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Absent a Telephone, a Bicyclist Had to Save
the World

On the height of the Cuban missile crisis in 1962, no direct telecommunication
line existed between the White House and the Kremlin. All messages going back
and forth had to be sent through intermediaries. The world teetered on the brink of
nuclear Armageddon when in the evening of October 23 President John F. Kennedy
sent his brother, Robert Kennedy, over to the Soviet Embassy for a last-ditch effort
to resolve the crisis peacefully. Robert presented a proposal on how both sides
could stand down without losing face. Right after the meeting, Ambassador Anatoly
Dobrynin hastened to write a report to Nikita Khrushchev in Moscow. A bicycle
courier was called in to take this letter to a Western Union telegraph station, and
Dobrynin personally instructed him to go straight to the station because the message
was important—which was hardly an exaggeration.

That man on the bicycle, in my view, has saved the world, most likely without
even knowing it.

A year later, a direct telegraph line was installed which was popularly called the
“red telephone.” (There never was an actual red telephone sitting in the Oval Office.)
A lesson had been learned: communication can be vital when it comes to solving
conflicts.

Today the situation is vastly different from what it was less than half a century
ago. The world is knit together by a network of connections of economic, political,
cultural, and other natures. That is only possible because virtually instantaneous
long-distance communication at affordable cost has become ubiquitous. In earlier
centuries, important news—say like the outcome of a battle—often was received
only several weeks later. Today we are not the least bit astonished when we watch
unfolding events in the remotest corner of the planet in real time, living color, and
stereophonic sound.

The biggest machine on earth is the international telephone network. It allows
you to call this minute, on a lark, your neighbor, your friend in New Zealand,
or the Department of Sanitation in Tokyo. And we got used to it! Behind the
scenes, of course, there is a substantial investment in technology going into this,
and more effort is required to keep up with society’s ever-rising demands. Consider
international calls: For some time, satellites seemed to be the most efficient and
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elegant means. Just a decade or two later, they were no more up to the growing task,
and a new, earthbound technology took over: optical fiber transmission.

Meanwhile, the amount of data handled by fibers exceeds anything that older
technology could have handled ever. Today’s Internet traffic would not exist without
fiber, and the cost of a long-distance phone call would still be as expensive as it was
a quarter century ago.

Optical fibers, mostly made of glass but sometimes also other materials, are the
subject of this book. The development toward their maturity we enjoy today was
mostly driven by the challenges of telecommunications applications. Research has
faced quite a number of questions concerning basic physics of guided-wave optics,
and many researchers around the world toiled for answers. As a result, fibers can do
more than was anticipated: Besides the obvious application in telecommunications,
they have also become useful in data acquisition. This is why engineers and
technicians working in either field need to know not only their electrical engineering
but increasingly also some optics. At the same time, it emerges that nonlinear
physical processes in fibers will lead to exciting new technology.

This book has its origin in lectures for students of physics and engineering which
I gave at the universities in Hannover, Münster, and Rostock (all in Germany) and
in Luleå (Sweden). The book first appeared in the German language. It was well
received, but the German-speaking part of the world is not very big, and I heard
opinions that an English version would find a larger audience.

The book presents the physical foundations in some detail, but in the interest
of limited mathematical challenges, there is no fully vectorial treatment of the
modes. On the other hand, I found it important to devote some space to nonlinear
processes on grounds that over the years, they can only become more relevant than
they already are. I proceed in outlining the limitation of the data-carrying capacity
of fibers as they will be reached in a couple of years, i.e., at a time when the
student readers of this book will have entered their professional life as engineers
or scientists, dealing with these questions. For the English edition, I have expanded
certain sections slightly, to keep up to date with current developments.

It is my hope that both natural scientists and engineers will find the book
helpful. Maybe physicists will think that some segments are quite “technical,” while
engineers may feel that a treatment of nonlinear optics may be not so much for them.
My answer to that is that either subject is required to form the full picture. In this
context, it is sometimes unfortunate that the structure of our universities emphasizes
the distinction between natural scientists and engineers more than is warranted. I
envision that, in analogy to electronics engineers, we will see the emergence of
photonics engineers. They would have good practical skills on the technical side
and at the same time a deep understanding of the underlying physical mechanisms.
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About the Second Edition

After the original German-language edition of 2005 (which is now out of print), a
first English version of this book was published in 2009 and was quite well received.
In the meantime, the field of fiber optics has advanced at a rapid pace. This applies
equally to new insights into some phenomena of nonlinear light propagation in fibers
as to the state of the art concerning the technology used for high-volume optical data
transmission.

The 2009 edition of the book described basics which obviously remain valid.
However, it also provided a view of the latest thinking at the time. From the vantage
point of today, some important developments have occurred in the meantime but
were—naturally—not covered. This led author and publisher to consider a revised
version, which is herewith presented. Several segments have been added and some
were updated. The opportunity was also taken to correct a few minor errors which,
apparently, some mischievous gremlins had arranged to creep in.

May the new edition be useful to its readers!

Rostock, Germany Fedor Mitschke
March 2016
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Part I
Introduction

An optical fiber in comparison to a paper clip. On the far left, part of the fiber’s
plastic coating is visible; mostly the fiber is bare, though. Only a small fraction of
its diameter of 125�m near the fiber axis serves the waveguiding directly.



Chapter 1
A Quick Survey

Visual, and hence optical, communication is older than language. Hand signals,
waving of the arms, and fire and smoke signals are basic means of communication,
and except under detrimental environmental conditions like pitch-black darkness
or fog, they are useful over longer distances than shouting; besides, they are not
thwarted by noises like surf at the seashore.

Normally we communicate verbally. Hence, when optical means are employed,
there is a necessity to agree on a code that serves to translate the visible signs into a
meaningful message.

Certain signs of nontrivial meaning are understood universally and even inde-
pendent of language: consider the handwaving sign for “come here.” On the
other hand, the vocabulary of such signs is too limited to convey truly complex
messages. Codes that represent smaller units of language—syllables, phonemes,
or individual letters—are much more universal. The best-known example may be
the Morse alphabet. Of course, it is mandatory that both sender and receiver of the
transmitted message have agreed on the code ahead of time. In today’s computerized
environment, codes of various kinds are of tremendous importance.

The range (maximum distance) of optical transmission of messages can be
increased by concatenation of several shorter spans. In the Greek tragedy of
Agamemnon (part of The Oresteia), Aeschylus (ca. 525–456 BCE) mentions how
the news about the fall of the city of Troy was transmitted over 500 km to
Agamemnon’s wife, Clytemnestra [2]. Also, fire and smoke signals were transmitted
from post to post along the Great Wall of China as early as several centuries
BCE; during the Ming dynasty 1368–1644, this link stretched for over 6000 km
from the Jiayuguan Pass outpost to the capital, Beijing (and on to the east). In
modern times, the first systematic attempts at optical telecommunication took place
in France, where Claude Chappe constructed the first optical telegraph in 1791
[4]. It is little known that Chappe initially worked with electrical devices, but
decided that optical ones were advantageous. The French National Convention was
initially decidedly disinterested, but in 1794 the first state-operated telegraph line
was started between Lille and Paris. Every few kilometers, there were repeater
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4 1 A Quick Survey

Fig. 1.1 A semaphore atop the roof of the Louvre. From [1]

stations called semaphores using mechanically movable pointers or hands; they
were observed from neighboring stations, aided by telescopes. This system allowed
to send messages from Paris to Lille in just 6 min—corresponding to twice the
speed of sound. Later, a whole grid of such lines was built across all of France,
eventually reaching a total length of 4800 km (Fig. 1.1). As is often the case with
new technology, the first application was a military use. Napoleon I successfully
used it for his trademark rapid military campaigns and had a portable system built
for his campaign against Russia. Sweden also built a comparable network, and the
UK and other countries followed suit. Around 1840, this technology saw its climax
and was very common. Also the USA had a few lines (“Telegraph Hill” remains a
San Francisco landmark to this day).

However, the age of electric telegraphy dawned by then. Half a century after their
introduction, optical telegraphs were phased out. As it turned out, electric systems
were less prone to service interruption in case of inclement weather. Beginning ca.
1858, progress in the electric technology finally added superior speed as a further
advantage of electric systems.

One should note that the heyday of the electric telegraph coincides with the age
of colonialism. That is relevant insofar as it speaks to the interplay between technical
and political developments. Colonial powers supported the new technology because
it gave them much better control over their dependencies. One hardly overestimates
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Fig. 1.2 Alexander Graham Bell’s photophone: sunlight is directed onto a membrane that vibrates
as it is agitated by the sound from the speaker. The modulated light beam is transmitted and
eventually demodulated with a Selenium photo cell. Reproduced with permission from Alcatel-
Lucent

the importance of fast message transmission for the political situation of the day.
We are denizens of the twenty-first century and find it impossible to imagine the
absence of electronic means of data transmission.

For a long time, in the development of the technology, optical systems took
a back seat. It is therefore amusing to note that the inventor of the telephone,
Alexander Graham Bell,1 was strongly interested in optical means of transmission.
In 1880, he introduced what he called the photophone, a contraption in which the
sound pressure waves emanating from a speaker’s lips moved a mirrored membrane
in such a way that a light beam directed onto it got intensity-modulated (Fig. 1.2).
On the receiver side, a selenium photocell served as a converter of the received light
wave back to an electric current that could be converted to audible sound with an
ordinary headphone. Both transmitter and receiver were thus realized with optical
means; only at the receiver, electrical gear was also involved.

1Bell was not the only, indeed not even the first, inventor of the telephone. He filed his patent
in 1876, but the Italian technician Antonio Meucci (who lived in New York) had demonstrated a
working model as early as 1860 and the German teacher Philip Reis built another version in 1861.
The American Elisha Gray had the bad luck of filing his patent all of 2 h after Bell. However, Bell
is usually cited as the inventor because he won all legal patent battles, developed the scheme into
a marketable product, and had the wherewithal to introduce it to the public.
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This system had the unsurmountable disadvantages that a good light source was
not available—after all, the sun does not always shine—and that the transmission
span was vulnerable to adverse atmospheric conditions: rain, snow, and fog. Bell
had no way of knowing, of course, that 100 years later both problems would be
solved through the introduction of practical lasers and optical fibers. Only after both
these novelties were available, optical data transmission had a new chance. Indeed,
the chance turned into a success story probably second to none.

In the 1960s, the laser had just been invented, and the prospect of having
workable, practical devices in the near future became realistic. At that time, the
propagation of laser beams through the open atmosphere in the presence of various
atmospheric conditions was studied systematically and at different wavelengths [3].
As an alternative, there were also attempts to guide light in ducts. This made it
necessary to refocus the beam frequently. In one approach, this was attempted with
a large number of lenses that were inserted into the beam path in certain short
distances. In a different try, researchers experimented with a distributed lens: This
involved a gas-filled duct in which a radial temperature gradient was generated and
maintained. The temperature gradient, by way of expansion of the warmer gas at
the center, gave rise to a refractive index profile that acted as an effective lens. The
same basic idea but in a “solid-state” version is used today in the so-called gradient
index fibers (see below). It is illuminating to assess the state of the art at that time
as described in an account given by Kompfner [6].

There were obvious disadvantages in these approaches: It is not easy to form
bends in such light guides—the bend radius had to be hundreds of meters! Also,
installation and operation were quite costly. Only a few years later there were optical
fibers: thin strands of glass, flexible enough to be coiled around a finger, and as
inexpensive as copper wire, with no maintenance cost because the light-guiding
index profile is built right into the fiber structure!

At that time, it was well known that microwaves can be sent through wave-
guides that are easy to produce. It was also known that glass can be spun into thin
threads, that such threads are flexible, and even that they can guide light. However,
transmission of information through such fibers was impossible due to the high
transmission loss, a property shared by all transparent solid materials known at that
time. Different materials had been studied, but among the best suited was glass with
a chemical composition given by SiO2, known as fused silica. But even in fused
silica, light was attenuated by at least one third after a distance no longer than 1 m.
This ruled out the transmission over any long distances.

Then, in 1966, Kao and Hockham of Standard Telecommunications Laboratories
in London published a paper with a remarkable prediction [5]. The authors, none
of them a materials expert by training, argued that the strong attenuation of glass
was not really an inherent, intrinsic property but was rather caused by chemical
impurities in the glass composition. They predicted the possibility of producing, by
way of suitably refined procedures, glass with an attenuation no more than 20 dB/km
instead of the 1000 dB/km common at the time. This would represent a reasonable
value for transmission.
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Here and in the following, we will make extensive use of decibel (dB) units. They
are in ubiquitous use in all of electrical engineering, and it is indispensable that the
reader is aware of what they mean. If you are unsure, check Chap. 13 for a thorough
explanation.

In hindsight, the paper by Kao and Hockham came out at just the right time. Very
quickly tremendous progress in this direction was achieved in Japan, England, and
the USA. In a cooperation of Nippon Sheet Glass Co. and Nippon Electric Co., in
1969, the first gradient index fiber was made that was suitable for communication
purposes. It was given the name SELFOC fiber (as in self-focusing), and it had
an attenuation below 100 dB/km. In England, coordinated by British Post Office, a
cooperation between universities and industry was launched, and in the USA, Corn-
ing Glass Works and Bell Laboratories joined forces. The latter cooperation was
the first to be able to announce the attenuation factor quoted by Kao and Hockham:
In 1970, Kapron and coworkers at Corning created several hundred meters of a
single-mode fiber with an attenuation below 20 dB/km. The production technique
involved thin layers of fused silica deposited on the inside surface of a glass tube
(see Sect. 6.2). It allowed much better chemical purity than before. It also provided
the possibility of adding Germanium oxide in precisely controlled concentration, so
that a radial index structuring can be obtained, which is crucial for waveguiding.

Later on, both this manufacturer and others improved the attenuation to 4 dB/km
by continuous fine-tuning of the procedure. At this point a limit was reached, which
is indeed due to the structure of the pure fused silica itself. Nonetheless, losses could
be reduced further when it was understood that the loss is wavelength-dependent
(see Chap. 5). Operating with infrared light, in 1976, the milestone of 1 dB/km was
reached in Japan, and it has now become commercial routine to obtain less than
0.2 dB/km, a value that is indeed very close to the limit of what is possible at all
with fused silica.

As product maturity developed, so did the industrial-scale production capacity.
This, in turn, had a profound effect on the cost. When fiber was first introduced in a
mass market in 1981, standard fiber commanded a price around 5 $/m. Within less
than 2 years, that number dropped to one tenth, and today the price may well be
below 10 cents/m. The reason is simple: Of three main factors affecting the cost of
a product, two are insubstantial here.

Raw material is cheap because it is abundant. Go to the beach: How
much sand is there?

Labor cost is low because production can be almost completely auto-
mated.

Capital investment is high, but as long as a sufficient quantity of fiber is sold,
the cost per meter is low.

A first major field trial of fiber-optic transmission was performed in 1976 in
Atlanta, followed by a first exploratory operation in 1978 in Chicago. Germany
started in 1977 in Berlin; other countries have similar stories.

Further progress concerning fibers was linked to progress with respect to light
sources. Semiconductor laser diodes had been known since the early 1960s, but the
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first version required cryogenic cooling and operated only in pulsed mode. In 1970,
the first continuous wave laser diodes at room temperature were introduced, but
their life expectancy was quite short (just a couple of hours). Today laser diodes
are specified as being able to handle x gigabits per second, but in the early 1970s it
was x gigabits—and that was it! Progress since then has been truly impressive, and
today’s laser diodes can easily reach a useful lifetime of 105 h (corresponding to 10
years of continuous operation) and more.

As fiber was beginning to be deployed, the need for a number of other auxiliary
components arose. This includes the permanent or reconfigurable connection
between fibers, which requires to maintain quite narrow tolerances in the relative
positioning of the fibers. It took a while to master such tight tolerances but then
the progress on the learning curve eased the transition from multimode fibers,
which have more relaxed requirements, to single-mode fibers that require the highest
precision.

Multimode fibers are characterized by a relatively large diameter of the light-
guiding core, which is much larger than the wavelength of the light. In the most
common version, the core diameter is 50�m, embedded in a fiber of 125�m outside
diameter. In contrast, single-mode fibers have a core diameter that is larger than
the wavelength only by a small factor; typical values range between 7 and 10�m
(Fig. 1.3). This does not affect the outer diameter of the fiber, which may be the same

Fig. 1.3 Multimode fibers
and single-mode fibers only
differ in the diameter of the
light-guiding core, which is
made from a glass that is
doped in a slightly different
way than the surrounding
cladding
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Fig. 1.4 A standard optical
fiber in comparison to a
match

as for a multimode fiber; indeed, the outside diameter of 125�m is the standard
value for both fiber types. For a size comparison see Fig. 1.4.

In first applications, multimode fibers were used. They allow better incoupling
efficiency, and there are fewer losses when connecting fibers together. However,
as we shall see in Sect. 2.3, single-mode fibers allow higher data rates over longer
distances. Therefore, once the connector tolerance issue was solved satisfactorily,
single-mode fibers became the favored choice and are almost exclusively used today
at least for the long haul. Only for short distances, in particular in local area networks
between several computers inside one building, multimode fiber is still preferred
because the highest data rate is not required, but some savings can be had in coupling
and connecting.

At this point, we should take a look at the basic ingredients of any data
transmission system (see Fig. 1.5). The information to be transmitted can originate
from a person speaking into a telephone, but it might also come from a telefax
machine sending data or from a computer hooked up to a line. In the case of a
human speaker, the acoustic signal is first converted to an electric signal. Then it
gets coded to whatever format is appropriate for the transmission.

The coded signal is then passed onto a light source to modulate it. This means that
some property of the light wave, for example its amplitude or phase, is influenced
by the coded message. The simplest case would be to switch the light source on and
off in accordance to a digital signal representing the message.

The modulated light is then sent through the fiber and reaches the receiver where
it is decoded and then converted to the required format: In the case of a telephone,
this is a sound wave from the handset; for a telefax, a printout on paper.

Everything would work just fine if transmitter and receiver were sitting next to
each other (back to back). The exciting part, and the reason why all this is done
at all, is that one can “insert distance” between both stations. One only needs
to make sure that over the distance, there are no more than minimal distortions
of the signal, so that after decoding the message is still intact and transmission
errors are not perceptible. The founder of information theory, Claude Shannon,
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Fig. 1.5 Sketch of a data transmission

has mathematically stated the relations between the rate of data transmission, the
bandwidth of the line, and the disturbances occurring on the line (see Sect. 11.1.8).

It is important for a successful transmission that the signal is not attenuated
too much on the line. As mentioned above, first field trials used visible light, but
soon people realized that infrared wavelengths are much better in this respect. One
speaks of a first generation of fiber-optic systems that operated around 850 nm, a
wavelength that was convenient due to the availability of very economic gallium
arsenide laser diodes. This spectral region is also known as the first window for fiber
transmission.

The second generation operated at a wavelength around 1300 nm (the second
window). This wavelength was favored because the fiber’s dispersion (which is the
subject of Chap. 4) is particularly low there. As we shall see, this fact provides a
considerable increase of both reach and data rate. The major part of all systems
installed today is designed for this wavelength, although emphasis meanwhile shifts
to the third window.
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The third generation moves on to wavelengths near 1550 nm (the third window).
This is the regime where fibers made of fused silica have their global loss minimum
(see Chap. 5).

There have been numerous attempts to make fibers such that the main advantage
of the second window—low dispersion—would occur at the wavelength of the
third window, so that the best of both could be combined. A truly successful
implementation would have allowed to phase in the third generation more rapidly.
However, while it is possible in principle, the commercial success of these attempts
remained limited. One of the reasons that industry preferred to hang on to the second
window for a long time was that the installed base of second-generation fiber-optic
systems represented a value of billions of dollars; it did not seem to make business
sense to give up that legacy. A technical reason also was that fibers with dispersion
optimized at 1550 nm turned out to partially lose the advantage of the lowest loss.
The strategy today is that different fibers are concatenated so that dispersion is partly
compensated; we will consider such systems in Sect. 11.2.3.

At this point the reader may ask: Why is it that light in fiber optics is superior
to the more conventional electric current over copper cable? The answer to this is
found by considering the fundamental limits to transmission losses in comparison
with optical fiber and copper wire. For wire it is given by the skin effect, i.e.,
the phenomenon that at high frequencies almost all current is carried only in a
thin surface layer of a conductor, while the volume contributes little or is even
counterproductive. This effect, as described in Chap. 14, increases with frequency
and eventually defeats any high data rate, long-distance transmission. Optical fibers
do not suffer from this limitation and therefore have a clear advantage when it
comes to transmitting high data rates over long distances.

What little loss remains in optical fibers is indeed fundamental to fused silica, as
detailed in Chap. 5. There have been approaches to reduce loss even further by using
other glass types. On theoretical grounds, chalcogenides, fluorides, and halides hold
promise to have dramatically lower loss figures than fused silica. Unfortunately,
such theoretical considerations never made it into a realization. Production of such
fibers is fraught with problems arising from their chemical nature: It is extremely
difficult to obtain good purity of a highly reactive substance. Today significant
progress in that direction is not anticipated.

Our quick survey would not be complete without mentioning optical nonlinearity.
Since the early 1980s, researchers have investigated the nonlinear properties of
optical fiber. The term refers to the situation that some optical property of the
fiber, such as the refractive index, depends on the intensity of the light wave
passing through it. Nonlinearity does not occur in copper cables (at least not to
any noticeable degree, anyway), but clearly manifests itself in fibers. This was
considered a nuisance for a long time, but today it is increasingly realized that it
is precisely the exploitation of nonlinear effects that allows a new generation of
fiber-optic transmission systems, which turns out to be vastly superior to previous
technology in its data-carrying capacity. We mention here only in passing the
concept of solitons, special light pulses that maintain their shape not in spite of
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the presence of nonlinearity but due to its presence. In Chaps. 9 and 10, we will
discuss nonlinearity and solitons in greater detail.

In some sense, today’s fiber-optic networks have many aspects in common with
the telegraph networks of earlier days: either has both attenuation and dispersion;
these two represent the biggest practical problems. One can beat attenuation by
inserting repeater stations into the fibers at intervals of 50 or 100 km or so. The
novelty in fiber optics is that there is nonlinearity, and it causes effects unknown
to electrical systems engineers. Meanwhile, however, the first commercial systems
exploiting and embracing nonlinearity and solitons have taken up service, and it can
be anticipated that more is yet to come.

We must also point out now that optical telecommunication is by no means the
only field of application of fibers. Beyond their enormous data-carrying capacity
and great reach, they represent other specific properties that make them attractive
for use in data acquisition systems.

One of these properties is the enormous savings in weight, as compared to
copper wire. One does not so much realize it by comparing the densities (copper:
8:9 kg=dm3, fused silica: 2:2 kg=dm3) because equal volumes are hardly a relevant
basis for comparison. There are protective jackets around both kinds of cable, both
for mechanical protection and electrical insulation. These jackets represent the lion’s
share of the cable’s mass (bare fiber weighs in at just 30 mg/m). In a realistic
comparison between, let us say, fiber-optic cable and coaxial cable for use for
transmission in the megahertz regime over a few kilometers, it is a rule of thumb that
1 g of fiber cable replaces 10 kg of electrical cable. (Both reach and data rate of fiber
can be scaled up much higher than that of coaxial cable, though.) This represents
an immediate advantage where weight limitation is an important requirement: on
board of vehicles, ships, aircraft, and spacecraft.

In connection with reduced weight, there is also reduction of space requirement.
This is important in cable ducts in inner cities that are crowded already; any new
installation has to find a way to squeeze in. A fiber-optic cable can replace one or
several coaxial cables, upgrade the data rates, and save space at the same time. It is
of course better to replace an existing cable in a duct with an upgrade than to install
new ducts. Just imagine a work crew digging up Broadway in Manhattan to place
more ducts—this is not an option.

As a further distinctive property, fiber-optic cables are immune to electric or
magnetic field interference. This is frequently a definitive advantage in industrial
installations. Even in close proximity to high-voltage installations, etc., there is no
interference picked up by the fiber. This feature sets it apart from electric conductors.

Moreover, glass is chemically quite inert. As long as the fiber’s protective jackets
are also made of inert materials, fiber-optic cables can be deployed in chemically
hostile environments where metallic parts would quickly corrode. This is attractive
for applications in the chemical industry.

And, finally, a fiber-optic cable guarantees a perfect electrical insulation between
transmitter and receiver. The same thing can be achieved for electric cables by
other means, the so-called optocouplers, but in a manner of speaking, a fiber is
an optocoupler stretched long. Different fluctuating ground potentials are therefore
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no longer a concern when subsystems are connected with fiber optics. This is more
than a small benefit when there is a potential risk from combustible fumes that one
might find, e.g., on oil-drilling rigs. The combination of these properties leads to a
fiber-optic sensor technology, which will be discussed in Chap. 12.
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Part II
Physical Foundations

The end of a “bowtie” fiber under the microscope. The fiber’s outside diameter is
125�m. The light-guiding core is discernible as a small central bright spot. It is



16 II Physical Foundations

surrounded by a bowtie-shaped birefringent zone that gives this fiber type its name.
For further information see Sect. 4.6.2 and Fig. 4.18 in particular.



Chapter 2
Treatment with Ray Optics

Calculations in technical optics are often done with a technique called raytracing.
This is a treatment of optical systems in the framework of ray optics. It provides a
particularly clear, if incomplete, view of the properties of optical systems. Strictly
speaking, light propagation needs to be treated by taking the wave nature of light
into account. The difference is that waves give rise to diffraction and interference
phenomena which are disregarded in ray optics. Whenever the geometrical dimen-
sions of the problem are so small as to become comparable to the wavelength of
light, the ray optic treatment breaks down. This is the case in single-mode fibers.

That notwithstanding, we will first present a ray-optical consideration in order to
get an idea of the phenomena to be expected. When we then proceed with a wave-
optic treatment in Chap. 3, it will become apparent that in fibers the main difference
consists in the fact that the direction of light propagation, which can be any direction
in ray optics, is restricted to a discrete set of angles in the full picture.

2.1 Waveguiding by Total Internal Reflection

Consider a light ray impinging on some boundary to an optically less-dense
medium. Less dense is optics parlance and means “having a lower index of
refraction.” At a suitable angle of incidence the ray will be fully reflected, instead
of passing through. This process is called total internal reflection and is explained
in any textbook on optics (see, e.g., [3, 7, 8]). Total internal reflection plays a role
in many contexts: Prisms in binoculars or camera viewfinders use it, and it is the
reason why to a diver the water surface appears like a mirror.

Call the angle of incidence ˛ and the angle of refraction ˇ (Fig. 2.1). At the
boundary to the less-dense medium (nA < nG if we think of air and glass), the
inequality ˇ > ˛ holds. On the other hand, ˇ cannot exceed 90ı. This becomes
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Fig. 2.1 On the principle of
total internal reflection. The
ray coming in from bottom
left at angle ˛ strikes the
boundary to the less-dense
medium and is either
refracted (angle ˇ) and
transmitted or, if ˛ is too
large for that as in case 3, is
totally reflected towards the
bottom right. Case 2
represents the borderline
situation with a grazing angle
of the outgoing beam

clear from an inspection of Snell’s law of refraction

sin ˛

sinˇ
D nA

nG

when keeping in mind that sinˇ cannot exceed unity. In that limiting case,

sin ˛crit D nA

nG
< 1:

For even larger angles of incidence, the ray is reflected back into the denser medium
nearly without loss. This is the meaning of the term “total internal reflection.”

The same mechanism can also be used to guide light around bends. In 1870 the
English scientist John Tyndall (1820–1893) during a session of the Royal Academy
demonstrated an experiment which is now part of the standard repertoire of physics
course demonstration experiments: A bucket of water is fitted in its lower part on
one side with a small hole for the water to spit out, and on the opposing side with
a window through which light from a bright lamp illuminates the hole from inside.
The water falls in a parabolic curve, and this arc of water guides the light. Some part
of the light is scattered off from surface irregularities so that, in a darkened lecture
hall, the water column glows in the dark to spectacular effect (Fig. 2.2).1

The demonstration hinges on the fact that the refractive index of water exceeds
that of the air surrounding it. The index of water is about nW D 1:33, while that of

1Tyndall did not invent this himself. The twisted but amusing story leading up to our present-day
insights about light-guiding and fibers is reported in [4].
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Fig. 2.2 Total internal
reflection in water lets
illuminated fountains glow.
Submerged lamps illuminate
the fountain from below, and
the water column guides it up.
This picture was taken in
Boca Raton, Florida, USA

air is about nA D 1. Most glasses have indices in the range of nG � 1:4 to 1:8, and
therefore the same guiding effect can be had in strands or rods of glass.

And indeed, fibers exist which consist of nothing but basically a long cylinder of
glass or transparent plastic with a diameter of the order of 1mm. They are used for
some special illumination applications, like guiding light into hard-to-reach places
inside some apparatus, and everybody has seen those decorative lamps in which a
whole bundle of such fibers is combined. Typical optical fibers for data transmission
have a somewhat more complex inner structure, though.

2.2 Step Index Fiber

A frequently used type of fiber is called step index fiber. Its internal structure is
as shown in Fig. 1.3: There is a core with circular cross-section, surrounded by
a cladding zone with ring-shaped cross-section. The core consists of a glass with
slightly higher refractive index than that of the cladding. Light is therefore guided
in the core (but we will need to make this statement more precise in Sect. 3.13). The
advantage of this two-layer structure over the simple version is that the fiber surface,
i.e., the boundary between cladding and the outside is no longer involved in the
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Fig. 2.3 Sketch for
calculating total internal
reflection

light-guiding mechanism. In the event that the fiber surface is soiled or touches other
glass, the function is not compromised. The unstructured fiber, in contrast, would
suffer from enormous loss. Just consider the case that a drop of oil or other liquid
comes into contact with the fiber surface: if it had a refractive index comparable to
that of the glass, the waveguiding by total internal reflection would break down [10].

Since the outer surface is not important for the waveguiding in step index fiber,
we may simplify its discussion by pretending that the cladding diameter is infinitely
wide so that no outside surface exists. Now we can discuss the largest angle with
respect to the fiber axis which a ray of light may take and still be guided by the fiber
(Fig. 2.3).

Near the fiber end face, we distinguish three refractive indices n, with

nK > nM � nA;

where we used indices A for ambient air, K for core, and M for cladding.2 In the
second relation, the equality is valid for unstructured fibers; we will concentrate on
step index fibers, though.

We apply Snell’s law:

nA sin ˛ D nK sinˇ; (2.1)

nK sin � D nM sin ı: (2.2)

2These indices suggest the German words Kern (core) and Mantel (cladding), respectively. We
keep them from the original German edition of this book because the English words core and
cladding, as they share the same initial, do not provide a better option. Conveniently, the related
English words “kernel” and “mantel” also denote the central part of something and some kind of
enclosure, respectively.
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When we assume the fiber axis to be perpendicular to the front face, ˇ C � D �=2

and hence sinˇ D cos � . Then

sinˇ D
q
1 � sin2 �: (2.3)

The limiting angle for total internal refraction is defined by

sin ımax D 1 ) sin �max D nM=nK: (2.4)

Inserting Eq. (2.4) in (2.3) and that in (2.1), we obtain

nA sin˛max D nK

s
1� n2M

n2K
D
q

n2K � n2M: (2.5)

We may assume nA D 1 for air. Then the limiting angle ˛max for rays to be guided
is

˛max D arcsin
q

n2K � n2M:

The argument of arcsin bears a special name: it is called the numerical aperture,
often abbreviated as NA:

NA D
q

n2K � n2M:

(The word “aperture” derives from Latin apertus D open and indicates some form
of opening. We also find it in “aperitif,” the opening of a meal, and in “overture,” the
opening of an opera or a romantic affair. “Numerical” here indicates a dimensionless
number.)

Clearly, the numerical aperture is a measure of the index difference between core
and cladding. The largest acceptance angle for rays hitting the fiber face is given by
sin ˛max D NA, inside the fiber by sin ˛max D NA=nK . Using the fact that in (linear)
optics ray paths can be reversed, the acceptance cone at the same time describes
the exit cone of light at the other fiber end. In Fig. 2.4, this input/output cone is
schematically shown.

We use the opportunity to introduce another frequently used quantity which is
also a measure of the index difference between core and cladding:

� D n2K � n2M
2n2K

: (2.6)

The conversion between NA and� is given by

NA D nK

p
2�:
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Fig. 2.4 Acceptance and exit
cone of a fiber are shown
schematically. In reality, the
cone is not quite as sharply
limited

Usually the index difference is quite small (a few tenths of 1 %) so that � can be
simplified as

� � .nK � nM/.nK C nM/

nK.nK C nM/

� nK � nM

nK
:

This last relation justifies that � is called normalized refractive index difference or
normalized index step.

Let us consider typical realistic numbers for single-mode fibers. We assume� D
0:3%; with nK D 1:46, this implies NA D 0:11; 0.11 rad indicates an acceptance
angle of about ˙7ı. Rays hitting the fiber face within a cone of this angle will
be guided in the fiber. Rays coming in at steeper angles will leave the core; they
propagate in the cladding and move away from the axis. Ultimately they are lost for
guiding: The cladding often has more loss than the core, so that part of this light is
dissipated. The rest eventually reaches the outside surface where typically a plastic
coating is applied for protection; the coating has strong optical loss. We conclude
that light rays which have left the core once are lost forever.3

In this chapter we have used ray optics. We have seen no reason to assume that
within the cone some angle would be preferred over any other one. In the following
chapter, a wave-optical treatment will reveal that within the continuum of angles,
only a discrete subset is physically possible. These specific angles are related to the
so-called modes of the light field in the fiber. The concept of modes is of central
importance for the waveguiding properties of fibers and will be studied in detail
in the next chapter. However, if many such modes exist, the continuum of angles
is approximated again, and our ray-optical approximation is the better justified
the more modes there are. In the remainder of our ray-optical treatment we will
therefore have multimode fibers in mind.

3There is one subtle exception to this otherwise reliable rule: so-called whispering gallery modes
will be described in Sect. 7.4.
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2.3 Modal Dispersion

In this paragraph we will consider the fact that different modes, i.e., rays entering
the fiber at different angles, travel different path lengths until they reach the far end
of the fiber. Consequently they arrive at different times. This scatter of arrival times
is known as modal dispersion. Figure 2.5 illustrates the situation.

In a fiber of length, L, let the path length of a beam propagating at an angle ˇ with
the axis be called L0. Clearly, L0 D L= cosˇ. Earlier we have seen that sinˇ cannot
be larger than NA=nK. In any event, ˇ � 1, and therefore we may approximate
sinˇ � ˇ and cosˇ � 1 � ˇ2=2. Then we obtain

L0 D L

 
1C NA2

2n2K

!
D L .1C�/ :

Let us insert the numerical example values from above. With � D 0:3% it
follows that L0 is 3 parts in 1000 longer than L. This implies that the path difference
between the straight and the maximally inclined beam reaches one full wavelength
after a distance of 333 wavelengths.

In an interference experiment, one finds a first destructive interference—and
hence a mutual cancellation of both rays—after a path difference of 1=2wavelength;
here, after a distance of 167 wavelengths which corresponds to only a fraction of a
millimeter of fiber length. But of course, since both rays propagate at an angle,
they do not fully cancel out but rather produce a fringe pattern of parallel bright
and dark stripes across their full cross-section. Averaged over that cross-section, the
interference effect cancels out.

Nonetheless, one and the same light signal coupled into the fiber may propagate
along different paths so that there is a scatter of propagation times often called
delay distortion. In the case of short light pulses, this causes an increased duration,
i.e., a widening of the pulse. This can go so far that pulses widen to more
than their separation; then neighboring pulses spill into each other. When this

L

L’ L’

L

β

Fig. 2.5 Modal dispersion: rays propagating at an angle with the fiber axis travel a longer distance
than those remaining parallel to the axis. This leads to different arrival times
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intersymbol interference happens, the transmitted message is mangled and may be
undecipherable.

A rough estimate will suffice to show that this is indeed a serious problem. Let
us for simplicity take the velocity of light in the fiber as c=n.4 Then, the propagation
time � for fiber length L in a step index fiber with core index nK is � D nKL=c. For
the ray along the axis, the travel time acquires its minimal value:

�min D nKL

c
:

Meanwhile, the ray traveling at the maximal angle takes the longest time:

�max D nKL

c
.1C�/ D �min.1C�/:

In comparison, the difference ı� D �max � �min is

ı� D nKL

c
� D �min�:

This shows the simple result that the relative amount of propagation time scatter is
given by �:

ı�

�min
D � :

Let us again take � D 0:3% as a typical value. In a fiber of 1 km length, the arrival
times will spread over ca. 15 ns.

This is just a rough estimate, of course: we used approximations and we have
neglected that in addition to meridional rays there can also be helical rays (Fig. 2.6).
Nonetheless it tells us that there is some maximum data rate above which the transit
time spread will begin to deteriorate the signal integrity. The maximum rate is given
by the inverse of the maximum scatter: in our example we obtain about 70MHz.

That is not a very high rate, and 1 km is not a very long distance, either. We
therefore realize that the mechanism of modal dispersion can severely hamper the
usefulness of fibers for practical applications. Fortunately, there are ways to avoid
the problem. One can either use the so-called gradient index fibers or, for the highest
demands, single-mode fibers. We will take a closer look at both.

4By doing so, we momentarily ignore the distinction between phase and group velocities.
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a)

b)

Fig. 2.6 Light guiding by total internal reflection in a fiber. There are meridional and helical rays.
Meridional rays (a) propagate in a plane, helical rays (b) on a twisted path

2.4 Gradient Index Fibers

In order to avoid the scatter of arrival times, one can use a certain radial profile of the
refractive index in the fiber. Instead of a step index profile, let us consider a gradient
index profile where the index depends on the radial position like

n.r/ D
�

nK

p
1 � 2� .r=a/˛ W jrj � a

nM W jrj > a;
(2.7)

where a denotes the core radius. The resulting profile is sketched for selected values
of the profile exponent ˛ in Fig. 2.7.

The optimum index profile is the one which minimizes the differences in transit
time. In first approximation, the optimum is obtained for ˛ D 2; in a parabolic index
profile, fiber rays follow a curved—rather than zigzag—path. While the curved path
is still geometrically longer than the straight path along the axis, the detour is made
up for by the lower index away from the axis so that the optical path is the same.

Now one obtains for the scatter of transit times

˛ D 1 W ı� D nKL

c
� as above

˛ D 2 W ı� D nKL

c

�2

2
improvement by

�

2
� 10�3

This is a considerable improvement: For a gradient index fiber with parabolic
profile, the transit time spread is reduced by about three orders of magnitude. The
modal dispersion is then reduced to a few tens of picosecond per kilometers.
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Fig. 2.7 Some common
index profiles, as described
by Eq. (2.7). For ˛ D 2 the
profile is parabolic. For
˛ ! 1 the profile becomes
triangular, and for ˛ ! 1,
rectangular (step index
profile)

A precise calculation of the optimum profile exponent is quite involved due to
the sudden transition of the index profile in the core to the constant index in the
cladding. It has been found that the optimum value does not occur exactly at ˛ D 2,
but slightly off, depending on glass type, doping material, and wavelength [2, 5].
One reason is the so-called profile dispersion, which is treated in Sect. 4.2. Simply
stated, it occurs because � depends on wavelength, due to the fact that both nK

and nM depend on wavelength in not exactly the same way. Moreover, the optimum
exponent is not the same for meridional rays and helical rays; it thus also depends
on the specific mix of excited modes [1]. For these reasons, the significance of the
theoretical optimum is reduced. Unavoidable manufacturing tolerances in making
the fibers make it difficult to maintain a target value with high precision anyway.
Therefore, improvement over the parabolic index profile through further perfecting
the index profile is only marginal.

2.5 Mode Coupling

The distribution of power over the different modes in a multimode fiber is not
necessarily maintained as the light propagates down the fiber. Whenever the fiber
is bent, there is coupling between modes. Any motion of the fiber on the table
or lab bench, indeed just small temperature fluctuations, can and will modify the
distribution of power over the modes (the “mode partition”). This has no further
consequences as long as the detector at the fiber end correctly measures the sum
of all partial powers. In practice, however, detectors are not necessarily uniformly
sensitive across their surface; in such case some modes would register stronger than
others. Then random changes of the mode partition will be reflected as random
fluctuations of the received power, a phenomenon called mode partition noise.

As the mode partition fluctuates, the transit time scatter is mitigated to some
degree. It becomes unlikely that a certain photon travels the total distance in the
fastest or the slowest mode; more likely it will undergo a random walk between
faster and slower modes, and experience an averaging effect. Provided that the fiber
length exceeds a certain minimum called the coupling length Lcoupl, the temporal
spread does not grow in proportion to distance L, but only as

p
L. A typical value
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Fig. 2.8 Light guiding in a bent fiber: bends imply that rays impinge on the core–cladding
interface at a different angle. Part of the light may even be lost because the maximum angle for
total internal reflection is exceeded (dashed)

for the coupling length is on the order of 100m for step index fibers and a few
kilometers for gradient index fibers.

Mode mixing is then beneficial for reducing modal dispersion. One can even
enhance this effect by enforced mode mixing. This is accomplished in mode mixers
which are mechanical fixtures that deform and bend the fiber (Fig. 2.8). It is also
a well-known fact that sometimes a fiber can transmit larger bandwidth when it
is made from a concatenation of several pieces, rather than one single piece. One
might have expected that irregularities at the joints (the fiber splices, see Sect. 8.3.2),
would be detrimental, but the opposite is true!

2.6 Shortcomings of the Ray-Optical Treatment

The treatment given so far is not accurate. We have pretended that there are rays
of light which are reflected at the core–cladding interface like at an ideal mirror.
Of course, light is a wave phenomenon. The wave partially protrudes across the
interface and reaches into the second medium down to a penetration depth on the
order of a wavelength. This makes the ray path longer; equivalently one can also
speak of an additional phase shift known as Goos–Hänchen shift [9]. We are dealing
with fibers which have core diameters not a whole lot larger than the wavelength,
and therefore we must expect significant corrections.

However, rather than attempting to incorporate such corrections into a ray-optical
treatment, we take the high road and replace it altogether with a proper wave-optical
treatment in the next chapter. As we shall see, wave optics predicts automatically
that part of the light penetrates into the cladding, that the exit cone does not have a
perfectly sharp boundary, and it will tell us that there is a discrete set of possible
distributions of the electrical field in the fiber cross-section known as the fiber
modes. This is equivalent to saying that rays cannot make any angle with the axis
between zero and the maximum, but only one out of a discrete set.
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Chapter 3
Treatment with Wave Optics

In this chapter we will start with Maxwell’s equations, derive a wave equation,
apply this to the geometry of the fiber, and finally arrive at the modal structure.
Closed solutions can be obtained for step index fibers and for gradient index fibers
without cladding (i.e., when the gradient continues ad infinitum). We will restrict
our treatment to step index fibers. For the sake of clarity, we will also use several
approximations in order to emphasize important issues over detail.

3.1 Maxwell’s Equations

In MKS units of measurement, Maxwell’s equations are [3]

r � ED D �; (3.1)

r � EB D 0; (3.2)

r � EH D EJ C @ED
@t
; (3.3)

r � EE D �@EB
@t
: (3.4)

Here,

EE electric field strength (V/m)
EH magnetic field strength (A/m)
ED dielectric displacement (As/m2/
EB magnetic induction (Vs/m2=T)
EJ current density (A/m2/

� charge density (As/m3/
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Some textbooks simplify by considering only processes in vacuum. Of course,
there is no use for us in doing so; we need to describe processes inside a material.
Therefore we need to use quantities which are given by the material’s properties:

EP polarization
EM magnetization
	 conductivity

Polarization and magnetization describe the distortion of atomic orbitals as they are
produced by the influence of the electromagnetic field. Conductivity describes the
transport of electric charges (as is well known, there are no magnetic charges); in
the general case it takes the form of a tensor.

The following relations hold:

ED D 
0 EE C EP; (3.5)

EB D �0. EH C EM/; (3.6)

EJ D 	 EE: (3.7)

where


0 vacuum permittivity (Dielectric constant of free space),
�0 vacuum permeability (Permeability constant of free space).

The numerical values are given by


0 D 107

4�c2
Am

Vs

� 8:85 � 10�12 As

Vm
;

�0 D 4�

107
Vs

Am

� 1:26 � 10�6 Vs

Am
:

Two combinations have special relevance: the product

�0
0 D 1=c2;

where c D 2:99792458� 108 m=s is the speed of light in vacuum, and the ratio

�0=
0 D
�
4�c

107

�2
D Z20 :
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Z0 � 377� is the vacuum impedance and denotes the amplitude ratio of the electric
and the magnetic part of the electromagnetic wave:

EE
EH

D Z0:

In air and glass we may simplify as follows:

• � D 0 There are no free charges (Approximation 1)
• EJ D 0 There are no currents (Approximation 2)
• EM D 0 There is no magnetization (Approximation 3)

Hence, of all properties of the material, we retain only the ones which influence the
polarization. Using these approximations, Maxwell’s equations are reduced to

r � ED D 0; (3.8)

r � EB D 0; (3.9)

r � EB D �0
@ED
@t
; (3.10)

r � EE D �@EB
@t
: (3.11)

3.2 Wave Equation

Applying r� to Eq. (3.11) yields

r � r � EE D r �
 

�@
EB
@t

!
; (3.12)

r.r � EE/� r2 EE D � @

@t
.r � EB/: (3.13)

We rearrange the RHS using Eqs. (3.10) and (3.5) and obtain

r.r � EE/ � r2 EE D � @

@t

 
�0
@ED
@t

!
(3.14)

D ��0 @
2

@t2
ED (3.15)

D ��0
0 @
2

@t2
EE � �0 @

2

@t2
EP: (3.16)
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We thus find the wave equation

�r.r � EE/C r2 EE D 1

c2
@2

@t2
EE C �0

@2

@t2
EP: (3.17)

A fully analogous equation can be derived for the magnetic field.
Now we must make some statement about the relation between the polarization

EP and the field strength EE. This involves properties of the material. We will make the
assumption that the polarization follows a change of field strength instantaneously,
i.e., quicker than any other relevant time scale involved (Approximation 4). Then
we can write the polarization as

EP D 
0

�
�.1/ EE C �.2/ EE2 C �.3/ EE3 C � � �

�
: (3.18)

Now we introduce a further approximation: We will assume that the polarization
of the material is always parallel to the field strength (Approximation 5). This is
a justified assumption: In a homogenous medium, the tensor �.i/ takes the form
of a scalar. It is true that certain crystals are in use in optics which are decidedly
nonhomogenous, but glass is homogenous due to its structure (see Sect. 6.1.2). In a
fiber, the homogeneity is only slightly perturbed due to the refractive index profile.
On the other hand, wave guiding essentially occurs parallel to the axis. In this
geometry one may make the paraxial approximation which plays a role in many
optical arrangements. Here it means that propagation will make only small angles
with the axis. Then the index change between core and cladding, which is small to
begin with, is almost inconsequential because EE and EH are both perpendicular to
the interface and are proportional to each other. (The proportionality constant is the
impedance, which in free space is given by Z0.) In this book, we will use the scalar
approximation throughout, because (a) a vectorial treatment is considerably more
involved and (b) the impact on the result is minimal. Below we will briefly point out
the difference between the modes obtained in the scalar treatment and the so-called
hybrid modes from a vectorial calculation.

We return to the wave equation, in which we can now introduce a simplification.
Given that now EEkEP and thus EDkEE, it follows that r � ED D r � EE D 0. On the LHS
of the wave equation, the term with r � EE then disappears and it remains

r2EE D 1

c2
@2

@t2
EE C �0

@2

@t2
EP: (3.19)

3.3 Linear and Nonlinear Refractive Index

We will now go one step further and make specific assumptions about the relation
between electric field and polarization.
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3.3.1 Linear Case

In many situations, it is well justified to truncate the series expansion of Eq. (3.18)
after the linear term

EP D 
0�
.1/ EE: (3.20)

This is the linear approximation (Approximation 6); it is valid for low light
intensities. Due to Eq. (3.5) we then get

ED D 
0 EE �1C �.1/
�
: (3.21)

The expression inside the bracket is the relative dielectric constant

1C �.1/ D 
 D
�

n C i
c

2!
˛
�2
;

where n is the refractive index and ˛ is Beer’s coefficient of absorption. We are
going to study propagation in extremely pure, low-loss glass. If there ever was a
justification for using the low-loss approximation that ˛ � 0 (Approximation 7),
this is it. Then, 
 is real and is given by


 D n2: (3.22)

On the RHS of Eq. (3.19), we insert the relation (3.20) between E and P and then
obtain

r2EE D n2

c2
@2

@t2
EE: (3.23)

This is the linear wave equation, as it is obtained directly from Maxwell’s equations
using Approximations 1–7. An analogous equation

r2 EH D n2

c2
@2

@t2
EH (3.24)

can be found by similar procedure for the magnetic component of the wave. From
now on we will drop vector symbols (arrows) for convenience.



34 3 Treatment with Wave Optics

3.3.2 Nonlinear Case

If one does not truncate the serial expansion (3.18) after the linear term, one can cap-
ture some interesting physical processes that are lost in the linear approximation, but
which are experimentally observed and are of relevance for advanced applications.
As soon as E is no longer so small that truncation after the linear term is justified,
we enter the realm of nonlinear optics.

Here our main interest is for light in glass. Glass is a material which has a
statistical structure, which is isotropic on average. Therefore glass has an inversion
symmetry so that �.2/ D 0. The first nonvanishing higher-order term in the series
expansion is then the one containing �.3/. Even higher terms, however, can still be
safely neglected except in some very special circumstances since their coefficients
are small so that they become noticeable only at enormous intensities. This is
why we can restrict our discussion to the impact of the �.3/ term (alternative
Approximation 6). It will turn out, though, that this term can make a big difference.

As before, we keep the low-loss approximation, so that the only conceivable
effect is a modification of the refractive index. In the linear case we had

P D 
0�
.1/E

and

n2 D 
 D 1C �.1/:

In the interest of a clear distinction, we shall denote the 
 appearing here as 
linear.
Similarly, from now on the refractive index n in this equation shall be denoted by
n0; we will call it the small signal refractive index. For the nonlinear case we obtain

P D 
0
˚
�.1/ C �.3/E2

	
E (3.25)

and


 D n2 D 1C �.1/ C �.3/E2 D 
linear C �.3/E2: (3.26)

This is the same as


 D 
linear

�
1C �.3/


linear
E2
�
: (3.27)

Since the nonlinear contribution to the refractive index is a small correction, we
obtain

n D n0

s
1C �.3/


linear
E2 � n0

�
1C �.3/

2n20
E2
�
: (3.28)
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We rewrite this as

n D n0 C Nn2E2 (3.29)

with

Nn2 D �.3/

2n0
: (3.30)

The numerical value of Nn2 for fused silica is slightly frequency-dependent and is
also influenced by dopants. However, these dependencies are weak and we can use
the typical value of 10�22 m2=V2. The intensity I (power per area) of a light field
is proportional to the square of the field amplitude. Therefore it is quite common to
write

n D n0 C n2I (3.31)

with I D .n0=Z0/E2 and

n2 D 3 � 10�20 m2=W: (3.32)

We see that inclusion of the �.3/ term results in a modification of the refractive
index: The index always depended on wavelength, but now it also depends on
intensity.

Under conditions that one would consider “reasonable”, this modification is tiny
indeed: Even an irradiated power of 1 kW, focused down to a spot of 100�m2, will
result in an increase of the index of only

n2I D 3 � 10�20 m2=W
103 W

10�10 m2
D 3 � 10�7: (3.33)

This is a change which is much smaller than the core–cladding index difference of
a fiber. As we proceed to consider the field distribution in the fiber, this term will
therefore be inconsequential. Equation (3.23) remains valid—in the linear case one
can equate n with n0, but in the nonlinear case n.I/ D n0 C n2I. We will see later
(beginning with Chap. 9) that this nonlinearity unfolds its impact when the phase
evolution of a light wave is considered.

3.4 Separation of Coordinates

At this point, we introduce simplifications which are based on the special geometry
of fiber: circular cross-section, extended in the longitudinal direction. This strongly
suggests the use of cylindrical coordinates r; 
, and z. We take the propagation
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direction as the positive z direction. As is well known, the Laplacian in cylindrical
coordinates reads

r2E D 1

r

@

@r

�
r
@

@r
E

�
C 1

r2
@2

@
2
E C @2

@z2
E: (3.34)

We introduce the following ansatz for the optical field of the light wave:

E D E0NZT : (3.35)

Here,

N D N .r; 
/

is the field amplitude distribution in the plane normal to the z-axis,

Z D Z.z/ D e�iˇz

denotes a running wave with wave number ˇ, and

T D T .t/ D ei!t

denotes a monochromatic wave with (angular) frequency !. Such separation is
permitted due to the linearity discussed above, which makes it possible to pull out
a factor of E0, and paraxiality, which implies that both the electric and magnetic
field components are basically perpendicular to the propagation direction; thus,
longitudinal and transverse processes are decoupled. We write ˇ, not k for the
propagation constant; this way we admit a difference between the wave vector and
its longitudinal component. This is to allow propagation in analogy to the rays that
make an angle with the fiber axis (see Sect. 2.3).

Using cylindrical coordinates and this ansatz, the wave equation takes the form

1

r

@

@r

�
r
@

@r
E0NZT

�
C 1

r2
@2

@
2
E0NZT C @2

@z2
E0NZT D n2

c2
@2

@t2
E0NZT :

(3.36)

Obviously, all terms contain the constant factor E0, which is thus cancelled out. The
physical reason, again, is the linearity assumed here.

Partial derivatives act differently upon N ;Z , and T . The first term can be
rewritten as

1

r

@

@r

�
r
@

@r
NZT

�
D ZT 1

r

@

@r

�
r
@

@r
N
�
;



3.4 Separation of Coordinates 37

which can be simplified to yield

ZT
�
1

r

@

@r
N C @2

@r2
N
�
:

The second term becomes

ZT 1

r2
@2

@
2
N ;

and the third

�ˇ2NZT :

On the RHS we obtain

�n2

c2
!2NZT :

We will denote the vacuum wave number by k0. Inside a medium with refractive
index n, we will write k D nk0 D n!=c. Then, the RHS becomes

�k2NZT :

Now the factor ZT is common to all terms and is thus cancelled out, too. This
is caused by the homogeneity of the problem in space (at least in propagation
direction) and time. We are left with the field amplitude distribution in the plane
normal to the propagation direction. As typical fibers are circular in cross-section, it
is useful to perform a further factorization:

N .r; 
/ D R.r/ˆ.
/: (3.37)

When we now reinsert all terms and multiply with r2=Rˆ, we obtain

r

R
@

@r
R C r2

R
@2

@r2
R C 1

ˆ

@2

@
2
ˆ � r2ˇ2 D �k2r2; (3.38)

which after sorting of terms becomes

� 1

ˆ

@2

@
2
ˆ D 1

R

�
r2
@2

@r2
R C r

@

@r
R C r2

�
k2 � ˇ2�R

�
: (3.39)

We see that now the LHS contains ˆ and not R; on the RHS it is the other way
around. Therefore, both sides must be equal to some constant. We will denote this
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constant by m2. Now we have two independent equations for the azimuthal and the
radial parts of the field amplitude distribution:

@2

@
2
ˆC m2ˆ D 0 (3.40)

and

r2
@2

@r2
R C r

@

@r
R C r2

�
k2 � ˇ2

�
R D Rm2;

which, by using the abbreviation �2 D k2 � ˇ2, is written in simpler form as

r2
@2

@r2
R C r

@

@r
R C .�2r2 � m2/R D 0: (3.41)

To obtain some understanding of the meaning of quantities �, k, and ˇ, we recall
the ray-optical description where we had rays propagating at a small angle with
the axis. We assign the propagation constant k to the wave. ˇ was introduced as its
component in the propagation direction. Then, one can look at � as its transverse
component.

3.5 Modes

The equation for the azimuthal structure, Eq. (3.40), has the general solution

ˆ D c0 cos.m
 C 
0/ (3.42)

with c0 and 
0 constants. Surely,ˆ and @ˆ=@
 must be continuous at 
0 and 
0 C
2� . But then, m must be an integer number. This constrains the number of possible
solutions of the equation for the radial structure, Eq. (3.41).

Equation (3.41) has the form

x2y00 C xy0 C .�2x2 � m2/y D 0

when one makes the identifications y D R and x D r and interprets the prime as a
derivative with respect to x. In this form, or after scaling out �, the equation is given
in mathematical tables. It is called Bessel’s differential equation. For integer m it is
solved by

y D c1Jm.�x/C c2Nm.�x/; (3.43)



3.5 Modes 39

whenever �x is real (i.e., �2x2 � 0), or by

y D c3Im.�x/C c4Km.�x/; (3.44)

whenever �x is imaginary (i.e., �2x2 < 0). Here, functions Jm.�x/, Nm.�x/, Im.�x/,
and Km.�x/ are Bessel functions. Properties of Bessel functions are given in
Chap. 15.

In order to find the coefficients c1–c4, we must finally fix the specific geometry
of the fiber. Up to now we have only assumed that the geometry is cylindrical, and
that the value of the refractive index difference is small. Now we further specify
that we consider a step index fiber: This is both a particularly simple structure and a
realistic choice. For a step index fiber we have

n D
�

nKW r � a (inside the core);
nMW r > a (in the cladding):

(3.45)

Of course, nK > nM because there would be no waveguiding otherwise. In order to
distinguish the refractive indices in core and cladding, and also the wave numbers,
we will use indices “K” and “M” as in Sect. 2.2. Index “0” continues to denote the
respective quantity in vacuum, e.g., kK D nKk0.

In the limiting case when the wavelength is much smaller than the geometric
dimensions of the fiber cross-section, we expect to recover the results from ray
optics: Light is guided inside the core. Therefore we look for solutions with the
dominant part of the light wave concentrated in the core. We conjecture, at the same
time, that light in the cladding will have field amplitudes which decrease further
away from the center and will at least not contribute dominantly to the guided wave.

But then, �r must be real in the core and imaginary in the cladding. In other
words, at least in the core, k � ˇ must hold: The wave number must be larger
than or equal to its longitudinal component. In the cladding we may well have
the opposite situation. This corresponds to solutions to Bessel’s equation with
transversal standing waves in the core and radially decaying waves in the cladding.

We expect on physical reasons that the field amplitude distribution does not have
singularities. This implies that for the core the coefficient in the Nm term must
vanish. In the cladding, similarly, the coefficient of the Im term must vanish. This
makes good physical sense: Far away from the core we expect the field amplitude
to decay at least as rapidly as 1=r because otherwise the integral of power over the
entire transverse plane would diverge.

In order to have �r real in the core, it is required that at r � a, .�r/2 � 0,
or
�
k2K � ˇ2

�
r2 � 0. In contrast, in the cladding (i.e., at r > a), we need to have

.�r/2 � 0 and thus
�
kM

2 � ˇ2� r2 � 0 . Taken together, this implies

kK � ˇ � kM:
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The range of possible wave numbers for propagation down the fiber is thus
constrained by the requirement of waveguiding.

Once again we introduce abbreviations: The transversal components of the wave
number in core and cladding are given by

�2K D kK
2 � ˇ2;

�2M D � �kM
2 � ˇ2� I

it is customary to use the product of these quantities with the core radius a:

u D �Ka; (3.46)

w D �Ma: (3.47)

u and w are dimensionless, real positive quantities often used in the literature.
To comment on their physical significance, suffice it to say that u describes the
progression of phase and w the transverse decay of amplitude. One might call u the
longitudinal phase constant and w the radial decay constant.

In order to establish a relation between these somewhat abstract quantities and
measurable quantities, we use the following relation between u and w:

u2 C w2 D �
k2K � ˇ2� a2 � �

k2M � ˇ2
�

a2 (3.48)

D �
k2K � k2M

�
a2 (3.49)

D k20
�
n2K � n2M

�
a2: (3.50)

It is clear that u2 C w2 equals a constant. This constant is of central importance and
is called normalized frequency or simply V number. It is given by

V2 D k20 a2
�
n2K � n2M

�

or

V D k0 a NA

D 2�

�0
a
q

n2K � n2M

(3.51)

and contains all relevant data of an experimental situation. A step index fiber is
characterized by the core radius a and the refractive indices nK and nM or, alterna-
tively, numerical aperture. Either wavelength or vacuum wave number completes
the description of the experimental situation. In the following, the value of V will
be the decisive criterion to establish how many modes a fiber can support.
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Using u and w, the general solution of the wave equation for a step index fiber
can be written as:

NK D CKJm.ur=a/ cos.m
 C 
0/ W r � a;

NM D CMKm.wr=a/ cos.m
 C 
0/ W r > a:
(3.52)

We recall that from a ray-optical treatment, one would naïvely expect a rectangular
field distribution: constant 100 % amplitude everywhere in the core and 0% in the
cladding. It should by now be obvious that reality is different from that.

At r D a both solutions must connect in a smooth way. This means that we do
not expect a discontinuity: Rather, we expect the transition to be continuous and
differentiable. This is only possible when the angular dependence is identical for
both solutions, which is why in Eq. (3.52) we already wrote the same 
0 and m.

The conditions for smooth transition are

NK.r D a/ D NM.r D a/; (3.53)

@

@r
NK.r D a/ D @

@r
NM.r D a/: (3.54)

After inserting, we find

CKJm.u/ D CMKm.w/; (3.55)

CK
@

@r
Jm.ur=a/

ˇ̌
rDa

D CM
@

@r
Km.wr=a/

ˇ̌
rDa
: (3.56)

In the second of these equations we can introduce

@

@r
D u

a

@

@.ur=a/
(3.57)

and thus use the argument ur=a throughout; then we can write the derivative at
r D a as

CK
u

a
J0

m.u/ D CM
w

a
K0

m.w/ (3.58)

(the prime (0) denotes the derivative with respect to the argument).
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For the existence of a solution, it is required that the determinant of coefficients
be zero:

CKCMJm.u/
w

a
K0

m.w/ � CKCMKm.w/
u

a
J0

m.u/ D 0: (3.59)

From this, CKCM=a can be eliminated immediately. Now we use a well-known
recursion relation between Bessel functions (see Chap. 15):

uJ0
m.u/ D mJm.u/� uJmC1.u/; (3.60)

wK0
m.w/ D mKm.w/ � wKmC1.w/: (3.61)

With this the derivatives can be eliminated:

Jm.u/
�
mKm.w/ � wKmC1.w/

� D Km.w/
�
mJm.u/� uJmC1.u/

�

wJm.u/KmC1.w/ D uKm.w/JmC1.u/

or

Jm.u/

uJmC1.u/
D Km.w/

wKmC1.w/
. (3.62)

From this relation between u and w, we will now obtain the permitted solutions
for the fundamental mode of the fiber. It is obvious that functions Km.w/ on the RHS
are always positive while functions Jm.u/ on the LHS frequently change their sign.
From this, one sees certain combinations of argument values (and thus V numbers)
for which solutions are possible.

Explicit solutions are best obtained numerically. However, for our present
purpose, we can inspect some special cases which will give us insight without
invoking a computer.

3.6 Solutions for m = 0

Let us first consider the case of m D 0, which stands for rotationally symmetric field
distributions over the fiber’s cross-section. Then the equation is reduced to

J0.u/

uJ1.u/
D K0.w/

wK1.w/
: (3.63)
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For a survey of possible solutions, we use the following table in which LHS and
RHS of Eq. (3.63) are juxtaposed:

u J0 J1 J0=uJ1 K0=wK1 w

0 1 0 1 ) 1 ) 0
:
:
: C C C ) C ) C Branch of solutions

2.405 0 C 0 ) 0 ) 1
:
:
: � C � ) � ) � No solution

3.832 � 0 1 ) 1 ) 0
:
:
: � � C ) C ) C Branch of solutions

5:520 0 � 0 ) 0 ) 1
:
:
: C � � ) � ) � No solution

There is an alternation of ranges with and without solutions. The table only checks
the algebraic sign; we can go beyond that and actually compute the values pertaining
to the branches of solutions and plot them in a diagram of the .u;w/ plane. This
is done in Fig. 3.1. The curves represent ratios of two Bessel functions; their shape
looks similar to a plot of a tan function. This is not surprising as we state in Chap. 15
that J0 resembles a cosine function and J1 a sine function.

Additionally, we can plot the locus of all points pertaining to a given V number.
They form segments of circles in the .u;w/ plane. For a given fiber, circles with
different radii correspond to experiments at different wavelengths. The other way to
look at it is that for a given wavelength, different radii correspond to different core
diameters.

