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Preface

Inferences regarding the interior structure of the Earth, ranging from over 6000 km
to just the first few hundred meters of depth, have to be made to assess the potential
for geohazards as well as to explore for and extract Earth’s many invaluable
resources and even to evaluate the possibility of safely storing materials under-
ground which we wish to remove from the atmosphere (carbon dioxide) or the
surface (radioactive or hazardous wastes). These inferences are based on the
measurement, analysis, and interpretation of external geophysical fields. These
include potential fields such as gravity and magnetic data which are intrinsically
nonunique, i.e., there are many interpretations, each with their inherent measure-
ment uncertainties, which can be derived from a single set of measurements, and
electrical, electromagnetic, or seismic data which similarly offer multiple applicable
models. It is understood intuitively and intellectually by practitioners within the
discipline that the interpretations are intrinsically “FUZZY”. In some cases, it is
possible to drill down to quite considerable depths to “prove” an interpretation,
even if the answer is only actually applicable to a very small region of subsurface
space. However, this is very costly and in some cases, the invasive nature is not
appropriate, e.g., where the act of drilling may compromise the integrity of a
structure such as a radioactive waste repository or quite simply the target may be
too deep; here, geophysical methods are invaluable.

Geophysical research over the past few decades has witnessed a flurry of activity
especially related to soft computing and intelligent methods. Working in the
interdisciplinary field of soft computing and intelligent methods applications in
geophysics and geotechnical aspects for the past 10 years has motivated us to
publish a textbook on this important area of multi-interdisciplinary applied science.
When Prof. Peter Styles was writing his book on the application of geophysics to
environmental and civil engineering, I proposed that he added a section within a
chapter or a chapter about the application of neural networks and fuzzy logic in
gravity interpretation. However, upon reflection, it was felt that this subject was too
advanced to be included. He then encouraged me to develop a specialist book on
this topic. We agreed to collaborate on a draft for a book on the application of soft
computing and intelligent methods in geophysics combining my expertise in the
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application of these mathematical tools and his wide-ranging expertise across the
fields of applied, environmental, and engineering geophysics. We finally developed
the blueprint which is applied in this book.

During the more than a decade that we have worked on the application of neural
networks, fuzzy logic, and neuro-fuzzy aspects, there have been many graduate
students who were very eager to apply soft computing and intelligent methods
(SCIMs) to their own geophysical problems but the books to introduce them to the
topic and guide them in its application, either weren’t available, didn’t explain the
applications to engineering geophysics or for the main part focused on applications
in oil exploration with a principal emphasis on seismic reflection interpretation. Our
book, in contrast, tries to cover the application of SCIM to a broad spectrum of
geophysical methods. In addition, we provide the tools to design and test SCIM
applications using MATLAB software, and these are presented as simply as pos-
sible, so that the reader can apply the MATLAB routines themselves and therefore
learn the necessary skills in a practical manner.

The book has four main parts: Neural Networks, Fuzzy Logic, Combination of
Neural Networks and Fuzzy Logic, and Genetic Algorithms.

In Part I, Chap. 1 outlines the principles of neural networks (NNs) and their
design in MATLAB with practical examples, and in Chap. 2, the application of
NNs to geophysical applications is presented with many varied examples.

In Part II, Chap. 3 develops the principles of fuzzy logic with the related fuzzy
arithmetic and provides various examples in order to practically train the reader to
grasp this new fuzzy viewpoint. In Chap. 4, we investigate the application of fuzzy
logic to various geophysical methods.

In Part III, Chap. 5, we explain the application of the combination of NNs with
Fuzzy logic as Neuro-Fuzzy Methods, with instructions for using the MATLAB
ANFIS Toolbox through practical examples. In Chap. 6, the application of these
Neuro-Fuzzy methods to geophysical analysis and interpretation is presented.

In Part IV, Prof. Mrinal Sen and Prof. Mallick, the additional contributors to this
book, present the Genetic Algorithm and its applications in geophysics with many
varied and interesting practical examples.

Readers of the book will find chapters dealing with preliminary aspects as well
as advanced features of SCIMs. With a unique focus toward geophysical applica-
tions but with applicability to other physical and measurement sciences, this book
will serve as a valuable reference for graduate students, research workers, and
professionals interested in learning about these useful computing tools. The goal of
this book is to help SCIMs find greater acceptability among researchers and
practicing geophysicists alike.

It gives us both great pleasure to express our appreciation and thanks to a
number of individuals who have helped us, either directly or indirectly, toward
starting and eventually completing this book. I am grateful to past Ph.D. students
especially R. Kimiaefar (who graduated in 2015 and is now a board member of
Physics Department at IAUN) for help with MATLAB codes for NN design to
attenuate seismic noise, and also my present Ph.D. student M. Rezazadeh Anbarani,
who helped develop the MATLAB guides in Chapters 1 and 5. My colleague
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Dr. Kh. Soleimani (board member of Mathematics Department at IAUN) provided
invaluable help in the utilization of Fuzzy arithmetic. I will never forget my
advisers for my Masters and Ph.D. degrees, Prof. V. E. Ardestani who first
motivated me to use ANN in gravity interpretations in my M.S. thesis and
Prof. H. Zomorrodian for his kindness and encouragement in combining neural and
fuzzy methods in my Ph.D. thesis to interpret microgravity data. A very special
mention is due to Prof. Caro Lucas (previously a board member of the Electrical
Engineering Department at the University of Tehran) who is not now among us in
this mortal world having passed away about a year before I defended my Ph.D. I am
especially appreciative of having such a mentor who always encouraged me to go
deeper into multi-interdisciplinary researches in soft computing.

I would also like give to a very special thanks to Dr. Pasandi, Assistant Professor
of Geology, University of Isfahan and to record my sincere appreciation to
Dr. A. Bohlooli, Assistant Professor in the Faculty of Computer Engineering at the
University of Isfahan for his key guidance in arranging the book chapters.

Peter Styles would like to thank, en masse, the legions of Ph.D. and M.Sc.
students from Swansea, Liverpool, and Keele Universities who worked with him in
collecting a vast array of geophysical data, from which we select unique examples
for this book, and who gave him such pleasure in their company, often despite
adverse conditions and difficult circumstances. He is enormously grateful to his
long-suffering wife Roslyn, who once again has had to put up with his chosen,
strongly focused, writing modus operandi!

I especially want to give my thanks and express my deep appreciation of my
wife Mohaddeseh and my daughter Elina for their support, over the course of more
than a year, in writing this book and their understanding; therefore, that I could not
spend all of my spare time with them.

Last, but not least, I am indebted to my parents: Mohammad Hassan and Ozra,
for the continued appreciation and support that I have received in all my educational
pursuits. I will never forget my Mother’s endeavors in training me how to think
deeply about the philosophy of work and life.

Najafabad, Iran Alireza Hajian
Department of Physics

Najafabad Branch, Islamic Azad University

Keele, UK Peter Styles
Applied & Environmental Geophysics Research Group

School of Physical and Geographical Sciences
Keele University
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Chapter 1
Artificial Neural Networks

– Principles of neural networks
– Design and test of neural networks
– Neural Networks toolbox in Matlab: NNTOOL

1.1 Introduction

Artificial neural networks are perhaps the most common method amongst intelligent
methods in geophysics and are becoming increasingly popular. Because they are
universal approximations, these tools can approximate any continuous function
with any arbitrary precision.

Neural networks are increasingly being used in prediction, estimation, pattern
recognition and optimization problems (Bohlooli et al. 2011) (Fig. 1.1). Neural
networks have gained popularity in geophysics this last decade (Gret et al. 2000).
Elavadi et al. (2003), Hajian (2008) and Hajian et al. (2011a) used a Hopfield neural
network in order to obtain depth estimates of subsurface cavities. Osman et al.
(2007) used forced neural networks for forward modeling of gravity anomaly
profiles. Styles and Hajian (2012) used Generalized Regression Neural Networks
(GRNN) for cavity depth estimation using microgravity data. Hajian and Shirazi
(2015) used GRNN for depth estimation of salt dome using gravity data.

In the geophysical domain, neural networks have been used forwaveform recognition
and first-peak picking (Murat and Rudman 1992; McCormack et al. 1993); for elec-
tromagnetic (Poulton et al. 1992), magneto telluric (Zhang and paulson 1997), and
seismic inversion purposes (Rӧth and Tarantola 1994; Langer et al. 1996;
Calderón-Macías et al. 1998); neural networks (Elawadi 2001;Osman et al. 2007,Hajian
et al. 2012); multi-adaptive neuro—fuzzy interference systems (Hajian et al. 2011b).

The fundamental important step is the mapping of a geophysical problem onto a
neural network solution which can have various applications in geophysics for both
non-potential and potential methods.
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1.2 A Brief Review of ANN Applications in Geophysics

A comprehensive look at all geophysical application for ANNs is impractical.
However, a glance at the popular publications in journal books and conference
proceedings provides illustrative examples. Geophysical applications include var-
ious disciplines which are short listed below:

• Petrophysics:

– Modeling permeability in tight gas sands using well-log responses
– predicting permeability from petrographic
– Porosity estimation, lithofacies mapping,

• Seismic data processing:

– Wave Form Recognition
– Picking Arrival Times
– Trace Editing
– Velocity Analysis
– Elimination of Multiples
– Deconvolution
– Inversion Of Velocity Model (Moya and Irikura 2010)
– Random Noise Attenuation
– Joint Inversion
– Tracking Horizons And Classifying Seismic Traces
– Initial Impedance, Impedance Model Estimation
– Scatter Distribution (Neural Wavelets)
– 4D Filtering (Fu 1999)
– Seismic attribute analysis

• Gas detection from absorption and amplitude measurements versus offset
(Clifford and Aminzadeh (2011)

• Cross-borehole geological interpretation model based on geotomography
(Kumar et al. 2002)

Fig. 1.1 Various fields of neural networks applications
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• Geological pattern recognition and modeling from well logs and seismic data
processing (Huang and Williamson 1994)

• Classification of seismic windows (Diersen et al. 2011)
• Rock Mass and Reservoir characterization

– Horizon tracking and facies maps, time lapse interpretation
– Predicting log properties, Rock/Reservoir characterization
– Assessing Enhanced Oil Recovery (EOR) methods for reservoirs

• Seismology:
• Regional seismic event classification (Dysart and Pulli 1990)

– Seismic discrimination
– Non-linear Dynamic behavior of earthquakes
– Automatic classification of seismic signals (Scarpetta et al. 2005)
– Earthquake predictions (Reyes et al. 2013)
– Prediction of seismicity cycles (Sharma and Arora 2005)

Identification of earthquake phases under increased noise level conditions
(Fernando et al. 2010)
Earthquake magnitude prediction using artificial neural network (Alarifi
et al. 2012)

• Volcanology:

– Predicting eruptions
– Classification of eruptions

• EM:

– Detection of cavities and tunnels from magnetic anomaly data
(Elawadi 2001)

– Interpretation of electromagnetic elasticity soundings for near—
surface objects (Poulton 1992)

– Extracting IP parameters from TEM data (Poulton 1992)
– Magnetic anomaly separation using cellular Neural Networks

(Albora 2001)
– Detection of Airborne Electromagnetic Method (AEM) Anomalies

corresponding to dike structures
– Interpretation of Geophysical surveys of Archeological sites
– Piecewise Half-space interpretation
– Inverse modeling of EM data with neural networks
– Mineral potential mapping using EM, Gravity & geological data
– Pattern recognition of subsurface EM images (Poulton 1992)
– Forecasting solar activities (Uwamahoro et al. 2009)
– Automatic detection of UXO from Airborne Magnetic Data

(Salem et al. 2001)

• Solar Cycle prediction (Petrovay 2010)
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• Gravity:

– Depth estimation of cavities using microgravity data
– Shape factor estimation of gravity anomalies
– Prediction of linear trends
– Adaptive learning 3D gravity inversion for salt-body imaging 4D gravity

time series prediction
– Attenuation of the effect of atmospheric temperature and pressure (as noise)

on microgravity continuously record by gravimeters
– Boundary detection for iron ore deposits (Wavelet Cellular Neural Networks)

• Geodesy:

– Optimal Interpretation of the Gravity of the earth
– Predicting vertical displacement of structures
– Orbit propagation for small satellite missions
– Sea-level prediction using satellite altimetry
– Determination of structure parameters (Kaftan and Salk 2009)

• Resistivity:

– Layer boundary picking, locating layer boundaries with unfocused resistivity
tools

– Inversion of DC resistivity data (EL-Qady and Ushijima 2001)
– Obtaining formation resistivity and layer thickness from vertical electrical

sounding (VES)

The most common Neural Networks used in geophysics are:

– Back-propagation
– SVM (Support Vector Machine)
– GRNN (General Regression Neural Networks)
– Cellular Neural Networks, Wavelet Cellular neural networks (CNN)
– Modular Neural Networks (MNN)
– Forced Neural Networks (FNN)
– Radial Basis Function Neural Networks (RBF)

In this chapter we first explain neural network concepts and introduce some of
the important types of neural networks which are most common in geophysical
problems.

1.3 Natural Neural Networks

The human brain is a complex organism with great powers of learning and gen-
eralization from specific data. The human brain is one of the great mysteries of our
time and scientists have not reached a consensus on exactly how it works. Two
theories of the brain exist namely: the “grandmother cell theory” and the
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“distributed representation theory”. The first theory asserts that individual neurons
have high information capacity and are capable of representing complex concepts
such as ‘your grandmother’ or even ‘Jennifer Aniston’. The second theory asserts
that neurons are much simpler and the representation of complex objects is dis-
tributed across many neurons. Artificial neural networks are loosely inspired by the
second theory. Up to now much research has been done by neuroscientists to
explore the nature of the human brain operation and structure. These scientists have
explored the map of a mouse brain which is shown in Fig. 1.2a. This is the First
Detailed Map of a Mammal’s Neural Network; if this looks like an incredibly
complex wiring diagram to you, it’s because it is: you’re looking at the Allen
Mouse Brain Connectivity Atlas, the first detailed map of any mammal’s neural
network. It’s not a full connectome—the name given to maps of every single
interconnection between neurons in a brain—but it’s the most detailed rendering of
interconnections in any mammalian brain yet. It traces connections between tiny
cubes, called voxels, of brain tissue containing between 100 and 500 neurons.
Hongkui Zeng and colleagues at the Allen Institute for Brain Science in Seattle,
Washington, injected the brains of 469 mice with a virus that introduced a
fluorescent protein into the neural network. Because each animal was injected at a
slightly different location, when taken together, the fluorescing proteins gave a
snapshot of the network’s shape. Next, the team diced up each brain into 500,000
pieces each measuring 100 cubic micrometers. Based on the strength of fluores-
cence in the cubes, they generated a 3D map of how each of the 469 different
signals spread through the brain’s thoroughfares and quieter by roads (www.giz-
modo.com.au).

Human brains have a lot of cells namely “neurons” (Fig. 1.2b, c) and the number
of these elements is approximately 1011 neurons with perhaps 1015 interconnections
over transmission paths that may range a metre or more.

1.4 Definition of Artificial Neural Network (ANN)

A single neuron in the brain is an incredibly complex machine that even today we don’t
understand. A single “neuron” in a neural network is an incredibly simple mathematical
function that captures a minuscule fraction of the complexity of a biological neuron. So to
say neural networks mimic the brain, that is true at the level of loose inspiration, but really
artificial neural networks are nothing like what the biological brain does.—Andrew Nigrin.

An artificial neural network is a processing method which is inspired by how the
human brain and the nervous system are interconnected with neurons. Azoff (1994)
states that, “A neural network may be considered as a data processing technique
that maps, or relates, some type of input streams of information to an output stream
of data”. Nigrin (1993) described a neural network based on circuit concepts as” a
circuit composed of a very large number of simple processing elements that are
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neutrally based. Each element operates only on local information. Furthermore,
each element operates asynchronously; thus there is no overall system clock”.

There are numerous alternative definitions of artificial neural networks. One of
the commonest is: “Neural networks are composed of simple elements operating in
parallel. These elements are inspired by biological nervous systems. As in nature,
the network function is determined largely by the connections between elements.
We can train a neural network to perform a particular function by adjusting the
values of the connections (weights) between elements” (Schalkoff 2011).

An artificial neural network is composed of a number of interconnected units
(artificial neurons) each unit has an input/output (I/O) characteristic and implements
a local computation or function. The output of any unit is determined by its I/O
characteristics, its interconnections to other units, and (possibly) external inputs.
Although “hand crafting” of the network is possible, the network usually develops
an overall functionally through one or more forms of training. It is necessary to
mention that numerous alternative definitions about ANN exist and the one we
select above is a somewhat generic definition.

Commonly, neural networks are adjusted, or trained, so that a particular input
leads to a specific target output. Such a situation is shown in Fig. 1.3. There, the
network is adjusted, based on comparison of the output and the target, until the
network output matches the target. Typically many such input/target pairs are used,
in this supervised learning, to train a network.

The overall computing model of an ANN consists of a reconfigurable inter-
connection of simple elements namely “neurons”. The neuron model will be
described in detail in the next section. Corresponding to the interconnection

JFig. 1.2 a The first detailed map of a mammal’s neural network (source http://www.gizmodo.
com.au/2014/04/this-is-the-first-detailed-map-of-a-mammals-neural-network/). b Schematic of
neurons in human brains (source http://detechter.com/10-interesting-facts-about-the-human-brain).
c Some very interesting views of the brain as created by state of the art brain imaging techniques
(source http://www.turingfinance.com/misconceptions-about-neural-networks/#comment-10376)

Fig. 1.3 Diagram of a neural network operation
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direction ANNs can be placed into one of three classes based on their feedback link
connection structure ANN’s topology: non-recurrent (e.g. feed forward) recurrent
(global feedback connections). Local recurrent structure (local feedback connec-
tions, e.g. cellular NN).

The non-recurrent ANN contains no closed interconnection paths but in the
recurrent ANN the interconnection has arbitrary interconnection flexibility which
allows closed-loop (feedback) paths to exist. This allows the network to exhibit far
more complex temporal dynamics compared with the (open-loop) strategy, illus-
trated in Fig. 1.4a, b.

1.5 From Natural Neuron to a Mathematical Model
of an Artificial Neuron

Artificial neural networks are a very much simplified model of the natural neural
networks of the human nervous system. As we mentioned in the last sections the
biological nervous system is built of cells called neurons. Each neuron shares many
characteristics with the other cells in the human body and has the capability to
receive process and transmit electrochemical signals over the neural pathways that
comprise the brain’s communication system. The schematic drawing of a Biological
Neuron is shown in Fig. 1.5.

1. Dendrites: extend from the cell body out to other neurons where they receive
signals at a connection point called “Synapse”.

2. The axon is a single long fiber that carries the signal from the cell body out to
other neurons.

Fig. 1.4 a Non-recurrent, b recurrent neural networks (Hajian et al. 2012)
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On the receiving side of the synapse, these inputs are conducted through the cell
body out to other neurons. There they are summed; some inputs tend to excite the
cell, others tend to inhibit its firing.

When the cumulative excitation in the cell body exceeds a threshold, the cell
fires, sending a signal through the axon to other neurons. This basic functional
outline has many complexities and exceptions; nevertheless, most Artificial Neural
Networks contain only these simple characteristics (Gret and Klingele 1998).
Artificial neural networks comprise a set of highly interconnected but simple pro-
cessing units called nodes which are such neurons. The nodes are arranged in a
series of layers that are interconnected through functional linkages. The mathe-
matical model of a simple neuron or ‘perception’ is presented in Fig. 1.6.

Fig. 1.5 Schematic of a biological neuron. Redrawn from Van der Baan and Jutten (2000)

Fig. 1.6 a Mathematical model of a ‘perception’ or ‘neuron’ b the weighted sum of the inputs is
rescaled by an activation function. Redrawn from Van der Baan and Jutten (2000)
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As shown in Fig. 1.6 the neuron consists of a set of inputs:

X ¼ x 1ð Þ; x 2ð Þ; . . .; x nð Þ½ �

and one output. Functionally each input x(i) is weighted or multiplied by a weight
function W(i) and summed in a process equivalent to the mathematical process
known as Convolution. This is called net input of the neuron:

net ¼
XN
i¼1

½xðiÞwðiÞ�

Then an activation function is computed. This simulates the firing of the nerve
cells by inputs from other never cells. The Full diagram of steps from a biological
neuron to its mathematical model is shown in Fig. 1.7.

The activation function can be a: step function (hard-limiter), arc-tangent sig-
moidal function, hyperbolic tangent sigmoid etc. (see Fig. 1.8). The various kind of
activation functions or transfer functions are listed in Table 1.1 with their related
MATLAB commands.

The ‘sigmoid’ activation function is very commonly used for geophysical
applications because many applications require a continuous valued output rather
than the binary output produced by the hard-limit. In addition, it is particularly
well-suited to pattern recognition problems because it produces an output between 0
and 1 that can often be interpreted as a probability estimate (Richard and Lippmann
1991).

Fig. 1.7 Full diagram of steps from a biological neuron to its mathematical model (here, the
activation function is a tangent sigmoid, see Table 1.1)
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Before the activation function is computed, a bias value (v) is added which
serves as a threshold for the activation function. For example if the activation
function is a sigmoidal function the output of the neuron will be:

bðjÞ ¼ 1
1þ exp � netþ v

d

� �� � ð1:1Þ

where “d” is a sigmoid shaping factor, “v” is the bias factor and net is the weighted
average of neuron inputs. If “d” is a high number then the sigmoid will be a gently

Fig. 1.8 Some of common activation functions

Table 1.1 Some of activation functions with related relations and Matlab commands

Function Equation Matlab command

Hard limit
y ¼ 0

1

(
x\0

x� 0

Hardlim

Symmetrical hard limit
y ¼ �1

1

(
x\0

x� 0

hardlims

Saturating linear

y ¼
0

x

1

8><
>:

x\0

0\x\1

x� 1

–

Symmetrical saturating linear

y ¼
�1

x

1

8><
>:

x\� 1

� 1\x� 1

x[ 1

elliotsig

Log-sigmoid y ¼ 1
1þ e�x logsig

Hyperbolic tangent sigmoid y ¼ ex�e�x

ex þ e�x tansig

Linear y ¼ x purelin

Positive linear
y ¼ 0

x

(
x\0

x� 0

–

Competitive
y ¼ 1

0

(
Neuron with Max X other
neurons

–

1.5 From Natural Neuron to a Mathematical Model of an Artificial Neuron 13



varying function. For lower values of the shape factor the sigmoid will take a
steeper form. To plot the neuron output in MATLAB run below codes the results
are illustrated in Fig. 1.9.

*****Matlab codes to generate sigmoid activation functions with different

shape factors***************************************

x=[-20:0.1:20];

bias=2;

for j=1:6

d=[2 4 6 8 10 12];

f=-(x-bias)/(d(j));

ff=exp(f)+1;

b=ff.^(-1);

axis([-21 21 0 1])

plot(x,b)

hold on

end

grid

Fig. 1.9 Sigmoid activation functions for different values of shaping factor (as it can be seen the
bias factor is fixed at 2)
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It is necessary to mention that the bias included in ‘net’, offsets the origin of the
activation function, for example if the transfer function the ‘logistic’ or ‘sigmoid’
(meaning s-shaped) is chosen then the function is plotted for higher and lower
values of bias in MATLAB. By running the MATLAB codes below this can
obviously be seen (Fig. 1.10).

****Matlab code to draw sigmoids with different biases****

x=[-20:0.1:22];

d=4;

bias=[2 4 6 8 10 12];

for j=1:6

f=x-bias(j))/(d);

ff=exp(f)+1;

b=ff.^(-1);

axis([-20 24 0 1])

plot(x,b)

hold on

end

grid

Fig. 1.10 Sigmoid activation function for different values of biasing (shape factor is fixed; d = 4)
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The purpose of a non-linear activation function is to increase the computational
power of a multi-layer network because if we use a linear activation function for a
multi-layer net then an equivalent one-layer network can be replaced. So, the
non-linear activation functions are vital to expansion of the network’s capability
beyond that of the single-layer network. Training a neuron means computing the
values of weights: w ið Þ and biases so that it will correctly image the inputs into
true-outputs.

1.6 Classification into Two Groups as an Example

Suppose that we want to classify the seismic signals of earthquake events into two
classes: class A as hazardous conditions and class (B) as safe conditions.

This is not a complete or comprehensive classification of the seismic events but
as a simple example of classification the perception output is “+1” if X belongs to
class A and is “0” if X belongs to class B, on the other hand:

X:W ¼ þ 1 if X 2 A
0 if X 2 B

�
ð1:2Þ

If the input data are noisy, which is generally the case, we will never achieve
exactly 0 and 1, and the output will be somewhere in-between. So it is necessary to
include some subjective threshold value to decide where the classification of “A”
ends and classification of “B” begins.

For example; if the output is 0.5 which class will the event be ascribed to: A or
B? It is obvious that this depends on the nature and type of the classification. Here
we design a neuron, which, when trained can perform as a linear discriminator,
similar to the well-known single or multi-channel wiener operator (Taner 1995).

The single neuron or perceptron was developed by Widrow (1962) and he
named it the ‘linear perceptron’.

Let X ¼ xð1Þ; xð2Þ; . . .; xðnÞf g represents the seismic event feature vector as an
input training pattern. To classify the event into class A or B we must solve the
vector equation:

X:W ¼ b ð1:3Þ

where W is the column vector of weights with M elements and b ¼ 1 specifies that
the corresponding X set belongs to the class A, and b ¼ 0 specifies that the cor-
responding X set belong to the class B. Matrix X has N columns and M rows
because:
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Pattern 1:

X1 ¼ xð1; 1Þf xð1; 2Þ . . .: xð1;NÞg
X2 ¼ xð2; 1Þf xð2; 2Þ . . .: xð2;NÞ
:
:
:
:
XM ¼ xðM; 1Þf xðM; 2Þ . . .: xðM;NÞ

x
train ¼

x11 x12 . . . x1N
x21 x22 . . . x2N
..
. ..

.

xM1 xM2 . . . xMN

0
BBB@

1
CCCA

M�N

ð1:4Þ

If M\N, then we can solve this matrix equation by the classical least mean
errors squares method. We can obtain the normal equation square matrix by
pre-multiplying both sides by transpose of the X matrix:

XT:X:W ¼ XTb ð1:5Þ

and solve for W:

W ¼ ðXTXÞ�1:XT:b ) W ¼ x̂:b ð1:6Þ

where x̂ is the pseudo- inverse of the original rectangular ðXTXÞ�1XT matrix:

x̂ ¼ ðXTXÞ�1:XT ð1:7Þ

In theory, this inverse can be computed directly. However we may get some
non-realistic values which do not represent the real situation. The inverse is com-
puted by an iterative procedure called the linear perceptron algorithm which leads
us to the Delta rule.

Training the network means computing a single set of weights (W) to yield the
correct set of outputs ‘b’ for all input patterns (x(p): input training data). In the
Delta rule an arbitrary set of values W(h)(i) is first randomly considered to update by
the following rule:

W ðhþ 1ÞðjÞ ¼ WhðjÞþ q½bðjÞ �WhðjÞxðjÞ�:xðjÞ ð1:8Þ

The updating procedure is continued until all the patterns are classified correctly,
at which time bðjÞ �WhðjÞxðjÞ� �

becomes zero or very small.
In some practical cases this cannot be reached, hence the iteration should be

stopped when the sum of the squares of errors (SSE) or (RMSE): Rout Mean
Square Error reaches some prescribed threshold value.
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1.7 Extracting the Delta-Rule as the Basis of Learning
Algorithms

The error function, as indicated by the name least mean squares, is the summed
squared error which is the total error E as defined to be:

E ¼
X
p

Ep ¼ 1
2

X
p

ðdp � ypÞ2 ð1:9Þ

where the index P ranges over the set input patterns and Ep represent the error on
pattern P. The LMS procedure finds the values of all the weights that minimize the
error function by a method called gradient descent. The idea is to make a change in
the weight proportional to the negative of the derivative of the error as measured on
the current pattern in respect to each weight:

DpWj ¼ �c
@Ep

@Wj
ð1:10Þ

where c is a constant of proportionality. The derivative is:

@Ep

@Wj
¼ @Ep

@yp
:
@yp

@Wj
ð1:11Þ

Because of the linear unites:

@yp

@Wj
¼ xj ð1:12Þ

Such that:

DpWj ¼ �cdpxj ð1:13Þ

where dp ¼ dp � yp is the difference between the target output and the actual output
for pattern P0 and:

xpj ¼ the j-th element of the p-th input pattern vector
Expression 9 can be written in the form:

DðWÞ ¼ g:d:v ð1:14Þ

where d is the difference between the desired output and the computed actual output
produced by the perceptron. This is the “delta-rule” expression which states that the
change in the weight vector should be proportional to the delta (the error) and to the
input pattern.
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Using this simple equation, the Generalized Delta Rule is finally derived for
updating the weights in the multilayer reception neural networks.

This is the common rule that uses the difference between the actual and desired
activation for adjusting the weights:

DWjh ¼ cyjðdh � yhÞ ð1:15Þ

where Wjh is the weight connection from unit j to unit h and c is a positive constant
of proportionality representing the learning rate, in which dh is the desired acti-
vation provided by a teacher. This is often called the Widrow-Hoff rule or the delta
rule.

1.8 Momentum and Learning Rate

True gradient descent requires that infinitesimal steps are taken. The constant of
proportionality is the learning rate c. For practical purposes we choose a learning
rate which is as large as possible without leading to oscillation. One way to avoid
oscillation at large c is to make the weight change dependent on the past weight
change by adding a momentum term:

DWjhðtþ 1Þ ¼ cdphy
p
j þ a :DWjhðtÞ ð1:16Þ

where t + 1 is the step after step t, and a is a constant which determines the effect
of the previous weight change.

The role of the momentum term is shown in Fig. 1.11. When no momentum
term is used it takes a long time before the minimum is reached with a low learning
rate, whereas for high learning rates the minimum is never reached because of
oscillation. When adding the momentum term, the minimum is reached faster
(Kröse and Smagt 1996).

Fig. 1.11 The descent in weight space: a for small learning rate b for large learning rate: note the
oscillations and c with large learning rate and momentum term added (Kröse and Smagt 1996)
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1.9 Statistical Indexes as a Measure of Learning Error

To finalize the procedure of updating weights there are several error indexes which
are listed in Table 1.2 with the related equation for each one. The weight updating
usually continues until the minimum value for the error index is very close to zero
(or even zero in very especial problems). The most common error index used in this
way is the MSE and RMSE. It’s obvious that when the MSE is a minimum the
RMSE (which is the root of MSE) will also be a minimum.

1.10 Feed-Forward Back-Propagation Neural Networks

A Feed-Forward Back-Propagation (FFBP) neural network is a very common type of
supervised neural network which is shown in Fig. 1.12. As mentioned, for a neuron,
all inputs and nodes are collected at each hidden node after being multiplied by

Fig. 1.12 Schematic diagram
of an FFBP neural network
structure (Hajian et al. 2012)

Table 1.2 Various statistical
indexes to measure the
learning error of a neural
network

Error index Full name Equation

SSE Sum squared error P ðx� x̂Þ2
MSE Mean squared error P ðx�x̂Þ2

N

RMSE Root mean squared error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðx�x̂Þ2

N

q
MAE Mean absolute error

P
x�x̂j j
N
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weights. Then, a bias is attached to this sum, and it is transformed through a certain
function, and transferred to the next layer.

There are various types of initial transfer function that can be used as activation
functions such as linear functions, sigmoid and hyperbolic tangents. Historically,
the Heaviside or hard-limiting function was used. However, as explained previously
this particular activation function gives only a binary output (i.e., 1 or 0, meaning
yes or no). Moreover, the optimum weights are very difficult to estimate since this
particular function is not continuously differentiable. As mentioned in the previous
sections, in FFBP neural networks the sigmoid function is mostly used as the
activation function for all the neurons in the layers most of the times. The main
reason is that the sigmoid function is a continuously differentiable and monotoni-
cally increasing function that can best be described as a smooth step function.
Equation (1.17) describes the sigmoid activation function as expressed by (Van der
Baan and Jutten 2000):

fs að Þ ¼ ð1þ e�aÞ�1 ð1:17Þ

As the forward processing step terminates at the output layer, the difference
between the errors of the network output and those of the desired output can be
calculated simply. The error at the output layer propagates backward to the input
layer through the hidden layer in the network to obtain the final desired outputs
(Gϋnaydin and Gϋnaydin 2008). While the backward procedure is running, all the
weights are adjusted in accordance with an error-correction rule (Haykin 1999, see
Eq. 4). Figure 1.13 shows a flowchart of the feed forward back propagation
algorithm (Hajian et al. 2012).

In a multi-layer perceptron neural network with one hidden layer and an
architecture of (n, m, L) there is one input layer having n neurons; one hidden layer
having m neurons, and one output layer having L neurons y1, y2, …, yL; Each node

Fig. 1.13 Flowchart of
general feed forward back
propagation algorithm (Hajian
et al. 2012)
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in a layer is connected to that of the next layer by weights w, so that the neuron p is
connected to neuron r in the next layer by weight wpr. Consequently the weights of
the Input-to-Hidden layer and that of the Hidden-to-Output layer are wij and wjk,
respectively. Mathematically the k-th output of network yk is computed by the
following equation:

yk ¼ ~f
Xm
j¼1

wjk:f
Xn
i¼1

ðwij:xi þ b1Þ
"

þ b2

" #
; k ¼ 1; 2; . . .;L ð1:18Þ

where b1 is the bias of the first layer, b2 is that of the second layer, f is the activation
function between input and hidden layers, and ~f is the activation function between
the hidden and output layers. The tangent sigmoid (tan-sigmoid), logarithmic sig-
moid) log-sigmoid) and linear activation functions (Haykin 1999) are the most
common functions used for both f and ~f to obtain the best performance.

The back propagation network (BPN) is used to train a MLP neural network and
was proposed by Rumelhart et al. (1986). “Training” of a neural network model
means tuning the weights of the neuron connections in all the layers so that the
outputs of the neural network will be as close as possible to the observed targets. To
measure how closely the outputs correspond to the observed targets a global error
function is defined, so the aim of training a supervised neural network is to itera-
tively minimize the global error or Mean Squared Error (MSE). The global error E
will be defined generally as:

E ¼ 1
2p

XP
p¼1

X1
k¼1

Tpk � ypk
� 	2

; p ¼ 1; 2; . . .; P ð1:19Þ

where Tpk is the target output (observed) at the k-th neuron of the p-th pattern, ypk is
the predicted output at k-th output neuron of the p-th pattern and P is the total
number of training patterns.

The global error (E) at the output layer propagates backward from the output to
the hidden layer in order to adjust the weights in each layer of the network during
the iteration. The iterations are continued until a specified convergence is reached,
or a given number of iterations are over.

Each step in the learning process is called a Learning Epoch. There are various
types of learning algorithms such as:

– LM: Levenberg-Marquardt
– BFG: BFGs quasi-Newton back propagation
– BR: Bayesian regulation back propagation
– CGB: Conjugate gradient with Powell-Beale restarts
– CGF: Conjugate gradient back propagation with Fletcher-Reeves updates
– CGP: Conjugate gradient back propagation with Polak-Ribiere updates
– GD: Gradient descent back propagation
– GDM: Gradient descent with momentum back propagation
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– GDA: Gradient descent with adaptive learning rate back propagation
– GDX: Gradient descent with momentum and adaptive back propagation
– OSS: One Step Secant back propagation

Among these above learning algorithms, the Levenberg-Marquardt (L-M)
algorithm (Levenberg 1944; Marquardt 1963) is one the most commonly used
algorithms. As the book would be excessively long if we explained all these
learning algorithms, in this section we explain the L-M learning algorithm, and the
reader is referred to neural networks book texts (listed in the end of chapter) and the
Matlab guide for the other algorithms.

The L-M algorithm minimizes E while trying to keep the step between the old
weights configuration ðwnewÞ and the updated one ðwoldÞ ‘small enough’. This
algorithm can be written as follows (Günaydun and Günaydun 2008):

ð1:20Þ
where J is the Jacobian function of the error E, I is the identity matrix and is the
parameter used to define the iteration step value (Panizzo and Briganti 2007).

For = 0 it converges to become the Gauss-Newton method. For very large the
L-M algorithm becomes the steepest decent secure convergence. The adaptive
learning rate, which changes dynamically during the training stage, is used here.
The learning rate lies in the range between 0 and 1. For each epoch, if performance
decreases toward the goal, then the learning rate is increased by the learning factor
increment. If performance increases, the learning rate is adjusted by the learning
factor decrement. When training with the L-M method, the increment of weights
Dw can be obtained from equation above as follows (Hajian et al. 2012):

ð1:21Þ
The sum of the squared errors between the target outputs and the network’s

simulated outputs (see Table 1.2), defined as the global error: E is minimized. The
global error for each iteration with updated weight is depicted with E (w).
Throughout all the FFBP simulations the performance goal is assumed to be very
near to zero (or even zero). In particular, is multiplied by the decay rate b
(0 < b < 1) whenever E (w) decreases, whereas is divided by b whenever E(w)
increases in a new step.

The standard L-M training algorithm can be performed using the following
pseudo-codes (Hajian et al. 2012):

************************************************************
1. Initialize the weights and parameter ( is appropriate).
2. Compute the sum of the squared errors over all inputs E (w)
3. Solve (7) to obtain the increment of weights Dw
4. Recomputed the sum of squared errors F (w) Using w + Dw as the trial w, and judge
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IF trial E (w) < E (w) in step 2 THEN
W = w + Dw

Go back to step 2
ELSE

Go back to step 4
END IF
************************************************************

1.11 A Guidance Checklist for Step-by-Step Design
of a Neural Network

There are 9 main steps in designing a neural network estimator model which are
described in Table 1.3.

1.12 Important Factors in Designing a MLP Neural
Network

The most important factors which should be determined for a multi-layer perceptron
neural network are:

• the number of hidden layers
• the number of hidden neurons
• the number of training data

Table 1.3 Seven steps in designing an ANN estimator model

Step 1: Variable selection

Step 2: Data collection and processing (preparing training data)

Step 3: Assemble training and test data

Step 4: ANN paradigm
– Number of hidden layers
– Number of hidden neurons
– Number of output neurons
– Transfer function

Step 5: Evaluation criteria

Step 6: ANN training
Number of iterations for training

Step 7: Testing ANN with new synthetic inputs without noise

Step 8: Testing ANN with new synthetic inputs with noise

Step 9: Testing ANN with new real data
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1.12.1 Determining the Number of Hidden Layers

Determining the number of hidden layers and the number of neurons in each hidden
layer is a considerable task. The number of hidden layers is a critical step which is
usually determined first.

It is obvious that the number of hidden layers depends on the complexity of the
relationship between the input parameters and the output value. If the relationship
between the inputs and output is linear the network does not need more than one
hidden layer, however, most problems only require one hidden layer.

It is unlikely that any practical problem will require more than two hidden layers.
The more complex the problem the greater the probability of requiring more than
one hidden layer. Cybenko (1989) suggested that one hidden layer is enough to
classify input patterns into different groups.

Chester (1990) implied that a two hidden layer system should perform better than
a one hidden layer network. More than one hidden layer systems can be useful for
certain architectures, such as cascade correlation (Fahlman and Lebiere 1990). The
main reason why multi-layer networks can sometimes provide better training with a
lower generalization error is that the extra degrees of extra parameters can decrease
the chance of becoming stuck in local minima or on a “plateau”. The most com-
monly used training methods for back propagation networks are based on gradient
descent; that is, error is reduced until a minimum is reached whether this is a local
minimum or a global. However, there isn’t any clear theory which can inform you as
to how many hidden layers are needed to approximate any given function.

The rule of thumb in deciding the number of hidden layers is normally to start
with one hidden layer (Lawrence 1994). If one hidden layer does not train well,
then you increase the number of neurons but adding more hidden layers should be a
last resort (Park 2011).

1.12.2 Determination of the Number of Hidden Neurons

Selecting the number of hidden neurons is problem-dependent. For example, any
network that requires data compression must have a hidden layer with a smaller
number of hidden neurons than the input layer (Swingler 1996).

A conservative approach is to select a number within the range but smaller than
the number of output neurons. In Table 1.4 some rules of thumb to select the
number of neurons in hidden layer are listed.

It can be seen from this table that the general wisdom concerning selection of
initial number of hidden neurons is somewhat contradictory.

A good rule of thumb is to start with the number of hidden neurons equal to half
of the number of input neurons and then either add neurons if the training error
remains above the training error tolerance, or reduce neurons if the training error
quickly drops to the training error tolerance (Park 2011).
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1.13 How Good Are Multi-layer Per Feed-Forward
Networks?

It is clear that the approximation results of a MLP are not perfect. Kröse and Smagt
(1996) suggest that the resulting approximation error is influenced by:

1. The learning algorithm and the number of iterations determine how well the
error on the training set is minimized.

2. The number of learning samples; this determines how well the training samples
represent the actual function.

3. The number of hidden units determines the ‘expressive power’ of the network.
For ‘smooth’ functions only a few hidden units are needed; for wildly fluctu-
ating functions more hidden units will be needed.

Let us first define an adequate error measure. All neural network training
algorithms try to minimize the error of the set of learning samples which are
available for training the network. The average error per learning sample is defined
as the ‘learning error rate’:

Elearning ¼ 1
Plearning

XPlearning

P¼1

EP ð1:22Þ

where EP is the difference between the desired output value and the actual network
output for the learning samples:

EP ¼ 1
2

XNo

o¼1

ðdP0 � yP0 Þ2 ð1:23Þ

This is the error which is measurable during the training process.

Table 1.4 Rule of thumbs to select the number of neurons in hidden layer (Redrawn after Park
2011)

Formula Comments

h = 2i + 1 Hecht-Nelson (1987) used Kolmogorov’s theorem which and
function of i variables may be presented by the superposition
of set of 2i + 1 univariate functions-to derive the upper bound
for the required number of hidden neurons

H ¼ iþ oð Þ=2
N
10

� i� o� h� N
2
� i� o

Lawrence and Fredrickson (1998) suggested that a best
estimation for the number of hidden neurons is to half the sum
of inputs and outputs. Moreover, they proposed the range of
number of hidden neurons

H = i log2P Mirchandani and Cao (1989) proposed an equation for best
number of hidden neurons
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The actual error of the network is different from the training samples. The
difference between the desired output value and the actual network output should be
integrated over the entire input domain to give a more realistic error measure. The
integral can be determined if a large set of samples is available as the ‘test’ set and
the ‘test error rate’ is defined as the average error of the test set:

Etest ¼ 1
Ptest

XPtest

P¼1

EP ð1:24Þ

1.14 Under Training and Over Fitting

In order to train the neural network well, the number of data sets must be carefully
chosen. The major problem during the training process of the neural network is the
possible over-fitting of the training data. That is, during a certain training period, the
network no longer improves in its ability to solve the problem. In this case the
training becomes trapped in a local minimum, leading to ineffective results and
indicating a poor fit of the model, namely over-fitting.

An over-fitted model could approximate the training data well but function
poorly for the validation data set. Also if the number of training data is low then the
trained neural network will be an under-fitted model which generalizes to the
validation data set well but approximates the training data poorly. In this way we
explain in the next subsection the importance and effect of the learning data set size
on the performance of training.

Underfitting occurs when a statistical model or machine learning algorithm
cannot capture the underlying trend of the data. It occurs when the model or
algorithm does not fit the data enough. Underfitting occurs if the model or algorithm
shows low variance but high bias (to contrast the opposite, overfitting from high
variance and low bias) is often a result of an excessively simple model (Frost 2015).

1.15 To Stop or not to Stop, that Is the Question! (When
Should Training Be Stopped?!)

One important question that arises when we are running a training algorithm is
when should the training be stopped? It seems to be a good idea to stop training
when a local minimum is attained or when the convergence rate has become very
small, i.e., improvement from iteration to iteration is zero or minimal. However,
Geman et al. (1992) show that this leads to overtraining, i.e., memorizing of the
training set (while you want network to generalize not memorize): now the noise is
being fitted, not the global trend. Hence, the weight distribution obtained may be
optimal for the training samples, but it will result in bad performance in general.
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A similar phenomenon occurs in tomography problems, where it is known as
over-fitting (Scales and Snieder 1998; Van der Baan and Jutten 2000).

The classical solution to this dilemma is to use a split set of examples. One part
is used for training; the other part is used as a reference set to quantify the general
performance (Fig. 1.14). Training is stopped when the misfit of the reference set
reaches a minimum. This method is known as ‘holdout’ cross validation.

1.16 The Effect of the Number of Learning Samples

When the number of learning samples is low the Elearning will be small but Etest will
be large which means that the test error of the network is large. If we increase the
learning set size and plot the average learning and test error rates as a function of
the learning set size we will see that a low learning error on the (small) learning set
in no way guarantees a good network performance. With an increasing number of
learning samples the two error rates converge to the same value. This value depends
on the representational power of the network: given the optimal weights, how good
is the approximation? This error depends on the number of hidden units and the
activation function (Fig. 1.15). If the learning error rate does not converge to the
test error rate the learning procedure has not found a global minimum error rate.

In order to avoid over-fitting and under-fitting the optimal number of training
observations should be determined. Until the date of writing this book no general
guidelines have been available to achieve this Holy Grail. However, Lawrence and
Frederickson (1998) suggested the following rule of thumb:

2 iþ hþ oð Þ�N� 10 iþ hþ oð Þ ð1:25Þ

where ‘i’ is the number of inputs, ‘h’ is the number of hidden layers and ‘o’ is the
number of outputs.

Fig. 1.14 Generalization versus training error. Adapted from Moody (1994) and redrawn after
Van der Baan and Jutten (2000)
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1.17 The Effect of the Number of Hidden Units

If the number of hidden units is large then the network may fit the learning samples
exactly, but because of the large number of hidden units the output which is
achieved by the network is far more variable than the actual values of output, this is
called over-training or over-fit, where we have too much variance (see Fig. 1.14).
Particularly for the case of learning samples which contain a certain amount of
noise (which all real-world data have), the network will begin to ‘fit the noise’ of
the learning samples instead of making a smooth approximation.

A large number of hidden units leads to a small error for the training set but not
necessarily to a small error on the test set. Adding hidden units always leads to a
reduction of the Elearning. However, adding hidden units will first lead to a reduction
of the Etest, but then eventually lead to an increase in Etest. This effect is called the
‘peaking effect’. The average learning and test error rates are plotted as a function of
learning set size in Fig. 1.16.

Fig. 1.15 Effect of the
learning set size on the error
rate. The average error rate
and the average test error rate
as a function of the number of
learning samples (Krose and
Smagt 1996)

Fig. 1.16 The average
learning error rate and the
average test error rate as a
function of the number of
hidden units (Krose and
Smagt 1996)
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1.18 The Optimum Number of Hidden Neurons

One way to find the optimum number of neurons in the hidden layer is by running
the neural network with different number of neurons and calculating the mean
square error of training each time. Plotting the MSE versus the number of hidden
neurons, we can select the one with the minimum MSE as the optimum number of
hidden neurons. The flowchart of this algorithm is shown in Fig. 1.17.

1.19 The Multi-start Approach

If a multi-layer perception neural network training process is repeated N times with
the same training data set and the same neurons the MSE error of test/train set will
be different. Because the initial value of weights for training are selected randomly
the curve of the training errors will consequently be different for different runs. It is
better to run the training process for different values of initial weights to get the

Fig. 1.17 Flowchart of
finding the optimum number
of hidden neurons (Hajian
et al. 2012)
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optimum values of the final weights with the least training/testing error. This
method is named ‘Multi-start approach’. The flowchart of this approach is depicted
in Fig. 1.18.

Hajian et al. (2012) use a novel algorithm for finding the optimum number of
hidden neurons using the multi-start approach with different number of neurons.
The flowchart of this algorithm is shown in Fig. 1.18.

In this method for each number of neurons in the hidden layer, the network is run
with N different values for initial weights. The initial values of weights are chosen
randomly for different N runs.

Finally, the optimum number of neurons is selected on the basis of average
values of MSE of the test set over N runs. It means that the point at which the
averaged MSE for N runs is a minimum shows optimum number for the hidden
neurons.

Fig. 1.18 Flowchart to find the optimum number of neurons in the hidden layer with a multi-start
approach (Hajian et al. 2012)
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1.20 Test of a Trained Neural Network

After the training phase of the network is successfully completed, the performance
of the trained model is tested with a data set other than the training data; the
so-called test data. On the other hand, after the errors are minimized, the model with
all the parameters including the connection weights is tested with a separate set of
“testing” data that is not used in the training phase. At the end of the training, the
neural network represents a model that should be able to predict the target value
given the input pattern. One issue when fitting a model is how well the
newly-created model behaves when applied to new data. To address this issue, the
data set can be divided into multiple partitions: a training partition used to create the
model, a validation partition to test the performance of the model, and a third test
partition. Partitioning is performed randomly to avoid the possibility of a biased
partition; according to proportions specified by the user, or according to rules
concerning the data set type. For example, when creating a time series forecast, data
is partitioned by chronological order (http://www.solver.com/partition-data). The
training set is used to fit the models; the validation set is used to estimate prediction
error for model selection; the test set is used for assessment of the generalization
error of the final chosen model. Ideally, the test set should be kept in a “vault,” and
be brought out only at the end of the data analysis (Hastie et al. 2009).

1.20.1 The Training Set

The training set is used to train or build a model. For example, for a linear
regression, the training set is used to fit the linear regression model (i.e., to compute
the regression coefficients). In a neural network model, the training set is used to
obtain the network weights. After fitting the model to the training set, the perfor-
mance of the model should be tested on the validation set.

1.20.2 The Validation Set

Once a model has been built using the training set, the performance of the model
must be validated using new data. If the training set itself was utilized to compute
the accuracy of the model fit, the result will be an overly optimistic estimate of the
accuracy of the model. This is because the training or model fitting process ensures
that the accuracy of the model for the training data is as high as possible, and that
the model is specifically suited to the training data. To obtain a more realistic
estimate of how the model would perform with unseen data, we must set aside a
part of the original data and not include this set in the training process. This data set
is known as the Validation Set. To validate the performance of the model, we can
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measure the discrepancy between the actual observed values and the predicted
value of the observation. This discrepancy is known as the error in prediction, and
is used to measure the overall accuracy of the model which was mentioned before in
Table 1.2.

1.20.3 The Test Set

The Validation Set is often used to fine-tune models. For example, you might try
out neural network models with various architectures and test the accuracy of each
on the Validation Set to choose the best performer among the competing archi-
tectures. When a model is chosen, its accuracy with the Test Set is still an optimistic
estimate of how it will eventually perform with unseen data. This is because the
final model has come out as the winner among the competing models based on the
fact that its accuracy with the Validation Set is highest. As a result, it is a good idea
to set aside another portion of data that is used in either training or in validation.
This set is known as the Test Set. The accuracy of the model on the test data gives a
realistic estimate of the performance of the model on completely unseen data. There
are two approaches to standard partitioning: random partitioning and user-defined
partitioning.

1.20.4 Random Partitioning

In simple random sampling, every observation in the main data set has equal
probability of being selected for the partition data set. For example, if you specify
60% for the Training Set, then 60% of the total observations are randomly selected
for the training set. In other words, each observation has about 60% (or 70% in
some cases) chance of being selected. Random partitioning uses the system clock as
a default to initialize the random number seed. Alternatively, a random seed can be
manually set, resulting in the same observations being chosen for the Training/
Validation/Test Sets each time a standard partition is created.

1.20.5 User-Defined Partitioning

In user-defined partitioning, the partition variable specified is used to partition the
data set. This is useful when you have already pre-determined the observations to
be used in the Training, Validation, or Test Sets. This partition variable takes the
value: t for training, v for validation and s for test. Rows with any other values in
the Partition Variable column are ignored. The partition variable serves as a flag for
writing each observation to the appropriate partition(s).
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1.20.6 Partition with Oversampling

This method of partitioning is used when the percentage of successes in the output
variable is very low (i.e., callers who opt into a short survey at the end of a customer
service call). Typically, the number of people who finish the survey is very low, so
information connected with these callers is minimal. As a result, it would be almost
impossible to formulate a model based on these callers. In these types of cases, we
must use Oversampling (also called weighted sampling). Oversampling can be used
when there are only two classes, one of much greater importance than the other (i.e.,
callers who finish the survey as compared to callers who simply hang up) (http://
www.solver.com/partition-data).

1.20.7 Data Partition to Test Neural Networks
for Geophysical Approaches

In geophysical problems, depending on the nature of data, when the pattern set is
prepared, it is usually randomly partitioned into two parts: a large part which is used
as the training set and a small part which is used as the test set. The percentage of
testing/validation is done experimentally, which varies from 60 to 75%. Hajian
et al. (2012) used 75% of the pattern set considered as the training set and the
remained part (25% of pattern set) was considered as test/validation data
(Fig. 1.19).

Most supervised data mining algorithms in geophysical approaches follow these
three steps:

1. The training set is used to build the model. This contains a set of data that has
pre-classified target and predictor variables.

2. Typically a hold-out dataset or test set is used to evaluate how well the model
works with data outside the training set. The test set contains the pre-classified
results data but they are not used when the test set data is run through the model

Fig. 1.19 Schematic of random partitioning of pattern set into training set and test/validation set
(Hajian et al. 2012)
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until the end, when the pre-classified data are compared against the model
results. The model is adjusted to minimize error on the test set.

3. Another hold-out dataset or validation set is used to evaluate the adjusted model
in step #2 where, again, the validation set data is run against the adjusted model
and results compared to the unused pre-classified data.

The partitioning of pattern set into these three parts is important for testing and
validating of the network training process.

The concept of ‘Training/Cross-Validation/Test Data Sets is as simple as this.
When you have a large of geophysical data set (collected or simulated), it is
recommended that it is split it into 3 parts:

– Training set (usually 60% of the original data set): This is used to build up our
prediction algorithm. Our algorithm tries to tune itself to the quirks of the
training data sets. In this phase we usually create multiple algorithms in order to
compare their performances during the Cross-Validation Phase.

– Cross-Validation set (usually 20% of the original data set): This data set is used
to compare the performances of the prediction algorithms that were created
based on the training set. We choose the algorithm that has the best
performance.

– Test set (usually 20% of the original data set): Now we have chosen our pre-
ferred prediction algorithm but we don’t know yet how it’s going to perform on
completely unseen real-world data. So, we apply our chosen prediction algo-
rithm on our test set in order to see how it is going to perform so we can have
some idea of the quality of the algorithm’s performance on unseen data.

It’s very important to keep in mind that skipping the test phase is not recom-
mended, because the algorithm that performed well during the cross-validation
phase isn’t necessarily the best, because the algorithms are compared based on the
cross-validation set and its quirks and noise. During the Test Phase, the purpose is
to see how our final model is going to behave in the wild, so that in case its
performance is very poor we may have to repeat the whole process starting from the
Training Phase.

1.21 The General Procedure for Testing of a Designed
Neural Network in Geophysical Applications

Usually, to test a designed neural network for geophysical applications, after
passing the training steps successfully, another three steps are followed. In the first
step the NN is tested for synthetic data with different level of noise.

Synthetic data means the data are produced (for a suitable domain of input)
through a modeling process, for example the gravity effect of a sphere with no
added-noise or the seismic wave velocity in a homogenous media, or the electrical
response of a three layered model of resistivity, etc. It is obvious that a synthetic
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model does not exactly reproduce the real conditions under which environmental
noise affects the main geophysical signal and furthermore the simplification of the
models cause the outputs of models to be far from the real world.

So, the successful behaviour of a neural network for synthetic data is not suf-
ficient and essentially doesn’t mean it will work as well for real data. To ensure the
network performance for real conditions is sufficient, a level of desired Gaussian
noise is usually added to synthetic geophysical data. Then, to test the robustness of
the network to natural noise, the level of artificial noise is increased and again the
network is tested.

Through increasing the level of noise and testing the NN outputs error, one can
estimate the level of robustness of the NN model to the noise. Hajian et al. (2012)
used three different level of noise to test the network for depth estimation of
cavities: low, medium and high, listed in Table 1.5.

After testing the neural network for both synthetics without and with noise with
different levels, the designed and trained neural network is tested for real data. An
optimized neural network is one which has passed all testing stages for synthetic
without noise, noisy synthetic data and real data. In each of the testing stages if the
performance of the neural network is not as desired it is modified by changing the
architecture (number of hidden layers, number of neurons in the hidden layer, type
of activation function) and/or the training procedure (changing training algorithm or
training algorithm factors,…) and/or the partitioning of data set into training, testing
and validation such that the desired performance is finally achieved. Discovering
the way to improve the designed neural network performance is very dependent on
the designing expert and it will be possible to do this much faster if they have
considerable experience in this field.

1.22 Competitive Networks—The Kohonen
Self-organising Map

Competitive neural networks represent a type of ANN model in which neurons in
the output layer compete with each other to determine a winner. The winner
indicates which prototype pattern is most representative of (most similar to) the
input pattern.

The competition among output layer neurons is implemented by lateral inhi-
bition—a set of negative connections between the neurons. The most well-known
among this paradigm of ANNs is the Self-organising Map (SOM), also known as
the Kohonen net (Beale and Jackson 1990).

Table 1.5 Different levels of
noise for testing neural
networks

Noise type Level of noise (%)

Low 5

Medium 10

High 25

36 1 Artificial Neural Networks



1.22.1 Learning in Biological Systems—The
Self-organising Paradigm

The type of learning utilised in multilayer perceptrons requires the correct response
to be provided during training (supervised training).

Biological systems display this type of learning, but they are also capable of
learning by themselves—without a supervisor showing them the correct response
(unsupervised learning). A neural network with a similar capability is called a self-
organising system because during training, the network changes its weights to learn
appropriate associations, without any right answers being provided. The propaga-
tion of biological neural activation via axons can be modelled using a Mexican hat
function1 (Fig. 1.20).

Cells close to the active cell have excitatory links. The strengths of the links drop
off with distance and then turn inhibitory. The Kohonen neural network also uses
only locally connected neurons and restricts the adjustment of weight values to
localised “neighbourhoods”.

1.22.2 The Architecture of the Kohonen Network

The Kohonen network consists of an input layer, which distributes the inputs to
each node in a second layer, the so-called competitive layer. Each of the nodes on
this layer acts as an output node.

Each neuron in the competitive layer is connected to other neurons in its
neighbourhood and feedback is restricted to neighbours through these lateral con-
nections (Fig. 1.21).

Neurons in the competitive layer have excitatory connections to immediate
neighbours and inhibitory connections to more distant neurons. All neurons in the
competitive layer receive a mixture of excitatory and inhibitory signals from the
input layer neurons and from other competitive layer neurons.

1.22.3 The Kohonen Network in Operation

As an input pattern is presented, some of the neurons are sufficiently activated to
produce outputs which are fed back to other neurons in their neighbourhoods. The
node with the weight vector closest to the input pattern vector (the so-called

1The function f(x) = A(x4 − 3x2); A > 0; is the Mexican Hat function. It has the appearance of a
Mexican Hat, hence its name. It is symmetric with respect to the y-axis. Its two minima produce
two stable points when viewed as a potential function in physics and engineering.
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“winning node”) produces the largest output. During training, input weights of the
winning neuron and its neighbours are adjusted to make them resemble the input
pattern even more closely. At the completion of training, the winning node ends up
with its weight vector aligned with the input pattern and produces the strongest
output whenever that particular pattern is presented (Beale and Jackson 1990).

The nodes in the winning node’s neighbourhood also have their weights mod-
ified to settle down to an average representation of that pattern class. As a result,
unseen patterns belonging to that class are also classified correctly (generalisation).
The m neighbourhoods, corresponding to the m possible pattern classes are said to
form a topological map representing the patterns. The initial size of the neigh-
bourhood mentioned above and the fixed values of excitatory (positive) and inhi-
bitory (negative) weights to neurons in the neighbourhood are among the design
decisions to be made (Beale and Jackson 1990).

Fig. 1.20 Mexican hat function (Negnevitsky 2001)

Fig. 1.21 Kohonen structure of layers. Redrawn after Beale and Jackson (1990)
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1.22.4 Derivation of the Learning Rule for the Kohonen Net

The summed squared error for pattern p for all output layer neurons can be written
as:

Ep ¼ 1
2

X
j

ðwij � xpj Þ2 ð1:26Þ

where xpj is the i-th component of pattern p for neuron j. The summation is done
over all j neurons.

Any change Dwij in the weight is expected to cause a reduction in error Ep. Now
Ep is a function of all the weights, so its rate of change with respect to any one
weight value wij has to be measured by calculating its partial derivative with respect
to wij (That is why we have the small delta d, instead of d in the following equation
for the derivative).

Dpwij ¼ �g
dEp

@wij
ð1:27Þ

where η is a constant of proportionality.
Now we have to calculate the partial derivatives of Ep. Using (1.27):

dEp

@wij
¼ wij � xpj ð1:28Þ

Combining (1.27) and (1.28), we get

Dpwij ¼ �g
dEp

@wij
¼ �gðwij � xpj Þ ¼ gðxpj � wijÞ ð1:29Þ

1.22.5 Training the Kohonen Network

1.22.5.1 The Kohonen Algorithm

1. Initialise weights
Initialise weights from N inputs to the nodes to small random values. Set the
initial radius of the neighbourhood.

2. Present new input x0(t), x1(t), x2(t), …, xn−1(t), where xi(t) is the input to node
i at time t.
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3. Compute distances to all nodes
Compute distances dj between the input and each output node j using:

dj ¼
XN�1

i

xi tð Þ � wij tð Þ

 �2 ð1:30Þ

Where xi(t) is the input to node i at time t and wij(t) is the weight from input
node i to output node j at time t.

4. Select output node with minimum distance
Select output node j* as the output node with minimum dj.

5. Update weights to node j* and neighbours
Weights updated for node j* and all nodes in the neighbourhood defined by Nj*
(t). New weights are

wij tþ 1ð Þ ¼ wij tð Þþ g tð Þ xi tð Þ � wij tð Þ

 � ð1:31Þ

for j in Nj*, 0 � i � N – 1.
The term η(t) is a gain term 0 � η � 1. Both η and Nj*(t) decrease with time
(Beale and Jackson 1990).

6. Repeat by going to step 2

1.22.5.2 Learning Vector Quantisation (LVQ)

A supervised learning technique for optimising the performance of Kohonen net-
works, e.g., when new vectors are to be added.

Weight adjustments—For a correctly classified input (Beale and Jackson 1990).

nw tþ 1ð Þ ¼ nw tð Þþg tð Þ x tð Þ � nw tð Þ½ � ð1:32Þ

For incorrect classification:

nw tþ 1ð Þ ¼ nw tð Þ � g tð Þ x tð Þ � nw tð Þ½ � ð1:33Þ

1.22.6 Training Issues in Kohonen Neural Nets

1.22.6.1 Vector Normalisation

To make vector comparison independent of magnitudes and dependent on orien-
tation only, the vectors are normalised by dividing them by their magnitudes. This
also helps to reduce training time.

40 1 Artificial Neural Networks



1.22.6.2 Weight Initialisation

A random distribution of initial weights may not be optimal, resulting in sparsely
populated trainable nodes and poor classification performance.

Possible remedies:

a. Initialisation of weights to the same value and lumping of input vectors with
similar orientation. This increases the likelihood of all nodes being closer to the
pattern vector. Inputs are slowly returned to original orientation with training.

b. Addition of random noise to inputs to distribute vectors over a larger pattern space.
c. Using a large initial neighbourhood changing slowly (Beale and Jackson 1990).

1.22.6.3 Reducing Neighbourhood Size

The neighbourhood radius should be decreasing linearly with time (iterations).
Neighbourhood shape may vary to suit the application—e.g., circular or hexagonal
instead of rectangular.

1.22.7 Application of the Kohonen Network in Speech
Processing—Kohonen’s Phonetic Typewrite

The Kohonen network is widely used in speech and image processing and has the
potential for statistical and database applications. Speaker-independent, unlimited
vocabulary continuous speech recognition remains to be achieved with conven-
tional techniques. The problem is made difficult by the same word being spoken
with different pronunciations, levels of loudness, emphases and background noise.
Apart from analysing individual units of sound (phonemes), the human brain uses
stored speech patterns, context and other clues to recognise speech successfully
(Beale and Jackson 1990).

Kohonen’s Phonetic Typewriter combines digital signal processing techniques
and the use of a rule base with a Kohonen network to achieve 92–97% accuracy
with multiple speaker unlimited vocabulary Finnish and Japanese speech(Beale and
Jackson 1990) (Fig. 1.22).

1.23 Hopfield Network

The Hopfield neural network is a type of unsupervised neural network which
doesn’t need to be trained and hence no training samples are needed. The Hopfield
model is a single layer feedback neural network. This means that the flow of data is
not only from one direction and this network incorporates feedback into neuron
from all neuron expect itself.
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On the other hand, in this type of neural network the neurons are all connected to
each other and the weights of the forward connections are the same as its reverse
connection, so the data entered in the network has the same effects in all of the
neurons available. The weight of the neurons connections is fixed and can be
calculated by Hopfield methodology. As shown in the Fig. 1.23, this is a 4-neuron
Hopfield network diagram. The sum square error of the Hopfield network outputs is
the energy function which must be minimized to get the best results.

So in a Hopfield network we have an energy function which may be defined as:

E vð Þ ¼ 1
2

Xn
i¼1

Xn
j 6¼i¼1

WijViVj �
Xn
i¼1

IiVi ð1:34Þ

Fig. 1.22 Kohonen’s Phonetic Typewriter block diagram. Beale and Jackson (1990), Source ftp.
it.murdoch.edu.au/units/ICT482/Notes/Kohonen%20net.doc

Fig. 1.23 Hopfield neural
network with 4 neurons
(Hajian et al. 2011a)
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where:

E(v) The energy function of Hopfield network
n Total number of neurons
Wij The weight of connection from neuron i to neuron j
Vi The i element of input vector V
Vj The j element of input vector V
li The i’th input also known as threshold

If weight Wij is a symmetric matrix, the energy function E(v) will never increase
as the state of the neurons(V1, V2, …, Vn) changes (Hopfield 1984; Hopfield and
Tank 1985; Tank and Hopfield 1986). This means that the network will converge to
a state at which the energy function E(v) is locally minimized (Wang and Mendel
1992). Accordingly, the Hopfield network can invert any set of measured geo-
physical data to another set of model parameters if a cost function can be formu-
lated between the measured data and those theoretically calculated based on the
model parameters The Hopfield network can be used in geophysical applications
analogous to the conventional inversion techniques such as least squares method.
However, inversion of geophysical data in general is not a simple task. The main
fundamental difficulties are the problem of non-uniqueness and instability in the
solutions (Li and Oldenberg 1996).

The Hopfield neural network has proven to be a powerful tool for solving a wide
variety of optimization problems (Hopfield and Tank 1985; Tank and Hopfield
1986). The key step in applying the Hopfield neural network to an optimization
problem is to relate a suitable cost function of the optimization problem to the
Hopfield energy function. Once this relationship is formulated, the network changes
from its initial state to final state. The final state constitutes the solution of the
problem where the energy function is minimized. The error function plays the role
as energy cost function which should be minimized (Hajian et al. 2011a).

1.24 Generalized Regression Neural Network (GRNN)

1.24.1 GRNN Architecture

The Generalized Regression Neural Network is a neural network architecture that
can solve any functional approximation problem. The learning process is equivalent
to finding a surface in a multidimensional space that provides a best fit to the
training data, with the criterion for the “best fit” being measured in some statistical
sense. The generalization is equivalent to the use of this multidimensional surface to
interpolate the test data.

As can be seen from Fig. 1.24, the Generalized Regression Network consists of
three layers of nodes with entirely different roles:
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• The input layer, where the inputs are applied,
• The hidden layer, where a nonlinear transformation is applied on the data from

the input space to the hidden space; in most applications the hidden space is of
high dimensionality,

• The linear output layer, where the outputs are produced.

GRNN, as proposed by Specht (1991) falls into the category of probabilistic
neural networks. This neural network, like other probabilistic neural networks,
needs only a fraction of the training samples which a back propagation neural
network would need (Specht 1991). The data available from measurements of an
operating system is generally never enough for a back propagation neural network
(Specht 1990). Therefore, the use of a probabilistic neural network is especially
advantageous due to its ability to converge to the underlying function of the data
with only few training samples available. The additional knowledge needed to get
the fit in a satisfactory way is relatively small and can be done without additional
input by the user. This makes GRNN a very useful tool to perform predictions and
comparisons of system performance in practice.

1.24.2 Algorithm for Training of a GRNN

The probability density function used in GRNN is the Normal Distribution. Each
training, sample, Xi, is used as the mean of a Normal Distribution.

Y Xð Þ ¼
Pn

i¼1 Yi expð�D2
i =2r

2ÞPn
i¼1 expð�D2

i =2r2Þ
ð1:35Þ

Fig. 1.24 Generalized regression neural network architecture
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D2
i ¼ X� Xið ÞT: X� Xið Þ ð1:36Þ

where Y(x) is the predicted output for input vector x, n indicates the number of
training patterns and r is the standard deviation. The distance, Dj, between the
training sample and the point of prediction, is used as a measure of how well the
each training sample can represent the position of prediction, X. If the distance, Dj,
between the training sample and the point of prediction is small, exp(−Dj

2/2 r2),
becomes big. For Dj = 0, exp(−Dj

2/2 r2) becomes one and the point of evaluation is
represented best by this training sample. The distance to all the other training
samples is bigger. A bigger distance, Dj, causes the term exp(−Dj

2/2 r2) to become
smaller and therefore the contribution of the other training samples to the prediction
is relatively small. The term Yj* exp(−Dj

2/2 r2) for j-th training sample is the
biggest one and contributes very much to the prediction. The standard deviation or
the smoothness parameter, r, as it is defined in Specht (1991), is subject to a search.
For a bigger smoothness parameter, the possible representation of the point of
evaluation by the training sample is possible for a wider range of X. For a small
value of the smoothness parameter the representation is limited to a narrow range of
X, respectively.

Using Eq. (1.35) it is possible to

– predict the behavior of systems based on a few training samples
– Predict smooth multi-dimensional curves
– Interpolate between training samples.

1.24.3 GRNN Compared to MLP

GRNN networks have advantages and disadvantages compared to Multi-layer
Perceptron (MLP) networks:

– It is usually faster to train a GRNN network than a MLP network.
– GRNN networks are often more accurate than MLP network.
– GRNN networks often have good performance in noisy environments.
– Less data is required to train a GRNN compared to MLP.
– GRNN networks are relatively insensitive to outliers (wild points.

1.25 Radial Basis Function (RBF) Neural Networks

1.25.1 Radial Functions

Radial functions are a special class of function. Their characteristic feature is that
their response decreases (or increases) monotonically with distance from a central
point. The center the distance scale and the precise shape of the radial function are
all fixed parameters of the model if it is linear.
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A typical radial function is the Gaussian which in the case of a scalar input is:

y ¼ e
� x�cð Þ2

r2 ð1:37Þ

Its parameters are its center “c” and its radius “r”.
A Gaussian RBF monotonically decreases with distance from the centre In

contrast a multi-quadric RBF which in the case of scalar input is:

h xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x� cð Þ2

q
r

ð1:38Þ

Multi-quadratic RBF monotonically increase with distance from the centre, see
Fig. 1.25. Gaussian like RBFs are local (give a significant response only in a
neighborhood near the centre) and are more commonly used than multi-quadric
type RBFs which have a global response. They are also more biologically plausible
because their response is infinite.

1.25.2 RBF Neural Networks Architecture

Radial basis function neural networks although not a different type of architecture in
the sense of perceptrons and connections, make use of radial basis functions as their
activation functions; these are real valued functions whose output depends on the
distance from a particular point. The most commonly used radial basis function is
the Gaussian distribution. Because radial basis functions can take on much more
complex forms, they were originally used for performing function interpolation. As
such, a radial basis function neural network can have a much higher information
capacity. Radial basis functions are also used in the kernel of a Support Vector
Machine (SVM).

Fig. 1.25 The diagram of how curve fitting can be done using radial basis functions
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Radial functions are simply a class of functions, in principle they could be
employed in any sort of model, linear or nonlinear, and any sort of network single
layer or multi-layer. However since Broomhead and Lowe’s seminal paper, radial
basis function networks, RBF networks, have traditionally been associated with
radial functions in a single layer network such as shown in Fig. 1.26. An RBF
network is nonlinear if the basic functions can move or change size or if there is
more than one hidden layer (Orr 1996).

RBF neural networks can be represented as a three layer feed forward structure
(Fig. 1.27) in which:

1. The input layer serves only as input distributer to the hidden layer.
2. Each node in the hidden layer is a function, its dimensionality being the same as

the dimensionality of the input data.
3. The output is calculated by a linear combination. i.e. weighted sum of the radial

basis functions plus the bias, according to (Orr 1996):

y xið Þ ¼
X
j¼1:k

wj/ xi � cji
�� ��
 � ð1:39Þ

Fig. 1.26 The traditional radial basis function network, each of n components of the input vector
feeds forward to m basis functions whose outputs are linearly combined with weights into the
network outputs (Orr 1996)
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In matrix notation:

Y ¼ /:W ð1:40Þ

W = [w1 w2 … wk w0]
T and / is:

Nod1 Nod2 Nodk bias

object1

U ¼

/11 /21 /k1 1

/12 /22 /k2 1

/13 /23. . . /k3 1

. . .

/1m /2m /km 1

2
6666664

3
7777775
¼ /1 /2 /k 1½ � ð1:41Þ

1.26 Modular Neural Networks

A modular neural network (MNN) as defined by Haykin (1994) is one in which the
computation performed by the network can be decomposed into a group of modules
(local experts) that operate on distinct inputs without communicating with each
other (Fig. 1.28).

For instance, the functional relationship between stress and strain for a solid
material solid is likely to be quite different for low and high strains (Fig. 1.29).

Fully-connected networks require a great deal more effort in such instances during
the training process, in addition to a vast data set containing all combinations of
examples. When faced with a new example during training, they tend to alter all their

Fig. 1.27 Three layer feed
forward structure of RBF
neural network
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weights and times hold values, rather than selecting a small, but relevant, portion of
the network. For a singular network to be successful in such cases, the training data set
needs to be very long and the training process is very slow as the network attempts to
learn all the nuances of the input space in a global fashion continuingwith the example
of the events, a comprehensive training data set may contain blocks of seemingly
incompatible data pairs, as is quite often the case with data obtained from real mea-
surements. A singular network tends to find this data confusing, and may sometimes
dismiss it as spurious noise, subsequently influencing the prediction accuracy. In a
well-constructed modular neural network this can be handled with different blocks of
data being assigned to different modules of the network (Eshaghzadeh and Hajian
2018).

Fig. 1.28 Block diagram of the general modular neural network architecture (Haykin 1994)

Fig. 1.29 Stress Strain curves and material behavior (after Cyberphysics.co.uk). Source Styles
(2012)
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1.27 Neural Network Design and Testing in MATLAB

There are two ways to implement Neural Networks in MATLAB, one is using
MATLAB special commands to prepare related suitable M-files.

The other is NN tool commands to run the neural networks toolbox; this toolbox
is a user friendly toolbox window in which the most common types of neural
networks can be designed, and tested, rapidly. In this section we introduce nntools
with a simple example.

To open the neural network toolbox in Matlab, first type “nntool” in the com-
mand window which means neural networks toolbox.

A toolbox window like Fig. 1.30 will appear.
In this window, the user can enter input data and target data as the training data

set.
To do this step, first, select the “Import” icon in the left-button of the box, and

then a window named “Import to network/data manager” will open, illustrated in
Fig. 1.31.

Here, you can input both input and target data from your source whether from
MATLAB work space or disk file.

Fig. 1.30 Neural network toolbox
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If the training data is not available in the workspace of MATLAB you should
load it from a disk file. As a simple example suppose we want to design and train a
network for:

y ¼ cos 2x1ð Þ=exp x2ð Þ:

First we produce the training data in the command window:

� x1 ¼ 0:0:5:14:5;

� x2 ¼ �1:0:1:1:9;

� y ¼ cos 2 � x1ð Þ:=exp x2ð Þ;
� x ¼ x1; x2½ �;

Note that the whole inputs of a neural network is entered as a matrix in nntool
and each of its rows are the vectors of each of inputs.

If you select the MATLAB workspace as your source in the ‘select a variable’
sub-box, both x and y will be considered as input and target data of the neural
network, so, in the destination sub-window, select ‘input data’ choice and click the
import icon in the right button of this window. A message box will be sent from
MATLAB “Variable” ‘x’ has been imported as input data into the network/data
manager, click ‘ok’ in this case.

Now, go back to ‘Select variable sub-box’ and select ‘y’ as a variable, and in
‘destination’ sub-box select ‘target data’, and click import button at the right button,
again a message from MATLAB will be shown “Variable” ‘y’ has been imported as
target data into the network/data manager, click ‘on’ again.

Fig. 1.31 Window of importing to Network/data manager in nntool
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Now set x; yf g has been imported into network/data manager space (Fig. 1.32)
and are ready to be used for training of the Neural Network when it will be designed
(Fig. 1.33).

To design a neural network, select ‘New’ in Network/Data manager toolbox,
then the “Create Network or Data” window (Fig. 1.33).

A schematic chart of the procedure for the design of an MLP neural network
through nntool has been shown in Fig. 1.34.

Here there are two main parts:
Part 1 Name: enter the name (label) of the network
Part 2 Network properties: enter the properties of the network: network type,

input data, target data, training function, adapting learning function, perform
function, number of layers and properties on each of the layers which means the
number of neurons and the transfer function for each layer.

In this example enter ‘simulator’ as the name of the network.
The network type menu there are several types of neural networks as below:

– Cascade-forward back propagation
– Competitive
– Elman Back propagation
– Feed-forward propagation
– Feed-forward distributed time delay
– Feed-forward time-delay
– Generalized regression

Fig. 1.32 Neural network/data manager window of nntool
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– Hopfield
– Layer recurrent
– Linear layer (design)
– Linear layer (train)
– LVQ: Learning vector quantization
– NARX: Nonlinear autoregressive exogenous model
– NARX Series Parallel
– Perception
– Probabilistic
– Radial basis (exact fit)
– Radial basis (fewer neurons)
– Self-organizing map

Fig. 1.33 Window of creating network/data in nntool
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Here we select ‘Feed-Forward back prop’ as Network type, ‘x’ as input data and
‘y’ as target date. It is necessary to mention that in the icon ‘input data’ each of
variables that were imported before in the network/data manager (NDM) space
outputs appear and also the same for icon. Target data’, each of variable that were
imported in NDM space appear and can be selected as target data.

In the training function menu, the below functions are available (to be selected);
select TRAIN LM.

– TRAIN LM (default): Levenberg Marquardt
– TRAIN BFG: BFGs quasi-Newton back prop.
– TRAIN BR: Bayesian regulation back propagation
– TRAIN CGB: Conjugate gradient back prop.
– TRAIN CGF: Conjugate gradient back prop. With Polak-Ribiere updates
– TRAIN CGP: Conjugate gradient back prop. With Fletcher-Reeves updates
– TRAIN GD: Gradient descent back propagation
– TRAIN GDM: Gradient descent with momentum back propagation
– TRAIN GDA: Gradient descent with adaptive learning rate back propagation
– TRAIN GDX: Gradient descent with momentum and adaptive back propagation

Fig. 1.34 Procedure for design of an MLP neural network through nntool
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– TRAIN OSS: One Step Secant back propagation
– TRAIN R:Random order incremental training with learning functions
– TRAIN RP: Resilient Back propagation
– TRAIN SCG: Scaled conjugate gradient back propagation

TRAIN LM is the Levenberg-Marquardt function which is a famous and com-
mon algorithm for training which was explained in section 1-10, of this chapter.

In the part ‘Adaption learning function’ two choices are selectable:

– LEARN GD
– LEARN GM

Select LEARN GD
Also, in ‘performance function’ menu bar the choices are:

– MSE: Mean square Error
– MSEREG: Mean squared error with regularization performance function; it is

weight sum of two factors: the mean squared error and the mean squared weight
and bias values.

– SSE: Sum Square Error

Performance function means the Global Error which will be used to measure
how closely the outputs correspond to the observed targets, and the aim of training
for a supervised neural network is to iteratively minimize this error.

