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Supervisors’ Foreword

The thesis focuses on the study of the generation and propagation of local field
potentials (LFPs) in the hippocampus, taking rodents as the experimental model. It
presents an innovative combination of signal analysis techniques with computa-
tional modelling of LFP propagation to shed light on the origin of extracellular
potentials and the dynamics of the hippocampal circuitry. The current sources are
obtained from high/density two-dimensional recordings by the inverse Current
Source Density method (CSD) and the resulting spatiotemporal information about
the current dynamics is decomposed into functional components using Independent
Component Analysis (ICA). Then, a finite element modeling (FEM) of the field
propagation is developed, showing the often neglected importance of the macro-
scopic anatomical structure on the recorded LFPs.

The coordination of the hippocampal network with the entorhinal cortex
(EC) input is investigated by analyzing theta-gamma cross-frequency coupling.
Three sources of gamma oscillations in the CA1 region with different distribution,
spectral characteristics, and theta–phase preference are identified. It is demonstrated
that, during different behavioral states and stages of a memory task, there are
differences in the relative contributions of CA3 and EC inputs to CA1
theta-modulated gamma activity and spiking. These inputs can cooperate or com-
pete to modulate CA1 output and interregional communication. The thesis provides
both detailed information about methodology and background on the field and
important insights into the entorhinal–hippocampal network.

Madrid, Spain Prof. Miguel Sancho Ruiz
May 2016 Prof. Sagrario Muñoz San Martín

vii



Abstract

During recent decades, the study of the nervous system function has moved
gradually from the cellular and molecular levels to a more systemic perspective.
Due to the recent developments in technologies to record and manipulate large
populations of cells in behaving animals, the available volume of data has rapidly
increased. Although this boost in the amount of data regarding the function of
neural circuits in action opens new and exciting roads to understanding information
processing in the brain, it also poses new challenges to their analysis and inter-
pretation. One variable that can capture the activity of multiple neural populations
in different brain areas with high spatial and temporal resolution is the local field
potential (LFP). Despite the potential usefulness of LFPs to read out the compu-
tations performed by brain circuits during behavior, its study has been hampered by
the difficulties in extracting meaningful information from it. In the present thesis,
we aim to study the biophysical basis of the LFP as a way to reach a deeper
understanding of it in terms of its underlying physiological mechanisms.

We focused on the rodent hippocampus due to the important role that it plays in
many cognitive functions (such as memory, learning, and spatial navigation) and
the advantages of its simplified layered structure for the study of LFPs. Taking
advantage of high-density silicon probe recordings in behaving rats, we were able
to map the spatiotemporal distribution of LFPs along the dorsoventral and
transversal axes of the hippocampus. We implemented a novel method consisting in
the combination of Independent Component Analysis (ICA) and Current Source
Density (CSD) analysis to separate and identify the synaptic sources of hip-
pocampal LFPs. In addition, we built a tridimensional model of the rat dorsal
hippocampus where the spatiotemporal characteristics of those sources were
implemented and LFPs were simulated by means of the finite elements method.
Those simulations reproduced the common hippocampal LFP patterns and laminar
characteristics, thus enabling us to reach a better understanding of the generation of
LFPs in the hippocampus and verifying the accuracy of the ICA + CSD decom-
position of experimental data.

To prove the relevance of the knowledge gained about the biophysical basis of
LFPs in the hippocampus, we addressed the issue of theta and gamma dynamics in
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the hippocampal-entorhinal circuit during different behavioral states. We found
three sources of gamma oscillations in the CA1 region with different laminar dis-
tribution, spectral characteristics, and theta-phase preference. Slow gamma (30–60
Hz), elicited by the CA3 input to the CA1 pyramidal cells, peak on the descending
theta phase; while mid-frequency gamma (60–120 Hz), brought about by entorhinal
layer three input to CA1, dominate on the peak of the theta cycle. A third source of
very fast oscillations (100–180 Hz) peaked on the theta trough and was of local
origin. Those theta-coupled gamma oscillations were present in both exploration
and REM sleep albeit with different strengths. We showed that during different
behavioral states and stages of a memory task, CA3 and entorhinal gamma inputs
could compete or cooperate to modulate CA1 output and interregional
communication.

The results presented in this thesis constitute an advance in our understanding
and interpretation of LFPs and brain oscillations. They highlight the importance
of the employment of adequate experimental and analytical methods to investigate
the activity of brain circuits and point to the LFP as a useful although complex
variable in this purpose.
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Chapter 1
Introduction

1.1 Genesis and Study of the Macroscopic Electrical
Activity in the Brain

The brain is a complex system, probably the most complex of all. Despite that, it is
formed by relatively simple (but only in comparative terms) elements: neurons and
other cell types. Its complexity mainly arises from the myriad of intricate ways
those elements are interconnected forming networks or neural circuits. The domi-
nant paradigm in systems neuroscience in last decades has been that the distributed
activity of brain circuits is the physiological mechanism underlying cognitive
functions [10, 17, 75, 79]. There is also a large degree of functional modularity in
the brain, that is, discrete brain regions dedicated to particular functions, in par-
ticular in early sensory systems. However, most cognitive functions rely on the
activity of “higher” cortical associative areas which integrate information from
different sensory modalities together with emotional and motivational content. In
addition to the integration of external inputs to conform unified percepts, another
complementary function of these associative brain areas is to support the interaction
of external inputs with self-generated internal ones and stored memory engrams
[18, 56].

To perform those functions, brain circuits need to be able to integrate distributed
local processes or computations into globally organized states and, in turn, to route
the flow of highly processed information to downstream structures both in the brain
and effector organs (muscles, etc.). For this wide integration and segregation of
information, brain oscillations, or “rhythms”, are thought to perform an essential
role [13, 23, 57, 79].

Brain oscillations are present across all animal phyla, from invertebrates to birds,
reptiles and mammals [23, 61]. Although their mechanisms vary largely, a common
feature is the requirement of synchronized activity in specific circuits of intercon-
nected excitatory and inhibitory neurons which generate rhythmic postsynaptic
potentials (PSPs). Those PSPs synchronized over large populations of cells are the
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main source of macroscopic oscillations. These rhythmic synaptic inputs produce in
the target neural population alternate windows of enhanced and reduced
excitability. This mechanism plays a double function: on the one hand it favor the
integration of incoming inputs and their plasticity in discrete time frames, while, on
the other, it segregates the output of the neurons (the generation of synchronized
action potentials) into short burst and sequences [14, 82].

Neural oscillations span several orders of magnitude in frequency, from the very
slow (<1 Hz) to the very fast (200–500 Hz; Fig. 1.1a). Among the most studied of
them are the slow-wave-sleep delta waves (0.5–1.5 Hz), the hippocampal theta
rhythm (5–10 Hz), the cortical gamma rhythms (40–90 Hz) and hippocampal rip-
ples (140–220 Hz). Slow oscillations are coherent across wide regions even
spanning different structures, generating synchronized membrane fluctuations in
widespread neuronal networks. On the other hand, faster oscillations are usually
associated with local computations performed by small numbers of cells and thus
are only synchronous in a highly restricted volume.

Oscillations of different frequencies very often interact with each other both
locally and across structures. This interaction follows typically a hierarchical
fashion, thus the phase of the slower oscillations modulates the amplitude and
occurrence of the faster ones ([9, 26, 27, 35, 72]. Fig. 1.1b, c). Cross-frequency
coupling has been shown to correlate with memory performance in both humans
and animals [3, 26, 71,76]. Cross-frequency coupling in cortical circuits has been
proposed as a mechanism to integrate local computations across modules in a
broader time scale, thus allowing the efficient integration of different streams of
information necessary for most cognitive processes [57].

Fig. 1.1 a Main classes of brain oscillations spanning several orders of magnitude. b LFP trace
from rat cortical layer 5 during sleep showing different characteristic oscillations: delta waves and
spindles. Below, filtered and rectified LFP from hippocampus CA1 pyramidal layer displaying
ripples as large amplitude bursts. c Ripple-triggered power spectrogram of cortical LFP showing
modulation by spindles (revealed by a power increase of approximately 15 Hz). Both events are
also modulated by the slow oscillation (0–3 Hz) [23]
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The interest in studying brain oscillations arises also from the fact that particular
rhythms are altered during different pathological states, including but not limited to
epilepsy, Alzheimer’s disease, schizophrenia and depression [68, 77]. Thus, its
study may lead to a better understanding of the mechanisms of those diseases or
even provide early markers for their detection.

To understand the neurophysiological basis of cognitive processes, there are
many different approximations. The most traditional approach has been the
recording of individual neuronal activity to correlate their firing dynamics with
specific behaviors. With modern recording techniques, it is possible to simultane-
ously record extracellularly a few hundred neurons or to identify intracellularly
single cells in behaving animals. On the other extreme of the scale, we find
functional imaging techniques (fMRI, MEG, PET, etc.) which can monitor whole
brain activity and identify regions that are activated during a particular task. These
techniques have also the advantage that they are non-invasive, so they can be used
in humans. Despite the advances in recent decades on both extremes, the subcellular
and global scales, there is still an important gap in the middle: how individual cells
coordinate in neural circuits to orchestrate different cognitive functions. This has
prevented us from reaching a comprehensive explanation of behavior and cognition
in terms of their underlying physiological mechanisms. The study of neuronal
circuit dynamics tries to bridge this gap.

One technique that allows the recording of neural activity of intermingled neural
populations in different brain areas with high spatial and temporal resolution is the
recording of the intracranial electroencephalogram (EEG). The EEG is produced by
the superposition in the extracellular medium of transmembrane currents in adjacent
neurons. These currents are elicited mainly by the plethora of synaptic inputs
generating PSPs, but there are also other non-synaptic sources of the EEG (see
[22]). The transmembrane currents elicit an electric potential that varies dynami-
cally in time and space, giving rise to the recorded EEG (Fig. 1.2). Thus, the EEG
contains all the summed activity of the multiple synaptic inputs and the local
activity in the region where the extracellular electrode is located. For historical
reasons and despite the physical inaccuracy of the term, the intracranially recorded
EEG is always referred in the literature as the local field potential (LFP).