Fig. 3.1 Solutions of the
eigenvalue equation for
m D 0 in the u–w plane. As u
increases, there is an
alternation between regimes
with existing (e.g.,
0 � u � 2:405) or
nonexisting (e.g.,
2:405 � u � 3:832)
solutions. Labels at the
branches denote indices mp
of the LPmp modes, as
explained in Sect. 3.9
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Points of intersection between the tan-like branches with the circle segments
define possible solutions, i.e., combinations of u and w in a particular given situation
(V fixed). Obviously the first branch of solutions exists at any V number between
zero and infinity. The second branch shown here exists only above a minimum V . It
takes the value of V D 3:832, as given by the first zero of Bessel function J1. For
all other branches shown one can make a similar statement about the minimum V
which is always defined by a zero of J1.

3.7 Solutions for m D 1

We might proceed by directly inserting m D 1 into the eigenvalue equation
Eq. (3.59). This is not a problem for a computer solution. However, here we want
to get a feel for the situation without recourse to a computer, and therefore it is
advantageous to use an alternative recursion relation of Bessel functions which
contains not m C 1 but m � 1. This way we obtain an equation for m D 1 which
again only contains J0 and J1 (instead of J1 and J2); this makes our argument more
transparent.

So let us use

uJ0
m.u/ D �mJm.u/� uJm�1.u/ and

wK0
m.w/ D �mKm.w/� wKm�1.w/

in Eq. (3.59) to obtain

� J1.u/

uJ0.u/
D K1.w/

wK0.w/
:

In precise analogy to the procedure shown above we can again write a table to locate
the possible branches of solutions:

u J1 J0 �J1=uJ0 K1=wK0 w

0 0 1 0 ) 0 ) �1
No solution

:
:
: C C � ) � ) �

2.405 C 0 �1 ) �1 ) 0
:
:
: C � C ) C ) C Branch of solutions

3.832 0 � 0 ) 0 ) 1
:
:
: � � � ) � ) � No solution

5.520 � 0 �1 ) �1 ) 0

Branch of solutions
:
:
: � C C ) C ) C
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Fig. 3.2 Solutions of the
eigenvalue equation for
m D 0 and m D 1 in the u–w
plane for m D 1. Now there
are branches of solutions
where there were gaps in
Fig. 3.1
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Again we find an alternation between permitted and forbidden regimes, with
the changes occurring at zeroes of Bessel functions. In comparison to m D 0,
here the regimes switch roles. This way there is a branch of solutions beginning at
V D 2:405, constituting a second mode beyond the fundamental mode. Figure 3.2
combines all solutions found so far, i.e., for m D 0 and m D 1.

3.8 Solutions for m > 1

At larger m values one again finds that allowed and forbidden ranges alternate,
with the transitions occurring where V equals zeroes of Bessel functions. Figure 3.3
shows all modes up to V D 8.

We wrap up what we have learned:

• For V < 2:405, there is only one branch of solution.
• For V � 2:405, there are initially two branches.
• At certain still higher V values, more branches come up.

The particular value V D 2:405 marks the transition from the existence of a unique
solution to more than one solutions. Below, the fiber is said to be single-moded.
This first mode is called the fundamental mode, the transition point is the cutoff
of higher-order modes. For any given fiber, one can calculate the corresponding
cutoff frequency or wavelength from V D 2:405. At lower frequencies (longer
wavelengths) the fiber is single-moded. This implies that some fiber is not single-
moded in an absolute sense: Such statement has meaning only in relation to a
specified wavelength.
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Fig. 3.3 All solutions of the
eigenvalue equation in the
u–v plane up to u;w D 8

w

u

3.9 Field Amplitude Distribution of the Modes

We now see that the modes form a two-parameter family. One of the parameters
is m. m indicates the angular dependence of the field distribution of the mode. For
m D 0 the distribution is rotationally invariant, i.e., on any circular path around the
center one would find a constant field amplitude (and thus intensity). For m D 1,
the field amplitude will vary according to a sine function of the azimuthal angle.
It therefore has two zeroes at mutually opposite positions; in between there are a
positive and a negative branch, or lobe. Either branch contains a maximum of the
intensity while the algebraic sign indicates the phase of the field. Thus, in one lobe
the field oscillates in opposite phase to the other. For m D 2, a circular path would
run through two full periods of the sine function; the intensity pattern then resembles
a four-leafed clover. Again, each pair of leaves in opposite positions has the same
phase while the other pair has opposite phase. When m takes even higher values, the
angular dependence of the intensity has 2m leaves.

m also fixes which Bessel functions govern the field distribution in radial
direction: We have found a combination of Jm in the core and Km in the cladding.
Since Jm oscillates (at any m), there are infinitely many ways to smoothly connect
Jm to Km even after m has been fixed. (Recall that the signs of coefficients CM

and CK in Eq. (3.52) were arbitrary.) This set of possibilities is labeled with p, the
second parameter. We adopt here the terminology of modes as introduced in 1971 by
Gloge [2]: Modes are designated with “LPmp” on grounds that they are essentially
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Fig. 3.4 Construction of the radial intensity distribution for modes with m D 0

linearly polarized. Index m designates the number of pairs of nodes in the azimuthal
coordinate, and index p counts the possibilities in the radial coordinate.

We can now sketch what the intensity distribution of the modes looks like.
Figures 3.4, 3.5, 3.6 show the various possibilities to make the connection between
the Jm and Km terms and give an idea about the intensity distribution.

Between V D 0 and V D 2:405, there only exists the branch of solution
pertaining to the LP01 mode. This is called the fundamental mode of the fiber; it
has a particularly simple shape, not unlike a bell shape. Between V D 3:832 and
V D 5:520 we additionally find the LP02 mode. As V increases, new modes keep
coming up.

This reasoning is borne out very well by experimental observation. In [5], all
modes were excited separately so that the intensity pattern at the fiber end could be
photographed individually. Figure 3.7 shows the result.

3.10 Numerical Example

We consider a typical numerical example to illustrate the transition from a single-
mode fiber to a multi-mode fiber. Take a fiber with a D 4�m, � D 3 � 10�3, and
nK D 1:46 . From the definition of V , using the approximation NA D nK

p
2�, and

the cutoff condition V D 2:405, one immediately obtains the condition for the cutoff
wavelength:
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Fig. 3.5 Construction of the radial intensity distribution for modes with m D 1
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Fig. 3.6 Construction of the radial intensity distribution for modes with m D 2

�cutoff D 2� a nK

p
2�

2:405
: (3.64)
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Fig. 3.7 Observed intensity
distribution of all modes
existing at V D 8. For
reproduction purposes the
gray scale of the original
photograph has been reduced
to a binary black and white.
From [5] with kind
permission

Inserting the numbers, we obtain �cutoff D 1:182�m. This fiber is then a single-
mode fiber for all wavelengths longer than 1:182�m. This includes the 1.3- and
1:55-�m range preferred in telecommunication. For wavelengths shorter than �cutoff

there is more than one mode: A second mode appears at this cutoff, and at some
particular even shorter wavelength yet another mode appears. This wavelength is
obtained from the same condition by simply replacing V D 2:405 with V D 3:832.
One obtains 742 nm.

For even larger V (even shorter wavelengths) more and more modes are added.
The same fiber which supports just a single mode in the infrared will carry several
modes in the visible! As V grows very large, the wavelength becomes much smaller
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than the core radius and we approach the multimode case. This confirms our
previous heuristic assumption.

The LP01 mode exists all the way down to arbitrarily small V , i.e., at any
arbitrarily long wavelength. None of the other modes has this property. However,
the existence of the fundamental mode down to V D 0 must not be taken literally:
We have used the approximation that the fiber cladding is infinitely wide. However,
at some very long wavelength the field will penetrate far enough into the cladding to
reach the outside surface. There is always a practical limit for the longest wavelength
supported in the fiber, often dictated by wavelength-dependent losses.

3.11 Number of Modes

In order to find the total number of modes at any given V , we have to note that
there are degeneracies. For example, any mode can exist in two distinct, mutually
orthogonal polarization states which are identical in any other respect as long as we
stick to our approximation that fibers are circularly symmetric. (We will later look
at small deviations from this symmetry.) Then, all LP0p modes are actually pairs
(doublets) of modes.

For m 6D 0, we have to additionally note that the azimuthal dependence of the
solution can be written either with sin or with cos; again, these are two mutually
orthogonal variants. Taking both this and the polarization degeneracy into account,
LPmp with m 6D 0 are actually quartets of modes. Let us consider, as an example, the
situation at V D 6: From Fig. 3.3 we see six nominal modes, two of which are pairs,
and four, quartets. The total number thus is 20. Asymptotically one can approximate

V ! 1 ) total number of modes D V2=2 (step index fiber):

For gradient index fibers, there is a similar approximation with V2=4.
Strictly speaking, the modes do not have precisely linear polarization. This is

due to the fact—neglected in our approximation—that the fiber is not a perfectly
homogenous material but has a step in its refractive index. This leads to distortions
of the field which produces some deviation of the modes, mostly for higher-order
modes. We can live with that because we are mostly interested in the fundamental
mode.

3.12 A Remark on Microwave Waveguides

The reader may or may not be aware that discrete modes also exist in microwave
waveguides. Microwave waveguides are metal pipes with conducting walls. This
enforces a node of the electrical field on the boundary. In contrast, optical fibers
are weakly guiding conduits. Therefore we could use here an approximation
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which is not valid in microwave guides whereas there one finds different types of
modes and uses a different terminology [1]. Many of the modes derived here are
linear combinations of metallic waveguide modes; the following table presents the
correspondence:

LP modes Microwave guide modes

LP01 HE11
LP11 HE21, EH01

LP21 HE31, EH11

LP02 HE12
LP31 HE41, EH21

Nevertheless, similarities do exist between optical fibers and microwave waveg-
uides. The biggest difference may be that they always have a minimum frequency
even for the fundamental mode; below, no mode is supported at all. This can be
traced directly to the conducting walls. In Sect. 4.5.2, we will present a particular
case in which a fiber with special structure has a well-defined finite lower cutoff
even for the fundamental mode, too.

3.13 Energy Transport

We have calculated the modal structure of fibers under the assumption of circular
symmetry. Waveguiding arises from the guiding of modes by the refractive index
structure. As soon as a fiber is bent, the circular symmetry is broken. And, as
may be expected, then additional energy loss arises; bending losses are discussed
in Sect. 5.2. Here we can already note this much:

The fiber core may be decisive for waveguiding, but it would be an oversimplifi-
cation that the light power is guided in the core exclusively. We have seen that the
field amplitude decays radially like an exponential function; this implies that there
is always a certain fraction of power well outside the core. Different modes have
different geometric field distributions; the fraction outside the core must therefore
also be different for different modes.

The energy transport out of (or into) a certain volume element is described by the
Poynting vector

ES D EE � EH: (3.65)

The direction of propagation is perpendicular to the plane containing EE and EH.
Disregarding anisotropic materials, all three vectors are pairwise orthogonal. The
reader is reminded that by convention, the direction of polarization designates the
direction of the oscillation of EE (historically there was once a convention to refer to
EH, but that has long been obsolete).
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In most cases, one describes the energy transport of a wave by giving its
irradiance or intensity. By this, one means the temporal average of the instantaneous
intensity

Iinst D E.t/H.t/:

I gives power per unit area and thus has units of W=m2. Obviously I is the temporal
average of the Poynting vector:

I D hjSji:

In the special case that the wave is harmonic, the relations between rms and peak
values are OE D p

2Erms and OH D p
2Hrms. Then we find the intensity as

I D 1

2
OE OH:

Using the relation

OE D Z0 OH;

one can also write

I D 1

2Z0
OE2:

When the wave propagates in nonmagnetic matter with real index n, this becomes

I D n

2Z0
OE2:

Power P is the integral of intensity over the cross-sectional area s:

P D
Z

s
I ds:

After a calculation which we will not show in detail here (see [2, 4]), one finds the
energy fraction in the core (PK) and in the cladding (PM) for the fundamental mode:

PK

P
D
�w

V

�2 "
1C

�
J0.u/

J1.u/

�2#

PM

P
D 1 �

�w

V

�2 "
1C

�
J0.u/

J1.u/

�2#
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Fig. 3.8 Frequency dependence of the partition of power between core and cladding. The relative
power inside the core is shown as a function of V for all modes up to V D 8. Modes with m D 0; 1

are guided when only a tiny fraction of power is in the core (at their cutoff these curves begin at
zero). It is true for all modes that for large V the fraction approaches unity. After [2] with kind
permission

For very large V , the mode is strongly concentrated in the core. As V decreases, the
field begins to spread into the cladding. At the mode cutoff, practically all the power
is in the cladding. This is precisely what causes the loss of waveguiding. For modes
with m � 2, waveguiding is lost already when the power fraction outside the core
exceeds 1=m. Figure 3.8 illustrates the situation.

We have seen that fields of different modes have different cladding penetrations.
For any given mode, the degree of spreading into the cladding depends on
wavelength. This observation is also relevant for the fiber’s dispersion, which will
be treated in Chap. 4.
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Chapter 4
Chromatic Dispersion

A light signal propagating in an optical fiber is subject to a variety of ways in which
it can get distorted. Many of these are based on different propagation velocities
for different parts of the signal. After such distortion, there is a risk that the signal
arrives at the receiver in such a mangled form that it may be impossible to correctly
decipher it.

We already encountered one such mechanism: modal dispersion in multimode
fibers. Now we will address such distortions as they arise in single-mode fibers.

At the center of explanation is the fact that the refractive index of the fiber
glass, just like that of any other material, depends on wavelength (or frequency).
No light signal is ever truly monochromatic; rather, it contains Fourier components
from a certain spectral interval. In other words, a light pulse of finite duration by
necessity has a nonzero spectral width. Different frequency components, however,
will propagate with different velocity. This gives rise to differential transit time and
thus to signal distortion called delay distortion.

The wavelength dependence of the refractive index is behind three different
contributions to delay distortion. They are collectively called chromatic dispersion.
Individually, they are

Material dispersion. Dm: This contribution arises directly from the wavelength
dependence of the index. Material dispersion is not specific to fibers but can be
found in any bulk glass. It is independent of geometry and (given the material)
depends solely on wavelength.

Waveguide dispersion. Dw: In the particular geometry of optical fibers, there is a
modification to the differential propagation time. The reader is reminded that
we saw in Chap. 3.13 that the signal power is partitioned between core and
cladding; the splitting ratio depends on the wavelength. On the other hand, core
and cladding indices are slightly different. As the wavelength is varied, we have
a crossover from mostly core index to mostly cladding index. The result is a
contribution to the wavelength dependence of the effective index.

Profile dispersion. Dp: Strictly speaking, the index difference between core and
cladding itself, and thus �, is also wavelength-dependent. (Core index and

© Springer-Verlag Berlin Heidelberg 2016
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55
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cladding index do not vary “in parallel.”) This gives rise to another correction
which, however, is often much smaller than material and waveguide dispersion.

Another reason for dispersive distortions in single-mode fibers is related to
the state of polarization of the light. As mentioned above, each mode can be
decomposed into two mutually orthogonal parts. An ideal fiber has perfect circu-
lar symmetry; then both polarization states (polarization modes) propagate with
identical velocities. However, real-world glass always has at least some residual
birefringence; this implies a slightly different effective index for both states. One
can argue that the term “single-mode fiber” is a misnomer: Even when it is true that
only a single geometric field amplitude distribution (LP01) can propagate, it still
consists of two polarization modes. This is why in real fibers there is polarization
mode dispersion. Typically it is a small contribution; we will discuss it further below.

To characterize dispersion, one normally specifies the size of the effect per
distance. For both modal and polarization mode dispersion, one can write the
dispersion parameter

D D 1

L
ı� ; (4.1)

where ı� designates the difference of propagation time after distance L. Units of
ps/km are commonly used. For chromatic dispersion, including material, waveg-
uide, and profile dispersion, the following specification is common:

D D 1

L

d�

d�
: (4.2)

Here, D contains the three parts just mentioned:

D D Dm C Dw C Dp : (4.3)

This dispersion parameter indicates the propagation time difference per distance and
per wavelength difference; therefore, units of ps=.nm km/ are commonly used.

4.1 Material Dispersion

For any glass, the refractive index varies with wavelength. This gives rise to
chromatic defects of lenses and the color-separating capability of prisms. For
historical reasons, it became common practice (see, e.g., Schott glass catalog [2]) to
characterize types of glasses by giving their indices at three wavelengths:

• nD, the refractive index at wavelength 589.30 nm (yellow, Fraunhofer’s D line of
sodium),
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Fig. 4.1 Schematic plot of refractive index vs. wavelength. It is dominated by resonances which
occur both in the ultraviolet and the infrared

• nF at wavelength 486.13 nm (blue–green, Fraunhofer’s F line of hydrogen), and
• nC at wavelength 656.27 nm (red, Fraunhofer’s C line of hydrogen).

This choice was motivated by the availability of narrowband emission lamps at
these wavelengths. As a further characterization, often the Abbe number is given,
defined by

vD D nD � 1
nF � nC

: (4.4)

Obviously this is a metric of the wavelength dependence of the index near the central
(yellow) wavelength.

Glass catalogs often specify only nD and vD. It is instructive, however, to survey
the variation of the index over a wide spectral range. This is schematically shown in
Fig. 4.1. There are absorption bands due to electronic transitions in the ultraviolet at
wavelengths on the order of 100 nm and molecular vibrations in the infrared around
10�m. In the vast interval in between, including all of the visible and near-infrared,
pure silica glass does not exhibit any resonances. This is the reason, of course, why
it appears “crystal-clear” to the eye. The position of the absorption resonances is
reflected in the refractive index.

Pure fused silica (SiO2) has a refractive index of nD D 1:456, decreasing slightly
toward longer wavelengths. As long as one stays clear of the resonances, one can
empirically describe the wavelength dependence with interpolation formulas. One
of the best known such formulas is Sellmeier’s equation

n2.!/ D 1C
mX

jD1

Aj�
2

�2 � �2j
; (4.5)

but there are also variants to this. Coefficients Aj denote the resonance strengths
and �j the pertaining wavelengths. These coefficients are tabulated in the literature
(for various glass types, see [2], and for fibers with various doping materials and
concentrations, see e.g., [3]). In most cases three terms in the sum are considered
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sufficient; sometimes, five. Let us emphasize again that a Sellmeier curve is an
empirical fit: the coefficients �j must not be construed to indicate the resonance
wavelengths in a literal sense.

4.1.1 Treatment with Derivatives to Wavelength

We now turn to the actually observed propagation times and the scatter thereof.
Consider a plane monochromatic wave with angular frequency ! and wave number
ˇ. It is well known that it propagates with phase velocity

vph D !=ˇ ; (4.6)

whereas the propagation of a signal, like a wave packet, is governed by the group
velocity

vgr D d!=dˇ : (4.7)

The group propagation time then is

� D L

vgr
D L

dˇ

d!
(4.8)

D L
dˇ

d�

d�

d!
: (4.9)

Since ˇ D nk0 D 2�n=�, we can rearrange the first fraction in the last line:

dˇ

d�
D 2�

d

d�

� n

�

�
D 2�

�2

�
�

dn

d�
� n

�
: (4.10)

The second fraction can be rearranged using � D 2�c=! to yield

d�

d!
D 2�c

d

d!

�
1

!

�
D �2�c

!2
: (4.11)

Combining, we obtain

� D L
2�

�2
2�c

!2

�
n � �

dn

d�

�
(4.12)

or, since �! D 2�c,

� D L

c

�
n � �

dn

d�

�
: (4.13)
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Fig. 4.2 Refractive index and group index as a function of wavelength, calculated from a three-
term Sellmeier’s equation

We have now expressed the wavelength dependence of the group propagation time
as a function of the easily measured quantities n and �. We emphasize that we here
find the bracketed expression taking the role of the usual index n which only appears
in the first term of that expression. Therefore we call the bracketed expression the
group index:

ngr D
�

n � � dn

d�

�
(4.14)

Figure 4.1 shows that throughout the visible and near infrared, n decreases with
increasing wavelength; thus, in this range ngr > n. Figure 4.2 shows a comparison
of both indices for fused silica.

The scatter of arrival times at the receiver is obtained from

ı� D d�

d�
ı� : (4.15)

Herein, the derivative is

d�

d�
D L

c

d

d�

�
n � �

dn

d�

�

D �L

c
�

d2n

d�2
:
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The contribution of the material dispersion Dm to the dispersion coefficient

Dm D 1

L

d�

d�
; (4.16)

is then

Dm D ��
c

d2n

d�2
. (4.17)

In some cases the signal may occupy a quite broad spectral band. Then one must
take into account that D varies with wavelength: Dispersion would not be described
to sufficient accuracy by D alone. In such case one can additionally specify the
dispersion slope:

Sm D dDm

d�
: (4.18)

4.1.2 Treatment with Derivatives to Frequency

An alternative terminology to describe dispersion arises when one takes derivatives
not with respect to wavelength but with respect to frequency. One starts from a series
expansion of the propagation constant ˇ

ˇ.!/ D n.!/
!

c
D ˇ0 C ˇ1.! � !0/C 1

2
ˇ2.! � !0/2 C � � � (4.19)

with

ˇm D dmˇ

d!m

ˇ̌
ˇ̌
!D!0

: (4.20)

Let us assess the meaning of ˇm:

ˇ0 D ˇ.! D !0/ D kn (4.21)

where n is the ordinary (phase) index.

ˇ1 D dˇ

d!

ˇ̌
ˇ̌
!D!0

D d

d!

�
n.!/

!

c

�ˇ̌
ˇ
!D!0
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D 1

c

 
n.!0/C !

dn.!/

d!

ˇ̌
ˇ̌
!D!0

!
:

By inserting ! D 2�c=�, this can be written as

ˇ1 D 1

c

�
n.�0/ � � dn.�/

d�

ˇ̌
ˇ̌
�D�0

!
: (4.22)

The bracketed expression is the group index ngr as introduced in Eq. (4.14), which
implies that

ˇ1L D L

c
ngr D � (4.23)

holds. Then

ˇ1 D 1

vgr
D ngr

c
: (4.24)

ˇ1 is of the order of ˇ1 � 5 ns=m.
For ˇ2 we find

ˇ2 D dˇ1
d!

D 1

c

�
2

dn

d!
C !

d2n

d!2

�
: (4.25)

This quantity is called group velocity dispersion parameter or GVD parameter. It is
commonly given in units of ps2=km. The GVD parameter is preferred by theorists
over the dispersion coefficient D which is widely used by technicians. To convert,
one uses

Dm D dˇ1
d�

D dˇ1
d!

d!

d�
D ˇ2

d

d�

�
2�c

�

�
(4.26)

and thus

Dm D �ˇ2
�
2�c

�2

�
D �!

�
ˇ2 : (4.27)

There are some cases in which higher-order dispersion terms become relevant.
Then one can also specify the third-order dispersion (TOD) ˇ3. To convert between
dispersion slope S and ˇ3, one can use

Sm D .2�c/2

�4
ˇ3 C 4�c

�3
ˇ2 : (4.28)
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4.2 Waveguide and Profile Dispersion

In addition to material dispersion Dm, in fibers there is waveguide dispersion Dw.
Without explicitly deriving the result, we state that for step index fibers, it can be
calculated from [8, 17]

Dw D �VnK�

�c

d2

dV2
.Vb/ ; (4.29)

where

b D ˇ2 � k2M
k2K � k2M

:

For very large V number, the dimensionless quantity b tends to b D 1; at the cutoff
of each mode there is b D 0.

The reason for the waveguide contribution can be intuitively understood by
noting that for increasing wavelengths, the field extends more and more into the
cladding so that the light wave experiences more and more of the cladding index,
rather than just the core index (Fig. 4.3).

If one takes into account that on top of this � is also not constant but depends
slightly on wavelength, one obtains what is called profile dispersion or differential

c

c

Fig. 4.3 The travel time of a signal in a fiber is obtained from taking a suitably weighted
average of travel time pertaining to core and cladding material. At short wavelength, light is
guided predominantly in the core; at long wavelength, overwhelmingly in the cladding. The zero-
dispersion wavelength (corresponding to minimum travel time) therefore shifts toward longer
wavelength, compared to the core material alone
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Dm

Dw

5.10.1

Fig. 4.4 Total dispersion D results from the material contribution of the core Dm and the
waveguide contribution Dw. The zero-dispersion wavelength is shifted by Dw with respect to what
would be expected from Dm alone

material dispersion Dp. This contribution is usually small and will not be further
discussed here. Below we will refer to the sum D D Dm C Dw C Dp (Fig. 4.4).

Specifications by fiber manufacturers quote either D (and sometimes S) or ˇ2
(and sometimes ˇ3) at specific wavelengths. The values given refer to the total;
relative contributions of material, waveguide, and profile dispersion are not normally
provided. Conversions (4.18), (4.27) and (4.28) remain valid when indices “m” are
dropped.

4.3 Normal, Anomalous, and Zero Dispersion

Let us consider some typical numerical values. Figure 4.2 shows the refractive index
for fused silica as obtained from a Sellmeier’s equation. We make the following
observations:

• Throughout the visible and near infrared, dn=d� < 0. This implies that ngr D
n � �.dn=d�/ > n. The group index is larger than the phase index. In the near
infrared, ngr is nearly constant at about ngr D 1:46 .

• The refractive index n.�/ has an inflexion point at � � 1:27 �m. At this point,
group delay is minimal and Dm D ˇ2 D 0, so that this point is referred to
as zero-dispersion wavelength. Strictly speaking, this commonly used term is
slightly incorrect since it is only the leading order in the series expansion of the
dispersion that vanishes here. All higher-order terms still contribute. Below we
will call this particular wavelength �0.
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• For � < �0 and in the visible in particular,
d2n

d�2
is positive and thus D D

�.�=c/.d2n=d�2/ is negative, while for � > �0, D is positive. Historically,
the visible range was investigated first and therefore the trend observed there
was considered “normal.” Then, the case D < 0 is called “normal dispersion.”
Correspondingly, the opposite case D > 0 is called “anomalous dispersion.” If
the fiber is used in the second window near 1:3 �m, there is a minimum of the
dispersion (D � 0), while in the third window around 1:5 �m there is anomalous
dispersion.

Let us emphasize again: We are here concerned with one type of dispersion
exclusively and that is the group velocity dispersion. For the dispersion of the
refractive index similar terminology is used: There, too, one has “normal” and
“anomalous” dispersion. “Normal” refers to the case that the index decreases toward
longer wavelengths, the standard situation in the transparent range of most materials.
The opposite only occurs near atomic resonance frequencies; that is then called
anomalous dispersion (of the index). Unfortunately, some authors do not always
make it entirely clear just which type of dispersion they refer to, so that occasionally
confusion may arise.

The waveguide contribution to the total dispersion is negative throughout the
visible and near infrared. A typical value for standard fibers is �2 ps=.nm km/.
At long wavelengths, it acts opposite to the material dispersion. Consequently,
the zero-dispersion wavelength in standard fibers is slightly shifted with respect
to bulk fused silica, toward longer wavelengths by typically about 20–30 nm.
According to a CCITT1 standard in effect since 1984, the dispersion of fibers for
telecommunication purposes shall be bounded as follows:

jDj � 3:5 ps=nm km for 1285 nm � � � 1330 nm,
jDj � 20 ps=nm km at � D 1550 nm.

Near 1:55 �m, a value of D D 18 ps=nm km is typical. (According to Eq. (4.27)
this corresponds to ˇ2 D �23 ps2=km.) This value will generate a propagation time
difference between two wavelength components that are 1 nm apart, which after
a distance of L D 10 km reaches ı� D 180 ps. The zero-dispersion wavelength
near 1300 nm provides minimal spread in propagation time in the second window.
Third-order dispersion varies not as much with wavelength as the second-order
term. Typical numbers are S.�0/ D 0:085 ps=nm2 km, corresponding to ˇ3.�0/ D
�0:08 ps3=km.

As we will see shortly, the shift of the zero-dispersion wavelength by the
waveguide dispersion can be intentionally increased. This allows to make fibers with
custom-designed zero-dispersion wavelength in the infrared at wavelengths beyond
the zero of pure fused silica.

1Comité Consultatif International Télégraphique et Téléphonique. This committee is now called
ITU-T, a subunit of the International Telecommunication Union, which is a United Nations agency
for information and communication technology issues.
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4.4 Impact of Dispersion

Consider the propagation of a light pulse which we think of as being generated by
taking a monochromatic oscillation of the electric field

OE cos.!t � ˇz/

and multiply (modulate) it with an envelope function. For the latter a reasonable
choice is a Gaussian:

e
� t2

2T20 : (4.30)

The temporal profile of the intensity (irradiance) or power of a pulse so generated is

I.t/ D I0 e�.t=T0/2 : (4.31)

Here I0 is the peak value of the intensity and T0 the pulse duration. Note that there
is not a unique way to specify pulse duration: T0 refers to the time interval between
the peak and the point where the intensity has dropped to 1=e of the maximum.
However, experimentalists and technicians often prefer the use of the half width of
the pulse, i.e., the time elapsed between the points, where the power or intensity
takes 1/2 of the peak value. This half width is often denoted by “FWHM” (full
width at half maximum); we will designate it by � . The conversion for a Gaussian is
� D 2

p
ln 2T0.

After propagation over fiber length L, both pulse duration and peak power are
modified. One can show that the pulse duration now is

TL D T0

s
1C

�
L

LD

�2
; (4.32)

where

LD D T20
jˇ2j (4.33)

is a characteristic length called the dispersion length. After distance LD, the pulse
duration has increased by

p
2. After considerably longer distance, the pulse duration

grows in proportion to distance as

L 	 LD ) TL D jˇ2jL=T0 : (4.34)

The shorter initially, the longer in the end! We point out that there is a very close
analogy with diffraction, the transverse spreading of a narrow fan of light rays, and
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time

position

power

Fig. 4.5 Dispersive broadening of a Gaussian pulse. The figure shows a pulse with initial width
(FWHM) of 0:5 ps as it propagates over a distance of 21m and widens in the process. Its peak
height is reduced because energy is conserved. Fiber dispersion was chosen here as ˇ2 D
�18 ps2=km and ˇ3 D 0

dispersion, the longitudinal spreading of a short light pulse. Far-field diffraction
(Fraunhofer diffraction) is the most transparent case: The spread increases in
proportion to distance, i.e., at a constant angle of divergence. The functional form
of the fan of rays is given by the Fourier transform of the initial shape and remains
unaltered; only scale factors evolve. In the near field (Fresnel diffraction) the
situation is more involved, but for a Gaussian it is true that its shape is maintained
except for scale factors (Fig. 4.5). Gaussians display a particularly simple behavior
under this transformation, which is of course why we considered this special shape.

This close analogy becomes especially clear when we replace the Gaussian
envelope of Eq. (4.30) with a rectangular envelope

I.t/ D

8
ˆ̂̂̂
<
ˆ̂̂
:̂

0W t < �T0
2
;

1W �T0
2

� t � CT0
2
;

0W t >
T0
2
:

This is certainly not a realistic proposition, but it comes closest to resemble
diffraction at a slit. Initially certain undulations are generated near the steep slopes;
as propagation proceeds, they spread out. After some wiggling and interfering, the
pulse shape eventually approaches the functional form of .sin.x/=x/2 (see Fig. 4.6).
The close relation to diffraction at a slit, and the transition from near field to far
field, is quite obvious here.

In Eq. (4.33) we used ˇ2 and T0. However, experimentalists and technicians often
prefer to use the dispersion parameter D and the full width at half maximum � .
Using the conversions �0 D �.L D 0/ D 2

p
ln 2T0 and jˇ2j D jDj�2=.2�c/ as
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time

position

power

Fig. 4.6 Dispersive broadening of a rectangular pulse. This case is purely academic, but it shows
in particular clarity how steep slopes of the initial shape are deformed strongly by dispersion

given above, we can write the relevant term in Eq. (4.32) as follows:

L

LD
D Ljˇ2j

T20
D LjDj�2

�20

2 ln 2

�c
: (4.35)

The first fraction on the RHS specifies the fiber(L, D) and the light signal (�, �0).
The second fraction contains only constants and is thus independent of the specific
situation. Its value equals 1:4709 � 10�9 s=m. If one now inserts L in km, D in
ps/nm km, � in �m, and �0 in ps, units combine to give an additional numerical
factor of 109, and we can write

�L D �0

s
1C

�
1:47LjDj�2

�20

�2
: (4.36)

This equation contains directly measurable quantities in technically common units
and is thus of practical value. The “magic number” 1.47 is valid for Gaussian pulses;
for other shapes somewhat different values apply. For example, the hyperbolic
secant squared shape (sech2) often encountered for solitons requires a value of 1.87.

Dispersive broadening limits the information-carrying capacity because pulses
must be kept at sufficient temporal distance from each other. The highest capacity
would be obtained at the lowest dispersion, which in turn is found at the zero-
dispersion wavelength. This is why a large fraction of all installed fibers is designed
for operation in the second window near 1:3 �m. However, this apparently obvious
conclusion was arrived at in the framework of the linear approximation, i.e., at
sufficiently small powers or intensities. Nonlinear effects (Chap. 9 ff.) will modify
the result and maximize capacity at a different condition.
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4.5 Optimized Dispersion: Alternative Refractive Index
Profiles

So far we have dealt with fibers with a step index profile. One might note that there
never is such a thing as an exact step index fiber. Due to manufacturing limitations,
there are slight deviations from the ideal profile, e.g., quite often there is a central
dip of the index caused by a certain process step (see Sect. 6.2).

More importantly, fibers are often used with a refractive index profile that is
more complex. When such fibers are produced, the objectives are to (a) maintain
the single-mode property, (b) maintain low loss, and (c) add more design degrees of
freedom for controlling and tailoring the dispersion.

4.5.1 Gradient Index Fibers

In the context of multimode fibers, we have already mentioned a radial dependence
of the index according to

n.r/ D nK

r
1 � 2�

� r

a

�˛ I (4.37)

single-mode fibers can be endowed with a similar gradient index profile. Ray optics
fails to provide a good interpretation in this case. A wave-optic calculation yields
the following:

˛ D 1: This limiting case is the step index profile (SI profile). The cutoff of the
second (LP11) mode is at V D 2:405.

˛ D 2: For a parabolic profile (Fig. 4.7) the cutoff of the second mode shifts to
V D 3:518.

˛ D 1: This is a triangular profile, hence the name “T fiber” (as in triangular).
Here the cutoff of the second mode is even higher. As a rough approximation,
the cutoff occurs at V � 2:405

p
1C 2=˛.

Fig. 4.7 Pseudo-3D
rendering of the refractive
index profile. Across the
circular section the index is
plotted in vertical direction.
From [14]
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Fig. 4.8 Schematic shape of the index profile of a W fiber (depressed-index cladding profile).
There are three indices for core, inner, and outer cladding, labeled here as n1, n2, and n3,
respectively

Fig. 4.9 Pseudo-3D rendering of the refractive index profile of a W fiber (depressed-index
cladding profile). From [14]

4.5.2 W Fibers

There may be an additional zone between core and cladding having its own lower
refractive index (Fig. 4.8). Then a cross-sectional index profile roughly resembles
the letter W; hence the name “W fiber” (Fig. 4.9). An alternative name is “DIC
fiber” for depressed-index cladding fiber. This profile provides ample freedom for
designing the dispersion variation.

For this profile, we define a V number

V D 2�

�
a
q

n21 � n23 (4.38)
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0 – 0.2 – 0.4 – 0.6 – 0.8 – 1.0

R

2.5

2.0

1.5

1.0

0.5

V
V = 1.075 (1 – R)

Fig. 4.10 For fibers with W profile, V can be controlled by the index contrast. Over a certain range
a linear approximation is appropriate. From [15] with kind permission by IEEE

and an index contrast

R D n2 � n3
n1 � n3

: (4.39)

It is a remarkable property of this profile that—in marked contrast to the step index
profile which guides the fundamental mode down to arbitrarily small V at least in
principle—here the fundamental mode has a finite lower cutoff. Approximately and
for medium values of the index contrast (Figs. 4.10 and 4.11), at the fundamental
mode cutoff one has

V0 � 1:075 .1� R/ : (4.40)

Note that in the limit n2 ! n3 which reproduces the step index profile, this simple
linear trend is not maintained, and V goes to zero in accord with our earlier result
for step index fibers.

4.5.3 T Fibers

T fibers or triangular fibers are popular because the dispersion trend is more
favorable than in step index fibers, while losses are, if anything, even lower. The
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Fig. 4.11 For fibers with W profile, the cutoff behavior can be controlled through the ratio of radii
b=a. There is even a cutoff for the fundamental mode LP01 as soon as b=a is sufficiently larger
than unity. For example, at R D �0:5 and at b=a D 3, the fiber is single mode only in the interval
1:8 � V � 3:0. For V � 3:0 there is the additional LP11 mode, and for V � 1:8 there is no guided
mode at all. After [15] with kind permission by IEEE

Fig. 4.12 Schematic refractive index profile of a fiber with triangular core profile, shown with a
depressed inner cladding. Again, three indices n1 , n2, and n3 need to be distinguished

latter can be traced back to the interface between core and cladding: for the sudden
transition of glass composition there is an enhanced chance of mechanical stress
which is mitigated by a more gradual transition. Figures 4.12 and 4.13 show a
modified T profile which is really a combination of T and W profiles.
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Fig. 4.13 Pseudo-3D rendering of a triangular profile, here with more complex cladding compo-
sition. From [14]

Fig. 4.14 Schematic refractive index profile of a quadruple-clad fiber. Here five indices and four
radii must be distinguished

4.5.4 Quadruple-Clad Fibers

It is possible to add more concentric cladding layers, and increasingly the number
of design degrees of freedom rises in the process. Quite frequently a quadruple-
clad fiber is used (see Figs. 4.14 and 4.15). The core is typically doped with
germanium and thus has a raised refractive index. The first cladding zone can be
doped with phosphorus and fluorine and has lowered index. In the second and
third cladding zones germanium and phosphorus/fluorine are repeated with suitable
concentrations. The outermost cladding can then remain undoped fused silica.
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Fig. 4.15 Pseudo-3D rendering of a quadruple-clad fiber profile. From [14]

1.2 1.5

Fig. 4.16 Tailoring of the dispersion curve through choice of suitable index profiles: dispersion-
shifted and dispersion-flattened fiber in comparison to a standard step index fiber

4.5.5 Dispersion-Shifted or Dispersion-Flattened?

There is an important distinction between dispersion-shifted and dispersion-
flattened fibers. In comparison to a step index fiber, by using a triangular core
profile with a depressed cladding zone as in Fig. 4.12, one can achieve a shift
of the dispersion curve toward longer wavelengths (Fig. 4.16). The zero-dispersion
wavelength can thus be moved all the way to 1550 nm if desired. Using a quadruple-
clad design one can even achieve a very low dispersion simultaneously at both 1300
and 1550 nm by bending the dispersion curve flat.

The motivation to tailor the dispersion curve is to get the best of two worlds:
the minimal dispersion of the second window combined with the minimal loss in
the third window. Dispersion flattened fibers have low dispersion at both the second
and third windows at the same time; such fibers can be used as direct replacement
for older fiber designed for the second window but provide the added benefit of also
performing well in the third window.
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4.6 Polarization Mode Dispersion

Up to now we have disregarded the fact that a light field is fully characterized only
when one takes its state of polarization into account. Different states of polarization
propagate differently, thus arises a special type of dispersion which we now examine
closer.

As we derived the modal profiles in Chap. 3, we used the approximation of a
homogeneous material and found that all modes are twofold degenerate into distinct
orthogonal linear polarization states. The approximation is valid only, of course,
when there is weak guiding (� very small). In the more general case the modes are
not exactly linearly polarized, because the index discontinuity at the core–cladding
interface distorts the modal structure. Nonetheless, the approximation can be useful.

Moreover, we had assumed isotropy. This implies that the orientation of the two
planes of polarization is arbitrary. One might then conclude that launching linear
polarized light at any orientation will produce light of the same linear polarization
at the fiber end. This is not what experience shows.

In any real fiber there is some—potentially very weak—deviation from ideal
circular symmetry. We have to distinguish between (a) geometric deviations, like
when the core is asymmetric or not centered well; (b) optical deviations like when
the material index is not homogenous; and (c) mechanical deviations due to stress-
induced birefringence. The latter contribution may arise either due to tension built
into the fiber—after all, the fiber is rapidly cooled during its manufacturing which
may well introduce tension—or due to tension created during use as the fiber is
being bent.

All these deviations from perfect circular symmetry conspire to create differences
for the propagation of the two polarization modes. This gives rise to polarization
mode dispersion. We will now consider how it manifests itself and how to avoid it.

4.6.1 Quantifying Polarization Mode Dispersion

Rather than a single propagation constant ˇ we now need to use two, ˇx and ˇy,
to describe conditions for the two polarization states linearly polarized in x and y
directions. As soon as ˇx 6D ˇy, the two light waves polarized in parallel to x and
y will propagate differently; hence, they will be alternatingly in phase and out of
phase with each other. This occurs with spatial period

ƒ D 2�

ˇx � ˇy
; (4.41)
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which defines the beat length ƒ. Alternatively, some authors use the modal
birefringence

B D �

ƒ
D �

2�
.ˇx � ˇy/ D ˇx � ˇy

k0
D nx � ny : (4.42)

B is only weakly wavelength-dependent, while ƒ is essentially proportional to
wavelength. For a standard fiber B is of the order 10�7 to 10�8, with random
orientation of the axes. Then, the beat length is 107� to 108 �, which is on the order
of a couple of meters. If the fiber is strongly bent (coiled on a spool!), birefringence
can reach B D 10�5, with correspondingly shorter beat length.

The propagation time difference for an arbitrarily polarized light signal (decom-
posed into the two polarization states) is when one considers phase velocity:

�t D L

c
B : (4.43)

This translates into a dispersion of

�t

L
D B

c
� 10�7

3 � 108
s

m
D 0:3 ps=km : (4.44)

If instead, and more correctly, one considers group velocity, one finds

�t D
ˇ̌
ˇ̌ L

vgr;x
� L

vgr;y

ˇ̌
ˇ̌ D L

ˇ̌
ˇ̌dˇx

d!
� dˇy

d!

ˇ̌
ˇ̌ (4.45)

from which one obtains the dispersion contribution through �t=L. A typical value
for standard fibers is 0:1 ps=km, a small difference indeed—and yet, consequential
in some contexts. Polarization mode dispersion is now the largest obstacle to further
increase of the data-carrying capacity of fibers.

4.6.2 Avoiding Polarization Mode Dispersion

The state of polarization is not maintained in standard fiber. In order to render a
fiber polarization-maintaining, one might try to reduce its residual birefringence.
However, this is a tedious task: Even when the built-in tensions could be eliminated
in a modified manufacturing progress, the manufacturer has no control over bending
of the fiber by the user.

In 1982 two people came up with the same surprising idea practically simultane-
ously: R.H. Stolen then at AT&T Bell Laboratories in the USA and D.N. Payne at
the University of Southampton in England. They drew the surprising conclusion that
when it is not possible to reduce birefringence to negligible levels, one can achieve
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elliptical core pits panda bowtie

Fig. 4.17 Several polarization-maintaining structures. In each case the circular symmetry is
broken

x x

Y

Y2D Refractive index profile of bowtie fiber.

Fig. 4.18 Pseudo-3D rendering of the refractive index profile for a bowtie fiber. With kind
permission from Fibercore [1]

the same ends by making it intentionally much larger! To do this is easy: One can
either make the core elliptic, or one can insert additional structural elements that
break the circular symmetry. In most cases the symmetry is broken by the insertion
of elements with a slightly different thermal expansion coefficient, so that during
the cooling of the glass at the end of the fiber manufacturing process mechanical
stress is built into the fiber.

Figure 4.17 shows some popular versions with elliptic core, so-called pits,
PANDA geometry (the latter named after the facial expression of a cutie in the zoo),
and bowtie geometry (Fig. 4.18).

Such geometries allow B D 3 to 8 � 10�4 corresponding to ƒ D 1 to 3mm.
The beat length is thus reduced by three orders of magnitude and is now shorter
than the tightest possible bend radii. Therefore, the built-in birefringence due to this
structure overwhelms the random birefringence including any that may occur during
operation due to bending. Why is this, then, a polarization-maintaining fiber?

If one launches light which is linearly polarized along the direction of one
of the two axes of the elliptical structure, this state of polarization will be
maintained. If, however, the light is polarized at an angle with the axes, one can
mentally decompose it into the two parts along the axes: These will propagate with
different velocity because they experience a different refractive index. The state
of polarization will then cyclically evolve through linear ! elliptic ! circular !
elliptic again ! linear again, etc. This evolution can be exploited to measure the
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Fig. 4.19 Sketch to illustrate the beat length. The state of polarization evolves from linear through
elliptical to circular, etc. Depending on the state, emission into a given direction away from the
fiber axis is more or less efficient. From the periodic appearance of bright and dark zones, one can
immediately read the beat length

Fig. 4.20 Measurement of the beat length under a microscope. The periodic changes of brightness
of the light scattered off the core are plainly visible. In this case the beat length was measured as
0:41mm

beat length in a particularly simple experiment: The weak scattered light exiting
the fiber sideways appears modulated with a spatial period because dipoles do not
radiate energy in the direction along their own axis (see Figs. 4.19 and 4.20).

How well does a polarization-maintaining fiber actually maintain the state of
polarization? This is quantified by the extinction ratio E, defined as

E D �10 log10
Ps

Pp C Ps
: (4.46)

Here, indices p and s distinguish the fractions of power P which are polarized
parallel (p) or perpendicular (s, as in German senkrecht) to the initial polarization
plane.

For short fibers, say, less than 20 m, E � 40 dB would be considered normal.
When the fiber is a kilometer in length, this value will degrade to typically 20 dB,
and if the fiber is tightly bent or is squeezed, it may go down to 15 dB.

Sometimes the holding parameter h is specified; it is defined by

h D
�

Ps

Pp C Ps

�
=L : (4.47)
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It corresponds to the extinction ratio after 1 m of fiber, expressed in linear units
rather than decibel. A typical value for a polarization-maintaining fiber is h D
10�5 to 10�6, sometimes h D 10�7 is reached.

It is unfortunate that the manufacturing process for polarization-maintaining
fibers is more complex than for standard fibers and that losses tend to be slightly
larger. Polarization-maintaining fibers never became standard, but are used only
in applications where polarization has particular importance (and where fiber
length is limited anyway). This is often the case in metrological applications
(see Chap. 12). In long-haul transmission, such as over transoceanic distances,
polarization-maintaining fibers are not used even though polarization mode disper-
sion poses a challenge.

4.7 Microstructured Fibers

In recent years a very different type of fibers has emerged[5, 11, 18]. These novel
fibers consist of a cylindrical glass body just like ordinary fibers; however, in the
cladding zone there are voids running along the entire length of the fiber so that a
pattern of holes appears in the cross section (see Fig. 4.21). Manufacturing of these
fibers differs from that of conventional fibers; details are presented in Sect. 6.2.

The array of holes in the cladding gives rise to the (somewhat tongue-in-cheek)
name of “holey” fibers. The air-filled holes reduce the effective index of the cladding
so that dopants to raise the core index are not normally applied: The index difference

Fig. 4.21 A schematic view
of a typical holey fiber.
Tubular channels run along
the entire length of the fiber
parallel to the core which
they surround in a certain
geometric arrangement. The
hole diameter d and pattern
pitch ƒ are indicated. In the
case shown here, the core is at
the position of the “missing”
channel at the center
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can easily exceed the 1% limit maximally obtainable with dopants by far. The
regularity of the hole pattern is not crucial in this type of microstructured fibers;
in fact, even fibers with random hole arrangements have been demonstrated [16].

On the other hand, a strictly periodic arrangement with a pitch not much different
from the wavelength of the light can give rise to resonant reflectivity when a certain
Bragg condition is met; this is very reminiscent to effects with X-rays passing
through crystals (actually, this is how we know the size of crystal cells) and thus
gives rise to the name of photonic crystal fibers. There is an actual distinction
between these two fiber types, but as of this writing, the names are not used very
consistently in the community. We will here adopt the following definitions:

Holey fiber designates a microstructured fiber with hollow channels
surrounding the core which itself, however, is massive.

Photonic crystal fiber designates a microstructured fiber with hollow channels
surrounding the core which is also hollow.

Figure 4.22 shows examples of both types in comparison. We will briefly outline
both types and point out their remarkable properties which cannot be had from
conventional (massive) fiber and which open up exciting possibilities for novel
applications. See also Fig. 4.23.

Fig. 4.22 Comparison of two basic types of microstructured fibers. In both cases a central region
around the core is shown. Left: Holey fiber (Type NL-24-800). Right: Photonic crystal fiber (Type
HC-633-01). Both fibers are manufactured by Crystal Fibre AS. With kind permission by NKT
Photonics, Birkerød, Denmark
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Fig. 4.23 A holey fiber seen
in an electron microscope
together with the eye of an
ant. Insects are endowed by
nature with a regularly
patterned eye. The structure
of a holey fiber follows a
similar design. The author
thanks Toralf Ziems for his
assistance in taking this
picture

4.7.1 Holey Fibers

In conventional fibers, there is a core which by way of suitable doping has a
somewhat higher refractive index than the cladding which surrounds it. Due to
constraints in the chemistry, the index difference can be no larger than about 1%.
In holey fibers, the cladding has a sizeable air fraction so that its effective index is
lowered. These fibers are also known as solid-core photonic crystal fibers.

The light wave experiences an index which has contributions from both the air
holes and the remaining glass in between. In the case of a regular hole pattern, one
can distinguish two quantities: the hole diameter d and the pitch ƒ. These are often
combined with the wavelength of the light into the normalized hole diameter d=ƒ
and the normalized spatial frequency ƒ=�. A precise calculation of the effective
index and the modal structure requires numerical procedures which can be quite
involved. It is straightforward, though, to see the following.

The void content lowers the effective index with respect to that of the glass. The
effective cladding index is therefore a function of the air fill fraction AFF, the ratio
of air channel volume to total cladding volume. For the hexagonal geometry shown
in Fig. 4.21 it is calculated by straightforward geometry as

AFF D �

2
p
3

�
d

ƒ

�2
: (4.48)

This expression, by the way, tells us that as the holes get bigger to the point that the
glass walls in between vanish at d D ƒ, the air-filling fraction is bounded by

AFFmax D �

2
p
3

D 0:9069 :
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Fig. 4.24 The effective cladding index for an infinite triangular array as a function of frequency
for different hole sizes (parameter: air fill fraction). For simplicity, the index of air nair D 1 and
glass nglass D 1:46000 were considered constant. The author thanks Christoph Mahnke for the
calculations for this figure

When the wavelength is shorter than both the pattern pitch and the hole size, light
will be guided primarily by the glass bridges between the holes. This suggests that
in the limit of � ! 0 the effective index tends to that of the glass alone. When
on the other hand the wavelength is much larger than the structural dimensions, the
light field cannot ‘feel’ the holes and interstitial glass separately. The effective index
may then be expected to be some suitably weighted average of the indices of glass
and air. This is the reason for a strong dependence of effective cladding index on
wavelength [13].

The situation is demonstrated in Fig. 4.24 which shows the effective cladding
index for an infinite triangular array as a function of normalized optical frequency
� D �ƒ=c for four different air fill fractions. The normalization was chosen so that
conveniently at � D 1 the (vacuum) wavelength coincides with the pattern pitch.
The glass index was here assumed to be at a constant nglass D 1:4600, and that of air
at nair D 1, to avoid a complication of the present discussion by issues of material
dispersion. Data points were calculated using the freely available software described
in [10].

For very high frequencies the effective index tends to that of the glass as expected
(arrow at right axis). For very low frequencies the effective index tends towards a
weighted average of glass and air index. By interpolation between glass and air
indices according to air fill fraction using the Lorentz–Lorenz equation [6, 9] one
obtains the values indicated by arrows on the left.2 The agreement could hardly be

2In [7] a linear interpolation is suggested, but does not fit quite as well.



82 4 Chromatic Dispersion

any better. The transition regime between the limits occurs close to � D 1 when the
wavelength equals the pattern pitch, an eminently plausible result.

The light-guiding mechanism in these fibers is quite similar to that in conven-
tional fibers, except that the index difference can be much larger. That makes it
unnecessary to bother about applying dopants. However, given the bigger index step,
one can choose a much smaller core radius. This gives rise to higher intensities in
the core and thus to stronger nonlinear effects which may be desirable (see Chap. 9
ff.). The additional design freedom also allows to design for larger core radius and
thus minimized nonlinearity; this, too, is sometimes desirable depending on the
application.

It has been suggested to define a V number for these fibers in close analogy to
the same quantity in conventional fiber. The definition would read

V D 2�

�
�

q
n2K � n2FSM ; (4.49)

where the effective core radius � takes the role of the core radius a. There is a
certain ambiguity how to define � in terms of the pattern pitch ƒ (one can, e.g.,
identifyƒ with the core radius [4]), and thus the numerical value of V at cutoff may
be different from that in conventional fibers. nFSM is the effective cladding index.
The name derives from the fundamental space-filling mode, i.e., the fundamental
mode that would occupy an infinitely extended cladding pattern without the central
defect which is the core.

As pointed out above, nFSM tends to the material index as frequency increases.
This partially cancels the � term in the denominator so that V is not proportional to
frequency but rather becomes almost constant at ƒ=� 	 1, with the specific value
depending on d=ƒ (see Fig. 4.25).

,N

Fig. 4.25 V number in a holey fiber as a function of normalized frequency ƒ=�. The parameter
is d=ƒ. Toward high frequencies, Veff tends to some constant. It never crosses the cutoff (marked
by horizontal dotted line) as long as d=ƒ < 0:4. Then the fiber supports only one mode at any
frequency. After [5]
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Through this effect one obtains a remarkable property which is called the
endlessly single-mode property [4]. It has been found that for d=ƒ small enough
(more precisely: d=ƒ < 0:406 [12]), there is only one mode supported at any
frequency. This means that within the practical limits set by wavelength-dependent
loss, the fiber is always a single-mode fiber. This has been verified over a tremendous
frequency range of efficient waveguiding, which may run from ultraviolet to
infrared—a factor of 4 [4].

Holey fibers have a second very remarkable property, and this regards their
dispersion behavior. For small air-filling fractions, the influence of the holes is small
and the wavelength dependence of group velocity dispersion can be expected to
closely follow the material dispersion. This is indeed the case. However, as the hole
size increases, there is a growing contribution from waveguide dispersion which
can reach the point of overwhelming the material dispersion. Since the waveguide
contribution can be anomalous at short wavelengths, the zero-dispersion wavelength
can shift toward shorter wavelengths. The reader will recall that this is not possible
with conventional fiber. At about d=ƒ D 0:30, dispersion is flattened over a sizable
interval. The precise wavelength range of this interval can be shifted by adjusting
the pitch size ƒ. Fibers are being offered commercially where this range begins
at about 1�m or even 800 nm. Finally, by judicious choice of pitch and hole size,
the dispersion can be even made to have a maximum in this spectral range so that
there can be two zero-dispersion wavelengths, similar to the case of the dispersion-
flattened conventional fiber shown in Fig. 4.16 but at a wavelength considerably
shorter than the material’s zero-dispersion wavelength (see Fig. 4.26). Applications
have been found for these specialty fibers, but this topic is beyond our present scope.

4.7.2 Photonic Crystal Fibers

This type of microstructured fiber is also known as photonic-bandgap photonic
crystal fiber. Its most remarkable feature is that the core is also a hollow channel,
giving rise to the alternative name of hollow-core photonic crystal fiber. A hollow
(i.e., air-filled) core implies that the light-guiding property certainly cannot rely on
the index step between core and cladding—this step goes the wrong way. Instead, it
is now the regularity of the hole pattern: the periodic array of holes forms what
is called a photonic crystal [20]; for the right wavelengths, there is a photonic
band gap which keeps the light from leaving the core through a coherent scattering
effect. This is related to periodic structures in nature which selectively reflect certain
wavelengths and, e.g., give butterfly wings their fancy colors. We repeat that for
solid core holey fibers, the periodicity of the hole pattern is not decisive, whereas
for hollow core photonic crystal fibers it is of crucial importance. By the details
of the pattern, an interval of wavelengths, typically 50–150 nm wide, becomes the
guiding range of the fiber. The value of the pitchƒ is particularly important: By and
large, the range of guidance is shifted proportionally when ƒ is varied.
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Fig. 4.26 Comparison of dispersion of a standard single-mode fiber (compare Fig. 4.4) with that
of two different types of holey fibers (both obtained from a commercial vendor). Note that in this
figure a linear frequency scale is used, and that dispersion is given as ˇ2. The fiber with a single
zero-dispersion wavelength has a 3-�m core diameter, the one with two zero-dispersion points,
2:3�m. In either case, the zeroes are shifted toward higher frequencies with respect to the standard
fiber. The measured zero-dispersion frequencies are indicated in terahertz (arrows); manufacturer’s
specifications provide only approximate values

In an interesting departure from standard practice, a hollow core photonic crystal
fiber with radially varying pitch of the hole pattern was demonstrated in [19] to
allow more freedom in designing the dispersion properties.

4.7.3 New Possibilities

Microstructured fibers offer a variability in almost all fiber parameters, which
is unattainable with conventional fibers. The zero-dispersion wavelength can be
shifted to much shorter wavelengths, the strength of nonlinear effects can be
enhanced or reduced, and the single-mode regime can be greatly enlarged. This is
why these fibers will find a whole range of applications which were not possible with
conventional fibers. On the downside, they are a lot more difficult to manufacture
and therefore quite expensive. They also have much higher loss than conventional
fibers, and mechanically they are not nearly as robust. It is therefore not anticipated
that they will replace conventional fibers in applications like long-haul transmission.
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Chapter 5
Losses

Charly Kao, then with Standard Telecommunications Labs in England, proposed in
1966 that it should be possible to produce fibers with loss below 20 dB=km [5]. He
had arrived at this conclusion after noting that losses were not an intrinsic property
of the glass itself, but rather were due to impurities. His remarkable insight earned
him the Nobel prize in physics in 2009.

At the time one could make glass with about 1 dB=m, this was an improvement
over glass of ancient Egypt by four orders of magnitude. Then, in less than 20 years,
another improvement of four orders of magnitude was reached. The loss came down
to 0:2 dB=km, a figure now routinely obtained at 1:5 �m. Part of this progress stems
from longer wavelengths now being used: In the visible, the best glass had and
has several dB/km loss. Once loss contributions due to impurities had been almost
completely eliminated, a fundamental limit was reached, which is defined by the
structure of the glass itself.

5.1 Loss Mechanisms in Glass

This fundamental limit is determined by three factors: (a) the long-wave tail of
material resonances in the ultraviolet (electronic transitions), (b) the short-wave
tail of material resonances in the infrared (molecular vibrations), and (c) Rayleigh
scattering due to the statistical structure of the glass. Rayleigh scattering is the
same mechanism that makes the sky blue and the sun yellowish (and contributes
to its orange to reddish appearance just prior to sunset). The reason is its strong
wavelength dependence: The efficiency of Rayleigh scattering scales with the
negative fourth power of wavelength.

At the short wavelength end of the visible (in the blue and violet), the contribution
from ultraviolet resonances is the leading factor. In much of the visible spectral
range and also in the first and second window for telecommunication, Rayleigh
scattering dominates while infrared resonances are irrelevant. The third window
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finally is in the transition regime: Beginning around 1:6 �m the contribution from
infrared resonances overtakes the Rayleigh contribution.

It is not a trivial task to determine with any precision what the theoretical limit for
the lowest possible loss is. Taking clues from data taken on bulk glass, a minimum
of 0:114 dB=km was derived; this figure corresponds to an energy loss of 2.6 %/km.
In 1986, researchers at the Sumitomo company succeeded in making a single piece
of fiber with a confirmed loss as low as 0:154 dB=km. This record was not repeated,
much less improved upon, for a long time. Only in 2002, a fiber loss of 0:151 dB=km
was reported, and this newer record was then quickly bested to 0:1484 dB=km [6].
In mass production of fibers, industry has routinely obtained 0:2 dB=km since the
late 1980s, and occasionally 0:18 dB=km. The reader might think that bargaining for
the last few percentage points might be of little relevance, but that would be a wrong
conclusion: Implications are enormous. Even a minor reduction in loss allows to use
longer spans for transmission. On any long-haul distance, a number of intermediate
amplifiers or signal conditioners is required; their number can be reduced as soon
as the loss goes down. The consequence of any loss reduction by, say, a few percent
then translates into savings of potentially millions of dollars.

As can be seen in Fig. 5.1, there is a local loss peak between the second and third
windows, at about 1:39 �m. It is caused by impurity molecules in the glass. Optical
materials must be exceedingly pure to be transparent at all at this wavelength;
water vapor in the atmosphere is particularly detrimental. The loss peak is caused
by molecular vibrations of water molecules embedded in the glass. There is a
characteristic strong vibrational resonance of the OH bond at 2:8 �m. Water is
always present in our environment and so ambient air is opaque at 2:8 �m. However,

Fig. 5.1 Spectral dependence of the contributions to energy loss in a fiber
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these oscillations are not purely harmonic, but have overtones (anharmonicity). The
first overtone (the second harmonic) at twice the frequency, i.e., half the wavelength,
is the peak that we see in Fig. 5.1. To be sure, this is a weak overtone, and the OH
concentration in the fiber is low, but the resonance stands out conspicuously because
the Rayleigh background is so low. Since 1998, manufacturers have succeeded to
produce fibers with a much reduced OH content so that the peak disappears into the
background (e.g., “AllWave Fiber” by Lucent Technologies [1]).

Besides water, numerous other impurities can contribute to loss. Among these
are the transition metals Fe, Cu, Co, Cr, Ni, and Mn. To appreciate the required
purity, consider this: At 800 nm, one ppb of Cu produces an absorption of several
tenths of dB/km. (One ppb, or part per billion, indicates a concentration of 10�9.)

5.2 Bend Loss

We have seen that the composition of the glass gives rise to loss mechanisms. On top
of all that, there are further losses when the fiber is deployed for use, in particular
when it is being bent. This may be intuitively plausible since in a bend the cylindrical
symmetry is broken (Sect. 3.4). One has to distinguish two contributions to bending
loss known as macro-bending loss and micro-bending loss.

Macro-bending loss occurs when fibers are bent with a “macroscopic” radius of
curvature, i.e., in the range of centimeters. If one falls back to a ray-optic view
(which is applicable only to multimode fibers, of course), one realizes that the
critical angle for total internal reflection can be exceeded in a bent portion. More
physically correct, in a wave-optic picture we have seen that the field distribution of
any mode is not restricted to the core, but extends into the cladding. As the fiber is
being bent, there must be a certain distance from the fiber’s axis toward the outside
of the curve where the propagation velocity (as determined by the effective index for
that mode) begins to exceed the maximum possible velocity in the cladding (given
its index). Of course, the velocity is not actually exceeded. Rather, the phase fronts
cease to be plane and fall behind. There is then a component of the Poynting vector
pointing radially outward; this implies energy radiated away from the guided mode
(see Fig. 5.2).

Strictly speaking, there is mechanical tension in the bent fiber so that the inside
is compressed, the outside expanded. This creates deviations of the refractive index,
effectively lowering it on the outside. The mechanism just described is counteracted
by this, but it is not compensated.

It should be clear that the critical radius at which radiative loss begins must
be proportional to the bend radius of the fiber. On the other hand, the modal
field radially decays exponentially. Together, it follows that bend loss decreases
exponentially when the bend radius increases. It is also implied that the stronger
the cladding penetration, the higher is the bend loss. Cladding penetration is high
when the index difference between core and cladding is small; a large value of �
is thus beneficial in this context. Also, cladding penetration grows with increased
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Fig. 5.2 Bending a fiber creates additional loss. On the outside of the bend, the wave cannot keep
up due to its limited velocity. The wavefront gets distorted so that a radial component of radiation
is created
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Fig. 5.3 Macro-bend loss for the LP01 fundamental mode (solid lines) and the LP11 mode (dotted
lines), for a loop with radius as indicated in centimeter. In the limit of infinite bend radius the
values for the LP11 mode constitute the limit of the single mode regime. At finite radius, the cutoff
is shifted toward shorter wavelengths. At the same time, loss in the single-mode regime increases.
After [7] with kind permission

wavelength; therefore the highest reasonable V number is also beneficial. It is
therefore good practice to operate close to the cutoff wavelength of higher-order
modes. Higher-order modes also extend farther into the cladding and are more
attenuated by bending than the fundamental mode. Bending thus shifts the effective
cutoff toward shorter wavelengths (Fig. 5.3). This must be observed when the cutoff
wavelength is measured, see Sect. 7.4.

It is a standard laboratory trick to shift a fiber’s cutoff from, say, 1200 to 1000 nm
by winding it 20 turns on some bobbin with 20 mm diameter.
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While macro-bending loss is reasonably understood, micro-bending loss is
considerably more complicated. At least so much is clear: The effect is dominated
by the statistics of the deviation of the fiber from a straight line. A roughness of
100 nm to 1�m plays a major role. This raises the issue of the surface material of
spools. It is well known in the trade that styrofoam, for example, is particularly bad,
probably due to its structure which is best described as air bubbles separated by
thin walls. It is also known that micro-bending in multimode fibers creates only a
small, wavelength-independent loss contribution while in single-mode fibers there is
a sharp loss onset at large wavelength (Fig. 5.4). This tends to shift the wavelength
regime of lowest loss, in principle centered around � 1600 nm, toward 1550 nm.