For this example, we select ‘MSE’

– ‘Number of layers’ menu: select the number of layers of the network. It is
necessary to mention that in MATLAB the input layer is not connected as a
layer. It is perhaps because of the fired ‘2’ weight for the inputs

In this example for considered function a 2-4-1 network is selected which means
2 neuron as input, 4 neurons as hidden layer and 1 neuron as output so Number of
layers is 2 in this example.

Properties for layers
In this mean part, the properties of each layer is configurable for layer 1, number of
neurons is set to ‘4’ for the first run and ‘TANSIG’ is selected as transfer function
(Fig. 1.35).

The transfer function menu choices are:

– TANSIG
– LOGSIG
– PURELIN

To check the architecture of the designed neural network selects the ‘view’ icon
in the visit bottom of the window. Selecting ‘view’ neural network viewer will be
illustrated as Fig. 1.36.

Here you can check to ensure if the general structure of the network is true or
not. If there are any mistakes you can go back to create network/data menus and
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Fig. 1.35 Window of creating network/data; here create network is shown

Fig. 1.36 Window to view the custom neural network
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change any of the parts needed in this way. After checking the network in viewer
window, select ‘create’ in the right bottom of ‘create network data’ window. The
message box will show as in Fig. 1.37.

Select ‘ok’ and go to “Network/data manager” window in the part ‘networks’ the
designed network appears as its chosen name, here as we named before the ‘sim-
ulator’ is appeared (Fig. 1.38).

Double-click on the network name and the new window ‘Network: simulator’ is
opened (Fig. 1.39).

At top of this window there are six menu bars. First choose ‘train’ menu bar to
start the training process.

Fig. 1.37 Message box shows that new network is created

Fig. 1.38 “Network/data manager” window
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In this menu there are two parts:

– Training information as ‘Training Info’ (Fig. 1.40)

and Training Parameters (Fig. 1.41).
In the menu training information, you can select your own network inputs and

targets and also assign names for outputs and errors of the network in the ‘Training
Results’ part.

Here as the name of the network was defined as ‘simulator’ the defaults for
output name is ‘simulator_outputs’ and for error name is ‘simulator_errors’ these
names also can be changed through typing the new name in the related menu to a
new name.

In the next sub-menu (of the ‘train’ menu) ‘training parameters’ menu is
accessible, the parameters and their defaults are shown in Fig. 1.41.

Fig. 1.39 Network simulator window for designed network in nntool

Fig. 1.40 Training information sub-menu in network simulator
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Now, click on the icon “Train Network” to start training the designed ANN with
the training information and parameters determined in the last step. In this case, the
“Neural Network Training (un train tool)” window opens (Fig. 1.42).

This window displays the training progress and allows the user to interrupt
training at any point by clicking ‘stop training’.

In this window there are three main parts:
Neural Network: Here the schematic of the designed ANN is shown.
Algorithms: Here, the training algorithm, the performance function (and data

division) selected before by the user, are shown.
The default for data division method is random data division.
In this method of division, the input data is divided randomly so that 60% of the

samples are assigned to the training set, 20% to the validation set and 20% to the
test set.

The philosophy of dividing of data into these three parts is to improve gener-
alization by stopping learning before the global minimum of the training data set
error (SSE); i.e. before the idiosyncrasies of the data set are learnt. The training data
set is used to adapt the weights in the network and the test data set is used to
determine when to stop training. The validation data set plays no role in training
and is used to assess the generalization performance of the trained network.

The below information is shown per epoch:
Progress: in this part the number of epochs, time: elapsed time for training,

performance: performance value change during training process, Gradient: the
gradient of the propagates in every epoch.

Mu: the momentum,
validation checks: The numbers of samples used as validation check are dis-

played. For this example, the training stopped when the validation error increased
for 6 iterations which occurred at iteration 12.

Fig. 1.41 Training parameters sub-menu in network simulator
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Plots
In this part the plots of performance, training state and regression between outputs
and target can be selected to be shown.

Click on ‘performance’, for this example, the Figure below will be displayed in a
new window namely ‘performance (plotperform)’ (Fig. 1.43).

As it is shown in Fig. 1.43 the mean square Error (MSE) is plotted versus each
of the epochs for training set, validation set and test data. To achieve the best
number of epochs for training in which the over training is prevented while the
MSE error for validation is at its minimum value.

Fig. 1.42 Window of neural network training in nntool
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As is shown in Fig. 1.43, the best validation performance is achieved (0.31762)
at epoch 6.

Clicking on the ‘training state’ bottom the ‘plot train state’ window will be
opened. In this window the gradient, Mu, and validation checks are plotted versus
(any of the) each of epochs.

For this example, as it is shown in Fig. 1.44, the final value for gradient, Mu and
validation checks, in the last iteration (epoch 12) converges to 0.019621, 0.001 and 6.

Clicking on the ‘Regression’ four regression plots are drawn. They show the
regression between target and output data with respect to each of training validation
and test data separately and also the total response is shown as ‘all data’ plot
(Fig. 1.45).

The regression plots help the user to know how much the output of the designed
neural network are close to the target values by performing a linear regression, for
this example the regression values are listed in Table 1.6 on the other hand these
plots show how well the output tracks the Table 1.6 targets for training, testing and
validation.

The regression plots also help the user to compare a designed ANN with another
ANN with the same training data set. From the R2 value point view very high values

Fig. 1.43 Plot for neural network training performance in nntool

1.27 Neural Network Design and Testing in MATLAB 61



of R2 or very near to 1 means that over fitting is most probably happening which
means that the number of training patterns might be over greater than that required.

It is necessary to mention that the results will be reasonable if:

– The final mean-square error is small.
– The test set error and the validation set error have similar characteristics.
– No significant over fitting has occurred by the iteration where the best validation

performance occurs.

In this example, for a 2-4-1 ANN the results are not good enough, because:

1. In the performance window the MSE for training and testing are not small
enough and are very much more that the error value for the validation data.

2. As it can be obviously seen in regression window (Fig. 1.45).

Some of data for training are far from the line Y = T especially for the initial
values (between −1 and 0) located on the target axis.

This means the higher level of error for this domain of data train and test are very
much larger than the error value for the validation data.

Fig. 1.44 Plot of neural network training state in nntool
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Furthermore, the test set error and validations set error do not have similar
characteristics.

So, we increase the number of neurons in the hidden layer to 6 and test it again.
The results for a 2-6-1 ANN are shown in Fig. 1.46.

Fig. 1.45 Plot of the neural network training regression in nntool for a 2-4-1 MLP network

Table 1.6 Regression values
of training for designed neural
network

Case R

Training 0.25278

Validation −0.73539

Test 0.88657

All 0.55481
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In this state the output trains the targets very well for training, testing and
validation and the R-value is over 0.90 also in this case the test set error and the
validation set error have similar characteristics, so the ANN response is satisfactory.

If the designed ANN is not accurate enough and more accurate results are
required, any of these approaches can be tried (followed):

– Reset the initial network weights and biases to new values referring to window
(Fig. 1.47) and train again

– Increase the number of hidden neurons
– Increase the number of training vectors
– Increase the number of input values, if more relevant information is available.
– Try a different training algorithm.

Fig. 1.46 Training results plot regression for a 2-6-1 ANN
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Usually, more neurons require more computation but they allow the network to
solve more complicated problems. More layers require more computation but their
use might result in the network solving complex problems more efficiently. Of
course more neurons don’t necessarily mean more accuracy and may cause
over-fitting as when the number of the neurons in s MLP network hidden layer is
high/very high the number of modifiable weights will be high in relation to the
number of patterns in the training data set and training is continued beyond the
stage at which the general trends in the data are learnt, and the network begins to
learn the noise in the data set. This is harmful to the ability of the network to
generalize with new data sets. It depends on the degree of complexity of the
problem to achievable the optimum value for the number of hidden neurons one
way is to run ANN with different number of neurons and calculate the total MSE for
each and compare the results via plot the test/train error MSE versus to select the
optimum value. Hajian et al. (2012) used this method for choosing epochs.

The optimum value of hidden neurons which was designed for depth estimation
of cavities, trained the neural network with the below algorithm starting from
M = 1, until the stopping criterion was reached and the resultant error of the test
and training data set stored.

This iterative process continued until it converged at a predefined maximum
number for M. In the case of divergence, it is obvious that the number of epochs
should be increased.

– How good are multi-layer per feed-forward networks?

It is clear that the approximation result of a MLP is not perfect. Kröse and Smagt
(1996) noted that the resulting approximation error is influenced by:

1. The learning algorithm and number of iterations which determines how well the
error on the training set is minimized.

Fig. 1.47 View/edit weights menu in network simulator
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2. The number of learning samples; this determines how well the training samples
represent the actual function.

3. The number of hidden units. This determines the ‘expressive power’ of the
network. For ‘smooth’ functions only a few number of hidden units are needed,
for wildly fluctuating functions more hidden units will be needed.
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Chapter 2
Prior Applications of Neural
Networks in Geophysics

2.1 Introduction

As mentioned previously in the primary sections of chapter one, there are several,
and varied applications of neural networks in geophysics; here we give a short list
of some of these applications:

– Modeling of crustal velocity using Artificial Neural Networks (case study: Iran
Geodynamic GPS Network (Ghaffari and Mohammadzadeh 2015)

– Crustal velocity field modeling with neural network and polynomials, SIDERIS,
M.G. (Ed.), Moghtased-Azar and Zaletnyik (2009)

– Artificial neural network pruning approach for modular neural networks
(Yilmaz 2013)

– Modular neural networks for seismic tomography (Barráez et al. 2002)
– Estimating one-dimensional models from frequency domain measurements
– Quantifying sand fraction from seismic attributes using modular artificial neural

networks
– Borehole electrical resistivity modeling using neural networks
– Determination of facies from well logs using modular neural networks (Bhatt

and Helle 2002)
– Inversion of self-potential anomalies caused by 2D-inclined sheets (Hesham

2009).
– 2D inverse modeling of residual gravity anomalies from Simple geometric

shapes using Modular Feed-forward Neural Network (Eshaghzadeh and Hajian
2018)

Most applications involve training the network with a finite amount of data. While
this may be adequate for approximating a well-behaved relationship between the
input and output variables, it may not be suitable when the training data are frag-
mented or are a discontinuous representation of a mapping that has significant
variation over the input parameter space.
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2.2 Application of Neural Networks in Gravity

One way to decrease the dependency of the interpretation method on the expert
interpreter is to use intelligent methods in which the experience of the interpreter
can be taught to a neural network. In the recent decade efforts have been focused on
using neural networks for gravity anomalies with significant success. In recent
years, Hajian et al. (2012) presented a neural-network based method for simulta-
neous estimation of the shape factor and depth of microgravity anomalies to locate
subsurface cavities. The probable depth to cavities is of critical input in engineering
design in many parts of the world especially in the southern US, Central America
and the Middle East where extensive areas are underlain by great thicknesses of
limestones which are often karstic (Hajian et al. 2012). Most of the research into the
application of neural networks for the gravity method is associated with the
interpretation of gravity anomalies. Various types of ANN, which have been used in
gravity exploration, are listed in Table 2.1. However a combination of neural
networks and fuzzy logic is very useful for gravity signal processing especially for
noise attenuation of microgravity time series (repeated gravity observations at a
fixed station), Negro et al. (2008) at INGV, Catania used a neuro-fuzzy system to
eliminate the effect of pressure and temperature as noise sources on microgravity
data from the gravity stations over Etna volcano.

Table 2.1 Various types of ANN used in gravity exploration

Researcher(s)/
year

Neural-net based method Target

Salem et al.
(2003a)

Hopfield neural network Depth estimation of subsurface cavities in
medford site

Hajian et al.
(2007)

Radial basis function
(RBF) neural network

Detection of subsurface sinkholes triggered
by earthquakes

Osman et al.
(2007)

Forced neural network Forward modeling of gravity anomaly
profiles

Hajian (2004,
2008)

Hopfield/MLP Depth estimation of Buried Qanats

Hajian (2009) Multi-layer perceptron Estimation of dangerous subsidence of areas
associated with earthquakes

Styles and
Hajian (2012)

General regression neural
networks

Cavities depth estimation using microgravity
data

Hajian and
Shirazi (2015)

General regression neural
networks/MLP

Depth estimation of salt domes

Albora et al.
(2001)

Cellular NN Separation of regional/residual anomalies

Albora et al.
(2007)

Cellular neural network Tectonic modeling

Tierra and
Freitas (2005)

MLP Predicting gravity anomaly from sparse data

Sarzeaud et al.
(2009)

Modified Kohonen neural
network

Optimal Interpolation of gravity maps
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2.2.1 Depth Estimation of Buried Qanats Using a Hopfield
Network

Hajian et al. (2011a, b) presented a Hopfield Neural Network for depth estimation
of gravity anomalies which was tested for both synthetic and real data. The case
study on real data was an ancient buried Qanat located under the surface of the
north entrance of institute of geophysics at the University of Tehran. The designed
Hopfield neural model result was very close to the real depths (one 2.9 m and the
other 9.25 m).

2.2.1.1 Extraction of Cost Function for Hopfield Neural Network

The gravity effect of an object, at an observation station (x, z = 0) caused by simple
bodies such as a sphere or a horizontal cylinder (at x = 0 and depth = Z) (Fig. 2.1)
is generally calculated using equation (2.1) (Abdelrahman et al. 2001):

g ¼ A
ðx2 þ z2Þq ð2:1Þ

where q is the shape factor of the buried object:

(a) q = 1 for a horizontal cylinder
(b) q = 1.5 for a sphere

and A is the amplitude factor.

The value of ‘q’ lies between 1 and 1.5 for spherical and cylindrical shapes.
From Eq. 2.1 it is obvious that the horizontal location of the object (x) can be
estimated from the raw Bouger anomaly contours and even better from the residual
anomaly contours. As an example in Fig. 2.2 the horizontal location of the object is
clearly close to where the Bouger color of the contours tend to dark blue, which
indicates the minimum value of the Bouger anomaly.

Fig. 2.1 Geometrical
specifications of a simple
body model
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Suppose we have measured M gravity data on a principal profile over a buried
object with unknown amplitude factor, ‘A’ which is located at the position (l). For
estimating the amplitude factor, a cost function between the measured and calcu-
lated gravity anomaly is defined (see Eq. 2.3). The ideal gravity anomaly at station
k can be written:

gck ¼ GlkA ð2:2Þ

where Glk represents the geometrical relationship between the position (i) and the
observation point, k and A is the amplitude factor.

There is a problem here in that if we have noisy data, how can we calculate the
amplitude factor q? This can be approximated in a least squares fashion as the
solution that minimizes the cost function between the measured and calculated data.
We define a cost function C, in terms of the sums of the squares of the differences
between the measured and calculated data (Salem et al. 2003a):

C ¼ 1
2

XM
k¼1

ðgk � gckÞ2 ¼
1
2

XM
k¼1

½gk � GlkA�2 ð2:3Þ

where gk represents the measured gravity data.
For Hopfield nets, the units have a binary threshold. This means that the units

can take on only two values which are either 0 or 1. When the unit’s input exceeds
the threshold it output is ‘1’ and otherwise it is ‘0’. Hence, the amplitude factor A

Fig. 2.2 Bouger anomaly map over the Buried Qanat
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should be consistent with the output of the Hopfield network, where a typical bit is
1 or 0. With reference to binary digits rules the amplitude factor can be expressed
as:

A ¼
Xn¼DþUþ 1

i¼1

2i�D�1bi ð2:4Þ

where:

D the number of down bits
U is the number of up bits
b is a binary digit (0 or 1). Obviously the values of D and U depend on the

precision and amplitude, respectively. For example if A = (100.11)2 then U = 3
and D = 2 so A = (4.75)10

Substituting Eq. (2.3) into Eq. (2.4) gives the connection weights and the initial
values of inputs as:

Wlij ¼ �
XM
k¼1

2ðiþ j�2D�2ÞðGlkÞ2 ð2:5Þ

Iij ¼ 1
2

XM
k¼1

ð2ðiþ j�2D�2ÞGLKÞ2bi þ
XM
k¼1

2ði�D�1ÞGlkgk ð2:6Þ

Consequently the energy of the Hopfield net for estimating the amplitude factor at
location (l) is as below:

ElðbÞ ¼ � 1
2

Xn
i¼1

Xn
j6¼i¼1

Wijbjbi �
Xn
i¼1

Ilibi ð2:7Þ

We selected 9 neurons for the Hopfield neural network because the accuracy of
gravity data was 10 microGal and so 9 bits are needed to present the amplitude factor
of gravity value in binary digits. (As mentioned before with reference to Eq. (2.4)
the binary value of the amplitude factor of gravity data consists of D+U+1 digit.

We then applied different values of depth (Z) and calculated the amplitude factor
and final minimized cost function for each depth by the Hopfield network.

The depth value at which the cost function has the minimum value is assumed to
be the nearest value to the real depth of the gravity source.

2.2.1.2 Synthetic Data and the Hopfield Network Estimator
in Practical Cases

To initialize a Hopfield Network, the values of the units are set to the desired start
pattern. Then the network is sequentially updated until it converges to an attractor
pattern. The convergence in a Hopfield is achieved when it gets to a state where the
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pattern can’t change after the next updating. Therefore, in the context of Hopfield
Networks, an attractor pattern is a final stable state, a pattern that cannot change any
value within it under updating. To clarify this concept, suppose there is a topo-
graphic area with valleys and peaks along which a ball runs (Fig. 2.3). It is obvious
that the ball will stop in one of the valleys but the actual stop point among the
available valleys depends on its momentum. If the ball has enough momentum at
the starting point, it will stop in the valley with the minimum depth. So we run a
Hopfield neural network with different initial values of depth to find the stable state
where the energy of the network achieves a steady state. The output which has the
least energy indicates the optimum estimate of the depth of the anomaly.

In order to examine the network behavior, the gravity effect of a cylinder with
noise levels of 5%, and 10% was used. When the Hopfield net achieved its stable
state, the optimum depth was estimated using the procedure described in the last
paragraph. The results are shown in Table 2.2.

Fig. 2.3 Energy variation during the updating process in a Hopfield neural network. Source
https://en.wikipedia.org/wiki/Hopfield_network#/media/File:Energy_landscape.png

Table 2.2 Outputs of present of Hopfield neural network in 10% noise

Training values for R, Z Outputs of MLP (3,5,2) in present of
10% noise

Horizontal cylinder Sphere or vertical cylinder Horizontal
cylinder

Sphere or
vertical cylinder

R(m) Z(m) R(m) Z(m) R(m) Z(m)

1 2 1.17 2.22 1.12 2.22

1 3 1.22 3.45 1.08 3.45

2 4 2.15 4.25 2.09 4.25

2 5 2.18 4.28 2.14 4.28

3 6 3.25 6.53 3.17 6.53

4 8 4.17 8.76 4.28 8.76

5 13 5.65 13.45 5.30 13.45

6 14 6.25 13.4 6.31 13.40

6 15 6.25 14.65 6.35 14.65
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This shows that the ability of Hopfield net is good for the depth estimation of
shallow objects in the presence of noise sources such as tunnels or massive
buildings near the gravity observed stations. Explicit design of a suitable filter to
attenuate environmental noise, for use with gravity data, is difficult but neural
networks are commonly less sensitive to noise. As is shown in Table 2.2, the
network was tested for synthetic gravity data for cylinder and sphere models in the
presence of noise and the values of depth (Z) and amplitude factor (A) were cal-
culated. It is clear from Table 2.2 that the depth estimates are close to their training
value, seven, in the presence of 10% noise.

In the next stage the network was tested for a set of gravity data measured over a
subterranean canal (Qanat) located in the north of the Geophysics Institute at the
University of Tehran. We first select a principal profile from the gravity network
profiles (Fig. 2.4).

The principal profile data is perpendicular to the extension of the anomaly. So
we selected the profiles shown in Fig. 2.5 (lines A and B).

In the next stage a simple spherical or cylindrical body was assumed and the
values of G and gk in Eqs. 2.6 and 2.7) were extracted from the principal profiles.
Then the weights Wij and thresholds Iij are calculated via Eqs. 2.5 and 2.6 to

Fig. 2.4 Flowchart of selecting principal profile data. Redrawn after GRÊT et al. (2000)
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minimize the energy function. Then different random initial values of amplitude
factor (‘A’ in Eq. 2.1) were applied to the Hopfield network.

As the accuracy of gravity data was 0.01 mGal; 9 bits are needed to present the
amplitude factor of gravity value in binary digits. So we used a 9-neuron Hopfield
neural network. The network updates are repeated until the new output is equal to
the output of the last updating stage. In this condition the network has reached its
stable state which means that the energy function has been minimized. The energy
function for each initial value is calculated using Eq. 2.7 and the output of the
network, which has the minimum energy function, indicates the real amplitude
factor. The result from the Hopfield neural network was 2.5 m for profile A and
9.5 m for profile B, which when compared to the real depths which were respec-
tively 2.9 and 9.25 m and so this method has a good depth estimation accuracy.

2.2.1.3 Conclusions

It this section a Hopfield neural network was presented for depth estimation of
gravity anomalies caused by simple objects with geometries close to cylindrical or
spherical The designed network was tested on noisy synthetic data and was also
examined for two principal profiles of a real case study and the results showed the
good accuracy of the network as the Qanat depth estimated by the network (2.5 m)
was very close to its real value (2.9 m).

Fig. 2.5 The principal profiles selected for interpretation with Hopfield NN
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2.2.2 Depth Estimation of Salt Domes Using Gravity
Anomalies Through General Regression Neural
Networks

In this section, as an example we describe how it is possible to estimate salt dome
depth through the use of General Regression Neural Network (GRNN). The results
of this method were compared to the most common neural networks; Multi-Layer
Perceptron (MLP) and both GRNN and MLP models were tested. The model’s
appropriateness for application to genuine cases, was degraded by adding Gaussian
noise to the information to reproduce a few levels of vulnerability and the outcomes
were compared to a traditional strategy, in particular the standardized full gradient
method.

The results showed that both the GRNN and MLP are robust to noise but that
GRNN is more precise than either the least-squares minimization or MLP method.

The main purpose of the interpretation of gravity data is essentially the esti-
mation of the location and depth of the causative sources. Although initial simple
models may be geologically unrealistic, they are typically adequate to permit the
analysis of the sources of many isolated anomalies (Nettleton 1976; Abdelrahman
and El-Araby 1993). A few strategies have been described for the interpretation of
gravity anomalies. Such methods include graphical methods (Nettelton 1976),
Fourier transformation (Sharma and Geldart 1968), Mellin transforms techniques
(Mohan et al. 1986), ratio techniques (Bowin et al. 1986; Abdelrahman et al. 1989),
least-squares minimization approaches (Gupta 1983; Lines and Treitel 1984;
Abdelrahman et al. 1991; Salem et al. 2003a), Euler deconvolution (Thompson
1982; Reid et al. 1990), neural networks (Elawadi et al. 2001; Osman et al. 2007),
3D analytic signal amplitude (Li 2006), continuous wavelet transforms (Chamoli
et al. 2006), eigenvector analysis of gravity tensor (Beiki and Pedersen 2010),
gravity gradient tensor invariants and vertical component analysis (Oruç 2010) and
finally multi-adaptive neuro fuzzy interference systems (Hajian et al. 2011a, b).

Neural networks have become increasingly popular in geophysics during this
last decade (Grêt et al. 2000) since they are generalized approximators which can
approximate any continuous function to any desired accuracy. In the geophysical
domain, neural networks have been used for waveform recognition and first-peak
picking (Murat and Rudman 1992; McCormack et al. 1993); for electromagnetic
interpretation (Poulton et al. 1992; Al-Garni 2009), magneto telluric (Zhang and
Paulson 1997), and seismic inversion purposes (Roth and Tarantola 1994; Langer
et al. 1996); neural networks (Elawadi et al. 2001; Osman et al. 2007; Styles
and Hajian 2012); multi-adaptive neuro–fuzzy interference systems (Hajian et al.
2011a, b).

Salem et al. (2003b) used a Hopfield network for depth estimation of cavities.
Osman et al. (2007) used forced neural networks for forward modeling of gravity
anomaly profiles. Styles and Hajian (2012) used Generalized Regression Neural
Networks for cavity depth estimation.
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2.2.2.1 GRNN and MLP Design and Test

To design GRNN and MLP neural networks for depth estimation of salt domes, we
select some features, which are characteristic of the gravity data instead of utilising
all the gravity points of an observed profile to diminish the complexity of the
designed neural network.

The features, we use as inputs, were selected based on the features which Grêt
et al. (2000) have previously used successfully for gravity depth estimation. The
main reason to choose these inputs is to cover the important features from the
observed gravity anomaly. The features F1, F2, F3 and F4 which were used as
inputs are defined as below (Fig. 2.6):

F1 ¼ gMax; F2 ¼ Xg50%; F3 ¼ Xg75%; F4 ¼ XgMax ð2:8Þ

• F1: The maximum gravity value (F1 = gMax).
• F2: The distance over which the value of the gravity anomaly falls to 50% of the

maximum value, which is known as the half-width (F2 = Xg50 %).
• F3: The horizontal distance over which the value of the gravity anomaly falls to

75% of the maximum value.
• F4: The horizontal distance of the maximum gravity value (XgMax).

The process of training and design of the GRNN/MLP neural network is shown in
Fig. 2.7.

The flow Chart for the GRNN training procedure is shown in Fig. 2.8. In order
to test the designed GRNN we produced 50 pairs of synthetic gravity data by
selecting 50 random depths for the three geometrical shapes: sphere, horizontal
cylinder and vertical cylinder. Finally the RMSE (Root Mean Square Error) was
selected as an index to compare the methods, and the estimation error for each
model and for both near surface and deep objects was evaluated. The results are
listed in Tables 2.3 and 2.4.

After utilizing the synthetic data for training, the application to a nearly-real case
was tested by adding Gaussian noise to the data. To simulate a few levels of
vulnerability, we performed two different levels of noise addition: 5% Gaussian
noise and 10% Gaussian noise. The results of the GRNN in the presence of noise
were compared with the MLP and Non-linear least square method to assess the

Fig. 2.6 Input-output structure of GRNN/MLP
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Fig. 2.7 Flowchart of GRNN/MLP neural network training and design
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Fig. 2.8 Flow chart for GRNN training procedure
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model robustness. The RMS error value of each method was calculated and listed in
Tables 2.5 and 2.6. The results showed that the GRNN model is more robust in the
presence of noise as compared to the MLP and Non-Linear Least Square
Minimization approaches.

Table 2.3 Root Mean Square Error (RMSE) of the GRNN and MLP network and Non-Linear
Least Squares Minimization (NLLSM) method for near surface object synthetic data without noise,
note that the depths (Z) are in meters and q is the geometric factor

Root Mean Square Error (RMSE)

Model Oil Oil-water Oil-gas

Parameters Q Z Q Z q Z

MLP 0.06 0.24 0.15 0.45 0.07 0.35

GRNN 0.02 0.13 0.10 0.32 0.04 0.18

Table 2.4 Root Mean Square Error (RMSE) of the GRNN and MLP network and Non-Linear
Least Squares Minimization (NLLSM) method for deep object synthetic data without noise, note
that the depths (Z) are in kilometers

Root Mean Square Error (RMSE)

Method Sphere Vertical cylinder Horizontal
cylinder

Parameters Z q Z q Z Q

MLP 0.045 0.09 0.061 0.23 0.084 0.30

GRNN 0.033 0.04 0.042 0.16 0.067 0.20

NLLSM 0.057 0.05 0.069 0.19 0.090 0.23

Table 2.5 Root Mean Square Error (RMSE) value of the GRNN, MLP network and Non-Linear
Least Square Minimization (NLLSM) method for near surface objects and synthetic data in the
presence of several level of Noise to Signal (N/S)

Root Mean Square Error (RMSE)

Model N/S (%) Sphere Vertical
cylinder

Horizontal
cylinder

Parameters — Q Z Q Z Q Z

MLP 5 0.12 0.33 0.19 0.25 0.17 0.15

GRNN 5 0.09 0.32 0.15 0.22 0.13 0.12

NLLSM 5 0.15 0.28 0.26 0.32 0.18 0.19

MLP 10 0.26 0.50 0.24 0.63 0.21 0.56

GRNN 10 0.19 0.37 0.20 0.49 0.16 0.45

NLLSM 10 0.36 0.65 0.25 0.88 0.19 0.53

The depth values are in meters
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2.2.2.2 Location of Field Data

The case study was located in Denmark, Mors. The investigation was confined to
the island of Mors, which is located in the northwestern piece of Jutland, Denmark
(Fig. 2.9). The island covers a zone of around 360 km2. It is 10–15 km wide and
around 35 km long with a SSW-NNE alignment.

Table 2.6 Root Mean Square Error (RMSE) value of the GRNN, MLP network and Non-Linear
Least Square Minimization (NLLSM) method for deep objects synthetic data in the presence of
several level of Noise to Signal (N/S)

Root Mean Square Error (RMSE)

Model N/S (%) Sphere Vertical cylinder Horizontal
cylinder

Parameters — q Z q Z q Z

MLP 5 0.15 0.45 0.20 0.38 0.19 0.55

GRNN 5 0.15 0.38 0.18 0.30 0.26 0.40

NLLSM 5 0.18 0.47 0.150 0.32 0.22 0.45

MLP 10 0.25 0.55 0.34 0.63 0.24 1.03

GRNN 10 0.22 0.49 0.25 0.48 0.20 0.88

NLLSM 10 0.35 0.65 0.30 0.67 0.31 1.14

The depth values are in kilometers

Fig. 2.9 Location map of Mors (Jorgensen et al. 2005)
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2.2.2.3 Geological Setting of Mors

The structural contour lines at 25 m intervals show the elevation of the
pre-Quaternary surface. The dome structure on Mors is made of chalk that covers
the highest point of the Erslev salt diaper. The boundaries between glaciotectonic
complexes and their foreland on northern Mors are also shown in Figs. 2.10 and
2.11 (Jorgensen et al. 2005).

The sub-Quaternary strata comprise Upper Cretaceous white chalk
(Maastrichtian) and Paleocene limestone (Danian) covered by clays and diatomite
(Paleocene–Eocene) in the Fur Formation (Pedersen and Surlyk 1983). These layers
are followed by Oligocene micaceous clay and, to the south, also by Miocene clay,
silt and sand (Gravesen 1990). The Paleogene sediments are in general 50–250 m
thick, yet, locally they thinner or even missing. They have normally been subjected
to deformation during Quaternary glaciations, yet the most significant effect on the
Paleogene topography has been due to the down-cutting of a series of incised
Quaternary valleys. These valleys are generally filled with glacial deposits of
various ages but otherwise the surface is generally covered by a thin veneer of
glacial sediments. The general structure of the Tertiary and Quaternary deposits on
Mors is controlled by (1) The Mors salt diapir, (2) glaciotectonic events during the
Quaternary glaciations and (3) Extensive networks of incised valleys.

2.2.2.4 Results and Discussion

Data Analysis

The data used in this research were organized into inputs as described previously

ðF1 ¼ gMax; F2 ¼ Xg50%; F3 ¼ Xg75%; F4 ¼ XgMaxÞ and outputðzÞ:

We used Grav2dc for modeling and surfur11 for neural network
(NN) processing and additional MATLAB (R2012a) built-in codes. Three separate
subsets were selected for training, validation and testing. It is worth noting that the
data were first modeled in a conventional manner as a salt dome, and then the main
data from “Mors” applied.

Modeling

Grav2dc is a well-known geophysical software package for gravity data modeling
and inversion. Each body making up the model has its own individual density. The
current salt dome model contains 9 bodies with specific densities. The maximum
horizontal extent of this model is 60 km.
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Fig. 2.10 Bedrock map of Mors (Jorgensen et al. 2005)
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A typical set of modeled bodies is shown in Fig. 2.12 with the synthetic gravity
anomaly from this model shown in Fig. 2.13.

After modeling, synthetic data created by Grav2dc was imported to Excel and all
data prepared for trained by the neural networks as described in the next section.

Fig. 2.11 Topographic map of Mors (Jorgensen et al. 2005)
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Training and Testing of GRNN

As shown in Fig. 2.14 in order to prepare M pairs of training data, Hajian and
Shirazi (2016) divided the primary training models into three separate groups of salt
domes with differing internal fluid structure, including: Oil–Gas, Oil–Water, Only
Oil and salt dome alone which are shown in Figs. 2.15, 2.16 and 2.17. The figures
contain the parameters of the salt dome, depth, geological layers and location of
anomalies. The gravity anomaly is calculated for these models and the features
described previously are extracted and used in GRNN codes as inputs and output
(see flowchart in Fig. 2.14).

The specific features used from the gravity anomalies include

F1 ¼ gMax; F2 ¼ Xg50%; F3 ¼ Xg75%; F4 ¼ XgMaxand output zð Þ:

The GRNN architecture used in this research is shown in Fig. 2.18. We used
these four models in order to have four training sets of synthetic data. It is important
to mention that all models have different depth of anomalies. The GRNN code
should be trained for two different parallel codes, so we applied the GRNN for data

Fig. 2.12 Geometrical model of a salt dome, depth = 2.93 km (Hajian and Shirazi 2015)

Fig. 2.13 Gravity anomaly of the salt dome in Fig. 2.12, modeled by Grav2dc (Hajian and
Shirazi 2015)
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with high depths and low depths. All data were imported to GRNN and the network
tested with different MSE to select the best value, which is 0.45 (Fig. 2.19).

The network was tested on a typical gravity anomaly profile selected from the
real gravity data over Mors (Figs. 2.20 and 2.21); the results are shown in Table 2.7
and were then compared to the normalized full gradient method which was used by
Aghajani et al. (2009). The GRNN estimation for salt dome depth is near to the
depth estimated by NFG method.

Fig. 2.14 Flowchart of preparing M pairs of training data for an MLP/GRNN neural network

2.2 Application of Neural Networks in Gravity 89



Training and Testing of MLP

The data modeled in the previous section was also used to train the MLP with the
same inputs and output as used for GRNN training. The flowchart of the MLP
training procedure is shown in Fig. 2.22.
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0 10 20 30 40 50 60

Fig. 2.15 Primary training model, Gas–Oil model (Hajian and Shirazi 2015)
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Fig. 2.16 Primary training model, Oil–Water model (Hajian and Shirazi 2015)
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In order to assess the optimal number of neurons the network was tested with
synthetic data with different number of neurons in the hidden layer, and the MSE
error was calculated (Fig. 2.23). This showed that the optimum number of neurons
in the hidden layer where the MSE reaches its minimum value is 10. In order to
compare the results with GRNN, we tested this network for the same synthetic and
real gravity data. As shown in Fig. 2.24, the best validation performance at epoch
50 for real data is 0.0429. The estimate the depth to the Mors salt dome is shown in
Table 2.8 and is 4.7 km.

Fig. 2.17 Primary training model, Oil–Water model (Hajian and Shirazi 2015)

Fig. 2.18 Detailed Structure of GRNN with inputs and output (Styles and Hajian 2012)
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Fig. 2.19 Selecting the optimum value for spread (Hajian and Shirazi 2015)

Fig. 2.20 Gravity anomaly over Mors salt dome (Hajian and Shirazi 2015)
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Fig. 2.21 Gravity along a selected principal profile over the Mors salt dome (Hajian and Shirazi
2015)

Table 2.7 The result of GRNN applied for real data

Value of
spread

MSE Of
learning

Estimated depth by
GRNN

Estimated by NFG Method Aghajani
et al. (2009)

0.45 0.0009 4.82 km 4.7 km

Fig. 2.22 Flow chart for MLP training procedure
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Fig. 2.23 Selecting the optimum value for the number of neurons in the hidden layer for a MLP
network (Hajian and Shirazi 2015)

Fig. 2.24 The best validation performance at epoch 50 for real data. MSE = 0.04293, and the
estimated depth = 4.98 km. Hajian and Shirazi (2015)

Table 2.8 The result of MLP applied to the principal gravity anomaly profile over the Mors salt
dome (Hajian and Shirazi 2015)

Number of neurons in
hidden layer

MSE Estimated
Depth by MLP

Estimated depth by NFG Method
Aghajani et al. (2009)

10 0.042934 4.98 km 4.7 km
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2.2.2.5 Conclusions

In this section, a novel method using an artificial neural network via GRNN and
MLP was used to estimate the depth of a salt dome from gravity data. Results for
synthetic data and real data via GRNN show that this network can perform rea-
sonably well for noisy gravity data. The MLP network was applied for various
numbers of neurons in the hidden layer and the GRNN network applied for several
numbers of spreads, the result for MLP is 10 neurons in the hidden layer and for
GRNN the spread factor is 0.45. Both GRNN and MLP methods were tested on real
data for the Mors salt dome in Denmark. The results of calculating the depth of salt
dome showed that GRNN is more accurate than MLP for estimating the depth of
the salt dome and needs less data for training. According to the results, the possible
depth of Mors salt dome is 4.82 km for training data. According to the NFG
method, the depth of salt dome is estimated accurately. We have developed this
method for gravity data interpretation in order to simulate and estimate the depth of
a salt dome anomaly as an example, but this method is applicable to other complex
problems, as well.

2.2.3 Simultaneous Estimation of Depth and Shape
Factor of Subsurface Cavities

Hajian et al. (2012) developed a feed-forward back-propagation (FFBP) neural
network to simultaneously estimate the shape factor and depth of subsurface cav-
ities from residual gravity anomalies. Unlike the common classical methods, no
pre-assumptions were made about source shape and the designed FFBP neural
network estimated both the depth and shape factor of buried objects using both the
gravity and the prior geological information of the area from the real data.

There are various methods for depth estimation of gravity anomalies. Most of the
conventional interpretation methods like Euler devolution (Thompson 1982)
least-squares minimization (Abdelrahman et al. 2001), Fourier transform (Sharma
and Geldart 1968), continuous wavelet transform (Chamoli et al. 2006), Eigen
vector analysis of gravity tensor (Beiki and Pederson 2010), Mellin transforms
(Mohan et al. 1986) depend crucially on the experience of the interpreter to assign
some of the selectable parameters and almost most of the methods are not robust in
the presence of noise. For example the analytical signal method can only detect the
edges of the object, the Euler method produces different responses for differing
window size and/or structural index and how good the structural index is assigned
to the model is particularly dependent on the expertise of the interpreter (Hajian
et al. 2011a, b).

An intelligent method should not depend on the experience of the interpreter and
we believe that this is available through artificial neural networks, because they are
able to learn from training data. They can estimate the output for a new input, which
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is not used as the training data, but lies within the domain of the training set (Hajian
et al. 2012). The advantage of using FFBP neural networks in this way is that they
are more robust in the presence of the noise which is always present in gravity data.
Furthermore, once the neural network is trained it performs satisfactorily for any
new observations in the training space without requiring re-calculation of the initial
parameters. Hajian et al. (2012) used a novel multi-start algorithm to optimize the
number of neurons in the hidden layer. The related flowchart is depicted in
Fig. 2.25.

The inputs of the neural network that Hajian et al. (2012) used for simultaneous
estimation of depth and shape factor are the normalized residual gravity of the
complete set of gravity stations along the selected principal profile, so the number

Fig. 2.25 Flowchart of multi-start approach to find the optimum number of neurons in the hidden
layer (Hajian et al. 2012)
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of inputs is the same as the number of measured gravity points along the selected
gravity profile. To normalize the real gravity data the equation below was used:

gi
normalized

¼ gi � gmin

gmax � gmin
ð2:9Þ

It is obvious that the outputs of the FFBP neural network for this work are Z (depth
to cavity) and q (shape factor).

The mathematical equation for the perceptrons is given below:

q ¼ ~f
Xm
j¼1

wji f
Xn
i¼1

wji gi þ b1
� �þ b2

" #( )

Z ¼ ~f
Xm
j¼1

wjz f
Xn
i¼1

wji gi þ b1
� �þ b2

" #( ) ð2:10Þ

where b1 is the basis of the first layer, b2 is that of the second layer, f ð0Þ is the
activation function between input and hidden layers and ~f ð0Þ is the activation
function between hidden and output layers. The FFBP that Hajian et al. (2012) used
is illustrated in Fig. 2.26.

Fig. 2.26 Schematic of FFBP used for depth and shape factor estimation (Hajian et al. 2012)
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To prepare the training set Hajian et al. (2012) postulated that the cavity’s shape
is one of the simple models of sphere, vertical cylinder or horizontal cylinder
because most cavities, to a first approximation can be considered to lie close to
these shapes and most natural cavities can be simulated with these models however,
most sedimentary basins approximate quite well to slabs or wedges.

The gravity effect of the proposed models was calculated using the analytical
equations presented by Abdelrahman et al. (2001) as follows:

gðniÞ ¼ A

X2
i þ Z2ð Þq ð2:11Þ

where Z is the depth to the center of the cavity, x is the horizontal distance, A is the
amplitude factor and q is the shape factor. The amplitude factor depends on both the
size and the density contrast of the object while q depends only on the shape factor
of the object (Table 2.9). If we normalize the gravity values by dividing each by the
maximum residual gravity amplitude (which occurs at x ¼ 0) then the normalized
residual gravity values will only depend on the depth and shape factor of the object
(Hajian et al. 2012).

The normalized gravity is as follows (Eq. 2.12):

gnðxÞ ¼ gðxÞ
gð0Þ ¼

gðxÞ
gðxÞjx ¼ 0

¼ Z2

x2 þ Z2

� �q

ð2:12Þ

Hajian et al. (2012) generated 410 pairs of sample data points for training
purposes as Zn; qn gn1; gn2. . .; gnkf gf g, 106 data pairs as the test/validation set and
k is the total number of measured gravity points on the profile.

Zn and qn are the normalized depth and shape factor, respectively. This scaling is
derived via the equations:

qn ¼ qnormalized ¼ q� qmin

qmax � qmin

Zn ¼ Znormalized ¼ Z � Zmin

Zmax � Zmin

ð2:13Þ

Table 2.9 The values of amplitude factor (A) and shape factor (q) in relation 4, for different
shapes of objects (where R is the radius of the object as shown in Fig. 2.2, G is the universal
gravity constant and q is the density contrast) (Hajian et al. 2012)

Shape q (Shape factor) A (Amplitude factor)

Sphere 1.5 4
3 pGqR

3

Horizontal cylinder 1 2pGqR3

Vertical cylinder 0.5 pGqR3
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Consequently the FFBP neural network outputs are the normalized shape factor
and the normalized depth and should be converted back to their real values using
the following equations:

q ¼ qn ¼ qmax � qminð Þþ qmin

Z ¼ Zn ¼ Zmax � Zminð Þþ Zmin
ð2:14Þ

Figure 2.27 shows the flowchart for generating N pairs of training sets for the
FFBP neural system.

Hajian et al. (2012) used a cross-validation algorithm through the K-fold
cross-validation approach. Cross validation is a technique for evaluating general-
ization error through a process of “resampling” (Weiss and Kulikowski 1991; Efron
and Tibshirahi 1993). The resulting estimates of error are often used for making a
choice between models using different neural network architectures. In the
K-overlap cross validation method the information is separated into K subsets of
about the same size. The system is trained K times, and each time one of the subsets
is omitted to compute the relevant error. The process of K-fold cross validation is
depicted in Fig. 2.28.

The FFBP neural network parameters are shown in Table 2.10. The result of
testing the designed FFBP with different values for number of hidden neurons (N) is
shown in Fig. 2.29 showing that the optimum number for N is 22.

As the range of probable cavities was within the range from 0.5 to 30 m, testing
the designed FFBP neural network was performed for the synthetic data in this
training space and, the RMS error is shown in Table 2.11.

Furthermore the network was tested for its adaption to robustness for realistic
cases by adding Gaussian noise and simulating a few levels of uncertainty as 5 and
10%. of noise were added, The results showed that the FFBP model is significantly
more precise and robust for noisy synthetic data as compared to nonlinear least
square minimization.

As a next stage, to evaluate the efficiency of the designed FFBP network in
practical situations Hajian et al. (2012) investigated two real cases: the field
microgravity data measured over a major container terminal at Freeport Grand
Bahama (Fig. 2.30) and the gravity for a long profile over the Medford cavity site
located in Florida, USA. The gravity anomaly guide of the Bahama site shown in
Fig. 2.31.

For the Bahamas case study, five principal profiles were selected (I–V) and the
depth and shapes were estimated and compared with the results of NLLSM
(Table 2.12). The results of the FFBP technique agreed well with the drilling data,
despite the differences between the basic model and the real cavity shapes. While
both methods give acceptable agreement with the borehole data the FFBP results
are closer to the observed values.

This study showed that the FBPP technique is a robust estimator even in the
presence of significant noise and that it can give reliable estimates of both cavity
shape and depth using microgravity measurements.
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Hajian et al. (2012) also tested the ANN method for the residual gravity profile
for a cavity anomaly located at the Medford site, Florida, USA (Butler 1984) which
is shown in Fig. 2.32. Both the Bahamas and Florida sites are cavities within karstic
limestone geological structures and in both sites the selected principal profiles have
15 points of residual data as inputs of the FFBP neural network (the same number
of inputs for the neural network) and also the domain of cavity depth for the second

Fig. 2.27 Flowchart of preparing N pairs of training sets for FFBP neural network (Hajian et al.
2012)
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site is a subset of the Bahama site cavity depth domain. Furthermore, from available
geological information it was known that the shapes of available cavities in both
sites are close to either a sphere, or a vertical or horizontal cylinder. But the strength
of the designed FFBP neural network method is that it can estimate the shape and
depth of whichever best approximates the cavity.

Fig. 2.28 The process of cross-validation for neural networks learning (Hajian et al. 2012)

Table 2.10 FFBP parameters designed for estimation of the shape factor and the depth of cavities
Hajian et al. (2012)

Parameter Value

Number of inputs Equal to number of selected gravity points along the profile
(in this study 15)

Number of outputs 2

Number of hidden neurons (M) Calculated adaptively (see Fig. 4)

Number of runs of multi-start
(N)

10

Transfer function of hidden
layer neurons

Sigmoid

Transfer function of output
layer neurons

Sigmoid

Train algorithm Levenberg-Marquardt

Maximum number of hidden
neurons

42

Maximum number of epochs 2000
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The residual anomaly data were interpolated at 1 m intervals and so the number
of residual gravity points is 15 (from g(x = −7) to g(x = +7); see Fig. 2.32) exactly
equals the number of inputs in the designed FFBP neural network for the Bahamas
site. In this study Hajian et al. (2012) first trained the designed FFBP model for a
maximum depth of 30 m for Bahamas field data and found that this also works
equally well for the Medford cavity site because the depth range of cavities located
under the surface of this site is less than or equal 10 m (Butler 1984) and so lies
within the training range. As the set = {z|z less than or equal to 10 m} is obviously
a subset of set = {z|z less than 30 m}, then the designed FFBP neural network can

Fig. 2.29 This plot shows the changes of test/train MSE versus epochs used to select the best M
values (number of hidden neurons) (Hajian et al. 2012)

Table 2.11 Root Mean Square Error (RMSE) values of FFBP network and Non-Linear Least
Square Minimization (NLLSM) method for synthetic data with different levels of Noise to Signal
(N/S) The depth values are in meters (Hajian et al. 2012)

Root Mean Square Error (RMSE)

Model N/S (%) Sphere Vertical cylinder

Horizontal-cylinder

Parameters — q Z q Z q Z

FFBP 5 0.031 0.13 0.045 0.20 0.034 0.15

NLLSM 5 0.036 0.18 0.050 0.32 0.037 0.19

FFBP 10 0.057 0.50 0.074 0.63 0.074 0.56

NLLSM 10 0.085 0.65 0.087 0.84 0.085 0.81

FFBP 20 0.168 0.98 0.182 1.04 0.146 1.12

NLLSM 20 0.204 1.18 0.195 1.16 0.153 1.23
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be used for depth and shape estimation of subsurface cavities of the Medford site or
indeed, probably any site within similar geological formations without any need for
a new training process.

Fig. 2.31 Residual gravity anomaly map for the Freeport container terminal survey, showing the
location of profiles I–V selected as test example (Hajian et al. 2012)

Fig. 2.30 Map of microgravity study zone at the Bahamas container terminal, Freeport, Grand
Bahama, Bahamas. Redrawn from Styles et al. (2005)
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The outputs achieved by the FFBP method were q = 0.95 and Z = 3.86 (m). The
shape factor obtained suggests that the cavity could reasonably be approximated by
a horizontal cylinder model (see Table 2.12). Additionally, the result for depth
demonstrates that there is an acceptable correspondence between the depth obtained
from this technique (3.86 m) and that obtained from drilling (3.57 m) (Hajian et al.
2012).

Fig. 2.32 Residual gravity
profile over a cavity at the
Medford test site (after Butler
1984)

Table 2.12 Interpreted cavity shape factor and depth calculated with the FFBP method for the
selected principal profiles of Grand Bahama site, in comparison with borehole results and NLLSM
method, for absence of any drillings near profile IV, FFBP and NLLSM results are compared with
Euler method result (Styles et al. 2005; Hajian et al. 2012)

Selected principal
profile

Borehole results Results of FFBP Results of NL
LSM

Shape (Near to) Depth(m) q Depth(m) q Depth(m)

Profile I H.Cylinder 4.26 0.87 4.55 0.70 4.92

Profile II Sphere 7.00 1.45 6.72 1.34 6.53

Profile III Sphere 15.24 1.61 15.43 1.30 15.75

Profile IV H.Cylinder 14.50 0.93 14.20 0.82 15.06

Profile V H.Cylinder 14.50 0.95 14.36 0.84 15.10
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2.2.4 Modeling Anticlinal Structures Through Neural
Networks Using Residual Gravity Data

Eshaghzadeh and Kalantari (2015) used feed forward neural networks for modeling
anticlinal structures using the residual gravity anomaly. Anticlines are one of the
most common targets for hydrocarbon exploration. Generally inversion of gravity
anomalies is non-unique, in the sense that the observed gravity anomalies may be
generated by a variety of density distributions and it would be helpful to be able to
reduce this level of uncertainty by homing in on preferred geometries and density
contrasts. Eshaghzadeh and Kalantari (2015) proposed a simple geometrical model
composed of two adjoining right-angled triangles as a simple geometrical analog of
anticlinal structures. The geometry of the anticline structure they used for preparing
the training data is shown in Fig. 2.33. Where d1 is the depth to top and d2 is the
depth to bottom of the model, i and j are angles of the fold limbs of the anticlinal
structures.

Modeled gravity effects were calculated for different values of d1, d2, Dq, i and j,
and then some suitable “features” were extracted from the gravity signal. An
important challenge in training the neural network with gravity is that if all the data
is applied as inputs to the network, this will require many inner connections
(weights) to be tuned which is very time is consuming for the training process.

To overcome this problem, some features are first selected from the gravity
signal. These features should be independent and must possess a relationship or

Fig. 2.33 Geometrical model of anticlinal structure (Eshaghzadeh and Kalantari 2015)
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correlation with the geometrical parameters of the anticline. The parameters that
were used in this way are

P1: the maximum gravity amplitude
P2: The 75% level of the maximum gravity amplitude
P3: The 50% level of the maximum gravity amplitude
P4: The 25% level of the maximum gravity amplitude
P5: width of gravity curve between the coordinates with 75% of gmax

P6: width of gravity curve between the coordinates with 50% of gmax

P7: width of gravity curve between the coordinates with 25% of gmax

These parameters are shown in Fig. 2.34 and were used as inputs to the neural
network and the outputs are d1, d2, Dq, i and j (see Fig. 2.35).

Fig. 2.34 Definition of input parameters (features) for an anticlinal structure gravity anomaly
(Eshaghzadeh and Kalantari 2015)

Fig. 2.35 Neural input/output architecture for anticlinal structure estimation
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The gravity anomaly of a 2D anticline structure at any point P (n’, o) on the
X-axis can be calculated from the fundamental equation for a gravity anomaly due
to a 2D source with cross-sectional area S (Rao and Murthy 1978):

G xð Þ ¼ 2g
Z
s

Dq:Zdvdz
r2

ð2:15Þ

where ‘G’; is the universal gravitational constant, ‘dv dz’ is the cross-sectional area
of a line, Dq is the density contrast and r is the radial distance from the element
dvdz to the observed point P(x’, o).

Substituting limits for the gravity anomalies due to each right triangle, this can
be expressed as:

g xð Þ ¼ 2GDq
Zd2

z¼d1

Zðd2�d1Þcosu

v¼0

zdsdz
z2 þðx0 � sÞ2 ð2:16Þ

where u = i and j are the right-hand triangle and left-hand triangles respectively
and x = x’ − s, s is the distance between the origin of the model and the reference
point (R) (see Fig. 2.33).

They produced a data set of 12,800 points to train and test the neural network.
8960 points from this set (about 70% of the total data) were randomly selected as
training data and the remaining 30% of the data was used as test data.

The network which was designed was tested on both synthetic and real data.
Before testing the network for real data they evaluated the validity of the method for
both noise-free and noise-corrupted synthetic models and obtained satisfactory
results (see Table 2.13).

Table 2.13 The initial parameters of the scalene triangle synthetic model and estimated
parameters using FNN inversion (Eshaghzadeh 2011)

Parameters

ZI (km) Z2 (km) I (deg) J (deg) Dq (kg/m3) RMSE

Initial values 3 5 20 30 150

Free-noise gravity data 2.98 5.01 20.13 30 148.7 0.152

Error % 0.7 0.3 0.65 0 0.87

With 5% noise 3.05 4.92 19.36 31.62 156.4 0.423

Error % 1.7 1.6 3.2 5.4 4.3

With 10% noise 3.09 5.12 18.57 32.27 158.1 0.437

Error % 3 2.4 7.15 7.6 5.4
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The case study using real data was from the gravity field in the northeast of Iran,
analyzed based on 2D modeling of the gravity anomalies of selected principal
profiles. The Korand region of the study is located in Golestan province,
Northeastern Iran. The yellow marker pin in Fig. 2.36 shows the situation of
Korand region. The geological map of Korand is shown in Fig. 2.37.

Fig. 2.36 The satellite image from the area under consideration location, namely Korand (yellow
cursor in left-hand side picture). The rightmost side picture shows the morphology of Korand
(Eshaghzadeh 2011)

Fig. 2.37 The geological map of Korand; the blue rectangular shows the study area limits
(Eshaghzadeh 2011)
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The residual gravity map of the region is shown in Fig. 2.38 where three
principal profiles namely A–A′, B–B′ and C–C′ were selected to attempt to estimate
the depth to the top (Z1), the depth to bottom (Z2) and angles I, J. The parameters
obtained using this neural network and the error estimates are tabulated in
Table 2.14.

The Root Mean Square Error (RMSE) was calculated for each of the interpreted
values and show that the inversion results are acceptable.

Fig. 2.38 The residual gravity anomaly map showing the profiles A–A′, B–B′ and C–C′
(Eshaghzadeh 2011)

Table 2.14 Evaluated parameters using the FNN inversion for the profiles A–A′, B–B′ and C–C′
(Eshaghzadeh 2011)

Profile Parameters

Z1 (km) Z2 (km) I (deg.) J (deg.) Dq (kg/m3) RMSE

A�A0 3.43 5.16 24.93 22.36 372.8 0.741

B�B0 3.75 5.3 18.04 31 383.4 0.264

C�C0 3.86 5.37 23.85 27.2 391.7 0.502
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2.3 Application of ANN for Inversion of Self-potential
Anomalies

El-Kaliouby and Al-Grani (2009) utilized modular neural networks (MNN) to
invert self-potential (SP) data from sloping infinite slabs. The input of the MNN
was the SP data along a principal profile and the output is:

Depth to the center of the sheet (h), the half-width of the sheet (a), the angle of
inclination (a) zero distance from origin (x0) and the polarization amplitude k
(Fig. 2.39). N.B. A principal profile lies perpendicular to the strike of the sheet.

The training data is prepared by forward modeling of the SP potential effect on
the surface profile perpendicular to the strike of an 2D inclined sheet of infinite
horizontal extent which is given by (Murthy and Haricharan 1985; Sundarajan et al.
1998):

VðxÞ ¼ K In
ðx� x0Þ � a cos a½ �2 þ h� a sin a½ �2
ðx� x0Þ � a cos a½ �2 þ h� a sin a½ �2

( )
ð2:17Þ

where K the polarization amplitude is K ¼ IP
2p

� �
, P is the resistivity of the medium

and I is the current density (current per unit area of the medium).
To evaluate the validity of MNN for inverse modeling of SP for a 2D sheet

El-Kaliouby and Al-Garni (2009) first tested it on a synthetic example and then
applied it to two field examples from the Surda area of Rakha mines, India and the
Kalava fault zone, India.

The synthetic example data used samples of 81 points of input data over a 160 m
profile with a 2 m interval (Fig. 2.40). They used MNN to invert the SP data using
81 points for the input with 81 nodes in the hidden layer.

Fig. 2.39 Inclined sheet geometry of infinite horizontal extent (El-Kaliouby and Al-Garni 2009)
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In the MNN that Al-Garni (2009) designed, five local experts with seven pro-
cessing elements were used and the selected activation function was a hyperbolic
tangent. They assumed that the parameters of the target for the synthetic data were:

h ¼ 10 m; a ¼ 5 m; a ¼ 40�; x0 ¼ 10 m and k ¼ 100 mV:

giving the response shown in Fig. 2.40.
To cover the range of the parameter they used 6152 training models. The

parameters they used for training the MNN are listed in Table 2.15.
The parameter range is mainly dependent on the measured field data (voltage)

response, for example the zero distance from the origin range is selected centered
around the anomaly minimum (El-Kaliouby and Al-Garni 2009). Selecting a suit-
able range for the parameters used for training is important and so initially a coarse
range is selected with a small number of points for each parameter. In the event that
any of the parameters falls outside the chosen range the NN reports this fact and the
range is extended. Additionally, the learning error of each parameter is computed

Table 2.15 Parameter range and number of points used for MNN training

Parameter Range Number of points in the range

Depth 5 � h � 15 m 5

Half-width 2 � a � 8 m 5

Inclination 20° � a � 60° 7

Polarization amplitude 7 � K � 130 mV 7

Origin location −15 � x0 � 30 m 5

Fig. 2.40 Synthetic SP anomaly profile over a sheet-like body and its NN inversion response. The
sheet parameters are h = 10 m, a = 5 m, a = 40°, xo = 10 m and k = 100 mV (El-Kaliouby and
Al-Garni 2009)
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and then these are combined into an overall RMS error and if this is within
acceptable limits the misfit between model and data is calculated but if not, then the
range of parameters is automatically refined until and acceptable error is obtained.
Once the MNN is well trained it will be able to invert any field information that fall
inside the range of training (El-Kaliouby and Al-Garni 2009).

The results for the synthetic data version are illustrated in Fig. 2.38. In the next
stage the designed neural network is tested on noisy synthetic data. I El-Kaliouby

Fig. 2.41 Synthetic SP anomaly profile over a sheet-like body with 3.2% of random WGN and its
NN inversion response (El-Kaliouby and Al-Garni 2009)

Fig. 2.42 Synthetic SP anomaly profile over a sheet-like body with 10% of random WGN and its
NN inversion response (El-Kaliouby and Al-Garni 2009)
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and Al-Garni (2009) tested the MNN by adding 3.2% (3 dB) and 10% (20 dB) of
white Gaussian noise (WGN) to the SP anomaly (Figs. 2.41 and 2.42).

Adding White Gaussian Noise is a simple procedure in MATLAB using the
command ‘awgn’, which adds white Gaussian noise to a signal.

Table 2.17 Parameters used to train the MNN for Rakha mines, Singbhum copper belt, Bihar,
India (El-Kaliouby and Al-Garni 2009)

Parameter Range Number of points in the range

Depth 10 � h � 40 m 7

Half-width 10 � a � 30 m 7

Inclination 20° � a � 50° 7

Polarization 90 � K � 180 mV 7

Amplitude −20 � x0 � 40 m 7

Table 2.16 Example of synthetic data parameters (El-Kaliouby and Al-Garni 2009)

Parameters h(m) a(m) a(degrees) k(mV) xo(m)

Assumed values 10 5 40 100 10

NN inversion values without noise 10.23 5.42 38.65 96.67 10.70

NN inversion with 3.2% of WGN 10.32 5.54 37.89 96.35 10.71

NN inversion with 10% of WGN 10.85 5.49 38.66 97.3 11.93

Fig. 2.43 Self-potential anomaly profile over a sulfide mineralization zone in the Surda area of
Rakha mines (after Murthy and Haricharan 1984) and its neural network inversion compared with
Murthy et al. (2005) and Jagannadha et al. (1993) (El-Kaliouby and Al-Garni 2009)
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Y ¼ awgn x; SNRð Þadds white Gaussian noise to the vector signal x:

where the scalar SNR specifies the signal-to-noise ratio per sample, in dB.
For example to add 3.2% noise to SP data when the noise power is 30 dB we use

the ‘awgn (SP, 30)’ command and to add 10% of white Gaussian noise when the
noise power is 20 dB the command in MATLAB is ‘awgn (SP, 20)’.

El-Kaliouby and Al-Garni (2009) observed that the MNN inversion result for up
to 10% random Gaussian white noise was satisfactory (Table 2.16).

Finally, they used two field cases to determine whether the MNN model worked
for real data. The first field was a very significant SP anomaly (Murthy et al. 2005)
observed from the Surda zone of the Rakha mines, Singbhum copper belt, Bihar,
India. For this SP anomaly they used 16807 training models to cover the ranges of
the parameters. The parameters they used to train the MNN are listed in Table 2.17.

The MNN inversion response that El-Kaliouby and Al-Garni (2009) used was
compared with the Murthy et al. (2005) results and in Fig. 2.43 with the inversion
in Table 2.18.

The next field example that El-Kaliouby and Al-Garni (2009) used was the SP
anomaly profile across a zone of mineralization in the Kalava fault zone, Cuddapah
basin, India (Rao et al. 1982). The SP anomaly was sampled at 41 stations over a
40 m distance with a 1 m interval. They used 12500 training models and the
parameter ranges that they used to train the network are listed in Table 2.19.

El-Kaliouby and Al-Garni (2009) compared the MNN results with the inversion
of Rao et al. (1982) and with the observed data (Fig. 2.44) and the inversion
parameters are shown in Table 2.20.

They concluded that the MNN inversion fitted the measured SP data better than
the Rao et al. (1982) results convincingly demonstrating the successful application

Table 2.19 The parameters ranges used to train the network for the Kalava fault zone Cuddapah
basin, India

Parameter Range Number of points in the range

Depth 5 � h � 15 m 10

Half-width 1 � a � 7 m 10

Inclination 80° � a � 120° 5

Polarization 50 � K � 100 mV 5

Origin location −5 � x0 � 5 m 5

Table 2.18 Comparison of NN interpreted SP parameters of Kalava anomaly with two other
interpretations (El-Kaliouby and Al-Garni 2009)

Parameters h(m) a(m) a(degrees) k(mV) xo(m)

Jagannadha et al. (1993) 7.59 3.75 80 – 0.4

Murthy et al. (2005) 9.38 3.96 80.76 – −0.4

NN inversion 7.2 3.15 78.72 68.29 −0.9
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of MNN to synthetic data (free-noise, noisy) and field data and confirming the
capability and increased accuracy of MNN models to invert SP anomaly data.

2.4 Application of ANN for Sea Level Prediction

Imani et al. (2014) used various types of neural networks, (MLP, GRNN and Radial
Basis neural systems) using satellite altimetry to determine their relevance for
forecasting Caspian Sea levels.

5 years of Topex/Posedion (T/P) and Jason-1 (J/1) altimetry data were used by
Imani et al. (2014), covering 1993–2008, to train the neural networks along profiles
which corresponded to available tide-gauge data. The results of different neural

Fig. 2.44 Self-potential anomaly profile over a sulfide body in the Kalava fault zone, Cuddapah
Basin, India (after Rao et al. (1982), and its neural network inversion compared with Murthy et al.
(2005) and Jagannadha et al. (1993) (El-Kaliouby and Al-Garni 2009)

Table 2.20 Comparison of NN Kalava fault zone Cuddapah basin interpreted SP parameters of
with five other interpretations (El-Kaliouby and Al-Garni 2009)

Parameters h(m) a(m) a(degrees) k(mV) xo(m)

Paul (1965) 21 40.20 20.01 – –

Rao et al. (1970) 30.48 34.87 10.01 – –

Jagannadha et al. (1993) 29.88 29.40 45 – 15.00

Sundararajan et al. (1998) 27.65 32.35 13.20 – –

Murthy et al. (2005) 26.52 19.81 57.63 – 15.84

NN inversion 27.78 19.51 50.96 130.86 5.86
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networks used for sea-level prediction, were compared to the conventional
autoregressive moving average (ARMA) technique results.

Fig. 2.45 T/P and J-1 ground tracks over the Caspian sea (Imani et al. 2014)

Table 2.21 Correlation coefficients of sea level anomalies between pass 092 and other passes
(Imani et al. 2014)

Ground track Pass 016 Pass 031 Pass 057 Pass 133 Pass 209

Correlation 0.91 0.81 0.77 0.88 0.83

P valuea <0.001 <0.001 <0.001 <0.001 <0.001
aP values <0.05 are considered statistically significant
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The satellites have repeat pass times of c 9 days and from the period April 1993
to January 2008 selected passes 092, 031, 016, 209, 133 and 057 were used for this
analysis while passes 168 and 224 were rejected for atmospheric and hydrological
reasons (Fig. 2.45).

To select suitable inputs for the neural network, Imani et al. (2014) calculated the
correlation coefficients (P value) between pass 092 and the other passes and rejected
those where the P values were less than 0.05 (Table 2.21).

In the Imani et al. (2014) study, pass 092 was selected as the output layer
because it was a better indicator of Caspian Sea level anomalies possesses more
data and is relatively free from strong winds and ice. As can be seen from
Table 1.24, Imani et al. (2014) decide to use passes 031, 016, 209, 133, and 057 as
they correlated best with pass 092 as the output layer (Fig. 2.46).

After the standard geophysical instrumental and media corrections were applied,
sea level anomalies (hSLA) were calculated with respect to the geoid heights from
the EGM 2008 geopotential model (Pavlis et al. 2008). Imani et al. (2014) then
calculated the time-averaged, along-track mean sea level from Eq. 1.59.

Fig. 2.46 Input/output structure of neural network to predict sea level anomalies

Table 2.22 RMSE and R for training and testing data sets using different MLP networks (Imani
et al. 2014)

Model Training Testing

No. of neurons
in hidden layer

No. of epoch RMSE (m) R RMSE (m) R

MLP (5, 4, 1) 4 10 0.065 0.90 0.086 0.85

MLP (5, 6, 1) 6 50 0.045 0.92 0.061 0.90

MLP (5, 8, 1) 8 36 0.084 0.86 0.107 0.80

MLP (5, 10, 1) 10 100 0.106 0.82 0.124 0.78

MLP (5, 6–3, 1) 6–3 15 0.074 0.88 0.085 0.85

MLP (5, 16–6, 1) l2–6 60 0.057 0.91 0.063 0.90

MLP (5, 8–4, 1) 8–4 110 0.097 0.83 0.111 0.79

MLP (5, 16–8, l) 16–8 42 0.039 0.93 0.054 0.91

MLP (5, 16–8, l) 16–8 42 0.042 0.93 0.060 0.91
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hSLAðtÞ ¼ l
n

Xn
1

hSLAðt; nÞ ð2:18Þ

where t is the index of cycles and n is the number of altimetry along-track
measurements.

For ANN processing Imani et al. (2014), divided the sea-level anomalies into
two parts: with 1993–2004 as the training data set and 2005–2008 as the test data
set. For the MLP architecture optimization they used both MLP with one and two
hidden layers and with different number of neurons (Table 2.22).

MLP (x; y; z) means a 3 layer MPL with x neurons in the output layer. y neurons
in the hidden layer and z neurons in the output layer. As shown in Table 2.25, the
RMSE is reduced for two hidden-layers compared to one hidden layer. Finally they
proved that the MLP (5, 16–8, 1) structure with two hidden layers having 5 neurons

Fig. 2.47 Observed and estimated sea level anomalies derived by the optimal RBF model during
a the training and b the testing periods (Imani et al. 2014)
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and with 42 epochs has the least RMSE and the best correlation and this was
selected as the appropriate model.

As mentioned previously, even though the same network design was used,
different outputs (forecast values) are obtained after each simulation because dif-
ferent initial random weights are applied at the commencement of each training run.
Imani et al. (2014), conducted simulations several times with the same network
structure until the best performance was obtained in order to avoid this problem. As
mentioned previously MLP (5, 16–8, 1) gave the optimal results of 0.039 m with a
R of 0.93 for the training period and an RMSE of 0.054 m and R of 0.91 for the
testing interval indicating that the MLP model designed by Imani et al. (2014)
works very well for sea-level forecasting.

Imani et al. (2014) also examined different numbers of hidden layer neurons and
spread constants for the RBF and GRNN network models to find the optional
structures of RFB and GRNN. They found that the optional RFB model has a
minimum RMSE of 0.042 and R of 0.92 for the testing period with a spread
constant of 0.45 and 22 neurons in the hidden layer and that the estimations
obtained from the RFB (5, 22, 1) network agree well with the observed sea level
data (Fig. 2.47).

Imani et al. (2014) also examined GRNN models with different structures and
found the GRNN (5, 0.3, 1) design with a parameter spread of 0.3 performed best
giving an RMSE of 0.059 m with R of 0.090 during the testing time frame shown in
Table 2.23 and Fig. 2.48.

Imani et al. (2014) compared the results of ANNs with the results of best ARMA
conventional methods collected among different types of ARMA models
(Table 2.24) and showed that artificial intelligence neural network approaches can
reduce the RMSE error by c 50% as compared to presently used ARMA methods
with R also improving by 15% and that the RFB method was the best Neural
Network model saving significant computation time with similar performance.

Table 2.23 RMSE and R for training and testing data sets using different RBF and GRNN
networks (Imani et al. 2014)

Model Training Testing

No. of neurons
in hidden layer

Speed
parameter

RMSE
(m)

R RMSE
(m)

R

RBF (5, 11, 1) 11 0.50 0.087 0.85 0.095 0.82

RB F (5, 8, l) 8 0.55 0.055 0.91 0.063 0.90

RB F (5, 22, 1) 22 0.45 0.030 0.95 0.042 0.92

RB F (5, 33, 1) 33 0.65 0.065 0.90 0.083 0.85

GRNN (5, 0.05, 1) 0.05 0.087 0.85 0.102 0.80

GRNN (5, 0.5, 1) 0.50 0.069 0.89 0.091 0.83

GRNN (5, 0.3, 1) 0.30 0.047 0.92 0.059 0.90

GRNN (5, 0.1, 1) 0.10 0.098 0.83 0.127 0.78
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Fig. 2.48 Observed and estimated sea level anomalies derived by the optimal GRNN model
during the a training and b testing periods (Imani et al. 2014)

Table 2.24 Testing statistics
of estimates using ARMA
models (Imani et al. 2014)

Type of model Statistics of ARMA models

RMSE (m) R

AR (1) 0.138 0.76

AR (2) 0.137 0.76

AR (3) 0.126 0.78

ARMA (1, 1) 0.127 0.78

ARMA (1, 2) 0.123 0.78

ARMA (2, 1) 0.125 0.78

ARMA (3, 1) 0.121 0.78

ARMA (1, 3) 0.125 0.78

ARMA (3, 2) 0.121 0.78

ARMA (2, 3) 0.121 0.78

ARMA (3, 3) 0.119 0.79

ARMA (2, 2) 0.121 0.78
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2.5 Application of Neural Network for Mineral
Prospectivity Mapping

Brown et al. (2003) used a multilayer perceptron neural system to combine
exploration and GIS data in order to estimate mineral prospectivity for Gold in the
Tenterfield region of NSW, Australia (Fig. 2.49).

The steps that Brown et al. used for neural network modeling are depicted in
Fig. 2.50.

The 41 individual rock units were reduced to a much simpler set as many
contained no or very few gold deposits. Values of magnetic and radiometric
grey-scale images were subdivided into eight classes.

The fault network was digitized with cell values indicating distance to the
nearest fault and assigned as an input to the neural network (Fig. 2.51).

Fig. 2.49 Location and simplified geology of the Tenterfield 1:100,000 sheet area. Adapted from
an unpublished regional digital map supplied by the Geological Survey of New South Wales
(Brown et al. 2003)
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The training data should be linearly scaled based on the maximum and minimum
value because for a feed forward network with asymptotic logistic activation
function, the values of output activation are ordinarily restricted to between 0.1 and
0.9 (Masters 1993) and so the training data were scaled to the range [0.1, 0.9].

At the next stage a single input value was derived based on the separate
radiometric magnetic and fault distance layers.

A one-of-n coding scheme was applied to the solid geology layers, so that each
of the 12 rock types in the simplified layer was assigned a separate input layer unit
in the neural network input layer.

The MLP that Brown et al. (2003) used in their study is shown in Fig. 2.52.
Brown et al. (2003) divided the data into: training, test and validation sets with

the TSS: the total sum of squares error as the test for convergence. They used
approximately equal numbers of deposit and no-deposit cells in the training of the
network with the rationale that if real ratio of null to very rare deposits (1:1000) was
used for training, the system would not be able to learn to identify them (Masters
1993; Zaknich 1999). The optimum topology of for the MLP was an 18-2-1

Input Coding

Preprocessing Data

Network Topology and 
Parameters 

Network Training and 
Tes ng

Processing the en re 
data set into NN

Covert output values to 
map

Training Data

Fig. 2.50 Flowchart for mineral prospectivity mapping using a neural network
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Fig. 2.51 Relationship between GIS thematic layers and feature vectors used as input to the
neural network. At each location on the map grid, the cell values for each thematic layer are
combined to form an input feature vector. Patterns used to train the network consist of an input
feature vector paired together with the desired output, represented by the value of the binary layer
showing the locations of known deposits (Brown et al. 2003)

Fig. 2.52 Plan of the MLP neural network Brown et al. (2003) used. The network has an 18-2-1
topology (where the numbers refer to input, hidden and output units, respectively). Each map layer
in the GIS database was assigned an input unit except the geology layer, for which 1-of-n encoding
was used (Brown et al. 2003)
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network. The initial weights were assigned randomly in the range of [−5, +5] and a
series of networks were trained using ten different random sets of initial weights and
for each case the SSE error was calculated for both the training and test data sets.
The training error decreased during training. The test error first decreased to a
minimum but then began increase and so training was stopped at the point at which
the test SSE error reached the minimum observed over for all ten weights. The
network with the best classification performance for the validation data set was
selected as the optimum network and used to process the entire Tenterfield grid
(Brown et al. 2003).

The outputs of the optimized neural network were used to produce the nine-class
prospectivity map, shown in Fig. 2.53.

Fig. 2.53 Prospectivity maps for the Tenterfield (I: 100,000) area using neural network (Brown
et al. 2003)

Table 2.25 Statistical
measures of map quality for
prospectivity maps produced
using different methods
(Brown et al. 2003)

Quality static Method

Weights-of-evidence Neural network

Chi-Square 66 83

Spearman’s q 0.80 0.93

Kendall’s s 0.67 0.83
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The statistical measurements of map quality for prospectivity map produced by
neural network were compared to that of the weight-of-evidence method
(Table 2.25).

The general similarity between the neural network and the empirically-derived
weights-of-evidence maps suggested that the neural network result accounts rea-
sonably well for the spatial relationships between known Gold deposits and the
parameters of the GIS database. The main difference between the prospectivity
maps is that the neural network map contains more tightly defined areas of high
prospectivity because the network responds in a highly non-linear way so that a
high favorability value is only assigned to areas where there is a combination of the
critical favorable parameters (Brown et al. 2003).

Fig. 2.54 Sphere model for SP method (Kaftan et al. 2014)

Fig. 2.55 MLPNN structure for SP application (Kaftan et al. 2014)
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2.6 Application of NN for SP Inversion Using MLP

Kaftan et al. (2014) used MPL neural networks to find the inverse solution for a
buried and polarized sphere-shaped body, as shown in Fig. 2.54.

The outputs are the geometrical parameters of the sphere-like body: the polar-
ization angle (a), the depth to the center of the sphere (h), the electrical dipole
moment (k) and the distance from the origin (x0) while the inputs are the SP values
along the selected principal profile (Fig. 2.55).

In preparing the training data set the SP anomaly at any point P(x) over a
spherical model can be calculated by the formula given by (Bhattacharya and Roy
1981):

Fig. 2.56 Synthetic SP anomaly profile over a spherical body and its MLPNN and DLS inversion
response (Kaftan et al. 2014)
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where k is the electrical dipole moment, k ¼ Iq=Zp is the depth to the center of
sphere, x0 is the zero distance from the origin and a is the angle between the
polarization axis direction and vertical axis.

Table 2.26 Training parameters of MLPNN

Number of training set 5000

Normalization data range [−1, 1]

Number of hidden layers 2

Learning rate 0.1

Number of neurons in the first hidden layer 2

Number of neurons in the second hidden layer 5

Activation function hyperbolic tangent (tanh) Sing/maid

Number of epoch to reach optimum 150

MSE at optimum epoch 0.00306092

Table 2.27 Range of sphere model parameters for training MLPNN

Parameter Range

k 10000� 110000

a 260� � 340�

x0 50� 100m

h 7� 75m

Fig. 2.57 Synthetic SP
anomaly profile over a
sphere-like body with and
without noise (Kaftan et al.
2014)
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Kaftan et al. (2014) used a two-hidden layer MLP neural network. The model
was first tested on noise-free synthetic data, which was assumed to have the fol-
lowing parameters:

k ¼ 94:686 h ¼ 41:81 m; a ¼ 309:37�; x0 ¼ 77:07 m;

Which gives the response shown in Fig. 2.56.
The parameters/ranges that were used for training are listed in Tables 2.26 and

2.27. The MLPNN results were compared to the DLS inversion method (Damped
Least Square) and showed a very good agreement (Fig. 2.56).

The parameter value range should be selected based on the shape of the anomaly
curves and should not be too narrow. The important points to be considered are that
deep SP sources generate broad anomaly curves over a large distance while shallow
sources generate sharp anomaly curves over a short distance. Also the consideration
of the monopolar or bipolar character of the anomaly can improve the determination
of the parameter range for the polarization angle.

In the next stage, Kaften et al. (2014) examined the network performance under
noisy conditions by adding 5, 10% of Gaussian noise to previously generated,
noise-free SP data in order to estimate the k; a; x0 and h for the synthetic model
(Fig. 2.57).

The results of MLPNN for the noisy test data showed that the estimated model
parameters do not vary significantly, and so the MLPNN solution is not particularly
affected by noise level (Tables 2.28 and 2.29).

In order to evaluate the MLPNN performance for real data, Kaftan et al. (2014)
used Self Potential data collected from Izmir-Urla-Demircili Village (Fig. 2.58).

The Urla S-P anomaly data was collected on 7� 7 profiles oriented N–S and
E–W with the survey details of Table 2.30.

They applied MLPNN to the data along 150 m long profiles A�A0 and B�B0

cross-sections taken from the contour in N–S and E–W directions (Fig. 2.59).

Table 2.28 MLPNN inversion results for a synthetic SP anomaly profile over a spherical body
with 5 and 10% of random Gaussian noise added (Kaftan et al. 2014)

K a x0 h

Model without noise 94,686 309.37 77.07 41.81

S/N ratio: 5% 94,095 301.46 78.25 41.95

S/N ratio: 10% 94,651 302.85 78.12 39.68

Table 2.29 DLS inversion results of a synthetic SP anomaly profile over a spherical body with
5% and 10% of random Gaussian noise added (Kaftan et al. 2014)

K a x0 h

Model without noise 94,686 309.37 77.07 41.81

S/N ratio: 5% 88,758 307.57 77.5 40.7

S/N ratio: 10% 85,386 306.48 77.5 41.04
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The MLPNN they used for real data had the same architecture and specifications
and parameter ranges as the MLPNN which they used for the synthetic data.
The MSE of MLPNN was 0.032719 after 300 epochs for cross section A�A0 and
0.0033268 after 250 epochs for cross section B�B0. To assess the accuracy of
MLPNN the results were compared to that of DLS inversion results and agreed well
with the least squares method (Table 2.31 and Fig. 2.60).