Biophysical principles underlying LFP generation have long been known [22,
33, 60]. However, there are still many theoretical and technical problems that limit
the usefulness of LFPs to understand brain function. A long-standing biophysical
problem that has remained stubbornly within the field for decades is the difficulty to
identify the synaptic sources of LFPs so as to correlate activity of known neuronal
populations with ongoing behavior. As the LFP in any point in the brain is pro-
duced by the activity of intermingled cellular populations with overlapped synaptic
territories, to identify the cellular origin of particular LFP patterns, the so-called
inverse problem, is a complex task. This problem can be also reformulated as
follows: once given an experimental macroscopic signal, the amplitude of which
varies at different sites (i.e., the LFP), how can the location and extension of the
generating source be determined? Multiple combinations of independent sources
(transmembrane currents in discrete dendritic domains of a population of
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synchronously active neurons) may give rise to a recorded signal with the same
spatial pattern. There is no unique solution, and in most cases, it is difficult or
impossible to confirm the potential solutions experimentally.

A common feature of electric fields in the brain is that they vary spatially in a
complex manner, on account of the shifting activation of neuron generators with
irregular morphology and distribution. Neurons with dominant axial geometry act as
strong current dipoles [22, 33, 40, 60] and as such are the main contributors to field
potentials. A common afferent input to one or another subcellular domain of the
neuron population will give rise to different extracellular potential distributions. This
fact underlies the characteristic laminar profile of LFPs in layered structures. The
problem arises when several inputs are co-activated, as is usually the case. In such
circumstances, the electric currents mix unevenly at different sites, and field potential
distributions become complex and variable. Thus, only high-density recordings
simultaneously performed at several positions can correctly map for spatial varia-
tions of LFPs. Multisite linear recordings are well-suited to a method that has been
employed to find the current generators underlying field potentials, known as current
source density (CSD) analysis [42]. This approach has been very useful to determine
the contributing cells and the location of synaptic membranes activated by afferent
stimuli in laminar structures, such as the hippocampus or neocortex [9, 54].
However, while interpreting CSD maps is simple for voltage profiles elicited by
stimulating only one afferent pathway, their application to ongoing LFPs renders
complex spatial maps of intermingled inward and outward currents, and in general it
is not feasible to identify the multiple synaptic generators from them [36] (Fig. 1.3).

Fig. 1.2 A simplified
simulation of a single neuron
receiving an inhibitory
somatic input. Active outward
currents in the soma are
compensated by return inward
current in the apical and basal
dendrites resulting in a
negative-positive-negative
extracellular potential profile.
Colors indicate extracellular
voltage, red lines indicate
isopotential surfaces, and
black current lines
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An important additional source of complexity and confounding factors, when
analyzing or modeling LFPs or other macroscopic variables of neuronal activity, are
the electric properties of brain tissue. For the sake of simplicity, it is commonly
assumed that the brain tissue is homogeneous, isotropic, and has ohmic (linear)
properties. The contribution to the recorded LFP from a particular neuronal
membrane domain (either in a single cell or in a population of synchronously active
neurons) is usually estimated as follows

/ re; tð Þ ¼ 1
4pr

XN

n¼1

In tð Þ
re � rnj j ð1:1Þ

The above equation denotes that the contribution of the transmembrane current
In in a membrane domain n to the LFP recorded at re is inversely proportional to the
distance between the electrode and the source and to the extracellular conductivity
of the tissue r. The LFP thus would be the result of the linear summation of all the
transmembrane currents weighted by their distances to the recording electrode
(Fig. 1.4). Here, we are assuming a quasistatic approximation of Maxwell equations
in which the electric and magnetic fields are decoupled, and there are not inductive
effects. This seems reasonable given the characteristic low frequency of brain
activity and in particular of that contributing to the generation of LFPs, mostly
below 300 Hz [66, 69]. The above equation also implies that the medium where
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Fig. 1.3 a LFP profile and CSD map of an evoked potential in the hippocampus resulting from
the stimulation of the CA3. In the upper part (CA1), a strong sink (in blue) results from the
depolarization of CA1 pyramidal cell dendrites and is compensated by two sources elicited by
passive return currents. The recurrent collaterals of CA3 axons also produce a local current dipole.
b During spontaneous activity in the hippocampus of an awake rat, multiple synaptic inputs arrive
simultaneously to the CA1 and CA3 regions making it very complex to interpret CSD distributions
[36]
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neuronal currents propagate is an infinite, homogeneous, and isotropic conducting
volume. Although in many cases those assumptions may be reasonable, they are
fundamentally inadequate. On a large scale, the brain is obviously not homoge-
neous, for example, the presence of the liquid filled ventricles may greatly distort
the propagation of electric fields. At a microscopic level, the tissue can be con-
sidered mainly homogeneous, but even if so, it has been shown that it is not
completely isotropic due to the presence of dense cellular layers or myelinated
axonal bundles [66]. A third assumption made in the above equation is that the
conductivity is purely ohmic, that is, it has no frequency-dependent or capacitive
effects. About this last point, there has been much debate in recent years, and there
is not yet a definite answer [4, 33, 58]. It can be said that there are probably some
frequency-dependent properties of brain tissue, but those are not very influential in
most cases and applications.

Fig. 1.4 Simplified schematic showing the calculation of the LFP produced by a single pyramidal
neuron receiving an apical input. Synaptic input elicits inward transmembrane currents locally
(I1(t), black arrow) which are followed by return outward currents all along the membrane of the
cell (In(t), grey arrows). Transmembrane currents in each of the cell compartments elicit an electric
potential at the tip of the recording electrode (re) with respect to a distant reference point. The
summation of all the transmembrane currents in each compartment n, weighted by their distance to
the electrode |re–rn| and the conductivity of the tissue, is the LFP produced by that neuron.
Modified from [33]
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1.2 Anatomy and Physiology of the Hippocampal
Formation

1.2.1 Anatomical and Functional Organization
of the Hippocampal Formation

Over the decades, the mammalian hippocampal formation (HF) (Fig. 1.5a) has
attracted the attention of neuroscience researchers because of its easily recognizable
anatomical features [25, 59], its prominent electrophysiological activity patterns
[20, 81], and its functional implication in learning and memory processes. For
comprehensive overview reading of hippocampal formation, anatomy, and func-
tion, there are many excellent reviews [7, 32, 80, 83] and books [2, 13]. Here we
provide a brief summary of the most relevant aspects for the present thesis.

The term hippocampal formation (HP) is used to designate several brain struc-
tures derived from the medial pallium and strongly related, both anatomically and
functionally: the hippocampus proper or cornusammonis, the Dentate Gyrus (DG),
and the subiculum [11].

In the hippocampus, cellular bodies are densely packed to form one layer.
Pyramidal cells form the cornus ammonis, divided by Lorente de Nó into four
sub-regions CA1–4. In the DG, granular cells form the U-shaped granular layer [25,
59]. The subiculum has several cellular layers and is divided into three main
regions: presubiculum, parasubiculum, and postsubiculum. The HF is strongly
interconnected with the adjacent entorhinal cortex (EC), which constitutes the

Fig. 1.5 a Comparison of rat and human hippocampi. Note the much larger size in comparison
with the rest of the brain of the rodent hippocampus. b Subregions of the rat hippocampal
formation in a horizontal section [51, 78]
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principal source of afferences to it. It possesses a more complex cytoarchitectonic
structure than the hippocampus with six layers. It is divided into two functionally
and anatomically distinct regions, the medial (MEC) and the lateral portions (LEC;
Fig. 1.5b).

Classically, the hippocampal formation has been described as a feedforward
circuit of excitatory synapses (Fig. 1.6a). According to this model, neurons in the
layer II (L2) of the EC project to the DG through the perforant pathway. L2 axons
also innervate CA3 pyramidal cells. DG granular cells send their axons (the so
called mossy fibers) to CA3. CA3 pyramidal cells axons divide to make recurrent
connections within CA3 and also innervate a large extent of the CA1 region (the
Schaffer pathway). CA1 pyramidal cells also receive direct connections from EC L3
cells through the temporo-ammonic pathway, and in turn, project to the subiculum
and the deep layers of the entorhinal cortex (Fig. 1.6b).

In addition to these excitatory connections, the activity in every node of the
network is modulated by inhibitory synapses made by the large existing number
and types of interneurons. In the HP, as well as in most of the other regions of the
brain, and together with the excitatory principal cells, there are multiple classes of
those inhibitory cells (Fig. 1.7). The different types of interneurons have very
different intrinsic properties, firing patterns, and targets. Thus, different roles and
involvement in network activity have been proposed for them [43, 53].

One important characteristic of the HP and a big advantage to the study of their
LFPs, as we will see below, is the stratification of their inputs. Different afferences
to all hippocampal subregions have well defined dendritic domains. As it will be the
focus of subsequent work, we will cover the case of DG and CA1. In the DG, MEC
L2 axons establish synapses in the middle portion of the dendritic arbor of the
granular cells while LEC L2 axons arrive at its outer part (Fig. 1.8a). The inner
portion of the dendritic arbor is innervated by commissural and associational fibers.
CA1 pyramidal cells have both basal and apical dendrites. The basal dendrites form
the stratum oriens and the much larger apical ones extend into two sublayers:
stratum radiatum and stratum lacunosum-moleculare. CA3 axons innervate the

Fig. 1.6 a Modified from an original drawing of Cajal, showing the hippocampal subdivisions
with its main cellular types and axonal pathways. b Diagram of the classic schema of information
flow in the hippocampal formation. Modified from [24, 78]
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stratum radiatum and stratum oriens while entorhinal fibers arrive at the stratum
lacunosum-moleculare and, to lesser extent, also at the stratum oriens (Fig. 1.8b).
Thalamic axons are also circumscribed to the stratum lacunosum-moleculare. It is
worth to mention that both excitatory inputs also innervate several interneuron
types, which in turn project synapses onto the principal cells and other interneurons.

