T, — 6T; X2
y = g? - 32 + noise = _xlxs_ *2 | 1 noise, (6.11)
d0fr—0f3 X4
0fz—0fi —X3 — X4
which leads to a constant measurement matrix
1 0 0 O
0 1 0 O
dy -1-10 0
H = w=lo 01 0 (6.12)
0 0 0 1

0 0 —-1-1
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Fig. 6.5 Simulation results of the simplified Kalman filter model with only clock variables, a shows
histograms of errors in the relative clock jitters, b shows histograms of errors in the relative USO
frequency jitters

We implement the above simplified Kalman filter model to process the same
simulated measurement data used in previous sections. The simulation results are
shownin Fig. 6.5. It can be seen that in the considered case the simplified Kalman filter
has significantly reduced the noise in the relative clock jitters and greatly reduced the
noise in the relative USO frequency jitters. Comparing these results with Figs. 6.2,
6.3 and 6.4, the performance of this simplified Kalman filter is a few times worse
than other Kalman filter models in determining the relative clock jitters and about
ten times worse in determining the relative USO frequency jitters.

6.5 Summary

In this chapter, we have designed and tested several alternative Kalman filter models.
The Kalman filter models with 24-dimensional, 23-dimensional and 22-dimensional
state vectors are comparable in reducing the measurement noise. The greatly simpli-
fied Kalman filter model with only clock variables performs a few times worse than
the other filters as expected. All the filter models have successfully and significantly
reduced the measurement noise. Each Kalman filter model has its own advantages
and disadvantages. One should select the proper one for the specific case.



Chapter 7
Broken Laser Links and Robustness

Abstract This chapter investigates the effects of broken laser links of LISA. Dif-
ferent combinations of broken laser links have been simulated and studied via a
sequential Kalman filter. As a special case, eLISA configuration can be viewed as
the standard LISA with two broken laser links in the same arm. Simulation shows
that the arm-length determination and clock synchronization algorithm works well
for eLISA. In addition, the square-root Kalman filter has been introduced and imple-
mented in this chapter to reduce the condition number of the large matrices in the
filter, hence making the algorithm more robust.

7.1 Introduction

In previous chapters, we have described LISA inter-spacecraft measurements and
designed several hybrid-extended Kalman filter models to process the raw measure-
ments of the classic LISA configuration. Simulations showed that the designed filters
are able to reduce the measurement noise significantly, hence precisely determining
the arm lengths and the relative clock drifts.

In this chapter, we will look into two issues. (i) The Kalman filter models designed
in previous chapters assume all the six laser links of the classic LISA concept are
functioning properly all the time. However, in case of improper performances of some
laser links, what could we do? The improper performances during some certain time
period refer to much more noisy measurements than required or even a breakdown
of some laser link. Although these situations are unexpected to happen in practice,
a successful treatment of this issue will significantly increase the robustness of the
whole LISA project. The solution will also be directly applicable to eLISA by assum-
ing two laser links of the classic LISA to be broken. (The arm length difference is
inconsequential.) (ii) The dynamic range of the simulation is very large. For example,
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the distance from the S/C to the sun is 1.5 x 10" m, which is 13 orders of magnitude
larger than the arm length accuracy we finally reach via data processing. More-
over, Kalman filters usually rely on propagating of different covariance matrices,
which essentially square the dynamic range. For the LISA problem, there are many
variables that differ from each other by many orders of magnitude. Unfortunately,
there is no way to rescale all the variables to have them with comparable values, since
there are four types of variables (i.e. positions, velocities, time, and frequency), but
only two physical dimensions (i.e. [m] and [s]). Therefore, the four types of variables
are essentially dependent. Rescaling one type of variables would rescale other types
of variables accordingly, leaving the dynamic range unchanged. The large difference
in orders of magnitude between different components of the covariance matrices
results in large condition numbers, which cause numerical instabilities and errors.
Therefore, it is important to reduce the condition number. We try to address these
problems to enhance the robustness of the algorithms via the square root Kalman
filter formulation.

7.2 Sequential Kalman Filtering

7.2.1 Sequential Kalman Filter Formulation

By its name, the sequential Kalman filter [1] proposes to process the measurement
data one after another. It requires the covariance matrix of the measurement noise to
be diagonal, which we denote as

Vk = diag(Vlk, V2k, . ) (71)

When this requirement is satisfied, the set of measurements yy at step k are essentially
independent. Hence, we can view each datum y;; in y; as a single measurement. The
measurement equation then becomes

Yik = Hiycxy + vi. (7.2)

By replacing the standard measurement equation with this single-datum measure-
ment equation, we obtain the so-called sequential Kalman filter, which only processes
one measurement at a step. One other advantage of the sequential Kalman filter
is that this formulation requires no matrix inversion in the calculation. Moreover,
this formulation easily accommodates individual measurements that are corrupt or
broken.
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We summarize the sequential Kalman filter formulations as follows:

1. Initialize the state vector and the covariance matrix
)Ear , POJr . (7.3)

2. Calculate the a priori estimate £, from the a posteriori estimate £, , at the
previous step, using the dynamic equation

X = f(x,1). (7.4)
Use either of the following two formulae to update the covariance matrix

P = eFk"AIPktleF"T"A[ + W1, (7.5)
Pr =+ F ADPE (I + F ADT 4 Wi (7.6)

3. Initialize the posteriori state vector and the covariance matrix as

Xoe = (7.7)

Py =P (7.8)

4. Process each measurement datum y;; (i = 1,2, ...,1) one after another at the

step k
Pr  HT
Kir = ;71’k T'k (7.9)
Hi Pi7y j Hyp + Vi
X =51+ Kilyie — hie R ] (7.10)
Pl = - KyHp) P, (7.11)

5. Set the posteriori state vector and covariance matrix after processing a set of
measurements y; as

=3 (7.12)
P =P (7.13)

7.2.2 Classic LISA with Broken Links, eLISA-like
Configuration, and GRACE-like Configuration

In this section, we apply the sequential Kalman filter described in the last section to
the classic LISA with broken laser links. As special cases, eLISA-like configuration
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(i.e. with only two arms, or four laser links) and GRACE-like configuration (i.e. with
only one arm, or two laser links) are also considered. In the simulation, the standard
LISA arm length is used for these two special configurations. That is why they
are referred to as eLISA-like and GRACE-like. Still, the simulation results could
justify the principles and show potentials of the designed algorithms for these two
missions. At any rate, we will see how the missing links would affect the Kalman
filter estimates. The inter-spacecraft measurements for each laser link are similar to
that used in previous chapters. The difference is that we sometimes only use parts
of the laser links in this section instead of all the six laser links. For clarity, all the
histograms of estimation errors in this section are for the laser link from S/C 2 to
S/C 1, namely (a) the relative clock jitters d7; — § 75, (b) the arm length L;;, and (c)
the relative frequency jitters 6 f1 — 0 f>.

First, we apply the sequential Kalman filter to the standard LISA, with all the six
laser links working properly. The simulation results are shown in Fig.7.1. For com-
parison, the estimation errors of the hybrid-extended Kalman filter applying to the
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Fig. 7.1 Histograms of sequential Kalman filter estimation errors in a relative clock jitters, b arm
lengths, and ¢ relative frequency jitters for the laser link from S/C 2 to S/C 1, given that all laser
links are working properly
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Fig. 7.2 Histograms of hybrid-extended Kalman filter estimation errors in a relative clock jitters,
b arm lengths, and c relative frequency jitters for the laser link from S/C 2 to S/C 1, given that all
laser links are working properly

same measurement data are shown in Fig. 7.2. Apparently, both algorithms have accu-
rately estimated the relative clock jitters, the arm lengths and the relative frequency
jitters. In this case, the performances of the two algorithms are very similar. On one
hand, the hybrid-extended Kalman filter is able to deal with the cross-correlations
between the noise of different measurements, which has been ignored by the sequen-
tial Kalman filter. On the other hand, the sequential Kalman filter algorithm has
avoided the matrix inversion, which helps increase numerical accuracies, especially
when the condition number of the matrix is large.

Next, we consider the situation when one laser link of LISA is broken or too noisy
to be used. This can be classified into two cases: how a broken laser link affects the
estimates of the inter-spacecraft measurements in a different arm, and how a broken
laser link affects the estimates of the inter-spacecraft measurements in the same arm.
The simulation results for these two cases are shown in Figs. 7.3 and 7.4, respectively.
From Fig.7.3 we see that a single missing laser link in a different arm hardly affects
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Fig. 7.3 Histograms of sequential Kalman filter estimation errors in a relative clock jitters, b arm
lengths, and c relative frequency jitters for the laser link from S/C 2 to S/C 1, when the laser link
from S/C 3 to S/C 2 is broken

the estimates of the inter-spacecraft measurements. However, Fig. 7.4 tells us that a
missing laser link in the same arm significantly affects the estimates of the relative
clock jitters and the arm lengths. The estimation errors in the clock jitters are about
25 percent larger, and the estimation errors in the arm lengths about twice larger. This
is reasonable, since the laser link in the same arm directly measures the quantities to
be estimated.

In principle, the situation when two laser links are shut down can be classified
into four cases: (i) the two broken laser links are in one arm, which is different from
the arm to be estimated, (ii) the two broken laser links are in two different arms,
while neither arm is the one to be estimated, (iii) the two broken laser links are in
two different arms, one of which is the arm to be estimated, and (iv) the two broken
laser links are in one arm, which is the arm to be estimated. The last case is not
interesting, since we need to estimate the arm length (or the delay time) for the TDI
techniques, which requires there is a laser link in the same arm in the first place.
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(a) histogram of estimate error of clock jitters (b) histogram of arm length deviation
45 900 . - - . —
B raw o =0.70988 [m] | Bl raw & =0.71871 [m]
40+ Bl Kalman o =0.030563 [m] | 800 - Ml Kalman o =0.12408 [m] f
35 700 -
30 500 -
3 @
a B 2 s00;
E E
5 20 S 400
c c
15 300 -
10} 200 -
5 100!
ol m l_ i [ : J
e 4 2 0 2 4 [ 3 2 - 0 1 2 3
relative clock jitters [sec] x10” arm length precision [m]

histogram of frequency difference

C) 2500 —
( ) B raw & =1.0087 [Hz]
Il Kalman & =0.00019515 [Hz]|
5 1500
£
£
3
£ 1000 -
500 -
0 —_-L—

4 3 2 A 0 1 2 3 4
frequency [Hz]

Fig. 7.4 Histograms of sequential Kalman filter estimation errors in a relative clock jitters, b arm
lengths, and c relative frequency jitters for the laser link from S/C 2 to S/C 1, when the laser link
from S/C 1 to S/C 2 is broken

The simulation results for the first three cases are respectively shown in Figs. 7.5,
7.6 and 7.7. Among them, Fig.7.5 shows the estimation errors for the eLISA-like
configuration, where the arm between S/C 2 and S/C 3 is missing. Compared to
Fig.7.1, we find that the relative clock jitter estimates for the eLISA-like configuration
is slightly better, while the arm length estimates for the eLISA-like configuration is
slightly worse. Overall, the two performs similarly. This implies the designed Kalman
filter algorithms can also help estimate inter-spacecraft quantities for eLISA.

In the case (ii), when the two broken laser links are in two different arms, the
designed Kalman filter still works well, as shown in Fig. 7.6. However, the estimates
of all the three quantities (the relative clock jitters, the arm lengths and the relative
frequency jitters) are slightly worse than the estimates for the eLISA-like configura-
tion. In the case (iii), when a second broken link is in the arm we want to estimate for,
it turns out that the relative clock jitters and the arm length cannot be estimated well.
Actually, the large estimation errors in Fig. 7.7 result from the degeneracy between
the relative clock jitters and the arm length in the ranging measurements, when there
is not enough information to decouple them. Compared to Fig. 7.4, which also has a
broken laser link in the arm to be estimated, we see the second missing laser link in



90 7 Broken Laser Links and Robustness
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Fig. 7.5 Histograms of sequential Kalman filter estimation errors in a relative clock jitters, b arm
lengths, and c relative frequency jitters for the laser link from S/C 2 to S/C 1, given that the arm
between S/C 2 and S/C 3 (i.e. the laser link from S/C 3 to S/C 2 and the laser link from S/C 2 to
S/C 3) is broken, which is the eLISA-like configuration

this case is crucial. It contains the information to decouple the arm lengths from the
relative clock jitters.

The situation when three laser links are broken is not interesting, since LISA-like
missions require at least four laser links to perform TDI algorithms to achieve the
designed sensitivities. In the end of this section, we consider the case when there
is only one arm, which resembles the GRACE mission in some aspects. We will
see whether the designed algorithms could help the GRACE-like configuration. We
simulate this special case by shutting down all the four laser links in the other two
arms and only using the measurements from one arm. The simulation results are
shown in Fig.7.8. It turns out that the designed sequential Kalman filter algorithms
work well in this case.
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Fig. 7.6 Histograms of sequential Kalman filter estimation errors in a relative clock jitters, b arm
lengths, and c relative frequency jitters for the laser link from S/C 2 to S/C 1, when both the laser
link from S/C 3 to S/C 2 and the laser link from S/C 1 to S/C 3 are broken

7.3 Square-Root Sequential Kalman Filtering

7.3.1 Square Root Kalman Filter Formulation

As mentioned before, square-root Kalman filters [1-3] aim to increase the numeric
stability and the robustness of the algorithms. In this section, we briefly describe the
derivation of the square-root sequential Kalman filter formulae following [1]. (An
error in the formulation in [1] has been corrected here.)

We first define the square roots S,j and S, of the covariance matrices P,:r and P,
by the relation

Pl =SH(SHT, (7.14)
Pr =S, (S)". (7.13)

This is possible because P,:r and P, are symmetric positive-definite matrices, allow-
ing a Cholesky decomposition. Then, the propagation formula
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Fig. 7.7 Histograms of sequential Kalman filter estimation errors in a relative clock jitters, b arm
lengths, and c relative frequency jitters for the laser link from S/C 2 to S/C 1, when both the laser
link from S/C 3 to S/C 2 and the laser link from S/C 1 to S/C 2 are broken

P = ekalAthtleFkalA’ + Wiy (7.16)

can be rewritten as

Sy (ST = efidist (St pTefs  w AWl (7.17)

The above formula can be summarized in matrix form

(s 01| %]

ST VT Pl A
= I:ekalAtSIj;l Wklﬁ] |:( k_lVi/T/z
k-1

(7.18)

= I:epk’lA[S,:r | Wkl/zl:l QTQ [(S:_I)TeF[,At}

T2
Wl

where we have assumed Q to be a unitary matrix, satisfying Q7 Q = I. Therefore,
if we can find a unitary matrix Q, which fulfils the following requirement
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Fig. 7.8 Histograms of sequential Kalman filter estimation errors in a relative clock jitters, b arm
lengths, and ¢ relative frequency jitters for the laser link from S/C 2 to S/C 1, when only the arm
between S/C 1 and S/C 2 is working properly. This resembles the GRACE configuration

(S*_ )TeFkCIAt R
o[ "z " 1-16) 7

it is straightforward to show that R R = P_. Thus, we can let (S; )" = R. The
above equation is then rewritten as

(SZ-I)TeFkTIAtj| B T I:(Sk)Ti|
[ W = 0" | . (7.20)

Hence, we can calculate S; from S;' , by implementing a QR decomposition of
the matrix on the left hand side of the above equation. The Modified Gram-Schmidt
algorithm will be used to achieve a better numerical stability of the QR decomposition
in the simulation.

We define the square root of P} as Sjf, i..

Pl =StshHr. (7.21)
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Now, the task is to calculate S;; from S;" | ,. When this relation is derived, we have
closed the square root Kalman filter propagation loop. First, we rewrite the Kalman
gain in Eq.7.9 as

Kix = a; S, b1, (7.22)
where we have defined
6= S (723
1
a4 =—. (7.24)
& ¢ + Vi

Equation7.11 then becomes

ST = (I —a; St diHir) STy (S, 07
=857 I —aigid) (ST DT (7.25)

Letting
I —aidid] = —amyigid! )7, (7.26)

it is straightforward to solve the above equation

1
P =T 7.27
T Vai Vi (7.27)
Hence, we obtain the propagation formula
St =St U —avidid]). (7.28)

All the key formulae of the square root Kalman filter have been derived up to here.
We summarize the square root Kalman filter algorithm as follows:

1. Initialize the state vector, the covariance matrix and its square root matrix
A T
Xo P = Sg (S (7.29)

2. Calculate the a priori estimate X, from the a posteriori estimate £, , at the
previous step, using the dynamic equation

¥ = f(x,1). (7.30)

Obtain S, by implementing a QR decomposition of the following matrix via the
modified Gram-Schmidt algorithm.
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St T FL A
[( k—l‘;/m } (7.31)
k—1

3. Initialize the posteriori state vector and the square root of the covariance matrix as

)E(;; =X (7.32)
S& =S, (7.33)
4. Process each measurement datum y;; (i = 1,2, ...,1) one after another at the

step k to calculate the Kalman gain, Kalman estimates and the square root of the
posteriori covariance matrix

¢ = S Hi (7.34)
1
ai = 57— (7.35)
o ¢ + Vi
1
P = T 7.36
L Vai Vi (7.36)
K,'k = a,‘S;’_lykgb,‘ (737)
Siko= St I —amidid]) (7.38)
=20+ KO — HaX ) (7.39)

5. Set the posteriori state vector and the square root of the covariance matrix after
processing a set of measurements y; as

=51 (7.40)
St =584 (7.41)

7.3.2 Simulation Results

We applied the derived square-root sequential Kalman filter formulations to the stan-
dard LISA configuration. The condition number of the matrices have been reduced
from about 102°—-10'°, thus making the algorithms numerically more stable and more
accurate. The simulation results are shown in Fig. 7.9. Compared to previous results,
we find that the square-root sequential Kalman filter provides slightly better esti-
mates. This improvement is purely numerical, since mathematically the square-root
sequential formulation is equivalent to the sequential Kalman filter formulation. The
square-root sequential filter can also be directly applied to LISA with broken laser
links. As expected, the simulation results are similar to that given by the sequential
Kalman filter in the previous section. For brevity, we omit the results.
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Fig. 7.9 Histograms of square-root sequential Kalman filter estimation errors in a relative clock
jitters, b arm lengths, and c relative frequency jitters for the laser link from S/C 2 to S/C 1, with all
laser links working properly

7.4 Summary

We have derived the formulations of the sequential Kalman filter and the square-
root sequential Kalman filter. The designed filters were then applied to the standard
LISA. Both filters are able to estimate the inter-spacecraft quantities accurately.
The square-root sequential Kalman filter has greatly reduced the condition number
of the matrices, hence achieving better numerically stability and better accuracy.
LISA with several different possible combinations of broken laser links has been
investigated with the sequential filter. Simulations have shown that a single broken
laser link will not affect the estimates of the inter-spacecraft quantities. When there
are more than two broken laser links, the estimates of the inter-spacecraft quantities
are greatly jeopardized only if one the broken laser link is in the arm we want to
estimate the inter-spacecraft quantities for. The designed sequential Kalman filter
has successfully processed the measurement data for the eLISA-like configuration.
It also showed greatly potential in the application to the GRACE-like configuration.
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Chapter 8
Optimal Filtering for LISA with Effective
System Models

Abstract Two effective dynamic models have been designed and studied in this
chapter. These effective dynamic models employ smaller state vector and simplified
dynamic functions, hence they are numerically more efficient and more robust. The
degeneracy in the previous Kalman filter model can be eliminated by these effec-
tive models. The posterior measurements have been used via a RTS smoother and
a modified iterative smoother to improve the estimates of the algorithms. Simula-
tion shows that the posterior measurements can further reduce the estimation errors
significantly.

8.1 Introduction

We have designed and implemented several Kalman filter models to process the raw
data for LISA. Most of the designed models use physical parameters, such as the
positions and the velocities of the S/C, in the state vector to characterize the motion of
the LISA constellation. The advantage of using these physical parameters is that they
automatically fit into the physical laws, hence we can directly use Newton’s equations
or relativistic equations as the dynamic equations to evolve the state vector of the
Kalman filter. However, LISA inter-spacecraft measurements contain only relative
quantities, such as the arm lengths, relative tangential velocities, relative clock jitters
and relative frequency jitters. Therefore, the number of variables in the state vector
is larger than the number of measurements, the physical variables in the state vector
cannot be fully determined, and the measurement equations are very nonlinear. All
of these add up complexities and numerical inaccuracies to the Kalman filter.

In this chapter, we explore two effective models with phenomenological para-
meters to deal with these issues. The effective models try to use variables that are
directly measured, thus reducing the nonlinearities in the measurement equations and
increasing the numerical accuracies of the Kalman filter algorithms. The number of
variables in the state vector of these effective models is also significantly smaller. The
matrices in these filter models are better conditioned. It turns out that the effective
models are simpler and more efficient.

© Springer International Publishing Switzerland 2016 99
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Previously, the designed algorithms calculate best linear estimates of the inter-
spacecraft quantities based only on prior measurements. Therefore, those algorithms
could be run on board. In reality, the LISA pre-processing stage is expected to be
carried out on the ground. The raw measurements can be analyzed off-line or at
least with some latency. This allows to use the measurements posterior to the time
of the estimates, which could potentially improve the estimates. In this chapter,
we use a Kalman filter formulation similar to that of the so-called RTS smoother
[1, 2] to calculate the best linear estimates based on measurements both prior to and
posterior to the time of the estimates. Simulation results show that the use of the
extra measurements can significantly improve the accuracy of the estimates.

8.2 A Periodic System Model

If each S/C of LISA would follow a Kepler orbit, the variations of the arm lengths of
LISA were strictly periodic. Even for relativistic orbits under consideration of all the
planets in the solar system, the variations of the arm lengths are also nearly periodic.
Using the Kepler orbital setup in the paper [3], the annual evolutions of the LISA
arm lengths are shown in Fig.8.1a. The arm-length variations resemble sinusoidal
functions within 6 months. In the subsequent half year, the arm length variation
remains a roughly sinusoidal shape, but with a different amplitude. By optimizing
the inclination angle between the ecliptic plane and the LISA constellation plane
[4], the arm-length variations can be further reduced, and we obtain the arm-length
variations shown in Fig. 8.1b. These arm-length variations are similar to a sinusoidal
function with a period of one year. In either cases, we can phenomenologically model
the arm-length evolutions as follows

L(t) = L + Asin(wt), (8.1)
(a) < 10" The arm lengths of LISA (b) The arm lengths of LISA
5.1 . . v y - 501 v " v v ’ " .
sC1-5C2 L —sci.sc2|
$C1-5C3 - $C1-5C3
508 | \ | ——sc2sc3 L] B / T . S SC2-5C3)
Y T S " 7
E 508 E a0
£ s
2 504k D 408
2 =2
E
l!i 5.02 - E 497 ¢
5 4.96
- G i P, . | | . . : ; . :
o 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 25 3 3.5
time [s] x 107 time [s] x 10’

Fig. 8.1 The annual arm-length variations of the LISA constellation for Kepler orbits, a has fixed
the inclination angle between the ecliptic plane and the constellation plane of LISA as 60°, b has
varied and optimized this inclination angle to minimize the annual arm-length variations
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where L is the average arm length, and w is angular frequency with either a half-year
period or a one-year period. If we define the arm length change as below

AL(t) = L(t) — L = Asin(wt), (8.2)

the dynamic equation of the arm length change is the same as that of a simple
harmonic oscillation

d2AL

T WAL = 0. (8.3)

A Kalman filter based on this simple periodic dynamic model can thus be designed.
We define a 11-dimensional state vector as follows

x = (AL, va1, AL3p, v32, ALy3, v13, 6Ty — 0Ta, 6Ty — 8T, 5 f1, 0 2, 0 f3)7.
(8.4)

The dynamic equations for the arm-length variations and the relative tangential veloc-
ities can be obtained from Eq. 8.3 by rewriting it as first order differential equations

d
I |:AUL:| = [_(Lz (1):| [AUL:| + noise. (8.5)

The dynamic equations for the clock variables are given as follows

5T, — 8T 00 1/fom —1/f5om 0 5T — 8T
5Ty — 8T, 00 0 1/fom —1/fom | | o7, — 6Ty
— 0 fi =100 O 0 0 4 f1 + noise.
el 5p 00 0 0 0 5
5ty 00 0 0 0 5ty

(8.6)

In order to make the system model fit better into the Kalman filter frame, we
subtract the average arm length from the ranging measurements, thus obtaining the
following observation vector

y' = (Rs1 — L, D31, C31, Ryy — L, Dy, Cay, Riy — L, Dyp, Cha, . ..
Ry — L, D3y, Cyp, Rys — L, Da3, Co3, Ri3 — L, D13, C13)7, (8.7)

where the inter-spacecraft measurements are

ij?
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DU_[fcamer fearier (l_vu) n Gw] 1 94 a2 89)

fl"lOm
J
Cij =6fj —6fi +nj. (8.10)
The Measurement matrix H, = % __is 18-by-11. We explicitly give its first three
rows below '
0...01 0 cc 0 00
fcm.er oS feaen _ pearir peariery
0...00 5 (1- My oo L5 _ im0 |
0...00 0 00 1 0—-1].-
Xk

where we have omitted the step index & in the components of the matrix. Notice that
the dynamic matrix Fj for this model is a constant matrix, and most components of
the measurement matrix HJ are constant. The nonlinearity of the Kalman filter model
has been significantly reduced. Also, the number of the variables in the state vector is
11, which is less than the number of measured quantities 18. Except for the absolute

a b
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400 | 800
MMl raw o =0.73364 [m] | Bl raw o =0.6878 [m] |
350 Bl Kalman o =0.10103 [m] | 700 Il Kalman o =0.050783 [m] |
|
300 600 |
- 250 o 500 |
@ @
F-1 F-1 ‘
E 200 £ 400
3 = |
£ 150 < 300 |
100 200 |
50 100 |
%4 0.5 0 0.5 %3 2 4 0 1 2 3
relative clock jitters [sec] x10*° arm length precision [m]
(C) histogram of frequancy difference
2500 ;

-raw a =1.0078 [Hz]
Bl Kalman o =0.0086028 [Hz]
2000 1

frequency [Hz]

Fig. 8.2 Histograms of the estimation errors of a hybrid-extended Kalman filter with a periodic
system model in a relative clock jitters, b arm lengths, and c relative frequency jitters for the laser
link from S/C 2 to S/C 1
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frequency jitters, all other variables in the state vector are directly constrained by the
measurements, hence in principle they can be determined by the Kalman filter.

We design a hybrid-extended Kalman filter based on the model described above
to process simulated LISA measurement data. The estimation errors in the relative
clock jitters, arm lengths and the relative frequency jitters are plotted in Fig. 8.2.
With this phenomenological periodic model, the designed Kalman filter has suc-
cessfully estimated these three kinds of inter-spacecraft quantities. We also find that
the designed Kalman filter model is not sensitive to the actual orbits of the LISA
constellation. With either angular velocities w = 27 rad/year or w = 4 rad/year
and with either LISA orbits shown in Fig. 8.1a, b, the performance of the designed
Kalman filter turns out to be similar in terms of estimation errors.

8.3 An Effective System Model

In this section, we try to design an other effective system model, whose errors can be
accessed analytically. This form of system model is expected to be directly applicable
to relativistic LISA orbits. The arm lengths of LISA are smooth, slowly varying and
(nearly) periodic functions of time, no matter whether they are calculated in the non-
relativistic or relativistic framework. The smooth arm-length functions of time can
be decomposed into harmonics

Lit)=L+ Z A, sin(awt + ¢p), 8.11)

n=1

where L is the average arm length, and A is the lowest order arm-length variation,
whose value is about L /100 according to the orbit design of LISA.
The arm-length function can be expanded in polynomials around any time 7,

L()=L+ Z A, sin(nwty + ¢p) + z A, cos(nwty + ¢,) (nwAt)

n=1 n=1

- % z A, sin(nwty + ¢,) (nwAt)? + O[Ar], (8.12)

n=1

where At = t — ty. For elliptical Kepler orbits, A, decays exponentially with 7.
For relativistic orbits, A, also decays much faster than linearly, which leads to (n +
1)A,+1 < nA,. For a short time Az = 1000 s, we estimate the contribution of each
order as follows

AjwAt ~ 10* m, (8.13)
1
5Al(wm)2 ~ 1m, (8.14)
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1 3 —4
gAl(wAt) ~ 107" m. (8.15)

As a consequence, if we want to design a Kalman filter to process 1000 s LISA mea-
surement data, the following polynomial model characterize the LISA arm lengths
to 0.1 mm accuracy.

oo
i} 1
Lit)=L+ § A, sin(nwty + ¢,) + VAL + EaAtz + O[AF*],  (8.16)

n=1

where v and a are phenomenological variables.
According to the above phenomenological model, we define a 14-dimensional
state vector in the Kalman filter as follow

x = (La1,v21, a21, L32, v32, a3, L13, v13, @13, 6Ty — 6T2, 6T» — 6T3, 6 f1, 8 f2, 5 f3) 1.
(8.17)

The dynamic model for the arm-length phenomenological variables is simply as
follows

d L 010 (L
—|lv]|=1001 v | + noise. (8.18)
de 000]||a

The dynamics for the clock variables are the same as Eq. 8.6.
9| s 18-by-14 and a bit different from that

Ox
Xk

in the last section, we therefore again explicitly write its first three rows as below

The measurement matrix H, =

0...01 0 Occ 0 00

fscarrier _ 5fl fcarrier_fcarrier _ f'carrierU31
0...00 5 (1-28) 000 L5 S g o |
0...00 0 000 1 0—-1/.-

where we have omitted the step index k in the matrix components.