Fig. 2.58 The geological map of the study area after Kaftan et al. 2014

Table 2.30 SP surveying specifics

Measurement technique Gradient

Each profile length 300 m

Distances between profiles 50 m

Electrode spacing 1.5 m
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2.7 Determination of Facies from Well Logs Using
Modular Neural Networks

Interpretation of rock facies from well logs requires the recognition of changes
which occur across layer boundaries as well as identifying facies from their char-
acteristic log responses.

Fig. 2.59 SP contour map of the, A–A′ and B–B′ cross-sections across the Urla anomaly (Kaftan
et al. 2014)

Table 2.31 The inversion results for MLPNN and DLS (Kaftan et al. 2014)

K a x0 h

A�A0 (MLPNN) 95,460 302 76.1 47

A�A0 (DLS) 89,454 301 75 46

B�B0 (MLPNN) 94,937 300 78 46

B�B0 (DLS) 105,079 296.3 80 49.8
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Fig. 2.60 a A–A′ cross-section SP anomaly over the Urla–Demircili village data set, and its
MLPNN and DLS inversion solutions. b B–B′ cross-section SP anomaly over the Urla–Demircili
village data set, and its MLPNN and DLS inversion solutions (Kaftan et al. 2014)
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Bhatt and Helle (2002) used this property to determine facies from well logs.
This property was exploited using a recurrent P-ANN derived from time-series
analysis (Fig. 2.61).

Bhatt and Helle (2002) (Fig. 2.63) combined back-propagation neural networks
in ensembles and modular systems where the multi-class classification problem of
facies identification was reduced to a number of two-class problems (Fig. 2.62).

The idea was to reduce the multi-classification problem to a number of two-class
classification tasks to maintain the simple architecture of the MLP with a minimum
of hidden units. The multi-class classification problem was accomplished by con-
structing a modular neural network (MNN) using simple MLP as the building block
with individual components of the MNN, or group of MLPs assigned to predicting
a given log facies, enabling the MNN to solve the multi-classification problem by
voting.

The log data used to train the network were those commonly available from wire
line core logging:

Density, sonic, gamma, resistivity and neutron porosity

The synthetic data were modeled based on three distinct log facies and random
noise at the level of 10% was added to each log as a tenth of the typical variation

Fig. 2.61 Architecture of the
modular neural network for
lithofacies prediction using a
two-step prediction with
initial classification by ANN
for each depth point,
following by a recurrent
R-BPANN that uses input
from adjacent depth points.
Both networks are 3-layer
MLPs with single output
(Bhatt and Helle 2002)
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range observed for a Brent Group North Sea reservoir at Jurassic level. Figure 2.64
shows the distribution of log values for the 3-facies model with 10% noise.

The training procedure for the component network in the modular system was
optimized based on synthetic log network responses adapted from realistic models
(Fig. 2.65). The building blocks used were simple three-layer back propagation
ANNs.

They selected 150 samples at regular intervals from 3000 samples, at a nominal
sampling distance of 10 cm for the training pattern, for the various tests. The
network performance was tested using all 3000 samples. The resulting performance
in terms of miss-hits for the 3 CMs, one for each facies, is illustrated in Figs. 2.66
and 2.67. Bhatt and Helle (2002) compared the results with the individual

Fig. 2.62 Architecture of the CM (Cooperative Modular) for redundant combination of M
modular networks as shown in Fig. 2.61 (Bhatt and Helle 2002)
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components of the stacked outputs and the miss-classification was less than 1% of
3000 samples which is a significant reduction.

Bhatt and Helle (2002) also used the Ness formation (Ejsberg field in the North
Sea) which correlates with the stratigraphic interval between the Tarbet and
Etvine-Rannoch formations of the Brent group. The Ness formation is divided into
four main lithofacies:

(1) Channel sands (2) Crevasse splays (3) Lake Deposits and (4) Coals, which
each have significant detectable differences in the log response. The main log
feature of each facies is summarized in Table 2.32.

Fig. 2.63 Architecture of the modular neural network for predicting log-facies where each
log-facies is designated to an expert CM-k as shown in Fig. 2.62. The combiner is a voter that
votes the most probable log-facies using soft-max or prior model data; e.g. local stratigraphy, to
eliminate remaining ambiguities (Bhatt and Helle 2002)
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The zonation was compared based on the cores and neural networks for four
wells Q+2, Q-1, Q-2 and Q-21, and the classification performance shown in
Table 2.33.

Training patterns were principally extracted from well Q-12, while the other
three wells were kept anonymous to test the network. The mishit rates are shown in
Table 2.34 with respect to facies, for this research and other methods.

Comparison of log facies from the Bhatt and Helle (2002) study (left) and the
lithofacies shows very good adaption (Fig. 2.68). The average hit-rate is well above
90% in wells unknown to the network which shows the high performance of the
MNN.

Fig. 2.64 Distribution of log values for the 3-facies model with 10% noise (Bhatt and Helle 2002)
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2.8 Estimation of Surface Settlement Due to Tunneling

Tunneling has always posed dangers in shallow urban areas and soft soils, where
ignorance of the presence of the hazard can have very unpleasant and costly
repercussions. The problem of surface settlement and its effects on surface struc-
tures are the main dangers, which can and should be controlled by geomechanical
modeling to prevent damage to surface structures. The surface settlement due to
tunneling depends on various factors such as the drilling system, drilling parame-
ters, the geometrical shape of the tunnel, geological conditions and geotechnical
properties. Empirical and semi-empirical formulas are available for the prediction of
surface settlement and different analytical and numerical methods have been used to
predict this kind of settlement. Hajian et al. (2014) applied artificial neural networks
and finite element methods to the estimation of surface settlement, in the context of
the geology of the studied route of the Mashhad Subway Line 2, in Iran. Using the
database related to tunneling in Mashhad Subway Line 2 project, a series of inputs

Fig. 2.65 Synthetic logs for a multi-layer (17 layers) model composed from three different log
facies. Layer thickness varies from 3 to 55 m (Bhatt and Helle 2002)
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which are relevant to surface settlement and the outputs of mean settlement mea-
sured by instrumentation, different models of artificial neural networks were
designed using MATLAB software which were then trained and tested. From both
of the models, the one with the optimal performance in testing and showing the best
correlation between the actual and the predicted settlement is chosen as the optimal
model. The errors of the network were shown in the models, and the correlation
between actual settlements and the predicted ones is studied. Moreover, some
cross-sections of the route were modeled using the finite element method using the
2-dimensional Plaxis software, and their results are introduced. Finally, the amounts
of settlements estimated by neural network and finite element were compared and
tested against some actual measured cross-sections of the route.

2.8.1 Introduction

In general, the drilling of tunnels and other underground structures leads to the
removal of soil and rock masses leading to considerable changes in stresses around
them. Surface settlement is one of the consequences of the disturbance of the soil
and shallow bedrock and is especially important in urban areas and particularly
when the tunnel passes under residential areas. Consequently, surface settlement

Fig. 2.66 Distribution of miss-hits for the three committees CM1, CM2 and CM3 and their
component networks designated for predicting the individual log-facies (Bhatt and Helle 2002)
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Fig. 2.67 Output from the Committees (a) and the sequential application of the R-BPANN. b The
predictions for the 17-layer model shown in Fig. 2.63 (Bhatt and Helle 2002)

Table 2.32 Main log feature of each facies

Face No Name Material Log features

1 Channel
sands

– Relatively clean
– Poorly to well-sorted
sand

– Low values of Gamma, density,
velocity

– Average permeability: 1700 mD
– Porosity / 26%
Resistivity and neutron porosity
variable, depending on the type of pore
fluid

2 Crevasses – Fine-grained sand
inter bedded with
clay-rich material

– Log responses more variable than
channel sands dependent on the clay
content & pore fluid

3 Lake Jurassic mud rocks – High gamma
– High density
– High velocity
– Low resistivity

4 Coal – – Low density
– Low sonic velocity
– Distinct peak at high
Values of the neutron porosity

138 2 Prior Applications of Neural Networks in Geophysics



should be estimated before the commencement of construction to prevent damage
arising from tunneling affecting surface structures and sub-surface structures (Mair
and Taylor 1997), Several different empirical, analytical and numerical methods
have been used to date to predict the surface settlement due to tunneling. One of the
methods for the estimation of surface settlement uses artificial neural networks
(ANN). Although, ANNs are not directly comparable with natural nervous systems,
they possess some attractive features, which make them distinctive in certain
applications like pattern distinction, robotic functions, and wherever linear or
non-linear learning is required. ANNs, due to their flexibility and high capability for
learning, can take information from past experience and improve their behavior
during learning (Hajian et al. 2011a, b); consequently, this technique can be used to
predict surface settlement in regard to the geometric properties of tunnels and
geotechnical properties of the surrounding area.

With the development of new technology in the fields of both software and
hardware, researchers began to use numerical methods. The application of finite
element methods (FEM) as one of the preeminent numerical methods began to be
used in geotechnical engineering in 1966 (Zinkiewicz and Taylor 2000). These
days, powerful software based on numerical methods is available, which can be
used in tunnel modeling and the assessment of surface settlement due to tunneling.
FEM using Plaxis software in the field of numerical methods is a new technique for
estimating surface settlement due to tunneling. The high accuracy in the calcula-
tions is the main advantage of this method if the input data are precise.

Table 2.33 The classification performance of zonation (Bhatt and Helle 2002)

Q-12 Q-l Q-2 Q-21 Avg

Channel 3.6 1.3 9.1 12.3 6.6

Crevasse 1.1 4.3 4.0 2.5 3.0

Lake 11.3 16.0 16.5 11.3 13.6

Coal 2.8 3.0 2.7 6.7 3.8

Average 4.7 6.2 8.1 10.0

Table 2.34 Miss-hits with respect to wells and facies (Bhatt and Helle 2002)

Technique Researcher(s) Results

Facies Mishit rate (%)

Discriminant factor analysis Busch et al. (1987) 7 25

Discriminant factor analysis Jian et al. (1994) 8 23

Recurrent neural network Yang et al. (1996) 6 17

Conventional clustering analysis Yang et al. (1996) 6 40

Hybrid neural network Chang et al. (2000) 4 13

Modular neural networks Bhatt and Helle (2002) 4 10
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Fig. 2.68 Detailed comparison of log facies from Bhatt and Helle (2002) study (left) and
lithofacies (right) after Ryseth et al. (1998) and Bhatt and Helle (2002)
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2.8.2 The Finite Element Method in Plaxis Software

Plaxis is a computer program based on the finite element method of Zinkiewicz and
was designed for 2-D and 3-D geotechnical analysis of the deformation and stability
of soil structures, groundwater and heat flow, in geo-engineering applications such
as excavation, foundations, embankments and tunnels. The 2-dimensional edition
of this software is used for two-dimensional analysis of plane strain. The plane
strain model is applicable to structures with large aspect rations, in which their
cross-section, geometry and loading are fixed, and supposing that the length dis-
placements are zero.

2.8.3 The Available Elements for Modeling

In the 2-dimensional edition, 6-node or 15-node plane elements can be used for
modeling materials like soil, rock, concrete, etc. The 6-node elements provide the
possibility of second-order interpolation for displacement, and the stiffness matrix
can be generated by numerical integration using three stress points, while,
fourth-order interpolation is used for 15-node elements, and the integration calcu-
lated using twelve points of stress.

2.8.4 Soil and Rock Behavior Models

In the Plaxis software, different advanced models are considered for soil and rock
behavior modeling. These models and their applications are briefly explained
below.

(A) Linear Elastic: This is the simplest model in this software, which is defined by
using two parameters: Young’s modulus and Poisson’s ratio. While the linear
elastic model can be used to model the behavior of stiff structures located in
soil, like steel or concrete linings; it cannot be considered suitable for soil itself.

(B) Mohr-Coulomb: This is a nonlinear model but strong and simple, which can
introduce an appropriate behavior for soil and rock. Elastic-absolute plastic
behavior can be simulated based on five parameters including Young’s mod-
ulus, Poisson’s ratio, cohesion, friction angle and dilation angle. The dilation
angle is used for modeling the soil volume increase (e.g., dense sand).

(C) Jointed rock model: This model was developed based on the Mohr-Coulomb
model, in which the effects of stratifications, joints and anisotropies can be
observed. In this model, the environment is elastic, which can include elastic
modulus and Poisson’s ratio in orthogonal directions. Plastic sliding can only
occur along pre-defined cracks.
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(D) Soft soil creep model: This model is formulated based on visco-plastic
behavior, and includes soil diachronous changes such as creep and secondary
compression; therefore, it can be effectively used for long-term loading simu-
lations such as the soil under foundations, but is not applicable to unloading
activities like tunneling.

(E) Hardening soil model: This model which is more advanced in comparison with
Mohr-Coulomb model is considered as a hyperbolic model of elasto-plastic
type, which is formulated based on frictional hardening. In elastic-absolute
plastic models, the yield surface of the hardening model is not fixed in the space
of principal stresses, and can deform due to plastic strain. This model’s
parameters are similar to those of Mohr-Coulomb model. The only difference is
that in this model, the soil hardness is considered more accurately in three
conditions including oedometer loading, triaxial loading and unloading
(reloading) under the reference confining stress. The hardening model can be
used for simulating the behavior of sand, gravel and pre-consolidated clay; in
particular this model can be effectively used for activities like tunneling which
include unloading.

Fig. 2.69 Photos of the Line2 Mashhad metro construction from early to final stages. Source
www.slideshare.net/khakestary1363/muroc-mashhad-urban-railway-operation-company
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2.8.5 The Studied Route of the Mashhad Subway
Line 2 Project

The basic design studies for Mashhad metro line2 was accomplished by a joint
effort between the project’s main local consultant “Pajoohesh” and the French
consultant “Systra”. Twelve groups of qualified engineering consultants assisted the
main consultant in preparation of basic studies such as topographical and
geotechnical studies, civil design, traffic studies,

Urban utility tracing, track design, rolling stock functional specification, bio-eco
and value engineering. The preliminary design of line2 was carried out and a call
for international tender (E.P.C) was launched and a local General Contractor
(GE) was appointed. A grouped photo of the Line2 Mashhad metro construction
from early to final stages is illustrated in Fig. 2.69.

The geographical route of Mashhad Subway Line 2 project (Fig. 2.70) runs from
northeast to southwest of Mashhad city from Tabarsi Blvd. to Shazan Blvd.
(Fig. 2.70).

The studied route is 4.3 km long, a part of line 2. One side of this route begins at
the North shaft and passes the stations A2, B2 and C2, and then ends at D2
(Fig. 2.70).

In addition, part of the south shaft leading to station L2 was carried out.
Therefore, the database used in this study was gathered between chainages −365
and +3400 as well as between the chainages +13080 and +13614 of Mashhad
Subway Line 2.

The Mashhad Plain lies between the Binalud and Hezarmasjed mountains,
running from northwest to southwest. Mashhad city is located on young alluvial
deposits deposited by the main branches of the Kashafrud River, which has its

Fig. 2.70 Map of the Line2 route and stations (www.slideshare.net/khakestary1363/muroc-
mashhad-urban-railway-operation-company)
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source in the northern hillsides of the Binalud Mountains and the southern hillsides
of the Hezarmasjed Mountains. Mashhad’s surface soil texture varies from gravel to
clay. The surface soil of the northeastern border tends to be clay, which changes to
silt-clay and silt. Gravel channels occur in the western and southern parts. The
sandy soil lies between gravel and silt-clay soils. The geotechnical Zonation map of
Mashhad city is shown in Fig. 2.71.

Along the studied route, the soil of the North Shaft as far as station D2 is mostly
comprised of two layers including clay and sand or clayey sand. Moreover, the soil
texture of south shaft as far as station L2 comprises two layers, which are made
from clay, sand and gravel. The level of the groundwater along the tunneling route
only changes under the tunnel crown.

2.8.6 Characteristics of the Tunnel

The tunnel for the Mashhad Subway Line 2 was dug by an Earth Pressure Balance
(EPB)-type Tunnel Boring Machine (TBM) There are two TBMs, one of which
drills the north shaft and the other the south shaft. The external diameter of the
tunnel is 9.1 m. For the studied route, the depth of tunnel varies between 13.15 and
21.65 m.

In an EPB type of TBM, the concrete segments are emplaced at the end of the
shield to be installed in the wall of the tunnel. The diameter of the shield is greater
than that of concrete rings; therefore, some space is created between the concrete
lining and the drilled soil, which is called trailing empty space. This trailing empty
space tends to be filled with the surrounding soil when the shield moves forward. In
fact, the soil around the steel shield collapses; consequently, the convergence of the
soil into the inside tunnel is one of the significant reasons for surface settlement.
Grouting operations are performed to prevent this settlement; thus, the grouting
pressure plays an important role in controlling surface settlement.

Along the studied route, grouting has been performed with pressures of up to 3
bars. The grouting operations were performed from rings #12 to #2267 in the
northern route as well as from rings #24 to #380 in the southern route.

JFig. 2.71 a Geotechnical Zonation map of Mashhad b The route of lines across Mashhad city (to
match with the geotechnical zonation). Source of a: http://www.preventionweb.net/files/…/30411_
2infoaboutearthquakegemmashhad.pdf and Source of b: www.slideshare.net/khakestary1363/
muroc-mashhad-urban-railway-operation-company
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Fig. 2.72 The location of planted pins in the rout of Mashhad Subway Line 2 Project

Table 2.35 Description of the inputs and output of the network (Hajian et al. 2014)

Type of
datum

Description of datum

Input #1 Depth of tunnel (m)

Input #2 Dry density of the soil of first layer (kN/m3)

Input #3 Cohesion of the soil of first layer (kN/cm2)

Input #4 Frictional angle of the soil of first layer (Degree)

Input #5 Modulus of elasticity of the soil of first layer (kg/cm2)

Input #6 Dry density of the soil of second layer (kN/m3)

Input #7 Cohesion of the soil of second layer (kN/cm2)

Input #8 Frictional angle of the soil of second layer (Degree)

Input #9 Modulus of elasticity of the soil of second layer (kg/cm2)

Input #10 Grouting pressure (Bar)

Input #11 Level of groundwater (1 for above the tunnel, 0.5 for inside the tunnel, 0 for
under the tunnel)

Output Surface settlement (mm)
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2.8.7 The Surface Settlement Measurement Operations

To control surface settlement in underground projects, earth monitoring is carried
out in order to evaluate the accuracy of predictions and preventive measures are put
in place to decrease the possibility of dangers and financial losses. The simulta-
neous control of drilling processes as well as the ground surface displacements is
also of great importance, especially in urban areas. Mashhad Urban Railway
Company’s geotechnical consultant Arthe Civil & Structure BV performed the
measurements and calculations of the surface settlement for the route of the
Mashhad Subway Line 2 project.

The surface settlement measurement operations are based on planting and
installing the markers, reading them using appropriate surveying instruments,
recording, primary processing and presentation of the obtained data. To measure the
surface settlement in the Mashhad Subway Line 2 project, marker pins are used.
These pins are planted at between 5 and 10 m spacing along the route on both left
and right hand side as shown on Fig. 2.66. In this study, the final measured amounts
of surface settlement due to the height changes of central pins in each cross-section
are used (Fig. 2.72).

2.8.8 Surface Settlement Prediction Using ANN

The ANN used in this study is designed using the MATLAB software. The existing
database includes 346 data values related to cross-sections of the studied route. The
training, testing and validation data related to each model are selected randomly.
The number and description of the inputs and outputs (targets) of network are
presented in Table 2.35.

The tunnel of Mashhad Subway Line 2 has the same diameter and the same kind
of drilling, and so variations in these parameters are not applied to the input of the
network. For the cross-sections, which have one soil layer, the inputs are specified
as two equal layers. Where cross-sections have four soil layers, and where the
geotechnical parameter of two soil layers are close to each other, these are con-
sidered as one equivalent layer using the average of the parameters and then the
inputs into the network modeling are specified as two equivalent layers.

With regard to transfer functions, it is better to assign initial values between 0
and 1 to the input and target data; and these are then normalized using Eq. 1.61, to
become the suitable input data for processing:

xN ¼ x� xmin
xmax � xmin

ð2:20Þ

The feed-forward back-propagation ANN was used, with Levenberg-Marquardt
used as the training algorithm. The mean squared error (MSE) was used as the

2.8 Estimation of Surface Settlement Due to Tunneling 147



T
ab

le
2.
36

T
he

re
su
lts

ob
ta
in
ed

fr
om

th
e
tr
ai
ni
ng

an
d
te
st
in
g
of

so
m
e
m
od

el
s
of

A
N
N

(H
aj
ia
n
et

al
.
20

14
)

N
um

be
r
of

la
ye
rs

T
yp

e
of

T
ra
ns
fe
r

fu
nc
tio

n
N
um

be
r
of

ne
ur
on

s
C
or
re
la
tio

n
of

te
st
in
g

da
ta

C
or
re
la
tio

n
of

al
l

da
ta

T
ra
in
in
g

M
SE

V
al
id
at
io
n

M
SE

T
es
tin

g
M
SE

2
L
O
G
SI
G

15
0.
88

0.
85

1.
63

0e
-0
5

6.
13

9e
-0
6

6.
60

8e
-0
5

T
A
N
SI
G

1

2
T
A
N
SI
G

20
0.
03

0.
56

6.
73

5e
-0
5

3.
54

1e
-0
5

3.
01

9e
-0
5

PU
R
E
L
IN

1

3
PU

R
E
L
IN

20
0.
50

0.
88

1.
17

7e
-0
5

6.
88

1e
-0
6

6.
48

3e
-0
5

T
A
N
SI
G

18

PU
R
E
L
IN

1

3
L
O
G
SI
G

10
0.
65

0.
46

1.
51

6e
-0
5

1.
01

3e
-0
5

3.
48

6e
-0
4

PU
R
E
L
IN

14

T
A
N
SI
G

1

4
PU

R
E
L
IN

20
0.
98

0.
86

3.
19

4e
-0
5

4.
34

9e
-0
6

6.
08

6e
-0
6

L
O
G
SI
G

18

L
O
G
SI
G

13

T
A
N
SI
G

1

4
PU

R
E
L
IN

20
0.
35

0.
57

6.
72

7e
-0
5

1.
64

4e
-0
5

2.
24

2e
-0
5

T
A
N
SI
G

20

L
O
G
SI
G

18

PU
R
E
L
IN

1

148 2 Prior Applications of Neural Networks in Geophysics



Fig. 2.73 The structure of the optimal model of ANN (Hajian et al. 2014)

Fig. 2.74 The actual amounts of settlement versus the amounts of settlement predicted using
ANN (Hajian et al. 2014)
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Table 2.37 Geotechnical properties of soil related to the chainage 1+050 (Hajian et al. 2014)

Description of
layer

Thickness of
layer

Dry
density, cd

Cohesion,
C’

Frictional
angle, /’

Modulus of
elasticity, E

(m) (kN/m3) (kg/cm2) (Degree) (kg/cm2)

CL-ML 25 16 0.25 25 200

Table 2.38 Geotechnical properties of soil related to the chainage 2+090 (Hajian et al. 2014)

Description of
layer

Thickness of
layer

Dry
density, cd

Cohesion,
C’

Frictional
angle, /’

Modulus of
elasticity, E

(m) (kN/m3) (kg/cm2) (Degree) (kg/cm2)

CL-ML 21 16.7 0.3 25 300

SM 4 16.2 0 30 500

Table 2.39 Geotechnical properties of soil related to the chainage 13+160 (Hajian et al. 2014)

Description of
layer

Thickness of
Layer

Dry
density, cd

Cohesion,
C’

Frictional
angle, /’

Modulus of
elasticity, E

(m) (kN/m3) (kg/cm2) (Degree) (kg/cm2)

SC-SM 13 19 0 35 800

CL-ML 16 17 0.2 24 300

GC-GM 3 19 0.11 40 1000

CL-ML 8 17.5 0.25 20 300

Fig. 2.75 The meshed model of cross-section located at the chainage 1+050 (Hajian et al. 2014)

150 2 Prior Applications of Neural Networks in Geophysics



performance function. 96 models of ANN including one with up to three hidden
layers and one output layer were designed, trained and tested. These networks with
different types of transfer functions in each layer with differing numbers of neurons
were modeled. The correlations and MSE values for some samples of the models
are presented in Table 2.36.

After 24 models had been analyzed, it was observed that using the Logsig
transfer function for the output layer led to very low correlations between the actual
data and the predicted values and so this function was not used as the transfer
function for the output layer in the next models. The results obtained from training
and testing of the network, the four-layer model including Tansig, Logsig, Logsig
and Purelin transfer functions containing 20, 18, 13 and 1 neurons in each layer
respectively, showed better results in the testing of network than the other models.
The correlation coefficient obtained from this model between actual and predicted
amounts of surface settlement is 0.86. The schematic of the structure of this

Fig. 2.76 The meshed model of cross-section located at the chainage 2+090 (Hajian et al. 2014)

Fig. 2.77 The meshed model of cross-section located at the chainage 13+160 (Hajian et al. 2014)
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Fig. 2.78 Vertical displacements related to the cross-section located at chainage 1+050 (Hajian
et al. 2014)

Fig. 2.79 Vertical displacements related to the cross-section located at chainage 2+09 (Hajian
et al. 2014)
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network is shown in Fig. 2.73. Figure 2.74 illustrates the correlation coefficient
existing between the actual data and the predicted.

2.8.9 Surface Settlement Calculation Using FEM

Finite Element Modeling using the 2-dimensional version of Plaxis software was
used to calculate the surface settlement which occurred in three cross-sections
located at chainages 1+050 (between stations A2 and B2), 2+090 (between stations
B2 and C2) and 13+160 (between the south shaft and the station L2).

Fig. 2.80 Vertical displacements related to the cross-section located at chainage 13+160 (Hajian
et al. 2014)

Table 2.40 The actual amounts of surface settlement and the ones estimated using ANN and
FEM (Hajian et al. 2014)

Chainage Settlement measured by
instrumentation, mm

Settlement predicted
using ANN, mm

Settlement calculated
using FEM, mm

1+050 3.00 3.40 8.05

2+090 5.00 4.60 5.64

13+160 0.00 0.40 0.017
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As has been already stated, the tunnel of the Mashhad Subway Line 2 has a
diameter of 9.1 m. The geotechnical properties of the soil at chainages 1+050, 2
+090 and 13+160 are presented in Tables 2.37, 2.38 and 2.39 respectively. At these
chainages, the depth of the tunnel is 13.85, 13.15 and 21.65 m respectively.

For 2-D modeling in the Plaxis software, the plane strain model was used with
15-node elements;, the materials of soil for all layers were set as hardening soil
models. The lining of tunnel is 35 cm thick. An elastic plate model with a modulus
of elasticity of 35 million kg/cm2 is used for the materials of the lining.

The model meshing was first done for the whole model, and then refined three
times for particularly critical areas. Figures 2.75, 2.76 and 2.77 show the meshed
model of cross-sections located at the specific chainages.

It should be mentioned that, as the middle and upper parts of the model include
areas closest to the desired point set for determination of settlement, they are
distinguished from the other areas of the model so that finer mesh can be generated
in these areas.

After the mesh generation, at the stage of the initial conditions, the level of
groundwater is set at the level beneath the tunnel invert. The calculations comprise
four phases include tunneling for five days, 1% contraction for half a day, grouting
for one day, lining for half a day and consolidation for three days. The desired point
for determining of settlement in software is set at the precise location of the planted
marker pin on ground surface.

Figures 2.78, 2.79 and 2.80 show the vertical displacements at the mentioned
cross-sections. The vertical displacement considered refers to the surface settlement
above the central axis of the tunnel.

2.8.10 Results

The surface settlement estimated using ANN and FEM as well as the actual
amounts of surface settlement at the three chainages are presented in Table 2.40.
The amounts of surface settlement estimated using all mentioned methods are close
to the actual ones. The small difference between the actual amounts of settlement
and those of the estimates is due to error related to ANN or the calculation errors in
the Plaxis software.

2.8.11 Conclusions

Measurement of surface settlement while tunneling is essential to mitigate hazard
and/or financial losses. Powerful tools are available for the estimation of this surface
settlement. Applying ANNs, which use the numerical data to predict the results, is a
powerful tool in this field. While FEM can be an exact numerical method for
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surface settlement calculation, ANNs have the potential to predict the results very
accurately and rapidly and provide a more powerful tool compared to classical FEM
methods. By checking the observed data with the results of ANN, it was deduced
that the correlation coefficient between the actual amounts of settlement and the
predicted ones is 0.86 for ANN. These analyses show the higher correlation
resulting from ANN in comparison with FEM.

Table 2.41 Review of some TBM performance prediction models

Prediction
value

Reference Rock mass factors Machine factors

Penetration
rate (m/h)

Graham (1976) Uniaxial compressive
strength

Cutter force

Penetration
rate (m/h)

Farmer and
Glossop (1980)

Tensile strength Cutter force

Penetration
rate (m/h)

Büchi (1984) Compressive and tensile
strength

Cutter spacing, cutter tip
width, cutter radius,
cutter force, TBM
diameter, RPM

Penetration
rate (m/h)

Hughes (1986) Uniaxial compressive
strength

Cutter force, Fn

Penetration
rate (m/h)

CSM model Uniaxial compressive
strength

Cutter spacing, cutter tip
width, cutter

Penetration
rate (mm/rev)

Gehring(1995) Uniaxial compressive
strength

Cutter force, Fn

Penetration
rate (m/h)

NTH Bruland
(1998)

Uniaxial compressive
strength, drilling rate index
(DRI), number of

Cutter force, RPM, cutter
spacing

Penetration
rate (m/h)

QTBM Barton
(2000)

RQD0, Jn, Jr, Ja, Jw, SRF,
rock mass strength, cutter life
index (CLI), quartz

Cutter force

Penetration
rate (m/h)

RME Bieniawski
et al. (2006)

Uniaxial compressive
strength, abrasivity,
rockmass jointing at the

Total cutter head thrust,
RPM

Bore ability
IndexBI (kN/
mm/rev)

Gong and Zhao
(2009)

Compressive strength,
volumetric joint count,
brittleness index, angle
between main discontinuities
and tunnel axis

Cutter force

Field
penetration
index: FPI
(kN/mm/rev)

Hassanpour et al.
(2011)

Uniaxial compressive
strength and RQD

Cutter force, RPM
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2.9 Comparison of Neural Networks for Predicting
the Penetration Rate of Different Models
for Tunnel Boring Machines (TBM)

Drilling TBMs are machines which, by applying a driving force and rotating the
cutter head with cutter discs, dig a tunnel with uniform and specified circular shape.
In spite of their huge investment requirements, their high speed and high quality
performance have enabled them to compete with traditional methods of drilling. In
addition to their high advance rates and excellent safety performance, they decrease
the extent of damaged zones and the other difficulties associated with drilling and
blasting. The analysis of TBM performance is the basis for estimating the expen-
diture and timetable for each tunnel project. One of the methods used for the
prediction of the performance of these machines is the estimation of their pene-
tration rate. Different researchers have studied the effect of the properties of intact
rock and rock mass on the penetration rate performance of TBM of these machines.
The inputs of the models are the uniaxial compression strength, the point load
strength index, the penetration force of each disc and the number of cutter head
revolutions per minute; and the output is the penetration rate of the machine.

2.9.1 Literature Review of the Prediction of the Penetration
Rate of TBM

Tunnels are often excavated by Tunnel Boring Machines TBMs in order to com-
plete the construction of a tunnel in a reasonable timescale, Therefore, the pre-
diction of TBM performance is a primary requirement for planning purposes and
the selection of the optimal construction method, Many performance prediction
models have been developed, during the last 30 years ranging from single factor
models (Graham 1976; Farmer and Glossop 1980; Hughes 1986) to multiple factor
models (Büchi 1984; Rostami and Ozdemir 1993; Gehring 1995; Bruland 1998;
Barton 2000; Bieniawski et al. 2006; Gong and Zhao 2009; Hassanpour et al.
2011), and are summarized in Table 2.41.

The most widely used models at present include the Colorado School of Mines
(CSM) model (Rostami and Ozdemir 1993; Rostami 1997) and the Norwegian
Institute of Technology (NTH) model (Bruland 1998). Each of these has advantages
and disadvantages. The original CSM model did not consider the influence of joints
on TBM penetration rate, while the modified CSM model only considers jointing as
a factor reducing rock mass strength. The NTH model requires special laboratory
tests, (not commonly available in a standard rock mechanics laboratory). TBMs can
generally achieve very good advance rates (up to 150 m/day and 2000 m/month;
Barton 2000) but are very sensitive to adverse geological conditions, such as
spalling, rock bursting, rock squeezing and high water inflows (Mobarra and Hajian
2013).

156 2 Prior Applications of Neural Networks in Geophysics



2.9.2 Case Study of the Golab Tunnel

The main purpose of the Golab tunnel project was the transfer of water from the
Tanzimi dam river to Kashan, along with supplying the Karoun desert with water
from the Zayande-Rud River. The area of the project is located to the west of
Isfahan within a distance of 100 km and in the north of Chaharmahal-o-Bakhtiari
Province. The nearest towns to this project are Tiran and Chadegan. The highest
mountain range of this region is the Dadan mountain range with a height of 3890 m
and the lowest point of this region lies in the Zayande-Rud valley with a height of
1900 m.

2.9.2.1 Geotechnical Investigation of the Tunnel Route

At the request of the project supervisor, nine geotechnical boreholes were drilled to
a total length of 3105 m along the ten kilometer route of the Golab tunnel as well as
two other boreholes located at the water entrance to a length of 100 m by the
Azemooneh Steel Company. The drilling was carried out with rotary and contin-
uous core drilling, and then borehole and laboratory tests were done by the fore-
going company. The purpose of this drilling was to obtain more geotechnical
information at the planned depth of the tunnel from boreholes. Figure 2.81 shows a
sample of borehole log data (BHA2).

Fig. 2.81 Log data from borehole BHA2 (Mobarra et al. 2013)
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Fig. 2.82 a Generalized diagram of tunnels and gouge in the general case b A part of the Golab
tunnel rout, (Mobarra et al. 2013)

Fig. 2.83 Three morphological regimes of the regions near the Golab tunnel (Mobarra et al. 2013)
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2.9.2.2 Introduction to the Project

Generalized diagram of tunnels and gouge in the general case is depicted in
Fig. 2.82a. The water transfer project of Golab includes the following engineering
operations:

1. Digging a 9.2 km long tunnel whose slope and inner diameter are 1 in 1000 and
3.5 m respectively.

2. Excavating an underground gouge at the junction of the main tunnel and making
the required spaces and their accessibility.

3. Constructing a tunnel 1.5 km long with a slope of 13.5% and laying pipe with
1400 mm diameter inside the tunnel for accessibility

4. Constructing a water outlet structure including water intake structures and a
canal as long as 900 m with sediment catcher facilities.

2.9.3 Geomorphology

Isfahan province is located in the center of Iran’s plateau and includes different
mountainous and plain areas that cover the eastern outskirts of the Zagros
Mountains, mountainous valleys and part of the low lands of the east and south–
east of Iran .In the west of Isfahan province lie the Zagros Mountains stretching

Fig. 2.84 TBM with dual shield model TB 453 E/TS
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from north–west to south–east, extending from the western mountains of
Golpayegan to the hills of the Dena in Semirom. These hills are sedimentary, but
sometimes metamorphic formations can be found. The most important mountains in
the western area include Daran, with particular peaks of Dalankouh, Bazmekouh
and Tamandarkouh with the highest Shahankouh, with an altitude of 4040 m.

2.9.3.1 The Morphology of the Area

There are three differing geomorphological terrains with differing geological and
tectonic characteristics, which are shown in Fig. 2.83.

Fig. 2.85 Comparison of actual penetration rates in m/h and the penetration rates obtained from
different predictive equations (A-Cassinily, B-Ramazanzade, C-Ramamurthy, D-Hious,
E-Glossop, F-Hogs, G-CSM, H-NTH, K-Innaurate)
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2.9.4 The TBM Machine Used for the Golab Project

Because of the differing geological conditions and the increasing demand for tunnel
making, different kinds of whole-section drilling machines are manufactured all
around the world; which can be categorized into different classes, one of which is a
double-shield drilling machine. A TBM machine was used to dig the tunnel to
transfer water from Golab area. This drilling machine was equipped with two
different models of shield known as TB 453 E/ TS. This machine is shown in
Fig. 2.84.

2.9.5 Data Collection

In tunnel drilling projects carried out using mechanized systems, the performance of
the machine is analyzed via three kinds of information, which are gathered,
recorded, estimated and archived:

1. The machine-running parameters (torque, pushing power, consumption capac-
ity, rpm, etc.)

2. Data pertaining to the performance of machine (starting and ending hours of
drilling cycle, the delay of the machine, etc.)

3. Sundry combined parameters

Collecting these data in mechanized drilling projects comprises one of the most
significant processes in the study of TBM performance. In the Golab tunnel, the
drilling parameters were also recorded manually in drilling logs and then their
averages were used as daily parameters in drilling reports.

2.9.6 A Static Model for Predicting the Penetration Rate

Many researchers and scientists have presented formulae for the estimation of
penetration rate for drilling machines all over the world. In this section we have
calculated the penetration rate predicted by the equations presented by different
scientists, and compared them with the actual penetration rates of drilling machines
used in the Golab tunnel drilling. The correlation coefficients between the actual
data and the models have been compared to choose the optimal procedure.
Comparisons between these different static models, to the database gathered from
the procedures of the Golab tunnel drilling, are presented in Fig. 2.85.
Consequently, to determine which of the above models has the best agreement
between predicted penetration rates and the actual data; we calculated Pearson’s
Rank correlation coefficient for different models, with the results (Table 2.40).
Table 2.42 shows that Rostami’s CSM model gave the best agreement with the
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measured data and in addition, its penetration rate was closest to actually obtained
penetration rates (Figs. 2.85 and 2.86).

2.9.7 Input Parameters

The determination of all the relevant parameters that influence the prediction of
penetration rate is difficult but not all of the parameters are independent and some of
them are strongly correlated and it is not necessary to use all the variables as input
parameters. The parameters which have an important effect on TBM performance
and affecting Rate of Penetration (ROP) which were selected for this study were:
Uniaxial Compressive Strength (UCS), point load strength index (IS(50)), RPM and
normal force (fn). Each parameter Although machine characteristics (e.g., thrust or
torque) are very important for overall performance it was assumed here that these
characteristics remain unchanged and all possible effects were due to the
geotechnical and machine conditions. Data were obtained from the Golab water
conveyance tunnel project.

The main purpose of the Golab tunnel project is the transfer of water from the
Tanzimi Dam River to Kashan, along with supplying the Karoun desert with water
from the Zayande-Rud River. The highest mountain range of this region is the
Dadan mountain range with a height of 3890 m and the lowest point of this region
belongs to the Zayande-Rud valley with a height of 1900 m above sea level.

Fig. 2.86 The predicted
values vs. actual values of the
penetration rate (Mobarra
et al. 2013)
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2.9.7.1 Input Dataset

A critical stage in the ANN technique is data collection. Before training and
implementation was carried out, the data were randomly divided into training,
validation and test subsets. 289 datasets were collected in the present study and
from these, 65% of the data were chosen for training, 15% for validation and the
remaining 20% were allotted to the final test phase. The training set was used to
generate the model and the validation set was used to check the general applica-
bility capability of the model.

2.9.8 ANN Topology

An appropriate architecture was obtained from feed-forward back propagation.
A three-layer network was chosen with logarithmic sigmoid transfer function
neurons in the hidden layer, and a purely linear transfer function neuron corre-
sponding to Rate Of Penetration in the output layer. Since there is no exact method
of determining the appropriate number of hidden layers, and the number of neurons

Table 2.43 Comparison of some of the models error indexes (Mobarra et al. 2013)

R Model T-F MSE
(Train)

MSE
(validation)

MSE
(Test)

R
(Test)

R
(All)

1 4-4-1 s-p 5e−5 1.22e−5 4.98e−3 0.111 0.955

2 4-7-1 s-p 9.81e−17 4.615e−5 0.1 0.131 0.705

3 4-8-1 s-p 10e−4 0.0118 10e−4 0.147 0.637

4 4-10-1 S-p 6.7e−4 0.0146 9.5e−4 0.513 0.630

5 4-15-1 s-p 7.9e−11 0.00971 0.00971 0.289 0.68

6 4-12-10-1 s-s-p 10e−15 0.00197 0.00197 0.84 0.905

7 4-7-4-1 s-s-p 1.894e−5 1.894e−5 0.00165 0.227 0.954

8 4-13-4-1 s-s-p 8.451e−6 0.00338 1.116e−6 0.923 0.913

9 4-14-4-1 s-s-p 1.188e−19 0.00557 0.00557 0.402 0.723

10 4-15-4-1 s-s-p 0.00770 0.00973 0.00475 0.38 0.45

11 4-8-5-1 s-s-p 0.00017 0.01241 0.00020 0.316 0.530

12 4-13-5-1 s-s-p 0.00046 0.00141 2.37e−5 0.297 0.938

13 4-7-7-1 s-s-p 6.34e−21 0.00294 1.71e−5 0.301 0.911

14 4-15-10-1 s-s-p 0.00044 0.01913 0.00083 0.428 0.313

15 4-17-1 s-p 9.6e−4 0.00002 0.00034 0.465 0.809

16 4-6-5-1 s-s-p 0.000197 0.000345 0.000345 0.86 0.90

17 4-12-9-5-1 s-s-s-p 2.95e−9 2.12e−5 0.00221 0.69 0.94

18 4-12-9 s-s-p 1.78e−13 2.37e−5 0.00222 0.36 0.94

19 4-4-7-2-1 s-s-s-p 7.12e−11 2.11e−5 0.02483 −0.08 0.009

20 4-9-3-1 s-s-p 6.92e−6 1.57e−5 0.00204 0.65 0.94
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in each hidden layer, a trial and error procedure is typically used to identify the best
network for a particular problem. Several network topologies were examined and
the Levenberg-Marquardt algorithm chosen for training the ANNs because it is the
fastest method for training moderate-sized feed-forward neural networks.

The resulting target network should produce a minimum error for the training
pattern and give a generalized solution that performs well with the testing pattern.

Inputs  Hidden layer I     Hidden layer II    Output

Fig. 2.87 Suggested A.N.N for predicting ROP (Mobarra et al. 2013)

Fig. 2.88 Correlation
between the measured and
predicted values of ROP
(Mobarra et al. 2013)

2.9 Comparison of Neural Networks for Predicting the Penetration … 165



2.9.9 Testing and Validation of the ANN Model

Testing and validation of the ANN model was done with new datasets which were
not previously used while training the network. The results here demonstrate the
performance of the networks. The Mean Squared Error (MSE) and coefficient of
correlation between the predicted and measured values were taken as the perfor-
mance measures. The MSE was calculated as:

MSE ¼ 1
Q

X
Q

d � 0ð Þ2 ð2:21Þ

where d, o and Q represent the predicted output, the measured output and the
number of input-output data pairs, respectively. The prediction was based on the
input datasets shown above. The quality of the results obtained for some models is
shown in Table 2.43. The correlation coefficient and mean squared errors for the
different models are presented there.

The errors suggest that the network with a 4-13-4-1 architecture is optimal. This
network is shown in Fig. 2.87.

Figure 2.88 shows a graph comparing measured and predicted data for the
preferred ANN model. It appears that the ROP model has predicted values close to
the measured; the correlation coefficient between measured and predicted ROP is
very high.

2.10 Application of Neural Network Cascade Correlation
Algorithm for Picking Seismic First-Breaks

It is possible to perform first break picking using neural networks through training
them using the samples of first arrivals to obtain a classification rule by which we
can make a distinction between first breaks and non-first breaks.

Song et al. (2011a, b) developed a first-break auto-picking method based on
cascade-correlation neural networks. First-break picking was performed earlier
using multi-layer perceptron neural networks with the Back propagation
(BP) algorithm, as a pattern recognition problem. The motivation to use the cascade
correlation (CC) algorithm was some of the limitations in the BP algorithm such as:

• low convergence speed
• non-trivial applications and proneness to getting trapped in local minima on the

error surface
• Fixed BP network’s topology which can’t expand the size of the network to

incorporate extra training data into the internal knowledge

The advantages of using the CC learning architecture compared with BP are:
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• CC learning architecture is a dynamic network which can determine its own size
and topology.

• It uses gradient-based weight optimization without the complexity of
back-propagation.

• Compared with the BP method, CC learning architecture learns very quickly.
• CC retains the structure it has built even when the training set changes (Fahlman

and Lebiere 1990).

The original CC algorithm begins with a minimum network, which has no
hidden layers, consequently the initial stage of training is very time consuming.
Yang et al. (2006) developed the improved CC algorithm which differs from the
original CC algorithm, in that the improved algorithm begins with appropriate
network architecture. Song et al. (2011a, b) adopted the idea to improve the CC
algorithm for picking first breaks. Furthermore, in order to guarantee the network’s
high generalization ability, they added a regularization item to the covariance (or
correlation) when training candidate units in the manner of Wu and Nakayama
(1997). It is necessary to mention that this method not only effectively avoids
ill-weight growth and improves generalization (Wu and Nakayama 1997), but also
accelerates the convergence of the neural network.

To avoid increasing the errors in first break picking using neural networks it is
very important to recognize the error sources and prevent or attenuate them. Errors
in classifying first breaks arise from two sources (Hart 1996):

• The neural network input data may contain inherent statistical ambiguities
• The neural network approximation of the statistical classification rule may not

be accurate

To classify the first breaks and non-first breaks with a neural network, appropriate
attributes must be selected as inputs to the network. The attributes should have two
main properties:

Fig. 2.89 The improved CC learning architecture, initial BP network (left) and after adding two
hidden units (right) (redrawn after Song et al. 2011a, b)
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• The selected attributes should have high stability and reliability in order to
eliminate statistical ambiguities of input data.

• The combination of the selected attributes must be able to make clear distinction
between first breaks and non-first breaks.

2.10.1 The Improvement of CC Algorithm

The CC algorithm was proposed by Fahlman (1989) and Fahlman and Lebiere in
(1990) and provides a way to automatically adjust the neural network architecture.
The CC algorithm begins with minimal network architecture without hidden units,
then automatically trains and adds new hidden units one by one until the perfor-
mance of the network is satisfactory.

Four main steps are performed in the CC algorithm:

Step1: Begin with no hidden-layer neuron
Step2: Add hidden neurons one at a time
Step3: After adding hidden neuron Hi, optimize the weights from “upstream”
neurons to HI to maximize the effect of Hi on the outputs
Step4: Optimize the output weights of Hi to minimize training error.

The theory of the improved CC algorithm is the same as the original CC
algorithm mentioned above, but starts from an appropriate BP network (see
Fig. 2.83). The initial BP network has only three layers, and the number of hidden
units is calculated from Eq. 2.63 (Fig. 2.89):

N ¼ 2m�1= mþ 1ð Þ ð2:63Þ

The training process of the improved algorithm includes three main stages:

Stage 1: Initial network training
Stage 2: candidate unit training

Fig. 2.90 The schematic of
cascade correlation algorithm
for candidate neuron and
freezing before training
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Stage 3: output-layer unit training.

The detailed algorithm to perform the mentioned three main stages is as below:

• Step 1: Initial all connection weights with a random value between −1 and +1.
• Step 2: Use the Quickprop to adjust the connection weights*.

* the Quickprop algorithm acts essentially like the delta rule, except that it
converges much faster (Fahlman 1989).

• Step 3: Is there any significant error reduction after a certain number of training
cycles? If No: continue until get to this condition. If Yes: Calculate the per-
formance of the network

• Step 4: Is providing the desired performance? If yes then stop training; if no,
begin the candidate units training and freeze the input weights of hidden units
(Fig. 2.90).

• Step 5: Candidate training stage: train a pool of candidate units with a different
set of random initial weights.

• Stage 6: Add the candidate whose correlation score is the best to the network as
a new hidden unit.

Fig. 2.91 The situation map of Yenan
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Fig. 2.92 FBP with neural network used in the Yenan loess tableland, on the right is an enlarged
part of the figure (Song et al. 2011a, b)

The candidate unit’s input connects all of the network’s input units and all
pre-existing hidden units, but its output is not yet connected to the active network
and will be connected in the output training stage (see Fig. 2.90).

In order to avoid weight-ill growth when training candidate units, Fahlman
(1989) proposed to add Gauss regularization to the correlation:

C ¼
X
o

X
p

ðVp � �VÞðEp;o � EoÞ � b
2

X
w2

i ð2:22Þ

where b is a regularization coefficient and wi is the incoming weight of the can-
didate unit.

Step 7: Is the correlation C increasing? If yes go to step 6, if no then apply the best
one to the active network as a new hidden unit, and freeze its incoming weights.
Then delete other candidate units, and begin output-layer units training step (8).

Step 8: output-layer units training:

• Retrain all the weights to output layer units using the Quickprop algorithm,
including the new hidden units.

• If no significant error reduction has occurred after a certain number of training
cycles, stop training and begin a new round of candidate unit training.

It’s very important to note that throughout the whole training process, the
candidate units training stage and output layer training stage repeat alternately, until
an overall stopping criterion is satisfied.

2.10.2 Attribute Extraction for Neural Network Training

Selection of attributes is one of the important aspects which affects the accuracy of
first break picking. Song et al. (2011a, b) proposed five attributes which were used
in their method:

• Power ratio
• Maximum amplitude of the peak
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• Frequency
• Curve length ratio
• Adjacent seismic channel correlation.

Curve length is defined as the line integral of the seismic wave over a time
window. Its value will change dramatically when the first break arrives. Correlation
of adjacent seismic channels is recommended for detection of the first arrival of the
event according to their similarity. The inputs to network for training are these five
attributes and the output is ‘1’ for first break and ‘0’ for non-first breaks.

Song et al. (2011a, b) applied the CC neural network method in Western China
to field test data. The seismic data for testing were from the Loess tableland of
Yenan (Fig. 2.91), which has extremely complex near-surface conditions, and the
seismic signal to noise ratio is also low for first-break picking. The area is also
covered by sand dunes and gravels.

As shown in Fig. 2.92, the Earth’s surface is undulating and the results obtained
by First-Break Picking are not ideal when using traditional methods. But the

method discussed above achieves approximately 99% accuracy after being trained
with a training data set of 400 traces. It only installs 8 new hidden units (initial net
has 4 hidden units) and takes 56 s on average to finish the training, but the original
CC algorithm would have installed 17 or more, so this is a significant improvement
over the original.

Fig. 2.93 The geodetic network used for church vertical displacement (Pantazis and Alevizakou
2013)
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2.11 Application of Neural Networks to Engineering
Geodesy: Predicting the Vertical Displacement
of Structures

Pantazis and Alevizakou (2013) used the geodetic method for monitoring a church
structure to predict its future position through training an ANN. The trained ANN
was used to predict vertical displacement, with the ultimate aim to prevent it failing.
The geodetic network they used had 15 central points (Fig. 2.93) and the results of
twelve series of geodetic measurements and adjustments to this network were used.

Six of the central points were sited around the church and nine more station
points were installed inside the church. The measurements were carried out on this

Fig. 2.94 Architecture of the ANN for predicting vertical displacements (Pantazis and
Alevizakou 2013)

Fig. 2.95 RMSE variation
for different training
algorithms (Pantazis and
Alevizakou 2013)
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network at regular time intervals. The height differences between the points were
measured using leveling in order to determine the height of each point with an
uncertainty of ±0.2 mm to ±1 mm. The geodetic network was adjusted through the
least squares method. The vertical displacements (DHi) of all the 15 points of the
network were calculated for a time period of June to July (1st period), July–August
(2nd period) August–September(3rd period) of the years 2009, 2010, 2011, 2012
(Table 2.44).

Pantazis and Alevizakou (2013) used 180 (12*3*5) data items to develop the
ANN because 12 vertical displacement values were available for each of the points
(three periods per year). They divided the data into 3-subsets: 60% (108 points) as a
training set, 20% as a validation set (36 points) and 20% as a test set (36 points).

The inputs of the network were the six parameters below:

• The coordinates X, Y, H of each point
• The period during which the displacement was observed
• The year in which displacement took place
• The location of the point, i.e. inside or outside of the church.

The output was the resulting vertical displacement (DH) of each point (in mm).
The optimized structure for their multi-layer perceptron had a 6 � 4 � 10 � 1

architecture which means the network consists of 6 inputs, two hidden layers with 4
and 10 hidden neurons respectively and one output, illustrated in Fig. 2.94.

The mean sequence error (MSE), root mean square error (RMSE) and correlation
coefficient (R) of the test set were used to evaluate and select the best ANN. Also to
select the best training algorithm amongst trainscg1, trainbfg2, trainlm3, trainrp4,

Fig. 2.96 Correlation of the
outputs and targets of the final
ANN (Pantazis and
Alevizakou 2013)

1Scaled conjugate gradient back propagation.
2FGS quasi-newton.
3Levenberg-Marquardt back propagation.
4Resilient back propagation.
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traingdx5 and traingda6 the RMSE variation for different training algorithms were
calculated and plotted, and based on this trainlm was selected as the best training
algorithm (Fig. 2.95). To clarify these subroutines it’s necessary to mention that
trainlm is a network training function that updates weight and bias values
according to Levenberg-Marquardt optimization and traingdx is a network training
function that updates weight and bias values according to gradient descent
momentum and an adaptive learning rate backpropagation while traingda is
Gradient descent with adaptive learning backpropagation. An adaptive learning rate
requires some changes in the training procedure used by traingd. First, the initial
network output and error are calculated. At each epoch new weights and biases are
calculated using the current learning rate. New outputs and errors are then calcu-
lated. In appendix 2 of this chapter a brief list of the training functions in NN
toolbox of Matlab is presented, as we are limited to the volume of this chapter more
description of the details of the procedures we refer the reader to NN toolbox
tutorial in Matlab help.

The 6 � 4 � 10 � 1 ANN with the “trainlm” algorithm was used to estimate
the vertical displacement of the points of the network and the results that they
achieved using this ANN are shown in Table 2.45.

The results of Pantazis and Alevizakou (2013) showed that ANNs can be used to
successfully predict vertical displacement using measurements obtained from
geodetic displacement control points (Fig. 2.96).

Additionally a linear regression was preformed between the ANNS actual output
and the target to determine their degree of correspondence and the correlation
coefficient (R) between the actual and desired output was found to be 0.993 which
implies a very high correlation.

2.12 Attenuation of Random Seismic Noise Using Neural
Networks and Wavelet Package Analysis

Here, we present a method for random background noise suppression to enhance the
resolution of seismic data, using automatic training of a Feed Forward Back
Propagation (FFBP) Artificial Neural Network (ANN) in a multi scale domain
obtained from Wavelet Packet Analysis (WPA). We calculate approximate input
seismic sections which are used to train the neural network to model coherent events
through an automatic algorithm. After coherent events are modeled, the remaining
data are assumed to be background random noise and this is applied to both synthetic
and real seismic data. The results are then compared with the Adaptive Wiener Filter
(AWF) for synthetic shot gathers and real common-midpoint gathers, and also with
band-pass filtering on real common-offset-gathers indicating substantially higher

5Adaptive learning rate back propagation.
6Gradient descent with adaptive learning back propagation
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Fig. 2.97 The three routes (Blue Boxes) considered for tracing events in a three by three
neighborhood (Kimiaefar et al. 2016)

Fig. 2.98 Method used for attenuating random noise by ANN (Kimiaefar et al. 2016)
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efficiency of this proposed method in attenuating random noise and enhancing
seismic signals. The Wiener filter used here is proposed by Lim in 1990. First, the
local mean, µ, and local variance, r2, around each point, a n1; n2ð Þ, are calculated in
an N1 by N2 local neighborhood, ɳ, as (Lim 1990):

l ¼ 1
N2N2

X
n1;n22g

a n1; n2ð Þ

r2 ¼ 1
N2N2

X
n1;n22g

a2 n1; n2ð Þ � l2
ð2:23Þ

Since the noise variance (r2 in Eq. 2.23) is not usually available, the average of
all local estimated variances is used and with this estimate, the AWF will be
calculated from:

W n1; n2ð Þ ¼ lþ r2 � m2

r2 a n1; n2ð Þ � lð Þ ð2:24Þ

Considering low noise level case (i.e. noise variance will be small), AWF is
nearly equivalent to the input value. And for a noise free input, the Eq. 2.24 become
as (Abe and Shimamura 2012):

W n1; n2ð Þ ¼ lþ r2

r2 a n1; n2ð Þ � lð Þ ¼ a n1; n2ð Þ ð2:25Þ

Equation 2.25 confirms that, for noise free points, output of AWF is not
dependent to window size.

2.12.1 Methodology

Earth’s filtering properties affect the energy of seismic waves, for long travel times
and at far offsets. Therefore, the signal energy may be comparable to background

Fig. 2.99 Qualitative illustration of noise-signal separation in the proposed method (Kimiaefar
et al. 2016)
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random noise. Therefore, separating noise from seismic events through mathe-
matical modeling is difficult due to the lack of a clear phase relation between the
coherent events on adjacent traces and is the biggest challenge in the application of
ANN for attenuating random noise. ANN training is based on defining and

Fig. 2.100 Normalized and sorted DSSC values for 500 random points (Kimiaefar et al. 2016)

Fig. 2.101 Plot of averaged MSE with ANN performance over 10 iterations for 6–30 Neurons in
hidden layer (Kimiaefar et al. 2016)
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calculating features and solving problems using prior knowledge. However, fitting a
local model appears almost impossible in the situation described here.

The similarity of coherent seismic events between adjacent traces could be the
key solution for distinguishing coherent from non-coherent components. As an
example, if the median, mean, extremum, or center of gravity of a window with
specified length is calculated in the neighborhood of each sample, similar values
might indicate that the sample belongs to the coherent event space, however, as
Fig. 2.97 show, a seismic event could have three possible correlations. It is clear
that at this stage, the expert’s knowledge of appropriate features and the relation-
ships between them is essential for training an ANN and that, this tracing could be
done in either time or time-frequency domains. Figure 2.98 presents the general
workflow for this method.

In order to utilize expert knowledge, the following steps are taken. The first few
levels of WPA are calculated and one of the approximations chosen by the expert
for ANN. Next, the dominant frequency is calculated using the approximation data
and the Gabor transform, (the adaptive peak-to-trough intervals could be used as an
alternative solution). Feature extraction is now possible using the extremum of each
window around a central point and its 3 � 3 neighbors for the three specified routes
and for each route, the standard deviation of the feature values is calculated and that
the one with minimum standard deviation is selected. By using the Dice-Sorensen
Similarity Coefficient, DSSC, (Roux and Rouanet 2006) we can calculate and
compare the similarity between the two standard deviations and this normalized
value considered as a signal-noise separation indicator for each point (coherent
events).

The ANN input data is all features calculated for a point around a central point.
For a ‘noise indicated point’, the output is a weighted combination of all WPA
approximations from level one to the selected level of approximation and for a
‘signal indicated point’, the output is the amplitude of the point in the original
signal. A diagram of this procedure is presented in Fig. 2.99, a central point and its
neighbors in the original section are compared to their first level of WPA. The
feature values (e.g. extremum in any of the blue windows in Fig. 2.99) in the
original section are different for the three mentioned routes so that the standard
deviation is large, but in the WPA approximation image, the DSSC will produce a
number close to one.

Table 2.46 Network specifications used for filtering random noise

Type of ANN Feed forward back propagation

Number of neurons in hidden layer 8 Neurons

Activation function Sigmoid

Training function Levenberg-Marquardt

Performance function Mean squared error

Training points 500 points (randomly chosen)
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The normalized DSSC values for 500 randomly chosen points are sorted from
zero to one (Fig. 2.100). Small values (e.g. smaller than 0.2 or the first 50 points)
correspond to the noise while higher probabilities and higher values (e.g. greater
than 0.6 or the last 50 points) represent points correspond to the signal.

Based on the DSSC value and this logic, input data are chosen. The first and last
50 points are considered as ANN training points and then the architecture of the
ANN must be determined. Since we are using FFBP, we must decide the optimal
number of neurons (or nodes) in the hidden layer. Weak model discrimination may
result from too small a number of neurons, while a large number of neurons
over-trains the system. The optimum number of nodes was determined using a
modification of the method of Hajian et al. (2012). Because random weights are
allocated during the training procedure of an ANN, the performance may differ
even for the same inputs, outputs, and network architecture. Hajian et al. (2012)
used the Mean Squared Error (MSE) between output and target as a performance
indicator for the trained network, and averaged these performance values over 10
iterations for each number of nodes in the hidden layer. In addition to calculating
averages, they used the standard deviation of values for each neuron quantity to
determine the optimum value and the results are plotted in Fig. 2.101 suggesting it
is optimal to use eight nodes in the hidden layer. We note that the training pro-
cedure becomes unstable with 21 or more nodes, as the MSE and standard deviation
values never achieve a steady state.

After ANN training, the procedure is applied to the whole dataset and finally, the
filtered section is the output of applying the generalized network weights to all data.

2.12.2 Experimental Philosophy

MLP neural networks with more than one hidden layer are generally implemented
when using one hidden layer has already failed. But in this research, as one hidden

Fig. 2.103 a Mean squared error as indicator of network’s performance, b linear
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layered MLP network, produces the desired performance, we do not need to use an
MLP with more than one hidden layer. A network with the specifications mentioned
in Table 2.46 was applied to a synthetic common-offset-sorted gather 4 ms sam-
pling interval, 25 m geophone spacing and 35 Hz. central frequency and Ricker
wavelet as source impulse) with 30% random Gaussian noise added (with zero
mean and variance equal to one).
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Fig. 2.104 a Real stacked data recorded in Australia, b result of AWF and c result of ANN
filtering (Kimiaefar et al. 2016)
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Fig. 2.105 The difference between the original data and denoising result based on a AWF and
b ANN filtering (Kimiaefar et al. 2016)

Fig. 2.106 Amplitude spectra of the sections illustrated in Fig. 2.104 (Kimiaefar et al. 2016)
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Fig. 2.107 a Common offset sorted gather recorded in Iran, b result of band-pass filtering c result
of ANN filtering (Kimiaefar et al. 2016)
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In order to implement WPA with this synthetic data as input, the images of
approximations and details were calculated at three successive levels using a level
four Daubechies wavelet. The approximation image at the second level was selected
for the training of the network and subsequently 500 random points of the input
data were selected. Network training was carried out based on the three parameters
of:

– Mean,
– Median,
– Extremum of a window with a variable length of data for a 3 � 3 neighborhood

for each of these points.

The noisy input synthetic data, the adaptive wiener filtered (AWF) signal, and
the data filtered by our (ANN-filtering) are shown in Fig. 2.102 and it is clear that
the ANN-filtered is much less noisy than the AWF filter.

Two real seismic sections were used to assess the performance of the proposed
method. The first dataset was chosen from a relatively deep seismic acquisition
(20 s) recorded in Victoria, Australia (Jones 2010), which has a 4 ms sampling
interval, 20 m CMP spacing and subsurface fold of 75, The training procedure was
implemented using the specifications listed in Table 2.46. Figure 2.103 illustrates
the network’s training performance and linear regression calculated between targets
relative to outputs. Both parts of Fig. 2.103 confirm the acceptable training pro-
cesses. The difference between the original data and the filtered data are illustrated
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Fig. 2.108 Amplitude spectra of sections illustrated in Fig. 2.107 (Kimiaefar et al. 2016)

186 2 Prior Applications of Neural Networks in Geophysics



in Fig. 2.105 to confirm these results. While there is almost no useful information in
the difference section obtained by ANN filtering method, there seem to be two
additional coherent seismic events on the difference section as compared to the
AWF method.

A broadened amplitude spectrum and improved resolution is a definite advan-
tage for a processing method (Stanton and Sacchi 2014). The amplitude spectra of
the seismic sections in Fig. 2.104 are shown in Fig. 2.106. Across the range from
10 to 30 Hz, the frequency components of the ANN-filtered section are higher than
the two other sections because >30 Hz. which are probably related to random
events (Liu et al. 2009) the amplitude of the ANN-filtered section are generally less
than the others for most frequencies. The comparison of the results in Figs. 2.106,
2.107 and 2.108 indicate improved attenuation of random noise by the proposed
method. The related Matlab codes to attenuate the noise of seismic data are
explained in appendix 1 of this chapter.

The second real dataset recorded in an oil field in south-western Iran is a portion
of a common-offset-sorted gather with 4 ms time sampling and total length of 4 s.
Figure 2.107a shows a considerable amount of random seismic noise is contami-
nating the signal. One of the most widely used methods in processing seismic data
is band-pass filtering which is widely used for common offset sorted gathers, and is
suitable for comparison with the proposed method. The comparison of ANN fil-
tering and band-pass filtering (Fig. 2.107a, b) shows that, the section processed by

Input Data

Choosing
Training Data by 

Specialist

Training ANN 
based on chosen 

data

Generalizing 
Trained Network 

to All Data 

Filtered
Data

Fig. 2.109 General flowchart of random noise attenuating by ANN
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the trained neural network has successfully eliminated the random noise, while
preserving the true reflection data.

Figure 2.108 plots the amplitude spectra of the seismic sections in Fig. 2.107.
Most spectral >120 Hz are attenuated with frequency band-pass filtering (green
line) but ANN filtering (black line) is substantially better. Below 120 Hz, ANN
filtering has higher amplitude than the output of band-pass filtering, for almost all
frequencies.
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Fig. 2.110 A synthetic noisy CMP gather and the first 3 traces selected for training ANN
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2.12.3 Conclusion

ANN filtering seems to be an advantageous alternative method for denoising
seismic data. This research reveals that instead of utilizing the original section,
approximating the input section with coarser scales of the WPA is a novel approach
to neural network semi-automatic training and will noticeably improve the reso-
lution of both synthetic and real seismic datasets. A comparison of AWF and
band-pass filtering methods, demonstrates that the proposed method is more effi-
cient in eliminating background random noise in real and synthetic CMP and
common offset sorted gathers.

Appendix 1 of Chapter Two

The procedure of teaching algorithms for MLP networks consist of 4 steps: defining
network architecture, defining parameters related to network and learning algorithm
(iterations, maximum epoch number and etc., training the network and finally
validating and simulating (generalizing) the trained network. This general process is
illustrated in Fig. 2.109.
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Fig. 2.111 Noisy data (right) and denoised version (left) using feed forward back propagation
ANN
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In the example described here, a synthetic noisy seismic CMP gather is chosen
and the ability of ANN in random noise attenuation is shown in a simple manner.

As random noise components are supposed not to be predictable in adjacent
traces, the logic used for attenuating random noise is based on attenuating whatever
is not confirmed to be coherence data.

By comparing the elements of a 7 by 3 neighborhood data and by user’s deci-
sion, the network will be trained with some examples (14 training pairs are used
here). In Fig. 2.110 the noisy data and the selected adjacent traces from trace
No. 1 to No. 3 is illustrated. These three traces are selected for extracting training
pairs. The expert knowledge is required here in order to make the decision for
choosing best points for marking noise contaminated data as well as pure coherence
data related points. The decision could take place as a number (0 for noisy and 1 for
noise free points). It should be mentioned that as an advanced algorithm, partly
noise contaminated data also should be present in the trained network but in this
appendix, the simplicity of the algorithm was the priority. Selected pairs are chosen
from trace No. 2 as the training points are supposed to be check in a 7 by 3
neighborhood.

After training the network, simulation process will be held. In doing so, the input
will be the 7 by 3 neighborhood amplitude (as training input data) for each sample.
Now, the weight for each sample could show whether the sample belongs to noise
or coherence data space (as training output data).

The results of the Generalizing trained network will be a matrix that contains
weights for all data. Denoised version of input data will be achieved by production
of weights into noisy data. The results are shown in Fig. 2.111.
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% Loading, Plo ng and selec ng (for ANN training) some points from synthe c noisy CMP gather

load('noisy_data.mat');

% Calcula ng size of input-data

[m,n] = size(noisy_data);

% Choosing train-data matrix

train_matrix = noisy_data(:,1:3);

% Plo ng input-data and train-data

figure;

subplot(1,7,1:6);

subplot(1,7,1:6);

plotseis(noisy_data); title('Noisy data');

subplot(1,7,7,'align');

plotseis(train_matrix); title('Selected for training ANN');

% Choosing desired points from train-data matrix

% Selected trace

trace = 2;

% Selected mes

times = [18, 21, 17, 83, 39, 38, 48, 67, 60, 83, 15, 44, 35, 71];

% Determined weights (noise = 0, signal = 1)

targets = [1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0];

% Preparing ANN training input and target data

% (The neighborhood data for each me in " mes" as input and the weights determined in "targets" as network target)

for i = 1:size(times,2)

in(i,1:7) = [train_matrix(times(1,i)-3:times(1,i)+3,trace-1)];

in(i,8:14) = [train_matrix(times(1,i)-3:times(1,i)+3,trace)];

in(i,15:21)= [train_matrix(times(1,i)-3:times(1,i)+3,trace+1)];

out(i) = targets(i);

end

% Determining itera on for algorithm

iteration = 6;

% Training Feed Forward Back Propaga on ANN and Generalizing to all data

net_out = zeros(m,n, iteration);

ANN_out = zeros(m,n);
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for k = 1: iteration 

%  Defining Feed Forward network with variable hidden layer size in each iteration

net = feedforwardnet(4+(k-1)*4);

%  Training network using input and target data

[net, trace] = train(net, in', out);

%  Generalizing trained network to all data

for I = 4:m-3 

for j = 2:n-1 

net_in(1,1:7) = noisy_data(i-3:i+3,j-1);

net_in(1,8:14) = noisy_data(i-3:i+3,j);

net_in(1,15:21) = noisy_data(i-3:i+3,j+1);

net_out(i,j,k) = sim(net,net_in');

end

end 

ANN_out = ANN_out+net_out(:,:,k);

end

% Normalizing simulated weights between 0 and 1 and then using them for denoising input data

denoised = nor_mat((1/iteration)*ANN_out,0).*noisy_data;

% Plotting results

figure;

subplot(1,2,1);

plotseis(noisy_data); title('Noisy data');

subplot(1,2,2);

plotseis(denoised);    title('Denoised data');

Appendix 2 of Chapter Two

Brief list of Training functions in Matlab’s NN Toolbox is presented in Table 2.47.
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Part II
Fuzzy Logic



Chapter 3
Fuzzy Logic

3.1 Introduction

Fuzzy logic is an extension to Boolean logic and was developed by Zadeh in 1965.
While classical logic only allows values of 1 for ‘true’ and ‘0’ for ‘false’ as the
value of a variable, fuzzy logic permits any value in the interval [0, 1]
(PourMohammadBagher et al. 2009). This attempts to more closely mimic the way
in which humans think and communicate which is often vague and uncertain way,
partly because of limited information and partly due to the way the human brain
works (Nelles 2001).

This fuzzy logic approach can be useful for help engineers and researchers in
dealing with uncertainty and in the use of imprecise information in complex situ-
ations (Nikravesh and Aminzadeh 2003). The application of fuzzy logic for solving
complex problems with associated uncertainty has grown steadily and fuzzy logic
now plays an important role in many engineering disciplines (Aminzadeh and
Chatterjee 1984/1985; Aminzadeh 1989; Aminzadeh and Jamshidi 1995; Adams
et al.1999a, b; Hajian et al. 2012).

The fuzzy approach, based on fuzzy logic, has many advantages some of which
are listed below (Mathworks 2009):

• Conceptually easy to understand.
• The Mathematical concepts are very simple and provide an intuitive approach

without added complexity.
• Flexibility to add more functionality during the operation without starting afresh.
• Tolerance of imprecise data.
• Fuzzy reasoning builds the inherent uncertainty in natural processes implicitly

rather than as an ‘add-on’.
• Ability to model non-linear functions of arbitrary complexity.
• Fuzzy systems can match any set of input-output data using adaptive

neuro-fuzzy inference systems (ANFIS).
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• Expert knowledge can be built in using the experience of interpreters who
already understand the system combining expert partial knowledge with learn-
ing from examples

• Fuzzy logic is based on linguistic labels and implements computing with
words.

3.2 Motivation for Using Fuzzy Logic in Geophysics

The value of Fuzzy Logic to Geophysics can be described from two main
viewpoints:

3.2.1 First Viewpoint

One of the inherent properties of Geophysical data is their uncertainly and
non-uniqueness when they are interpreted for geological applications (Jongmans
and Garambis 2007).

Geophysical data is naturally vague because of the presence of noise, which
occurs in the measured signals. Whether environmental, human and/or instrumental
noise, or indeed often all three simultaneously the geophysical data is uncertain and
there always is under real conditions a level of “vagueness” or “uncertainty”.
Geophysical data intrinsically has a “fuzzy” nature and so fuzzy mathematics and
generally fuzzy thinking about this data either in the processing or interpretation
stages (or usually both) can help us to be much closer to real conditions. Klir and
Floger (1988) introduce some useful terms to introduce fuzzy set theory:

• “Uncertainty” is the degree of conformity between the natures of data when
compared to reality. This ‘nature’ is a qualitative description attached to the
quantitative value and can be related to a concept that, for instance, geomor-
phologists and geologists have identified from field observations.

• “Inaccuracy” means the quantitative imperfection of any data value and can be
considered as the difference between a measurement and its prediction estimated
from a probabilistic model; and so effectively imperfection is the standard
deviation of the probability law.

• “Ambiguity” can be due to the above-mentioned imperfections and naturally
leads to the possibility of different interpretations such that the resolution of the
conflict between two solutions can only be reduced by adding external
constraints.

• Uncertainty in geophysical data is therefore inevitable and interpretation of
parameters (such as seismic data, wire line logs, geological and lithological data,
etc.) makes fuzzy set theory a very useful tool (Nikravesh et al. 2004). Common
sources of geophysical noise are depicted in Fig. 3.1 and different types of
sources of uncertainty in geophysical data are shown in Fig. 3.2.
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Fig. 3.1 Common sources of geophysical noise. http://www.slideshare.net/oncel/geophysics-
overview2, slide17
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Because we apply simple models or non-precise models in the forward modeling
of the geophysical causative bodies there is always a difference between the syn-
thetic data produced based on assumed models and the real data.

For example in cavity detection using micro-gravity data in the forward mod-
eling of cavities the common simple initial models are sphere, vertical cylinder and
horizontal cylinder while the actual shape of the natural cavities are not
‘Completely’ like the assumed mentioned simple geometrical models but may be
‘to some extent’ close to or very close to these shapes (Fig. 3.3a–c). Most cavities in
karstic areas are connected in a some fashion to each other in what might be termed
“banana holes” which are neither spherical nor cylindrical (Fig. 3.4a–c), and sim-
ilarly while the 2D cross-section of the cavity is not completely a circle it might be
near a circle; therefore the set of sections with the shape ‘near circle’ is a fuzzy set.
This fuzzy set has members with shapes that are close to a complete circle with a
degree or percentage of variation from perfection (see Fig. 3.5).

Banana Holes are oval chambers, generally less than 12 m diameter and 4 m
deep which form at the top-surface of a fresh-water lens where vadose waters
(occurring above the water table), meet the phreatic flows within the lens. They are
tabular in aspect with a depth/width ratio of less than one. The median floor area is
estimated to be 28 m2 and the minimum 4 m3 (Wilson et al. 1995). Banana holes
are relatively small, relatively shallow caves having a subcircular shape in plan
view. They are phreatic dissolution features formed at the top of an ancient
groundwater lens (at the water table), away from the margins of a carbonate island
(such as the Bahamas). Like flank margin caves, banana holes originally had no
entrance connected to the surface. With erosional denudation of limestone bedrock
surfaces, banana hole ceilings collapse, resulting in cave entrances. From a fuzzy
point of view they can be considered to be members of the set of spherical cavities
with a certain degree of membership while simultaneously belonging to the set of
cylindrical cavities with another different degree of membership make in the
‘Fuzzy’ approach excellent tool for modeling these subsurface objects.

Fig. 3.3 Real cavities simulated with simple models: a vertical cylinder b horizontal cylinder
c sphere (Hajian et al. 2012)
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As another example, when we describe the propagation of seismic waves in
geological media, wave equation modeling is performed through the solution of
partial differential equations (PDE) with deterministic coefficients, with boundary
conditions, which are assumed to be very clear and crisp, and as both the deter-
ministic coefficients and the crisp boundaries are idealized assumptions this leads to
unrealistic inversion solutions. Using fuzzy coefficients for the solution of PDEs is
in fact much more realistic and easy to parameterize (Table 3.1). An easy to

Fig. 3.4 Samples of Banana holes a near sea, filled with salt water b far distant from the shoreline
c entrance of a cave. http://www.jsjgeology.net/San-Salvador,Bahamas-caves-karst.htm

Fig. 3.5 An example of a fuzzy set of “approximately a circle”
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understand example is when modeling seismic waves traveling in subsurface layers
of the earth the boundaries are often assumed to be straight inclined surfaces
(Fig. 3.7a) but in fact the boundary between a geological layer and another
neighboring is more likely to be a curved or a ‘fuzzy’ line. In other words the
boundary between adjacent strata is much more ‘fuzzy’ than crisp. It is obvious that
Fig. 3.7b is much closer to the true natural conditions of geological structures.

All real-world geophysical data are intrinsically vague or fuzzy in nature and so
during geophysical data processing and interpretation the fuzzy logic approach is
very likely to be fruitful. Also in attempting to predict the onset or occurrence of
geophysical events like earthquakes, landslides, volcano eruptions, in addition to
the available methods in time series prediction i.e. regression, multi-variate anal-
ysis, on-linear extrapolation, neural networks etc., fuzzy approaches are very likely
to be helpful and informative. An overview of various applications of fuzzy logic in
geophysics is shown in Fig. 3.6.

Fuzzy logic

geophysical
data

processing

Noise elimina�on

Data
clustering

Classifica�on
Images

Time seriesPa�ern
Recogni�on

Predica�on

Interprete�on

Inversion

Automa�c
Inversion

Intelligent
Op�miza�on

Forward
Modeling

Fuzzy differen�al
equa�ons

PDEs with Fuzzy
coefficients

PDEs with so�
(Fuzzy) boundaries

Fuzzy
geometry 2D and 3D burried

objects with fuzzy
shapes

Data fusion Fuzzy operators to fusion of
various geophysical data

Fig. 3.6 Applications of fuzzy logic in various disciplines in geophysics
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3.2.2 The Second Viewpoint

In most real cases the problem of finding the model, which fits best to the observed
data, is problematic because of the intrinsic non-uniqueness of geophysical data.
One way to overcome the challenge posed by non-uniqueness is to measure dif-
ferent complementary types of geophysical data over an area or the region and/or
use which a priori information such as other geological studies of the area,
well-core data or other similar additional constraints. The combination of geo-
physical data often leads to more realistic and precise solutions than when a single
geophysical parameter is used alone. There are also some classical methods of
geophysical data fusion such as GIS-based models which use different geophysical
and/or geological data as layers of the GIS-Model and then integrate these layers to
interpret the exploration data (Fig. 3.7).

A new way to implement the fusion of geophysical data and/or geophysical and
geological data is by using fuzzy aggregator operations can merge of data of
disparate different types or even natures. Furthermore in some cases there is a need
to use both quantitative and qualitative geophysical, geological data simultaneously
and especially in this case fuzzy operators can help us to gain more precise results
which approach real conditions more closely. One of the problems faced when
using different types of geophysical data for interpretation of the exploration area is
that if we want to aggregate data is deciding how much weight should be applied
for each type of data and/or how to interpret the situation when a specific type of
data leads to an interpretation which conflicts with the interpretation of other types
of data. One way is by using the OWA (Ordered Weighted Average)1 which is a
general well-known fuzzy aggregator.

In this chapter fuzzy logic is described as succinctly as possible with the focus
on the concepts and their potential applications in geophysical problems and then
some geophysical applications of fuzzy methods are explained in the following
Chap. 4 Fuzzy logic attempts to describe through mathematics how human rea-
soning processes uncertain or imprecise information to make a decision or to draw a
conclusion; this may prove to be a useful ‘bio-algorithm’ as an analogue to carrying
out geophysical approaches. Three main concepts of fuzzy logic are described in
this chapter (Fig. 3.8).

The first concept of fuzzy logic that will be more explained in this chapter is the
fuzzy set which is the fundamental underpinning of this approach (Ghasem-Aghae

1In fuzzy logic the ordered weighted averaging (OWA) operators introduced by Yager (1988)
define a class of ‘mean type’ aggregation operators. Mean operators such as max, arithmetic
average, median and min, are members of this class and are commonly used in computational
intelligence because they can model linguistically expressed aggregation instructions.