1.2.2 Hippocampal LFP Patterns

The hippocampus displays very prominent LFPs that are strongly correlated with
the behavior of the animal, thus were early used to study hippocampal function
[81]. During active locomotion and exploration and also during rapid-eye move-
ment (REM), sleep hippocampal LFPs are dominated by a strong quasi-sinusoidal
oscillation with a narrow power spectrum peaking around seven to nine Hz, known
as theta oscillations (see Fig. 1.9a) [20]. Theta oscillations are coordinated in all
hippocampal subregions and along the whole extent of the hippocampus [21, 67].
They are also present, at the same time and with high coherence, in many other
regions of the brain, mainly in the limbic system: entorhinal cortex, subiculum,
piriform cortex, septum, etc. [1]. Over recent decades, there has been intense
research to elucidate the generating mechanism of theta oscillations but the debate

Fig. 1.7 Subtypes of interneurons in the CA1 region. More than 20 types of interneurons have
been defined in the hippocampus. Note the variability in synaptic domains of different interneurons
onto CA1 pyramidal cells [53]
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is still open (see [12] for a comprehensive review). There is a consensus that the
main theta rhythm generator is in the medial septum-diagonal band of Broca, which
imposes its rhythm onto the other regions. However, some of these regions in
isolation, even in vitro, can generate their own theta oscillations [45]. When it
comes to the generator of theta LFPs in the hippocampus and other regions, the
picture is even more complex. Almost every hippocampal sublayer has its own
theta current generator that possesses current dipoles which contribute to the overall
theta LFP [12, 55]. During different behaviors, those theta dipoles are coordinated
in a variable manner [64] modulating accordingly the spiking of hippocampal
neurons. Pharmacological manipulations have been proved useful to dissociate and
characterize the different synaptic generators of the theta rhythm in the hip-
pocampus and other areas [6, 65, 74], but we are still far from a comprehensive
understanding of its mechanisms.

A rather opposite electrographic state to the one just described is present during
immobility, consummatory behaviors, and slow-wave sleep (SWS), and it is
characterized by more asynchronous activity and the presence of sharp-wave ripples
(SWR) complexes. SWR are LFP patterns composed by a large negative “sharp
wave” in the stratum radiatum of CA1 accompanied by very fast (120–180 Hz)
oscillations or “ripples” in the CA1 pyramidal layer (see Fig. 1.9b) [9, 38, 62]. The
CA1 sharp-wave is produced by a large depolarizing conductance in the apical
dendrites of the pyramidal cells elicited by a highly synchronous firing of a large

(a) (b)

Fig. 1.8 Diagram depicting the different sub-layers of the DG (a) and CA1 (b) regions of the
hippocampus and their main afferences
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population of CA3 pyramidals. It has been proposed that its generation is controlled
by the CA3 recurrent network and perisomatic-targeting interneurons [46]. The
generation of CA1 ripples is less understood, and several mechanisms ranging from
inhibitory fast post-synaptic potentials (IPSPs), action potentials or a combination
have been proposed [52, 70, 84]. What is clear is that a large population of both
CA1 pyramidal cells and interneurons are firing synchronously during SWR [29],
thus the output of the hippocampus to its target regions is enhanced. Much of the
interest about SWR comes from the fact that they are strongly related to learning
and memory consolidation (see [15] for a comprehensive review).

Another ubiquitous LFP pattern that is not only in the hippocampus but in almost
every brain region, mainly in the cortex is that of gamma oscillations. Gamma
oscillations (30–90 Hz) were originally studied in the neocortex and are related to
different cognitive functions such as attention, sensory integration, and learning [44,
57, 73]. Several mechanisms have been proposed to explain its emergence and
coordination [19, 30, 34, 37, 46]. Most of them imply the interplay between exci-
tation and inhibition in local networks. Of particular importance is the role of
fast-spiking, perisomatic-targeting interneurons that are thought to synchronize
principal cells spiking on the gamma time scale to form cell-assemblies [47, 53].

Fig. 1.9 a Theta oscillations in the hippocampus during active running and REM sleep appear
across every subregion. Note the different power and frequency of oscillations in both behavioral
states. b SWR complexes are characterized by a strong negative deflection in the stratum radiatum
(r) and simultaneous fast oscillation in the CA1 pyramidal layer (p). c Gamma oscillations appear
in the hippocampus in every layer, are modulated by the concomitant theta rhythm, and entrain the
firing of numerous local neurons. (Modified from [8, 63, 84]
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In the hippocampus, gamma oscillations are present concomitantly with other
oscillations, mainly theta, whose phase modulates gamma amplitude (see Fig. 1.9c)
[9, 27, 28]. Although initially gamma oscillations were considered a unitary phe-
nomenon, evidence suggests that there is an enormous diversity of mechanisms and
functions implying different gamma patterns. In every hippocampal subregion,
gamma oscillations of different frequency, ranging from the slow gamma spectrum
(30–50 Hz) to the very fast (100–200 Hz), can be observed and have different
laminar distributions, synaptic mechanisms, and behavioral correlates [5, 9, 30, 38,
39, 41, 71, 85].

At the core of the neural computations performed by the hippocampus is the
synchronous activation of neuronal assemblies whose temporal dynamics may
govern the processing and flow of information in brain circuits. According to the
“cell assembly” hypothesis [48, 50], information in the brain is represented by
groups of synchronously firing neurons, whose participation reflects an interaction
between sensory input and internally generated patterns. A prominent role in
forming these assemblies is ascribed to gamma oscillations. For example, place
cells representing the same spatial position fire together in the time window of
gamma cycles and are often phase-locked to the same gamma frequency [49].
Neuronal assemblies organize in specific temporal sequences, which have been
shown to encode past (recall) and future (planning) aspects of the behavior of the
animal [31]. A postulated mechanism for generating assembly sequences is the
interaction among the multitude of brain oscillations organized by cross-frequency
coupling [16]. In the hippocampus and entorhinal cortex, the phase of theta rhythm
has been shown to modulate the power of gamma oscillations according to
behavioral demands, as well as the firing of both principal cells and interneurons.
Thus, the function of theta rhythm may be to organize on a broader scale the gamma
time-scale cell assemblies [57].

1.3 Goals of the Thesis

The general aim of the present thesis is to perform an experimental and compu-
tational study of the biophysical and physiological basis of macroscopic brain
signals. For this purpose, we will focus on the rodent hippocampal LFPs.

The first goal of the thesis will be a methodological one. We will implement a
novel approach to analyze and interpret the large amount of information contained
in large-scale recordings of LFPs in behaving rodents. In particular, we will tackle
the problem of separating and identifying the contributing synaptic sources of the
LFPs (the “inverse problem”). As a first step, this goal will be addressed by the
application of advanced mathematical tools such as Independent Component
Analysis (ICA) and Current Source Density (CSD) analysis. For an effective use of
these methods, it would be necessary to make a detailed spatial mapping of LFPs
along different axis of the structure of interest, the hippocampus. As a second step,
we will build a tridimensional model of the rat dorsal hippocampus. In such a
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model, the spatiotemporal characteristics of hippocampal LFP sources will be
implemented and the corresponding electric potential distributions solved for the
whole structure by means of finite elements method (FEM), the “forward prob-
lem”). The comparison of the results from the experiments and simulations will
enable us to reach a better understanding of the generation of LFPs in the hip-
pocampus and of the accuracy of the solutions found for their inverse problem.

The second goal will be to characterize the oscillatory dynamics of hippocampal
LFP sources during different behavioral states. We will perform a time-frequency
decomposition of the different LFP sources with a special emphasis on the gener-
ation of gamma oscillations and their coordination by the theta rhythm. This
analysis will be performed during sleep, exploration, and learning to study if
theta-gamma dynamics in the hippocampus can shed light on the mechanisms of
information processing by hippocampal circuits during behavior.

We expect that the successful achievement of the aforementioned goals will
contribute towards a deeper understanding of the generation of macroscopic brain
signals and will lead us to realize a better interpretation of neural oscillations in
terms of their underlying physiological mechanisms.
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Chapter 2
Methods

2.1 Experimental Procedures

Chronic recordings were performed in the Langone Medical Center of the New
York University and the Department of Physiology of the School of Medicine of
the University of Szeged. All experiments were performed in accordance with
European Union guidelines (2003/65/CE) and the National Institutes of Health
Guidelines for the Care and Use of Animals for Experimental Procedures. The
experimental protocols were approved by the Animal Care and Use Committee of
New York University Medical Center and the Ethical Committee for Animal
Research at the Albert Szent-György Medical and Pharmaceutical Center of the
University of Szeged respectively. Animals were anesthetized with isoflurane
anesthesia and one or several craniotomies were performed with stereotaxical
guidance. One or more silicon probes were mounted in custom-made micro-drives
to allow their precise vertical movement after implantation. The probes were
inserted over the target region and the micro-drives attached to the skull with dental
cement. The craniotomies were sealed with sterile wax. Two stainless steel screws
were drilled over the cerebellum and serve as ground and reference for the
recordings. Several additional screws were drilled into the skull and covered with
dental cement to strengthen the implant. Finally, a copper mesh was attached to the
skull with dental cement and connected to the ground screw to act as a Faraday cage
and prevent the recording from the environmental electric noise (Fig. 2.1a. For
more details, see Vandecasteele et al. [45]). After recovery, the probe is moved
gradually in 70–150 µm steps until the desired target is reached. The operated
animals were housed in individual cages.

To record neuronal activity during sleep or waking behaviors the probes were
connected to a pre-amplifier headstage attached to a long cable pending from the
room ceiling that allow full movement to the animal (Fig. 2.1b). The rats’ positions
during behavioral sessions were estimated using video tracking of two LEDs fixed
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to the headstage. The wide-band signal was low-pass filtered and down sampled to
1250 Hz to generate the LFP and was high-pass filtered (>0.8; 20 kHz) for spike
detection.

Following the termination of the experiments, the animals were deeply anes-
thetized, and transcardially perfused first with 0.9 % saline solution followed by
4 % formaldehyde solution. The brains were sectioned by a Vibratome (Leica) at
70 µm sections, parallel with the plane of the implanted silicon probes.

For some of the analysis presented here another dataset was also included. It
comprised recordings form the medial entorhinal cortex and hippocampus per-
formed with high-density 32 or 64 electrode (Buzsáki-probes, Neuronexus) while
the rats performed different maze tasks or sleep in their home cages. This dataset is
publically available at http://crcns.org (hc-3 dataset, [32]).