We design a hybrid-extended Kalman filter with the phenomenological polyno-
mial system model described above to process the simulated LISA measurement
data. The results of the simulation are summarized in Fig. 8.3. Comparing these esti-
mation errors with that given in the last section, we find that the overall performance
of this phenomenological polynomial model is slightly better. Since this model is
directly applicable to relativistic cases, we expect it to outperform the periodic model
in general.

Usually, the trace of the posteriori matrix tells how large the overall estimation
error is. The trace of the posteriori matrix at each Kalman filter step is shown in
Fig.8.4a, where we see that the overall estimation error is not improving much
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Fig. 8.3 Histograms of the estimation errors of a hybrid-extended Kalman filter with a phenomeno-
logical polynomial system model in a relative clock jitters, b arm lengths, and ¢ relative frequency
jitters for the laser link from S/C 2 to S/C 1
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Fig. 8.4 a The trace of the posteriori matrices. b The trace of the posterior matrices excluding
frequency jitters

with time. After the first few steps, the overall estimation error roughly stays at the
same level. This is because the absolute frequency jitters § f; cannot be determined
well. As explained in previous chapters, the measurements contain very limited
information about the absolute frequency jitters. Figure 8.4b shows the trace of the
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posteriori matrices excluding the frequency jitters. If we use the relative frequency
jitters § f1 — 0 f> and § f, — J f5 in the state vector instead of the absolute frequency
jitters 6 f, the trace of the full posteriori matrix behaves similar to Fig. 8.4b. We see
that the overall estimation error is significantly decaying with time. During the 700 s
shown in the figure, the estimation error is reduced by more than three orders of
magnitude. Since the Kalman filter calculate the best linear estimates of the state
vector based on the measurements prior to the time of the estimates, the estimates at
a later time actually use more measurements. Therefore, the estimates at a later time
are much more accurate.

The pre-processing stage of LISA data is expected to be done on the earth. Thus,
we can estimate the state vector also using the measurements posterior to it. This can
potentially further reduce the estimation errors. In the next section, we will describe
the algorithms and apply them to LISA measurements.

8.4 Improving the Estimates by Using Posterior
Measurements

There are several existing algorithms that generate the best estimates based on a fixed
amount of data [2]. These algorithms are usually referred to as optimal smoothers. The
so-call RTS smoother [1, 2] is an efficient algorithm among them. In the following,
we directly describe a similar iterative algorithm without going through the lengthy
derivation.

1. Initialize the state vector and the covariance matrix
)ﬁfo, P1+.ov (8.19)
where in X, ; and P, the index a stands for the ath iteration, and k is the normal
step index.
2. Calculate the a priori estimate %, , from the a posteriori estimate )2;,(71 at the
previous step, using the dynamic equation
X = f(x,1). (8.20)

Use either of the following two formulae to update the covariance matrix

Pai,k = eﬂl‘kilAtPufk—lekailAt + Wa,kflv (821)
Pa_.,k =+ Fﬂ,kflAt)P;kq(I + Fa,kflAt)T + Wak-1, (8.22)

where F, ;1 = 5=
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3. Calculate the Kalman gain

Ko = PyyHy (Hai Py Hyy + MagViMg )™ (8.23)
where H, ; = % oMoy = % .
Xak Yak

4. Correct the a priori estimate

=%+ Kaxlye — (R, 0)], (8.24)
Pl = — Kok He )Py
= (I = Koy Ho) P, (I — Kok Hoi)" + Ko ViK . (8.25)

5. Leta — a + 1, initialize the new iteration backwards as the following

-iu,N = )2:_1,1\/ (8.26)

Pa,N = PaJr_l’N (827)

6. Filter the posteriori estimates obtained in the last iteration backwards for k =
N—-1,N-2,...,0

Kok =Pl Fl (P )™ (8.28)
Por = Pa+—1,k = Kok (P gy — Pa,kH)Kanl,k (8.29)
Kok =2 o+ Kook Gaprt — X 4py) (8.30)

7. Leta — a + 1, initialize the new iteration as follows

x50 =%a-10s (8.31)

Py = Pir0, (8.32)

and repeat the calculations from step 2.

‘We want to elaborate a few points about the above algorithm: (i) The first iteration
of the algorithm is the same as a hybrid-extended Kalman filter algorithm, where
each posteriori estimate is obtained based on the measurements prior to it. (ii) The
first two iterations together are similar to a nonlinear version of the RTS smoother,
where the posteriori estimates are obtained based on measurements both prior to and
posterior to them. (iii) When the dynamic equations or the measurement equations
are nonlinear, additional iterations from the third on help increase the estimation
accuracy. This is because we need to expand the nonlinear dynamic equations or
the nonlinear measurement equations around some estimate of the state vector. New
iterations calculate the expansions around better estimates, hence the nonlinear func-
tions are better approximated. (iv) From the third iteration on, the measurements are
used more than once. Effectively, we are using more measurements than we have.
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Fig. 8.5 The trace of the posteriori matrices as a function of time in each iteration
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Fig. 8.6 Histograms of the posteriori estimation errors after two iterations in a relative clock jitters,
b arm lengths, and c relative frequency jitters for the laser link from S/C 2 to S/C 1
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As a result, the posteriori covariance matrices (the uncertainty of the estimates) are
underestimated from the third iteration on. (v) The uncertainty of the dynamic equa-
tion is characterized by W, x, which is tunable. We can start with slightly larger W 4
in the first iteration to increase the robustness of the algorithm, and use smaller W,
in the subsequent iterations, when we can expand the dynamic equations around
better estimates. (vi) It is not recommended to go beyond the fourth iteration, unless
the measurements or the dynamic equations are strongly nonlinear.

We implement the designed algorithm to process simulated LISA measure-
ment data up to the fourth iteration. The trace of the posteriori matrices in each
iteration is plotted in Fig.8.5. Similar as before, we have excluded the absolute
frequency jitters from the trace. The second iteration has significantly improved
the overall estimation accuracy and brought the estimates at all time to a simi-
lar precision. The third and the fourth iterations have further reduced the trace
of the posteriori matrices. As we explained above, the uncertainties of the esti-
mates after the third iteration are underestimated, therefore the improvements in
the third and the fourth iterations are not that large. This is mainly because the
dynamic equations are linear and the measurement equations in the polynomial phe-
nomenological variables are almost linear. So the linear expansion of the dynamic
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Fig.8.7 Histograms of the posteriori estimation errors after four iterations in a relative clock jitters,
b arm lengths, and c relative frequency jitters for the laser link from S/C 2 to S/C 1
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equations is the same around any state estimates, and that of the measurement equa-
tions only weakly depends on the location of the expansion. Figures 8.6 and 8.7
respectively show histograms of posteriori estimation errors after two iterations and
after four iterations. Comparing the two figures, we see that the estimates of the rel-
ative clock jitters have been significantly improved by the third and the fourth itera-
tions, while the estimates of the arm lengths and the relative frequency jitters almost
remain the same. Comparing Fig. 8.7 with previous results, we find that the iterative
algorithm designed in this section significantly outperforms other algorithms. The
uncertainty in the relative clock jitters can be reduced by this algorithm by an order of
magnitude. The arm length uncertainty is reduced to millimeter level. However, due
to the approximate dynamics, the estimate in the arm lengths sometimes has a bias
about 1-2 cm. Still, the arm-length estimates are much more accurate than before and
sufficiently accurate for TDI algorithms. The relative frequency jitters are estimated
to the sub-mHz level, which are also more accurate than the results in the previous
sections. All in all, the designed iterative algorithm has successfully enhanced the
robustness and improved the estimation accuracy of the inter-spacecraft quantities.
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Chapter 9
Clock Noise and Disordered Measurements

Abstract In this chapter, we have studied different types of clock noise including
the realistic clock noise measured in the lab (which is several orders of magnitude
more noisy than the current best space-qualified clocks). Simulation indicates that the
clock noise can significantly affect the performance of the filter algorithms. More
sophisticated dynamic models have been designed for the clock noise, which are
then incorporated in the filter algorithms. The filter algorithm with the sophisticated
model turns out to work well in the presence of stronger and more complicated
clock noise. In addition, the effects of the clock noise on the sampling time stamps
have been simulated and investigated. It turns out that the errors in the time stamps
can introduce biases in the estimates of the arm lengths and the clock errors. We
have invented a hybrid interpolated filter to solve this problem. Simulation shows
that in the presence of complicated strong clock noise, in both the measurements
and the sampling time stamps, the filter algorithms designed in this thesis can still
accurately determine the inter-spacecraft distances and synchronize the clocks. This
work has two main implications: (i) it bridges the gap between the phasemeter raw
data and the well-studied time-delay interferometry algorithms and the astrophysical
data analysis algorithms, hence contributing to the readiness and maturity of the
(e)LISA-like missions, (ii) it demonstrates the possibility of using less expensive
clocks, hence it can potentially reduce the cost of the (e)LISA-like missions.

9.1 Introduction

So far, we have designed several Kalman filter algorithms, including the hybrid-
extended Kalman filter, the sequential Kalman filter and the square-root sequential
Kalman filter, to process LISA measurement data. In addition, we designed an itera-
tive algorithm that is similar to the RTS smoother. For the standard LISA configura-
tion, we have investigated several Kalman filter models, including the models with
24-dimensional, 23-dimensional and 22-dimensional state vectors, and a simplified
model which separates and only deal with the clock jitters and the frequency jitters.
We have also considered several possible combinations of broken laser links in the
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LISA constellation, along with the eLISA-like configuration and the GRACE-like
configuration.

In the case of physical system model, all the hundreds of components in the large
matrices Hy and F; have been calculated analytically. Many control parameters are
investigated and carefully tuned. These allow the designed algorithms to accurately
estimate the arm lengths, the relative clock jitters and the relative frequency jitters.
We have designed two phenomenological system models, where the measurement
matrix Hy and the dynamic matrix Fj are greatly simplified. The iterative algorithm
has significantly improved the estimates of the inter-spacecraft quantities. For the
arm lengths, we have been able to estimate the quantities of about 5 x 10° m to an
accuracy of centimeters or even millimeters, which is 11 or 12 orders of magnitude
in difference.

We have assumed and used clock jitters and frequency jitters that follow power-
law PSDs, which exactly obeys the clock dynamic model we have used in the Kalman
filter model. In reality, the clocks usually have more complicated PSDs, that follow
different clock dynamic models. In this chapter, we will investigate how different
types of clock noise, including the clock noise directly measured in the lab, would
affect the Kalman filter estimates, and how the discrepancy between the clock dy-
namic model used in the Kalman filter algorithms and the real clock dynamic model
would affect the performance of the designed algorithms.

As mentioned in previous chapters, although we have included the clock noise
in the measurements, we have made the approximation that the recording time of
the measurements is perfect, meaning that all the measurements taken in the same
Kalman filter step are assumed to be measured at the same time, and the sampling rate
is uniform. In other words, we have neglected part of the clock noise. In face, this is
usually required by the Kalman filter formulations. In this chapter, we will take into
account this effect, simulate it and analyze it. We will simulate the measurements
that are recorded according to their own imperfect clocks. The measurements are
taken non-uniformly with unknown record time. The Kalman filter formulations do
not fit it in this case. We will investigate how and whether the previously designed
algorithms work and design new algorithms to analyze the data.

9.2 Clock Noise with Power a Law Decay LSD

9.2.1 Frequency Noise with a 1/v Slope

We have been using frequency jitters with a linear spectral density (LSD) that follows
a 1/v slope. Here, we denote v as the Fourier frequency to make a distinction from
the clock jitters 6 f. This 1/v-slope LSD is a good and simple approximation, since
we find the LSDs of many measured frequency jitters of USOs have a slope close to
1/v. This kind of frequency jitters can be described by the following simple model
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df (1) =n(), 9.1)
where n(t) is a white-Gaussian noise process. Thus, the LSD of the frequency jitters is

Sq (V)
2my

VSsr(v) =

where the PSD of the vx_/hite—Gaussian noise S, () is aconstant at all Fourier frequency
v. From the relation 67 = § f/f"°™, we know that the LSD of the clock jitters has a
slope of 1/12

9.2)

VSsr(v) = V) 9.3)

(27.”/)2 fnom ’

where f"°™ is the nominal frequency of the USO.
The clock model we have been using in the Kalman filter is the following

d [or offfrem n

— = , 9.4

dt |:5 f i| |: 0 + ny ©
where n1, ny are uncorrelated white-Gaussian noise processes. By converting the
above two first-order differential equations into a single second-order differential
equation

6T =1y + na/f™™, 9.5)

the LSD of the clock jitters for this Kalman filter model is

1/2
\/m _ |:S111(V) n Sllz (v) i| . (9.6)

@m)2 - (from?2Q2mr)t

When S, (v) is much smaller than S, (v), the above LSD approximates a 1/ v slope.
However, §,,, cannot be arbitrarily small in numerical simulation, since n; is at least
at the numerical precision level of the first-order different equation it appeared in.
As shown in previous chapters, this system model works well for frequency jitters
with a 1/v slope.

9.2.2 Clock Noise LSD with a Higher-Order Decay

We can generalize the system model described in the previous subsection to higher-
order differential equations, which can be converted to a set of first-order equations
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where n; are uncorrelated white Gaussian noise, (k = 1, ..., N+ 1). By eliminating
Xi, We obtain
N+1
VD = MR, 9.8)
k=1

where x™) denotes the nth derivative of x, and x©@ = x. It is straightforward to
calculate the LSD of x from the above formulae

N4l 12
Sne (V)

v Sy = E d . 9.9

) |:1<_1 (ZWV)Zk:| 9.9)

When the noise processes ng, (k = 1, ..., N) are negligible compared to nyj, x

approximately has a LSD as

VS~ Vo)

T (9.10)

9.3 Measure and Characterize Laboratory Clock Noise

9.3.1 Measured Clock Noise

The clock noise is a key ingredient for the inter-spacecraft measurements and the
LISA project, thus it is important to measure and analyze realistic clock noise. We
try to characterize the clock noise by measuring the beat-note of two USOs. The
schematic plot is shown in Fig. 9.1, where two analog signals respectively from two
USOs are mixed, and then low-pass filtered. The beat-note signal is digitized by an
analog-to-digital converter (ADC) and recorded.

Instead of using high-quality space-qualified USOs, we first measure the clock
noise of low-quality cheap oscillators. Some realistic features of the clock noise
would appear from the measurements. By using these realistic clock noise measure-
ments in the LISA data pre-processing simulation, we will be able to see how the
realistic clock noise would affect the ranging accuracy and the time labels of LISA
raw measurements. Consequently, we can tell whether the realistic clock noise would
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Fig. 9.1 A schematic diagram of measuring the clock noise

affect the extraction of the astrophysical information from LISA data. The require-
ments on the performance of LISA USOs can then be set. If we can still achieve
sufficient ranging accuracy and precisely calibrate LISA raw measurements with
these clock noise measurements, it would permit using less precise clocks instead
of high-quality USOs in the LISA projects. This will both greatly reduce the budget
and increase the robustness of the LISA project.

We designed breadboard circuits to measure the beat-note of two oscillators, as
shown in Fig.9.2a. The sampling rate of the ADC is 20 kHz. The nominal frequency
of the two oscillators is f"°™ = 20 MHz. The signals from the two oscillators are

s; o cos[2m(fM°M + 6 i)t + D;], (9.11)

where i = 1, 2 is the oscillator label, 0 f; denotes the frequency jitters of the os-
cillators, and ®; are the initial phases. After the mixer and the low-pass filter, the
measured signal can be formulated as

s o cos[2m(d f1 — 6 o)t + (D1 — D). (9.12)

When the frequency jitters ¢ f1 and J f> are independent, the measured frequency
jitters 0 f; — 0 f» is statistically ~/2-times as large as the frequency jitters of a single
oscillator. The time-frequency plot of the measured frequency jitters is shown in
Fig.9.2b, where the strongest signal at about 450 Hz is the beat-note of the two
oscillators. Other weak harmonics in the plot are due to the imperfection of the
sinusoidal signal. In order to extract the frequency jitters and calculate the its linear
spectral density (LSD), we first get rid of the DC component of the measured raw
data by a high-pass filter. The time of the ascendant crosses of the filtered data with
the x-axis #; is then interpolated and calculated. The instantaneous period of the
measured signal is the difference between two successive cross time ;. — #. The
instantaneous frequency jitters are the inverses of the instantaneous periods, which is
plotted in Fig.9.2c. Notice that the recording time of these instantaneous frequency
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(b) Beatnote of two 20MHz oscillators.
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Fig. 9.2 Clock noise measurements. a The designed breadboard circuits that measure the clock
noise. b The time-frequency plane of the measured beat-notes between the two oscillators. ¢ The
frequency difference between the two oscillators as a function of time. d The LSDs of the beat-note
frequency noise measured at four different time periods

jitters is uneven. Also, the uneven sampling frequencies of these frequency jitters are
quite high. Therefore, we low-pass filter these frequency jitters, average the jitters
over short time, and down-sample the averaged frequency jitters. The LSD of the
frequency jitters is calculated based on these down-sampled data. In Fig.9.2d, the
LSDs of the frequency jitters during four different time periods are shown. From the
figure, we see that the frequency jitters of the oscillators we used are actually several
orders of magnitude more noisy than the best space-qualified USOs.

9.3.2 Characterizing and Modelling the Clock Noise

Usually, a stationary noise process can be modelled by a high order differential
equation

N M
K NHD 4 Zajx(N_j) _ zbku(M_"), (9.13)
j=0 k=0
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where N and M are two positive integers, a;, by are real coefficients, x(¢) is the
noise process, and u(t) is a white-Gaussian noise process. This model is also called
the autoregressive-moving-average (ARMA) model in the time series analysis. In
the Fourier domain, the relation between X (v) and i (v) is

Zk o bi((2mv)M= —k
(i2mv)NH —i-zj oaj(i2mv)N=J

bo [T, (27 — z4) -
= s 9.14
Hj-v:ll(l.ZTU/ - pj) uw) ( )

i(v) = uv),

where z; are zeros, and p; are poles of the transfer function. Since the coefficients
a; and by, are real, the zeros z; and the poles p; are either real or forming a complex
pair (e.g. when z; is complex, there exists one other zero z that satisfies zpy = z7),
respectively. Therefore, the LSD of the noise process x(¢) is

S5 S b (i2m)Mk
! (2m)N+ + 30 aj2m)N-i

bo [1iL, 27w — z1)
= Vv S. (), 9.15
HN+1(127TV - pj) @ ©-19

VSu(),

where | .. .| denotes the absolute value. Notice that, by definition, the PSD S, () of
a white-Gaussian noise process is constant at all frequencies.

Given a measured LSD of the phase noise or the frequency jitters, we want to fit it
to the model described by Eq. 9.13, while minimizing the fitting error. In other words,
we need to calculate the coefficients a;, by orthe zeros zx, poles p; and by. For a given
/S (V), there is degeneracy between by and /S, (). Thus, we require /S, () = 1
to avoid the ambiguity. By requiring the total power of the noise process x(#) to be
finite, we have M < N. Therefore, the measured LSD can be reexpressed as

bo [11~, 27V — z¢)
HNH(zZm/ - pj)

N+1 e
= Zz—’ , (9.16)
o 2nv — p;

V8 (v) =

where r; are the residues. When the phase of the LSD is known, we denote the
complex LSD with phase evolutions as L, (), which is

bo [T02, (127w — =
b= HNH(IZWV —pi) z 27r1/ -p; ©.17)
j =1
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For a measured L, (v), the residues r; and the poles p; can be calculated, using the
iterative vector fitting method invented in the paper [1]. Here, we only explain the
main idea of the algorithm. By inserting the initial guess of the poles p,, into the
above equation, we can rewrite it as

12 G2mv — p)) bo [12, (1270 — 22)
NTT —L.(v) = =1 —. (9.18)
Hm:] (ZZTFV - pm) Hm:l (1277.” - pm)
The above equation can be expressed in the residues and poles form
N+1 3 N+1 .
41| L) =) ——. 9.19
;iZWV—ﬁj+ ®) j;izm—pj ©-19)

This equation is linear in its unknown residues 7; and r;, hence the residues can
easily be calculated by minimizing the square error or the weighted square error.
Once the residues are known, the zeros z; of the left hand side of the above equation
can also be calculated. Notice that the zeros of the left hand side of the above equation
are poles of L, (v). The zeros of 27:11 izmr//iﬁ‘ + 1 are just the eigenvalues of the
following matrix '

p1—7F1 —F ... —INtl
—rr p2—"r... —IN+1
H = ) . . . (9.20)
—7 —r2 ... DN+1—TN41

A brief proof is shown in the Sect. 9.5. Then, we set the new poles p; as the calculated
Z; and repeat the whole calculation until the square error is sufficiently small. The
estimates of the residues r; and the poles p; are obtained after the convergence.

Usually, the phase of the LSD is not known or even defined. The above method
does not work in this case. One can use the software LISO [2] designed by Gerhard
Heinzel to fit the LSD without phase. Instead of an iterative deterministic algorithm,
LISO uses a combination of stochastic optimization algorithms to fit the LSD without
phase by minimizing the square error in the amplitude of the LSD. It starts with an
initial run of the Particle Swarm Optimization (PSO) [3, 4] algorithm, followed
by an iterated combination of Nelder—Mead Simplex [5] and Levenberg—Marquardt
algorithms [6] to polish the solution obtained from the PSO algorithm.

Alternatively, one could use the algorithm described in the papers [7, 8] to fit the
LSD without phase to zero-pole models. I separately derived a similar algorithm to
accomplish the same task, which fits the LSD without phase iteratively. Instead of
fitting the LSD |L,(v)| without phase, we first fit the PSD S,(v) = L,(v) L} (v),
which is
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ol T 27y — zg) (27 — 24)*

Sc(v) = - - (9.21)
Hiv:ll @i2mv — pj) (27w — p;)*
For real poles p;, we have the following
(i2nv — p))(i2nv — p))* = 2mv)* + pf. (9.22)
For a complex pole p; and its complex conjugate pole p;; = pj, we have the
following
(i2mv — pj)(i2nv — p;)* (i2mv — p;)(i27v — p;)*
= (i2mv — pj)(—i2nv — p})(i2nv — p_’;)(—i27w —-pj)
= [@m)* + p][Cm)* + (p])].- (9.23)

The same principle applies to the zeros. Therefore, the PSD can be reorganized as

P TI [@rn)? =z NZ“ R;

Se(v) = = _— (9.24)
17 [@rv)? - P)] = @mv)* - P
where we have defined the modified zeros Z; = —z7 and the modified poles P; =

— p?, and R; denote the modified residues. We can fit the modified poles and residues

in an iterative way. Starting from some initial guess of the modified poles I3j , We can
fit for the unknown modified residues R; and R; from the equation below

N+1 R N+1 R.

J J
> —L —t1|swm=> — L —. 9.25
= ) - P ) = @) - P 02

The modified poles R; in the next iteration are then set as the modified zeros Z; of
the left hand side of the above equation in the current iteration. After convergence
(i.e. the fitting error is sufficiently small), we obtain the estimates of P; and R;.
The zeros and poles of L,(v) can be calculated from the modified poles and the
modified residues.

9.3.3 Generating Clock Noise with Given LSD

Using the methods described in the last subsection, we can fit the measured LSD of
the clock noise and obtain the coefficients of Eq.9.13. Thus, we have the model for
the clock noise
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N N
x4 ax VD =" ™, (9.26)
j=0 k=0

where we have changed the upper index of the summation on the right hand side to
N so that the total energy of the noise process x(¢) is finite. Notice that some of the
coefficients a; and b can be zero. The amount of the measured clock noise data is
limited. It is useful to simulate clock noise with the same LSD. Then, we will be able
to generate clock noise series with arbitrarily long time and to study how different
noise realizations affect the measurements and the data pre-processing algorithms.

However, generating clock noise from the high-order differential equation model
is not a trivial task. A direct clock noise generation from this model will cause
numerical instabilities. Therefore, we first rewrite this equation as a set of first order
differential equations as follows

X 01 X C1
d X1 0 1 X1 (&)
— : = S : + : , 9.27
dar : R : Cou 9.27)
XN_1 0 1 XN-1 N
Xy dody ...dy_1 dy XN CN+1

where the new coefficients di and c; are calculated from the old coefficients
dy=—ay_y (*k=0,...,N) (9.28)

J
cipt =b;— D ajmew (j=0,....N). (9.29)
m=1

The proof of the equivalence of this set of first-order differential equations to the high-
order differential equation is given in Sect.9.6. Equation9.27 is continuous in time.
To simulate the noise, one needs to discretize it. However, a naive direct discretization
will likely cause instability and divergence. Therefore, we try to analytically solve it
and propagate the state from time ;_; to f.

To be brief, we rewrite Eq.9.27 as the following compact form

x = Dx + cu, (9.30)
where x is a column state vector, ¢ a constant column vector, and D is a constant

matrix. A direct integration of the above vector differential equation from time #;_
to . gives
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Tk
x; = PPy + PN / LU=y (n)dr e,

I—1
At

= PPy, | 4 PN / e ®u(t +1,_ydre, 9:31)
0

where x; = X(#;), and we have denoted the sampling time At = #; — t;_;. In the
end, when we have generated the noise process x (#;) (the scalar noise) according to
the given LSD, its total power should be finite, which should also be guaranteed by
the LSD itself. In the sampling process, the sampling time should be chosen such that
the component of x(¢) with frequencies higher than the Nyquist frequency 1/2A¢
is negligible, to avoid aliasing. Meanwhile, u(¢) is a white-Gaussian noise process,
which has power contributions from all frequencies. Therefore, the calculated matrix
D and the column vector ¢ should have the property to suppress the high-frequency
components of u(¢) to some negligible level. Hence, in Eq.9.31 the variation of u(¢)
during time between #;_; and #; is less important. We take it out of the integral and
obtain the approximate solution

At
X ~ eDAth_1 + P2 / e s cu(ty_y),
0
=Y x4 (P =)D euyy, (9.32)
where we have denoted u;_| = u(t;_;), and I is a unit matrix. This discrete form of

the noise propagation equation is numerically stable, hence it can be used to generate
the clock noise. Figure9.3 shows the LSDs of the measured frequency jitters, the
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fitted noise model with six poles and the simulated frequency noise with the method
described in this subsection. The three curves agree with each other well.

9.3.4 Kalman Filters for the Clock Noise

In this subsection, we will test how different clock noise would affect the Kalman filter
estimates and how different clock noise model can amend it. For test and simplicity
concern, we will adopt the simplified measurement model used in the last section
but one of Chap. 6. The simplified measurements are in the following form

0T, — 6T,
0T, — 6T
| 013 —0Th .
y= Sf—0f + noise. (9.33)
0fa—0f3
0fs—0dfi

Instead of using simulated frequency jitters with 1/f-slope, we directly use the
measured clock noise in this section, which is several orders of magnitude more
noisy than the best space-qualified USOs. Notice that the clock noise is what we
want to predict and estimate. Beside the measured clock noise, there are simulated
ranging measurement noise and clock side-band measurement noise in the raw data.
We first use the simplified Kalman filter model in the last section but one of Chap. 6
to process the measurement data. The simulation results are shown in Fig.9.4. It
is clear that the simplified Kalman filter model cannot estimate the relative clock
jitters and the relative frequency jitters accurately. This is due to the oversimplified
dynamic model, which includes only clock jitters and frequency jitters.

We extend the model for the clock to three variables, including the derivative of
the frequency jitters da. Therefore, we have the following dynamic model for a single
clock

o [0 Tesim] [m

@ of | = da 4+ | na |, (9.34)
' da 0 n3

where can be converted to a single three-order differential equation

6T =iy + (o + n3) /f™™. (9.35)

For uncorrelated noise processes n(t), ny(t), n3(t), the LSD of the clock jitters are
as follows
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Fig. 9.4 Using the simplified Kalman filter model with only clock variables, designed in a previous
chapter, to process the clock noise measured in the laboratory. a Relative clock jitters as time series.
b Histograms of measurement noise on relative clock jitters and Kalman filter estimate errors.
c Relative frequency jitters as time series. d Histograms of measurement noise on relative frequency
jitters and Kalman filter estimate errors
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By adjusting the expected relative strengths of the noise n;(t), ny(t), n3(t), this
model can approximate more complicated noise processes than the model we used
in the previous simplified Kalman filter. We design a Kalman filter based on this clock
model to process the same measured clock noise. The simulation results are shown
in Fig.9.5. The estimation errors based on this extended clock model are greatly
reduced comparing to the performance of the previous clock model. The Kalman
filter estimates have significantly improved the knowledge of the relative frequency
jitters. However, the estimates of the relative clock jitters are still not satisfying.