Fig. 5.4 Micro-bending loss of the fundamental mode as a function of wavelength (normalized to
cutoff wavelength). From [3] with kind permission
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At V numbers close to 2.4 (i.e., close to the cutoff of higher-order modes), this
contribution is usually negligible. Since fibers are normally used at 2:1 < V < 2:4

for reasons described in the previous paragraph, the problem is often avoided.

5.3 Other Losses

Quite a number of influences may give rise, at least in principle, to further loss
contributions and must therefore be considered in the design of fibers. These
are, of course, taken care of by the fiber’s manufacturer, and the application
engineer does not normally deal with such problems. It therefore suffices when
we only briefly outline here: Irregularities in the fiber arising in the manufacturing
process such as variations of the core diameter, variable deviations from circular
symmetry, and variations in refractive index (for example due to fluctuations in
dopant concentration) can all give rise to increased loss. (Roughness of the core–
cladding interface is often considered in the context of micro-bend loss.) Loss is
also increased when the cladding glass is of less than the near-perfect purity of the
core glass as may happen in certain manufacturing technologies (e.g., in MCVD, see
Sect. 6.2). At particularly long wavelengths, even an insufficient outside cladding
diameter could cause further loss when the field penetrates the cladding so deeply
that it begins to feel the environment, e.g., a plastic coating.

On top of these effects from manufacturing, there are losses that occur when
during operation very gradually the glass composition changes. This can happen
through the action of ionizing radiation (see Sect. 12.2.4). Beta radiation (electrons)
and gamma rays in particular can damage the material by creating dislocations
of nuclei and bonds in the crystal. Such damage can partially, slowly heal after
irradiation ceases. These problems are of major concern for space applications, such
as aboard spacecraft. In the 1980s, there has been a long-term exposure test called
LDEF (long-duration exposure facility) operated by the USA. It went on several
years longer than originally planned: After the 1986 Challenger disaster, further
space shuttle starts were delayed, and this also involved the return vehicle. Still, the
damage found was not too substantial.

There are also chemical effects affecting fiber loss. Substances can diffuse into
the glass; this is well known for helium but there is not much helium out there. More
relevant is the case of oxygen that is ubiquitous in the atmosphere. Nevertheless, the
effect is subtle enough to be negligible for most applications; in particularly critical
cases, one can deposit a barrier layer on the fiber surface.

Finally, it should be remarked that there is indeed one case of impurity that can
even lower losses. Embedded OH� groups, while they certainly increase loss in the
infrared, can reduce them in parts of the visible and ultraviolet. This happens on
a high background of about 1 dB/m and is thus irrelevant for telecommunications
applications. On the other hand, sometimes short wavelength light must be guided
over short distances; this is the case, e.g., in laser surgery. In such cases, one can
exploit this curious fact and use glass with intentionally high OH� content.
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5.4 Ultimate Reach and Possible Alternative Constructions

At the wavelength of the third window where Rayleigh loss meets the tail of infrared
absorption, fibers have their global loss minimum. Does this low loss allow a
transoceanic line? Taking a realistic figure of 0.2 dB/km and a typical transoceanic
distance of 5000 km, total loss comes to 1000 dB. This is too much by any standard.
Consider this:

A total of 1000 dB imply a power attenuation by 100 orders of magnitude. We
must certainly demand that at the very least, a single photon must arrive at the
detector during the time slot reserved for a single bit. Then, we would have to launch
10100 photons. Since the energy of a single photon is given by E D h� � 10�19 J,
the launch energy would have to be 1081 J. Even when we allow a full second for
the time slot, 1081 W are about 80 orders of magnitude more than is realistic since,
beginning at several watts continuous power, one starts to damage the fiber front
face. (In radio engineering a single photon has much smaller energy; this allows an
attenuation of 150 dB from transmitter to receiver without ever reaching a quantum
limit. For radio there is a possibility of worldwide reception, e.g., on short wave; in
optics, this is not possible.)

5.4.1 Heavy Molecules

A transoceanic link with 0:2 dB=km is thus not viable without several intermediate
amplifiers. How about replacing the silicon dioxide in the glass with heavier
molecules? This would shift the infrared resonance toward longer wavelength and
postpone the onset of the corresponding loss toward longer wavelengths. One could
then move to longer wavelengths and enjoy the benefit that Rayleigh scattering loss
is reduced dramatically (according to the negative fourth power of wavelength) as
shown in Fig. 5.5. This is certainly a very appealing idea: If one could change the
fiber material so that one could go to wavelengths between 3 and 4�m, one could
reduce loss by a factor of 30. Then the whole 5000 km length of the span could
be taken in one go, without the need for amplification with its associated technical
complexity.

Therefore, researchers have tried for many years to come up with suitable
material. In 1978–1979, three groups suggested virtually at the same time that
fibers made from fluorides, chalcogenides, or halides would have dramatically
lower damping, in principle down to 0.001 dB/km. There is only one problem with
all these materials: They offer fantastic perspectives, but so far no one has ever
succeeded in making them so that the loss would compete with existing fused silica
fibers. This is due to the increased chemical reactivity of all these materials. Also,
here are indications that mechanical properties of existing fibers cannot be matched
by these more exotic materials: They tend to be brittle and break easily.
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Fig. 5.5 Theoretical loss of infrared fibers made from various materials, in comparison to
SiO2. Infrared absorption sets on at longer wavelengths so that the ��4 trend of Rayleigh
scattering can be exploited toward longer wavelengths. This leads to considerably weaker damping.
Unfortunately, these data remain theoretical. After [8] with permission

Fluorides. Among fluorides, the most frequently used substance is fluorozir-
conate or ZBLAN (pronounced zee-blan). The acronym indicates Zr (zirconium),
Ba (barium), La (lanthanum), Al (aluminum), and Na (sodium) as constituent
elements. In the manufacturing process, the crystalline substances are molten in
a crucible and then poured into a rapidly spinning casting mould. The spectral
range of reasonably low transmission is between 500 nm and 3:5 �m, with the
lowest losses between 1.5 and 2:7 �m. About 15 dB/km at 2:5 �m are obtained
commercially. The refractive index is similar to that of fused silica (n � 1:5),
dispersion is lower. At 2:8 �m, there is a strong OH� absorption that gives
rise to considerable loss; the figure can vary even among fibers by the same
manufacturer from 30 to 80 dB/km. Only multimode fibers with core diameters
up to 250�m are available. Critical mechanical tension is quoted at a very low
0.6 MPa, the minimum bend radius at 10 mm. Temperatures above 150 ıC pose
a problem. Contact with water causes chemical change; coatings need to be
employed as barriers.

Chalcogenides. There are very few glasses with good transmission between 3 and
11�m, including the wavelength of the CO2 laser at 10:6 �m. Chalcogenides
composed of arsenic, germanium, and antimony in combination with sulfur,
selenium, or tellurium make it possible. The ingredients are mixed, molten,
homogenized, and cooled down inside fused silica ampoules under vacuum.
There are practical difficulties with trapped bubbles, inclusions, and crystallites.
In the visible, these fibers are basically opaque. Chemically they are reasonably
stable; mechanically at 0.1–0.17 GPa critical tension not very much so. Also,
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Fig. 5.6 Typical spectral transmission curves of some infrared fibers

elevated temperatures above 150 ıC create difficulties. In most cases, these fibers
are made without distinction between core and cladding just a cylindrical body.
Diameters range from 150 to 500�m, and there is a plastic coating for protection.
The refractive index is about 2.8; therefore coupling both in and out suffers
from large Fresnel loss. Overall, loss is much higher than for fluorides, but
chalcogenide fibers can be used out to much longer infrared wavelengths.

In view of all the difficulties mentioned, efforts to develop such fibers for long-
distance use have been reduced. Meanwhile, development has taken an entirely
different route: Conventional intermediate amplifiers become unnecessary when
fibers themselves are transformed into amplifiers (see Sect. 8.8.1).

There are, however, applications when a flexible light guide is used for a short
distance on the order of 1 m. This is true in laser material processing—laser surgery
is, after all, a particular variant thereof. In this kind of application, these fibers
compete with silica fibers and with sapphire fibers (Fig. 5.6). Silica fibers for
these applications are usually made without cladding with 400–1000�m diameter;
common wavelengths are 1064 and 532 nm for Nd:YAG Lasers and 514 nm for
Argon ion lasers. The advent of the Ho:YAG-Lasers operating at 2:1 �m created the
requirement of silica fibers with less than 5 ppm OH�.

5.4.2 Hollow Core Fibers

For use with CO2 lasers with their high power at a wavelength of 10:6 �m, one
uses a different approach: Here, fibers with hollow core (capillaries) are employed.
Hollow core fibers have high loss, but that is of minor importance for guiding high
power over short distance in comparison. All-important is a high damage threshold.
Obviously, in a hollow core, the refractive index is close to 1. Light-guiding takes
place only because, in wavelength regimes of strongly anomalous dispersion, the
index of the cladding may actually fall below 1. In some doped silica glasses and in
sapphire, this occurs around the wavelength of the CO2 laser.

Hollow core fibers are also used in reverse: We will discuss fiber-optic sensors
in Chap. 12 but here we jump ahead and mention that the peak wavelength of
black body radiation around room temperature is within the transmission range of



96 5 Losses

these fibers. Therefore, the temperature of objects can be measured by gathering
radiation with a hollow core fiber without even touching the object, and guide it
to a measuring device. This is an admittedly expensive, but sometimes very useful
clinical thermometer!

5.4.3 Sapphire Fibers

Sapphire is a chemically stable, nontoxic material with reasonable mechanical
strength. It can be worked into fibers by growing from a solution of Al2O3. Sapphire
fibers transmit from the visible range to about 3�m. Bend radii are limited to a few
centimeter, and loss is around 1 dB=m. Sapphire fibers, too, are fabricated without
cladding and with 100–500�m diameter. They have good damage threshold and
high melting point, which makes them attractive for transmission of high-power
laser light, including laser delivery in surgery and dentistry.

Like hollow core fibers mentioned in the previous paragraph, sapphire fibers
can be used as a part of an infrared thermometer. Their good heat resistance and
chemical stability are favorable for applications in chemically harsh and/or high-
temperature environments, like inside chemical reactors where sapphire fibers may
offer the best way to measure temperature.

5.4.4 Plastic Fibers

Also suitable only for short-distance transmission are plastic fibers, usually called
POF (plastic, or polymeric, optical fiber) for short. However, they are used in an
entirely different field of application. Plastic is a low-cost material and can be shaped
very easily into fibers (or any other shape). In most widespread use is polymethyl
methacrylate (PMMA), a.k.a. acrylic glass, perspex, or plexiglas; PMMA was used
for the first commercially available POF as early as 1963. Polycarbonate and
polystyrene are other options.

In comparison to fused silica, the optical loss in POFs is enormous and is
measured in dB/m rather than dB/km (see Fig. 5.7). While Rayleigh scattering and
absorption from electronic transitions and from contaminants also exist in POFs, the
dominant loss mechanism seems to be the absorption at harmonics of the CH bond,
which is ubiquitous in plastic materials [4]. A successful approach to reducing this
problem is to replace some of the hydrogen with heavier molecules such as fluorine,
to shift the resonance. However, fluorination is an expensive process, so that the
low-cost advantage is somewhat reduced.

Nevertheless, in terms of low loss, POFs cannot match silica-based fiber. Their
maximum transmission distance is therefore defined by loss, not by dispersion. It
is thus not a problem that realistically only multimode fibers with large numerical
aperture can be made. Core diameters are often 1 mm or even more. A cladding can
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Fig. 5.7 Typical spectral transmission curves of polymethyl methacrylate (PMMA) light-guiding
fibers. Data are taken from gradient index fibers. “PF” refers to perfluorinated material. After [2]
with kind permission

be made from fluorinated PMMA if internal guiding is desired. A typical numerical
aperture can be 0.3.

Certainly, POFs have several quite favorable aspects: Handling is easier than
for fused silica, incoupling efficiency is good, and coupling between fibers is quite
simple. All this adds to the low-cost aspect. One drawback is that these fibers can
be damaged by high-power lasers. Thus the applications are outlined: Plastic fibers
are useful for short-distance data transmission where cost limitations are stringent.
Local area computer networks within a building or on premises are an example.
Also, in some stereo equipment, there is optical transmission between digital
audio components such as CD players, DVD recorders, etc. European car makers
have been using POFs since about 1998 because interesting savings of weight are
obtained. Various fiber-sensors are deployed and connected (see Chap. 12), and an
on-board POF network provides the car driver and all passengers with individual
access to a range of entertainment media. 10 years after the first use of fibers in
cars, a series 7 BMW car or similar model by other brands contained more than
100 m of POF. Quite naturally, the aviation industry is also increasingly using POF.
Increasingly data-hungry applications may, however, eventually make the use of
silica-based fibers in vehicles attractive.
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Part III
Technical Conditions for Fiber Technology

A variable “wave plate” in all-fiber technology used to adjust the state of polariza-
tion. It consists of three rotatable fiber loops and permits to translate any given state
of polarization into any desired state. These components are described in Sect. 8.5.1.



Chapter 6
Manufacturing and Mechanical Properties

6.1 Glass as a Material

Blood is a quite peculiar juice. Thus spoke Mephistopheles in the tragedy “Faust”
by J.W. von Goethe.1 Glass, too, is a quite peculiar juice: There was a stone age,
an iron age, and a bronze age. Glass, however, is the only artificial material that has
been in use uninterruptedly for seven millennia or more without giving its name to
an epoch.

Like the word “crystal,” “glass” refers not to a chemical but to a physical
property. Unlike a crystal, its structure is not neatly ordered but quite irregular. Glass
is a liquid usually mistaken for a solid! But let us start at the beginning.

6.1.1 Historical Issues

The oldest finds date back about 7000 years before Christ, at the end of the younger
stone age. They hail from the Mideast: Egypt and Mesopotamia, present-day Iraq.
Independently the art of making glass was also developed in Mykenae (Greece),
China, and North Tyrol.

Making glass is closely related to pottery, which has existed in Egypt more than
8000 years ago. Maybe by chance people had discovered that a glazing develops
when sand with lime content is exposed to fierce heat together with soda ash.
Beginning about 1500 BCE, glass was made without ceramic substrate. Blowing
glass dates back to ca. 200 BCE in Sidon and Babylon. In the Roman Empire, glass
articles were coveted luxury objects.

1Johann Wolfgang von Goethe (1749–1832) was a German politician and amateur scientist who
is best remembered for his prolific writings of poetry and drama. Indeed, in Germany today he is
widely regarded as one of the finest literary figures ever in that country.
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In the middle ages, Venice was an important center of the art of glass blowing.
Up to 8000 people worked there. Further north in Central Europe, glass was mainly
made in remote forested areas such as the German Spessart, the Thuringian and
Bavarian Forests, and the Erzgebirge (“ore mountains” on the German–Czech
border) because there both potash and fire wood were in abundant supply. (Potash,
or potassium carbonate K2CO3, is the main constituent of wood ashes: All plants
contain potassium salts.) Until the seventeenth century, in part the eighteenth
century, there were traveling glass makers. To our day the glass industry in Central
Europe is still concentrated to a good part near major forests such as the Bavarian
Forest.

Modern glass technology was basically started by two Germans, Otto Schott
(1851–1935) and Ernst Abbe (1840–1905) (Fig. 6.1). Schott, son of a glass maker’s
family from Lothringia, conducted systematic experiments with almost all chemical
element to determine which influence their addition to the melt would have on the
properties of the final glass.

Abbe was a professor at the German university of Jena, and he was a co-owner
of the Carl Zeiss company. Zeiss needed high-quality glass in order to build optical
instruments.

After many tries, Schott finally found the suitable glass recipe; this prompted a
cooperation that then led to the start of “Jenaer Glaswerk Schott und Genossen”
(Jena Glass Works Schott and Co.), which acquired some fame. For many special-
ized purposes, they developed just the right glass. The company did well, and we
remark in passing that such fairly revolutionary social novelties as an 8-h work day
and participation of employees in the company’s profits were introduced.

After the second World War, Americans moved specialists from Jena into what
was to become Western Germany. This gave rise to the new location of Schott Glass
Works in Mainz.

Carl ZeiB (1816–1888) Ernst Abbe (1840–1905) Otto Schott (1851–1935)

Fig. 6.1 Carl Zeiss, Ernst Abbe, and Otto Schott are the founders of modern optics in which
scientific methods and industrial processing are closely interwoven. From [6] with kind permission
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6.1.2 Structure

As mentioned above, both words “glass” and “crystal” do not refer to a specific
chemical composition but to a particular spatial arrangement of molecules. In a crys-
tal, molecules are arranged in a repetitive, periodic pattern. In glass, by comparison,
they are arranged in a disorderly fashion: glass is amorphous. Correspondingly, in
glass the molecules are not densely packed (Fig. 6.2). Many substances have glassy
states; the table gives a few examples:

Substance Glass temperature (K)
Natural rubber 200

PVC 347

Water 140

Glucose 305

Selenium 303

Beryllium fluoride 570

Germanium dioxide 800

Silicon dioxide 1350

Only a limited selection of glassy substances is useful in the optics industry. We
will deal almost exclusively with glass of silicon dioxide. Silicon, after oxygen,
is the second most frequent element in the earth’s crust (28 %). It is found in the
form of silicates, silicic acids, and as anhydride SiO2 (and of course, these days, in
elementary form inside of computers). Silicic acid is a name for the oxygenic acids
of Si, that is, SiO2.n � H2O/ where the case of n D 0 (SiO2 in its various forms)
is sometimes included. In particular, ortho silicic acid H4SiO4 occurs frequently.
Over geological time spans, it may shed water and go through intermediate stages
like H2Si2O5 until finally it becomes the anhydride SiO2.

The most important crystalline form of SiO2 is quartz. It constitutes the
most important part of silicate rocks; there are also feldspar (KAlSi3O8), mica
(KAl2[AlSi3O10](OH)2), and salts of polysilicic acids containing MgCC and CaCC.

Fig. 6.2 Comparison of crystalline and glassy structures for the example of silicon dioxide.
Symbolically shown are silicon ions (Si4�, small spheres), oxygen ions (O2�, larger spheres),
and their electronic bonds. Due to the two-dimensional nature of the sketch, silicon’s tetrahedron
configurations with four bonds are depicted with three, rather than four bonds; the missing fourth
bond may be imagined out of plane. In the crystal, there is high packing density; in glass,
irregularities lead to lesser density
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Among these quartz is the hardest. During geological time scales, quartz is ground
down and destroyed, and small fragments remain: gravel or sand. Traces of soluble
silicic acid in the waters of rivers and the sea are incorporated by plants and animals
for mechanical hardness.

Depending on its crystalline modification, quartz has a melting point of
1500–1700 ıC and a density of 2:3–2:6 g=cm3. Geologically it is found in
transparent crystals up to a meter in size. In form of smaller crystals, quartz is
contained in all primary rocks such as granite, porphyry, and gneiss. Amorphous
SiO2, often colored by other substances, is the basis of semiprecious stones such as
agate, chalcedony, and opal.

Glass is obtained for melting together quartz sand, soda ash, potash, and metallic
oxides. Soda ash means sodium carbonate (Na2CO3) and potash is potassium
carbonate (K2CO3). If one uses colorless metallic oxide such as CaO and white
(iron-free) quartz sand, one obtains clear glass; addition of other elements can
change the properties. Green or brown bottle glass is made from ordinary yellow
sand (containing iron); other additives are common to control the color. Window
glass consists of Na2O CaO 6 SiO2. Lead glass, used extensively in optics for its
high refractive index, consists of K2O PbO 6 SiO2. Laboratory glass is similar
to window glass, except that there are additions of 8 % Al2O3, 5 % B2O3, and 4 %
BaO. If a lot of Al2O3 is mixed in, SiO2 and Al2O3 will no longer mix and the
substance turns turbid in the oven, stays white, and is not transparent. This is called
porcelain, or China.

The main characteristic of glass, its structural irregularity, is reflected in its heat
conductivity, which is about one order of magnitude lower than for the correspond-
ing crystal. With this structure, glass is in a local, but not a global minimum of free
energy (Fig. 6.3). Consequently a deglassing, a growing of crystalline structure, may
occur—albeit on very long time scales due to the enormous viscosity of glass. Over

Fig. 6.3 Glass is a stiffened
undercooled liquid. Starting
from a crystal, by raising the
temperature it will melt.
When the temperature is
lowered again, there can be
undercooled melt rather than
recrystallization. This melt
then stiffens and becomes
glass. In comparison, glass is
less densely packed than
crystal, thus occupies a larger
volume. In principle, glass
can recrystallize over long
periods of time

liquid
supercooled liquid

Volume

glass
(value dependson cooling rate)

Glass temperature Melting temperature

Temperature

crystal

melting

crystallizing
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historic time spans, glass can be affected to a measurable amount: very old glass
turns turbid and brittle.

Why would one use glassy, not crystalline material for light-guiding fibers?
Crystals can never be made entirely without defects and dislocations, but these act
as efficient scatterers of light so that losses are higher. Moreover, crystals tend to be
brittle so that glass comes out as the better choice. The reader is referred to [3] for
more detail about defects in silica glass.

6.1.3 How Glass Breaks

When it comes to glass, the layperson does not necessarily think of great elasticity.
Rather, the common perception is that glass breaks quite easily. This may be why
it is so fascinating to experience the perfect flexibility of optical fibers. It is true,
though, that cracks can occur in glass, which suddenly, precipitously cause it to
break (Fig. 6.4). On closer inspection, what happens is that fractures propagate
across the material at a speed of hundreds of meters per second (approaching half
the velocity of sound). But that is not true for all cracks: Quite to the contrary, may
tiny cracks advance only at an unperceptibly slow speed. Growth rates of 10�14 m=s
have been verified; this corresponds to one snapping atomic bond per hour, or 3
years until the crack has proceeded by 1�m. Then, damage will become visible
only after years, after a false sense of safety has developed.

If pristine glass pieces are tested under high vacuum, they withstand tensions of
more than 10GPa, about ten times the value for many metal alloys. Surface defects

Fig. 6.4 Glass breaks from
cracks that grow at their tip

water etc.

crack growth

glass
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or contact with abrasives produces microscopic cracks, though, which are the point
of attack for chemicals. The cracks then grow and widen. The gravest concern is
about water because it is so ubiquitous. It acts at the tip of the crack. As is well
known, window panes are cut to size not with a saw as one would do with wood,
but by making a scratch with a diamond, wet it with water or even saliva, and then
break it. This is the same mechanism.

Atoms at the glass surface have fewer bonds than those inside the volume.
Therefore they are at an elevated energetic state. Making the surface larger then
requires an energy supply. When the mechanical energy stored in the material is
larger than this additional surface energy, the crack will grow. Chemical reactions
between the silica and intruding water reduce the required energy from 3.2 to
0.19 eV per bond.

A lot of mechanical stress builds up, at the tip of the crack in particular. In cracks
that are often about 0:4 nm, water molecules of 0:26 nm diameter and similarly sized
ammonia molecules can intrude, but methanol (molecular diameter 0:36 nm) has a
lot less consequence. Even larger molecules do not affect crack growth appreciably.

It took a number of years until industry had learned to master the making of
glass with the chemical purity required for fibers. Experience from semiconductor
industry was a valuable guide in the process. In that industry, gaseous silicon
chloride (SiCl4), purified by distillation, is widely used as a starting material. It
is now also being used for making glass, according to the reaction formula

SiCl4 C O2 ! SiO2 C 2Cl2: (6.1)

Gaseous chlorine evaporates; solid silicon dioxide condenses as an amorphous
substance on cool surfaces and can form glass at suitable temperatures (“fused
silica”).

Especially critical for purity are OH ions. The following reaction, for example,
must be avoided:

2SiCl3H C 3O2 ! 2SiO2 C 3Cl2 C 2OH: (6.2)

Dopants serve to modify the refractive index (Fig. 6.5). Germanium and phosphorus
both increase; fluorine decreases the index. The most frequently used dopant is
germanium. Dopants are added through their chlorides to the reaction gas, and there
can be the following reaction:

GeCl4 C O2 ! GeO2 C 2Cl2: (6.3)

As a rule of thumb, a concentration of 1 mol % GeO2 in fused silica raises the index
by 0.1 %.
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Fig. 6.5 Influence of dopants
on the refractive index at 1.0
and 1:5�m. Shown are data
for phosphorus (P2O5),
germanium (GeO2), boron
(B2O5), and fluorine.
Calculated after [7]

,
,

6.2 Manufacturing of Fibers

The manufacturing of optical fiber is performed in two steps: First a preform is
made. The term refers to a rod of glass, typically ca. 1 m long, with a diameter of
10–50 mm, and with the refractive index profile already built into it. In the second
step, this preform is then softened by heating and stretched out by pulling so that
the final fiber is obtained.

Both process steps will now be described in some more detail. For making of
the preform there are several alternative ways. All of them have certain advantages
and disadvantages; each manufacturer tends to advertise the advantages, indeed the
superiority of their particular proprietary technique.

6.2.1 Making a Preform

6.2.1.1 OVD

Outside vapor deposition, a technique also known as soot process, was the first
process to achieve the reduction of losses to 20 dB/km in 1973 (Fig. 6.6). It was
developed by Corning Glass Works; it is still used at Corning and, through joint
ventures, at other manufacturers.

Glass is deposited on the outside of a massive cylindrical rod of aluminum oxide.
It is generated when the gaseous chemicals are fed into the flame of a burner so
that submicroscopic glass particles condense on the surface. All the time the rod
is rotated and translated so that a uniform layer is formed. The layer is porous at
first (“soot”), but during its deposition concentrations of dopants are adjusted, and
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Fig. 6.6 In outside vapor deposition (OVD), the glass is deposited from the reaction of gaseous
chemicals on the outside surface of a carrier rod

it therefore already contains the dopant profile as required for the refractive index
profile of the finished fiber.

Then this rig is heated to allow evaporation of trapped gases and humidity. Next,
heat is turned up to a higher temperature of 1400–1500 ıC so that in a sintering
process the porosity is removed. Once the glass is compact, one can pull out the
ceramic carrier rod; finally, the preform is “collapsed” to fill the central hole and
generate a massive object: a scale model of the fiber.

6.2.1.2 MCVD

Modified chemical vapor deposition was developed ca. 1974 at Bell Laboratories
and is now in widespread use (Fig. 6.7). As compared to OVD, the inside is turned
out: One starts with a glass tube (which will later become part of the cladding)
and passes the gaseous reactants through the bore. Just as in OVD, a burner is
moved along and around the tube; in the heated zone porous glass is deposited.
The difference is that here no residual gas and no water vapor is trapped because
there is the wall of the tube between the burner flame and the reaction zone, acting
as a barrier. Again, in the next step, the porous glass is sintered. The resulting hollow
tube is then collapsed to a massive rod.

The disadvantage to be mentioned here is that the glass tube needs to be of very
high purity and uniformity. Also, during the collapsing step, some of the dopant used



6.2 Manufacturing of Fibers 109

Fig. 6.7 In modified
chemical vapor deposition
(MCVD), the glass is formed
on the inside surface of a
glass carrier tube

deposition of SiO2
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exhaust gas: Cl2
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Fig. 6.8 In plasma chemical
vapor deposition (PCVD), the
glass is deposited inside a
carrier tube as in MCVD;
however, heat supply is quite
different and relies on
microwave heating

deposition of SiO2
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exhaust gas: Cl2

supply of SiCl4,
GeCl4, O2, etc.
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irradiation

in the last, innermost layer escapes. This is why the finished fiber often exhibits a
central dip in the refractive index profile.

6.2.1.3 PCVD

Plasma chemical vapor deposition goes back to Philips Research Laboratories in
1975 (Fig. 6.8). This is a variant of MCVD where not a gas burner is used for
heating but a microwave generator (3 GHz, several hundreds of watts). Meanwhile,
the temperature of the rod is kept at ca. 1000 ıC in order to minimize mechanical
tensions between tube and deposited layers during heating cycles. The plasma is
uniform enough that constant turning of the tube is not required. Also, sintering
is unnecessary because the glass is deposited free of pores. Moreover, the process
is fast since thermal cycling is much reduced. These items combine into a distinct
advantage when very many very thin layers must be deposited for the most precise
control over the refractive index profile. It is not at all unusual to deposit 2000 layers.
However, this method also suffers from the central index dip.
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Fig. 6.9 In vapor phase axial deposition (VAD), the new glass forms right on the end of a carrier
rod; this allows to make quasi-endless preforms

6.2.1.4 VAD

Vapor phase axial deposition was developed in ca. 1977 in Japan and is used in
that country to this day, and through joint ventures elsewhere, too (Fig. 6.9). This
technique is quite different from the ones described earlier in that the glass is formed
at the end of a rod. One starts at the section of a seed rod, deposits glass, and lets
the structure grow longitudinally. The refractive index profile is obtained through an
elaborate geometry of burner flames and positions of the nozzles that bring in the
reactants. Constant turning helps secure rotational symmetry.

Here, too, the glass is initially porous. One needs to sinter the soot into solid
glass by pulling the entire rig through a suitably heated zone. On the other hand, no
collapsing is required here.

The unique advantage is that the preform can be made to any length; in effect,
endless. This allows to produce very long lengths of fiber in one piece.

6.2.1.5 Noncircularly Symmetric Fibers

We have seen in Sect. 4.6.2 that polarization-maintaining fibers intentionally deviate
from a rotationally symmetric structure. To make such fibers, obviously some pro-
cess step must be introduced that breaks the circular symmetry. Several approaches
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Fig. 6.10 To make a nonsymmetric bowtie preform, an intermediate step is etching with heating
on two opposite sides (rather than uniformly all around). All layers deposited after this step will
then grow with a broken symmetry. When the fiber is pulled from the preform, the characteristic
bowtie shape is obtained. After [2] with kind permission

have been explored to accomplish this, including mechanically milling a preform to
generate an elliptic cross-section. It is more elegant to introduce a highly reactive
gas and have it etch away some material on two opposite sides, rather than all
around. As is well known, the rate of chemical reactions exponentially depends on
temperature (Arrhenius factor). Figure 6.10 shows the procedure, introduced 1982
in Southampton, in the making of a bowtie fiber.

6.2.2 Pulling Fibers from the Preform

The preceding paragraphs discussed how a preform can be made. Think of a
preform as a short (typically 1 m), fat (typical diameter 10–50 mm) version of fibers,
complete with all internal structure. In a machine called a draw tower, the preform
is heated to the temperature where glass softens and begins to melt, i.e, around
1950–2250 ıC (Fig. 6.11). One can then catch a thread of glass and pull it into a
fiber with a diameter of 70–250�m, but most frequently 125�m. In the process,
the diameter is reduced some 200-fold; therefore the length increases by 40,000:1
to about 40 km. At a typical, certainly not particularly rapid, speed of advancing the
preform into the heating zone of 200�m=s, one winds up with a fiber (pun intended)
at 8m=s. At 5000 s or one and a half hour later, 1 m of preform has been spent, and
40 km of fiber has been made.
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Fig. 6.11 Schematic
depiction of a draw tower.
The preform is heated to the
onset of melting. The fiber
thus formed gets coated with
plastic in an extruder and is
led over pulleys and onto a
receiving drum. Noncontact
measurement of fiber and
coating diameter is used for
closed-loop control of
parameters such as advance
speed. A test for tensile
strength is also applied right
here

feed mechanism

preform

furnace

bare fiber

extruder

fiber with coating

winding drum

test for tensile strength

measurement
of fiber diameter

measurement
of coating diameter

capstan

This may all sound very simple, but the technical reality is quite involved. Draw
towers are two floors high. Temperature and advance speed must be maintained to
the most exacting tolerance demands. Online measurements of fiber diameter and
other properties are used for elaborate closed-loop control of parameters. As a result,
one can maintain the fiber diameter to within 0:1 �m.

Immediately after cooling, a plastic coating is applied by way of an extruder. This
is important because it protects the fibers from mechanical factors such as abrasive
contact and from chemical influences by water. At the same time, it contributes
to minimize micro-bending loss. Frequently the coating consists of two layers: an
inner layer is soft, pliable; an outer layer, hard, abrasive-resistant. Epoxides and
polyimides are used, also acrylates and silicones. Occasionally, a barrier layer is
applied first to keep water out; it can consist of either amorphous carbon or metal
like aluminum or gold. Before the fiber is coiled on a spool, a test for tensile strength
is conducted.

In Sect. 4.7 microstructured fibers were introduced. They differ from conven-
tional fibers in that they have air holes running the length of the fiber. To make a
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preform for such a fiber one starts from glass tubes which are stacked together to
form a bundle. One is at liberty to replace individual tubes with massive rods, or to
use tubes with various wall thicknesses. Frequently the tube at the center is replaced
by a massive rod; this will end up as the massive core. The stack is then fused
together in a draw tower. In most cases the result is not yet the finished preform but
an intermediate product known as a cane. The cane is then stuck into the void of a
wider tube. A final fusing in a draw tower then produces a fiber which is massive in
the outer parts of the cladding; this provides some mechanical strength. In the center
part where there was the cane there is a regular array of holes, often in a hexagonal
array (compare Figs. 4.21, 4.2 and 4.23).

The technique is called stack-and-draw. It requires extra care to assure that
during fusing of a ‘holey’ structure the holes do not collapse; process parameters
are modified to proceed at a somewhat slower speed and at lower temperature. Also,
one can pressurize the holes during the process with compressed air or inert gas.

6.3 Mechanical Properties of Fibers

6.3.1 Pristine Glass

Contrary to a widely held opinion glass is a material that can withstand quite some
mechanical stress. Let us consider tensile strength: Under applied tension, there is
deformation and eventually breakage.

At low stress, most materials deform elastically and stretch in proportion to
tension (Hooke’ law): The relative length change, the strain �l=l, is given by

�l

l
D 1

E

F

A
: (6.4)

Here F is the applied force (measured in Newton) and A the cross-sectional area
(measured in meter square). F=A is then the tension (similar to a negative pressure)
and has units of N=m2 D Pa (Pascal). The proportionality constant 1=E contains
Young’s modulus of elasticity E; E is also measured in Pa.

There is a certain critical value of tension .F=A/crit, which is called the elastic
limit. Beyond this level many materials, depending on their ductility, will undergo
plastic deformation. Steel wire deforms plastically, and so does copper wire: it can
be stretched 20 % longer without snapping. At even higher tension, the ultimate
limit is reached and the specimen is destroyed by rupturing. Glass fiber, in contrast
to ductile metals, exhibits no plastic deformation but breaks immediately once the
critical tension is exceeded. The following table gives some representative values of
elastic properties.

The table indicates that the tensile strength of glass is much less in normal
specimens than in an idealized situation. In the ideal case (absolutely pure glass
without the smallest microscopic scratches in its surface), glass fibers can almost
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be as strong as steel. At a tension of 20 GPa over a cross-sectional area of A D
�
4
.125�m/2, this implies a critical tension of 245 N, corresponding to a fiber

suspending a weight of 25 kg. Of course, such ideal circumstances never occur
in practice and so the critical strain is at a few percent. This has been studied
extensively.

As may be expected, the plastic coating contributes negligibly to the overall
tensile strength. The critical tension is strongly influenced by the depth of surface
scratches. According to a theory by Griffith, the value stands in inverse proportion
to the square root of scratch size. When in practice ca. 5 GPa is obtained, one can
conclude that scratches of a few tenths of nanometers are responsible. In this context
the plastic coating, applied immediately after drawing the fiber for a good reason, is
all-important because it prevents scratches. It also limits the access of water. On the
bottom line, the coating is important after all: not by bearing load directly, but by
maintaining the initial tensile strength as intact as possible (Table 6.1).

The tension for a 1 % strain (0.7 GPa) is obtained from

EA � 1% D 8:6N; (6.5)

so that it is reached at about 880 g load. Fibers are routinely tested for tensile
strength right at the draw tower. Standard values are 0.35 GPa, corresponding to
0.5 % strain for fibers intended for terrestrial use, and 1.38 GPa, corresponding to
2 % strain, for fibers destined for undersea applications. It should be clear that
the latter must withstand greater mechanical stress, in particular in the fiber-laying
process.

After deployment, during the intended use, fibers are rarely stressed by more than
one fifth of the test level; this gives a safety margin for a life expectancy of several

Table 6.1 Selected values of
Young’s modulus, critical
tension, and critical strain

Material E (GPa) .F=A/crit (GPa) .�l=l/crit

Various substances

Steel 210 20 10 %

Aluminum 70 0.3 20 %

Copper 120 0.06 20 %

Glass 70 0.05 1 %

Lead 16

Wood 10

Optical fibers

Ideal 70 20[4] 30 %

Real 70 2 . . . 5 3 % . . . 7 %

Coating materials

Acrylate (inner; soft) 0.001

Acrylate (outer; hard) 1

Polyimide 2.5

Polyamide (Nylon) 2 0.05
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Fig. 6.12 Reliability test of
optical fibers: lifetime under
tensile stress. With increasing
stress, life expectancy is
reduced exponentially. After
[5]
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decades. As it is difficult to simulate long-term behavior in a short time one takes
resort to statistical extrapolation (Fig. 6.12).

6.3.2 Reduction of Structural Stability

Life expectancy of fibers is dominated by all environmental changes that affect the
growth of microscopic cracks. In vacuum or in a chemically inert atmosphere, fibers
live longer! Unfortunately, this is of little use for technical applications. There are
several ways in which glass can break.

Static fatigue. At constant tensile stress below the critical limit, some fatigue is
observed that can create nasty surprises after a while.

Dynamic fatigue. With tensile stress rising linearly with time, one finds critical
limits that are lower than described earlier. This phenomenon gives rise to a
certain standardized measurement procedure.

Cyclic fatigue. In principle there is no material fatigue in glass as long as the
temperature remains sufficiently far below the softening temperature. Therefore
this process is of minor importance for fibers whereas for many other materials it
is quite relevant. On the other hand, during each cycle of tension there is dynamic
fatigue.

Zero stress aging. This is a case of unclear, in part contradictory evidence. If glass
with a roughened surface is immersed in water at room temperature, it may even
happen that the tensile strength is increased (30 % have been observed). In an
attempt to explain, researchers have conjectured that the tip of cracks would be
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rounded through corrosive interaction. In most cases, however, humidity reduces
strength. After drying under vacuum, the original strength can be partially
restored, indicative of reversibility of the processes involved.

The growth of cracks is mostly caused by water from the environment. Static
fatigue does not occur when one operates at liquid nitrogen temperature, or in
absolutely dry atmosphere or in vacuum. In contrast, when there is an elevated
concentration of OH ions, the cracks grow more rapidly. Different types of glass
are more or less resistant; pure fused silica turns out to be the best.

The crack growth rate increases exponentially both with tension and with
temperature. After years of reliable service, static fatigue can lead to an entirely
unsuspected sudden rupture of the fiber.

This risk may be typical for all risks that arise when new technologies are
introduced. There is always a remote chance that a hidden flaw goes undiscovered
until people rely on the seemingly trustworthy technology. The risk can only be
held at manageable levels by careful statistical analysis. After some early mishaps,
further nasty surprises from optical fibers are no longer anticipated. In this context,
it is also important that fibers are used as cables; by suitable construction of the
cable, one can keep tensile load away from the fiber and thus increase reliability.
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Chapter 7
How to Measure Important Fiber
Characteristics

It takes some special procedures to characterize an optical fiber through measure-
ment of its relevant characteristics. These procedures, often developed along with
the fibers, are presented in this chapter.

7.1 Loss

It is not trivial to measure fiber loss because the value is low, and some precautions
and a very good resolution are required to obtain a meaningful value with any degree
of precision. At values of a few tenths of dB/km, both resolution and accuracy
should be at least a few hundredths of dB/km. Remembering that 0.01 dB D 0.23 %,
this means that better than one part in thousand is asked for, always a challenge for
analog quantities. Here, however, there is one particular obstacle.

The naïve way to do this measurement would be to send light from some source (a
lamp, say, or a laser) into the fiber with the help of some suitable focusing lens, then
measure power right after and right before the fiber, and compare. However, that
strategy fails because the result contains incoupling loss. This loss is mostly due to
the fact that only a fraction of the incoupled light ends up in the guided mode (or
modes). The rest is lost to the cladding from where it is scattered out. Additionally,
there are Fresnel losses at the front and rear fiber face. With utmost care one may
reduce these losses to below 10%, but 30% are more realistic in a typical laboratory
setting. It is the uncertainty of this value that masks the propagation loss.
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118 7 How to Measure Fiber Characteristics

This is why one does not use the power before the fiber as a point of reference,
but the power shortly after the fiber input end. This requires to first measure the
throughput of a very long fiber (length L preferably several kilometers), then cut it
after L0 � 1–2m, and repeat the power measurement with the short piece. Provided
that the incoupling loss did not change during the procedure, one finds the loss of
the piece L � L0. Fresnel losses are also cancelled out. This is known as the cutback
technique and is the standard procedure. Still, many sources of error remain. Here
are some:

• Lack of constancy of the light source.
• Lack of constancy of the incoupling.
• Lack of constancy of the detector sensitivity (either due to temperature fluctua-

tions or by inhomogeneity of the detector surface).
• Too short L0. Light that is not guided in the mode can travel a short distance

in the cladding before it is completely scattered out. Part of it may enter the
measurement.

• Macro- and micro-bending loss.

Around 1980, it became apparent that repeatable loss measurements were a
necessity. Throughout the 1980s, several round-robin tests were conducted in vari-
ous countries in which pieces of fiber were sent around among several institutions
for loss measurement and comparison of results. In one such test in 1983/1984, 16
European laboratories in ten countries were involved. Initially, there was a spread in
the results of more than 0.2 dB/km, amounting to more than 100 % of the value,
even though the participants were the best labs from industry and government
agencies. It took considerable effort to reach a satisfactory state of affairs. To achieve
constancy of a halogen lamp, for example, it does not suffice to have a constant
current run through it: It is also important to have a specific value of that current
which is lamp type-dependent but often around 90 % of nominal current. At this
current, the temporal change of light output is minimized. It is also important to
observe the spatial orientation of the filament: For reasons of heat distribution, it
makes a difference whether it hangs horizontally or vertically. If all precautions
are scrupulously observed, one may achieve a constant light output within 0.1 %.
Photodetectors (photodiodes) must be selected for homogeneity of sensitivity across
their light-sensitive surface and must be thermostatized to within 0:1 ıC.

With these and further steps, data can be taken on long fibers with a resolution
of one part in thousand of 1 dB/km, and a repeatability of one part in hundred. This
makes it possible to obtain data as shown in Fig. 7.1 where the Rayleigh scattering
background has been subtracted out so that minute features like impurity absorption
bands become visible. It turns out that such data are like fingerprints: It is possible to
discern otherwise similar fibers and to identify a particular brand or type of fiber [4].
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Fig. 7.1 Measurement of fiber loss. A term proportional to ��4 (Rayleigh scattering) was first
fitted to the data and then subtracted out; plotted are the residuals. The figure shows two very
similar fibers from different manufacturers. Absorption bands due to OH groups and other
impurities look quite different due to slightly different manufacturing processes. From [4] with
kind permission

7.2 Dispersion

To measure fiber dispersion usually implies a measurement of the propagation time.
There are two avenues one can use: One is the standard procedure in industry
but requires a very long piece of fiber, like 100 km. At this length propagation
time differences at different wavelengths become directly measurable: To obtain a
resolution of 0.1 ps/(nm km), one needs to measure a timing differential of 10 ps/nm.
With two light sources 10 nm apart, this is feasible because fast photodiodes and
sampling oscilloscopes easily resolve times well below 100 ps. An example is given
in Figs. 7.2 and 7.3.

A difficulty to keep in mind is that propagation time also varies due to other
causes: The coefficient of thermal expansion of fiber is of the order of 10�5=K
[6, 11]; then, a minute temperature fluctuation of 0:01 ıC creates a change of
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Fig. 7.2 Scheme to measure fiber dispersion from propagation time. Four different wavelengths
can be selected. The phase shift of a radio frequency modulation between pairs of wavelengths is
measured. It takes very long fibers (�100 km) to yield useful signals. From [3] with permission

Fig. 7.3 Data taken with the setup described in Fig. 7.2. From the propagation time differentials
(top), one finds dispersion through taking the derivative. From [3] with permission
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length by 1 cm in 100 km fiber and gives rise to 50 ps change of propagation
time. Therefore procedures are chosen that measure propagation time differentials
between several wavelengths simultaneously. This requires several light sources
and has thus higher hardware requirements. On the other hand it provides more
direct, uncomplicated data acquisition that reduces manpower requirements. This is
a strategy well suited to the needs of fiber manufacturers who always have access to
the full-length fiber.

For the other route, it suffices to have a much shorter segment of the fiber,
about 1–2 m. The fiber is inserted in one arm of an interferometer; Mach-Zehnder
interferometers are the most common arrangement. The reference arm contains
either some other fiber with precisely known dispersion or an air path.

Now one can tune (continuously or stepwise) the wavelength of the light
source and find, at each wavelength, that path length which maximizes interference
contrast. The change of this path length with wavelength leads directly to the fiber’s
dispersion (Figs. 7.4, 7.5, and 7.6). Alternatively, one can use broadband light (white
light) and record the interferometric fringe pattern as the path length is scanned;
the Fourier transform of that fringe pattern provides the phase information from
which dispersion can be calculated [8]. This procedure provides the full wavelength
dependence in a single step.

It is also not a trivial task to assess the refractive index profile and the core
radius. The direct route is to measure refractive index in an interferometer, but since
high spatial resolution is required, a setup involving a microscope is required. One
expects refractive index differences of a few 10�3; for a unique determination, the
fiber length must therefore be a few hundred wavelengths; for visible light, this
means a fiber length of no more than ca. 100�m! We conclude that one would
have to prepare a thin slice of fiber by polishing which is time-consuming and
cumbersome.

Change of path difference (mm)

Fig. 7.4 Measurement of fiber dispersion in a Mach–Zehnder interferometer. One obtains fringe
patterns (interferograms) like the one shown here. Individual fringes are spaced by one half
wavelength and are thus too narrow to be resolved on the scale of the figure. In the case shown,
a polarization-maintaining fiber was studied; due to its considerable birefringence, there are two
clearly distinct groups of fringes
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Fig. 7.6 Dispersion values ˇ2 obtained from propagation times as in Fig. 7.5. Shown are results
for three different polarization-maintaining fibers; data for the fast axis (solid) and the slow axis
(dashed) are nearly on top of each other on this scale. For fiber specimen 3, the range near the zero-
dispersion wavelength is shown magnified (inset): on that scale both curves are clearly separated.
Zero-dispersion wavelength for the fast axis here is 1324 nm and for the slow axis 1321 nm

There are also methods in which the fiber is illuminated from the side. One first
removes the plastic coating, then places the fiber in index-matching gel and shines
light through sideways. On a screen one captures a pattern that, in principle, contains
the required information. Unfortunately the evaluation is cumbersome again (it
requires integral equations) and error-prone. Similarly, one can place the fiber with
transverse illumination into an arm of an interferometer. Again one can obtain the
information in principle, but only after quite involved evaluation.

All told, it is a lot easier to assess the internal structure of the fiber before drawing
it, i.e., from the preform. Precision is much improved because fine detail of the index
profile can be seen clearly while in the finished fiber the same dimensions may be
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Fig. 7.7 Core profile of a
step index fiber, measured
from the final fiber. Due to
diffraction effects this can
show no detail finer than
about one wavelength. From
[2] with kind permission

Fig. 7.8 Core profile of a
triangular fiber, measured
from the preform. The
preform is much bigger, so
much finer detail becomes
visible. From [9] with kind
permission

Fig. 7.9 Core profile of a
typical gradient index fiber,
measured from the preform.
Note the central refractive
index dip

( 
   

)

obscured by diffraction once they are smaller than one wavelength and thus below
the resolution limit (see Fig. 7.7). Details like a nonperfect index step or a central
index dip (see Sect. 6.2.1) can be seen much better in the preform (see Figs. 7.8, 7.9,
and 7.10).



124 7 How to Measure Fiber Characteristics

Fig. 7.10 Core profile of a double-clad fiber, measured from the preform. Again there is a
conspicuous central refractive index dip. From [1] with kind permission

7.3 Geometry of Amplitude Distribution

The distribution of field amplitudes in the fiber is not limited to the core. It also
must not be confused with the refractive index profile. The field distribution is
wavelength-dependent; roughly speaking, longer wavelengths extend farther into
the cladding. In the simplest case of a step index fiber, a relation has been formulated
between the mode field radius w (defined as the 1=e point of amplitude), the core
radius a, and the V number [7]:

w

a
D 0:65C 1:619V�3=2 C 2:879V�6 : (7.1)

Figure 7.11 shows a plot of this relation. The large extent of the mode at long
wavelengths (V ! 0) is clearly visible, and also the fact that throughout the single-
mode regime (V < 2:4048) the mode field radius is larger than the core radius.

There are several methods to measure the field distribution, and one can
distinguish near-field and far-field methods.

7.3.1 Near-Field Methods

To correctly identify the field distribution of the guiding mode it is essential that
only light from that mode emerges from the fiber end, and that cladding light has
died down. Steps to reduce cladding light may therefore be important.

Near-field methods create an image of the mode field distribution in the plane of
the fiber face directly. If you now think that you only need to look at the fiber end
with a microscope, consider this: We need to distinguish between conventional (or
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Fig. 7.11 Plot of Eq. (7.1).
The mode field radius w is
normalized to the core radius
a and is plotted as a function
of the V number. Throughout
the single-mode regime
V < 2:4048, w > a holds
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far-field) microscopes and near-field microscopes. Far-field microscopes catch the
light diffracted out from the object and transform it back to form an image. They are
subject to Abbe’s theory of diffraction and do not resolve detail much smaller than
a wavelength. This limits the usefulness of the measurement. There are aggravating
facts like aberrations and other errors in the imaging; for example, the scale factor is
normally affected by the exact position of the focal plane but enters the final result
proportionally so that any uncertainty ends up in the result. Far-field microscope
techniques are therefore generally considered not very precise.

A near-field microscope works very differently. It exploits the fact that a very
small aperture, possibly much smaller than the wavelength, still transmits light,
if with strong attenuation. On the other hand, this small aperture allows to map
out an intensity pattern when it is scanned in the plane perpendicular to the
light propagation direction. Then the resolution is not limited by wavelength,
but basically by the mechanical resolution of the scanning fixture. Near-field
microscopes with atomic resolution have been built.

In practice, one uses a second fiber as a probe. The probe is scanned across
the fiber tip in very close proximity (less than 10�m) to map out the power
distribution (Fig. 7.12). This is why this is called the transverse offset method. In
the limiting case that the probe fiber has a much smaller mode field diameter than
the fiber under test, it should be clear that the desired mode structure is obtained
directly. Unfortunately this case is unlikely; more typically, both mode fields are of
comparable size. Then one obtains the convolution of both distributions; from this
the desired shape can be calculated only if the other is well known.

For typical single-mode fibers and at V numbers not too far from V D 2:4048,
the intensity distribution is somewhat similar to a Gaussian:

I.w/ D I0 exp.�2.w=w0/
2/: (7.2)
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Fig. 7.12 Schematic representation of the transverse offset method to measure mode field
diameter. (a) The fiber’s exit cone (and the acceptance cone likewise) does not appreciably change
its diameter over the first few micrometers. Therefore one can bring two fiber tips closely together.
(b) Then one can measure how much power is coupled from one fiber to the other, while the
transverse offset is scanned. (c) From mapping out the transmission as a function of position, one
can draw conclusions about the mode field diameter

The mode field radius is taken, by convention, as that radius w at which the field
amplitude is down to 1=e � 37% of the central maximum. At this point, the
intensity is down by 1=e2 � 13:5% of the maximum. (In old literature sometimes
other definitions are found, this can create much confusion.)

The convolution of two Gaussians is a Gaussian again, which makes the Gaussian
approximation convenient. The situation is particularly clear when both fibers
have the same mode profile, because they are pieces of the same fiber. Then the
convolution has the

p
2-fold radius of the mode profile of each fiber individually

(see Chap. 18), and w0 is obtained by reading the radius where the intensity is down
to 1=e of the maximum.

The longitudinal separation of the fibers must be small enough that only the near
field, not the divergent part of the exit cone is measured because otherwise one
would find systematically too large values.
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7.3.2 Far-Field Methods

In a very different approach, one allows light to exit from the fiber and propagate
in free space until the far field is reached. This is the case when the distance z is at
least

z

�
	
�w

�

�2
;

where w is the mode-field radius (which one tries to determine, but has reasonable
guesses about). This condition is easily met already after a few millimeters; in
practice, one would prefer a couple of centimeters. At this distance, one can observe
the far field, e.g., on a screen. If the distance were increased even more, the pattern
on the screen would not change: It would just scale linearly in diameter. It is
therefore appropriate to measure positions in the pattern as angles from the fiber
tip. The aperture angle of the exit cone is read at the intensity 1=e2 D �8:69 dB
referred to the on-axis maximum.

Instead of a screen, one may use a photographic plate or an electronic camera. It
is more common, though, to move a single photodetector on segments of circles
around the fiber tip as shown in Fig. 7.13 and map out the far-field pattern this
way. At large angles with the axis there is only weak intensity, and it is of utmost
importance to safeguard against stray light.

If one again applies the Gaussian approximation mentioned in the preceding
paragraph, one obtains w0 from the condition

w0 D �

��
: (7.3)

It is much more precise, though, not to make any approximations of that kind.
The full information about the field distribution in the fiber is contained in the far-
field distribution because the laws of diffraction are unique and they are known. A
full measurement of the far-field amplitude distribution everywhere on the screen
would yield the mode profile unambiguously. (If it were guaranteed that the fiber is

Fig. 7.13 Setup for a
far-field measurement: in
sufficient distance from the
fiber, a detector is moved on a
circular path (or over a
spherical surface) centered in
the fiber tip. The intensity is
recorded as a function of
angular position
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circularly symmetric, it would suffice to measure on a diameter instead of the full
area.) One would have to apply a Hankel transform, which is a Fourier transform in
cylindrical coordinates, using Bessel functions in place of sin and cos.

But there is a catch: Unfortunately one never measures an amplitude distribution,
only an intensity distribution (Fig. 7.14). To make matters worse, one also does not
measure the entire distribution in a 2� solid angle because that is difficult to do both
geometrically and due to the strongly attenuated intensity at large angles from the
axis. Both stray light that finds its way to the detector and the detector’s own noise
easily swamp data at large angles.

At large angles to the axis, the intensity goes down so rapidly that cameras
cannot easily cope with the required dynamic range. It should be clear that
excellent linearity is required throughout the dynamic range. This can certainly
not be achieved with conventional photographic means, but electronic cameras are
challenged, too. With a good photodiode and possibly with lock-in technology for
the weak signals, it is easier to obtain a good dynamic range, limited only by stray
light. With due care, 60 dB can be obtained, but even this usually means that at
angles larger than 30ı there is no useful signal.

But back to the amplitudes, rather than intensities: It does not really help to take
the square root of all measured intensities because the field amplitude may have
zeroes, i.e., nodal lines at which the sign of the amplitude changes. They give rise
to dips, or notches, in the far-field profile at certain angles. For conventional step
index fibers, the first dip typically occurs at 0.2 rad so that it can be seen only when
the dynamic range exceeds 50 dB. The only option is to apply the sign change by

Fig. 7.14 Determination of
the mode profile from the far
field. Top: Measurement of
far-field intensity as a
function of angle shows
obvious deviations from a
Gaussian at large angles.
Bottom: The result of a
Hankel transform of the far
field is the near field, which is
the mode profile in the fiber
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hand, but such manipulation should only be performed with utmost care and critical
inspection. Sometimes what looks like a null is really only an unresolved minimum.
It is precisely the far-field information at large angles that contributes most to the
fine structure of the near-field result. As Abbe’s diffraction theory asserts, it is the
large angle information that carries the high spatial frequency content and is thus
responsible for the “sharpness” of the reconstructed near field.

7.4 Cutoff Wavelength

If one determines the mode-field radius as described in the preceding section and
repeats the procedure for several different wavelengths, one expects to find a trend
as shown in Fig. 7.15. There is a characteristic step at the cutoff wavelength because
the higher-order mode has a wider field distribution. If one takes this approach to
measure the cutoff wavelength, one should observe a few subtle points:

We pointed out in the context of bend loss in Sect. 5.2 that the theoretical cutoff
value at

�cutoff D 2�aNA=2:4048 (7.4)

is only found in fibers that are stretched out straight and infinitely long. A
definition better adapted to practical requirements therefore identifies the cutoff
as that wavelength where the loss for the LP11 mode exceeds the loss of the
fundamental mode by 20 dB. Strictly speaking, one would have to measure the
modes individually to apply this criterion.

Fig. 7.15 The mode-field
diameter displays a
characteristic step at the
cutoff
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For practical use, it is helpful to think this through a little more. For short fibers,
the higher-order mode shows up already at longer wavelengths where it is not an
allowed mode, but its loss has not diverged yet. On the other hand, bends move
the effective cutoff toward shorter wavelengths. If one judiciously selects both fiber
length and bend radius, the opposing trends more or less cancel each other out, and
one approaches the ideal situation. There is the standard procedure to use a fiber
of 2 m length, bent to a loop of 28 cm diameter. Then the cutoff is read from the
intersection of the asymptotes as shown in Fig. 7.15.

An alternative procedure is a little less involved. One measures the transmitted
power as a function of wavelength and repeats with different bend radii. Changing
the bend radius shifts the loss mostly for the higher-order mode (see Fig. 5.3). From
the ratio of spectral transmission with and without bend, one can read the cutoff
wavelength (Fig. 7.16). The standard procedure is to identify that wavelength at
which the transmission differs by 0.1 dB from that in the plateau above the cutoff.

Both this and the previous method occasionally suffer from a special complica-
tion. Sometimes the characteristic step is not as clear as shown here; instead, right
in the relevant range there are oscillations in the curve so that a clear reading is not
possible. This is caused by the so-called whispering galley modes. These are modes
that can propagate in a curved fiber in the cladding; this involves reflections at the
outside surface of the fiber. To safeguard against them, in effect one removes the
outside surface by stripping the plastic coating and placing the bare fiber in index-
matching gel. When the indices are indeed well matched, cladding light will exit
from the fiber after a very short distance and the problem is solved [10].
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Fig. 7.16 Bend loss also shows a characteristic step at the cutoff, because higher-order modes are
much more sensitive to bending. This allows to find the cutoff. Here the additional loss arising
from tight fiber loops was used. From [5] with kind permission



7.5 Optical Time Domain Reflectometry (OTDR) 131

7.5 Optical Time Domain Reflectometry (OTDR)

Fiber technology has given rise to a special tool that can be used to easily assess
many properties of fibers, both in the lab and in the field. It is called optical time
domain reflectometry or OTDR (Fig. 7.17). It is very similar in spirit to radar: A
signal is launched into the fiber; whatever light is reflected or scattered back is
collected and evaluated. Pulsed laser diodes are employed as light sources and
photodiodes to detect the backscattered light.

The time until an echo is registered is calculated from

�echo D 2nL=c; (7.5)

where n is the effective index for the mode and L is the length. The factor of 2
arises because light must travel forth and back before it is registered. Echo strength
provides information about the type of condition that causes the echo: Rayleigh
scattering gives a continuous background that gently goes down with increasing
distance; localized conditions like fiber joints or breakage give sharp peaks.

There is always a certain crosstalk of transmitter light to the receiver, so that the
receiver is overloaded for a short initial moment. This creates a dead zone in the
short range. However, some devices are constructed to minimize the dead zone and
measure even on the shortest distances (millimeters, in some cases even less).
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Fig. 7.17 Optical time domain reflectometry (OTDR). Top: Setup. A light pulse is launched into
the fiber under test; the reflected light is recorded as a function of time. Time can be converted
to position in the fiber. Bottom: The obtained data, shown here schematically, provide information
about various fiber conditions
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OTDR equipment is offered by several manufacturers and allows to assess a fiber
over many kilometers with access only to one end. This makes OTDR a valuable tool
for a wide range of tasks, notably to analyze

• fiber loss and its spatial allocation;
• loss at fiber joints like connectors or splices;
• loss at other localized conditions, e.g., sharp bends or damage;
• the location of each of these conditions;
• fiber length; and
• fiber end reflection.

In commercial installations OTDR devices are therefore indispensable in spite
of their cost. Some manufacturers offer plug-in cards for computers with complete
OTDR hardware; this reduces the cost because the computer does both the number
crunching and the displaying.
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Chapter 8
Components for Fiber Technology

The best car would be good for nothing if there were no streets and no gasoline.
Any technology relies on an interplay of various components. Therefore, optical
fiber does not do anything useful without additional components and supporting
technologies. In this chapter we introduce that “periphery.”

8.1 Cable Structure

Optical fiber cables are in use for telephone data since 1980. Initially multimode
fibers were used in cables of 60–144 individual fibers. At the operating wavelength
of 825 nm, loss amounted to 3–3:5 db=km; therefore every 6 km an in-line amplifier
or repeater was required. Data were transmitted at a rate of 45 Mb/s.1 One year later,
the first operation in the second window near 1300 nm was started. Initially cables
for this wavelength had half as many fibers. Losses were lower, around 1 dB/km,
and thus repeaters could be placed every 18 km. Data rates were 90 Mb/s. All these
cables were buried in existing conduits.

Beginning in 1983, single-mode fibers were used and are now unrivalled for
medium and long distances. Multimode fibers are still in use in short-range links
(local area networks or LANs) connecting computers on-premises or within the
same building. The first generation of single-mode fiber technology operated at
1310 nm, had losses around 0.5 dB/km, required repeater distances of 30 km, and
could transmit 400–600Mb=s.

The fiber count in these cables was around 20–30. The cables were no longer
placed in existing ducts, because these did not provide sufficient protection from
lightning flashes and from rodents.

1Date transmission rates are measured in bits per second. Mb/s stands for megabits per second.
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The USA has the largest domestic telecommunications market worldwide. In this
market there was a profound change in 1983 which we must mention here. Before,
American Telephone and Telegraph, or AT&T, had an absolutely dominant market
position. In 1983 courts passed a landmark decision referred to as divestiture, which
forced AT&T to give competitors more access. In effect the company was split into
a central segment and several regional operating companies. Right after divestiture
there were not as many cables as telephone service providers so that sometimes
the same fiber in the same cable was used in time-sharing agreements by several
competitors. Maybe that is why cables with 96 fibers were then laid.

A couple of years later, loss of 0.4 dB/km, repeater distances of 40 km, and
data rates of 2 Gb/s became routine. This corresponds to 1,500,000 simultaneous
telephone calls. See Chap. 11 for methods to put many calls onto the same fiber
without mutual interference and Sect. 11.4 for further development.

When a cable incorporating optical fibers is manufactured, there are a couple of
things to observe. Fibers must be protected from adverse environmental influences.
In the interest of a long lifetime of the cable, fibers must not experience tensile load
even while the cable is bent and pulled. Also, both macro- and micro-bend losses
must be avoided in the deployed fiber. Several cable designs are in use to meet these
objectives; Fig. 8.1 shows examples. There is always a strength member to take
care of the tensile load; it may me made of fiberglass, Kevlar fiber, or steel wire.
(Fiberglass is what the poles for pole vault are often made of; Kevlar is the fiber
used for bulletproof vests.) Typically, fibers are individually placed in tiny tubes
where they have some slack and can accommodate some extra length. If the cable
is then pulled, the stress is kept away from the fibers. The tubes are filled with a gel
which prevents the intrusion of water; it also damps vibrations and movement of the
fiber. Sometimes a group of fibers sits in a common, slightly larger tube, again filled
with gel. There are also “ribbon” constructions where several fibers are connected
in a flat side-by-side structure similar to an electric flat ribbon cable. Ribbons allow
to make connections of several fibers efficiently by automated machinery. All fibers

Fig. 8.1 Schematic cross-section of different cable types. Left: A single fiber sits loosely in a
structure which is stabilized by fiberglass and Kevlar. Center: Several fibers are placed around
a central steel wire acting as strength member. Right: Several fibers are combined into ribbons.
Shown is a cable with several such ribbons; the structure is stabilized by steel wires. From [1]
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in a ribbon can be spliced to another ribbon in one go, rather than handling each
fiber individually.

There are several options for laying the cables. On long distances, they are dug
into the ground, and in cities they are placed in ducts. In some countries including
the USA, the cheap method is preferred in rural and suburban areas: the cables are
suspended from utility poles. This, of course, is susceptible to interruptions.