The experimental data analyzed for the present thesis were not entirely recorded
by me but by other researchers from the Buzsáki laboratory (NYU): AntalBerényi,
Sean Montgomery, Kenji Mizuseki and John Long.

2.2 LFP Source Decomposition

All the LFP pre-processing and analysis were conducted with custom-made func-
tions or publically available toolboxes in MATLAB (The MathWorks, Inc.).

To address the inverse problem of LFP, that is, to separate the different sources
that contribute to the mixed signal, we employed a combination of independent
component analysis (ICA) and current source density (CSD) analysis.

Fig. 2.1 a Implantation of a 256 channels silicon probe (NeuroNeuxus) in the hippocampus of a
Long Evans rats. Observe the multiplexed pre-amplifier PCB and the microdrive where the probe
is mounted. b An animal being recorded during exploration for food reward (cookies) in an open
field. Two LEDs mounted in the headstage are used for position tracking
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2.2.1 Independent Component Analysis

ICA is a blind source-separation technique [4, 16, 26] that can isolate spatially
segregated stable patterns of activity in a mixed signal recorded with an array of
sensors. Applied to linear profiles of LFPs it can separate physiologically mean-
ingful sources that can be attributed to known anatomical pathways. ICA is able to
find the original sources that are statistically independent in a linear mixture. This
can be achieved by different ways, thus many different ICA algorithms have been
proposed that, although numerically different, are equivalent from a theoretical
point of view [15, 25]. We employed the logistic infomax ICA algorithm [4] as
implemented in the EEGLAB toolbox (RUNICA; [18] and the fast kernel density
ICA algorithm provided by Chen (KDICA, http://cm.bell-labs.com/who//aychen/
ica-code.html; [13]). Both algorithms give very similar results.

The application of ICA to a blind source separation problem can be formulated
as follows:

Given a linear mixture of n sources x1, …, xn that are independent from each
other (that is, observing the dynamics of one of them does not give any information
about the dynamics of the others), the problem is to separate the source signals
given only the mixture

xjðtÞ ¼ aj1s1ðtÞ þ aj2s2ðtÞþ � � � þ ajnsnðtÞ ð2:1Þ

For the following explanation we will eliminate the temporal dimension and
denote by x the column vector whose elements are the mixture signals x1,…, xn and
bys the column vector whose elements s1, …, sn are the independent sources:

x ¼ A s ð2:2Þ

A is the mixing matrix with elements aij. The above equation can also be for-
mulated as

xj ¼
Xn
i¼1

ajisi ð2:3Þ

The above equation is called the statistical ICA model. It is a generative model
because it describes how the observedmixed signal is generated by an iterative process
of mixing of the independent components si. The components cannot be directly
observed, they are latent variables. Also the mixing matrix A is a priori unknown. We
only observe the mixed signal x and have to estimate both A and s. After that we can,
just by means of an inverse transform, obtain the independent components:

s = Wx ð2:4Þ

where W is the inverse matrix of A.
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A common first step in the ICA is to sphere or whiten the mixed signals; that is,
to remove any existing correlations. If C = E{xx′} is the correlation matrix of the
mixed signals, the sphering can be accomplished by the linear transformation
V = C−1/2

E yy0f g ¼ E Vxx0V 0f g ¼ C
1
2 � C � C�1

2 ¼ I ð2:5Þ

After sphering the independent components can be estimated by and orthogonal
transformation of the uncorrelated signals y. This is achieved by a rotation of the
joint density p(y). The appropriated rotation is sought by maximizing the
non-Gaussianity of the marginal densities of p(y). This relays on the assumption
made by ICA (as stated by the central limit theorem) that any linear mixture of
independent random variables has necessarily a more Gaussian distribution that the
original variables. Most ICA algorithms perform this rotation of the joint density of
the signals in an iterative way until it converges. That is achieved when the joint
density becomesa product of the marginal densities:

pðsÞ ¼ pðs1Þ � pðs2Þ � � � pðsnÞ ð2:6Þ

The ICA model makes several assumptions that must be fulfilled for the data in
order to reach an accurate result [7, 26]: (1) Sources must be stationary. In the
context of LFPs, the sources are mainly synaptic transmembrane currents in fixed
locations as determined by anatomy [9]. (2) The sources should not have
Gaussian-distributed activation strengths, which is the case for brain dynamics [8].
(3) The mixture of the sources must be linear and instantaneous, which can
be assumed for electric fields elicited by ionic currents in the extracellular space
[34, 36]. (4) The number of sources must be equal or less than the number of
sensors, which makes high-density electrode recordings particularly suitable for
application of ICA. (5) It is assumed that the observed variable (in this case the
LFP) is a mixture of scalar, one dimensional sources. It implies that if the same
oscillatory source is observed with a phase delay by different electrodes, then
ICA will decompose it into two ICs with a 90 degree phase delay. The temporal
activation of the original source would correspond to a linear combination of the
time series of those two ICs. Thus, it is important to stress that, though spatially
distinct sources which are perfectly coherent cannot be properly separated, ICA
does not find independent components (ICs) with true temporal independence, and
temporal correlations and coherence measures may still be applied to analyze the
temporal relationships between the resulting ICs [4, 15, 23, 26, 39].

Our case is that of multiple simultaneous samplings of the mixed signal (the raw
LFP recorded by every electrode, Fig. 2.2a). The time series of the LFP recorded by
each electrode are the rows of the data matrix D. ICA finds the square matrix
W (with dimensions equal to the rows of D) such that WD = C . W is the unmixing
matrix because it separates the mixture of signals that is D into its independent
sources. C has the same dimensionality as D, with each of its rows being the time
series of an independent component (Fig. 2.2c, lower panel). Each independent
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component is obtained by multiplying each sampled signal by each row of W (the
so called unmixing functions or ICA filters). This process can be also view as
solving the inverse problem of the LFP; that is estimate the sources giving only the
potentials distribution.

The inverse of the mixing matrix W that transforms the LFP data into the ICs
gives the channel weight of each component that is captured for each sensor. When
plotted according to the anatomical location of the electrodes, this corresponds to
the spatial voltage loadings of each IC (Fig. 2.2c, upper panel). We ranked the
components by the amount of variance they explain in the original data (relative
power). Once ICs have been extracted from the raw LFP traces, they can be
analyzed as if they were active independently from activities at other locations. We
reconstructed the virtual LFP produced by a single IC by multiplying the IC time
course by its correspondent voltage loading (Fig. 2.2d). For each component a, that
is achieved by

W�1
a Ca ¼ Da ð2:7Þ

That is also known as solving the forward problem, or reconstructing the
potentials distribution given the current sources.

Before applicationof the ICAalgorithm,weperformed several pre-processing steps.
For hippocampal LFPs, there are only a small number of physiologically meaningful
ICs with significant amplitude and identifiable spatial loadings [5, 21–23, 39].
Before applying ICA, we therefore employed a principal component analysis

(d)(c)

(b)

(a)

(e)

Fig. 2.2 a Raw LFPs along the CA1 and CA3 hippocampal subfields (black and gray traces,
respectively). b CSD of the LFPs renders a complex mixture of currents as expected for multiple
synaptic inputs. c ICA of LFPs provides four main ICs, each defined by the curve of spatial
weights (top panel) and a time course (bottom traces). d Reconstructed (virtual) LFPs for IC4.
e CSD of the virtual LFPs provides precise spatiotemporal maps of inward/outward currents for
unique spatially coherent synaptic input. Modified from [20]
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(PCA) reduction maintaining 98.0 % of the original LFP variance. This process aids
in the convergence of ICA to stable components, and results in a smaller number of
ICs. We also whitened the data before applying ICA to reduce the computational
complexity of the analysis while maintaining its statistical consistency [12, 25].

Due to the parallel anatomical arrangement of the principal cells and the strat-
ification of afferent axon terminals, the hippocampus is especially well suited for
ICA decompositions of its LFPs. However, only those synaptic inputs with enough
postsynaptic current, synchrony, and spatial clustering are suitable for ICA sepa-
ration; thus, very weak or sparse currents are not easily discernible.

2.2.2 Current Source Density Analysis

The traditional approach to solve the inverse problem of the LFPs is performing
current source density (CSD) analysis. CSD analysis [24, 31] determines the
magnitude and location of the net transmembrane currents generated by neuronal
elements within a small volume of tissue.

In a macroscopic level the transmembrane current density Im per unit length is
related with the extracellular current density J through the divergence:

rJ ¼ Im ð2:8Þ

If we assume a quasistatic description of the electric field in the extracellular
medium (neglecting capacitive and inductive effects), Ohm law can be applied,

J ¼ rE ð2:9Þ

where r is in general the conductivity tensor.
The relation between the electric field E and the extracellular potential U

E ¼ �rU ð2:10Þ

allows us to establish a linear dependency between the extracellular current density
J and the gradient of the electric potential in the medium

J ¼ �rrU ð2:11Þ

Substituting this expression of J into the current conservation equation, we get
the Poisson equation, which establishes the relation between the electric potential
and the volumetric current density

r rrUð Þ ¼ �Im ð2:12Þ
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In the simplest approach, we employed a 1D approximation by calculating the
second spatial derivative of the LFP profiles (Fig. 2.2b), and calculated the CSD
according to a central differences formula,

CSD zið Þ ¼ �r
U zi þ dð Þ � 2U zið ÞþU zi � dð Þ

d2
ð2:13Þ

where d is the distance between electrodes.
This approach assumes isotropy and negligible net contributions in the XY-plane

perpendicular to the cellular axis. That is suitable for laminated structures with
parallel arrangement of principal cells, as is the case of CA1, if the recording elec-
trodes are placed parallel to the main cell axis (z) and an homogeneous population of
cells is synchronously active (as for example during evoked potentials). In this
traditional approach to CSD estimation it is also assumed homogeneous resistivity.