We can try to add another parameter to the clock model in a similar way, hence
we have the following model
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Fig. 9.5 Using the Kalman filter model based on the clock model with an additional frequency-
derivative parameter to process the clock noise measured in the laboratory. a Histograms of measure-
ment noise on relative clock jitters and Kalman filter estimate errors. b Histograms of measurement
noise on relative frequency jitters and Kalman filter estimate errors
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The performance of this dynamic model in the Kalman filter is summarized in Fig. 9.6.
We see that this additional parameter does not improve the estimates of the relative
clock jitters and the relative frequency jitters. Therefore, it is not advisable to add
more parameters to the model in the same way.

‘We need turn to more sophisticated clock models. We fit the LSD of the measured
clock noise with a three-poles model using the algorithms we described previously.
Then, the model is converted to three first-order differential equations as follows

histogram of estimate histograms of relative frequen
B e : i =

(a)

120 Kalman o =0.324328 [Hz]|
100 - I i

80 -

60

number
number

40}

20

1.5 -1 0.5 0 0.5
relative clock jitters [sec]

frequency [Hz]

Fig. 9.6 Using the Kalman filter model based on the clock model with two additional frequency-
derivative parameters to process the clock noise measured in the laboratory. a Histograms of mea-
surement noise on relative clock jitters and Kalman filter estimate errors. b Histograms of measure-
ment noise on relative frequency jitters and Kalman filter estimate errors
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4 [T 0 1/fmom 07 [6T ¢
5 Sfl=10 0o 1||é6f|+]|clu (9.38)
! da do d] d2 da C3

where d; and c¢; are constant coefficients, and u is a white-Gaussian noise process.
We use Eq. 9.32 to discretize these equations. A Kalman filter based on this new clock
model is then designed and used to process the simplified measurements. Figure 9.7
shows the estimation errors of the relative clock jitters and relative frequency jitters.
This fitted clock model works much better than previous models and has successfully
improved the accuracy of the clock-jitter measurements and the frequency-jitter
measurements.

In a similar way, we can fit the measured LSD of the clock noise with a four-pole
model. The discrete dynamic equations for the clock noise can then be constructed.
We design a Kalman filter model based on these equations to process the measurement
data. The results are plotted in Fig. 9.8. This model has also successfully suppressed
the errors in the estimates of the relative clock jitters and the relative frequency jitters.
However, comparing with the performance of the three-pole model, the extra pole
does not help much. We have also tested with six-pole and seven-pole models, which
led to instabilities of the Kalman filter. The reason is that those more complex models
use more variables in the state vector, but among them, only the relative clock jitters
and the relative frequency jitters are observed. Sophisticated noise models with much
more unobserved variables than observed variables are usually numerically unstable.
Therefore, it is important to design simple models that characterize the main features
of the dynamics.
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Fig. 9.7 Using the Kalman filter model based on the fitted clock model with three poles to process
the clock noise measured in the laboratory. a Histograms of measurement noise on relative clock
jitters and Kalman filter estimate errors. b Histograms of measurement noise on relative frequency
jitters and Kalman filter estimate errors
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Fig. 9.8 Using the Kalman filter model based on the fitted clock model with four poles to process
the clock noise measured in the laboratory. a Histograms of measurement noise on relative clock
jitters and Kalman filter estimate errors. b Histograms of measurement noise on relative frequency
jitters and Kalman filter estimate errors

9.3.5 Iterative Kalman Filter with a Fitted Clock Noise Model

We have designed and tested several clock noise models in simplified circumstances
where we apply Kalman filters with only clock variables to simplified LISA measure-
ments with real clock jitters measured in the laboratory. Among them, the fitted clock
models with three poles and four poles are significantly better than other models.
In this subsection, we try to process all the inter-spacecraft measurements of LISA
with measured clock jitters in the laboratory and simulated measurement noise. We
replace the clock model of the previously designed iterative Kalman filter with the
fitted clock model with three poles, therefore, we have the following 15-dimensional
state vector

x = (L1, var1, @21, L3, v32, azs, L13, vi3, a13, 6Ty — 015, 0 f1 — 6 f>, 6a; — day,
6Ty — 6T, 0 f» — 0 f3, bay — daz) . (9.39)

The dynamics of L;;, v;;, a;; are designed in the previous chapter. We use this iterative
Kalman filter with the fitted clock model to process standard LISA measurements
with clock noise measured from the laboratory. The simulation results are plotted
in Fig.9.9. Even with clocks several orders of magnitude more noisy than the best
space-qualified USOs, the designed iterative Kalman filter and the clock models have
still determined the armlengths, the relative clock jitters and the frequency jitters
precisely. This kind of accurate information will help better extract the astrophysical
information from the LISA data. Our designed algorithms also potentially permit
to use low-standard clocks in the LISA project, while still achieving the designed
science goal.
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Fig. 9.9 Using the iterative Kalman filter model with fitted three-pole clock model to process
the standard LISA measurements with clock noise measured in the laboratory. a Histograms of
measurement noise on relative clock jitters and Kalman filter estimate errors. b Histograms of the
estimation errors in the armlengths. ¢ Relative frequency jitters as time series. d Histograms of the
estimation errors in the relative frequency jitters

9.4 Disordered LISA Measurements

Clock noise (i.e. the USO noise) has its effects on the LISA measurements in two
ways. On the one hand, the USOs serve as the time reference and the frequency
reference of the measurements, hence the clock noise enters directly into the ranging
measurements, the Doppler measurements (i.e. the main science measurements) and
the clock side-band measurements. On the other hand, the USOs are driving the
ADCs on board, controlling the sampling time. Therefore, the clock noise also affects
the time stamps of LISA measurements. We have been dealing with the first kind
of effects of the clock noise in different circumstances successfully. However, the
second kind of effects has been neglected so far. In this section, we will investigate
the second kind of effects of the clock noise.
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9.4.1 Effects of the Clock Noise on the Time Stamps

Ideally, the three USOs (i.e. clocks) of LISA constellation are infinitely accurate and
perfectly synchronized to each other. In this case, the ideal time stamps of LISA
measurements are plotted in Fig.9.10a, where all the measurements are sampled
uniformly at the nominal sampling frequency (we use 3 Hz as an example), and the
data measured in different spacecraft are recorded at the same UTC time. However,
in practice, the clocks of LISA are jittering all the time and are unsynchronized.
Figure 9.10b shows the actual recording time of the measurements taken in different
spacecraft with exaggerated clock noise. We see that the measurements at different
spacecraft are not recorded at the same time. Even the measurements recorded in
the same spacecraft are not sampled perfectly uniformly. Furthermore, the actual
recording time of these measurements are unknown to us, since the absolute clock
jitters and frequency jitters are impossible to measure. We only get the nominal time
stamps of the measurements which look like Fig.9.10a.

To study this effect, we first need to simulate it. According to the LSD of the
clock noise, we can simulate the clock jitters and the frequency jitters of each clock
at a sampling frequency much higher than the actual sampling frequency 3 Hz of the
down-link of LISA. From the clock jitters, the true recording time of the measure-
ments at each SC can be calculated, such as the true recording time shown in Fig.9.10.
The inter-spacecraft measurements are calculated at the true recording time. In the
calculation, the positions and the velocities of the SC can be obtained at arbitrary
time according to the dynamics. The clock jitters and the frequency jitters are filtered
by a low-pass filter with a corner frequency much higher than the nominal sampling
frequency 3 Hz. Then, these jitters can also be interpolated to arbitrary time. In the
end, we have several time series of measurements from each SC sampled according
to its own clock.
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Fig. 9.10 The time stamps of LISA measurements with nominal sampling frequency at 3Hz. The
vertical axis indicates the spacecraft index. a The time stamps with perfectly stable clocks that are
also ideally synchronized to each other. b The exaggerated plot of time stamps with unstable and
unsynchronized clocks
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9.4.2 Performances of the Designed Algorithms

In this subsection, we will apply the previously designed algorithms to simulated
LISA measurements with unknown jittering time stamps, and investigate how the
jittering time stamps will influence the performances of the algorithms. Firstly, we
generate frequency jitters whose LSD has a 1/v-slope, and the corresponding clock
jitters. We simulate LISA measurements with unknown jittering time stamps calcu-
lated from these frequency jitters and clock jitters. We apply the hybrid-extended
Kalman filter with the 24-dimensional state vector to the simulated data. The re-
sults are shown in Fig.9.11. Although, the estimates of the relative frequency jitters
are still accurate, the estimates of the relative clock jitters and the arm lengths are
significantly biased. This is partly because the measurements are already biased by
the unknown jittering time stamps. We also apply the previously designed Kalman
filter with effective system models to similar simulated LISA measurements with
a different noise realization. The results are summarized in Fig.9.12. Similarly, we
observe that the unknown jittering time stamps have led to biases in the relative clock
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Fig. 9.11 Application of the hybrid-extended Kalman filter with the 24-dimensional state vector
to simulated LISA measurements with unknown jittering time stamps. a Histograms of estimation
errors of relative clock jitters. b Histograms of estimation errors of arm lengths. ¢ Histograms of
estimation errors of relative frequency jitters
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Fig. 9.12 Application of the Kalman filter with the effective system dynamics to simulated LISA
measurements with unknown jittering time stamps. a Histograms of estimation errors of relative
clock jitters. b Histograms of estimation errors of arm lengths. ¢ Histograms of estimation errors
of relative frequency jitters

jitters and the arm lengths, which cannot be corrected by the designed Kalman filter
the effective system models.

We also use stronger and more complicated clock noise to test other designed
algorithms. We generate clock noise that has a LSD 40-times weaker than the mea-
sured clock noise in the last section. Notice that this clock noise is still much stronger
than the 1 /v-slope frequency noise. LISA measurements with unknown jittering time
stamps are simulated based on this clock noise. We then apply the iterative Kalman
filter with fitted three-pole clock models to the simulated LISA measurements. The
results are shown in Fig. 9.13. Similarly, the estimates of the relative clock jitters and
the arm lengths are significantly biased. However, the influences of the jittering time
stamps on the relative frequency jitters are not apparent.



9.4 Disordered LISA Measurements 131

histogram of estimate error of clock jitters histogram of arm length deviation
i 250 o, bl
(ﬂ) B raw o =0.71486 [m] r(b) B raw o =0.72583 [m]
Il Kalman o =0.24197 [m)| Il Kalman o =0.0046837 [m]|
200 ¢ 1 200
= 150 ¢ = 150
3 2
E E
H] =]
£ 100 £ 100
50 50
0- — — | (= - ——
-1 -0.5 0 0.5 1 15 -4 -3 2 B 0 2
relative clock jitters [sec] x10* arm length precision [m]

histogram of frequency difference

() )

150

number

100

50

-4 -2 -1 [ 1
frequency [Hz]

Fig.9.13 Application of the iterative Kalman filter with fitted three-pole clock models to simulated
LISA measurements with unknown jittering time stamps. a Histograms of estimation errors of
relative clock jitters. b Histograms of estimation errors of arm lengths. ¢ Histograms of estimation
errors of relative frequency jitters

9.4.3 Properties of the Jittering Time Stamps

We denote the time span of LISA measurements, to be processed by the designed
Kalman filter-like algorithms, as T, which is usually of the order of 1000s. The
initial time biases of the clock in the ith SC at the beginning of this time span are
denoted by AT;. The instantaneous clock biases excluding the initial clock biases
are denoted by d7;. The relation between the true time tyrc and the nominal time ¢;
of the ith clock is given by

tutc = ti + AT; + 0T, (turc).- (9.40)

Notice that the initial clock bias AT; can be as large as a fraction of a second,
while the instantaneous clock bias d7; within the time span is several orders of
magnitude smaller (e.g. 67; < 107%s). Also notice that all the measurements and
related quantities are ‘uniformly’ sampled in the nominal time #;. Therefore, we
expand the instantaneous clock biases in a Taylor series
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0T;(turc) = 0T;(t; + AT; +96T;)
= 0Ti(t; + AT)) + 0T; (t; + AT)ST; + O (OT?). 9.41)

To make an order of magnitude estimation, we assume the PSD of the instanta-

neous clock biases to be Ss7 ~ A/v*, where v is the Fourier frequency, and A is
an amplitude. The standard deviation of the instantaneous clock bias can then be

estimated
T 2
2 / Sst (V)dy ~ §AT53S. (9.42)

1/ Tobs

JEISTH =

The magnitude of the derivative of the instantaneous clock bias is

o0
5T, ~ JET = |2 / 47202 Sy (v)dv
l/Tobs

[1272
~ /ST AT s ~ Tf JEIBT?] < 1078, (9.43)
obs

Hence, we make the following approximation
0T (t; + AT, + 6T;) ~ 0T;(t; + AT;) + noise, (9.44)

where the noise term is several orders of magnitude smaller than §7;. Similarly, we
can justify the following

Lij(tj —+ ATJ =+ (5TJ) A Lij(tj —+ ATJ) —+ HOiSC, (945)
vij(t; + AT; + 6Tj) =~ v;;(t; + AT;) + noise, (9.46)
dfi(ti + AT; + 6T;) ~ 0 fi(t; + AT;) + noise, (9.47)

where L;; and v;; respectively denote the arm length and the relative tangential
velocity between SC i and SC j measured at SC j. By choosing the time span Tops
properly, we can approximately treat the inter-spacecraft measurements as uniformly
sampled at the cost of introducing extra noise. This is almost the best we could
do, since the absolute values of §7; are impossible to be recovered from the inter-
spacecraft measurements. In principle, the differential clock bias (67; — 67;)/2 can
be estimated, while the common clock bias (67; + dT;) /2 cannot be. For independent
instantaneous clock biases 67; and 07, the differential clock bias and the common
clock bias are comparable. Therefore, adding the correction of the differential clock
bias to the nominal sampling time stamps does not help much.
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However, the initial clock biases AT; are much larger, hence they cannot simply
be treated as noise. Since the initial clock biases differ from each other, the quantities
measured at different SC are not sampled at the same time. The approximate model of
the inter-spacecraft measurements does not directly fit into the designed algorithms.
Before running any Kalman filter-like algorithms, the relative initial clock biases can
be roughly estimated as

AT; — AT, = Rij = Rji Ly —Lji + noise
2c 2¢
R,’ j R ji
2c

X

(9.48)

where we have neglected the second term on the right hand side, which is small even
in the full relativistic treatment

Lij — Lji - vij Lij

~1077s. (9.49)
2¢ c 2c¢
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Fig. 9.14 Application of the interpolated hybrid-extended Kalman filter with the 24-dimensional
state vector to simulated LISA measurements with unknown jittering time stamps. a Histograms
of estimation errors of relative clock jitters. b Histograms of estimation errors of arm lengths.
¢ Histograms of estimation errors of relative frequency jitters
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Notice that, although this term can be neglected in the time stamps by introducing
extra noise, it cannot be neglected in the ranging measurements. It is clear that this
term can cause ~30 m error in the arm length estimates.

9.4.4 Hybrid Interpolated Filters

With the help of the rough estimates of AT, — AT, and AT, — AT3, we can sort
the inter-spacecraft measurements from all the three SC in sequence. We run the
sequential Kalman filter previously designed to process the LISA measurements in
sequence. The measurements that recorded at the same time (at the same SC) are
processed together in one step. Ideally, this modified sequential Kalman filter would
work, since the data fit into its frame. However, for the ultra-precise multi-scale
problem we consider here, this modified filter turns out to be numerically unstable.
Therefore, we need to design new algorithms.
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Fig.9.15 Application of the interpolated Kalman filter with the effective system model to simulated
LISA measurements with unknown jittering time stamps. a Histograms of estimation errors of
relative clock jitters. b Histograms of estimation errors of arm lengths. ¢ Histograms of estimation
errors of relative frequency jitters
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Instead of a single Kalman filter, we propose to design three similar but separate
filters respectively to estimate the quantities measured in one SC at its own recording
time. For instance, one filter is to estimate the arm lengths L,; and L3, observed by SC
1 recorded at the approximate time #; + A7;. We first design a low-order (e.g. three-
order) low-pass digital filter to polish the measurements recorded at the other two SC.
The filter is run forward and then backward in order to have zero-phase distortion.
The corner frequency of the filter is set above 1 Hz. These measurements are then
interpolated to the recording time #; + AT; of SC 1, using Lagrange fractional-
delay filters [9-11], based on the rough estimates of the relative initial clock biases
AT) — AT, and AT, — ATs. We run the hybrid-extended Kalman filter to process
these interpolated measurements. The estimates of the quantities measured at SC
1 are obtained, whose estimation errors are plotted in Fig.9.14. Comparing with
Fig.9.11, we see that the biases caused by the unknown jittering time stamps have
been corrected by this hybrid interpolated filter. Similarly, we apply the Kalman filter
with the effective system models to the interpolated measurements. The results are
shown in Fig.9.15. The estimates of the interpolated filter have also corrected the
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Fig. 9.16 Application of the interpolated iterative Kalman filter with the fitted three-pole clock
model to simulated LISA measurements with unknown jittering time stamps. a Histograms of
estimation errors of relative clock jitters. b Histograms of estimation errors of arm lengths.
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big biases in the measurements. Notice that the frequency jitters in these two cases
have a 1/v-slope LSD.

For the clock noise that has a similar LSD as the measured clock noise (but 40-
times weaker), we apply the iterative Kalman filter with the fitted three-pole clock
model to the interpolated LISA measurements. The simulation results are shown in
Fig.9.16. Even for this stronger and more complicated clock noise, the hybrid in-
terpolated algorithm has also successfully estimate the relative clock jitters, the arm
lengths and the relative frequency jitters, while eliminating the big biases in the mea-
surements, comparing with Fig.9.13. However, the hybrid interpolated algorithms
does not apply to arbitrarily strong clock noise. For the measured original clock
noise from the laboratory, the hybrid interpolated algorithms sometimes become un-
stable. As long as one uses slightly better clocks, the newly designed algorithms
work properly.

9.5 Supplementary A: Calculation of the Zeros
from the Residues and Poles

N+l 7

j=1 Dr—p; + 1 are the eigenvalues of

Here, we want to prove that the zeros of >
the following matrix

pi1—TF1 —F ... —INtl
—rr p2—nrn... —IN+1
H = ) . . . (9.50)
—7 —r2 ... DN+1—TN41

The eigenvalues of the matrix H are the roots of the determinant |\/ — H|, hence
we have the following

0= |\ — H|,
)\—[314—;] 2 FN+1
T A=Dr+72 ... TN+1
i 5 e e A= DNg1 TN
)\—[314-}71 7 N+1
PL—A A—pr ... 0
0 ﬁN—)\/\—ﬁN-H

N+1 N+1 N+1

N =pr+r) [JOr- p]>+Z< D/~ H(pk—» [T &=5m.
Jj=2

m=j+1
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N+1 N+1 V.
=[[o-m| D> —=+1].
k=1 j=1 A= pj
N+1
=[] -z (9.51)
j=1

Hence, the eigenvalues \; are identical to the zeros Z;.

9.6 Supplementary B: A Proof of the Clock Model

In this supplementary, we show a way of decomposing the following high-order
differential equation into a set of first-order differential equations.

N N
VD 4 Za,«x”"‘j) _ Zbku(N_k)- 9.52)
=0 k=0

Notice that there are in total 2(N + 1) coefficients a; and b;. We assume the above
equation can be decomposed into the following form

X 01 X cl
d X1 01 X1 (&)
— = L. : : , 9.53
a R : | v |u (9.53)
XN_1 0 1 XN-1 Y
XN dody ...dy_1 dy XN CN+1

where ¢; and d; are unknown coefficients to be determined. Notice that there are
2(N + 1) unknown coefficients in total. In principle, these unknowns can be com-
pletely determined from the coefficients of the high-order differential equation. For

k=1,..., N, itis easy to obtain the following
k
xe=x® =" ciu D, (9.54)
j=1

Therefore, the set of first-order differential equations is equivalent to

N N

N k
™D dx® =™ =T deeu . (9.55)
k=0

j=0 k=1 I=1

For the last term of the above equation, we define the following new summation
indices
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j=N—k+l€el[l,N],

m=1¢€ll,]j] (9.56)
It can be proved that
N k N
S dcu®™ D =3 dyin jenu™ . (9.57)
k=1 =1 j=1 m=1

By inserting the above equation into Eq.9.55, we have

N

N J
x(N'H) — dex(k) = Z Cj+1 - ZdN-&-m—ij M(N_]). (958)
k=0 j=0 m=1

Compare with Eq.9.52, we can solve the unknown coefficients

di = —ay_y (k=0,...,N) (9.59)

J
cip1=bj =D ajmen (j=0,....N). (9.60)

m=1
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Chapter 10

Octahedron Configuration

for a Displacement Noise-Canceling
Gravitational Wave Detector in Space

Abstract We study for the first time a three-dimensional octahedron constellation
for a space-based gravitational wave detector, which we call the octahedral gravi-
tational observatory (OGO). With six spacecraft the constellation is able to remove
laser frequency noise and acceleration disturbances from the gravitational wave sig-
nal without needing LISA-like drag-free control, thereby simplifying the payloads
and placing less stringent demands on the thrusters. We generalize LISA’s time-delay
interferometry to displacement noise free interferometry (DFI) by deriving a set of
generators for those combinations of the data streams that cancel laser and accel-
eration noise. However, the three-dimensional configuration makes orbit selection
complicated. So far, only a halo orbit near the Lagrangian point L1 has been found
to be stable enough, and this allows only short arms up to 1400km. We derive the
sensitivity curve of OGO with this arm length, resulting in a peak sensitivity of about
2 % 1072 Hz /2 near 100 Hz. We compare this version of OGO to the present gener-
ation of ground-based detectors and to some future detectors. We also investigate the
scientific potentials of such a detector, which include observing gravitational waves
from compact binary coalescences, the stochastic background, and pulsars as well
as the possibility to test alternative theories of gravity. We find a mediocre perfor-
mance level for this short arm length detector, between those of initial and advanced
ground-based detectors. Thus, actually building a space-based detector of this spe-
cific configuration does not seem very efficient. However, when alternative orbits that
allow for longer detector arms can be found, a detector with much improved science
output could be constructed using the octahedron configuration and DFI solutions
demonstrated in this chapter. Also, since the sensitivity of a DFI detector is limited
mainly by shot noise, we discuss how the overall sensitivity could be improved by
using advanced technologies that reduce this particular noise source.

10.1 Introduction

The search for gravitational waves (GWs) has been carried out for more than a
decade by ground-based detectors. Currently, the LIGO and Virgo detectors are
being upgraded using advanced technologies [1, 2]. The ground-based detectors are
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sensitive in quite a broad band from about 10Hz to a few kHz. In this band possible
GW sources include stellar-mass compact coalescing binaries [3], asymmetric core
collapse of evolved heavy stars [4], neutron stars with a nonzero ellipticity [5] and,
probably, a stochastic GW background from the early Universe or from a network
of cosmic strings [6, 7].

In addition, the launch of a space-based GW observatory is expected in the next
decade, such as the classic LISA mission concept [8] (or its recent modification
known as evolved LISA (eLISA)/NGO [9]), and DECIGO [10]. LISA has become a
mission concept for any heliocentric drag-free configuration that uses laser interfer-
ometry for detecting GWs. The most likely first GW observatory in space will be the
eLISA mission, which has an arm length of 10° m and two arms, with one “mother”
and two “daughter” spacecraft exchanging laser light in a V-shaped configuration to
sense the variation of the metric due to passing GWs.

The eLISA mission aims at mHz frequencies, targeting other sources than ground-
based detectors, most importantly supermassive black hole binaries. In a more ambi-
tious concept, DECIGO is supposed to consist of a set of four smaller triangles
(12 spacecraft in total) in a common orbit, leading to a very good sensitivity in the
intermediate frequency region between LISA and advanced LIGO (aLIGO).

Here we want to present a concept for another space-based project with quite a dif-
ferent configuration from what has been considered before. The concept was inspired
by a three-dimensional interferometer configuration in the form of an octahedron,
first suggested in Ref. [11] for a ground-based detector, based on two Mach—Zehnder
interferometers.

The main advantage of this setup is the cancellation of timing, laser frequency
and displacement noise by combining multiple measurement channels. We have
transformed this detector into a space-borne observatory by placing one LISA-like
spacecraft (but with four telescopes and a single test mass) in each of the six corners of
the octahedron, as shown in Fig. 10.1. Therefore, we call this project the Octahedral
Gravitational Observatory (OGO).

at Lagrangian point L1

Quasi-Halo Orbit Constellation +t at
ransiation
1

translation of

, \ constellation spacecraft A,

e iy Earth yoon
o ° \ k- r o 1
748 million km i TEmilonkn e

rotation
X

_\'J b
— constellation orbit .z
B Earth orbit orbit y

Fig. 10.1 Left Graphical representation of the proposed halo orbit around L1. Right OGO’s space-
craft constellation along the halo orbit, with a radius of 1000km and spacecraft separation of
L = +/2r ~ 1400km. [Image by S. Barke]
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Before going into the mathematical details of displacement-noise free interfer-
ometry (DFI), we first consider possible orbits for a three-dimensional octahedron
constellation in Sect. 10.2. As we will find later on, the best sensitivities of an OGO-
like detector are expected at very long arm lengths. However, the most realistic orbits
we found that can sustain the three-dimensional configuration with stable distances
between adjacent spacecraft for a sufficiently long time are so-called “halo” and
“quasihalo” orbits around the Lagrange point L1 in the Sun-Earth system.

These orbits are rather close to Earth, making a mission potentially cheaper in
terms of fuel and communication, and corrections to maintain the formation seem to
be reasonably low. On the other hand, a constellation radius of only 1000 km can be
supported, corresponding to a spacecraft-to-spacecraft arm length of approximately
1400km.

We will discuss this as the standard configuration proposal for OGO in the fol-
lowing, but ultimately we still aim at using much longer arm lengths. As a candidate,
we will also discuss OGO orbits with 2 x 10° m arm lengths in Sect. 10.2. However,
such orbits might have significantly varying separations and would require further
study of the DFI technique in such circumstances.

The octahedron configuration gives us 24 laser links, each corresponding to a
science measurement channel of the distance (photon flight-time) variation between
the test masses on adjacent spacecraft. The main idea is to use a sophisticated algo-
rithm called displacement-noise free interferometry (DFI, [11-13]), which proceeds
beyond conventional Time-Delay Interferometry techniques (TDI, [14, 15]), and in
the right circumstances can improve upon them.

It can cancel both timing noise and acceleration noise when there are more mea-
surements than noise sources. In three dimensions, the minimum number of space-
craft for DFI is 6, which we therefore use for OGO: this gives 6 — 1 relative timing
(clock) noise sources and 3 x 6 = 18 components of the acceleration noise, so that
24 > 5+ 18 and the DFI requirement is fulfilled. On the one hand, this required num-
ber of links increases the complexity of the detector. On the other hand, it provides
some redundancy in the number of shot-noise-only configurations, which could be
very useful if one or several links between spacecraft are interrupted.

After applying DFI, we assume that the dominant remaining noise will be shot
noise. For the case of an equal-arm-length three-dimensional constellation, we ana-
Iytically find a set of generators for the measurement channel combinations that can-
cel simultaneously all timing and acceleration noise. We assume that all deviations
from the equal-arm configuration are small and can be absorbed into a low-frequency
part of the acceleration noise. We describe the procedure of building DFI combina-
tions in Sect. 10.3. This will also allow us to quantify the redundancy inherent in the
six-spacecraft configuration. The technical details of the derivation can be found in
Sect. 10.7.

In Sect. 10.4, we compute the response functions of the octahedron DFI config-
uration and derive the sensitivity curve of the detector. We assume the conservative
1400km arm length, a laser power of 10 W and a telescope diameter of 1 m, while
identical strain sensitivity is achievable for smaller telescopes and higher power.



142 10  Octahedron Configuration for a Displacement ...

Unfortunately, those combinations that cancel acceleration and timing noise also
suppress the GW signal at low frequencies. This effect shows up as a rather steep
slope ~f2 in the response function.

We present sensitivity curves for single DFI combinations and find that there are in
principle 12 such noise-uncorrelated combinations (corresponding to the number of
independent links) with similar sensitivity, leading to an improved network sensitivity
of the full OGO detector. We find that the best sensitivity is achieved around 78 Hz,
in a range similar to that of ground-based detectors. The network sensitivity of
OGO is better than that of initial LIGO at this frequency, but becomes better than
that of aLIGO only below 10 Hz. The details of these calculations are presented in
Sect. 10.4.2.

At this point, in Sect. 10.4.3, we briefly revisit the alternative orbits with a longer
arm length, which would result in a sensitivity closer to the frequency band of interest
for LISA and DECIGO. For this variant of OGO, we assume LISA-like noise contri-
butions (but without spacecraft jitter) and compare the sensitivity of an octahedron
detector using DFI with one using TDI, thus directly comparing the effects of these
measurement techniques.

Actually, we find that the 2 x 10°m arm length is close to the point of equal
sensitivity of DFI and TDI detectors in the limit of vanishing jitter. This implies
that DFI would be preferred for even longer arm lengths, but might already become
competitive at moderate arm lengths if part of the jitter couples into the displacement
noise in such a way that it can also be canceled.