The most frequent sources of damage are by humans (digging, vandalism) and
natural causes such as lightning strokes and—down to 2 m below ground—rodents.
In the USA, damage by gunshot occurs. Sometimes deployed fibers are subject to
temperature extremes: For suspended fibers on poles, one calculates with �25 ıC
to C65 ıC for most of the continental USA; in some areas, one has to design for
�40 ıC to C75 ıC. In the ground this range is limited to 0 ıC to C30 ıC. In this
one respect, undersea cables are in a most benign environment: On the sea floor the
temperature is quite constant around 10 ıC.

8.2 Preparation of Fiber Ends

Before fibers can be used for anything at all, first the fiber end faces must be prepared
(Fig. 8.2). It is mandatory that the end face, after the fiber has been cut or cleaved, is
perfectly smooth and of optical quality. This is not possible by bending the fiber till
it breaks, or by cutting it with scissors. The simplest way for controlled fracture is to
scratch the fiber surface manually with a diamond, a tungsten carbide blade, or some
other extremely hard material, and then to apply mechanical tension. With some
routine one can obtain reasonably good surfaces most of the time: The reliability
falls short of 100 % but in a pinch may be acceptable, but it is a good idea to check
the fiber end with a microscope.

Fig. 8.2 Fiber end faces. Left: Here an edge remains. Center: An irregular surface called a hackle
zone. Either is a sign of a bad preparation. Right: A good preparation results in a face smooth as a
mirror
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It is much better to use specialized equipment; the cost lies anywhere between a
few hundred and several thousand euros or dollars. Fiber-breaking devices apply
a well-defined longitudinal tension to the fiber while scoring it with a blade
which may vibrate at ultrasonic frequency. This results in end faces which are
perpendicular to the fiber axis within close tolerances and are smooth every time.

When fibers are inserted in connectors, it is important that the front face is in
the same plane as the connector front. If the fiber sticks out, it will suffer from
damage; if it is recessed, there will be no good match to the other fiber. One
cannot obtain the cut in the exact position with the gear just described. Instead,
one inserts the fiber so that it sticks out a bit, then polishes it down on special
polishing pads with very fine abrasive until it fits exactly. A problem can be that
the grinding and polishing exerts shear forces on the glass so that, in a thin layer
just beneath the surface, the glass structure may be modified. Local changes of
the refractive index to n D 1:6 have been observed [5]; in such cases there
will be extra losses. By using a judiciously chosen sequence of initially coarse,
then progressively finer abrasives one can mitigate or even eliminate the problem.
There are commercial fiber-polishing machines, which can even prepare several
connectors simultaneously.

8.3 Connections

Connections between two fibers can be of either one of two basic types: permanent
and nonpermanent.

8.3.1 Nonpermanent Connections

Fixtures are available, which have a V-shaped groove in an otherwise smooth metal
surface. A fiber can be placed in the groove where it is held in position by some
clamp. Such groove can be used to bring two fibers in close proximity to each other
manually, but it helps to have a steady hand. The remaining air gap is sometimes
filled with a drop of index-matching liquid to suppress Fresnel loss. This way a
viable connection between two fibers is made; it is called a finger splice. Such
connections are easily opened again and can be useful in a laboratory setting.
Unfortunately, they have a loss between one half and one decibel.

When fibers are installed for a technical application, one does not want to
deal with such finicky techniques. There are various connector types which are
reminiscent of electronic connectors and almost as trouble-free. They are the result
of a development which first had to deal with issues of geometric tolerances. To
maintain the required precision even after multiple cycles of opening and closing,
the connection was a challenge initially, in particular for single-mode fibers with
their extremely small mode-field radii.
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Fig. 8.3 A typical fiber connector. At the center of the ferrule, one can see the fiber either as a
dark or a bright spot, depending on lighting conditions

Today one can purchase such connectors for a few euros/dollars from a variety of
vendors. Several connector styles are common (Fig. 8.3). Coupling loss can result
from a variety of causes:

1. Both fibers have different mode field shape and diameters.
2. Between both fibers a distance (air gap) remains.
3. Both fibers are positioned with a transverse offset.
4. Both fibers are positioned with an angular offset.
5. There are surface (Fresnel) reflections.

Losses due to these factors were studied in [7]; Fig. 8.4 shows the result. It should
be clear that quite close tolerances must be maintained. If the fibers to be connected
are a given, the loss from (1) is unavoidable, while the loss from (2)–(4) arises from
lack of precision in the connection and can be minimized.

In case of actual physical contact of both fibers the contribution from (5) would
vanish, but such contact is problematic because abrasion might damage the fibers
in repeated operation. Therefore Fresnel losses are usually accepted. The reflection
at an interface between a medium with index n1 and a medium with index n2 for
perpendicular incidence is given by

r D n1 � n2
n1 C n2

;

R D
�

n1 � n2
n1 C n2

�2
;

where r is the reflectivity for the field amplitude, i.e., the reflected amplitude
normalized to that of the incident wave. R D r2 is the reflected power fraction.
For fused silica in the visible and near infrared with n � 1:46, one finds r D 0:19

and R D 3:5%. In a connection between two fibers not in physical contact, we
consider two such interfaces: fiber–air-fiber. Naïvely one may expect twice the loss
from an individual air–glass interface or 7 %. Unfortunately the situation is slightly
more complicated than that.
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°

Fig. 8.4 Theoretical coupling loss between two fibers, after [7]. Shown is the expected trans-
missivity (Fresnel loss not considered) if (a) there are unequal mode-field radii, (b) there is
transverse offset, (c) there is a gap, and (d) there is an angular misalignment. A mode-field radius
of a D 5�m, a cladding refractive index nM D 1:46, and a wavelength � D 1:5�m are assumed

In the case of coherent light the loss may be more or less than 7 % because both
reflections may add in phase or in opposite phase. Both reflecting surfaces are nearly
parallel, and light can bounce back and forth between them. Depending on the gap
width-to-wavelength ratio, a resonance condition may been fulfilled (round trip path
equals integer multiple of wavelength). The total reflection can vary accordingly
between zero and four times the individual reflection or 14 %. In effect, one has a
Fabry–Perot interferometer (see Fig. 8.5). If the light is not perfectly coherent and
the gap is wider than the coherence length, resonances are washed out and eventually
the naïvely expected value is approached. The coherence length of laser light by far
exceeds all reasonable gap widths, and interference needs to be fully taken into
account. LEDs have limited coherence length, and only a few resonances occur.
White light would avoid resonances but is not what one usually deals with.

If two polarization-maintaining fibers are to be joined, there is the additional
requirement that the orientation of the birefringent axes must match (see Sect. 4.6.2).
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Fig. 8.5 Depending on the degree of coherence of the light, there can be more or less obvious
Fabry–Perot resonances in the coupling efficiency as the gap width between fibers is varied. The
coherence length of laser light always exceeds the gap width. In the case of luminescent diodes
(LEDs), the coherence length is often just a couple of wavelengths; the resonances then quickly
decay as the gap width is increased. For white light, e.g., from a tungsten filament light bulb, the
coherence length is on the order of one central wavelength, and no oscillations of the coupling
efficiency are observed. If the fibers are brought into physical contact (gap width zero), Fresnel
loss vanishes altogether

There are dedicated versions of connectors which have a special locking pin so that
they always lock at the desired angular orientation and cannot rotate.

8.3.2 Permanent Connections

Permanent connections are known as splices; the expression comes from sailor’s
language where it denotes a way to join two ropes by unravelling the strands, then
twisting them together. Fiber splices can be made either by gluing or by fusing.
Gluing is a low cost technique; fusion is more durable and has lower and more
reproducible loss.

For gluing, both fibers are inserted in some tight guiding tube, which provides
some centering of the fibers with respect to each other. One can manually move the
fibers somewhat and can try to find the optimum position of lowest loss.

The tube is filled with a transparent fluid adhesive which cures under ultraviolet
light. As soon as the desired position is found, one turns on an ultraviolet lamp
and hopes that the positions are kept until the adhesive sets. Loss of 0.3 dB can be
obtained with some routine, and with luck, even better than that.

The professional procedure is to fuse the fibers. This involves heating the
glass until it softens. As heat sources various options have been tried, including
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Fig. 8.6 Schematic
representation of splicing:
Fibers are positioned in three
axes. A premelting (also
called prefusing) cleans the
fiber tips, then the fibers are
fused. Afterward, a good
splice is nearly invisible

microscopic gas flames. However, it is now standard to use an electric arc; it has the
advantage of being easily controlled by a computer.

Figure 8.6 shows how the splicing procedure goes about. Both fibers are
positioned and moved closely together. Then during the so-called premelting a very
weak arc discharge, not hot enough to soften the glass, is applied, often with a slight
increase of the gap width. Premelting serves to remove possible dirt from the fiber
tips. Next is the fusing process proper: Microprocessors control the precise amount
of discharge current and arc duration to obtain the best possible result. While the arc
is on, the fibers are advanced toward each other, actually beyond the zero position
so that they are slightly pushed into each other.

The optical loss in a splice can be discussed in close analogy to that of a
connector [7] (see Fig. 8.4); of course, there is no air gap. Transverse offset is also
not a major problem because when the fiber tips are molten, surface tension moves
the fibers into that position where their outsides connect smoothly. As long as the
cores are centered well in the fiber, this automatically means a minimal transverse
offset. Fibers usually are well-centered these days.

When two fibers with the same mode profile, i.e., fibers of the same type, are
joined, one can obtain losses well below 0.1 dB and with the fanciest fusion splicers
down to 0.02 dB. As soon as dissimilar fibers are joined, the mode mismatch creates
an additional loss. For multimode fibers, the situation is more complicated because
the mode partition is modified; for detail see [9].
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8.4 Elements for Spectral Manipulation

8.4.1 Fabry–Perot Filters

Selective filters can be produced in fiber technology [8]. Figure 8.7 shows an all-
fiber Fabry-Perot interferometer which uses partially mirrored end faces, with a gap
of width d in between. Transmission peaks occur when the round trip path length
2d (or 2nd if the gap is filled with a medium with n ¤ 1) equals an integer multiple
of the wavelength. This translates to resonance frequencies at all integer multiples
of � D c=.2nd/: A Fabry-Perot filter is a comb filter. For example, at d D 15�m
and n D 1, resonances occur at all multiples of 10 THz. Tuning is accomplished

d
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air gap width
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mirrored surfaces
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Fig. 8.7 Two fibers have their end faces coated with a partially reflecting layer to give a reflectivity
R and are then combined into a Fabry–Perot interferometer. Its transmissivity is shown here for
three selected values of R. The curves are valid for a very small gap; if the gap is wider than
a couple of wavelengths, additional loss arises from the widening of the light exit cone and the
beginning curvature of the wavefronts. Also, short coherence length light will wash out the fringes.
Compare with Fig. 8.5 where R � 0:035 was assumed
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through tiny adjustment of d by means of a piezoceramic transducer. The mirror
reflectivity determines the sharpness of the resonances. For the extra loss due to
beam divergence consult (Fig. 8.4c).

8.4.2 Fiber–Bragg Structures

A very different type of in-fiber filters is increasingly used: so-called fiber Bragg
gratings. The underlying idea stems from the observation that a germanium-doped
fiber core can suffer lasting changes of its refractive index after irradiation with
ultraviolet light. This effect can be used to write a periodic variation of the refractive
index into the fiber core. The modification is permanent; it is known as a Bragg
grating. The grating will reflect light at the wavelength given by the Bragg condition

�Bragg D 2nƒ

whereƒ is the grating constant (i.e. its pitch) and n the effective index of the glass.
Bragg gratings can be produced in several ways. For direct writing, one focusses

UV light to the intended position of first grating line and expose for some time,
then advances the writing position stepwise in increments ofƒ and repeats, until all
grating lines are written. This is a slow procedure, and it is extremely challenging
in terms of mechanical accuracy.

More elegant is interferometric writing: The UV laser beam is split into two equal
parts; both are then steered so that they cross each other at a certain small angle � .
In the overlap area a standing wave is generated. The fiber to be treated is positioned
such that its core is exposed to this standing wave pattern which will then write the
grating lines (see Fig. 8.8). The spatial period of the standing wave is determined by
the UV wavelength �UV and the crossing angle; with a little geometry one can show
that

ƒ D �UV

2 sin.�=2/
:

It is therefore quite easy to tune the grating period to a desired value by varying the
angle (most UV lasers have fixed wavelength). Still, some precision in positioning
is required.

Alternately, one can irradiate a single UV beam perpendicular to the fiber, but
place a glass plate with a periodic index modulation on top of the fiber. Light
transmitted through this ‘phase mask’ can be diffracted into various diffraction
orders, but one can design the phase mask structure such that the diffraction orders
+1 and �1 dominate. The corresponding beams overlap in space and create a
standing wave similar to the situation described above. For a given phase mask, ƒ
is not tunable. However, this sacrifice of flexibility implies a gain in reproducibility,
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Fig. 8.8 Sketch of a setup to write fiber Bragg gratings interferometrically. Intersecting beams
from a UV laser create a standing wave pattern in the fiber

so that the mask technique is easy to apply and suitable for mass production. Fiber
Bragg gratings can be purchased off-the-shelf as commercial products.

Beyond controlling the center wavelength of the filter characteristics, also the
resonance width can be tailored. Depending on the total length of the grating (which
may range from millimeters to a few centimeters) one can obtain narrower or
wider filter curves, with reflectivities at the center wavelength very close to 100 %.
This is why such Bragg filters can be used as selective end mirrors in fiber lasers
(see Sect. 9.7.2). A further development are ‘chirped’ gratings which have a sliding
grating period; they find use as band filters.

8.5 Elements for Polarization Manipulation

8.5.1 Polarization Adjusters

It is well known that a given state of polarization can be translated into some other
state of the same degree of polarization by inserting a suitable retardation plate
(birefringent plate) into the beam. The most common plates are half-wave plates
(�=2 plates) with a retardation of one half wavelength which allow, e.g., to rotate
the plane of polarization of a linearly polarized light beam by any angle, and quarter-
wave plates (�=4 plates) which can transform, e.g., linear polarization into circular
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polarization or the other way round. Such birefringent elements can also be built in
all-fiber technology.

A fiber loop, by virtue of the bending, is birefringent, and its birefringence is
given by [6]

�n D b
� r

R

�2
; (8.1)

where b D 0:133 is an empirical constant, r the fiber radius, and R the bend radius.
This birefringence provides a phase difference between the orthogonal polarization
components parallel and perpendicular to the plane of the loop, given by

�' D �k z D 2��n

�
2�RW (8.2)

with W the number of turns. To understand the effect one can mentally decompose
the state of polarization of the incoming light into the component along the fast axis
(in the loop plane) and that along the slow axis (parallel to the loop’s axis) (see
Fig. 8.9). This allows to follow both components individually. Putting them back
together after the loop then produces the resulting state of polarization. If one now

Fig. 8.9 Torsion of a fiber rotates the birefringent axes. If, e.g., the incoming light is linearly
polarized as A, then it oscillates in the fast axis of the non-twisted fiber .B/ and the state of
polarization is maintained. If the fiber gets twisted, though, the polarization plane is at an angle
with the resulting axis .C/; then the state of polarization will evolve upon further propagation in
the loop
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Fig. 8.10 Fiber loops as polarization controllers. The individual loops can be designed as half-
wave or quarter-wave elements and are adjusted by rotation (arrows). For a realization see the
picture on p. 99

rotates the loop around the axis along the incoming fiber, one changes the projection
of the filed onto the slow and fast axes, whereby the state of polarization is modified.
The effect is equivalent to the rotation of a conventional wave plate around the beam
direction.

Specifically, this is what one finds: If a quarter wave of retardation is desired and
if one chooses W D 1 (a single turn), then

�' D �

2
) R D 8�br2

�
: (8.3)

At � D 1:5 �m and for a fiber with 2r D 125�m, a single loop of radius
R D 8:7mm constitutes a quarter-wave plate. Equations (8.2) and (8.3) are
only approximate because as the loops are rotated there is also some circular
birefringence generated which counteracts the linear birefringence. To obtain a
universally useful polarization controller one takes two or, more often, three loops
with diameters on the order of a few centimeters, which may have a single, then two,
and a single turn again to form a quarter-wave, a half-wave, and another quarter-
wave plate. The loops are hinged so that they can be rotated easily (Fig. 8.10). Such a
device acts as a polarization controller and is capable of transforming any incoming
state into any outgoing state of polarization [6].

This construction is helpful in the laboratory but requires mechanically moving
parts. It is therefore not very suitable for automatic polarization control. For the
latter, a concept is preferred which generates birefringence by squeezing the fiber
by mechanical force applied transversally. In a practical design, the fiber is squeezed
at several positions in different directions by piezoceramic actuators [12].

8.5.2 Polarizers

A polarizer creates losses selectively for one of two possible orthogonal states of
polarization. Three technical realizations are well known in optics.
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• Glass plates sit in the beam at an angle; the two linearly polarized components
(perpendicular and parallel to the entrance plane) are reflected differently and
thus get attenuated differently in transmission. The contrast is maximized by
choosing Brewster’s angle.

• In birefringent crystals like calcite, both polarization components are spatially
separated.

• Dichroitic films contain chain molecules in which electrons can move freely
along the chain but not transversally. All molecules have the same orientation.
That part of the light that is polarized parallel to the chains is absorbed so that
only the orthogonal state of polarization is transmitted.

In order to make a fiber-optic polarizer, one can insert a slab of dichroitic material
in a gap in the fiber. Alternatively, one can polish down a fiber from the side until
its cross-section has the form of the letter D and the core is nearly exposed just
beneath the flat surface. If the flat surface is then coated with metal, one obtains
polarization-dependent losses.

8.6 Direction-Dependent Devices

8.6.1 Isolators

Isolators are well known in conventional bulk optics and play a role in laser
technology. These are devices which let light pass through in one direction, but
block it in the opposite direction. They are also called optical diodes.

Optical diodes rely on the Faraday effect, the rotation of the plane of polarization
of linearly polarized light in a material subject to an external longitudinal magnetic
field. The physical mechanism is based on the splitting of atomic energy levels into
Zeeman substates due to the magnetic field; this yields a circular birefringence.
The resulting angle of rotation of the plane of polarization 
 is given, assuming a
homogenous magnetic field, by


 D VHL ; (8.4)

where H is the magnetic field strength and L the length of the light path
through the material. V is Verdet’s constant.2 This material constant has units
of rad=.m A=m/ D rad A�1. Since in most instances nonmagnetic materials are
considered, often Eq. (8.4) is written using B instead of H; then, units are rad=.T m/.
Verdet’s constant depends on wavelength; according to classical theory it is given by

V D e

2mec
�

dn

d�
; (8.5)

2Marcel Emile Verdet 1824–1866.
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Table 8.1 Selected values of Verdet’s constant

Wavelength Verdet’s constant

Material (�=nm/ jVj=
�

rad

T m

�

Water 632 3:8

Light flint glass 589 9

Heavy flint glass 589 20

Fused silica 589 4:8

632 3:7

TGG 632 134

1064 40

YIG 1310 200

1550 1700

where e is the elementary charge and me the electron mass. The Table 8.1 shows
selected typical values of V; for a measurement across the entire visible range for
fused silica (Suprasil), see [13].

In the context of practical components, it is not only Verdet’s constant that is
relevant, but also the ratio of this constant and the optical loss at the operational
wavelength. For visible light, it turns out that TGG (terbium gallium garnet
Tb3Ga5O12) is a useful material. In the near infrared, YIG (yttrium iron garnet
Y3Fe5O12) is important. Using YIG and a powerful permanent magnet (e.g., a
samarium–cobalt type), path lengths of a few millimeters suffice to obtain a rotation
of 
 D 45ı. In the interest of long-term stability, one chooses the magnetic field
strength high enough to drive the material into magnetic saturation. That typically
happens at B � 1T, in the case of YIG at 0:178T. Then the rotational angle
becomes independent of fluctuations of the magnetic field strength.

If one places one polarizer each before and after the Faraday rotator and sets their
angle at 45ı relative to each other, light can pass with minimal loss (in principle,
lossless; in practice, often under 1 dB). Light propagating in the opposite direction
is projected onto the 45ı direction at the rear polarizer, is rotated by another 45ı, and
arrives at the front polarizer with a total rotation of 90ı so that it is perfectly blocked
(Fig. 8.11). In practical devices the blocking is not perfect; one obtains attenuations
around 30 dB, in stark contrast to the forward attenuation of �1 dB (Fig. 8.12).

Occasionally, the fiber itself has been used as a Faraday rotator, in order to make
an all-fiber isolator [11]. Unfortunately, Verdet’s constant for fused silica is quite
small so that extremely powerful (bulky, power-hungry, expensive) magnets are
required. Even with superconducting magnets, one still needs to use many meters
of fiber to obtain a rotation angle of 45ı. This is why in practical devices, almost
always TGG or YIG is used.

There is a distinction between polarizing and polarization-independent isolators.
The former are built as just described. Polarization-independent isolators first split
the incoming light with birefringent polarizers into two polarization components.
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YIG

Pol 0o

Pol 45o

Pol 0o

A

A

B

B

Pol 45o

YIG

Backward direction: B A

Forward direction: A B

Fig. 8.11 Principle of an optical isolator based on the Faraday effect: As linearly polarized light
in 0ı orientation passes in forward direction (A ! B), it can pass through both polarizers without
attenuation because they have just the right position. Backtraveling light (B ! A) may be partially
blocked by the rear polarizer, but inasmuch as it passes, it is rotated further and hits the front
polarizer at 90ı polarization orientation so that it is blocked there

Fig. 8.12 An optical isolator. It comes with two fibers attached, known as “pigtails”. The engraved
arrow indicates the forward direction. A 1 Euro coin is shown for size comparison

These components are then sent through the isolator on parallel but separate paths;
each is rotated. Finally both components are recombined. The result is an optical
diode which is “transparent” to any forward light, but blocks any backtraveling light,
in full independence of its state of polarization.

8.6.2 Circulators

Circulators are well-known devices in microwave engineering and have been
introduced recently to fiber optics. These are multiport components (at least three
“ports”). Each port can serve as an input or an output for signals. A signal launched
into port 1 appears as an output at port 2, a signal launched into port 2 appears as an
output at port 3, and so on—in the ideal case with cyclic permutation.

An optical circulator is based on an optical isolator (Fig. 8.13). The only
modification is that the front polarizer is replaced with a version which acts as a
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Backward direction: B C

Forward direction: A B

Fig. 8.13 An optical circulator conveys signals in the directions A ! B and B ! C

polarizing beam splitter. The backtraveling beam is then not absorbed (eliminated)
but directed to an additional output, the third port where another fiber is attached.
This way one obtains a three-port circulator with the functions A ! B and B ! C.
This already suffices for a variety of useful applications. A typical example is the
combination with a fiber-Bragg grating (see Sect. 9.7.2). Ports A and C are placed
in the signal path; the grating is attached at port B. Fiber-Bragg gratings, which are
band reject filters by their nature, are thus converted into band-pass filters which can
be used to filter out a single wavelength from a wide spectrum.

8.7 Couplers

There would be no way to set up a network of fiber-optic links without having the
possibility to branch between several fibers. Often it is required that a signal be split
into two fibers, or two signals from two fibers are to be combined into one fiber. The
same goes for larger numbers of fibers.

8.7.1 Power Splitting/Combining Couplers

The simplest case of coupling is shown schematically in Fig. 8.14. Such a coupler
can be made of discrete bulk optical elements, but is neither practical, cost-effective,
nor lossless.



150 8 Components for Fiber Technology

Fig. 8.14 A discrete fiber coupler connects four fibers with the help of four collimation lenses
and a beam splitter of, e.g., 50% reflection. However, such a setup requires delicate adjustments
and has a rather large footprint; therefore, it is not of practical relevance. We show it solely to
demonstrate the concept

Fig. 8.15 Construction of a fused fiber coupler. Two fibers are fused together over a certain well-
defined length such that both cores are at a well-defined mutual distance. The distance sets the
coupling coefficient of the modes; in combination with the interaction length, the branching ratio
is defined. The power of a signal which is launched at A is split between B and D according to the
branching ratio, etc.

Fortunately one can obtain nearly the same functionality in an all-fiber concept.
Two fibers are brought together side by side over a length of a few centimeters
(Fig. 8.15). Then both are fused together by heating. The modes in each fiber
penetrate into the cladding as we have seen; in the fused coupler, the mode of one
fiber has a nonvanishing spatial overlap with the mode of the other fiber. This implies
that they are coupled to a certain degree. When part of the energy guided in one fiber
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Fig. 8.16 A typical fused fiber coupler. It comes with four pigtails

can make the transfer to the other fiber, in that second fiber one obtains a buildup
of power—accompanied by a corresponding reduction of power in the first fiber, of
course. Let us consider a symmetric coupler (two like fibers) in which the phases of
the wave in both fibers evolve in the same way. Then, the powers as a function of
common path length z evolve as

P1 / cos2.�z/; (8.6)

P2 / sin2.�z/; (8.7)

where the coupling coefficient � is sensitively dependent on the spatial distance of
both fiber cores. By judicious choice of coupling coefficient and interaction length,
one can tune the branching ratio of the coupler to virtually any desired value;
0% does not make much sense, but 100% is possible; more useful are values in
between. Very often a 50:50 branching ratio is required. In that case there is a 3-
dB attenuation for each direction so that this case is called a 3-dB coupler. Also,
10:90 branching ratio couplers (10 dB couplers) and some other values are employed
(Fig. 8.16).

In an alternate procedure, two fibers are polished down from the side until the
(initially circular) cross-section acquires the shape of the letter D. Then, the flat
sides are brought into contact and adjusted; this gives a fiber coupler with a tunable
coupling ratio.

In either case couplers are four-port devices. If only three ports are used, the
device acts as a splitter or as a combiner. One can add more devices in order to
split/combine among more channels: E.g., three couplers allow to make a 1-to-4
splitter (four-way splitter); four couplers can be combined into a 4-to-4 coupler (4-
by-4 broadcast star) (see Fig. 8.17).

In the context of photonic components, there is also a technology of optical
components integrated on a microchip. When the application demands that light
is coupled out of a fiber and into a photonic chip anyway, it may make sense to
include the couplers on-chip.
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Fig. 8.17 In a four-way splitter made from 3-dB couplers, each output presents one fourth of
the input power. If inputs and outputs switch their roles, one obtains a four-way combiner which
presents the sum of four inputs. A 4-to-4 coupler made from 3-dB couplers presents one fourth of
the sum of four inputs at each of its four outputs. This principle can be extended to practically any
arbitrary number of inputs and outputs

n

Fig. 8.18 Basic idea of a wavelength-dependent coupler (WDM coupler) in bulk optics using
a diffraction grating. The acronym GRIN is for gradient index; GRIN lenses are offered
commercially. In this example, five wavelengths from an input fiber are split to as many output
fibers. Of course, the direction can be reversed, and one obtains a five-way combiner

8.7.2 Wavelength-Dependent Couplers

Quite often, it is desired to split or combine various signals in fibers not all in the
same way but according to their wavelength. This is the prerequisite for wavelength
division multiplexing (WDM, see Sect. 11.1.5) which in turn is the basis for utilizing
the enormous bandwidth provided by the fiber (25 THz in the third window) to
anything more than a ridiculously small fraction.

Such wavelength-dependent couplers (WDM couplers) can be made in principle
with bulk optics. Figure 8.18 shows the idea for the case of a 5-to-1 WDM coupler
using a diffraction grating and a GRIN lens (GRIN D gradient index). In practical
devices all-fiber versions are desirable. There are constructions using the wavelength
dependence of the branching ratio in fused fiber couplers; this may be augmented
with grating structures. There are also constructions using interference filters.
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8.8 Optical Amplifiers

Signal power is lost in long pieces of fiber; more is lost in couplers. Often it
is required to make up for the losses by amplifying the optical signals. The
conventional technology, used until a couple of years ago, relied on so-called
“repeaters” in which the optical signal was converted into an electronic signal, then
was amplified and possibly reshaped by electronic means, and finally was converted
back to an optical format. This is not only quite involved; it also creates a bottleneck
for the data rates that can be transmitted over an optical fiber. The theoretically
available bandwidth of the fiber of tens of terahertz would be reduced to whatever
can be handled by electronics, which is perhaps 10 GHz. One does not easily give
up three orders of magnitude of opportunity!

Fortunately enough, there are also all-optical amplifiers. They are subject to the
same constraints as any other amplifier: there is no amplification without noise.
Any amplifier adds some extra noise to the signal, and part of this extra noise is
unavoidable due to fundamental physical reasons. The origin of that contribution
can be traced back to Heisenberg’s uncertainty relation of quantum mechanics [4]
as follows.

The uncertainty relation

�E�t � „=2

can also be interpreted as

�n�
 � 1

2
;

where n D E=.„!/ is the photon number and 
 D !t is the phase of the light wave.
In a (linear) amplifier, the gain factor G represents the ratio of output signal power

to input signal power. An ideal amplifier would just multiply the photon number
such that each input photon would produce exactly G output photons. In this ideal
case, there would be no change to the phase, except for a trivial overall shift 
0 due
to the transit time. Then, an input signal with photon number nin would produce an
output with nout D Gnin. 
in would be converted to 
out D 
in C 
0.

Let us now continue our gedanken experiment and place an ideal detector at the
output of the ideal amplifier. “Ideal” means that it can detect photons such that the
equality is fulfilled in the uncertainty relation:

�nout�
out D 1

2
:

The detector will thus register nout ˙�nout photons and a phase of 
out ˙�
out.
There is no reason why it should be wrong to think of the combination of

amplifier and detector as one unit, which would serve as a particularly sensitive
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detector. This internal-gain detector then measures a signal with

�nin�
in D 1

2G
;

which violates the uncertainty relation whenever the amplifier deserves its name,
i.e., whenever G > 1.

The contradiction is resolved when one accepts the following: Any amplifier
adds as much noise to a signal with frequency � as a hypothetical noise source at
the amplifier input would when the amplifier were ideal, and the noise source had a
spectral power density of

dP

d�
D
�
1 � 1

G

�
h� :

This immediately shows: the only possible noise-free amplifier has G D 1 in which
case the word amplifier would be a misnomer.

What does this mean? One might naïvely think that an attenuation of some signal
and subsequent amplification by the same factor would faithfully reconstitute the
original signal. This is not so! There will be an additional noise contribution. This
extra noise may be strong if the amplifier is of mediocre engineering, but even
the best amplifiers will always add at least some noise. Fortunately, engineering
of optical amplifiers has matured so far that the best commercially available types
are extremely close to the theoretical limit.

For a practical realization of optical amplifiers, there are two quite different
approaches or technologies: active fibers and semiconductor elements.

8.8.1 Amplifiers Involving Active Fibers

It seems that the interest is shifting toward amplifiers which consist simply of a
piece of special fiber. Amplifying fiber is doped with suitable materials and receives
power from an auxiliary light source. In the third transmission window, erbium is
the most suitable dopant [2]; at several other wavelengths, useful dopants are also
known, like neodymium at 1:06 �m. Figure 8.19 schematically shows the relevant
energy levels of these substances. When the transition at 980 or 1480 nm is pumped,
an inversion of the 4I13=2 with respect to the 4I15=2 ground state is created; this
implies an optical gain. With a few tens of milliwatts pump power, one can achieve
30 dB gain in about 10 m of erbium-doped fiber. The gain bandwidth extends from
1530 to 1570 nm (Fig. 8.20). The lifetime of the upper state is extremely long
(10 ms), and therefore gain saturation and thus channel crosstalk among wavelength
channels are practically absent. This is important because otherwise the huge
bandwidth would not be useable. While the gain is not flat throughout the gain
bandwidth, it can be equalized to a large extent with filters.
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Fig. 8.19 Level scheme for optical fibers doped with Er ions or Nd ions. Shown are the energetic
levels in electron volts and the transition wavelengths in nanometers, both referred to the ground
state

Fig. 8.20 Gain spectrum of an Er-doped fiber for various levels of inversion. Without any
inversion (bottom curve) the fiber absorbs light. As the inversion increases, gain first appears at
the long-wavelength side. At the highest inversion shown (top curve), the gain has spread across
the entire band. From [3]
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Fig. 8.21 Various
possibilities to employ an
Er-doped fiber amplifier:
forward pumping, backward
pumping, and bidirectional
pumping

The complete setup of an Er-doped fiber amplifier has the following components
(Fig. 8.21):

• a pump source, typically a continuous-wave laser diode with high power (on the
order of 100 mW) at 980 or 1480 nm;

• a wavelength-dependent coupler which inserts the pump light into the signal path;
• a suitable length of Er-doped fiber; and
• optical isolators (not shown in Fig. 8.21, but see Fig. 8.22) which block backtrav-

eling light and therefore make sure that both amplification of spontaneous emis-
sion in backward direction and stimulated Brillouin scattering (see Sect. 9.7.1)
are suppressed.

A typical setup is shown in Fig. 8.22. Such amplifiers are offered commercially.
They can be employed in a variety of ways:

As booster for postamplification of a low-power light source at the
beginning of a transmission line.

As intermediate amplifier for compensation of loss inserted somewhere along the
line.

as preamplifier to increase the sensitivity of photodetectors for weak
signals at the end of a transmission line.
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Fig. 8.22 Setup of a realistic Er-doped fiber amplifier in forward-pumping geometry. C: coupler
(tap, e.g., 95:5 coupler), WDM-C: wavelength-dependent coupler to separate signal and pump
wavelengths. Filter ASE: selective filter to suppress amplified spontaneous emission. Filter pump:
selective filter to suppress pump light

As distribution amplifier for compensation of losses where the signal power
is split into several branches, to restore the original
power level in all branches.

As an oscillator by optical feedback, the amplifier is turned into a
laser (typically in conjunction with wavelength-tuning
elements). We note that a fiber amplifier with an
optical resonator to provide feedback operates as a
fiber laser; we will return to this aspect in Sect. 8.9.4.

In the second window neodymium or praseodymium is used to dope the fibers.
They do not make quite as near-perfect amplifiers as erbium does, but there is a large
volume of installed fiber-optic systems operating in the second window, and there-
fore there is considerable interest in making amplifiers for this wavelength regime.

8.8.2 Amplifiers Involving Semiconductor Devices

In suitable semiconductor materials with a p–n junction one can excite carriers
from the valence band into the conduction band by running an electric current
through the junction (see Sect. 8.9.1 below). The current thus produces an inversion,
a nonequilibrium excess population in a higher-energy state. The excited carriers
can then return to the valence band by emission of a photon. When this return is
triggered (“stimulated”) by a signal photon, the process constitutes an amplification.
The mechanism is also central for the operation of semiconductor lasers (see below).

If a laser diode is operated without optical feedback, it never reaches the
threshold for laser oscillation and functions as an amplifier: Stimulated emission
amplifies light sent in. Advantages of this technology are that devices are readily
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available, and the energy supply could not be any simpler. Disadvantages are
the relatively narrow gain bandwidth and the less-than-perfect linearity of the
amplification. If several wavelength channels are used simultaneously, the inversion
gets modulated with the beat frequency. Then one finds a possibly quite severe
channel crosstalk. The more wavelength channels are used, the more serious the
problems get. This is why semiconductor amplifiers have not found quite the same
acceptance in practical applications as doped-fiber devices.

8.9 Light Sources

There is a vast variety of light sources known to man. Discounting sun and stars as
well as flames, we name just a few:

• Tungsten filament light bulbs
• Bulk lasers
• Luminescent diodes (LEDs)
• Laser diodes
• Fiber lasers

For fiber technology, there are certain demands which a light source must meet:

• Must be possible to couple into fiber with good efficiency
• Must have low energy requirements
• Must be cost-effective
• Must have long lifetime
• Must be virtually maintenance-free
• Must provide means of modulation

The first five items are based on economic considerations because one has to
expect that in a vast fiber network there may be huge numbers of light sources,
many of which are located in far-flung and hard-to-reach places. Modulation is a
requirement dictated immediately by the application: to transmit information.

Of course, light bulbs are ruled out. Their coupling efficiency is minimal, their
lifetime is inadequate, and their capability for modulation exists only for frequencies
up to a few hertz, certainly not gigahertz. Bulk lasers as found in many physics
laboratories (think He-Ne lasers, Nd:YAG lasers, etc.) have good spatial coherence
and thus good coupling efficiency. On the other hand, cost, energy, and maintenance
requirements are definite disadvantages for any application outside a research lab
and so is the lack of modulation capability at least in most types.

Therefore, from the above list, only luminescent diodes (LEDs), laser diodes,
and fiber lasers are left as viable light sources. We will now discuss these choices in
somewhat more detail.
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8.9.1 Light from Semiconductors

The mechanism of light generation in semiconductors is the recombination of
carriers at a p–n junction. An electric current provides the energy required to excite
electrons to the conduction band; as they relax back to the valence band, the amount
of energy corresponding to the band gap is released in form of a photon. For a
semiconductor with band gap Egap, one finds light with a frequency of � � Egap=h.

8.9.2 Luminescent Diodes

The recombination radiation has, without extra steps, no preference for any
particular spatial direction. In LEDs, one does not attempt to achieve much
directionality other than getting the light out of the component on one side, typically
in a wide cone. LEDs perfectly fulfill the above requirements of low cost, low
power operation, and long lifetime without maintenance. They can be modulated
up to perhaps 100 MHz, which is sufficient for many applications. However, for
fundamental reasons the fiber-coupling efficiency is not impressive, and the power
actually launched into a fiber is low, well under 1 mW. In this situation, LEDs find
applications for short distances, like in LANs (local area networks) within premises
where highest data rates are less important than lowest cost. With certain geometries,
it has been attempted to optimize the coupling efficiency. Figure 8.23 shows the
design of a “Burrus LED” where the fiber is butt-coupled to the light-emitting chip.

Fig. 8.23 Construction of a
“Burrus LED.” The fiber is
butt-coupled to the
light-emitting chip and is
permanently held in place to
avoid the need of later
adjustment
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8.9.3 Laser Diodes

The same principle of generation of light can be refined into the concept of laser
diodes. One shapes the semiconductor chip in such a way that optical feedback
is obtained. Then a stimulated process takes over, and coherent emission of light
results. Coherent light is tremendously much easier to focus and couple into a fiber
than incoherent light.

The first laser diodes in the 1960s consisted of little more than a semiconductor
chip with p-doped and n-doped material. They had smoothly cleaved end facets
with a natural reflectivity (Fresnel reflection) on the order of 30%, due to the high
refractive index of semiconductors like GaAs of about n D 3 (Fig. 8.24). This
reflectivity is fully sufficient for resonator mirrors. The side faces of the chip remain
unpolished and rough and are therefore no good reflectors. The length of the chip on
the order of 300�m is basically defined by the required gain length. The thickness
of the active layer is on the order of 0:5 �m. These dimensions have immediate
consequences for the modal structure of the laser resonator.

The resonator is hundreds of wavelengths long. Then the frequencies of adjacent
longitudinal modes differ by fractions of 1 %. As the gain bandwidth amounts to
several percent of the central frequency, one can expect the simultaneous oscillation
of several longitudinal modes. In some cases that may even be desirable: The
process of mode locking can be used to generate short pulses of light. As for
transverse modes, the active layer is thin; in the direction perpendicular to the
active layer only a single mode can oscillate. On the other hand, in the lateral
direction (perpendicular to the optical axis and parallel to the active layer), there is a
100�m or so wide gain structure which gives rise to a multiplicity of lateral modes.
Moreover, the modal structure in operation will not be constant during operation
because both carrier density and temperature (heating during operation) will affect
the refractive index. Consider places where a particular oscillating mode depletes
the inversion: Here the refractive index will be reduced, and the gain mechanism
will then prefer other modes. One therefore has to expect undesired sudden changes
in the modal structure (mode hops) during operation.

Fig. 8.24 A schematic view
of a laser diode. This simplest
of all structures is known as
broad area structure because
the active (gain) region is
very wide. It allows a large
number of transverse modes
to oscillate
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Fig. 8.25 Possible structure of a gain-guided laser diode. Oxide layers restrict the electrical
contacts, and thus the current flow, to a narrow zone. Carriers are injected into the active zone
only where sufficient current density exists. The resulting rise in refractive index guides the light
and restricts the emission to basically the same narrow zone

8.9.3.1 Gain Guiding

In view of these problems it was a first improvement to modify the geometry
of current flow through the chip. Narrow contact stripes, or the introduction of
insulating zones, make it possible to restrict the current flow to a narrow region
in the active layer which may be just a couple of micrometers wide. This is shown
schematically in Fig. 8.25. Gain occurs only where there is sufficient current density
which is now only a small part of the active layer; this is called a gain-guided
geometry. The advantages are that (1) the current density is increased in the relevant
position which lowers the laser threshold and (2) the transverse mode profile is
strongly restricted. Nevertheless, mode hops are not entirely eliminated; this is
easily seen in kinks of the output power vs. pump current characteristics of such
lasers. When it comes to coupling light from such lasers into fibers, there are nasty
consequences: Changes in the modal structure give rise to modified overlap with
the fiber’s modal profile and result in jumps of the incoupled power. Unpredictable
severe fluctuations of power are certainly not desirable for any application.

8.9.3.2 Index Guiding

The next improvement was the introduction of the index-guided laser diode
geometry. In a considerably more involved production process (which, however,
has become routine now), there are lateral steps of the refractive index built into the
active layer by use of differently doped material. This is shown in Fig. 8.26. Even
weak index guiding with index steps on the order of 1 % make sure that the index
modifications through the concentration of carriers are overwhelmed. Therefore
these structures can run in lateral single-mode operation.
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Fig. 8.26 Possible structure of an index-guided laser diode. The active zone is surrounded on all
sides by material with larger band gap; this is also known as “buried heterostructure.” A lateral
index step of � 0:2 provides strong guidance of the light. By way of the intricate structure, it is
assured that also the current flows only through the relevant part of the active zone, resulting in a
low laser threshold. Many different geometries of buried heterostructure lasers have been suggested
and realized; the one shown here is called an “etched-mesa” structure

Fig. 8.27 Schematic representation of a distributed feedback laser (DFB laser). A periodic index
modulation is introduced over the entire resonator length; it acts as a grating and selects a particular
frequency

8.9.3.3 Distributed Feedback

Finally let us look at the longitudinal modes. As long as the resonator mirrors at the
chip facets set the mode spacing, there is little one can do to achieve single-mode
operation: One cannot make the chip shorter because a certain length is required
to provide adequate gain. In this situation only frequency-selective means can help.
When longitudinal single-mode operation is required, one uses laser diodes into
which a grating has been incorporated for wavelength selectivity (see Fig. 8.27).
The grating favors feedback at the frequencies defined by a Bragg condition for
the grating. One can obtain both the selection of a single mode and an improved
frequency stability of this particular mode. The grating may be extended over the
entire resonator length; then this is known as distributed feedback or DFB laser. The
grating may alternatively be formed only on short segments toward the resonator
ends in a zone with little gain; this is then called distributed Bragg reflector or DBR
laser. Both DFB and DBR lasers have become something of a standard for long-haul
transmission because single-mode operation is favorable, and the frequency stability
is good.
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Fig. 8.28 Schematic
representation of a VCSEL.
In this figure, the vertical
dimensions are exaggerated
for the sake of clarity. Bragg
reflectors above and below
the active layer provide
feedback; the thickness of the
active layer is only one
wavelength or so

8.9.3.4 VCSELs

In a more recent development laser diodes are also made with an entirely different
geometry: They are called vertical cavity surface emitting lasers or VCSELs
(rhymes with pixels; see Fig. 8.28). In these lasers, the light does not travel the length
but the width of the active layer. This implies that the optical axis (the direction
of light propagation) is parallel to the direction of the pump current. Above and
below the active layer, there are multiple layer reflectors acting as wavelength-
selective mirrors similar to a DBR structure. In this concept, the resonator length
is very short—hardly any longer than the wavelength. This enforces longitudinal
single-mode operation, which is a definite advantage. The lateral beam profile can
be optimized by suitable structuring. In fact, meanwhile VCSELs can produce better
beam geometries than side-emitting lasers. A downside is that since their resonator
and thus their gain length are so short, it has been difficult to generate high output
powers from VCSELs. On the other hand, they can be modulated at high speed (well
above 10 GHz instead of a few gigahertz). By this token, it appears likely that they
will find applications in fiber optics.

Laser diodes provide the best combination of properties of lasers (spatial
coherence assures good incoupling efficiency) with those of LEDs: long lifetime
and low operational power requirement. They can be modulated into the gigahertz
regime, which is often good enough; if not, they are operated continuous wave, and
an external modulator serves to carve out pulses as required. Cost ranges from just
a few euros for the simplest types up to a few thousand euros, for the fanciest DFB
lasers and other specialty constructions; however, in relation to the complete system
this may still be considered low cost. All told, laser diodes fulfill all the important
requirements of fiber technology and are therefore the de facto standard. Figure 8.29
shows a typical laser diode. The device shown has a piece of fiber (the “pigtail”)
connected to the chip by the manufacturer. Coupling the light of laser diodes into
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Fig. 8.29 A laser diode made for communication purposes. This device is enclosed in a housing
which must be bolted to a heat sink with the flange visible on the right, in order to remove heat.
The electrical connections are by pins on the bottom and are not visible in this picture. The optical
output goes into a piece of fiber attached to the laser (the pigtail). The pigtail is protected with a
plastic coating and a rubber bend relief where it leaves the case. A small coin is shown for size
comparison

single-mode fibers requires precision; it rarely exceeds 50 % in spite of all serious
attempts. Therefore it is a great simplification for the end user when this critical step
has already been taken care of by the manufacturer.

8.9.4 Fiber Lasers

A fiber laser is created when a fiber amplifier is inserted in an optical resonator [3].
The optical feedback provided by the resonator allows a light field (initially starting
from spontaneous emission) to build upon itself until saturation effects arrest further
growth: This describes a laser. The energy supply (pump source) must be provided
by optical means and is therefore more complex than for laser diodes. On the other
hand, fiber lasers are perfectly suited to coupling their light into a fiber: All it takes
is a splice. Transverse or lateral modes cannot arise, but the longitudinal mode
spectrum has a particularly high number of modes. This is due to the long resonator
length and the often very wide gain bandwidth, but is not a disadvantage when
modelocked operation is required. A big disadvantage is that by virtue of the long
lifetime of the upper laser state fiber lasers cannot be modulated. Any modulation
imposed on the pump power would be low-pass filtered; in the case of Er-doped
fiber lasers the time constant is � D 10ms. Then, the highest possible modulation
frequency is a ridiculous �max D 1=.2��/ � 16Hz! As mentioned above, external
modulation is used for laser diodes only when the fastest data rates are required;
for fiber lasers one always has to resort to an external modulator. This makes them
unlikely candidates for undemanding, low cost applications with low data rates.
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Both erbium and praseodymium fiber lasers are now investigated by many
researchers, and there are also commercial products. One may expect that they will
find many applications. Particularly successful are neodymium-doped fiber lasers
which can produce enormous output powers but mostly work at a wavelength of
1:06 �m which is not very interesting in the context of fiber-optic data transmission.
They are pumped at 800 nm; this pump wavelength can be produced at low cost by
GaAs diode lasers. We mention in passing that by absorption of more pump photons
one can have upconversion so that fiber lasers are also capable to generate light with
shorter wavelength, including visible light.

A particular wavelength within the gain bandwidth can be preferred by selective
means. In linear resonators, fiber-Bragg gratings are often used (compare Fig. 9.34);
in ring resonators, a combination of a fiber-Bragg grating and a circulator (see
Sect. 8.6.2) can be used.

8.10 Optical Receivers

As receivers for light one might consider the following options:

• Photomultipliers
• Photodiodes (pn and pin type)
• Photodiodes (avalanche type)

However, for data transmission applications, photomultiplier are ruled out
because for the infrared wavelengths of the second and third windows there simply
are no photocathode materials. Photodiodes are economic, small, fast, and reliable.
They can also be integrated very well together with other circuitry like preamplifiers.
There is a special version of photodiodes called avalanche diodes. Avalanche diodes
have an internal amplification mechanism and are therefore more sensitive to weak
light signals, but their inner structure is more complex, and they require more com-
plex circuitry. Therefore they are only used when the added sensitivity is definitely
a requirement. This applies in the latest generation of transatlantic fiber cables.

8.10.1 Principle of pn and pin Photodiodes

Any photodiode relies on a p–n junction into which light can be irradiated. At the
junction, a photon can generate an electron–hole pair provided that h� > Egap.
h is Planck’s constant, � is the frequency of the quanta of light, and Egap is the
energetic band gap between valence and conduction bands of the detector material.
In other words, the photon energy must exceed the band gap. The electric charges
thus generated can then be measured as an external current, called the photocurrent.
The current in a photodiode is given by

I D I0
�

e
eU

mkT � 1
�

� Ip ; (8.8)
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Fig. 8.30 Voltage-current characteristic of a photodiode, with the absorbed light power as a
parameter. For this figure, it was assumed that R D 0:5A=W and I0 D 100 pA. At constant
negative bias voltage, i.e., when one crosses the set of curves on a vertical path, the reverse current
is practically identical to the photocurrent, which is proportional to the received power and almost
independent of bias. For open circuit (zero current), one crosses the set of curves on a path given by
the horizontal axis; then the diode generates a photovoltage which is proportional to the logarithm
of the received power

where I is the current, U is the voltage, I0 is a constant current given by the
material and the temperature, e is the electron charge, m � 1:5 is known as the
Shockley factor, k is Boltzmann’s constant, and T is the temperature (in Kelvin).
The equation differs from that of any ordinary diode only in the additional term for
the photocurrent, Ip (Fig. 8.30).

We have to distinguish two very different modes of operation:

As a current source This requires a constant bias voltage U D const: which
is applied in reverse direction or may be zero. Then the
photocurrent is proportional to the received light power
over many orders of magnitude and almost independent
of the bias voltage. The main effect of the nonzero bias
is to reduce the diode capacity and improve the temporal
response.

As a voltage source This is the operation with high impedance load so that
basically I D 0. Then the diode generates a photovoltage
which is proportional to the logarithm of the received light
power.

While there can be uses for the voltage source mode occasionally, in our context
the constant current mode is almost always preferred due to its linearity.

Unfortunately, not every photon actually generates a free charge which con-
tributes to the photocurrent, but only a certain percentage. This percentage is
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Fig. 8.31 Structure of a pin
photodiode. Light enters
through an antireflection layer
which occupies the free
aperture inside the contact
ring. The remainder of the
chip surface is passivated
with SiO2. Absorption takes
place mostly in the i layer

called the quantum efficiency � and is an important characteristic of the detector.
� is always smaller than unity because some photons fail to enter the detector
(Fresnel reflection at the surface) or are not absorbed near the junction; some carriers
may also recombine before they contribute to the external photocurrent.

In order to obtain the most efficient absorption of the impinging light, there is
usually an extra layer inserted between the p-doped and the n-doped layers, which
is undoped and thus has only the intrinsic conductivity of the base material. This
intermediate layer is called the i layer, as in “intrinsic conductivity”. The diode
is then described as a pin diode for its three layers (Fig. 8.31). pin diodes are the
most frequently used type of photodiodes and can reach quantum efficiencies up to
about 90%.

To characterize photodiodes, the sensitivity (sometimes called responsivity) R is
an important quantity:

R D Ip

Pp
D nee

nph�
D �e

h�
: (8.9)

Here ne and np denote the number per second of electrons or photons, respectively.
If � � 1 one can write the numerical relation

R D e

hc
� D �.�m/

1; 24



A

W

�
: (8.10)

We see that the sensitivity is of the order of 1 A/W in the near infrared.

8.10.2 Materials

Silicon photodiodes are a product for mass markets. They are found in TV remote
controls, in supermarket scanners, in CD and DVD players, as individual pixels
in electronic cameras, etc. The band gap of silicon corresponds to � D 1:1 �m.
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This means that the visible light is covered well, but for fiber optics, silicon is
useful only in the first window. At the longer wavelengths of the second and third
windows silicon is just simply transparent and does not absorb at all. The band edge
of germanium sets on at 1:7 �m so that the entire wavelength regime of interest is
covered. It turns out, though, that diodes from composite materials such as InGaAs
have a similar band gap as germanium but have lower dark current and are therefore
usually preferred.

8.10.3 Speed

The fundamental speed limitation for a photodetector is that photo-generated
carriers must transit the junction area. The maximum speed at which carriers move
through the lattice depends on the material and is defined by scattering processes
at the lattice atoms. Near the junction they are accelerated by the electric field
of an external bias voltage. Some of the carriers, however, are not generated near
the junction but in the p-layer or n-layer before or after. There the electric field
strength is much lower so that these carriers must diffuse away; they contribute
a slow portion to the electric signal. Then there is the external time constant
defined by the circuitry: Unavoidable capacitances both inside and outside the
diode, in combination with resistance in the circuit, defines an RC low pass. Careful
construction allows to produce photodiodes with a couple of picosecond response
time; commercial products are available with bandwidths up to about 100 GHz.

8.10.4 Noise

Noise is a fundamental limitation to any measurement. When it comes to the
detection of light with photodetectors, several noise mechanisms contribute:

Quantum noise of the light: This is a property of the light itself. Light consists
of photons which arrive according to some statistics. This is reflected in
the temporal distribution of photo-generated carriers and thus causes a noise
contribution to the photocurrent.

Dark current noise: This is a property of the detector. The effect depends on
material and temperature; it can be reduced by careful choice of material and
by cooling.

Surface leak current noise: This again is a property of the detector. Improvements
can be obtained by precautions in manufacturing and possibly to some degree by
cooling.

Noise from resistors and amplifiers: This is a property of the external circuitry.
The effect, also known as Johnson noise or Nyquist noise, can be minimized by
optimizing the circuit.
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Quantum noise turns out to be the only contribution which cannot be modified by
engineering; it thus constitutes a fundamental limit. We will discuss it in more detail
in Sect. 11.1.7.

8.10.5 Avalanche Diodes

Avalanche diodes are the solid-state equivalent to photomultipliers. In comparison
to pn or pin photodiodes, avalanche diodes are operated at a considerable reverse
bias voltage. The high voltage internally generates strong electric fields which
accelerate carriers to the point that upon collision with lattice atoms, they can
generate more carriers by impact ionization. The photocurrent then grows like an
avalanche and is amplified by a gain factor M.

It is not worth it to push M too far. The internal amplification process has its
own noise component which actually grows faster than M. For each combination
of avalanche diode and associated external circuit, there is an optimum gain at
which the inherent noise contribution of the first amplifier stage or other subsequent
electronic circuitry just ceases to be the dominant contribution to overall noise.

References

1. G. P. Agrawal, Fiber-Optic Communication Systems, John Wiley & Sons, New York (1992)
2. P. C. Becker, N. A. Olsson, J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and

Technology, Academic Press, London (1999)
3. E. Desurvire, Erbium-Doped Fiber Amplifiers, John Wiley & Sons, New York (1994)
4. H. Heffner, The Fundamental Noise Limit of Linear Amplifiers, Proceedings of the IRE 1604

(July 1962)
5. A. F. Judy, H. E. S. Neysmith, Reflections from Polished Single Mode Fiber Ends, Fiber and

Integrated Optics 7, 17 (1987)
6. H. C. Lefevre, Single-Mode Fibre Fractional Wave Devices and Polarization Controllers,

Electronics Letters 16, 778 (1980)
7. D. Marcuse, Loss Analysis of Single-Mode Fiber Splices, The Bell System Technical Journal

56, 703 (1977)
8. D. Marcuse, J. Stone, Fiber-Coupled Short Fabry-Perot Resonators, Journal Lightwave

Technology 7, 869 (1989)
9. S. C. Mettler, C. M. Miller, Optical Fiber Splicing, in [10] p. 263.

10. S. E. Miller, A. G. Chinoweth (Eds.), Optical Fiber Telecommunications II, Academic Press,
London (1988)

11. R. M. Shelby, M. D. Levenson, D. F. Walls, A. Aspect, Generation of Squeezed States of Light
with a Fiber-Optic Ring Interferometer, Physical Review A 33, 4008 (1986)

12. H. Shimizu, S, Yamasaki, T. Ono, K. Emura, Highly Practical Fiber Squeezer Polarization
Controller, Journal of Lightwave Technology 9, 1217 (1991)

13. C. Z. Tan, J. Arndt, Wavelength Dependence of the Faraday Effect in Glassy SiO2, Journal
Physics and Chemistry of Solids 60, 1689 (1999)



Part IV
Nonlinear Phenomena in Fibers

Experiment to investigate stimulated Brillouin scattering in optical fiber with visible
light (ca. 590 nm). Compare Figs. 9.28, 9.29 and 9.30.



Chapter 9
Basics of Nonlinear Processes

It is well known from acoustics that when it comes to oscillations, nonlinearity
leads to the appearance of overtones. The same phenomenon also exists in optics.
A first experimental demonstration succeeded in the early 1960s [14] when the
generation of twice the irradiated frequency was shown in a nonlinear crystal.
The mechanism relied on the anharmonicity of the oscillation of the medium’s
polarization as produced by an intense light wave. Shortly thereafter, the third
harmonic was also demonstrated. Since then, nonlinear optics has evolved into a
field of research in its own right. Processes under study are optical rectification,
parametric amplification, self-focusing, and self-phase modulation, to name just a
few. Optical nonlinearity is responsible when optical properties of some material
show intensity-dependent modifications, when light waves with frequencies are
generated that are not present in the irradiated light, or when—speaking in more
general terms—power is redistributed between different Fourier components of a
light field. As a rule, nonlinear effects get more pronounced as the light intensity
is increased. The reverse is also true: When the light intensity is sufficiently weak,
nonlinear processes may safely be neglected. All of classical optics is therefore
linear optics.

9.1 Nonlinearity in Fibers vs. in Bulk

Nonlinear processes are also observed in optical fiber: actually, often in a more
pronounced form than in bulk optics. This is due to two peculiarities of fibers: By
virtue of the very small mode cross-section, there is high intensity even at moderate
power. And the waveguiding allows very long interaction lengths.

These two peculiarities belong together: one could also have high intensity in
bulk optics by suitably focusing down to a tiny spot. But then typically the length of
the interaction zone goes down due to diffraction of light. It may be best to discuss
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this for Gaussian beams: Beams generated by lasers typically have a Gaussian
intensity profile (see Chap. 16).

For a Gaussian beam, there is a characteristic length called Rayleigh range. Its
significance is that near a focus the beam diameter stays nearly constant over this
length. (Speaking more precisely, the beam radius widens by no more than a factor
of

p
2 over that at the beam waist.) Then the axial intensity drops by only very little

(no more than a factor of 2). The Rayleigh length is given by

zR D �w20
�

I (9.1)

on the other hand, the intensity at the beam waist is obtained from the total power
P0 by the expression

I0 D 2P0
�w20

: (9.2)

This is the maximum; at the end of the Rayleigh zone IR D I0=2.
Let us consider that class of nonlinear interactions which are proportional to

intensity and cumulate with interaction length. Then the product of intensity and
diffraction-limited interaction length is a metric for the strength of the nonlinear
effects. We obtain

I0zR D 2P0
�w20

�w20
�

D 2

�
P0: (9.3)

This expression shows that there is no way how one could increase the strength of
the nonlinear process by geometrical means, like nifty focusing arrangements or
whatever.

In stark contrast, the same limitation does not occur in optical fibers. In the fiber
the wave is guided, and the interaction can build up over nearly arbitrary distances.
Of course, losses reduce the intensity in the fiber after some distance. We take that
into account by integrating along the fiber:

Z L

0

I.z/ dz D
Z L

0

I0 e�˛z dz D I0
˛
.1 � e�˛L/ D I0Leff; (9.4)

where we introduced the effective interaction length

Leff D 1

˛

�
1 � e�˛L

�
: (9.5)

This effective interaction length is quite a useful concept in nonlinear fiber optics.
It is always shorter than the actual fiber length. This is because the power goes
down so that remote parts of the fiber contribute only little to the nonlinear effect.
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Fig. 9.1 Sketch to explain
the concept of the effective
interaction length

Intensity
factual

fictitious

LengthLeff

The definition amounts to replacing the actual decreasing power by a constant,
i.e., its initial value, but limiting the interaction length to the effective value (see
Fig. 9.1). In the limiting case that the actual fiber length tends to infinity, Leff tends
to 1=˛. In practical numbers, assuming a loss of 0:2 dB=km, Leff;max � 22 km.

In order to convert the transmitted power to intensity, we need to be more
specific about the mode’s cross sectional area. We obtain it from integrating the
field amplitude E.x; y/ across the entire cross-section with suitable normalization:

Aeff D
�R1

�1
R1

�1 jE.x; y/j2 dxdy
�2

R1
�1

R1
�1 jE.x; y/j4 dxdy

: (9.6)

Aeff is the effective mode area. If one uses the Gaussian approximation for the fiber
mode, the effective area simply becomes Aeff D �w2.

Let us wrap up: Nonlinear interaction is much stronger in fiber than in bulk.
Compared with a figure of merit 2

�
P0 in bulk, for fiber one finds P0Leff=Aeff. The

ratio of the two,

�Leff

2Aeff
;

is quite large. Take as typical values � D 1�m, Aeff D 50�m2, and Leff D 20 km;
then it is 2� 108. We conclude that even mild nonlinearity can have very noticeable
consequences in fibers.

9.2 Kerr Nonlinearity

It was shown in Chap. 4 that the refractive index can have an intensity dependence

n D n0 C n2I;
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where for fused silica n2 � 3� 10�20 m2=W. This is also known as the optical Kerr
effect. It provides a minute modification of the index by the n2 term, which does not
influence the structure of the modes because n2I � .nK � nM/. However, the n2I
term does modify the phase of the propagating light.

Consider a light wave with power P launched into the fiber. The effective cross-
sectional area of the mode is Aeff. Generally, a wave of the type

cos.!t � kz/

propagates such that after distance z D L the phase has the value kL. Therefore,


 D kL D k0nL D k0 .n0 C n2I/ L D 2�

�

�
n0 C n2

Aeff
P

�
L: (9.7)

This phase can be split into a linear and a nonlinear contribution:


lin D 2�

�
n0L

and


nl D 2�

�

n2
Aeff

PL D !0n2
cAeff

PL D �PL with � D !0n2
cAeff

: (9.8)

We will extensively use the coefficient of nonlinearity � below.
With the help of a reference wave providing a phase reference, one could easily

measure the nonlinear phase shift. Let, e.g., � D 1:5 �m, n2 D 3 � 10�20 m2=W,
Aeff D 40�m2, P D 1W, and L D 1 km. Then we obtain � D 3:14 � 10�3=.Wm/
and 
nl D 3:14 rad which corresponds to one half of a wavelength—certainly easily
measured interferometrically.

9.3 Nonlinear Wave Equation

Now we will set up a wave equation which takes all relevant effects into account.
As it will turn out, it fully suffices to write an equation for the field envelope. This
implies that the variable in the equation is not the field strength itself, but only its
amplitude; a term oscillating at the optical frequency is removed. This is justified
whenever the envelope changes much more slowly than the field, in other words,
when within the duration of the shortest pulses of light there are many oscillation
periods of the field. Some current research at the forefront of laser physics now
pushes this limit, but there are no direct consequences for fiber-optic applications.
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9.3.1 Envelope Equation Without Dispersion

At first we want to see how an envelope equation is set up in a simple case. We start
from the linear wave equation derived in Chap. 3 [compare Eq. (3.23)]

r2E � n2

c2
@2E

@t2
D 0 (9.9)

and use the following ansatz for E:

E.x; y; z; t/ D A.x; y; z; t/ ei.!0 t�ˇ0z/: (9.10)

This describes a wave traveling in positive z direction, with carrier frequency!0 and
propagation constant ˇ0 D !0n=c. All other space and time dependence is lumped
into the envelope A.x; y; z; t/. We assume that these dependencies are variable only
at a much slower scale, so that any spatial or temporal derivative of A, in comparison
to the same derivative of the exponential term, is of order 
 � 1. In physical terms
this means that the envelope changes only very little during one oscillation period
or over one wavelength. This approximation is justified as long as even the shortest
light pulses contain several oscillations of the field.

In order to insert Eq. (9.10) in Eq. (9.9), we first take the derivatives (and write A
for convenience, without reiterating its arguments):

@E

@x
D @A

@x
ei.!0t�ˇ0z/

@2E

@x2
D @2A

@x2
ei.!0t�ˇ0z/

@E

@y
D @A

@y
ei.!0t�ˇ0z/

@2E

@y2
D @2A

@y2
ei.!0t�ˇ0z/

@E

@z
D @A

@z
ei.!0t�ˇ0z/ � iˇ0A ei.!0t�ˇ0z/

@2E

@z2
D
�
@2A

@z2
� 2iˇ0

@A

@z
� ˇ20A

�
ei.!0t�ˇ0z/

@E

@t
D @A

@t
ei.!0t�ˇ0z/ C i!0A ei.!0t�ˇ0z/

@2E

@t2
D
�
@2A

@t2
C 2i!0

@A

@t
� !20A

�
ei.!0t�ˇ0z/:
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Now we insert

�2iˇ0
@A

@z
C @2A

@x2
C @2A

@y2
C @2A

@z2
� ˇ20A � n2

c2
@2A

@t2
� 2i!0

n2

c2
@A

@t
C !20

n2

c2
A D 0:

Obviously the exponential factor is cancelled out, and we succeeded in finding an
equation of motion for the envelope! The two terms proportional to A mutually
cancel because ˇ20 D !20n2=c2. The derivatives in x and y directions can be combined
using the transverse nabla operator rxy. Then this is what remains:

� 2iˇ0
@A

@z
C r2

xyA C @2A

@z2
� n2

c2
@2A

@t2
� 2i!0

n2

c2
@A

@t
D 0: (9.11)

The kth derivative is of order 
k � 1; therefore, in leading order we only retain

2iˇ0
@A

@z
C 2i!0

n2

c2
@A

@t
D 0

or

@A

@z
C n

c

@A

@t
D 0: (9.12)

This describes an envelope which propagates with constant shape and with velocity
v D c=n, the phase velocity. This is no wonder—we have neglected both dispersion
and nonlinearity so far!