However, the above assumptions are not fulfilled in most real cases. When the
cells in a small volume of tissue are active only in a given time there can be a
significant current spreading in the x and y directions. This may result in an
underestimation of true sink and sources as well as in the occurrence of spurious
ones. To address those issues we employed the recently developed inverse CSD
(iCSD) method [35]. This method consists of first define a forward model to
describe the potentials that are produced by localized current sources and then
invert this model by means of a numerical matrix inversion to allow direct calcu-
lation of localized discrete sources form the measured potentials distribution. The
solution of the forward model is given by the following equation

U reð Þ ¼ 1
4pr

ZZZ
V

CSD rð Þ
r � rej j d

3r ð2:14Þ

In most LFP studies the application of CSD analysis does not take into account
tissue inhomogeneity and anisotropy effects, assuming a negligible contribution of
these effects [9, 19]. In the present work we also adopted this approach; however we
took advantage of the iCSD method toexplicitly incorporate a priori knowledge
about the geometry of the sources, such as the volume of activated tissue and the
relative position of the sources to the recording electrodes.

In addition to the raw LFP, we performed CSD analysis of the reconstructed
virtual LFP produced by a single IC, which renders a map of the current distribution
of a single anatomical input or LFP source [20, 21, 39].

2.3 Time-Frequency Analysis of LFPs

To characterize the LFP signals in the spectral domain we employ a multi-taper
implementation of the fast Fourier transform ([30]; Chronux toolbox, http://www.
chronux.org). Continuous data were segmented in 1–5 s epochs for all spectral
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analysis. Spectral power was estimated with a Hanning window and averaged across
all data epochs.

In the multi-taper power spectrum method employed here a set of independent
estimates of the power spectrum are computed, by multiplying the signal by
orthogonal tapers (windows) which are constructed to minimize the spectral leakage
due to the finite length of the data set. The tapers are the discrete set of eigen-
functions that solve the variational problem of minimizing leakage outside of a
predefined frequency band. Once the tapers wk(t) are computed for a chosen fre-
quency bandwidth, the total power spectrum PX can be estimated by averaging the
individual spectra given by each tapered version of the time series x(t); the kth
eigenspectrum Xk is the discrete Fourier Transform of x(t)wk(t)

Px fð Þ ¼
PK
k¼1

lk Xk fð Þj j2

PK
k¼1

lk

ð2:15Þ

where lk are the eigenvalues of wk.
This procedure yields a better and more stable estimate of a signal power

spectrum than single taper methods.
Two basic measures of pairwise synchronization were employed:

cross-correlation and coherence. The cross-correlation function is a measure of the
linear covariance between two signals xand yand can be estimated as follows,

ccxy ¼
Pn
k¼1

xk � xð Þ yk � yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1

xk � xð Þ2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1

yk � yð Þ2
s ð2:16Þ

where x and y are the means of the respective signals.
This method has the advantages of being a straightforward method that yields a

normalized value giving a gross indication of the degree of similarity of two signals
(i.e. LFPs recorded at separate locations). However, for a frequency resolved
estimate of the linear covariance of two signals we need to employ the coherence.

cohxy fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cxyðf Þ
� ��� ��2

Cxxðf Þh ij j � Cyyðf Þ
� ��� ��

vuut ð2:17Þ

where Cxx(f) is the cross-spectral density for the frequency f between x and y, and
. . .h i indicates averaging over segments.

24 2 Methods



To assess spectral events at a high resolution in time and frequency, the complex
wavelet transform (CWT) of the LFP was calculated using complex Morlet
wavelets [42]. The CWT gives amplitude and phase measures for each wavelet
scale at all time points in the data, obtained by convolving the real and imaginary
parts (which are phase shifted by 90°) of the wavelets with the data vectors.

A wavelet is a scalable function with zero mean, well localized in time.

Z1
�1

wðtÞdt ¼ 0 ð2:18Þ

A family of wavelets can be constructed from a “mother” function W(t), which is
confined to a finite interval, translated with a factor u and expanded with a scale
parameter s,

wu;sðtÞ ¼
1ffiffi
s

p � w t � u
s

� �
ð2:19Þ

Then the wavelet analysis of a signal x can be performed by

x tð Þ;wu;s tð Þ
� � ¼ Z

x tð Þwu;s tð Þdt ð2:20Þ

In our case, we employed the Morlet complex waveform,

wðtÞ ¼ eix0t � e�x2
0t

2=2
� �

� e�r2=2r2
t ð2:21Þ

where x0 is the center frequency of the wavelet and rt a bandwidth parameter
determining its rate of decay. The width or number of cycles of the wavelet is given
by x0rt

2.
If this complex wavelet is convolved with the signal x we get the CWT of that

signal,

WðtÞ ¼ w � xð Þ ðtÞ ¼
Z

wðt0Þ � t � t0ð Þ dt0 = AW tð Þei/W ðtÞ ð2:22Þ

where /W(t) is the phase for each time sample. The Morlet mother waveform has
Gaussian modulation in both time and frequency, thus offering optimal resolution in
both domains.

The simpler Hilbert transform was also employed in some cases (as when only
the theta oscillations were considered) to extract the phase or amplitude of LFP
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signals. The phase /W(t) and amplitude Ax(t) are given respectively by the argu-
ment and modulus of the complex analytical signal:

nðtÞ ¼ xðtÞþ ixHðtÞ ¼ Axðt)eiuxðtÞ ð2:23Þ

where xH(t) is the Hilbert transform of x(t), defined as:

xHðtÞ ¼ 1
p
P:V :

Z1
�1

xðt0Þ
t � t0

dt0 ð2:24Þ

with P.V. denoting the Cauchy principal value.
Both wavelet and Hilbert transforms give very similar results in all cases.
The phase-amplitude cross-frequency coupling (CFC) during theta oscillations

for a given LFP recording was assessed using the modulation index (MI) introduced
by Tort et al. [44]. We took the phase of the LFP recorded at the CA1 pyramidal
cell layer and the amplitude of either LFP recorded in different layers or the time
course of different LFP-generators, in all cases the procedure was exactly the same.
The raw LFP signal (Fig. 2.3a) was band-pass filtered in the low frequency band
(Fig. 2.3b) and the phase of the analytic signal given by the Hilbert transform or
CWT was calculated (Fig. 2.3c). Amplitude of the filtered signal in the broad
gamma band (30–300 Hz, Fig. 2.3d) was also obtained from the CWT. The MI was
calculated by measuring the divergence of the observed amplitude distribution from
the uniform distribution (Fig. 2.3e). Comodulogram phase-amplitude plots were
constructed representing in pseudocolor scale the MI values of multiple
phase-amplitude frequency pairs (Fig. 2.3f). The statistical significance of the MI
values (P-value) was assessed by a surrogate analysis (n = 1000 surrogates) with
random shifts between the phase and amplitude time series [11].

2.4 Single Unit Analysis

Neuronal spikes were detected from the digitally high-pass filtered LFP (0.8–
5 kHz) by a threshold crossing-based algorithm (Spikedetekt2; https://github.com/
klusta-team/spikedetekt2). Detected spikes were automatically sorted using the
masked EM algorithm for Gaussians mixtures implemented in KlustaKwik ([27];
https://github.com/klusta-team/klustakwik/), followed by manual adjustment of the
clusters using the KlustaViewa software ([37]; https://github.com/klusta-team/
klustaviewa/; Fig. 2.4) to get well-isolated single units. Multiunit or noise clusters
where discarded for the analysis. Putative pyramidal cells and interneurons
were separated on the basis of their autocorrelograms and waveforms characteristics
[17, 33, 40], assisted by monosynaptic latency excitatory and inhibitory interactions
between simultaneously recorded, well-isolated units [2, 33]. Kenji Mizuseki at the
Buzsáki laboratory performed most of the unit clustering and classification.
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Fig. 2.3 a Example of raw LFP signal. After filtering in the theta band (b), the phase is calculated
using the Hilbert transform. c The same or other signal is filtered in the frequency band of interest
and its amplitude (d) is obtained from the CWT. The mean amplitude distribution over theta phase
is then calculated (e). The phase-amplitude MI is obtained by measuring the divergence of the
observed amplitude distribution from the uniform distribution. A phase-amplitude comodulogram
plot is constructed representing in pseudocolor scale the obtained MI values for multiple
phase-amplitude pairs (in this case the phase was not only calculated for the theta filtered signal
but for a range of frequencies). Modified from [43, 44]
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The phase-locking of spikes to the LFP was measured for individual units using
the wavelet or Hilbert phase at the time of each spike. Modulation indices were
calculated using the mean resultant length of the phases, and significance was
estimated applying the Rayleigh test for non-uniformity using the circular statistics
toolbox provided by Berens [6]. Erik Schomburg at the Buzsáki laboratory
implemented and performed unit-LFP analyses.

2.5 Modeling of LFPs with Finite Elements Method

Multiple physical problems can be mathematically formulated as a partial deriva-
tives differential equation. As a general rule, those differential equations are very
hard to solve. Only in those cases in which it is possible to make simplifications on
the dimensionality and geometry of the problem an analytical solution is available.
However, in most of the cases analytical methods are not feasible or are inexact (as
can be the case of a tridimensional electromagnetic problem in a complex geom-
etry). For solving this kind of problems numerical models are necessary and useful.
Those methods discretize the differential equation into a linear system of equations,
solving it in an iterative way. One of those methods is the analysis by means of
finite elements (FEM).

The basis of FEM is to divide the geometry in which a differential equation of a
scalar or vector field needs to be solved (i.e. the electric potential) in small ele-
ments, typically tetrahedral. In each element field equations determined by a

Fig. 2.4 Screen capture from KlustaViewa, an open-source software for manual clustering of
neuronal spikes. In the central panel, two single units with different anatomical location are
displayed. Observe the different features provided for assisting the process: auto and
cross-correlograms. PCA projections, similarity matrix. From [37]
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variationalprinciple and local sources are solved. Boundary conditions are applied
and thus it is possible to obtain the algebraic system from which a solution of the
problem is found. FEM allows explicit models of the geometry and electrical
properties of the brain to be generated and to solve potential and current distribu-
tions in such a complex structure over time. In our case, the physical problem that
needs to be solved with FEM can be described as follows. The initial condition is a
certain distribution of volumetric current sources in a tridimensional complex
structure (i.e. the rat hippocampus). Each of the sources is simultaneously activated
with different time series. As a result of the uneven spatiotemporal varying sum-
mation of currents in the volume, an electric potential distribution arise. Thus, our
goal is to calculate this potential distribution for each spatial point at anytime.