A major advantage of the OGO concept lies in its rather moderate requirement
on acceleration noise, as detailed in Sect. 10.4.4. For other detectors, this limits the
overall performance, but in this concept it gets canceled out by the DFI combinations.
Assuming some improvements in subdominant noise sources, our final sensitivity
thus depends only on the shot-noise level in each link.

Hence, we can improve the detector performance over all frequencies by reducing
solely the shot noise. This could be achieved, for example, by increasing the power
of each laser, by introducing cavities (similar to DECIGO), or with nonclassical
(squeezed) states of light. We briefly discuss these possibilities in Sect. 10.4.5.

In Sect. 10.5, we discuss the scientific potentials OGO would have even using the
conservative short-arm-length orbits. First, as a main target, the detection rates for
inspiraling binaries are higher than for initial LIGO, but fall short of aLIGO expecta-
tions. However, joint detections with OGO and aLLIGO could yield some events with
greatly improved angular resolution. Second, due to the large number of measure-
ment channels, OGO is good for probing the stochastic background. Furthermore,
the three-dimensional configuration allows us to test alternative theories of gravity
by searching for additional GW polarization modes. In addition, we briefly consider
other source types such as pulsars, intermediate mass (10> < M /Mg < 10*) black
hole (IMBH) binaries and supernovae.

Finally, in Sect. 10.6, we summarize the description and abilities of the Octahedral
Gravitational Observatory and mention additional hypothetical improvements. In this
article, we use geometric units, c = G = 1, unless stated otherwise.
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10.2 Orbits

The realization of an octahedral constellation of spacecraft depends on the existence
of suitable orbits. Driving factors, apart from separation stability, are assumed to
be (i) fuel costs in terms of velocity Av necessary to deploy and maintain the con-
stellation of six spacecraft, and (ii) a short constellation-to-Earth distance, required
for a communication link with sufficient bandwidth to send data back to Earth. As
described in the introduction, OGO features a three-dimensional satellite constella-
tion. Therefore, using heliocentric orbits with a semimajor axis a = 1 AU similar to
LISA would cause a significant drift of radially separated spacecraft and is in our
opinion not feasible.

However, in the last decades orbits in the nonlinear regime of Sun/Earth-Moon
libration points L1 and L2 have been exploited, which can be reached relatively
cheaply in terms of fuel [16]. A circular constellation can be deployed on a torus
around a halo L1 orbit. The radius is limited by the amount of thrust needed for
keeping the orbit stable. A realistic Av for orbit maintenance allows a nominal
constellation radius of » = 1000km [17]. We assume the spacecraft B, C, E and F
in Fig. 10.1 to be placed on such a torus, whereby the out-of-plane spacecraft A and
D will head and trail on the inner halo. The octahedron formation then has a base
length L = +/2r ~ 1400km. The halo and quasihalo orbits have an orbital period
of roughly 180 days and the whole constellation rotates around the A—D line.

We already note at this point that a longer baseline would significantly improve
the detector strain sensitivity. Therefore, we also propose an alternative configuration
with an approximate average side length of 2 x 10° m, where spacecraft A and D
are placed on a small halo or Lissajous orbit around L1 and L2, respectively. The
remaining spacecraft are arranged evenly on a (very) large halo orbit around either
L1 or L2. However, simulations using natural reference trajectories showed that
this formation is slightly asymmetric and that the variations in the arm lengths (and
therefore in the angles between the links) are quite large. Nevertheless, we will revisit
this alternative in Sect. 10.4.3 and do a rough estimation of its sensitivity. To warrant
a full scientific study of such a long-arm-length detector would first require a more
detailed study of these orbits.

Hence, we assume the 1400 km constellation to be a more realistic baseline, espe-
cially since the similarity of the spacecraft orbits is advantageous for the formation
deployment, because large (and expensive) propulsion modules for each satellite are
not required as proposed in the LISA/NGO mission [18, 19]. The 2 x 10° m forma-
tion will be stressed only to show the improvement of the detector sensitivity with
longer arms.

Formation flight in the vicinity of Lagrange points L1 and L2 is still an ongoing
research topic [20]. Detailed (numerical) simulations have to be performed to validate
these orbit options and to figure out appropriate orbit and formation control strate-
gies. In particular the suppression of constellation deformations using non-natural
orbits with correction maneuvers and required Av and fuel consumption needs to
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be investigated. Remaining deformations and resizing of the constellation will likely
require a beam or telescope steering mechanism on the spacecraft.

In addition, the formation will have a varying Sun-incidence angle, leading to fur-
ther issues for power supply, thermal shielding and blinding of interferometer arms.
These points need to be targeted at a later stage of the OGO concept development as
well as the effect of unequal arms on the DFI scheme.

10.3 Measurements and Noise-Canceling Combinations

In this section we will show how to combine the available measurement channels of
the OGO detector to cancel laser and acceleration noise.

Each spacecraft of OGO is located at a corner of the octahedron, as shown in
Fig.10.1, and it exchanges laser light with four adjacent spacecraft. We consider
interference between the beam emitted by spacecraft / and received by spacecraft
J with the local beam in J, where I,J = {A, B, C, D, E, F} refer to the labels in
Fig. 10.1. For the sake of simplicity, we assume a rigid and nonrotating constellation.
In other words, all arm lengths in terms of light travel time are equal, constant in
time and independent of the direction in which the light is exchanged between two
spacecraft. This is analogous to the first generation TDI assumptions [14]. If the
expected deviations from the equal arm configuration are small, then they can be
absorbed into the low-frequency part of the acceleration noise. This imposes some
restrictions on the orbits and on the orbit correction maneuvers. We also want to
note that the overall breathing of the constellation (scaling of the arm length) is not
important if the breathing time scale is significantly larger than the time required for
the DFI formation, which is usually true. All calculations below are valid if we take
the arm length at the instance of DFI formation, which is the value that affects the
sensitivity of the detector.

The measurement of the fractional frequency change for each link is then given by

s = hy + by +Dp; —ps +D (@ - ) — (G - i) (10.1)

where we have neglected the factors to convert displacement noise to optical fre-
quency shifts. Here, we have the following:

1. hyy is the influence of gravitational waves on the link I — J.
2. by is the shot noise (and other similar noise sources at the photo detector and
phase meter of spacecraft J) along the link I — J.

. py is the laser noise of spacecraft I.

. @y is the acceleration noise of spacecraft I.

5. iy = (X; — Xy)/L is the unit vector along the arm I — J (with length L). Hence,
the scalar product d; - 71y is the acceleration noise of spacecraft I projected onto
the arm characterized by the unit vector 71y;.

B~ W
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This is similar to TDI considerations, but in addition to canceling the laser noise py,
we also want to eliminate the influence of the acceleration noise, that is all terms
containing a;. Following Ref. [14], we have introduced a delay operator D, which
acts as

Dy(t) =y(t — L). (10.2)

Note that we use a coordinate frame associated with the center of the octahedron, as
depicted in Fig. 10.1.

The basic idea is to find combinations of the individual measurements (Eq. 10.1)
which are free of acceleration noise d; and laser noise p;. In other words, we want
to find solutions to the following equation:

D aqusu=0. (103)

all 1J links

In Eq. (10.3), g;; denotes an unknown function of delays D and s;; contains only the
noise we want to cancel:

sy = sy (by = hy =0)
=Dp;—p;+D (211 : ;llj) - (le : ;llj) . (10.4)

If a given gyy is a solution, then f (D)gq;y is also a solution, where f (D) is a polynomial
function (of arbitrary order) of delays. The general method for finding generators of
the solutions for this equation is described in Ref. [14] and we will follow it closely.

Before we proceed to a general solution for Eq.(10.3), we can check that the
solution corresponding to Mach—Zehnder interferometers suggested in Ref. [11] also
satisfies Eq. (10.3):

Y1 = [(scp + Dsac) — (sca + Dspc) + (sep + Dsar)
— (sm + Dspr)] — [(sep + Dsap) — (sga + Dspp)
+ (sep + Dsag) — (sea + Dspe)]. (10.52)

Using the symmetries of an octahedron, we can write down two other solutions:

Yy = [(sce + Dspc) — (scg + Dsec) + (sre + Dspr)
— (sr + Dsgr)] — [(sag + Dspa) — (sa + Dsga)
+ (spe + Dspp) — (sps + Dsep)], (10.5b)

Y3 = [(spr + Dscp) — (spc + Dsep) + (Sar + Dsca)
— (sac + Dsga)] — [((ser + Dscg) — (sec + Dsre)
+ (sgr + Dscp) — (spc + Dspp)]. (10.5¢)
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We can represent these solutions as 24-tuples of coefficients for the delay functions
qu:

q=1{1-1,-1,-1.-1,1,1,-D,D,0,0,-D, D, 0,0,

D,-D,0,0,D,-D,0,0}, (10.6a)
q ={-D,D,0,0,-D,D,0,0,1,1, -1, -1, -1, -1, 1, 1,

0,0,D,-D,0,0,D, -D}, (10.6b)
g3 =1{0,0,D,-D,0,0,D,-D,0,0,-D, D, 0,0, -D, D,

-1,-1,1,1,1,1, -1, —1}. (10.6¢)

The order used in the 24-tuples is {BA, EA, CA, FA, BD, ED, CD, FD, AB, DB, CB,
FB,AE,DE, CE, FE,AC, DC, BC, EC, AF, DF, BF, EF}, so that, for example, the
first entry in g; represents the sp4 coefficient in the Y| equation.

These particular solutions illustrate that not all links are used in producing a DFI
stream. Multiple zeros in the equations for ¢, ¢, g3 above indicate those links which
do not contribute to the final result, and each time we use only 16 links. We will come
back to the issue of “lost links” when we discuss the network sensitivity.

In the following, we will find generators of all solutions. The first step is to use
Gaussian elimination (without division by delay operators) in Eq.(10.3), and as a
result, we end up with a single (master) equation which we need to solve:

0= (D — 1)*gpc + (D — 1)Dqcg + (1 — D)(D — )Dgps
+ (D - 1)((1 = D)D — Dgnc
+ (D — DHgpr + (D — Dqgr. (10.7)

In the next step, we want to find the so-called “reduced generators” of Eq.(10.7),
which correspond to the reduced set (gsc, gck, 9pB: 4pCs 9pFs qer)- For this we
need to compute the Grobner basis [21], a set generating the polynomial ideals g;;.
Roughly speaking, the Grobner basis is comparable to the greatest common divisor
of gj;. Following the procedure from Ref. [14], we obtain seven generators:

$,={0,D*+D,0,-D-D*1-D,D*+1,-1+D, -1 —D?,
D-D?0,-D, D> -D*>*—1,-D—1,1,1+ D+ D?,
-D+4+7D?0,D,-D*D*+1,1+D,—1,-D - D> — 1}, (10.8a)

S$={P+1,D+1,-D-1,-D-1,-1+D,D—-1,1-D,1-D,
-2D,0,D,D,-2D,0,D,D,2D,0,-D,-D,2D,0,-D, —D}, (10.8b)

Sy =1{0,D,-D,0,-1,D—1,1-D,1,1-D,1,-1+D, -1, -D,
0,D,0,D,0,0,-D,D—1,—1,1,—=D + 1}, (10.8¢)
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Sy ={D,-D+D*D,—D—D?2, -2D+D*>+2,-2+2D,
—2-D*2D—-2-D* -2,2-2D,2+ D> D—-"D?
-D,-D,D+D? 2D +D?*0,0,2D —D?, —D + D* + 2,
24+D,-2-D,D—D*-2}, (10.8d)

Ss={0,D*+D,-D* -D,1-D,D*+1,D-D*—1, -1,
D-D?0,-D+D*0,—1—-D* -D—1,1+D*1+D,
D>, D,0,-D>—D,-D+D*>+1,1,D—-1,—1—-D?, (10.8¢)

Se={D+2+D*D+D*+2,—-D+D*>-2,-D—2-2D> - D,
—242D,2D—-D*+D?* -2, -2D+2D*+2,2-2D —D* - D?,
D> —4D —D?,0,2D — 2D*, 2D + D> + D3, —3D — D3, D — D?,
D—-D*2D*>+D+ D -D*>+2D+D? —-2D,0, D> — D?,
5D+ D D+ D? —3D —D? —3D — D3}, (10.8f)

S;={,1+D,-1,-1-D,0,D,0,-D,-D,0,0,D, -1 -D, —1,
1,1+D,D,0,0,-D,14+D,1,-1,—-1 -D}. (10.82)

As before, these operators have to be applied to s/, using the same ordering as
given above. All other solutions can be constructed from these generators. A detailed
derivation of expressions (10.8a)—(10.8g) is given in Sect. 10.7.

Before we proceed, let us make several remarks. The generators found here are
not unique, just like in the case of TDI [14]. The set of generators does not necessarily
form a minimal set, and we can only guarantee that the found set of generators gives us
a module of syzygies and can be used to generate other solutions. The combinations
Si to S7 applied on 24 raw measurements s}}' eliminate both laser and displacement
noise while mostly preserving the gravitational wave signal. Note that again in those
expressions we do not use all links—for example, if the link BA is lost due to some
reasons, we still can use Sy, S3, Ss to produce DFI streams.

10.4 Response Functions and Sensitivity

In the previous section we have found generators that produce data streams free of
acceleration and laser noise. Now we need to apply these combinations to the shot
noise and to the GW signal to compute the corresponding response functions.
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10.4.1 Shot Noise Level and Noise Transfer Function

‘We will assume that the shot noise is independent (uncorrelated) in each link and equal
in power spectral density, based on identical laser sources and telescopes on each
spacecraft. We denote the power spectral density of the shot noise by Sen- A lengthy
but straightforward computation shows that the spectral noise S’m ; corresponding to
the seven combinations S;, i = 1, ..., 7 from Egs. (10.82)—(10.8g) is given by

St = 1684, €2 (9 + 2 cos 2¢ + 3 cos 4e), (10.9a)
Sn2 = 1608, €7, (10.9b)
Sz = 48 Sy €2 (2 — cos 2¢) (10.9¢)
Sna = 1684 €2 (24 — 13 cos 2€ + 6.cos 4e), (10.9d)
Sns = 16 Sq €2(9 — 2 cos 2¢ + 3 cos 4e), (10.9¢)
Sn6 = 1684, €% (45 — 6.cos 2 4 17 cos 4e), (10.9f)
Sp.7 = 48 Sy €2 (2 4 cos 2¢) (10.9g)

where € = wL/2, with the GW frequency w. In the low frequency limit (¢ < 1), the
noise S, ; for each combination S; is proportional to €.

Let us now compute the shot noise in a single link. We consider for OGO a con-
figuration with LISA-like receiver-transponder links and the following parameters:
spacecraft separation L = 1414 km, laser wavelength A = 532nm, laser power
P = 10 W and telescope diameter D = 1 m. For this arm length and telescope size,
almost all of the laser power from the remote spacecraft is received by the local
spacecraft. Hence, the shot-noise calculation for OGO is different from the LISA
case, where an overwhelming fraction of the laser beam misses the telescope [19].

For a Michelson interferometer, the sensitivity to shot noise is usually expressed
as [22]

- )
VS =57 ;—P[l/«/ﬁ], (10.10)

where we have temporarily restored the speed of light ¢ and the reduced Planck
constant /. Notice that the effect of the GW transfer function is not included here
yet. For a single link / — J of OGO as opposed to a full two-arm Michelson with

dual links, , /:S"h, 17 1s a factor of 4 larger. However, our design allows the following
two improvements: (i) Since there is a local laser in J with power similar to the
received laser power from I, the power at the beam splitter is actually 2P, giving an
improvement of 1/+/2. This is also different from LISA, where due to the longer
arm length the received power is much smaller than the local laser power. (ii) If we
assume that the arm length is stable enough to operate at the dark fringe, then we
gain another factor of 1/+/2.
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So, we arrive at the following shot-noise-only sensitivity for a single link:

= 1 [heA
Vi) =7\ =5 11/vHz]. (10.11)

As mentioned before, almost all of the laser power from the remote spacecraft
can be received by the telescope with a radius 0.5 m for OGO. Alternatively, if we
want to use a smaller telescope, we could increase the transmitted laser power to
achieve the same sensitivity as the standard OGO design (with a 10 W transmitted
laser power and a 0.5 m telescope radius). As a rough estimate, we assume the laser
beam to be Gaussian

1 [2P 2432 k@42
E(x,y,z)zm TOeXp |:—ikz+in(z)—xw2(z>; —i (x2R(z)y) , (10.12)

where 77(z) is the Gouy phase shift, R(z) is the radius of curvature of the wavefront,
and w(z) is the radius at which the magnetic field decays to e~! of the central value.
Therefore, the intensity of the beam is

2Py 2(x% + yz)]
I(x,y,2) = |[E(x,y,2)|* = exp|————|, 10.13
(3,2 =BG,y 9 = =5 [ e (10.13)
which satisfies
//I(x,y, z)dxdy = Py. (10.14)
Along the propagation direction z-axis, we have
2\2
w(z) = wo,/ 1 + (—) , (10.15)
ZR
where wy is the beam waist, zg is the so-called Rayleigh range
2
W
w=—" (10.16)

where A is the wavelength. We put the transmission telescope at the waist of the laser
beam and assume the reception telescope is roughly at the axial center of the beam.
By calculating the received laser power at the remote spacecraft, we can calculate the
sensitivity level. The relative sensitivities for different combinations of transmitted
laser powers and telescope radii are shown in Fig. 10.2, where the sensitivity of the
standard OGO design (with a 10 W transmitted laser power and a 0.5 m telescope
radius) is normalized to unity. From the figure, we see that the same sensitivity can



150 10 Octahedron Configuration for a Displacement ...

Fig. 10.2 The relative
sensitivities for different
combinations of transmitted
laser powers and telescope 10
radii

Relative sensitivity
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roughly be achieved by a transmitted laser power 15 W and a telescope with a radius
0.4 m.

10.4.2 GW Signal Transfer Function and Sensitivity

Next, we will compute the detector response to a gravitational wave signal. We
assume a GW source located in the direction 7z = —k = (sin 6 cos ¢, sin 6 sin ¢, cos 6)
as seen from the detector frame. We choose unit vectors

cosfcos ¢ sin ¢
= | cosfsing |, 0=| —cos¢ (10.17)
—sinf 0

orthogonal to k pointing tangentially along the 6 and ¢ coordinate lines to form a
polarization basis. This basis can be described by polarization tensors e, and ey,
given by

e, =HQI—1®D, ex=0®0+0 i (10.18)

The single arm fractional frequency response to a GW is [23]

Hy(t—k-% — L) —Hy(t —k-%)
2(1—/2-;%,,)

hy = , (10.19)

where X; is the position vector of the Ith spacecraft, L the (constant) distance between
two spacecraft and
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Hyy(t) = hy (1) §4.(t, 0, nyy) + hy (1) Ex (it 0, Ayy). (10.20)

Here A, (t) are two GW polarizations in the basis (10.18) and

€@, D, i) = Apeyiy = (- i)’ — (0 Ay)’, (10.21)

Ex(ll, D, fiyy) = Ajyexiy =2 (it~ fyy) (0 - ) - (10.22)

In order to find the arm response for arbitrary incident GWs, we can compute the
single arm response to a monochromatic GW with Eq. (10.19) and then deduce the
following general response in the frequency domain,

() = esine [e(1 = k - fgy) | e~ Gz

x [&4 i (F) + Exuphye ()] (10.23)

where we used the normalized sinc function, conventionally used in signal process-
ing: sinc(x) := sin(7x)/(mx).
Hence, the transfer function for a GW signal is

TG () = esine el k- iy | x e EEIIENE, Gy, (10.24)

For the sake of simplicity, we will from now on assume that the GW has “+” polar-
ization only. This simplification will not affect our qualitative end result. Substi-
tuting the transfer function for a single arm response into the above 7 generators
[Eqgs. (10.82)—(10.8g)], we can get the transfer function 7,5V for each combination.
The final expressions are very lengthy and not needed here explicitly.

Having obtained the transfer function, we can compute the sensitivity for each

combinationi=1,...,7 as
i :§ni
Vi =, ——» 10.25
"N TV (102

where the triangular brackets imply averaging over polarization and source sky loca-
tion.

We expect up to 12 independent round trip measurements, corresponding to the
number of back-and-forth links between spacecraft. It is out of the scope of this
work to explicitly find all noise-uncorrelated combinations (similar to the optimal
channels A, E, T in the case of LISA [14]). However, if we assume approximately
equal sensitivity for each combination (which is almost the case for the combinations
S1,...,87), we expect an improvement in the sensitivity of the whole network by a

factor 1/+4/12.
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Therefore, we simply approximate the network sensitivity of the full detector as

\ /AS'h,ne[ = ‘/:Sv‘hj /12. Note that the potential loss of some links would imply that not
all generators can be formed. We can lose up to 6 links and still be able to form a DFI
stream (but probably only one). The number of lost links (and which links are lost
exactly) will affect the network sensitivity. In our estimations below we deal with
the idealized situation and assume that no links are lost.

We plot the sensitivity curves for individual combinations and the network sen-
sitivity in Fig. 10.3. For comparison we also show the design sensitivity curves of
initial LIGO (S6 science run [24]) and advanced LIGO (high laser power configu-
ration with zero detuning of the signal recycling mirror [25]). Indeed one can see
that the sensitivities of the individual OGO configurations are similar to each other
and close to initial LIGO. The network sensitivity of OGO lies between LIGO and
aLIGO sensitivities. OGO as expected outperforms aLLIGO below 10Hz, where the
seismic noise on the ground becomes strongly dominant.

x OGOS1

o 0GOS,
—— OGO network ]

LIGO H1 S6
- = aLlGO

strain sensitivity [Hz_1/2]

107 : :

freq [Hz]

Fig. 10.3 Sensitivities for two single DFI combinations (S, blue crosses and Ss, green plus signs)
of OGO (with L =~ 1400km) and for the full OGO network sensitivity (scaled from Ss, red solid
line). For comparison, the dashed lines show sensitivities for initial LIGO (H1 during science run
S6, from Ref. [24], cyan dashed line) and aLIGO (design sensitivity for high-power, zero detuning
configuration, from Ref. [25], magenta dash-dotted line) (color figure online)
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10.4.3 General Performance of the DFI Scheme

Having derived the full sensitivity curve of the OGO mission design with L ~
1400km as an exemplary implementation of the three-dimensional DFI scheme in
space, let us take a step back and analyze the general performance of a DFI-enabled
detector. These features are also what led us to consider the octahedron configuration
in the first place.

Specifically, let us look in more detail at the low frequency asymptotic behavior of
the transfer functions and sensitivity curves. We consider a LISA-like configuration
with two laser noise free combinations: an unequal arm Michelson (TDI-X) and a
Sagnac combination (TDI-). Let us assume for a moment that the only noise source

is shot noise, which at low frequencies (e < 1) scales as , /gn. x ~ €% and Sna ™~ el
for those two combinations, respectively.
The GW transfer function, for both TDI combinations, scales as 7, Tx ~ €2;

therefore, the sensitivity curves scale as ,/Eh,a ~ /§n,a /1o ~ e~! for TDI-ox and

\/a ~ me /Tx ~ €Y for TDI-X. We see that a LISA-like TDI-X-combination
has a flat shot-noise spectrum at low frequencies, corresponding to a flat total detec-
tor sensitivity if all other dominant noise sources can be canceled—which looks
extremely attractive.

Thus, a naive analysis suggests that the acceleration and laser noise free combina-
tions for an octahedron detector could yield a flat sensitivity curve at low frequencies.
Checking this preliminary result with a more careful analysis was the main motivation
for the research presented in this article.

In fact, as we have seen in Sect. 10.4.2, the full derivation delivers transfer func-

laser and acceleration noise free combinations behaves as Eh, 12,7/ T2 .7~ €2,
which is similar to the behavior of acceleration noise. In other words, the combi-
nations eliminating the acceleration noise also cancel a significant part of the GW
signal at low frequencies.

In fact, we find that a standard LISA-like TDI-enabled detector of the same arm
length and optical configuration as OGO could achieve a similar low-frequency
sensitivity (at few to tens of Hz) with an acceleration noise requirement of only
~10~"2 m/s? «/Hz. This assumes negligible spacecraft jitter and that no other noise
sources (phase-meter noise, sideband noise, thermal noise) limit the sensitivity, which
at this frequency band would behave differently than in the LISA band. In fact,
the GOCE mission [26] has already demonstrated such acceleration noise levels at
mHz frequencies [27], and therefore this seems a rather modest requirement at OGO
frequencies. We therefore see that such a short-arm-length OGO would actually only
be a more complicated alternative to other feasible mission designs.

In addition, it is hard to see from just the comparison with ground-based detectors
inFig. 10.3 how exactly the DFI method itself influences the final noise curve of OGO,
and how much of its shape is instead determined by the geometrical and technical
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parameters of the mission concept (arm length, laser power, telescope size). Also,
the secondary technological noise sources of a space mission in the comparatively
high-frequency band of this exemplary OGO implementation are somewhat different
from more well-studied missions like LISA and DECIGO.

Therefore, to disentangle these effects, we will now tentatively study a different
version of OGO based on the alternative orbit with an average arm length of 2 x 10° m,
as mentioned in Sect. 10.2. It requires further study to determine whether a stable
octahedron constellation and the DFI scheme are possible on such an orbit, but
assuming they are, we can compute its sensitivity as before.

InFig. 10.4, we then compare this longer-baseline DFI detector with another detec-
tor with the same geometry and optical components, but without the DFI technique,
using instead conventional TDI measurements. Here, we are in a similar frequency
range as LISA and therefore assume similar values for the acceleration noise of
3 x 10715 m/s2 vVHz [19] and secondary noise sources (phase meter, thermal noise,
etc.; see Sect. 10.4.4).

However, there is another noise source, spacecraft jitter, which is considered
subdominant for LISA, but might become relevant for both the TDI and DFI versions
of the 2 x 10° m OGO-like detector. Jitter corresponds to the rotational degrees of
freedom between spacecraft, and its coupling into measurement noise is not fully
understood. We have therefore computed both sensitivities without any jitter. It seems

OGO (1414 km) with DFI scheme
x OGO (2 Mkm) with standard TDI
OGO (2 Mkm) with DFI scheme

- - - LISA 1
[ DECIGO
Iy % B e
I e v 3
— LAY KT
2 107} ‘ L s o 1
> ' e
."5)'
C
[0]
()
c -22
@ 10 B
k7
1072 1
107 1072 10° 10°
freq [Hz]

Fig. 10.4 Network sensitivities, scaled from Ss, of standard OGO (with DFI, arm length 1414 km,
red solid line) compared to an OGO-like detector with spacecraft separation of 2 x 10? m, with either
full DFI scheme (blue crosses) or standard TDI only (green plus signs). Also shown for comparison
are (classic) LISA (5 x 10° m, network sensitivity, magenta dashed line, from Ref. [28]) and
DECIGO (using the fitting formula Eq.(20) from Ref. [29], cyan dash-dotted line) (color figure
online)
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possible that at least the part of jitter that couples linearly into displacement noise
could also be canceled by DFI, or that an extension of DFI (e.g. more links) could
take better care of this, and therefore that the full OGO with DFI would look more
favorable compared to the TDI version when nonvanishing jitter is taken into account.

Generally, as one goes for longer arm lengths, the DFI scheme will perform better
in comparison to the TDI scheme. At the high-frequency end of the sensitivity curves,
both schemes are limited by shot noise and the respective GW transfer functions.
Since the shot-noise level does not depend on the arm length, it remains the same for
all relevant frequencies. Therefore, as the arm length increases, the high-frequency
part of the sensitivity curves moves to the low-frequency regime in parallel (i.e. the
corner frequency of the transfer function is proportional to 1/L). This is the same for
both schemes.

On the other hand, in the low-frequency regime of the sensitivity curves the two
schemes perform very differently. For TDI, the low-frequency behavior is limited
by acceleration noise, while for DFI this part is again limited by shot noise and the
GW transfer function. When the arm length increases, the low-frequency part of the
sensitivity curve in the TDI scheme moves to lower frequencies in proportion to
1/+/L; while for DFI, it moves in proportion to 1/L.

Graphically, when the arm length increases, the high-frequency parts of the sen-
sitivity curves in both schemes move toward the lower-frequency regime in parallel,
while the low-frequency part of the sensitivity curve for DFI moves faster than for
TDI.

Under the assumptions given above, we find that an arm length of 2 x 10°m is
close to the transition point where the sensitivities of TDI and DFI are almost equal,
as shown in Fig. 10.4. At even longer arm lengths, employing DFI would become
clearly advantageous.

Of course, these considerations show that a longer-baseline detector with good
sensitivity in the standard space-based detector frequency band of interest would
make a scientifically much more interesting case than the default short-arm OGO
which we presented first. However, as no study on the required orbits has been done
so far, we consider such a detector variant to be highly hypothetical and not worthy
of a detailed study of technological feasibility and scientific potential yet. Instead,
for the remainder of this paper, we concentrate again on the conservative 1400km
version of OGO. Although the sensitivity curve in Fig. 10.3 already demonstrates its
limited potential, we will attempt to neutrally assess its advantages, limitations and
scientific reach.