Indeed the equation is better than valid only in first order. In Eq. (9.12), we note
that a z derivative of A (not of E!) is the same as a t derivative up to a factor of �n=c.
One can do the same trick twice:

@2A

@z2
D
�
�n

c

�2 @2A
@t2

:

Now one sees that the third and fourth term in Eq. (9.11) cancel out. At next higher
order this is what remains:

@A

@z
C n

c

@A

@t
C i

2ˇ0
r2

xyA D 0: (9.13)

This is different only in the term for transverse change. In a fiber, diffraction is
compensated by the waveguiding mechanism so that derivatives with respect to x
and y are zero.

The term containing the first temporal derivative can be scaled out. To do so we
introduce a comoving frame of reference

� D t � n

c
z
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and obtain

@A

@z
C i

2ˇ0
r2

xyA D 0: (9.14)

This equation describes the transverse diffraction of a wave packet. Without
transverse change the pulse shape is constant.

In a linear fiber, free from dispersion and loss, a wave packet propagates without change of
shape with a velocity equal to the phase velocity.

Now we must incorporate the effects of dispersion, loss, and nonlinearity. This
implies that n will now become a function of frequency (or wavelength) and power
(or amplitude), and the amplitude a function of position (or distance).

9.3.2 Introducing Dispersion by a Fourier Technique

A Fourier transform is used to convert from a function in the temporal domain to
the corresponding function in the frequency domain (or vice versa), or from spatial
position to spatial frequency, etc. Let us begin with a time-frequency transformation
of some function F.t; z/.

We use the abbreviation

QF.!/ D FT
�
F.t/

�

to denote the Fourier transform FT
�
: : :
�
, spelled out as

QF.!/ D
Z C1

�1
F.t/ ei!t dt:

Then it holds that

FT
�

i
@

@t
F.t/

�
D
Z C1

�1
i
@F.t/

@t
ei!t dt:

By partial integration one finds:

FT
�

i
@

@t
F.t/

�
D iei!t F.t/

ˇ̌
ˇ̌
C1

�1
�
Z C1

�1
iF.t/

@

@t
ei!tdt

D 0C !

Z C1

�1
F.t/ ei!t dt

D ! FT
�
F.t/

�

D ! QF.!/:
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In the second line, we assumed that F.t D ˙1/ D 0, which means that for distant
times F.t/ decays. Then we conclude that a Fourier transform acts simply to replace

QF.!/ $ F.t/;

! QF.!/ $ i
@

@t
F.t/;

!k QF.!/ $
�

i
@

@t

�k

F.t/:

A factor ! in the frequency domain corresponds to an operator i.@=@t/ in the
time domain. The same logic applies also if instead of ! we use �! D ! � !0
throughout, with fixed !0.

Quite similarly we can do a position–spatial frequency transformation, i.e., a
transformation between coordinate z and wave number ˇ.

QF.ˇ/ D FT
�
F.z/

� D
Z C1

�1
F.z/ e�iˇz dz: (9.15)

The sign in the exponent stands for a wave traveling “to the right” or toward positive
z. With an analogous calculation one finds the following correspondence:

QF.ˇ/ $ F.z/;

ˇ QF.ˇ/ $ �i
@

@z
F.z/;

ˇk QF.ˇ/ $
�

�i
@

@z

�k

F.z/:

Again, this is also valid if�ˇ D ˇ�ˇ0 instead of ˇ. We will now apply this insight
to the series expansion of the wave number as a function of frequency, which is

ˇ D ˇ0 C�!ˇ1 C�!2
ˇ2

2
C�!3

ˇ3

6
C � � � : (9.16)

Now we make the transition to the time domain by inserting operators and apply
them to A.z; t/:

�ˇ D ˇ1�! C ˇ2

2
�!2 C ˇ3

6
�!3 C � � � (9.17)

�i
@

@z
A D iˇ1

@

@t
A � ˇ2

2

@2

@t2
A � i

ˇ3

6

@3

@t3
A C � � � : (9.18)
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Obviously 1=ˇ1 is the group velocity. It is hardly a surprise (but it is nice!) that now
we have an equation containing group velocity, not phase velocity.

It often suffices to truncate the series after the ˇ2 term. Then we are left with

i
@

@z
A C iˇ1

@

@t
A � ˇ2

2

@2

@t2
A D 0: (9.19)

If we now use a frame of reference comoving with group velocity 1=ˇ1 by
introducing T D t � ˇ1z, we are left with

i
@

@z
A � ˇ2

2

@2

@T2
A D 0 (9.20)

where A is shorthand for A.z;T/.
One might include further terms from the series (3.18); then, additional terms will

appear in the wave equation (9.20). For third-order dispersion, the term would be
�.ˇ3=6/.@3A=@T3/ on the LHS. One can also introduce a modification of the wave
number due to nonlinearity by adding to �ˇ a term �ˇNL D n2Iˇ0. Moreover, by
using a complex wave number, one can describe power loss, e.g., with �ˇloss D
i˛=2 where ˛ is Beer’s absorption coefficient. By including all these, the equation
becomes

�ˇ D ˇ1�! C ˇ2

2
�!2 C ˇ3

6
�!3 C ˇ0n2I C i

˛

2
; (9.21)

�i
@

@z
A D iˇ1

@

@T
A � ˇ2

2

@2

@T2
A � i

ˇ3

6

@3

@T3
A C ˇ0n2IA C i

˛

2
A: (9.22)

The prefactor ˇ0n2I can also be written as .!0=c/ n2.jAj2=Aeff/. This is done by
taking the amplitude A as the square root of power, a choice not in accord with SI
conventions but quite common in the nonlinear optics literature. Aeff is the effective
mode area in the fiber over which the power jAj2 is distributed to give the intensity
I. Then this is left:

i
@

@z
A � ˇ2

2

@2

@T2
A � i

ˇ3

6

@3

@T3
A C � jAj2A C i

˛

2
A D 0: (9.23)

9.3.3 The Canonical Wave Equation: NLSE

We now consider an important special case: By neglecting third-order dispersion
and loss, one retains the nonlinear Schrödinger equation (NLSE):

i
@

@z
A � ˇ2

2

@2

@T2
A C � jAj2A D 0: (9.24)
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It derives its name from Erwin Schrödinger, of quantum mechanics fame, because
it has a close similarity with the quantum mechanical Schrödinger equation

i
@

@t
 � @2

@z2
 C V D 0: (9.25)

Coefficients ˇ2 and � in Eq. (9.24) can be scaled out by using suitable units for time
and amplitude, as we shall see in Sect. 9.3.5. The essential part of the comparison
is this:

• jAj2 stands in for the potential V; here it has a specific shape.

The field itself generates the potential which then acts back on the field
distribution.

• Space and time coordinates have switched roles.

The quantum mechanic Schrödinger equation describes how a spatially
localized wave packet spreads out spatially as time goes by.

The nonlinear Schrödinger equation of fiber optics describes how a
temporally short light pulse spreads out in its duration as it propagates over
some distance.

To wrap up: n becomes a function of intensity, but since n2I=n0 � 1 there is no
influence on mode geometry, field distribution, etc. in leading order. We may safely
neglect transverse changes in the waveguide. On the other hand, the wave equation
is no more linear, and the superposition principle does not hold. With a Fourier
technique we have introduced frequency dependence.

Below we will use the following form of the wave equation as the reference
version:

i
@A

@z
D Cˇ2

2

@2A

@T2
� i

2
˛A � � jAj2A: (9.26)

A modification of the pulse shape (LHS) can occur through terms for dispersion,
loss, and nonlinearity (RHS). For dispersion we only use the leading order. For
the nonlinearity only the Kerr effect is considered. Of course one can go further;
there are plenty of research papers dealing with higher-order dispersion, temporal
effects in the nonlinearity, or polarization effects. But for now we will use Eq. (9.26):
Already this simplified version presents us with a few surprises. To get familiar with
this matter, let us first distinguish a few limiting cases.
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9.3.4 Discussion of Contributions to the Wave Equation

9.3.4.1 Absorption Alone

For ˇ2 D � D 0, Eq. (9.26) is reduced to

@A

@z
D �˛

2
A; (9.27)

which is solved by

A D A0e� ˛
2 z: (9.28)

After a characteristic length L˛ D 1=˛, the amplitude decays to e�1=2 of its initial
value and thus the power to 1=e. This makes it clear that ˛ is Beer’s absorption
coefficient.

9.3.4.2 Dispersion Alone

For ˛ D � D 0, Eq. (9.26) is reduced to

i
@A

@z
D 1

2
ˇ2
@2A

@T2
: (9.29)

This is formally similar to a paraxial wave equation for diffraction in only one spatial
direction. A formal solution can be found with Fourier techniques; we have already
seen some results in Chap. 4. Here it may suffice to convince ourselves: If one sets

A D A0e
i.�TCkz/;

then it follows that

k D ˇ2

2
�2;

and the wave vector becomes frequency-dependent; this corresponds to the pulse
broadening discussed before. Again we can define a characteristic length scale; we
choose LD D T20 =jˇ2j. As already discussed, a Gaussian pulse of width T0 will
widen after this distance by a factor of

p
2.
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9.3.4.3 Nonlinearity Alone

Finally we can also define a characteristic length for the nonlinearity. For ˇ2 D ˛ D
0, Eq. (9.26) is reduced to

i
@A

@z
D �� jAj2A: (9.30)

As before, A D A.z;T/. For convenience we write jA.0;T/j2 D P0.T/ for the initial
power profile of the light pulse. Then the equation is solved by

A D p
P0.T/ ei�P0.T/z : (9.31)

Several aspects are remarkable in this result. First, the power profile remains
unchanged; P0.T/ does not contain z. Second, there is a characteristic length
LNL D 1=�P0.T/; this does contain power and is therefore power-dependent. At
pulse center (maximum of P0.T/), the value is different from that in the slope. After
propagation over characteristic length, the pulse peak has acquired a phase factor of
ei, corresponding to a phase shift of 1 rad.

Looking at it from another side, after some given distance the phase factor is
different for different positions within the pulse profile. It is largest at pulse center
and tapers off in the wings. In other words, the pulse acquires a phase modulation
known as self-phase modulation (Fig. 9.2). This is a crucial insight for much of the
remainder of this discussion, and it will be discussed in more detail below.

Field amplitude

Propagation direction

Fig. 9.2 Impact of self-phase modulation. Top: Within a light pulse, the optical field oscillates at
a certain frequency; the envelope defines the pulse duration. Let such a pulse be launched into a
medium where there is self-phase modulation. Bottom: After passing through that medium, phases
have shifted. Propagation is maximally slowed down at pulse center; therefore, waves appear pulled
apart in the rising slope (right) whereas they are compressed in the trailing slope (left)
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Self-phase modulation may also be interpreted as self-frequency modulation
since phase and frequency modulation are closely related. Using the nonlinear phase

nl D �PL, at some position L, the frequency deviation due to nonlinearity is

�! D d
nl

dT
D �L

dP

dT
;

as shown in Fig. 9.3. A frequency modulation across the pulse is frequently called
chirp; a self-frequency-modulated pulse is said to be chirped.

Fig. 9.3 Sketch to explain
the connection between
self-phase modulation and
self-frequency modulation.
Top: Let the power profile be
bell-shaped as shown, e.g.,
sech2.T/. Center: The
nonlinear phase follows the
power profile. Bottom: The
instantaneous frequency is
given by the temporal
derivative of the phase and
thus follows the temporal
derivative of power
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9.3.5 Dimensionless NLSE

Let us compare the characteristic lengths (we use P0.0/ D P0):

• L˛ D 1=˛ depends solely on fiber properties.
• LNL D 1=�P0 D .cAeff/=.n2!0P0/ depends on the fiber (on Aeff and n2) and on

the signal (!0 and P0). The signal dependence is only by the instantaneous value,
not the temporal profile.

• LD D T20 =jˇ2j depends on the fiber (jˇ2j) and on the signal (T0). This time the
signal dependence is by the temporal profile, not the absolute values.

By way of these different dependencies, combinations of all kinds are possible
according to circumstances. A comparison of the characteristic lengths allows to
see at one glance which effects are relevant. Certainly the effect represented by the
shortest length scale will give the most important contribution.

Consider the case that of the three coefficients in Eq. (9.26), only ˛ D 0 and
thus L˛ ! 1. This is a case of particular interest, an interplay between dispersion
and nonlinearity. It permits, among other things, pulse compression and solitons.
Realistically, this situation is obtained whenever LD and LNL are comparable but
much shorter than L˛ . This is the case when short (e.g., picosecond) light pulses
propagate in optical fibers.

Using new variables

U D Ap
P0

� D z

LD
(9.32)

� D T

T0

we rewrite the wave equation with ˛ D 0 as

i
@U

@�
D 1

2
sgnˇ2

@2U

@�2
� LD

LNL
jUj2U: (9.33)

There is a signum function here; this is easily explained by the fact that LD is defined
in terms of the absolute value jˇ2j. The factor LD=LNL can be scaled out by using
u D NU:

N D
s

LD

LNL
D
r

P0T20
�

jˇ2j : (9.34)
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Now the equation takes the form

i
@u

@�
˙ 1

2

@2u

@�2
C juj2u D 0: (9.35)

This is the celebrated nonlinear Schrödinger equation in its dimensionless form, as
it is most often found in literature. The sign corresponds to �sgnˇ2 and stands for
anomalous (C) or normal (�) group velocity dispersion, respectively.

There are two possibilities for this sign. Therefore the reader may well guess at
this point that there will be two distinct types, or classes, of solutions. Within each
class the numerical values of parameters merely act as scale factors for the solution
but do not affect its functional type. But, of course, there is also the very special
case of ˇ2 D 0 which requires a careful analysis of its own. Just because the ˇ2
term in the series expansion, Eq. (4.19), is zero does not at all imply that all the
higher-order terms vanish as well. In that case, higher-order dispersion must be
taken into account.

9.4 Solutions of the NLSE

In this section, we study solutions of the nonlinear Schrödinger equation (9.35).
First of all, there is the trivial solution

u 
 0: (9.36)

There is no need to waste time on this case.

9.4.1 Modulational Instability

More interesting is the continuous wave solution

u D u0 eiju0j2� I (9.37)

in the dimensional units of Eq. (9.24) this reads

A D
p

P0 ei�P0z: (9.38)

For this solution it is important to check the stability. This can be done by inserting
a small perturbation away from the solution in a procedure called linear stability
analysis. The solution is stable when the perturbation produces an opposite restoring
action so that it decays with time. In the opposite case—when the perturbation keeps
growing—the solution is unstable.
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The continuous wave solution can be either stable or unstable depending on the
sign of dispersion (this is shown, e.g., in Chap. 5 of [1]). For anomalous dispersion
perturbations grow. The term modulational instability indicates that perturbations at
certain frequencies grow faster than others.1 The growth rate, or instability gain, has
a frequency dependence [1]

g! D jˇ2j!
p
�2 � !2 (9.39)

with

�2 D 4

jˇ2jLNL
D 4� OP

jˇ2j ;

where OP denotes the peak value of the power.
The gain maximum is

gmax D 2� OP (9.40)

and occurs at the frequency

!max D 1

2

p
2 � D

s
2� OP
jˇ2j : (9.41)

Figure 9.4 shows the spectral profile of this gain.

9.4.2 The Akhmediev Breather

In the presence of noise (and one never has absence of noise), perturbations will
grow. Noise covers all frequencies alike, so it is most likely that the Fourier
component at !max grows fastest, and soon dominates. The result is a periodic
modulation with frequency !max on top of the continuous background wave, and
the power of that modulation grows exponentially with gmax.

This exponential growth can not go on forever, of course. The ‘small pertur-
bation’ approach breaks down once the modulation amplitude is no longer much
smaller than the continuous wave background. Linear stability analysis tells us
nothing about the further, ultimate fate of the modulation.

1In hydrodynamics there is the analogous phenomenon under the name of Benjamin–Feir
instability [25].
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Fig. 9.4 Gain factor of modulational instability. It is assumed that ˇ2 D 15 ps2=km and � D
2=.Wkm/. OP is given as a parameter

It turns out that a full mathematical description of the continued process had
been given as early as 1986 in a formal mathematical publication [4]; however, it
took decades until this result was translated into an experimental verification. There
is a formal solution of the NLSE which describes the complete development from
infinitesimally perturbed continuous wave through exponential growth of a weak
modulation to full-size modulation, and beyond. After the lead author of the original
publication, this solution is now called an Akhmediev breather.

It takes the mathematical form

A.Z;T/ D
p

P0



1C 2.1� 2a/ cosh.bZ/C ib sinh.bZ/p

2a cos.!T/ � cosh.bZ/

�
exp.iZ/ (9.42)

where distance is measured in nonlinear lengths, Z D z=LNL, and

0 � a � 1=2 b D p
8a � 16a2

! D !c

p
1 � 2a !c D

s
4�P0
jˇ2j

This expression describes a continuous wave of amplitude
p

P0 evolving with a
phase exp.iZ/; inside the parenthesis, the fraction provides the modulation. As the
cos.!t/ term shows, this modulation is oscillatory in time. The real part of the
remaining terms consists of cosh.Z/ functions and is thus symmetric with respect to
Z; the imaginary part contains sinh.Z/ a is therefore antisymmetric. This indicates
that the phase of the modulation passes through zero at Z D 0.
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Fig. 9.5 Evolution of the Akhmediev breather at a D 1=4. Time in units of the period (T!=2�),
power in units of the constant background (jA2=P0), and distance in nonlinear lengths (Z D z=LNL).
The evolution from Z D �8 to Z D C8 is shown; the culmination occurs at Z D 0. This figure
was drawn with help from Christoph Mahnke

For large jZj, the hyperbolic functions dominate and dictate that limZ!˙1 jAj2 D
P0. The relative amplitude of the modulation exponentially tends to zero as the cos
term is of order unity while the hyperbolic functions scale as exp.bZ/. In the other
extreme, at Z D 0 we find the largest modulation amplitude from inserting in
Eq. (9.42) and rewriting as

A.0;T/ D
p

P0

1�4ap
2a

C cos!T

cos!T � 1p
2a

exp.iZ/: (9.43)

In other words, the Akhmediev breather is a structure that emerges from a constant
power background. As the light propagates down the fiber, a modulation grows
exponentially, reaches its maximum amplitude at Z D 0, then decays again. The
modulation is periodic in time; at the culmination point it takes the form of a
sequence of pulses. For an illustration we concentrate on the case of maximum gain,
a D 1=4, b D 1; see Figs. 9.5 and 9.6. Here Eq. (9.43) is reduced to

A.0;T/
ˇ̌
ˇ
1=4

D
p

P0
cos!T

cos!T � p
2

exp.iZ/ (9.44)

This is a periodic sequence of peaks, with their maximum amplitude at a value of
Amax D �.1Cp

2/
p

P0, so that jAj2max � 5:828P0. In between the main peaks there
are secondary peaks of amplitude Asec D .

p
2 � 1/

p
P0 so that jAsecj2 � 0:172P0.

The zeroes of the amplitude appear as dimples in the power profile.

9.4.3 The Fundamental Soliton

The next solution of the nonlinear Schrödinger equation exists in the case of
anomalous dispersion (for ˇ2 < 0, i.e., on the long wavelength side of the zero-
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Fig. 9.6 Cross section of the Akhmediev breather in Fig. 9.5 at its culmination point at Z D 0.
Units as in Fig. 9.5

dispersion wavelength) and takes the form

u D sech.�/ ei�=2 (9.45)

or, in dimensional units,

A D
p

P1 sech

�
T

T0

�
ei�P1z=2: (9.46)

The time-dependent part is a hyperbolic secant (or “sech”) function; it therefore
describes a bell-shaped pulse. (Some information on sech is gathered in Chap. 17.)
The position-dependent part is an exponential function acting as a phase factor;
it rotates through 2� over the distance � D 4� . The pulse shape (power profile)
is constant since the only dependence on position is in the exponential, see
Figs. 9.7, 9.8, and for comparison Fig. 9.9. The pulse shape is also stable in the sense
that a certain perturbation away from the precise shape can heal out: a remarkable
property which we are going to discuss some more!

This solution is a “solitary” solution in the sense that—in marked contrast to
solutions of linear differential equations—the peak amplitude is fixed; if the solution
is multiplied by any constant real factor other than unity, the result is not a solution.
From this property derives the name of this solution: it is called a soliton. Indeed
this is just one particular representative of a wider class of solitons, and it is more
precisely called the fundamental soliton or N D 1 soliton for reasons which we will
see shortly.
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Power

Distance

Time

Fig. 9.7 The fundamental soliton in a computer simulation: in spite of dispersion the pulse shape
is preserved. Parameters in real-world units: Pulse duration � D 1 ps, ˇ2 D �18 ps2=km, ˇ3 D 0,
� D 2:5 � 10�3=.Wm/ and � D 1:5�m (see Fig. 4.5). The peak power pertaining to N D 1

is 22:37W. Shown is the evolution over two soliton periods (56:16m) in a temporal window of
˙5 ps

Spectral
power

Distance

Frequency

Fig. 9.8 The spectrum of the fundamental soliton in a computer simulation, using the same
parameters as in Fig. 9.7. In spite of nonlinearity the spectral shape is preserved

Fiber solitons are light pulses which do not change their shape during propaga-
tion even though at the same time both dispersion and self-phase modulation act
on it. It should be more than obvious that pulses with this property must be highly
interesting for applications!

When we convert the dimensionless solution back to real-world units, we note:
The condition for a fundamental soliton is

LD D LNL , N D 1: (9.47)

By virtue of Eq. (9.34), the peak power of the N D 1 soliton is OP1 D jˇ2j=�T20 . In
other words: All N D 1 soliton share the property that the product of peak power and
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Power

Distance

Time

Fig. 9.9 For comparison, here we show the dispersive broadening of a sech2 pulse. Shown is
a pulse with an initial duration (FWHM) of 1 ps as it broadens over a propagation distance of
20m. Of course, the spectrum is preserved in the process—exactly as in Fig. 9.8. The dispersion is
ˇ2 D �18 ps2=km and ˇ3 D 0

the square of the pulse duration is a constant, determined solely by fiber parameters:

OP1T20 D jˇ2j
�

(9.48)

To illustrate the importance of this product, we note that the energy of the soliton is
the time integral of power:

E1 D
Z C1

�1
P.t/ dt D 2 OP1T0: (9.49)

Then, OP1T20 is something like the time integral of energy, a quantity which in
classical mechanics is referred to as action. In quantum mechanics, the time integral
of the amplitude envelope is called the pulse area [5]; here, action is thus the square
of pulse area.

In a given fiber a soliton can have just about any duration, peak power, or
energy. However, these quantities always combine such that the action has the
same value as given by Eq. (9.48).

If we also insert the relations between T0 and � (� D 2ZT0), between ˇ2 and D
(D D �.!=�/ˇ2), and between n2 and � (� D n2.!0=cAeff/ ), then we obtain

OP1 D Z2 �
3

�2c

jDjAeff

n2

1

�2
: (9.50)
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Here we introduced the numerical constant Z D cosh�1 p
2 D 0:8813 : : : for

convenience. If we wish to find the average power NP1 rather than the peak power
OP1, we write

NP1 D OP1 � �

Trep

1

Z ; (9.51)

where Trep denotes the repetition rate of the experiment. If we finally insert the
expression for OP1, then we can write NP1 explicitly as a function of easily measured
quantities:

NP1 D Z �3jDjAeff

�2cn2Trep

1

�
: (9.52)

The soliton energy is then

E1 D 1

Z
OP1�: (9.53)

Rather than expressing the energy in Joules, it can be interesting to write it as photon
number which is found via nphot D E1=.h�/ (see Table 9.1).

From these equations we can draw several conclusions: Obviously a soliton can
exist for any � ; it is straightforward to calculate its power. The shorter the duration,
the higher the power required to form the soliton. Table 9.1 shows typical orders of
magnitude. The table also mentions a characteristic length z0 which is commonly
called the soliton period and is given by z0 D .�=2/ LD. Again we convert to real-
world units:

z0 D 1

.2Z/2
�2c�2

jDj�2 : (9.54)

Table 9.1 Typical orders of
magnitude of characteristic
soliton parameters. The table
gives the peak power OP, the
soliton period z0, its energy,
and the photon number,
always rounded to three
significant digits

� OP z0 E1 nphot

1 ns 22.4�W 28,100 km 25.4 fJ 1:92� 105

100 ps 2.24 mW 281 km 254 fJ 1:92� 106

10 ps 224 mW 2810 m 2.54 pJ 1:92� 107

1 ps 22.4 W 28.1 m 25.4 pJ 1:92� 108

100 fs 2.24 kW 281 mm 254 pJ 1:92� 109

Assumed values are a wavelength of 1:5�m, a fiber
dispersion of ˇ2 D �18 ps2=km corresponding to about
D D 15 ps=.nm km/, and a nonlinearity coefficient
� D 2:5 � 10�3=.Wm/ corresponding to n2 D 3 �
10�20 m2=W, and Aeff � 50�m2. In all cases the action
W D jˇ2j=� D 7:2� 10�24 W s2
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To interpret this quantity, we reinsert the transformation Eq. (9.32) into Eq. (9.45)
and find that the phase of the fundamental soliton rotates full circle after a distance

� D z

LD

ŠD 4�

z D 4�LD ) z D 8z0 (9.55)

The phase of the soliton rotates with respect to the comoving frame of reference such that
it repeats itself after 8z0.

The soliton period z0 plays a central role in the propagation of higher-order solitons,
described in Sect. 9.4.6 below. It will therefore turn out to be useful to write the
spatial period of the phase, z D 8z0, in terms of physical quantities. The soliton
condition Eq. (9.47) gives us two variants:

z D 4�LD D 4�T20
jˇ2j

D 4�LNL D 4�

� OP1
: (9.56)

In a fundamental soliton, there is a compensation of the linear chirp by dispersion
and of the nonlinear chirp by self-phase modulation. This is why fundamental
solitons propagate with no change of shape. This makes the fundamental soliton
the natural bit of optical data transmission.

In a real fiber, there are some practical complications which are not taken into
account in the nonlinear Schrödinger equation. In particular, in the presence of a
gradual mild energy loss, the shape will not stay constant, but will readjust according
to Eq. (9.48). That is, when a soliton loses some of its energy, it will acquire a
somewhat wider pulse shape.

The key here is that the loss occurs gradually (adiabatically): If the power is
abruptly reduced (at a splice, say) so that instantly N < 1=2, the soliton is destroyed,
and only linear waves carry the remaining energy away. Adiabaticity implies that the
loss is negligible over a distance on the order of z0. If in a very long fiber energy is
continually drained away from the soliton according to a factor E.z/ D E.0/ e�˛z,
the pulse duration T0 will initially increase to accommodate the adiabatic energy
loss. This, however, also increases LD D T20 =jˇ2j. Then, the loss per LD (in contrast
to the loss per unit of z) keeps growing until, inevitably, at some point the rate of
loss exceeds the adiabatic limit. Beyond that point, the soliton is soon destroyed.
This process is described in detail in [8]; however, practical systems will always be
laid out such that it does not come to this.
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9.4.4 How to Excite the Fundamental Soliton

What happens when a pulse is launched into a fiber which corresponds exactly to a
soliton, except that the peak power is raised or lowered with respect to the soliton
peak power? The stable solution of the wave equation is the fundamental soliton, and
therefore a soliton will emerge. To accommodate the deviation in power, however,
it will acquire a duration and peak power which is different from the start values. If
the power is reduced, a somewhat longer soliton will be generated (see Fig. 9.10); if
it is raised, a shorter soliton (Fig. 9.11). This is the “self-healing property” alluded
to above which makes solitons particularly robust entities.

To find the final shape (duration and peak power) of the soliton quantitatively,
we consider this: The coefficients of dispersion ˇ2 and nonlinearity � define that
particular value of the action W D jˇ2j=� which any soliton in the fiber must
have. Even when the launch pulse does not fulfill this condition, the soliton must.

Power
Distance

Time

Fig. 9.10 Soliton formation when a pulse with N D 0:8 is launched in a computer simulation.
Parameters as in Fig. 9.7 but with N D 0:8 and thus a peak power of 17:9W

Power

Distance

Time

Fig. 9.11 Soliton formation when a pulse with N D 1:2 is launched in a computer simulation.
Parameters as in Fig. 9.7 but with N D 1:2 and thus a peak power of 40:27W
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Therefore a rearrangement of simultaneously peak power, duration, and energy
occurs. Of course there are many ways to vary three parameters at the same time, but
they are not independent: OP� D E and E� D W. Therefore, only a single additional
constraint is required to make the rearrangement unique. This constraint comes from
energy considerations:

By conservation of energy, certainly the soliton can not have more energy than
the launch pulse. But it may have less: then the pulse sheds energy, and the energy
of the soliton equals the launch energy minus the energy radiated off.

If the launched pulse happens to precisely match a fundamental soliton (N D 1),
the radiated energy Erad is zero. It is also zero for other integer values of N; larger
integers describe higher-order solitons (see Sect. 9.4.6 below). Here, however, we
are looking at noninteger N launch conditions. Let us specify OPstart D .1 C 
/2 OP1
equivalent to N D 1C 
, but we keep j
j < 1=2.

The radiated energy is the initial energy minus the energy of the soliton. Using
the energy of the N D 1 soliton as a convenient energy unit, this can be written as

Erad D N2 � .2N � 1/:

Then

Erad D

8
ˆ̂<
ˆ̂:

0:25 W N D 0:5

0 W N D 1

0:25 W N D 1:5

I

for intermediate values of N one finds values between 0 and 0.25. Clearly, one can
specify the energy loss directly. A graphical representation is given in Fig. 9.12. We
note in passing that the wiggle in the pulse shape as seen in Figs. 9.10 and 9.11 can
be understood as a beating between the soliton and the radiation. As the radiation
gradually disperses away, the wiggles eventually decay. By a technique explained in
[6, 7] the beat note can be evaluated to obtain precise information about the soliton.

Since both action W and energy E are fixed, the remaining parameters are fixed,
too:

W D jˇ2j=�; (9.57)

E D Estart � Erad; (9.58)

) � D W=E; (9.59)

) OP D E=�: (9.60)

This is shown graphically in Fig. 9.13: At constant action, OP D .1=�/2 and thus
log OP D 2 log.1=�/. This curve, plotted in a log OP–log .1=�/ diagram, has the slope
.d log OP/=.d log.1=�// D 2. At constant energy, on the other hand, the slope is unity;
shown is a selection from this family of curves. One first identifies the curve of fixed
energy pertaining to the launch condition. A second, lower curve is the one where
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Fig. 9.12 Sketch to explain pulse energy and soliton content. If one takes a pulse with fixed
duration and increases its energy from zero, beginning at N D 0:5 a soliton is formed. Its energy
increases linearly as the pulse energy grows. Beginning at N D 1:5 a second soliton is generated,
beginning at N D 2:5 a third, etc. The sum of all soliton energies is a piecewise linear function
which runs close to the parabola E / N2 (dashed line) and touches it wherever N is integer. These
tangent points are the positions where all energy is invested in solitons. At all noninteger N some
part of the energy is not invested into solitons but is radiated off. This part is given by the difference
between the sum of solitonic energies and the parabola; for the sake of clarity, the lower part of the
picture shows this difference on an expanded scale

the energy is reduced by just the amount which is radiated off. The final soliton
must be on this curve. It must also be on the line designating the soliton action.
Therefore, at the intersection of both, we have the final soliton. The coordinates of
the intersection point indicate its pulse duration � and peak power OP.

There is an interesting consequence from all this: If one launches a light pulse
with N < 1=2 into the fiber, then no soliton will be generated because all the energy
is converted to radiation. In a thought experiment, one may consider a fiber with a
localized loss (at a splice, say). The condition right after the loss is equivalent to
launching a weaker pulse in the fiber. If suddenly N is reduced to values below
1=2—i.e., when a soliton is suddenly attenuated by at least a factor of 4, it is
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P

N

Fig. 9.13 Graphical construction of energy and duration of a soliton when the launch condition
does not quite fit. In the log. OP/-log.1=�/ diagram, there is a family of curves of constant energy.
Also, a particular soliton (fixed � and OP) is highlighted by a white square. All solitons in this fiber
must lie on the curve of constant action (single steeper line). Let the launch condition (gray circle)
have higher energy as required for the N D 1 soliton (the upper of the bold lines). Then, one
first calculates the energy loss from Fig. 9.12; then one finds the curve pertaining to the remaining
energy (the lower bold line). The intersection of the final energy and the constant action curves
gives the soliton’s OP and �

destroyed: 6 dB localized loss kills a soliton. In stark contrast, a gradual energy loss
does not do much harm. This can be seen from the following consideration: If one
attenuates first by less than a factor of 4, then allows for unperturbed propagation, a
new soliton with lower energy and therefore longer duration will form; some energy
will be radiated off and eventually go away by dispersion so that after settling of
transients one clearly sees the new, lower-energy soliton which also has its own
N D 1. Then one may attenuate again by less than a factor of 4, and the process
repeats. A soliton survives if it is attenuated by a factor of 3 twice, but it dies when
it is suddenly attenuated by a factor of 9. For continuously distributed loss, the
soliton can survive for a long distance; it will continuously rearrange its width to
accommodate its energy level. The long-term decay of a soliton in a fiber has been
treated in [8].

9.4.5 Collisions of Solitons

The speed of propagation of a soliton in the fiber depends on the optical center
frequency due to dispersion. If one launches two solitons with slightly different
center frequency one shortly after the other, it can happen that both collide.
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Fig. 9.14 Computer simulation of a soliton collision. Both solitons are intact after the collision

Figure 9.14 shows a computer simulation in which the common “center of mass”
of both solitons rests in the reference frame. During the collision there are some
pronounced interference spikes, but afterward both solitons continue their paths
unharmed. Both shape and energy of the solitons is maintained; only a phase shift—
not visible in the figure—remains. This behavior to remain intact in a collision is
reminiscent of that of particles; the name “soliton” is meant to evoke that analogy
(think proton, neutron, etc.).

In optical data transmission, in particular when several wavelength channels are
transmitted at the same time (Chap. 11), such collisions can and will happen. The
phase shift can have a mild influence there. Other than that it plays an important role
in the context of so-called quantum nondemolition measurements in quantum optics
(see, e.g., [10]).

9.4.6 Higher-Order Solitons

If one keeps increasing the power of the launched pulse beyond the N D 1 point,
the soliton gets narrower. But then something remarkable occurs at four times the
fundamental soliton power: The pulse goes through different shapes as it propagates;
this is shown in Fig. 9.15. However, it does so in a periodic fashion, and at certain
points along the fiber one finds the sech shape again. (An analytic expression for
the complicated breathing shape was found in [29]). This behavior is also reflected
in the shape of the power spectrum (see Fig. 9.16). Here we encounter the N D 2

soliton. We ask for its spatial period.
According to Fig. 9.12 at N D 2, there is a superposition of two solitons: One

of them has the same energy as the fundamental soliton at N D 1, the other, three
times as much. However, both are fundamental solitons: the one with higher power
has correspondingly shorter duration. At three times the energy, the pulse width is
one third and the peak power nine times that of the lower power soliton.
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Fig. 9.15 An N D 2 soliton in a computer simulation. Propagation from 0 to 2z0 is shown, i.e.,
over two oscillation periods

Spectral
power
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Frequency

Fig. 9.16 Spectrum of an N D 2 soliton in a computer simulation, again from 0 to 2z0 . Note that
the spectrum is broadest where the pulse has the shortest duration (Fig. 9.15)

As both propagate together, their phases evolve at different rates due to their
different power: Eq. (9.56) showed that the phase of the fundamental soliton has
completed a full rotation after a distance z D 4�LNL D .4�/=.� OP1/. Then, for the
higher-power soliton, the phase rotates nine times as fast.

As both phases rotate at different rates, a beat note is created. The beat pattern
will repeat when the difference between both phases has gone through 2�:


2 � 
1 D 9

2
� � 1

2
� D 4�

ŠD 2�;

� D �

2
) z D �

2
LD D z0:

As a result we see the true significance of z0: This is the spatial period of the beat
note between the constituent fundamental solitons in a higher-order soliton, and
hence the distance after which the power profile repeats itself. However, the phase
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underneath the envelope is repeated only up to a phase factor; it truly repeats for
the first time at 8z0 (where one of the constituent solitons has gone through one full
cycle, the other through nine).

If the power is increased further beyond the N D 2 case, similar logic can
be applied. An N-soliton appears at the N2-fold power of the N D 1 solitons.
All solitons with N > 1:5, collectively known as higher-order solitons, have the
property that their pulse shape varies periodically. At integer N the spatial period
for the power profile is z0. This disregards phase information; if phase is included,
the pattern repeats only after 8z0. Figures 9.17, 9.18, 9.19 and 9.20 show temporal
and spectral power profiles of the N D 3 and N D 4 case. The shapes can become
quite complex, but they repeat after z0.
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Fig. 9.17 An N D 3 soliton in a computer simulation, shown from 0 to 2z0
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Fig. 9.18 Spectrum of an N D 3 soliton in a computer simulation, in correspondence with
Fig. 9.17
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Fig. 9.19 An N D 4 soliton in a computer simulation, shown from 0 to 2z0
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Fig. 9.20 Spectrum of an N D 4 soliton in a computer simulation, in correspondence with
Fig. 9.19

9.4.7 Dark Solitons

For the case of normal dispersion, a solution of the nonlinear Schrödinger equation
is given by

u D tanh � ei� : (9.61)

When the amplitude profile is described by a tanh.�/ function, the power or intensity
profile must follow tanh2.�/ D 1�sech2.�/. This implies that there is zero intensity
at � D 0 but full intensity far away from the pulse center: a dip in a bright
background. Dark solitons are notches in a constantly bright background (Fig. 9.21).
From the tanh function, they inherit the special property that a phase jump of �
occurs at center.

Both in experiment and numerical simulation, one does not have the chance
to work with an infinitely wide bright background. A good approximation can be
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Fig. 9.21 A dark soliton in a
computer simulation. In
comparison to Fig. 9.7, here
all parameters are the same
with the exception of the sign
of dispersion;
ˇ2 D �18 ps2=km has been
changed to
ˇ2 D C18 ps2=km
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found by using a background pulse of considerably longer duration. Of course, this
background pulse, by way of its large width, contains much more energy than a
comparable bright soliton; this seems to make dark solitons not very attractive for
optical data transmission. On the other hand, they are less sensitive to a variety of
perturbations than bright solitons, and some authors pursue them as an alternative.
In practical terms, in reported experiments on dark solitons, it was already difficult
to produce them in the first place.

Strictly speaking, the dark solitons just described are called black solitons. The
reason is that black solitons are only one member of a wider class of dark solitons
which differ in the depth of the intensity minimum. There are dark pulses which do
not dip down all the way to zero and which are called gray solitons. The general
solution of the nonlinear Schrödinger equation for dark solitons is

u.�; �/ D A0

r
1

B2
� sech.A0�/ e

i

�
'.� 0/C

�
A0
B

�2
�

�

(9.62)

with the abbreviations

� 0 D A0� C A20
B

p
1 � B2 �

and

'.t/ D arcsin
B tanh.t/p

1 � B2sech2.t/
:

The amplitude factor A0 fixes the brightness of the background and B defines the
“grayness”. In the limit limB!1 gray turns black, in a manner of speaking, and
Eq. (9.62) reproduces the solution A0 tanh.A0�/. In this case there is the abrupt phase
jump of � at soliton center; for gray solitons, the phase transits in a continuous way,
not stepwise.
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9.5 Digression: Solitons in Other Fields of Physics

Solitons, that is, nonlinear waves with special properties, certainly do not exist
solely in optical fibers. Indeed, the term was coined following observations in
other branches of science. The first reported conscious observation of a soliton
phenomenon was written by a Scotsman, the civil engineer John Scott Russell. In
1838 he noticed a remarkable water wave in the Union Canal near Edinburgh and
wrote this report [28]:

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped—not so the mass
of water in the channel which it had put in motion; it accumulated round
the prow of the vessel in a state of violent agitation, then suddenly leaving
it behind rolled forward with great velocity, assuming the form of a large
solitary elevation, a rounded, smooth and well-defined heap of water, which
continued its course along the channel apparently without change of form or
diminution of speed. I followed it on horseback, and overtook it still rolling
on at a rate of some eight or nine miles an hour, preserving its original figure
some thirty feet long and a foot and a half in height. Its height gradually
diminished, and after a chase of one or two miles I lost it in the windings of
the channel.

A first attempt at a mathematical explanation was not published until 1895 when
Diederik Korteweg and Gustav de Vries formulated a hydrodynamic wave equation.
It was only after their work that in the interplay of dispersion and nonlinearity
solitary waves became an expected feature. Their hydrodynamic wave equation
is now called the Korteweg-de-Vries equation (KdV equation). It differs from
the nonlinear Schrödinger equation of fiber solitons, which concerns us here, and
therefore its solutions are somewhat different, too. One important difference is that
unlike in the nonlinear Schrödinger equation, in the KdV equation the speed of
propagation becomes amplitude-dependent. This is why water waves move faster in
deep water than in shallow water, a fact which has considerable, indeed dramatic
consequences in the case of a tsunami (Japanese for harbor wave). Triggered by
undersea earthquakes, water surface waves with enormous energy propagate at rapid
speed across the ocean, but they do so with extremely long wavelength (� 100 km
and low amplitude (typically< 1m. (This qualifies them as ‘shallow water waves’ in
the sense that the wavelength is much longer than the ocean’s depth). They therefore
easily go unnoticed, but they can cross all of the Pacific Ocean within 2 days. As they
approach a shore where the water depth is reduced, the energy transport remains
conserved, but since the speed is reduced, the amplitude must increase and may
generate crests of 20 m elevation. If such a wave hits a shore it will destroy whatever
gets in its path. In December 2004, this happened in a particularly tragic form when
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Fig. 9.22 A model calculation for the Indian Ocean tsunami on December 26, 2004. This is one
frame of an animation, taken from [17] with kind permission

a quake off Sumatra triggered an Indian Ocean tsunami which wreaked havoc in
Indonesia, Thailand, Sri Lanka and on to the East African shores and took about a
quarter million human lives (Fig. 9.22).

In 1965, Norman Zabusky and Martin Kruskal studied interactions of solitary
waves [35] and noticed their particle-like properties. Solitons can be reflected off
each other without any harm to their structure. The moniker “soliton” reminds us of
elementary particles.

Application of the soliton concept to fiber optics started in 1971 when Vladimir
Evgen’evich Zakharov and Alexey B. Shabat [36] formulated a wave equa-
tion for pulse propagation in fibers and found solitonic solutions. The nonlinear
Schrödinger equation turns out to be a good model for both deep water waves
on the ocean and light pulses (strictly, their envelopes) in optical fibers. In
1973, Akira Hasegawa and Frederick Tappert predicted [16] that such optical
solitons should be observable experimentally and that they hold promise for optical
data transmission. Linn F. Mollenauer and collaborators succeeded in 1980 to
experimentally demonstrate the existence of fiber solitons [24]. Then, various
aspects of optical solitons were subject to closer investigation. F. Mitschke and
Mollenauer showed the particle properties in 1986 by demonstrating for the first
time the interaction forces between fiber-optic solitons [23].

A related concept, also in optics, is that of spatial or transverse solitons in various
media. These are beams of light which stabilize their cross-sectional shape in the
presence of nonlinearity and diffraction, in very close analogy (if one accepts to
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switch the roles of time and space) to the solitons described here. However, spatial
solitons do not occur in single-mode fibers and are therefore beyond the scope of
this book. The reader interested in a comparison is referred to [2, 20, 27, 37].

It is appropriate, however, to point out another similarity between light pulses
in optical fibers and water surface waves because there has been much discussion
about this recently. For centuries, sailors have reported of giant waves on the ocean
that appeared suddenly, like out of nowhere, and disappeared as quickly as they
came. Due to their enormous height they wreaked havoc on ships, and lucky were
those who lived to report about it. Usually such reports were taken as tall stories:
sailor’s yarn, spun to impress those credulous enough to buy it. However, in recent
years some hard evidence was found that such freak waves, or rogue waves, exist
after all. Still, precious few photographs provide evidence, but sensors on seaborne
structures like oil-drilling rigs have recorded such events, and surveys of the ocean
surface from satellites confirm their existence. Monster waves may be rare at any
given location, but it turns out not to be all that infrequent that such an event occurs
somewhere in the vastness of the oceans.

Recently there was a report about the formation of rare but unusually high
power peaks in optical fibers [30]; this occurred in the process of supercontinuum
generation which is explained in Sect. 10.2.8. The analogy to rogue waves of the
ocean was pointed out. It triggered a lively discussion in the optics community
about optical rogue waves. While the term is used in a loose sense, there is some
consensus that its characteristics are (1) far-above average amplitudes, (2) very
sudden appearance and disappearance, and (3) that the peak height obeys statistics
which develops a ‘fat tail’ towards large amplitudes, much exceeding anything one
would expect from ordinary statistics (normal distribution etc.).

Prompted by Solli et al. [30], many researchers developed further hypotheses
about optical rogue waves. One such idea [3] invokes a family of solutions of the
nonlinear Schrödinger equation with the shared property that they are modulations
of a constant background power. We already discussed one member of this family,
the Akhmediev breather, in Sect. 9.4.2. The Akhmediev breather is governed by a
single parameter, 0 � a � 1=2. However, Eq. (9.42) also admits solutions for a > 1=2.
While the Akhmediev breather is a temporally periodic structure that appears once
and disappears again, for a > 1=2 the solution, known as a Kuznetsov-Ma soliton,
can be described as an isolated peak which comes and goes repetitively as the signal
propagates down the fiber. In other words, the Akhmediev breather is located in
space and periodic in time; the Kuznetsov-Ma soliton is located in time and periodic
in space. The intermediate case at a D 1=2 was first described by Peregrine [26]; its
mathematical form can be simplified to a rational expression

A.T;Z/ D
p

P0
h
1 � 4.1C 2iZ/

1C !2c T2 C 4Z2

i
exp.iZ/: (9.63)

This solution is known as a Peregrine soliton, and is shown in Figs. 9.23 and 9.24.
The attention of experimentalists has only recently been attracted to the Akhmediev
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Fig. 9.23 Evolution of the Peregrine soliton. Time in units of the period (T!=2�), power in
units of the constant background (jA2j=P0), and distance in nonlinear lengths (Z D z=LNL). The
evolution from Z D �8 to Z D C8 is shown; a solitary peak appears at Z D 0. This figure was
drawn with help from Christoph Mahnke

Fig. 9.24 Cross section of the Peregrine soliton in Fig. 9.23 at its culmination point at Z D 0.
Units as in Fig. 9.23

breather [13], the Kuznetsov-Ma soliton [19], and the Peregrine soliton [18]. As the
same equation pertains to optical pulses in fibers and to certain water surface waves,
this entire family of solutions—all of them describe pulses on a continuous wave
background—also has its analogue in water waves. Historically, the Peregrine and
Kuznetsov-Ma structures received the name of ‘solitons’, which is a bit unfortunate
because this family of solutions can in no way be understood as a mere superposition
of a continuous background plus proper solitons [22].

The peak of the Peregrine soliton is localized in both domains: it is a single, large
pulse which appears once and in one position, then disappears. That property seems
to fit the description of a rogue wave. However, one should always be cautious about
analogies. This model pertains to a single spatial dimension while the ocean surface
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has two dimensions; that will make a difference. In any event, several interesting
hypotheses have been advanced about the mechanism responsible for the generation
of rogue waves, and at this point it is not finally clear which one is best. It is entirely
possible that depending on circumstances several mechanisms may be capable of
producing rogue events, so that there is no unique correct explanation. The scientific
debate continues.

9.6 More �.3/ Processes

In our approach to derive a wave equation, we have assumed a monochromatic wave.
Then we found self-phase modulation, an effect by which a monochromatic wave
or, in extension, a more or less narrowband light pulse modifies itself. But this is not
the only consequence arising from third-order susceptibility �.3/. It also gives rise
to the following effects:

• Cross-phase modulation. In the presence of an intensive wave of frequency !, a
wave of frequency ! C�! gets phase modulated.

• Frequency tripling. A new wave of frequency 3! arises from a wave of frequency
!.

• Four-wave mixing. The three fields involved in a �.3/ process may, in the most
general case, all have different frequencies. Then, new frequency components
arise at combination frequencies.

Cross-phase modulation arises because the index modulation created by one wave
also has an influence on the other wave. Frequency tripling, also known as third
harmonic generation, can be understood in either one of two ways: In the wave
picture, the light field acting on an atom can be written as an oscillation of the type
sin!t. In a �.3/ process, there are three waves acting simultaneously. All three may
have the same frequency: Then there is a term sin3.!t/ D 1

4
.3 sin!t � sin 3!t/

containing the third harmonic. In a particle picture, there are three photons acting
on the atom simultaneously. It absorbs three times the energy of a single photon. The
probability of this process rises with the third power of the photon density because it
takes three simultaneously arriving photons. Also, the process becomes much more
probable when an atomic energy level exists at or near E D 3„!.

In the same way, one can discuss four-wave mixing: In the wave picture the three
irradiated waves may all have different frequencies. Then, one can use a relation
between trigonometric functions of the type

sin!1t � sin!2t � sin!3t D
1

4

�
sin.!1 C !2 C !3/t C sin.�!1 C !2 C !3/t

C sin.!1 � !2 C !3/t C sin.!1 C !2 � !3/t


: (9.64)
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There are four combination frequencies, hence the name of the process. In the parti-
cle picture, there are three photons acting on an atomic medium. Both absorption or
stimulated emission can occur. If all three photons are absorbed, the atom stores an
energy equal to the sum and can reradiate a wave with the corresponding frequency.
The other combination tones occur when one of the photons stimulates an emission.
(The loss of energy from the atom is reflected in the negative sign in the respective
term of Eq. (9.64).)

For our purposes, the following remark is important: In the special case that all
!i are integer multiples of a certain fundamental frequency !0, then the same is also
true for all combination frequencies: Let k; l;m 2 N. Then, if !1 D k!0, !2 D l!0,
and !3 D m!0, it follows that the combination frequencies are .k C l C m/!0,
.�k C l C m/!0, .k � l C m/!0, and .k C l � m/!0, all integer multiples of !0. In
the special case called degenerate four-wave mixing, two of the three frequencies
are the same. Let, e.g., !1 D !2 and !3 D !1 C�!. Then the fourth wave has the
frequency !4 D !1 ��!. As a result, a pair of frequencies separated by �! will
produce two new frequencies. One is �! below the lower frequency, and the other
�! above the higher frequency.

This consideration is simplified insofar as it makes no statements about the
intensities of the generated waves. In order to assess that aspect we need to consider
the following.

Let us assume that energy is transferred through some nonlinear mixing process
from one wave to another. Both propagate through the material in the same direction.
In general their frequencies will differ, and in the presence of dispersion they have
different phase velocities. This implies that their relative phase will wander as they
propagate.

As is well known from coupled oscillators, energy always flows from that with
advanced phase to that with retarded phase. The energy transfer is most efficient
if the phase of the driving oscillator is 90ı advanced with respect to the driven
oscillator. This can be generalized to traveling waves.

Right after the launch point, energy from wave A feeds wave B which at this point
just emerges. The phase of wave B is automatically arranged such that an energy
transfer takes place. A certain distance down the fiber, both waves have experienced
a relative phase shift of 90ı and energy transfer ceases. A little further on, the phase
of wave B is advanced and energy is transferred back!

Instead of an unlimited increase of the energy of wave B, there is a periodic
exchange of energy between both waves. This becomes noticeable at the point where
the relative phase is rotated by 90ı for the first time. If a most effective energy
transfer is desired, one has to make this distance long; the most obvious means to
do that is to make dispersion small. The technical term is phase matching of both
waves. If, on the contrary, one wishes to thwart the energy transfer, one can arrange
for strong dispersion. We will look closer into this logic in Sect. 11.2.3.
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9.7 Inelastic Scattering Processes

An important class of nonlinear processes in fibers are scattering processes in which
light is scattered by the medium (glass) either elastically or inelastically. In the
case of elastic scattering, the energy of the light quanta, and thus the frequency,
is unaltered. This puts elastic scattering into the realm of linear optics. We have
already discussed Rayleigh scattering, a process in which scattering occurs in all
directions, creating a linear loss: a loss of photons in proportion to the existing
number of photons.

For inelastic scattering processes, an amount of energy ıE is exchanged with
the medium (either absorbed by the medium or released). Since ıE D hı�,
there is a frequency shift ı�. Two types of inelastic scattering processes in fibers
are distinguished: Brillouin scattering and Raman scattering. These are scattering
processes either at the acoustic (Brillouin) or optical (Raman) phonon branch. In
either case, in principle there can be an upshift or downshift of frequency. The
irradiated wave is called pump wave; the scattered wave is called the Stokes wave
in case of downshift, and the anti-Stokes wave in the case of upshift.

Almost always the downshift (Stokes wave) is much more pronounced. The
medium usually consists of atoms or molecules which are in or near their energetic
ground states, as given by the thermal energy and a Boltzmann distribution of
occupation numbers. Then the medium can absorb, but not release energy.

Photons can be scattered spontaneously in both cases, but the rate is low. On
the other hand, beginning at a certain threshold intensity a stimulated scattering
process sets on. This is then called stimulated Raman scattering (SRS), or stimulated
Brillouin scattering (SBS). The process can become stimulated when a sufficient
number of spontaneously generated photons is already present and interacts with the
pump wave. Then the polarization of the medium is driven, and above the threshold
the process grows exponentially. Of course this exponential growth of Stokes or
anti-Stokes wave cannot go on indefinitely: eventually the pump is depleted so that
further growth is halted.

To get an idea of all this in more quantitative terms, we use the following rate
equation model: Let Ns be the number of Stokes photons and Np the number of
pump photons. Then, in the stimulated process, we have

dNs

dz
D const:Np.Ns C 1/:

The “1” inside the parenthesis is for the spontaneous rate without which the process
can never start (just like in a laser). Once the startup phase is over, the spontaneous
rate may be neglected in comparison to Ns. Then there is a solution

Ns.z/ D Ns.0/ exp.gIz/;

where g is the gain coefficient for the Stokes wave.
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By exponential growth even a single spontaneously occurring photon may
produce a macroscopic light wave. Macroscopic means that the growth continues
until the energy of the pump wave is noticeably depleted. Then a limit to growth
is reached—but this does not necessarily imply a steady equilibrium. Quite to the
contrary, it has been shown for Brillouin scattering in fibers that the Stokes wave
has strong, irregular power fluctuations which can be interpreted as the remainder
of the stochastic signature of the startup process.

The stimulated scattering process can have profound impact on a light wave
propagating in a fiber. Often this is a detriment, which can in no way be neglected.
On the other hand, we will see that the influence is not always unwelcome, but can
also be harnessed to perform useful functions.

It goes without saying that in any scattering process, conversation of both energy
and momentum must hold. We can write that as

X
in

! D
X
out

!; (9.65)

X
in

Ek D
X
out

Ek: (9.66)

On the LHS, there are all waves entering the interaction process, and on the RHS all
waves that exit from the process.

9.7.1 Stimulated Brillouin Scattering

We begin by considering the case of Brillouin scattering in which an acoustic wave
is generated.

!p D !s C !a; (9.67)

Ekp D Eks C Eka: (9.68)

Indices p, s, and a refer to pump, Stokes, and acoustic waves, respectively.
Pump and Stokes waves oscillate at optical frequencies while the acoustic wave

has a considerably lower frequency. Therefore the wave vectors for pump and
Stokes wave will be similar and much larger than that of the acoustic wave. We
can therefore approximate that j Ekpj � j Eksj and !a � !p; !s. Referring to Fig. 9.25,
we can then write

j Ekaj D 2j Ekpj sin
�

2
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Fig. 9.25 Sketch for the relation between three wave vectors involved in Brillouin scattering and
the angle � . This is very nearly an equilateral isosceles triangle, and therefore the perpendicular
halves both j Ekaj and � . Then j Ekaj=2 D j Ekpj sin.�=2/

with � the angle between the propagation directions of pump and Stokes waves. The
pump wave propagates along the fiber, and so � is also the angle with the fiber axis
for the Stokes wave.

A wave vector equals angular frequency divided by velocity, so that

!a D vaj Ekaj D va2j Ekpj sin
�

2
:

va is the velocity of sound, which in fiber is 5960 m/s.
We see that the Stokes shift !a depends on � and disappears in forward direction

(� D 0). This gives rise to conflict with energy conservation except when the energy
of the forward-scattered wave vanishes. In backward direction, on the other hand,
the frequency shift acquires its maximum. The physical interpretation can be given
as a Doppler effect of a wave which is scattered off a grating traveling itself with the
velocity of sound. Directions other than forward and backward are not relevant in
fibers, and single-mode fibers in particular. (Strictly speaking, SBS does not entirely
vanish in forward direction; there is a minimal forward scattering known as GAWBS
(guided acoustic wave Brillouin scattering), which is several orders of magnitude
weaker than backward scattering.)

If we rewrite in terms of natural, rather than angular frequencies and use index
“B” for “Brillouin”, the Brillouin shift is given by

�B D !a

2�
D 2vaj Ekpj

2�
D 2va

n

�p

because j Ekpj D 2�n=�p. If for example n D 1:46 and �p D 1:55 �m, one obtains
�B D 11:2GHz. As a general statement, SBS produces frequency shifts on the order
of 10 GHz, which is a relative shift of 10�4 (Fig. 9.26).

The change of Stokes power with distance along the fiber can be described by

dIs

d.�z/
D gIpIs � ˛sIs: (9.69)
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Fig. 9.26 Brillouin scattering spectrum for three different fibers. (a) undoped silica core, (b)
depressed-clad fiber, (c) dispersion shifted fiber. In all cases the shift is near 10 GHz. From [34]
with permission

Indices refer to Stokes and pump wave as before. The derivative here has been taken
with respect to .�z/ because for SBS the scattered wave travels backward. The
frequency of the acoustic wave is so much smaller than the optical frequencies that
we may write !p=!s � 1 and ˛s � ˛p. The gain factor g for SBS is about gB D
20 pm=W, slightly lower than for bulk fused silica with about gB � 50 pm=W.

The corresponding equation for the pump wave reads

dIp

dz
D �!p

!s
gIpIs � ˛pIp: (9.70)

It is easy to check that for the lossless case (˛s D ˛p D 0), the following holds:

d

dz

�
Is

!s
� Ip

!p

�
D 0:

This demonstrates the conservation of photon number.
The first term on the RHS of Eq. (9.69) is the gain, the second, loss. Correspond-

ingly, in Eq. (9.70) the first term is for saturation, the second, loss. We now ask for
the threshold pump power for the generation of the stimulated effect. Surely, close
to that threshold, the Stokes wave is still weak so that we can neglect saturation to
obtain an expression for the threshold:

dIp

dz
D �˛pIp;

Ip.z/ D Ip0e�˛pz;
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dIs

d.�z/
D gIsIp0e�˛pz � ˛sIs

D Is
�
gIp0e�˛pz � ˛s

�
:

As we integrate, the first term in parentheses yields

Z L

0

Ip0e�˛pz dz D Ip0

˛p

�
1 � e�˛pL

� D Ip0Leff:

Now we solve

Is.0/ D IsL exp
�
gIp0Leff � ˛sL

�
:

By convention, a useful criterion for threshold is that (in the absence of saturation)
Is;max D Ip;min. As initial value for the Stokes wave, one assumes a single photon
inserted at the (near or far, whichever applies) fiber end to generate spontaneous
scattering. Figure 9.27 clarifies to which positions the quantities are referred.

As for values of the gain coefficient, strictly speaking they depend somewhat
on spectral line shape, the state of polarization of both waves, etc. However, as a
reasonable order of magnitude, we may use gIp0Leff � 20. If one inserts the above

Fig. 9.27 Sketch to explain the spatial evolution of pump wave and Stokes wave in stimulated
Raman and Brillouin scattering
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Fig. 9.28 Experimental observation of stimulated Brillouin scattering in a fiber. All powers
are given in milliwatt. Left: Above threshold of stimulated Brillouin scattering the power of a
continuous wave laser that is transmitted through the fiber is clamped. Right: The power “missing”
in transmission appears in the backscattered Stokes wave

values of g and Leff;max, one finds a threshold of 2.5 mW in a fiber with Aeff D
50�m2.

This extremely low value renders stimulated Brillouin scattering the nonlinear
process with the lowest threshold. SBS gets in the way whenever continuous wave
experiments are considered. One important consequence is a severe limitation of
the fiber’s ability to transmit power: As soon as the pump wave exceeds threshold,
the excess is transferred into a Stokes wave which travels back to the light source.
Figure 9.28 shows an experimental result to illustrate this point. Continuous wave
light with adjustable power from a dye laser is launched into a single-mode fiber.
At the distal fiber end, after about 100 m fiber length, a detector monitors the
transmitted power. Power scattered back inside the fiber is diverted with a beam
splitter at the near fiber end and is fed to a second detector. It is quite obvious that
the linear relation between launched and transmitted power ends at some point, in
this example at about 20 mW. Whatever power in excess of this threshold is launched
is scattered back and appears at the other detector.

The threshold can be lowered even further when power traveling in the fiber is
recycled by reflection at the fiber ends. The main effect is that by back reflection, a
coherent wave can seed the Stokes wave; this is more efficient than a spontaneous
photon. It has been shown that the minute natural Fresnel reflection at the fiber ends
has appreciable influence.

The temporal structure of the backscattered wave is not at all continuous. The
Stokes wave is deeply and irregularly modulated (see Figs. 9.29 and 9.30). This is
a signature of the stochastic nature of spontaneous scattering. In the presence of
optical feedback by reflection at the fiber ends, a resonator is formed; its round trip
frequency (the inverse of its round trip time) constitutes a preferred frequency. If the
reflections are strong enough, the modulation turns from irregular to periodic with
nearly this frequency [11].

Without feedback, this modulation contains frequencies up to nearly 100 MHz.
This limit is related to the damping rate of phonons, which is a few nanoseconds
and which also sets the spectral width of the Stokes wave. Therefore, the Brillouin
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Fig. 9.29 The backscattered wave (the Stokes wave) has a deep and irregular temporal modula-
tion, a result of the origin of the Stokes wave in spontaneous scattering processes

Fig. 9.30 The Fourier spectrum pertaining to the data shown in Fig. 9.29. The modulation of the
Stokes wave extends up to tens of megahertz. This bandwidth is related to the damping rate of the
acoustic wave in the nanosecond regime

line width (SBS line width) is about ��B � 10MHz, corresponding to a relative
width of 10�3.

There is an important conclusion with regard to some fiber applications here.
It is often the case that in laser-based materials processing the laser power must be
delivered from a bulky laser head to various positions on the workpiece. Fiber would
provide perfect flexibility here, but SBS poses a severe limitation, and renders the
idea to transmit sheer power useless unless extra measures are taken.

One such measure can be to avoid near-monochromatic pump light. For
broadband pump light (band width ��p), the effective Brillouin gain is reduced
according to

QgB D gB
��B

��B C��p
:
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For short pulses of light, the threshold is then higher because the pulse is spectrally
wider than the SBS line width. The consequence is that for short, i.e., broadband,
pulses, the threshold becomes much higher than the SRS threshold when the pulses
have picosecond width. In that case SBS loses its importance.

We should also point out that the Brillouin gain mechanism, most often a
nuisance, can in some cases actually be desirable. It can be exploited to build a
Brillouin laser which can provide laser oscillation on a frequency offset from the
pump by one Brillouin shift. Since the latter is within the reach of direct electronic
detection, such lasers have uses in certain heterodyning applications. Moreover,
there are Brillouin effect-based sensors which can, e.g., exploit the temperature
dependence of the Brillouin frequency to assess temperature. In combination with
(long) pulses and an evaluation of the temporal structure, one can even have a
position-resolved measurement. Fiber-optic sensors are treated in Chap. 12.