Formally, an OWA operator of dimension n is a mapping F: Rn R that has an associated
collection of weights W = [w1 w2 …wn] lying in the unit interval and summing to one and with
F a1; a2; . . .; anð Þ ¼Pn

j¼1 wjbj
Where bj is the jth largest of the aj. If we choose different weights we implement different

aggregation operators.
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et al. 2005). Examples of fuzzy sets and linguistic variables are presented in the
later sections. The second basic concept of fuzzy logic is the “fuzzy if-then rule”.
Fuzzy if-then rules use logic operators such as ‘and’ or ‘or’ to fuzzily link linguistic
variables together to give a conclusion.

Examples of if-then fuzzy rules are given later. The final basic concept of fuzzy
logic is the fuzzy interference system: FIS or rule evaluation. The two main
methods of rule evaluation are known as Mamdani interference (Mamdani and
Assilian 1975) and Sugeno interference (Takagi and Sugeno 1985). The output of
Mamdani interference is a fuzzy set while the output of Sugeno interference is a
constant value or a polynomial function.

Fig. 3.7 a Conventional geometrical model used for waves traveling in layers. b Fuzzy
geometrical model, a model with ‘fuzzy’ or ‘soft’ boundaries rather than crisp boundaries

Fig. 3.8 Three main
concepts of fuzzy logic
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3.2.3 Geophysical Data Fusion Based on Fuzzy Logic Rules

Often, different types of geophysical data are combined to enhance the accuracy of
the interpretation, especially in those cases where there are no physical or empirical
relations between the different types of measured data and there are no significant
useful correlations. In these cases the expert interpreter plays a vital role in
obtaining the most accurate interpretation through the combining of geophysical
data of different type.

The expert must define rules, derived from his/her own experience as the basis of
the combination of geophysical parameters to achieve the optimized and more
accurate interpretation. Generally in the classic approach, the interpretation of
geophysical data is carried out this way. Recently, more objective new method-
ologies based on fuzzy logic have been tested as replacements for expert inter-
pretation in carrying out such operations by formulating the expert’s rules as
mathematical functions, which can be used to combine geophysical data into an
improved interpretation (Grandjean et al. 2006).

Figure 3.9 shows how a 2D tomogram of P-wave velocity (Vp) is combined
with a likelihood function given by the inversion process to produce a possibility
cross-section indicating the areas where the medium may be fissured or fractured
(Grandjean et al. 2006).

The motivation for using different types of geophysical data set and combining
them (or geophysical data fusion) is to overcome the ambiguity in an ill-posed
inversion when a single dataset is used and it can generate two or more solutions
with the same degree of confidence.

Here, we think we should mention that there is a difference between the
probability and the possibility which is often confused in the literature. A great
mistake is in thinking that the degree of fuzziness of the data is identical to its
probability but this not at all true because the probability is used if an event hasn’t
yet happened (and the value of probability shows how likely it is that the event will
happen!) but the possibility is used after the occurrence of an event.

The “fuzzy degree” or the “fuzzy membership” indicates how much an ‘oc-
curred’ event is similar to an ‘expected’ event. On the other hand, the degree of
fuzzy membership of an element indicates the possibility that it belongs to the
defined set (or subset). The essence of using the fuzzy degree is to quantify the
degree of uncertainty which is always present in geophysical data.

3.3 Fuzzy Sets

Zadeh (1965) introduced the concept of fuzzy sets and possibility theory. These
fuzzy sets pose a mathematical model which can quantify the ‘vagueness’, fuzzi-
ness or uncertainty of a data set. While the word ‘fuzzy’ implies the ‘uncertainty’
and ‘inaccuracy’ of the data it can also be used as a linguistic variable expressing
vagueness, i.e. ‘good’, ‘tall’, ‘bad’, ‘light’, etc.
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In this part of the chapter the basic concepts of fuzzy set theory are explained.
First, the fuzzy set is defined and described with some examples. Then the oper-
ations on the fuzzy set, fuzzy-cuts and some other concepts corresponding to
ordinary sets are investigated in the context of technical geophysical reports and/or
interpretations where we use vague variables: ‘The depth of subsurface cavity is
low’, ‘The hydrocarbon accumulated value is high’, ‘The rock electrical resistivity
is very low’, ‘The clay content is to some extent high’.

3.3.1 The Concept of a Fuzzy Set

In our daily conversation we use a lot of ‘vague’ words such as John is ‘tall’, ‘The
car’s speed is high’, and ‘The weather is very hot’ which are not easily defined
using classical sets. Fuzzy sets however can define these linguistic variables, i.e. the
‘tall’ persons set could be defined using classical sets but through fuzzy sets they
are characterized in a manner closer to the real world.

Fig. 3.9 Example of fuzzy logic rule for combining P-wave velocity (Vp) and its likelihood
function (LVp) into a possibility map (p1) that the rocks are fissured (Grandjean et al. 2006)
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A classical set is defined as:

X : P xð Þf g ð3:1Þ

where P(x) is the property of the elements ‘X’ belonging to the set. When P(x) is
well-defined the set is precisely defined. For example the set: “natural numbers
greater than ten” is represented by: fx 2 N : x[ 10g, but if p(x) is not well-defined
the related set or set elements cannot be defined.

It is obvious that when ‘fuzzy’ or ‘vague’ or inaccurate descriptions are involved
a well-defined p(x) does not exist, for example when p(x) is “the natural numbers
very much greater than 10”, the ‘very much greater’ property is a fuzzy concept
which can’t be presented via a well-defined p(x). In these cases we can’t designate
the set elements definitely and explicitly.

As another example, consider the set of “very tall persons” the variable ‘very
tall’ is not definitive. Generally the linguistic variables that we have used in our
dialogues have a kind of vagueness and complexity. As another example we refer to
An et al. (1991): a subset of gravity data, defined as B where: “Bouger gravity
anomalies are greater than 31.52 mGal”. We could define this as a subset with a
single member, “31.52” mGal. But it is impractical to create an infinite number of
subsets to represent uncertain information. A more logical step is to include a
family of observations whose values are close to this particular measurement. The
elements in this subset can have varying degrees of uncertainty.

The best way to assign the linguistic variables to a set is using the ‘fuzzy’
method.

Example 3.1 In the Table 3.2 the name and tallness of the people is illustrated in
cm, determine the tall person amongst the people belonging to this set.

‘Tallness’ as a property is in contradiction with the well-defined set but if we
stretch a point the set could be presented via a classical set (pseudo-set).

To distinguish this set we consider the concept of a deliberation index, for
example the person whose stature is greater than 180 cm is tall. According to this
feature the set of tall persons is defined as:

T = { Abtin, John, Peter, David, Andy}
X = Abtin, John, Peter, David, Andy
X = Alireza, Paul

XT xð Þ ¼ f 1
0

Where XT (x) is the membership of X with a value of zero or 1. “1” means that X
belongs to set ‘T’ and ‘0’ means X doesn’t belong to set ‘T’ (Fig. 3.10).

Table 3.2 Tallness value for a set of men

Name Abtin John Peter Alireza David Paul Andy

Tallness (cm) 205 195 180 179 212 165 185
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As can be seen from this example Peter and John both belong to the ‘tall’ set
(T) but the stature of Peter is 180 cm while John is 195 cm.

The difference between Peter’s tallness and the defined deliberation index is
1 cm but for John’s stature this difference is 15 cm. So the ‘tallness’ of John is
greater than the ‘tallness’ of Peter. Classical sets can’t show this difference because
they have a ‘crisp’ boundary.

Also there is a problem here that one can consider another deliberation index for
even taller people for example greater than 175 cm.

In the mentioned example ‘Alireza’ doesn’t belong to the set of tall by a margin
of only 1 cm, whereas ‘Peter’ does belong to the set of tall persons even though his
stature is only 1 cm greater than 180 cm. This tolerance in the boundary of classical
sets is very common and is unsuitable for the classification and/or clustering of data
or the adequate characterization of the properties of a set of data.

Another disadvantage of using a defined deliberation index is the occurrence of
different result for using a different index for different populations. For example, for
a basketball team member the concept of ‘tallness’ is completely different than for
the general population. In this case for example the deliberation index is defined as
195 cm where the member with stature greater than 195 cm is tall. The property of
‘Tallness’ consists of a vague and imprecise natural concept which cannot be
represented using classical set theory but is easily possible via ‘fuzzy’ sets. The
‘tallness’ property is scalable or quantifiable if we define the degree of ‘tallness’
(Table 3.3).

The decimal number beside each person indicates the degree of tallness, i.e.
Abtin is 80% tall and Peter is 30% tall. On the other hand ‘Abtin’ belongs to ‘T’

Fig. 3.10 Crisp set of ‘Tallness’

Table 3.3 Tallness degree for a set of people (Soleimani and Hajian 2017)

Name Abtin John Peter Alireza David Paul Andy

Degree of tallness
(degree of membership
to ‘tall’ set)

0.8 0.7 0.3 0.2 0.9 0 0.4

~T = {(Abtin, 0.81), (John, 0.7), (Peter, 0.3), (Alireza, 0.2), (David, 0.9), (Paul, 0), (Andy, 0.9)}
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with a degree of 0.8 and ‘Peter’ belongs to ‘T’ with a degree of 0.3. In set ‘T’ the
degree of membership for each element lies between ‘0’ and ‘1’. Zero degree means
that element doesn’t belong to the set and 1 means that it completely belongs to set
‘T’. In ‘vague’ concepts different people have their own different conclusion and/or
interpretations about the degree of membership of an element to the defined fuzzy
set but this difference has no contradiction in the context of fuzzy sets because with
reference to local, temporal, personal evaluation the vague concept can have dif-
ferent meanings.

For example someone 30 years old among people more than 50 years age is
considered as ‘young’ but this person among people with the age of 18–25 is not
thought to be young or when a policeman says “The speed is high” on a Motorway
it means the speed is more than 120 km/h but if it is about a local urban street it
corresponds to a to the speed of more than 70 km/h. Also the degree of ‘speed’
depends on the time of the occurrence, i.e. day or at night.

3.3.2 Definition of a Fuzzy Set

In classical sets one way to represent a set is to illustrate it with its membership
function (MF). In this method the MF is defined as below:

vA : U ! 0; 1f g
vA xð Þ ¼ 1 x 2 A

0 x 62 A

�
ð3:2Þ

Here the membership degree is only 0 or 1 to extend this definition for gradual
belonging in fuzzy sets the membership degree is given a value between 0, 1 and is
defined as:

~A ¼ x; lA xð Þð Þ : lA xð Þ : X ! 0; 1½ �f g ð3:3Þ

where X is a collection of objects and µA (x) is called the membership function or
degree of compatibility of x in A and µA (x) maps X to the membership space. The
range of µA (x) is normally defined in the range [0, 1], where “0” expresses
non-membership and “1” full membership.

So from a fuzzy logic point of view, elements of a fuzzy set ~A are assigned a
degree of belonging to it and are not confined to only 1 or zero. On the other hand
an element may have a partial membership ranging from non-membership “0” to
full membership “1”. In general, the greater the value of the function with which the
element x belongs to the fuzzy set ~A, the greater the evidence that the object x
belongs to the category described by the set A.
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Example 3.2 We start here with an interesting example from the book “Fuzzy logic
in geology” by Demicco and Klir (2004).

An example is of the classification of rock grains based on their diameter into:
clay, silt, sand and gravel, which are terms, used to describe the ‘size’ of sedi-
mentary particles (Fig. 3.11).

These terms are most commonly used for exact sets, so that a grain can only
belong to one-grain size; therefore in this traditional view, a spherical grain of
diameter 1.999 mm is sand whereas a grain with diameter of 3.001 is gravel.
However, an alternative representation of the crisp set “sand” is:

“Sand” ¼ fParticlej0:0625 diameter 2 mmg

Here we assign a valve of ‘1’ to grain diameters that are members of the set
“sand” and ‘0’ to grain diameters that are not sand. One possible representation of
the sedimentary site terms clay, silt, sand and gravel as a fuzzy set is shown in
Fig. 3.11b (Demicco and Klir 2004).

In the fuzzy representation the range of membership is any value between [0, 1].
The hypothetical 1.999 and 3.001 mm diameter grains can be members of both sets:
sand and gravel to a degree of about 0.5. Here the simple trapezoids are the
membership functions (MF’s).

Example 3.3 The second example is using a fuzzy approach to classify pyroclastic
(volcanic ash deposits) deposits by a factor. This example was introduced by
Cagnoli (1998).

In sorting terms, pyroclastic deposits are (Cas and Wright 1988):

(1) Very well sorted: d/ = [0 1]
(2) Well sorted: d/ = [1 2]
(3) Poorly sorted: d/ = [2 4]
(4) Very poorly sorted: d/ > 4

Fig. 3.11 Comparison of
crisp-set a versus fuzzy-set
b representation of the
geologic variable “grain size”
(Demicco and Klir 2004)
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These crisp sets whose elements are either 100% yes or 100% no, with no
intermediate possibilities which at first glance seems logical produces some strange
situations. For instance, is a deposit with d/ = 2 well sorted or poorly sorted? Is a
rock with d/ = 1.1 as well sorted as one with d/ = 1.5? A more useful is possible
using fuzzy sets with simple triangular membership functions (Fig. 3.12). A sample
with d/ = 2 would have intermediate values between [0 1] and belong to both the
sets: “well sorted” and “poorly sorted”; similarly a sample with d/ = 1.1 close to
the boundary of the set and a sample with d/ = 1.5 located in the center of the set
would have different values of the MF.

This simple example shows how fuzzy sets can improve the description of the
natural world by representing vagueness in a simple way. A sample with d/ = 2
can be simultaneously well-sorted and poorly-sorted with different degrees without
posing a contradiction in fuzzy logic.

Presentation of fuzzy sets
We could define a fuzzy set as:

~A ¼ ðx; lA xð Þf g;where x is the universal set

Example 3.4 Let x = {1,2,3,4,5,6,7,8,9} be the universal set, describing the fuzzy
set ~A: the numbers close to 5.

~A = {(1, 0.2) (2, 0.4) (3, 0.60 (4, 0.8) (5, 1) (6, 0.8) (7, 0.6) (8, 0.4) (9, −2)}

Example 3.5 Solve the example 3.4 for the case when X ¼ R (x = real numbers).
Here the reference of real numbers is continuous. 2 2 R but what then is the first

real number after 2? So to determine the real number closest to 5 it impossible to
assign a membership degree for each of the elements. In this case we choose to use
a membership function which is continuous. One can assign:

lA xð Þ ¼

x� 3
2

3\x� 5

7� x
2

5\x\7

0 o:w:

8>>><>>>: ð3:4Þ

Fig. 3.12 a Sorting of a
pyroclastic deposit with crisp
sets (Cas and Wright 1988).
b Sorting using fuzzy sets.
The shapes and sizes of the
membership functions are
arbitrary and used only as an
example to show the
philosophy of fuzzy logic
(Cagnoli 1998)
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This fuzzy (set real number close to 5) with linear membership is shown in
Fig. 3.13.

Here to calculate the membership degree of “4” it is enough to put this number in
the functional equation:

lAð4Þ ¼
4� 3
2

¼ 0:5

The assigned membership function is linear but it could easily enough be
assigned as nonlinear: i.e. which is depicted in Fig. 3.14.

lAðxÞ ¼
1

1þðx� 5Þ2 ð3:5Þ

Example 3.6 For a furnace heater temperature control we need to define a set of:
low, medium and high heats. If the universal set is X = [50, 450], then determine
the mentioned set with classical and fuzzy sets.

(a) Set via classical sets (Fig. 3.15):
(Low) l = [50, 100]
(Medium) M = [100, 250]
(High) H = [250, 450]

(b) Via fuzzy sets (Fig. 3.16):

lMðxÞ ¼
x�90
60 90\x\150
1 150� x� 200
260�x
60 200\x\260

8<: ð3:6Þ

Fig. 3.13 The fuzzy set real number close to 5 with linear membership
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Fig. 3.14 Fuzzy set of real number close to 5 with nonlinear membership

Fig. 3.15 Classical set presentation for temperature of a furnace

Fig. 3.16 The fuzzy memberships for low, medium and high temperature of a heater
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lHðxÞ ¼
1 x� 400
x�240
160 240\x\400

�

lLðxÞ ¼
1 x� 70
120�x
50 70\x� 120

�
Here, as an example, the temperature 100 °C belongs to the set ‘low temp’ with

a degree of 0.4 and belongs to ‘medium temp’ with a degree of 1/6, its membership
degree belongs more to the medium set than to the low set.

It is necessary to mention that for a fuzzy system there is usually a need to have a
couple of fuzzy set definitions operational at any time with their processing done
simultaneously.

3.3.3 Different Types of Fuzzy Sets According to Their
Membership Functions

3.3.3.1 p-Shaped Fuzzy Sets

In this type of fuzzy set, the membership function starts from zero (or close to zero)
and increases to a maximum (with a value less or equal to 1) and after this point it
starts to decrease to zero (or close to zero).

The “trapezoid” (Fig. 3.17) and “triangle” (Fig. 3.18) and “bell” membership
functions belong to this group of p-shaped fuzzy sets (Fig. 3.19). The p-shaped
membership function is used to model fuzzy concepts such as: ‘close to’, ‘ap-
proximately’, ‘medium’, ‘around’.

0

1

0 5 10 15 20 25

μFig. 3.17 Trapezoidal
membership function

0

1
μFig. 3.18 Triangular

membership function
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3.3.3.2 Matlab Code for Non-conventional Pi-Shaped MF

PIMF(X, PARAMS) returns a matrix that is the Pi-shaped membership function
evaluated at X. PARAMS = [A B C D] is a 4-element vector that determines the
break points of this membership function.

The parameters ‘A’ and ‘D’ specify the “feet” of the curve, while ‘B’ and ‘C’
specify its “shoulders”. This membership function is the product of SMF and ZMF:

PIMF(X, PARAMS) = SMF(X, PARAMS (1:2)).*ZMF(X, PARAMS (3:4))
Note that this Pi-MF could be asymmetric because it has four parameters. This is

different from the conventional Pi = −MF which only uses two parameters. For
example

x = (0:0.1:10)′;
y1 = pimf(x, [1 4 9 10]);
y2 = pimf(x, [2 5 8 9]);
y3 = pimf(x, [3 6 7 8]);
y4 = pimf(x, [4 7 6 7]);
y5 = pimf(x, [5 8 5 6])
plot(x, [y1 y2 y3 y4 y5]);

The result of the above commands is shown in Fig. 3.20.

Example 3.7 Let the universal set of the grades of an examination with full score of
20: X = [0 20] then the sets of ‘medium grades’ and the grades about 10 can be
presented as shown in Fig. 3.21.

A general triangle membership function shown in Fig. 3.22 is easily defined by
the equation below:

lðxÞ ¼
x�a
m�a a\x�m
b�x
b�m m\x\b

�
ð3:7Þ

where “a = m – a” is the left band width and “b = b − m” is the right band width.

Fig. 3.19 A group of “p” shaped membership functions
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3.3.3.3 Matlab Code for a Triangular Membership Function (TRIMF)

TRIMF(X, PARAMS) returns a matrix which is the triangular membership function
evaluated at X. PARAMS = [A B C] is a 3-element vector that determines the
break points of this membership function. Usually we require A � B � C. Note
that this MF always has a height of unity. If we require a triangular MF with a
height less than unity, we would use TRAPMF (Mathworks 2009).

Fig. 3.20 Illustration of different Pi-shaped MFs using the ‘pimf’ command in MATLAB
(Mathworks 2009)

Fig. 3.21 Fuzzy set of
medium grades of an
examination
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For example:

x = (0:0.2:10)′;
y1 = trimf(x, [3 4 5]);
y2 = trimf(x, [2 4 7]);
y3 = trimf(x, [1 4 9]);
subplot(211), plot(x, [y1 y2 y3]);
y1 = trimf(x, [2 3 5]);
y2 = trimf(x, [3 4 7]);
y3 = trimf(x, [4 5 9]);
subplot(212), plot(x, [y1 y2 y3]);

The results are illustrated in Fig. 3.23.
The triangle membership function is mostly used when the maximum mem-

bership occurs only in one point but when it happens in a domain the trapezoid
membership function (Fig. 3.24) is used. The general format of a trapezoid mem-
bership function is given by the equations:

lðxÞ ¼

x� a
m� a

a\x�m

1 m\x� n
b� x
b� m

n\x� b

8>><>>: ð3:8Þ

3.3.3.4 Matlab Command for a Trapezoidal Membership Function

TRAPMF(X, PARAMS) returns a matrix which is the trapezoidal membership
function evaluated at X. PARAMS = [A B C D] is a 4-element vector that deter-
mines the break points of this membership function.

Fig. 3.22 Triangular
membership function and its
geometrical parameters
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We require that A � B and C � D. If B � C, this membership function
becomes a triangular membership function which could have a height less than
unity (See the example below from Matlab Help).

Fig. 3.23 Illustration of different triangular MFs using the ‘trimf’ command in MATLAB
(Mathworks 2009)

Fig. 3.24 Trapezoidal membership function and its geometrical parameters
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For example:

x = (0:0.1:10)′;
y1 = trapmf(x, [2 3 7 9]);
y2 = trapmf(x, [3 4 6 8]);
y3 = trapmf(x, [4 5 5 7]);
y4 = trapmf(x, [5 6 4 6]);
plot(x, [y1 y2 y3 y4]) grid

The results are shown in Fig. 3.25.
When the p-shaped membership function is non-linear it will commonly be

bell-shaped or Gaussian and is defined by a second order fractional or exponential
function as:

Bell shaped:

lðxÞ ¼ 1

1þðx� aÞ2 ð3:9Þ

Or Gaussian:

lðxÞ ¼ e�
ðx�aÞ2

k ð3:10Þ

The latter is a Gaussian Membership Function with

k ¼ 2r2; c ¼ a ð3:11Þ

where c is the mean and r is the standard deviation.

Fig. 3.25 Illustration of different trapezoidal MFs using the ‘trapmff’ command in MATLAB.
Source Matlab Fuzzy Toolbox Tutorial Help, Mathworks (2009)
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3.3.3.5 Matlab Code for Gaussian Curve Membership Function
(GAUSSMF)

GAUSSMF(X, PARAMS) returns a matrix which is the Gaussian membership
function evaluated at X. PARAMS is a 3-element vector which determines the
shape and position of this membership function. Specifically, the formula for this
membership function is:

GAUSSMF X; SIGMA;C½ �ð Þ ¼ e� x�cð Þ2

2r2
ð3:12Þ

For example (results are illustrated in Fig. 3.26) (Mathworks 2009):

x = (0:0.1:10)′;
y1 = gaussmf(x, [0.5 5]);
y2 = gaussmf(x, [1 5]);
y3 = gaussmf(x, [2 5]);
y4 = gaussmf(x, [3 5]);
subplot(211); plot(x, [y1 y2 y3 y4]);grid;
y1 = gaussmf(x, [1 2]);
y2 = gaussmf(x, [1 4]);
y3 = gaussmf(x, [1 6]);
y4 = gaussmf(x, [1 8]);
subplot(212); plot(x, [y1 y2 y3 y4]);grid;

Figure 3.26 shows the results of the above Matlab code.

Fig. 3.26 Ilustration of different Gaussian MFs using the ‘gaussmf’ command in MATLAB
(Mathworks 2009)
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3.3.3.6 Two-Sided Gaussian Membership Function (Gauss2mf)

Another example for the group of pi-shaped MFs is the two-sided-Gaussian MF.
The Matlab command is gauss2mf with the format as below:

y = gauss2mf(x, params)
y = gauss2mf(x, [sig1 c1 sig2 c2])

As mentioned in the last section, the Gaussian function depends on two
parameters sig and c as given by:

gaussmf X; SIGMA;C½ �ð Þ ¼ e� x�cð Þ2

2r2
ð3:13Þ

The function gauss2mf combines of two functions, one specified by sig1 and c1,
determines the shape of the left hand curve and The second function determines the
shape of the right hand curve. When c1 < c2, the gauss2mf function reaches a
maximum value of 1 but otherwise, the maximum value is less than one. The
parameters are listed in the order: [sig1, c1, sig2, c2] (Mathworks 2009).

Examples:

x = (0:0.1:10)′;

y1 = gauss2mf(x, [2 4 1 8]);
y2 = gauss2mf(x, [2 5 1 7]);
y3 = gauss2mf(x, [2 6 1 6]);
y4 = gauss2mf(x, [2 7 1 5]);
y5 = gauss2mf(x, [2 8 1 4]);
Plot(x, [y1 y2 y3 y4 y5]);
Grid

Results are shown in Fig. 3.27.

3.3.3.7 Generalized Bell Curve Membership Function
and Its Matlab Code

Another example for the group of Pi-shaped MFs is a generalized bell-shaped
membership function. GBELLMF(X, PARAMS) returns a matrix which is the
generalized bell membership function evaluated at X. ‘PARAMS’ is a 3-element
vector that determines the shape and position of this membership function.

Specifically, the formula for this membership function is:

gbellmf x; a; b; c½ �ð Þ ¼ 1

1þðx�c
a Þ2b ð3:14Þ

This membership function is a modification of the Cauchy probability distri-
bution function. For example (for results see Fig. 3.28) (Mathworks 2009):
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Fig. 3.27 Various two sided Gaussian MFs with different parametric values using ‘Gauss2mf’
command in MATLAB (Mathworks 2009)

Fig. 3.28 Generalized bell-shaped MFs for different values of parameters a, b and c (Mathworks
2009)
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x = (0:0.1:10)′;
y1 = gbellmf(x, [1 2 5]);
y2 = gbellmf(x, [2 4 5]);
y3 = gbellmf(x, [3 6 5]);
y4 = gbellmf(x, [4 8 5]);
subplot(211);
plot(x, [y1 y2 y3 y4]);
grid;
y1 = gbellmf(x, [2 1 5]);
y2 = gbellmf(x, [2 2 5]);
y3 = gbellmf(x, [2 4 5]); y4 = gbellmf(x, [2 8 5]);
subplot(212); plot(x, [y1 y2 y3 y4]);grid;

3.3.3.8 Z-Shaped Fuzzy Sets

In this type of fuzzy sets the membership value is maximum at first at a point or a
domain and after that it decreases to zero (or close to zero). This kind of mem-
bership function is used to model fuzzy concepts such as: low, down, short, bad,
etc. The shape of the membership function in this state is pseudo-triangular or
pseudo-trapezoid (Fig. 3.29).

Example 3.8 The fuzzy set of ‘bad’ grades is a Z-shaped fuzzy set (Fig. 3.30).

3.3.3.9 Matlab Code for Z-Shaped Membership Function

ZMF(X, PARAMS) returns a matrix which is the Z-shaped membership function
evaluated at X. PARAMS = [X1 X0] is a 3-element vector that determines the break
points of this membership function. When X1 < X0, ZMF is a smooth transition

Fig. 3.29 Z shaped membership function
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from 1 (at X1) to 0 (at X0). When X1 � X0, ZMF becomes a reverse step function
which jumps from 1 to 0 at (X0 + X1)/3.

For example (Mathworks 2009):

x = 0:0.1:10;
subplot(311);
plot(x, zmf(x, [2 8]));
subplot(312);
plot(x, zmf(x, [4 6]));
subplot(313);
plot(x, zmf(x, [6 4]));
set(gcf, ‘name’, ‘zmf’, ‘numbertitle’, ‘off’);

The results are illustrated in Fig. 3.31.

3.3.3.10 S Shaped Fuzzy Sets

In this type of fuzzy sets the membership value starts from zero (or close to zero)
and increases to get to its maximum value at a point or a domain (Fig. 3.32). This
type of membership function is used for modeling of fuzzy concepts like: high,
very, good, tall, etc.

Example 3.9 The set of ‘good’ grades is an S-shaped fuzzy set:

lðxÞ ¼ 1 18\x� 20
x�16
2 16\x� 18

�
ð3:15Þ

Fig. 3.30 An example for Z-shaped fuzzy set
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Fig. 3.31 Illustration of different z-shaped MFs using the ‘zmf’ command in MATLAB
(Mathworks 2009)

Fig. 3.32 S shaped MFs

3.3.3.11 Matlab Code for S-Shaped Curve Membership Function
(SMF)

SMF(X, PARAMS) returns a matrix which is the S-shaped membership function
evaluated at X. PARAMS = [X0 X1] is a 3-element vector that determines the break
points of this membership function (Fig. 3.33).
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When X0 < X1, SMF is a smooth transition from 0 (at X0) to 1 (at X1).
When X0 � X1, SMF becomes a step function which jumps from 0 to 1
at (X0 + X1)/3.

For example (Mathworks 2009):

x = 0:0.1:10;
subplot(311); plot(x, smf(x, [2 8]));grid;
subplot(312); plot(x, smf(x, [4 6]));grid;
subplot(313); plot(x, smf(x, [6 4]));grid;

The results are shown in Fig. 3.34.

3.3.3.12 V Shaped Fuzzy Set

In this type of fuzzy set the membership function starts at its maximum value and
decreases to zero (or close to zero) value, and then increases regaining its maximum
value (Fig. 3.35). This kind of membership functions is used to model the fuzzy
concepts like: ‘not good not bad’, ‘not low not high’, etc.

Example 3.10 The set of ‘not good-not bad’ grades is a V shaped fuzzy set.

lvðxÞ ¼
10� x
10

0\x� 10

x� 10
10

10\x� 20

8><>: ð3:16Þ

A brief list of various membership functions with their typical shape and their
MATLAB commands is shown in Fig. 3.36.

Fig. 3.33 The fuzzy set of
‘good’ grades is an S-shaped
MF
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3.3.4 Connecting Classical Set Theory to Fuzzy Set Theory

There are two main ways to connect classical sets to fuzzy sets:

(1) Using a-cut2

(2) Using the extension principle

Fig. 3.34 S-shaped MFs for different parameters (xo and x1) using the ‘smf’ command in
MATLAB

Fig. 3.35 V shaped fuzzy sets

2A: Given a fuzzy set A defined on a particular number a in the unit interval [0 1], the a-cut of A
denoted by aA is a crisp set containing all element of X whose membership in A are greater than or
equal to a:
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3.3.4.1 a-cut

The a-cut representation of fuzzy sets maps the properties of crisp sets, from
classical set theory, into their fuzzy counterparts by requiring that the classical
property be satisfied by all a-cuts of the fuzzy set concerned.

Properties extended from classical set theory into fuzzy set theory are called
‘cut-worthy’. For instance, if the convexity of a fuzzy set requires that all a-cuts of a
fuzzy convex set are classically convex, this concept of fuzzy convexity is cut-worthy.

Other important concepts are that of a fuzzy partition, fuzzy equivalence fuzzy
compatibility, and various fuzzy orderings that are cut-worthy (Demicco and Klir
2004) but many properties of fuzzy sets are not cut-worthy and cannot be derived from
classical set theory; in these cases the extension principle (following) is very useful.

3.3.4.2 Extension Principle

If we have a function f: X ! Y where X and Y are crisp sets, we can say that the
function is ‘fuzzified’ when it is extended to act on fuzzy sets defined on X and Y.

The ‘fuzzified’ function (F) maps FðXÞ into F(Y):

F : F Xð Þ ! F Yð Þ ð3:17Þ

Fig. 3.36 Illustration of various MFs in Matlab (the abbreviations under each figure is its related
Matlab command)
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Where FðXÞ and F(Y) denote the fuzzy power set (the set of all fuzzy subsets)
of X and Y, a fuzzified version of, function must conform to F within the extended
domain FðXÞ and F(y); this condition is guaranteed using the extension principle.

aA ¼ fa A xð Þj � ag

Therefore, B = F (A) is determined for any given fuzzy set A 2 FðxÞ through the
formula:

B yð Þ ¼ maxA xð Þ xjy ¼ f xð Þ for all y 2 Y: ð3:18Þ

When the maximum in equation (Eq. 3.18) does not exist we replace it with the
supremum,3 the inverse function:

F�1 : F Yð Þ ! F Xð Þ ð3:19Þ

of F is defined, according to the extension principle for any given B 2 F Yð Þ by the
formula:

½F�1 Bð Þ� xð Þ ¼ B yð Þ ð3:20Þ

The extension principle is illustrated in Fig. 3.37.

Fig. 3.37 Illustration of the extension principle (Demicco and Klir 2004)

3The supremum of a subset S of a partially ordered set T is the least element in T that is greater
than or equal to all elements of S, if such an element exists. Consequently, the supremum is also
referred to as the least upper bound (https://en.wikipedia.org/wiki/Infimum_and_supremum).
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3.4 Operations on Fuzzy Sets

In this section we introduce some standard operations on fuzzy sets such as
intersection, complementation averaging, etc.

3.4.1 Standard Union

Assume that Ã and S̃ are fuzzy sets of the universal set X then the union of A, B is:

A[Bð Þ xð Þ ¼ max A xð Þ;B xð Þf g ð3:21Þ

Example 3.11 See Fig. 3.38 as an example of standard union.
Other common fuzzy union’s relisted in Table 3.4.

Fig. 3.38 Standard union of fuzzy sets Ã, B ̃

Table 3.4 List of some non-standard fuzzy union operators

Name union operator Formula

Algebra sum U(a, b) = a + b − ab

Bounded sum U(a, b) = min(1, a + b)

Drastic union
Umax ¼

awhen b ¼ 0
bwhen a ¼ 0
1 o:w:

8<:
Hamacher union U a; bð Þ ¼ aþ b� 2�cð Þab

1� 1�cð Þab
Prad&Dubios union Ua a; bð Þ ¼ aþ b�a�b�min a;b;1�agf

max 1�a;1�b;af g
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3.4.2 Standard Intersection

ð~A\ ~BÞ xð Þ ¼ min A xð Þ;B xð Þf g ð3:22Þ

Example 3.12 See Fig. 3.39 as an example of standard intersection.
Other common fuzzy intersections are listed in Table 3.5 with their names and

related formula 3.5 and it is obvious that when w ! 1 the Yager operation will be
a standard intersection and when c ¼ 0, the Hamacher operation will be the stan-
dard intersection.

3.4.3 Standard Complement

~A
0� �

xð Þ ¼ 1� A xð Þ ð3:23Þ

Example 3.13 See Fig. 3.40 as an example of standard complementary.

Fig. 3.39 Standard intersection of Ã, B ̃

Table 3.5 List of some of non-standard fuzzy intersections

Name of intersection Formula

Algebraic product I(a, b) = a.b

Bounded difference I(a, b)= max(0, A + b − 1)

Drastic intersection
Imin a; bð Þ ¼

awhen b ¼ 1
bwhen a ¼ 1
0 otherwise

8<:
Yager intersection iw (a, b) = 1 − min{1, {(1 − a)w+(1 − b)w]1/w}

w � 0

Hamacher intersection iy a; bð Þ ¼ ab
cþ 1�cð Þ aþb�abð Þ c� 0

Pradd and Dubios intersection ia a; bð Þ ¼ ab
max a;abf g a 2 0; 1½ �
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The classes of fuzzy intersections, iw, and, fuzzy union, uw, over the full range of
these operations are defined for all a, b 2 [0, 1] by the formula:

iw a; bð Þ ¼ 1�min 1; 1� að Þw þ 1� bð Þw½ �1=w
n o

ð3:24Þ

uw a; bð Þ ¼ min 1; aw þ bwð Þ1=w
n o

ð3:25Þ

where w is a parameter whose range is ð0;1Þ. These operations are often referred
as the ‘Yager’ classes of intersection and union. When w ! 1 the standard fuzzy
operations are obtained. Other classes of fuzzy intersections and unions have been
described and information on how new classes of fuzzy intersection and unions can
be generated is given in Klir and Yuan (1995).

Example 3.14 Assume Ã, B ̃ are fuzzy sets over {1, 2, 3, 4, 5} defined as below:

Ã = {(1, 0.3), (2, 0.7), (3, 1), (4, 0.7), (5, 0.3)}
B̃ = {(1, 0), (2, 0.2), (3, 0.5), (4, 0.8), (5, 1)}

Calculate their intersection and union.
Solve:

~A[ ~B ¼ 1; 0:3ð Þ; 2; 0:7ð Þ; 3; 1ð Þ; 4; 0:8ð Þ; 5; 1ð Þf g
~A\ ~B ¼ 1; 0ð Þ; 2; 0:2ð Þ; 3; 0:5ð Þ; 4; 0:7ð Þ; 5; 3ð Þf g

Example 3.15 Let Ã, B̃ fuzzy sets ((real numbers close to zero)) and ((real number
close to 2)) respectively and with membership functions:

A xð Þ ¼ 1
1þ x2

; B xð Þ ¼ 1

1þðx� 2Þ2 ð3:26Þ

Find the intersection and union of Ã, B̃.

Fig. 3.40 Standard
complementary of a fuzzy set
Ã (red: Ã, blue: Ã′)
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Solve: First we find the intersection point of the two functions:

A xð Þ ¼ B xð Þ ! 1
1þ x2

¼ 1

1þðx� 2Þ2 ! x ¼ 1 ð3:27Þ

Then we minimize and maximize for the points located before and after it to get
the intersection and union (of Ã, B̃) respectively.

ðA[BÞ xð Þ ¼
max 1

1þ x2 ;
1

1þðx�2Þ2
n o

x� 1

max 1
1þ x2 ;

1
1þðx�2Þ2

n o
x[ 1

8<: ð3:28Þ

So:

ðA\BÞ xð Þ ¼
1

1þ x2 x� 1
1

1þðx�2Þ2 x[ 1

(
ð3:29Þ

Also:

ðA\BÞ xð Þ ¼
min 1

1þx2 ;
1

1þðx�2Þ2
n o

x� 1

min 1
1þx2 ;

1
1þðx�2Þ2

n o
x[ 1

8<: ð3:30Þ

So:

ðA\BÞ xð Þ ¼
1

1þðx�2Þ2 x� 1
1

1þ x2 x[ 1

(
ð3:31Þ

Example 3.16 Assume that Ã is the set of fuzzy numbers greater than 1 and B ̃ is the
fuzzy set of numbers very much greater than 1 with the membership functions
below (Fig. 3.41).

A xð Þ ¼ 1

1þðx� 1Þ�1 ; B xð Þ ¼ 1

1þ 10ðx� 1Þ�1 ð3:32Þ

(a) Imply that B̃ � Ã
(b) Calculate A′

Solve:

(a) It is obviously that for all x 2 R : BðxÞ�A xð Þ: Thus B̃ is a subset of A.
(b) A′(x) = 1� 1

1þðx�1Þ�1 ¼ 1
x
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3.4.4 Applications of the Intersection of Fuzzy Set

An important application of the intersection of fuzzy sets is in fuzzy decision
making and fuzzy optimization. Where G̃ is the target set with the limitation
property of C̃ then ~D ¼ ~G\ ~C is called the fuzzy decision space and the optimized
selection is the point of space in which it takes the maximum membership degree.

Example 3.17 A gravity interpreter is looking for a profile with negative residual
anomaly on a gravity map of a power plant site to find large subsurface cavities. On
the map there are 5 profiles with negative anomalies (A to E) close to the cooling
towers, which are more at risk of subsidence.

NegativeAnomaly : ~NA ¼ 0:1
A

þ 0:3
B

þ 0:6
C

þ 0:8
D

þ 1
E

Close to Cooling Tower : CCeT ¼ 0:8
A

þ 0:2
B

þ 0:4
C

þ 0:7
D

þ 0
E

On the other hand if the interpreter needs to find the profile which has two main
properties: “negative anomaly” and “close to cooling tower” CCT ̃ then:

NeA \CCeT ¼ 0:1
A

þ 0:2
B

þ 0:4
C

þ 0:7
D

þ 0
E

The most important region that satisfies with both mentioned properties is
region D.

Fig. 3.41 Fuzzy numbers greater than one (A) and Very greater than one (B) (Soleimani and
Hajian 2017)
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3.4.5 Fuzzy Averaging Operations

The fuzzy intersections and fuzzy union operators cannot cover all aggregating
operations and represent only aggregating operations that are associative, therefore
another type of aggregation operations namely, averaging operation are defined.

In various ways they average membership functions of two or more fuzzy sets
defined on the same universal set. Averaging operations run the gamut between the
standard fuzzy intersection and standard fuzzy union. One class of averaging
operations spanning the entire range between min and max operations is the gen-
eralized mean, which is defined below (Demicco and Klir 2004):

hp a1; a2; . . .; anð Þ ¼ ap1 þ ap2 þ . . .þ apn
n

� �1=p

ð3:33Þ

Where P is a parameter whose range is the set of all real numbers expect (0).
For P = 0 the function hp is defined by the limit mentioned in Table 3.6.
The special conditions of P values with the equivalent means operator are listed

in Table 3.6 and it seems sensible to consider the arithmetic mean as the standard
averaging operation. Generalized means are symmetric averaging operations, but if
symmetry is not necessary, we use the weighted generalized means whp, defined as:

Whp a1; a2; . . .; an;w1;w2; . . .;wnð Þ ¼
Xn
i¼1

wia
p
i

 !1=p

ð3:34Þ

where wi i 2 nð Þ are non-negative real number called weights for which

Xn
i¼1

wia
p
i ¼ 1 ð3:35Þ

The weights are expressing the relative importance of the sets to be aggregated.
More sophisticated classes of function which cover more than the three basic types
of aggregation operations (min, max, mean) by Klir and Yuan (1995).

Table 3.6 Fuzzy averaging operation for special values of ‘P’

P value Formula Equivalent

P = 0 limp!0 hpða1; a2; . . .; an) = (a1a2; . . .; an)
1/n Geometric mean

P ! �1 limp!�1 hpða1; a2; . . .; an) = min(a1a2; . . .; an)
1/n Standard intersection

P = 1 h1(a1; a2; . . .; anÞ = a1 ;a2 ;...;an
n Arithmetic mean

P = −1 h-1 a1; a2; . . .; anð Þ = n
1
a1
þ 1

a2
þ ...þ 1

an

Harmonic mean
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3.4.6 Matlab Codes for Fuzzy Operations

As an example here we have prepared a Matlab code for union, intersection and
complement; this program takes two fuzzy sets A and B and gives any of the
mentioned operations based on user selection.

% Enter two matrices
A=input (‘Enter the first matrix’)
B=input (‘Enter the second matrix’)
Option=input (‘enter the option’)
% Option 1 union
% Option 2 intersection
% Option 3 complement
If (options==1)
U=max (A/B);
fprintf(‘unions is ’);
Print f (u)
end
If (option==2)
I=min (A/B),′
fprintf (‘Intersection is’);
Printf(I)
End
If (option==3)
Op=input (‘Enter whether to find complement for first set or second set’),′
If(op==1)
[min]=size (u);
C=ones (m)-u;
Else
C=ones (m)-v;
end
printf(‘complement is’)
Printf(c)
end

3.4.7 Other Operations on Fuzzy Sets

3.4.7.1 Non-Joint Union

A� B ¼ ðA\B0Þ [ A0 \Bð Þ ð3:36Þ

ða� bÞ xð Þ ¼ max min a; 1� bð Þ;min 1� a; bð Þf g ð3:37Þ
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Example 3.18 Let: Ã = {(a, 0.2), (b, 0.7), (c, 1), (d, 0)}, B̃ = {(a, 0.5), (b, 0.3),
(c, 1), (d, 0.1)}

Calculate Ã � B ̃.
Solve:

~A� ~B ¼ a; 0:5ð Þ; b; 0:7ð Þ; c; 0ð Þ; d; 0:1ð Þf g ð3:38Þ

3.4.7.2 Non-cross Sum

lðaDbÞ ¼ la � lbj j ð3:39Þ

Example 3.19 If Ã and B̃ are as the same as example 3.18 then:

~AD~B ¼ a; 0:3ð Þ; b; 0:4ð Þ; c; 0ð Þ; d; 0:1ð Þf g

3.4.7.3 Difference in Fuzzy Sets

In classical sets A − B = A \ B′, in fuzzy sets the standard difference of two sets
Ã, B ̃, belongs to universal set. X is: µa−b = min (µa, 1 − µb).

Example 3.20 Let: Ã = {(a, 0.2), (b, 0.7), (c, 1), (d, 0)}, B̃= {(a, 0.5), (b, 0.3), (c,
1), (d, 0.1)}

Then Ã – B̃ = {(a, 0.2), (b, 0.7), (c, 0.1), (d, 0)}

3.4.7.4 Bounded Difference

If Ã, B ̃ are fuzzy sets belong to universal X then

ð~A	 ~BÞ xð Þ ¼ max 0; a� bð Þ ð3:40Þ

As an example for the Ã, B ̃ sets defined in the last example,

ð~A	 ~BÞ xð Þ ¼ a; 0ð Þ; b; 0:4ð Þ; c; 0ð Þ; d; 0ð Þf g

3.4.7.5 Distance in Fuzzy Sets

The concept of distance is sometimes shown as subtraction but in the measurement
math these two concepts are different (Fig. 3.42).
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The distance between fuzzy sets has been widely studied and many definitions
exist, differing in the type of information conveyed by their formal properties and the
underlying mathematical approaches (Bloch 1999; Zwick et al. 1987). Most deal
with the point-wise comparison of the membership functions but other distances
introduce metrics into the considered space. In the first type of distance, complexity
is linear in the cardinality of the space, so it is easy to compute. Typically, two fuzzy
sets to be compared represent the same structure or a structure and a model and this is
closely related to the notion of fuzzy similarity (if s is a similarity measure between
fuzzy sets, then 1 − s is a distance, see e.g. (Bouchon-Meunier et al. 1986) for a
review of fuzzy comparison measures. For instance, applications in model-based or
case-based pattern recognition can make use of such distances. Definitions com-
bining spatial distance and fuzzy membership comparison allow a more general
analysis of structures in the considered space, where topological and spatial
arrangement of the structures is important. This is enabled by the fact that these
distances combine membership values at different points in the space and so take into
account their proximity or distance in this measurement space. Here we introduce
some fuzzy distance measures.

Fig. 3.42 Graphical comparison of ‘Distance’ and ‘Difference’ between two fuzzy sets
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Hamming Distance

If Ã and B̃ are fuzzy sets belong to universal set X then the Hamming distance of
them is:

d ~A; ~B
� � ¼X

x�X
A xð Þ � B xð Þj j ð3:41Þ

Example 3.21 If: Ã = {(1, 0.4, (2, 0.8), (3, 1), (4, 0)}, B ̃= {(1, 0.4), (2, 0.3), (3, 0),
(4, 0)}then

dð~A; ~BÞ ¼ 0þ 0:5þ 1þ 0 ¼ 1:5

The Hamming distance has the properties below:

D (A, B) � 0
d (A, B) = d(B, A)
d (A, C) � d(A, B)+d(B, C)
d(A, A) = 0

If ∣X∣ = n then the Hamming distance is defined as:

dð~A; ~BÞ ¼ 1
n
dð~A; ~BÞ ð3:42Þ

The non-cross sum is a kind of distance namely “symmetric distance”:

~AD~B ¼ a� bj j ð3:43Þ

Euclidean Distance

When Ã, B ̃ are fuzzy sets belonging to universal set X then the Euclidean distance
is defined as:

eð~A; ~BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

x2X A xð Þ � B xð Þð Þ2
q

ð3:44Þ

Example 3.22

~A ¼ ð1; 0:4; 2; 0:8ð Þ; 3; 1ð Þ; 4; 0ð Þf g
~B ¼ ð1; 0:4; 2; 0:3ð Þ; 3; 0ð Þ; 4; 0ð Þf g

e ~A; ~B
� � ¼ pð0þ 0:5Þ2 þ 12 þ 0

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:25 � 1:12

p
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The relative Euclidean distance is defined as:

eð~A; ~BÞ ¼ e ~A; ~B
� �ffiffiffi

n
p ð3:45Þ

In general, however, the distance between fuzzy sets Ã, B ̃ is defined by the
Minovsky distance.

Minovsky Distance

When Ã, B̃ are fuzzy sets of universal set X, the Minovsky’s distance is defined as:

dwð~A; ~BÞ ¼ ½
X

x2x A xð Þ � Bxj jw�1=w;w 2 ½1;1Þ ð3:46Þ

If w = 1 then d1 (Ã, B ̃) is Hamming distance and if w = 2 d2(Ã, B̃) is the
Euclidean distance.

Cartesian Product of Fuzzy Sets

Power of a fuzzy set Ã: Assume Ã is a fuzzy set over universal set X, and then the
m-power of this fuzzy set is defined as:

Am xð Þ ¼ AðxÞ
� �m ð3:47Þ

On the other hand for the m-power of a fuzzy set the memberships of each
element of the set is raised to power m. Power of fuzzy sets is a useful concept for
linguistic variables.

3.4.8 Cartesian Product

Assume Ã1, Ã2, …,Ãn are fuzzy sets over X, X2, …, Xn then the Cartesian product
of them is defined as:

A1 
 XA2 
 . . .;Anð Þ x; x2; . . .; xnð Þ ¼ minðA1 xð Þ;A2 xð Þ; . . .;An xnð Þ ð3:48Þ

Example 3.23 Assume Ã, B ̃ are as:
Ã = {(1, 0.3), (2, 0.7), (3, 1)}, B ̃ = {(3, 0.7), (4, 1), (5, 0.7)}
Then:
Ã*B ̃ = {((1, 3), 0.3), ((1, 4), 0.3), ((1, 5), 0.3), ((2, 3), 0.7), ((2, 4), 0.7), ((2, 5),

0.7), ((3, 3), 0.7), ((3, 4), 1), ((3, 5), 0.7)} (Table 3.7)
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3.5 Fuzzy Relationships

One of the fundamental concepts is relationship with many applications in science
and engineering. Relationships are used in approximated (or non-precise) reason-
ing, pattern recognition, control, etc. Fuzzy relationship is an extension of classical
relationship. In classical relations, we only have two conditions:

First condition: there is a relationship between an element with another, and
Second condition: there is no relationship between an element with another
There are two crisp conditions; ‘0’ if not included or ‘1’ if the relationship is

included but in fuzzy relationships the degree of relationship between two elements
is included which means that how much of a relationship an element has to another
has a value between zero and one. From the fuzzy point of view the degree of
relationship is a fractional number between 0 and 1.

The classical relationship between X and Y is defined in a two dimensional
space; but fuzzy relationship is defined in a multidimensional space, two elements
(X, Y) are two of its dimensions and one other dimension is the membership degree
of the relation between these two elements .i.e. X R Y in classical set shows x has
relation R with Y, but X R̃ Y from fuzzy relation viewpoint means X how much has
relation R with Y and this may be from zero to one. In this part the fuzzy rela-
tionships and operations over them are examined.

3.5.1 Definition of Fuzzy Relationship

3.5.1.1 Definition of a Classical Relationship

A classical relationship from classical set A to classical set B is a subset of
Cartesian A*B and is presented as:

XR : A
B ! 0; 1½ ��

XR x; yð Þ ¼ 1 x; yð Þ 2 R
0 x; yð Þ 62 R

�
ð3:49Þ

where R means the relationship.

Table 3.7 Cartesian product of Ã and B (Soleimani and Hajian 2017)

A B 3 4 5

1 0.3 0.3 0.3

2 0.7 0.7 0.7

3 0.7 1 0.7
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Example 3.24 Assume A = {1, 2, 3}, B = {a, b, c}. The relationship R is:
R ¼ f 1; að Þ; 1; cð Þ; 2; bð Þ; 3; bð Þ; 3; cð Þ
This relationship representation via matrix or index function is an below:

R ¼
a b c

1
2
3

1 0 1
0 1 0
1 1 1

24 35
As can be seen in the matrix, the availability of a relationship between each of

two elements is shown with value 1 and otherwise is 0, but in fuzzy relations this
value is represented by a number between zero and one.

According to the fact that relationship is a kind of set the representation of index
function and the operation are the same as for sets.

3.5.1.2 Definition of a Fuzzy Relationship

A fuzzy relationship R̃ is defined from set x to set Y as below:

~R ¼ fð x; yð Þ; lR x; yð ÞjlR x; yð Þ : X 
 Y ! 0; 1½ �g ð3:50Þ

where lR is the membership function of element (x, y) and means the degree of
relationship between element x and y.

Example 3.25 Assume X = {a, b} Y = {c, d, e} which are the set of cities and the
relationship R is the quality of the main connecting road between each of two cities.
Then this fuzzy relationship could be as below (Table 3.8):

This means for example that the quality of the main connection road between
city ‘a’ and c is 90% while the quality of the main connection road between city b
and d is 60%.

Example 3.26 Assume x = {1, 2, 3}, y = {3, 4, 5} the relationship “very much
smaller” i.e. is as shown in Table 3.9.

Table 3.8 Matrix presentation of Fuzzy relationship in example 3.25 (Soleimani and Hajian
2017)

R ̃ C D e

A 0.9 0.8 0.7

B 0.8 0.6 0.4

Table 3.9 Fuzzy relationship
“very much smaller” for “x”
very much smaller than y

R ̃ 3 4 5

1 0.6 0.8 1

2 0.4 0.6 0.8

3 0 0.4 0.6
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Or in Matrix format:

R ¼
3 4 5

1
2
3

0:6 0:8 1
0:4 0:6 0:8
0 0:4 0:6

24 35
R̃ (1, 4) = 0.8 means that the degree of very much smaller than 4 is 0.8 for the

element 1 or the number 1 is 80% very much smaller than 4.

Example 3.27 If x ¼ y ¼ R then the fuzzy relationship R ̃: very much smaller can
be defined as:

lR x; yð Þ ¼
1

1þðy�xÞ�2 x\y

0 x� y

�
ð3:51Þ

Example 3.28 If x ¼ y ¼ R then the relationship “approximately equal” can be

defined as: lR x; yð Þ ¼ e�ðx�yÞ2 .

3.5.1.3 General Representation of Fuzzy Relationship

Generally a fuzzy relationship over X1* X2 *…*Xn is defined as:

~R ¼ fð x1; x2; . . .; xnð Þ; lR x1; x2; . . .; xnð ÞÞjlR : x1; x2; . . .; xn ! 0; 1½ �g ð3:52Þ

Hereafter to present the membership function of a fuzzy relationship
We use R(x1, x2,…,xn) instead of lR(x1, x2,…,xn) and when x1 = x2 = …,

xn = x then R ̃ is defined as a fuzzy relationship over X.

Example 3.29 Assume x = y = z = R the R(x, y, z) = e�k x2 þ y2 þ z2�r2ð Þ is defining
the geometrical shape near to a sphere or the fuzzy relationship of the points with
the same approximate distance of “r” from the general X point.

3.5.2 Domain and Range of Fuzzy Relationship

Assume R ̃ is a fuzzy relationship over x*y then its domain and range are defined as:

DomðR x; yð ÞÞ ¼ max
y

R x; yð Þ ð3:53Þ

Ra x; yð Þ ¼ max
x

R x; yð Þ ð3:54Þ

248 3 Fuzzy Logic



Table 3.10 Fuzzy
relationship R ̃ in example
3.30 (Soleimani and Hajian
2017)

R ̃ 10 20 30

1 1 0.5 0.2

2 0 1 0.3

3 0.4 0.7 1

Example 3.30 Assume x = {1, 2, 3}, y = {10, 20, 30} and fuzzy relationship R ̃ on
x, y is (Table 3.10):

Then:

dom ~R
� � ¼ 1; 1ð Þ; 2; 1ð Þ; 3; 0:7ð Þf g

Ra ~R
� � ¼ 10; 1ð Þ; 20; 1ð Þ; 30; 0:3ð Þf g

3.5.3 Operations on Fuzzy Relationships

As we mentioned, before, a relationship is a kind of set so an operation on fuzzy
relationships is the same as an operation on fuzzy sets.

3.5.3.1 Standard Union of Fuzzy Relationships

Assume R̃, S ̃ the fuzzy relations over X*Y then the standard union of two fuzzy
relations is defined as:

ðR[ SÞ X;yð Þ ¼ max R x; yð Þ; S x; yð Þf g ð3:55Þ

3.5.3.2 Standard Intersection of Fuzzy Relationships

Assume R̃, S ̃ are fuzzy relationships over X*Y then the standard intersection of R ̃,
S̃ is defined as:

ð~R\ ~SÞðX;yÞ ¼ min R x; yð Þ; S x; yð Þf g ð3:56Þ

3.5.3.3 Standard completion Is Defined as

R0 x; yð Þ ¼ 1� R x; yð Þ ð3:57Þ

Example 3.31 Let R̃, S̃ be the fuzzy relationship over X*Y with the memberships
shown in Tables 3.11 and 3.12 respectively. The standard union ~R[ ~S, intersection
~R\ ~S and completion R̃′, are calculated and represented in Tables 3.13, 3.14, 3.15,
respectively.
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3.5.4 Projection of Fuzzy Relationship and Cylindrical
Extension

3.5.4.1 Projection of Fuzzy Relations

Assume R ̃ is a fuzzy relationship over X*Y then the projection of this relationship
over each of X and Y sets is defined as (see Fig. 3.43):

Proj R;X½ � ¼ f x;max x; yð Þð Þg ð3:58Þ

Proj R;Y½ � ¼ f y;max x; yð Þð Þg ð3:59Þ

Table 3.11 R̃ fuzzy
relationship in example 3.31

R ̃ 2 3 4

1 0.3 0.6 0.9

2 0 0.3 0.6

3 0 0 0.3

Table 3.12 S̃ fuzzy
relationship in example 3.31

S̃ 2 3 4

1 0.2 0 0

2 1 0.2 0

3 0.2 1 0.2

Table 3.13 Standard union
of R̃, S ̃ fuzzy relations

R ̃ [ S̃ 2 3 4

1 0.3 0.6 0.9

2 1 0.3 0.6

3 0.2 1 0.3

Table 3.14 Standard
intersection of R ̃, S ̃ fuzzy
relations

R ̃ \ S̃ 2 3 4

1 0.2 0 0

2 0 0.2 0

3 0 0 0.2

Table 3.15 Standard
completion of R̃

R ̃′ 2 3 4

1 0.7 0.4 0.1

2 1 0.7 0.4

3 1 1 0.7
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3.5.4.2 Cylindrical Extension

Assume Ã is a fuzzy set over x. Then the cylindrical extension of Ã over x, y is a
fuzzy relationship defined as:

CðAÞ ¼

x1
x2
:
:
:
:
xn

y1 y2 ym
Aðx1Þ Aðx1Þ. . . Aðx1Þ
Aðx2Þ Aðx2Þ. . . Aðx2Þ

AðxnÞ AðxnÞ. . . AðxnÞ

2666666664

3777777775

8>>>>>>>>>><>>>>>>>>>>:
ð3:60Þ

And if B̃ is a fuzzy set over y then cylindrical extension from B ̃ over X*Y is a
fuzzy relationship defined as:

CðBÞ ¼

x1
x2
:
:
:
:
xn

y1 y2 ym
Bðy1Þ Bðy1Þ. . . Bðy1Þ
Bðy2Þ Bðy2Þ. . . Bðy2Þ

BðynÞ BðynÞ. . . BðynÞ

2666666664

3777777775

8>>>>>>>>>><>>>>>>>>>>:
ð3:61Þ

The projection in continuous conditions is defined like the discrete condition but
the R operator is changed to the integration operator. A 3D illustration of the
cylindrical extension of a typical fuzzy set is shown in Fig. 3.44.

Fig. 3.43 Illustration of projection of fuzzy relation (Soleimani and Hajian 2017)
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Example 3.32 Assume x = {x1, x2, x3}, y = {y1, y2, y3} and the fuzzy relationship
R̃ is defined as:

~R ¼
x1
x2
x3

y1 y2 y3
1 0:8 0:6
0:9 0:4 0:5
0 0:3 0:3

24 35
Then:

Proj R;X½ � ¼ x1; 1ð Þ; x2; 2ð Þ; x3; 0:3ð Þf g

Proj R;Y½ � ¼ y1; 1ð Þ; y2; 0:8ð Þ; y3; 0:6ð Þf g

And if Ã = {(x1, 1), (x2, 0.9), (x3, 0.3)}
The cylindrical extension of Ã over x is as below:

C Að Þ ¼
x1
x2
x3

y1 y2 y3
1 1 1
0:9 0:9 0:9
0:3 0:3 0:3

24 35
Example 3.33 The Fuzzy set A with Gaussian membership A(x) is given
(Fig. 3.45), its cylindrical extension over y axis is depicted in Fig. 3.46 (http://
slideplayer.com/slide/5336605/).

3.5.5 Composition of Fuzzy Relations

Assume R ̃ is a fuzzy relationship over X � Y with a membership function R(x, y),
S̃ is a relationship over Y � Z with membership function S (y, z) then the com-
position of these fuzzy relations is defined as:

~RO~S
� �

ðx;yÞmax
y

T r x; yð Þ; S y; zð Þ½ �f g ð3:62Þ

Fig. 3.44 3D illustration of
cylindrical extension of a
fuzzy set (Soleimani and
Hajian 2017)
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Fig. 3.45 Set A with
Gaussian membership
function

Fig. 3.46 Cylindrical
projection of set A in
Fig. 3.45
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Where T is a triangular norm and mostly the T-norm: ‘min’ is used:

~RO~S
� �

ðx;yÞ¼ min
y

min r x; yð Þ; S y; zð Þ½ �f g ð3:63Þ

Example 3.34 Assume X = {x1, x2, x3}, Y = {y1, y2, y3}, Z = {z1, z2, z3, z4}, R ̃ is
a fuzzy relationship over x, y (Table 3.16) and S ̃ is a fuzzy relationship over Y and
Z (Table 3.17). Then calculate R ̃OS ̃.

The R̃OS ̃ is a fuzzy relationship over x, z as shown in Table 3.18.
As an example the way of calculating R̃OS ̃(x1, z1) is described, here. First min

(0.7, 0, 0.1), min (1, 0.8), min (0.9, 0.4) are calculated and among these mem-
bership degrees the maximum value is calculated:

~RO~S
� �

ðx1;z1Þ¼ max min 0:7; 0:1ð Þ;min 1; 0:8ð Þ;min 0:9; 0:4ð Þf g

In this example if x, y, z are sets of the hydrophones linked to a network and R ̃ is
the degree of linkage security between hydrophones set X to hydrophones set Y and
S̃ is the degree of linkage security between hydrophones set X to Z then R ̃OS ̃
determines the degree of linkage security between hydrophones set x to z where the
hydrophones in set x are linked to hydrophones set z indirectly through hydrophone
set Y (Fig. 3.47).

There are three routes for linkage between hydrophone X1 to Z1:

Path 1 : x1 !0:7 y1 !0:1 z1 !min 0:1

Path 2 : x1 !1 y2 !0:8 z1 !min 0:8

Table 3.16 Matrix
representation of fuzzy
relationship R ̃

R ̃ y1 y2 y3
x1 0.7 1 0.9

x2 0.9 0.5 0.6

x3 0.1 0.4 1

Table 3.17 Matrix
representation of fuzzy
relation S̃

S̃ z1 z2 z3 z4
y1 0.1 0.3 0.9 0.7

y2 0.8 0.7 0.2 0.6

y3 0.4 0.3 0.5 1

Table 3.18 Matrix
representation of fuzzy
relationship R ̃OS̃

R ̃OS̃ z1 z2 z3 z4
x1 0.8 0.7 0.7 0.7

x2 0.5 0.5 0.9 0.7

x3 0.4 0.4 0.5 1
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Path 3 : x1 !0:9 y3 !0:4 z1 !min 0:4

This means that path 2 is the best path to link hydrophone x1 to z1 (from x1 to y2
to z1) with the membership degree 0.8.

Example 3.35 Assume x = {1, 2, 3}, y = {2, 3, 4}, R̃ is a fuzzy relationship for
similar elements over x, y, and Ã is the fuzzy set of ‘small elements’ over x then
what is ÃOR̃ = ?

Ã = {(1, 0.9), (2, 0.3), (3, 0.1)} (Table 3.19)

~AO~R ¼ 0:9 0:3 0:1½ �O
0:7 0:4 0:1

1 0:7 0:4

0:7 1 0:7

264
375 ¼ 0:9 0:4 0:3½ �

) ~B ¼ ~AO~R ¼ 2; 0:9ð Þ; 3; 0:4ð Þ; 4; 0:3ð Þf g

Fuzzy set B ̃ is the set of small elements over universal set y and R̃ it is a
demonstrative for elements x similar to y. When set Ã is combined with relationship
R̃ it determine small elements among x members thus the combination of Ã and R̃
will define small elements among members of set y.

Fig. 3.47 The connection graphical presentation for R̃, S̃ (Soleimani and Hajian 2017)

Table 3.19 Fuzzy
relationship in example 3.35
in its Matrix format

R ̃ 2 3 4

1 0.7 0.4 0.1

2 0.1 0.7 0.4

3 0.7 1 0.7
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The calculation of a combination of two relationships is similar to the product of
matrices but with a difference that the add operator ‘+’ is replaced by max and the
‘.’ product is replaced by min.

a b

c d


 �
o

e f

g h


 �
¼ a:eþ b:g a:f þ b:h

c:eþ d:g c:f þ d:h


 �
¼ a^eð Þ _ b^gð Þ a^fð Þ _ b^hð Þ

c^eð Þ _ d^gð Þ c^fð Þ _ d^hð Þ


 � ð3:64Þ

The above method is namely the ‘max-min’ method. As we mentioned in def-
inition of combination of relations the general condition of T-norm is max. Another
combination method which has many applications is max-product method.

Example 3.36 Combine the relations R̃, S̃ via max-product

~R ¼ 0:1 0:7 0:9
1 0:8 0:3


 �
~S ¼

0 1
0:4 0:5
0:8 0:7

24 35
~RO~S ¼ 0:72 0:63

0:32 1


 �
One of the important applications of fuzzy relations and their combination is the

interpretation of fuzzy if-than rules which will be investigated in future sections.

3.5.6 Matlab Coding for Fuzzy Relations

To calculate fuzzy operations and combination of fuzzy relations Matlab software is
very useful. For example the program for combination of fuzzy relations is
described during the next example.

Example 3.37 Calculation of the combination of the last example relations through
max-product with a Matlab program.

Solve: We have presented here a program for general condition to combine two
fuzzy relations via max-product method.

—————————————————————————————————————————————————————

R=input(‘enter the first relationship (matrix)’)

S = input (‘enter the second relationship (matrix)’)

% size of matrix

[min] = size(R)

[p,q] = size(S)
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If (n = = p)

fori = 1:m

for j = 1:q

c = R(i,:);

d = S(:,j);

[f,g] = size(c);

[h,k] = size(d);

fot l = 1;g

e(1,l) = c(1,l)*d(l,1)

end

T(i,j) = max(e)i

end

end

display(t)

————————————————————————————————————————————————————————————

After running the above codes in Matlab:
Enter the first relationship (matrix) [0.1,0.7,0.9;1,0.8,0.3]

R ¼ 0:1000 0:1000 0:9000
1:0000 0:8000 0:3000

Enter the second relationship (matrix) [0,1;0.4,0.5,0.8,0.1]

S ¼
0:0000 1:0000
0:4000 0:5000
0:8000 0:1000

t ¼ 0:7200 0:6300
0:3200 1:000

3.5.7 Properties of Fuzzy Relations

As in classical set theory a relationship can be reflexive, symmetric, anti-symmetric,
associativity.

Definition, Assume R̃ is a fuzzy relationship over X with membership function
R̅(x, y) then:
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1. R̃ is a reflexive relationship if:

8x 2: ~R x; xð Þ ¼ 1 ð3:65Þ

2. R̃ is a symmetric relationship if:

8 y; xð Þ 2 X� Y : ~R y; xð Þ ¼ ~R y; xð Þ ð3:66Þ

3. R̃ is on oppressive relationship if:

8 x; yð Þ 2 X� Y; y; zð Þ 2 Y� Z : ~R x; zð Þ�max½min
y

R x; yð Þ;R y; zð Þ� ð3:67Þ

Or on the other hand: R ̃OR ̃ � R̃
4. R̃ is an anti-symmetric relationship if:

8 x; yð Þ 2 X� Y : ~R x; yð Þ 6¼ ~R y; xð Þor ~R x; yð Þ ¼ ~R y; xð Þ ¼ 0 ð3:68Þ

3.5.7.1 Equivalence Fuzzy Relations

R̃ is an equality fuzzy relationship when it has all properties: reflectivity, symmetry
and transitive.

3.5.7.2 Ordered Fuzzy Relation

R̃ is defined as an ordered fuzzy relationship when it has reflexive, anti-symmetric
and transitive properties.

Example 3.38 Investigate whether the fuzzy relationship R ̃ in Table 3.20 is an
equivalence relationship or not?

As for all a: R̃(x, x) = 1 it has reflexive property the main diameter is 1, the
relationship matrix is symmetric so R ̃ is symmetric. R̃OR ̃ is not subset of R ̃ thus R̃
is not transitive. The below fuzzy relationship is ordered (Table 3.21).

Table 3.20 Fuzzy relationship R ̃ matrix representation

R ̃ A B C D

A 1 0.8 0.5 0.9

B 0.8 1 0.3 0.8

C 0.5 0.3 1 0.7

D 0.9 0.8 0.7 1
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3.5.8 a-cut of a Fuzzy Relation

a-cut of fuzzy sets was defined in Sect. 3.4.4.
A Fuzzy relationship is a kind of fuzzy set thus its a-cut is defined similarly.
Definition—Assume R̃ is a fuzzy relationship over X � Y then a -cut ofR ̃:

Ra ¼ f x; yð Þ : R x; yð Þ� a; x 2 X; y 2 Yg ð3:69Þ

Note that Ra will be a classical relation.

Example 3.39 Assume the below fuzzy relationship in Table 3.22, then calculate
Ra for a = 0.2, 0.3, 0.5, 0.7 (Tables 3.23, 3.24, 3.25, 3.26 and 3.27).

Table 3.21 An example of ordered fuzzy relation (Soleimani and Hajian 2017)

R ̃ A B C D

A 1 0.2 0 0.1

B 0.8 1 0 0

C 0.3 0.4 1 0.1

D 0 0 0 1

Table 3.22 Fuzzy relationship in example 3.39

R ̃ 1 2 3

1 0.2 0.5 0.6

2 0.7 1 0.3

3 0.3 0.6 0.2

Table 3.23 Ra with a = 0.2
(Soleimani and Hajian 2017)

Ra = 0.2 1 2 3

1 1 1 1

2 1 1 1

3 1 1 1

Table 3.24 Ra with a=0.3
(Soleimani and Hajian 2017)

R0.3 1 2 3

1 0 1 1

2 1 1 1

3 1 1 0

Table 3.25 Ra with a = 0.5
(Soleimani and Hajian 2017)

R0.5 1 2 3

1 0 1 1

2 1 1 0

3 0 1 0
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3.5.9 a-cut of Equivalent Fuzzy Relationship

If R̃ is an equivalent fuzzy set over x. Then its a-cut will be an equivalent classical
relationship, therefore, set x is an a-cut of an equivalent fuzzy relationship and is
defined as:

Ra x; yð Þ ¼ 1 R x; yð Þ� a8x; y 2 Xi

0 O:W :

�
ð3:70Þ

If the base set of fuzzy relationship R̃ is Δ so that ^ = {a1, a2, …} is a a-cut for
a1-partition;

Q
(Ra1) if a1 � a2 then Ra1oRa2 � Ra2 has more partitions more

than
Q
(Ra2).

Example 3.40 The fuzzy relationship shown in Table 3.27 is defined on universal
set X = {a, b, c, d, e, f}.

This type of fuzzy relationship is named “similarity relationship”. For a = 0.5,
its a-cut is as shown in Table 3.28

As can be seen in Table 3.28:
Q
(R0.5) = {{a, b},{d}, {c, e, f}}

Table 3.27 Fuzzy
relationship in example 3.48
(Soleimani and Hajian 2017)

R ̃ a b C d e f

a 1 0.8 0 0.4 0 0

b 0.8 1 0 0.4 0 0

c 0 0 1 0 1 0.5

d 0.4 0.4 0 1 0 0

e 0 0 1 0 1 0.5

f 0 0 0.5 0 0.5 1

Table 3.26 Ra with a = 0.7 R0.7 1 2 3

1 0 0 0

2 1 1 0

3 0 0 0

Table 3.28 Matrix
representation of Ra = 0.5
for R ̃

R ̃0.5 a b c d e f

a 1 1 0 0 0 0

b 1 1 0 0 0 0

c 0 0 1 0 1 1

d 0 0 0 1 0 0

e 0 0 1 0 1 1

f 0 0 1 0 1 1
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And similarly for other values of a, the partitions shown in the partition-tree
diagram below (Fig. 3.48) presents these partitions. R0.5 is an equivalent relation-
ship at a level of a = 0.5.

3.6 Fuzzy Numbers

3.6.1 Further Description of the Extension Principle

In classical mathematics one of the important tools is the “function” tool. Function
is a special relationship. For example if we consider the selection of pairs of (x,y),
i.e. if (x,y) = (x,f(x)) = {(2,12), (4,1), (2,16), (9,9)}; then ‘f’ is not a function
because x = 2 is repeated, as the first element, in two pairs of set(x,y), on other
hand for x = 2 we have two values, so f can’t be a function.

Usually a function is presented with a criterion such as: f(x) = 2x + 1.

Fig. 3.48 Partition tree diagram for a-cut of fuzzy relationship R ̃ with different values of a
(Soleimani and Hajian 2017)

3.5 Fuzzy Relationships 261



A function is like a system that takes x as the input and gives y as output
(Fig. 3.49) i.e. if x = 2 then f (2) = 5.

Now, assume the input of the function is a fuzzy set i.e. “close to 2”, then its
output should be also a fuzzy set. For the above mentioned function the output will
be “close to 5”.

Assuming function f: x ! y, when Ã is a fuzzy function over x, we want to
calculate the output function for the input Ã. This is possible using the extension
principle.

Assume f is a function from x to y and Ã is s fuzzy set over Y the f(Ã) is also a
fuzzy set which is achieved using the extension principle as below:

f ~A
� �

yð Þ ¼
s[ pA xð Þf�1 yð Þ 6¼ ;
x : f xð Þ ¼ y

0 f�1 yð Þ ¼ ;

8<: ð3:71Þ

Example 3.41 Assume x = {−1, −2, 0, 1, 2} and f: x ! Y
f (x) = x2 and Ã is a fuzzy set over x:

Ã = {(−2, 0.5) (−1, 0.7), (0, 1), (1, 0.8), (2, 0.6)}
Calculate f (Ã).

Solve: First we calculate the values of y and then their membership fy(A).
y = f(x) = {0, 1, 4}
f (A)(1) = max{A(x): f(x) = 1} = max{A(−1), A(1)} = max{0.7, 0.8} = 0.8
x = f−1(1)
f(A)(4) = max{A(x): f(x) = 4} = max{A(−2), A(2)} = max{0.5, 0.6} = 0.6
So:

f ~A
� � ¼ 0; 1ð Þ; 1; 0:8ð Þ; 4; 0:6ð Þf g

Example 3.42 Assume f(x) = 2x + 1, Ã is the below fuzzy set:
Ã = {(0, 0.2), (1, 0.7), (2, 1), (3, 0.6), (4, 0.1)}
Then what is f (Ã)?
Solve: First we calculate:
y = {1 3 5 7 9}, f (Ã) = {(1, 0.2), (3, 0.7), (5, 1), (7, 0.6), (9, 0.1)}
In this example Ã is the fuzzy set: “about 2” and the value of the fuzzy function

is the fuzzy: “about 5” (Fig. 3.50).

x f(x) y = f(x)

f(x) x y

Fig. 3.49 Illustration of a function as a system with input and output
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Example 3.43 Assume Ã is a fuzzy set with membership A(x) as below and
y = f(x) = 2x + 1 then calculate f (Ã):

A xð Þ ¼ xþ 1 �1\x� 0
1� x 0\x\1

�
ð3:72Þ

Solve: First we calculate y versus x or f−1(y) and then f (A) (y) is calculated via
the extension principle.

y ¼ x2 þ 1 ) x ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
y� 1

p
) f�1 yð Þ

¼ f Að Þ yð Þ ¼ sup A xð Þ : x ¼ f � 1 yð Þ½ � ¼ sup
� ffiffiffiffiffiffiffiffiffiffiffi

y� 1
p þ 1 : �1\� ffiffiffiffiffiffiffiffiffiffiffi

y� 1
p

\0

1þ ffiffiffiffiffiffiffiffiffiffiffi
y� 1

p
: 0\

ffiffiffiffiffiffiffiffiffiffiffi
y� 1

p
\1

�
¼ Sup

1� ffiffiffiffiffiffiffiffiffiffiffi
y� 1

p
0\y\2

1þ ffiffiffiffiffiffiffiffiffiffiffi
y� 1

p
0\y\2

�
¼ 1� ffiffiffiffiffiffiffiffiffiffiffi

y� 1
p

0\y\2

0 otherwise

�
ð3:73Þ

3.6.2 Generalized Extension Principle or Multi-variate
Extension Principle

Assume f is a function from X1*X2* …*Xn space to y, Ãi is a fuzzy set over Xi the
f(Ã1, Ã2, Ãn) is as below:

f ~A1; ~A2; ~An
� �

ðyÞ¼
supfminðA1 x1ð Þ;A2 x2ð Þ; . . .;An xnð Þg

x1; x2; . . .; xnð Þ : f x1; x2; . . .; xnð Þ ¼ yf�1 yð Þ 6¼ ;
0 f�1 yð Þ ¼ ;

8<: ð3:74Þ

0

1

2

3

4

5

6

7

8

0 1 2 3 4

y=2x+1

Fig. 3.50 Graphical presentation of extension principle for example 3.42
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When the function is multi-variate the Cartesian production Ã1*Ã2*…*Ãn is
calculated first and then the value of the function is calculated according to the
above formula.

Example 3.43 Assume y = f(x1, x2) = x1
2 + x2 and Ã, B̃ are fuzzy sets as below:

~A ¼ f �1; 0:3ð Þ; 0; 0:7ð Þ; 1; 1ð Þ; 2; 0:5ð Þg
Solve: First we calculate Ã*B ̃:

Ã*B ̃= {((−1, 1), 0.3), ((−1, 2), 0.3), ((−1, 3), 0.3), ((0, 1), 0.4), ((0, 2), 0.7), ((0,
7), 0.3), ((1, 1), 0.4),

((1, 2), 0.7), ((1, 3), 1), ((2, 1), 0.4), ((2, 2), 0.3), ((2, 3), 0.5)}
Then we calculate f(x1, x2) = {1, 2, 3, 4, 5, 6, 7},

f ~A; ~B
� � ¼ f 1; 0:4ð Þ; 2; 0:7ð Þ; 3; 0:7ð Þ; 4; 1ð Þ; 5; 0:4ð Þ; 6; 0:5ð Þ; 7; 0:5ð Þg

i.e.: f(Ã, B ̃)(2) = max{minA(−1), B(1), min(A(0), B(2)), min(A(1), B(1))} = max
{0.3, 0.7, 0.4} = 0.7

The bi-variate extension principle is used to carry out arithmetic operations on
fuzzy numbers.

3.6.3 Philosophy of Fuzzy Numbers

Most qualitative phenomena are not representable with an absolute number, for
example when we say that the velocity of a P wave is about 4.5 m/sec or the first
peak is received to the geophone at about 3 s after the main shot the value of
velocity and time are vague. Also in most of laboratory and also field measurements
the value of the quantities are vague and non-precise; in all the cases mentioned we
can use fuzzy numbers.

Usually for vague concepts with expressions like: about, approximately, close to,
etc. fuzzy set are assigned which are indeed fuzzy numbers.

Fuzzy numbers are useful in various field-like decision-making situations,
approximate reasoning, neuron-fuzzy network, fuzzy, control, etc. For example the
below statement is related to a fuzzy controller: IF the temperature of room is about
40 °C then the rotation power of the cooler motor will be increased; About 40 °C
can be shown with a fuzzy number.

3.6.4 Definition of a Fuzzy Number

A fuzzy set Ã with membership function A(x) is named a fuzzy number when it has
the properties below:
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1. The fuzzy set Ã is a convex set
2. 9x0 2 X s:t:A xoð Þ ¼ 1
3. It is part by part sectional continuous.

Example 3.44 The below membership function is a fuzzy number shown in
Fig. 3.51.

A xð Þ ¼
x�1
2 1� x� 3

7� 2x 3\x\3:5

�
ð3:75Þ

The membership is triangular and so it is convex. A (3) = 1, and is continuous,
so the MF is a fuzzy number: “about 3” (Fig. 3.51).