10.4.4 Technological Feasibility

Employing DFI requires a large number of spacecraft but on the other hand allows us
to relax many of the very strict technological requirements of other space-based GW
detector proposals such as (e)LISA and DECIGO. Specifically, the clock noise is can-
celed by design, so there is no need for a complicated clock tone transfer chain [30].
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Furthermore, OGO does not require a drag-free technology, and the configuration
has to be stabilized only as much as required for the equal arm length assumption
to hold. This strongly reduces the requirements on the spacecraft thrusters. Also, for
the end mirrors, which have to be mounted on the same monolithic structure for all
four laser links per spacecraft, it is not required that they are freefalling. Instead, they
can be fixed to the spacecraft.

Still, to reach the shot-noise-only limited sensitivity shown in Fig. 10.3, the sec-
ondary noise contributions from all components of the measurement system must
be significantly below the shot-noise level. Considering a shot-noise level of about
2 x 107" m/+/Hz—which is in agreement with the value derived earlier for the
1400km version of OGO—this might be challenging.

When actively controlling the spacecraft position and hence stabilizing the dis-
tance and relative velocity between the spacecraft, we will be able to lower the
heterodyne frequency of the laser beat notes drastically. Where LISA will have a
beat note frequency in the tens of MHz, with OGO’s short arm length we could be
speaking of kHz or less and might even consider a homodyne detection scheme as
in LIGO. This might in the end enable us to build a phase meter capable of detecting
relative distance fluctuations with a sensitivity of 10~'7 m/+/Hz or below as required
by OGO.

As mentioned before, temperature noise might be a relevant noise source for
OGO: The relative distance fluctuations on the optical benches due to temperature
fluctuations and the test mass thermal noise must be significantly reduced in com-
parison to LISA. But even though the LISA constellation is set in an environment
which is naturally more temperature stable, stabilization should be easier for the
higher-frequency OGO measurement band. A requirement of 10~'7 m/+/Hz could
be reached by actively stabilizing the temperature down to values of 1nK/+/Hz at
the corner frequency.

Assuming future technological progress, optimization of the optical bench layout
could also contribute to mitigating this constraint, as could the invention of thermally
more stable materials for the optical bench. Most likely, this challenge can be solved
only with a combination of the mentioned approaches.

The same is true for the optical path length stability of the telescopes. We estimate
the required pointing stability to be roughly similar to the LISA mission requirements.

10.4.5 Shot-Noise Reduction

Assuming the requirements from the previous section can be met, the timing and
acceleration noise free combinations of the OGO detector are dominated by shot
noise, and any means of reducing the shot noise will lead to a sensitivity improvement
over all frequencies. In this subsection, we discuss possible ways to achieve such a
reduction.

The most obvious solution is to increase laser power, with an achievable sensitivity
improvement that scales with ~/P. However, the available laser power is limited by
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the power supplies available on a spacecraft. Stronger lasers are also heavier and take
more place, making the launch of the mission more difficult. Therefore, there is a
limit to simply increasing laser power, and we want to shortly discuss more advanced
methods of shot-noise reduction.

One such hypothetical possibility is to build cavities along the links between
spacecraft, similar to the DECIGO design [10]. The shot noise would be decreased
due to an increase of the effective power stored in the cavity. Effectively, this also
results in an increase of the arm length. Note, however, that the sensitivity of OGO
with cavities cannot simply be computed by inserting effective power and arm length
into our previously derived equations. Instead, a rederivation of the full transfer
function along the lines of Ref. [31] is necessary.

Alternatively, squeezed light [32] is a way to directly reduce the quantum mea-
surement noise, which has already been demonstrated in ground-based detectors [33,
34]. However, squeezing in a space-based detector is challenging in many aspects
due to the very sensitive procedure and would require further development.

10.5 Scientific Perspectives

In this section, we will discuss the science case for our octahedral GW detector (with
an arm length of 1400km) by considering the most important potential astrophysical
sources in its band of sensitivity. Using the full network sensitivity, as derived above,
the best performance of OGO is at 78 Hz, between the best achieved performance of
initial LIGO during its S6 science run and the anticipated sensitivity for advanced
LIGO. OGO outperforms the advanced ground-based detectors below 10 Hz, where
the seismic noise strongly dominates. In this analysis, we will therefore consider
sources emitting GWs with frequencies between 1 Hz and 1kHz, concentrating on
the low end of this range.

Basically, those are the same sources as for ground-based detectors, which include
compact binaries coalescences (CBCs), asymmetric single neutron stars (continuous
waves, CWs), binaries containing intermediate-mass black holes (IMBHs), burst
sources (unmodeled short-duration transient signals), and a cosmological stochastic
background.

We will go briefly through each class of sources and consider perspectives of
their detection. As was to be expected from the sensitivity curve in Fig. 10.3, in most
categories OGO performs better than initial ground-based detectors, but does not
even reach the potential of the advanced generation currently under commissioning.

Therefore, this section should be understood not as an endorsement of actually
building and flying an OGO-like mission, but just as an assessment of its (limited, but
existing) potentials. This demonstrates that an octahedral GW detector employing
DFI in space is in principle capable of scientifically interesting observations, even
though improving its performance to actually surpass existing detectors or more
mature mission proposals still remains a subject of further study.
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In addition, we put a special focus on areas where OGO’s design offers some
specific advantages. These include the triangulation of CBCs through joint detection
with ground-based detectors as well as searching for a stochastic GW background
and for additional GW modes.

Note that the hypothetical 2 x 10° m variant of OGO (see Sects. 10.2 and 10.4.3)
would have a very different target population of astrophysical sources due to its
sensitivity shift to lower frequencies. Such a detector would still be sensitive to
CBCs, IMBHs, and stochastic backgrounds, probably much more so. But instead
of high-frequency sources like CW pulsars and supernova bursts, it would start tar-
geting supermassive black holes, investigating the merging history of galaxies over
cosmological scales.

However, as this detector concept relies on an orbit hypothesis not studied in
any detail, we do not consider it mature enough to warrant a study of potential
detection rates in any detail, and we therefore only refer to established reviews of the
astrophysical potential in the frequency band of LISA and DECIGO, e.g. Ref. [35].

10.5.1 Coalescing Compact Binaries

Heavy stars in binary systems will end up as compact objects (such as NSs or BHs)
inspiralling around each other, losing orbital energy and angular momentum through
gravitational radiation. Depending on the proximity of the source and the detector’s
sensitivity, we could detect GWs from such a system a few seconds up to a day before
the merger and the formation of a single spinning object. These CBCs are expected
to be the strongest sources of GWs in the frequency band of current GW detectors.

To estimate the event rates for various binary systems, we will follow the calcula-
tions outlined in Ref. [3]. To compare with predictions for initial and advanced LIGO
(presented in Ref. [3]), we also use only the inspiral part of the coalescence to esti-
mate the horizon distance (the maximum distance to which we can observe a given
system with a given signal-to-noise ratio (SNR)). We use here the same detection
threshold on signal-to-noise ratio, a SNR of p = 8, as in Ref. [3] and consider the
same fiducial binary systems: NS-NS (with 1.4 Mg each), BH-NS (BH mass 10 M,
NS with 1.4 Mg), and BH-BH (10 Mg, each).

For a binary of given masses, the sky-averaged horizon distance is given by

FER Ve fisco £—3%
Dy = 4‘/_5(;—“3”[ / I (10.26)
V6ricip Vi Su()
Here, M = M, + M, is the total mass and u = M M,/M is the reduced mass of
the system. We have used a lower cutoff of f,;, = 1Hz, and at the upper end the
frequency of the innermost stable circular orbit is fisco = ¢*/(6*/>m G M) Hz, which
conventionally is taken as the end of the inspiral.
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Now, for any given type of binary (as characterized by the component masses), we
obtain the observed event rate (per year) using N = R - Ng, where we have adopted
the approximation for the number of galaxies inside the visible volume from Eq. (5)
of Ref. [3]:

3

4 Dy 3

Nog==-m|—) (2.26)77.0.0116, (10.27)
3 \Mpc

and the intrinsic coalescence rates R per Milky-Way-type galaxy are given in Table 2
of Ref. [3].

A single DFI combination S; has annual rates similar to initial LIGO, and the
results for the network sensitivity of full OGO are summarized in Table 10.1. For
each binary, we give three numbers following the uncertainties in the intrinsic event
rate (“pessimistic”, “realistic”, “optimistic”) as introduced in Ref. [3].

From this, we see that OGO achieves detection rates an order of magnitude better
than initial LIGO. But we still expect to have only one event in about three years
of observation assuming “realistic” intrinsic coalescence rates. The sensitivity of
alLLIGO is much better than for OGO above 10 Hz, and the absence of seismic noise
does not help OGO much because the absolute sensitivities below 10Hz are quite
poor and only a very small fraction of SNR is contributed from the lower frequencies.
This is the reason why OGO cannot compete directly with alLIGO in terms of total
CBC detection rates, which are about two orders of magnitude lower.

However, OGO does present an interesting scientific opportunity when run in par-
allel with aLLIGO. If OGO indeed detects a few events over its mission lifetime, as the
realistic predictions allow, it can give a very large improvement to the sky localiza-
tion of these sources. Parameter estimation by aLIGO alone typically cannot localize
signals enough for efficient electromagnetic follow-up identification. However, in a
joint detection by OGO and aLIGO, triangulation over the long baseline between
space-based OGO and ground-based alLIGO would yield a fantastic angular resolu-
tion. As signals found by OGO are very likely to be picked up by aLIGO as well,
such joint detections indeed seem promising. Additionally, the three-dimensional
configuration and independent channels of OGO potentially allow a more accurate
parameter estimation than a network of two or three simple L-shaped interferometers
could achieve.

Table 10.1 Estimated yearly detection rates for CBC events, given in triplets of the form (lower
limit, realistic value, upper limit) as defined in Ref. [3]

NS-NS NS-BH BH-BH
0GO (0.002, 0.2, 2.2) (0.001, 0.06, 2.0) (0.003, 0.1, 9)
LIGO (2e-4,0.02, 0.2) (7e-5, 0.004, 0.1) (2e-4, 0.007, 0.5)
aLIGO (0.4, 40, 400) (0.2, 10, 300) (0.4, 20, 1000)
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10.5.2 Stochastic Background

There are mainly two kinds of stochastic GW backgrounds [6, 7]: The first is the astro-
physical background (sometimes also called astrophysical foreground), arising from
unresolved astrophysical sources such as compact binaries [36] and core-collapse
supernovae [37]. It provides important statistical information about distribution of
the sources and their parameters. The second is the cosmological background which
was generated by various mechanisms in the early Universe [38—40]. It carries unique
information about the very beginning of the Universe (~1072%s). Thus, the detection
of the GW stochastic background is of great interest.

Currently, there are two ways to detect the stochastic GW background. One of
them [41] takes advantage of the null stream (e.g. the Sagnac combination of LISA).
By definition, the null stream is insensitive to gravitational radiation, while it suffers
from the same noise sources as the normal data stream. A comparison of the energy
contained in the null stream and the normal data stream allows us to determine
whether the GW stochastic background is present or not. The other way of detection
is by cross-correlation [6, 42] of measurements taken by different detectors. In our
language, this uses the GW background signal measured by one channel as the
template for the other channel. In this sense, the cross-correlation can be viewed
as matched filtering. Both ways require redundancy, i.e. more than one channel
observing the same GW signal with independent noise.

Luckily, the octahedron detector has plenty of redundancy, which potentially
allows precise background detection. There are in total 12 dual-way laser links
between spacecraft, forming 8 LISA-like triangular constellations. Any pair of two
such LISA-like triangles that does not share common links can be used as an inde-
pendent correlation. There are 16 such pairs within the octahedron detector. Within
each pair, we can correlate the orthogonal TDI variables A, E and T (as they are
denoted in LISA [14]). Altogether, there are 16 x 3% = 144 cross-correlations.

And we have yet more information encoded by the detector, which we can access
by considering that any two connected links form a Michelson interferometer, thus
providing a Michelson-TDI variable. Any two of these variables that do not share
common links can be correlated. There are in total 36 such variables, forming 450
cross-correlations, from which we can construct the optimal total sensitivity.

Furthermore, each of these is sensitive to a different direction on the sky. So the
octahedron detector has the potential to detect anisotropy of the stochastic back-
ground. However, describing an approach for the detection of anisotropy is beyond
the scope of this feasibility study.

Instead, we will present here only an order of magnitude estimation of the total
cross-correlation SNR. Usually, it can be expressed as

3H? 'Yk[(f)Q )
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where Tops is the observation time, 2, is the fractional ene{gy—density of the Uni-
verse in a GW background, Hy the Hubble constant, and Sy, (f) is the effective
sensitivity of the kth channel. v (f) denotes the overlap reduction function between
the kth and /th channels, introduced by Flanagan [43].

Wi =5 X [aae e @ @), (10.29)
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where Ff () is the antenna pattern function. As mentioned in the previous section,
there might be 12 independent DFI solutions. These DFI solutions can form 12 x
11/2 = 66 cross-correlations. According to Ref. [6], we know y,fl(f ) varies between
0 and 1. As a rough estimate, we approximate Zk, / fy,%l(f ) ~ 10; hence, we get the
following result for OGO:
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Initial LIGO has set an upper limit of 6.9 x 107° on Qg [44], and aLLIGO will be
able to detect the stochastic background at the 1 x 10~? level [44]. Hence, our naive
estimate of OGQO’s sensitivity to the GW stochastic background is similar to that of
aLIGO. Actually, an optimal combination of all the previously-mentioned possible

cross-correlations would potentially result in an even better detection ability for
OGO.

10.5.3 Testing Alternative Theories of Gravity

In this section we will consider OGO’s ability to test predictions of General Relativ-
ity against alternative theories. In particular, we will estimate the sensitivity of the
proposed detector to all six polarization modes that could be present in (alternative)
metric theories of gravitation [45]. We refer to Ref. [46] for a discussion on polar-
ization states, and Refs. [47, 48] for reviews on alternative theories of gravity. The
six possible polarizations are (i) two transverse-traceless (tensorial) polarizations
usually denoted as e and e, (ii) two scalar modes called breathing (or common) e;,
and longitudinal €; and (iii) two vectorial modes e, and e,, which are given explicitly
in the following

e, =u®i—1Q70, (10.31a)
e =R+, (10.31b)
& =0Qi+0®7D, (10.31c¢)
e =k®k, (10.31d)
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The corresponding antenna pattern functions for a single arm along (1, 0, 0) direction
are given as follows

£, = cos® Hcos® ¢ —sin’ ¢, (10.32a)
& = cosfsin2¢, (10.32b)
& = cos® 0 cos® ¢ + sin” ¢, (10.32¢)
& = sin® 0 cos® ¢, (10.32d)
& = —sin 26 cos® &, (10.32¢)
& = —sinfsin2¢, (10.32f)

which are plotted in Fig. 10.5.
As a comparison, the antenna pattern functions for a Michelson interferometer
with two arms along (1, 0, 0) and (0, 1, 0) directions are given as follows

&4 = (cos> 0 + 1) cos 29, (10.33a)
& =2cosfsin2¢, (10.33b)
& = —sin’ 0 cos 2¢, (10.33¢)
& = sin® 0 cos 2¢, (10.33d)
& = —sin 26 cos2¢, (10.33e)
& = —2sinfsin2¢, (10.33f)

which are plotted in Fig. 10.6.

We have followed the procedure for computing the sensitivity of OGO, as outlined
above, for the four modes not present in General Relativity, and we compare those
sensitivities to the results for the +, x modes as presented in Fig. 10.3. The general-
ization of the transfer function used in this paper (Eq. 10.24) for other polarization
modes is given in Ref. [49].

We have found that all seven generators show similar sensitivity for each mode.
OGO is not sensitive to the common (breathing) mode, which is not surprising as
it can be attributed to a common displacement noise, which we have removed by
our procedure. The sensitivity to the second (longitudinal) scalar mode scales as e ~*
at low frequencies and is much worse than the sensitivity to the +, x polarizations
below 200Hz. However, OGO is more sensitive to the longitudinal mode (by about
an order of magnitude) above 500 Hz. The sensitivity of OGO to vectorial modes is
overall similar to the +, x modes: it is by factor few less sensitive to vectorial modes
below 200 Hz and by similar factors more sensitive above 300 Hz. These sensitivities
are shown in Fig. 10.7.
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Fig.10.5 Antenna pattern functions for a single arm along (1, 0, 0) direction. a + mode. b x mode.
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Fig. 10.6 Antenna pattern functions for a Michelson interferometer. a + mode. b x mode.
¢ Breathing mode. d Longitudinal mode. e Vector-x mode. f Vector-y mode

10.5.4 Pulsars—Continuous Waves

CWs are expected from spinning neutron stars with nonaxisymmetric deformations.
Spinning NSs are already observed as radio and gamma-ray pulsars. Since CW emis-
sion is powered by the spindown of the pulsar, the strongest emitters are the pulsars
with high spindowns, which usually are young pulsars at rather high frequencies.
Note that the standard emission model [50] predicts a gravitational wave frequency
Sfew = 2f, while alternative models like free precession [51] and r-modes [52] also
allow emission at foy = f and fow = %f , where f is the NS spin frequency.

OGO has better sensitivity than initial LIGO below 133 Hz, has its best sensitivity
around 78 Hz, and is better than alLIGO below 9Hz. This actually fits well with
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Fig. 10.7 Relative sensitivity of the full OGO network (scaled from S5 combination) to alternative
polarizations: + mode (blue solid line), x mode (red crosses), vector-x mode (green dash-dotted
line), vector-y mode (black stars), longitudinal mode (magenta dashed line), and breathing mode
(cyan plus signs) (color figure online)

the current radio census of the galactic pulsar population, as given by the ATNF
catalog [53]. As shown in Fig. 10.8, the bulk of the population is below ~10Hz,
and also contains many low-frequency pulsars with decent spindown values, even
including a few down to ~0.1 Hz.

We estimate the abilities of OGO to detect CW emission from known pulsars
following the procedure outlined in Ref. [54] for analysis of the Vela pulsar. The
GW strain for a source at distance D is given as

_ 4n%Glef?

, 10.34
D ( )

0

where ¢ is the ellipticity of the neutron star and we assume a canonical momentum
of inertia I, = 103 kgm?. After an observation time T, we could detect a strain
amplitude

Sh
Tobs )

hy = © (10.35)

The statistical factor is ® & 11.4 for a fully coherent targeted search with the
canonical values of 1 and 10% for false alarm and false dismissal probabilities,
respectively [55]. We find that, for the Vela pulsar (at a distance of 290pc and a
frequency of fvela,ew = 2 - 11.19Hz), with Ty, = 30 days of observation, we could
probe ellipticities as low as € ~ 5 x 10~* with the network OGO configuration. Sev-
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Fig.10.8 Population of currently known pulsars in the frequency-spindown plain (f -f). OGO could
beat initial LIGO left of the red solid line and Advanced LIGO left of the green dashed line. Data
for this plot were taken from Ref. [53] on March 2, 2012. [Image by D. Keitel] (color figure online)

eral known low-frequency pulsars outside the alLIGO band would also be promising
objectives for OGO targeted searches.

All-sky searches for unknown pulsars with OGO would focus on the low-
frequency range not accessible to aLIGO with a search setup comparable to current
Einstein@Home LIGO searches [56]. As seen above, the sensitivity estimate factors
into a search setup related part ® /y/Tops and the sensitivity 4/Sy,. Therefore, scaling
a search with parameters identical to the Einstein@Home S5 runs to OGO’s best
sensitivity at 76 Hz would reach a sensitivity of 4y &~ 3 x 1072, This would, for
example, correspond to a neutron star ellipticity of € ~ 4.9 x 107 at a distance of
1 kpe. Since the computational cost of such searches scales with f2, low-frequency
searches are actually much more efficient and would allow very deep searches of
the OGO data, further increasing the competitiveness. Note, however, that for low-
frequency pulsars the ellipticities required to achieve detectable GW signals can be
very high, possibly mostly in the unphysical regime. On the other hand, for “transient
CW”-type signals [57], low-frequency pulsars might be the strongest emitters, even
with realistic ellipticities.

10.5.5 Other Sources

Many (indirect) observational evidences exist for stellar mass BHs, which are the
end stages of heavy star evolution, as well as for supermassive BHs, the result of
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accretion and galactic mergers throughout the cosmic evolution, in galactic nuclei. On
the other hand, there is no convincing evidence so far for a BH of an intermediate mass
in the range of 10°~10* M. These IMBHs might, however, still exist in dense stellar
clusters [58, 59]. Moreover, stellar clusters could be formed as large, gravitationally
bound groups, and collision of two clusters would produce inspiralling binaries of
IMBHs [60, 61].

The ISCO frequency of the second orbital harmonic for a 300 M-300 Mg, system
is about 7Hz, which is outside the sensitivity range of aLIGO. Still, those sources
could show up through the higher harmonics (the systems are expected to have non-
negligible eccentricity) and through the merger and ring-down gravitational radia-
tion [62-64]. The ground-based LIGO and VIRGO detectors have already carried
out a first search for IMBH signals in the 100 M, to 450 M mass range [65].

With its better low-frequency sensitivity, OGO can be expected to detect a GW
signal from the inspiral of a 300 Mp—300 M, system in a quasicircular orbit up to a
distance of approximately 245 Mpc, again using Eq. (10.26). This gives the potential
for discovery of such systems and for estimating their physical parameters.

As for other advanced detectors, unmodeled searches (as opposed to the matched-
filter CBC and CW searches; see Ref. [66] for a LIGO example) of OGO data have
the potential for detecting many other types of gravitational wave sources, including,
but not limited to, supernovae and cosmic string cusps. However, as in the case for
IMBHs, the quantitative predictions are hard to produce due to uncertainties in the
models.

10.6 Summary and Outlook

In this paper, we have presented for the first time a three-dimensional gravitational
wave detector in space, called the Octahedral Gravitational wave Observatory (OGO).
The detector concept employs displacement-noise free interferometry (DFI), which
is able to cancel some of the dominant noise sources of conventional GW detectors.
Adopting the octahedron shape introduced in Ref. [11], we put spacecraft in each
corner of the octahedron. We considered a LISA-like receiver-transponder configu-
ration and found multiple combinations of measurement channels, which allow us
to cancel both laser frequency and acceleration noise. This new three-dimensional
result generalizes the Mach—Zehnder interferometer considered in Ref. [11].

We have identified a possible halolike orbit around the Lagrange point L1 in the
Sun-Earth system that would allow the octahedron constellation to be stable enough.
However, this orbit limits the detector to an arm length of ~1400 km.

Much better sensitivity and a richer astrophysical potential are expected for longer
arm lengths. Therefore, we also looked for alternative orbits and found a possible
alternative allowing for ~2 x 10° m arms, but is not clear yet if this would be stable
enough. Future studies are required to relax the equal-arm-length assumption of our
DFI solutions, or to determine a stable, long-arm-length constellation.
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Next, we have computed the sensitivity of OGO-like detectors—and have shown
that the noise-cancelling combinations also cancel a large fraction of the GW signal
at low frequencies. The sensitivity curve therefore has a characteristic slope of f~2
at the low-frequency end.

However, the beauty of this detector is that it is limited by a single noise source at
all frequencies: shot noise. Thus, any reduction of shot noise alone would improve the
overall sensitivity. This could, in principle, be achieved with DECIGO-like cavities,
squeezing or other advanced technologies. Also, OGO does not require drag-free
technology and has moderate requirements on other components so that it could be
realized with technology already developed for LISA Pathfinder and eLISA.

When comparing a DFI-enabled OGO with a detector of similar design, but with
standard TDI, we find that at ~1400 km, the same sensitivity could be reached by a
TDI detector with very modest acceleration noise requirements.

However, at longer arm lengths DFI becomes more advantageous, reaching the
same sensitivity as TDI under LISA requirements but without drag-free technology
and clock transfer, at 2 x 10° m. Such a DFI detector would have its best fre-
quency range between LISA and DECIGO, with peak sensitivity better than LISA
and approaching DECIGO without the latter mission concept’s tight acceleration
noise requirements and with no need for cavities.

Finally, we have assessed the scientific potentials of OGO, concentrating on the
less promising, but more mature short-arm-length version. We estimated the event
rates for coalescing binaries, finding that OGO is better than initial LIGO, but does
not reach the level of advanced LIGO. Any binary detected with both OGO and
aLLIGO could be localized in the sky with very high accuracy.

Also, the three-dimensional satellite constellation and number of independent
links makes OGO an interesting mission for detection of the stochastic GW back-
ground or hypothetical additional GW polarizations. Further astrophysically inter-
esting sources such as low-frequency pulsars and IMBH binaries also lie within the
sensitive band of OGO, but again the sensitivity does not reach that of aLIGO.

However, we point out that the improvement in the low-frequency sensitivity
with increasing arm length happens faster for DFI as compared to the standard TDI.
Therefore, searching for stable three-dimensional (octahedron) long-baseline orbits
could lead to an astrophysically much more interesting mission.

Regarding possible improvements of the presented setup, there are several possi-
bilities to extend and improve the first-order DFI scheme presented here. One more
spacecraft could be added in the middle, increasing the number of usable links.
Breaking the symmetry of the octahedron could modify the steep response function
at low frequencies. This should be an interesting topic for future investigations.

In principle, the low-frequency behavior of OGO-like detectors could also be
improved by more advanced DFI techniques such as introducing artificial time
delays [67, 68]. This would result in a three-part power law less steep than the shape
derived in Sect. 10.4.2. On the other hand, this would also introduce a new source of
time delay noise. Therefore, such a modification requires careful investigation.
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10.7 Supplementary A: Details on Calculating
the Displacement and Laser Noise Free Combinations

Here we will give details on building the displacement (acceleration) and laser noise
free configurations. The derivations closely follow the method outlined in [14]. We
want to find the generators solving Eq. (10.7), so called reduced generators because
they correspond to the reduced set (ggc, gcE, 9pB, 9pcs 9pF, qer). We start with
building the ideal Z:

fi=(D-1)?
L=O-1D
_JAs=0-D)y(D-1
e T R (10.36)
fs=D-1
fe=D—1
The corresponding Gribner basis to this ideal is:
G={a=D-1} (10.37)

The connection between f; and g; is defined by two transformation matrices

D—1
D
1-D
d=| 4 _pp_1 (10.38)
1
1

and ¢ with (at least) two possible solutions

cD'=000010) orc®=000001). (10.39)

The resulting basis is not unique and not necessarily independent. The first 6 reduced
generators are given by the row vectors of the matrix AV = o/ =1 — d x ¢:

a’ =1{1,0,0,0,0,1— D}, (10.40a)

“> =1{0,1,0,0,0, —D}, (10.40b)

“) =1{0,0,1,0,0, (D — 1)D}, (10.40c¢)

“) =1{0,0,0,1,0,1+ (D — 1)D}, (10.40d)

“> =1{0,0,0,0,1, -1}, (10.40¢)

<” =1{0,0,0,0,0,0}. (10.40f)
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These reduced generators correspond directly to values for (ggc, gcE, 9ps, gpc,
qpr, qer). As the Grobner basis contains only one element, we cannot form other
generator from S-polynomial.