As such, we modeled the rat hippocampus establishing the geometry of current
sources and their temporal activation, and fixed the boundary conditions. Two
different models were built, one of the whole dorsal hippocampus in its planar
section, and another of just the dentate gyrus region. The structure was enclosed in
a larger volume simulating the extracellular space. This outer compartment was
sufficiently large so asnot to distort the field lines in the central region of interest.
We tested different surrounding volumes (up to four times longer in each direction)
while maintaining boundary conditions. The chosen volume rendered LFPs that
were at least 90 % of the maximum amplitude obtained with the largest volume
(>95 % in most tested points). For the sake of simplicity, the tissue was considered
to be purely resistive, isotropic and homogeneous [29] but see [3]. Conductivity
was set as 0.3 S/m and relative permittivity as 106. FEM current sources were
defined as tridimensional volumes, allowing the electrical currents produced by
multiple synchronously activated neurons to be compiled in a few block-like cur-
rent generators that jointly obey the principle of charge conservation. This is an
important advantage, which makes it suitable to reproduce LFPs in a volume
generated by activated sections of layered structures made up of neurons arranged
in parallel as is the case of the hippocampus or cortex. Accordingly, the size and
geometry of the blocks of current represent the physical extension of the syn-
chronously activated dendritic domains, i.e., the portion of the population of target
cells that elicits postsynaptic transmembrane currents upon coherent activation of a
group of afferent axons (Fig. 2.5a).

We found that eighth of these blocks with 100 lm thickness in the case of CA1
and four 60 lm thickness block for each blade of the DG were sufficient to
reproduce the main laminar features of hippocampal LFPs [23]. In the case of CA1,
one for the basal dendrites, one for the pyramidal cell body layer and six for the
apical dendrites. For the DG, one block represented the granular cell body layer and
three the dendrites. These blocks were bent to replicate the curved geometry of the
hippocampus and divided into approximately 200 lm sections that could be
independently activated to analyze the effects of the spatial coherence and syn-
chrony of the inputs. For simplicity, we used non-overlapping blocks of current,
representing inputs with imaginary topological projection of varying synaptic
territories.
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In the present models we deliverately excluded any possible contribution of the
extracellular currents from other cellular types apart from pyramidal and granular
cells (e.g. interneurons or glia). Most types of interneuros and astrocites have
multipolar dendritic trees [1] and hence, a ‘closed-field’ extracellular configuration
of the electric field is established by their synaptic activation (Lorente de Nó, 1947).
Consequently, their currents do not (or they only poorly) spread beyond their
physical limits [10, 19, 28]. In consequence, these cells do not significantly add
their currents in the extracellular space and they only negligibly contribute to the
LFP (even if they are strongly synchronized).

We applied Dirichlet boundary conditions by setting the field to the ground
value on the external surface of the enclosing volume and imposing charge con-
servation inside the total volume. A tetrahedral adaptive grid of the highest reso-
lution (smallest size, 0.05 lm) was used to ensure the correct resolution of field
equations in the curved compartments (Fig. 2.5a3).

(a)

(b)

Fig. 2.5 a The gross cytoarchitecture of the granule cell (GC) population (1) was assembled as
four stacked rectangular blocks each representing a subcellular domain. 2 The blocks were given
appropriate curvature and dimensions to reproduce a stereotyped U-shaped geometry of the dorsal
dentate gyrus (DG). 3 A tetrahedron adaptive recording mesh simulating the conductive
extracellular medium was built in and around the cellular component and was large enough not to
distort electrical fields. b The block sources were activated using real time activations. In this
example, we used the excitatory medial perforant pathway (MPP) that makes synaptic contact in
the middle third of the dendritic tree (see a1). Total charge was balanced across all blocks at every
instant. Charge was distributed throughout all four compartments according to weights obtained in
the spatial map of CSD analysis for the electrical activation of this pathway. Vload and CSDload

represent the spatial weights of voltage and CSD along the GC main axis. The excitatory sink (in
blue) is surrounded by a strong passive source (warm colors) in cell soma and a weaker source in
distal dendrites. 2 At all times, the blocks received proportional charge density with predefined
polarity and identical time course. 3 Example of FEM simulated data. Adapted from [23]
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The FEM approach is widely used in magnetoencephalography and scalp
electroencephalography [14, 38, 41], although its application to the study of LFPs is
almost inexistent. We used a commercial FEM software tool, COMSOL
Multiphysics® (www.comsol.com).

Time-dependent analyses were performed using the AC/DC module of
COMSOL for all nodes in the extracellular and cellular volume. Thespatial and
temporal dynamics of LFP and CSD distributions were evaluated after activation of
individual subcellular domains by different inputs (the rationale of the performed
simulations is illustrated in Fig. 2.5b; see [23]. The temporal activation of a par-
ticular synaptic afference, such as the MPP excitatory input, was taken as the input
signal, s(t). For simplicity, we represent here an MPP-evoked fEPSP. The axons of
this pathway establish synaptic contact with GCs in the middle third of their
dendritic tree (Fig. 2.5b1, green axons). The spatial distribution of the CSD cor-
responding to this activation (Fig. 2.5b1, contour map) was compartmentalized into
four spatial blocks that jointly configured the GC population, such that they roughly
reproduced the same spatial profile (Fig. 2.5b2). The sum of charge densities was
set to zero, as imposed by current conservation law. The electric fields and
potentials elicited by these currents were calculated for the entire tissue volume by
FEM.

Linear profiles of simulated LFPs comparable to those recorded in vivo were
built using several linear tracks along the vertical z-axis, which contained up to 40
registration points spaced at 50 lm intervals and that were placed in the middle of
the structure to produce the most homogenous field contribution. LFP profiles were
constructed from the instantaneous voltage signal recorded at each simulated
recording point.
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Chapter 3
Current Sources of Hippocampal LFPs

One of the ultimate goals of the investigations on neural circuit dynamics is to
understand the input-output transformation of neuronal signals, i.e., how neuronal
activity in an upstream region affects the firing rate and spike timing in neurons of a
downstream region. Unfortunately, studying LFP signals recorded from a single or
few sites as they are most commonly recorded, cannot properly address the problem
of input-output transformation because the LFP signal recorded at any given site
represents a weighted sum of multiple neuronal sources in unknown proportions
[10, 15]. Ideally, one would like to decompose this macroscopic signal into its
individual sources and relate them to the output spiking of neurons to reveal the
relative influence of the individual inputs to spike outputs during different
behaviors.

Information extracted from LFP signals can be improved significantly by
monitoring multiple sites at high spatial resolution [13, 14]. Since afferents to
dendrites in the hippocampus are spatially segregated, their behavior-dependent
contributions can be separated by sufficiently high density sampling of the LFP
[7, 11, 17, 34].

In the first part of the present work, I characterize the main current sources of
hippocampal LFPs. For this purpose, LFP recordings were performed with
high-density silicon linear probes (either single-shank or 8 shanks probes with 32
electrodes spaced 50 lm; Fig. 3.1a) covering the full transversal axis of the hip-
pocampus of behaving rats. Such probes allow usto record LFPs and unit activity in
all hippocampal layers and subregions. The electrodes were slowly advanced during
the days following the implantation until reaching the final position spanning from
the CA1 stratum oriens to the DG lower blade or CA3 str. oriens. Once finalized the
experiment the position of the electrodes was histologically verifiedand compared
with the electrophysiological data (Fig. 3.1b).
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3.1 Experimental Investigation

3.1.1 CA1 Region

Linear recordings along the vertical axis of the hippocampus clearly show
the characteristic laminar variations of LFPs (Fig. 3.2a). The hippocampus, and
specially the CA1 region, has a great advantage for the study of LFPs due to
the parallel arrangement of their cells and the stratification of the synaptic inputs.
This anatomical organization results in layer-specific LFP patterns elicited by the
inputs innervating the pyramidal or granular cells in restricted dendritic domains
[4–7, 18, 34].

ICA discriminates the contributing sources to the LFP based on their distinct
spatial distribution. When applied to the multi-electrode wide-band LFP signals of
the CA1 region, ICA found three major pathway-specific independent-components
(ICs). By convoluting the LFP with the inverse of the mixing matrix estimated by
ICA we get the relative voltage weight of every IC in each electrode. Projecting
those weights to the anatomical space (i.e., the spatial arrangement of the electrodes
in the tissue) we obtain the spatial voltage loading in the dorsoventral axis (z) of
each IC (Fig. 3.2b). The second derivative in the z-axis of those voltage loadings
represents the CSD loading of this particular IC (Fig. 3.2c), that is the transmem-
brane currents elicited by this particular input in the target population.

Fig. 3.1 a Silicon probe employed for hippocampal recordings (Neuronexus). It has 8 shanks
separated 300 lm each with 32 electrodes spaced 50 lm. Thus, it covers 1550 lm in depth and
2100 lm in extension. b Final position of the probe was verified histologically after perfusion of
the animal. Transversal section of the dorsal hippocampus stained with DAPI. Modified from
Schomburg et al. [39]
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The maximal amplitude of the first component (rad) is at the level of the str.
radiatum and its CSD depth profile matched the source–sink–source distribution of
the spontaneously occurring sharp-waves during immobility (Fig. 3.2a, b; green
traces; [5, 6, 18, 19, 35]), corresponding to the apical dendritic excitation of CA1
pyramidal neurons (manifested as a strong sink in the str. radiatum) by the syn-
chronous CA3 output [12]. Another IC (lm) peaked below the first component,
corresponding to the str. lacunosum-moleculare-related current sink (Fig. 3.2a, b
red traces; [4, 7]). The peak amplitude of the third component (CA1pyr) occurred at
the depth of CA1 pyramidal layer (Fig. 3.2a, b; blue traces), also identified by the
large amplitude ripples and unit firing [33]. This IC is characterized by a prominent
current source centered at the pyramidal layer.

The above results were obtained by applying ICA to single-shank recordings but I
also applied it to the 2D matrix of 256 electrode arrays (8 shanks separated 300 lm).