An operation on a fuzzy number is possible through the extension principle, i.e.
for f(x) = kx according to the extension principle f(m ̃) = km̃ where its membership
function is achieved replacing y/k as x in mx.

Example 3.45 Calculate twice the fuzzy number 3 ̃(about 3) in the example.
Solve:

f Að ÞðyÞ¼ sup ¼
y
2�1
2 1\y=2� 3

7� 2 y
2 3\ y

2\3:5

(
¼

y�2
4 1\y� 6

7� y 6\y\7

�
ð3:76Þ

Example 3.46 Assuming m ̃, ñ are fuzzy numbers with membership functions
defined below, calculate m̃ + ñ?

~m xð Þ ¼ x� 1 1\x� 2
3� x 2\x\3

�
~nðxÞ ¼ 2x� 5 3:5\x\3

7� 2x 3\x\3:5

�
ð3:77Þ

To calculate the sum of two fuzzy numbers we can use the bivariate extension
principle:

If: f(x, y) = x + y the f(m ̃, ñ) = m ̃ + ñ, f(m, n)(z) = sup{min(m(x), n(y))}

z ¼ xþ y

or

mþ nð Þ zð Þ ¼ _ðm xð Þ ^ n yð ÞÞ ð3:78Þ

z ¼ xþ y

0

1

0 1 2 3 4

Fig. 3.51 Fuzzy number
“about 3”
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So:

mþ nð ÞðzÞ¼
27�7
3 3:5\z� 5

13�2Z
3 5\z\6:5

�
ð3:79Þ

In general conditions when m ̃, ñ are fuzzy numbers with membership function m
(x), n(x) respectively, then:

mþ nð ÞðzÞ¼ _ðm xð Þ ^ n yð ÞÞ
Z ¼ xþ y

ð3:80Þ

m:nð ÞðzÞ¼ _ðm xð Þ ^ n yð Þ
Z ¼ x:y

ð3:81Þ

m� nð ÞðzÞ¼ _ðm xð Þ ^ n yð ÞÞ
Z ¼ x� y

ð3:82Þ

m=nð ÞðzÞ¼ _ðm xð Þ ^ n yð ÞÞ
Z ¼ x=y

ð3:83Þ

Note: Bell-shaped membership functions can also be membership functions of
fuzzy numbers, i.e. m xð Þ ¼ 1

1þðx�aÞ2 can be the representation of ‘about a’. Also a

combination of linear and bell-shaped membership functions can be a membership
function of a fuzzy number (Fig. 3.52).

Performing an arithmetic operation on fuzzy numbers is, as we have seen,
sophisticated and time consuming. To solve this problem a general format is
defined for all fuzzy numbers which is simpler than before and is famous as the
‘LR’ representation first suggested by Dubios and Prade (1978).

3.6.5 LR Representation of Fuzzy Numbers

Assume m̃ is a fuzzy number with membership function m(x). Its LR representation
is as defined in the formula below (its graph is illustrated in Fig. 3.53:

m xð Þ ¼
L m�x

a

� �
; x�m

R x�m
b

� �
; x[m

(
ð3:84Þ

Fig. 3.52 Combination of
linear and bell-shaped MFs as
a fuzzy number m̃
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Where L and R, are functions with the properties below:

1. L and R, are continuous functions
2. L(0) = 1, R(0) = 1
3. L and R are non-increasing on [0; +∞].
4. L(x) = L(−x), R(x) = R(−x)
5. lim R(x) = 0, lim L(x) = 0

X ! 1 X ! 1
(L and R membership function, and m characterizes the mean value of m ̃).
Some examples of the functions which can be used as L, R are:

max 0; 1� xf g; 1� xj jP: p[ 0; e�x2 ;
1

1þ x2
ð3:85Þ

Symbolically we will present the LR fuzzy numbers with:

~m ¼ ðm; a; bÞLR ð3:86Þ

Where ‘m’ is the assumed number, ‘a’ is the left band width, ‘b’ is the right band
width, L is left band function and R is the right band function (Fig. 3.54) namely
the left and the right coefficients of “fuzziness” respectively.

Fig. 3.53 LR fuzzy number

Fig. 3.54 A typical
triangular fuzzy number
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Example 3.47 The fuzzy number ~z ¼ ð2 1
2 ;

1
3ÞLR with L(x) = 1 − ∣x∣, RðxÞ ¼ 1

1þ x2

has the membership function as below:

m xð Þ ¼
L 2�x

1
2

� �
; x� 2

R x�2
1
3

� �
; x[ 2

8<: ¼ 2x� 5; x� 2
1

1þð2x�6Þ2 ; x[ 2

(
ð3:87Þ

3.6.6 Operations on LR Fuzzy Numbers

Assume ~m ¼ ðm; a; bÞLR; ~n ¼ ðn; c; dÞLR then:

1. Sum of two LR fuzzy numbers:

ðm; a; bÞLR þðn; c; dÞLR ¼ ðmþ n; aþ c; bþ dÞLR ð3:88Þ

2. Scalar product of an LR fuzzy numbers

kðm; a; bÞLR ¼ ðkm; ka; kbÞLRk[ 0
ðkm;�ka;�kbÞLRk\0

�
ð3:89Þ

3. Product of two LR fuzzy numbers:

ðm; a; bÞLR � ðn; c; dÞLR ¼
ðmn;mcþ na;mdþ nbÞLRm; n[ 0
mn; na� md; nb� mcð Þn 0;mh i0

ðmn;�nb� md;�na� mcÞLRn;m\0

8<: ð3:90Þ

4. Subtraction of two LR fuzzy numbers:

ðm; a; bÞLR � ðn; c; dÞLR ¼ ðmþ n; aþ c; bþ dÞLR ð3:91Þ

Example 3.48 Assume: m ̃ = (3, 1, 1)LR, ñ = (2, 1/2, 1)LR and L(x) = R
(x) = 1 − ∣x∣,

calculate m̃ + ñ = (3, 1, 1) and m̃ � ñ.
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Solve:
ã = m ̃ + ñ = (3, 1, 1)LR + (2, 1/2, 1)LR = (5, 3/2, 2)LR

A xð Þ ¼
x�3:5
1:5 x� 5
7�x
2 x[ 5

�
ð3:92Þ

3.6.7 Triangular Fuzzy Numbers

A fuzzy number whose membership function shape is a triangle is called a trian-
gular fuzzy number. Correspondingly when L(x) = R(x) = 1 − ∣x∣, a fuzzy number
will be triangular as shown in Fig. 3.54.

The fuzzy numbers are shown with triple (a, m, b) where m is the fuzzy number,
‘a’ is the start point and ‘b’ is the end point, if the domain (a, b) is the support of the
fuzzy number. If a = 0.3 then the fuzzy number is symmetric and m is the middle
point between a, b.

Assume m̃, ñ are triangular fuzzy numbers:
m ̃ = (a, m, b), ñ = (a2, n, b2) sum, subtraction and symmetry of each number are:

~mþ ~n ¼ a1 þ a2;mþ n; b1 þ b2ð Þ ð3:93Þ

~m� ~n ¼ a1 � a2;m� n; b1 � b2ð Þ ð3:94Þ

� mð Þ ¼ �b1;�m;�að Þ ð3:95Þ

Example 3.49 Assume ñ = (1, 2, 3), m ̃ = (2, 3, 4) shown in Fig. 3.55a, b
respectively, then:

~mþ ~n ¼ 3; 5; 7ð Þ; ~m�~n ¼ �1; 1; 3ð Þ ð3:96Þ

3.6.8 a-cut of Fuzzy Number

The a-cut of a fuzzy number is a domain so the operation on fuzzy numbers can be
calculated via operations on their domains (Fig. 3.56):

Ma ¼ aa; ba½ � ð3:97Þ
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3.6.8.1 Operations on Domains

If [a, b] and [c, d] are domains then:

a; b½ � þ c; d½ � ¼ aþ c; bþ d½ � ð3:98Þ

a; b½ � � c; d½ � ¼ a� d; b� c½ � ð3:99Þ

a; b½ �: c; d½ � ¼ ½min ac; ad; bc; bdð Þ;max
a
d
;
a
c
;
b
d
;
b
c

� �
� ð3:100Þ

a; b½ �= c; d½ � ¼ ½minða
d
;
a
c
;
b
d
;
b
c
Þ;maxða

d
;
a
c
;
b
d
;
b
c
Þ� ð3:101Þ

where d 6¼ 0 and c 6¼ 0.

0 1 2 3

Fuzzy number "n"

0 1 2 3 4

Fuzzy number "m"

(a)

(b)

Fig. 3.55 a fuzzy number ñ
b fuzzy number m̃

2a bma b

Fig. 3.56 Illustration of
a-cut of a fuzzy number
(Soleimani and Hajian 2017)
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3.6.8.2 a-cut Method for Arithmetic Operations

In this method the a-cut of a fuzzy number is calculated first and then through the
operations on domains, operations on a-cut are obtained via decomposition.

Assume m̃ = (a, m, b) is a triangular fuzzy number, in this case its a-cut is:

ma ¼ aa; ba½ � ¼ m� að Þaþ a;� b�mð Þaþ b½ � ð3:102Þ

And if ñ = (c, n, d)
Then:

na ¼ ca; da½ � and m:nð Þa ¼ ma:na ð3:103Þ

m:n ¼ [ a m:nð Þa
a 2 0; 1½ � ð3:104Þ

Note for fuzzy numbers the a-cut is a domain and so for transforming of a
domain to a triangular fuzzy number it is sufficient to calculate the a-cut for a = 0,
a = 1. a-cut with a = 1 is such height of fuzzy set and a-cut with a = 0 is its
support.

Example 3.50 Calculate sum of the fuzzy numbers m ̃ = (3, 4, 5), ñ = (1, 2, 3)

ma ¼ 4� 3ð Þaþ 3;� 5� 4ð Þaþ 5½ � ¼ aþ 3;�aþ 5½ � ð3:105Þ

na ¼ 3:1ð Þaþ 1;� 3:1ð Þaþ 3½ � ¼ aþ 1;�aþ 3½ � ð3:106Þ

mþ nð Þa¼ 2aþ 4;�2aþ 8½ � ð3:107Þ

a ¼ 0 ) mþ nð Þ0¼ 4; 8ð Þ
) ~mþ ~n ¼ 4; 6; 8ð Þ

a ¼ 1 ) mþ nð Þ1¼ 6; 6ð Þ ¼ 6

3.6.8.3 Fuzzy Domain

A fuzzy domain is a trapezoidal shape fuzzy set (Fig. 3.57). Its LR representation
is:

gm; nð Þ ¼ m; n; a; bð Þ

mn xð Þ ¼
L m�x

a

� �
x\m

1m� x� n
R x�n

b

� �
x[ n

8><>: ð3:108Þ
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Some researchers know the fuzzy domain as a trapezoidal fuzzy number or flat
fuzzy number. The fuzzy domains are used for fuzzy concepts such as close to the
normal distribution or ‘mediocre’.

3.7 Definition of Some Basic Concepts of Fuzzy Sets

Assume that set Ã is a fuzzy set of universal set x.

Definition 3.1—Height of fuzzy set The largest value of membership degree of
fuzzy set Ã is called the height of Ã and is shown with hgt (Ã).

Definition 3.3—Normal set Fuzzy set Ã is called a normal set if hgt (Ã) = 1 or the
height is 1.

Definition 3.3—Support of a fuzzy set The members of the universal set with
membership degree greater than zero are shown with supp (Ã):

SUPPð~AÞ ¼ x 2 X : AðxÞ[ 0f g ð3:109Þ
Definition 3.4—Crossover point The point at which the membership degree is 1/2
is called the passing point.

Definition 3.5—Subset Given two fuzzy sets A, B defined on the same universal
set X, A is said to be a subset of B if and only if: µA (x) � µB (x).

For all x 2 X. The usual notation A � B is used to signify the subsethood
relation.

Definition 3.6—Fuzzy power set of X The set of all fuzzy subsets of X is called
the fuzzy power set of X and is denoted by F(x).

m n

Fig. 3.57 Illustration of a
typical trapezoidal fuzzy
number
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Definition 3.7—Degree of subsethood It stands for the degree that a given fuzzy
set is a subset of another set (Dhar 2012) . It means the degree to which the set A is
a subset of the set B, sub (A, B) to A in B: when the sets are defined on a finite
universal set X we have:

Sub A;Bð Þ ¼
P

x2X A xð Þ �Px2X max 0;A xð Þ � B xð Þ½ �P
x2X A xð Þ ð3:110Þ

The negative term in the numerator means that if the sum of the degree to which
the subset inequality: A(x) � B(x) is violated, the positive term implies the largest
possible violation of the inequality, the difference in the numerator describes the
sum of the degree to which the inequality is not violated, and the term in the
denominator is a normalizing factor to obtain the range: 0 � SUB (A, B) � 1.
Totally, the degree of subsethood defines the degree to which one set belongs to
another.

When sets A and B are continuous (i.e. X is a closed interval of real numbers)
then the three R terms in equation are replaced with integrals over X.

Definition 3.8—Scalar cardinality For any fuzzy set Ã defined on a finite uni-
versal set X, its scalar cardinality is defined by the formula:

~A
�� �� ¼X

x2X A xð Þ or ~A
�� �� Z

x2X
A xð Þd Xð Þ ð3:111Þ

and the relative cardinality is:

~A


 

 ¼

~A
�� ��
Xj j ð3:112Þ

Definition 3.9—a-cut of a fuzzy set Given a fuzzy set A defined on a and a
particular number a in the unit interval [0 1], the a-cut of A denoted by aA is a crisp
set that consists of all element of X whose membership degrees in A are greater
than or equal to a:

aA ¼ fajA xð Þ� ag ð3:113Þ
Definition 3.9.1—Strong a-cut The strong a-cuta +A, has a similar meaning to
a-cut, but the condition “greater than or equal to” is replaced with the stronger
condition “greater than”:

aþA ¼ fxjA xð Þ[ ag ð3:114Þ
Definition 3.9.2—Core of fuzzy set The set 1A (a-cut with a = 1) is called the
core of A.
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Definition 3.9.3 Level set of a fuzzy set:
The set of distinct values of A(x) for all x 2 X is called the level set of A and is

denoted by:

KA : KA ¼ a : AðxÞ ¼ a x 2 Xf g ð3:115Þ

Some of the mentioned definitions are illustrated in Fig. 3.58.

Definition 3.10—Convex fuzzy set Ã is a convex set if and only if (Fig. 3.59):

Aðkx1 þð1� kÞx2Þ�minðAðx1Þ;Aðx2ÞÞ8x1; x2 2 X; k 2 ½0; 1� ð3:116Þ
Definition 3.11—Fuzzy partitioning Assume that Ã1, Ã2,…,Ãn Are fuzzy sets
over X so that:

8x 2 X
Xn
i¼1

AiðxÞ ¼ 1 ð3:117Þ

Fig. 3.59 a Convex and non-convex b fuzzy sets (http://researchhubs.com/post/engineering/
fuzzy-system/linguistic-variables.html)

Fig. 3.58 Illustration of some basic characteristics of fuzzy sets (Demicco and Klir 2004)
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In this case Ã1, Ã2, …,Ãn are called the partitions of universal X.

Example 3.51 Assume
Ỹ = {(5, 0), (10, 0.2), (15, 0.4), (20, .9), (25,1), (30, 0.9), (35, 0.5), (40, 0.3), (45,0)}.
In this fuzzy set the height is 1 and so it is a normal set. Also:

SUPPð~YÞ ¼ f40; 35; 30; 25; 20; 15; 10g
The passing point of Ỹ is 35. The cardinality of Y ̃:

∣Ỹ∣ = 0 + 0 + 0.2 + 0.4 + 1 + 0.9 + 0.9 + 0.5 + 0.3 = 4.2

The relative cardinality ∣∣Ỹ∣∣ = 4.2/9 = ̃ 0.48

And the level set: KA ¼ 0; 0:2; 0:3; 0:4; 0:5; 0:9; 1f g
Example 3.52 If the universal set X = {1, 2, 3, 4, 5}

Ã1, Ã2 are partitions of X:
Ã1 = {(1, 0), (2, 0.4), (3, 0.7), (4, 1)}
Ã2 = {91, 1), (2, 0.6), (3, 0.3), (4, 0)}

Example 3.53 The fuzzy set ‘real numbers close to 5’ with membership function:

A xð Þ ¼ 1
1þ x�5ð Þ2 is a normal and convex fuzzy set (Fig. 3.60).

3.8 T-Norm

A t-norm is a bivariate function:

t : 0; 1½ � � 0; 1½ � ! 0; 1½ � ð3:118Þ

With the properties below:

1: t 0; 0ð Þ ¼ 0 ð3:119Þ
2: t x; 1ð Þ ¼ x ð3:120Þ

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

Fig. 3.60 An example of a normal and convex fuzzy set
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3: t u; vð Þ� t w; zð Þif u�wand u� z Monotonicityð Þ ð3:121Þ

4: t x; yð Þ ¼ t y; xð Þ : symmetryð Þ ð3:122Þ

5: t x; t y; tð Þð Þ ¼ t t x; yð Þ; zð Þ associativityð Þ ð3:123Þ
A t-norm can be considered to be an intersection operator.
Applied to the membership functions of A and B, let:

C ¼ A\B then : lc xð Þ ¼ t lA xð Þ; lB xð Þð Þ ð3:124Þ

The properties of a t-norm describe the natural properties of an intersection.
The first property states that if an element does not belong to either one of the

sets, that it does not belong to the intersection.
The second property states that if an element if surely belongs to one of the sets

it also belongs to the intersection at the same level as it belongs to the other set.
The third property means that if an element belongs to both intersecting sets

more than the other one, it also belongs to the intersection more than the other one.
Properties 4 and 5 assure that the intersection is independent of the order in

which the intersecting sets are considered.
T-norms define generalizations of the intersection of ordinary sets. The union of

fuzzy sets can be defined with a t-norm function which assigns the membership
value to an element in the union depending on the individual membership values in
their respective sets.

3.9 S-Norm

Definition—A s-norm is a bivariate function:

S : 0; 1½ � � 0; 1½ � ! 0; 1½ � ð3:125Þ

With below properties:

1: S 1; 1ð Þ ¼ 1 ð3:126Þ

2: S x; 0ð Þ ¼ x ð3:127Þ

3: S u; vð Þ� S w; zð Þ if u�wand v� z monotonicityð Þ ð3:128Þ

4: S x; yð Þ ¼ S y; xð Þ; symmetryð Þ ð3:129Þ

5: S x; s y; zð Þð Þ ¼ S s x; yð Þ; zð Þ Associativityð Þ ð3:130Þ
A S-norm can be taken as a union operator applied to the membership function

of Ã and B ̃ let C ̃ = Ã [ B̃ then:

276 3 Fuzzy Logic



lc ¼ S lA xð Þ; lB xð Þð Þ ð3:131Þ

The properties of S-norm ensure that the union is independent of the order in
which the arguments are taken. The union so defined is also a generalization of the
union of ordinary sets.

There is a close relationship between t-norm and s-norm as shown in Schweizer
and Sklar (1961):

S x; yð Þ ¼ 1� t 1� x; 1� yð Þ ð3:132Þ

And also:

T x; yð Þ ¼ 1�S 1� x; 1� yð Þ ð3:133Þ

3.10 If-then Fuzzy Rules

If-then fuzzy rules are the main base of the fuzzy-rule based modeling with various
applications in geophysical problems from forward modeling to interpretation.

In this section we first explain the concept of “fuzzy statements” and then
describe the principles of if-then fuzzy rules.

3.11 Fuzzy Statement

A fuzzy statement is a statement with uncertainty and vagueness, i.e. “The residual
anomaly is small” or “The velocity of P-wave is very high”.

In fuzzy statements verbal or linguistic variables are used. A linguistic variable is
a variable with an equivalent verbal expression and is defined as below.

3.12 Linguistic Variable

A linguistic variable is defined with a quintuple (x, T(x), U, G, M) where:
X is the name of variable, U is the universal set, T(x) is the set of terms related to

variable x (Term is a fuzzy set).
A semantic rule produced through syntactic rule G and M which relates to each

of T(x) its semantic or on the other hand, determines its membership function.

Example 3.54 Assume x is a linguistic variable for tallness of people and
U = [0.250]. Each of the terms of this linguistic variable is a fuzzy set over U i.e.:
tall, short, not-very tall, very tall, etc., and in general condition can be produced
regularly through rule G(x).
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T tallnessð Þ ¼ tall; short; very tall; not� very tall; to some extent tall; . . .f g

M(x) is a rule that gives to each terms a semantic through a membership function
of U. For example for term A: “tall” the below membership function can be defined:

M tallð Þ ¼ ðu;A uð Þ : A : U ! 0; 1½ �f g ð3:134Þ

Where:

A uð Þ ¼
0 0� u� 160

u�160
50 160� u� 210
1 210� u� 250

8<: ð3:135Þ

So the proposition “peter is tall” can be written is:

`x is ~A' ð3:136Þ

Where x is the stature of peter and Ã is the fuzzy set of “tall”.

3.13 Fuzzy Conditional Proposition (Fuzzy if-then Rule)

3.13.1 Definition with Example in Geophysics

A fuzzy if-then rule is defined as:

“if\ fuzzy statementh i then fuzzy statementh i” ð3:137Þ

This conditional fuzzy proposition is represented as:
If x is Ã then y is B̃ or:
If A(x) then B(y)

where x is a linguistic variable for the Prior statement and y is a linguistic variable
for the following statement.

Example 3.55 Assume the relationship between pressure and temperature of a
reservoir is as below:

If “pressure is high “then” Temperature is very high”.
In this example temperature and pressure are linguistic variables x, y respec-

tively. If we assume ‘High’ and ‘very high’ as fuzzy sets F, a, respectively then this
can be re-written as:

If x is ~F then y is ~G ð3:138Þ
Fuzzy rules are used widely in fuzzy controllers, fuzzy expert systems, fuzzy

approximate reasoning, pattern recognition and fuzzy decision making.
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Using if-then fuzzy rules we can model the behavior of nonlinear systems or
complex systems which can’t be modeled easily with classical algorithms of
modeling.

In geophysical aspects we can use if-then fuzzy rules especially for interpretation
of geophysical data i.e. well-logs, conductivity, gravity, geomagnetic anomalies,
etc. For example the statement “If the amplitude of the residual gravity is high then
the size of the object is big or the depth is shallow”. Variables ‘big’ and ‘shallow’
are linguistic (Fig. 3.61).

Example 3.56 The shape factor ‘q’ is used to calculate the gravity anomaly of
simply shaped objects such as: sphere (q = 0.5), horizontal cylinder (q = 1), ver-
tical cylinder (q = 5):

g xð Þ ¼ A
ðx2 þ z2Þq ð3:139Þ

When we calculate the value of q for real bodies from residual gravity data of a
principle profile the variable q can take values which are not exactly the above
mentioned but ‘closer’.

Then we can have the fuzzy if-then rule for the shape factor as below:

– If q is close to 1.5 then the buried object shape is close to a sphere.
– If q is close to 5 then the buried object shape is close to a vertical cylinder.
– If q is close to 1 then the buried object shape is close to a horizontal cylinder.

Fig. 3.61 The ‘linguistic’ variables used in gravity data interpretation (‘big’, ‘shallow’ are
linguistic variables)
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The most important problem for if-then fuzzy rules is the quality of their
interpretation. In bi-value logic or classical logic when the rule P ⟹ q is defined it
is very easy to find its value because the final interpretation is zero or one.

The conditional proposition value-table is demonstration of the relationship
between the prior and the following. On the other hand a conditional Proposition is
false when its prior is true but its following is false.

This relationship can be presented as a value-function as below:

R p; qð Þ ¼ 1 p� q
0 p[ q

�
ð3:140Þ

Similarly in fuzzy logic the fuzzy if-then is interpreted from the fuzzy point of
view.

3.13.2 Interpretation of Fuzzy if-then Rule

Assume the fuzzy rule: if x is F ̃ then y is G̃. The interpretation of this rule is a fuzzy
relationship such as R̃(x, y) which is named the fuzzy implication. There are
different various necessities and some of them are listed in Table 3.29.

Example 3.57 Assume the fuzzy rule: “If it rains heavily then the humidity is high”.
Assume X is the linguistic variable for strength of raining, H is the fuzzy set ‘High’,
y is the linguistic variable for amount of humidity, HN is the fuzzy set ‘High’, then
the if-then rule is defined as: if x is H̃ then y is ~HN. Assume H̃, ~HN are as below
(the values are in the denominator and its membership degree is in the numerator;
note this format is also a way to show fuzzy set members):

gHN ¼ 0:1
25

þ 0:6
50

þ 0:8
75

þ 1
100

ð3:141Þ

~H ¼ 0:2
20

þ 0:4
40

þ 0:6
60

þ 0:8
80

þ 1
100

Thus the interpretation of the rule through Mamdani implications (Table 3.30):

Table 3.29 Definition of
some of fuzzy implications

Name of relation R(x, y)

Zadeh maxfminðFðxÞ;GðxÞÞ; 1� FðxÞg
Denis-Rescher maxf1� FðxÞ;GðyÞg
Mamdani minf1� FðxÞ;GðyÞg
Łukasiewicz minf1; 1� FðxÞþGðyÞg
Larsen FðxÞ:GðyÞ
Gödel 1 FðxÞ�GðyÞ

0 otherwise

�
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R x; yð Þ ¼ min H xð Þ;HN yð Þð Þ ð3:142Þ

Example 3.58 Assume if-then fuzzy rule as below:

if x is ~A then y is ~B ð3:143Þ

~A and ~B are shown in Fig. 3.62. The interpretation of this rule is depicted in
Fig. 3.63 through the Denis-Richer implication and in Fig. 3.64 using Mamdani
implication.

3.14 Approximate Reasoning

3.14.1 Fuzzy Inference

As mentioned before the human brain automatically uses approximate reasoning
which is not provable via classical explicit reasoning or through exceptional
deduction rules like the inference below.

Table 3.30 Interpretationof if-then fuzzy rule through Mamdani implication

R 25 50 75 100

20 0.1 0.2 0.2 0.2

40 0.1 0.4 0.4 0.4

60 0.1 0.6 0.6 0.6

80 0.1 0.6 0.8 0.8

100 0.1 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

10 11 12 13 14 15 16 17 18

Fig. 3.62 Fuzzy sets left: Ã, right: B̃
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Fig. 3.63 Denis-Rescher implication

Fig. 3.64 Mamdani implication
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– If the amount it is raining is high then humidity is high.
– The amount of rain is high.

This inference is explained through fuzzy logic. Using the exceptional deduction
rule in fuzzy state (which is named the fuzzy extended exceptional deduction rule).

3.14.2 Fuzzy Extended Exceptional Deduction Rule

Assume the rule: if x is Ã then y is B̃. If the observation is: x is Ã* then the result is:
y is B̃* represents as below:

– If x is Ã then y is B ̃
– X is Ã*
– Y is B ̃*

This fuzzy interpretation is a fuzzy relationship named implication thus the result
is obtained through combination of the relationship with observation:

eB
 ¼ eA

oeR
 ) B
 yð Þ ¼ sup

x
min A
 xð Þ;R x; yð Þð Þf g ð3:144Þ

The above operations are named fuzzy inference. The fuzzy inference is like a
system with an input A* and output B* (Fig. 3.65).

Example 3.59 Assume the fuzzy-rule in the previous example (example 3.58). If
the amount of raining is observed as very high what will be the amount of
humidity?

The fuzzy set, “very high” is:

eH
 ¼ 0:05
20

þ 0:3
40

þ 0:5
60

þ 0:7
80

þ 1
100

ð3:145Þ
The approximate reasoning is as below:

� If x is ~H then y is ~HN
� x is ~H

� y is ~HN



ð3:146Þ

If x is A then y is B B*A

Fig. 3.65 Fuzzy interference
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According to fuzzy exceptional inference deduction we have:

gHN
 ¼ eH
 
 eR; Rwas calculated in the privious exampleð Þ; thus :

gHN
 ¼ 0:05 0:3 0:5 0:7 1½ �o

0:1 0:2 0:2 0:2
0:1 0:4 0:4 0:4
0:1 0:6 0:6 0:6
0:1 0:6 0:8 0:8
0:1 0:6 0:8 1

266664
377775 ¼ 0:1 0:6 0:8 1½ �

Now, assume the membership functions of fuzzy sets are continuous then the
fuzzy inference is the same as before. If the Mamdani implication is used it has an
interesting geometrical interpretation. Assume the below fuzzy if-then rule:

if x is eA then y is eB
Where A(x) and B(x) are continuous membership functions and the input of this

rule A*(x) is also continuous then the output of the above fuzzy rule will be as
below:

B
 yð Þ ¼ A
 
 R ¼ sup
x

min A
 xð Þ;R x; yð Þð Þf g ¼ sup
x

min A
 xð Þ;min A xð Þ;B yð Þð Þð Þf g
¼ sup

x
min min A xð Þ;A
 xð Þð Þ;B yð Þð Þf g ¼ sup

x
min A\A
ð Þ xð Þ;B yð Þð Þf g

¼ min sup
x

A\A
ð Þ xð Þ;B yð Þð Þ
� �

¼ min hgt A\A
ð Þ;B yð Þf g ¼ min a;B yð Þð Þ

ð3:147Þ

Where a = hgt (A \ A*) is the height of the intersection of the prior fuzzy set
and input fuzzy set. Its geometrical interpretation is depicted in Fig. 3.66.

Example 3.60 Ina cooler system one of the fuzzy rules is: if the ‘room temperature
is high’ then ‘the motor power is very high’. Assume the linguistic variable ‘high’

Fig. 3.66 Geometrical interpretation of if-then fuzzy rule: if x is Ã then y is B ̃
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as the H̃ fuzzy set and Assume the linguistic variable ‘very high’ as the V ̃ fuzzy set
(Fig. 3.67) then the fuzzy rule is:

If x is ~H then y is ~V ð3:148Þ
where x is the linguistic variable for room temperature and y is the linguistic
variable for rotational power of motor. The fuzzy sets are shown below. If the room
temperature (T) is about 30 °C, then how much will the rotational power be? Solve:
The input is T* = {T| T is about 33} so the output will be V* = ROT* and V* is
shown in Fig. 3.68.

Fig. 3.67 Fuzzy set for (H ̃) and V ̃

Fig. 3.68 The fuzzy output V* (Soleimani and Hajian 2017)
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3.15 Fuzzy Rules Base

3.15.1 Definition Assume F1, G1, I = 1, 2,…, N Are Fixed
Fuzzy Sets Over Set U then

RB

if F1 thenG1

:
:
if Fn thenGn

8>><>>: ð3:149Þ

is named a fuzzy if-then rules base.
In fuzzy systems the fuzzy rule base is used, thus the interpretation of this type

of base plays an important role in fuzzy systems. There are two common methods
for inference of this fuzzy-rules base. The first method is named FATI which means
First Associate Then Inference. The second method is named FITA which means:
First Inference Then Associate. In the first method first all the rules are satisfied and
then inference is done but in the second method each inference is applied separately
and then the results are associated.

3.15.2 FATI Method

Assume RB is a fuzzy if-then rules base and R̃i is a standard relationship base on F̃i,
Gĩ respect to ith rule:

Riðx; yÞ ¼ minðFiðxÞ;GiðyÞÞ, if the input of this rules base is f ̃* the output is:
B 
 ðyÞ ¼ sup

x2U
fminðF 
 ðxÞ;maxfR1ðx; yÞ; . . .;Rnðx; yÞgÞg ð3:150Þ

This method means that if a rules base is defined as in this equation, the fuzzy
standard relationship of each rule is calculated first: Riðx; yÞ ¼ minðFiðxÞ;GiðyÞÞ,
then the standard relationship of the base is defined as: Rðx; yÞ ¼ max

i
Riðx; yÞ. So if

F̃* is the input of the base then the output is:

FATIRBðF
ÞðyÞ ¼ sup
x2U

fminðF 
 ðxÞ;Rðx; yÞÞg ð3:151Þ

where FATIRB (F*) (y) is B*(y).
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3.15.3 FITA Method

Assume RB is a fuzzy if-then rule base, whereas the input of this base is F*, in
FITA method the input is applied to each of the rules and the output is calculated:
G*i(y) = sup{min(F*(x), Ri(x, y))} then these outputs are associated:

G 
 yð Þ ¼ max G 
1 yð Þ;G 
2 yð Þ; . . .;G 
n yð Þf g ð3:152Þ

In fuzzy systems the input is usually a crisp number thus at the first stage it is
necessary to fuzzificate the input, on the other hand if the input is for example x0,
fuzzification of x0 means calculating its membership degree to the fuzzy set of the
prior proposition.

Example 3.61 Assume a fuzzy rules base with two rules, x0 is the input of the base,
as shown in Fig. 3.69, calculate the output of this base.

If x is ~A1then y is ~B1 ð3:153Þ

If x is ~A2then y is ~B2

Fuzzy rules base plays a basically role in fuzzy controllers. A fuzzy rule-base
model is shown in Fig. 3.70.

3.16 Defuzzification

As can be seen in the Fig. 3.70, one of the final stages for fuzzy rule based
modeling is defuzzification. Some of the most useful defuzzification methods are:
method of center of mass, center of totals, means of max and height method and
these are investigated in the next sections.

Assume Ã is a defined fuzzy set over x with membership function A(x) and its
defuzzification is represented by x*. The value of x* can be obtained using one of
the above mentioned methods that will explain in the following sections.

3.16.1 Center of Gravity (Centroid of Area) Defuzzification

A—if x is a discrete set X = { x1, x2, …, xn} its defuzzification is obtained via the
formula below:

x
 ¼
Pn

i¼1 xiAðxiÞPn
i¼1 A xið Þ ð3:154Þ
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B—if x is a continuous set then:

x
 ¼
R
x x A xð ÞdxR
x A xð Þdx ð3:155Þ

A schematic of a center of gravity defuzzificator is shown in Fig. 3.71.

Example 3.62 Defuzzificate the fuzzy set below:

~A ¼ 0:2
1

þ 0:5
2

þ 0:7
3

þ 0:9
4

þ 1
5

ð3:156Þ

Fig. 3.69 Calculation output of a fuzzy rules base for a crisp input
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x
 ¼ 0:2� 1þ 0:5� 2þ 0:7� 3þ 0:9� 4þ 1� 5
0:2þ 0:5þ 0:7þ 0:9þ 1

¼ 3:6 ð3:157Þ
Here as the set numbers is integer and the nearest integer number to 3.6 is

selected as the defuzzification of Ã.

3.16.2 Center of Sum Method

In a fuzzy system, if B̃1, B̃2, …,Bm̃ are output fuzzy sets, defuzzification of the final
output is calculated via the formula below:

Fig. 3.70 Schematic diagram of a fuzzy rule-base model (fuzzy system controller)

Fig. 3.71 Schematic of a defuzzificator base on center of gravity method
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x
 ¼
Pn

i¼1 xi
Pm

x¼1 Bk xið ÞPn
i¼1

Pm
x¼1 Bx xið Þ for discrete setsð Þ ð3:158Þ

and

x
 ¼
R
x x
Pm

x¼1 Bx xð ÞdxR
x

Pm
x¼1 Bx xð Þdx for continuous setsð Þ ð3:159Þ

3.16.3 Mean of Max Method

Assume M = {xi∣A(xi) = hgt (Ã)}, in this case:

x
 ¼
P

xi2M xi
Mj j ð3:160Þ

This method is depicted in Fig. 3.72.

3.16.4 Height Method

In a fuzzy system, if B̃1, B ̃2, …,B ̃m are output fuzzy sets and Hk = hgt(B ̃k) then:

x
 ¼
Pm

k¼1 HkxkPm
k¼1 Hk

ð3:161Þ

In Fig. 3.73 the height defuzzification method is shown for a four fuzzy output.

Fig. 3.72 Mean of max
defuzzification method.
Source http://control.ee.ethz.
ch/*ifa-fp/wiki/index.php?
n=Main.FuzzyHeli
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Example 3.63 Assuming the fuzzy rules base below. If this base input x0 = 3.5
then calculate the output through center of gravity defuzzification method.

– If x is (2, 1, 1)LR then y is (12, 1, 1)LR
– If x is (3, 0.75, 1)LR then y is (14, 2, 1)LR

where L(x) = R(x) = 1 − ∣x∣.

B 
 yð Þ ¼

x� 11 11\x� 11:5
0:5 11:5� x� 13:5

13� x 13:6� x� 13:67
0:33 13:67\x� 14:67
15� x 14:6\x� 15

8>>>><>>>>: ð3:162Þ

B*(y) is shown in Fig. 3.74. As it can be seen the output for x0 = 3.5 is 0.5.

3.16.5 Bisector Defuzzification

This method uses a vertical line that divides the area under the membership curve
into two equal areas:

Zz
a

A xð Þdx ¼
Zb
z

A xð Þdx ð3:163Þ

Fig. 3.73 Height
defuzzification method for
four fuzzy sets
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Fig. 3.74 Center of gravity defuzzification method for example 3.63 (Soleimani and Hajian 2017)
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3.16.6 Smallest of Maximum Defuzzification

This method uses the minimum value of the aggregated membership function
outputs.

z0 2 xjlðxÞ ¼ min
x

lðxÞ
n o

ð3:164Þ

3.16.7 Largest of Maximum Defuzzification

This method uses the maximum value of the aggregated membership function
outputs.

z0 2 xjlðxÞ ¼ max
x

lðxÞ
n o

ð3:165Þ

3.16.8 Weighted Average Defuzzification Method

This method is based on the peak value of each fuzzy set, and calculates weighted
sum of these peak values (Kaehler 1998). Depending on these weight values and
the degree of membership for fuzzy output, the crisp value of the output is cal-
culated by the following formula:

x
 ¼
Pm

i¼1 A xð ÞiWiPm
i¼1 Wi

ð3:166Þ

Where A(x)i is the degree of membership in output singleton i, Wi and is the
fuzzy output weight value for the output singleton i (Ross et al. 2010). This method
is valid for symmetrical output membership functions.

A graphical comparison among the smallest of max, largest of max, bisector of
area centroid of area and mean of max defuzzification methods is illustrated in
Fig. 3.75.

Fig. 3.75 Graphical
demonstration of
defuzzification methods (Ross
et al. 2010). Source http://
access.feld.cvut.cz/rservice.
php?akce=tisk&cisloclanku=
2012080002
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3.17 Fuzzifiers

A Fuzzifier is a mapping of a point x* 2 u CRn to a fuzzy set A′ defined in U. The
criterions to design a fuzzifier are:

a. Fuzzifier should satisfy the fact that x* input is crisp, hence the fuzzy set A′
should have the maximum degree of membership.

b. If the input signal of the fuzzy system is disturbed with noise, the fuzzifier
should be able to attenuate the effect of noise or eliminate it.

c. Fuzzifier should simplify the calculations of the fuzzy inference engine.

Here we introduce three of the most common fuzzifiers:

3.17.1 Singleton Fuzzifier

This fuzzifier maps a point x2U to a singleton fuzzy set A′ over U and its mem-
bership degree is equal to 1 at x* and equal to zero for other points, it means that:

lA0 xð Þ ¼ 1 x ¼ x


0 otherwise

�
ð3:167Þ

This fuzzifier maps x*2 U to a fuzzy set over U with a Gaussian membership
function as below:

lA0 xð Þ ¼ e
�ðx�x


1
Þ2

a1 
 . . . 
 e�ðx�x
nÞ2
an ð3:168Þ

where ai is positive and ‘*’ represents a t-form operator which is usually selected as
either min or product operators.

3.17.2 Triangular Fuzzifier

This fuzzifier maps x* 2 U to a fuzzy set A′ over U with a triangular membership
function as below:

MA0 xð Þ ¼ MA0 xð Þ ¼ 1� x�x
1j j
b1

� �

 . . . 
 1� x�x
nj j

bn

� �
: x� x
i
�� ��� bi

0 O:W :

8<: ð3:169Þ

Where bi is positive and * shows a t-norm which is selected usually as an
algebraic product or min. operator.
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Note that:

• Singleton fuzzifiers simplify the calculations of fuzzy inference engine for any
kind of membership functions in if-then fuzzy rules.

• Gaussian and triangular fuzzifiers simplify the calculation when the membership
functions are Gaussian or triangular.

• Guassian and triangular fuzzifiers can attenuate the noise available in the input
whereas singleton fuzzifiers do not have this ability.

3.18 Fuzzy Modeling Using the Matlab Toolbox

The fuzzy logic toolbox enables powerful fuzzy interference system design (FIS) in
a graphical user friendly space. This toolbox has two main parts: part one includes
editing tools: the FIS editor, and the Membership Function Editor and part two
includes read only tools: the Rule viewer and the surface viewer (Fig. 3.76).

Fig. 3.76 Editing and Read-only tools of Fuzzy modeling toolbox in Matlab. Source Matlab
Fuzzy Toolbox Tutorial Help, Mathworks (2009)
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To access the fuzzy logic designer it is enough to enter ‘fuzzy’ in command
window:

� fuzzy

On applying this, a command window named ‘fuzzy logic designer: untitled’:
is opened as shown in Fig. 3.77.
The fuzzy designer is basically used to design FIS which is based on if-then

fuzzy rules and it has two main tools: Editor and viewer tools. With the editor tools
you can edit FIS input and outputs structure. Rules and membership functions and
in viewer tool, are read-only tools.

3.18.1 Fuzzy Inference System (FIS) Editor

In this section you can define the number of input and output variables, name and
edit names of input/output and also adjust fuzzy inference functions.

3.18.2 Membership Function Editor

This tool allows you to save, open, or edit a fuzzy system using any of the five basic
GUI tools. It covers the items (Fig. 3.78):

– Select & edit attributes of membership function
– Display & edit values of current variable
– Name & edit parameters of membership function

More details about this tool are shown in Fig. 3.79 (Mathworks 2009).
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Fig. 3.77 FIS editor tool. Source Matlab Fuzzy Toolbox Tutorial Help, Mathworks (2009)
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3.18.3 Rule Editor

This tool helps you to create and edit rules. When you add a new rule or change a
rule parameters, rules will automatically be updated (Fig. 3.80).
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Fig. 3.78 Membership function editor. Source Matlab Fuzzy Toolbox Tutorial Help, Mathworks
(2009)

Fig. 3.79 Membership function editor with more details. Source Matlab Fuzzy Toolbox Tutorial
Help, Mathworks (2009)
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3.18.4 Rule Viewer

As mentioned before, the rule viewer is a read-only tool to show how input vari-
ables are used in rules and how output variables are used in rules and finally the
output value of the fuzzy system (Fig. 3.81).

3.18.5 Surface Viewer

This is a read-only tool that when you specify input and output variables, displays
the output surface for any system output versus any one (or two) inputs (Fig. 3.82).
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Fig. 3.80 Rule editor. Source Matlab Fuzzy Toolbox Tutorial Help, Mathworks (2009)
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Fig. 3.81 Rule viewer. Source Matlab Fuzzy Toolbox Tutorial Help, Mathworks (2009)
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Chapter 4
Applications of Fuzzy Logic
in Geophysics

4.1 Introduction

As most geophysical data are imprecise they implicitly have a level of uncertainty
which makes them a good choice for using fuzzy methods to model and/or interpret
them. In this chapter we investigate the use of fuzzy methods in various geophysical
disciplines.

4.2 Fuzzy Logic for Classification of Volcanic Activities

The table below (Fig. 4.1) with the criteria for the volcanic explosivity index
(VEI) was published in Fisher and Schmincke (1984), (after Newhall and Self
1982), and can be easily transformed into a fuzzy system. In this case the volumes
of ejecta, column heights, durations (hours of continuous blast), tropospheric and
stratospheric injections can be considered as the input fuzzy sets (whose values can
be measured in the field) while the classification of the volcanic activities
(Hawaiian, Strombolian, Vulcanian, Plinian and Ultraplinian) can be considered as
the output fuzzy sets. Figure 4.1 shows a portion of this table that is relatively easy
to rewrite using fuzzy sets. Of course, triangular membership functions are arbi-
trary, and again their shape and size can be improved using observations, deduc-
tions and experiments.

The fuzzy rules connecting inputs to outputs in this system are represented by
the graphical, vertical correspondence between sets in the table of Fig. 4.1 and are
equivalent to IF-THEN sentences. In this very simple system IF the volume of
ejecta, column height, duration, tropospheric and stratospheric injection of a certain
eruption are small, negligible, none, etc., THEN the activity is for example
Hawaiian. Fuzzy systems can be used to relate causes and effects in extremely
complex volcanological systems (that mathematics is unable to handle) using

© Springer International Publishing AG, part of Springer Nature 2018
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experiments to assess membership functions, fuzzy rules, fuzzy sets, etc. Then to
obtain just a single answer some (defuzzification) technique of the output fuzzy sets
is required (Jamshidi et al. 1993).

This table can be rewritten in fuzzy terms. The vertical correspondences between
sets represent the fuzzy rules (in Fisher and Schmincke 1984 after Newhall and Self
1982).

The inputs and the output fuzzy sets are obtained from Fig. 4.2. Again the
shapes of the membership functions are arbitrary and used only as an example.

4.3 Fuzzy Logic for Integrated Mineral Exploration

An et al. (1991) used the algebraic sum and the y-fuzzy operators to integrate
geological and geophysical data sets (Fig. 4.3) from the Farley Lake area (Fig. 4.4),
digitally using fuzzy memberships. The two exploration targets tested for, pursuing
integration and subsequent identification of the favorable areas were “existence of a
base metal deposit “or “existence of an iron formation deposit”.

The algebraic-sum operator is defined:

C ¼ AþB ¼ f½x; lAþB xð Þ�j x2Xg ð4:1Þ

where:

lAþB xð Þ ¼ lA xð Þþ lB xð Þ�lA xð Þ � lB xð Þ ð4:2Þ

The algebraic sum may be interpreted as the logic “OR” but not only does it
assume full compensation, it is also Increasive, because the membership increases
whenever it is combined with a non-zero membership. The c-operator is defined by
Zimmermann and Zysho (1980) as a combination of algebraic product and alge-
braic sum (Table 4.1).

Fig. 4.1 Classical classification of volcanoes activities (Cagnoli 1998)
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For example in the aeromagnetic map, an iron ore deposit often produces a
prominent magnetic anomaly and this knowledge is useful to scale and rank the
information contained in the aeromagnetic map in the integration of mineral
exploration. When the exploration target changes from “iron ore deposit” to another
different target, the aeromagnetic map information has to be reprocessed. In this
way An et al. (1991) separately assign membership functions for iron ore deposit
and for base metal deposits for each type of geophysical data. Again for example
pixels with a magnetic field anomaly greater than 3000c are assigned lI(i, j) = 0.35
and lB(i, j) = 0.1, pixels with an anomaly range of 500–3000c are assigned lI(i,
j) = 0.2 and lB(i, j) = 0.13, etc. (An et al. 1991).

An et al. (1991) pointed out that determination of the initial fuzzy membership
function depends critically on the exploration target and related geological deposit
characteristics. Generally, the initial fuzzy function representation also depends
heavily on the expertise of the exploration geophysicists and can sometimes be very
qualitative.

Fig. 4.2 Fuzzy classification of volcanoes activities (Cagnoli 1998)
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The membership function lA(x) of the c aggregation of fuzzy sets A1, A2, …,
Am is defined as:

lAðxÞ ¼ ð
Ym
i¼1

liðxÞÞ1�c � ð1�
Ym
i�1

ð1� liðxÞÞc ðx 2 X; 0� c� 1Þ ð4:3Þ

Fig. 4.3 Schematic diagram of spatial information layers (An et al. 1991)

Fig. 4.4 Location of the study area in Farley Lake (An et al. 1991)
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Table 4.1 Table of membership functions for iron ore deposits: lI(x) and membership functions
for base metal deposits: lB(x) Redrawn after An et al. (1991)

Aeromagnetic data (ɤ) lI(x) lB(x)

>3000 0.35 0.10

500–3000 0.2 0.13

<500 0.05 0.15

Grand EM dataa

>20 0.25 0.23

10–20 0.20 0.18

4–10 0.15 0.14

<4 0.05 0.06

Air borne EMb

B 0.2 0.15

C 0.18 0.13

D 0.15 0.11

E 0.13 0.10

Band 0.10 0.08

No anomaly 0.05 0.05

Ground resistivity data (ohm/m)

<100 0.30 0.27

100–500 0.25 0.20

500–1000 0.20 0.13

>1000 0.05 0.06

Ip chargeability datac (mv/v)

>40 0.25 0.27

20–40 0.20 0.20

6–20 0.15 0.13

<6 0.05 0.06

VLF EM datad (Annapolis)

>80 0.20 0.20

50-80 0.15 0.15

20-50 0.13 0.10

<20 0.10 0.06

VLF EM datae (Seattle)

>80 0.20 0.20

50–80 0.15 0.15

20–50 0.13 0.10

<20 0.10 0.06

Airborne input EM dataf

No anomaly 0.05 0.07

Anomaly area 0.15 0.09

2 0.17 0.11
(continued)
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Different values of c allow different degrees of compensation. For two or more
sets of information, selecting the optimum valve for c leads to an optimized
compensatory process to aggregate subjective information categories.

Suppose over an exploration target one finds a very high possibility in one data
set while another data set doesn’t show any significance in the context of the
exploration target or may even show negative possibility. In these cases the con-
fidence level of estimation by combining the two data sets lies between high
confidence and low confidence and the degree of compensation between the two
extreme confidence levels depends on the value of c (An et al. 1991). When c = 0
there is no compensation and when c = 1 there is full compensation (Figs. 4.5 and
4.6). An et al. (1991) found c = 0.975 as the optimized value for fusion of geo-
physical data. Plot of the Zimmermann operator with c = 0.975 using Matlab is
illustrated in Fig. 4.7.

a=0:0.01:1;
b=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
gama=1;
for j=1:length(b)
for i=1:length(a)
d=(a(i)*b(j))^(gama)
e=(1-b(j))*(1-a(i));
f=(1-e)^(1-gama);
c(i)=d*f;
end

Table 4.1 (continued)

Aeromagnetic data (ɤ) lI(x) lB(x)

3 and 4 0.19 0.13

5 and 6 0.22 0.15

Geological map

Felsic intrusive 0.05 0.20

Basalt—Andesite 0.18 0.15

Iron rich rocks 0.35 0.10

Picrate 0.20 0.10

Mafic intrusive 0.25 0.10
aThe survey parameters for the ground EM survey were: operating frequency � 2400 Hz, coil
spacing = 300 m and the coil configuration-horizontal loop. The anomaly was estimated as
percentage of the ratio Hs/Hp which is equal to [(in phase/Hp)2 + (out of phase/Hp)2]1/4
bThe airborne EM anomaly map used in this study was graded A, B, C, … in the original map to
represent the relative amplitude ranges. The “Band” represent low and wide band of weak
anomalies
cTime domain IP with pole-dipole array configuration
dVLF H-field (21.4 kHz), station NSS, Annapolis USA
eVLF H-field (24.8 kHz), station NLK, Seattle, USA
fThe INPUT decay curve was sampled six points but the sample interval was not specified. The
anomaly# represents real anomaly strength
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Fig. 4.5 Plot of the Zimmermann operator with c = 0 using Matlab. The vertical axis represents
the membership functions for the integration of two data sets, A and B with memberships A(x), B
(x) respectively, C(x) represents membership of integrated information

Fig. 4.6 Plot of the Zimmermann operator with c = 1 using Matlab. The vertical axis represents
the membership functions for the integration of two data sets, A and B with memberships A(x), B
(x) respectively, C(x) represents membership of integrated information
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plot(a,c)
hold on
end
grid
Matlab code for Zimmerman Operator with c = 0.975
a=0:0.01:1;
b = [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1];
for j=1:length(b)
fori=1:length(a)
d=(a(i)*b(j))^(1-0.975)
e=(1-b(j))*(1-a(i));
f=(1-e)^(0.975);
c(i)=d*f;
end
plot(a,c)
holdon
end
grid

The general properties of Max Operator and Algebraic sum are depicted in
Table 4.2.

An et al. (1991) used both the algebraic-sum and the c operator to combine
various data sets of geophysical and geological information (Fig. 4.8) over the
Farley lake area, Manitoba Canada. They derived possibility distribution maps

Fig. 4.7 Plot of the Zimmermann operator with c = 0.975 using Matlab. The vertical axis
represents the membership functions for the integration of two data sets, A and B with
memberships A(x), B(x) respectively, C(x) represents membership of integrated information
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using both the afore-mentioned fuzzy operators and successfully outlined favorable
areas for two top hypotheses: “base metal deposit” and “iron formation deposits”.
The results are shown in Figs 4.8, 4.9, 4.10, and 4.11a, to evaluate the fuzzy
operator method they used the jackknife estimation approach (for more details read
paper An et al. 1991). The comparison of the results indicated that the fuzzy logic
approach provides a more effective tool for integrating geological, geochemical and
geophysical data sets for resource exploration. Figure 4.11b, c shows an overlay of
the final possibility map computed for a base metal deposit and iron formation
respectively, both are co-registered over Bands l and 2 of the MEIS-II image (Singh
et al. 1989).

Beside the benefits achieved through using fuzzy logic for integrating geo-
physical data there are some problems in using the fuzzy logic approach to integrate
geological and geophysical data as An et al. (1991) noted in their work:

(a) There is no adequate way of representing ignorance.
(b) The Fuzzy logic approach does not allow one to analyze the nature of low

possibilities.
(c) There is no standard aggregation operator, although this feature provides some

flexibility but more often provides confusion and non-uniqueness to the
solution.

Table 4.2 Comparison of max and algebraic-sum operators

Combination
method

Results

Max-operator The lower confidence is usually ignored and the higher one is chosen as the
combination of the confidence, as if there does not exist a data set which
actually can produce a low or negative possibility

Algebraic-sum The total confidence level increases regardless of low or negative
confidence

Fig. 4.8 Possibility map for
base metal computed using
Zimmerman operator with
c = 0.975 (An et al. 1991)
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4.4 Shape Factors and Depth Estimation of Microgravity
Anomalies via Combination of Artificial Neural
Networks and Fuzzy Rules Based System (FRBS)

In this section a new method is presented for shape factor estimation of micro-
gravity anomalies (Hajian and Styles 2012). The method is based on training of a
designed neural network (NN) with a vast training data set of several objects with
different shapes such as: Vertical Cylinder, Sphere and Horizontal Cylinder. The
input of the NN is the residual anomaly of the selected principal anomaly profile
and the output is the depth and shape factor of the related object. To extract the
most probable shape of the object, three main If-then fuzzy rules are used and the
membership degree of the shape to the fuzzy set of {near to: Vertical Cylinder,
Sphere and Horizontal Cylinder} is achieved. The method is tested for synthetic
data and also real data measured on an abandoned mine shaft within an open-cut
excavation in Kalgoorlie Gold Mine in Australia. The main advantage of the
method is its ability to specify how close the gravity target to the estimated shape
and depth with no pre-assumptions about its shape.

Fig. 4.9 Possibility maps for
base metal computed using
algebraic-sum operator (An
et al. 1991)

Fig. 4.10 Possibility map for
iron formation Zimmerman
operator with c = 0.975 (An
et al. 1991)
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Fig. 4.11 a Possibility map for iron formation using algebraic-sum operator. b The final
possibility map computed using c-operator for a base metal deposit is displayed over the Bands 1
and 2 of the MEIS-II image. c The final possibility map computed using c-operator for a metal
formation (Moon and An 1991)
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4.4.1 Introduction

The aim of gravity interpretation is to discover how masses producing a given
gravity anomaly are distributed. Although great efforts have been devoted to this
topic, it is clear that no ideal theoretical or practical solution to completely solve the
problem exists. In applied geophysics, frequently used elementary shapes for
cavities, namely sphere, horizontal cylinders and vertical cylinders, are considered
accurate enough for representing bodies (Grêt et al. 2000). Several methods have
been developed to interpret gravity anomalies assuming simple causative bodies;
these methods include depth rules (Smith 1959), Fourier transformation (Odegard
and Berg 1965; Sharma and Geldrat 1968), Euler deconvolution (Thompson 1982;
Reid et al. 1990), Mellin transforms (Mohan et al. 1986; Shaw and Agarwal 1990),
least-squares minimization approaches (Gupta 1983; Abdelrahman et al. 2001),
methods of inverting gravity data to determine model parameters (Li and Oldenburg
1998; Li and Chouteau 1998; Boulanger and Chouteau 2001).

Recently, considerable effort has been devoted to the use of soft computing
approaches for automatic interpretation of gravity data using artificial neural net-
works. Elawadi et al. (2001) used back-propagation neural networks for detection
of cavities from gravity data. Salem et al. (2003) used a Hopfield neural network for
imaging subsurface cavities from microgravity data. Osman et al. (2007) used
Forced Neural Networks for forward modeling of gravity anomaly profiles. In all
the mentioned methods using neural computation, a pre-assumption about the
cavity shape was made and then the neural network was trained with the properties
of the supposed shape. We have combined neural networks with fuzzy sets and
if-then fuzzy rules to achieve a method where no pre-assumption about the cavity
shape is needed and where it is also possible to estimate from the calculated shape
factor how close the gravity source is to sphere, horizontal cylinder or vertical
cylinder ideal bodies using if-then fuzzy rules.

As an example used in this study, a cavity can be a member of the set

C ¼ cavity j cavity shape is close to spheref g ð4:3Þ

A membership degree µc = 0.7, means that the cavity is not exactly a sphere but
is close to a sphere with a membership degree of 0.7.

4.4.2 Extracting Suitable Fuzzy Sets and Fuzzy Rules
for Cavities Shape Estimation

The gravity effect of a cavity depends on its size, depth and shape. Abdelrahman
(2001) presented the analytical formulation for the gravity anomaly of objects with
different shapes as in equation below:
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gðxÞ ¼ A
ðx2 þ z2Þq
� �

ð4:4Þ

where Z is the depth of the subsurface object, x is the horizontal distance over the
measured point, A is the amplitude factor, which depends on the size and density
contrast of the object, and q is the shape factor which depends on the shape of the
object. The values of amplitude factor (A) and shape factor (q) are listed in Table 4.3.

As mentioned above and in Table 4.3, q is the shape factor, which describes the
source geometry and is equal to 0.5, 1 or 1.5 for a horizontal cylinder, a vertical
cylinder and a sphere, respectively. In practice, the value of the shape factor is not
exactly equal to the mentioned values because of the nature of the real natural
cavities which are almost, but not exactly, near to a sphere or a cylinder (vertical or
horizontal), Fig. 4.12.

Table 4.3 The values of amplitude factor (A) and shape factor (q) in Eq. 4.4, for different shapes
of objects

Shape q (shape factor) A (amplitude factor)

Sphere 1.5 4
3 pGqR

3

Horizontal cylinder 1 2pGqR3

Vertical cylinder 0.5 pGqR3

Where R is the radius of the object, G is the universal gravity constant and q is the density contrast

(a) (b)

Fig. 4.12 Practical shapes of natural cavities: a Near to vertical cylinder subsurface cavity, b near
to sphere subsurface cavities (the location is Hosseinabad Jarghoye village, Isfahan, Iran, the
reason for the occurrence these cavities is drying of subterranean tunnels used in ancient times for
Qanats, Photo by A. Hajian)
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After normalizing the gravity data by dividing the residual gravity by its value at
x ¼ 0 (where the residual gravity has its maximum amplitude), the residual values
obtained will only depend on the depth and shape factor of the object. The details
are deduced from Eq. 4.5 as follows (Abdelrahman 2001):

gnðxÞ ¼ gðxÞ
goðxÞ ¼

gðxÞ
gðxÞjx¼0

¼ z2

x2 þ z2

� �q

ð4:5Þ

where gn is the normalized residual gravity value. Note that for cavities the density
contrasts are negative and both gðxÞ and goðxÞ are also negative, and consequently
the normalized residual gravity will be positive.

In real cases, with regard to the most probable shapes of the cavities, they are
classified into three main fuzzy sets:

~A1 = {cavity | the cavity shape is near to sphere}
~A2 = {cavity | the cavity shape is near to vertical cylinder}
~A3 = {cavity | the cavity shape is near to horizontal cylinder}.

Also to extract the shape of a cavity from the calculated shape factor via its
gravity effect, three main if-then Fuzzy Rules are considered:

Rule1: If q is near to 1.5 then the cavity shape is near to a sphere
Rule2: If q is near to 1 then the cavity shape is near to a vertical cylinder
Rule3: If q is near to 0.5 then the cavity shape is near to a horizontal cylinder.

Other secondary fuzzy rules can be deduced using the extension principle (see
Appendix A). So from the above main fuzzy if-then rules the below extended fuzzy
rules can be extracted:

Rule1.1: If q is very near to 1.5 then the cavity shape is very near to sphere.
Rule1.2: If q is to some extent near to 1.5 then the cavity shape is to some extent
near to sphere.
Rule4.1: If q is very near to 1 then the cavity shape is very near to vertical cylinder.
Rule4.2: If q is to some extent near to 1 then the cavity shape is to some extent near
to vertical cylinder.
Rule3.1: If q is very near to 0.5 then the cavity shape is very near to horizontal
cylinder.
Rule3.2: If q is to some extent near to 0.5 then the cavity shape is to some extent
near to horizontal cylinder.

The three main fuzzy rules can be rewritten via mathematical sets language as:

If q � 1.5 then the cavity 2 ~A1

If q � 1 then the cavity 2 ~A2

If q � 0:5 then the cavity 2 ~A3.

Where the sign “�” means near to or approximately equal.
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So we need to define fuzzy sets for: q near to 0.5, q near to 1 and q near to 1.5. In
general we are required to define fuzzy sets ~Ai = {real number near to q0}, where q0 is
equal to 0.5, 1 or 1.5 respectively for i = 1, 2, 3. The boundary for set “real number
near to q0” is pretty ambiguous. There are lots of MFs like: Bell-Shaped,
Triangular-shaped, Trapezoidal-shaped, Gaussian or Exponential-shaped, Z-shaped,
Pi-shaped, S-shaped, Parabolic-shaped, Sigmoid, etc. We found that the Generalized
Bell-shaped, Z-shaped, Pi-shaped, S-shaped and Trapezoidal-shaped Membership
Functions are not good enough for our purpose because in this study the only point
that the membership degree equals to one is the state that the cavity shape is exactly
one of the probable shapes of sphere, horizontal cylinder or vertical cylinder. On the
other hand for µAi(q) there is only one point where the MF = 1 so the useful MF’s in
this way are triangular-shaped, Gaussian shaped and Parabolic-shaped templates.
Consequently, the possibility of real number q to be a member of prescribed set can
be defined by the following common membership functions:

A. Parabolic-shaped MF:

lAi qð Þ ¼ 1

1þ k q� q0ð Þ2 where k is a constant positive variable; ð4:6Þ

An example of this type of MF’s with q0 = 1 and k = 100 is illustrated in
Fig. 4.13.
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1

1/(1+100*(q-1)2)

Fig. 4.13 A parabolic-shaped MF with q0 = 1 and k = 100
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B. Triangular-shaped MF:

lAi qð Þ ¼ 1� q�q0
d

�� ��q0 �d\q\q0 þ d
0 otherwise

�
where d is a constant variable ð4:7Þ

A triangular-shaped MF for fuzzy set ‘real numbers near to 1’ with d = 0.2 and
q0 = 1, is presented in Fig. 4.14.

C. Gaussian Membership: The symmetric Gaussian function depends on two
parameters q0 and r as given by equation below:

lAi qð Þ ¼ e
� q�q0ð Þ2

2r2 e�k q�q0ð Þ2 ; ð4:8Þ

where k is a positive constant real number and r is.
A Gaussian membership function with r = 0.3 (K = 5.5556), q0 = 1.5 is

depicted in Fig. 4.15. For all the above MFs four characterizations are considered
which are in agreement with common sense:

1. For real numbers far from q0, the membership degree is zero.
2. For q = q0 the membership degree takes its maximum value which is equal by

one.
3. More far from q0 more the membership degree decreases.
4. For q < q0 the MF is increasing and for q > q0 the MF is decreasing.

In order to find the optimum MF for q we tested the mentioned MF’s with an
algorithm based on a trial and error procedure with different constants for the above
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Fig. 4.14 A triangular-shaped MF with q0 = 1 and d = 0.2
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MF’s and finally found that the best MF type for our study is the Gaussian MF with
an optimized r (for each of q0) listed in Table 4.4.

The problem then is that while we know from Rule1 that if q is near to 1.5 then
the cavity shape will be near to a sphere but we can’t say exactly how near it is to an
exact sphere? On the other hand, an attempt can be made to specify the membership
function for set ~Ai, from the calculated q. This is also a mapping from the real
number (q) space to the cavity’s shape space, so that by knowing the value of q, the
MF of the cavity in set ~Ai Ai is specified properly. To evaluate the MF, we
considered the fact that more similar the cavity shape is to an exact sphere, the more
similar its gravity effect will be to the residual anomaly of the exact sphere, and
consequently the shape factor will be near to the related exact shape. In order to
measure the similarity of the object anomaly to the Exact-Shapes (ES) anomaly, ES:
sphere, vertical cylinder or horizontal cylinder, its gravity effect is compared with
the gravity effect of ES. In this way, three main indexes are considerable:
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exp(-5.5556*(q-0.5)2)

Fig. 4.15 A Gaussian membership function with r = 0.3 (K = 5.5556), q0 = 1.5

Table 4.4 Results of FRBS for the selected gravity profile (Hajian and Styles 2012)

Selected
gravity
profile

Real
cavity
shape

Real
depth

Real
shape
factor

Estimated
depth
using
FRBS

Estimated
shape factor
using FRBS

Relative
error for
depth (%)

Relative
error for
shape factor
(%)

47900
North

Near to
vertical
cylinder

4 m 0.5 3.5 0.43 14.28 0.14

4.4 Shape Factors and Depth Estimation of Microgravity … 317



MeanAbsolute Error:MAE ¼ 1
n

Xn
i¼1

jgi xi; q0; zð Þ � gi xi; q; zð Þj ð4:9Þ

where gi xi; q; zð Þ; gi xi; q0; zð Þ are the gravity effects of cavities with depth z and
shape factors q; q0 on the point with horizontal distance from its center, respectively
and n is the total number of gravity points along the selected profile.

Correlation Coefficient:R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
½gi xi; q0; zð Þ � �gi xi; q0; zð Þ� � gi xi; q; zð Þ � �gi xi; q; zð Þ½ �

r

ð4:10Þ

where �gi xi; q0; zð Þ is the mean value of gi xi; q0; zð Þequales to 1
n
Pn

i¼1 gi xi; q0; zð Þ
and �gi xi; q; zð Þ is the mean value of gi xi; q; zð Þ equals to 1

n
Pn

i¼1 gi xi; q; zð Þ.
Root-Mean Square Error: RMSE

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
gi xi; q; zð Þ � gi xi; q0; zð Þ½ �2

r
ð4:11Þ

In the present study, we found the RMSE condition to be good enough to
evaluate the similarity of the anomaly of the Exact-Shapes (ES) and Near-Shapes
(NS) cavity. For the ES cavity with depth z0:

gi xi; q; z0ð Þ ¼ gi xi; q0; z0ð Þ : for all i = 1, 2, . . .; n,q0 2 0:5; 1; 1:5f g ð4:12Þ

In this state from Eq. (4.12) RMSE = 0 but as the cavity is ES the membership
degree of µAi should be one. Also for the maximum value of the RMSE the
membership degree µAi should be zero. In our study from prior geological infor-
mation we understood that the maximum depth for probable cavities was about
15 ms, so the RMSE values for each of fuzzy sets ~q are calculated for cavities in
different depths from Z = 0.5 m to Z = 15 m.

The RMSE values are then normalized for each set, because for the maximum
value of RMSE, the similarity of the cavity shape to ES reaches to its minimum
value and so:

lAi ¼ 1� RMSð Þn ð4:13Þ

RMSn ¼ RMSE � RMSEmin

RMSEmax � RMSEmin
ð4:14Þ

As mentioned in last paragraph RMSEmin = 0, so:

RMSn ¼ RMSE
RMSEmax

ð4:15Þ

MFs are extracted using Eqs. 4.12 and 4.13.
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4.4.3 The Fuzzy Rule Based System (FRBS)
for Depth and Shape Estimation
with Related Membership Degree

A schematic view of the algorithm used in this research is depicted in Fig. 4.16.

4.4.4 Test of the Fuzzy Rule-Based Model with Real Data

As a test for real data we used microgravity data measured for Kalgoorlie Gold
mine located in Western Australia. The gravity anomaly map is shown in Fig. 4.17
with the selected profile highlighted with line of red-stars. The results showed the
FRBS accuracy to be useful for 2D gravity interpretation (Fig. 4.18).

Fig. 4.16 Block diagram of the combination of fuzzy rules and neural network in order to shape
and depth estimation of cavities (Hajian and Styles 2012)

Fig. 4.17 Gravity anomaly
map of Kalgoorlie Gold Mine,
Western Australia (Hajian and
Styles 2012)
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4.5 Application of Fuzzy Logic in Remote Sensing:
Change Detection Through Fuzzy Sets Using Multi
Temporal Landsat Thematic Mapper Data

Madanian et al. (2014) used a fuzzy approach for change detection in remote
sensing images using multi-temporal Landsat Thematic mapper data.

They assessed the applicability of using remote sensing and fuzzy sets in
detecting changes that have occurred in the Falavarjan area, Isfahan, Iran. The
images of the multi-temporal Landsat Thematic Mapper (TM) data on 17
September, 1990 and 13 August, 2010 were used to apply change analysis. Images
were radiometrically and geometrically corrected. The root mean square errors were
less than 0.5 pixels for each image. Then, the image differencing method and NDVI
(Normalized Difference Vegetation Index) image differencing technique were used
to produce change images. Fuzzy modeling was implemented to compute the
amount of change. The input parameters of the related fuzzy membership function
were optimized so that they fitted the shape of the change image histogram. The
results were also compared with the classical method of using a thresholding
algorithm. The results confirmed the usefulness of fuzzy sets not only in indicating
where changes had happened but also indicating the degree of change in the study
area. Here we briefly explain how Madanian et al. (2014) used the fuzzy method to
estimate the degree of change in remote sensing images.

4.5.1 Introduction

Change detection is a process showing the differences of an object or phenomenon at
different times (Singh 1989). Remote sensing provides repetitive data such as
Thematic Mapper (TM), which is a very useful tool for change detection processing
because of its synoptic view, digital format and cost-effective potential (Nelson et al.

Fig. 4.18 The result of fuzzy-rule based system (FRBS) for the chosen profile (red) in comparison
with real data (Hajian and Styles 2012)
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2003; Lu et al. 2004; Chen et al. 2005; Serra et al. 2008). Although different satellite
programs are used for change detection analysis, Landsat data are distinctive because
of the availability of continual and historical images (Wulder et al. 2008).

A critical element of the numerous change detection procedures is the selection
of thresholds to distinguish between change and ‘no change’ areas (Fung and
Ledrew 1988). In order to improve the change detection results, Metternicht (1999)
used fuzzy sets and fuzzy membership functions to replace the thresholds. The
fuzzy set is a useful tool to have in order to handle classification problems in an
ambiguous environment (Tso and Mather 2009). The outcome of a fuzzy classifi-
cation is a record for every object being analyzed of the degree to which that objects
belong to every single class being considered (Fisher 2010).

Madanian et al. (2014) selected the Falavarjan area, located in the western part of
Isfahan city which covers about 17550.6 ha, to apply the fuzzy classification
method. It is located between 32° 29′–32° 37′N and 51° 20′–51°35′E (Fig. 4.19).
Falavarjan city, located in the center of the study area, is on the bank of the
Zayandehrud River which has its source in Zardkuh Mountain and flows in eastern
Falavarjan. The climate is hot and dry with an average temperature of about 16.4 °C
and an average annual rainfall of 162 mm/year. The study area includes agricultural
fields, the Zayandehrud River, the ZobAhan Highway, bare lands, rocky outcrops,
and urban areas. If water and land are suitably managed, this area has good potential

Fig. 4.19 Study area: Landsat TM image of Falavarjan area, collected on 17 September 1990
(right) in the west of Isfahan city (below left) and Iran (above left) (Madanian et al. 2014)
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for agriculture expansion. In this study, two Landsat-5 Thematic Mapper
(TM) images acquired in September 17, 1990 and August 13, 2010 (path 164, row
37) were utilized to detect changes over a period of 20 years, respectively
(Madanian et al. 2014).

In the Madanian et al. (2014) work, digital images were georeferenced to the
UTM (Universal Transverse Mercator) projection (zone 39) with a spatial resolu-
tion of 28.5 m using approximately 40 ground control points (GCPs) per image.
Ground control points were extracted from the digitized map for the earlier image.
For the later image, GCPS were acquired in the field. Rectification was carried out
using a first order polynomial model and a nearest neighborhood resampling
method. The root mean square (RMS) errors were less than 0.5 pixels for each
image, which is acceptable. All reflection bands, excluding the thermal band, were
used in change detection. The process of change detection using a fuzzy model is
depicted in Fig. 4.20.

4.5.1.1 The Change Detection Process

Various techniques are used to identify binary change and non-change information
(Lu et al. 2004). This study employed image differencing and NDVI differencing
methods to produce change images.

Fig. 4.20 General sequence
of change detection process
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4.5.1.2 Image Differencing

The image differencing method produces a change image by subtracting two or
more datasets. Digital numbers in the resultant difference image are often consid-
ered to be normally distributed where pixels with small change are observed around
the mean. Pixels which have been changed a great deal are distributed in the tails of
histogram (Singh 1989) (Fig. 4.21). The main advantages of this technique are its
simplicity and the ease of interpretation of change images. However, selecting the
best threshold which distinguishes change from non-change areas is crucial (Lu
et al. 2005). In this study, the change image was produced by subtracting the 1990
image band 3 from the 2010 image band 3 pixel-by-pixel.

4.5.1.3 Optimal Threshold Determination

Threshold levels ranging from 0.1 to 3.0 standard deviations from the mean were
tested on the change image in order to determine the most suitable threshold values.
Consequently, 1r was identified as the most accurate value among others as
determined from the aerial photographs of 1990 and ground data. The change image
was then, reclassified into two classes. The value ‘0’ was assigned for ‘no change’
areas and ‘1’ for change areas.

4.5.1.4 NDVI Differencing Method

Normalized Difference Vegetation Index (NDVI) differencing method is an effec-
tive and a very popular method in change detection (Lu et al. 2004). For this study,
the NDVI image was derived using Eq. (4.16) and the NDVI difference image
(ΔNDVI) was created using Eq. (4.17).

NDVI ¼ NIR� Rð Þ= NIRþRð Þ ð4:16Þ

DNDVI ¼ NDVIpre�NDVIpost ð4:17Þ

where NIR and R represent the digital values of the near infrared and red channel
images, respectively. Digital numbers of ΔNDVI were normally distributed. The
threshold value 1.2r was applied as an optimal threshold.

Fig. 4.21 Threshold
application (Singh 1989)
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4.5.1.5 Fuzzy Application to Change Detection

Having produced the change image, a fuzzymodel was applied to compute the degree
of change which has happened within the Falavarjan area. The methodological
approach includes the following steps (Metternicht 1999; Madanian et al. 2014):

1. As the first step, a fuzzy membership function which has been adopted for the
change images histogram was defined. A bell-shaped membership function
proposed by Dombi (1990) was used in the Madanian et al. (2014) study. This
membership function is divided into two parts: a monotonically increasing part
and a monotonically decreasing part. The monotonically increasing function is:

lA xð Þ ¼ 1� mð Þk�1 x� að Þk
h i

= 1� mð Þk�1 x� að Þk þ mk�1 b� xð Þk
h i

;

x 2 a; b½ �
ð2:18Þ

and the monotonically decreasing function is:

lA xð Þ ¼ 1� mð Þk�1 c� xð Þk
h i

= 1� mð Þk�1 c� xð Þk þ mk�1 x� bð Þk
h i

;

x 2 b; c½ �
ð4:19Þ

where k is sharpness, m determines the inflection point of function, a and c are
the typical points of the function with a membership degree of zero to the fuzzy
set considered, and b represents the standard point of the variables at the central
concept, which is a grade of membership equal to 1 (Dombi 1990).

2. To determine the form of the membership function that fits the shape of the
change images histogram, the two parameters, sharpness and inflection, were
manipulated. In fact, by varying the input parameters, the resulting membership
function is changed. Therefore, if the resulting membership functions fit the
shape of change image, discrimination of change and ‘no change’ areas will be
performed with a high accuracy.

3. In order to describe changes, linguistic constructs were used. In this case,
possibility of change, ranked within the range of 0–1, was expressed using some
linguistics terms.

4. Finally, the change image was visualized in a gray scale ranging from white to
black. In this way, pixels with an absolute certainty of ‘no change’ were indi-
cated by white while black represents areas where changes have occurred with
absolute certainty.

4.5.1.6 Image Differencing and NDVI Differencing Methods Applied
to Case Study

For change detection analysis, it is critical to choose appropriate image bands
(Lu et al. 2005). In this study, band 3 and 4 were chosen for two reasons: (1) the
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dominant land-cover in the study site is vegetative cover and band 3 and 4 have the
potential to indicate changes that have occurred in this class. Ridd and Liu (1998)
used different techniques including image differencing for urban land-use change
detection in the Salt Lake Valley area using Landsat TM data. They concluded that
band TM 3 differencing was the best method (Lu et al. 2004). Similarly, Hame
(1986) and Fung (1990) concluded that the differencing image produced by TM 3
was the most accurate one in detecting vegetation change. Pilon et al. (1988)
concluded that visible red band data provided the most accurate identification of
spectral change for their semi-arid study area of north-western Nigeria in
sub-Sahelian Africa. Jensen and Toll (1982) found the usefulness of visible red
band data in change detection analysis in both vegetated and urban environments;
(2) Digital numbers of the difference images were normally distributed.

The error matrix was used to analyze the accuracy of change images classified
using thresholds. Ground truth data and aerial photographs were applied to generate
the error matrix. In order to estimate the overall accuracy, the total correct pixels
were divided by the total number of pixels. The image differencing using band 3
yielded more accurate results with the kappa coefficient and an overall accuracy of
69 and 86.2%, respectively. The resultant image demonstrated that 74.3% of the
study area has remained unchanged and 27.7% of the area has undergone significant
change (Table 4.5). The NDVI differencing method resulted in a smaller kappa
coefficient and an overall accuracy of 36.4% and 74.9%, respectively. The results of
change detection by image differencing with band 3 and the NDVI image differ-
encing using threshold technique are shown in Fig 4.22a, b, respectively.

4.5.1.7 Fuzzy Applications Applied to Case Study

Diff3 and Diff NDVI were used for this fuzzy application. The next step was
applying a membership function, which fitted the shape of the change image his-
tograms. Figure 4.23 shows the optimized membership functions for change ima-
ges. In order to fit the shape of the change images to Diff3 and Diff NDVI
histograms, two parameters, sharpness and inflection were modified as the opti-
mized values were selected. In this way, the mean is considered as a standard point
that represents pixels of ‘no change’ with a membership degree of 1. Typical points
are the tail values of the histogram that signify change pixels. The membership
degree of 0 is assigned to these change pixels. Table 4.6 shows the optimized
values for the membership functions.

Table 4.5 The number of the
change/no-change pixels and
the area of each class detected
by the image differencing
method with band 3 and the
NDVI image differencing

Class Image differencing
with band 3

NDVI differencing

Pixels Area (ha) Pixels Area (ha)

Change 62,104 4868.95 53,090 4164.26

No-change 161,756 12681.67 170,770 13388.36
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Then, linguistic constructs were applied to describe the changes that were
expressed by fuzzy quantifiers. In this way, each class was described by a special
linguistic term. Next, the area of each class was calculated using the number of
pixels. Tables 4.7 and 4.8 show the results of the area calculations.

As the final step, sliced change images were visualized using a gray scale. In
such a way, a spectrum of white shows pixels which have never changed while
black depicts areas that have definitely undergone changes. Figure 4.24a, b rep-
resent this concept.

The process of accuracy assessment was based on visual assessment. The
accuracy of the fuzzy change image was assessed using ground truth data. It was
observed that there was an acceptable agreement between the real and the fuzzy
change images.