9.7.2 Stimulated Raman Scattering

We have seen that the frequency shift in the case of Brillouin scattering is about
10 GHz. Stimulated Raman scattering (SRS) typically causes a frequency shift
of 10 THz or a relative shift of 10�1. Therefore, for SRS, we cannot use the
approximation !p=!s � 1 as we did for SBS.

Other than that we can describe the power of the SRS Stokes wave as a function
of position in the fiber in analogy to the above. We obtain

dIs

dz
D gIpIs � ˛sIs: (9.71)

The gain factor g is about gR D 0:1 pm=W. The corresponding equation for the
pump wave is

dIp

dz
D �!p

!s
gIpIs � ˛pIp: (9.72)

Again we convince ourselves that in the lossless case (˛s D ˛p D 0), the photon
number is preserved:

d

dz

�
Is C !s

!p
Ip

�
D 0:

In analogy to the treatment above we find the threshold from

dIp

dz
D �˛pIp;

Ip.z/ D Ip0 e�˛pz;
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dIs

dz
D gIsIp0 e�˛pz � ˛sIs

D Is
�
gIp0 e�˛pz � ˛s

�
:

By integration, we conclude

Z L

0

Ip0e�˛pz dz D Ip0

˛p

�
1 � e�˛pL

� D Ip0Leff

with the effective interaction length Leff introduced in Sect. 9.1. Now we solve

Is.L/ D Is0 exp
�
gRIp0Leff � ˛sL

�
:

Similarly as above, threshold is reached when without saturation Is;max D Ip;min

holds. The gain term is roughly the same for SBS and SRS and comes to gIp0Leff �
20. By reinserting the values given above for gR, gB, and Leff;max, one obtains a
threshold power in a fiber with Aeff D 50�m2 for SRS of about 500 mW, many times
the value for SBS. Raman scattering becomes the dominant scattering process only
when quite short pulses are used so that the Brillouin threshold rises considerably.
Pulse durations on the order of 10 ps or less are required for this.

The frequency dependence of the Raman gain was first measured in [31]
(Fig. 9.31); later on researchers also considered how it consists of several contri-
butions with different temporal response [32, 33].
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Fig. 9.31 The frequency dependence of Raman gain. The maximum of the Raman gain spectrum
is reached at a detuning between pump and signal of about 13 THz, but even at smaller detunings
there is an appreciable gain. After [31] with kind permission
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Fig. 9.32 The first tunable Raman laser 1977 consisted of a fiber which was pumped by a
modelocked Nd:YAG-Laser (1064 nm) with pulses of 200 ps duration. The average pump power
was 1.1 W and the repetition rate 100 MHz. A prism served to separate pump and signal waves;
a moveable end mirror provided tuning. The tuning range extended from 1101 to 1125 nm; an
average power up to 20 mW was generated. The threshold was at 0.7 W pump power, and the slope
efficiency was 60 %. After [21] with kind permission

Like SBS, SRS is suitable for use in amplifiers and lasers; these are then called
fiber Raman amplifiers or lasers, respectively. Figure 9.32 shows an experiment in
which a tunable Raman laser was built [21].

Raman amplification of a signal wave by the energy taken from a pump wave was
shown in several experiments; a gain of, e.g., 30 dB was obtained. An important
consideration for such amplifiers is the frequency difference (detuning) between
both waves as dictated by the Raman gain spectrum of fibers. The gain factor
acquires its maximum near a detuning of 13 THz. Nd:YAG pump lasers emit either
at 1.06 or at 1:32 �m; this is suitable for signal wavelengths of 1.12 or 1:40 �m,
respectively—certainly not ideally suited wavelengths for the purposes of fiber
optics.

If the Stokes wave has sufficient intensity, it can itself act as pump wave for
another scattering process; this way a second scattered wave can be generated, and
even higher orders may be generated, too. Figure 9.33 shows a case in which no less
than five Stokes orders appear [9]. In devices called Raman cascade lasers as shown
in Fig. 9.34 this can be utilized in an arrangement of nested cavities for several
Stokes orders to transfer power across larger frequency differences (see, e.g., [12]).

When Raman gain is used to provide gain for a signal transmitted through the
fiber, it should be clear that sufficient pump power must be available and that the
pump frequency must ideally be 13 THz above the signal frequency. Fortunately,
the Raman process is not sharply resonant but fairly broadband so that there is some
tolerance in the signal frequencies suitable for a given pump. Active fibers like Er-
doped fibers described above (Sect. 8.8.1) have a much narrower gain band, fixed
once and for all by properties of the Er ion. They are therefore not as universally
applicable. As increasingly massive wavelength division multiplex transmission is
employed to make use of an ever-increasing bandwidth (see Sect. 11.1.5), the Er
gain band begins to be a limitation for state-of-the-art systems. Raman amplifiers
therefore attract more attention again recently.
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Fig. 9.33 This Raman scattering spectrum was obtained by pumping a fiber with a Nd:YAG laser
at 1064 nm. The Stokes wave acts as a pump for the next order Stokes wave. This way five orders
of Raman scattering are generated in this example. From [9] with kind permission
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Fig. 9.34 A Raman laser using a cascade of several Raman orders for the generation of light with
longer wavelength. Several selective reflectors (fiber-Bragg gratings) form nested cavities which
support the pump wave, the targeted Stokes order, and all intermediate orders. The numbers shown
in the example refer to the case described in [15] where fifth-order Raman scattering transfers
power from a pump wave at 1117 nm to a new wavelength of 1480 nm. After [15]
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Chapter 10
A Survey of Nonlinear Processes

10.1 Normal Dispersion

10.1.1 Spectral Broadening

Self-phase modulation (SPM) broadens the frequency spectrum. This effect is not
pronounced as long as the peak nonlinear phase shift remains below � or so. At
a few � , however, the spectrum begins to develop strong undulations as shown in
Fig. 10.1.

The figure is based on numerical calculations based on the nonlinear Schrödinger
equation. This prediction is borne out well by experiment, as shown in Fig. 10.2.
Intense light pulses in sufficiently long fiber easily achieve 
nl 	 � . Then the
spectrum takes a nearly rectangular shape (Fig. 10.3), mostly an effect of the linear
chirp across the central part of the pulse.

This spectral broadening may be desirable, e.g., to filter out different frequency
components simultaneously. Sometimes, one wishes to generate a spectral contin-
uum over a certain frequency range. Our main interest at this point, however, is that
a broad spectrum is an important prerequisite for the generation of shorter pulses.
In other words, strong self-phase modulation is a step toward pulse compression.

10.1.2 Pulse Compression

Let us assume that a light pulse has assumed a broad spectrum by self-phase
modulation. Then, there will be a strong chirp in its temporal evolution.

Now, if all this happens in the presence of normal dispersion, the different
spectral components of the pulse will be stretched out temporally. Then, the pulse
will take on a nearly rectangular temporal profile with a very nearly linear chirp
when the components responsible for the flat central part of the spectrum are
rearranged in time.

© Springer-Verlag Berlin Heidelberg 2016
F. Mitschke, Fiber Optics, DOI 10.1007/978-3-662-52764-1_10
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Fig. 10.1 Calculated spectral broadening by SPM; the maximum nonlinear phase shift is given as
a parameter. From [18] with kind permission

Fig. 10.2 Observed spectral broadening by SPM; the maximum nonlinear phase shift is given as
a parameter. From [18] with kind permission

By using a diffraction grating, one can generate an opposite (anomalous) disper-
sion which can recompress the distorted pulse to the shortest duration compatible
with its spectral width. A pair of gratings (see Fig. 10.4) is more convenient to
handle. A combination of a fiber and a grating pair as sketched in Fig. 10.5 is
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Fig. 10.3 Spectral broadening by self-phase modulation can, in extreme cases, give a nearly
rectangular spectrum. Here the pulses were taken from a frequency-doubled Nd:YAG laser
(532 nm) and had a duration of 35 ps. After [7] with kind permission

blue

red

blue

red

θ

Fig. 10.4 Schematic representation of dispersion from a pair of diffraction gratings. Shorter wave
light (labelled as ‘blue’) takes a shorter path than longer wavelength light (‘red’) (Color figure
online)

available commercially as a pulse compressor. It works in the wavelength regime
where the fiber is normally dispersive (which is useful for light from dye lasers
or Nd:YAG lasers), and it can considerably reduce the pulse duration, as shown in
Figs. 10.6 and 10.7.
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Fig. 10.5 Pulse compression with fiber and grating pair. The fiber generates strongly chirped
pulses due to self-phase modulation. With a grating arrangement of judiciously chosen dispersion
the chirp is compensated, and the pulse duration is reduced in the process. The figure shows a
setup with double pass through a grating pair and output coupling from a beam splitter (partially
reflecting mirror)

–40 –20 0 20 40

before compression
33 ps

after compression,
shown on a
5x expanded scale
410 fs

Time (ps)

Autocorrelator signal

Fig. 10.6 Experimental result with fiber-grating compressor: here pulses of initial width 33 ps
were compressed down to 410 fs. From [6] with kind permission

10.1.3 Chirped Amplification

There are now laser systems capable of generating peak powers of more than 1 PW.
They rely on an oscillator–amplifier concept: Pulses generated by an oscillator are
amplified and brought well into the terawatt regime and above. Such light sources
are important tools for basic physics research.

The technical difficulty is that optical components of the amplifier must with-
stand the enormous intensities and thus are subject to a damage hazard. This can
be avoided by the concept of “chirped pulse amplification” or CPA [16], which has
its origin in radar technology and is a method to avoid high peak powers acting
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Fig. 10.7 Extreme pulse
compression down to 8 fs. For
some time in the 1980s, this
result represented the world’s
shortest pulses. From [8] with
kind permission

on components. One inserts a dispersive element—either a fiber or a grating—
after the oscillator to produce a strong dispersive broadening of the pulse, with the
accompanying reduction in peak power. The spectral components of the pulse then
do not occur at the same time but sequentially. This predistorted pulse is fed to
the amplifier where the highest intensity peaks are now reduced by the broadening
factor. This can amount to several orders of magnitude, and the damage risk is
drastically reduced. After amplification, all Fourier components are shifted together
again by sending the pulses through another dispersive element which has the same
absolute value of dispersion, but the opposite sign. An example is shown in Fig. 10.8
where the first dispersive element is a fiber, the second, a grating.

CPA is now the method of choice to produce petawatt powers in several
laboratories around the world. To put this into perspective, consider that all electric
power generated in the USA is below 1 TW. Of course, the petawatt level is main-
tained only for a split second, indeed, a few hundred femtoseconds. A pioneering
experiment at the Lawrence Livermore Laboratory 1999 [16] demonstrated pulses
with peak power �1 PW, 680 J energy, and a duration of 440 fs. Pulses were
stretched 25,000-fold before amplification. Recompression had to be performed in
vacuum due to the enormous field strength of the final pulse. It exceeded by three
orders of magnitude those typical field strengths by which electrons are bound to
nuclei in most atoms; any material would instantly break down. When focused, an
intensity of 1025 W=m2 was obtained at an energy density of 30 PJ=m2; this is a lot
more than inside stars.

In this case, however, fibers were not used but rather a combination of gratings.
While it is true that fibers provide more dispersion, there are also contributions from
higher-order dispersion that make it difficult to undo the chirp completely. Also, on
a grating one can distribute the power over a larger area, thus reducing intensity and
risk of damage. Therefore, fibers are preferentially found in systems that do not aim
at the ultimate power limit but that are intended to work as a handy laboratory tool.
Commercial CPA systems are available.
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Fig. 10.8 Top: When a light pulse is amplified to very high energy, excessive peak powers
may damage the gain medium. Bottom: This is circumvented by broadening of the pulses with
a dispersive element prior to amplification, and a restoration of the initial pulse width with
an oppositely dispersive element after amplification. As dispersive elements, either fibers as in
Fig. 10.5 or gratings can be used; for the compression gratings are usually preferred

10.1.4 Optical Wave Breaking

We have seen above that through strong self-phase modulation, pulses acquire an
almost rectangular spectrum. In the presence of normal dispersion, the spectral
components are pulled apart temporally, so that there is an almost linear chirp in the
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central section of the pulse, and the temporal profile also approximates a rectangular.
Both the leading and trailing slopes are fairly abrupt.

If one then keeps increasing the amount of self-phase modulation by increasing
the power, there is a phenomenon called “optical wave breaking” [20]. Fig. 10.9
shows the progression of events: The portion of the pulse with the highest frequency
is delayed from column (a) to (b) so that eventually in column (c) it falls behind
the background in the far pulse wings. At the same time, the part with the lowest
frequency passes the background. That is, at the positions of the slopes the pulse
“folds over” and interference phenomena arise [17]. Then oscillations appear in the
wings of the temporal profile and in the spectral profile as well.

Fig. 10.9 Optical wave breaking. Top row: Evolution of the instantaneous frequency profile. There
is a considerable nearly linear chirp. Center row: Evolution of the power profile. The pulse shape
becomes nearly rectangular. Bottom row: The corresponding power spectra. After sufficiently
long propagation (right column) the wave breaks; interference fringes arise. From [20] with kind
permission
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10.2 Anomalous Dispersion

10.2.1 Modulational Instability

We have seen in Sect. 9.4.1 that noise or tiny perturbations are subject to gain when
the dispersion is anomalous and that the gain prefers certain frequencies (typically
on the order of 1 THz). This gain can be utilized for the generation of signals in its
preferred frequency range. This comes in handy because it is not trivial to generate
signals at frequencies around 1 THz; there are not many alternative methods.
Figure 10.10 shows the first experimental proof that modulational instability (MI)
sidebands grow from noise; in this example an oscillation of ca. 450 GHz was
generated [19]. In fiber lasers one can now generate continuous oscillation of such
sidebands, at least in principle [2].

Fig. 10.10 The first observation of terahertz signals generated by modulational instability [19]. A
sequence of 100 ps pulses from a Nd:YAG laser with an average power of 7.1 W is launched into a
fiber of 1 km length. The figure shows power spectra of the pulse sequence at the fiber input (top)
and at the fiber output (bottom). The newly generated sidebands, indicative of the modulation, are
separated from the seed by 2.6 nm or ca. 450 GHz. From [19] with kind permission
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10.2.2 Fundamental Solitons

Solitons exist due to the simultaneous presence of both group velocity dispersion
and Kerr nonlinearity. This can be tested by a very simple experiment: Pulses of
a given duration (in this example, 560 fs) and wavelength (here, 1:5 �m) are sent
through a variable attenuator into a fiber (Fig. 10.11). At the distal fiber end pulse
shape and duration are monitored. As long as the power remains weak, nonlinearity
does not yet play any role. Due to dispersion the pulses will broaden out, here to
ca. 50 ps, which is a 100 times their initial width. As power is gradually increased,
the pulse duration at the fiber end is significantly reduced. When ca. 6 mW average
power is reached, the initial pulse shape is faithfully reproduced at the fiber end.
This is the power level at which the pulse propagates without any change of shape.
We have found the fundamental soliton! Its pulse shape is stable. Actually, it is
stable even in the sense that mild deviations from the right shape will automatically
be reduced.

If the power is further increased, the pulse undergoes a net compression; the
dispersive broadening is overcompensated. But the pulse duration does not fall
monotonously. This is particularly clear where the fiber length happens to be an
integer multiple of z0: Then, at power levels equal to 4, 9, 16, etc. times the
fundamental soliton power, the initial pulse duration is reproduced again. This
repetition is of course due to higher-order solitons, but it is difficult to observe this
cleanly because a multitude of effects gets in the way of an exact reproduction of the
initial shape. On the other hand, the reproduction of the duration and shape by the
fundamental soliton is quite robust and straightforward to observe experimentally.

Fig. 10.11 Observation of pulse broadening by dispersion and pulse compression by nonlinearity,
and the equilibrium of the two. A sequence of light pulses with an initial width of 0.5 ps is sent
through a 395-m long fiber. At low power the pulses broaden out dispersively to ca. 50 ps. As the
power is increased, nonlinearity counteracts dispersion and mitigates the broadening. At ca. 6 mW
average power, the initial pulse width and shape are reproduced at the fiber end; indeed this is the
power at which for the parameters of the fiber used here, the fundamental soliton is expected
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10.2.3 Soliton Compression

As described in Sect. 9.4.6, higher-order solitons have an oscillating pulse width and
shape. This is a useful feature for pulse compression. One launches a pulse into a
fiber with suitable power so that it propagates as a soliton of, say, second order. If its
initial shape is reasonably close to a sech, then after a distance L D z0=2 it will be
compressed in duration to 23% of its initial width. Figure 10.12 shows an example.
For even higher-order solitons, the compression is even stronger. The disadvantage
of this technique is that the resulting compressed pulses are not chirp-free, but
fortunately for some applications that is less important than the temporal duration.
If the reader compares this scheme with the fiber-grating compression described in
Sect. 10.1.2, it should be apparent that here the fiber performs all functions at once
so that additional components like gratings are not required.

10.2.4 The Soliton Laser and Additive Pulse
Mode Locking

When it comes to the generation of short laser pulses it has become common practice
by now to exploit optical nonlinearities directly. A precursor of today’s Kerr lens
modelocked lasers was conceived in the mid-1980s by Linn F. Mollenauer of Bell
Laboratories when a resonator containing a piece of fiber was coupled to the laser
resonator. Both resonators were adjusted to have the same round trip time. The idea
was that the coupled system would provide a stable pulse shape when the stationarity
condition was fulfilled that the pulse returning from the fiber had the same duration
as the pulse going toward it. The power in the fiber was therefore set such that

Fig. 10.12 Compression of pulses at anomalous dispersion, also known as “soliton compression.”
In the example shown a pulse of 60 fs full width (a) is sent through a fiber of length z0=2, in this
case about 50 cm. It is compressed to 19 fs full width (b). From [13]
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solitons were formed; only solitons can maintain their shape or so the reasoning
went. Indeed stable pulses were obtained even though the pulses in the fiber were
closer to an N D 2 soliton, with the fiber length (return trip) close to z0 [10]. The
pulse durations obtained from this “soliton laser” set records in their day for the
wavelengths near the third window. Directly from the laser pulses as short 60 fs were
obtained; with external soliton compression 19 fs were reached. This corresponds to
less than four cycles of the optical wave!

When pulses from both coupled resonators interact, they do so interferometri-
cally. This means that the length difference of the two cavities must be maintained
to within a fraction of a wavelength during operation. This can only be performed
successfully with an active servo control loop as presented in [10]. The average
power circulating in the fiber resonator is tapped at an otherwise unused port and
measured by a photodetector. After electronic processing, it is fed to a piezoceramic
transducer which serves to fine-tune the fiber resonator length. The processing
involves subtraction of a manually set suitable reference value and amplification
with what is known in control systems engineering as a PI (proportional-integral)
characteristic (Fig. 10.13).

Later on it turned out that the concept is more general than to be restricted to the
wavelength regime of anomalous dispersion in the fiber. The relevant mechanism
is the Kerr nonlinearity which creates a self phase modulation. In the interference
process this is translated to a modification of the pulse shape, usually a reduction
of the duration. Dispersion is not really too important in this. This insight led to
the concept of “additive pulse modelocking” (APM), also known as “interferential
modelocking” or “coupled cavity modelocking” [14, 15]. Several different types of
lasers were used in this way to generate short pulses, including Nd:YAG lasers at
both 1064 and 1319 nm.

Fig. 10.13 Schematic setup of a soliton laser, a.k.a. additive pulse mode locked (APM) laser.
M: mirror, BS: beam splitter (partially reflecting mirror). Both resonators are arranged to be
synchronous by careful length adjustment. The servo loop consisting of detector det, amplifier,
and the piezoceramic transducer PZT maintains the length with interferometric stability
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10.2.5 Pulse Interaction

It is the remarkable property of a soliton that it induces a perturbation of the
refractive index in the fiber which is just right to make it hang together and keep
its shape. If more than a single pulse propagates down the fiber, each of them can
“feel” the perturbation of the refractive index caused by its neighbor, in particular
when they get into close proximity with each other. The relevant question to ask is
for the relative phase of the optical field of the two pulses in their slopes where they
overlap: are the fields in phase, in opposite phase, at any other phase angle? For
the “in phase” situation, there is constructive interference, and each pulse “feels” a
stronger index modulation on that side that faces the other pulse. This perturbation
acts asymmetrically on the pulse (Fig. 10.14)!

Fig. 10.14 Interaction of
co-propagating light pulses.
Upper part: Two pulses are in
phase with each other.
Constructive interference will
then increase the intensity in
the middle, as compared to
the case that the other pulse is
absent. Lower part: Opposite
phase pulses interfere
destructively; the intensity
profile goes down in the
middle. Pulses are always
attracted to the point of
highest intensity (and thus,
index). Then, in-phase pulses
experience mutual attraction,
opposite-phase pulses,
repulsion
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For opposite phase the fields interfere destructively, and the power in the overlap
region is less than what it would be in the absence of the other pulse. Again, there
is an asymmetric (one-sided) effect.

In-phase pulses will both move slightly toward their mutual center-of-mass,
opposite-phase pulses will move away from each other. This interaction force was
first demonstrated in [12] after a theoretical prediction had been made in [3].

In effect, there is what can be described as a force between the light pulses.
Depending on the relative phase, this force can be attractive or repulsive. If one
lets the separation between the pulses slide to tune the relative phase, the force will
basically change in a sinusoidal fashion. Once the separation increases noticeably,
the force will be reduced exponentially because the slopes of sech pulses roll down
exponentially. Once pulses are separated more than five or seven or so pulse widths,
the interaction force becomes negligible.

The first experimental proof [12] is shown in Fig. 10.15. Time measurements on
a femtosecond scale are only feasible by way of the autocorrelation technique (see
Appendix 18). In this experiment the interaction was easily measured. It was also
found that in the case of attraction the pulses move toward each other, but they do not
collide: this is surprising because collisions would be expected both intuitively and
by the nonlinear Schrödinger equation. However, higher-order effects perturb the
pulses as they get increasingly close to each other so that eventually they actually
fly apart [9].

The concept of attraction and repulsion can be extended to the case of chirped
pulses where it is not so straightforward to speak of in-phase or opposite-phase
pulses, see [5].

10.2.6 Self-Frequency Shift

One might be forgiven for adopting the following simple-minded approach to pulse
propagation in optical fiber: While it is possible that the pulse shape is corrupted by

Fig. 10.15 Experimental proof of pulse interaction forces. Autocorrelation traces of the pulse
pair from the source (a) represents a double pulse, consisting of two humps each 0.9 ps wide
and separated by 2.33 ps. (About the interpretation of autocorrelation traces see Appendix 18.) If
the pulses have the same phase, after traveling down 340 m of fiber they have moved toward each
other so far that they are no longer resolved (b); for opposite phase, they have moved away from
each other (c). From [12]
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influences like dispersion and self-phase modulation, the optical center frequency
remains unaffected. However, the exact opposite is true: Dispersion and self-phase
modulation combine in such a way that in the case of solitons the pulse shape is
preserved; the optical center frequency, however, is shifted. This latter fact was first
discovered experimentally [11] and is easily explained by considering the effect of
Raman scattering [4].

The Raman gain spectrum is broad and, as Fig. 9.31 shows, begins at very
small frequency detunings. Therefore, there is Raman self-pumping even within
the bandwidth of a single pulse: The high-frequency slope acts as a pump for the
low-frequency slope. As a result, the spectral center-of-mass of the pulse shifts
continuously toward lower frequencies. If the pulse is a soliton, then its inherent
robustness lets it hang together as an entity; pulses of inferior structural stability are
likely to decay in the process (Figs. 10.16 and 10.17).

The amount of frequency shift depends strongly on the pulse duration: As
the pulses get shorter, peak power grows quadratically, and the spectral width
linearly. The Raman gain curve grows approximately linearly for small detunings
(see Fig. 9.31). Taking all this together, the frequency shift is proportional to the
inverse fourth power of pulse duration [4] (see Fig. 10.18). For 1 ps pulses the
effect is so weak as to be noticeable only after very long distances; for 10 ps it
may be safely neglected in almost all cases. On the other hand, for subpicosecond
pulses, the frequency shift becomes a dominant effect: A pulse of less than 100 fs

Fig. 10.16 First observation of the soliton self-frequency shift. The figure shows the power
spectrum at the far fiber end when short laser pulses are launched into the near end. The soliton is
easily recognized due to its broad spectrum. With respect to the laser frequency (at which there is
a narrower peak), the soliton is shifted downward in frequency. The amount of shift fluctuates with
the laser power because the power defines the soliton width (this was explained in Sect. 9.4.4);
power fluctuations during exposure of this photographic picture result in a “flat rooftop” of the
soliton. From [11]
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Fig. 10.17 Soliton self-frequency shift as a function of launch power. Here power was varied
over a wide range with a modulator; its control voltage also produced the offset between traces.
It is clearly visible that the soliton’s spectral width increases with increasing power; so does the
spectral shift. Only above a certain threshold does the soliton spectrum become visible as a separate
structure. From [11]

duration is shifted considerably after only 1 m propagation distance in standard fiber.
The shift can reach large values, amounting to a noticeable fraction of the optical
frequency. However, even a strong shift slows down to a halt once the pulse is
shifted by hundreds of nanometers toward longer wavelengths because at the longer
wavelength the fiber probably has much higher dispersion, and also is no longer
a low-loss medium. These modifications conspire to reduce the peak power and
increase the duration so that the frequency shifting rate comes down.

10.2.7 Long-Haul Data Transmission with Solitons

Fundamental solitons are the natural units, or bits, for the transmission of infor-
mation over optical fiber. They are more robust and stable than any other pulse
because they embrace Kerr nonlinearity in the first place, and therefore do not
get perturbed by it. They exist at anomalous dispersion; it is fortunate that the
wavelength regime of anomalous dispersion in fiber coincides with the wavelength
regime of lowest losses. This is why solitons lend themselves to applications in
long-haul data transmission. Chapter 11 is devoted to a more detailed discussion of
this aspect.
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Fig. 10.18 Expected amount of self-frequency shift. The shift basically scales with the inverse
fourth power of pulse duration. From [4] with kind permission

10.2.8 Supercontinuum Generation

A novel application of nonlinear effects in optical fibers is called Optical Supercon-
tinuum Generation. The name refers to the generation of broadband light; while the
terminology is not entirely well-defined, most authors consider a spectrum ‘broad’
when its width is about an octave or more: �upper � 2�lower. Here, frequencies �
describe the upper and lower limit of the spectrum notwithstanding the complication
that there is ambiguity at which point exactly to read the limit. In many instances,
spectra of several octaves have been generated between points where the spectral
power density had fallen to �20 dB from the highest value.

It seems ironic that one would consider to create a wide spectrum by starting from
laser light which for most people epitomizes the most narrow-band light source.
Why not take an ordinary light bulb—it surely generates broadband light more
economically?

The catch is how much spectral power density can be obtained, and can be
coupled into some structure. Thermal light sources are subject to the Planck limit
which dictates that in the best case (for a ‘perfectly black surface’) the spectrum is
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given by

I� D 2�h�3

c2
1

e
h�
kT � 1

: (10.1)

Here, I� is the emitted power per spectral interval and cross sectional area in
W=.Hz m2/, taking two orthogonal polarizations into account. h is Planck’s
constant, k is Boltzmann’s constant, and T is temperature in Kelvin units. At any
desired frequency, the only parameter available to maximize power is T. However,
one cannot indefinitely raise the temperature of a thermal emitter. Lamp filaments
are made from tungsten, the metal with the highest melting point (3422 K). A few
solid state materials with melting points above that of tungsten exist: diamond, and
some carbides, but none of these is suitable for making lamp filaments.

In the interest of reasonable lifetime operating temperatures must stay well below
melting temperature; accordingly, light bulbs operate near 2800 K (in the case of
halogen light bulbs one can go a tad higher due to the tungsten recirculation process
provided by the halogen filling). If one demands higher temperature, the only option
is to use arc discharges which require much maintenance effort and are expensive to
operate.

On the other hand, non-thermal light sources like lasers and LEDs are not subject
to the Planck limit and can reach much higher spectral power density, but only
over their narrow spectral range. The idea about supercontinuum generation is that
relatively powerful but narrowband light from a laser source is coupled into a fiber
which is selected for having a large nonlinearity coefficient �—which usually means
a small modal area Aeff. Nonlinear processes in the fiber then redistribute the power
in the frequency domain, and thus create a broad spectrum. It turns out that in this
way the above definition of supercontinuum can be met without much difficulty
[1]. Indeed, there are now commercial supercontinuum sources available which
routinely generate spectra spanning much of the visible and near-infrared portion
of the spectrum with spectral power densities far above the Planck limit.

Let us sketch what happens: Typically, holey fibers (see Chap. 4.7) are used in
this context because they can confine the light to a much smaller cross section than
conventional fibers. In most approaches a short light pulse of high peak intensity
is launched into this fiber, although in a few cases even continuous wave light has
been used successfully. The light pulse may be thought of at least approximately as a
soliton of very high order, N 	 1; higher-order solitons, in turn, are a combination
of several fundamental solitons all centered right on each other (see Sect. 9.4.6).
However, higher-order solitons are prone to decay because after the most minute
perturbation there is no restoring force that would nudge them back. Therefore,
higher-order solitons easily decay into their constituent fundamental solitons; the
process has been called soliton fission.

In order to get an estimate how rapidly the fission takes place, it helps to note that
the propagation distance to the decay point is usually well described by the distance
to a first massive soliton compression. The high peak powers occurring there help
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create the perturbation that breaks the N-soliton apart. This distance is a fraction of
z0; as an approximation

zfission D z0
N

may be used [1]. As a quick glance at Table 9.1 shows, this predicts a distance of
the order of centimeters to a few meters at most for sub-picosecond pulses when the
soliton number is of order N � 10. In a fiber longer than that, fundamental solitons
will propagate individually, each of them subject to their mutual interactions as well
as to other perturbations—most notably by the Raman shift.

On the other hand, for many-picosecond pulses the fission distance becomes
hundreds of meters, which is longer than most laboratory-experiment fibers. Fission
is therefore not expected; nevertheless, the N-soliton decays. Obviously there is a
different mechanism at work for ‘long’ pulses: and that is modulational instability.
If one thinks of a ‘long’ pulse as an approximation to a continuous wave, one can
apply the logic of Sect. 9.4.1; an exponential growth leads to a structure which is
similar to a sequence of pulses plus some background. Again, other perturbations
like Raman shift perturb this structure enough to set individual pulses into motion
independent of the others.

In either case, after the initial breakup of the launch pulse into many subpulses
and usually also some background radiation, during further propagation several
interaction mechanisms between these pulses and radiation go on. As the Raman
shift is power-dependent, different soliton pulses experience different amounts of
frequency shift which implies that they can collide. In collisions, they can exchange
energy, etc. The process may be quite complex in detail, but all exchange of energy
between various subpulses contributes to redistribution of power in the spectrum, so
that after some distance a wide spectrum is obtained. Its total power is, of course,
given by the input power (with some correction for coupling and other losses). In the
desired (but not easily obtained) case that the generated spectrum is flat, the power
density is easily calculated as total power divided by spectral width.

Note that here the output light has the perfect spatial coherence of the fiber
mode, but the temporal coherence Tcoh has been reduced from whatever the laser
source may have had to a much smaller value which may be estimated as the
inverse of the spectral width, Tcoh � 1=��. For a width of about one octave or
more, the temporal coherence length c Tcoh is roughly the (center) wavelength. Short
coherence length is exactly what is needed in some applications, like coherence
tomography. That is a type of interferometry where light is focused onto a sample
under study (e.g. a piece of biological tissue) to obtain spatially resolved information
in three dimensions. While the positional resolution is given by the spot size and
can be reduced to about the wavelength, depth resolution is obtained thanks to the
short temporal coherence length, also of the order of micrometers. As a result, the
technique provides microscopic resolution in the specimen in three dimensions, as
far into the material as the light penetrates.
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Part V
Technological Applications of Optical

Fibers

Laying optical fiber cables—here within sight of the author’s house—is not nearly
as spectacular as the performance of fiber during operation.



Chapter 11
Applications in Telecommunications

11.1 Fundamentals of Radio Systems Engineering

We first present a brief introduction to essential concepts of telecommunications
engineering, insofar as they are relevant for our topic.

11.1.1 Signals

The central concept of all communication engineering is that of a signal. In the most
general case, it is left open what this is physically; it suffices to state that it is a scalar,
real-valued function of time. We assume that the signal contains information which
is meant to be taken from some transmitter to some receiver. The signal may be
represented by some physical quantity such as an electric voltage, the position of an
indicator needle, or the brightness of a light source; one common realization would
be that at each instant, the value of the quantity is proportional to that moment’s
value of the signal.

We must first distinguish continuous-time signals and discrete-time signals.
The latter have a defined value only at certain instants in time, or in other, more
mathematical words consist of a sequence of Dirac pulses (delta functions), each
weighted in accord with the signal value. One can obtain a discrete-time signal from
a continuous-time signal by sampling. Very frequently one chooses to take samples
at a fixed rate, i.e., in equal time steps. Below we will assume a fixed sampling rate,
or clock frequency, throughout.

The other fundamental distinction is between analog signals and digital signals.
An analog signal has a continuous range of values, i.e., can take any intermediate
value within the interval of possible values. In contrast, a digital signal has a finite
number of possible states known as its alphabet.

A thermocouple yields a voltage proportional to temperature; this is an example
for an analog continuous-time signal. A dynamic microphone is another example of
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the same. A sequence of results when dice are thrown or the roulette wheel is turned
would represent a discrete-time digital signal. Is is quite often the case that digital
signals are also discrete-time.

An important subclass of digital signals are binary signals. For these the alphabet
has just two symbols which, depending on context, may be called “zero” and “one”,
“high” and “low”, “true” and “false”, or “plus” and “minus”, etc.

11.1.2 Modulation

Only in the simplest cases a signal is transmitted just as is. There are many benefits
if one uses a carrier oscillation, a wave on which the signal is “impressed”. This is
familiar from broadcast signals: At the receiver one selects the carrier frequency
of the desired program. This way several different programs can be transmitted
simultaneously and independently.

The impression of a signal onto a carrier is known as modulation. It can be done
in a variety of ways: If the carrier is a harmonic periodic function (this is a very
common situation), which can be written as

A D A0 cos.�t C '/ (11.1)

with amplitude A0 and angular frequency�, one has the options of subjecting either
A0, �, or ' to the signal. The result is then referred to as amplitude modulation,
frequency modulation, or phase modulation, respectively.

11.1.2.1 Amplitude Modulation

Let us assume for simplicity that the range of values of the signal S.t/ is restricted to
the interval �1 � S.t/ � C1. This can always be achieved by proper normalization.
One can then make the amplitude signal-dependent by letting A0 D OA .1C S.t// in
Eq. (11.1) to obtain amplitude modulation (Fig. 11.1).

Again for the sake of simplicity, we consider the simplest possible signal, a
sinusoidal oscillation with angular frequency !:

S.t/ D sin!t: (11.2)

We now let A0 D OA .1C M sin!t/ where 0 � M � 1 is called modulation depth.
We insert in Eq. (11.1) and obtain

A D OA .1C M sin!t/ cos.�t C '/: (11.3)
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Fig. 11.1 Sketch to explain amplitude modulation. Top: The modulation of a carrier wave with
frequency � with a signal ! D 0:05� is shown at a modulation depth of M D 0:5. Bottom:
Modulation generates two sidebands above and below the carrier, at the distance of the signal
frequency. The figure suggests a signal occupying the band !min � ! � !max (baseband). The
sidebands have the same width. Note that the lower sideband is inverted

Using the well-known relation between harmonic functions

sin x cos y D 1

2

�
sin.x � y/C sin.x C y/



;

this then yields

A D OA � cos.�t C '/C M sin!t cos.�t C '/



D OA
h

cos.�t C '/C M

2

�
sin.!t C�t C '/C sin.!t ��t � '/


i
(11.4)

This result contains terms of three different frequencies: The first term on the RHS
at� corresponds to the carrier. The second and third terms have frequencies�˙!.
Amplitude modulation (AM) generates new frequency components: the one at the
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carrier frequency persists, and one each above and below the carrier frequency by a
difference equal to the signal frequency are new.

Fourier components with a frequency equal to carrier frequency plus signal fre-
quency are collectively called the upper sideband; those at carrier frequency minus
signal frequency, lower sideband. For our example of a sinusoidal modulation, these
“bands” consist of only one sharply defined frequency. However, any realistic signal
will be more complex than that of Eq. (11.2), and may be decomposed by Fourier
analysis into harmonic functions within a certain spectral interval. Only then are the
sidebands aptly named, when we adopt the usage of the term “band” in the sense of
“frequency interval.” The difference between the highest and the lowest frequency
occurring in the signal is the bandwidth. The bandwidth of a signal is arguably its
most important characteristic and will concern us below.

In the spectrum of the amplitude modulated signal, the upper sideband is a
replica of the original signal spectrum, translated in frequency space by the carrier
frequency. The lower sideband is a shifted and inverted replica.

The combination of carrier and two sidebands is a rather redundant representation
of the signal. Each sideband contains the same information; the carrier, none. Much
of the transmitted energy is thus wasted to the carrier. This is why engineers have
come up with variants to amplitude modulation in which one sideband and the
carrier are suppressed for the transmission. This is called single sideband, or SSB,
transmission. It is routinely used in commercial radio transmission because it carries
the same amount of information at much lower radiated power, and occupies only
half of the bandwidth. For broadcasting purposes, however, SSB is not used because
the receivers to decode SSB are slightly more complex.

11.1.2.2 Angle Modulation

Instead of imposing the signal onto the amplitude in Eq. (11.1), one can make either
� or ' signal dependent. (Of the three quantities, two remain constant in each case).
Then one obtains frequency or phase modulation, respectively (Fig. 11.2). In both
cases it is the phase angle of the carrier which is acted upon, so that both cases are
collectively called angle modulation. Mathematically, in both cases, there is a term
of the form

sin .a C b sin.�t// .a; b are constants/; (11.5)

and “sine of sine” produces Bessel functions (see Chap. 15).
Angle modulation creates sidebands, too. The difference is that even in the case

of a purely sinusoidal signal, more than a single Fourier component appears both
above and below the carrier. Their frequency differences from the carrier are equal
to integer multiples of the signal frequency; their amplitudes can be evaluated using
said Bessel functions. We will not pursue this context any further here; instead, the
interested reader is referred to texts on communications engineering (e.g., [45]).
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Fig. 11.2 Frequency modulation. Top: The modulated oscillation in the time domain. Center: The
instantaneous frequency follows the signal. Bottom: Several sidebands are generated both above
and below the carrier

11.1.2.3 Intensity Modulation

The types of modulation described so far are applicable when a monochromatic car-
rier wave is available. In the realm of optics, only lasers can provide monochromatic
waves or an approximation thereof.

Unfortunately, in most cases, it is not guaranteed that the laser emission is truly
single frequency. This is certainly not the case for lasers operating on several modes
simultaneously. Not all types of lasers can easily be operated in a single mode, and
for many laser types used in optical telecommunications this is indeed difficult to
achieve. If, however, a laser operates on a multitude of modes simultaneously, the
modulation formats described above are not applicable.

Moreover: even when a laser runs in single-mode operation, strictly speaking the
oscillation is not monochromatic. Rather, it covers a narrow frequency band (the
emission line width) which may be small compared to optical frequencies, but at the
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same time may be larger than typical signal frequencies. The emission line width of
a single-mode laser is determined by several factors. These include technical con-
siderations such as fluctuations of parameters (vibration of components, temperature
fluctuations, etc.); these may be removed in principle, but practically speaking that is
a very difficult task. But then there are also fundamental limits as set by spontaneous
emission in the laser medium. Each emission act brings about a perturbation of the
phase of the light wave. As a result there is a finite (nonzero) line width, which
was first described by A. Schawlow and C. Townes, pioneers of laser physics [73].
In real-world lasers, the Schawlow–Townes limit may be very low, indeed in the
millihertz regime so that it is always swamped by technical perturbations which
typically are several orders of magnitude larger. But the same reasoning also implies
that there is always—by principle—a phase modulation present in the emission of
even the technically perfect laser, and it is a modulation by a random signal. For
demodulation (decoding) of phase modulation one needs a reference phase, and in
the context of lasers and optics that is always difficult to have. It is true, of course,
that oscillators in radio frequency engineering in principle suffer from the same line
width limit. However, in the radio frequency range, the energy of the quanta, which
is proportional to frequency, is so much lower as to be perfectly negligible.

All difficulties related to the spectral content of the carrier can be avoided by
using intensity modulation. In this technique, one controls the total intensity in the
same way as kids playing with flashlamps and sending each other Morse signals.
This can be done for light sources with any spectral composition.

Intensity modulation is very simple and is widely used. It can be achieved for
laser diodes or luminescent diodes (LEDs) by simply modulating the operational
current. This also produces an additional frequency modulation because changes in
current produce temperature changes in the chip, but that is irrelevant as long as
spectral information is not evaluated.

Applications which demand the highest data rates and/or longest distances of
transmission are sensitive to dispersion and thus to spectral composition. In such
cases single-mode lasers (e.g., of the distributed Bragg type, see Sect. 8.9.3.3) are
preferred light sources; in the interest of keeping the emission frequency stable, one
keeps the current constant and applies the modulation with an external modulator.

11.1.3 Sampling

Digital transmission formats are today by far the most successful formats. The signal
to be transmitted is digitized, i.e., reduced to a finite number of values in the process
of sampling, almost always at a certain fixed rate, the sampling rate. Speaking in
mathematical terms, the original signal is multiplied with a periodic sequence of
delta functions (a “picket fence”). The continuous signal is thereby replaced with
a sequence of delta functions with weight factors corresponding to the respective
signal value. This must be done in such a way that the relevant information contained
in the signal is represented by the sequence.
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Fig. 11.3 If the sampling rate is only marginally larger than the signal frequency, a beat note at
the difference frequency appears in the sampled data. This spurious contribution is called aliasing
signal

It is therefore important to select a suitable sampling frequency. It should
be obvious that the sampling frequency must be higher than the highest signal
frequency of interest; one can hardly represent an oscillation with fewer sample
points per period than just one. If the sampling rate is too low, another complication
arises: Fig. 11.3 demonstrates that in the sampling process, certain new frequency
components are generated which were not present in the original signal. The reason
is that the sequence of delta functions can create beat notes with Fourier components
of the signal,1 so that difference frequencies between sampling frequency and some
signal frequencies appear. These undesired additions to the signal are called aliasing
signals.

Aliasing signals are, of course, highly undesirable because they prevent a faithful
reconstruction of the original signal at the receiving station. They can be avoided by
the following precautions:

1. The signal bandwidth is strictly limited with steep-slope low-pass filters to a
certain maximum frequency. For this limit, one selects the highest frequency
deemed necessary for the transmission in terms of reproduction quality. For high-
fidelity music formats as used for CD recording, this limit is chosen as 20 kHz,
i.e., the highest frequency audible to a human ear under the most favorable

1According to the convolution theorem of Fourier transforms, the spectrum of the sampled signal
is found as the product of the spectra of original signal and picket fence. It contains the infinite
series of harmonics from the sequence of delta functions, each with an upper and lower sideband
from all Fourier components of the signal.
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circumstances. For telephone signals one chooses 4 kHz as the highest frequency
(the low-pass filter begins to roll off slightly below that because “brick wall”
filters do not exist) because that is sufficient for a good intelligibility of the
spoken word.

2. Then the sampling frequency is fixed according to the sampling theorem [71],
which stipulates that it must be at least twice the highest signal frequency. This
way it is guaranteed that no overlap exists between signal band and alias band
(see Fig. 11.4). For high-fidelity music signals as on CD the sampling frequency
is chosen as 44.1 kHz, and for telephone signals, 8 kHz.

Each sample is then represented after analog-to-digital conversion by a binary
number with a given number of digits. More digits give more faithful amplitude
resolution but are more costly to transmit. Therefore the number of digits (the “bit
resolution”) is dictated by the required quality of transmission. For high-fidelity
music, one takes at least 16 bits or one value out of 65,536; in studio recording 24
bits is now standard. For telephone signals 8 bits (one value out of 256) is deemed
good enough because it already provides quite good intelligibility.

In this way, the original signal is represented by a stream of binary digits, i.e.,
zeroes and ones. They represent a discrete-time, discrete-amplitude version of the
signal. The bit rate is obtained from sampling rate and bit resolution. For sampling
with 8 kHz and at 8 bits resolution one has 64 kbit/s; during each time slot of
1=64;000 s D 15:625�s, one bit is transmitted. This is the value used in telephony
worldwide. For music in the CD format, there are 44,100 samples of at least 16 bits
each, and twice that for stereo. On top of the signal proper, a CD contains test bits,
track information, etc. The standardized SPDIF format of the digital signal stream
in CD players contains as many as 64 bits at each sample point, used for two stereo
channels plus overhead. Then the total data rate is 2:8224Mbit=s.

Spectral
power density

Frequency
Sample frequency

1.00.50

signal alias signal

Fig. 11.4 Beat notes between Fourier components of the signal and the sampling frequency
generate sidebands to the sampling frequency called aliasing bands. If prior to sampling the
signal bandwidth is clipped with a low-pass filter at a frequency below one half of the sampling
frequency, signal band and aliasing band cannot overlap. This is the prerequisite for faithful signal
reconstruction
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11.1.4 Coding

The sampled signal, a sequence of zeroes and ones, can now be transmitted, at
least in principle. At the receiver, the first task is to recover the clock rate from
the received bit sequence; only then can the bit stream be decoded by deciding
which time slots contain a zero and which a one. To make sure that decoding can
be done error-free, it is advantageous to re-code the bit stream before transmission.
The objective is

• that no long strings of consecutive equal symbols can occur. A long string of
zeroes makes it difficult to regenerate the clock rate.

• that the numbers of zeroes and ones, both presumably of equal probability in
the long run, get equilibrated as quickly as possible. The advantage is that
the demodulated signal then does not contain a DC component; this simplifies
receiver construction.

• that sensitivity toward perturbations is reduced. One possibility is to transmit
test bits along with the data which allow a parity check and possibly some error
correction.

For example, the so-called 5B/6B code uses a lookup table by which each block of
5 bits is replaced by a 6-bit block. The table is set up such that no more than three
consecutive zeroes can ever occur. This makes for a low DC component and allows
easy clock regeneration. The additional bit serves as a parity check bit and helps in
error correction. Of course, the data rate is increased by a factor of 6=5 D 1:2, and
correspondingly more bandwidth is required.

In the CMI format (coded mark inversion) each “zero” is replaced by the
sequence “zero–one”, and each “one” alternatingly by “one–one” and “zero–zero”.
It is obvious that this eliminates the DC component and completely avoids long
strings of equal symbols. On the other hand, the price to pay is that the effective
data rate is doubled, and twice the bandwidth is required.

11.1.5 Multiplexing in Time and Frequency: TDM and WDM

No single data source can generate the enormous data rates successfully transmitted
today over a single fiber. The fiber can carry terabits per second! Such rates are only
obtained when data from many sources, possibly an entire country, are combined.
To compose separate data streams into one can be done by two methods and by
combinations thereof:

TDM: Time division multiplex is an interleaving of bit streams in time. For
long-haul transmission this is universally done to increase the rate to typically
10 Gbit/s, or more recently to 40 Gbit/s. At this speed, even fast electronic
circuitry comes to its limits. Also, at that rate, errors due to polarization mode
dispersion become noticeable and are difficult to keep in check.
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WDM: Wavelength division multiplex is the transmission of independent bit
streams at different optical frequencies. This is the equivalent of different radio
stations transmitting on different frequencies: Different programs are modulated
to carriers of different frequencies and can easily be separated at the receiver by
selective means. With WDM, several bit streams can be launched into a fiber
simultaneously so that the available (low loss) spectral range can be utilized,
more or less. However, WDM is expensive: For each WDM channel a complete
set of hardware including laser diodes is required. Therefore an economic
incentive exists to first increase the bit rate as far as possible by TDM; this “only”
requires some fast electronics.

Figure 11.5 shows both variants: The right part depicts the spectrum obtained for
the combined signal. In the final analysis, TDM and WDM use the same amount of
bandwidth for the transmission of the same amount of data per unit time.

It is common engineering practice to first combine many telephone channels
with TDM to the highest frequency, which can still be conveniently worked with.
Resulting data rates are not exactly multiples of 64 kbit/s but slightly more due to an
overhead from additional bits required for controlling the decoding. Unfortunately,
different countries started using different numbers of telephone channels for TDM
(24 in the USA, 30 in Europe), so that on the transmission lines different data rates
existed. In order to assure smooth international traffic, a standardization became
inevitable.

First the USA created a standard called SONET, for synchronous optical
network. The fundamental clock rate is 51.48 Mbit/s and is referred to as OC-1 (as
in optical carrier). Integer multiples of this clock rate may be used; in particular,
OC-3 at three times that rate (155.52 Mbit/s) and OC-12 at 12 � 51:84Mbit=s D
622:08Mbit=s are being used.

Fig. 11.5 Comparison of time division multiplex (TDM) and wavelength division multiplex
(WDM) formats. For TDM several bit streams are interleaved temporally; the resulting bit rate
is the sum of the individual bit rates. For WDM each bit stream is coded onto its own carrier. The
right half of the figure shows the spectral composition of both formats; for this example we assume
amplitude modulation. All told, both formats occupy the same bandwidth in frequency space
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By international standardization SDH or synchronous digital hierarchy was
created. The fundamental rate is 155.52 Mbit/s; data packets according to this
standard are referred to as STM-1 (as in synchronous transport module). Note that
OC-3 and STM-1 share the same clock rate.

On long distances OC-48 signals, or STM-16, have been common for several
years; they have ca. 2.5 GBit/s. For intercontinental traffic many commercial
systems use OC-192 (STM-64) at ca. 10 GBit/s. OC-768 or STM-256 at ca.
40 GBit/s was introduced ca. 2008. An increase in steps of factor-of-four was
considered good business practice as it presents four times the payload at something
like two and a half times the hardware cost; on top of that there are space savings
in comparison to four OC-192 sets of hardware. However, beginning at 40 GBit/s
problems from polarization mode dispersion arise that remain negligible at lower
rates. This is because the relevance of the effect is determined by the relative
propagation time scatter, i.e. the scatter in units of the clock period. Shorter pulses
have a proportionally wider spectrum and thus ‘feel’ more of the dispersion. On
the other hand, the clock period shrinks inversely with clock rate. The relative
propagation time scatter then grows quadratically with clock rate. For OC-768
signals it is 16 times as large as for OC-192 signals. Polarization mode dispersion
causes a random fluctuation of the state of polarization of the received optical signal
which translates to level fluctuations. Quite complex compensation apparatus has
been introduced to assure glitch-free operation. Nevertheless, after 40 GBit/s the
industry did not take another leap of a factor-of four; rather, somewhat reluctantly
100 GBit/s was introduced beginning ca. 2011.

11.1.6 On and Off: RZ and NRZ

The physical representation of a bit value—a zero or a one—in an optical format is
usually obtained by intensity modulation of a light wave. Again, there are basically
two options; the relative advantages and disadvantages have been under discussion
for many years.

Discrete-time signals have a certain clock rate which defines the time slots for
the individual bits. To assign a binary value, zero or one, to a time slot one may

• either turn the intensity off or on during the entire duration of the time slot; or
• place a short signal pulse inside the time slot for a one, and no pulse for a zero.

Figure 11.6 these variants are compared. In the first case, the intensity remains the
same during the entire time slot of duration Tc or, in the event of several ones or
zeroes in a row, for several clock periods. In the second case, the intensity is always
zero when one time slot is over and the next begins. Hence the names no return to
zero or NRZ for the first case and return to zero or RZ for the second.

There are two relevant practical differences. When both zeroes and ones are
statistically equally probable, the average for NRZ is 1/2, and for RZ close to zero.
This plays a role in the construction of receivers where an AC coupling is usually
employed to get rid of 1/f noise and drift.
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Fig. 11.6 Comparison of coding binary data in the NRZ and RZ formats. For NRZ the pulse
occupies the entire time slot of the clock period Tc, for RZ just a fraction of it. (In principle the
pulse might be much shorter than the time slot; for practical considerations, it is not very much
shorter. In the figure, it is about one half.) Shorter pulses have wider bandwidth, so RZ occupies
more bandwidth

More relevant is the difference in usage of frequency space: RZ uses more band-
width because shorter pulses are spectrally broader. Keeping in mind that bandwidth
is a nonrenewable resource, this is not economical. On the other hand, an RZ data
stream contains a strong Fourier component at the clock frequency, which makes the
design of clock regeneration circuits in the receiver easy. In the case of NRZ less
bandwidth is occupied, but in the spectrum of an NRZ signal there is a null at the
clock frequency. This is easy to see: for each rising slope in the signal there is also
a falling slope. Both types of slopes occur equally often. They therefore introduce
Fourier components of the same magnitude but opposite phase at the clock fre-
quency which mutually cancel out. The absence of a strong Fourier component at the
clock frequency makes its regeneration more difficult. It can be done by first differ-
entiating the signal to emphasize the temporal positions of the slopes with a narrow
spike, then rectifying the result to make all spikes positive-going. This way one
obtains a strong spectral component at the clock rate which can easily be filtered out.

11.1.7 Noise

Noise is the collective term for all kinds of external influences that can hamper signal
transmission. They include man-made, natural, and fundamental perturbations.
The term “noise” must be taken in a broad sense here to denote any type of
extraneous material imposed on the signal, be it coherent or incoherent, etc.
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Man-made noises include emissions from machinery which find their way into
the transmission channel. The reader may have experienced a radio crackling when
a car with inadequate radio frequency noise suppression drove by. In the case of
wavelength division multiplexing the emissions may arise from other channels: This
is then referred to as channel crosstalk.

Natural noises may be caused by electric storms (lightning flashes), solar storms,
etc.

Fundamental noises include quantum noise. Any signal is quantized because
the basic physical constituents are: Electric currents consist of a certain number
of electrons flowing per second and this number is subject to fluctuations. Similarly,
any detected light power consists of a certain number of photons received per
second; this number, too, fluctuates. The fluctuations constitute the quantum noise.
Fundamental noise sources also include thermal noise as it occurs in any electronic
circuit. At any temperature other than absolute zero, all constituents of matter
including electrons undergo a random motion due to their thermal energy; this
produces a noise voltage and a noise current in any real impedance.

Thermal noise can be derived directly from Planck’s distribution formula for
radiation [72]; this is indicative of its fundamental nature. One needs to consider
the spatial and spectral density (power per frequency interval and per volume
element) of a one-dimensional perfect emitter (what physicists call a “black body”)
at temperature T. Planck’s distribution in one dimension, written as a function of
frequency � (in Hertz),2 is

I� d� D 2h�

e
h�
kT � 1

d�: (11.6)

Here c is the speed of light in vacuum as usual and Boltzmann’s constant k D
1:38 � 10�23 J=K converts temperature T to energy units. h D 6:6256 � 10�34 Js is
Planck’s constant and h� is the energy of an individual photon.

In the “radio engineering limit” the quantum energy is much smaller than the
thermal energy: With h� � kT we obtain

I� d� D 2kT d�I
from this one can deduce the thermal noise as described by Johnson and Nyquist
[25, 41], with a “white” spectrum

QP D 4kTB; (11.7)

where QP is the product of open circuit voltage and short circuit current which
produces noise in a bandwidth B.

Above that frequency at which h� D kT, the Nyquist–Johnson formula is no
longer valid. At standard ambient temperature around 300 K this limit is in the

2Most textbooks describe Planck’s law for three-dimensional emitters; for the connection with
electronic noise we need the one-dimensional case.
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far infrared. Therefore, it is perfectly justified that electronics engineers disregard
quantum noise entirely and deal with thermal noise. In the visible and near-infrared
optical range, however, quantum noise has the upper hand and quantum effects
present very real limits.

In either case one deals with noise which approaches a Gaussian amplitude
distribution and a “white” spectrum; the latter means that the noise’s correlation
time is shorter than all correlation times of the signal.

Noise establishes a fundamental limitation to the transmission. In the most
favorable case that all technical and thermal sources of noise are negligible, there is
quantum noise left. Let us assume binary coding and estimate the limit of reach. We
will keep in mind that in terms of realistic systems the following is far too optimistic;
we are after the ultimate limit.

As discussed in Sect. 5.4, there must be at least a single photon received for a
signal to be detectable. (We are serious about the ultimate limit!) The photon energy
is E D h� � 6:6 � 10�34 Js � 200 � 1012 Hz � 10�19 J in the near infrared. The
average launch power is limited to around 1 W so that thermal damage to the fiber
is avoided, this corresponds to 1019 photons/s. Then an attenuation of no more than
1=1019 or 190 dB is admissible when we assume for simplicity the ridiculous bit
rate of 1 bit/s. We also accept that due to the statistical nature of the photon number
in some cases, zero photons will be detected instead of one; this would constitute a
transmission error, and we will come to that. For a fiber with 0:2 dB=km, this gives
a maximum distance of 950 km.

Due to energy loss, optical fibers are quantum limited in their reach. Even
in an unrealistically optimistic estimate the maximum distance is less than
1000 km.

Distances spanned in practical systems are much shorter than that; hence the
requirement of optical amplifiers.

Of course it is not possible to detect a signal consisting of a single photon
without error, due to the statistical nature of both their generation and their detection.
Therefore it is useful refine our estimate as follows: We set an upper limit to the bit
error probability which is deemed sufficient for practical purposes, and calculate
how many photons on average must be contained in a light pulse to accommodate
that limit. For the distribution of photon numbers we may assume Poisson statistics.
At an average photon number N, the probability to have the value n (do not confuse
this symbol with the refractive index!) is given by

p.n/ D Nn e�N=nŠ:
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Then, the probability to erroneously measure a logical “one” when indeed a “zero”
was sent is

p.1/ D 01 e�0=1Š D 0:

Zeroes are detected error-free! This is no surprise because when zero photons are
sent, and all other noise sources are excluded, the arriving number of photons got to
be zero. For the “ones” it is different: The probability to measure a “zero” when in
fact a “one” was sent is

p.0/ D N0 e�N=0Š D e�N :

In the telecommunications industry it is common to set the maximum allowed bit
error rate in telephony to 10�9. We insert this value and solve for N. On average,
there are as many “zeroes” as there are “ones”, but “zeroes” are detected error-free.
Then we can admit an error of 2 � 10�9 for the “ones”. It follows that

Nmin D ln 2 � 10�9 D 20:03:

In an ideal situation it would suffice to have 20 photons for a “one”:

In order to detect a signal with a bit error rate below 10�9, photon statistics
dictates that a logical symbol on average must contain at least 10 photons.

In any practical context other sources of noise and error will also contribute;
therefore even the best available detectors require at least ten times as many photons,
and typical decent detectors maybe a hundred times as many. Detectors that are
uncompromisingly optimized for highest speed may require even more than that.

11.1.8 Transmission and Channel Capacity

Now we consider the compound signal coded in one of the formats described above:
RZ or NRZ; TDM and/or WDM. This signal is eventually fed to a receiver. The idea
is that this occurs across a certain distance; this implies that over the distance there
is some suitable transmission medium, like a cable. The medium acts as a channel.

External noises and perturbations also act on the channel; as a result, what arrives
at the receiver is a mix of the signal proper and some noise. It is the task of the
receiver to reconstruct the signal without error and to disregard the noise. That may
or may not be possible. This is the topic of communications theory, a field which
was started by a seminal work by Claude Shannon [56].

Shannon’s work shows that one of the most relevant parameters is the bandwidth
available for the transmission. Assuming that the channel can provide the bandwidth
B, transmission can take place with a data rate R as long as R remains smaller than
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the channel capacity C. The latter is defined by

C D B � log2

�
1C S

N

�
: (11.8)

Here S is the signal power and N the noise power. Noise is assumed to be Gaussian
white noise. Shannon showed that provided R < C, a coding can be found such that
the bit error rate can be made arbitrarily small. It is well possible that the coding
gets increasingly complex as R approaches C (from below), but virtually error-free
transmission is possible. If, on the other hand, transmission with R > C is attempted,
the bit error rate can no longer be kept down.

According to Eq. (11.8), the dominant factor determining the channel capacity
is the bandwidth. One might think, then, that an infinite amount of data can be
transmitted when B is allowed to grow indefinitely. This is not so. The catch is that
the noise also depends on bandwidth. If one restricts the discussion to white noise,
the noise power is proportional to bandwidth. Then one can write N D N0B, with
N0 D const: the spectral noise power density which is constant. In the limit

lim
B!1 C ¤ 1;

it follows that

lim
B!1 C D S

N0
� log2 e:

In reality, of course, the available bandwidth cannot grow indefinitely anyway but is
bounded by physical considerations.

Transmission through optical fiber, in comparison to electric cables, enjoys the
benefit of a wide spectral region of low loss. If we take the regime of the third
window generously as 1400–1600nm corresponding to a frequency interval of 214–
188 THz, the bandwidth is 26THz. With the best available fibers, one may be
able to utilize an even more extended range of (optimistically) 1250–1650 nm; this
corresponds to 240–180 THz implying a bandwidth of 60THz. Of course, toward
the end points of this interval, losses are much higher than in the middle so that
for long-distance transmission one may be tempted to return to a less optimistic
estimate. In any event, realistic estimates produce bandwidths on the order of
50THz.

The spectral efficiency

� D R

B
Bits=s=Hz (11.9)

indicates how well the data rate makes use of the available bandwidth. For binary
signals only two values are used: off and on, or zero and some power at least equal
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to noise power. This can be formally introduced into Eq. (11.8) by letting S D N;
then we obtain

C D B channel capacity for binary transmission. (11.10)

In other words, for binary transmission the maximum rate is 1 bit/s in 1 Hz of
bandwidth.

11.2 Nonlinear Transmission

In long-haul transmission, it is unavoidable that the fiber’s nonlinearity becomes
noticeable. Nonlinearity is special because in electrical cables both attenuation
and dispersion are well known, but a phenomenon corresponding to the Kerr
nonlinearity in fiber does not exist. This may be why engineers trained in electronics
instinctively considered nonlinearity as an impediment and an utter nuisance for
a long time. The way to avoid nonlinearity, in this logic, is to use large-mode
area fibers to reduce the nonlinear coefficient and to use low power signals. This
approach can go a long way. Indeed, remarkable progress has been obtained,
and data transmission rates of several TBit/s over long distances have been
demonstrated (see Sect. 11.4.2). Only a few researchers pointed out as early as in
the 1980s that nonlinearity also presents an opportunity to counteract dispersion’s
detrimental effects and thus to improve the transmission system as a whole. Both
approaches are being pursued, and only the future can tell which one will ultimately
be better.

Before any commercial system can be deployed, there are years of extensive
research experiments and laboratory tests, and finally field trials. Lab tests are not
done in actual long-distance optical cables but in closed fiber loops which can be set
up in a laboratory. Signal degradation with distance can then be assessed in detail by
just letting the signal go around the loop for more and more turns; Fig. 11.7 shows
what insiders tongue-in-cheek call a carousel.

Much research deals with that paradigm of transmission in the presence of Kerr
nonlinearity, the fundamental (i.e., N D 1) optical soliton. Solitons are the natural
units (bits) for transmission of data over optical fibers because they are more robust
than any other type of pulse. They require anomalous fiber dispersion; it comes
in handy that the spectral regime of lowest loss coincides with the anomalous
dispersion regime.

According to the latest research, the best results are obtained not with pure
solitons but rather with a certain generalization of the soliton concept. A number of
subtle effects become noticeable on truly long distances on the order of thousands
of kilometers, some in an individual wavelength channel and others only in the case
of WDM. These effects make the situation a little more complex; it is then a matter
of taste whether one still calls the modified pulses by the name of solitons or by
some other name. A few books have recently become available that are devoted to
solitons in optical fiber [7, 20, 36].
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Fig. 11.7 A typical laboratory experiment for the study of long-distance transmission. The long
distance is here represented by multiple round trips in a fiber ring. In this example, the ring has
75 km circumference and contains three amplifiers. From [35] with kind permission

11.2.1 A Single Wavelength Channel

In spite of their extraordinary stability, solitons do not enjoy eternal life. Perturba-
tions arise from energy loss, Raman scattering, and by mutual interactions of pulses
(see above). Combined, they eventually destroy even solitons [11, 31].