We can form 6 other generators using ¢® instead of ¢, After applying those
generators we have the following acceleration-free combinations:

aﬁ”s” =2(ps —pc +pe —pr +D(—pa+ps —pp +pE

+ (P8 —pc + pe — Pr)qgsa)), (10.41a)
ays" = =2D(pa + pp + pc(—=1 + gpa) + pr(—1 + qpa)

— (pp +PE)gBA), (10.41b)
a\s" = 2D((1 + D)pa + pp — pr — D(pc — pp + Pr)

+p(—1+ qpa) — (Pc — PE + PF)qBa), (10.41c)
az(tl)sn =2(pp — pc +pe + D*(pa — pc +pp — Pr)

—pr +D(pg — pc +pe — Pr)gsa), (10.41d)
a$’s" = 2D(pa + pp + pp(—1 + qpa) + pe(—1 + gga)

— (pc +pr)gsa), (10.41e)
a’s" = 2D(ps — pc + pr — pr)qsa. (10.41f)

where 57, are given by Eq. (10.4). Note that we have a free (polynomial) function of
delay g4 which we can choose arbitrary. We will omit subscripts BA and use ¢ = gpa.
The arbitrariness of this function implies that terms which contain ¢ and terms free
of ¢ are two independent sets of generators. We will keep ¢ until we obtain laser
noise free combinations, and then split each generator in two. After some analysis
only two out of six acceleration free generators are independent, so we can rewrite
them as

st =y +DOi3 +gy2), (10.42a)
53 = —y13 + D012 — y13) + @12, (10.42b)
s4 = yi2 + Dgyix + D> 012 — y13), (10.42¢)
$2+ 85 = y12 — 2y13, (10.42d)
52 — 55 = (29 — Dy12, (10.42e)
S6 = qY12, (10.421)
where
Clgl)Sn Dfl(a(zl)sn) Dfl(agl)sn)
S| = ——,5 =— , 83 =
2 2 2
1) n 1., (D n 1., n
D D
se= 2T o @5 5) =D s (10.43)
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and

Yi2=pp+Pe—pc —PF, Y13 =PB+PE —PA—PD- (10.44)

We have introduced the inverse delay operator, D!, for mathematical convenience,
which obeys DD~! = I. One can easily get rid of it by applying the delay opera-
tor on both sides. The final result will not contain the operator D~'. Next we use
Egs. (10.42d) and (10.42e) to express 12, y13 and eliminate them from the other equa-
tions. The resulting combinations that eliminate both acceleration and laser noise are

(1 =2g)s1 + (=1 =2Dg)sy + (1 + D)ss (10.45a)
(1 =2q)s3+D(q— sy + (=1 +2g + ¢D)ss (10.45b)
(1 =2q)s4 — (1 + Dg)(s2 — s5) — D*((1 — g)s52 — gs5) (10.45¢)
(1 —2g)s6 — q(s2 — s5). (10.45d)

Out of these solutions we obtain seven independent generators which we have

rewritten in the final form similar to the Y-equations from Sect. 10.3. They are explic-
itly given by Egs. (10.82)—(10.8g).
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Chapter 11
EMRI Data Analysis

with a Phenomenological Waveform

Abstract Extreme mass ratio inspirals (EMRIs) (capture and inspiral of a compact
stellar mass object into a Massive Black Hole (MBH)) are among the most inter-
esting objects for the gravitational wave astronomy. It is a very challenging task to
detect those sources with the accurate estimation parameters of binaries primarily
due to a large number of the secondary maxima on the likelihood surface. Search
algorithms based on the matched filtering require computation of the gravitational
waveform hundreds of thousands of times, which is currently not feasible with the
most accurate (faithful) models of EMRIs. Here we propose to use a phenomenolog-
ical template family which covers a large range of EMRIs parameter space. We use
these phenomenological templates to detect the signal in the simulated data and then,
assuming a particular EMRI model, estimate the physical parameters of the binary.
We have separated the detection problem, which is done in a model-independent way,
from the parameter estimation. For the latter one, we need to adopt the model for
inspiral in order to map phenomenological parameters onto the physical parameters
characterizing EMRIs.

11.1 Introduction

Stellar compact objects like a black hole, neutron star or white dwarf in the cusp
surrounding the massive black hole (MBH) in the galactic nuclei could be deployed
on a very eccentric orbit due to N-body interaction. Such an object could either plunge
(directly or after few orbits) into MBH or form an EMRI: inspiralling compact object
on originally very eccentric orbit which shrinks and circularizes due to loss of the
energy and angular orbital momentum through gravitational radiation. The compact
object spends ~10°~% orbits in the very strong field of a MBH before it plunges,
all this orbital evolution will be encoded in the phase of emitted gravitational waves
(GWs). Space based GW observatories, like LISA or similar planned missions, will
observe those sources few years before the plunge. By fitting precisely the GW phase
one can extract extremely accurate parameters of a binary system [1] (like mass and
spin of MBH M, a, mass of a small object m, inclination of the orbital plane (to the
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spin of MBH), orbital eccentricity and semi-latus rectum (¢g, ep, po) at some fiducial
moment of time fy, location of the source on the sky (6, ¢) and more).

Precise tracking of the GW phase implies that we can also test the nature of the
central massive object. The general belief is that it should be a MBH with surrounding
spacetime described by a Kerr solution. The nature of the spacetime affects the orbital
evolution of the compact object which in turn could be extracted from the GW phase.
Kerr spacetime is described by only two parameters: black hole’s mass and spin, as
stated by a “no-hair” theorem. The spacetime could be decomposed in the multipole
moments of a central massive object, and, for Kerr BH, all moments depend only
on M, a: M; + iS; = (ia)'M, where M, and S; are mass and current moments. Here
S) = J is the spin of MBH and a = J/M is the usual Kerr spin parameter. We could
measure three first moments (mass, spin and quadrupole moment) [2], and check the
“Kerrness” of a spacetime. In general, the deviations from Kerr could come in several
ways: (i) it is Kerr BH but there is an additional perturber (gas disk, another MBH)
(i1) it is not Kerr BH but some other object satisfying GR (boson star, gravastar),
(iii) there are deviations from GR. For discussion on the topics we refer the reader
to [3-5] and references therein.

Modeling orbital evolution even within GR is not yet fully complete. Large mass
ratio allows us to consider a small compact object as a perturbation on the Kerr
background spacetime, and treat the problem perturbatively in orders of the mass
ratio. In zero order approximation the compact object moves on a geodesic orbit,
however, as soon as we assign the mass to it, it creates its own gravitational field
interacting with the background and this system emits gravitational radiation. The
force resulting from the interaction of the self field with the background is called
self force, and the motion of the compact object could be seen as the forced geo-
desic motion. Alternative interpretation is that the motion is governed by a geodesic
motion but in the perturbed spacetime. Calculation of the self force is a complicated
task which is accomplished for the orbits around Schwarzschild BH only [6, 7], the
Kerr spacetime is underway. There are also questions concerning the calculation of
the orbital evolution under the self force: the self force depends on the past history
of the compact object (which is usually assumed to be a geodesic in the background
spacetime). To compute the motion under the self force one can use the osculat-
ing elements approach [8], or self-consistent approach of direct integration of the
regularized equations [9]. For more details on this subject we refer to [10].

All in all, the modeling of the orbital evolution and the GW signal is a complex
task which requires significant theoretical and computational developments. The
latter prevents us currently from using the state-of-art GW models of EMRIs in our
data analysis explorations. In majority of the cases the phenomenological model
suggested in [1], so called “analytic kludge” (AK), is used. It is based on Post-
Newtonian expressions and puts together all relevant physics of EMRIs. However,
this model has restrictions in the number of harmonics and in their strength, and any
search algorithm which relies on its specific harmonic content will not work for a
more realistic model of GW signal. The main motivation of this work is to create
the phenomenological search template family which would fit a very large range of
EMRI-like signals. The typical EMRI signal consists of a set of harmonics of three
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(slowly evolving) orbital frequencies, and we will use it as a basis of our template.
The phenomenological template consists of N, harmonics with constant amplitude
and slowly evolving phase which we decompose in a Taylor series. Truncation of
the Taylor series and the assumption about constant amplitude set restrictions on
the duration over which the phenomenological template can fit an EMRI signal.
The amplitude of EMRI’s harmonics changes due to shrinking of the orbit (overall
amplitude increases), circularization of the orbit (power is shifted to lower harmonics)
and slight change in the inclination of the orbit to the spin of MBH. Using more terms
in the Taylor series helps to track phase of the EMRI signal for longer time (which is
more important than accurate description of the amplitude). Finally, we decide on the
number of harmonics to use in the template (and their indices) based on the analysis
of the harmonic structure of the Numerical Kludge (NK) model [11] of EMRI in
different parts of the parameter space. The restriction that the phenomenological
waveform (PW) is valid only for a limited period of time is very weak since we
can fit the signal piecewise, as long as the accumulated signal-to-noise ratio (SNR)
over that time is significant to claim presence of the signal. In this work we consider
only those parts of the EMRI signal where the orbital frequencies are not decreasing
which is true over almost all time of the inspiral and breaks quite close to the plunge.
However, this is not really necessary since we did not restrict the values of frequency
derivatives to positive values during the search.

The PW family is quite generic and does not depend on the orbital evolution, or, in
other words, the orbital evolution of the binary is encoded in the Taylor coefficients
of phase of each harmonic. This allows us to detect an EMRI signal in a model
independent way. Once the harmonics of the signal are recovered we can analyze
them using a specific EMRI model to recover physical parameters of the system.
It is at this point we need the orbital evolution with high accuracy, which involves
computation of the self-force and tests of possible deviations from the “Kerrness”.

After constructing the phenomenological waveform we perform blind searches
on the simulated data without noise (to avoid stochastic errors in the parameter
estimation) and with the noise. We have used the NK waveform (as described in
[11]) as a model of our signal and the orbital evolution according to [12]. We have
also used Markov chain Monte-Carlo (MCMC) search with phenomenological wave-
forms on the simulated three month of data. This search has provided us with multiple
local maxima in the likelihood which we gathered and analyzed in a similar way as
described in [13]. We associate local maxima in the likelihood with partial detec-
tions of the signal and construct the time—frequency map of the detected (patchy)
harmonics of the source. The next step is to assume the model for the orbital evo-
lution and, by matching the found time—frequency tracks to the harmonics of the
signal, estimate parameters of the binary system. We have used the same model for
the orbital evolution as in the simulated data sets and recovered physical parameters
with precision better than few percent.

The chapter is organized as follows. In the next Section we will give a brief
overview of available models for GWs from EMRIs. In Sect. 11.3, we introduce PW
family in details. We describe MCMC search with PWs in Sect. 11.4. Analysis of
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MCMC results and mapping to the physical parameters are done in the Sect. 11.5.
Finally we conclude with a summary Sect. 11.6.

11.2 Review of EMRI Waveforms

As was already mentioned in the Introduction, accurate computation of the GWs from
EMRIs and the orbital evolution is a complex and computationally intensive task. The
most promising approach probably is the coupled integration of the compact object
dynamics and GW emission taken in [9]. Alternatively, one could have a separate
evolution of the orbital motion using self force computed across various geodesic
orbits and employ osculating elements approach [8, 14]. The waveform at infinity
could be obtained from the Teukolsky equations [15] in time or in frequency domain
[16, 17].

The above methods are computationally expensive and several approximations
were suggested. Less accurate but still quite reliable are Numerical Kludge (NK)
waveforms: original NK [11] and extended/improved NK called “Chimera” [18,
19]. Those methods combine accurate prescription for the orbital evolution with
approximate (Post-Newtonian) waveform generation formalism.

The less precise model, which captures all relevant physics of EMRIs (orbital
precession, three orbital frequencies) was suggested in [1], so called Analytic Kludge
waveform. These waveforms are very fast to generate, and even though they cannot
be used for searching for actual GW signals, they are used to develop data analysis
algorithms and to evaluate their performance [1, 2, 20].

In this work, we used NK waveform. In the original paper [11], the waveform was
generated in the time domain, we have reimplemented it in the frequency domain
following suggestions of S. Drasco who did it first (private communications). Let us
give a brief explanation of this procedure. We start with an initial geodesic character-
ized by initial position and three other constants of motion which could be chosen to
be either energy (E), axial orbital angular momentum (L,) and Carter constant (Q) or
eccentricity, semi-latus rectum and inclination [11]. These three constants could be
used to compute three fundamental frequencies of the orbital motion: f;, fy, f;. The
geodesic motion is periodic in those three frequencies and therefore any function
of the orbital coordinates can be decomposed into Fourier series. That is exactly
what we do: for a given geodesic we decompose the waveform into Fourier series
of harmonics of the fundamental frequencies. We truncate the series when adding
extra harmonics does not change the signal by more that 0.1 % in the overlap. Under
the self-force the motion is not geodesic anymore, however it can still be accurately
described as slow drift from one geodesic to another. In oscillating element approach,
we evolve three constants defining initial position of the compact object (due to con-
servative part of the self-force) as well as {E, L;, Q} or equivalently {f;, fp, f»} [8, 14].
We evolve {E, L., Q} according to PN expressions suggested in [12], and, like in the
original NK paper we dropped evolution of the initial positions. This does not affect
our search results, since PW is model independent, however we have to use the same
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model (as in the simulated data) for mapping the phenomenological parameters onto
the physical parameters of the binary. Mismatch in the models would result in the
undesirable bias. So we have computed the evolution of the fundamental frequen-
cies, then we have calculated the amplitudes of the harmonics at discrete (sparse)
moments of time with consequent interpolation in between. We have computed the
phase of each harmonic as a numerical integral of time dependent frequencies. It
takes about a few minutes on 2.80 GHz single core CPU to generate 3-month long
template which is definitely too slow for the data analysis purposes.

Finally we want to avoid using in this work the Analytic Kludge model, because
it predicts somewhat simplified (detectable) harmonic content of the waveform. The
NK waveforms for generic orbits were compared against waveforms based on the
Teukolsky equation and they show quite good agreement. We believe that NK deviates
from the true EMRI signal in the phase but not so much in the number and strength
of harmonics. Therefore we use NK model as a representation of the EMRI signal
throughout this paper.

11.3 EMRI Phenomenological Waveform Family

There are several algorithms which have been proven to be successful in detecting
EMRISs in the simulated LISA data [13, 20, 21]. However, those algorithms partially
utilize the features of AK waveform which was used in the simulation of the data
and in the data analysis. As explained in Sect. 11.2, we want to avoid it by building
a generic phenomenological template family.

11.3.1 Phenomenological Waveform in the Source Frame

The model we want to propose is based on the following assumptions about GW
signals from EMRIs:

1. The orbital motion can be effectively described by six slowly changing quantities.
Explicitly, three time-dependent initial phases are governed by the conservative
part of the self force; three fundamental time-dependent frequencies are governed
by the radiative part of the self force.

2. The waveform is represented by harmonics of three frequencies (phenomeno-
logically, these frequencies are the summation of the fundamental orbital fre-
quencies and the evolution of the initial phases) with slowly changing intrinsic
amplitude:
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h(t) = D b (1)

l,m,n
— Re Z Apn (1) ®m @
lm,n
— Re ZAlmn(t)ei(lCPr+m(D()+n<D;) , (111)
lm,n

where ®,, &y, @, are the phase evolutions corresponding to the three fundamental
motions. Here we omitted the tensorial spatial indices for simplicity.

The first assumption basically expresses that the motion is described by a slow
drift from one geodesic to another. The initial phases correspond to the initial position
of a compact object on a given geodesic and the orbital frequencies are functions of
the energy, azimuthal component of the orbital momentum and Carter constant. The
slow drift ensures that phases &, are slowly varying functions of time.

Figure 11.1 shows the time—frequency plot of a typical EMRI signal. There are 30
clearly separated frequency tracks in the noiseless plot, which display the dominant
harmonics. It can also be seen that the frequencies of harmonics are smooth and
vary slowly. It is generally true that both amplitude and the phase are slowly varying
functions of time, thus we can safely make the Taylor expansion:

1
(1) = @, (10) + wr(t0)(t = to) + 5y (t = )+ ...

= @, (ty) + 27f, (10) (t — o) + Tfp(t — 10)” + -+, (11.2)
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1
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= Dy(to) + 27fy(to) (t — to) + Tfy(t — t)* + -+ -, (11.3)
1
D, (1) = Dy(ty) + wy(to)(t — 10) + E%(r — 1)+
= ®,(19) + 2f, (t0) (t — to) + Tf o (t — 1)> + - -, (11.4)
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Since the amplitudes A, are even smoother than the phase over extended period
of time, and because the detection techniques are more sensitive to mismatch in the
phase than in the amplitude, we can neglect the time evolution in the amplitudes
and treat all of them as constant. It is a very good assumption over three months
of the simulated data which we analyze in this paper. As for the phase expansion,
we calculate the so-called fitting factor (FF) for the different orders of polynomial
approximations of the phase to check the fidelity of the PW. Numerical results show
that the Taylor expansion for three months data, up to f order, gives the FF around 0.9,

and up to f order the FF is larger than 0.999. So it is sufficient to expand the phase to

f order. This is the phenomenological waveform family which we propose to analyze
an EMRI signal. To summarize, the phenomenological waveform is a summation of
individual harmonics with constant (or linear) amplitudes and polynomial (in time)
phases.

11.3.2 From the Source Frame to the LISA Frame

First we will express the GW wavefrom in the solar system barycenter frame and then
translate it to the frame attached to LISA (or a LISA-like space based observatory).
In the source frame, an arbitrary gravitational wave (GW) signal in the TT gauge
can be written in the following form:

h(r) = hS (He; + kS (Dey, (11.6)

where the superscript ‘S’ denotes the source frame. Since the LISA constellation
is orbiting the sun, it is convenient to express the GW signal in the solar system
barycenter (SSB) frame.

h(r) = hy(er + hy ()€, (1L.7)

e =0®0 -Fed (11.8)
ex =03 +¢° @6, (11.9)
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where (65, ¢%) denotes the direction of the GW source in the SSB frame, 65, ¢S are the
unit vectors along longitudinal and latitudinal directions. The principal polarization
vectors attached to the solar system barycenter frame, 65, g?)s are connected to the
principal polarization vectors in the source frame via rotation angle v (since they
lie in the same plane orthogonal to the GW propagation direction). The polarization
components 4 and h, are transformed under this rotation according to

hy = hS. cos(2y) + hS, sin(21)) (11.10)
hy = —hS sin(21) + hS, cos(2¢)). (11.11)

Now we will add LISA response. LISA measures the Doppler shift of the inter-
spacecraft lasers induced by a gravitational wave. The single-link full response to this
frequency shift can be derived with the help of three Killing vectors [22]. However,
this single-link signal is orders of magnitude smaller than the dominating laser fre-
quency noise. Thus, we need to use the so-called Time-Delay-Interferometry (TDI)
variables [23], which cancel the laser noise through the recombination of the arti-
ficially delayed single-link signals. In the low frequency limit, the two orthogonal
TDI (noise independent) variables of Michelson type can be expressed as [24, 25]

hi (1) = [6Ly(t) — 6L>(D)]/L
=h() :D; (11.12)

hi(t) = %[5& (1) + 0Ly (1) — 26L3(1)]/L
=h() : Dy (11.13)

where L stands for the average arm length. The retarded time ((7) =7 — k- X/c
defines the wavefront, where k is the GW propagation direction. The two detector
tensors are defined as D; = %(le QM —nh @), Dy = #g(fh Qn +n Qny —
2n3 ® n3), where ny, np, n3 denote the unit vectors along each arm of LISA. Here
we assume LIS A-like setup which has six links (three arms). Even though the EMRI
signal could reach quite high frequencies and require full response, we adopt the
low-frequency approximation for our exercises. This does not restrict ability of our
analysis as long as the simulated signal and the search template use the same response
function.

11.3.3 Data Analysis with Phenomenological Waveform

We start with a brief overview of our notations and basics of data analysis. We denote
the Fourier transform of a time series a(¢) by a(f) and adopt the following convention

alf) = / a(t)e*™d. (11.14)
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We assume that the detector is characterized by a Gaussian, stationary noise n(¢) and
its two-sided noise power spectral density is defined as 2* (f)n(f) = S,(f)o(f —f'),
where the over bar denotes the ensemble average. With this power spectral density,
it is conventional to define an inner product of two time series a(t), b(¢) as follows

<alb>= / %df (11.15)

—00

The signal-to-noise ratio is defined as

1R

SNR? =< h|h >=
Sn(F)

df, (11.16)

—00

where h is the GW signal. Let us denote the probability of a gravitational wave signal
h(0) being present in the data s(¢) by P(s|h(0)), where @ is the set of parameters that
characterizes the gravitational wave signal. Similarly, the probability of no gravita-
tional wave signal present in the data s is denoted by P(s|0). Likelihood ratio A (8)
is the ratio between these two probabilities

P(s|h(0
AO) = (s1h(6))

P(s0)
:e<s\h(9)>—%<h(9)\h(9)>. (11.17)

It is conventional to consider rather logarithm of the likelihood ratio as a detection
statistic: L(0) = log A(0) =< s|h(0) > —% < h(0)|h(0) >.Thisis the quantity we
want to maximize over the parameter set 6.

The likelihood ratio could be further simplified if we use PW. A single harmonic
with polynomial phase up to f order in the source frame takes the following form

h(r) = Ay cos(® (1) + Dgley + A, sin(P(2) + Po)ey,
(11.18)
D (1) = 2af (t — to) + 7f (t — 1)*
T ee 3 T eee 4
+ Sf @ —10) + = f @ —10)", (11.19)
3 12
where we have omitted harmonic indices [, m, n. After simple algebra, LISA’s

response to this single harmonic GW signal without noise can be put in a simple
form

hi(t) = APRL(6), By (t) = A"hE (1) (11.20)
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where we follow summation convention over repeated indices, and p = 1, 2, 3, 4.
The four amplitude parameters A" depend only on (Ai, A, ®p, ), which are
usually called extrinsic parameters, while 7/, (¢), k] (¢) are functions of (6%, ¢°, f, f.
f, ].‘"), which are usually called intrinsic parameters. From now on, we denote the
intrinsic parameters by 6. The extrinsic parameters (being constants in our approxi-
mation) can be maximized over analytically [26, 27], which we will show explicitly
below. We denote the measured data with noise corresponding to A;(¢), hy () by
sp(t), si (). Since the joint probability of a GW signal present in both s; and sy is
just the product of the individual probabilities, the joint log likelihood is just the
summation of the individual log likelihoods

L(0,A") = < 5| (0) > —% < hi(0)|h(6) >
+ < sulhu(0) > —% < hy(0)|hy (0) > . (11.21)
Substituting (11.20) into this expression we arrive at
L(6,A") = A's],(0) — %A”MLV(G)A”
+A"sI(0) — %A"’ML’V(H)A”, (11.22)

where we have used the following conventions: s}, =< s;|h/, >, sI/

M/, =< h |k, >, M!, =< h[l|hl] >. We can maximize the log-likelihood over
extrinsic parameters by solving

=< S[]|hLI >,

OL(0, A*)

oAn s/, + sl — (M), + M)A =0, (11.23)

v

which is straightforward to find A" = [(M! + M)~1]» (s! + ). The log-
likelihood maximized over the extrinsic parameters is called F-statistic:

F(0) max L(6,A")

1
E(SL + DI+ M"Y (5] + D). (11.24)
Its expectation value is connected to the SNR in the following way
1 2
E[F(0)] = ESNR + 2. (11.25)

Since A(0) is narrow band signal, the inner product can be written in the following
form
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oo ~ T
_ [anbe) 1
<alb >_/ 500 df = 500 O/a(t)b(t)dt, (11.26)

where T is the observation time, f; is the middle frequency of 2(8). The inner product
is a function of 7', and so is F-statistic. By varying T from O to the total observation
time, we define a cumulative F-statistic F(T, 0). The cumulative F-statistic for 30
dominant harmonics without detector noise is plotted in Fig. 11.2. The case with the
simulated detector noise is shown in Fig. 11.3, the total SNR of the signal in this case
is SNR = 50. Those are two data sets which we will analyze in the next section.

The cumulative F-statistic provides much more information than F-statistic. Actu-
ally, if 0, is the true parameter set of the signal, one can argue that

Fig. 11.2 The cumulative
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OF(T, 6,)
e[~

} o« W2(T)EX(T), (11.27)

where £(T) = /€2(T) + &% (T) is the geometrical mean of the antenna pattern func-

tions for two polarizations. When there is no detector noise, or (8TT’9*) =F [OF ((.)TT’B*)]

is nonnegative. Thus, E[F (T, 6,)] is always increasing over the entire time span
when the GW signal is present, as can be seen in Fig. 11.2. It is not necessarily so in
presence of the noise and during analysis of the data. There are three types of oscilla-
tions on the cumulative F-statistic curve F (7', 6). (i) The (non-negative) oscillation
due to the oscillatory nature of the gravitational wave signal. It is at twice the GW
frequency, which makes it hard to see in Fig. 11.2. (ii) In reality, we do not know the
exact true parameters of the GW signal. That means, in most cases, the parameter set
0 we try differs from the true parameter set 8,.. This introduce beat-notes to F (7, 0).
This kind of oscillation happens at beat-note frequency, which is much lower than the
GW frequency itself. (iii) The third type of oscillation is due the noise. The presence
of the noise makes the cumulative F-statistic uneven, see Fig. 11.3. Comparing to the
former two types, this kind of oscillation is irregular; it oscillates at all frequencies
and could cause temporary (for a short time) decrease in the cumulative F-statistic.

We have found that over three months of simulated data we can consider all har-
monics as being completely independent with virtually zero overlap between them,
< hypnl by >= 010 0. The  total F-statistic is therefore a sum of
F-statistics from each harmonic. In the next section we describe the search where we
use Eq. (11.24) as a detection statistic, and we will use cumulative F-statistic later
on to analyze our findings.

11.4 Search with the Phenomenological Waveform

In this section, we use the PW as described above together with the introduced
detection statistic. We will use two 3 month worth simulated data sets: with and
without noise. We use the same GW signal (based on NK model) in both cases. The
total SNR of the source in the noisy case is 50. We have taken the following parameters
for the EMRI: the mass of the MBH M = 10°M,, the mass of the compact object
(stellar mass BH) m = 10M,, the initial orbital eccentricity e = 0.4, the semi-latus
rectum p = 8M, the inclination angle ¢« = 7/9, the spin of the MBH a = 0.9M, the
sky position of the source (65, ¢°) = (7 /4, 7 /4), the polarization angle 1) = 0. In our
analysis we assume that the sky location is known. Our primary goal here is to recover
the intrinsic parameters of the source. For the Michelson TDI channel #;, we show
the signal and the measurement data with noise in Fig. 11.4. The signal is totally
buried in the noise with an instantaneous amplitude much smaller than the noise
amplitude. The modulation of the envelop of the signal is due to the time-varying
antenna pattern function of the LISA constellation. The time—frequency plane of the
measurement data (with an SNR of 50) is shown in Fig. 11.5a, where the signal is
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Fig. 11.4 The measurement time series (in blue) and the signal time series of SNR 50 (in red), for
the Michelson TDI channel /; (color online figure)
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Fig. 11.5 a The time—frequency plane of the measurement data (with an SNR of 50). b A zoom-in
plot of (a), where a location of a very strong harmonic and a location of pure noise are indicated.
It is very hard to tell the signal by eye in the time—frequency plot

covered by the strong noise. Even in the zoom-in Fig. 11.5b, the location of a very
strong harmonic and the location of pure noise are very hard to tell apart.

In the simulation, the noiseless case is used to avoid any possible bias in the final
result due to stochastic nature of the noise, and assess possible restrictions of our
search technique and PW family. Next, we apply the same search method to the same
GW signal buried in the noise, which would justify its effectiveness in practice.

Here, we describe the search for individual harmonics with Markov chain Monte
Carlo (MCMC) method. For completeness and future references we give a brief
introduction to MCMC. Like a standard Monte Carlo integration, MCMC is arandom
sampling method. It is nothing but Monte Carlo integration with a Markov chain. By
properly constructing a Markov chain, MCMC can draw samples from the searching
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parameter space more efficiently. Among all the methodologies of constructing a
Markov chain, the Metropolis-Hastings scheme would be the most general one.
The main idea of Metropolis-Hastings algorithm is to cleverly construct a Markov
chain that satisfy the detailed balance equation, so that the sampling distribution will
converge to the likelihood surface we want to estimate. If the shape of the likelihood
surface is known, the parameter set that corresponds to the maximum likelihood is
automatically known. Thus, MCMC is also widely used as a stochastic optimization
tool in GW data analysis (we refer the reader to a very nice overview and discussion
on Bayesian methods in [28], see also references therein).

If the likelihood surface is multimodal (i.e. contains large number of separated
local maxima) then simple version of the MCMC finds a maximum and does not
move off it to explore larger parameter space. Many ways around this problem were
suggested but we will not use any of them here (besides simulated annealing which
we will discuss a later). As we will see, a simple Metropolis-Hastings algorithm
is sufficient. The likelihood surface of an EMRI signal is very rich in “wall” and
“needle” like structures, which make it very hard to find a global maximum. We are
interested in detecting as many local maxima as possible. Therefore we run multiple
independent chains and harvest the results after they converge to various maxima of
the likelihood surface. If we are lucky, the global maximum could be among multiple
maxima we have found.