(a)

(c)

(b)

Fig. 3.2 a LFP profile along CA1 and DG displaying some characteristic CA1 LFP patterns,
sharp wave ripples (red arrow). b Three main ICs were found for CA1 LFPs with largest voltage
and active currents at different layers: the pyramidal layer (CA1pyr), str. radiatum (rad) and str.
lacunosum-moleculare (lm). c 2D voltage and CSD distributions for the 3 ICs highlight their
layer-specific distributions. Modified from Schomburg et al. [39]

3.1 Experimental Investigation 37



By doing so, the same three main ICs were obtained in the CA1 region. When
plotted in two dimensions they display clear layer-specific distributions (Fig. 3.2c).
The CA1pyr IC shows larger positive voltage along the CA1 pyramidal layer and the
CSD map reveal a source surrounded by smaller sinks. This distribution matches the
expected from a perisomatic inhibition and its passive return currents in apical and
basal dendrites. The radiatum component displays larger negative voltage along the
CA1 str. radiatum and a polarity reversal in the pyramidal layer. The CSD map
reveals the expected strong sink in the dendritic domain of the Schaffer collaterals
(CA3 to ipsilateral CA1 input) flanked by sources in the str. lacunosum-moleculare
and pyramidal layer. The lac-mol IC has larger negative voltage around the hip-
pocampal fissure (the separation between CA1 and DG) but the CSD analysis reveals
a current dipole restricted to CA1 distal dendrites, the dendritic domain of the axon
terminal from entorhinal cortex layer 3.

Voltage and CSD spatial distribution were constant for all the animals (n = 7)
and behavioral states, indicating that they are reflecting the underlying anatomy of
inputs to the CA1 regions. The combination of CSD analysis and ICA decompo-
sition of LFPs is revealed as a useful tool to precisely identify the different hip-
pocampal layers and more importantly to separate and identify the current sources
of the LFP. However, this would require more extensive analysis so the next step
was to build a model of the rat hippocampus to get a better understanding of the
relations between source geometry and voltage distribution in the structure.

The present results in freely moving animals confirm and extend our previous
work in anesthetized rats [4, 18–20]. In the next paragraphs, it follows a brief
summary of previous experimental findings closely related to what has been pre-
sented in this section.

In the urethane-anesthetized preparation the radiatum and lm components were
also the main contributors to CA1 LFPs, however the CA1pyr showed significantly
less relative power than in the awake animal. This can be explained by a reduced
firing rate of CA1 perisomatic-targeting interneurons under urethane [27, 42]. With
local pharmacological manipulations it was demonstrated that the radiatum com-
ponent activity was selectively decreased by non-NMDA glutamate blockers
(DNQX) [18]. Targeted blockade of the ipsilateral CA3 with lidocaine injections
also selectively decreased radiatum IC power. Those tests confirmed that the
synaptic glutamate currents evoked by the input of the Schaffer collateral pathway
from CA3 to the str. radiatum dendrites of the CA1 pyramidal cells were the
underlying cause of the LFP activity captured by the radiatum IC. For this reason,
we also termed it as Schaffer component. Pharmacological manipulations rendered
less clear results for the lm component. As well as the radiatum IC, lm component
activity was impaired by local injection of DNQX, indicating its glutamatergic
nature. However, it was also affected by GABAa blockers (bicuculline) pointing
towards a contribution from inhibitory currents [4]. This can be explained by the
activity of several types of interneurons, which target the CA1 pyramidal cell
dendrites at the str. lacunosum-moleculare, including oriens-lacunosum and neu-
rogliaform cells; most of them are strongly feedforward activated by the entorhinal
layer 3 axons [3, 27–29].
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To go beyond a mere characterization of the main sources of CA1 LFPs and to
show the usefulness of studying pathway-specific LFP components instead of the
original mixed LFP signal, these previous works focused on the analysis of the
temporal dynamics of the radiatum component and its relation with CA1 and CA3
units. The low firing rate and functional clustering of CA3 pyramidal cells allowed
us discriminating elementary synaptic events in the radiatum IC, which were ter-
med as micro-field excitatory postsynaptic potentials (µ-fEPSPs; [18]). Radiatum
IC activity shows an ordered succession of µ-fEPSPs that appear to be generated by
functional clusters of CA3 pyramidal neurons, to which individual units are
recruited variably. Such pattern implies a hierarchical internal operation of the CA3
region based on sequential activation of pyramidal cell assemblies. A fraction of
these excitatory packets readily induces firing of CA1 pyramids and interneurons,
the so-called Schaffer-driven spikes, revealing the synaptic origin in the output code
of single units. This finding supports the postulate that synchronous activity in cell
assemblies is a network language for internal neural representation [9, 23].

A subsequent work [19] assessed the plastic changes underwent in the CA3-CA1
pathway spontaneous activity following long-term potentiation (LTP) and deter-
mined how pairs of pre- and postsynaptic neurons modify spike transfer compared to
the population. It was found that the ongoing radiatum IC activity and the share of
postsynaptic spikes fired by Schaffer input specifically in CA1 units increases after
LTP without significant change of the mean firing rate. A re-organization of the
presynaptic cell assemblies synchronously firing to elicit CA1 spikes was also found.
Thus, the results provided first time evidence for pathway-specific ongoing plasticity
and its impact over spontaneous network activity consisting on the increased spike
transfer between nuclei connected by specific potentiated channels. These results
provide evidence that LTP induction produces a pathway-specific enhancement of
ongoing activity that is effectively propagated to subsequent relays of the network.
These observations complement and extend on classic LTP properties observed with
evoked stimuli by showing their ongoing correlates and supports the view of synfire
chains [1] as a prominent mechanism for information transfer in neural networks.
Similar effects were also reported in awake animals after the administration of a
pepide that activate the PI3K signaling pathway increasing spine density in the
hippocampus and hippocampal-dependent learning [16].

3.1.2 DentateGyrus

Despite the fact that LFPs in dentate gyrus have been much less intensively
researched than in the CA1 region, it has been know for long time that this structure
exhibits a rich variety of LFP patterns and oscillations, including theta and gamma
rhythms [5], dentate spikes [6], slow oscillations [26] and odor-evoked beta
oscillations [24]. However, due to the complexity of its local circuits and the scarce
knowledge regarding the synaptic inputs and firing properties of its different cell
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types during behavior, the mechanisms of generation of the different LFP patters
observed in the DG remain largely unknown. It has been shown that DG theta and
gamma oscillations are strongly modulated during exploratory and learning
behavior in rodents [13, 21, 34, 40], pointing towards an important function of these
rhythms in cognitive functions involving this structure. DG oscillatory dynamics
also has a strong impact on its main target region, CA3, [2, 36, 37] and the
computations performed in the whole hippocampal circuit [34, 41].

There are two main extrinsic afferences to the DG, the medial (MPP) and the
lateral (LPP) perforant paths originating in layer 2 of medial and lateral entorhinal
cortex and innervating the distal and middle thirds of granular cell (GC) dendrites.
So is to be expected that these two inputs are major contributors to DG LFPs.
However, there are many others inputs that can also contribute substantially. On
one hand, the associational-commissural fibers innervate the inner third of GC
dendrites and on the other the multitude of GC layer and hilar interneurons
innervate the soma and dendritic regions of the GCs.

Following the same procedure as that previously described for the CA1 LFPs,
we identify three main ICs in the DG. The three ICs have similar voltage loadings,
with a plateau-like maximum between cell layers throughout the hilus, which
declined outwardly and reversed its polarity at different points, and characteristics
points for each of them (Fig. 3.3b). The CSD loading shows more differences
between ICs.

The first IC (LPP, Fig. 3.3b; blue traces) is the one that reverses its polarity more
superficially (closer to the fissure) and has a sink in the superficial GC dendrites and
a source closer to their soma. This current distribution is similar to that obtained in
the DG for evoked potentials stimulating the LPP [4, 31]. The second component
(MPP, Fig. 3.3b; red traces) has a reversal point around 100 lm below the LPP and
a sink in the middle third of the GC dendrites surrounded by two smaller sources at
the distal dendrites and GC soma. This current distribution is similar to that
obtained in the DG for evoked potentials stimulating the MPP [4, 20, 31]. The third
IC (GCsom, Fig. 3.3b; green traces) has a source at the GC soma and a sink in the
middle of the dendritic region and its voltage loading reverse at a similar depth than
the MPP IC. This current distribution could be produced by a perisomatic inhibi-
tion, as it is the case of the dentate basket cells [22, 25].

The 2D plots for the three components further illustrate their characteristic
spatial distributions. The voltage maps of the three of them are characterized by
strong positive voltage in the hilus that decay toward the GC dendrites. In the three
cases it reverts in the str. moleculare but only the MPP shows strong and localized
negative voltage. This can be explained because the dipolar configuration of both
LPP and GCsom favors a passive decay of the negative voltage gradient while the
quadrupolar configuration of the MPP favors a more closed negative field. This is
similar to what happened with the radiatum IC in CA1 which has also a
quadrupolar configuration in contrast to the CA1 lm IC which has a dipolar one
(Fig. 3.2b, c).
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The 2D CSD maps confirm the distal sink and inner dendritic source of the LPP
IC, the source-sink-source configuration of the MPP and the dendritic sink-somatic
source of the GCsom (Fig. 3.3c). It is important to note the lack of any currents for
the three components in the hilus. That is to be expected as the axon is the only GC
element in this region and it drains only a negligible amount of current.

As was also the case for the CA1 LFP ICs, the present results for the DG LFPs
confirm and extend our previous results in urethane-anesthetized rats [4, 20]. In
those previous works, it was shown with local pharmacological manipulations that
the activity of the MPP and LPP components was selectively decreased with the
injection of DNQX (a non-NMDA glutamate blocker). On the contrary, the GCsom
component was affected by both glutamate and GABAa (bicuculline) blockers.

(a)

(c)

(b)

Fig. 3.3 a Similar LFP profile as illustrated in Fig. 3.2 but featuring a characteristic DG LFP
pattern, dentate spikes (red arrow). b Three main ICs were found for DG LFPs. All of them
display large positive voltage across the hilus but reverse polarity at different depths in the str.
moleculare. Largest currents were restricted to the outer third of the str. moleculare (LPP), middle
third (MPP) and GC layer (GCsom). c 2D voltage distributions for the three ICs were dominated
for the positive hilar potentials but the CSD maps illustrated their different laminar specificity
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This result can be explained by two mechanisms. Either the activity captured by the
GCsom component is contributed by excitatory and inhibitory currents onto the
perisomatic region of the GC or it is only elicited by inhibitory currents delivered
by interneurons relaying for its activation on excitatory inputs. The lack of somatic
excitatory inputs leads us to think in the second alternative as the most plausible.