The results presented in Table 4.8 indicate that 55% of the area is labeled as ‘no
change’. This class mainly covers eastern and southern parts of the study area,
which are rocky outcrops where no changes had occurred during 1990–2010. The
ZobAhan Highway is another part of the Falavarjan area that has been remained
unchanged. 10.9% of the area is categorized as very likely to extremely likely to

Fig. 4.22 The resultant images obtained by the thresholding technique with the a Diff3, b Diff
NDVI (Madanian et al. 2014)
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have changed. 6.2% of the study area has absolutely changed. This part of the area
includes bare lands and agricultural areas. These changes are also observable
around the urban area, which has expanded since 1990. 27.6% of the area is ranked
as likely to very unlikely to have changed. The results presented in Table 4.9
represents noticeable similarities to Table 4.10. It shows that the areas of change
and no-change classes estimated by applying the fuzzy method with Diff NDVI are
49.6 and 6.02%, respectively. These values are near to the values derived from

Fig. 4.23 Optimized membership function for the Falavarjan change images, where µ is the
membership degree to set of ‘no change’. a Image differencing with band 3, b NDVI image
differencing

4.5 Application of Fuzzy Logic in Remote Sensing … 327



applying a fuzzy model with Diff3. The accuracy of the changed map generated
from the applying thresholding technique on Diff NDVI was less than the change
image accuracy of image differencing. But the maps produced through applying the
fuzzy method with Diff3 and Diff NDVI are very similar to each other. This means
that the fuzzy method is more effective and accurate in identifying change/
no-change areas than the thresholding technique.

Table 4.6 Values for parameters of membership functions of the change images

Change image Sharpness (k) Inflection (m) Standard point Typical points

– MIa MDb MIa MDb
–

Diff3 4.4 4.6 0.9 0.95 0.24 −10.23 and 13.3

Diff NDVI 2 3.4 0.95 0.96 1 −14.64 and 26.3
aMI Monotonically increasing part of the function. bMD Monotonically decreasing part of the
function

Table 4.7 Results of area estimation using fuzzy technique via image differencing method

Code Fuzzy linguistic terms Degree of
membership

Number of
pixels

Area
(ha)

percentage

1 No changes 0.81 to 1.00 123881 9714.3 55.3

2 Very unlikely changes 0.61 to 0.80 27671 2169.4 14.4

3 Unlikely changes 0.51 to 0.60 12714 996.8 5.7

4 Neither nor 0.41 to 0.50 10805 847.1 4.8

5 Likely changes 0.31 to 0.40 10446 818.9 4.7

6 Very likely changes 0.21 to 0.30 12051 944.8 5.4

7 Extremely likely
changes

0.11 to 0.20 12412 973.1 5.5

8 Changes 0.00 to 0.10 13880 1088.2 6.2
aArea (ha) = 0.0784 ha � number of pixels, as the TM image has a 28.5 m resolution

Table 4.8 Results of area estimation using fuzzy technique via NDVI differencing method

Code Fuzzy linguistic terms Degree of
membership

Number of
pixels

Area
(ha)

Percentage

1 No changes 0.81–1.00 111,189 8717.22 49.67

2 Very unlikely changes 0.61–0.80 34,114 2674.54 15.24

3 Unlikely changes 0.51–0.60 13,983 1096.27 6.25

4 Neither nor 0.41–0.50 12,937 1014.26 5.78

5 Likely changes 0.31–0.40 12,483 978.66 5.58

6 Very likely changes 0.21–0.30 12,549 983.83 5.6

7 Extremely likely
changes

0.11–0.20 13,134 1029.70 5.86

8 Changes 0.00–0.10 13,471 1056.12 6.02
aArea (ha) = 0.0784 ha � number of pixels, as the TM image has a 28.5 m resolution
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As a final comparison, the area of ‘no change’ class in the image classified using
threshold values was more than the area of the same class in the fuzzy technique. In
the image differencing method using band 3, 74.3% of the study area was classified
as ‘no change’ but this value was 55% in the fuzzy technique. It shows that the
fuzzy change model can identify a continuum of changes. As the fuzzy logic
method based on inaccuracy modeling with a membership function, it not only
improves the ability of the results to distinguish change and ‘no change’ areas but
also it is able to help the interpreter to know the degree of change in areas of
change. Each pixel has been labeled with code ‘0’ (‘no change’ areas) or ‘1’
(change areas) in both techniques (Fig. 4.25). In order to make the interpretation of
change images produced by two methods easier, the membership degree of the
pixel to the set of ‘change’ is represented so that the more the membership degree
changes, the more the area has changed.

Fig. 4.24 The resultant images using the fuzzy method with the a Diff3, b Diff NDVI (Madanian
et al. 2014)
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4.6 Fuzzy Transitive Closure Algorithm for the Analysis
of Geomagnetic Field Data

Sirdharan (2009) introduced a fuzzy mathematical model for the analysis of geo-
magnetic field data using the geomagnetic field variations measured during mag-
netic storms. The data set was collected from the Indian network of magnetometers.
The patterns of variation differ at the non-equatorial, equatorial latitudes and the
observatory situated nearer to the geomagnetic Sq focus. The fuzzy method that
Sirdharan (2009) used was the “fuzzy transitive closure” analysis, which is a
powerful technique among various recognition methods. Here, we first describe the
principles of fuzzy-based clustering and then explain how Sirdharan (2009) used
this approach for pattern recognition of geomagnetic storms.

4.6.1 Classical and Fuzzy Clustering

A number of similar individuals that occur together are like two or more consec-
utive constants or vowels in a segment of speech, a group of houses or an aggre-
gation of stars or galaxies that appear close together in the sky and are
gravitationally associated (Jantzen 2004). Cluster analysis is a statistical technique
for discovering whether the individuals of a population fall into different groups by
making quantitative comparisons of multiple characteristics thereby producing
concise representation of a system’s behavior.

Fig. 4.25 Part of the change image matrix achieved through a classical statistical method b fuzzy
method. In the thresholding technique, the code ‘0’ was assigned for ‘no change’ areas and ‘1’ for
changed areas. In the fuzzy method, the degree of change (l) has been calculated for each pixel
(Madanian et al. 2014)
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Generally for a given set X, clustering in X means to find several cluster centers
(at least two) which can properly characterize the relevant classes of X.

The classification is based on the feature(s) of the population and is the main
basis of distinguish whether a member belong to the assumed group.

In classical clustering the classes are partitions of X and all the clusters together
fills the whole universal U. Also the clusters don’t have any overlaps. Cluster (C) is
never empty and it is smaller than the whole universe U. Furthermore, there must be
at least 2 and at most k clusters. Their important properties are shown in Fig. 4.26.

The classical clustering method partitions the universe such that any element
only belongs only to one of the classified groups, on the other hand the membership
degree of an element is ‘1’ for a group and zero for others, but in the fuzzy
clustering approach an element can belong to two or more groups and this property
is very useful in many applications specially when the data are chaotic in nature
such as geomagnetic storm time data. So in these cases it is better to replace the
classical clustering by fuzzy partitioning or fuzzy clustering. Using fuzzy cluster-
ing, the compactness and separation validity are more accurate and can produce a
better segmentation result while unknown parameters between one class of data and
the other classes can be estimated by a fuzzy model (Sirdharan 2009).

Fig. 4.26 Main properties of a classical clustering
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In classical clustering the membership of point ‘k’ to cluster ‘i’ is:

mik ¼ 1 if k uk � ci k2 � k uk � cy k2
0 otherwise

�
ð4:20Þ

where ci is the cluster center I, uk is data point k, cj is the cluster center j, and
k uk � ci k is the distance between point k and cluster center i.

The object function j is:

J ¼
Xc
i¼1

Ji ¼
Xc
i¼1

X
k;Uk2ci

k uk � ci k2
 !

ð4:21Þ

The optimized clustering is that which minimizes the total sum of all distances.
In the fuzzy clustering method the degree of association is strong for data and

weak for data in different classes. The distance of an input sample to the cluster to
which the input sample belongs is used as a criterion to measure the cluster
compactness. To apply the fuzzy approach to a set classical of data three main steps
are used:

1. Fuzzification: Conversion of numeric data to fuzzy numbers.
2. Aggregation: Computation of fuzzy numbers in the fuzzy domain.
3. Defuzzification: Conversion of the obtained fuzzy numbers into numeric data.

To subjectively estimate the resemblance between pairs, a numerical proximity
matrix is defined such that each of its elements [i, j] is the score of the proximity
relation (subjective similarity) between data points i and j. The numerical values in
the proximity matrix are only a quantitatively descriptive number and their sig-
nificance can’t be evaluated through conventional statistical methods and thus are
determined subjectively. The proximity relation is not necessarily transitive, hence
the theory of inexact matrices was utilized by Sridharan (2009) to formulate a
transitive closure structure that provides the possibility of separating the data set
into mutually exclusive cluster which are, in essence, equivalent in class. In all
classical clustering methods, proximity relations defined by arbitrary similarity
measure are not necessarily similarity relations.

4.6.2 Fuzzy Transitive Closure Method

In the method of fuzzy transitive closure, cluster variables are classified based on
the Minkowski formula. This technique requires accuracy and precision. An a-cut
(a 2 (0, 1]) of a fuzzy relation R is defined as the binary relation Ra. As a runs
through (0, 1], a-cuts of R form a nested sequence of crisp relations such that when
a1 � a2 then Ra1 is a subset of Ra2ðRa1 �Ra2Þ. The scalar ‘a’ is an indication of
the validity of each clustering (0 � a � 1).
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One of the common fuzzy clustering methods is fuzzy c-means clustering which
has been applied for various atmospheric and geophysical studies (e.g. Dekkerse
et al. 1994; Kruiver et al. 1999; Hajian et al. 2016). This method needs the desired
number of clusters to be specificated which is a disadvantage when the clustering
problem does not specify any desired number of clusters. Furthermore when the
population is known to contain k groups, the sampling method may be such that the
data from the rarest group do not appear in the sample, therefore forcing the data
into k groups may lead to nonsensical clusters. In these types of problems the
structure of the given data should be reflected through the number of clusters, in a
natural way. On the other hand, no pre-assumption about the number of clusters is
required and this will be determined through applying the clustering technique
depending on the structure of data. The fuzzy transitive closure works based on this
fact.

The fuzzy transitive closure method is based on three fundamentals:

– Fuzzy equivalence relations
– Minkowski classifier
– a-cut.

4.6.3 Fuzzy Equivalence Relations

A Fuzzy equivalence relation as defined in Chap. 3, is a relation defined on a set
which is reflexive R(ai, a) = 1, symmetric, R(ai, bi) = R(bi, ai) and maximum-
minimum transitive. Similar to an ordinary equivalence relation, a fuzzy equiva-
lence relation induces a partition in each of its a-cuts (Zadeh 1965).

A meaningful fuzzy equivalence relation is defined on the transitive closure of
the fuzzy compatibility (Anderberg 1973). A fuzzy compatibility relation R on a set
S consisting of n data items can be defined by an appropriate distance function (Klir
and Folger 2000) of Minkowski class by:

R xi; xkð Þ ¼ 1� d
Xn
j¼1

ðxij � xkjÞq
" #1=q

ð4:22Þ

For all: (xi, xk) 2 S.
Where q is a positive real number and d is a constant that ensures that R(xi,

xk) 2 [0, 1]. The value of d is the inverse value of the longest distance in S.
As a-cut of a fuzzy set was defined in Sect. 4.4.4, a-cut of a fuzzy set “I” is a

crisp set Ia:

Ia ¼ fx 2 Xj lIðxÞ � ag ð4:23Þ
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4.6.4 Fuzzy Transitive Closure Algorithm

Let R1 be the square matrix of order k obtained from the given data matrix derived
by the Minkowski class. The relational matrix R(2) = R1 o R1 where an element of
R1 o R1 is the maximum-minimum (k is the number of observations) and xrs is an
element in the rth row and sth column of the matrix R(2) similarly:

Rð4Þ ¼ Rð2Þo Rð2Þ

Rð2kÞ ¼ Rð2k�1Þ ð4:24Þ

This procedure is continued until no new relationship is produced. Thus the
max-min transitive closure R is the relation Rn−k which is denoted by Rs.

This relation Rs induces a partition called an a-cut (Zadeh 1965). In different
interval S is the distance matrix R defined as:

Distant ¼ x11�x12ð Þ2 þ x21 � x22ð Þ2 þ � � � þ xn1�xn2ð Þ2
h i1=2

ð4:25Þ

As we mentioned in Sect. 3.4.7.5 this kind of distance is called the Euclidean
distance. The operator ‘O’ is applied to define the maximum of the minimum values
obtained from the corresponding rows and columns of a particular element in the
matrix R1, R2, R4, etc.

4.6.5 Application to for Geomagnetic Storm Data

Sridharan (2009) used the simultaneous data of geomagnetic storm time ranges of
the horizontal component (H) of observatory stations: Alibag, Hyderabad,
Kodaikanal, Nagpur, Pondicherry, Sabhawala, and Tirunelveli for the period
between 2001 and 2003 to apply the fuzzy clustering technique through the Fuzzy
Transitive Closure Algorithm (FTCA). The total range from maximum to minimum
values of the recorded magnetogram observations were considered for this method.
The station names and related dipole coordinates are listed in Table 4.9. The
location map of the observatories is depicted in Fig. 4.27.

Sridharan (2009) used the data taken from the data book published by the Indian
Institute of geomagnetism and the values are shown in Table 4.10 for each of the
stations.

To apply the FTCA method, it is first necessary to calculate the distance matrix
(R) through Eq. 4.22 as follows (Sridharan 2009);

334 4 Applications of Fuzzy Logic in Geophysics



R ¼

ABG
HYB
KOD
NGP
PON
SAB
TIR

ABG HYB KOD NGP PON SAB TIR
0 109:86 371:87 84:469 134:97 289:02 431
109:86 0 379:31 117:32 148:31 275:73 435:85
371:87 379:31 0 347:89 304:89 461:38 264:46
84:496 117:32 347:89 0 130:92 284:01 401:09
134:97 148:31 304:89 130:92 0 319:18 394:08
289:02 275:73 461:38 284:01 319:18 0 536:07
431 435:85 264:46 401:09 334:08 536:07 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

The matrix R elements are calculated using the Euclidean distance formula, for
example the element R(ABG, HYB) is calculated as below:

R ABG;HYBð Þ ¼ 149� 146ð Þ2 þ 271� 273ð Þ2 þ 146� 142ð Þ2 þ � � � þ 2541ð Þ2þ 124� 122ð Þ2
h i1=2

¼ 109:86

ð4:26Þ

The R(1) relational matrix is derived using the Minskowski class formula:

d ¼ 1
largest distance

¼ 1
distance SAB; TIRð Þ ¼

1
536:07

ð4:27Þ

The ‘q’ value for Minkowski class is taken: q = 2.4.

Table 4.9 Location of observatories and the related dipole coordinates Redrawn after Sridharan
(2009)

Serial No. Station Dipole

1 Sabhawala (SAB) 21:2	N
151:9	

�
2 Nagpur (NGP) 11:96	N

154:1	

�
3 Alibag (ABG) 10:2	N

145:9	

�
4 Hyderabad (HYB) 8:3	N

151:3	

�
5 Pondicherry (PON) 4:7	N

154:1	

�
6 Kodaikanal (KOD) 1:23	N

149:6	

�
7 Tirunelveli (TIR) 0:33	S

149:76	

�
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So : R xi; xkð Þ ¼ 1� 1
536:07

X7
j¼1

ðxij � xkjÞ2
" #1=2

ð4:28Þ

Thus:

R 1ð Þ ¼

ABG
HYB
KOD
NGP
PON
SAB
TIR

ABG HYB KOD NGP PON SAB TIR
1 0:795 0:3603 0:8424 0:7519 0:4609 0:196
0:795 1 0:2925 0:7812 0:7234 0:4857 0:1869
0:3063 0:2925 1 0:3511 0:435 0:1393 0:5104
0:8424 0:7812 0:3511 1 0:7556 0:474 0:252
0:7519 0:7234 0:435 0:7556 1 0:4046 0:3768
0:4609 0:4857 0:1393 0:474 0:4046 1 0
0:196 0:1869 0:5104 0:252 0:3768 0 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð4:29Þ

Fig. 4.27 Location map of the observatories (Sridharan 2009)
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Table 4.10 Geomagnetic storm time ranges for the horizontal (H) component in nT Redrawn
after Sridharan (2009)

Serial
No.

Date ABG-H HYB-H KOD-H NGP-H PON-H SAB-H TIR-H

1 31.01.2001 149 146 163 158 157 128 194

2 19.03.2001 271 273 275 266 279 271 291

3 24.03.2001 146 142 211 145 170 138 267

4 27.03.2001 202 223 271 208 206 131 280

5 08.04.2001 177 177 194 173 234 228 232

6 11.04.2001 332 338 323 347 337 382 323

7 18.04.2001 118 117 189 115 147 160 240

8 28.04.2001 222 226 246 237 240 194 293

9 27.05.2001 142 145 133 154 134 128 144

10 18.06.2001 158 172 225 153 198 125 265

11 17.08.2001 215 207 219 223 213 220 230

12 25.09.2001 185 203 184 191 185 255 207

13 11.10.2001 136 138 181 145 167 153 215

14 21.10.2001 284 295 270 297 286 347 267

15 28.10.2001 219 238 292 213 272 224 315

16 29.14.2001 188 167 228 184 200 170 276

17 17.04.2002 108 113 222 110 139 51 246

18 28.04.2002 176 193 251 193 219 100 211

19 18.03.2002 119 121 133 135 123 158 187

20 23.03.2002 181 176 243 177 180 173 225

21 19.04.2002 183 193 222 200 203 164 272

22 23.04.2002 179 191 234 187 216 144 292

23 11.05.2002 157 158 241 163 165 189 178

24 23.05.2002 255 220 147 235 244 65 239

25 01.08.2002 138 152 186 200 163 155 228

26 18.08.2002 81 98 221 102 113 110 236

27 07.09.2002 162 76 275 166 169 133 252

28 30.09.2002 147 150 308 150 146 134 174

29 11.11.2002 91 90 127 93 102 65 145

30 26.11.2002 83 95 92 81 95 114 94

31 20.03.2003 161 158 158 169 169 126 223

32 29.05.2003 169 180 207 182 171 241 253

33 17.08.2003 254 261 251 258 265 258 248

34 15.11.2003 122 122 119 127 123 122 150
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Then R2 is calculated using ‘o’ operator, mentioned before, as:

R2 ¼ R1 oR1

¼

ABG
HYB
KOD
NGP
PON
SAB
TIR

ABG HYB KOD NGP PON SAB TIR
1 0:795 0:435 0:8424 0:7519 0:4837 0:3768
0:795 1 0:435 0:795 0:7556 0:4857 0:3768
0:435 0:435 1 0:435 0:435 0:4046 0:5104
0:8424 0:795 0:435 1 0:7556 0:4857 0:3768
0:7519 0:7556 0:435 0:7556 1 0:4857 0:435
0:4857 0:4857 0:4046 0:4857 0:4857 1 0:3768
0:3768 0:3768 0:5104 0:3768 0:435 0:3768 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð4:30Þ

As an example x12 in the matrix R2 is calculated as below (Sridharan 2009).
Take the elements of first row and second column in R1:

First row 1 0.795 0.2925 0.7812 0.7234 0.4609 0.1869

Second column 0.795 1 0.2925 0.7812 0.7234 0.4857 0.1869

Minimum 0.795 0.795 0.2925 0.7812 0.7234 0.4609 0.1869

At the next stage R4 is obtained:

R4 ¼ R2 o R2

¼

ABG
HYB
KOD
NGP
PON
SAB
TIR

ABG HYB KOD NGP PON SAB TIR
1 0:795 0:435 0:8424 0:7556 0:4857 0:435
0:795 1 0:435 0:795 0:7556 0:4857 0:435
0:435 0:435 1 0:435 0:435 0:4046 0:5104
0:8424 0:795 0:435 1 0:7556 0:4857 0:435
0:7556 0:7556 0:435 0:7556 1 0:4857 0:435
0:4857 0:4857 0:4046 0:4857 0:4857 1 0:435
0:435 0:435 0:5104 0:435 0:435 0:435 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð4:31Þ
Again R8 is calculated:

R8 ¼ R4 o R4 ¼

ABG
HYB
KOD
NGP
PON
SAB
TIR

ABG HYB KOD NGP PON SAB TIR
1 0:795 0:435 0:8424 0:7556 0:4857 0:435
0:795 1 0:435 0:795 0:7556 0:4857 0:435
0:435 0:435 1 0:435 0:435 0:4046 0:5104
0:8424 0:795 0:435 1 0:7556 0:4857 0:435
0:7556 0:7556 0:435 0:7556 1 0:4857 0:435
0:4857 0:4857 0:4046 0:4857 0:4857 1 0:435
0:435 0:435 0:5104 0:435 0:435 0:435 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð4:32Þ
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As i can be seen R8 = R4 o R4 = R4 and as mentioned before this is the stopping
criterion for the FTCA method. The final matrix is Rs and the FTCA leads to a-cut
with:

a ¼ 0:842; 0:795; 0:755; 0:510; 0:485; 0:435

Finally the following a-cut are formed by Rs (Sridharan 2009):

a 2 0:842; 1ð � : ABGð Þ; HYBð Þ; KODð Þ; NGPð Þ; PONð Þ; SABð Þ; TIRð Þf g
a 2 0:755; 0:842ð � : NGP� ABGð Þ; HYB; KOD; PON, SAB, TIRf g
a 2 0:755; 0:795ð � : HYB� ABGð Þ; NGB� HYBð Þ; KOD, PON, SAB, TIRð Þf g
: f NGP� ABG� HYBð Þ; KOD, PON,ð SAB, TIRÞ�

a 2 0:510; 0:755ð Þ : f ABG � PONð Þ; HYB� PONð Þ; NGP� PONð Þ; Þ; KOD; SAB; TIRð Þ
: NGP� ABG� HYB�ðf PONÞ; KOD, SAB, TIRð Þ�

a 2 0:485; 0:510ð � : f KOD� TIRð Þ; NGP� ABG � HYB� PONð Þ; SABð Þ�
a 2 0:435; 0:465ð � : f ABG� KODð Þ; ABG � TIRð Þ;

HYB � KODð Þ; HYB� TIRð Þ; KOD� NGPð Þ; KOD� PONð Þ;
NGP� TIRð Þ; PON� TIRð Þ; SAB� KODð Þ; SAB� TIRð Þ

: NGP� ABG� HYB � PONð Þ; KOD� TIRð Þ; SAB½ �

To represent the hierarchical clustering analysis a graphical drawing called a
‘dendogram’ is used. It is a tree-like plot where each step of hierarchical clustering
is shown as a fusion of two branches of tree into single one. Each branch represents
clusters obtained at each step of the clustering (Sridharan 2009). The dendogram is
shown in Fig. 4.28. As it can be deduced from Fig. 4.27, the horizontal
(H) component is divided into three clusters. The first cluster is (NGP, ABG, HYB,
PON), the second cluster is (KOD, TIR) and the third is SAB which is isolated from
other two cluster. The graphs related to the dendrogram shown in Figs. 4.29, 4.30
and 4.31 implies the validity of the FTCA method for clustering of geomagnetic
storms based on their horizontal component, compared to classical methods of
clustering (Sridharan 2009).

4.7 Geophysical Data Fusion by Fuzzy Logic to Image
Mechanical Behavior of Mudslides

Grandjean et al. (2006a, b) used fuzzy logic for geophysical data fusion in order to
image the mechanical behavior of mudslides. They used two kinds of geophysical
data: Seismicity data consisting acoustic (P) and shear (S) wave velocity, resistivity
data consisting of electrical resistivity. These geophysical data when combined
together are well adapted for investigation of landslide structure and understanding
the geotechnical related mechanisms. These three physical parameters were con-
sidered to define the properties of reworked moving materials. The data was col-
lected over the “super-Sauze” site located in the French South Alps, where
intra-material mudslides are available (Grandjean et al. 2006a, b) (Fig. 4.32).
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The geophysical data were measured simultaneously along a 325 m profile
which was perpendicular to the axis of the mudslide. Grandjean et al. (2006a, b)
showed that there is a correlation between the seismic velocities and electrical
resistivity data and confirmed that simultaneously using both seismic velocities and
electrical resistivity gives more complementary information on the geomechanical
behavior of the landslide. The variations of fissure density and the presence of
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Fig. 4.28 Dendrogram for geomagnetic storm time ranges. Redrawn after Sridharan (2009)
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Fig. 4.29 Storm time ranges at non-equatorial regions. Redrawn after Sridharan (2009)
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deformed material create the variation of the P and S wave velocity and this
variation provides information on the state of compaction of the layers.

The variations of water content within the mudslide lead to changes in electrical
resistivity. Therefore, fusion of these data can help the interpreter to go deeper into
the interpretation of the geomechanical behavior of the mudslides. One of the useful
methods of data fusion is fuzzy data fusion, which is based on fuzzy subset theory.
Grandjean et al. (2006a, b) used this strategy for fusion of P-S wave velocity and
resistivity to image the mechanical behavior of mudslides. Two main functions
were used for the fusion of data, the likelihood function and the possibility function.
The reliability of the geophysical tomographically derived (Vp, Vs and q) was
quantified by the mean of likelihood functions as below:

LVp ¼ exp

P
Nðt

c�t0
r Þ2

2

 !
ð4:33Þ

Fig. 4.30 Storm time ranges at equatorial region. Redrawn after Sridharan (2009)
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Fig. 4.31 Storm time ranges nearer to Sq focus. Redrawn after Sridharan (2009)
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where N is the number of Fresnel wave paths, tc and t0 are computed and observed
travel times, respectively and r is the a priori uncertainty on the observations.

The LVp likelihood function represents the quantitative reliability of each part of
the Vp tomogram.

LVs ¼ diag Rð Þ;R ¼ W�1V ^2 þ @2I
	 
�1^2VTw ð4:34Þ

where W is the weight matrix, V and ^ are the singular value decomposition of the
inverse generalized function G ¼ U^V�1 and ∂ is the damping factor used for the
regularization. For electric resistivity the likelihood function is:

Lq ¼ @
ffiffiffiffiffiffiffiffiffi
2pu

p
;/ eð Þ ¼ 1

r
ffiffiffiffiffiffi
2p

p expð�e2

2r2
Þ ð4:35Þ

where u is a standard Gaussian function.
P-wave (Vp) velocity and its likelihood, Resistivity and its likelihood, S-wave

(Vs) and its likelihood are depicted in Fig. 4.33a–f.

Fig. 4.32 Geomorphology of the “Super-Sauze” mudslide. a Location and aerial photograph of
the mudslide. The white line represents the studied geophysical profile; b morphology of the
mudslide with gullies, cracks and topographic variation (Grandjean et al. 2006a, b)
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The possibility function (p) means the possibility distribution which is a function
defining the dependency of each element of set (S) for a given hypothesis, as below
(sup means supremum):

p : S ! f0; 1� sup p xð Þð Þ ¼ 1 ð4:36Þ

This means that at least one element of S is possible. If C is a subset of S, then
the possibility distribution can constructed from the possibility measurement p as
below:

ð4:37Þ

Also, the combination of two possibility distributions is calculated via the
equation below:

Fig. 4.33 Interpretation of the geophysical tomographic images. a (P)-wave velocity tomography
inverted from the seismic first arrivals; b Vp likelihood function indicating the places where the
inverted velocities are reliable (highest values); c electrical tomography inverted from apparent
(resistivity values). d Likelihood function indicating the places where the inverted resistivity
values are reliable (highest values); e (S)-wave tomography inverted from SASW; f Vs likelihood
function indicating the places where the inverted velocity values are reliable (highest values)
(Grandjean et al. 2006a, b)
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pðxÞ ¼ p1 
 p2 ¼ p1 xð ÞVp2 xð Þ
sup p1 xð ÞVp2 xð Þf g ð4:38Þ

where ‘^’ is the fuzzy and operator. The flowchart for calculating the possibility
function is shown in Fig. 4.34.

For the fusion of super-Sauze geophysical datasets, the goal that Grandjean et al.
(2006a, b) followed was to combine data to increase the amount of information
from each tomography image without overestimating the quality and reliability of
the results. Therefore, data sets, hypotheses and meta-hypotheses were distin-
guished as below:

• Data sets: Vp, Vs, Rho are featured by likelihood distributions which are
quantitative and modeled by a probabilistic approach. The likelihood value of
each point of the tomograms means the inaccuracy of the inverted Vp, Vs and
Rho for that point.

• Hypotheses: Several interpretations derived from the geophysical data define
hypotheses. In this case Grandjean et al. (2006a, b) investigated three of main
hypotheses as below:

Fig. 4.34 The flowchart for calculating possibility functions
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Hypothesis h1: The possibility p1 of the soil structure being strongly affected by
cracking due to the traction deformation which occurs during the sliding process
(Fig. 4.34a). The density of cracking is correlated with P-wave velocity varia-
tions. If Vp is lower than 500 m/s the soil strata is fissured and if Vp is greater
than 1500 m/s the soil strata is not fissured. The uncertainty between these
values is assumed to be linear.
Hypothesis h2: the possibility p2 of the soil strata to be saturated by water is
correlated with the electrical resistivity (Fig. 4.33b). According to mudslide
geomorphological knowledge, if electrical resistivity RHo is lower than 150 X m
it is saturated and when the R̅Ho is greater than 300 X m the soil strata is not
saturated. The uncertainty between these values is also assumed to be linear.
Hypothesis h3: Defines the possibility p3 of the soil strata to be sheared due to
the friction forces which occur during the slope surface failure (Fig. 4.35c). If
the S-wave velocity is lower than 500 m/s the soil strata is sheared and if Vs is
greater than 1000 m/s the soil strata is not sheared.

The likelihood function has to be integrated. Nifle and Reynaud (2000)
demonstrated the data fusion between possibility and probability functions has a
mathematical sense only in the framework of evidence theory. Thus, the fusion of a
possibility function and likelihood function is expressed via the equation below:

p� xð Þ ¼ p xð Þv 1� L xð Þð Þ ¼ max p xð Þ; 1� L xð Þð Þ ð4:39Þ

where ‘v’ is the union operator, p(x) is the possibility function and L(x) is the
distributions of likelihood values computed for each inversion process.

So:

p�1 Vp x; zð Þ	 
 ¼ p1 Vp x; zð Þ	 

v 1� LVp x; zð Þ	 


¼ max p1 Vp x; zð Þ	 

; 1� LVp x; zð Þ	 
 ð4:40Þ

p�2 Vs x; zð Þð Þ ¼ p2 Vs x; zð Þð Þv 1� LVs x; zð Þð Þ
¼ max p2 Vs x; zð Þð Þ; 1� LVs x; zð Þð Þ ð4:41Þ

p�3 Rho x; zð Þð Þ ¼ p3 Rho x; zð Þð Þv 1� LRho x; zð Þð Þ
¼ max p3 Rho x; zð Þð Þ; 1� LRho x; zð Þð Þ ð4:42Þ

The fusion of the hypotheses produces meta-hypotheses and assigns the soil data
to different geomechanical behavior interpretations. For the ‘super-Sauze’ site
geophysical data, Grandjean et al. (2006a, b) assumed two meta-hypotheses: H�

1;H
�
4.

H�
1: Define the possibility for the material related to a rigid mechanical behavior.

The rigid mechanical behavior is supposed to exhibit lower water saturation and
to be fractured by traction forces but not by shear forces. Therefore the possibility
function for this meta-hypothesis was expressed by:
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p1¼ p�1 
 �p�2 
 �p�3 ð4:43Þ

H�
2: This meta-hypothesis defines the possibility for a plastic mechanical

behavior which has been subjected to shear forces but not to traction forces and to
have a high degree of water saturation. Therefore the possibility function for this
meta-hypothesis was expressed by:

Fig. 4.35 Possibility distributions 1, 2 and 3 corresponding to three hypotheses a h1: “possibility
for traction cracks”; b h2: “possibility for soil water saturation”; c h3: “possibility for soil shear
bending” (Grandjean et al. 2006a, b)
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p2¼ �p�1 
 p�2 
 p�3 ð4:34Þ

Using equations above, the possibility distribution for both the solid-state
behavior and plastic-state behavior of the mudslide was calculated for each of the
points, and illustrated in Fig. 4.36. The computed fuzzy cross-sections show the
possibility of the geomechanical hypotheses to be realized in specific areas of the
tomographic cross-sections highlighting the places where plastic or solid-body
deformations could occur (Grandjean et al. 2006a, b).

Fig. 4.36 Possibility distributions (p1 and p2) for a the meta-hypothesis (H1*) “solid-state
behavior”; b the meta-hypothesis (H2*) “plastic-state behavior” (Grandjean et al. 2006a, b)
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Grandjean et al. (2006a, b) comprehensively showed that data fusion through
fuzzy set theory is an efficient tool for interpreting geophysical tomograms and for
proposing hypotheses about the geomechanical behavior of materials as well as on
the mechanisms of deformation.

4.8 Automatic Fuzzy-Logic Recognition of Anomalous
Activity on Geophysical Log Records

4.8.1 Description of the Research

Zlotnicki et al. (2005) used a fuzzy approach to recognize anomalous activity on
long geophysical records of electric signals associated with the volcanic activity of
Piton La Fournaise volcano, Reunion Island (Fig. 4.37a). They focused on electric
signals recorded on Piton de la Fournaise (Reunion Island) volcano by five stations
(Fig. 4.37b) measuring two horizontal components of the electric field during a
renewal of activity in 1997–1998. The main goal of their study was to detect and
describe the anomalous electric variation specific to the period of effusive activity
from March 9 until September 1998. To achieve this goal they built a pattern
recognition algorithm based on fuzzy-logic which can be efficiently turned for the
identification of an electric anomalous signal. They used the Difference Recognition
Algorithm for Signal (DRAS) method, which is a new recognition algorithm for the
identification of periods of activity in geophysical time series. The algorithm
belongs to the family of the fuzzy sets based anomaly recognition and clustering
algorithm introduced by Gvishiani et al. (2003).

One of the biggest advantages of the DRAS method is that it depends on free
parameters, which allow the user to tune it for recognition of different type of
anomalies in time series. An important feature of the DRAS algorithm, which
makes it suitable for automatic recognition, is that the notion of anomaly is strictly
defined in terms of fuzzy set mathematics. This feature is especially important in the
case where analyzing long time series should be done in the most objective and
homogeneous way. DRAS is aimed at significantly increasing the reliability of the
identification of anomalous time segments (Zlotnicki et al. 2005). Self-potential
anomalies on volcanoes are mostly attributable to streaming or electro-kinetic
potentials. The electro-kinetic potential can have a large amplitude (Zlotnicki and
Nishida 2003); for example, a 2700 mVSp anomaly measured on Agadak volcano,
Adak Island, Alaska, has been attributed to the streaming potential (Nyquist and
Corry 2002).

A streaming potential appears when water or other fluid carrying electric charges
flow through a porous medium (Uyeda 1996). The water flow is the sum of a
gravity flow of meteoric water and a convective flow generated by heat sources
(Zlotnicki and Nishida 2003).
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Fig. 4.37 Topography of Piton de La Fournaise volcano. a The two dashed lines represent the
extension of the Major Fracture Zone (MFZ). b Sketch of Piton de la Fournaise volcano with lava
flow contours from the March–September 1998 eruption. Electric stations are indicated by white
crosses (Zlotnicki et al. 2005)
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The SP anomalies observed at the ground surface of volcanoes are generated by
different mechanisms:

• Variations of the fluid’s pressure gradient.
• Variations of temperature.
• Variations of the chemical composition.
• Variations of the water content in the porous medium.

For example, the pressure variations generate SP signals with characteristic
electro-kinetic coefficients between 1 and 100 mv/10 Mpa.

The main purpose of the DRAS fuzzy approaches that Zlontnicki et al. (2005)
used was to automatically recognize anomalous SP variations so that they can be
briefly analyzed for their possible sources. Before we describe how Zlontnicki et al.
(2005) applied the DRAS method for automatic recognition of SP anomalies
generated during volcanic activity of Piton de l la Fournaise volcano (Fig. 4.37), we
first need to explain Detour’s DRAS algorithm based on Zlontnicki et al. published
in ‘Earth and Planetary Science Letters’, 2005. In the next section we first introduce
the DRAS method from the appendix of the paper by Zlotnicki et al. (2005).

4.8.2 Difference Recognition Algorithm for Signals (DRAS)

4.8.2.1 The Goal of the Algorithm

We consider a time series (discrete function; recordings) y = {yk = y(kh), k = 1, 2,
3,…}, which is defined on a coherent set Y that belongs to the discrete positive
semi-axis Rþ

h . DRAS represents Y in the form of the two following unions (here
and below, as usual, A

‘
B = A [ B, if A \ B = /):

Y ¼
XN

n¼1
A0
n

a
S0 ð4:45Þ

where A0
n are the coherent subsets A

0
n � Y on which the time series y has potential

(possible) anomalies perturbing its regular behavior, S′ is the complement, and:

Y ¼
XN
n¼1

An

a
S; ð4:46Þ

where An are the coherent subsets An � A0
n � Y, on which the time series y has real

(genuine) anomalies. It is obvious that the decompositions (4.45) and (4.46) are
linked by the conditions S 
 S′ and 8An 9A0

m : An � A0
m.
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4.8.2.2 Preparatory Phase of the Algorithm, Rectification
of the Time Series

We call Δ, Δ = l.h, l = 1,2, …,k the “parameter” of local “observation”. The fol-
lowing part of the time series y with center at the point k.h

Dky ¼ yk � D=h; . . .; yk; . . .; ykþD=h

n o
2 <2D

h þ 1 ð4:47Þ

is called a fragment of local observation.
There are positive functional uy: I ! Rþ

h , defined on the set I = {Δky} of the
fragments (3), which translate anomalous fragments Δky into “uplifted” parts of the
corresponding curve uy(k) (see Fig. 4.38). Here we mean that a fragment of the
curve is uplifted if the area under this fragment is significantly larger than the
corresponding areas under other fragments of the curve having a similar length.

We call such functionals uy, rectifying functionals of the time series.
Correspondingly, we call the function uy(k) the rectification of y. Different recti-
fying functionals are tuned for different types of anomalies. The choice of a rec-
tifying functional is one of the free parameters of the algorithm.

In this study we applied DRAS with the following rectifying functionals:

(1) Length of the fragment of local observation: L Dky
	 
 ¼Pkþ D

h�1

j¼k�D
h
jyjþ 1 � yjj:

(2) Energy of the fragment of local observation: E Dky
	 
 ¼Pkþ D

h

j¼k�D
h
yj � �yk
	 
2

:

(3) Departure of Δky from its regression of order n:

Rn Dky
	 
 ¼ Xkþ D

h

j¼k�D
h

ðyj � Regrn
Dky jhð ÞÞ2: ð4:48Þ

where Regrn
Dky

is the optimal mean squares approximation of order n of y on the

fragment Dky. It is straightforward that R0 Dky
	 
 ¼ E Dky

	 

.

4.8.2.3 Potential Anomaly Domains Construction

We introduce K � Δ, K 2 <þ
h —another free parameter of DRAS. It will be called

the “parameter of global observation”. In the same way as for Dky (Eq. 4.3), the set
Kkuy = {uy(kh − K),…,uy(kh),…, uy(kh + K)} will be called a fragment of
global observation.

We consider the set S′ of the calm (regular) points, defined by formula (1), as a
fuzzy set (S′, l) (e.g. Jensen and Toll 1983). (By definition, the fuzzy set (S′, l) is
the set of objects {s} that belong to S′ a certain degree that is measured by the
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membership functions l: 0 � l(s) � 1. The goal of this phase of the algorithm is
to construct a sufficiently good approximation of the membership function
Y: ! [0, 1] and to define the weighting function. Set S′ of potentially calm (reg-
ular) points on this basis. We introduce the weighting function:

dkh �khð Þ ¼ Kþ h� hj�k � kj
Kþ h

�kh 2 kh�K; khþK½ �ð Þ ð4:49Þ

This weighting function has the form of an equal sided triangle with the summit at
point kh, a height equal to 1, and basis length [kh – K − h, kh + K + h]. Another
free parameter of the algorithm is a 2 ℜ; mink2Yuy(k) < a < maxh2Yuy(k), which is
called the vertical level of noise. For a given a, we introduce the left side measure
Lauy on the rectifications by the formula:

Lauy kð Þ ¼
P

k d khð Þ : /y �kð Þ� aP
k d khð Þ ð4:50Þ

In the sum of formula (4.50) k 2 [k − K/h, k].
In the same way we introduce the right sided measure where k ̅ 2 [k, k + K/h].

These measures are the DRAS major tools which are used to find the effects of
anomalies on the recording rectifications. The following definitions are used:

1:1 Point k is a a-calm point from the left (from the right), if:

Uy �kð Þ� a8�k 2 ½k� K
h
; k� 8�k 2 k, kþ K

h

� �� �
: ð4:51Þ

1:2 Point k is an a-not calm point from the left (from the right), if there is at
least one point

�k 2 ½k� K
h ; k�

ð�k 2 ½k; kþ K
h�Þ such as uy

�kð Þ[ a
ð4:52Þ

1:3 Point k is a-anomalous from the left (from the right), if uy (k ̅) > a Na for
any point

�k 2 ½k� K
h
; k� ð�k 2 k; kþ K

h

� �
Þ ð4:53Þ

As follows from Eq. (4.53), the following statement is true.

352 4 Applications of Fuzzy Logic in Geophysics



Statement:

1:1 A point k is a-calm from the left (from the right), if and only if (Lauy)
(k) = 1

Rauy

	 

kð Þ ¼ 1 ð4:54Þ

1:2 A point k is a-not calm from the left (from the right), if and only if
0 < (Lauy)(k) < 1.

0\ Rauy

	 

kð Þ\1 ð4:55Þ

1:3 A point k is a-anomalous from the left (from the right), if and only if
(Lauy)(k) = 0

Lauy

	 

kð Þ ¼ 0 ð4:56Þ

In other words, the statement means that for a given level of noise, Lauy and
Rauy can be considered as membership functions for the fuzzy set of a-calm points
from the left and from the right, respectively. It is natural to consider that bigger
values of the membership functions correspond to calmer points k of the time series
y under consideration. On the contrary, smaller values of the membership functions
correspond to more anomalous regions (i.e. anomalous from the left and/or from the
right) of the record y. Mathematically speaking it means that Lauy and Rauy

functions introduce relations of order in the set of a-not calm points.
Another free parameter is b, 0 � b � 1, the horizontal level of noise. For a

given b, we construct the decomposition of the definition domain Y into the union
of the domain of calm (regular) points S′ and union of the domain of calm (regular)
points S′ and the domain A′ in which has potential anomalies. The sets S′ and A′ are
defined by the formulas:

S0 ¼ fkh 2 <þ
h : min Lauy

	 

kð Þ; Rauy

	 

kð Þ	 
� b ð4:57Þ

A0 ¼ f kh 2 <þ
h : min Lauy

	 

kð Þ; Rauy

	 

kð Þ	 


\b ð4:58Þ

In other words we classify as calm those points (k 2 S′) which have sufficiently
big values of both ‘left’ and ‘right’ membership functions (Lauy)(k) � b and
(Rauy)(k) � b. The simplest DRAS version corresponds to b = 1, point k 2 S′
only if it is a-calm both from the left and from the right. The searched subsets A0

n of
the potential anomalies in formula (1) are the coherent components of the set A′
defined by Eq. (4.6):

A0 ¼
aN
n¼1

A0
n ð4:59Þ
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4.8.2.4 Genuine Anomaly Domain Construction

In this last phase, inside the sets of potential anomalies A
0
n, we establish the genuine

anomaly domains An � A
0
n.

For that we consider the membership functions (4) and introduce the difference
between the “left” and “right” ones:

Dauy

	 

kð Þ ¼ Lauy

	 

kð Þ� Rauy

	 

kð Þ: ð4:60Þ

Let a point k 2 A0
n be a point of maximum for the function, and suppose (Dauy)

(k), and suppose (Dauy)(k) > 0 [here, by the maximum we just mean that (Dauy)
(k) > (Dauy) (k + 1)] and (Dauy)(k) > (Dauy)(k − 1). In such a situation the dif-
ference between “a-calmness from the left and a-calmness from the right” is bigger
than at the neighboring points. Therefore it is natural to assume that point k is the
beginning of a real (genuine) anomalous domain An � A0

n (see Eq. 4.2). Let us
denote My(a,n) the set of such points k 2 A0

n . In the same way, if (Dauy)(k) has a
minimum at the point k 2 A0

n, and (Dauy)(k) < 0, then we have a minimum dif-
ference between “a-calm level from the left” and “a-calm level from the right”. It is
natural to assume that such a point is the end of the searched domain of the genuine
anomalies interval, An � A0

n We denote my(a,n) the set of such points k 2 A0
n.

The following situations are possible:

1. At least one of the sets My(a,n), my(a,n), is empty. Then, by definition, there is
no real anomaly in the set of potential anomalies. In other words An = /.

2. My(a,n) 6¼ /,my(a,n) 6¼ / and 8k 2 My(a,n), 8k′ 2 my(a,n), the condition
k < k′ is true. In this situation we have a contradiction. Indeed, the potential end
of An takes place later than its potential beginning. That cannot be, and there is
no genuine anomaly domain inside our potential anomaly set A0

n. In this case
An = /.

3. My(a,n) 6¼ /, my(a,n) 6¼ /, and there is at least one pair (k, k′), such as
k 2 My(a,n) and k′ 2 my(a,n) k < k′. In this case we define the real potential
domain An as the segment An = [an, bn], where:

an ¼minfk : k 2 My a; nð Þg
bn ¼maxfk0 : k0 2 my a; nð Þg ð4:61Þ

The latter step completes DRAS construction of the searched decomposition.
Figure 4.38 illustrates the three phases of the algorithm by applying it to syn-

thetic data. The first graph shows a synthetic time series y(t) containing three
genuine anomalies of different morphology. The first one is a high-frequency
oscillating anomaly, the second is a spike, and the third and latest one is a
high-frequency oscillation superimposed on the background of a high amplitude
signal. We apply DRAS for recognition of these obvious anomalies to demonstrate
how the algorithm identifies them at its different stages.
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The three anomalies are already clearly recognized in the preparation phase,
through the rectification L(Δky), represented in the second graph. In the second
step, the fuzzy membership function (third graph) recognizes the anomalies in the
same way regardless their morphology.

The last graph (Dauy)(k)—the membership function difference) clearly shows
that in the final stage DRAS is able to recognize the anomalies in a truly homo-
geneous way. The form of the “anomaly signals” in the (Dauy)(k) graph is indeed
practically identical for the three types of anomalies under consideration. That
illustrates the fact that DRAS does recognize anomalies in the general behavior of
the time series and not just from a specific part of the curve.

4.8.3 Application of the DRAS Algorithm
to Observational Data

The DRAS algorithm was used to study SP variations recorded at five stations:
DON, DOS, CSV, BAV and MAV shown in Fig. 4.37.

Fig. 4.38 Synthetic example. a Synthetic signal containing three events of different morphology;
b rectification functional (length); c left membership function (see Eq. 4 of the appendix);
d difference (Dauc)(k) (Zlotnicki et al. 2005)
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As described in the previous section the DRAS algorithm uses fuzzy sets to
mathematically model the natural logic used by the interpreter to search for the
anomalies in the time series, recorded, by a robust unbiased estimation. The main
reason to use the fuzzy approach in this case is that the general notion of an
anomaly is a rather vague concept. The interpreters’ logic is modeled via DRAS. At
first, the interpreter inspects relatively short fragments of the record whose length is
comparable to the length of activity periods in the recorded parameter y(t).

Using this procedure he/she somehow attributes an estimate of activity level to
these fragments (or the centers of fragments). This procedure consists in a substi-
tution of the initial record by a positive function of time defined on the same time span
as the initial time series: uy(t) namely the “rectification” function of the initial time
series. The uy(t) characterizes the level of activity which at particular time intervals
where y(t) presents a more intense activity which will be given larger values of uy(t).
The rectification transform can be defined in many various ways, depending on what
the interpreter, looking for a specific type of anomaly, wishes to emphasize, in DRAS
the choice of “rectification functional” is a free feature of the algorithm.

As an example when the anomaly searched for is characterized by a high level of
oscillation, the rectification functional can be defined as zero crossings rate
(Zlotnicki et al. 2005).

In the next stage the interpreter looks to find ‘hills’ in the rectification function,
which correspond to time sets {t} where the values of uy(t) are large enough to
make the sets distinct from the rest of the series. In this way, the concept ‘large
enough’ is a linguistic variable and the interpreter works at two levels:

• A local level, where the rectification of the record substitutes for its initial from
• A global level, where the “hills” in the rectification function uy(t) are searched.

Consequently, DRAS similarly operates at two levels. At the local level it
constructs the “rectification functional” I and “rectification functions” uy(t).

Different rectifications, based on different parameters of the time series can be used:

• Energy in a fragment.
• Length of the period’s activity in a fragment.
• Level of the recorded oscillations.
• etc.

Zlotnicki et al. (2005) showed that the choice of the rectification function is not
crucial for the effectiveness of the signal.

DRAS then scrutinizes the signal at the global level. As the graph of the rec-
tification function can be complicated, the analysis of the ordinates uy(t) is insuf-
ficient by itself to recognize the “hills”, anomalies may have high ordinate but short
durations, active segments may be separate by short calm intervals. In the light of
these facts, DRAS explores the problem at the global level in two stages. In the first
stage, the record y(t) is represented as a union of background (calm) and potentially
anomalous parts. In the second stage, a procedure is applied which searches for real
anomalous fragments inside the potentially anomalous part of the record.
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The left and right measures, Luy(t) and Ruy(t) plays a basic role in this process.
These measurements are interpreted as membership functions of the fuzzy set of
sufficiently calm (non-anomalous) points of the initial time series y(t). The mem-
bership functions Luy(t) and Ruy(t) characterize how calm a recording is on the left
side and on the right side of a point ‘t’. The difference Duy(t) = Luy(t) − Ruy(t)
appears to be a crucial parameter to discriminate a genuine anomalous point ‘t’ from
background levels.

The beginnings of the anomalous segments are located at the positive maximum
of the function Duy(t). Indeed, at such points {t], the difference between the
calmness right of t reaches a maximum value. And for the same reason, the ends of
anomalous segments are located at points of negative minima of Duy(t).

The result of DRAS method, the domain of y(t) is represented as the union of
three fuzzy sets of point t (shown in Fig. 4.39):

– Calm (non-anomalous) points (shown in black in the Fig. 4.39).
– Potentially anomalous points (shown in blue in the Fig. 4.39).
– Really anomalous points (shown in red in the Fig. 4.39).

It is necessary to mention that the algorithm is tuned by a learning process before
its application to data. Briefly, this tuning is applied by adjusting the free param-
eters of the algorithm so that all the anomalies chosen manually are recognized
automatically by DRAS.

Fig. 4.39 Comparison of two different functional U: the length a, b and the energy c, d and
corresponding periods of activity for DON NS channel, between days 63.5 and 64.0, 1998. d Is the
time window on which DRAS is applied. Non active periods are shown in black; probable periods
of activity in blue; periods of activity in red (Zlotnicki et al. 2005)
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After completing the learning process, the number of points of the local
observation parameter Δ was taken equal to be to 30 (600s) and the value of the free
parameter a equal to 0.97. Using these parameters more than 95% of the learning
signals were recognized by DRAS which was then applied to the whole duration of
the different time series of the stations. As an example of the results that (Zlotnicki
et al. 2005) obtained we show the automatic recognition of SP periods of activity
for recording of DON station for the time interval March 15, 1997–December 31,
1998. It is seen from Fig. 4.40 that the anomalous periods detected by DRAS
algorithm can be subdivided into two groups:

(1) Periods containing intensive high-frequency oscillations of relatively low
amplitude (up to 100 mV/km within a few minutes).

(2) Periods including high-amplitude spikes and steps (up to 1000 mV/km or more
within time intervals of tens of minutes and more).

It is necessary to note that heavy rains disturb the recording of electric fields.
Thus; it is legitimate to assume that the groups of anomalous periods of activity
mentioned two have different origins and that the anomalies of the second group are
generated by rain (Fig. 4.41).

So, Zlotnicki et al. (2005) performed the DRAS analysis again only on days with
rainfall less than 10 mm.

Fig. 4.40 SP variations recorded by the station DON on NS and EW channels between March 15,
1997 and December 31, 1998 (graphs a and c). January 1, 1998 is referenced to day 1. Periods of
activity found by DRAS are shown by blue and red colors. Parameters of algorithm are a = 0.97 and
D = 30 (see text for details). Daily rainfall is presented in cartoons (b and d) (Zlotnicki et al. 2005)
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Comparison of Figs. 4.40 and 4.43 reveals that almost all high amplitude spikes
and steps have disappeared which means that they indeed essentially occur on rainy
days. On the contrary, low-amplitude high-frequency oscillations are identified as
signals on both figures, which prove that these signals do not originate from rain.

Such an analysis would not be practicable without the application of an auto-
mated formal fuzzy algorithm such as DRAS. The 2 year data sets considered by
Zlotnicki et al. (2005) cannot be done manually (by eye) because the data were too
long (16 � 106 data points per year) and the results would risk being biased by the
interpreter’s “preferences” and prior idea.

4.9 Operational Earthquake Forecasting Using Linguistic
Fuzzy Rule-Based Models from Imprecise Data

Earthquake prediction is one of the most important unresolved problems in geo-
sciences. Many researchers globally have been actively involved in earthquake
precursor and prediction studies using multi-disciplinary tools and methods without
a common consensus as to any reliable and consistent methodologies which can

Fig. 4.41 a Average of the energies on both NS and EW channels at DON station, for the
non-rainy (V10 mm/day) days computed at only points recognized by DRAS as belonging to a
period of activity from January 1, 1997 to December 31, 1998. b Cumulative number of
earthquakes per day according to Staudacher (1998) and Aki and Ferrazini (2000). c Daily rainfall
(Zlotnicki et al. 2005)
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predict an earthquake (Mishra 2012). The main techniques applied were proba-
bilistic models, precursor models, neural networks, active fault models, Bayesian
belief network and decision trees which provide primary solutions to the problems
inherent in the prediction of earthquakes.

In investigations of earthquake occurrence there is a need to recognize and
analyze multiple variable processes having mutual origins and mutual attributes.
Based on this fact, Dutta et al. (2013) devised a procedure for finding quantitative
relationships estimated by missing values and coarsely discrete data values and the
total error of the sample data between these variables through weighted regression.
The objective of theirs study was interpreting the spatial-temporal properties of
geographical objects with the help of regression equations and fuzzy rules for
finding interconnectedness among the attributes for the underlying physical phe-
nomena of seismic behavior.

On one hand, some researchers have strongly suggested that earthquake
occurrence is completely unpredictable by nature (Geller et al. 1997) with the
deterministic localization of a future event in a narrow time window as highly
improbable but on the other hand many researchers across the world, especially in
the U.S.A. (Shimazaki and Stuart 1985; Dmowska 1997), Japan (Asada 1982), Italy

Fig. 4.42 SP variations recorded by the station DON on NS and EW channels between March 15,
1997 and December 31, 1998 (graphs a and c). January 1, 1998 is referenced to day 1. Periods of
activity found by DRAS are shown by blue and red colors. Parameters of algorithm are a = 0.97
and D = 30 (see text for details). Daily rainfall is presented in cartoons (b and d) (Zlotnicki et al.
2005)
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(Dragoni and Boschi 1992), Turkey (Vogel and Itsikara 1980), China (Shin-jung
1993), Netherlands (Kisslinger 1986), India (Guha and Patwardhan 1985) have
been monitoring earthquake pattern and clusters in order to enhance the process of
operational earthquake forecasting for a very long time. Operational earthquake
prediction techniques have been rejuvenated with the advent of new seismic
monitoring resources and instrumentation. The recent decade has been buoyed by
optimistic outcomes and marred by total disappointments (Geller 1997). Dutta et al.
(2013) presented a review of operational earthquake forecasting methodologies
using linguistic fuzzy rule-based models from imprecise data with weighted
regression approach. Earthquake disaster analysis always yields some amount of
“impreciseness” or “vagueness” or “fuzziness” due to heterogeneity in the under-
lying phenomena, and/or explanatory variables, and/or response variables. For a
model with more realistic features, there is a need to incorporate this aspect in
traditional models, for example weighted linear regression. In this way, Dutta et al.
(2013) critically examined some of the modern seismological earthquake algo-
rithms used for analyzing seismo-electro-telluric-geodetic data across the globe.
A general schematic of prediction by extraction of the dynamics of observable
behavior of earthquake system are depicted in Fig. 4.44.

The dynamics of the lithosphere are stochastic and very non-linear and can’t be
easily modeled or forecast.

One statistical method, which has been attempted, is probabilistic forecasting. If
the probability of a target event during a fixed forecasting interval is P(t), the
decision rule might be to flag a regional alarm for the subsequent interval whenever

Fig. 4.43 The same analysis as shown Fig. 4.42 (a = 0.97, D = 30) but only for non-rainy days
(V 10 mm/day) (Zlotnicki et al. 2005)
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Fig. 4.44 General scheme of prediction by extraction of dynamic of observable behavior of
earthquake. Redrawn after Dutta et al. (2013)

this time-dependent probability exceeds some threshold value P0. If P(t) is low at
all times, which is typical in forecasting large earthquakes over short periods, at
least one of the prediction error rates will always be high, regardless of the decision
rule. Such predictions always contain less information than the forecast from which
they were derived. Consequently, probabilistic forecasting provides a more com-
plete description of prospective earthquake information than deterministic predic-
tion. In this method of analysis, fuzzy membership functions are very important.
The components of soft computing include neural networks, fuzzy system, and
evolutionary computation and swarm intelligence. Many of these soft computing
methods are used for earthquake prediction.

It is found that premonitory increase of the earthquake correlation range was a
useful parameter; these chains are the dense, long, and rapidly formed sequences of
small and medium earthquakes.

Historical data are collected which follow the time series methodology, the
mined data are combined for preprocessing and the fuzzy logic rules to predict the
likelihood of an earthquake are finally applied. Time series values are transformed
to phase space using a nonlinear method and then fuzzy logic is applied to predict
the optimum value as shown in Fig. 4.45.
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Fuzzy linear regression (FLR) model can be broadly classified into two
approaches:

• Linear programming (LP) based methods.
• Fuzzy Least Squares (FLS) methods.

The FLR model was proposed by Tanaka et al. (1982) through the parametric
models below:

Y ¼ A0 þA1X1 þ � � � þApXp ð4:62Þ

where Ai = (aic, aiw), Y = (yc, yw).
The parameters are estimated by minimizing the vagueness of model-data

combinations subject to constraints that each data point must lie within an estimated
value of the response variable. This can be visualized as a LP problem and solved
by using the “simplex procedure” as shown in Fig. 4.46.

It was shown that the duration of prediction intervals in respect of fuzzy linear
regression model were much less than those for multiple linear regression models.
As the number of a data points increase the number of constraints in LP increases
proportionally thereby resulting in computational difficulties.

A second method based on the Fuzzy Least Squares (FLS) method, was pio-
neered by Diamond (1988). This method is a fuzzy extension of the least squares
method based on a new defined distance over the space of fuzzy numbers. The
graphical output of the prediction is illustrated in Fig. 4.47 as the fuzzy surface
diagram. As it can be seen in this figure, the earthquakes are described in this
diagram where the level rules are as below:

Fig. 4.45 Data points and predictions (Dutta et al. 2013)

4.9 Operational Earthquake Forecasting Using Linguistic … 363



• If M (Magnitude) is low and Dt (Depth) is shallow then the impact of earthquake
is medium.

• If M is high and Dt is shallow then the impact of earthquake is high.
• If M is low and Dt is shallow, then the impact of the earthquake is medium.

The maximum impact of the earthquake is shown in the surface diagram. The
fuzzy logic approach helps us to predict the maximum number of occurrences. The
fuzzy if-then rules are generated with the assumption that magnitude (M), Depth
(Dt) and impact (I) dependent on latitude and longitude are linguistic variables. The
possible values for these linguistic variables are listed in Table 4.11.

Fig. 4.46 Computation of predictions for test examples of quartiles for output of a pignistic
distribution [In decision theory, a pignistic probability is a probability that a rational person will
assign to an option when required to make a decision (Wikipedia). A pignistic probability
transform will calculate these pignistic probabilities from a structure that describes belief struc-
tures (https://en.wikipedia.org/wiki/Pignistic_probability)] (Dutta et al. 2013)
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The fuzzy knowledge base in FLR method is based on M fuzzy if-then rules of
the following type:

Rule m: If M is Am1 and Dt is Amn then I is Bm the rule weight is Wm; where
X = [X1; X2;…;Xn] and y are, respectively, the input and the output values. Am1,
…,Amn are linguistic labels or “or” combination of labels, Whose corresponding
fuzzy sets are arranged in a press pacified fuzzy grid which is not changed during
the learning process. The consequents Bm can be either singletons or fuzzy num-
bers. For example:
Rule 1: If M is low or medium or high and Dt is shallow or deep then I is low or
medium with weight 0.8.

The rule base is interpreted according to the First Interference Then Aggregation
(FITA) principle (Cornelis and Kerre 2003) as best way of preprocessing a dataset
with a high degree of imprecision in the input.

Fig. 4.47 Fuzzy rule surface for Impact of an earthquake

Table 4.11 Possible values
for linguistic variable in
(FLR) method

Earthquake specification Related linguistic variable

Depth Shallow (S), Deep (D)

Magnitude Low (L), Medium (M), High (H)

Impact Low (L), Medium (M), High (H)
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Analyzing earthquake data with a regression analysis method based on fuzzy
extension of belief function theory was investigated (Dutta et al. 2011). An example
of the inferred relationship between the maximal magnitude of an expected earth-
quake Mmax and its position was given using Weka and SPSS (Dutta et al. 2011). In
this study, magnitude was taken as the dependent attribute, and the statistical and
logical inference of the relationship between the latitude, longitude and focal depth
was found to be an independent function.

Dutta et al. (2011) found that magnitude:

Mr ¼ �0:0349�latitude�0:0145�longitudeþ focal depthþ 7:5245: ð4:63Þ

Trend and deviation analysis using regression techniques of the spatial charac-
teristics of the earthquake parameters, for all of the seismicity occurring both before
and after the largest events accumulates to a global structure consisting of a few
separate clusters in feature space.

In Dutta et al. (2011) the earthquake size estimates in South Asia coming from
various sources and consisting of different magnitude types and intensity data were
plotted against unified magnitude Data association and their relationships between
attributes yields a significant order based on weka and spss tools.

In Figs. 4.48 and 4.49 the line extraction using the weighted least square method
is depicted.

Weighted least squares regression actually increases the influence of an outlier
and so the results may be far inferior to an un-weighted least squares method. The
earthquake cycle is not periodic and the time between successive earthquakes can

Fig. 4.48 Weighted line fit
using Weka (Dutta et al.
2013)
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be highly irregular whereby fuzzy rule based definitions and weighted regression
method play a significant role for time stamp definition of earthquake occurrence
based on the relationship between magnitude, focal depth and impact based on
location of the earthquake origin (Dutta et al. 2013).

Buckley and Feuring (2000) proposed “Evolutionary algorithm Solutions” for
fitting some particular parametric Fuzzy Nonlinear models: FNMs. The FNM
approach, for a given fuzzy dataset, searches from the “library” of fuzzy functions
including linear, polynomial, exponential, logarithmic, etc. that function which best
fits the data. A National Strong Motion Instrumentation Network (Chopra 2008) is
being established in order to develop an early warning infrastructure for the Indian
sub-continent. A great deal of research work is being put in by Indian scientists to
develop indigenous solutions for earthquake forecasting and response in India.
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Chapter 5
Neuro-fuzzy Systems

– Principles of ANFIS
– Design and Test of ANFIS using Matlab

5.1 Hybrid Systems

5.1.1 Introduction

A hybrid intelligent system involves combining two intelligent technologies; e.g.,
a combination of a neural network with a fuzzy system to produce a hybrid
neuro-fuzzy system. Generally combining probabilistic reasoning, fuzzy logic,
evolutionary computation together with neural networks produces hybrid systems
which form the core of soft computing.

Soft Computing is an emerging approach to building hybrid intelligent systems,
which can implement reasoning and learning processes within uncertain and
imprecise environments (Hajian et al. 2012). As we described in Chap. 2 one of the
imprecise environments that our brains works with in everyday life, is verbal
reasoning with words or linguistic variables. Although words are intrinsically less
precise than numbers, this inherent precision comes with a high computational price
tag. When we can tolerate a degree of imprecision we can use words which can also
have nuance which is difficult to deliver using mathematics.

We also use words when the data which are available cannot be defined precisely
enough to be described numerically. Soft computing trades off this tolerance for
uncertainty and imprecision against greater tractability and robustness while
simultaneously lowering the cost of computation.

A hybrid intelligent system is neither intrinsically good or bad; this will depend
on the selection of the components which constitute the hybrid. So the main
challenge is in the selection of the optimal components for building a good hybrid
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system to achieve the desired outcomes, i.e. intelligent interpretations in geophysics
(Hajian 2010).

Artificial intelligence (based on fuzzy logic) and neural networks are frequently
combined in order to minimise the inherent difficulties and limitations of each
paradigm when used individually and when they are used synergistically, they are
called Neuro-fuzzy Systems.

These systems are characterised by fuzzy sets and fuzzy rules which are adjusted
using input/output patterns. This is still a juvenile discipline and there are many
different implementations of neuro-fuzzy systems, espoused by individual authors
and their models. This section, based on the review article by Vieira et al. (2004),
describes the most commonly used hybrid neuro-fuzzy techniques, and considers
their advantages and disadvantages.

While the techniques of artificial intelligence have applications in almost all
fields of human knowledge, perhaps the biggest success of these techniques is
found in the engineering field. Neural networks and fuzzy logic are often applied in
combination to solve engineering problems where classic techniques cannot deliver
simple and accurate solutions, for example in noise attention of seismic data (Hajian
et al. 2016).

Neuro-fuzzy reasoning fuses these two techniques, but as each researcher
combines these in a different way, there is confusion and no consensus about its
exact meaning. However, generally the neuro-fuzzy term indicates a system char-
acterized as having a fuzzy controller where the fuzzy sets and rules are tuned using
neural network techniques iteratively utilising input and output system data vectors.

Systems like this show two distinct modes of behaviour.
There are two main stages in how a neuro-fuzzy system works:

• A Learning phase: where the system behaves like a neural network which
learns its internal parameters off-line.

• Execution phase: it behaves like a fuzzy logic system.

Each of these techniques has advantages and disadvantages which, when com-
bined, provide better results than that achieved with the use of each technique
individually.

Since fuzzy systems have become popular in industrial applications, it has
become apparent that developing membership functions and appropriate rules is
often a lengthy process of trial and error. In order to streamline this task, neural
networks, that have efficient learning algorithms, have been suggested as alternative
routes to the automation of the tuning of fuzzy systems.

Studies of neuro-fuzzy systems began in the 90s, with Lin and Lee (1991), Jang
(1992), Berenji (1992) and Nauck (1994). The first new applications were in pro-
cess control but these applications gradually spread into data analysis, classification,
imperfection detection and support to decision-making (Vieira et al. 2004).

Neural networks introduce the computational characteristics of learning into
fuzzy systems while benefitting from the interpretation and clarity of system rep-
resentation. The disadvantages of the fuzzy systems are ameliorated by the
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capabilities of neural models and these have been implemented successfully in
geophysical data interpretation, for example in Ground Penetrating Radar
(GPR) interpretation (Hajian and Fazelian 2016). The different combinations of
neural networks and fuzzy logic techniques can be divided into the following
classes:

5.1.2 Cooperative Neuro-fuzzy Systems

Cooperative systems have a pre-processing phase where the neural network
learning mechanisms define some sub-blocks of the fuzzy system (Fig. 5.1). For
instance, we can utilise fuzzy sets and/or fuzzy rules or clustering algorithms to
define the rules for the fuzzy sets. Once these fuzzy sub-blocks are calculated, the
neural network learning methods are removed and we only execute the fuzzy
system.

In a cooperative system, neural networks are only used to determine the
sub-blocks of the fuzzy system using the training data and are then removed and
only the fuzzy system is executed but the fact that the structure is not totally
integrated may be disadvantageous.

5.1.3 Concurrent Neuro-fuzzy Systems

Concurrent systems differ in that the neural network and the fuzzy system con-
tinuously work together (Fig. 5.2) with the neural networks pre-processing the
inputs (or post-processing the outputs) of the fuzzy system. A concurrent system is
not a neuro-fuzzy system sensu stricto, as the inputs of the fuzzy system, are
pre-processed while the neural network processes the outputs and vice versa, and
therefore, the results are not completely interpretable.

Fig. 5.1 Schematic diagram of a cooperative neuro-fuzzy system
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5.1.4 Hybrid Neuro-fuzzy Systems

Nauck (1994) defined these thus:

A hybrid neuro-fuzzy system is a fuzzy system that uses a learning algorithm based on
gradients or inspired by the neural networks theory (heuristical learning strategies) to
determine its parameters (fuzzy sets and fuzzy rules) through pattern processing (input and
output).

In this category, a neural network learns some of the parameters of the fuzzy
system (fuzzy rules and weights of the rules) in an iterative way and most
researchers confine the use of the term neuro-fuzzy for hybrid neuro-fuzzy systems.
A neuro-fuzzy system can be interpreted as a set of fuzzy rules created solely from
input/output data or initialised with prior knowledge. The fusing of fuzzy systems
and neural networks has the advantage of learning through patterns and the ease of
interpretation of its functionality. Again, in this juvenile research subject, each
researcher has defined their own models, similar in essence, but with certain
differences.

Many neuro-fuzzy systems constitute neural networks that implement logical
functions but this is not a firm rule for integrating learning algorithms into fuzzy
systems. However, the representation through a neural network does facilitate the
visualisation of the flow of data through the system and the error signals which are
used to update the parameters while allowing the comparison of different models
and the visualisation of their structural differences (Vieira et al. 2004).

Several neuro-fuzzy architectures are listed in Table 5.1.
In this chapter we have mainly focused on neuro-fuzzy systems, and a brief

summary of Expert Systems, Fuzzy Systems, Neural Networks and Genetic
Algorithms is listed in Table 5.2. The genetic algorithm (GA) will be discussed in
detail in Chap. 7 but for a comprehensive comparison the GA is also compared here
to other intelligent methods. This is a good guidance table, which should enable
someone to select a method from various intelligent alternatives, and furthermore to
know which intelligent methods can be combined in a complementary manner with
other methods. For example, the explanatory capability of neural networks is bad
while it is good for fuzzy systems; this means that the weakness of explanation
ability in neural-networks model can be solved through a combination with fuzzy
models. The reason for this weakness of neural networks is their black-box structure

Fig. 5.2 Schematic diagram of a concurrent system
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in which the user is not able to know how the inputs are affecting the outputs or on
the other hand the rules of the model that represents the relation between input(/s)
and outputs(/s) are not transparent. Combining a neural network system with a
fuzzy system overcomes this weakness as the fuzzy system’s learning ability is bad
while the learning ability for the neural networks model is very good.
A neuro-fuzzy model (fuzzy system with a neural network), helps the fuzzy if-then
rule based model to learn from the training data.

Table 5.1 Various types of hybrid-neuro-fuzzy systems

Neuro-fuzzy architect Abbreviation Developer(s) Year

Fuzzy adaptive learning control network FALCON C. T. Lin and C. S. Lee (1991)

Adaptive network based fuzzy inference
system

ANFIS R. R. Jang (1992)

Generalized approximate reasoning
based intelligence control

GARIC H. Berenji (1992)

Neuronal fuzzy controller NEFCON D. Nauck & Kruse (1994)

Fuzzy inference and neural network in
fuzzy inference software

FINEST Tano, Oyama and Arnould (1996)

Fuzzy net FUN S. Sulzberger, N.
Tschichold and S. Vestli

(1993)

Self-constructing neural fuzzy inference
network

SONFIN Juang and Lin (1998)

Fuzzy neural network NFN Figueiredo and Gomide (1999)

Dynamic/evolving fuzzy neural network EFNN and
DEFNN

Kasabov and Song (1999)

Table 5.2 Comparison of expert systems (ES), Fuzzy System (FS), Genetic Algorithm (GA) and
Neural Networks (NN)

n

Source http://www.computing.surrey.ac.uk/teaching/2006-07/cs364/lecturenotes/week10_Hybrid_
Intelligent_Systems.ppt
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5.2 Neural Expert Systems

• Expert systems use logical inferences and decision trees to model human rea-
soning and treat the brain as a black-box.

• Neural networks utilise parallel data processing to focus on modelling a human
brain through looking at its structure and functions, particularly at its ability to
learn.

• Expert systems Neural networks.
• A rule-based expert system represents knowledge by IF-THEN rules while

knowledge in neural networks is simply stored as a set of synaptic weights
applied between neurons.

In expert systems, knowledge is defined by individual rules and a user can see
and understand each quantum of knowledge while a neural network appears as a
black-box to its user. We can combine the advantages of expert systems and neural
networks in order to develop powerful and efficient expert systems. A hybrid
system combining a neural network with a rule-based expert system is called a
neural expert system (or a connectionist expert system) and the basic structure of a
neural expert system is illustrated in Fig. 5.3.

5.2.1 The Inference Engine

The core of a neural expert system is the inference engine which controls the
information flow in the system and initiates inferences applied over the neural
knowledge base and delivers approximate reasoning.

Fig. 5.3 Basic structure of a
neural expert system (http://
www.computing.surrey.ac.uk/
teaching/2006-07/cs364/
lecturenotes/week10_Hybrid_
Intelligent_Systems.ppt)
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5.2.2 Approximate Reasoning

In rule-based expert systems, the inference engine compares the conditional part of
each rule with the data in the database. When the “IF” part of the rule matches the
data, the rule is satisfied and the “THEN” part executed. An exact match is required
at this stage as inference engines cannot cope with noisy or incomplete data.

Neural expert systems use a trained neural network instead of the knowledge
base and the input data need not exactly match the data used in network training and
so this capability is called approximate reasoning.

5.2.3 Rule Extraction

Neurons in a network connect through links, which each have a numerical weight
which determines the strength or importance of the associated neuron inputs.

5.2.4 The Neural Knowledge Base

We start this part with a famous example of trying to design a model, which can
distinguish a flying object: is it a Bird, a Plane or a Glider?

The input parameters are the scores for having wings; tail, Beak, feathers and
engine. The outputs are the object type estimation among bird, plane and glider.
The main problem is how the system distinguishes a bird from an airplane?

If each input of the input layer is set the value of either +1 (true), −1 (false), or 0
(unknown), we can apply the rules and deduce the end result for any output neuron
(Fig. 5.4).

Here three rules are used; rule one for distinguishing a bird, rule 2 for distin-
guishing a plane and rule 3 for distinguishing a glider.

For example, if the object has Wings (+1), Beak (+1) and Feathers (+1), but does
not have Engine (−1), then by applying the rules we are forced to the conclusion
that this is a Bird (+1):

XRule1 ¼ 1 � ð�0:8Þþ 0 � ð�0:2Þþ 1 � 2:2þ 1 � 2:8þð�1Þ � ð�1:1Þ ¼ 5:3[ 0 ð5:1Þ

YRule1 ¼ YBird ¼ þ 1

Similarly we can conclude that this object is not a Plane:

XRule2 ¼ 1 � ð�0:7Þþ 0 � ð�0:1Þþ 1 � 0:0þ 1 � ð�1:6Þþ ð�1Þ � 1:9 ¼ �4:2\0

YRule2 ¼ YPlane ¼ �1

ð5:2Þ
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And not glider:

XRule 3 ¼ 1 � ð�0:6Þþ 0 � ð�1:1Þþ 1 � ð�1:0Þþ 1 � ð�2:9Þþ ð�1Þ � ð�1:3Þ ¼ �4:2\0

YRule 3 ¼ YGlider ¼ �1

ð5:3Þ

By attaching a corresponding question to each input neuron, we can enable the
system to prompt the user for initial values of the input variables:

Neuron#1: Wings

Question: Does the object have wings?

Neuron#2: Tail

Question: Does the object have a tail?

Neuron#3: Beak

Question: Does the object have a beak?

Neuron#4: Feathers

Question: Does the object have feathers?

Neuron#5: Engine

Question: Does the object have an engine?

-0.8 

-0.2 
-0.1 

-1.1 

2.2 
0.0 

-1.0 

2.8 -1.6 
-2.9 

-1.3 

Bird

Plane

Glider

+1 

Wings

Tail

Beak

Feathers

Engine

+1 

0 

+1 

+1 

−1 

-1.6 -0.7 

-1.1 1.9 

−1 

−1 

Rule 1

Rule 2

Rule 3

1.0 

1.0 

1.0 

Fig. 5.4 The structure of a neural-knowledge base to distinguish flying objects among birds,
planes and gliders (http://www.computing.surrey.ac.uk/teaching/2006-07/cs364/lecturenotes/
week10_Hybrid_Intelligent_Systems.ppt)
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An inference can be drawn if the known net weighted input to a neuron exceeds
the sum of the absolute values of the weights of the unknown inputs.

Xn
i¼1

xiwi [
Xn
j¼1

wj

�� �� ð5:4Þ

where i 2 known, j 62 known and n is the number of neuron inputs.
For instance if the initial value for the input Feathers is +1 then:

KNOWN = 1.2.8 = 2.8
UNKNOWN = ∣−0.8∣ + ∣−0.2∣ + ∣2.2∣ + ∣−1.1∣ = 4.3
KNOWN < UNKNOWN

And if also the initial value for the input Beak is +1 then:

KNOWN = 1.2.8 + 1.2.2 = 5.0
UNKNOWN = ∣−0.8∣ + ∣−0.2∣ + ∣−1.1∣ = 2.1
KNOWN > UNKNOWN

Then we can categorically conclude: Bird is TRUE for this object.

5.2.5 Multi-layer Knowledge Base

A multi-layer knowledge base consists of at least 5 layers:

Layer 1: Inputs
Layer 2: Conjunction layer
Layer 3: Disjunction Layer
Layer 4: Conjunction Layer
Layer 5: Disjunction Layer

A multi-layer knowledge base with 5 inputs, two outputs and 8 rules is depicted
in Fig. 5.5.

5.3 Neuro-fuzzy Systems

Fuzzy logic and neural networks are complementary tools, which can be used to
build intelligent systems. Neural networks are low-level computational structures
that deal well with raw data, while fuzzy logic reasons on a higher level, and uses
linguistic information supplied by domain experts.

While fuzzy systems cannot learn or adjust to a new environment, neural net-
works are able to learn, but are opaque to the user.

5.2 Neural Expert Systems 383



5.3.1 Synergy of Neural and Fuzzy Systems

Integrated neuro-fuzzy systems merge the parallel computational and learning abilities of
neural networks with the human-like knowledge representation and comprehension capa-
bilities of fuzzy systems with the result that neural networks may become more transparent,
while fuzzy systems develop a measure of learning ability. If a representative set of
examples is available, a neuro-fuzzy system is able to automatically develop a robust set of
fuzzy IF-THEN rules, reducing the dependence of the process on expert knowledge when
building intelligent systems.

A neuro-fuzzy system is functionally equivalent to a fuzzy inference model and
can be trained to develop IF-THEN fuzzy rules and determine the membership
functions for input and output variables of the system and in addition, expert
knowledge can be incorporated its structure., The connectedness of the structure
avoids fuzzy inference, significantly reducing the computational burden.
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Fig. 5.5 A 5-layer knowledge base model with 5 inputs, 8 rules and 2 outputs (http://www.
computing.surrey.ac.uk/teaching/2006-07/cs364/lecturenotes/week10_Hybrid_Intelligent_Systems.
ppt)
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A neuro-fuzzy system has a similar structure to a multi-layer neural network
with five layers: input and output layers, and three hidden layers representing
membership functions and fuzzy rules. A schematic diagram of a sample of a
neuro-fuzzy system, its layers and connections is shown in Fig. 5.6.

Each layer in the neuro-fuzzy system corresponds to a particular step in the fuzzy
inference process.

Layer 1 is the input layer where each neuron transmits external crisp (precise)
signals directly to the next layer. That is:

yð1Þi ¼ xð1Þi ð5:5Þ

Layer 2 is the fuzzification layer.