To understand the Metropolis-Hastings algorithm, first consider a stochastic
process denoted by {6;|k =0, 1,2, ...} which belongs to the parameter space B
in R”. Here we defined ;. as a set of parameters at step k£, which can also be viewed
as a point in the parameter space 5. If there exists a transition probability P(0y1|60x)
depending only on the current point 8}, for the stochastic process to be in state 8,
we call this stochastic process {0k =0, 1,2, ...} a Markov chain with a transi-
tion probability P(60;41]|6). In a Bayesian viewpoint, we can take this transition
probability as conditional probability and immediately see that

/P(9k+1|0k)d9k+l =1 (11.28)
B

A Markov chain satisfying the detailed balance equation
AO)P(O111101) = A(Or1)P(O0r10141) (11.29)
will (up to some relatively weak conditions) be equivalent to the samples from the
distribution A (@) after a certain initial period (often called burn-in stage). We can

easily estimate the distribution A (@) with the Markov chain samples and hence the
most probable parameter set 8 for given observed data s, where

ABls) = max A (6)s) (11.30)

is usually called the maximum likelihood estimator.
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By virtue of Metropolis-Hastings algorithm, we can construct a Markov chain that
satisfies the detailed balance equation and make use of the corresponding property
to estimate our template parameters 8. To do this, we randomly choose a parameter
set By in the parameter space as the starting point. Then one can pick a proposal
distribution q(0;1|0y) (as long as there is no forbidden region in the prescribed
parameter space to the point ;1) and sample a candidate point 8, from this
distribution. Then we calculate the acceptance probability defined by the following
formula (we have assumed the uniform priors on parameters)

(11.31)

A6 0,10
(0. 6341) = min (1’ (Or+1)q (01| k+1))‘

A1) q(0i11160)

By accepting the point 6, according to the above probability, we have, in fact,
succeeded to construct a transition probability,

P(01411601) = q(0r1110) (O, 01 1). (11.32)

Itis easy to see that the Markov chain generated by the above transition probability
satisfies the detailed balance equation:

A(Or)P(0r111601) = min (A(01)q(0r11101), A(Or11)q(0k|0111))
min (A (0x11)q(0k10r11), A(Or)q(0r41101))
A(Ok11)P(0¢]0141). (11.33)

Thus, such a Markov chain will eventually serve as a succession of samples
from A (0). The best performance is achieved if the proposal probability ¢(0.1|0y)
resembles the target distribution A (6) over the entire parameter space. Without prior
knowledge about the kind of probability distribution around the true parameter loca-
tion, it is natural to choose it as a multivariate normal distribution centered at the
present point 8; with covariance matrix C,

1
q(04110y) = P [—E(ekﬂ —00"C Oy — 0k)], (11.34)

1
v 2mNdet[C] ex

where N denotes the dimension of the parameter space and det[C] the determinant
of the covariance matrix C. The likelihood surface has usually multimodal (multiple
local maxima) structure, and, therefore, a single multivariate normal distribution
cannot describe the probability density over the entire template space but only a very
small region around the local maximum. Since the probability distribution at the
local maximum is usually very sharp, a Markov chain easily gets trapped there for
many steps. To avoid insignificant maxima we use the so-called annealing scheme,
originating from simulated annealing. We adopt two types of annealing techniques.
(i) We introduce a temperature 7; to the acceptance rate « [Eq.(11.31)] so as to
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have a larger possibility to accept the proposal point in the beginning. By combining
Eqgs.(11.17), (11.24), (11.31), (11.34), the acceptance probability is now written as

a(Or, Orr1) = min (1, F O =FOVT) (11.35)

where the temperature 7; = 7; (k) is a function of the step index k, it starts from some
relatively large number and gradually decays to unity. (ii) We introduce a second
temperature 7 to the proposal distribution g(6;41|60). The covariance matrix C is
replaced by C x 7,. Same as 77, 7; is also a function of the step index k, decaying
gradually to unity. Hence, the chain take large steps in the beginning and explores
large volume in the parameter space. Explicitly, we choose 77 and 7; both as a linear
function of k with negative slope.
Let us summarize the algorithm:

1. k = 0. Choose a random parameter set 6 as the starting point and calculate the
F-statistic F(60y).

2. k — k + 1. Calculate the temperature 77 (k), 75 (k).

3. Generate the next candidate parameter set 8, from the proposal distribution with
modified covariance C x 7.

4. Calculate the F-statistic of the new parameter set F'(6,).

. Calculate the acceptance probability c(6y, 6.) = min (1, el =FO1/T1),

6. Draw a random number u from unity distribution ¢/(0, 1). If u < «, accept the
candidate parameter set 0,1 = 6., else, stay at the current point O, = 6.

9]

In the search we have used a diagonal form of the covariance matrix in the gaussian
proposal distribution (11.34), with the following elements: C = [diag(10~*, 10712,
10720, 1028)12 corresponding to the parameter set {f, f, /. f }. And 7; used to scale
the covariance matrix decays linearly with the number of members in the chain from
1to 5 x 10~*. We have found that the use of the actual Fisher information matrix
as C did not improve significantly the search results. We run about 50 chains on
both noiseless data and noisy data. All the parameter sets that generate an SNR
larger than a certain threshold (we have used SNR > 4.5) are recorded. Notice that
there are possibly many such qualified parameter sets in a single chain. Thus, we
have hundreds to thousands of qualified parameter sets or local maxima. These local
maxima contain information about the signal. We will analyze these local maxima
in the next section.

11.5 Analysis of the Search Results and Mapping
to the Physical Parameters

In this section we will explain how we use the results of MCMC search described in
the previous section and reconstruct harmonics of the GW signal. Furthermore, we
use the model of EMRI (NK) to estimate the physical parameters of the system.



11.5 Analysis of the Search Results and Mapping to the Physical Parameters 191

11.5.1 Clustering Algorithms

In this subsection we extract information from the local maxima detected by MCMC
search. We first focus on the noiseless data to explain the algorithm, then modify it
a bit and apply it to the noisy data. Since this work is the first of a series of papers,
the main task here is to establish the framework and justify the method. Hence, as
mentioned above, we have assumed that the sky position of the source is known
and concentrate on the intrinsic parameters only. This will save us some time, yet
maintain all the main features of the problem. As a result, each_local maximum is
characterized only by the frequency and its derivatives (f, f ,f, ).

Let us look at one example to understand how we extract the information about
the source from the detected local maxima. We take a particular solution of MCMC
search and for each harmonic of PW we can compute cumulative F-statistic according
to the prescription given in Sect. 11.3.3. We concentrate only on those harmonics
which give significant contribution to the total F-statistic. If the harmonics of PW
match perfectly the harmonics of a signal we should observe something similar to
Fig. 11.3, however it is rare when we detect a full harmonic (only sometimes for the
strongest). More frequently, we detect a part of a harmonic (frequency and derivatives
close to true but not exact) or even several harmonics at different instances of time as
shown in Fig. 11.6. The black and green curves are two strong harmonics of a signal
(black being stronger), and the blue is a harmonic of PW. In the pink regions, our
template matches for a short period of time the frequency of a signal (two distinct
harmonics at two instances). The corresponding cumulative F-statistic is shown in
Fig. 11.7. There are two positive jumps in the accumulation of the F-statistic which
correspond to two instances of intersection. Therefore, we can conclude that the
positive slope in the cumulative F-statistic (if it happens over a significant duration)
corresponds to the part of the frequency and time where a harmonic of PW matches

Fig. 11.6 Time—frequency x 10° time - frequency plane
plot of harmonics. The black 6.2 ! T T T
and green tracks are two 6.1}

strong harmonics of the
EMRI signal (black being
stronger). The blue track
corresponds to a harmonic of
PW that accumulates a
significant F-statistic. It
intersects the true harmonics
at the pink segments, those
correspond to times of
increase of F-statistic, see
Figs.11.7 and 11.8

frequency [Hz]
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time [sec] x10
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Fig. 11.7 Unfiltered cumulative F-statistic corresponding to the PW harmonic and data given in
Fig. 11.6. The F-statistic labeled on the vertical axis has only relative meaning, since we work with
the noiseless data. The green and red squares mark the extremes of the curve, thus distinguishing
between the increasing and the decreasing slopes. The large number of the extremes is due to the
beating between the true harmonics and the trial harmonic

(at least partially) some harmonics of a signal. We collect such events of matching
and display them on the time—frequency plane, resembling the mosaic of a true signal.

The violent oscillation in Fig. 11.7 is one of the three types of oscillations on the
cumulative F-statistic curve mentioned in the previous section. In fact, it is the beat
note between the true harmonics and the local maximum. Observe that the beat notes
happen at relatively higher frequency, while the increasing slopes (where the local
maximum matches the frequencies of the true harmonics) have relative low frequency.
Thus, we design a third-order Butterworth low pass filter to get rid of the beat notes.
After the low-pass filter, the cumulative F-statistic has only few extrema, as shown
in Fig. 11.8. After clearing up the cumulative F-statistic, we apply two criteria for
identifying a significant F-statistic accumulation: (i) the slope must be larger than
certain threshold; (ii) the accumulation time must be over longer than certain period.
As it is seen by eye tuning those two parameters should be sufficient to get the right
parts of cumulative F-statistic. In our search we have made the following choice for
those parameters. In the case of noiseless data, we require the slope to be larger than
one-tenth of the largest slope of the cumulative F-statistic of that trial harmonic, and
the cumulative time (over which we observe steep positive slope) to be longer than
three days.

We plot all recovered patches on the time—frequency plane in Fig. 11.9, where we
can identify by eye 13 strong harmonics. For comparison, the time—frequency plane
of all the 30 harmonics of the signal without noise is shown in Fig. 11.10, where
the F-statistic value of each harmonic is indicated by its color. Although the weaker
harmonics are lost in Fig. 11.9, the strong ones retain enough information about the
EMRI system evolution, hence allowing us to recover the physical parameters we
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are interested in. Zooming at a specific harmonic in time and frequency, one will see
that there are many patches from different results and at each instant we observe a
finite spread in the frequencies for a given harmonic. This is due to various solutions
from MCMC search matched a given harmonic of a signal with different precision.
However, we expect that the distribution of found frequencies at each instant of
time will be centered at the true frequency of the signal’s harmonic. As an example,
we show distribution of found frequencies at a particular instance of time for two
harmonics in Fig. 11.11. In that plot we show the histogram of detected frequencies
at that time in blue and Gaussian fit as smooth green curves. This is to be compared
with frequencies of two harmonics of a signal at the same time in red. As mentioned
above, different solutions of MCMC search vary in precision of matching the signal
at different instances, and we can use accumulation time as a measure of goodness
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Fig. 11.10 Time—frequency plot of all the 30 harmonics of the signal without noise. The F-statistic
of each harmonic is indicated by its color
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Fig. 11.11 a Zoom at two harmonics at a specific instance of time. The red stems denote the
frequencies of the true harmonics of a signal, while the blue histogram shows the detected frequen-
cies at this instant. The green curves display the Gaussian fit to the frequency data with re-scaled
amplitudes. The vertical axis of pink points indicates the relative time over which we have observed
strong accumulation of F-statistic for each solution. b Similar plot for all the harmonics at the same
instant, where 13 harmonics out of 30 are identified

of match of a signal by a given solution. The relative accumulation time of different
solutions are shown as pink points in Fig. 11.11. First, one can see that Gaussian fit
lies on the top of the true frequency, and second, that the distribution of pink points
is similar to the blue histogram, so either can be taken to characterize the found
harmonics of a signal. Similarly, we can do at each instance of time for all found
tracks in the time—frequency plane. For the noiseless search we picked uniformly 10
instances and made a Gaussian fit around each harmonic. We identify the mean of
the Gaussian fit as the most likely frequency of a signal’s harmonics at that instance
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Fig. 11.12 a Gaussian fit to the detected frequencies at ten instants. The red points represent the
mean of a Gaussian fit as shown in Fig. 11.11 for each harmonic at ten instants . The blue error
bars show the 1o uncertainties of the Gaussian fits. Note the tiny error bars are along the frequency
dimension which indicates that the MCMC search localizes quite well frequencies of the EMRI’s
harmonics. b A zoom-in plot of (a) at two strong harmonics. Most of the red points are clustered
and overlapping with each other (color online figure)

and we identify the spread (standard deviation) of a distribution as an error in our
evaluation of a frequency. The result of this clustering is given in Fig. 11.12.

In the case of data with the detector noise, the basics and the strategy are roughly
the same as in the noiseless case with minor modifications. In the beginning, we record
the local maxima with SNR greater than 4.5. Next, we select the significant increasing
slopes of the cumulative F-statistic with three requirements: (i) the maximum F-
statistic along the cumulative F-statistic curve is larger than 50, (ii) the minimum slope
of the significant increasing segment is larger than 4 x 10~°s~!, (iii) the duration
of a monotonic increase is longer than about a week. Those conditions are more
stringent than for the noiseless case and eliminate several found weak harmonics of
the EMRI signal. However, at the same time they significantly reduce the false events
(and that is what we want). From this selection, we identify 5 strong harmonics in
the noisy case. After that the procedure is similar to the noiseless case.

11.5.2 Search for Physical Parameters

Now we are in a position to recover the physical parameters of the binary system. First,
we need to adopt the model for the orbital evolution, and here we have employed
the same model as used in the simulation of the data sets. In the noiseless case
the only reason for the deviation of recovered parameters from the true values is
due to inaccurate identification of the tracks in the time—frequency plane or due
to ambiguity in solving the inverse problem (mapping harmonic tracks onto the
physical parameters, m/M, a, e, v, p/M). We have performed the search on the time—
frequency plane similar in spirit to [29]. We have used the weighted chi-square test
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between the signal tracks (for different parameters) and the recovered tracks
(Fig. 11.12). We have used particle swarm optimization (PSO) and genetic algo-
rithm (GA) as two independent search methods to test the robustness of our result.
We start with describing the PSO method, and then give brief overview of GA.

Particle swarm optimization (PSO) is a stochastic optimization method introduced
by Kennedy and Eberhardt in 1995 [30]. In gravitational wave data analysis, PSO
was first applied to a binary inspiral signal [31]. In this section, we briefly describe
the algorithm, while further details can be found in the Refs. [30, 31].

The goal of PSO is to find the global minimum/maximum (here we minimize the
chi-square test) of a parameterized functional () and the corresponding parameter
set ., where 0 stands for an arbitrary parameter set in R”. The idea is to evaluate
k(6;) simultaneously at different parameter sets 6;, i = 1,2, ..., treating them as
particles in the parameter space, and evolve them according to certain dynamics until
the stable solution is reached. Let us denote the ith particle out of a swarm of N,
particles during kth iteration in the search by 6;[k]. Its position in the parameter
space in the next iteration is determined by its velocity in the current iteration v;[k],

0;lk + 1] = O,[k] + v;[k]. (11.36)

Usually, the particles start with randomly chosen positions ;[1] and velocities v;[1].
Up to kth iteration, we denote the ith particle’s best location by 6%[k], in the sense
that

R (67 k1) = min ;D). (11.37)
Jj=

The global best location 6 [k] up to the kth iteration is defined by

K(0%[k]) = min k(67 [k]). (11.38)

Note that particle best locations and the global best location are the best parameters
respectively found by the individual particles and the whole swarm in the entirely
history of the search up to the kth iteration. They are updated only when a bet-
ter parameter set is found. These best locations contain a lot of information about
the functional (@), so they are used to guide the particle’s motion in the future.
Explicitly, the velocities are updated with the following equation

vilk + 11 = woilk] + c1x1 (07 [k] — 8;[k])
+ cax2(6%[k] — i[k]), (11.39)



11.5 Analysis of the Search Results and Mapping to the Physical Parameters 197

where w is called the inertia weight, ¢y, c; are called the acceleration constants (we
take them to be the same as in [31]) and X, x> are random numbers drawn from
U(0, 1). We run PSO search several times until the return result is confirmed by
several searches.

The second search method is called Genetic Algorithm (GA) and there we evolve
a number of parameter sets (points in the parameter space R"). Each parameter set
0, is called an organism, individual parameters are called the genes of this organism
and the set of organism at kth search iteration step is called kth generation. We evolve
generations according to the prescribed rules called “parents selection”, “breading”
and “mutation”. The main idea of this optimization technique is to evolve colony of
organisms toward the better fitness (which could be likelihood ratio or, in our case,
chi-square value) like in Darwin’s theory of natural selection. The strong organ-
isms (with better fitness) participate more often in breading and therefore drag the
colony toward the better values (lower) of chi-square. Mutation brings element of
randomness in the search and occasional “positive” mutations help to avoid trapping
around local minimum. For use of GA in GW data analysis we refer to [32, 33] and
references therein.

Let us give few more details specific to the implementation used in here. We use
x? value as a measure of fitness for each organism (smaller value is better). In each
generation we use the roulette method with the selection probability proportional
to the fitness of each organism. For breeding we have used the one random point
crossover rule. The probability mutation rate is monotonically decreasing function of
the generation number: we have started with high probability of mutation to explore
a large part of the parameter space and decrease it gradually as organisms converge
to a particular part of the parameter space. We have used “children” and “parents”
sorted in the fitness to make a new generation: we use 50 % of the best organisms. We
automatically achieve the “elitism” in a way that the best x? value is never increasing
from one generation to the next.

We use the multi-step method to accelerate the search. In each step we evolve
the colony for 500 generations as described above, but each new step uses the last
generation of the previous step as the initial state. We have started evolution in the
first step with completely random distribution of the organisms. The evolution of
the colony at each step finishes with a very small mutation probability and with
organisms confined to a quite small volume of the parameter space. The consequent
search steps ensure that the found solution is a robust solution with respect to increase
of the mutation probability which disperses organisms forcing them to explore the
parameter space for presence of a solution with better fitness. This helps to avoid
being trapped in the local minima. The termination condition is the stability of the
best solution over several steps of the search.

‘We have applied both those methods to fit the found tracks on the time frequency
plane with the harmonics of EMRI signal. The search is done in 5 dimensional
parameter space with quite broad priors on (e, p/M, ¢, a, p = m/M), those are the
eccentricity, the semi-latus rectum, the orbital inclination angle at the moment of
beginning of observation, the spin of the MBH, and, the mass ratio between the
stellar BH and the MBH. The total mass is not present here, we have kept it fixed
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Table 11.1 Recovered parameters of EMRI against actual parameters used in simulated data sets
Description e(tp) p(to) u(to) a 1z
True 0.4 8.0 0.349 0.9 1073
parameters

Recovered 0.395 8.029 0.342 0.891 9.79 x 10~°
parameters
(with noise)
Recovered 0.402 7.991 0.360 0.901 1.002 x 1073
parameters
(no noise)

to M = 10°M,,. For a given set of parameters, our search algorithm computes three
fundamental orbital frequencies as functions of time, then a weighted chi-square
goodness of fit test is preformed on harmonics of the signal. We use the means and
standard deviations from the Gaussian fit as found point and its error in the time—
frequency plane. The best fit corresponds to the lowest value of x2. We have used
harmonics of the signal, which are expected to be strong over the large part of the
parameter space, and have found this “harmonic table” by intensive monte carlo with
NK models generated in the frequency domain. The index table has been truncated
by choosing harmonics contributing (in total) 90 % of the overlap with a total signal.!
The recovered parameters are given in the Table 11.1.

11.6 Summary

In this paper we have introduced the phenomenological family of waveforms (PW)
for detecting EMRI signals in the data from the LISA-like observatory. The template
is constructed out of independent (over the time interval we have applied our analy-
sis) harmonics of slowly evolving three orbital frequencies. We have neglected the
amplitude evolution and presented the phase as a Taylor series up to the third deriva-
tive of frequency. Our analysis was restricted to the case of monotonically increasing
frequencies. This condition will break only close to the plunge. The number of har-
monics and range of indices were taken from the analysis of dominant harmonics
of our model signal, though we have found at the end that the search only weakly
depends on the number of used harmonics (only through the accumulated total SNR,
which should be sufficient to claim detection).

Constructed phenomenological templates allows us to search for EMRI signals
in a model independent way. This way we avoid complexity of accurate modeling
the orbital evolution and gravitational waveform during the search. In addition PW

I'The total signal here to be a NK waveform with a large number of harmonics. We still truncate the
number of harmonics used to build the signal: we stop if the inclusion of the next harmonic does
not change overlap with the already built signal by more than 0.1 %.
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cover also all possible small deviations of the background spacetime from the Kerr
solution which would influence the signal’s phase and could lead even to loss of the
signal if the template assumes pure Kerr background geometry.

We have used MCMC based search to find a large number of local maxima of
the likelihood surface. We were not that lucky to find the global maximum. We have
analyzed the found solutions by means of cumulative F-statistic over the time and
identified the patches of the signal which were match by templates. As a result, we
have constructed a time—frequency map of (parts of) the signal’s harmonics. Each
track could be characterized by the best guess and the error bar at each instance of
time (by fitting Gaussian profile to found frequencies at that time for each track).
The next step is to assume a model for the binary orbital evolution, and check if the
found time—frequency picture corresponds to the strongest harmonics of a signal. In
other words, we want to find the physical parameters of the binary system which
strong GW harmonics could leave the found imprint. We do that by conducting
a search using particle swarm optimization techniques and, independently, genetic
algorithm. We have used weighted chi-square goodness of fit test to choose the best
matching harmonics of the signal. We have assumed the same model as was used in
the simulated data, and the recovered parameters are within 2 % of the true values.

We want to make few final remarks.

(i) The found time—frequency tracks of the GW signal from EMRI did not assume
any particular model. The mapping of these tracks to the physical parameters
could be done in post processing using several models. We have chosen on
purpose rather short (3 month) duration of the data. The search procedure could
be repeated for each three months and then one can check consistency of a given
model or further improve accuracy in the recovered parameters (if our model
gives consistent parameters of the system across different data segments). This
could be a powerful method to search deviations from “Kerness”.

(i) We have neglected the amplitude evolution of the harmonics which is justifiable
on the considered short span of time, where the change in amplitude is small
(less than 20 % for the detectable strong harmonics in our case). As mentioned
above, for high SNR signals we can analyze the data piecewise. However, for
weak signals we need to extend the validity of the PW by introducing the
amplitude evolution and higher order derivatives of frequencies. The amplitude
evolution is also important in case of the high eccentricity. We will delegate
this issue to the next publication.

(iii) In the mapping of the time—frequency tracks to the physical parameters of
the binary, we have only weakly used information about the strength of each
track/harmonic. We have found that the information stored in the frequency
evolution is sufficient to recover parameters of EMRI. However, additional
information about the strength of the recovered harmonics and harmonics of
the modeled GW signal could give us additional confidence in the result and/or
distinguish between several solution, if ambiguity happens.

(iv) Mapping from the found time—frequency tracks onto the physical parameters
might turn out to be the most computationally intensive task. However, one
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might use the information about the strength and a number of found harmonics
to restrict a volume of the searched parameter space. In addition, to perform
mapping we require mainly the computation of the orbital evolution, not the
full waveform. However, it is then important to know which harmonics are the
strongest for a given parameter set.
(v) In the future work we intend to include the sky location and the MBH mass
into the search and investigate the possibility to differentiate between different
models of EMRIs based on the results of MCMC search with PW (as discussed

in (i)).

11.7 Supplementary A: Calculate the Evolution
of the Fundamental Frequencies of EMRIs
and Numerical Kludge waveforms

For test particles, the geodesics in the Kerr spacetime in the Boyer-Lindquist coor-
dinates (r, 6, ¢, t) can be described by the following set of differential equations

dr

dr

d
549
dr

dr
E— =
dr

where we have defined

2
(z dr) = [E(r? +d*) — L.al® — A[r* + (L, — aE)* + Q]

V,(r),

2 2
(2%) =(Q —cos’f |:a2(l —E») + L } = V,(0),

sin? 0

= YER4d) - Lal+ - —aE
A ‘ 0

sin?
Vo (r, 0) = Vo1 (r) + Vi (0),

2, 2
%[E(V2 +a*) — L.al + a(L, — aE sin® 0)

Vi(r,0) = Vit (r) + V2 (0),

> = r? + a*cos? b,
A =r2—2Mr+a2,

(11.40)

(11.41)

(11.42)

(11.43)

(11.44)
(11.45)

and E, L,, Qrespectively denote the energy, the angular momentum along the z-axis
and the Carter constant. To prevent the occurrence of closed time-like lines in the
spacetime, the spin of the black hole satisfies a/M € [0, 1]. The evolutions of r and
0 can be separated by introducing the so-called Mino time A,

(

dr 2—V()
d)\ - rr,

(11.46)
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(%)2 — V() (11.47)
a) — '
do
a = Vy(r, 0) = Vg1 (r) + Vg (0), (11.48)
&= V) = V) + Vo). (11.49)

For bounded motions, the solutions of » and # in the Mino time are strictly periodic
functions, with periods given by the following

rmz\x

dr

T, =2 | —, (11.50)

V. (r)

T—bmin 40
Ty =2 / . (11.51)

V%O
The corresponding frequencies are defined as

F,=1/T,, (11.52)
Fop = 1/Ty. (11.53)

Since r and 6 are strictly periodic functions of A, the terms V,(r, 6) and V,(r, 6)
can be expanded in Fourier series with fundamental frequencies F, and Fj in the
Mino time A. Hence, ¢ and ¢ as functions of A can be easily obtained. Ignoring the
oscillating terms, the average accumulating frequency for ¢ is

T, T,

1 d\ dA
%:7;/mmmf+/mmmﬁ. (11.54)
0 0

The average ratio between the coordinate time ¢ and the Mino time A can also be
calculated

T T
&=/wwm%+/mmm%. (1155)
T, T,

0

Therefore, the three fundamental frequencies of the geodesics are

fr =F:/R,, (11.56)
Jo=Fy/R;, (11.57)
Jfo = Fy/R;. (11.58)
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For a given Kerr black hole with mass M and spin a, the three fundamental frequencies
of its geodesics can be calculated from the three constants of motion E, L., Q, whose
evolutions can be obtained from the post-Newtonian formulae in the following form

dE

T =fe(a,M,m,p,e, 1), (11.59)
dL,
O =fL(a,M,m,p,e, 1), (11.60)
dQ
m = fola,M,m,p,e, ). (11.61)

To generate numerical kludge waveforms, we need to solve for (), 6(¢) and ¢(¢)
numerically. Once these functions are obtained, the waveforms can be generated with
the help of the quadrupole formula or the quadrupole-octupole formula, etc. Here,
we will briefly describe the way of calculating r(¢), 8(¢) and ¢(¢) The derivatives of
r and 6 can be written as

2? = +/V.(r), (11.62)

T

23—9 = +/Vy(0). (11.63)
T

Due to the flipping signs, these equations cannot be directly integrated. We need to
use new variables to avoid the flipping signs. We first define an eccentricity e and a
semilatus p as follows

2Fmax Fmi
p= —rm:‘:’; f:‘ (11.64)
e= % (11.65)
which imply the following
Tmin = lie’ (11.66)
Foux = T (11.67)

We also define an inclination angle

tan® = (11.68)

L2
Then, we can replace the variable r by 1) through the following relation

p

= 11.69
d 1+ ecosvy ( )
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This is valid, since the evolutions of e and p are much slower than the evolution of
r. Similarly, we wish to replace 8 by x through the following relation

cos? @ = z_cos? y, (11.70)
where z_ is defined by the following formula

—a*(1 —E)(zy —2)(z —22)
=a’(1 —E)Z —2Q+ L2+ (1 - E)]+ Q. (11.71)

Instead of directly evolving r and 6, we evolve ¥ and . The evolution equations for
1, x and ¢ are given by

% =MV1—E2[(p— r3(1 + €)) — e(p + r3(1 — e) cos )] />
[(p — ra(1 4 €)) + e(p — r4(1 + €) cos ¥)]V/? /[y + a®Ez— cos? X](1 — €?),
(11.72)
21 — g2 — 2
dx _ V(1 — EY)lz4 —z- cos X (11.73)
dr v 4 a?Ez— cos? x
V.
o _ Yo (11.74)
dr Vi
where we have defined
2 2\2 2MralL
—E m_‘f _ﬁ’ (11.75)
A A
and r3 and r4 are defined by the following formula
Vi = (1 = E)(rmax — 1) = Fin) (r = 13)(r = 1), (11.76)
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Chapter 12
Fast Detection and Automatic Parameter

Estimation of a Gravitational Wave Signal
with a Novel Method

Abstract The detection of gravitational wave usually requires to match the mea-
surement data with a large number of templates, which is computationally very
expensive. Compressed sensing methods allow one to match the data with a small
number of templates and interpolate the rest. However, the interpolation process is
still computationally expensive. In this chapter, we designed a novel method that
only requires to match the data with a few templates, yet without needing any inter-
polation process. The algorithm worked well for signals with relatively high SNRs.
It also showed promise for low SNRs signals.

12.1 Introduction

While gravitational wave (GW) signals contain invaluable physical information,
extracting this information from the noisy data is quite challenging. Most of the
time, GW signals are weaker than the instrumental noise at any instant, but they
are predictable and long lived [1]. This gives a way to build up signal-to-noise ratio
(SNR) over time by tracking the signals coherently with matched filtering [2]. How-
ever, this requires the templates to be exactly the same as the true signal to recover
the optimal SNR, or at least resemble the true signal sufficiently in order not to lose
much SNR [3]. Since the template waveforms depend on several parameters, one
needs to match the data with a huge number of templates in the high dimensional
parameter space. Therefore, a normal grid-based search is usually computationally
extremely expensive, or even prohibitive. The reduction of the computational cost
lies in the center of the modern GW data analysis.

There are several categories of algorithms, successfully reducing the computa-
tional cost, such as reduced bases (RB) [4], singular value decomposition (SVD)
[5] and principal component analysis (PCA) [6]. These methods make use of the
fact that each template is strongly correlated with the templates in its neighbourhood
in the parameter space. Therefore, its SNR can be effectively interpolated from the
SNRs of the templates in its neighbourhood. In other words, the likelihood surface
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on the grid of the template bank has special properties (sparsity), which allows the
compressed sensing [7] algorithms to apply. Instead of using all the templates in
the bank, one only needs to calculate the SNRs of a few so-called basis templates
(which are different from the original templates), and then interpolate the SNRs of
all the other templates in the bank. It is extremely fast to perform matched filtering
on that few basis templates comparing to the original bank of templates. However,
the interpolation (or sometimes referred to as the reconstruction) process is still
computationally expensive.

We wish to design a novel method, which requires to perform matched filtering on
afew templates, and in the meantime does not require any interpolation stage (or can
automatically reconstruct the parameters of the GW signal). However, this method
currently requires a relatively high SNR of the signal. The detailed description of the
method and the preliminary simulation results are shown in the following.