Energy loss may be compensated by optical amplifiers (of the Raman type or with
Er-doped fiber) at least on average. The first question to ask is at which intervals
Lamp one should insert amplifiers into the fiber. It turns out that the condition LD 	
Lamp must be maintained in order to avoid a resonant perturbation of the solitons
[10, 18, 19, 36]. For typical standard fiber and picosecond pulses, LD is a few to a
few tens of kilometers. Here is a quick estimate:

LD D T20
jˇ2j D .10 ps/2

20 ps2=km
D 5 km:

It would be awkward to insert amplifiers at distances shorter than this. If dispersion
is reduced to ca. 1 ps/(nm km), however, LD becomes about 100 km. Then, very
reasonable intervals between amplifiers on the order of tens of kilometers are
possible. A useful side effect of low-dispersion fiber is that the soliton’s energy
is also scaled down so that less power is required for their generation. Also, the
combined power of possibly a hundred WDM channels is kept low so that handling
live fibers does not pose a health hazard to a service crew. On the other hand, one
should not push dispersion reduction too far because there is also a signal-to-noise
issue when the soliton energy goes down too much.
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11.2.1.1 Gordon–Haus Effect

Amplifiers, by their nature, cause additional noise due to spontaneous emission;
this noise degrades signal integrity in a subtle manner. It modifies the pulse energy,
its optical phase, and its temporal position. Modifications of amplitude, phase, and
position of solitons are not a big worry. However, frequency deviations spell trouble.
They arise from asymmetric components of the noise with respect to the spectral
center of the pulse (see Fig. 11.8). In the presence of dispersion, frequency changes
produce changes in the pulse arrival time, which, after a long distance, add up to
a considerable random pulse jitter. If the jitter becomes too large (i.e., comparable
to the clock period), the signal is rendered unreadable. This phenomenon is called
Gordon–Haus jitter [16] in honor of James P. Gordon and Hermann A. Haus who
predicted it. They showed that the jitter grows with the third power of distance.

The existence of the Gordon–Haus jitter was clearly shown experimentally
(Fig. 11.9). In the experiment, it was necessary to average over many consecutive

signal pulse

noise

noise
component

Frequency

Frequency

Frequency

Fig. 11.8 With respect to the pulse spectrum (top), noise (center) may have asymmetric com-
ponents (bottom). If noise is then added to the pulse, the spectral center-of-mass (i.e., the center
frequency) is shifted ever so slightly. Due to dispersion in the fiber, this results in a modified time
of arrival. These random fluctuations of arrival time are called Gordon–Haus jitter
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Fig. 11.9 Experimental demonstration of Gordon–Haus jitter. The apparent increase of pulse
width with increasing distance is in perfect agreement with the prediction. From [33] with kind
permission

pulses so that the arrival time jitter appeared like a pulse broadening. The apparent
increase of pulse width with distance followed precisely the prediction of the
jitter [33].

11.2.1.2 Filters Along the Line

Insight about Gordon–Haus jitter was the reason why in the transatlantic cables TAT-
12 and TAT-13 (see below) dispersion shifted fiber and Er-doped fiber amplifier were
used, but solitons were not. However, only a short time later a remedy was found:
Wavelength-selective filters reduce frequency fluctuations as they continuously
nudge solitons back to the center of their spectral slot. Moreover, in a wavelength
division multiplexed (WDM) system, differences in gain from one wavelength
channel to the next are equalized by filters because if one pulse is momentarily
too powerful, it acquires a broader spectrum through self-phase modulation; at the
next filter, it then suffers greater loss which brings its power back to normal [34].
This is shown in Fig. 11.10.

Of course the scheme mandates that filters are placed at certain intervals along
the line; for practical reasons one chooses the same positions as the amplifiers. On
a transoceanic distance there will then be many filters cascaded. It is well known
that for cascaded elements in a linear system, the resulting frequency response is
the product of the individual filter responses. That statement here implies that a
very narrow spectral transmission results. Within this narrow width spontaneous
emission can still grow unhindered and will pose a problem.

Again a very simple idea presents an elegant solution to this problem. All filters
do not have the same center frequency; rather, the center frequencies are sliding
along the line. Then there is no single wavelength for which spontaneous emission
can transit the whole distance because in the product of filter responses, there is
always one factor practically zero for any frequency. For linear signals, a sliding
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Fig. 11.10 Computer simulation of the equalization of power variations of solitons by filters. If
a pulse has more than its normal power, it will be shorter in time and broader spectrally. In the
selective filter, it experiences extra loss which will overcompensate the gain and reduce the power
toward the equilibrium value. In this example, three wavelength channels are considered. Stable
propagation is only obtained with the use of filters. From [27] with kind permission

filter system is opaque! For solitons it is different: Solitons are creatures of the
nonlinear realm. They can adjust their shape and center frequency at each filter
and thus pass through the entire system without any problem. Such a discrimination
between signal and noise has no correspondence in linear systems!

11.2.2 Several Wavelength Channels

The maximum data rate of an individual wavelength channel is basically limited by
the speed of electronic components as they are available. This limit is optimistically
at 100 Gbit/s, and more realistically in the tens of Gbit/s. The rate may be increased
somewhat by optical time division multiplexing when two or more bit streams are
first converted into a sequence of pulses with fast electronics, then interleaved by
using optical delays of half the clock time. 100 Gbit/s have been obtained routinely,
but that is still a far cry from the 50 THz or so bandwidth which the fiber offers. That
tremendous spectral range can only be utilized by parallel operation of a multitude
of wavelength channels, i.e., by wavelength division multiplex or WDM. The first
question arising is at which spacing to place the spectral channels: should they be
equidistant?

Several valid points in favor of equidistance can be brought forward:

• It represents better conceptual clarity.
• It is in accord with common use in radio and TV transmission.
• Filters with equidistant transmission frequencies are particularly easy to con-

struct (Fabry–Perot filters).
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The counter argument is that the detrimental effect of four wave mixing is most
pronounced in this case: all newly generated frequencies sit right on top of some
other channel (see Sect. 9.6). This is shown in Fig. 11.11.

Nevertheless, international standardization bodies have adopted an equidistant
channel grid. The ITU3 grid uses a reference frequency of 193,100 GHz, which
corresponds to a vacuum wavelength of ca. 1552.5 nm. Starting from this frequency,
there is one channel at every 100 GHz increment. Intermediate channels on a 50 GHz
or even 25 GHz grid may be used. WDM using this grid is also called “dense WDM”
or DWDM. This is in contrast to “coarse WDM” (CWDM) where a much wider
spacing of 20 nm is used. Given the regular frequency grid, the problem arising
from four wave mixing must be remedied in some other way.

11.2.2.1 Four-Wave Mixing and Phase Matching

The amount of degradation caused by four-wave mixing is also determined by
the degree of phase matching of this process (Fig. 11.12). In a fiber without any
dispersion, perfect phase matching of both the generating and the generated wave
would be guaranteed, and mixing products and thus signal perturbation would reach
a maximum. Therefore, dispersion is definitely helpful in this context. Even small
amounts of dispersion reduce the efficiency of four wave mixing noticeably.

11.2.3 Alternating Dispersion (“Dispersion
Management”)

An invention conceived for a different purpose is the solution to the four-wave
mixing problem. Engineers had tried to solve the problem of dispersive pulse
broadening by tinkering with the fiber’s dispersion. Their idea was to basically
compensate the dispersion and make it zero at least as a path average by inserting
segments of dispersion-compensating fiber. The latter designates dispersion-shifted
fibers (see Sect. 4.5.5) which have dispersion ˇ2 of the opposite sign as the main
fiber. It turned out that a full compensation to zero is not at all desirable. In the
(unavoidable) presence of fiber nonlinearity, a certain residual dispersion was found
beneficial. This is, of course, rooted in soliton formation.

In order to reduce the detriment of four-wave mixing by the introduction of phase
mismatch, it suffices to have strong local dispersion (see Sect. 9.6); even for zero-
path average dispersion this end would be achieved. The idea then is to optimize
dispersion along the path by judicious dispersion management (DM) to create a
dispersion map. The dispersion map typically consists of a periodic alternation of
fibers with different dispersion (Fig. 11.13); typical DM period lengths are a few
tens of kilometers.

3International Telecommunication Union, a United Nations agency for information and communi-
cation technology issues.
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Fig. 11.11 Experiment about the impact of four wave mixing in a WDM transmission system.
Left: spectra, right: eye diagrams (these are explained in Sect. 11.3.2). Top row: Ten equidistant
channels are launched simultaneously into a fiber. Center row: At the fiber end numerous mixing
products (“combination tones”) have been generated. The eye diagram indicates severely degraded
signal integrity. Bottom row: If nonequal channel separations are chosen, both the number and the
strength of mixing products are reduced, and the eye diagram indicates good signal integrity (the
“eye” is completely open). From [14] with kind permission



270 11 Applications in Telecommunications

Fig. 11.12 Impact of four-wave mixing on a bit sequence, compared at different amounts of fiber
dispersion. The less dispersion, the more signal distortion. From [14] with kind permission
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Fig. 11.13 Sketch to explain dispersion management. The fiber line consists of alternating fiber
segments with positive and negative dispersion. The path average dispersion is then much lower
than the local dispersion and may be close to zero

It is not at all clear that soliton-like pulses would exist in a dispersion managed
fiber. After all, the periodic change of sign of dispersion is a profound perturbation
which can certainly not treated as a small perturbation to the nonlinear Schrödinger
equation. Light pulses traveling in DM fibers vary a lot in pulse duration over one
DM period. Nevertheless, pulses do exist which are stabilized by the action of
nonlinearity [39, 40]. This stabilization implies that after a complete DM period,
the original pulse shape and width are restored. In a “stroboscopic” representation,
in which the pulse shape is only shown at a particular position within the DM period,
one sees a stably propagating pulse again. In a certain generalization of the concept
of solitons such pulses are referred to as DM solitons. Their pulse shape is different
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Fig. 11.14 A DM soliton in a computer simulation. Two periods of the dispersion map are shown

from the sech shape of conventional solitons, as can be seen from Fig. 11.14. Indeed,
it more closely resembles a Gaussian. On a log power scale one even discerns
undulations in the wings.

The repetitive variation of dispersion brings about a further benefit. Since the
pulse shape “breathes” over one dispersion period, the pulse’s phase profile breathes,
too: underneath the envelope there is a chirp bending back and forth. Where
neighboring pulses overlap, the phase relation varies rapidly so that interaction is
mostly washed out. Moreover, for long stretches of the path, the peak power is
reduced and with it the effective nonlinearity. To make up for that, the power of the
DM soliton is higher than in the comparable case of a fiber with constant dispersion
equal to the path average value [57]. This so-called DM power enhancement [57, 68]
provides advantages in terms of signal-to-noise ratio and also in the context of
Gordon–Haus jitter [60].

Due to higher-order dispersion, there is a different ˇ2 value at the center
frequency of each wavelength channel. Different channels thus experience different
dispersion, both for local and path average values. This is illustrated in Fig. 11.15
where the propagation of signals in neighboring WDM channels with different
dispersion is compared.

As a consequence, in different WDM channels the pulse streams have different
power. If we take the unperturbed soliton of the nonlinear Schrödinger equation as
a reference, its energy is found as

OP1 D jˇ2j
�T20

and E1 D 2 OP1T0 D 2jˇ2j
�T0

:

The energy is proportional to dispersion. As Fig. 11.16 shows, this relation carries
over to the relation between energy and path average dispersion of DM solitons
[34]. Meanwhile fibers with an inverse trend of dispersion (inverse ˇ3) have been
suggested in order to obtain a flat resulting dispersion so that power differences are
equalized.
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Fig. 11.15 Accumulation of dispersion in a dispersion-managed fiber in comparison of a central
channel and channels at the edges of the spectral range. From [14] with kind permission

Fig. 11.16 Nine WDM channels of a DM system are operated with signals of the same bit rate.
After a sufficiently long distance, the power in each channel adjusts itself according to the path
average dispersion of that channel. This is the same scaling behavior as known from “ordinary”
solitons. From [34] with kind permission

In a similar fashion, gain must be equalized, too. The spectral gain curve of Er-
doped fibers as shown in Fig. 8.20 is not at all flat. By tweaking fiber design, an
essentially flat range of more than 80 nm has been demonstrated. A more broadband
alternative is to use gain by means of the Raman effect; see e.g., [42].

At the turn of the millennium, researchers had succeeded to transmit several
terabits per second over a single fiber. Engineers describe these systems as chirped
RZ, i.e., they realize that the pulses have the chirp that a soliton acquires in a
dispersion-managed fiber, yet they typically avoid to speak of solitons. This seems to
be a case of two cultures which, meaning the same thing, call it a by different name.

For many years, the telecommunications industry has been driven by ever-
increasing demands for transmission capacity. It is a fact of life that fiber is a
nonlinear transmission medium; therefore one only has the choice of either avoiding
the impact of nonlinearity by using wide area fibers and low signal power, or to
embrace it and accept nonlinear chirp—whether one calls that format “chirped RZ”
or “soliton” is of lesser importance. Fiber nonlinearity will not go away, and only
soliton-based coding takes it fully into account. Will soliton-related data formats
become a standard in the future? It is always difficult to make predictions, especially
when they are about the future—as the famous quote goes (it is variously attributed
to Winston Churchill, Niels Bohr, George Bernard Shaw, and many others).
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11.3 Technical Issues

11.3.1 Monitoring of Operations

In commercial service, a permanent monitoring of system integrity is mandatory.
This is done in the following way: The intermediate amplifiers along the line are
combined with so-called loopback modules. These consist of four fiber couplers as
shown in Fig. 11.17. In this arrangement the signal stream can pass, but a minor
portion of it is branched off, attenuated by 45 dB, and sent back toward where it
came from. This weak signal does not interfere with other data streams.

Somewhere among the multitude of WDM channels a pseudo-random sequence
is transmitted. By way of correlation measurement, the return signal can be detected
in spite of being weak. Such monitoring allows to detect additional losses due to
damage or whatever cause. The damage can also be localized because the return
signals from different loopback modules arrive with different delay.

In addition, loopback modules are built such that backpropagating light from
Rayleigh scattering can bypass the amplifiers so that OTDR measurements may
be performed. For extremely long distances, one combines OTDR with coherent
detection to increase sensitivity. With these measures the entire fiber length can be
monitored, in part during life data traffic on a reserved channel, and with improved
sensitivity during a routine maintenance interval. Figure 11.18 shows an example of
monitoring a fiber of about 4400 km length [28].

Fig. 11.17 A loopback module serves to monitor a dual-fiber line during operation with life traffic.
After [70] with kind permission
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Fig. 11.18 OTDR measurement of a very long fiber line including several amplifiers. From [13]
with kind permission

11.3.2 Eye Diagrams

One of the simplest and most efficient ways to test the quality of transmission is to
inspect the so-called eye diagram. The name refers to an oscilloscope display of the
bit stream such that the horizontal deflection is synchronized with the clock rate. In
principle, all slopes (rising as well as falling) are then at the same position on the
screen; in between, in principle there is either the upper or the lower level. Therefore,
in the middle of the picture, there should be an empty area, which is referred to as
the “eye.” All kinds of signal impairments conspire to close the eye (Fig. 11.19):
The slopes of the pulses may be smeared out, e.g., when the light source or detector
have insufficient bandwidth, fiber dispersion is unchecked, or by timing jitter. Then
the eye is narrowed horizontally. The upper and lower level may not be maintained,
or there may be excessive noise or channel crosstalk: Then the eye is narrowed
vertically. A wide open eye is an instant indication of good signal integrity.

11.3.3 Filtering to Reduce Crosstalk

Intersymbol interference can lead to channel crosstalk and can be a severe pertur-
bation, but by judicious choice of the frequency response of the transmission chain
it can be nearly eliminated. The reader is reminded that most filters, in particular
those with steep slopes of their spectral transmission, have a nonmonotonous step
response. The trick then is to select a frequency response such that in the distorted
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Fig. 11.19 An eye diagram
is obtained by displaying the
bit stream over time with
synchronization to the clock
rate. The upper and lower
levels of the binary signal and
the steep slopes at the
beginning and end of the bit
slot can be assessed quickly
and conveniently; if the eye is
wide open, one may expect
error-free reception

filtered temporal shape there are zeroes at multiples of the clock period Tc. If this is
the case, then the crosstalk is eliminated. For example, a filter with step response

u.t/ D sin.�t=Tc/

�t=Tc
D sinc

�
t

Tc

�
(11.11)

has the desired property. Here we have used the sinc function (sinus cardinalis),
which is defined as

sinc.x/ D sin.�x/

�x
:

With this step response, the frequency response is

U. f / D

8
ˆ̂̂
<
ˆ̂̂
:

Tc W f <
1

2Tc
;

0 W f >
1

2Tc
:

(Tc appears here from a normalization
R C1

�1 U. f / D 1.) Such filter with “vertical”
slope, usually referred to as a brick wall filter, cannot be built because it would
require an infinite number of selective elements. Also, a filter with time-symmetric
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response defies causality (any effect takes place only after the cause) and thus cannot
be built with ordinary hardware.

This is too bad because such a filter would make it possible to optimize
bandwidth use according to the sampling theorem and also because it would reject
all out-of-band noise. So can one still make use of these ideas?

One can approximate the step response of the acausal filter quite well if one
does not perform the filtering in real time but accepts a certain latency. It turns out,
fortunately, that a latency of only a few clock periods suffices. The infinite “brick
wall” slope becomes unnecessary when using a raised cosine filter, which is its
generalization with rounded slope (Fig. 11.20).

If one arranges that the filter has the frequency response

U. f / D

8
ˆ̂̂̂
<
ˆ̂̂̂
:

Tc W 0� j f j � 1 � ˇ

2Tc
;

Tc

2



1C cos

�
�Tc

ˇ
f � � 1 � ˇ

2ˇ

��
W 1 � ˇ

2Tc
� j f j � 1C ˇ

2Tc
;

(11.12)

it follows that it has the step response

u.t/ D sin.�t=Tc/

�t=Tc

cos.ˇ�t=Tc/

1 � .2ˇt=Tc/
; (11.13)

which in turn is a generalization of a sinc function. By tweaking the parameter ˇ,
one can fine-tune the sharpness of the transition from pass band to rejection band.
Such filters can be made to a good approximation and allow to have a well-defined
pass band to keep noise in check. At the same time, they cancel channel crosstalk
from intersymbol interference. Pulses shaped such that they fulfil this description
are known as Nyquist pulses.

T

Fig. 11.20 Explanation of the raised cosine filter. Parameter ˇ (increasing from front to back) sets
the sharpness of transition from pass band to rejection band. The zeroes in the temporal response
remain centered on the positions of the adjacent bits so that channel crosstalk is eliminated
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11.4 Telecommunication: A Growth Industry

Nothing displays the increasing globalization as clearly as the increasing demand
for long-distance communications lines. For many years, there has been an annual
growth by some 20–30 %. The race to keep up with the rising demand is fueled
by the incentive of money to be made; some of that money is well invested in
research to advance the technology involved. We now give a historical sketch of
the development of telecommunications.

11.4.1 Historical Development

1851: The first undersea cable commences service. It crosses the English Chan-
nel, connecting Dover and Cape Gris Nez, and it will work well for 24 years.

1858: The first transatlantic cable begins operation, but it is broken after only 1
month.

1866: With the largest ship of its time, the Great Eastern, the first successful
transatlantic cable is deployed. It operates in Morse code.

1927: The first transatlantic telephone connection is inaugurated. It is based on
radio transmission in SSB mode between New York and London.

1956: The first transatlantic telephone cable (“TAT-1”) takes up service. Its
coaxial cable can accommodate 48 simultaneous telephone channels in analog
format. The amplifiers use electron tubes (transistors are invented only shortly
before and are not mature yet). In a sophisticated scheme, even the silent intervals
in natural conversation are used for transmission of other channels, a scheme
called TASI for “time-assignment speech interpolation.” This technology is very
successful so that a few years later more cables follow, which use the same basic
technology but an increasing number of channels. The seventh of these (TAT-7,
with 4000 telephone channels) is the last of its kind. It is commissioned in 1983
and can handle 4200 simultaneous telephone channels. TAT-1 is decommissioned
in 1978, TAT-7 in 1994.

1962: Telstar I, the first active telephone satellite, is launched.
1965: Intelsat I (“Early Bird”), a greatly improved telephone satellite, is launched.
1966: Kao and Hockham predict the possibility of making fibers with loss of not

more than 20 dB/km.
1970: The prediction comes true: The first fiber with less than 20 dB/km loss is

introduced. Only a few years later, even 0.2 dB/km are reached.
1976: A first system experiment in the transition from research to commercial use

is started by Bell Laboratories in 1976 in Atlanta. Two cables, made by Western
Electric Co., having 640 m length and containing 144 fibers each, are laid in
existing ducts. Each fiber transmits 44.7 Mbit/s corresponding to 672 telephone
channels. The strands are hooked up in series to create a longer effective distance.
The performance is virtually error-free over about 11 km. Including 11 repeaters,
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even 70 km transmission is successfully demonstrated. The trial shows that the
fibers survive intact all the bending and pulling involved in placing the fiber,
certainly a much harsher treatment than in a laboratory.

1977: Other countries follow suit. The first comparable experiment in Ger-
many takes place 1977 in Berlin. A cooperation of AEG-Telefunken, Standard
Elektronik Lorenz, Siemens, and TeKaDe places a 4.3-km cable between
Assmannshauser Straße and Uhlandstraße. In the same year, England and Japan
perform similar tests.

1985: The first fiber-optic undersea cable, Optician 1, connects the Canary Islands
of Tenerife and Gran Canaria. There are initially problems with fiber damage by
shark attacks; additional steel strength members avoid that problem.

1988: TAT-8 constitutes the beginning of a new era: that of optical transatlantic
data transmission (Fig. 11.21). This cable operates in the second window at
1:3 �m and is the first to transmit in a digital format. Its two pairs of fibers, each
with a capacity of 280 Mbit/s, allow it to transmit 40,000 telephone channels.
The cost per channel is thus dramatically lowered by two orders of magnitude.
A steel cladding of the cable is used to provider electrical energy as a supply
for the repeaters. At a constant current of 1.6 amperes a voltage of 7500 V is
required, the return is through the ocean water. One year later a transpacific
cable TPC-3 and a connection between mainland USA and Hawaii, HAW-4,
follow in the same technology. These cables form the first generation of fiber-
optic intercontinental cables. TAT-8 is decommissioned in 2002.

Fig. 11.21 Six generations of data transmission cables: In the 1950s a cable (far left) could
transmit 36 telephone channels, the optical fiber cable from the early 1990s (far right) handled
40,000. Since then, capacity has risen to several million telephone channels without any major
change in outside appearance
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1991: Fiber-optic cables surpass telephone satellites in terms of number of
transmitted calls. 33 million km of fiber have been laid out. Half of it, 16 million
km, is in the USA. Europe has 9 million km, the Pacific Rim 8 million km.

1992: The first cable of the second generation, TAT-9, starts in March. The
wavelength is now in the third window at 1:55 �m. Advanced components like
DFB lasers and APD diodes are used; the transmission format is NRZ. At
565 Mbit/s per fiber in two fiber pairs, 80,000 telephone channels are transmitted
simultaneously. The cable is 9310 km long. It costs 450 million US$ and is owned
by a consortium from 35 international telecommunications companies. It links
USA and Canada on one side with England, France, and Spain on the other.
For Spain, it is the first fiber-optic direct link to the USA; before, they had to
be content with TAT-5 with 845 telephone channels. Italy, Greece, Turkey, and
Israel are connected via Spain.
In 1992/1993, the same technology is used in the Pacific for TPC-4. The next
cables (TAT-10 between USA and Germany/the Netherlands) and TAT-11 are
configured in a new topology: Instead of a line between two points a “ring” is
used, basically a pair of independent cables between the same two points. The
rationale is that if any damage occurs at any position, one can route all data traffic
around the damage location. The idea is to ultimately have nets, or webs, that can
better survive damage. In view of the enormous data traffic, it is clear that any
service interruption immediately leads to considerable financial damage. Like the
earlier fibers before, TAT-11 is switched off in 2004.

1994: Unification of Germany has created a new market for telecommunication
because in communist Eastern Germany telephones had been available only
to a narrow privileged class. Meanwhile in the 1980s, Western Germany had
fallen behind other countries in making the transition to fiber optics because the
responsible ministry favored copper cables. In the late 1980s this course was
reversed, and Western Germany invested heavily in fiber optics. After unification
1990, this situation led to the inspired decision to immediately go for the most
advanced technology as the country’s telecommunications infrastructure got an
overhaul. Within a few years, the existing 111 lines between both Germanies
were replaced with several tens of thousands. In mid-1994, Deutsche Telekom
had the world’s most close-meshed fiber-optic network. At a total length of
80,000 km, the fiber network exceeded the highway network. Also, Deutsche
Telekom started early to put fibers all the way to the subscriber, an activity which
is now described with several new acronyms: FTTH is for fiber to the home,
FTTC for fiber to the curb, and FTTP for fiber to the premises. These acronyms
can be wrapped up under FTTx for fiber to the whatever.

1995: The third generation begins with TAT-12; TAT-13 follows in late 1996, and
TPC-5 and TPC-6 soon thereafter. Again important technical novelties have been
introduced. Dispersion shifted fiber is used; Erbium-doped fiber amplifiers make
it possible to increase the distance between repeaters. Now RZ is used as the
transmission format. The data rate is 5 Gbit/s equivalent to 1,228,800 telephone
channels. Meanwhile, a good fraction of the total traffic is no longer traditional
telephone voice communication (“POTS” or plain old telephone service), but



280 11 Applications in Telecommunications

also fax and data transmission between computers. Cost per telephone channel
has again come down from TAT-8 levels by more than an order of magnitude.
TAT-8 through TAT-11 are decommissioned 2002 and 2003. Technically they
still work well, but the more recent cables are so much superior that it does not
make any business sense to keep them alive. Some of the decommissioned cables
have later been used for research purposes.

2001: The transatlantic cable TAT-14 takes up service in May. It has been built for
1.5 billion US$ and can handle 640 Gbit/s (corresponding to 8 million telephone
calls). In October, a competing consortium opens Flag Atlantic-1 on the same
route; this cable has six fiber pairs with a combined capacity of 4.8 Tbit/s.
The telecommunications industry thrives on short return-on-investment time and
gigantic growth figures. Many competitors join the industry to lay and operate
fiber-optic cables. For the first time in the history of telecommunication, there is
an excess capacity: supply surpasses demand. As a consequence the prices come
further down, and revenues of all involved parties plummet. There is a string
of insolvencies, some of which are quite spectacular (2002: Global Crossing,
WorldCom). This is at the same time that the internet bubble bursts, and the two
upheavals are related. Euphoria from the late 1990s dissipates very quickly, and
recovery to normal business takes several years.
Also in 2001, Lucent Technologies rolls out a new DWDM system called
Lambda Extreme for use on long-haul and ultralong-haul segments. It is based
on dispersion-managed soliton transmission with Raman amplification, and
is specified for 128 � 10Gbit=s wavelengths (1.28 Tbit/s) up to 4000 km or
64 � 40Gbit=s wavelengths (2.56 Tbit/s) up to 1000 km, at a bit error rate of
better than 10�16 [1].

2002: This year heralds the start of commercial soliton transmission systems
to carry actual life traffic. Lucent’s Lambda Extreme technology is deployed
between Tampa and Miami (both Florida). Existing fiber designed for only 10
Gbit/s and owned by Verizon is used over a distance of 500 km to transmit
100 Gbit/s signals. In Germany, Deutsche Telekom conducts trials over 4000 km
with Lucent’s 128-channel version of Lambda Extreme [3]. While there are
several sales of this soliton-based system over the next few years, Lucent does
not publicly disclose any details, and available information is spotty.
British equipment manufacturer Marconi Solstis deploys an all-optical net-
work based on solitons which takes up operation at the turn of 2002/2003.
This ultralong-haul optical DWDM system, operated by the Australian carrier
IP1, consists of a 2900 km all-optical connection (without signal regeneration)
between Perth on the west coast of Australia and Adelaide on the south coast.
It uses standard single-mode fiber; solar-powered amplifiers are typically spaced
90 km along the link. It is configured to use 40 out of possible 160 channels of
10 Gbit/s each for later upgrade capability. The system works well in technical
terms. Unfortunately, at a time when the telecom industry is forced to release
their workforce by the tens of thousands it does not work equally well in business
terms, so that it gets decommissioned after only a few years.
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Also in 2002, improved fibers are introduced by major fiber manufacturers. Due
to increased purity they avoid the OH absorption peak near 1:4 �m so that
in effect the second and third transmission window are merged into one that
stretches from ca. 1280–1625 nm.

2003: The dotcom bubble and ensuing economic woes have haunted the telecom
industry for several years, but business is gradually coming back to life. New
cables are being installed all the time (e.g., Apollo on the North Atlantic route
in 2003), but certainly not at the same hectic pace as before. During the crisis,
research is also trimmed back in the companies involved because they cannot
generate the revenue that it takes to run large labs. One of the major telecom
equipment providers, Lucent Technologies with its famous Bell Laboratories, is
sold in 2006 to the French company Alcatel. Two years later, Alcatel-Lucent
is pulling out of basic science, material physics, and semiconductor research
and will instead turn its focus on more immediately marketable areas such as
networking, high-speed electronics, wireless, nanotechnology, and software.

2007: In March, the record data transmission rate over a single fiber reaches 26
Tbit/s, at a span length of 240 km [15]. At that rate, this entire book could be
transmitted in under 1 ms. This is not a soliton system, but it makes use of all
the tricks that are there in “linear” systems. It uses 160 WDM channels and
polarization multiplexing. For coding, an RZ format and differential quaternary
phase shift keying is used (see below in Sect. 11.4.2); this achieves an impressive
3.2 bits/(s Hz) of spectral efficiency. Distributed Raman amplification balances
the losses. Just 5 years earlier, before the introduction of OH peak-free fibers, this
signal would have come close to reaching the limit of the available bandwidth.

11.4.2 Continued Growth, Approaching the Limit

About 10 years into the new millennium it became quite clear that some entirely
new approach became necessary in order to cope with further increase of demand.
Binary coding of the ‘OOK’ (on-off keying) type ran into the limit imposed by the
Shannon theorem (see Sect. 11.1.8). Lab experiments had almost reached the limit,
and commercial systems were not far behind.

As explained in Sect. 11.1.5, data streams from a multitude of sources are
combined in order to make good use of the available capacity. Individual bitstreams
are interleaved by TDM to obtain 10 Gbit/s, 40 Gbit/s or, after pushing the speed
of electronic circuitry further, 100 GBits/s bit rates; the latter after climbing the
learning curve about how to deal with polarization mode dispersion. Then, several
such bit streams are combined by WDM, and the resulting several-THz combined
bandwidth signal is launched into a fiber. The phrase massive wavelength division
multiplex (MDWM) is used when indeed large numbers (on the order of a hundred)
channels are used. In some systems, nonlinear effects were taken into account from
the outset by using solitons, but in most systems the power level was kept low so that
nonlinearity was avoided. In any event, tremendous increase in transmission rate has
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occurred over the years through technical improvements such as Erbium-doped fiber
amplifiers and dispersion managed fibers in combination with MWDM. The entire
useful spectral transmission window of the fiber is nearly exhausted. Therefore, a
further increase of the clock rate would only shift the transition point from TDM to
WDM, without making more aggregate capacity available.

To simply deploy more fibers was also not a good option as that is a very
expensive way of increasing data-carrying capacity.

11.4.2.1 Coding Schemes Beyond Binary

Fibers offer a useful bandwidth of ca. 50 THz. Shannon’s theorem predicts a channel
capacity of 50 Tbit/s for binary signals when a spectral efficiency of 1 bit/s/Hz
assumed. Once the best published experiments were approaching that limit, there
were basically has two options to accommodate the relentlessly growing demand
for ever more data volume:

Either install more fibers, or find better coding for more data handling capacity
of existing fibers.

It seems straightforward to simply add more fibers. Never mind that new fiber
was already deployed at amazing speed. More relevantly, if one keeps using
essentially the same technology, one keeps the cost per transmitted bit more or
less constant. That is not a sustainable proposition in the face of exponentially
growing volume. Incidentally, also the energy consumption per bit would be held
roughly constant and the total energy consumption would rise exponentially; that
has meanwhile grown to a non-negligible factor.

Another close look at the Shannon theorem is a good starting point to find better
ways of using existing fibers. There are several reasons why the Shannon limit
as quoted in Sect. 11.1.8 above requires some modification in the context of fiber
optics:

1. Shannon’s theorem holds for a linear channel but the fiber is inherently nonlinear.
2. A single mode optical fiber actually supports two polarization modes. This holds

potential to increase the data rate by another factor of 2.
3. By taking phase modulation with coherent detection into consideration, the data

rate can be further increased considerably.

This suggests that better coding schemes are possible that would allow to transmit
more than one bit per clock period. That would be most welcome; however, the role
of nonlinearity needs to be carefully considered.

Ad 1. Shannon had realized that even in a continuous amplitude range one can
only discern levels when they are different by at least as much as the ever-
present noise dictates. Assuming that the lowest nonzero amplitude level used for
transmission can not be lowered any further due to noise constraints, the addition
of more amplitude levels increases the signal power and hence the impact of
nonlinearity. Nonlinearity then causes stronger channel crosstalk, and this leads
to increased impairment from four-wave mixing. Mitra and Stark [32] found from
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simulations that an increase is possible only up to 4 bit/s/Hz. With a somewhat
different approach, J. Tang [63] arrives at similar conclusions.

Ad 2. Light waves are polarized: They can have either one out of two orthogonal
states of polarization, or a combination thereof. Polarization multiplexing is
therefore an option that can, in principle, contribute a factor-of-two to capacity.
However, as discussed in Sect. 4.6, in ordinary fiber both polarization modes
are not entirely independent from each other. Due to crosstalk, the state of
polarization is scrambled after perhaps a few hundred meters. While polarization-
preserving fibers do exist, they are more expensive and more lossy than standard
telecom fiber, and the existing cables are not of this type anyway. The saving
grace is that while the state of polarization may be scrambled, it is scrambled
for both orthogonal components in the same way. That means that long after
the state of polarization has changed, both components remain very nearly
orthogonal. Therefore they can still be separated and decoded after kilometers.
Only over very long distances will crosstalk between both states render the
signal’s bit error rate unacceptably high. Polarization multiplexing can therefore
contribute moderately to an enhancement of capacity (a factor-of-two at best). In
a less ambitious scheme, adjacent wavelength channels were successfully used
at alternating state of polarization, to reduce channel crosstalk, without actually
using polarization multiplexing. In one case 1.6 bit/s/Hz was obtained with
binary data [58]. Another case combining polarization multiplex with differential
phase shift keying (this is explained in the next paragraph) for a 3.2 bit/(s Hz)
efficiency [15] was already mentioned above; also, a similar scheme was used
in [69]. In such schemes polarization coding contributed indirectly by mitigating
adverse effects from close spectral proximity of adjacent channels.

Ad 3. Information can be coded onto a carrier wave by modulating its phase; this
was not considered in Shannon’s original work. The fact is well known from
radio engineering, and it also holds for optical carriers. One possible approach
is to use pure phase modulation: All signal pulses have the same amplitude so
that they tend to be distorted by nonlinear effects in the same way [23], but their
phases can take one value out of a discrete set of different phases. This is known
as phase shift keying, or PSK.
Of course there must be a phase detector, to decode the message, at the receiver.
As is customary in optics, phase is detected through interference with a known
reference wave of defined phase. In this context, that is called coherent detection.
There is one fundamental difference between electronics and optics, though: In
the best of cases, lasers do not emit pure sine waves with well-defined frequency
and phase. Rather, they are subject to a random phase diffusion (the Schawlow-
Townes effect described above in Sect. 11.1.2.3). On top of that, many technical
noise sources conspire to let the phase fluctuate at random. Finally, the optical
Kerr effect in the fiber will cause phase modulation in dependence of the signal
amplitudes (see Sect. 9.2). A local oscillator providing a phase reference at the
receiver will also have a randomly fluctuating phase. This makes straightforward
phase detection impossible, but luckily, there is a very simple way around the
problem.
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In the absence of an absolute phase reference, the phase of each pulse is detected
in reference to the previous pulse. It is tacitly assumed, and indeed holds very
well, that in the short time of one clock period the random phase evolution of
the laser can be neglected. In technical terms, pulses are encoded not with the
value that pertains to this time slot, but with the difference to the previous time
slot. To retrieve the message at the receiver, the previous pulse is delayed by
one clock period and made to interfere on the detector with the current pulse.
In other words, a Mach-Zehnder interferometer with a differential delay of one
clock period is inserted in front of the photodetector. This modulation format is
called differential phase shift keying, or DPSK [67].
Figure 11.22 illustrates different modulation formats. In the traditional amplitude
modulation (AM) at left, a single degree of freedom is used for coding: here, the
amplitude of the pulse. (The horizontal axis is merely for illustrative purposes
and does not signify any physical quantity). As Shannon pointed out, amplitude
levels can only be distinguished at the receiver when they are spaced by at least
as much as what occupied by the noise. The noise is symbolized here by fuzzy
bands. Binary on-off keying would use just two states, one of them being at zero.
PSK-type modulation is conveniently represented in the complex plane as real
and imaginary part of the complex amplitude. Distance from center signifies
amplitude, and the angle stands for the phase. In engineering one also speaks
of the in-phase and in-quadrature (with respect to some reference phase)
components of the amplitude, or as ‘the quadratures’ for brief. In the center
of Fig. 11.22, quadrature phase shift keying (QPSK) is shown: Four symbols
have the same amplitude, but four different phase values in 90ı increments in a
shamrock (lucky 4-leaf clover) arrangement. This QPSK concept, adopted from
radio engineering, constitutes a quaternary, rather than binary, coding: two bits
are transmitted in each clock period. In extension of this scheme, more than four
different phases may be used at the same amplitude.

Fig. 11.22 Schematic representation of the configuration spaces of AM, QPSK, and 32-QAM.
See text
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Note that at the receiver each symbol is contaminated with some noise in both
amplitude and phase; this uncertainty is here indicated by a fuzzy area around
it, the ‘noise ball’. Noise sets a limit to how many symbols can be placed
on the circle: as their number increases, so does the risk that their noise balls
begin to overlap, with ensuing bit errors. Power loss during propagation lets the
configuration space shrink, but not the noise balls (see Fig. 11.23). If there is too
much loss, it becomes difficult to tell them apart without error.
Kerr nonlinearity, and self phase modulation in particular, deforms the noise balls
from spherical to banana shape because larger amplitude experience more phase
rotation. A further consequence of nonlinearity is the creation of mixing products
between different WDM channels which makes error-free detection even more
difficult.
The quest for more bits per clock period led to consideration of even more
intricate modulation formats known from electronic engineering. Among these
there is a mixed phase-and-amplitude modulation called quadrature phase and
amplitude modulation (QAM). The right part of Fig. 11.22 shows a specific
example, reflecting the 32-QAM, 5 bits per clock scheme reported in [54]). With
different amplitudes involved in this coding format, it is mandatory that the maxi-
mum amplitude be limited so that all symbols safely stay within the linear regime
(delimited schematically by the dashed circle). Loss would move the symbols
closer together, and s nonlinearity would again create self phase modulation as
in Fig. 11.23, compounding the risk of overlap. In other words, QAM is a linear
coding scheme which would suffer from nonlinearity, so the amplitudes need
to be kept low enough that nonlinearity can be neglected. In this situation the
majority of researchers and engineers in the field have decided that the best way
to avoid penalties from nonlinearity is to keep the power of the data stream low
enough so that over the transmission distance there is only a very moderate and
nearly negligible amount of nonlinear chirp. This does nothing to eliminate the
signal-to-noise issue at the receiver if one goes for very long distance.

Fig. 11.23 Schematic representation of distortions in configuration space. Note that detected
signals include detection noise which is independent of the signal. Left: After a short distance,
QPSK symbols are clearly separated. Center: After a longer propagation distance (assuming
absence of nonlinearity) loss has shrunk the intersymbol separations. Right: Same as left, but taking
self phase modulation into account. It introduces a phase shift in proportion to intensity; the shear
renders the ‘noise balls’ into ‘banana’ shapes
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Nonetheless, remarkable success has been obtained with such formats: The added
complexity of coding and decoding is rewarded with a remarkable increase of
data rate: QAM has been demonstrated to support up to 11 bits of information per
clock period [9]. The area within the maximum-amplitude circle is then densely
packed with symbols, with the minimum intersymbol distance set by the size of
the noise balls. Such advances significantly increase the spectral efficiency.
For further increase of capacity, either the noise balls must get smaller. That
implies a limited reach, because with attenuation over distance, signal power
decreases while noise (e.g. detector noise) stays the same. Or one accepts a
certain amount of overlapping noise balls; then the bit error rate will go up.
Generally speaking, the reach of QAM signals is shorter than that for less
advanced coding, and compromises need to be made on bit error rate. Given
that the relative size of the noise balls grows with distance (when the signal is
attenuated), one pays the price for the increased capacity in either reduced reach,
or increased bit error rate (or both).
It seems that when nonlinearity is avoided through low power operation one
cannot simultaneously maximize capacity, reach, and data integrity. Maybe
high-number QAM will be helpful at interoffice, perhaps intercity distances, but
may be less suitable for the transoceanic long haul.

11.4.2.2 Error Correction

The level of bit error rate which is still deemed acceptable depends in part on
the type of data being transmitted, and is more demanding for financial data than
for voice mail, for example. In any event, the recent coding schemes designed to
transmit several bits per clock period tend to have higher bit error rates than the more
traditional on-off keying, so that some error correction needs to be performed at the
receiver. The reader should understand that a consumer product like the compact
audio disc also relies on error correction algorithms.

Fortunately, powerful computing has become inexpensive so that mathematically
optimized elaborate error correction algorithms can be applied. Additional bits
are transmitted along with the message; the redundancy provides a possibility of
identification and correction of errors. Once an error is detected at the receiver, it
is impractical to inquire through a return channel repeated transmission from the
transmitter; rather, correction must be done based on the redundancy alone. This is
why in fiber optics only forward error correction codes (FECs) are used.

The higher the uncorrected bit error rate, the higher is the likelihood that not
just isolated bits are wrong, but entire blocks of many bits in a row (burst errors).
Algorithms now exist by which the bit error rate can be improved significantly for
both isolated and burst errors. The redundancy overhead usually makes up a few
percent of the data volume, and rarely more than 20 %.

FEC has been employed for about 20 years now, with steeply increasing level of
sophistication. A recent development is soft decision based FEC. In conventional
(hard decision based) FEC the detection within a clock period amounts to a



11.4 Telecommunication: A Growth Industry 287

thresholding somewhere in the middle of the eye (refer to the eye diagram in
Sect. 11.3.2), which results in a binary decision of either a logical high or a low.
With advances in the construction of very high speed analog-to-digital converters,
it becomes feasible to represent the detected level by an n-bit number (e.g. n D 8)
instead of a binary value. This provides additional information on the confidence
level of the high/low decision: if the level is high above the binary threshold, it has
very high probability to represent a high whereas if the level is barely above the
decision threshold, this is less certain, etc. Soft decision schemes therefore have the
potential to perform even better, but they are very demanding in terms of hardware.
Finally it should be noted that the more involved the postprocessing of the raw
received data gets, the more delay occurs which adds to the link’s latency, which we
will comment on in the entry for 2015 in Sect. 11.4.3 below.

11.4.2.3 Nonlinearity Mitigation

Nonlinearity in fibers does not have a power threshold, or sudden onset: its impact
grows continuously when the power level is raised. This implies that there is no
nonzero power level at which nonlinearity is strictly absent: Even when the impact
of nonlinearity is minimized by keeping power levels low, there is some level of it
which creates some extra bit errors; engineers speak of a nonlinearity penalty.

In recent years there is research seeking to exploit the predictability of nonlinear
impairment in fibers in order to remove this penalty; this is known as ‘nonlinearity
mitigation’. Mathematical models exist that are quite accurate in describing fiber
propagation, with all nonlinear effects included.

The central idea in mitigation is to detect the signal at the distal fiber end,
however distorted it may be, and subject it to subsequent ‘backward propagation’.
Backward propagation typically means that a computer takes the received data as
input for a simulated propagation through a fiber with the same properties and
length, but with relevant coefficients reversed [24]. As all fiber and signal parameters
are known, so goes the reasoning, the inverse propagation would restore the signal
shape as it has been at the launch point so that all distortions—linear (dispersion)
as well as nonlinear—would be undone. In practice, a perfect cancellation is not
possible, and success has been modest so far [66]. Also, the computation time adds
considerably to the transmission latency—and this at a time where great efforts are
made to cut down on latency (see the entry for 2015 in Sect. 11.4.3 below).

11.4.2.4 Sub-Nyquist Signaling

Nyquist pulses, as explained in Sect. 11.3.3, minimize the intersymbol interference
because nulls of the pulse shape fall on the center positions of all adjacent time slots.
It was proposed as early as 1975 [30] that if the achieved bit error rate is better than
actually required, one might sacrifice some of it by placing pulses closer to each
other in time; the increase of bit rate would then come without any relevant penalty
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in bit error rate. It turns out that as long as closer packing is done with modesty, the
impact on neighboring time slots is predictable so that with some smart techniques it
may be mitigated with good success. In practice, the increase of bit error rate is quite
benign, and with some smart error correction a successful sub-Nyquist signaling can
be implemented [8].

11.4.2.5 Beyond-Binary Soliton Format

Solitons were always thought of as a RZ format that is limited to on-off keying.
Several years ago it was shown, however, that in dispersion-managed fibers bound
states of solitons exist [59]. It was now demonstrated in a proof-of-principle
experiment that such ‘soliton molecules’ may be used for quaternary coding in
a soliton-derived format [48, 49]. As nonlinearity is already a contributing factor
for this format, there is no need to keep amplitudes very low, and a larger reach
can be hoped for. Also, as the degree of freedom exploited here is signal shape, a
combination with polarization or phase multiplexing seems possible (but not with
amplitude modulation). There have been no field trials yet, though.

11.4.3 Historical Development, Continued

2009: The major wire-line equipment providers never found back to their strength
of the 1990s. The telecom business is now driven in large part by nifty end-user
devices like wireless handheld sets loaded with features such as email and Inter-
net access. Meanwhile, in the wake of the US housing bubble another economic
recession and financial crisis has arrived and will linger on for several years. To
give just one example, Canada’s Nortel Networks Corporation was worth 250
billion US$ a decade ago, but now initiates bankruptcy proceedings. The global
market for telecom services is estimated at 1.7 trillion US$, but an increasing
share of this amount goes to wireless operators and handheld providers [22].
Also in 2009, a first commercial 100 Gbit/s system goes operational. It uses dual-
polarization and is intended for rapid data exchange in the financial industry [2].
A new record transmission over a single fiber is reported in May: 32 Tbit/s over
a distance of 580 km. This was achieved with 320 WDM channels at 25 GHz
spacing with a combination of polarization multiplex and phase shift keying [69].

2012: Multicore fibers are demonstrated to allow enormously increased data
rates as the aggregate value is essentially proportional to the number of cores.
In two publications, transmission experiments with just over one Petabit (1015)
per second are reported: In [47], the fiber had 12 single-mode cores and two
few-mode cores, and was 3 km long. The aggregate spectral efficiency was
109 b/(s Hz). In [62] there were 12 single-mode cores, and the fiber was 52 km
long. The aggregate spectral efficiency was 91 b/(s Hz).



11.4 Telecommunication: A Growth Industry 289

In a fiber loop with circulating signals (compare Fig. 11.7), 20 Tbit/s transmission
was demonstrated over an effective distance of 6860 km. Sub-Nyquist Channel
Spacing was used on 198 WDM channels with 100 Gbit/s each [12].

2014: The ever-increasing demand for more bandwidth is driven by popular new
internet services to share pictures and video. The concept of the ‘internet of
things’, where every appliance would have the capability to communicate via
its own internet address, will—if it comes—create a further surge in demand of
transmission capability. Both the manufacturing of fiber and the deployment of
new cables are struggling to keep up with rising demand.
In a study assessing the quality of research in higher learning institutions of the
UK, it is noted that a transmission system based on dispersion-managed solitons
was originally conceived by British researchers, had been marketed under the
name of Marconi MHL3000, and was first deployed in Australia (see the 2002
entry above). While the Marconi company has been acquired by Ericsson in
2006, the product is still marketed and generates sales of about 100 million US$
annually; more than 100 employees are involved [6].
A public debate has emerged after it was disclosed that intelligence
services of several countries take advantage of the massive concentration of
telecommunications data in fiber-optic cables such as TAT-14. While official
bodies claim that tapping the data streams and scanning them for suspicious
context is in the public interest in order to counter terrorism, civil rights advocates
take offense at the massive breach of privacy.

2015: For the first time in more than 10 years, a new transatlantic fiber-optic cable
goes into service. ‘Hibernia Express’ links Herring Cove, Nova Scotia (Canada)
with Brean, Somerset (UK) over 4600 km. With six fiber pairs operating with
DWDM at 100 Gbit/s, its aggregate capacity is designed to be 53 Tbit/s. The
route was specifically chosen to approximate the most direct path between
financial centers London and New York along the earth’s great circle in order to
keep the travel time of light signals, the latency, to the minimum. In our time of
high-frequency trading at stock exchanges, a split second advantage can make
an enormous difference.
As a consequence of global warming, shipping routes through Arctic waters
become feasible. Plans have emerged and are being actively pursued to route
fiberoptic cables through the Arctic Ocean. One such project, ‘Arctic Cable’,
will run from UK across the North Atlantic, then through the Hudson Strait
and North-West passage, following the Northern shore of the Canadian mainland
(crossing the Boothia peninsula over 50 km of land), around Alaska and on south
towards Japan. The challenges to lay cable in that hostile environment are consid-
erable; much of the route is only accessible during brief annual ice-free seasons.
On the other hand, once the cable is in place, the same ice will protect it from
damage from man-made risks: internationally, 40 % of cable breaks are due to
fish trawling and 26 % from anchors. Again, the rationale is that this route is geo-
graphically shorter than existing alternatives whereby the latency would be cut
down by tens of milliseconds. It is anticipated that a faster link between financial
centers of London and Tokyo will well be worth the considerable expense [21].



290 11 Applications in Telecommunications

Similar plans under the name of ‘Polarnet’ have been in the making for several
years. A cable will run from Japan past Kamchatka through the Arctic waters of
Russia’s Northern shore, to Murmansk and on to the UK. Stalled due to financial
concerns for a while, the project now seems to move forward as ROTACS
(Russian Optical Trans-Arctic Cable System).
A publication [64] claiming to eliminate the limits of nonlinearity mitigation
attracted quite some attention. The authors argue that as long as individual
lasers are used to generate the carrier waves of the various WDM channels,
there are unavoidable fluctuations of the relative frequencies. This in turn gives
rise to random propagation velocity variations, and random walk-off timing
between signals in a WDM stream. They trace the inability to remove nonlinear
impairment to this random effect. They suggest to use frequency combs, rather
than individual lasers, for the carriers in the WDM system.
For many years now laser physicists have worked on frequency combs [17].
These are signals which consist of many carriers on a regular frequency grid,
so that all carriers are in fixed phase relation to all others. In other words, the
relative frequency fluctuations between individual frequency components are
reduced by several orders of magnitude. Indeed, such frequency combs are used
in metrology, e.g. in the definition of the second. In a demonstration experiment
with a frequency comb the authors of [64] could show considerable improvement
over the case of independent individual lasers (see also [65]).
A new record for fiber capacity is reported in [46]: A specialty fiber with 22
single mode cores of 31 km length was used with polarization-multiplexed 64-
QAM transmission. With ca. 400 WDM channels, each core carried about 100
Tbit/s, and the aggregate value is then above 2 Pbit/s (a Petabit is 1018 bits). The
carriers for the channels were generated from a frequency comb.
A first field trial of sub-Nyquist signaling was performed between Sidney and
Melbourne; results are reported in [44].
In experiments, multicore fibers of ca. 225 �m diameter have reached 30 cores
[50]; for an even thicker fiber with heterogenous (unequal index) cores, 36 [52].

2016: Again a new cable takes up operation on the North Atlantic route:
AEConnect. It was originally conceived under the name Emerald Express,
but the operating company could not raise sufficient funding. Now the cable is
completed under a new name; the company advertises “130 WDM channels of
100 Gbit/s per fiber pair”. Fig. 11.24 shows the fiber-optic cables currently in
use in the North Atlantic.
According to an estimate by network equipment provider Cisco [5], the
worldwide internet traffic will reach a volume of 1 Zbyte this year. A Zettabyte
equals 1021 bytes; the figure corresponds to an average traffic of 250 Tbit/s
around the clock 24/7/365.

Figure 11.25 attempts to graphically represent the ‘hero’ experiments up to the
present. Achieved data rates (horizontal axis) and the pertaining distances (vertical
axis) are shown for published reports which are identified through the number; the
key can be found at [4]. Shading suggests the approximate limits on distance (as
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Fig. 11.24 Numerous fiber-optic cables crisscross the oceans of the world. This selection shows
currently active cables between North America (USA, Canada) and Europe. Along the dashed
auxiliary line they are from North to South 1: Greenland Connect, 2: Hibernia Atlantic (n) 3: TAT-
14 (n), 4: AC-1 (n), 5: AEConnect, 6: Hibernia Express, 7: Hibernia Atlantic (s), 8: TGN Atlantic
(n), 9: TGN Atlantic (s), 10: Flag Atlantic (n), 11: Apollo (n), 12: Yellow, 13: AC-1 (s), 14: TAT-14
(s), 15: Flag Atlantic (s), 16: Apollo (s), 17: Flag Europe Asia, 18: WASACE, 19: Columbus III.
(n) and (s) indicate the northern and southern route of cable rings, respectively. AEConnect was
formerly known as Emerald Express. TGN Atlantic was formerly known as VSNL and before that
as TYCO Global Network Transatlantic. Yellow is also known as AC-2. TAT is for Transatlantic
Telephone, AC for Atlantic Crossing. Earlier cables TAT 8 - TAT 13, Cantat-3, Gemini, and PTAT-
1 are out of service. Geographic positions are approximate. The author has made an effort to
represent all active cables as of March 2016

given by the size of our planet) and data rate (as given by Shannon’s theorem for
binary coding, with some leeway for polarization multiplexing etc.). Only single-
core, single-mode fiber cases are taken into consideration, with the exception of the
diamond-shaped symbols which indicate the single-core data rate (i.e. the published
aggregate data rate of a multiple-core fiber divided by the core count).

11.4.4 Beyond the Single-Mode Fiber

With ever increasing demand for data volume brought about by services like
streaming video etc., efforts are made to find entirely new degrees of freedom from
spatial degrees of freedom. These arise when one exploits the transverse spatial
dimensions, i.e. the location of the power transport within the cross section of
the fiber. Such concepts abandon the time-proven single-mode fiber with its well-
defined guiding mechanism. After a suggestion in [37], two related approaches have
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Fig. 11.25 Record experiments for high data rate transmission over a single fiber, shown here
in the data rate–distance plane. For the key to the data points and detailed information see [4], a
compilation maintained by Dr. Alexander Hause, Rostock University. The figure does not explicitly
distinguish between different coding formats. For the sake of clarity, data are shown only for single-
mode, single-core fiber transmission; diamond-shaped symbols represent single-core data rates
reported from multiple-core fiber experiments. The figure represents the status as of early 2016

been pursued in recent years:

• Mode division multiplexing (MDM) uses several modes of a conventional multi-
mode fiber [38].

• Space division multiplexing (SDM) uses specialty fibers with several cores side
by side, distributed over the cross section [51].

Terminology has not been quite uniform from the beginning; occasionally SDM was
used as a generic term for both formats. Sometimes several single- and multimode
cores are combined into one fiber, effectively creating a mixed MDM / SDM
arrangement [47].

Multimode Fibers: One uses fibers which carry more than a single mode; a set
of several modes is used so that each carries its own independent information
[38]. A detector with spatial resolution is trained to recognize the different modes
individually, then uses refined algorithms to disentangle the data streams in the
superpositions of various modes. The former step is repeated on the slow time
scale over which channel properties drift, the latter at the clock rate. It remains to
be seen how well modal crosstalk can be suppressed for successful transmission
over long distances, and whether multipath interference turns out to be a problem;
maybe this technology is best used for short distances (intra- and interoffice
traffic).
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Multicore fibers: Specialty fibers can be manufactured to have several separate
cores distributed across the cladding. Issues like connectorizing etc. must be
addressed, of course, but it is quite obvious that separate cores allow to transmit
individual data streams, with a correspondingly increased aggregate data rate.
As mentioned above, in 2012 both a team from NTT and other partners [62],
and a team from NEC and Corning [47] each reported that they had crossed the
1 Pbit/s barrier. Taking distance also into account, recently the Ebit/(s km) mark
was reached [55].
Crosstalk between the cores due to the proximity of the cores exists, in a way
similar to that in a coupler (see Sect. 8.7.1). While it is less severe than between
the modes in a multimode fiber when the number of cores is not too large, it still
poses a challenge for further development of this technique.

Or the degree of freedom may be the guiding material basis:

Hollow Fibers: In yet another approach, photonic-crystal fibers with extra-wide
hollow core have been designed. In these designs the core area covers many unit
cells of the cladding structure. Such fibers guide light such that an extremely
small fraction of power actually travels in glass; most travels in air. As a
benefit, nonlinearity is greatly reduced so that linear transmission schemes
may be used at elevated powers. One should also note that the propagation
velocity, on account of the effective refractive index being close to unity, is
almost equal to that of light in vacuum. These fibers are therefore advertised
as guiding light ‘at the speed of light in vacuum’ [43] (about implications for
telecommunications, see the comment on latency in the 2015 entry above). A
combination of this type of fiber with modal multiplexing is also investigated
[26]. As the interaction with the glass is reduced, the available spectral window
is also larger. It remains to be seen, however, how these fibers fare with respect
to bending loss, connectorization, and other aspects.

The central issue to be addressed in these formats is cross talk between data
streams. In SDM the number of cores is limited by crosstalk considerations due
to proximity of cores and long interaction lengths. Researchers at Fujikura have
suggested a new, larger fiber diameter of 225 �m, to accommodate about 12 cores
[29]. Presently the record stands at 36 cores [52]. In MDM there is the natural
coupling between modes which are orthogonal only in mathematical abstraction;
in reality any minimal deformation of the fiber readily causes coupling of light into
other modes. Therefore one must conclude that even with these schemes one does
not escape the fundamental dilemma that simultaneous optimization of capacity,
reach, and data integrity implies conflicting requirements.

Maybe an even larger challenge is that both approaches, MDM and SDM, share
the dramatic disadvantage that legacy fiber cannot be used. The existing network
of fibers all around the globe represents a staggering financial investment. With
ca. one million km of fiber-optic cables deployed on ocean floors alone (as of
2015/2016), and considering that the installation of a major transoceanic link costs
on the order of 1 billion US $, the total expenditure for the fiber-optic network
(oceanic and terrestrial) strung around the planet probably stands somewhere around



294 11 Applications in Telecommunications

1 Teradollar (1012 US$). This tremendous asset of legacy cables is useless for these
novel formats. Moreover, before specialty fibers can be deployed on a large scale,
their mass production must be set up, and the entire periphery from couplers and
splicers to connectors, splitters, and amplifiers needs to be developed—not to speak
of means of tailoring the dispersion which has long become standard in conventional
fibers. However, as the industry faces relentless growth of demand and runs out of
other options, researchers are now very actively pursuing these ideas.

Does an n-core fiber have a convincing technical, economical, or ecological
advantage over n conventional fibers running in parallel in the same cable? In the
light of all the challenges, the answer is not obvious to everybody.

11.4.5 What is Next?

Many millions of kilometers of optical fibers now carry the bulk of the world’s data
traffic most of which is internet traffic; conventional telephone calls contribute only
a fraction of 1 % now. Global fiber consumption keeps growing and has now (2016)
reached somewhere between 200 and 300 million km of fiber produced annually,
up from 100 million km in 2006. Consider the speed at which fiber is deployed on
average: 250 million km in 1 year corresponds to ca. 8 km/s—this is much faster
than sound in air, and about the velocity of a satellite in a low orbit around the earth.

So far it has always been possible to increase the data-handling capacity of
the fiber—even legacy fiber!—and not resort to the trivial but costly alternative
of laying more fibers, which ultimately is not sustainable. It is always smarter to
upgrade transmitters and detectors as to put new fibers in the ground (or to secure
the rights of way for new cables). Surely there must be an ultimate limit to what
fibers can do, but it is not yet clear whether we are close or whether smart ideas
will buy us more time. It is also conceivable that some coding formats—including
SDM—provide connections between nodes of major data centers, where distances
are short but traffic volumes are fantastic, whereas more robust schemes, not quite as
ambitious in data rates, are suited to the long haul. Only one prediction is universally
accepted: The demand in terms of data transmission volume will keep growing.
Whether the internet of things, ultrahigh definition video, massive cloud computing,
and virtual reality are with us soon we do not know for certain today, but all these
and other applications which have not even been conceived yet will challenge the
future capacity of the communications links.

In any event, fibers remain the most capable medium to guide information:
Free space optics through the atmosphere suffers from extra loss in inclement
weather conditions and thus from reduced reliability. Nonetheless, it has recently
been explored again as a conduit in special niches, like between offices in upper
floors of neighboring high-rise buildings. In outer space, laser beams appear to be
a very promising conduit for transmission when pointing direction stability issues
are solved, but certainly in vacuum which is free from both loss and dispersion
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much larger bandwidth is possible in principle. Whatever we have learned from
fiber optics in terms of light sources, data formats, and receivers will then be of
benefit, but fibers themselves will no longer be needed in space. However, it will be
a while before that happens, and here on the ground fibers will stay with us for a
very long time.
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Chapter 12
Fiber-Optic Sensors

The development of fiber-optic technology was mainly driven by the requirements
of the telecommunications industry. Nonetheless one should not overlook that
telecommunications is not the only application of fiber optics. The other major
application area is in metrology and data acquisition.

12.1 Why Sensors? Why Fiber-Optic?

It used to be that in any major machinery or installation, gauges were located
wherever the relevant information was present: a thermometer at the boiler, a
tachometer at the shaft, a fuel gauge at the tank, etc. Staff could then go to
these locations and take readings. Meanwhile the trend is that data acquisition and
display are separated. For example, consider an airplane: Sticking out a mercury
thermometer is obviously not a good idea for measuring the outside temperature.
Fuel tanks are in the wings; who would climb out there to check a level tube?
Instead, all data of interest are acquired at their respective location with sensors. The
sensor’s response is transmitted, usually by cable, to a central monitoring station
where all displays are side by side to provide an overview. In the airplane, this
location is in the cockpit where the pilot can check all instruments without leaving
his seat.

Industrial installations, too, have a central control room where all information
comes together. It is not only time-saving when staff do not need to walk around the
premises to take instrument readings, but it also minimizes risks to humans because
often data are taken in hard-to-reach or dangerous places, such as inside chimneys,
in high-voltage apparatus, or in numerous places inside nuclear power stations.

© Springer-Verlag Berlin Heidelberg 2016
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To go by such a remote sensor concept, there are three ingredients required:

1. Sensors for any physical quantity that may be of interest. This includes temper-
ature, pressure, stress and strain, distance, filling level, speed, force, vibration,
etc. The sensors must translate such quantities into a format that can easily be
transmitted.

2. Transmission lines.
3. Displays that translate the transmitted data into a format accessible to human

senses, i.e., typically make them visible or audible.

Of course, the scheme also facilitates the keeping of records of relevant data; witness
the “flight recorder” which is of central importance after a plane crash.

It has often been taken for granted that for the transmission one uses an electric
quantity: most often a voltage, but there is at least one standard where this is a
current. The lines are then usually copper cables. The advantage of this approach
is that there are innumerably many suppliers, and sensors can be picked from an
unfathomable variety of hardware. Also, there is an abundant supply of well-trained
engineers and technicians who are knowledgeable about this technology and can use
it very efficiently.

Now enter optical fiber. First, one might have the idea of using sensors that do
not translate the original data into an electrical format, but rather into some optical
format, like a light intensity or wavelength. There is no difficulty in converting this
to a display because optical formats are easily assessed at the receiver. All it takes
is a photodetector, and one is back to a voltage or current that can be displayed in
a routine way. Of course, the question is: If one eventually converts to electrical
anyway, why bother with optics?

The point is that during transmission, the data are in an optical format. While on
its way across the distance, plenty of adverse effects can act on the transmitted
signal. In the case of electric cables, one severe problem is interference from
external electromagnetic fields. To avoid such difficulty, one usually provides
shielding, which in the case of strong external fields is quite involved. Optical fiber,
by contrast, is immune to that kind of interference.

There are some other properties of optical fibers that are advantageous in this
context. As we saw earlier, they are small and lightweight. The accompanying
savings in space and weight can be quite important, e.g., in vehicles, in particular in
aircraft or spacecraft. Also, optical fibers withstand extreme temperatures better than
electrical cables. They are also more robust in the presence of aggressive chemicals.
Finally, fibers provide perfectly separated electrical potentials, a fact that is greatly
appreciated, e.g., in petrochemical installations.

We see, one might have benefits from an optical technology. It is good news that
a wide variety of optical sensors is available. There is hardly any physical quantity
for which no optical sensor exists. New sensors are added all the time for chemical
and other quantities, too.