• Neurons in this layer represent fuzzy sets used in the antecedents of fuzzy rules.
• A fuzzification neuron receives a crisp input and evaluates the degree to which

this input belongs to that neuron’s fuzzy set.
• The activation function of a membership neuron is then set to the function that

specifies the neuron’s fuzzy set.
• We use triangular sets, and the activation functions for the neurons in Layer 2

are correspondingly set to the triangular membership functions.
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Fig. 5.6 Schematic of the structure of layers in a neuro-fuzzy system. Source http://www.computing.
surrey.ac.uk/teaching/2006-07/cs364/lecturenotes/week10_Hybrid_Intelligent_Systems.ppt
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• A triangular membership function is specified by two parameters {a, b} as
follows:

yð2Þi ¼
0; if xð2Þi � a� b

2

1� 2 xð2Þi �aj j
b , if a� b

2\xð2Þi \aþ b
2

0; if xð2Þi � aþ b
2

8>><
>>:

ð5:6Þ

The parameters a and b plays role on the shifting and band width of the trian-
gular membership function as shown in Fig. 5.7a, b.

Layer 3 is the fuzzy rule layer.

Each neuron in this layer corresponds to a single fuzzy rule and receives inputs
from the fuzzification neurons corresponding to fuzzy sets in the rule antecedents.
E.g., neuron R1, which corresponds to Rule 1, receives inputs from neurons A1 and
B1 (see Fig. 5.6).

In neuro-fuzzy systems, intersection is represented by the product operator and
therefore the output of neuron i in Layer 3 is obtained as:

yð3Þi ¼ xð3Þ1i � xð3Þ2i � � � � � xð3Þki ð5:7Þ

yð3ÞR1 ¼ lA1 � lB1 ¼ lR1 ð5:8Þ

Layer 4 is the output membership layer, which combines the consequences of all
of the inputs using the fuzzy operation union. This operation can be implemented
by the probabilistic OR i.e.,

(b) Effect of parameter b.
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Fig. 5.7 Effetcts of parameters “a” and “b” on triangular MF (http://web.cecs.pdx.edu/
*mperkows/CLASS_479/2013%20lectures/2012-1161.%20Neuro-Fuzzy%20Systems.ppt)
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yð4Þi ¼ xð4Þ1i � xð4Þ2i � � � � �xð4Þli ð5:9Þ

yð4ÞC1 ¼ lR3�lR6 ¼ lC1 ð5:10Þ

where lC1 is the integrated firing strength of fuzzy rule neurons R3 and R6.

Layer 5 is the defuzzification layer where neurons in this layer produces a single
output of the neuro-fuzzy system by taking the output fuzzy sets, clipped by the
respective integrated firing strengths, and combining them into a single fuzzy set.

Neuro-fuzzy systems can apply standard defuzzification methods, which include
the centroid technique. For our purposes we use the sum-product composition
method.

The sum-product composition calculates the crisp output to be the weighted
average of the centroids of all of the output membership functions. For example, the
weighted average of the centroids of the clipped fuzzy sets, C1 and C2 is:

y ¼ lC1 � aC1 � bC1 þ lC2 � aC2 � bC2
lC1 � bC1 þ lC2 � bC2

ð5:11Þ

5.3.2 Training of a Neuro-fuzzy System

The method used for its training lies at the heart of a neuro-fuzzy system and the
important question is: how does a neuro-fuzzy system learn?

A neuro-fuzzy system is in essence a multi-layer neural network, and can
therefore apply any of standard learning algorithms which have been developed for
neural networks, including the back-propagation algorithm (Bohlooli et al. 2011).

When a training input–output example is presented to the neuro-fuzzy system,
the back-propagation algorithm computes the system output and compares this with
the desired output provide by the training example. The error between these is
propagated backwards through the network from the output layer to the input layer
and the neuron activation functions are modified as the error is communicated
backwards. In order to determine the necessary perturbations, the back-propagation
algorithm differentiates the activation functions of the neurons. We can show how a
neuro-fuzzy system works with a simple example. Let us assume that the training
patterns are (X1, X2, Y) as shown in Fig. 5.8, where Y is a function of X1, X2.

The data set used for training the five-rule neuro-fuzzy system is shown in
Fig. 5.9a. The updating of the weighting rules during the training process versus for
each of the first 50 epochs is shown in Fig. 5.9b.
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5.3.3 Good and Bad Rules from Expert Systems

Prior or existing knowledge can dramatically improve system training and if the
quality of training data is poor, expert knowledge may be the only way a conclusion
can be achieved. However, experts are not infallible, and some rules used in a
neuro-fuzzy system may be false or redundant. Therefore, a neuro-fuzzy system
should also be capable of identifying bad rules. Let us suppose that the fuzzy
IF-THEN rules incorporated into the system structure are supplied by a domain
expert.

Fig. 5.8 Training space of data (http://web.cecs.pdx.edu/*mperkows/CLASS_479/2013%
20lectures/2012-1161.%20Neuro-Fuzzy%20Systems.ppt)

Fig. 5.9 a A five—rule system, b training for 50 epochs. Source http://web.cecs.pdx.edu/
*mperkows/CLASS_479/2013%20lectures/2012-1161.%20Neuro-Fuzzy%20Systems.ppt
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Example: A neuro-fuzzy system for XOR
If it is given input and output linguistic values, a neuro-fuzzy system can auto-
matically generate a complete set of fuzzy IF-THEN rules. As an example we will
create the system for the XOR example.

This system consists of 22 � 2 = 8 rules. As no expert knowledge is embodied
in the system initially, we set the initial weights between Layer 3 and Layer 4 to 0.5
but after training we can eliminate all rules whose certainty factors are less than
some threshold, say 0.1. We obtain the same set of four fuzzy IF-THEN rules
representing the XOR operation. This Eight-rule neuro-fuzzy system for XOR and
its training for 50 epochs is illustrated in Fig. 5.10a, b respectively.

5.4 Adaptive Neuro-fuzzy Inference System: ANFIS

5.4.1 Structure of ANFIS

The Takagi-Sugeno (1985) fuzzy model generates fuzzy rules from a given
input-output data set and a typical Sugeno fuzzy rule is expressed in the following
form:

IF x1 is A1

AND x2 is A2

� � � � � �
AND xm is Am

THEN y ¼ f x1; x2; . . .; xmð Þ

where x1, x2, …, xm are input variables; A1, A2, …, Am are fuzzy sets.

(a) Eight-rule system.
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Fig. 5.10 Structure and training for an eight-rule neuro-fuzzy system. Source http://web.cecs.pdx.
edu/*mperkows/CLASS_479/2013%20lectures/2012-1161.%20Neuro-Fuzzy%20Systems.ppt
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There are several orders of ANFIS:

• Zero-Order ANFIS
• First-Order ANFIS

When y is a constant, we obtain a zero-order Sugeno fuzzy model in which the
consequent of a rule is specified by a singleton. When y is a first-order polynomial,
i.e.

y ¼ k0 þ k1x1 þ k2x2 þ � � � þ kmxm ð5:12Þ

We obtain a first-order Sugeno fuzzy model.
The general layer structure of an ANFIS is depicted in Fig. 5.11. Considering

the inputs as a layer of ANFIS it has five layers:

Layer 1 is the input layer where Neurons pass external crisp signals to Layer 2.
Layer 2 is the fuzzification layer where Neurons in perform fuzzification and have
a bell activation function in Jang’s model.
Layer 3 is the rule layer in which each neuron corresponds to a single Sugeno-type
fuzzy rule. A rule neuron receives inputs from the respective fuzzification neurons
and calculates the firing strength of the rule it represents. In an ANFIS, the
end-result of the rule antecedents is given by the operator product.

In an ANFIS, the conjunction of the rule antecedents is represented by the
operator product and, the output of neuron i in Layer 3 is obtained as:

yð3Þi ¼
Yk
j¼1

xð3Þji ð5:13Þ

yð3Þ ¼ PlA1�lB1¼l1 ð5:14Þ

where the value of l1 represents the firing strength, or the truth value, of Rule 1.
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Fig. 5.11 Schematic diagram of the layers of an ANFIS (http://web.cecs.pdx.edu/*mperkows/
CLASS_479/2013%20lectures/2012-1161.%20Neuro-Fuzzy%20Systems.ppt)
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Layer 4 is the normalisation layer where each neuron receives inputs from all
neurons in the rule layer, and calculates the normalised firing strength of a given
rule.

The normalised firing strength is the ratio of the firing strength of any given rule
to the sum of firing strengths of all rules and represents the contribution of a given
rule to the final result. Thus, the output of neuron i in Layer 4 is determined as:

yð4Þi ¼ xð4Þii
Pn
j¼1

xð4Þji

¼ li
Pn
j¼1

lj

¼ �li ð5:15Þ

yð4ÞN1 ¼ l1
l1 þ l2 þ l3 þ l4

¼ �l1 ð5:16Þ

Layer 5 is thedefuzzification layer.Where each neuron is connected to the respective
normalisation neuron, and receives initial inputs, x1 and x2. A defuzzification neuron
calculates the weighted consequent value of a given rule as:

yð5Þi ¼ xð5Þi ki0 þ ki1 x1þ ki2 x2½ � ¼ �li ki0 þ ki1 x1þ ki2 x2½ � ð5:17Þ

where xð5Þi is the input and yð5Þi is the output of defuzzification neuron i in Layer 5,
and ki0, ki1 and ki2 is a set of consequent parameters of rule i.

Layer 6 is represented by a single summation neuron.

This neuron calculates the sum of outputs of all defuzzification neurons and
produces the overall ANFIS output, y as:

y ¼
Xn
i¼1

xð6Þi ¼
Xn
i¼1

�li ki0 þ ki1 x1þ ki2 x2½ � ð5:18Þ

There is a frequent question that most students and/or researchers who are going
to use ANFIS ask about such a question like this:

We might ask whether an ANFIS can deal with problems where we have no
prior knowledge of the rule consequent parameters.

The answer is that:

• Any prior knowledge about parameters of rule consequent is not essentially
needed.

• ANFIS itself can learn rule parameters and tune MFs.

So in the next section, we explain that how an ANFIS can learn from training
data.
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5.4.2 Learning in the ANFIS Model

An ANFIS is a hybrid-learning algorithm combining the least-squares estimator and
the gradient descent method. In the ANFIS training algorithm, each epoch is
composed of a forward pass in which, a training set of input patterns (an input
vector) is presented to the ANFIS, neuron outputs are calculated on the
layer-by-layer basis, and rule consequent parameters are identified and this is then
followed by a backward pass.

The rule consequent parameters are identified by a least-squares estimator. In the
Sugeno-style fuzzy inference, the output, y, is a linear function and given the values
of the membership parameters and a training set of P input-output patterns, we form
P linear equations in terms of the consequent parameters as:

ydð1Þ ¼ �l1ð1Þf1ð1Þþ �l2ð1Þf2ð1Þþ . . .þ �lnð1Þfnð1Þ
ydð2Þ ¼ �l1ð2Þf1ð2Þþ �l2ð2Þf2ð2Þþ . . .þ �lnð2Þfnð2Þ

..

.

ydðpÞ ¼ �l1ðpÞf1ðpÞþ �l2ðpÞf2ðpÞþ . . .þ �lnðpÞfnðpÞ
..
.

ydðPÞ ¼ �l1ðPÞf1ðPÞþ �l2ðPÞf2ðPÞþ . . .þ �lnðPÞfnðPÞ

8>>>>>>>><
>>>>>>>>:

ð5:19Þ

In matrix notation, we have:

yd ¼ Ak; ð5:20Þ

where yd is a P � 1 desired output vector:

A ¼

�l1ð1Þ �l1ð1Þx1ð1Þ . . . �l1ð1Þxmð1Þ . . . �lnð1Þ �lnð1Þx1ð1Þ . . . �lnð1Þxmð1Þ
�l1ð2Þ �l1ð1Þx1ð2Þ . . . �l1ð2Þxmð2Þ . . . �lnð2Þ �lnð2Þx1ð2Þ . . . �lnð2Þx1ð2Þ
..
. ..

. � � � ..
. � � � ..

. ..
. � � � ..

.

�l1ðpÞ �l1ðpÞx1ðpÞ � � � �l1ðpÞxmðpÞ � � � �lnðpÞ �lnðpÞx1ðpÞ � � � �lnð1ÞxmðpÞ
..
. ..

. � � � ..
. � � � ..

. ..
. � � � ..

.

l1ðPÞ �l1ðPÞx1ðPÞ �l1ðPÞxmðPÞ �lnðPÞ �lnðPÞx1ðPÞ �lnðPÞxmðPÞ

8>>>>>>>><
>>>>>>>>:

ð5:21Þ

where k is an n (1 + m) � 1 vector of unknown consequent parameters:

k ¼ k10k11k12 . . . k1mk20k21k22 . . . k2m . . . kn0kn1kn2 . . . knm½ �T ð5:22Þ
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When the rule consequent parameters are established, we compute the actual
network output vector, y, and determine the error vector e:

e ¼ yd � y ð5:23Þ

The back-propagation algorithm is then applied and the error signals are prop-
agated backwards, and the antecedent parameters updated according to the chain
rule.

5.4.2.1 ANFIS Training Algorithm of Jang (1993)

The Jang (1993) ANFIS training algorithm optimises both antecedent parameters
and consequent parameters are optimised. For the forward pass, the consequent
parameters are adjusted while the antecedent parameters remain fixed while in the
backward pass; the antecedent parameters are tuned while the consequent param-
eters are kept fixed (Table 3.3 show a compilation). The use of the squared error
measure for given fixed values of the premise parameters then ensures that the
consequent parameters are guaranteed to be the global optimum point in parameter
space. This hybrid approach is much faster than the strict gradient descent (Jang
1993) (Table 5.3).

5.4.2.2 The Over-Fitting Problem in ANFIS

A very good convergence can be obtained for the training data set when the number
of parameters in ANFIS is equal to or greater than the number of data entries, but
the generalization may still be poor and established FIS may not be valid for the test
or validation set. This is known a over-fitting. We usually try to compose an ANFIS
network with as few parameters as possible, leading to the smallest possible number
of fuzzy if-then rules (Hajian et al. 2011).

The number of fuzzy if-then rules is directly related to the number of mem-
bership functions in each variable space. If there are four variables in the input
space each represented by two membership functions, then the number of fuzzy
if-then rules is equal to 24 = 16. Therefore, an extra membership function for each
variable space leads to 34 = 81 fuzzy rules (Akyilmaz and Kutterer 2004).

Table 5.3 Two passes in the hybrid learning procedure for ANFIS

Case Forward pass Backward pass

Premise parameters Fixed Gradient descent

Consequent parameters Least-squares estimate Fixed

Signals Node outputs Error rates
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5.4.3 Function Approximation Using the ANFIS Model

In this example, an ANFIS tracks the trajectory of the non-linear function defined
by the equation:

y ¼ cosð2 x1Þ
ex2

ð5:24Þ

We initially choose an appropriate architecture for the ANFIS, which must have
two inputs, x1 and x2, and one output, y.

The ANFIS is defined by four rules, with the training data including 101 training
samples and has the structure shown in Fig. 5.12. This is represented by a 101 � 3
matrix [x1x2yd], where x1 and x2 are input vectors, and yd is a desired output
vector. x1, the first input vector, starts at 0, increments by 0.1 and ends at 10. x2, the
second input vector, is created by taking sin from each element of vector x1, with
the elements of the desired output vector, yd, determined by the function equation.

This ANFIS designed was tested in two states each for 1 epoch and 100 epochs
of training. The learning process is depicted in Figs. 5.13 and 5.14 for State 1 and in
Figs. 5.17 and 5.18 for State 2. State 1:2 Gaussian MFs assigned for each of inputs
and linear MF for output. State 2:3 Gaussian MFs assigned for each of inputs linear
MF for output (Fig. 5.15).

Comparing the results it is clear that we can achieve some improvement, but
much better results are obtained when we assign three membership functions to
each input variable. In this case, the ANFIS model will have nine rules, as shown in
Fig. 5.15. Figure 5.16 shows how the two dimensional input space is partitioned
into nine overlapping fuzzy regions, each of which is governed by a fuzzy if-then
rule. In other words, the premise part of a rule defines a fuzzy region, while the
consequent part specifies the output within the region (Figs. 5.17 and 5.18).
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Fig. 5.12 Structure of a four rule ANFIS (http://web.cecs.pdx.edu/*mperkows/CLASS_479/
2013%20lectures/2012-1161.%20Neuro-Fuzzy%20Systems.ppt)
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5.5 ANFIS Design and Testing Using the Matlab Fuzzy
Logic Toolbox

5.5.1 Introduction

Few books provide an easy tutorial, which enables readers to start implementing
their own ANFIS either by bespoke code or by using MATLAB, and so we present
here a short useful tutorial on these methods in MATLAB.
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Fig. 5.13 Learning in an
ANFIS with two membership
functions assigned to each
input, one epoch (http://web.
cecs.pdx.edu/*mperkows/
CLASS_479/2013%
20lectures/2012-1161.%
20Neuro-Fuzzy%20Systems.
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You can create and edit fuzzy inference systems with the Fuzzy Logic Toolbox
software in MATLAB using graphical tools or command-line functions, or generate
them automatically using either clustering or adaptive neuro-fuzzy techniques.

Using the Simulink software, you can test your fuzzy system in a block diagram
simulation environment. This is made possible by a stand-alone Fuzzy Inference
Engine which reads the fuzzy systems saved from a MATLAB session. This
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Fig. 5.15 Structure of an ANFIS model with nine rules (http://web.cecs.pdx.edu/*mperkows/
CLASS_479/2013%20lectures/2012-1161.%20Neuro-Fuzzy%20Systems.ppt)

Fig. 5.16 Two dimensional
input space partitioned into
nine overlapping fuzzy
regions
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stand-alone engine can be customized to build fuzzy inference into your own code
(Fig. 5.19).

Because of the integrated nature of the MATLAB environment, you can cus-
tomize the toolbox and link it with another toolbox, such as the Control System
Neural Network, or Optimization Toolboxes.

5.5.2 ANFIS Graphical User Interference

Type “anfisedit” in command window:

	 anfisedit

Then a window namely “Neuro-fuzzy Designer” is opened in which you can
design your desired ANFIS (Fig. 5.20).

This window has four main parts:
ANFIS Info: here the number of inputs, the number of outputs and the number of

membership functions is illustrated, once the user changes these parameters of the
ANFIS they will be updated and the updated information will be illustrated.

Fig. 5.17 Learning in an ANFIS with three membership functions assigned to each input, 1 epoch
(http://web.cecs.pdx.edu/*mperkows/CLASS_479/2013%20lectures/2012-1161.%20Neuro-Fuzzy%
20Systems.ppt)
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Fig. 5.18 Learning in an ANFIS with three membership functions assigned to each input, 100 epochs
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Fig. 5.19 Schematic of MATLAB toolbox abilities to design and test of fuzzy interference Source
Matlab Fuzzy Toolbox Tutorial Help
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In the “load data” section you can load training, testing and checking dataset for
your ANFIS from file or from the workspace of MATLAB.

In this example we try to implement ANFIS modeling dataset of a function
mentioned in a previous section, which was defined as:

Y ¼ cos 2x1ð Þ=exp x2ð Þ

To produce the dataset, all_data the following codes are run:

	x1 = 0:0.5:14.5;
	x2 = −1:0.1:1.9;
	y = cos(2*x1)./exp(x2);
	d = [x1; x2; y];

Now we check the length of vectors x1 and x2 and dimensions of the matrix “d”:
	length(x1)

ans = 30
	length(x2)

ans = 30

Fig. 5.20 The neuro-fuzzy designer window for ANFIS editor toolbox
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	size(d)
ans = 3 30
It means we have 3 rows (as x1, x2, y) and 30 columns as 30 pairs of training.

When the MATLAB ANFIS editor receives a matrix as a training data matrix it
assumes inputs and output of ANFIS as its columns and also assumes all the
columns before the last right column are inputs and the last column is assumed to be
the output, but here matrix “d” contains the input and output in its rows (not
columns), hence matrix “d” should be transposed:

	 all data ¼ d0;

Now the 30 pairs of all_data are ready to use for training, testing and checking
the desired ANFIS. In selecting training data from the work space we should use
70% of all data, and for testing and checking data, we should use 10 and 20% of all
data, respectively.

To produce the training pairs, the above codes are run for 21 data; then:

	x1 = 0:0.5:10;
	x2 = −1:0.1:1;
	y = cos(2*x1)./exp(x2);
	d = [x1; x2; y];
	training_data = d′;

Now we can repeat steps above for testing and checking data for 3 and 6 data,
respectively. But it must be mentioned that we must select data for training, testing
and checking, such that there isn’t any overlap between the data sets.

For testing data:

	x1 = 10.5:0.5:11.5;
	x2 = 1.1:0.1:1.3;
	y = cos(2*x1)./exp(x2);
	d = [x1; x2; y];
	testing_data = d′;

For checking data:

	x1 = 12:0.5:14.5;
	x2 = 1.4:0.1:1.9;
	y = cos(2*x1)./exp(x2);
	d = [x1; x2; y];
	checking_data = d′;

Now the training, testing and checking data is ready to use for training and
testing the desired ANFIS from the workspace.

To do this select “Training” as the type of data you want to read and “worksp.” in
the select field “Load data” as the location from which you want to receive data, and
then a menu edit field box is opened and requests you to enter the variable name. Here
we enter “training_data” as the input variable data as shown in Fig. 5.21.
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If you want to load data from a file with excel format, you can use command
“xlsread”:

	y = xlsread(“exact file location in directory i.e.
c:/geophysics/seismic/data_group_1.xlsx”)

We also load the testing and checking data from the workspace. After loading
the training, testing and checking data from the workspace, the last column of the
entered matrix is plotted as the desired output (Fig. 5.22); the data shown with “O”
is for training data, the data shown with “.” is for testing data, and the data shown
with “+” is for checking data.

In the next step we generate the desired FIS, there are four items to select:

– Load from file: this item allows the user to load the designed FIS from file
– Load from worksp.: this item allows the user to load the designed FIS from

work space
– Grid partition, and
– Sub. Clustering: Clustering is the process of organizing objects into groups

whose members are similar in some way and can determine the intrinsic

Fig. 5.21 The variable name is entered to be loaded from workspace of MATLAB
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grouping for a set of unlabeled data Grid partitioning and Subtractive Clustering
Based Approaches are the most commonly used.

Here, we select “Grid partition” to generate the FIS,
Note that ANFIS editor toolbox automatically determines the number of inputs

from the training matrix we entered, for this example as the training data matrix size
is 21*3 it will make a FIS with 2 inputs and one input (2 inputs + 1 output = 3).
Generally, if the training data matrix is m*n, it will automatically make a FIS with
n − 1 inputs and one output, and we will have an m-length training data set with the
form{{n − 1 inputs}, {1 output}}.

In the next step, click on “Generate FIS…” in order to generate the FIS structure
and after clicking on this icon a box-window is opened as shown in Fig. 5.23.
Which has two parts:

INPUT in this part you can edit the number of membership functions
(MFs) for each of inputs, to assign a different number of MFs to each
input use spaces to separate the numbers. Also you can select inputs MF
type which is selectable in “MF Type” pop-up menu (Fig. 5.23).

Fig. 5.22 Plot of the training data (output)
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OUTPUT in this part you can edit the membership functions (MFs) for
output (constant or linear).

Here we select 2 MFs for input x1 and 2 MFs for input x2 and the type of MFs is
selected as gauss (Gaussian) and linear MF for output.

To see the FIS designed structure click on “Structure” in “ANFIS info.” and then
the structure of the designed FIS will be displayed in a window named “Anfis
Model Structure” (Fig. 5.24). In this window you can click on each nodes to see
detailed information.

Now the ANFIS we have designed is ready to train; to start the training:

1. Select the optimization method from the pop-up menu, there are two choices:
“backprop.” which means the back propagation method to optimize the rules,
and “hybrid” which is fusion of back propagation and gradient descent algo-
rithm. Here, we select hybrid as it is better in most cases needing a lower
number of epochs to reach the desired error tolerance.

Fig. 5.23 This window opens after selecting “FIS generation”, in which you can enter number of
MFs for input and their types and also output MF type
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2. The number of training epochs is set to the desired value, under the Epochs
listing on the GUI, note that the default value is 3.

3. On selecting “Train Now”, and a window appears (Fig. 5.25 for trimf and
Fig. 5.26 for gaussmf MF). Comparing the training error for the two conditions
shows that the Gaussian membership function for inputs leads to less error.

Testing data against the trained FIS
To test the designed FIS against the checking data we select Checking data
(Figs. 5.27, 5.28 and 5.29).

The next steps are testing of the FIS on testing and checking data as mentioned
above for the test of training data.

Rules viewer
The Rule viewer is used to view the entire implication process of the fuzzy
inference diagram from beginning to end, dynamically. As the line indices that
correspond to the inputs change the system readjusts and computes the new output
(Fig. 5.30).

Fig. 5.24 ANFIS model structure with five layers which is presented after selecting “structure”
from ANFIS info in the main ANFIS editor window
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Surface viewer
The Surface Viewer allows you to examine the output surface of an FIS, for any one
or two inputs (Fig. 5.31) but does not alter the fuzzy system or its associated FIS at
all. Pop-up menus, allow you to select the input variables you want assigned to the
two input axes (X and Y), and the output variable to be assigned to the output (or Z)
axis. Selecting the Evaluate button performs the calculation and plots the output
surface which can be viewed from different angles and rotated using graphical
handles. However, if there are more than two inputs to your system the constant
values associated with unspecified inputs must be set. The Ref. Input field is used
when there are more inputs required by the system than the surface is mapping. If
you have a four-input one-output system and would like to see the output surface
you can generate a three-dimensional output surface where any two of the inputs
vary, but the other inputs must be held constant. In such a case the input would be a
four-dimensional vector with NaNs assigned to indicate those input values that
remain fixed.

To design a new FIS (Fuzz Interference System) with different properties
compared to the ANFIS default, select “New FIS” in the “File” menu item
(Fig. 5.32). Then you can select either the Mamdani or Sugeno models, which are

Fig. 5.25 ANFIS with 3 MF for input (x1) and 3 MFs for input (x2), type of MFs is triangular
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the most common ANFIS’s, with zero and first order ANFIS properties
respectively.

If you select Sugeno then the window shown in Fig. 5.33 appears; its default is a
Sugeno system with ONE INPUT and ONE OUTPUT. To add further input/s to
this system you can click on “Edit” item and select “add input variable”.

Also, if you wish to add new variables to the input/output select “add variable”
in Edit menu bar (Fig. 5.34).

Fig. 5.26 Training process in 40 epochs for ANFIS with 2 inputs, 1 output, with Gaussian MFs
type for inputs and outputs
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Fig. 5.27 Membership functions for inputs, type of MF Gaussian, output MF linear, grid
partitioning, no. of epochs 40
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Fig. 5.28 Three membership functions for inputs, type of MF Gaussian, output MF linear, grid
partitioning, no. of epochs 40
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Fig. 5.29 ANFIS with 3 MFs for input (x1) and 3 MFs for input (x2) and MFs type triangle and
linear MF output, after only one epoch training
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Fig. 5.30 Rules for type of MF Gaussian, output MF linear, grid partitioning, no. of epochs 40
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Fig. 5.31 Surface for type of MF Gaussian, output MF linear, grid partitioning, no. of epochs 40
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Fig. 5.32 Selecting type of FIS (Mamdani or Sugeno) using new FIS menu
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Fig. 5.33 Window for fuzzy logic designer, here you can design a Mamdani or a Sugeno fuzzy
interference system
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Chapter 6
Application of Neuro-Fuzzy Systems
in Geophysics

– Applications of Neuro-Fuzzy systems in Geophysics with various examples

6.1 Depth Estimation of Cavities from Microgravity Data
Using Multi Adaptive Neuro Fuzzy Interference
Systems

Hajian et al. (2011) used neuro-fuzzy systems to estimate the depth of subsurface
cavities from gravity data based on a Multiple Adaptive Neuro-Fuzzy Interference
System (MANFIS). This is an intelligent way to interpret microgravity data to
estimate the depth and the shape of the unknown cavities. The MANFIS model was
trained to develop interpretations for two main cavity types: sphere and cylinder
producing estimates of and depth and radius. MANFIS’s with different number of
rules were tested and the optimum value determined and this model was tested with
the addition of 20% Gaussian and it displayed robust behavior. The method was
also tested on real gravity data collected from Freeport Bahamas and the results
were in good agreement with observed depth values of subsurface cavities con-
firmed and characterized by drilling.

6.1.1 Why Use Neuro-Fuzzy Methods for Microgravity
Interpretation?

Subsurface cavities have a negative contrast density, so they are manifest as neg-
ative gravity anomalies. The accuracy of the gravimeter in for this kind of work
must be at least ±5 micro Gal (1Gal = 0.01 m/s2) for the small variations to be
observed in Bouguer gravity signals. Various interpretation methods: the Analytical
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signal, Euler’s equation, least squares minimization, regression, Fourier transform,
to name but a few have been used over the years to enhance gravity interpretation
but each method comes with its own difficulties. For example, the analytical signal
method can only determine the location of the edges of an object, the Euler method,
shows different responses for different window’s sizes, Index structure and depends
strongly on the experience of the interpreter. A new method, not dependent on the
experience of the interpreter, has been developed using an Adaptive Neuro Fuzzy
Interference System (MANFIS) model which is able to estimate the depth of
cavities for any desired training domain. A significant advantage of this method is
that there is no need to repeat complicated calculations for new gravity data sets as
interpretation takes place in the same trained space domain, after training the model.
Also the flexibility and robustness of the network in the presence of noise and for
different depth domains is exemplary. Hajian et al. (2011) presented ANFIS abil-
ities for the interpretation of noisy synthetic gravity data and also for real gravity
data and in this section we explain their work in detail.

6.1.2 Multiple Adaptive Neuro Fuzzy Interference
SYSTEM (MANFIS)

The acronym MANFIS denotes a Multi-adaptive neuro-fuzzy inference system.
MANFIS is an extension of the ANFIS neuro-fuzzy system, in order to produce
multiple outputs. A neuro-fuzzy system is a nonparametric regression tool for
modeling regression relationships without reference to any pre-specified functional
form. In its original form, ANFIS could only give a single output but the novel
aspect of MANFIS is that it aggregates many independent ANFISs to obtain
multiple outputs and this architecture is shown in Fig. 6.1.

Fig. 6.1 Architecture of a general MANFIS (Hajian et al. 2011)
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ANFIS works by approximating the functional relations between responses and
input variables, by gradually fine-tuning the parameters at the adaptive nodes of
ANFIS for the process under study.

The ANFIS architecture is shown in Fig. 6.2. Circular nodes represent fixed
nodes whereas the square nodes are nodes at which the parameters must be learnt.
A Two Rule Sugeno ANFIS has rules of the form:

If x is A1 and y is B1 THEN f1 ¼ p1xþ q1yþ r1 ð6:1Þ

If x is A2 and y is B2 THEN f2 ¼ p2xþ q2yþ r2 ð6:2Þ

In order to train the network we have a forward pass which propagates the input
vector through the network, layer by layer and a backward pass where the error is
sent back through the network (back propagation).

Layer 1: The output of each node is:

O1;i ¼ lAi
ðxÞ for i ¼ 1; 2; ð6:3Þ

O1;i ¼ lBi�2
ðyÞ for i ¼ 3; 4 ð6:4Þ

So, the O1;iðxÞ is essentially the membership grade for x and y.
The membership functions can have broad definitions but here we have used the

bell shaped function:

lAðxÞ ¼
1

1þ x�ci
ai

��� ���2bi
ð6:5Þ

Where ai; bi; ci are parameters to be learnt and are known as the premise
parameters.

Fig. 6.2 An ANFIS architecture for a two rule Sugeno system (Hajian et al. 2011)
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Layer 2: Each node in this layer is fixed and the t-norm is used to perform the
operator ‘AND’ on the membership grades(for example the product):

O2;i ¼ wi ¼ lAi
ðxÞlBi

ðyÞ; i ¼ 1; 2 ð6:6Þ

Layer 3: Layer 3 contains fixed nodes which calculate the ratio of the firing
strengths of the rules:

O3;i ¼ �wi ¼ wi

w1 þw2
ð6:7Þ

Layer 4: The nodes in this layer are adaptive and output the consequence of
applying the rules:

O4;i ¼ �wifi ¼ �wiðpixþ qiyþ riÞ ð6:8Þ

The parameters in this layer ðpi; qi; riÞ to be determined are known as the con-
sequent parameters.

Layer 5: There is a single node here that computes the overall output:

O5;i ¼
X
i

�wifi ¼
P

i wifiP
i wi

ð6:9Þ

This is typically how the input vector is fed through the network, layer by layer.
There are a number of possible training approaches but here the hybrid learning
algorithm which uses a combination of Steepest Descent and Least Squares
Estimation (LSE) is used.

6.1.3 Procedure of Gravity Interpretation Using MANFIS

For a MANFIS system which estimates depth and shape of subsurface cavities, two
ANFIS are paralleled with the same inputs (Features F1–F5 as defined in
Eqs. 6.10:14); one with depth (z) as output and another with shape factor (q) as
output. The MANFIS structure is depicted in Fig. 6.3. The general procedure to
estimate shape factor and depth of cavities from microgravity data is shown in
Fig. 6.4.

Fig. 6.3 The MANFIS
model structure for depth and
shape factor estimation
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6.1.4 Training Strategies and MANFIS Network
Architecture

To design the MANFIS model, the first stage was to select suitable inputs. If we
apply all measured gravity points of a profile as inputs of ANFISs then its structure
will be have a complex topology and be very time consuming to train with a lot of
rules. To prevent this problem some features: F1, F2, F3, F4 and F5 were extracted
from the residual gravity (see Eqs. 6.10–6.14). These features are normalized and
then applied as inputs of MANFIS (see Fig. 6.4).

We then tested ten different configurations of these features as inputs to
MANFIS and calculated the statistical errors for each of them to find the best array
as input for MANFIS. We prepared training data for two models, a sphere and a
cylinder because the shape of many if not all subsurface cavities is quite well
approximated by a sphere or a cylinder. The principal features are calculated for
these bodies using Eqs. 6.10–6.14 (GRÊT et al. 2000).

F1 ¼ Xg50=Xg75 ð6:10Þ

F2 ¼ Xg25 � Xg66ð Þ= Xg66 � Xg75ð Þ ð6:11Þ

F3 ¼
Zxe

xs

g(x)dx ð6:12Þ

F4 ¼ Xg50 ð6:13Þ

F5 ¼ Xg75 ð6:14Þ

F1, F2, F3, F4 and F5 Features calculated from gravity data;
g(x) gravity value (in micro-Gal) at the point at the horizontal

distance x (in meter);
Xg50 x where the gravity value is 50% of the maximum amplitude

of the gravity data;

Fig. 6.4 The procedure of interpretation of microgravity data using MANFIS (Hajian 2012)
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Xg75 x where the gravity value is 75% of the maximum amplitude
of the gravity data, and the same as for Xg25, Xg66.

Note that the domain of the integral in Eq. 6.10 is from the starting gravity point
of the profile (xs) to the end point of the profile (xe).

As mentioned previously, in order to find the best selection for inputs among
these features we tested the MANFIS models with different configuration of fea-
tures as inputs and calculated the error indexes (see Tables 6.1 and 6.2): MSE
(Mean square error), NMSE (Normalized Square error), MAPE (mean absolute
percentage error), R2 (Pierson Coefficient).The results showed that Model M10 is
optimal, meaning that MANFIS with inputs F1–F5 has the least values of error
indexes.

As shown in Fig. 6.3 the inputs of the Model (MANFIS) are F1, F2, F3, F4, F5
and the outputs are R, Z where R is the radius of the cavity and Z is the depth of the

Table 6.1 The models with their selected features as inputs to MANFIS (Hajian and
Zomorrodian 2016)

Inputs Model

F5 F4 F3 F2 F1
* * * M1

* * * * M2

* * * M3

* * * * M4

* * * * M5

* * * * M6

* * * M7

* * * M8

* * * M9

* * * * * M10

Table 6.2 The error index value for the models M1–M10 (Hajian and Zomorrodian 2016)

MAPE R2 NMSE MSE Model

9.57 0.481 0.519 0.055 M1

3.25 0.921 0.079 0.008 M2

3.82 0.869 0.132 0.014 M3

4.35 0.837 0.164 0.015 M4

3.29 0.916 0.084 0.009 M5

3.89 0.876 0.124 0.013 M6

4.62 0.813 0.173 0.016 M7

3.73 0.824 0.183 0.017 M8

3.09 0.914 0.086 0.008 M9

3.01 0.928 0.073 0.008 M10

422 6 Application of Neuro-Fuzzy Systems in Geophysics



cavity. So the training set is defined as [F1, F2, F3, F4, F5], [R, Z] and in order to
prepare gravity training data we used the following Eq. 6.15, (Abdelrahman 2001):

gðx; zÞ ¼ AZ
ðx2 þ z2Þq ð6:15Þ

A ¼
4
3 pGPR

3 : sphere
2pGPR2 : Cylinder

�

R Radius of the sphere or cylinder,
Z Depth of sphere or cylinder,
X Horizontal distance (see Fig. 6.5),
G Universal gravity constant,
P Contrast density,
q Shape factor (for sphere q = 1.5, for cylinder = 1).

Features F1, F2, F3, F4 and F5 are calculated for various values of depth and
radius throughout a domain of {[Rmin, Rmax], [Zmin, Zmax]} and so the MANFIS
network should be able to detect all with a radius between Rmin, Rmax and with a
depth between Zmin, Zmax.

For modeling purposes the gravity data are normalized in order to show the
variation as a value between zero and one. The data are divided into 2 parts and the
first part used for simulation/training of the network model, while the second part is
for validation and testing the model (Fig. 6.6). In considering the data for modeling,
the data are randomly sampled along with additive noise created by adding 5%
Gaussian noise to the synthetic data, to make the model more realistic.

The MANFIS used in this study, was a system with 5 inputs and two outputs; the
inputs are F1, F2, F3, F4 and F5 and the outputs are R, Z, radius and depth of the
cavity respectively (Fig. 6.7). This MANFIS is a combination of two ANFIS’s each
of them with 5 inputs and one output. The inputs are the same but the outputs differ.
We used the Sugeno ANFIS architecture with the fixed bell membership function as
input MF and a linear function as the output MF with the hybrid method for
training. To find the optimized MF types for these inputs various MF types were
tested and statistical error indexes were calculated for each MF types. The com-
parison of results shows (after 10 epochs) that Gaussian membership function is
optimal with a much superior performance (Fig. 6.8 and Table 6.3).

Fig. 6.5 Values of R, Z, x
for a cavity under a gravity
profile
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Fig. 6.6 Schematic diagram of preparing training, testing and validation sets for MANFIS (Hajian
2012)

Fig. 6.7 Schematic structure of each of ANFIS models, with input MF, rules and output Mf with
the links of each layer to next layer, used for depth (z) and shape factor (q) estimation (Hajian et al.
2012)
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ANFIS adjusts the membership function parameters specifying the shapes and
partition of the membership function and the hybrid approach was used in the
present study for training. The network model was well trained requiring only 22
epochs to reach an RMSE error (Root Mean Square Error) below 0.00004
(Fig. 6.9).

Fig. 6.8 Bar-gram of the statistical indexes for different MF (left-top: MAPE, right-top, R2,
bottom-left: NMSE, bottom-right: MSE, Hajian 2012)

Table 6.3 The statistical errors of model M10 for different membership functions (MF) (Hajian
and Zomorrodian 2016)

MAPE (%) R2 NMSE MSE Model MF

2.979 0.9330 0.06711 0.00711 M10 Triangular

2.957 0.9334 0.06672 0.00707 Bell-shaped

2.999 0.9323 0.06787 0.00719 Trapezoidal

2.963 0.9338 0.06625 0.00702 Gaussian

Fig. 6.9 ANFIS network
training for 50 epochs, best
training happened in epoch 22
(Hajian 2012)
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The model validation was also tested with the input vectors from other input/
output data sets on which it had not been trained, to see how well the FIS model
performs. Another type of data set, referred to as the checking data set can be used
for model validation in MANFIS and is used to limit the potential for the model
over-fitting the data. When this checking data was used as well as training data, the
FIS model is selected to have its parameters corresponding to the minimum
checking data model error.

6.1.5 Test of MANFIS in Present of Noise and for Real
Data

After the training process of MANFIS model, the designed MANFIS model was
tested with noisy data with 20% of random noise. The R2 of outputs results are
represented in Figs. 6.10 and 6.11, for depth and shape factor estimation, respec-
tively, which shows the robustness of the method in presence of noise.

The MANFIS model was also tested for real data. The gravity data was from a
data set measured on a site selected in Freeport Grand Bahama underlain by coral
interrupted by significant inter-connected cave systems and the residual gravity
anomaly is depicted in Fig. 6.12. We compared the depth estimation of MANFIS

Fig. 6.10 Estimated depth versus observed depth for 5 and 10% noisy data (Hajian 2012)
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with the MLP (Multi-Layer Perceptron) neural network method. Five principal pro-
files were chosen, which are presented with black lines in Fig. 6.12, and we calculated
the features F1, F2, F3, F4 and F5 which were applied to the trainedMANFIS as inputs.
The estimated parameters are compared with MLP results (Table 6.4). From the
available excavations, MANFIS outputs are very near to the real depth and radius of
the available cavities. The model works well with any data sets which fall within the
limits of the training range, used here. If it becomes unsuccessful it can be retrained for
different possible environments to make it more general.

6.2 Surface Settlement Prediction Using ANFIS
for a Metro Tunnel

6.2.1 ANFIS Structure

As explained in Chap. 2 Sect. 2.7, Hajian et al. (2014) used Neural Networks to
predict the surface settlement for a metro tunnel using geological, geophysical and
geotechnical data. They also used a fuzzy—neural network in their study which was
designed using ANFIS implemented in the MATLAB software. The database
includes 346 data related to cross-sections of the studied route, and out of these

Fig. 6.11 Estimated shape factor versus observed shape factor for training, test and 5, 10% noisy
data (Hajian 2012)
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data, 225 data were used for training, 52 were used for testing and 69 data were
used for checking and all were randomly selected. The number and description of
the inputs and outputs of system were presented in Table 1 (to know the input
arrays see Chap. 2 Sect. 2.7).

Table 6.4 Interpreted cavity depth and radius through MANFIS method for principal selected
gravity profiles from the Grand Bahamas site, compared to the borehole results and MLP network
method (Hajian et al. 2011)

Selected principal profile Borehole results
depth (m) to

Results of MLP
depth (m) to

Results of
MANFIS depth
(m) to

Top Bottom Top Bottom Top Bottom

Profile I 2.74 5.79 3.36 6.52 2.40 5.50

Profile II 13.72 6.76 12.54 15.66 13.48 16.61

Profile III 12.50 6.64 11.96 5.48 12.14 15.94

Profile IV 13.25 15.75 12.63 5.21 12.73 15.47

Profile V 13 16 13.75 6.59 13.25 16.31
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Fig. 6.12 Residual gravity anomaly of Bahamas free PORT SITE with the selected principal
profiles (Hajian et al. 2011)
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6.2.2 ANFIS Training and Testing

After data normalization, the data were loaded as the inputs and output of the
system. In order to achieve lower errors for the state of 2 Multiplying factors
(MFs) for inputs in this case study, the primary structure of the fuzzy inference
system was generated with 2 MFs for all inputs as well as different types of MF for
inputs and a constant MF for output, and then these models of the system were
trained for 40 epochs using a hybrid optimizing method. The values of errors
resulting from training and testing of the system are presented in Table 6.5.

As is evident, from the results obtained from the training and testing of the
system, the application of the gauss2mf as the MF for inputs gives fewer errors in
testing compared with the others, especially in testing; and therefore, this model has
been used as the optimal model in the training of system. Figure 6.13 shows the MF
plots for input #1 as a sample of the MF of inputs.

The predicted amounts of settlement obtained using inputs related to each
cross-section produced with ANFIS are shown in Fig. 6.14.

Figure 6.15 shows the surface plot between the inputs #1 and #4 and the output.
The amounts of settlement predicted using ANFIS versus the amounts of settlement

Table 6.5 The results of the training and testing of ANFIS (Hajian et al. 2014)

Number
of MFs
for
inputs

Type of
MF for
inputs

Type of
MF for
output

Error at
the end of
training

Average
testing
error in
training

Average
testing
error in
testing

Average
testing
error in
checking

2 Gbellmf Constant 0.0037270 0.0037271 0.0064418 0.0031027

2 gaussmf Constant 0.0032390 0.0040371 0.0050826 0.0032760

2 gauss2mf Constant 0.0040860 0.0040857 0.0050442 0.0028206

2 Primf Constant 0.0089500 0.0089502 0.0061178 0.0024701

2 Dsigmf Constant 0.0042863 0.0042863 0.0060775 0.0027071

2 Psigmf Constant 0.0042863 0.0042863 0.0060775 0.0027071

Fig. 6.13 The MF plots for input #1 (Rezazadeh Anbarani 2014)
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measured using precise surveying instrumentation are plotted and show a good
correlation between the predicted and actual amounts. Figure 6.16 illustrates the
correlation coefficient between the actual and predicted data. The ANFIS results
were also compared to that of ANN and FEM (Finite Element Method) and the
measured settlement (Table 6.6). This showed ANFIS was significantly better
especially than the FEM modeling.

Fig. 6.14 Diagram of the rules created by ANFIS for settlement (output) prediction (Rezazadeh
Anbarani 2014)

Fig. 6.15 A sample of the surface plot between inputs and output; the unit of inputs and output is
in mm (Hajian et al. 2014)
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6.2.3 Conclusion

Measurement of surface settlement during tunneling is essential to mitigate hazard
and/or financial losses. Powerful tools are available for the estimation of this surface
settlement. Applying ANNs, which use the numerical data to predict the results, is a
powerful tool in this field. FEM can be an exact numerical method for surface
settlement calculation but the combination of fuzzy inference systems and ANNs,
has the potential to predict the results very accurately, and rapidly and provide a
more powerful tool known as ANFIS. By checking the observed data with the

Fig. 6.16 The actual amounts of settlement versus the amounts of settlement predicted using
ANFIS (Hajian et al. 2014)

Table 6.6 The actual amounts of surface settlement and the ones estimated using ANN, ANFIS
and FEM (Hajian et al. 2014)

Chainage Settlement
measured by
instrumentation
(mm)

Settlement
predicted using
ANN (mm)

Settlement
predicted using
ANFIS (mm)

Settlement
calculated using
FEM (mm)

1 + 050 3.00 3.40 3.47 8.05

2 + 090 5.00 4.60 4.71 5.64

13 + 160 0.00 0.40 0.58 0.017
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results of ANN and ANFIS, it was seen that the correlation coefficient between the
actual amounts of settlement and the predicted ones is 0.86 for ANN and 0.91 for
the ANFIS prediction respectively. These analyses showed the higher correlation
resulting from ANFIS in comparison with ANN, because of the greater adaptability
between the inputs and output in ANFIS due to the combination of simultaneous
fuzzy logic and AN. The results obtained from the analysis of three models related
to some cross-sections of the route are acceptable. The comparison of the results
obtained from the three methods used in this study indicated that the amounts of
surface settlement estimated using all methods are close to the actual ones measured
by instrumentation in most cross-sections of the route; and three cross-sections have
been presented here as confirmation.

6.3 The Use of the ANFIS Method
for the Characterization of North Sea Reservoirs

6.3.1 Introduction

Mojeddifar et al. (2014) compared three versions of adaptive neuro-fuzzy inference
system (ANFIS) algorithms and a pseudo-forward equation (PFE) to characterize a
North Sea reservoir (F3 block) using seismic reflection data. Three different ANFIS
models were constructed using clustering methods:

• Grid partitioning (GP)
• Subtractive clustering method (SCM)
• Fuzzy c-means clustering (FCM).

They used an experimental equation, called PFE based on similarity attributes, to
estimate porosity values of the reservoir to compare with the neuro-fuzzy technique
results.

In this section we briefly explain their work and the results as a good example of
where ANFIS is not, in this case, the best solution for this particular geophysical
problem, because they showed that ANFIS is unable to estimate the porosity
adequately. In contrast, the ability of PFE to detect geological structures such as
faults (gas chimney), folds (over a salt dome), and bright spots, together with
porosity estimates of sandstone reservoirs, might be very useful in planning the
drilling target locations and so they proposed that the PFE they had developed
could be an applicable technique for characterizing the reservoirs of the F3 block.
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6.3.2 Literature Review

The characterization of the spatial variations in petrophysical parameters between
exploratory wells in a hydrocarbon reservoir has an important role to play in
petroleum engineering. Hence, laboratory measurements of core properties, the
interpretation of geophysical well logs and the inversion of seismic attributes can
provide valuable estimate of the physical properties of any reservoir (Bhatt and
Helle 2002).

The inversion of seismic data to give acoustic impedance (AI, the product of
density and velocity) is widely used in hydrocarbon exploration for the estimation
of petro-physical properties and is often used as a proxy for porosity based on
empirical relationships between acoustic impedance and porosity.

However because the compaction model varies both laterally and vertically, the
relationship differs from area to area and in many cases, porosity cannot be esti-
mated directly from acoustic impedance using a single transform function
(Anderson 1996). Schults et al. (1994) suggested using multiple seismic attributes
to estimate log properties aside from well control. Several data integration tech-
niques (kriging or neural networks) have been used to derive petrophysical prop-
erties directly from seismic attributes. A short review of the recent research on
intelligent and soft computing methods used for reservoir characterization is listed
in Table 6.7.

Modern artificial intelligent methods such as neuro-fuzzy systems may be useful
for the prediction of petro-physical properties in addition to conventional tech-
niques with the following advantages for reservoir characterization:

• Fast, reliable and low-cost solutions.
• Dynamic, non-linear and noisy data can be handled especially when the

underlying physical relations are very complex and not fully understood.

PFE (The Pseudo-forward Equation) transforms the similarity attributes of a
sandstone reservoir to porosity values and Mojeddifar et al. (2014) developed the
structure of a PFE using a data set from the F3 gas reservoir block in the North Sea.

6.3.3 Geological Setting

Chalky sediments were deposited in the F3 block in Dutch sector of the North Sea
at the end of the early Paleocene, but the Laramide tectonic phase produced a
sudden increase in the supply of silica-clastics, which terminated the deposition of
the Chalk (Ziegler 1990). The Neogene fluvio-deltaic system in the southern North
Sea is shown in Fig. 6.17.
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Table 6.7 Some of the recent research on intelligent and soft computing methods used for
reservoir characterization

Method Application Location Year Researcher(s)

Fuzzy logic
and artificial
neural
networks
(ANN)

Predict core properties
from well logs

Offshore Korea 2004 Lim, J. S.

Neural
networks

Predict lithology from
seismic properties

– 2007 Singh et al.

Multi-attribute
transforms

Porosity and lithologic
estimation using rock
physics

Balcon Field,
Colombia

2007 Calderon, J. E.,
Castagna, J.

Neural network Shale stringers in a
heavy oil reservoir

PanCanadian’s
Christina Lake

2002 Tonn R.

Neural
networks

From 3D seismic
attributes to
pseudo-well-log
volumes

Eastern
Venezuela

2002 Banchs, R. E.,
Michelena, R. J.
Rafael, E. B.,
Reinaldo, J. M.

Neural
networks

Porosity and
permeability prediction
from wireline logs

North Sea 2001 Helle, H. B., Bhatt,
A., Ursin, B.

Multiple
regression
analysis

Spatial prediction of
petro-physical
properties through
integration of
petro-physical
measurements and 3D
seismic observations

‘XLD’ Field,
Niger Delta

2013 Adekanle, A.,
Enikanselu, P. A.

Dynamic radial
basis function
network

Predict the reservoir’s
properties from seismic
attributes

– 2011 Lei, L., Wei, X.,
Shifan, Z.,
Zhonghong, W.

3D
petrophysical
modeling

Interpretation of log
properties from
complex seismic
attributes and limited
well log data

– 2011 Eftekharifar, M., Han,
D. H.

Three types of
neural network

Prediction of porosity
from seismic attributes

Persian Gulf 2011 Hosseini, A., Ziaii,
M., KamkarRouhani,
A., Roshandel, A.,
Gholami, R., Hanachi,
J.

Multi-attribute
transform and
probabilistic
neural network

Generate effective
porosity volume

Lower Brushy
Canyon
channeled
sandstones
Southeast New
Mexico

2001 Leiphart, D. J., Hart,
B. S.

(continued)
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6.3.4 Data Set

A seismic survey of approximately 16 � 23 km2 has been made public in F3 block
consisting of 646 in-lines and 947 cross-lines and is described by Aminzadeh and
Groot (2004). The line spacing was 25 m for both in-lines and cross-lines at a
sample rate of 1 ms. Standard seismic data processing procedures were applied to
the data. Sonic and gamma ray logs data were also available from four wells in the
area and density logs were reconstructed from the sonic logs using neural network
techniques by dGB Earth and these were also used to calculate porosity logs for the
four wells. A seismic line connecting wells F03-04, F03-02, F02-01 and F06-01 is
shown in Fig. 6.18, showing the main horizon correlations.

Wells F02-01 and F06-01 lie in the south-western part of the F3 block, at the
bottom of the clinoform sequence. Well F03-02 is located to the north at the top set
of the sequence. Well F03-04 lies in the eastern part of the block (Tetyukhina et al.
2008).

Table 6.7 (continued)

Method Application Location Year Researcher(s)

Multi-attribute
transformations

Porosity prediction
from seismic data

Auger field, Gulf
of Mexico

2009 Valenti, J. C. A. F.

Genetic
algorithms

Porosity and
permeability prediction
of oil reservoirs using
seismic data

An oil reservoir
in the Norne field,
Norway

2013 Joonaki, E.,
Ghanaatian, S. H.,
Zargar, G. H.

Fig. 6.17 Sketch of the Neogenefluvio-deltaic system in the southern North Sea (after Steeghs
et al. 2000)
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Figure 6.19a shows the seismic cross-section for in in-line 441, and well F03-4
which was selected to interpret the various layers in the target zone.

‘Truncation 1’ and ‘MFS4’ (white dashed lines) mark the position of the target
zone interval in the seismic data. Figure 6.19b shows the cross-plot of the gamma
ray values against acoustic impedance values, computed from the velocity and
density logs (Mojeddifar et al. 2014).

6.3.5 Preprocessing to Select the Most Suitable Attributes

Good correlations between seismic attributes and porosity are seen often enough to
demonstrate seismic attributes can be applied as a proxy for porosity in reservoir
characterization. Good correlations between seismic attributes and porosity, derived
from the density logs of available wells have been demonstrated from statistical
studies of more than 15 attributes, which are presented in Table 6.8.

According to Table 6.8, the highlighted attributes are considered to be the
optimal ones to predict porosity as the output in linearity and non-linearity mode.

ANFIS (GP), ANFIS (SCM) and ANFIS (FCM), Genfis1, Genfis2 and Genfis3
commands were used to generate initial structures of the Sugeno fuzzy inference
system using grid partition, subtractive clustering and fuzzy c-mean clustering
algorithms.

Figure 6.19 shows the fuzzy rule architecture for various ANFIS algorithms and
Table 6.9 shows the ANFIS algorithms used in the Mojeddifar et al. (2014) study.

Fig. 6.18 The seismic section derived from original seismic data (in-line 425), showing the
location of wells and the gamma ray logs for every well (Mojeddifar et al. 2014)
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The ANFIS algorithms were trained with 1427 values and the changes in the final
(post-training) Gaussian shaped membership functions for the input parameters are
shown in Fig. 6.20. The training data set was extracted from the sand-rich sedi-
ments of the three wells (F02-1, F06-1, F03-2) where gamma ray values were less
than 70 API.

Figures 6.21 and 6.22 illustrate the results of the three ANFIS algorithms
applied to the validation and testing sets showing the slight superiority of ANFIS
(SCM) over ANFIS (GP and FCM). The R-squared coefficient, (strength of the

Fig. 6.19 a The seismic section (in-line 441) used for the cross-plot analysis (Tetyukhina et al.
2008); b a cross-plot of the gamma ray values against acoustic impedances values within the target
zone (Tetyukhina et al. 2008)
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linear relationship between the two (actual and predicted) R = 0.7935 which might
seem to indicate that ANFIS might be a good method to estimate porosity distri-
bution. However when ANFIS is applied to the testing set the correlation coefficient
falls to 0.252 indicating that the results do not match the experimental values.

Mojeddifar et al. (2014) compared the PFE method ANFIS (for more details
about PFE method see Mojeddifar et al. 2014). Figure 6.23 plots the observed
values versus the predicted outputs for the PFE model. It seems that both developed
models perform with acceptable precision near to the training wells as might be
predicted. As the testing data used are exactly the same, it seems that the PFE
experimental method predicts the porosity values further away from the training
wells, better than the ANFIS algorithms. Therefore, there is a considerable per-
formance gap between training and testing locations for ANFIS algorithms, while
the proposed experimental model is superior, while not itself perfect.

Table 6.9 The specification of ANFIS models developed by MATLAB (after Mojeddifar et al.
2014)

ANFIS details ANFIS (GP) ANFIS (SCM) ANFIS (FCM)

Number of nodes 55 117 67

Number of linear parameters 80 55 30

Number of nonlinear parameters 16 88 48

Total number of parameters 96 143 78

Number of training data pairs 1427 1427 1427

Number of fuzzy rules 16 11 6

Fig. 6.20 Architecture of ANFIS, based on GP, SCM and FCM (Mojeddifar et al. 2014)
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Fig. 6.22 Comparison of the measured and the predicted porosity of testing set: a grid partition;
b subtractive clustering; c fuzzy c-means clustering (Mojeddifar et al. 2014)

Fig. 6.21 Comparison of the measured and predicted porosity of the validation set: a grid
partition; b subtractive clustering; c fuzzy c-means clustering (Mojeddifar et al. 2014)
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6.3.6 Reservoir Characterization Using ANFIS and PFE

The interpretation of the target zone depends critically on the predicted spatial
distribution of porosity from the two models. Figures 6.24 and 6.25 show the
outputs of (in-lines 244 and 442) and Figs. 6.26a, b show the results of the PFE
model for the same sections.

Mojeddifar et al. (2014) suggest that a possible cause of the inaccuracy in the
ANFIS algorithms is the lack of sufficient available well data to provide adequate
generality to the trained models in the learning process. However, inaccuracies can
also be seen in the PFE model, albeit with less intensity. The PFE model was only
developed with the data set from sandy sediments, and so is likely to perform better
for the sand units than the shale layers. In Fig. 6.26a, this seems to be true at spot
‘A’ where there are deposits of shale sediments but at spot ‘B’ the model seems to
estimate the estimate porosity distribution correctly. However, despite these indi-
vidual problematic areas the PFE model has performed reasonable well within the
gas-bearing sand reservoir of the F3 block, but we note that ANFIS algorithms
seem to require a higher number of wells in order to develop models with credible
accuracy (Mojeddifar et al. 2014).

6.4 Neuro-Fuzzy Approach for the Prediction
of Longitudinal Wave Velocity

6.4.1 Introduction

P-wave amplitude is a proxy for peak particle velocity during blasting in a mine and
is an important control parameter for minimizing damage caused by ground
vibrations. Fracture propagation is influenced both by the physico-mechanical
parameters of the rock and also on the compressional wave velocity. Verma and
Singh (2012) applied an ANFIS to predict P-wave wave velocity for different rocks.

Fig. 6.23 Comparison of the measured and the predicted porosity by PFE: a validation set;
b testing set (Mojeddifar et al. 2014)
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Fig. 6.24 The seismic sections of porosity (line 244) estimated by ANFIS: a grid partition;
b subtractive clustering; c fuzzy c-means clustering (Mojeddifar et al. 2014)

Input 1 is hardness,
Input 2 is porosity,
Input 3 is absorption ratio,
Input 4 is compressive strength of rock,
Input 5 is density and
Input 6 is the fracture roughness coefficient,

and the output is the predicted p-wave velocity calculated using a neuro-fuzzy
model. The structure of the ANFIS model is shown in Fig. 6.27, with four input
parameters, one output parameter and five rules.

6.4.2 Training of the Neuro-Fuzzy Model

Verma and Singh (2012) use subtractive clustering to identify the natural groupings
of data within large numbers of dataset in order to produce a concise representation
of a system’s behavior.
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Fig. 6.25 The seismic sections of porosity (line 442) estimated by ANFIS: a grid partition;
b subtractive clustering; c fuzzy c-means clustering (Mojeddifar et al. 2014)

Fig. 6.26 a The seismic section of porosity (in-line 244) estimated by PFE; b the seismic section
of porosity (in-line 244) provided by dGB Earth Sciences Company (Mojeddifar et al. 2014)

6.4 Neuro-Fuzzy Approach for the Prediction of Longitudinal … 443



They divided the 136 available datasets into three parts:

• 100 training sets
• 26 testing sets
• 10 datasets were selected for checking the model.

The membership function for each input was tuned using a hybrid method:

• input membership function parameters were tuned using back propagation
• output membership function parameters were tuned using least square

(Fig. 6.28a–f).

A measure of how well the FIS (fuzzy inference system) system is modeling the
input/output data is computed using a gradient vector of the rate of convergence.

• the number of nodes in the training data was 205
• the number of linear parameters was 98
• the number nonlinear parameters 168.

The hypothesized initial number of membership functions and the type used for
each input were 10 and Gaussian, respectively. The hypothesized FIS model is then
trained and the training goal reached after 30 epochs.

The final configuration for the FIS is listed in Tables 6.10 and 6.11.

Fig. 6.27 ANFIS structure for the PR model, neuro-fuzzy, with 6 input parameters and 14 rules.
Layer-1 represents inputs, layer-2 input membership function, later-3 rules, layer-4 output
membership function, layer-5 weighted sum output and layer-6 output (Verma and Singh 2012)
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Fig. 6.28 a Membership function plot for input 1 (hardness). b Membership function plot for
input 2 (porosity). c Membership function plot for input 3 (absorption). d Membership function
plot for input 4 (compressive strength). e Membership function plot for input 5 (density).
f Membership function plot for input 6 fracture roughness coefficient (Verma and Singh 2012)

Table 6.10 Specifications of the designed ANFIS (Verma and Singh 2012)

Number of inputs 6

Number membership functions for each input 14

Type of membership functions for each input Gaussian

Type of membership functions for each output Linear

Number of rules 14

Number of output membership function 14

Number of training epochs 30

Number of training datasets 26

Number of checking datasets 10

Error goals 0

Error achieved 0.1659

Table 6.11 MAPE and coefficient of correlation for the neuro-fuzzy model that Verma and Singh
used (2012)

Case MAPE (%) Coefficient of correlation

Testing dataset 0.51 0.9995

Checking dataset 2.251 0.9253
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Fig. 6.29 Performance graph of the neuro-fuzzy model (Verma and Singh 2012)

Figure 6.29 shows that the checking error reduces continuously as the training of
the model is progressing indicating that the model is not over-fitting the training
dataset. ANFIS automatically sets the FIS parameters to correspond to the mini-
mum checking error, (end of 30 epochs). Predicted and observed values of p-wave
velocity for training and checking dataset, and their percentage errors are given in
Tables 6.12 and 6.13.

Figure 6.30a, b show the correlations between observed and predicted values of
p-wave velocity for the training and checking datasets from (Verma and Singh 2012).

The lower Mean Average Performance Error (MAPE) of 0.51% for the testing
datasets and 2.251% for training datasets obtained by the ANFIS method seem
acceptable (Table 6.11).

6.4.3 ANFIS Testing

Surface plots of the inputs and the P-wave velocity are shown in Fig. 6.31a–c.
showing that the variation of predicted value (p-wave velocity) with the input
parameters agrees well with the field results indicating the very good identification
capability of the ANFIS algorithm and its robustness.

6.4.4 Conclusion

Verma and Singh (2012) conclude that ANFIS is an emerging computational tool
successfully combining fuzzy logic and artificial neural network methods which can
cope in a logical manner with subjectivity and uncertainty in the engineering
process and allowing the use of vague and imprecise (fuzzy) information about the
subsurface. It also allows the use of data for which the physical meaning is not
immediately obvious and handles uncertainty, nonlinearity and expert knowledge in
a much more satisfactory manner.
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6.5 Estimation of Electrical Earth Structure Using
an Adaptive Neuro-Fuzzy Inference System (Anfis)

6.5.1 Introduction

Various methods (graphical, modeling, inversion) for interpretation of geophysical
electrical resistivity sounding data for a three layered Earth have been used.
Adaptive Neuro Fuzzy inference (ANFIS) can provide a novel way to do this based
on a soft computing approach (Srinivas et al. 2012). They used Electrical resistivity
data collected with the VES (Vertical Electrical Sounding) geometry as the training
data set for ANFIS. The data collected from the field are known as the apparent
resistivity but interpretation provides the resistivity and thickness of the individual
layers. They used this trained data set to train ANFIS by optimizing the member-
ship function parameters to provide the best fit to this data. In this section we
explain the Srinivas et al. (2012) results of using ANFIS for three-layer interpre-
tation of electrical resistivity.

Fig. 6.30 a Correlation between predicted and observed values of p-wave velocity for testing
datasets. b Correlation between predicted and observed values of p-wave velocity for checking
dataset (Verma and Singh 2012)

Fig. 6.31 a Surface plot of the relationship between hardness and density with P-wave velocity.
b Surface plot of the relationship between porosity and absorption ratio with P-wave velocity.
c Surface plot of the relationship between compressive strength and fracture roughness with
P-wave velocity
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6.5.2 Data Collection

Srinivas et al. (2012) used the Schlumberger electrode array with a maximum
half-separation of the current electrodes (AB/2) of 100 m (Fig. 6.32) to study the
electrical resistivity distribution of the subsurface (resistivity, thickness and depth)
to determine the hydrogeological characteristics of the sub-surface.

The generic, characteristic sounding curves illustrated in Fig. 6.33 show the
types of sounding curves, which might be obtained for various configurations of
layer resistivity.

6.5.3 ANFIS Training

Srinivas et al. (2012) described the detailed MATLAB procedures for their work
which is very useful for readers to follow step-by-step, and in this section we will
outline this.

The following are the step-by-step procedures of the program and the MATLAB
2008b software methodology, which is used to simulate the program (which is also
applicable in newer versions of MATLAB i.e. 2016b).

The command “genfis” (generate FIS) of the MATLAB software specifies the
structure and initial parameters of the FIS (Fuzzy Inference System) and generates
initial membership functions that are equally spaced covering the whole input
space. The FIS architecture is constructed as given below:

=======================Matlab codes==================
FISMAT = GENFIS1 (DATA, NUMMFs, MFTYPE)

==================================================
This code explicitly specifies:

– FISMAT: is the output FIS matrix for minimal training error which should be
used for training routines in Sugeno-type fuzzy inference systems.

Fig. 6.32 The electrical resistivity sounding method. Solid red lines represent current flow.
Dashed black lines are contours of electrical potential (voltage) (Clark and Page 2011)

6.5 Estimation of Electrical Earth Structure Using an Adaptive … 451



– The syntax “DATA” represents the data to be trained in the present case it is
electrical resistivity data.

– NUMMFS: represents the number of membership functions.
– MFTYPE: specifies the membership function type.

Srinivas (2012) used “gbellmf” command to produce a generalized bell-shaped
built-in membership function. To identify the membership function parameters of
single-output, Sugeno type fuzzy inference systems (FIS) the codes listed below
were run in MATLAB:

==================================================
[OUT−FIS, ERROR]= ANFIS (DATA, FISMAT, EPOCHS)

==================================================

– ERROR output is based on Root Mean Square Error (RMSE) occurs while the
program running through the particular number of Epochs.

– IN−FIS: represents the FIS output.

Fig. 6.33 Characteristic sounding curves for three layer VES data (after Telford et al. 1990)
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– EPOCHS: represents the number of iterations used for training.
– The syntax:

=================================================
OUT = EVALFIS (FISMAT, OUT−FIS)
==================================================

Simulates the Fuzzy Inference System.
After framing the algorithm suitable for training, Synthetic data of Vertical

Electrical Sounding data is used for training the network. Training data AB/2 with
Apparent Resistivity (qa) values has been trained using the algorithm.

Training error with respect to number of epochs is shown in Fig. 6.34. Training
is checked with the number of synthetic data sets and one of them as example is
shown in Fig. 6.35.

The following is the MATLAB sample source code used for training one set of
synthetic data.

==============Matlab codes=================
trnData = [x y],numMFs = 5;mfType = gbellmf;
epoch−n = 20;
fismat = genfis1(trnData,numMFs,mfType);
out−fis = anfis(trnData,fismat,200);
plot(x,y,‘*k’,x,evalfis(x,out−fis),‘-r’);
=========================================

Fig. 6.34 ANFIS training error response between input and output (Srinivas et al. 2012)
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Fig. 6.35 The apparent resistivity synthetic data and its ANFIS output (Srinivas et al. 2012)

The sample code mentioned here is repeated for all the synthetic data sets for
training. For all the data sets the training error has been minimized using the Root
Mean Square Error (RMSE). The corresponding layer model for the trained syn-
thetic dataset is stored in the memory of the network. After successful training of
the synthetic data sets, the program is executed for testing the field data for vali-
dation (Srinivas et al. 2012).

6.5.4 ANFIS Performance Validation Using Real Data

After the training process was complete they tested the network with field data
collected from the Abishekapatti study area located near latitude 8.44° and longi-
tude 77.44°, Tirunelveli, India. The data tested; together with the FIS output pattern
is shown in Fig. 6.36.

Here VES 13 has been used as the field data (as a sample) and the interpreted
layer model in terms of resistivity and thickness is shown in Fig. 6.37 with a lower
percentage error (0.0851) than the conventional method which had a percentage
error of 2.63, (which itself is a high accuracy). As this is a case study and to ensure
the ANFIS performance for various different three-layer cases, Srinivas et al. (2012)
tested ANFIS for some other samples of three-layer resistivity interpretations and
compared the ANFIS results to the conventional method based on curve fitting. The
results showed that when ANFIS is trained well enough with a properly validated
data set, its accuracy is much better than that of conventional methods (Table 6.14).
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Fig. 6.36 The apparent resistivity field data and its ANFIS network response (Srinivas et al. 2012)

Fig. 6.37 The interpreted layer model and the ANFIS computed response curve of the field data
(Srinivas et al. 2012)
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Table 6.14 Comparison of ANFIS interpreted layer model and conventional method (Srinivas
et al. 2012)
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6.5.5 Conclusion

The results of Srinivas et al. (2012) for testing of ANFIS for both synthetic and real
resistivity data showed the capability of this approach to estimate the subsurface
strata with high accuracy.

6.6 Discrimination Between Quarry Blasts
and Micro-earthquakes Using Adaptive Neuro-Fuzzy
Inference Systems

6.6.1 Literature Review

The CTBT (Comprehensive Nuclear Test Ban Treaty) plays the role of monitoring
for and discriminating nuclear weapons test from other seismic events and in order
to do this, a global verification system including a network of 321 monitoring
stations is distributed worldwide. One of their major problems lies in the identifi-
cation of and discrimination of the widespread and regular low-yield mining events
from possible nuclear detonations. Walter and Hartse considered that discrimination
between small magnitude banned nuclear tests, background earthquakes and
mining-induced seismic events is a challenging research problem.

Neural networks have been used successfully by various workers for determi-
nation of regional seismic events (Dysart and Pulli 1990; Dowla et al. 1990; Joswig
1995; Wang and Teng 1995; Musil and Plesinger 1996; Tiira 1996; Lee and Oh
1996; Gitterman et al. 1998; Tiira 1999; Ursino et al. 2001; Jenkins and Sereno
2001; Del Pezzo et al. 2003; Scarpetta et al. 2005; Yildirim and Horasan 2008).

Muller et al. (1999), Yildirimet al. (2011), Vasheghani-Farahani et al. (2012)
have used fuzzy methods and Ait Laasri et al. (2015) recently used a fuzzy expert
system for automatic seismic signal classification using the ANFIS method with
feature selection to distinguish between quarry blasts and micro-earthquakes in the
south and southeast of Tehran.

In this region a large number of quarry blasts “contaminate” the earthquake
catalog (Fig. 6.38) and In order to identify the real seismicity (tectonic earthquakes)
from induced events she used ANFIS as a classifier for identifying and categorizing
these two kinds of seismic events.

6.6.2 Feature Selection

Feature selection is critical to minimize classification error, because inappropriate
features make classification difficult and identification errors increase markedly. In
the Tehran region, Vasheghani Farahani (2015) used forward feature selection for
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categorization of seismic events. But initially there were no identified features,
which were added one by one. In fact some features decreased correct classification
rate (CCR) and were deleted from the input feature catalogue. At each step the
feature was retrained, which helped minimize the classification error. Otherwise, it
was redundant for classification purposes and was abandoned. The first feature
chosen was time of occurrence and then latitude was added; at the next step
magnitude was added. The CCR result for “time” was very high because quarry
blasts frequently occur at specific times; noon for instance, during the day and this
input feature was very useful in the classification process (Vasheghani-Farahani
et al. 2012).

6.6.3 Spectral Characteristics

There are significant differences between earthquake and quarry blast spectra in the
Tehran region. Vasheghani Farahani et al. (2015) evaluated spectral features based
on the Corner frequency (fc is defined as the frequency where the high- and
low-frequency spectral trends intersect) for the displacement of Pg waves (vertical
component) for all signals in the regional network.

Fig. 6.38 Distribution of seismic events (2004–2010), for micro-earthquakes and for quarry blasts
(Vasheghani Farahani 2015), with appreciation to IUGS for permission to use this Figure
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They used the mean fc for Pg waves and amplitude spectral velocity from the
BIN network. Figures 6.39a and 6.40a show seismograms of all three components
recorded at station DAMV (Damavand) for micro-earthquakes and quarry blasts,
respectively, and Figs. 6.39b and 6.40b show the amplitude spectra of the vertical
components. It is apparent that micro-earthquakes contain higher energy in the
velocity spectra in the frequency range of 0.5–10.0 Hz velocity (Vasheghani
Farahani and Zare 2014).

Figure 6.41a, b shows spectra from events recorded by the BIN network in the
Tehran region and it is seen that the mean fc of Pg waves, (vertical component) for
micro-earthquakes was 5.9 Hz and quarry blasts was 3.8 Hz; lower corner fre-
quency for small explosions is related to higher attenuation in the shallow crust.

Fig. 6.39 a Typical example of a three component micro-earthquake at station DAM with
ML = 2.1 at a distance of 26.2 km, b the spectrum amplitude for the vertical component of
micro-earthquake (Vasheghani Farahani 2015, with thanks to IUGS for permission)

Fig. 6.40 a Typical example of three component quarry blast at station DAMV with ML = 1.3 at
a distance of 17.1 km, b the spectrum amplitude for vertical component of quarry blast
(Vasheghani Farahani 2015, with thanks to IUGS for permission)
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Consequently, Vasheghani Farahani (2015) used displacement Pg-wave and
velocity spectra as inputs and the output is “0” if an event is a micro-earthquake and
“1” if it is a quarry blast.

6.6.4 Training and Test of ANFIS

320 out of 2530 signals (506 events) were selected for the training and testing
database to secure the desired output. The ANFIS network was developed with 65%
of the data for training (208 signals) and 35% of the remaining data (112 signals)
were used for testing the model. The remaining 2210 data were then clustered based
on 320 data clusters. This data which had unknown sources (whether they were

Fig. 6.41 Displacement spectral characteristics for a quarry blast and b micro-earthquake
(Vasheghani Farahani 2015, with thanks to IUGS for permission)
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natural earthquakes or blasts), was classified into several small categories as a vali-
dation using the same structure in the ANFIS determined from the training data
(208) signals. Threemembership functions were tested and the Gaussian membership
functions selected with a maximum equal to one and a minimum of zero. The outputs
of ANFIS were then examined to determine whether they were near the desired
output (1 for earthquakes and 0 for quarry blasts). 50 training periods were selected,
and the final test error value obtained. The performance of the classifiers was eval-
uated in terms of sensitivity, specificity and accuracy. The definition criteria were:

Specificity: Percentage of correctly classified quarry blast records
Sensitivity: Percentage of correctly classified micro-earthquake records
Accuracy: Percentage of correctly classified records out of the total number of
records.

The experiment was repeated ten times, and then the average calculated and the
statistical parameters of the classifier were calculated (Table 6.15).

Simulation results for the total number of events detected by the network are shown.
There were 506 events in the seismic database and the 2210 signals (442 events) for
which the target source type was not available were tested against the ANFIS model.
The statistical parameter values for the database are shown in Table 6.16.

This appears to be a very effective method for the prediction of seismic event
type and the spectral feature in the ANFIS achieved excellent recognition per-
centages and significantly reduced the errors in classifying the seismic events. It
was concluded that spectral analysis (displacement Pg-wave and velocity spectrum
for the complete seismogram signal) delivered high reliability for the discrimination
of seismic events in the Tehran region.

6.7 Application of Neuro-Fuzzy Pattern Recognition
Methods in Borehole Geophysics

6.7.1 Literature

Diverse techniques including regression methods (Hawkins et al. 1992), fuzzy
recognition (Bezdek 1980; Bezdek and Pal 1992; Zadeh 1965, 1971) and neural

Table 6.15 Statistical parameter values for designed and trained ANFIS for 50 training periods

Method Sensitivity (%) Specificity (%) Accuracy (%)

ANFIS 98.3 98.11 98.21

Table 6.16 Statistical parameter values for designed and trained ANFIS for whole database

Method Sensitivity (%) Specificity (%) Accuracy (%)

ANFIS 99.3 98.95 99.09
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Networks (Van der Baan and Jutten 2000) have been used to evaluate hydrocarbon
reservoir formations using well logging data. In addition, Baldwin et al. (1990)
have applied neural network methods to well log data and tried to solve the problem
of mineral identification; Nikravesh and Aminzadeh (2001) worked on mining and
fusion of petroleum data with fuzzy logic and neural network agents.

There are many difficulties in the use of conventional evaluation methods. Fuzzy
logic and neural network are widely used (Van der Baan and Jutten 2000) and
Singh et al. (2010) used a novel approach known as Adaptive Neurofuzzy Inference
System technique (ANFIS) to identify the stratigraphy of Prydz Bay basin, east
Antarctica. They developed a 1-D geological model using datasets obtained from
this area. The 1-model resulting from an ANFIS realization is able to make geo-
logical sense of even additional thin sand horizons sandwiched between clayey silt
layers, which were unable to be resolved by other conventional methods. They
showed that the analysis of ANFIS results can map horizons for hydrocarbon
prospecting verifiable against known coring datasets and deduced that the results of
AFNIS are encouraging and provide stable and consistent solutions. In this section
we explain their work.

6.7.2 Inputs-Output Structure of the Designed ANFIS

Singh et al. (2010) provided an automatic strata interpreter for the study area. The
gamma ray log, neutron porosity logs, density logs, sonic transit time, and sepa-
ration between deep and shallow resistivity logs were used as input for the training
of the ANFIS process (Fig. 6.42). An ANFIS method was constructed to identify
the strata of the study area on the basis of the mean grain sizes of sedimentary rocks
using a borehole dataset from PrydzBay, East Antarctica, which are prospective for
hydrocarbon-bearing zones. The above geophysical logs were taken as input
variables with layer formation as output for the ANFIS process. The core analysis
of the study area principally identified the formations as diamictite, silt/clay and
sand. In the ANFIS lithology system, lithology types must be converted to a crisp
set in order for the mathematical estimation process to work. The output sets are
assigned a code number from 1 to 3 signifying diamictite, silt/clay and sand for
each lithology.

Fig. 6.42 Input/output of ANFIS lithology interpreter
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6.7.3 Training of ANFIS

Initially the ANFIS based algorithm was trained on 80% of the total dataset and
then tested on the remaining 20% of the dataset obtained from bore holes sites
1165C and 1166A of ODP leg 188 (Singh et al. 2010) in the Prydz Bay, East
Antarctica (Stagg et al. 1985). The training and testing performance of ANFIS
method they used had accuracies of 98.06 and 83.08%, respectively. The results
obtained are more stable and are well correlated with available core samples. Singh
et al. (2010) deduced that this method can easily define a permeable sand formation
by distinguishing between silts and sands and by determining the mean grain size
variation in these sands. In addition, this also resolved some thin strata of hydro-
carbon bearing sedimentary rock (Singh et al. 2010).