12.2 Review of the GW Data Analysis Problem

First of all, we briefly review the convention and notations of the GW data analysis.
Usually, the measurement data can be expressed as s = Ah, + n, where n is the
noise, A is the amplitude of the signal, &, is the normalized signal in the measurement,
which satisfies (h,|h,) = 1. The inner product of two time series a(¢) and b(¢) is
defined as follows

o0 ~ s B
(a|b)=/%dﬁ (12.1)

where a( f), b( f) are the Fourier transforms of a(¢) and b(¢). S,,(f) is the so-called
two-sided noise power spectral density (PSD), usually defined as E[n*(f")n(f)] =
Sn(f)(s(f - f/)

The GW data analysis problem that we want to solve is formulated as follows.
For a set of normalized candidate templates #; = h(®;) (we choose the template
index i = 1, ..., 2" for convenience) characterized by parameters ®;, we want to
determine which one is present in the measurement, hence obtaining the parameters
0, of the signal. Notice that ® denotes a set of waveform parameters. For clarity,
we require the templates to be nearly independent (h;|h;) < 1, (i # j). Thisis not
generally true for a whole template bank. However, one can easily divide the entire
template bank into a group of smaller template banks, within which the templates
are nearly independent.

We assume that the true signal 4, belongs to the template family, * € {1, 2,
...,2N}. The inner product between the measurement data and a template is
denoted as
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xi = (slhi)
= A(hy|hi) + (nlh;), (12.2)

thus the expectation and the variance are

E(x;) = Ad,; (12.3)
Var(x;) = E[(h;|n)(n|h;)]
= (hjlh;) = 1. (12.4)

By identifying the largest inner product x,, we can detect the signal /. and estimate its
parameters ®,. When the inner product x, is much larger than its standard deviation
+/Var(x,) = 1, the significance is high. The above shows a normal search strategy,
which requires to perform 2V inner products.

12.3 The New Algorithm

In this section, we will describe a novel search algorithm. First, we express the
waveform indices i in binary, hence each index is an N-digit binary number (e.g.
001011011 ...). Then, we define N sets P, (k = 1,2, ..., N) such that PP, consists
of all the indices i whose kth digit is 1. A new template family is defined based on
these sets

H, = Z h;. (12.5)

i€Py
The inner products of these new templates with the measurement data are

X = (s|Hy)
= D (slhi). (12.6)

i€Px

The expectation of Xy is

E(Xy) = [ 12.7)
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The variance can be calculated as follows

Var(Xy) = El(n| >_ hi)’]

i€Py

= > (hilhy). (12.8)

i,j€Px

Since the templates h; are nearly independent, we have

Var(Xe) = D (hilhi)

iEPk
=N (12.9)
Suppose * € P, and * ¢ Py, then
E(X,— Xp) = A (12.10)
Var(X, — Xp) = El(n| D hi = > h;)]
ieP, JjE€Py

= > (hilh)

ie{P,UP,—P,NPp}
=2N-1, (12.11)

When the expectation A is much larger than the standard deviation 2V =172 we can
set some threshold 7 between A and 2(N~1/2, Based on this threshold, a binary
number can be obtained as follows: if X; > 7, the kth bit of this binary number is 1,
otherwise its kth digit is set as 0. This binary number can be converted to a decimal
number iy. The method identifies the waveform £;, with parameters ®;, to be most
probably present in the data. In this new approach, we have used N templates instead
of 2V templates to detect the signal and estimate its parameters. The computational
cost is thus reduced from C - 2" to C - N. Notice that, if each inner product of the data
and a template provides one bit of information (above or below a certain threshold),
N is the minimum required number of templates to distinguish 2V sets of candidate
parameters.

12.4 Simulation

To exemplify the performance of the novel method, we consider the following chirp
waveform family

h(t; f, f) = Acos2r ft + 7 f12), (12.12)
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where A is the normalization constant, f and f are the two intrinsic parameters
to be estimated. We have simulated 100 s measurement data at 1 kHz with different
SNRs. The parameters of the true signal are f, = 100Hz and f, = 0.2Hz/s. We
have considered 2° candidate waveforms with the parameter mesh grid

f =1{70, 80, 90, 100, 110, 120, 130, 140} Hz,

f=1{-03,-0.2,-0.1,0,0.1,0.2, 0.3, 0.4} Hz/s.

The threshold is simply chosen as 7 = ¢ - max(X;), where we have tried several
values of the coefficient c. The SNR varies from 8 to 50 with a uniform spacing 3. For
each combination of SNR and the threshold, we carried out a Monte Carlo simulation
with 1000 different noise realizations. If the algorithm identifies the true signal and
its true parameters, the detection is successful. The success rate is called the detection
rate. Figure 12.1 shows the detection rate at different SNRs and thresholds, where
the color bar indicates the value of the coefficient c. The best performance is realized
by setting the coefficient ¢ around 0.5. For signals with SNR higher than 30, the
detection rate of the algorithm is above 99 %. Thus, the algorithm with the least
number of new templates works efficiently at relatively high SNRs. However, at low
SNRs, the detection rate is low. We will see whether we could improve the detection
rate by slightly increase the computational cost.

12.5 Features of the Algorithm

Let us take a close look at the features of the algorithm to better understand it. First,
we review some concepts and conventions, which will be used later on. The error
function erf(x) is usually defined as follows
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X
2 2
erf(x) = T e dx. (12.13)
s
0

The cumulative distribution function F(a) is defined as follows

F(a) = P(x <a)

a

- / p(x)dx, (12.14)

—0Q

where p(x) is the probability density function. For a Gaussian random variable x with
an expectation p and a standard deviation o, we denote its cumulative distribution
function as F, ;(x). It is straightforward to show that

Foo(x) = % [1 + erf(x\;z:)} . (12.15)

For the set of 2" independent templates #;, if 2V is smaller than the number of
samples in the observation data, x; = (s|h;) are also independent. To characterize
the performance of the algorithms, we want to examine to what extent can the noise
mimic a signal. Since the signal part of x; only contributes a DC bias to its probability
distribution, we can ignore the DC part and only consider the random part of x;, which
is (n|h;). It can be shown without much effort that the probability density function
of the maximum of these 2" random variables x; is the following

(S

X

N 2N -1
Pmax(X) = \/ﬁ |:1 +erf (%)} e 7. (12.16)
I

Since these random variables follow Gaussian distribution with a zero mean, which is
symmetric about the y-axis, the minimum of these random variables has a probability
density function as follows

S

N “x 2V -1 .
pmin(x) = W |:1 + erf (E)} e 2. (1217)

By contrast, the random variables X; are correlated. The analytical expression
(if there exists) of the probability density function of the maximum of these ran-
dom variables is not easy to calculate. Instead, this probability density function is
calculated numerically via Monte Carlo simulations later on. If we artificially ignore
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the correlation between X for the moment, an analytical approximate expression
can be obtained as follows

N 1 +erf X\ v (12.18)
—_— erf | — e . .
/23N-21 /N

For the case we considered, we have N = 6. The probability density functions of the
maximum of the random part of x; and X} are shown in Fig. 12.2, where for X; we
have plotted both an analytical approximate curve and the results from Monte Carlo
simulation of 5 x 10* different noise realizations. This figure tells us to what extent
SNRs could be mimicked by pure noise. As expected, in case of Xy, the noise could
mimic larger SNRs. This can also be seen from the larger standard deviation of Xj.
In fact, this is the reason for the drop in the detection rate at low SNRs in Fig. 12.1.

Next, let us examine the role of the threshold 7 = %max(X ). In the previous
simulations, we have six inner products Xy, (k = 1,...,6), each corresponding
to an SNR achieved by H;. Since the detection criteria only depends on the ratio
between the inner products, it is convenient to look at their pie charts. In Fig. 12.3,
we show the pie charts for different SNRs, where the color bar represents the indices
of the inner products. Take Fig. 12.3a for instance. The inner products X;, X3, X4
contribute most part of the summation Zgzl Xy, while X», X5, X¢are much smaller.
According to the criteria we designed before, only X, X3, X4 are above the thresh-
old. Therefore, we obtain the index 101100, = 44 of the template, which most
resembles the signal in the data. Similarly, Fig. 12.3b—e all successfully identify the
correct template in case of different SNRs. Figure 12.3f shows a failure case. Accord-
ing to the previous criteria, this pie chart gives a wrong index 101001, = 41. In fact,

Pmax (X)
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Fig. 12.3 Pie charts of X for different SNRs, e and f are for the same SNR with different noise
realizations. The color bar denotes the index of X;. a SNR = 50. b SNR = 40. ¢ SNR = 30.
d SNR = 20. e SNR = 10. f SNR = 10
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even if one bit of the binary is wrongly determined, we end up with a completely
different template (and its corresponding parameters). This is also a main reason why
the detection rate at low SNRs drops so quickly. We will discuss how to improve the
performance of the algorithm in the next section.

12.6 Improve the Performance of the Algorithm

In this section, we will discuss a simple and straightforward way to improve the
performance of the algorithm by slightly increasing the computational cost. Let us
look at the failure case in Fig. 12.3f again. The largest inner product is X, which
contributes 30 % of the entire SNR pie. The threshold, which was set to half of the
largest inner product, turns out to be 15 %. Therefore, among the six inner products,
X, X3 are significantly above the threshold, X,, X5 are significantly below, while
X4, X are close to the threshold. In the end, the binary bits corresponding to X4
and X were determined wrongly, which leads to a detection failure. However, the
binary bits corresponding to X;, X, X3 and X5 are correctly determined, and we
are confident about that in the blind search. In fact, we are not so confident about
the bits corresponding to X4 and X, since they are just slightly above or below the
threshold. If we leave these two binary bits undetermined, we end up with a binary
number 101y0Oy,, where we have used y to denote undetermined bits. It implies that
the true signal might match one of the four templates 101000, = 40, 101100, = 44,
101001, = 41 and 101101, = 45. By simply calculating the inner products of the
data and these four templates, we will know which one matches the true signal.

Hence, we can modify the algorithm according to the above procedure. In the
beginning, we calculate X, (k = 1, ..., 6) and the threshold 7 = ¢ - max(Xy).
Then, we identify two X, which are closest to the threshold 7, and leave two binary
bits corresponding to these two X undetermined. We determine other binary bits in
the same way as before. A binary number with two unknown bits is thus constructed. It
corresponds to four original templates /. In the end, we calculate the inner product
between the data and these four templates, and detect the signal. Following this
procedure, we carry out a similar simulation as before. The detection rate is plotted
in Fig.12.4 with different combinations of ¢ values and SNRs. Comparing with
Fig. 12.1, the modified algorithm has significantly improved the performance. The
detection rate is increased at all SNRs. We also observe that ¢ = 0.5 is still the
optimal choice. For the curve ¢ = 0.5, the detection rate is 100 % above SNR 30 and
96 % at SNR = 20. This strategy can be easily generalized by assigning a probability
to each binary bit according to X}, hence obtaining the probability of each %; present
in the data. We reserve this for the future work.
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12.7 Conclusion and Future Work

We have designed a novel algorithm for GW data analysis. Instead of using 2V
normal waveform templates, this new algorithm uses only N combinations of the
original waveforms as the new templates. By calculating the inner products between
these N new templates with the data and comparing these inner products with some
threshold, we can construct a binary number with N bits. From this binary number,
we can determine which normal template in the original template bank best matches
the signal in the data, without any reconstruction process. Therefore, this new algo-
rithm can greatly reduce the computational cost in certain circumstances. However,
it requires relatively high SNRs. We have discussed a simple and straightforward
way to improve the performance of the algorithm. By leaving two most unconfi-
dent binary bits undetermined and calculating four additional inner products, we can
significantly improve the performance of the algorithm at low SNRs. The detection
rate of the modified algorithm is 100 % for 1000 different noise realizations for each
SNR larger than 25. For SNR lower than 25, further improvements are demanded.
We reserve that for future work.

One possible way to improve the algorithm is to construct additional Hy, (k =
N+1, ...) forauxiliary use, such as to determine unconfident binary bits, to suppress
the noise in Xy, etc. One can also set more sophisticated thresholds. We have used
a threshold only depending on the relative values between the inner products X, for
simplicity. A threshold also depending on the absolute values of the inner products
would help, since the probability distribution of the random part of X; depends only
on the absolute SNRs.

‘We have only carried out simulations for a bank of nearly independent templates.
In the future, we will do a simulation for an entire template bank. The correlation
between templates need also to be studied, since it could be used to reduce the noise
in the detection statistic.
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Chapter 13
Likelihood Transform: Making Optimization
and Parameter Estimation Easier

Abstract Parameterized optimization and parameter estimation is of great impor-
tance in almost every branch of modern science, technology and engineering. A
practical issue in the problem is that when the parameter space is large and the avail-
able data is noisy, the geometry of the likelihood surface in the parameter space
is complicated. This makes searching and optimization algorithms computationally
expensive, sometimes even beyond reach. In this chapter, we define a likelihood
transform (LT) which can make the structure of the likelihood surface much sim-
pler, hence reducing the intrinsic complexity and easing optimization significantly.
We demonstrate the properties of LT by applying it to a toy model in gravitational
wave data analysis. For the signal with a signal-to-noise ratio 20, LT has made a
deterministic template-based search possible for the first time, which turns out to
be much more efficient than an exhaustive grid-based search. The method can also
be directly applied to similar matched-filtering-based optimization and parameter
estimation problems in other fields.

13.1 Introduction

Parameterized optimization and parameter estimation is a general important problem
in almost every branch of modern science, technology and engineering [1-5]. The
general problem can be described as follows. Let us denote ® = (', 6%, ..., 6%) ¢ P
as the parameters to be estimated, where P is the k-dimensional parameter space. The
figure of merit (B, x) = M - (6, x) is usually some functional of the parameters 6
and the data x (e.g. measurement data from experiments). In practice, the functional
M can be viewed as a set of operations on the parameters 6 and the data x. The
goal is to find the best estimate 0, that maximizes the functional F(B,, x). Since
minimization can be cast into maximization by just adding a minus sign, we will
focus only on maximization problems. Also, for brevity, we omit x and denote F (-, X)
as F(-) from now on. The mapping M - (-, X) from 6 to F defines a hypersurface in
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the k-dimensional parameter space P. Hereafter, we refer it as the likelihood surface
in general, although sometimes it does not have to be related to the likelihood.

By definition, the likelihood surface should peak at the best estimate 0,. When
the peak is broad and smooth, there are less structures in this region. Hence, the
search is relatively easy and the resolution is poor (i.e. the error bar in the estimate
is large). When the peak is sharp and narrow, the resolution is high, but the search
is much more difficult. In general, the structure of the likelihood surface determines
the difficulty of the optimization problem. By modifying the surface structure, we
may alter the innate difficulty of the problem.

13.2 Likelihood Transform

We introduce a set of functionals ), acting on the mapping functional M, where ¢
can be either a scalar variable or a set of variables.

Fo(1) = VoM, x)]
= (thM)(3 X)v (131)

By varying o, we obtain a set of modified likelihood surfaces F,(-). We want to
find a proper set of functionals Vg, where the index [ € [0, /] C R, such that as
[ running from [, to 0, V() modifies the sharp narrow peak at the best estimate 6,
gradually (or continuously) to broader and smoother hills. We require that V) is
a unity functional, i.e. F5(,)(-) = F(-). When such a proper set of functionals is
identified, one can search on the broadest and smoothest likelihood surface, F ) ()
, since its (local) maximum 8, is usually easiest to find. Notice that this maximum
05 needs not to be the global maximum on the modified likelihood surface and it
needs not to be exactly at B,. However, as [ going from 0 to /,, 6, should gradually
converge to 0, due to the continuity of the transform. This means after identifying
the maximum By o) in the smoothest likelihood surface, the transform Yy can help
lead us to the best estimate 6,.

Following the conventions [6] used by the gravitational wave (GW) data analysis
community, it is convenient to define the inner product of two time series a(¢), b(t)
as below

00 ~x 5
(alb) =/ %fgf)df, (13.2)

where a(f), I;(f) are the Fourier transforms of a(¢) and b(¢). S,(f) is the so-
called two-sided power spectral density of Gaussian noise, usually defined as
E[r*(fHn(f)] = Su(Ho(f — ).

We denote the normalized GW waveform with parameters ® by 4(6, t), thus
(h(6)|h(B)) = 1. The measured data x (¢) containing a GW signal with parameters G,
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and Gaussian noise n(z) can be expressed as x () = Ah(0,) + n(t), where A is the
strength of the signal.
The figure of merit is the signal-to-noise ratio (SNR)

F(0) = M(0, x)
= (x|h(®))
B /°° (RO, f)
e Sa()

Although F(0) here is not the likelihood, it is directly related to the likelihood
L(B) o exp[F(B)?/2]. The functional M can be interpreted as two operations: first,
to generate a waveform with parameters 0; second, to calculate the inner product
of this waveform and the data x. Usually, F(-) has a sharp narrow peak at the best
estimate 0,. As an example, we define the functionals ), as convolution operators

df. (13.3)

~7:0(®) = (yoM)((B’ X)
= (x|(Kg % h) (D))
= (Ko * F)(0), (13.4)

where K, is the kernel function. The last equality is because convolution is a linear
operation and F (0) is linear in /2 (B). Since the convolution can be viewed as a smooth-
ing functional, the modified likelihood surface F,(-) is smoother than the original
one. For brevity’s sake, we temporarily assume 0 is a scaler parameter and choose the
kernel function as one-dimensional Gaussian function Cy = ﬁ exp(—%). The
argument below can be trivially generalized to multi-dimensional case. When o is
large, the kernel is a very broad Gaussian function, hence making the likelihood sur-
face F,(-) very smooth. As o decays to 0, F;(-) converges to the original likelihood
surface F(-). Notice that when o — 0, we have K, — 6(0). In practice, we can set
o(l) =0(0)(l, —1)/1.. As I goes from O to I, F5(-) evolves gradually from very
smooth modified likelihood surface to the original likelihood surface.

From another point of view, Iy, » #(0) in Eq. 13.4 is just a weighted average of
many waveforms. Since waveforms with similar parameters are correlated, by using
a summation of nearby waveforms one can smooth the original likelihood surface.
As the number of averaged waveforms goes to 1, the modified likelihood surface

converges to the original likelihood surface.

13.3 How to Use Likelihood Transforms

Likelihood transform Y can gradually modify the likelihood surface, hence chang-
ing the intrinsic complexity of the optimization problem. In the meantime, it retains
the relation between the modified likelihood surfaces and the original likelihood
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surface. Therefore, likelihood transform can be used in many ways. For instance,
it can accelerate stochastic optimization methods, such as Markov chain Monte
Carlo [7, 8], particle swarm optimization [8, 9], genetic algorithm [8, 10, 11], etc. It
can help design hierarchical search algorithms. In some circumstances, it can even
make a deterministic search possible.

13.3.1 Comparison with Simulated Annealing

Likelihood transform is different from simulated annealing [12], which is also a
technique to accelerate stochastic optimization algorithms. In the following, we will
compare the two. Simulated annealing employs a temperature parameter 7 to heat
the likelihood surface from £(6) oc exp[F(6)?/2] to exp[F(B)?/27]. As the stochas-
tic search algorithms proceed, the temperature cools down gradually. Therefore, the
heuristics can escape from local maxima more easily and explore the whole parame-
ter space more thoroughly, hence being accelerated. As an example, we simulated
a sinusoidal signal with only one parameter w = 0.2 rad/s buried in white Gaussian
noise. The SNR was 9. Figure 13.1a shows how simulated annealing gradually mod-
ifies the likelihood surface (or more rigorously the SNR surface). As seen from the
figure, the likelihood surface is less spiky at high temperatures. Notice that the num-
ber of local maxima (including the global maximum) is the same at all temperatures,
and the locations of these maxima are unchanged.

As for likelihood transform, it modifies the likelihood as exp[]-"qj(l)((}?z)2 /2]. For
simplicity, we choose the functional ), to be convolution operators with a Gaussian
kernel. We then applies it to the same simulated data. The modified likelihood sur-
face F5()(B) are shown in Fig. 13.1b. Notice that both the number of local maxima
and their locations are changed by the likelihood transform. In addition, the likeli-
hood surfaces are smoother with less structures comparing to the cases of simulated

Simulated Annealing Likelihood Transform
o——— b - [ J— s
| (a Original b —Original |
8r ( ) - Temperature=4 B-( } ------ a=4mHz |
| N W D Temperature=25 o= 10 mHz ||
T .+ Temperature=100] L + a=20mHz |

o . . Y, =Y  f
0.18 0.19 0.2 0.21 0.22 0.23 0.24

Fig. 13.1 A comparison of simulated annealing (a) and likelihood transform (b)
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annealing. These features of likelihood transform may help accelerate the stochastic
optimization algorithms more efficiently.

13.3.2 Manipulation of the Intrinsic Complexity
of the Likelihood Surface

In this subsection, we applied likelihood transform to a toy model in gravitational
wave data analysis. Although it is a somehow simplified model, it captures important
features of the general problem and can demonstrate the method in a more general
(less background-dependent) way.

Suppose the normalized gravitational wave chirp signal is in the following form

h(,1) = \/;cos[woao(t) + wiaq(1)], (13.5)

where 6 = (wp, w;) are the two parameters to be estimated, the two time func-
tions are defined as ag(t) =1 — % and o (1) = (t — $)2, T is the total observa-
tion time, which we choose to be 51205 in the simulation. We inject a signal with
parameters wy = 0.0628 rad/s, w; = 6.136 x 10~ rad/s*. Notice that wy is an angu-
lar frequency. The searching parameter ranges for wy and w; are (W™, wy™’) =
(1.2mrad/s, 0.126 rad/s) and (W%, w)™) = (=3.07 x 107 rad/s?, 1.23 x 1073
rad/s?) respectively.

As an example, we use convolution operators as the functionals ), (/) and assume
the kernel function to be a Gaussian function with diagonal covariance. Then, we

have
Hqyy(0) = (Ko@) * h)(0),
- //’C[wo — w1 — ) oo, 1 (D]

- h(w), wp)dwydw|,

= h(@)e‘%[”o(l)zao(t)z-ﬁ-”l(l)zﬂl(l)zl’ (13.6)
Fouy(0) = (x|Hoq) (0)). (13.7)

Wesetl, = 1 and choose (0o(1), o1(1)) = (1 — I)(wy” — wli™, wi?” — W) tobe a
fraction of the entire searching parameter range. We will see how this parameter / can
modify the likelihood surface and adjust the difficulty of the optimization problem. In
general, the difficulty of the search can be very well described by the required number
of templates for a certain mismatch by template-based search. Following conventions,
we set the mismatch to be 0.03. By calculating the metric of the likelihood surface
on the parameter space [13], it’s straightforward to estimate the number of templates
required by optimal layout (we choose rectangular layout here). When!/ = [, = 1, we
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Fig. 13.2 The original likelihood surface F(wp, wi). It peaks at the true signal parameter with an
optimal SNR 8. It is very fluctuant. Optimal template layout requires 69,620 templates

have the original likelihood surface F (wy, w;) shown in Fig. 13.2. On this likelihood
surface, the optimal layout requires 69,620 templates. This large required number is
due to the noise-like features of the likelihood surface.

The structure of the likelihood surface can be greatly simplified through the like-
lihood transform. Figure 13.3a—d shows the several transformed likelihood surfaces
Foa)(wo, wr) with different values of /. When [ = 3/4, the modified likelihood sur-
face is very smooth. It is extremely simple to characterize the structure of this likeli-
hood surface or find its maximum. As/ increases, more and more structures appear on
the likelihood surface F4 () (wo, wy). It gradually converges to the original likelihood
surface F (wp, wy). These figures show how the difficulty of the optimization problem
can be modified by the likelihood transform. More precisely, we have calculated the
required number of templates for different values of / in Fig. 13.4.

For 1 — [ > 0.1, the 0.03-mismatch rule gives an error rectangular, which is com-
parable to the area of the entire search parameter space. However, the error rectan-
gular may have very different shape from the search parameter space. Therefore,
in 1 —/ > 0.1 region, the required number of templates shown in Fig.13.4 only
serves as a rough estimate of the complexity of the modified likelihood surface. In
the more interesting 1 — [ < 0.1 region, the dependence of the required number on
1 — [ roughly follows a power law. The required number decreases rapidly in this
region, hence the difficulty of search decreases rapidly.

These features of likelihood transform can potentially help the optimization algo-
rithms. For example, it may help in the design of efficient hierarchical algorithms to
search for GW signals.
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13.3.3 A Deterministic Search

In this subsection, we will show that in some cases the likelihood transform can even
make deterministic optimization methods such as Newton’s method possible. Hence,
the search algorithm will be much more efficient.

In the neighbourhood of a (local) maximum 8, on modified likelihood surface
Fow(+), the geometry can be described by a Taylor series

AD) = ——— AG'AG” AB). (13
Fowy oy + AB) = Foy (B50)) + > on00” 0" A0” + O(AFY).  (13.8)

where we have assumed the Einstein summation convention. The first derivative van-
ishes and the modified Fisher information matrix / /?v(l) =— geﬁ(;) lo=6,,, is positive
definite due to the fact that F(By()) is a maximum stationary point. Notice that,
when [ = [, the Taylor expansion is on the original likelihood surface around the
best estimate 6., and [, = f,(,l*) = —% lp=s, is the Fisher information matrix
at the best estimate B,. For each modified likelihood surface F,)(-), there exists
a neighbourhood B; € P of B,() where the geometry of the likelihood surface can
be approximated by a quadratic form quite well (say, the percentage error caused
by higher order term is less 1 %). According to our design, the smaller the / the
smoother the modified likelihood surface F (), hence the larger the neighbour-
hood B;. Sometimes, B3 can be as large as the entire parameter space P.

Starting from any point ®, € 3; on modified likelihood surface Fy(-), one can
easily find the best estimate By ;) via some deterministic local-search algorithms. For
instance, by neglecting higher order terms in Eq. 13.8 and differentiating both sides
with respect to 6”, we get

OFoiy(®) 0 Fou N

= . 13.9
o 00100” (13.9)
Thus, we calculate the best estimate in just one step
0;;’(1) =0 — AO"
PFory " 0F oy (®)
— 0" - o) o0 13.10
! [aauaov 09" (13.10)

where g_eg’g)’,,’ is constant in 3, so it can be calculated at 6;. Observe that as / gradually

runs from 0 to /,, B; shrinks smoothly. Also, since B; is roughly a quadratic region, o;
should be near the center of 3;. So, there must exist a smaller region B;, (with/; > [)
which contains O in it. One can take By as the starting point in 53;, and repeat
Eq.13.10 to calculate the best estimate 8,(,) on Fy(,)(-). By iterating the above
process, one will find the best estimate 6, on the original likelihood surface F(-).
Usually, we need to study the properties of the neighbourhood 55; in order to design
an efficient deterministic algorithm. However, in some cases, likelihood transform
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Fig. 13.5 A plot of six transformed likelihood surfaces F5 ;)

can change the likelihood surface to be so smooth and regular that we can simply
choose a set of ), to perform a deterministic search. As an example, we still use
the waveform model introduced in the last subsection and set the SNR to 20. Six
transformed likelihood surfaces are shown in Fig. 13.5. Notice that the global maxima
on these surfaces are normalized to 1. We start from 10 points in the parameter space
uniformly sampled in wy with random w;. Then, we calculate the values of F(0)
at these 10 points on the smoothest transformed likelihood surface. The maximum
among these 10 points is set as the initial location for the Newton’s method with 10
iterations. Figure 13.6 shows the simulation result of this deterministic algorithm.
After 7 iterations, this algorithm converges to the location of the global maximum
of the original likelihood surface. In this process, we have only used a few tens of
templates. Comparing to 69,620 templates required by a grid-based search algorithm,
the deterministic algorithm is about 1,000 times more efficient.

(b)
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5 5
0.0645/
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Fig. 13.6 A deterministic search with the help of likelihood transform. The pink points identify
the trajectory of 05 o (b) is a zoom-in version of (a)
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13.4 Discussion and Further Work

We have introduced the likelihood transform as a general tool to make optimization
and parameter estimation easier. The likelihood transform can gradually transform
the likelihood surface to a smoother shape with less complex structure. On these
modified likelihood surfaces, the local and global maxima are much easier to find.
Since these modified likelihood surfaces are directly related to the original likeli-
hood surface by the likelihood transform, one can find the global maximum of the
original likelihood surface more efficiently based on knowledge of the transformed
likelihood surfaces. We have shown the possibility to use likelihood transform to
accelerate stochastic optimization methods. Compared to simulated annealing, like-
lihood transform gives indications that it would accelerate the heuristics more effi-
ciently. We applied likelihood transform to a GW data analysis problem with a toy
waveform model. Simulation results show that likelihood transform can manipulate
the structure of the original likelihood surface, hence allowing it to combine with and
accelerate a hierarchical search. We have also shown that for the toy waveform model
with SNR = 20, likelihood transform make a deterministic search possible, which
turns out to be 1,000 times more efficient than the exhaustive grid-based search for
GW signals. With the help of likelihood transform, a template-based deterministic
search for GW signals is shown to be possible for the first time.

In this work, we have only considered linear functionals, or more specifically,
convolutions with Gaussian kernels with uncorrelated covariances. In the future, we
will study other linear functionals and even nonlinear functionals ), which would
potentially exhibit better properties.
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