When we look at these fiber-optic sensors, we need to broadly distinguish two
classes (Fig. 12.1): There are sensors that are mounted in front of, next to, or in prox-
imity of the fiber, read the quantity under investigation, and launch a corresponding
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Fig. 12.1 Classification of sensor types. In extrinsic sensors (left column), a transducer converts
the original quantity to an optical format; in intrinsic sensors (right column) the fiber itself is the
transducer. One can also distinguish transmission sensors (top row) and reflection sensors (bottom
row). The former are simpler in structure because no couplers are required to separate forward and
backward traveling light. The latter are more convenient to use, though, because only one end of
the fiber needs to be accessible

light signal into the fiber. In this case, the fiber is merely the transmission medium
and has nothing to do with the acquisition of the original quantity. Such sensors are
called extrinsic. In contrast, intrinsic sensors use the fiber itself or part of it directly
to read the original quantity. Then the fiber is both sensor and cable at the same time.
We will look at examples of both types. We may also distinguish the reflective and
the transmissive types; while the transmission type appears more straightforward,
reflective sensors have advantages in hard-to-access places.

12.2 Local Measurements

12.2.1 Pressure Gauge

The simplest type of an optical pressure gauge is shown schematically in Fig. 12.2.
A fiber is placed between two corrugated surfaces; if these are pressed together, the
fiber is forced into wiggles and the bending loss increases. By suitable calibration
procedure, the amount of pressure can be obtained from the transmission loss. This
would be an intrinsic transmission sensor. However, this very simple concept would
be susceptible to errors from variation in light source output or any other influences
that would effect the received power.
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Fig. 12.2 A simple fiber-optic pressure gauge. As pressure increases, so do bending losses in the
fiber. This can be monitored by assessing the reduction of transmitted power

Fig. 12.3 A fiber-optic Mach–Zehnder interferometer is suitable to assess minuscule path-length
variations. In this example it is employed as a hydrophone: one fiber coil is subject to pressure
fluctuations under water while the other is insulated from them. Path-length changes as small as
a fraction of a wavelength are easily detected; this is why such constructions can be much more
sensitive than conventional microphones

12.2.2 Hydrophone

Quite often fiber-optic sensors make use of the interferometric principle to obtain an
impressive sensitivity. The example shown in Fig. 12.3 consists of a Mach–Zehnder
interferometer in which a light beam is split into two branches. After passing
through similar but independent paths they are recombined again. Any change in
the path-length difference is converted into variations of the resulting power after
interference: A change of only half a wavelength provides a 100 % variation in the
detected signal.

In this example one interferometer arm contains a length of fiber which is encased
to insulate it from environmental effects while the other consists of the same length



12.2 Local Measurements 303

of fiber, wound on a hollow drum which is immersed in sea water. Sound waves,
i.e., pressure fluctuations in the water, stretch the drum and the fiber with it. Again,
the fiber itself is the sensing element; this is an intrinsic sensor.

The amount of stretching of the fiber is a measure of the pressure amplitude,
and to the extent that the drum does not have mechanical resonances, the sensitivity
is independent of sound frequency. The sensitivity can be made extremely high by
using a long fiber because for the same relative strain the absolute strain increases
with fiber length. Such an underwater microphone is known as a hydrophone and
is extremely important, e.g., for ranging in submarines. In terms of sensitivity, the
fiber-optic version is vastly superior in comparison to other technologies [7].

12.2.3 Temperature Measurement

Now we turn to an example of an extrinsic sensor. In the example depicted in
Fig. 12.4, the fiber tip is coated with a layer of a thermo-sensitive phosphorescent
material commonly called a phosphor (even though no phosphorous is involved).

Fig. 12.4 Different versions of fiber-optic temperature sensors based on the principle of
temperature-dependent luminescence decay time. The luminescent material (black) is deposited
on the fiber tip in the standard version shown in (a). The sensor is coated with a protective coating
(gray). Variant (b) is optimized for resilience against chemicals and oils; the luminescent material
sits in a protective glass ferrule (light gray), which is filled with epoxy (dotted). In (c), the last
10 cm of the fiber are embedded in a tube made of aluminum oxide ceramics (hatched). The
luminescent substance is supported by a glass bead; an air gap keeps the fiber itself away from
temperature extremes. An elastic tip in (d) is meant to provide improved thermal contact with
surfaces. (e) and (f) are versions for noncontact measurement; here the luminescent material is not
applied on the fiber but directly on the workpiece. The light emerging from the fiber is reflected
and captured again; in the case of extended distance a lens collimates the beam. After [10] with
kind permission
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This phosphor, which may actually be magnesium fluorogermanate, is optically
excited by a brief flash of light (from an LED) that causes it to emit phosphores-
cence, i.e., luminescence light with relatively slow exponential decay. The decay
time constant is a good metric for the temperature. It is a definite advantage that
only ratios of intensities must be assessed to obtain the decay time, but not intensities
themselves; any fluctuations due to light source instability, varying connector losses,
etc. therefore cancel out. Such fiber-optic temperature gauges are commercially
available, and the shape of the sensor can be chosen—depending on intended
application—from a variety of several different types as shown in Fig. 12.4.

Temperature measurement with fiber-optic sensors have several advantages: The
fiber has very small footprint; it has low heat capacity and conductivity and thus
does not distort the heat distribution to be measured. Moreover, the sensor is fully
dielectric so that measurements are not affected by the presence of strong electric,
magnetic, or electromagnetic fields. Electrical thermometers (thermocouples, etc.)
do not share these advantages. Figure 12.5 demonstrates a measurement of the
heating process of a processed meal in a microwave oven.

Alternatively, a fiber can also be used for temperature measurement by exploiting
its thermo-optic coefficient, which describes the change of refractive index of fiber
with temperature changes (there is also a minor contribution from the thermal
expansion). The thermo-optic coefficient of fibers is around 30–40 ppm=K [11, 13].
One can use a fiber Fabry–Perot filter or a fiber-Bragg grating and assess the spectral
shift of the reflection or transmission maximum. In another variant a Mach–Zehnder
arrangement would contain a reference fiber at fixed temperature.
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Fig. 12.5 Example for an application in which fiber-optic thermometers have a vast advantage:
temperature measurement inside a microwave oven during operation. The heating of the compo-
nents of a meal is shown. Now it has been proven after all that the dessert is almost boiling while
the mashed potatoes are still lukewarm! After [10] with kind permission
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Fig. 12.6 Calibration curve
of a fiber-optic dosimeter.
The additional optical loss at
� D 829 nm at room
temperature was measured
during an irradiation with
60Co at a dose rate of
1:43Gy.SiO2/=s. The linear
range extends across four
orders of magnitude. Taken
from [9] with kind permission

12.2.4 Dosimetry

As a final example, we look at a fiber that is subject to ionizing radiation.
Dislocations are created in the glass and cause an increased optical loss which can
cause a decrease of the transmitted power. The damage is essentially cumulative so
that such a fiber can be used as a radiation dosimeter, i.e., an integrating gauge for
the cumulative radiation received in a certain amount of time. Fiber-optic dosimeters
have a wider linear range than those using other technologies (Fig. 12.6). Moreover
the reading tends to be more precise because in any dosimeter, there is some degree
of recovery of the dislocations after the irradiation ends. In fiber-optic versions this
effect is less pronounced than in other types, and this makes a difference when an
evaluation takes place only some time later.

12.3 Distributed Measurements

A more recent development may push applications of intrinsic sensors far beyond
what is conceivable with electric sensors. The crucial point is this: An electric
sensor measures at a point—a mathematician might say, on a zero-dimensional
manifold. A fiber is extended and measures along a line, i.e., one dimensionally.
As long as one is only interested in data at certain spots (a zero-dimensional
manifold), this consideration is moot. However, it is important as soon as one
wishes to monitor a higher-dimensional manifold. Examples for one-dimensionally
distributed data acquisition are in monitoring the integrity of conduits of all types,
including pipelines for oil, gas, or water, or power transmission lines, telephone
lines, etc. It may be required to permanently monitor for possible temperature
rises, mechanical stress and strain, vibration, etc. Similarly, surveillance of intrusion
attempts at security fences calls for a sensor that reacts to perturbations anywhere
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along its length. It is just not practical to combine many point-like gauges in short
distances because the numbers would be excessive. A single fiber can accomplish
the same job.

In even higher dimensions it is easy to see: One can lay out a fiber in a zigzag
pattern to cover an area. Example: A 2D pressure sensor embedded in the floor can
detect whether a person is present in a certain area. This is a useful feature either for
ensuring the safety of operators of dangerous machinery or for detecting intruders.
Point sensors would have to be distributed in a grid pattern, implying both large
numbers and high cost. As one proceeds from line to area to volume, the same logic
applies.

Distributed fiber-optic sensors are available, and they provide good spatial
resolution to boot! This is accomplished through propagation time effects. It should
be clear how big the advantage is when one can learn in real time not only that
an oil pipeline is subject to a worrying mechanical tension somewhere, but when
the position of the trouble is precisely located—in some cases, within centimeters.
Then, a service crew can be dispatched immediately and fix the problem before
major damage occurs.

In such applications, the optical fiber itself is just about the cheapest part. It
is therefore not a problem when fibers are buried in concrete when a structure is
built. They can then not be replaced later on; therefore they are referred to as “lost
fibers.” Nevertheless, as long as their ends (or at least one end) remain accessible,
the fiber embedded in a structure can provide important clues about mechanical
stresses acting on the structure in real time. This idea has been applied in dams and
bridges and has become quite normal now [12]. An early example was Winooski
Dam in Vermont, USA, a dam with turbines providing electrical power [8]. More
than 6 km fibers were embedded. Right at the first trial runs of the turbines the fiber-
optic sensors showed a conspicuous resonance in the vibration spectrum of one of
the turbines: The resonant frequency was at 168 Hz instead of 174 Hz as expected.
Given this clue, the turbine’s manufacturer could quickly fix the problem: Due to a
defective component the efficiency was 81 % rather than 92 %! It would have been
much more costly to discover that under load conditions during operation, and those
savings alone paid for the fibers [2].

Fibers have made inroads into two-dimensional problems: Monitoring stresses
on the hull of a ship is now possible in tankers as well as icebreakers. Wind turbines
are another obvious field of application. In aircraft, the monitoring of structural
integrity of the skin—and the wings in particular—is of the greatest importance.
Using a closely knit mesh of fibers, one adds nearly nothing to overall weight but
obtains the perfect means of diagnosis. Such a skin with embedded high tech is also
known as “smart skin.” Raman scattering types allow temperature monitoring due
to temperature-dependent wavelength shifts and find applications in fire detection in
tunnels, pipeline monitoring, etc. On the other hand, arrays of fiber-Bragg gratings
(mostly for stress and strain detection) seem to be commercially more successful
than truly distributed sensing schemes (see Figs. 12.7 and 12.8).

This is again the point where two considerations converge. Large amounts of data
as produced by a smart skin need to be transmitted. There is hardly a better medium
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Fig. 12.7 Package of a commercial fiber-Bragg grating temperature sensor specified for the range
�30 to C80 ıC with 0:1 ıC resolution and 0:5 ıC accuracy. With kind permission by Telegärtner
Gerätebau GmbH [1] and by AOS GmbH [3]

Fig. 12.8 A commercial fiber-optic strain and temperature sensor designed to be welded directly
onto the metal structure to be monitored. This 15 by 40 mm size device is specified to acquire
˙2500�strain with a resolution of 0:4� strain and a temperature of �170 to C150 ıC with
0:05 ıC resolution. With kind permission of Smart Fibres Limited, Bracknell, UK [4]

for this task than optical fiber, an excellent medium for communications. The same
on-board fiber network that transmits communications (and is in place anyway) can
double to transmit information on mechanical stress, temperature extremes, etc. In
the narrower sense of the word this, too, is communication except it is not humans
like captain and flight engineer who are doing the communicating, but rather the
engine, the wing, and the computer.

In recent years many countries have massively introduced unmanned aerial
vehicles (UAVs) for reconnaissance and also combat. They are known to the general
public as drones; the US military alone has several thousand of them. Figure
12.9 shows an early version on which fiber-optic sensing was tested (image taken
2007). While in manned vehicles, pilots directly sense and report events like bird
strike, lightning strike, impact of runway debris, or just unusual vibrations, in
UAVs sensors must be used. Fiber-optics has become the standard for sensing



308 12 Fiber-Optic Sensors

Fig. 12.9 NASA’s Ikhana, a modified Predator B unmanned aircraft adapted for civilian research,
is being used to test advanced, fiber optic-based sensing technology to monitor structural integrity.
Six fibers on the wing’s top surface provide more than 2000 strain measurements, thus providing
full information of the wing shape in real time. They add merely 1 kg of weight and do not
appreciably affect aerodynamics. The data gathered improve safety, but the ultimate goal is to
develop active control of wing shape so that the aerodynamics can be adapted to take-off, cruising,
and landing. Such capability could dramatically improve efficiency and performance. From [5]

and real-time structural health monitoring due to its obvious advantages: At small
size and minimal weight this technology provides high bandwidth, is immune to
electromagnetic interference, and is, after some trials, easily embedded. The same
advantages also apply to other aircraft of all types, and also to all other types of
vehicles. With respect to military applications it is a safe bet to assume that all
recent constructions of aircraft, ships, and submarines are equipped with a lot of
fiber even when this is not disclosed due to classification.

Now consider the numerous electrical cables in automobiles. Beginning in
the luxury car segment and gradually filtering down to medium-class vehicles,
copper cables are replaced with fibers because of space and weight savings and
immunity to electromagnetic interference, straightforward insertion of some fiber-
optic sensors, and because the tremendous bandwidth allows the introduction of
advanced on-board sound and infotainment systems. Initially plastic optical fibers
(see Sect. 5.4.4) were deemed appropriate as distances are short and data rates
were moderate. This now begins to change, and silica fibers are being discussed
as increasing data volumes are used.

Fault tolerance refers to the ability of equipment to keep working even when
part of it is damaged. This is an important requirement everywhere, and in combat
aircraft it is absolutely vital. It can be met by linking all on-board components
through a web-like structure, rather than linear point-to-point connections, because
then in the event of any local damage, data flow is not interrupted but can be
rerouted. This is a strategy well known to power utility companies and telephone
service providers alike, and it applies to on-board fiber-optic networks, too.

The paradigm of a web structure is the internet which, as is well known, was
designed with the idea in mind that it should be nearly indestructible. What cannot
be killed even by a nuclear blast is obviously quite robust. Some crooks exploit this



References 309

robustness by sending us zillions of spam messages or trading in unsavory material,
all the while relying on the notion that they are almost unstoppable. This activity is
detestable, but it does illustrate the point.

12.4 The Status Today

These days structures such as dams, bridges, tunnels, mines, storage tanks, and
towers are more and more often equipped with sensors, and fiber-optic types are
used increasingly and command an increasing share of the total sensor market. The
most frequently used types are based on fiber-Bragg gratings, Raman and Brillouin
scattering, and mechanical or thermal length variation.

Fiber-optic sensors are always in competition with existing technology, and must
assure a definite advantage before they are adopted. There is the difficulty that on
one hand scientists working in research labs are fully prepared to respectfully treat
novel technology with care, but that on the other hand in the environment of a major
construction site the hard hat-wearing crowd has little patience for the fragility of
delicate fibers. If one embeds a fiber in concrete, one should take great care not to
break the fiber end at the place where it sticks out of the concrete: If it is broken, it
may be useless (and is indeed a “lost fiber”!).

Nonetheless, fiber-optic sensors are big business now: Various market
researchers place the current (2016) global consumption across all types near 3
billion US $/year. If current growth continues, that number will exceed 4 billion
US $/year by 2018 [6]. Continuous distributed sensors are the fastest growing
segment, and already make up 2/3 of the value. By value, applications are in the
military/aerospace/security sector, followed by petrochemical/energy, then civil
engineering/construction and structural health monitoring. By-value shares are
skewed towards those sectors requiring long fibers; biomedical and other scientific
applications may be relevant by number, but require short fiber lengths and are thus
minor by value.
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Part VI
Appendices

Beyond the fiber itself, a fiber-optic cable contains a complex structure of mechan-
ical elements for protection against abrasion and stress. The picture shows the tube
that contains the fiber; not visible is the gel filling. Further outside there are strands
of Kevlar fiber acting as stress members. Kevlar is a resilient fibrous material from
which, among other things, bulletproof vests are made.



Chapter 13
Decibel Units

The measurement units of “decibels” are in widespread use in electrical engineering;
both physicists and engineers are expected to use them proficiently. They constitute
a logarithmic measure useful for gain factors, attenuation factors, etc. The advantage
of using a logarithmic measure is that in a transmission chain, there are many
elements concatenated, and each has its own gain or attenuation. To obtain the
total, addition of decibel values is much more convenient than multiplication of
the individual factors.

13.1 Definition

One decibel is the tenth part of 1 B. The name refers to Alexander Graham Bell; for
historic reasons his name is truncated to “Bel.” One Bel designates a ratio of 10:1
between two quantities which have the dimension of a power. Let us call them P1
and P0:

ıŒBel� D log10
P1
P0
:

It is also common to use this definition for quantities that are proportional to a power,
such as energy, work, energy density, or intensity (power per area). Of course, both
quantities involved must be of the same type so that the argument of the logarithm
is dimensionless.

In contrast to standard practice in the SI system of units, neither the unit Bel itself
nor its combination with prefixes such as milli- and micro- is used. The decibel is
the only form in use, and it is abbreviated as dB. In fact, one would rather speak of
one hundredth of a decibel than a millibel. A decibel is defined as the tenth part of
a Bel, so that

ıŒdB� D 10 log10
P1
P0
:
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For example, inserting the output power of some amplifier as P1 and its input power
as P0, ıŒdB� is the gain factor. Negative gain factors imply attenuation.

It is prudent to remember a few selected numbers: 10 dB imply a factor of
10, 20 dB a factor of 100. 3 dB pretty closely corresponds to a factor of 2, and
correspondingly, 6 dB to a factor of 4.

13.2 Absolute Values

Up to now we described the use of the dB as a relative unit. It can also be used for
absolute values when a standardized reference value for P0 is agreed upon. Most
frequently, this is the value of 1 mW. Whenever power is measured with reference
to 1 mW, the letter “m” is appended to the dB to produce dBm:

ıŒdBm� D 10 log10
P

1mW
:

For example, the maximum output power of amplifiers is frequently quoted in dBm.
Thus, 40 dBm are a fancy way to say 10 W.

Another variant of using dB units for absolute values is in widespread use: dB�V
implies dB referred to a reference voltage of one microvolt.

Carried away by the convenience of the notation, some authors use dB for just
about all kinds of quantities. There have been sightings of, e.g., the ratio of two
resistances in dB. This author strongly recommends against such practice.

13.3 Possible Irritations

When using decibel units, novices frequently get confused in either one of two
circumstances.

13.3.1 Amplitude Ratios

The first source of confusion is that decibel is not always used for powers. In
electrical engineering in particular, measurement typically yields not power directly,
but rather a voltage U or a current I. As a consequence, when providing a gain factor
of some device, one needs to specify whether it is a voltage gain, a current gain, or
a power gain factor. This distinction disappears when decibel units are used.
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According to Ohm’s law and assuming a standard load resistance R,

P D UI D U2

R
:

Similarly, in optics, the power of a light signal is proportional to the square of
the electrical field amplitude. Again, one needs to specify whether the amplifica-
tion/attenuation is referred to the field amplitude or to the power.

Since

log
U2
1

U2
0

D 2 log
U1

U0

;

decibels can be used without conflict with the above definition when

ıŒdB� D 20 log10
A1
A0

is observed. Here A denotes an “amplitude type” quantity such as voltage and field
strength, which is proportional to the square root of a “power type” quantity as
described above.

13.3.2 Example

Consider an amplifier that boosts some input signal from 1 to 20 mV; source and
load impedance are equal. When specifying the gain factor, one needs to make the
distinction between voltage gain and power gain: Gamplitude D 20, Gpower D 400.
Using decibels the gain factor is simply

ı D 20 log10
20mV

1mV
D 26 dB

or

ı D 10 log10
400mV2=R

1mV2=R
D 26 dB:

Two different numerical values are replaced with a single value in dB. On first
encounter, students tend to find this irritating, but in practical usage it is a real
simplification. Of course we had to assume equal impedances at input and output,
but in radio engineering that is very frequently true.
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13.3.3 Electrical and Optical dB Units

The second source of confusion occurs when light is converted to an electric signal.
As described in Sect. 8.10, common photodetectors such as, e.g., photo diodes,
convert the impinging light power to a proportional electric current. The electric
power delivered by the detector is thus proportional to the square of the received
optical power. One therefore needs to specify whether one speaks of optical or
electric dB. Consider a statement about the dynamic range of some detector, i.e., the
ratio of maximum received power before severe distortion sets on and the smallest
detectable power that is not masked by noise. One “dBopt” corresponds to two
“dBelect”.

13.4 Beer’s Attenuation and dB Units

When light is impinging on a more or less transparent material, the reduction of
power P.L/ with increasing penetration depth L is described by the well-known
Beer’s law:

P.L/ D P0 exp .�˛L/ :

Here, ˛ is called Beer’s absorption coefficient; its reciprocal value is that particular
penetration depth where the initial power P0 has decayed to the fraction 1=e � 37%.

By taking the logarithm, one immediately sees that

˛L D � 1

log10 e
log10

P

P0
:

On the other hand, using the definition of the dB we can write

˛dBL D 10 log10
P

P0
:

Comparing terms yields the conversion formula

˛dB D �˛10 log10 e � �4:34˛:



Chapter 14
Skin Effect

When alternating current flows through a conductor, the current density is not neces-
sarily constant across its entire cross-section. When J.0/ denotes the current density
at the surface, the current density at some depth x below the surface is given by

J.x/ D J.0/e�x=ıe�ix=ı:

Here, ı is a characteristic penetration depth, i.e., that depth where the current density
is reduced by a factor of 1=e � 37% in comparison to the surface. At the same
time, at this depth there is a phase shift of 1 rad. This depth is given by

ı D
s

2�

!�0�r
: (14.1)

Here, in turn, �0 D 4� 10�7 Vs=Am is the vacuum permeability, �r the relative
permeability of the material, � the specific resistance of the material, and ! the
current’s angular frequency.

It is straightforward to realize that at a depth of �ı, there is a phase shift of
180ı. This implies that at this depth the current flows in opposite phase to that at the
surface. This is, of course, a hindrance for the current flow through the conductor
and is felt as an effective increase of resistance. Somewhat paradoxically, a massive
conductor, such as a solid wire, conducts current less well than a hollow conductor
(a tube) of the same outside diameter!

The effective resistance is given by

R D l
�

ıs
(14.2)

with l the length and s the circumference of the conductor. This should be compared
with the usual expression for direct current resistance,

R D l
�

A
;
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Fig. 14.1 Skin effect causes the effective resistance of a cable to rise with increasing frequency.
Optical fiber is superior, in particular at high frequencies

where A is the conductor’s cross-sectional area. In effect, only a surface layer of
thickness � contributes to the current flow.

Inserting Eq. (14.1) into Eq. (14.2) yields

R.!/ D l

s

r
!��0�r

2
:

For our consideration the relevant feature is the relation

R.!/ / p
!:

The effective resistance grows with increasing frequency (Fig. 14.1). This limits the
usefulness of electrical conductors at very high frequencies. Optical fibers do not
suffer from a comparable limitation.



Chapter 15
Bessel Functions

Bessel’s differential equation reads

x2
d2y

dx2
C x

dy

dx
C .x2 � m2/y D 0:

We are only interested in solutions for integer m, denoted as Jm, Nm, and H1;2
m .

The modified Bessel’s differential equation reads

x2
d2y

dx2
C x

dy

dx
� .x2 C m2/y D 0:

Solutions for integer m are denoted by Im and Km.

15.1 Terminology for the Various Functions

Jm Bessel function Cylinder function 1st kind
1st kind

Bessel’s Nm;Ym Bessel function Cylinder function 2nd kind
equation 2nd kind Weber’s function

Neumann function

H1;2
m Bessel function Cylinder function 3rd kind

3rd kind Hankel function

Modified Im Modified Bessel
Bessel’s function 1st kind
equation Km Modified Bessel Modified Hankel function

function 2nd kind McDonald’s function
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15.2 Relations Between These Functions

Nm.x/ D lim
k!m

Jk.x/ cos.k�/ � J�k.x/

sin.k�/
;

H1;2
m .x/ D Jm.x/˙ iNm.x/;

Im.x/ D i�mJm.ix/;

Km.x/ D lim
k!m

�

2

I�k.x/ � Ik.x/

sin.k�/
:

15.3 Recursion Formulae

With Zm denoting some cylinder function of type Jm, Nm, Hm, Im, or Km and with
Z0

m.x/ the derivative of Zm.x/ with respect to the argument x,

xZ0
m.x/ D mZm.x/ � xZmC1.x/;

xZ0
m.x/ D �mZm.x/C xZm�1.x/:

15.4 Properties of Jm and Km

The functions Jm describe standing waves. J0 “looks like” cosine, J1 like sine.
Asymptotically (for very large x) the following approximations hold:

J0.x/ D
r
2

�x
cos.x � �=4/;

J1.x/ D
r
2

�x
sin.x � �=4/;

Jm.x/ D
r
2

�x
cos

�
x � �=4 � n�=2C O

�
1

x

��
:

Functions with negative index are defined as

J�n.x/ D .�1/n Jn.x/:

There is a relation with angular functions of the form

cos.˛ C ˇ sin �/ D
C1X

nD�1
Jn.ˇ/ cos.˛ C n�/;
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which is relevant in context with frequency modulation (see Sect. 11.1.2.2).
Functions Km describe decaying cylinder waves and “look like” decaying

exponential functions. Asymptotically (for very large x), for all m the following
approximations hold:

Km.x/ D
r
�

2x
e�x

�
1C O

�
1

x

��
:

As long as the argument is larger than 2, the error is less than 5 %.

15.5 Zeroes of J0, J1, and J2

J0 J1 J2

2.4048 0.0000 0.0000

5.5201 3.8317 5.1356

8.6537 7.0156 8.4172

11.7915 10.1735 11.6198

14.9309 13.3237 14.7960

. . . . . . . . .

15.6 Graphs of the Most Frequently Used Functions

See Fig. 15.1.
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Chapter 16
Optics with Gaussian Beams

The general public holds the notion of a laser beam as a cylindrical bundle of rays
that travels arbitrary distances without any change of its diameter so that it delivers
the same power density wherever it hits. Take note, James Bond: There is no such
thing as a cylindrical beam. The laws of diffraction make sure that any beam with
a finite diameter widens as it propagates; the wider the beam starts out, the more
gradual is its spreading, but it is always there.

16.1 Why Gaussian Beams?

For the sake of a quantitative description let us consider a Gaussian beam, i.e.,
a light beam with a transverse distribution of power following a Gaussian bell-
shaped curve. Such beams are ubiquitous in laser physics; they originate from laser
resonators for which the Gaussian profile is the lowest transverse mode. As light is
coupled out, one automatically gets a Gaussian beam. The first concise treatment
of the situation, still worthwhile reading today, is given in [1]; for a particularly
transparent description see [4] or [3].

One might think of a Gaussian beam as created in the following way: Start with
a plane wave and send it through an amplitude mask (like a photographic slide).
Let the mask have a circularly symmetric gray scale so that a bell-shaped beam is
carved out of the plane wave.

Once a beam has a Gaussian profile, it will stay that way. Propagation across free
space will change its size, but not the functional form. In other words, the Gaussian
is invariant (except for scale factors) under diffraction. The reader is reminded that
in the far-field limit of diffraction, the field distribution acquires a shape given by the
Fourier transform of the initial shape. It is well known that the Fourier transform of a
Gaussian is again a Gaussian. Therefore, the near field Gaussian profile is preserved
in the far field—and not just in the limiting cases, but everywhere in between, too.
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324 16 Optics with Gaussian Beams

A Gaussian beam is a diffraction-limited beam. It is even better: Among all
diffraction-limited beams, it is the one with the least change of shape.

In analogy to the quantum mechanic uncertainty relation and thinking of light
as a stream of photons, one can multiply the transverse localization error (the beam
radius) with the transverse photon momentum (a measure of the beam’s divergence)
and obtain a product that cannot get arbitrarily small. The minimum product is
fulfilled by the Gaussian beam.

If a Gaussian beam is transmitted through common optical elements—lenses,
curved mirrors—it will get deformed. Nonetheless it will maintain its Gaussian
shape. (This is true if we idealize that the lenses are well centered on the beam.)
It takes stronger actions to destroy the Gaussian profile: Nonaxially symmetric
elements such as cylindrical lenses render it into an ellipsoid version, which can still
be considered a generalization; absorbing elements such as apertures can destroy the
Gaussian profile altogether. A knife blade inserted halfway into the beam will alter
the beam shape.

16.2 Formulae for Gaussian Beams

It is a convention to take the beam radius w (as in width) as that distance from the
axis where the field amplitude is reduced to 1=e of the on-axis value; this is also the
radius where the intensity has rolled down to .1=e/2 of its on-axis value.1

The beam is never cylindrical: Its cross-section varies. At some location the beam
has a minimum transverse extent. This is called the beam waist and serves as an
important point of reference. Let us identify the propagation direction with the z
direction; we conveniently place the zero point at the waist. Then the beam radius
is described by

w.z/ D w.0/

s
1C

�
z

z0

�2
:

Here z0 is a characteristic length called Rayleigh range. It indicates the distance
after which the beam radius has increased by

p
2 and is given by

z0 D �w20
�
:

As one might have expected, z0 is referred to the only length scale of relevance for
wave phenomena, i.e., the wavelength �.

1Confusingly, in some old texts one can find other conventions, like intensity drop to 1=e.
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Fig. 16.1 The contour of a Gaussian beam at r D w.z/ takes its narrowest width w0 at the waist
(z D 0). In the far field, the beam radius w.z/ increases at a fixed angle � , called the beam
divergence

The Rayleigh range marks the transition from near field to far field: For distances
z � z0, the beam propagates approximately without change of radius, whereas for
z 	 z0 the radius grows in proportion to distance or at a fixed angle. This divergence
angle � is found as

� D arctg
w.z/

z
� 1

z
w0

z

z0
D w0

z0
D �

�w0

with w0 D w.0/. The reader should note that for a fixed wavelength � / 1=w0: A
beam with wide waist will widen only gradually. Figure 16.1 illustrates the relations
between w, z, and � .

As a Gaussian beam propagates and widens, the wavefront does not remain plane.
Its curvature can be described by the associated radius, R.z/.

R.z/ D z

"
1C

�
z0
z

�2#
:

Obviously,

lim
z!0

R.z/ D 1 and

lim
z!1 R.z/ D z:

This implies that the wave fronts are indeed plane at the waist; at very large distance
they form segments of spheres centered around the waist. At some intermediate
distance, the curvature has a minimum: This is the case at z D z0 where R.z/ D 2z.
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16.2.1 Example

Find the radius of the bright spot on the lunar surface when we aim the beam of a
He–Ne laser (� D 633 nm) at the moon (z D 384; 000 km)!

At w0 D 1mm, one obtains z0 D 4:96m and wmoon D 77:4 km; at w0 D 1m,
one gets z0 D 4:96 � 106 m and wmoon D 5:99m. Lesson learned: In the absence
of a beam expansion by way of a telescope, the beam is scattered about as to be
undetectable (nearly 80 km), but using a telescope one can illuminate a reasonably
small spot of 6 m radius. This allows, e.g., to hit a retro reflector such as placed
on the lunar surface by Apollo astronauts and still get a detectable back-reflected
signal.

16.3 Gaussian Beams and Optical Fibers

Fibers are waveguides. Indeed, the waves are weakly guided because the index
contrast between core and cladding is very small. In this situation, the fundamental
mode profile is nearly Gaussian. Consider as a thought experiment that the index
difference shrinks to zero: Then one would expect the same shape as in free space. It
is of course simpler to deal with a Gaussian, rather than the complicated composition
of Bessel functions described in Chap. 3. Therefore, this approximation is popular
and sometimes good enough.

When a beam is coupled from free space into a fiber, one is usually faced with the
matching problem between a true Gaussian beam in free space and a less-than-exact
almost-Gaussian profile of the fiber’s fundamental mode. (However, it is usually safe
to assume that in a perpendicularly cleaved fiber surface the wave fronts are plane,
so that for incoupling as well as outcoupling of light the fiber face can be identified
with the position of a beam waist.) The mismatch causes a reduction in coupling
efficiency. Even in the presence of ideal lenses without aberrations, this limit cannot
be surpassed [2]. Part of the light winds up in the cladding and is eventually scattered
out of the fiber, rather than guided in it.

If light propagating inside the fiber is coupled out at the other end and hits a
screen at some distance, the pattern on the screen again is similar to a Gaussian. This
is because the far-field pattern is the Fourier transform of the near-field pattern as
discussed in Sect. 7.3.2 where it was also shown how deviations from the Gaussian
pattern can be exploited to gauge the mode profile.
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Chapter 17
Relations for Secans Hyperbolicus

The function Secans Hyperbolicus (hyperbolic secant) is defined as

sech.x/ D 2

ex C e�x
:

For convenience we introduce a numerical factor

Z D cosh�1.
p
2/ � 0:881373587;

2Z D cosh�1.3/

D ln.3C p
8/ � 1:762747174:

cosh�1 refers to the inverse function arcosh, not the reciprocal of the function. One
finds the following special values (Fig. 17.1):

sech.0/ D 1;

sech.1/ � 0:6480542737;

sech.2/ � 0:2658022288;

sech.Z/ D 1

2

p
2:

A light pulse with envelope U.t/ D OU sech.t=T0/ has the power profile P.t/ D
OP sech2.t=T0/. The following special values hold (Fig. 17.2):

sech2.1/ � 0:4199743416

sech2.Z/ D 1

2
:
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Fig. 17.1 y D sech.x/

Fig. 17.2 y D sech2.x/

The pulse duration, taken as the full width at half-maximum (FWHM), is

� D 2ZT0:

The pulse energy is

E D
1Z

�1
P.t/ dt D OP

1Z

�1
sech2

�
t

T0

�
dt

D 2 OPT0

D 1

Z
OP�:



Chapter 18
Autocorrelation Measurement

18.1 Measurement of Ultrashort Processes

It would be a straightforward task to measure duration and shape of picosecond or
femtosecond pulses if detectors (and oscilloscopes) with temporal resolution better
than the pulse duration would exist.

However, the fastest photodiodes are restricted to temporal resolutions of several
picoseconds. A dramatic advance of technology is not anticipated, because the finite
mobility of charge carriers themselves inside the solid-state detectors defines the
limitation.

For this reason, an entirely different method is used for temporal measurements
on ultrashort time scales. The central idea is charming: The pulse to be measured
is referenced to itself. The technique is known as autocorrelation measurement. It
does indeed work—the price to pay is that one does not obtain the full unambiguous
information about the pulse shape. To understand the principle, let us first briefly
discuss the mathematical concept of the autocorrelation function, without getting
too formal.

18.1.1 Correlation

The word “correlation” describes a similarity. If A does something and B does
the same at the same time, then the actions of A and B are correlated. If B
consistently does the opposite of what A does, then they are anticorrelated. If B
acts independently of A, both are uncorrelated.

Speaking more specifically, we will compare two real functions of time, f .t/ and
g.t/. How can we establish a similarity?

First, we take the product of both functions, f .t/ � g.t/. It should be obvious
that this product is non-negative when both functions have the same algebraic sign
(no matter which one) at all times—whenever one changes sign, so does the other.
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On the other hand, the product is negative whenever both functions have opposite
sign (again, no matter which function has which sign).

In the event that f .t/ and g.t/ are, say, independent random functions, either will
change sign at random times that usually do not coincide with the moments at which
the other changes sign. The product, then, will be positive at some times, negative
at others—and in the long run, either possibility will occur about half of the time.
On average the product is zero.

This brings us to the correlation which is the long-term average of the
product:

corr D
Z C1

�1
f .t/g.t/ dt:

For uncorrelated functions this quantity will tend to zero.
What happens if the functions are related? The strongest possible correlation of

f .t/ and g.t/ occurs when both are identical (up to a scale factor), or f .t/ D ag.t/
with a some positive real constant. In that case, corr will take its (positive) maximum
value. If, on the other hand, f .t/ D �ag.t/, corr takes the same value but with a
negative sign. This constitutes the strongest possible anticorrelation.

18.1.2 Autocorrelation

For those trained in Latin and Greek, the word “autocorrelation” is immediately
clear: it describes a correlation of something with itself. The autocorrelation
function is the temporal average of the product of two functions, which are identical
except for a temporal shift � :

autocorr.�/ D
Z C1

�1
f .t/f .t C �/ dt:

It is convenient, and customary, to normalize this expression to its maximum
possible value, which occurs, as argued above, for � D 0:

ACF.�/ D
R C1

�1 f .t/f .t C �/ dtR C1
�1 f .t/2 dt

:

ACF.�/ has the following properties:

• ACF.0/ D 1 for any function f .t/ (which is not zero everywhere); this is due to
the normalization.

• �1 � ACF.t/ � C1 for all t and any function; the case ACF.t/ > 1 is impossible
for all t.

• ACF.T/ D ACF.�T/: ACF is symmetric.



18.1 Measurement of Ultrashort Processes 333

• If f .t/ D const:, then ACF.t/ D 1 for all t, independent of the value of the
constant (disregarding the case of zero).

• If f .t/ D f .t C T/, then ACF.T/ D 1: Periodic functions have a periodic
autocorrelation function with the same period. Phase is irrelevant, though.

To develop a feeling for this, consider a few selected functions.

Sine function. If f .t/ D A sin.!t C '/, then ACF.�/ D cos.!t/. This is
independent of '. Thus, it is also true for ' D �=2, that is, for cosine instead of
sine.

Noise. ACF.0/ D 1 is true for any function; on the other hand, we noted above
that for a random signal, ACF.�/ D 0. There is no contradiction. At � D 0, ACF
of noise is equal to 1 and then drops very rapidly to zero as � grows. The range of
� over which ACF decays and is still different from zero indicates the correlation
time of the signal.
The inverse of the correlation time is the bandwidth of the noise; there is
no such thing in physics as noise with infinite bandwidth or zero correlation
time. Nonetheless that limiting case is important conceptually and is studied by
theorists due to its nice mathematical properties. It comes by the name of ı-
correlated white noise. Any physical noise has a correlation time that is different
from zero because nothing in nature ever acts infinitely fast. White noise with
infinite bandwidth violates the law of energy conservation.

Gaussian. A signal with a temporal variation according to a Gaussian (a Gaussian
pulse) has an autocorrelation function that is Gaussian again, but is wider by
a factor of

p
2. We encountered the spatial case in Sect. 7.3.1: Measurement

of a mode profile in the near field by the transverse offset method yields the
autocorrelation function of the mode profile. As long as one can justifiably
approximate it as a Gaussian, one can take the measured radius and simply divide
by

p
2 to obtain the correct modal radius.

18.1.3 Autocorrelation Measurements

Let us return to our task to measure the duration of ultrashort optical pulses. The
procedure involving the autocorrelation function is now easy to understand. In the
setup of an autocorrelator, the light beam carrying the pulses is first split at a partially
reflecting mirror with reflectivity R D 50%. Thus, there are two paths; on each
there is one replica of the pulses to be measured. Both replicas are recombined
in a nonlinear crystal. The crystal is chosen such that it can generate the second
harmonic of the light [a �.2/ effect; compare Eq. (3.18)]. In this case there always
is a term containing the product of two electrical fields. Each partial beam by itself
creates such a product of its field with itself, i.e., jE1j2 and jE2j2; of more interest
for us is the combination term of E1E2, which is also generated. (In a popular
variant called background-free autocorrelation, these three contributions can be
geometrically separated and only the combination term is used.)
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Fig. 18.1 Sketch of an optical autocorrelator setup. Two replicas of the pulse stream to be
measured arrive at a frequency-doubling crystal through different paths. Only if both arrive at
the same time can there be appreciable power in the combination product which is monitored by
the detector. By variation of the path-length difference, one can map out the temporal pulse shape

Finally, a temporal integration is performed. In practice, one does not need to
push the integration limits to ˙1; it fully suffices when the integration interval is
much longer than the pulse duration. Ironically, a slow photodetector is not only
good enough here: it is actually required to be slow!

Both replicas of the incoming beam travel similar, but not necessarily equal, path
lengths before they are recombined at the focal point of a lens, which is inside
the nonlinear crystal (Fig. 18.1). By fine-tuning the path-length difference, one can
arrange that both replicas arrive simultaneously so that a maximum combination
product term is generated and registered on the detector.

The measurement is performed in the following way: The path difference is
scanned while the detector signal is monitored. Typically one provides the path
difference information to the horizontal input of an oscilloscope, and the detector
signal to the vertical input. As the path difference is varied, the pulse profile (or
more precisely, its autocorrelation function) is mapped out and appears as a trace on
the oscilloscope screen. If this is done at a repetition rate of at least 30 Hz, the eye
perceives a flicker-free representation of the pulse shape.
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18.1.4 A Catalogue of Autocorrelation Shapes

Since it is not the pulse shape directly which is measured, there is always the
question of finding the pulse shape that corresponds to the measured autocorrelation
function. This is not a unique relation, but in many cases one has some extra
information to reduce the ambiguity and gets away with it. We list the relation in
Table 18.1, and in Fig. 18.2 by way of symbolic schematic representations.

Table 18.1 Table of some selected pulse shapes and the corresponding autocorrelation functions

Pulse shape Corresponding autocorrelation

Rectangular, width ˙1 Triangular, width at pedestal ˙2
Gaussian, width T Gaussian, width

p
2 T

sech2.t/ 3
t cosh.t/� sinh.t/

sinh3.t/
Two equal pulses separated by T Three-pronged fork. Prongs separated by T. Cen-

ter component is twice as high as off-center com-
ponents. Width of components: ACF of original
pulses

Fig. 18.2 Schematic survey of autocorrelation signals for different pulse shapes. The ACF of a
sech2 pulse is given in Table 18.1. A pulse pair is represented by a “three-pronged fork”; the center
peak is twice as high as the off-center peaks
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It is important to note the following facts: Autocorrelation measurements allow
to assess pulse durations down into the few-femtosecond regime; it is conceivable
that this can be pushed even further. This exceeds the temporal resolution of direct
detection by several orders of magnitude.

On the other hand, autocorrelation measurement do not yield the pulse shape
directly. The pulse shape cannot be uniquely reconstructed from the autocorrelation
function. (The other way around it would work; alas, that is of little help.) In
particular, phase information about the pulse (such as, the existence of a chirp)
is lost.

As a consequence, an ambiguous determination of the pulse shape implies an
ambiguity in the pulse duration. Absent a better solution, one typically makes
educated guesses about the pulse shape based on independent information, then
calculates the pulse width based on that. This is certainly less than exact science.
There are more involved procedures giving more detailed information (see, e.g., [1]),
but they are not always available. However, as long as the procedures used are stated
clearly (like, the width is quoted as “FWHM assuming a Gaussian shape” or so),
this is acceptable, and indeed widespread practice. On the other hand, one should
not attribute a precision to the widths thus determined, which is not warranted.
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Kluwer Academic Publishers, Dordrecht (2000)
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Akhmediev breather (p. 188) Special solution of the ! Nonlinear Schrödinger
equation involving a continuous wave background from which a perturbation
arises, culminates in a series of power peaks, then decays again. This is the
mechanism behind ! modulational instability.

Amplifier (p. 153) In optics, a device which increases the power of a light wave
passing through it. Amplifiers are a central element of any ! laser. In optical
telecommunications, mostly semiconductor optical amplifiers and doped-fiber
amplifiers are used.

Autocorrelator (p. 331) Device to measure the duration of ultrashort pulses
down to the few-femtosecond regime. The light beam is split into two; both
parts are brought together again with variable delay in a nonlinear medium. The
mixing signal is detected; the detector does not have to be very fast. The resulting
signal, mathematically the autocorrelation function of the pulse shape, allows
conclusions about pulse duration and shape.

Avalanche diode (p. 169) Special type of ! photodiode, in which a high bias
voltage is applied to accelerate charge carriers to the point that they in turn
generate new carriers. In an avalanche process, an amplification of the primary
photocurrent is obtained.

Bandwidth (p. 250) Frequency interval over which a certain signal contains
energy. Usually stated as the difference between highest and lowest signal
frequency.

Bending loss (p. 89) When an optical fiber is tightly bent, additional loss occurs.
A fiber that carries visible light can be observed to shine brightly at tight bends;
here, some of the guided light is lost.

Birefringence (p. 75) Phenomenon in anisotropic materials. Light of different
linear ! polarization is subject to different ! refractive index.

Bragg grating (p. 142) A periodic array of scatterers (a grating, in the widest
sense) can reflect a wave when a certain relation between grating constant
(grating period) and wavelength is fulfilled; named after William Henry Bragg
and William Lawrence Bragg (father and son), who shared a Nobel prize in 1915.
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Channel (frequency channel) (p. 256) A frequency band reserved for a specific
signal is also called a channel. Using several channels, different signals can be
transmitted simultaneously; this is well known for radio and TV. In fiber optics
one such channel may also be called a ! WDM channel to clarify this use of the
term.

Channel (transmission channel) (p. 261) General term for an arbitrary trans-
mission medium such as a cable and radio link. which provides a certain !
bandwidth. This results in a certain ! channel capacity.

Channel capacity (p. 262) According to a theorem by C. Shannon, there is a
maximum rate with which information can be successfully transmitted over a
given ! channel; this rate is known as channel capacity.

Chirp (p. 184) Term denoting a slide of carrier frequency within a short pulse of
light. The product of spectral and temporal width can be equal to or larger than a
certain constant; in the presence of chirp it is larger.

Circulator (p. 148) A device to steer light signals between several ports. It lets
light beams pass in one direction. Light beams traveling in the opposite direction
are redirected to a third direction.

Cladding (p. 19) The zone in an optical fiber which surrounds the ! core.
In most commercially available fibers the outside diameter of the cladding is
125�m.

Core (p. 8) The innermost zone in the structure of an optical fiber. In the case
of ! single-mode fibers the radius is several micrometers. Most of the light is
guided in the core.

Coupler (p. 149) Device for coupling of two fibers, so that signals traveling in
them can be split or combined.

Cutoff wavelength (p. 47) The shortest wavelength at which a fiber supports
only a single mode. Occasionally also used for the limit of existence range of
higher-order ! modes.

Dispersion (p. 10) Wavelength dependence of some optical characteristic of a
signal. This may be the ! refractive index of a glass or the deflection angle
of a prism (“angular dispersion”). In fiber optics the term usually refers to the
group velocity dispersion.

Fabry–Perot interferometer (p. 138) Arrangement in which light passes back
and forth between two mirrors. When the round trip distance equals an integer
multiple of the wavelength, a resonance occurs. Fabry–Perot interferometers are
often used to select specific wavelengths, e.g., in laser resonators. The name
derives from Charles Fabry and Alfred Pérot (Marseille, ca. 1890).

Fiber (p. 6) Spelled fibre in Great Britain. Here the term refers to optical fibers,
thin flexible strands of glass which can conduct light.

Fiber laser (p. 157) A type of ! laser, in which the ! amplifier (gain medium)
is formed by a fiber which is doped with active substances. In optical telecom-
munications, it is particularly the Erbium-doped fiber which finds widespread
use.

Fused silica (p. 6) Chemically, silicon dioxide, but in glassy rather than crys-
talline form. The corresponding crystal is called quartz.
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Gaussian beam (p. 174) Light beam which contains a single spatial ! mode. It
is characterized by a transverse power profile which takes the form of a Gaussian.
Gaussian beams are diffraction-limited, i.e., their spread is minimal. They are
typically generated in lasers, and can propagate in free space. In fibers, the
fundamental ! mode is only approximately Gaussian.

Gradient index profile (p. 68) In some fibers the ! refractive index in the !
core is not constant but varies continuously in the radial direction, typically
in a parabolic way. In ! multimode fibers, such a profile reduces ! modal
dispersion.

Higher order soliton (p. 200) Solution of the ! nonlinear Schrödinger equation
similar to a fundamental ! soliton but with an amplitude that is larger by a factor
N � 1:5. Can be understood to be a compound of several fundamental solitons;
they beat with each other during propagation; hence an oscillating pulse shape.
They come apart in the process of ! soliton fission.

Holey fiber (p. 79) The ! cladding of this type of fiber contains voids, i.e.,
cylindrical hollows which run the entire length of the fiber. This lowers the
effective ! refractive index of the cladding and enables the guiding of light.

Isolator (p. 146) In optics, an arrangement which allows light to pass in one
direction, but blocks it in the opposite direction.

Kerr effect (p. 175) Also known as “quadratic electro-optic effect,” named after
John Kerr (1875). By the Kerr effect the ! refractive index of a material is
modified in proportion to the square of the amplitude of an applied electric field.
In fibers the “optical Kerr effect” occurs in which the light field takes the role
of the applied field. Then the refractive index is modified in proportion to the
intensity of the light.

Laser (p. 6) The acronym stands for “light amplification through stimulated
emission of radiation.” A light source capable of producing coherent light. The
laser principle relies on stimulated emission in a material which is used as
an optical ! amplifier. Energy must be supplied for the amplification; in the
example of ! diode lasers, this is done by running a current through the device.

Laser diode (p. 160) Type of laser, in which the ! amplifier (gain medium) is
formed by a semiconductor device of diode structure. Energy is supplied by an
operating current.

Latency (p. 289) The total propagation time from transmitter to receiver, rep-
resents a delay by which the signal is received. It is fundamentally limited by
the geographical distance times the fiber’s group index, divided by the speed of
light. That amounts to ca. 100 ms from some point on earth to its antipodal point,
measured along the great circle. On top of that there can be additional delay due
to processing for error correction, etc. Low latency is relevant for timing-sensitive
information, in particular in financial markets.

LED (p. 159) Acronym for light-emitting diode, also known as luminescent
diode. A semiconductor device producing light when an operating current passes
through. Simpler in structure than a ! diode laser; also, the light is not coherent.
Often used for indicator or pilot lights in electronic equipment of all kinds.
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Increasingly used for general illumination as LED technology proceeds because
LEDs are much more power-efficient than light bulbs.

Material dispersion (p. 55) Phenomenon based on the frequency dependence of
the ! refractive index. It lets short pulses of light widen as they propagate
through a fiber. It also causes chromatic abberations in lens-based imaging and
enables prisms to spread white light into colors.

Modal dispersion (p. 23) In ! multimode fibers different ! modes propagate at
different speed. This causes a scatter in the arrival time at the receiving end. This
spreading of a signal pulse is called modal dispersion and is typically measured
in ps/km.

Mode (p. 26) Throughout physics there is an important concept of elementary
oscillations known as modes. Resonators of a given geometry support specific
modes which can be obtained from the geometric constraints. For example, a
violin string has a fundamental oscillation and harmonics, each with its own
characteristic frequency and oscillation pattern. In optical fibers, the constraints
select certain field distributions and propagation constants known as the modes
of the fiber. Fibers can be designed to be ! single-mode or ! multi-mode fibers.

Mode coupling (p. 26) Energy can be exchanged between the ! modes of a fiber
at perturbations of the geometry, like in tight bends.

Mode division multiplex (p. 290) Technique to use several modes of a few-mode
fiber to carry independent data streams. Related to ! space division multiplex.

Mode locking (p. 160) The phases of longitudinal modes of a laser can be locked
together to generate very short pulses of light.

Modulation (p. 120) In optics, the controlled modification of amplitude, phase,
frequency, or polarization of a light wave in order to impress information on it
which is then carried along.

Modulational instability (p. 187) Phenomenon in some materials exhibiting !
nonlinearity, in which a continuous wave becomes unstable and forms a more or
less periodic modulation. In fibers this can happen by the interplay of ! Kerr
effect and anomalous ! dispersion. See also ! Akhmediev Breather.

Multimode fiber (p. 8) Type of fiber which supports several ! modes. Due to !
modal dispersion this is useful only for moderate data rates and short distances.
Plastic optical fibers are almost always multimode fibers. The total power of the
light signal is distributed over all participating ! modes. This distribution may
fluctuate; then mode partition noise is generated which can be a nuisance in many
contexts including fiber-optic ! sensor applications. The safest fix is the use of
! single-mode fiber.

Nonlinearity (p. 11) The phenomenon that a property of a device or material
which has an influence on the signal may not be constant but affected by the
signal. In fiber optics the most relevant nonlinearity is that the ! refractive index
of the fiber depends on the light intensity by way of the ! Kerr effect.

Nonlinear Schrödinger equation (p. 181) Wave equation describing propaga-
tion of light in optical fibers in the simultaneous presence of both ! dispersion
and ! nonlinearity, each represented by the leading term (second order group
velocity dispersion; optical ! Kerr effect).
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Normalized index step (p. 22) A metric for the difference of ! refractive index
between ! core and ! cladding of a fiber. In most fibers this difference is in
the range from 0.001 to 0.01. Bend loss tends to be lower for fibers with large
values.

NRZ (p. 255) Acronym for no return to zero: A binary coding format in which
the light power stays constant throughout the entire clock period. In a succession
of several logical “1”s, the light power stays on for several clock cycles, without
returning to zero in between. Compare ! RZ.

Numerical aperture (p. 21) A metric for the acceptance angle of a fiber, i.e., the
angle of the cone within which light can be coupled into a fiber. The same cone
also appears for light leaving the fiber.

OTDR (p. 131) Acronym for optical time domain reflectometry: Procedure to
measure the time after which a light pulse returns from the fiber and to evaluate
for the position of loss from bends, splices, damage, etc.

Peregrine soliton (p. 207) Special solution of the ! Nonlinear Schrödinger
equation involving a continuous wave background from which a perturbation
arises. It grows until it forms a singular peak which then disappears again.
Discussed in the context of ! Rogue Waves.

Photo diode (p. 165) Semiconductor device for the detection of light. The pho-
toeffect creates free charge carriers inside the photodiode; these give rise to a
current which can be measured.

Photonic crystal fiber (p. 79) Similar to ! holey fiber, voids run the entire
length of the fiber in the ! cladding zone. Here the holes are located precisely in
a periodic pattern so that by a ! Bragg effect it acts as a reflector. This generates
a strong guiding of light so that the ! core can even have a lower ! refractive
index than the ! cladding, without compromising the guiding.

PMD (p. 56) Acronym for polarization mode dispersion. In ! birefringent
fibers, parts of the signal with different ! polarization propagate at different
speed; this causes a distortion of the signal.

Polarization (of matter) (p. 30) Under the action of an external electrical field as
provided by a light wave, electrons in a material experience Coulomb interaction
forces. This distorts the atomic orbitals. Do not confuse with ! polarization of
light.

Polarization (of light) (p. 74) Orientation of the oscillation in a wave. The oscil-
lation can take place longitudinally (e.g., in sound waves in air) or transversally
(in light waves). If it is transversal, there are several choices for the direction:
The oscillation can be linear (two orthogonal directions, and their linear com-
binations) or circular (two directions of rotation, and their linear combinations).
Ordinary lamp light or sunlight is often called “nonpolarized”; here the state
of polarization changes extremely rapidly so that over time all possibilities are
represented with equal probability. Do not confuse with ! polarization of matter.

Polarization-maintaining fiber (p. 76) A type of fiber in which by design the
! birefringence has been made large. To maintain polarization requires that the
light be linearly polarized along one of the birefringent axes.
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Polarizer (p. 145) Device which selects the component of a desired polarization
from a light beam with arbitrary ! polarization.

Preform (p. 107) Intermediate state in the production of optical fibers.
Refractive index (p. 6) Also index of refraction: An important quantity in optics

to characterize a material. The refractive index is a complex function of
wavelength. The real part indicates how much the speed of light is reduced in
comparison to vacuum. It also governs the angle of refraction when light passes
through an interface between different media and is therefore responsible for
the function of prisms and lenses, among other things. Its frequency dependence
gives rise to ! material dispersion. The imaginary part describes the attenuation
of the light wave. Since attenuation can often be neglected in typical materials
encountered in optics (air, glass, etc.), the term “refractive index” is often used
for the real part alone.

Rogue wave (p. 207) Concept from water waves on the ocean surface, referring
to rare events of huge waves occurring suddenly and disappearing immediately
again. Analogous situations have been discussed in which isolated power peaks
are formed in optical fibers due to interaction with ! dispersion and !
nonlinearity. Typically occurs in the context of ! supercontinuum generation.
See also ! Peregrine soliton.

RZ (p. 255) Acronym for return to zero: A binary coding format in which a light
pulse signals a logical “1,” and its absence a logical “0.” The pulse duration is
shorter than the clock period so that at the beginning and end of each clock period
the intensity is zero in any event. Compare ! NRZ.

Self phase modulation (p. 184) Process in optical fibers in which ! nonlinearity
(! Kerr effect in particular) generates a ! chirp in light pulses.

Sensor (p. 13) Device which assesses some physical (or chemical, etc.) quantity
and transfers the value to some easily evaluated format, such as an electrical
voltage. Fiber-optic sensors gain acceptance and sometimes can do things which
other sensors cannot.

Single-mode fiber (p. 8) Fiber which supports only a single ! mode. Speaking
strictly, this mode is doubly degenerate (and may therefore be counted as
two) due to polarization effects. Single-mode fibers are indispensable for the
transmission of very high data rates over long distances.

Soliton (p. 190) A light pulse which maintains its shape during propagation in
the presence of both ! dispersion and ! Kerr effect. Sometimes referred to as
fundamental soliton, to distinguish from ! higher-order soliton.

Soliton fission (p. 239) The process of splitting a ! higher-oder soliton into
its constituent fundamental ! solitons. One of the mechanisms to start the
generation of ! supercontinuum.

Space division multiplex (p. 290) In order to increase the data-carrying capacity
of fibers, the concept of multiple core fiber places different data streams across
the fiber’s cross section. The concept is related to the use of fibers that admit
several modes; these modes are used to carry independent data streams (mode
division multiplexing).
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Splice (p. 139) Low-loss joint between two fibers. Most often, fusion splices are
used: The cleaved surfaces of two fibers are put together, heated, and melted
together.

Step index fiber (p. 19) Optical fiber consisting of ! core and ! cladding;
either zone has a fixed ! refractive index. This results in a radial step in the
index profile.

Supercontinuum (p. 206) In optics, supercontinuum describes light with a very
wide spectrum, roughly one octave or more. It can be generated from irradiated
laser light in the presence of nonlinear interactions in suitable media. This works
particularly well in ! holey fiber. The spectral power density of supercontinuum
can easily exceed that of thermal light sources, as it is not limited by the Planck
distribution.

TDM (p. 253) Acronym for time division multiplex. Format for the simultaneous
transmission of several signals which are interleaved into each other so that one
falls into the pauses of the other.

Total internal reflection (p. 17) Phenomenon at the interface between two mate-
rials with different ! refractive index. The medium with the higher index is
often called “optically more dense.” If a light ray inside the more dense medium
(n D na) hits the interface with the “thinner” medium (n D nb < na) under
a sufficiently flat angle, it gets totally reflected. The limiting angle is given by
˛crit D arcsin.nb=na/.

Waveguide dispersion (p. 62) Contribution to a fiber’s total ! dispersion which
is specific to the geometry of a waveguide.

WDM (p. 152) Acronym for wavelength division multiplex. Format for the simul-
taneous transmission of several signals by spreading them out over the available
! bandwidth of the ! transmission channel.
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Abbe number, 57
absorption coefficient, 33, 181, 183
acceptance angle, 21
Akhmediev Breather, 189, 207
aliasing, 253
amplifier, 153, 156, 157, 264, 279

fiber, 156
Raman, 220
semiconductor, 157

autocorrelation, 237, 333

bandwidth, 250, 262
beam waist, 174, 324
beat length, 75, 77
bend loss, 134
Bessel’s differential equation, 38
birefringence, 56, 74–76, 145
bit error rate, 261
bit rate, 254
bowtie fiber, 76
Brillouin scattering, 211, 212, 216

channel capacity, 262, 282
chirp, 185, 195, 225
chirped pulse amplification, 228
circulator, 148
cladding, 19, 26
clock rate, 257, 258
combiner, 151
communications theory, 261
connector, 136
core, 19, 26
coupler, 149
cutoff wavelength, 45, 129, 130

data rate, 262
delay distortion, 23, 55
DFB laser, 162, 163
dispersion, 55, 179, 183, 195, 238, 263, 265,

268, 271
anomalous, 64, 226, 239
chromatic, 55
material, 55
measurement of, 119
modal, 23, 55
normal, 64, 203, 225
polarization mode, 56, 74, 75, 255, 257,

281
profile, 55, 62
third-order, 61
waveguide, 55, 62, 64

dispersion coefficient, 60
dispersion management, 268, 272
dopant, 106, 154

erbium, 154
eye diagram, 274

Fabry-Perot interferometer, 138, 141
fiber

dispersion-flattened, 73
dispersion-shifted, 73, 266, 279
endlessly single-mode, 83
gradient index, 7, 68
holey, 78
multi-mode, 8, 47, 94, 133
photonic crystal, 79
plastic, 96
polarization-maintaining, 76, 110
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quadruple-clad, 72
single-mode, 8, 47, 133, 136, 164, 213
step index, 19, 73

fiber laser, 164, 165
finger splice, 136
four wave mixing, 209, 210, 268, 282
Fresnel reflection, 216
fundamental mode, 70
fused silica, 6

glass temperature, 103
gradient index profile, 25
group index, 59
group propagation time, 58
group velocity, 58, 64, 181
GVD parameter, 61

information capacity, 67
intensity, 52
irradiance. See intensity
isolator, 146

Kerr effect, 182

laser diode, 7, 158, 160, 163, 164, 252
distributed Bragg reflector, 162
distributed feedback, 162
gain guided, 161
index guided, 161
VCSEL, 163

latency, 289
LED, 158, 159, 163, 252
light pulse, 55, 182, 184, 186, 192, 198, 209,

225, 234, 237, 270
loss, 87, 92, 95, 117, 118, 133, 137, 145, 179,

211, 263, 264, 266
macro bending, 89
micro bending, 91

Maxwell’s equations, 29
mode, 38, 45–47, 49, 50, 53

fundamental, 42, 45, 47, 50
lateral, 164
longitudinal, 164

mode division multiplex, 292
mode field radius, 124, 126, 136
mode partition noise, 26
modulation, 248
modulational instability, 188
monochromatic, 55

noise, 262, 265
quantum, 259, 260
thermal, 259

nonlinear optics, 34
nonlinear Schrödinger equation, 181, 187, 195,

203–205, 225, 237, 270, 271
nonlinearity, 173, 178, 179, 233, 234, 263, 270,

272
coefficient of, 176

normalized frequency. See V number
NRZ, 257, 258
numerical aperture, 21
Nyquist pulse, 276

optical Kerr effect, 176
OTDR, 131, 273

PANDA fiber, 76
parabolic profile, 68
paraxial approximation, 32
paraxial wave equation, 183
Peregrine soliton, 207
phase matching, 210, 268
phase velocity, 178, 179, 181, 210
photo diode, 165, 169

avalanche, 165, 169
InGaAs, 168
silicon, 167

photophon, 5
polarization, 30, 56, 74, 75, 144–146, 257
polarization controller, 145
Poynting vector, 51, 89
preform, 107, 111
propagation time scatter, 257
pulse duration, 65, 193, 198, 233, 238, 270

quantum efficiency, 167
quantum noise, 168, 169

Raman scattering, 211, 218, 219, 238, 264
Rayleigh range, 174, 324
Rayleigh scattering, 87, 211, 273
refractive index, 11, 17–19, 21, 22, 33–35, 40,

55, 175
refractive index profile, 6, 25, 26, 32, 68–73,

76, 107–110, 121, 122, 124
repeater, 133
RogueWave, 207
RZ, 257, 258, 279
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sampling, 252
SDH, 257
self frequency modulation, 185
self phase modulation, 173, 184, 192, 195, 209,

225, 230, 238, 266
Sellmeier’s equation, 57
semaphor, 4
sensor, 299

distributed, 306
extrinsic, 301
fiber-optic, 300
intrinsic, 301

signal, 247
analog, 247
continuous-time, 247
digital, 247
discrete-time, 247, 257

smart skin, 306
soliton, 191, 193, 194, 196, 198–200, 205, 206,

233, 235, 263–267, 270–272, 280,
281, 289

N D 1, 191, 202
N D 2, 200
bright, 204
dark, 203, 204
fundamental, 191, 192, 195, 196, 233, 239
gray, 204
higher order, 202, 233, 234

soliton fission, 241
soliton laser, 235
SONET, 256

space division multiplex, 292
speed of light, 30
splice, 139
splitter, 151
step index profile, 25, 70
Supercontinuum, 240

TDM, 255
total internal reflection, 17
transmission error, 260
triangular profile, 68

V number, 69, 92, 125
vacuum impedance, 31

wave equation, 32
linear, 33

WDM, 256, 263, 266, 267, 271, 281
WDM coupler, 152
whispering galley mode, 130
window

first, 10
second, 10, 278
third, 11, 262, 279

zero dispersion wavelength, 64, 73
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