6.7.4 Training of ANFIS Performance

The well log data from sites 1166A and 1165C (Leg 188) have been taken as the
case study for this work. These log datasets are averaged for 5–6 values/meter in the
depth range of 198.1204–983.8948 m (1165C) and 36.0264–358.962 m (1166A)
and assigned to a specific depth. A total number of 5194 data of borehole 1165C
and 2436 data of borehole 1166A were converted into 795 and 323 data samples
and were divided into two parts: training and test datasets. The training datasets
were used to construct the ANFIS lithology system by carefully adjusting the
ANFIS input variables, by reducing the ANFIS lithology rules to construct a
rule-based database. The test datasets were used to validate the system’s prediction
capability and based on the 80%/20% rule, the training and test datasets contained
735 and 60 samples respectively.

The ANFIS results were compared with the lithology of core analysis (the true
lithology). The first output results are a division into as diamictite, silt, clay and
sand while the second output identifies the major rock component in each layer—
sand, silt or gravel. Figure 6.43 shows the network training error versus epoch

Fig. 6.43 The response of
the errors through the ANFIS
training process (Singh et al.
2010)
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(iteration) progressing to completion at a global minimum and converging at 21
epochs (iteration) with an error 0.0305.

The output crisp values i.e. sand and gravel were then compared with the
Moncrieff (1989) classification system of poorly-sorted sediments with a gravel
component. The classification between the major rock formations and sand/silt/clay
in various layers is done using MSCS (major rock formation size) which aids
differentiation between silty clay and clayey silt as the first output gives does not
distinguish silt and clay. After training the ANFIS lithology system its performance
and prediction ability are validated. In Fig. 6.44 the red circles represent the true
lithology, the star marks with blue color represent the ANFIS lithology, the vertical
axis shows the output and the horizontal axis represents the different well-logging
normalized data. 234 training data sets were identified correctly from the total 258
training data sets (Fig. 6.44) with a success rate of 98.08%.

6.7.5 Validation of ANFIS Performance

The validation (testing) of the network system was completed with 65 test datasets
from borehole 1166A. 57 test datasets out of 65 datasets were predicted correctly
(Fig. 6.45) with an 83.08% success rate. The error might be due to heterogeneous
and/or anisotropic conditions at the wells.

Fig. 6.44 The trained network shows the trained well logging data (blue star) by ANFIS matches
with field data (red circle) with an accuracy of 98.03 (reproduced after Singh et al. 2010)
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6.7.6 Application of ANFIS Methods to Real Borehole
Geophysics Data

In this example, the five parameters considered to be the actual field data were
already known but the principle laid down is quite general in nature and need not be
confined solely to a specific set of parameters.

This ANFIS method was constructed to identify the strata of the study area on
the basis of the mean grain sizes of sedimentary rocks using the borehole dataset
from PrydzBay of East Antarctica, where hydrocarbon bearing zones might be
found. The above geophysical logs were taken as input variables and layer for-
mation identification provided the outputs from the ANFIS process.

Figure 6.46 shows the Prydzbay main borehole log data selected for the ANFIS
training process and its responses, (a) layer identification, (b) gamma-ray (API
units), (c) neutron porosity (%), (d) density (g/cc), (e) sonic transit time (msec),
(f) resistivity difference (ohm m) from depth 36.5 to 358.5 m, and (g) identified
(predicted) layer boundary using the above log data. Figure 6.47 shows ANFIS
testing and its responses, (a) gamma-ray (API units), (b) neutron porosity (%),
(c) density (g/cc), (d) sonic transit time (msec), (e) resistivity difference (ohm m)
from depth 36.5 to 358.5 m, and (f) identified layer boundary using above borehole
log data by ANFIS method. The results obtained by ANFIS, which agree well with
available coring data show that the model can be extended to any new environment
and that this approach provides an efficient and robust method for identifying true
lithology from well log data and that the ANFIS method is capable of generating a
more accurate result within a fraction of the time needed for conventional analysis
methods (Singh et al. 2010).

Fig. 6.45 The network shows the testing well logging data (.) by ANFIS matches with field data
(*) with an accuracy of 83.083% (Singh et al. 2010)
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6.8 A Fuzzy Interference System for the Prediction
of Earth Rotation Parameters

6.8.1 Introduction

The prediction of ERP time series is commonly done using linked celestial and
terrestrial reference frames methods such as GPS (global positioning system), very
long baseline interferometry (VLBI), satellite laser ranging (SLR), amongst others,
but these conventional methods cannot meet the requirements for real-time appli-
cations such as high-precision terrestrial navigation, for navigation of Earth satel-
lites and interplanetary spacecraft, and for laser ranging to the Moon and artificial
satellites (Schuh et al. 2002). These space-geodetic techniques require prepro-
cessing in order to calculate ERP, and so it is not possible to have knowledge of
ERP in real time For GPS, this processing takes 3 h, and for VLBI and SLR it takes
a few days or more and so we must have the capability to predict the ERP over at
least a few days (Akyilmaz and Kutterer 2004).

Fig. 6.46 Pryzbay main borehole log data taken for ANFIS training process and its response,
b gamma-ray (API units), c neutron, porosity (msec), f resistivity difference (ohm m) from depth
36.5 to 358.5 m are normalized between [0 1], and a identified layer boundary using above
borehole log data by ANFIS method (Singh et al. 2010)
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Prediction methods have been developed, e.g. by Zhu (1981, 1982), McCarthy
and Luzum (1991), Freedman et al. (1994), Malkin and Skurikhina (1996),
McCarthy (1996) which either estimate and extrapolate the parameters of harmonic
into the future or use stochastical methods. e.g. Auto-regressive integrated moving
average processes. Most use a combined model consisting of the deterministic part,
which is either known or estimated by means of the least-squares (LS) method, and
a predicted part, which can be stochastic or non-stochastic (Akyilmaz and Kutterer
2004).

An alternative method of real-time prediction is provided by soft computing
methods, artificial neural networks and neuro-fuzzy systems. Ulrich (2000) and
Schuh et al. (2002) used an a-priori deterministic model in conjunction with arti-
ficial neural networks (ANN) to predict short- and long-term ERP. Akyilmaz and
Kutterer (2004) developed a new method to predict the earth rotation parameters
(ERP) based on ANFIS. They predicted the Earth rotation parameters
(ERP) (length-of-day and polar motion) up to 10 days ahead by means of ANFIS
and then extended the prediction to 40 days further using the formerly predicted
values as input data. The ERP C04 time series with daily values from the
International Earth Rotation Service (IERS) served as the database. The well-known

Fig. 6.47 Pryzbay main borehole log data taken for ANFIS testing and its response, a gamma-ray
(API units), b neutron, porosity c density (g/cc), d sonic transit time (msec) e resistivity,
f identified layer boundary using above borehole log data by the ANFIS method (Singh et al. 2010)
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effects such as the tides of the solid Earth and the oceans or atmospheric seasonal
variations, were removed a priori from the C04 series. They used the residual series
for training and validation of the network trying different network architectures
compared their predictions with those of other methods. Not only is the ANFIS
method they presented easier to implement than those conventional methods but
they also showed that the Short-term ERP values predicted by ANFIS had errors
which were lower than the alternative methods. In this section we explain further
how Akyilmaz and Kutterer (2004) used ANFIS to predict ERP time series and
show how the results compare to conventional methods.

6.8.2 Prediction of Earth Rotation Parameters by ANFIS

The output of each ANFIS model for the prediction of individual days in the future
is in vector form. Almost every soft computing assessment requires the partitioning
of the data into two parts, a training set and a validation set. The training set is used
to optimize the model parameters whereas the validation set is used to confirm the
parameters defined by the training set (Akyilmaz and Kutterer 2004).

To avoid the errors introduced by extrapolation a linear trend was removed from
the polar motion series; a linear best-fitting function [model (t) = a0 + a1.t] was
estimated by the LS method individually for the x and y components of polar
motion from the time series between 1980 and 1998 and then extrapolated until
2001 and the trend then subtracted from the actual time series for the interval
between 1980 and 2001. The residual data were used as training patterns. In the
case of the length of day (LOD), tidal effects were first removed according to the
IERS Conventions (McCarthy 1996) and a linear trend was calculated by means of
the LS method and extrapolated until 2001 and the residual series used for training
and validation of the network. ERPs before and after revisualization are given in
Fig. 6.48. Note that reducing the linear trend function does change the amplitude;
the change of amplitudes in the LOD comes from the reduction of tidal effects
(Akyilmaz and Kutterer 2004).

6.8.3 Patterns for Polar Motion Components x and y

6.8.3.1 Patterns for Polar Motions

While composing the training patterns for ANFIS prediction of polar motion, a
different method was used for predicting the first two days and for the latter days in
the future. The input pattern for the prediction of the first future day is given by the
values of the four previous days in the time series:
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INPUT : Xðt� 4Þ; Xðt� 3Þ; Xðt� 2Þ; Xðt� 1Þf g ! OUTPUT : XðtÞf g

Similarly, the pattern for the prediction of the second day in the future is defined as:

INPUT : Xðt� 5Þ; Xðt� 4Þ; Xðt� 3Þ; Xðt� 5Þf g ! OUTPUT : XðtÞf g

If k indicates the day in the future to be predicted, starting from 3, (i.e. k = 3, 4,
5…). Then the pattern becomes:

INPUT : Xðt� 8kÞ; Xðt� 4kÞ; Xðt� 2kÞ; X(t� k)f g ! OUTPUT : XðtÞf g

These patterns are then shifted across the whole time series of both reduced polar
motion components (Akyilmaz and Kutterer 2004).

6.8.3.2 Patterns for LOD

The values of the reduced LOD time series for the last five days are the inputs and
the day to be predicted is the output. Patterns for the prediction of the first 10 days

Fig. 6.48 ERP of the series C04 of the IERS before and after reduction. A linear trend was
removed from the original polar motion and LOD data. For LOD the tidal influence was
additionally reduced according to the IERS Conventions 1996 (Akyilmaz and Kutterer 2004)
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into the future are given below. These pattern matrices are then shifted along the
whole time series of the reduced LOD, forming a multitude of pattern pairs
(Akyilmaz and Kutterer 2004).

LODðt� 5Þ; LODðt� 4Þ; LODðt� 3Þ; LODðt� 5Þ; LODðt� 1Þf g !
LODðt� 6Þ; LODðt� 5Þ; LODðt� 4Þ; LODðt� 3Þ; LODðt� 2Þf g !

..

.

LODðt� 14Þ; LODðt� 13Þ; LODðt� 12Þ; LODðt� 11Þ; LODðt� 10Þf g !

6.8.4 Design of ANFIS Structure

The specifications of both ANFIS that Akyilmaz and Kutterer (2004) used are listed
in Table 6.17.

A typical training run is plotted in Fig. 6.49 showing that the error in the training
set decreases with increasing number of training cycles. One interesting point is
that, after reaching the global minimum in the training cycles, the RMS error no
longer oscillates; it remains constant for further iterations. Experiences show that
the global minima for validation sets is often very close to that for the training sets
(Akyilmaz and Kutterer 2004).

Table 6.17 Description of specifications of ANFIS used for LOD and polar motion parameters
prediction (Akyilmaz and Kutterer 2004)

Case Description

Number of MFs for each of inputs 2

Type of MFs for inputs Gaussian

Number of fuzzy if–then rules established for polar motion
predictions

24 = 16

Number of fuzzy if–then rules established for LOD predictions 25 = 32

Learning algorithm Hybrid (for both ANFIS)

Output function Constant variable
(singleton)

Number of iterations needed for convergence to the global
minima

40 for each of two ANFIS

Calculation time 5 min
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6.8.5 Test of ANFIS for Real Data

Akyilmaz and Kutterer (2004) computed each FIS for prediction up to the 10th day
and after the 10th day, they used predicted values as inputs to already existing
models composed for the previous days’ predictions to predict the values for days
11, 12, …, 40. The results of ANFIS were found to be equal to or even better than
those from ANN (Table 6.18) (Schuh et al. (2002).

The RMS error measure for the ANFIS results as compared to other methods for
the prediction of polar motion is shown in Fig. 6.50. Figure 6.51 shows that the
proposed ANFIS provides predictions which match or exceed other methods until
the twentieth day. After the twentieth day, this deteriorates but this is due to using
predicted values which carry errors as inputs. Figure 6.51 shows the results of
ANFIS predictions of LOD (top) for 10 days into the future (black) and the C04
series with the tidal effects and the linear trend function (gray) removed, and the
corresponding prediction errors (bottom).

Comparing ANFIS-derived results with those from other methods clearly indi-
cates that ANFISs can usefully predict ERPs, especially for the short-term range, up

Fig. 6.49 RMS error characteristics during the training procedure. Note that the RMS errors for
both the training and the validation sets are monotonously decreasing (Akyilmaz and Kutterer
2004)
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to 10 days, a very useful period for real-time operations (Akyilmaz and Kutterer
2004).

The following conclusions can be drawn:

• ANN produces good predictions but is difficult to handle and time consuming
and requires an a priori model before training the network.

• Although there is also some prior process in ANFIS prediction, it is superior to
ANN.

• Training of ANNs takes longer than that of ANFIS networks.
• Since the RMS error for the training and the validation sets oscillates signifi-

cantly determining the global minimum is problematic.
• In the case of ANFIS training, the RMS error of both training and validation sets

shows a continuously decreasing trend and the global minimum is guaranteed by
the step-size factor.

• ANFIS requires a significantly fewer iterations.
• It is not necessary to modify or replace many parameters to obtain an optimal

ANFIS prediction, whereas this is required when using ANNs.
• Smaller number of input variables is used in ANFIS prediction models than in

ANN prediction models.

Table 6.18 Comparison of ANFIS and ANN RMS prediction errors. In addition, the maximum
absolute errors of ANFIS prediction are given (Akyilmaz and Kutterer 2004)

Polar motion LOD

Prediction
day

ANFIS
prediction
RMSpm

(mas)

ANN
prediction
RMSpm

(mas)

ANFIS
prediction
RMSLOD

(ms)

ANN
prediction
RMSLOD

(ms)

ANF1S polar
motion max
absolute error
(mas)

ANFIS
LOD max
absolute
error (ms)

1 0.24 0.29 0.017 0.019 0.69 0.054

2 0.55 0.57 0.045 0.049 1.52 0.102

3 0.84 0.95 0.067 0.074 1.97 0.157

4 1.25 1.30 0.088 0.097 2.74 0.196

5 1.64 1.79 0.115 0.121 3.89 0.247

6 1.85 2.10 0.139 0.142 4.03 0.264

7 2.06 2.39 0.153 0.159 4.54 0.282

8 2.41 2.67 0.170 0.174 5.21 0.305

9 2.78 2.95 0.182 0.184 5.72 0.344

10 3.17 3.25 0.188 0.193 6.78 0.373

15 4.75 4.70 0.251 0.246 9.93 0.678

20 6.37 6.28 0.259 0.251 13.65 0.694

25 8.02 7.78 0.267 0.249 16.86 0.749

30 9.12 8.89 0.275 0.245 19.05 0.771

35 10.28 10.14 0.281 0.263 21.84 0.813

40 11.32 10.96 0.290 0.258 24.17 0.894
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• However, despite ANFIS being simpler than ANN modeling, it is still more
complicated than other methods such as, for example, the one used in the
IERS EOP service.

6.9 Coherent-Event-Preserving Random Noise
Attenuation Using Wiener-Anfis Filtering
in Seismic Data Processing

6.9.1 Literature Review

The resolving power of seismic reflection sections is inversely proportional to the
amount of background random noise (Sheriff 1997) present in seismic data
acquisition. By incorporating certain prior information based on the characteristics
of the seismic events and the existing random noise, a supervising expert can
attenuate random noise using conventional methods such as band pass filtering

Fig. 6.50 RMS error of short-term prediction (up to 40 days) of polar motion; ANFIS results and
other results according to Schuh et al.(2002) (Akyilmaz and Kutterer 2004)
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(Stein and Bartley 1983), Karhunen-Loeve filtering (Al-Yahya 1991), f-x decon-
volution (Bekara and Baan 2009), Fourier and Radon transforms, time-frequency
analysis including multi resolution (Neelamani et al. 2008), median filtering (Liu
2013), and peak filtering methods (Lin et al. 2014).

Zhang et al. (2010) used a back propagation neural network architecture in
which the error function had been tuned so as to attenuate the random noise in a
shot record. Djarfour et al. (2008) also attenuated the noise in synthetic and real
shot records using neural networks. Lin et al. (2014) applied fuzzy clustering based
on time-frequency peak filtering, to attenuate random noise. Recently, Kimiaefar
et al. (2015) proposing a semi-automatic algorithm and deployed an Artificial
Neural network (ANN) with wavelet packet analysis for attenuating random noise
in real stacked sections and common offset sorted gathers. Hajian et al. (2016) used
an ANFIS system in order to enhance the S/N ratio of the CMP seismic reflection
data by attenuating background random noise, through model discrimination and by
utilizing local neighborhood information of each sample from adaptive Wiener
analysis.

Fig. 6.51 LOD prediction (black) compared with the reduced C04 series (gray) and the
corresponding prediction errors for the prediction of the tenth day in the future (Akyilmaz and
Kutterer 2004)

474 6 Application of Neuro-Fuzzy Systems in Geophysics



6.9.2 Wiener-ANFIS Filtering

In the method proposed by Hajian et al. (2016), the coordinates of some data
sample points were first selected randomly in the section (for instance, coordinates
of one percent of the dataset). At the next stage, the statistical features selected for
the analysis of these points were calculated in a given neighborhood. Such statis-
tical features may include mean, variance, median, extremum etc. The philosophy
of this analysis assumes that the statistical behavior of noise is different from that of
the coherent events (Fani and Hashemi 2011). For example, for each point of the
random data, the local extremum of the amplitude in a window with fixed or
variable length is calculated and the value is compared to the extremum of the
amplitude of the adjacent points in a three by three neighborhood. Figure 6.52
illustrates this by zooming in on a part of a real seismic section. The comparison
and separation of the extracted statistical features of input data is carried out
through Fuzzy C-Mean Clustering method (FCM) whose output is the membership
functions of a given point within all clusters which indicate how much the point
belongs to a certain cluster. To determine the cluster corresponding to the coherent
events, a modified version of Fani and Hashemi’s (2011) method was applied. Two
criteria decide whether or not a cluster is noise:

• The first criterion is the sum of similarity values of one cluster with others in the
pair wise mode. The cluster with lower summation value is considered to be
noise.

• The second criterion is to count the number of acceptable (greater than a
preselected threshold) similarity values of each cluster with the others. Any
cluster that has low similarity with a bigger number of clusters is flagged as a
possible noise cluster.

After the determination of the cluster corresponding to the random events, the
statistical features of each data sample and its neighborhoods are used as the input

Fig. 6.52 Three by three
neighborhood window of a
seismic event (zoomed)
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for ANFIS, and the value of the AWF and the amplitude of the trace for each data
sample point, determine the output of the network in a weighted manner based on
the membership function. The flowchart of the method is shown in Fig. 6.53.

6.9.3 Application to a Real Stacked Seismic Section

To examine the efficiency of the method, a synthetic CMP gather was used initially
(Figs. 6.54a, b). This method was compared with four methods, Adaptive Median
Filtering (AMF) used by Liu et al. (2009), Bayesian Estimation Filtering
(BEF) (Candy 2009), Stationary Wavelet Transform Filtering (SWFT) used by
Rawat and Dyal (2010), and AWF (Jeng et al. 2009) and the results are illustrated in
Figs. 6.54c–g. As a validation test, the Structural Similarity Index Measure (SSIM)
was used, and this was also applied by Lari and Gholami (2014) to determine the
similarity of the noisy and filtered images to the original section (Fig. 6.55).
Figure 6.55 shows the improved efficiency of the proposed method. The method
also was applied to a real seismic stacked gather recorded in Alaska (Miller 2000)
and the results shown in Fig. 6.56.

As seen in Fig. 6.56a many weak reflections in all parts of the seismic section
are masked due to the presence of background random noise and this has made it
difficult to trace the reflectors. The comparison of outputs resulted from imple-
menting different filtering methods indicates the higher efficiency of the

Fig. 6.53 General flowchart of the Wiener-Anfis Filtering (Hajian et al. 2016)
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Fig. 6.54 a A synthetic CMP gather and b noisy gathers and filtered gathers: c AMF, d BEF,
e SWTF, f AWF and g WAF (Wiener-ANFIS Filtering) (Hajian et al. 2016)
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Wiener-ANFIS Filtering method in attenuating while preserving the amplitude of
the coherent events. Figure 6.57 shows the amplitude spectra of the sections in
Fig. 6.56 (Hajian et al. 2016).

Two indicators in normalized amplitude spectrums were sought:

• Lower amplitudes at higher frequencies (based on the assumption of white
Gaussian random noise).

• Higher amplitudes around the frequency band related to maximum amplitude. It
can be seen that, the amplitude spectrum of the WAF performs better than other
methods.

6.9.4 Conclusions

A high performance automatic filter was designed based on the training of ANFIS
with clustered data derived from the FCM clustering method. This has demon-
strated the high capability of ANFIS in model discrimination and utilizing the local
neighborhood information of each data sample from AWF yields satisfactory results
in attenuating random noise and simultaneously preserving coherent events. The
validation procedure was carried out through standard methods and the results were
compared with most common conventional methods. The analysis of the outputs
showed that the Wiener-ANFIS Filtering method has a considerably higher capa-
bility for realizing the research objectives (Hajian et al. 2016).
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Fig. 6.55 SSIM calculated between original, noisy and filtered gathers in Fig. 6.54 (Hajian et al.
2016)
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Fig. 6.56 Part of a real CMP section recorded in Alaska and filtered sections using the mentioned
methods (Hajian et al. 2016)
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Part IV
Genetic Algorithm



Chapter 7
Genetic Algorithm with Applications
in Geophysics

Mrinal K. Sen and Subhashis Mallick

7.1 Introduction

Much of what we know about the Earth’s subsurface has been derived from indirect
measurements. Three-dimensional images of the Earth’s interior have been derived
from recordings of earthquakes caused by tectonic forces existing inside and on the
surface of the earth. Variations in the gravity, magnetic, electric and electromagnetic
fields recorded with advanced instruments placed on the surface, boreholes and
airplanes, have also been used for this purpose. In seismic exploration, we make use
of the principles of and lessons learnt from earthquakes to determine finer
scale-subsurface features to identify zones that are favorable for the accumulation of
hydrocarbons. Similarly monitoring of fluid movement during hydrocarbon pro-
duction is also carried out by repeat seismic measurements (called time-lapse seismic
experiments). The potential for application of geophysical data for estimating sub-
surface properties is simply stupendous. It keeps pace with the advancement in the
computing and electronic technology, and we have witnessed a steady growth of
large-scale applications of Geophysics.

The most essential element of geophysical analysis is estimation of subsurface
rock properties (e.g., elastic constants, electrical conductivity, permeability,
porosity etc.) from remotely sensed data—this is not a trivial task. Our approach to
learning about the earth is no different from the basic premise to doing science.
Prof. Richard Feynman, in 1964, eloquently elaborated the essence of the scientific
method as follows:
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In general, we look for a new law by the following process: First we guess it; then we
compute the consequences of the guess to see what would be implied if this law that we
guessed is right; then we compare the result of the computation to nature, with experiment
or experience, compare it directly with observation, to see if it works. If it disagrees with
experiment, it is wrong. In that simple statement is the key to science. It does not make any
difference how beautiful your guess is, it does not make any difference how smart you are,
who made the guess, or what his name is — if it disagrees with experiment, it is wrong.

Thus there are three essential elements to doing science: guess, compute, and
compare. In essence, Feyman described an inverse problem (Berryman—unpublished
lecture notes at Stanford University) http://sepwww.stanford.edu/sep/berryman/
NOTES/chapter1.pdf). Parameter estimation from geophysical measurements fol-
lows these three steps only. In other words, we attempt to match our observations with
theoretical computed data (this procedure is called forward modeling) until we have
an acceptable fit. Note that here we introduce a feedback to update our guess. When
we find an acceptable fit, we assume that we have discovered the underlying
parameters (we will call these model parameters) that we are interested in. This
procedure (Fig. 7.1) is referred to as model based inversion (e.g., Sen and Stoffa
2013).

Fig. 7.1 Basic flowchart of ‘model-based’ inversion
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Essential elements of an inverse problem include the following:

Data: this is represented as a column vector

d ¼ d1 d2 d3 . . . dN½ �T; ð7:1Þ

which comprises N discrete measurements, and T denotes matrix-transpose. We
will use dobs and d to represent observed and theoretical data respectively.

Model: this is represented as a column vector

m ¼ m1 m2 m3 . . .mM½ �T ; ð7:2Þ

which comprises M discrete parameters describing the surface model. Note that this
parameter is often unknown and can also be considered a variable as used in a
trans-dimensional inverse problem (e.g., Sen and Biswas 2017; Hong and Sen
2009). In general, M 6¼ N.

Forward modeling: This, in most applications, is given by a partial differential
equation or some simpler form derived from it. Forward modeling relates the model
parameters to the data. In other words, it computes the data for a given model, i.e.,

d ¼ f ðmÞ; ð7:3Þ

where f is the nonlinear forward modeling operator. For most applications, such an
explicit non-linear relationship does exist between data and model. When the
relationship is linear, the above equation is given by

d ¼ Gm; ð7:4Þ

where G is a matrix, often referred to as the data kernel (e.g., Menke 1984).

Objective function: Note that the model-based inversion approach involves mea-
suring a misfit (or fitness) between the observed data and synthetic data, given by
the following norm

F mð Þ ¼
XN
i¼1

d� dobsj jp
" #1=p

; ð7:5Þ

which represents a general Lp norm. The most commonly used norm is an L2 norm
(least squares measure) given by

F mð Þ ¼
XN
i¼1

d� dobsj j2
" #1=2

: ð7:6Þ
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Or equivalently

F mð Þ ¼ dobs � gðmÞð ÞT dobs � gðmÞð Þ: ð7:7Þ

Thus inversion involves searching for a model that minimizes the objective
function—a procedure known as optimization. Note also that our definition of
‘model-based inversion’ as given in Fig. 7.1 is fairly simplistic in that our objective
function can be minimized using multiple possible models. This complicates the
search. One approach to addressing this is to impose constraints on data and model;
this is typically done by modifying the objective function given above, to the
following form:

F mð Þ ¼ dobs � gðmÞð ÞTWd dobs � gðmÞð Þþ a2 m�mpr
� �TWm m�mpr

� �
; ð7:8Þ

where Wd and Wm are the data and model weighting matrices and mpr is the a
priori model vector. When described in a statistical framework (Tarantola 2000),
data and model weighting matrices can be interpreted as data and model covariance
matrices respectively.

7.2 Optimization

The primary task of geophysical inversion is to find an optimal set of model
parameters by minimization of a suitably defined objective function—a task carried
out by optimization. An additional and even more important task is to quantify
uncertainty in the derived answer. We will not discuss the latter in detail here and
focus on the optimization aspect in this chapter. Local optimization methods are
generally most commonly used in geophysical inversion; these methods depend
strongly on the choice of the starting and make use of local properties (gradient,
Hessian etc.) to compute an update to the current solution. The objective function in
a geophysical inverse problem is generally highly multi-modal containing multiple
local and global minima. In Fig. 7.2, we display a plot of one such optimization
problem.

Minimization or maximization of a multi-modal misfit or fitness function is
generally carried out by meta-heuristics that belong to the category of global
optimization. Several global optimization methods exist; among these the most
popular methods include simulated annealing (SA), genetic algorithm (GA) and
neighborhood algorithm (NA). Several geophysical applications of these algorithms
are described in Sen and Stoffa (2013). In this chapter, we will only describe
application of GA for a few geophysical inverse problems.

The Genetic algorithm (GA) was first applied to Geophysics by Stoffa and Sen
(1991); this was followed closely by Sen and Stoffa (1992), Sambridge and
Driekonigen (1992), and Scales et al. (1992). Since then there have been numerous
applications of this approach to a plethora of geophysical problems. These include
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seismic waveform inversion in 1D, earthquake location, tomography, inversion of
gravity and magnetic data, well-placement problems etc. The applications continue
to grow as computer power increases. Many of the applications are reported in Sen
and Stoffa (2013). Here we will describe a few selected applications; it is not
possible to report on all applications. The authors express their apologies for not
being able to include many examples primarily because of restriction on the length
of this chapter.

In the following, we provide a brief overview of genetic algorithms followed by
examples of its application to two important geophysical inverse problems, namely,

Fig. 7.2 Plot of a fitness function for a model surface-consistent statics problem. Reproduced
from Smith et al. (1992)
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a trans-dimensional approach to seismic waveform inversion, and joint inversion of
disparate geophysical datasets.

7.3 Genetic Algorithm

Since the work of Kirkpatrick et al. (1983), Simulated Annealing (SA) has been
applied to a wide variety of problems in geophysics. Most SA algorithms are
statistically guaranteed to attain equilibrium distribution and possibly to reach the
global optimum, and therefore they are suitable for best-fitting model estimation. In
practice, however, these algorithms are sometimes problematic due to inappropriate
parameter selection. For example, it is important to choose the starting temperature
and cooling schedule properly.

Unlike SA, which is based on an analogy with a physical annealing process, the
Genetic Algorithm (GA) (Holland 1975; Goldberg 1989) is based on an analogy
with the process of natural biological evolution. The basic GA is quite robust and
not particularly sensitive to the randomly selected starting models if enough models
are employed. The primary advantage of a basic GA is that it always converges
toward models with higher fitness values. The convergence of a GA can be pre-
mature if a small number of models are employed. Rapid convergence to minimize
computational cost may be undesirable since the model space will not be suffi-
ciently explored and the population may become homogeneous around a local
fitness maximum that is not near the global maximum. In contrast, convergence
toward the global maximum may be slow because some model parameters have
only minor impact on the fitness, so that extensive sampling of model space often
results in minor improvements at significant computational cost.

Genetic Algorithm (GA) is an intelligent maximization technique for functions
defined on high-dimensional spaces, which simulates the biological evolutionary
processes of selection, crossover and mutation to increase the fitness toward better
solutions. The unique feature of a GA is that it works with a population of models.
A typical GA involves the following steps:

• model representation,
• evaluation of fitness function for a population of models,
• probabilistic (biased) selection of models,
• mixing of models using processes of crossover and mutation.

7.3.1 Model Representation

GA starts with a population of randomly chosen models (called chromosomes) from
the constrained model search space. Unlike other optimization methods, an essential
element of GA is to represent a model m in some coded form. Several different
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model-coding schemes have been proposed and implemented in GA applications.
They are described below, for completeness.

Bit Coding: The minimum and maximum limits and the resolution of a model
parameter are used to determine the total number of bits required to represent a
model parameter. For example, let us assume that the compressional wave velocity
(a model parameter in seismic inversion problems) is desired to be within the
vmin = 1500 m/s and vmax = 1810 m/s with a resolution v = 10 m/s. Note that the
entire range of possible velocities can now be represented by 5 bits only. An
example of binary coding of possible values of compressional wave velocities is
shown in Fig. 7.3.

One difficulty with binary coding is that several bits may need to be changed to
change the value of one model parameter significantly. For example,
00111 = 1570 m/s; however, 01000 = 1580 m/s, indicating that we need change 4
bits to be able change the velocity value by 10 m/s.

Gray Coding: Gray coding (Forrest 1993), logarithmic scaling, and delta coding
(Whitley et al. 1991) have been used to avoid some of the problems associated with
simple binary coding. A Gray code is such that the binary representation of two
consecutive Gray coded numbers differs by only one bit as shown in Fig. 7.4. Gray
codes are generated by forming bitwise exclusive or of an integer i with the integer
part of i/2 (Press et al. 1989).

Real Coding: Rather than coding the model parameter values, we may work directly
with real numbers (floating point). In this case, genetic processes of crossover and
mutation are slightly differently compared to those for bit-coded model parameters.
The advantages (Spall 2000) of real number coding include relative ease of
implementing constraints and that they have natural interpretation. Several

0 0 0 0 0 1500 m/sminv =

0 0 0 0 1 1500 m/sv =

0 0 0 1 0 1520 m/sv =

0 0 0 1 1 1530 m/sv =

M

1 1 1 1 1 1810 m/smaxv =

Fig. 7.3 Simple binary coding of model parameters—actual values of the compressional wave
velocity are shown in the right panel
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applications have reported superior performance of real coding over binary coding.
Some additional details of real coding is provided below under multi-objective
optimization.

Once a coding has been chosen, the model parameters are concatenated one after
another to form a string or a vector—this is called a chromosome.

7.3.2 Model Selection

Once a population of models is selected, the fitness value (objective function) for
each of the models in the population is evaluated. Following this, models are
selected from this population in which some models may be repeated while some
may be rejected. This is a biased selection process in which models with high
fitness values have a higher probability of being selected. Details of this method can
be found in Sen and Stoffa (2013).

7.3.3 Crossover and Mutation

First the models are paired and crossover sites are selected at random. The bits on
the right of these two models are then swapped to generate new models. This is
followed by mutation in which a mutation site is selected at random with low
probability and the bit at that location is simply swapped. While the crossover
introduces mixing of the model, the mutation imposes diversity in the population.

After selection, crossover and mutation, we repeat the process until the popu-
lation becomes nearly homogeneous.

Integer Gray Code Binary Code

0 0000 0000
1 0001 0001
2 0011 0010
3 0010 0011
4 0110 0100
5 0111 0101
6 0101 0110
7 0100 0111
8 1100 1000
9 1101 1001

10 1111 1010
11 1110 1011
12 1010 1100
13 1011 1101
14 1001 1110
15 1000 1111

Fig. 7.4 Comparison
between binary and gray
coding
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7.4 Applications

Since the work of Sen and Stoffa (1991), several applications of GA have been
reported in Geophysical literature; many of those are described in Sen and Stoffa
(2013). In the following, we describe two applications that are different from the
mainstream examples in that the first example focuses on GA’s ability to address the
issue of model dimensionality in seismic inversion and the second example
addresses the application of GA to joint inversion of disparate geophysical datasets.

7.4.1 Multi-scale GA for Trans-Dimensional Inversion

In most geophysical inverse problems, the number of model parameters is assumed
known. In other words, the dimension of the model space is held fixed. In general,
this parameter is unknown. In reality, model parameters are generally continuous
functions of space coordinates. Deriving an infinite number of parameters from a
finite set of measurements makes the optimization problem ill posed. Classic papers
on inverse theory (e.g., Backus and Gilbert 1967) provide a nice exposition of the
tradeoff between model resolution and variances. In practice, one chooses the
dimension of the model space primarily based on prior information. It is often
dictated by the availability of computer resources. Ideally, one would like to treat
the number of model parameters as a variable and let that be estimated by the data.
Such an inverse problem is termed trans-dimensional inverse problem. Most
recently, a few papers have been published in geophysics literature on such
applications (e.g., Malinverno 2002; Dosso et al. 2014; Sen and Biswas 2017 and
references therein).

Hong and Sen (2009) developed amulti-scale GA and applied it to one-dimensional
seismic waveform inversion. They addressed two important shortcomings of a 1-D
waveform inversion problem (Sen and Stoffa 1991), namely, (1) multi-modality
of the objective or fitness function caused primarily by cycle-skipping, and
(2) trans-dimensionality caused by the lack of knowledge of the number of sub-
surface layers. The subsurface is parameterized by a stack of horizontal layers with
each layer characterized by Vp (P-wave velocity), Vs (shear wave velocity), and q
(density). For a given configuration of a model, seismograms are computed by the
reflectivity method (Kennett 1983). In general, it is difficult to choose, a priori, the
number of model parameters. Sen and Stoffa (1991) clearly demonstrated the effect
of under and over-parameterization of the model space in seismic waveform
inversion using SA and GA.

Hong and Sen (2009), in their GA application to 1D seismic waveform inversion
suggested two major modifications:

1. A hybrid GA-SA method was used in which after the generation of a set of
models using the genetic operators (selection, cross-over, and mutation), a
Metropolis acceptance criterion (see step 4 in Fig. 4.5) was used to decide if the
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generated models could be accepted. The hybrid approach offers tremendous
flexibility in controlling the convergence rate. In particular, their algorithm made
use of real-coded GA.

2. Several GA chains were run in parallel with each GA having a variable number
of model parameters. After each generation, models were swapped between
chains. At convergence, they obtained optimal models with optimal number of
model parameters.

Hong and Sen (2009)’s multi-scale GA is described in Fig. 7.5. The inverted
optimal Vp structures based on the observed seismic gathers are shown in Figs. 7.6
and 7.7, which are compared against the true structures represented by the well
logs. In general, it is very difficult to choose an appropriate number of layers in the
model before actually inverting the observed data. Therefore, instead of assuming a
certain number of layers, Hong and Sen (2009) use multi-scaling to avoid layer
definition.

For comparison, the conventional single-scale GA was also implemented four
times for the four scales of 10, 20, 40 and 80 layers individually, and 1500 gen-
erations of updates were also run on a total of 28 single-scale models for each of the
four scales. Every implementation of the single-scale GA also consisted of five
different runs, which started with different random seeds. As an example, Fig. 7.6
summarizes the optimization results of Vp from the four individual implementations
of the conventional single-scale GA. This is separately done on the four different
parameterization cases. Similarly, all the parameterized models finally converged to
the actual model, and the finer-scale models lead to better fits. This comparison of
these with the results from multi-scale GA (Fig. 7.7) shows that, by using
multi-scaling and exchanging information between different scales, convergence of
the fine scales is accelerated to an excellent fitness value that a conventional
single-scale GA can only obtains after a much longer time period. Thus, the new
multi-scale hybrid GA is demonstrated to have better performance in terms of
efficiency and accuracy compared to a single-scale stand-alone GA, in that the
additionally incorporated coarse scales of faster mixing property facilitate better
exploitation of the model space on the fine scale, and this leads to an accurate
parameter estimation (Fig. 7.8).

7.4.2 Multi-objective Optimization

So far, we have discussed the optimization problems involving a single objective.
Many problems of practical interest however, require interpreting multiple sets
instead of a single set of data, which, in turn, involves optimizing or inverting these
multiple data for a consistent model that can satisfactorily explain each data-type.
These multiple data types are sometimes explained via the same physics but
sometimes different physics is required for different data components. Additionally,
each data-type may sample the model space at different scales of resolution. Over
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the past, these multi-physics, multi-scale, and multi-objective problems have been
treated like single objective optimization, meaning that a single objective is defined
as a weighted sum of each objective, which is then followed by a single-objective
optimization as we previously discussed. Multi-objective problems are, however,

Fig. 7.5 Multi-scale genetic algorithm for seismic waveform inversion. From Hong and Sen (2009)
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Fig. 7.6 Inverted optimal compressional velocity structure estimation (green—true red) obtained
by running several independent GA runs with different resolutions from Hong and Sen (2009).
Note that fine resolution results in convergence to the actual model while coarse resolution results
in underfitting

Fig. 7.7 Inverted velocity structures using multi-scale GA for four scales (green) and comparison
with the true model (red) from Hong and Sen (2009). As shown, the over-parameterized models
converge to the actual models
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non-unique with multiple sets of solutions known as the Pareto-optimal solutions,
none of which could be considered better than the other in terms of satisfying all
objectives (Deb et al. 2002). In multi-objective problems, it is important to estimate
the Pareto-optimal set of solutions because it provides a way to calculate the
uncertainty associated with estimating each model parameter. Note that if we cast a
multi-objective into a single-objective problem, it gives only one out of the com-
plete set of the Pareto-optimal solutions that may be biased by the weights we
choose to define the objective. Of course, by changing weights and rerunning the
inversion multiple times can in theory allow estimating the entire Pareto-optimal
set, but such a procedure is too cumbersome to apply in practice. Although some
techniques for automatically choosing and modifying the weights attached to each
objective has been suggested (Hajela and Lin 1992; Ritzel et al. 1994; Miettinen
1999), they all give one solution or at most a small fraction of the Pareto-optimal set
that may or may not be the most desirable. To handle multi-objective problems, it is
therefore advisable to use an optimization method capable treating all objectives as
the components of an “objective vector” and simultaneously minimize (or maxi-
mize) them all via an iterative process to estimate these Pareto-optimal set of
solutions in a single run.

Before proceeding further, let us first define what we mean by the Pareto-optimal
set of solutions in relation to a geophysical inverse problem where two-component
(vertical and radial) seismic data are simultaneously inverted. Without any loss of
generality, we can cast such a problem as a minimization problem where the
suitably defined objectives for each data component are simultaneously minimized.
Now consider the set of solutions from such a two-component optimization, shown
in Fig. 7.9. In this figure the horizontal and vertical axes respectively denote the

Fig. 7.8 Samples of the compressional wave velocity drawn by the seven MCMC chains at scale
3. As shown, all seven chains converge to the same value, even though they start at different
scales. From Hong and Sen (2009)
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error (or objective) of the vertical and radial data components and the dots represent
sets of solutions. Now consider two solutions, marked as “Solution A” and
“Solution B” in Fig. 7.9. Note that the solution A minimized the objective of the
vertical data component better than the solution B. Solution B on the other hand
minimized the objective of the radial data component better than the solution A. In
fact, there are many more such solutions, represented as black dots in Fig. 7.9, none
of which can be considered better than the other in terms of minimizing both
objectives. This set of solutions is the Pareto-optimal set of solutions, which, in the
objective space, form a front, called the Pareto optimal front, and is represented by
the black dots in Fig. 7.9. This concept of Pareto-optimality can be extended further
to define multiple sets of the Pareto-optimal solutions (Pareto-optimal fronts), as
represented by red and blue dots in Fig. 7.9. Note that the solution set represented
by the black dots can be considered better than the set represented by the red dots.
The set represented by red dots are better than the set represented by the blue dots,
and so on. All multi-objective methods aim at finding these Pareto-optimal solu-
tions during the optimization.

7.4.2.1 Multi-objective Optimization Methods in Geophysics

For many years, seismic data have been the most effective tool for delineating and
characterizing the subsurface. In exploration geophysics, these seismic data have
traditionally been single-component. However, primary focus of the oil and gas
industry is now shifting from the conventional to unconventional and naturally
fractured reservoirs. To mitigate global warming from fossil-fuel burning, there is
also a growing need for carbon dioxide (CO2) sequestration in deep saline reservoirs.
Additionally, fractured geothermal reservoirs are also a focus of attention as an
alternate source of energy in recent years. All these reservoirs are anisotropic and to
correctly handle the anisotropic effects of wave propagation, acquisition, processing,

Fig. 7.9 Demonstration of
the concept of
Pareto-optimality in
multi-objective optimization
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and inversion of the full wave-field, seismic data is required. Such full wave-field
data are multi-component (generally three- and sometimes nine-component).
Inverting multi-component seismic data is a multi-objective optimization problem
because each data component has its own objective. Such a multi-objective problem
is single-physics because all data components are explained through the physics of
the propagation of elastic waves through an anisotropic medium. However, because
the vertical component seismic traces are dominated by the fast P-wave mode while
the horizontal data components are dominated by the two slow S-wave modes, the
problem is multi-scale. An accurate reservoir description and monitoring requires
seismic data to be combined with other geophysical data (electromagnetic, gravity,
etc.) and engineering (reservoir flow simulation and geomechanical analysis etc.)
data. For example, while seismic data are effective in delineating different subsurface
rock formations (lithology), they are not very sensitive to the different fluids con-
tained within their porosity (oil, gas, water, CO2, etc.). Electromagnetic (EM) data
on the other hand, are not very sensitive to the subsurface lithology, but are very
sensitive to the formation fluids. Consequently, combining seismic with EM is
useful for accurately delineating the subsurface rock and fluid properties (Lang and
Grana 2015). Additionally, reservoir description is not only delineating the prop-
erties once, but also monitoring them over time. As hydrocarbon is produced from
conventional/unconventional/naturally-fractured reservoirs or energy is produced
from the hydrothermal reservoirs for example, geophysical data must be reacquired
and combined with the production data to monitor the subsurface fluid movements
and optimize subsequent production. All CO2 sequestration experiments require
post-injection monitoring to ensure that the injected fluid is in place and does not
leak out into the atmosphere. Such monitoring requires combining geophysical data
with the engineering data such as the reservoir fluid-flow simulation and geome-
chanical modeling, etc., into a multi-objective optimization that is not only
multi-scale, but also multi-physics.

7.4.2.2 General Overview of Multi-objective Optimization

Multi-objective inverse problems deal with the estimation of the Pareto-optimal set
of solutions and is relatively a new field of research. In theory, an exhaustive search
in the model space would allow such estimation. However, in most cases of
practical importance it is computationally expensive, and due to the complexity of
the underlying physics, it is often unfeasible to search for the exact set. Therefore,
several stochastic strategies such as evolutionary algorithms, particle swarm opti-
mization, scatter search, simulated annealing, etc. have been proposed and devel-
oped. All these approaches attempt to make a reasonable approximation to the
Pareto set. A very good overview of the current state-of-the-art for multi-objective
optimization can be found in Konak et al. (2006), Tang and Wang (2013), and
Giagkiozis et al. (2015).

Although different Pareto-based optimizations differ from one another in terms
of their specific implementation details, they all are based on evaluating multiple
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objectives and then sorting the individual members in terms of their levels of
non-dominance. Without any loss of generality, from here on the multi-objective
optimization will be treated as a minimization problem, i.e., each objective to be
optimized will be evaluated using equation 7.8 or its equivalent form, and then
simultaneously minimized.

Multi-objective inverse problems first start with defining the model vector x in
the decision space X given as

x ¼ x1; x2; x3; . . .:; xnð Þ: ð7:9Þ

In Eq. 7.9, n defines the number of model parameters, and xi represents the
model or solution, associated with the model parameter i. We then define a function
f: X!Y which evaluates the quality of the specific solution by assigning it an
objective vector y in the objective space Y, given as

y ¼ y1; y2; y3; :. . .; ykð Þ: ð7:10Þ

Clearly, k in Eq. (7.10) is the number of objectives. By defining a total number
of k objectives as above, we then define a set of solutions x1 to dominate over
another set, say x2 (denoted as x1 � x2) when the following conditions are satisfied:

• If x1 ¼ x11; x
1
2; . . .:; x

1
n

� �
and x2 ¼ x21; x

2
2; . . .:; x

2
n

� �
in the decision space X maps

respectively onto y1 ¼ y11; y
1
2; . . .:; y

1
k

� �
and y2 ¼ y21; y

2
2; . . .:; y

2
k

� �
in the objec-

tive space Y then

• y1i � y2i ; for all i = 1, 2,…, k.
• y1j \y2j ; at least for one value of j where 1� j� k:

Having introduced the dominance ðx1 � x2Þ as above, we can now readily see
that in Fig. 7.9, the Pareto-optimal set defined as black dots dominate the sets
represented by the red and blue dots, and the set defined by the red dots is dominated
by the set of black dots, but dominates the set defined by the blue dots, and so on.

In all multi-objective optimizations, a set of solutions in the decision space are
first randomly generated based on their respective user-defined constraints. In
multi-objective evolutionary algorithms (MOEA), these solutions are called the
“members” or the “individuals” and the entire set is called the “population”. These
terminologies do however vary depending upon the method used. For example, in
particle swarm optimizations (PSO), individual members are called the “particles”
and the entire set of the members are called the “swarms”, but from here on, the
MOEA-based terminologies will be used.

Once the random population is generated, they are sorted, based on their levels
of non-dominance. Two most popular approaches to such non-dominated sorting
are (1) rank based sorting, and (2) domination-count or domination-strength based
sorting (Konak et al. 2006). In rank based sorting, the members are grouped into
different ranks based on their level of non-dominance. The members belonging to
rank 1 are those which do not dominate one another, but they dominate the rest that
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are not yet ranked. Similarly, the members belonging to rank 2 are dominated by
the rank 1 members, but they dominate the rest. This process of such ranking is
continued for all members of the population. Thus, in Fig. 7.9, the black dots would
represent rank 1, the red dots would represent rank 2, and the blue dots would
represent rank 3. On the other hand, in domination-count based sorting, each
individual member x in the decision space X is assigned a strength S(x) which is
simply a measure of the number of solutions x dominates. Following strength
assignment, in domination-count based soaring; each individual x is assigned a raw
fitness as a measure of the number of solutions x is dominated by. Thus, if a
solution is not dominated by any other solutions, its raw fitness is 0 and if it is
dominated by many individuals, its raw fitness is high. Therefore, in Fig. 7.9 the
raw fitness of the black dots would be 0, the raw fitness of the red dots would be the
number of solutions represented by the black dots, and the raw fitness of the blue
dots would be the total number of the black and red dots.

Although sorting the population in terms of ranks or raw fitness provides the
niching mechanism based on the Pareto dominance, it may still fail when most
members do not dominate each other. In evolutionary algorithms, such a situation is
called “genetic drift” (Goldberg 1989). Developments of all stochastic search
methods are based on the assumption that the population size is infinite. However, in
practice, the population size must be finite, and any stochastic search process using a
finite population size has a tendency to cluster near a single solution over time.
Notice that such a clustering is desirable when the solutions are near the global
optimum, but it must be avoided at all other times to avoid premature convergence to
a local optimum. Therefore, the next step in multi-objective optimizations is to
maintain diversity in the population so that the clustering can be avoided. Thus, each
member is assigned a measure of its diversity. This is usually done in two ways,
(1) computing the crowding distance which is simply the normalized distance of a
member from its nearest neighbors along different objective axes, or (2) computing
the distance of a member from its k-th nearest neighbor, for a suitably chosen value
of k (Silverman 1986), also measured along different objective axes. The inverse of
the distance of a member form its k-th nearest neighbor is then treated as its measure
of population density and added to the raw fitness value as a measure of its fitness.
Thus, out of any two individuals with the same rank or raw fitness, the one that is less
crowded or less densely populated is preferred over the other.

After non-dominated sorting and diversity computations, a population of new
members or solutions is created. In MOEA, creating the new population of mem-
bers from the old one is called advancing from one generation into the next, and is
performed using the GA operations of tournament selection, crossover, mutation,
and elitism as described earlier. There are two popular approaches to create such a
new set: (1) without using any external archive and (2) using an external archive. In
the first approach, the tournament selection reproduces a set of members from the
old set in proportion to their levels of non-dominance and diversity. In crossover,
the members after the tournament selection are treated as parents, and an entirely a
new set of members, called the “children” or “off-springs” are produced. In
mutation, parameters of the children are partially changed using a given probability
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of mutation. After computing the objectives of the mutated children, in elitism the
parents and their children are combined into a single set, sorted according to their
non-dominance levels and diversity, and are compared to select the best set of
members to advance to the next generation, and this process is repeated until a
predefined stopping criterion is reached. In the second approach, an external set of
archive members are maintained along with the current population. The current
population and the archive population are sorted according to their non-dominance
and diversity, and the best members are copied into the archive. This is followed by
the tournament selection from the archive, and crossover and mutation to create the
children. Once the children are created, the entire population is replaced by the
children, which is again combined with the archive to repeat the same process until
some predefined stopping criterion is reached.

Even though all multi-objective optimizations are based on the general ideas
described above, their specific implementations are algorithm-dependent, and out of
many multi-objective methods proposed to date including the hybrid implementa-
tions, the two most promising ones are the fast non-dominated sorting genetic
algorithm or NSGA II (Deb et al. 2002) and the improved version of the strength
Pareto evolutionary algorithm or SPEA2 (Zitzler et al. 2001). NSGA II, shown in
the flow diagram of Fig. 7.10 uses ranks for non-dominated sorting, crowding
distance for population diversity, and does not use any external archive in gener-
ating the new members. SPEA2, shown in Fig. 7.11, uses domination-count for
non-dominated sorting, k-th nearest neighbor for population diversity, and uses an
external archive.

7.4.2.3 Geophysical Examples of Multi-objective Optimization

Application of multi-objective optimization to solve geophysical inverse problems
is relatively new. Estimation of an anisotropic model of mantle lithosphere using
the splitting parameters of teleseismic shear waves and P wave residual spheres
using a multi-objective optimization method was reported by Kozlovskaya et al.
(2007). For wave-equation migration velocity inversion, Singh et al. (2008) jointly
minimized the semblance and differential semblance using MOEA. To estimate
earthquake focal mechanisms, Heyburn and Fox (2010) jointly inverted the
tele-seismic body wave data and regional surface wave amplitude spectra using a
multi-objective optimization method.

The first application of multi-objective optimization to invert the multicompo-
nent seismic waveform data was carried out by Padhi and Mallick (2013, 2014).
They implemented the original version of NSGA II and demonstrated that the
method is capable of extracting the elastic properties and density from multicom-
ponent seismic data, under both isotropic and anisotropic subsurface conditions.
The anisotropy was however a special type called vertical transverse isotropy or
VTI, where the medium is horizontally isotropic and vertically anisotropic
(Thomsen 1986). In addition, Padhi and Mallick (2014) also developed a practical
way to approximately calculate the uncertainties associated with estimating each
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Fig. 7.11 SPEA2 workflow, based on domination count, distances to the k-th nearest neighbor for
population diversity, and uses an external archive

Fig. 7.10 NSGA II workflow based on non-dominated sorting in ranks, crowding distance for
population diversity, and does not use an external archive
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model parameter. Figure 7.12 is the implementation of Padhi and Mallick (2013,
2014). The inversion was implemented in thes-p domain, and another important
concept introduced by Padhi and Mallick (2013, 2014) is the implementation of a
real-coded GA, which was briefly discussed earlier, but needs further clarifications.

Coding of the models in the decision space is traditionally done using a binary
coding (Goldberg 1989; Stoffa and Sen 1991; Mallick 1995). We assume that the

model vectors x1;t ¼ x1;t1 ; x1;t2 ; . . .x1;tn

h i
and x2;t ¼ x2;t1 ; x2;t2 ; . . .x2;tn

h i
; in which x1;ti and

x2;ti are the model parameters for the i-th component of the respective model vectors
represent two parents in any given generation, say t, randomly chosen out of the
population pool. As previously noted, each component of the model vector is rep-
resented as a string of binary digits (bits) in binary coded GA. Then, by choosing a
random crossover point within each model parameter, the bits on the right-hand side
of these crossover points are swapped between the parents with a given probability
of crossover Pc to produce two children. Crossover is followed by mutation in which
each bit in both children are sequentially visited and changed with a predefined
probability of mutation Pm. As previously noted, binary coded GA can only dis-
cretely sample the decision space, which, in turn, is controlled by the number of bits
that are used to define each model parameter and their minimum and maximum
search bounds chosen. Considering the fact that the decision space is continuous, it is
desirable to develop a parameter coding capable of continuous sampling of this
space. Although there are different ways to implement such continuous sampling, the

Fig. 7.12 NSGA II implementation of Padhi and Mallick (2013, 2014). Reproduced from Padhi
and Mallick (2014)
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real coded GA with simulated binary crossover (SBX) and real parameter mutation
(RPM) operators developed by Deb and Agrawal (1995, 1999) is straightforward
and were used by Padhi and Mallick (2013, 2014) for seismic waveform inversion.
The exact procedures for SBX and RPM are as follows.

Here we describe how does the SBX and RPM work with each model parameter
x1;ti and x2;ti of the parent population and produce the corresponding model
parameters x1;tþ 1

i and x2;tþ 1
i for their children. By repeating exactly the same

procedure for all model parameters will thus produce two children from their
parents. Before proceeding further, it is worth mentioning that strictly, we should
not use the superscript t + 1 to represent the children. Once a set of N children are
created in any generation t, they are combined with the parents to choose the best
set of N members for the next generation t + 1 from the combined population via
ranking and diversity (see Fig. 7.12). But, here we use x1;tþ 1

i and x2;tþ 1
i to represent

the i-th model parameter for the two children, corresponding to the i-th model
parameters x1;ti and x2;ti of their parents, and the superscripts t and t + 1 do not
represent two different generations.

SBX, implemented by Padhi and Mallick (2014), first calculates a parameter bqi,
given as

bqi ¼
uiað Þ 1

gþ 1; ui � 1
a

1
2�uia

h i 1
gþ 1

; otherwise:

8<
: ð7:11Þ

In Eq. 7.11, ui is given as a random number between 0 and 1, and η is called the
crossover distribution index, which is a non-negative real number. Note that
choosing a large value of η gives a higher probability of selecting the child solu-
tions near the parent solutions. And, if a small value of η is chosen, child solutions
tend to lie far away from their parents. In an ideal scenario, one must therefore use a
small value of η in the early generations and then gradually increase it later when
the solutions merge to the global optimum. In their waveform inversion applications
however, Padhi and Mallick (2013, 2014) used a constant η for all generations.
Finally, a in Eq. (7.11) is given as

a ¼ 2� 1

bgþ 1 ; ð7:12Þ

with

b ¼ 1þ 2

x2;ti � x1;ti

min x1;ti � xL;ti

� �
; xU;t

i � x2;ti

� �h i
: ð7:13Þ

In Eq. (7.13), xL;ti and xU;t
i are respectively the lower and upper search limits for

the model parameter i in the parent population. Once bqi is defined via Eqs. 7.11
through 7.13, the child solutions are
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x1;tþ 1
i ¼ 0:5 x1;ti þ x2;ti

� �
� bqi x2;ti � x1;ti

� �h i
; ð7:14Þ

and

x2;tþ 1
i ¼ 0:5 x1;ti þ x2;ti

� �
þ bqi x2;ti � x1;ti

� �h i
: ð7:15Þ

It is explicitly assumed that in Eqs. 7.14 and 7.15 x2;ti [ x1;ti : It is however
straightforward to write a similar set of equations for x1;ti [ x2;ti ; but in practice it is
not necessary. In any practical application, we can always compare the model
parameters for both parents before crossover and denote the one with higher value
as parent 1 and the other as parent 2 and directly use Eqs. 7.14 and 7.15. From the
Eqs. 7.13 and 7.17, it must also be noted that the SBX creates the children that are
uniformly distributed between their parents. This is deliberate so that there is no
bias in producing the children towards either of the parents (Deb and Agrawal
1995). Also, like the binary coded GA, the real coded GA also performs the
crossover with a given probability Pc.

In RPM, implemented by Padhi and Mallick (2014), the model parameter i for a
mutated child xmutatedi is produced from the original one xchildi as follows, and by
repeating the same for all model parameters and for all children generates the
mutated child population:

First, we define �di as

�di ¼
2ri þ 1� 2rið Þ 1� dð Þjþ 1
h i 1

jþ 1�1; ri � 0:5

1� 2 1� rið Þþ 2 ri � 1
2

� �
1� dð Þjþ 1

h i 1
jþ 1

; otherwise:

8><
>:

ð7:16Þ

In Eq. 7.16, ri defines a random number between 0 and 1, and j is called the
mutation distribution index. Similar to η in Eq. 7.11, it is a non-negative number; a
small value of which produces the parameter of the mutated solution far away from
the original and a large value produces solution close to it. Thus, ideally j should be
varied over the generations, but Padhi and Mallick (2013, 2014) used a constant j
for all generations. The parameter d in Eq. 7.16 is defined as

d ¼ min xchildi � xLi
� �

; xUi � xchildi

� �� �
xUi � xLi

; ð7:17Þ

where xUi and xLi are the upper and lower search limits for the model parameter xi:
By defining �di as above in Eq. 7.17, the mutated model parameter xmutatedi is
computed from xchildi as

xmutatedi ¼ xchildi þ xUi � xLi
� �

~di ð7:18Þ
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Again, similar to the binary coded GA, the real coded GA also performs the
mutation using a probability of mutation Pm.

Figures 7.13 and 7.14 show the inversion results from Padhi and Mallick (2014)
on noisy synthetic seismic data, generated from a real well-log. Two-component
(vertical and radial) synthetic data were simultaneously inverted using the
multi-objective scheme to obtain these results.

Figure 7.13 shows the inversion result for two-component seismic data under
isotropic assumptions. Note that an isotropic elastic earth model is described by
three model parameters-the P-wave velocity (VP), the S-wave velocity (VS), and
density (q). Padhi and Mallick (2014) however parameterized their model in

Fig. 7.13 Isotropic inversion of the two-component (vertical and radial) noisy synthetic data. The
true model is shown in blue, the inverted model is shown in red, and the dashed lines represent the
upper and lower search limits for each of the model parameters. This figure is reproduced from
Padhi and Mallick (2014)
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impedance units (P and S-wave impedance, shown in Fig. 7.13 as IP0 and IS0) and
density. The inversion results shown in Fig. 7.13 used a model population size of
400, and the maximum number of generations of 800. Additionally, it used the
crossover probability (Pc) = 0.9, the mutation probability (Pm) = 0.08, crossover
distribution index (η) = 20, and the mutation distribution index (j) = 10.

Fig. 7.14 Same as Fig. 7.13, but for the VTI model parameters. The figure is reproduced from
Padhi and Mallick (2014)
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The inversion result for two-component noisy synthetic data with a VTI
assumption is shown in Fig. 7.14. A VTI (Vertical Transverse Isotropy) model is
described by five elastic constants (C11, C13, C33, C44, C66) and density.
Alternatively, in geophysical literature, is also common to describe a VTI model
with Thomsen parameters- vertical P- and S-wave velocities (VP0, VS0), three
dimensionless parameters (e, d, and c) and density (Thomsen 1986). Again, as
shown in Fig. 7.14, Padhi and Mallick (2014) parameterized their VTI inversion in
impedance units and density. Additionally, because C66 (or c) does not influence the
vertical and horizontal (radial) data components, in Fig. 7.14, inversion results for
only four out of five elastic coefficients and density are shown. The VTI inversion
result of Fig. 7.14 used a population size of 800, maximum number of generations
of 1400, Pc = 0.9, Pm = 0.05, η = 20, and j = 10.

Padhi and Mallick (2014) took their multi-objective inversion further to compute
an approximate a posteriori probability density (PPD) in the model (decision) space
for each model parameter. The procedure to approximately compute the PPD for
single objective problems was outlined by Sen and Stoffa (1991) and Mallick
(1995), and it is possible to extend the same concept to find the PPD for each model
parameter associated with each objective for multi-objective problems, which in
fact, could be called a Pareto-optimal PPD. But, as the number of objective
increase, interpreting such a Pareto-optimal PPD becomes difficult. In dealing with
multi-objective problems, Mosegaard and Tarantola (1995) points out that plotting
all model solutions in the model space in a normalized histogram display is a
reasonable approximation to the true PPD. Following this idea, Fig. 7.15 is a subset
of the solutions in the model (decision) space, shown in a normalized histogram
display as the approximate representation of the PPD for the VTI inversion problem
of the noisy synthetic data. Thus, in each plot shown in Fig. 7.15, the vertical axis
represents value of the specific model parameter and the horizontal axis represents
the layer number, and each curve represents a normalized histogram display of the
chosen subset of solutions. In addition, Fig. 7.16 is an estimate of the
Pareto-optimal front of rank 1 at the end of the predefined number of generations
for the two-component VTI inversion problem. Padhi and Mallick (2014) claim that
combining the histogram display (Fig. 7.15) with the Pareto optimal front
(Fig. 7.16) is an effective way to assess the quality of the inverted results and
quantify the uncertainty in estimating each model parameter.

For most geologic areas of exploration interest, a VTI-type anisotropy is typi-
cally caused by thin layers of sediments whose thickness are much smaller than the
wavelength of the seismic waves propagating through them. These propagating
waves do not see these individual layers, but their overall effect is manifested by a
VTI type of behavior on the recorded seismic data (Schoenberg 1983). In most
areas, these thin layers are also associated with fractures and/or maximum and
minimum in situ horizontal in situ stress fields SHmax and Shmin (Zoback 2010).
These fractures/stress-fields on top of layering make the subsurface azimuthally
anisotropic with orthorhombic (ORT) properties where the medium is isotropic only
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along three mutually orthogonal symmetry axes and anisotropic elsewhere
(Schoenberg and Douma 1988; Thomsen 1988). Fractures and in situ stress fields
are closely related to one another and estimating them from seismic data is of
practical importance in the exploration and exploitation of the unconventional,
naturally fractured, and CO2 sequestered reservoirs. For unconventional reservoirs,
knowledge of SHmax and Shmin allow proper placement of hydraulic fractures for an

Fig. 7.15 Estimated PPD (posteriori probability density) for all layers and for a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11qð Þp

,
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C13qð Þp

, c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C33qð Þp

, d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44qð Þp

and e q for the VTI inversion. This figure is reproduced from
Padhi and Mallick (2014)
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optimum recovery of the hydrocarbon resources with the least damage to the
environment (Zoback 2010). For naturally fractured reservoirs, knowledge of the
fracture parameters such as their orientation, density, etc., allows an optimum
placement of horizontal wells for maximum resource recovery. As CO2 injection
can potentially alter the in situ subsurface stress fields, their knowledge is important
in designing an injection scheme such that the fractures can be avoided in the
overlying sealing formations and at the same time be initiated within the injecting
reservoirs to enhance additional storage (Campbell-Stone et al. 2012). Because the
fracture parameters, SHmax and Shmin can be calculated directly from the estimated
ORT properties (Gray et al. 2012), developing an inversion method for estimating
the subsurface properties to a complexity of an ORT symmetry is necessary.

In view of the above, Li and Mallick (2015) extended the work of Padhi and
Mallick (2013, 2014) to develop a multi-objective inversion method for ORT media
properties. To handle ORT properties, the original NSGA II was completely
modified and rewritten by Li and Mallick (2015) as follows:

• Each aspect of NSGA II was carefully analyzed and the entire method was paral-
lelized. As shown in Fig. 7.17, this parallel NSGA II distributes the parent popu-
lation into different nodes, evaluates the objectives and performs the non-dominated
sorting, and sends them back to the master node for subsequent processing.

• The raw objectives were first linearly scaled (Goldberg 1989; Mallick 1995) and
these scaled objectives were used for the non-dominated sorting of the popu-
lation into their respective ranks.

• The crowding distance to preserve population diversity was defined not only as
the function of the scaled objectives but also as a function of how much a given
model is diverse from the others in the model space. Note that in this respect,
this modified NSGA II utilizes the SPA2 concept of the k-th nearest neighbor as
a measure of population diversity where k is provided from the model space. For
the multi-objective optimization problems where the total number of parameters
to be estimated is much higher than the number of objectives as is the case for

Fig. 7.16 Pareto-optimal
front of rank 1, estimated at
the end of the VTI inversion.
The figure is reproduced from
Padhi and Mallick (2014)
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the ORT inverse problem, a modification of the NSGA II to adapt to this
concept of SPEA2 was necessary.

• To achieve continuous sampling of the model space, a real coded GA was used
following the procedure outlined above. In this real-coded GA, the crossover
and the mutation probabilities (Pc and Pm) and their respective indices (η and j)
were varied over the generations for a fast convergence to the true solutions (see
below for details).

• Computing the approximate PPD curves as histogram displays as implemented
by Padhi and Mallick (2014) was also implemented to approximately quantify
the uncertainty associated for each model parameter estimate.

Although this modified parallel implementation of Li and Mallick (2015) utilizes
a few concepts from SPEA2, in essence it still is an NSGA II methodology because
this method does not maintain an external archive like SPEA2. Therefore, we prefer
to call this multi-objective optimization method to be an improved and parallel
version of NSGA II.

An ORT (Orthrhombic) medium is described by eleven model parameters- nine
elastic constants, density, and the direction of the symmetry axis. The nine elastic
constants can be described either as the stiffness constants, C11, C12, C13, C22, C23,
C33, C44, C55, and C66 or as Thomsen-Tsvankin parameters (Thomsen 1986;
Tsvankin 1997) given as the vertical P- and S-wave velocities (VP0, VS0), and seven

Fig. 7.17 Workflow of an improved and parallelized version of multi-objective optimization. The
figure is reproduced from Li and Mallick (2015)
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dimensionless parameters e1, e2, d1, d2, d3, c1, and c2. In contrast with the impedance
parameterization of Padhi and Mallick (2013, 2014), Li and Mallick (2015)
parameterized their inversion using the Thomsen-Tsvankin parameterization. Also,
to efficiently implement inversion for ORT subsurface properties, Li and Mallick
(2015) used a two-step approach for inversion. First, they used the near-offset vertical
and radial component along a single azimuth and inverted the data under an isotropic
assumption to obtain an estimate of VP0, VS0, and density. This isotropic inversion
used a population size of 800 and a maximum number of generations of 930.
Additionally, the crossover and mutation probabilities (Pm and Pc) and their indices
(η and j) were kept exactly the same as those used by Padhi and Mallick (2014).
Figures 7.18, 7.19, and 7.20 are the results of this step 1 inversion. Note from these
Figs that although the isotropic near-offset inversion managed to get a reasonable
estimate of VP0 and VS0, it failed to obtain a reasonable estimate of the density.

Figure 7.21 shows the evolution of solutions over generations for the two
component inversion results shown in Figs 7.18, 7.19, and 7.20 to demonstrate how
the random models initially generated and shown as black dots that are widely
distributed in the objective space slowly converge to the most optimal set of
solutions over the generations.

Following isotropic inversion of the near offsets, Li and Mallick (2015) used the
three-component (vertical, horizontal inline, and horizontal crossline) full offset
data along two azimuths to invert for the density and other anisotropic parameters.
In this inversion, the VP0 and VS0, estimated from the near offset inversion
(Figs. 7.18, 7.19, and 7.20) were used as constraints. Note that this inversion
simultaneously optimized three-component data along two azimuths, i.e., for a total
of six objectives. Figures 7.22, 7.23, 7.24, 7.25, 7.26, 7.27, 7.28, 7.29, and 7.30
show these inversion results. Note that using full offset data allows estimating
density and other anisotropic parameters to a reasonable accuracy.

Both isotropic near offset and anisotropic full offset inversions were carried out
in the s-p domain. The anisotropic inversion however needed a population size of
4000 and a maximum number of generations of 5000. For the anisotropic inversion,
Li and Mallick (2015) also found that varying Pc;Pm; g; and j over generations
provide better convergence instead of keeping them constant. The probability of
crossover Pc was varied linearly with generation as Pc ¼ 0:7� 0:1� t

tmax
; and the

crossover distribution index g; was varied as g ¼ 1:0þ 19:0� t
tmax

: In these linear
functions, t and tmax respectively denote the current generation number and the
maximum number of generations. Note that based on the previous arguments, this
choice of generation-dependent Pc and η, were deliberately chosen such that Pc

decreases and η increases with generation such that the model space is widely
sampled at the beginning and is slowly reduced over generations as the algorithm
approaches the true solution. Following Deb and Agrawal (1999), to get a mutation
effect of 1% perturbation in the solutions out of the entire population, the mutation
index was varied as j ¼ 100þ t and the probability of mutation was varied as
Pm ¼ 1

n þ t
tmax

� 1� 1
n

� �
; where n is the total number of variables (model parame-

ters). Note here that like the choice of the generation-dependent Pc and η, the choice
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of the generation-dependent Pm and j as above was also motivated by maintaining
diversity in the population at early stage and slowly reducing it over time as the
solutions near the global minimum. Another important modification made by Li and
Mallick (2015) in the algorithm is the way of computing the crowding distance. In
the standard implementation of NSGA II the crowding distance is computed as the
normalized Euclidean distance in the objective space. Thus, for a given model in the
objective space, its distance from all its neighbors is computed purely in the
objective space and normalized to assign the model a value of its crowding dis-
tance. For problems where the number of model parameters to be solved for is

Fig. 7.18 Comparison
between the true P-wave
velocities with the inversion
results and the search window
used. Here, the near-offset
prestack data were inverted
using an isotropic assumption.
Normalized PPD of the
inverted results is also plotted
in light blue (cyan). The width
of each PPD curve helps to
quantify the uncertainties
associated with the estimates
of each model parameter for
each layer. Solutions with the
highest likelihood were
picked as best inversion
results from these
approximate PPD plots. The
figure is reproduced from Li
and Mallick (2015)
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much higher than the number of objectives, which is typically the case for most
geophysical problems, Li and Mallick (2015) found that basing crowding distance
only in the objective space does not necessarily guarantee that the actual models in
the model space are diverse. Combining the normalized distance measured in the
scaled objective space with that measured in the model space provided a better way
to maintain diversity within the generations than using the objective space alone.

Fig. 7.19 Same as Fig. 7.18, but for the S-wave velocity. The figure is reproduced from Li and
Mallick (2015)
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Recently, Li et al. (2016) used the methodology developed by Li and Mallick
(2015) to invert wide-azimuth real vertical seismic profile (VSP) data. In this
application, they used well-data to constrain VP0, VS0, and density and inverted for
anisotropic subsurface properties. Figure 7.31 shows this inversion result. These
results were verified to be correct by comparing them with the results obtained from
the slowness polarization analysis developed by Grechka and Mateeva (2007).

Fig. 7.20 Same as Fig. 7.18,
but for the density. Note that
applying an isotropic
inversion failed to capture the
density trend. The figure is
reproduced from Li and
Mallick (2015)
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7.4.3 The Future of Multi-objective Optimization
in Geophysics

Multi-objective methods provide an elegant way of combining different data types.
In above, we have restricted our examples to seismic inversions only. It is however
possible to combine seismic with other geophysical data (gravity, magnetic, elec-
tromagnetic etc.), in joint inversion schemes using the multi-objective methods
described here. We have noted above that there have been some recent interests in
such joint inversions for reservoir description. Although there are a few attempts at
such joint inversions, they tend to cast these inversions into a single-objective
optimization (for example, Du and MacGregor 2010; Karaoulis et al. 2012). In the
near future, we would expect to see these joint inversions cast as multi-objective
optimizations.

Another potential application of multi-objective optimization could be in com-
bining geophysical data with dynamic reservoir models in production history
matching. Dynamic reservoir models are built via reservoir flow simulation and
geomechanical modeling. Starting from the baseline reservoir model, flow simu-
lation and geomechanical modeling are iteratively run over time to match the
production data. Traditionally, the time-lapse geophysical (typically seismic) data
are only used as additional constraints to these simulations (Huang et al. 1998 for
example). These iterative methods use the single-objective, gradient-based
approach as the optimization tool and suffer from many shortcomings, specifi-
cally for the dependence of the final model with the initial (baseline) model. Being

Fig. 7.21 Evolution of all solutions through generations under the defined error functions or
objectives given as the misfit between synthetic data and real data measured as a cross-correlation.
As shown in the legend, the dots in different colors represent different generations. Note how the
solutions, widely distributed in the objective space, slowly converge to the most optimal set of
solutions over generations. The figure is reproduced from Li and Mallick (2015)
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linearized and gradient-based, they cannot correctly predict if the dynamic model is
far from the baseline model. To circumvent this limitation, dynamic models are
built under the assumption that only the reservoir is changed over the two repeated
time-lapse surveys. The time-lapse seismic data used as constraint, are also pro-
cessed such that they are identical to the baseline seismic data everywhere except at
the reservoir zone so that they can satisfy the conditions explicitly imposed in the
iterative flow simulation and geomechanical modeling runs. This condition, termed
as “repeatability” in time-lapse seismology is seldom true. Production results in the
in situ stress fields to change not only within the reservoir volumes but also in the

Fig. 7.22 Comparison
between the true densities
with the inversion results after
5000 generations. Here, the
entire prestack data were
inverted under an azimuthally
anisotropic assumption.
Normalized PPD of the
inverted results is also plotted
in light blue (cyan).
Figure reproduced from Li
and Mallick (2015)
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Fig. 7.23 Same as Fig. 7.22,
but for e1. Figure reproduced
from Li and Mallick (2015)
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surrounding formations. Because, the stress field is directly related to anisotropy,
the geophysical properties must also be different, and therefore the repeatability
condition must be relaxed, which could be achieved if geophysical and engineering
data are combined in a joint multi-scale/multi-physics, multi-objective optimization.

Figure 7.32 is one possible approach for integrating the geophysical component
with the engineering component including the production data between two
time-lapse geophysical surveys, and extending this to more time-lapse surveys is
identical. As shown in Fig. 7.32, the baseline geophysical data, in conjunction with
the geological and petrophysical information can be first inverted using a

Fig. 7.24 Same as Fig. 7.22,
but for e2. Figure reproduced
from Li and Mallick (2015)
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multi-objective approach to provide the baseline geophysical model. This geo-
physical inversion can then be followed by an anisotropic rock-physics inversion to
map the inverted geophysical model into the reservoir model of porosity and fluid
saturation. In fact, if these inversions are cast in a Bayesian framework (Lang and
Grana 2015), they would also provide the uncertainties associated with each
parameter estimate and therefore the reservoir model at this step will be the baseline
reservoir model with uncertainty. This baseline reservoir model and the uncertainty

Fig. 7.25 Same as Fig. 7.22,
but for c1. Figure reproduced
from Li and Mallick (2015)
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estimates can then be fed into the joint reservoir simulation/geomechanical/
geophysical inversion methodology which will simultaneously match two sets of
observations (1) production data at the monitoring wells and (2) the time-lapse
geophysical data. Because flow-simulation and geomechanical modeling require
reservoir properties while geophysical inversion requires geophysical properties,
rock-physics must play a vital role in this joint inversion. Such a multi-objective

Fig. 7.26 Same as Fig. 7.22,
but for c2. Figure reproduced
from Li and Mallick (2015)
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Fig. 7.27 Same as Fig. 7.22,
but for d1. Figure reproduced
from Li and Mallick (2015)

approach can lead to a new generation technology for reservoir characterization,
monitoring, and history matching, which, in turn, would be a true success of
multi-objective optimization.

Appendix of Chapter Seven: Pseudo Codes for GA

Basic steps of a simple genetic algorithm are as follows:

1. Define the search space: mmin
i �mi �mmax

i with resolution Dmi. Note that a
model vector is represented as m ¼ m1m2m3. . .:mM½ �T .
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2. Given the search space, draw N number of model vectors m1;m2;m3; . . .:;mN .
3. Represent each model in coded forms.
4. Evaluate the fitness function values for each of the model.
5. Selection: Draw N models with a probability that is proportional to fitness.
6. Crossover: For each pair of model from 5, select a crossover site and apply

crossover with probability Pcross.

Fig. 7.28 Same as Fig. 7.22,
but for d2. Figure reproduced
from Li and Mallick (2015)
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7. Mutation: Apply mutation on each of the models with Pmu.
8. Now we have N new models. Go to step 4 and repeat this process until the

population becomes nearly homogeneous.

Pseudo Fortran codes for binary coding, cross over and mutation are given
below.

Fig. 7.29 Same as Fig. 7.22, but for d3. Figure reproduced from Li and Mallick (2015)
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******************************************************************
A pseudo-code for determination of the number of bits required to represent a
model parameters.

Input: m_min, m_max and dm: minimum and maximum values of the model
parameter, and resolution of the model parameter.
******************************************************************

Fig. 7.30 Same as Fig. 7.22, but for the azimuthal angle of vertical symmetry planes.
Figure reproduced from Li and Mallick (2015)
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N bits ¼ m max�m minð Þ=dm

—————————————————————————————————

Binary coding: a model parameter to be represented as a string of bits. Each bit can
be coded as a logical variable (true or false)

Input: M = model parameter value
—————————————————————————————————

Temp = M - m_min

for j = 1, N_bits

db = dm*2**(j-1)

Fig. 7.31 Anisotropic inversion of wide-azimuth VSP data. The figure reproduced from Li et al.
(2016)

Fig. 7.32 A possible approach for combining time-lapse geophysical data with the engineering
data in a multi-objective optimization scheme
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test = int(temp/dm)

if (test >=1) then

bits(j) = true.

temp = temp – db*dm

end if

end

—————————————————————————————————

Crossover: Note that the crossover is done with the probability p_cross. First a
crossover site is selected at random and then the bits are swapped between the pair
of models to the right of the crossover site.

Bits1: string for model 1
Bits2: string for model 2
Cbits1: string for model 1 after crossover
Cbits2: string for model 2 after crossover

—————————————————————————————————

icross = nbits*ran2(irand) ! Selecting a crossover site

for j = 1,icross

Cbits1(j) = Bits1(j)

Cbits2(j) = Bits2(j)

End for

for j = icross + 1,nbits

Cbits1(j) = Bits2(j)

Cbits2(j) = Bits1(j)

end for

—————————————————————————————————

Mutation: Note that mutation is done with probability p_mu

Bit: the bit that needs to be changed

Mutate: bit after mutation
—————————————————————————————————

Mutate = .not.Bit ! simply flip the bit
—————————————————————————————————
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