Another test for the pathway-specificity of the LFP ICs was achieved in those
previous works by the electrical stimulation of afferent pathways to the hippocampus
[4, 18, 20]. When subthreshold stimuli (not strong enough to evoked a population
spike, i.e., the synchronous discharge of action potentials in the target population)
were delivered to the medial and lateral perforant paths and the Schaffer collaterals, a
field EPSP (fEPSP) was recorded in the DG and CA1 respectively, indicating syn-
chronous excitatory synaptic currents onto the target populations of cells [30, 31].
After ICA decomposition of the LFPs, those fEPSPs were captured by theMPP, LPP
and radiatum components selectively. This result confirms that the currents elicited
by both the spontaneous and evoked activity of those pathways are selectively
captured by specific ICs. Thus, ICA decomposition of hippocampal LFPs allows the
separation and identification of pathway-specific contributors to the LFPs [17].

3.1.3 Characterization of Hippocampal LFP Sources

The temporal and spectral dynamics of the LFP ICs during different behavioral states
contain a large amount of information about the computations performed by the
hippocampal circuits [39]. Although I will extend on this aspect in the last section of
the Results, some gross quantifications of the ICs activity are provided in Fig. 3.4.

(a) (b)

Fig. 3.4 a Relative power for the six main hippocampal LFP ICs averaged across shanks,
sessions and animals (n = 7 animals). b Power spectrum of the six ICs for periods where animals
were sleeping in their home cages (red) or performing different navigational tasks (blue). Data
averaged across shanks, sessions and animals (n = 7 animals)
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To quantify the contribution of each IC to the recorded LFPs we calculated the
relative variance of the LFP matrix that is accounted by each IC. The results in
Fig. 3.4a were obtained pooling together all the ICs extracted during sleep and
behavior in all the recording shanks that cover both CA1 and DG regions in seven
animals. The 6 main ICs reported here usually account for more than 95 % of the
total variance of the LFPs in the selected recording tracks, once the noise and
artifactual activity was removed (see Sect. 3.1.3). The remaining variance was
explained by other sources with very small contribution to the LFP.

The IC with largest variance was the LPP, followed by the lm and MPP com-
ponents. Together the three DG ICs have more variance that the three CA1 ICs, as
is expected due to fact that DG LFPs are in general larger that CA1 LFPs [20]. In
the second chapter of the Results, I will analyze the biophysical factors that explain
this phenomenon. The IC with lower variance was the CA1pyr, what can be
explained by having its current restricted to somatic region. An important factor
determining the contribution of the different current sources to the LFPs is their
dipolar moments. Sources with a larger dipolar moment, as the lm and LPP, which
have the geometrical configuration of a linear dipole are expected to produce larger
fields [32, 38]. On the contrary, sources like rad, CA1pyr or MPP ICs have the
geometry of a linear quadrupole, thus a shorter dipolar moment, and are expected to
produce closer fields and contribute less to the LFPs.

In Fig. 3.4b averaged power spectrums of the six ICs corresponding to times
while rats are sleeping in his home cage (red traces) or awake performing different
navigational tasks (blue traces) are compared. Although each IC has different
spectral dynamics the averaged spectrums during behavior are dominated by the
ubiquitous presence of the theta rhythm (note the peak around 8 Hz). The spectral
theta peak is more prominent in the lm component, as corresponds to the largest
theta dipole being located in the str. lacunosum-moleculare [7, 8]. During sleep
there are two differentiated stages, the slow-wave sleep characterized by 1–2 Hz
oscillations, and the rapid-eye movement sleep, characterized by theta oscillations
of slightly lower frequency than those present during locomotion. Both oscillations
are visible with different relative power in the spectrums of the six ICs.

In this section we have shown that the application of ICA to large-scale
recordings of hippocampal LFPs is able to disentangle their underlying synaptic
sources. We found three main sources of CA1 and DG LFPs respectively. Each of
them was characterized by a restricted laminar distribution of currents that allows
their matching with the known synaptic domain of main extrinsic and intrinsic
inputs to the CA1 pyramidal cells and DG granular cells populations. In addition,
those sources display different spectral characteristics. This suggests the possibility
that the study of their spectro-temporal dynamics would be informative to under-
stand the computations performed by the hippocampal circuits during behavior.
This will be extensively explored in following sections.
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3.2 Finite Elements Simulations of LFP’s

The combination of ICA and CSD analysis allowed us to solve the inverse problem
of the LFPs; that is, given the recorded LFPs, separate and identify their underlying
current sources. As a test of the accuracy of the above results, we sought to use the
extracted LFP sources to solve the forward problem of the LFPs, i.e., to reproduce
the original LFP distribution. For this purpose, we built a 3D model of the dorsal
hippocampus of the rat with FEM (see Methods).

The model simulates a transversal lamella of the dorsal hippocampus similar to
that were the recording electrode was placed in all the animals (Fig. 3.1b). This
lamella was extended 4 mm in depth to simulate a whole block of the dorsal
hippocampus. All the simulated recordings were performed in the middle of the
structure to minimize any possible border effect.

In the model each hippocampal layer was represented as a polygonal block.
Thus, the cellular and dendritic portions were represented as stacked longitudinal
blocks of current sources, each representing a subcellular “population” domain that
when activated act as laminar dipoles. In preliminary simulations we found that
eighth of these blocks with 100 lm thickness in the case of CA1 and four 60 lm
thickness blocks for each blade of the DGwere sufficient to reproduce the main
laminar features of hippocampal LFPs. To implement the exact geometry of the
current sources of the LFP, average CSD loadings from each LFPs ICs were
discretized into eight or four point curves that were used as weights to implement
the sources in CA1 and DG region of the model (see Methods).

In the first set of simulations, we implement in the model the three main sources
of CA1 and DG LFPs that were identified in the previous section in isolation. We
took 100 s of activity from the six main ICs extracted while the rat was resting in
the home cage, and use them as inputs to the whole CA1 or DG regions, that were
assumed to be simultaneously and homogeneously active.

LFPs were sampled in a linear track in the middle of the hippocampus,
approximately perpendicular to the cellular layers (Figs. 3.5a and 3.6a). After the
independent activation of each source, the averaged voltage power along this line
was calculated and used to construct voltage loading curves for each IC and its
second derivative to construct CSD loading curves (Figs. 3.5b and 3.6b).

For CA1 LFP ICs, voltage and CSD loadings obtained from the activation of the
three sources were remarkably similar to those obtained experimentally (compare
Figs. 3.3b and 3.2b). The CA1pyr component displays a sharp peak in its voltage
loading at the pyramidal layer and the corresponding source surrounded by two
sinks in the CSD loading (Fig. 3.5b; blue traces). The largest amplitude of the rad
IC is at the level of the str. radiatum, around 200 lm below the pyramidal layer,
and for the lm IC at the str. lacunosum-moleculare, around 500 lm below the
pyramidal layer. The rad component CSD loading has a larger sink flanked by two
smaller sources while the lm displays a rather symmetrical current dipole
(Fig. 3.5b; red and green traces).
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The model also allows us to calculate the voltage distribution in the whole
hippocampus and surrounding extracellular space. We took a 2D plane parallel to
the transversal axis of the hippocampus situated in the middle of the structure and
plot the voltage distribution resulting from the activation of the three sources
independently (Fig. 3.3c). The 2D maps obtained were highly similar to the pseudo
2D voltage maps constructed from the voltage loadings of the ICs obtained
experimentally (compare Figs. 3.5c and 3.2b). In the three cases, the laminar dis-
tribution of the three ICs matches with the corresponding CA1 sublayers.

Current source 2D maps were omitted due to the fact that they did not offer any
additional information given that this was exactly what was introduced in the model
initially.

We repeat the above procedure for the DG ICs. As for the ICs extracted from the
recorded LFPs, the three main DG ICs have voltage loadings with large positive
amplitudes across the whole hilus which decay beyond the GC layers and reverse at
different depths in the str. moleculare (compare Figs. 3.6b and 3.3b). The LPP
component has the most superficial reversal point, as correspond to its sink in the
outer third of the str. moleculare (Fig. 3.6b; blue traces). The MPP IC reverses
closer to the GC layer and displays a large sink in the middle of the str. moleculare
flanked by two smaller sources (Fig. 3.6b; blue traces). The GCsom has a voltage

(a)

(c)

(b)

Fig. 3.5 a FEM model of the rat dorsal hippocampus highlighting the CA1 region (blue).
b Voltage and CSD loadings along a vertical profile spanning CA1 and DG (indicated by the
position of the green linear probe in a) illustrating the simulated CA1 LFP sources (note their
similarity with the experimentally obtained ICs in Fig. 3.2b). c Averaged 2D voltage distributions
obtained with the activation of the 3 CA1 LFP sources illustrate their layer-specific distribution
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and CSD loading with reversal point and source location intermediate between the
LPP and MPP ones.

2D voltage maps for the three DG ICs display also similar features with those
constructed from the experimental data (compare Figs. 3.6c and 3.3c), in all the
cases dominated by large hilar positive potentials. Note the more restricted negative
voltage of the MPP ICs compared to the LPP; this can be explained by the more
“close-field” configuration of the MPP, as will be analyzed in the next section. In
comparison the GCsom IC elicits very small negative fields.

The above results show that the presented model accurately reproduces the
voltage distributions experimentally obtained for the six main current sources of
CA1 and DG LFPs. However, a question remains about if those sources when
activated simultaneously with similar dynamics as those observed in the experi-
ments reproduce the observed profile of LFPs. To answer this question we per-
formed another set of simulations in which the six sources were activated
simultaneously.

We performed these simulations feeding the model with the ICs time series
extracted in either during sleep or during running activity. By doing this, we sought

(a)

(c)

(b)

Fig. 3.6 a FEM model of the rat dorsal hippocampus highlighting the DG region (blue).
b Voltage and CSD loadings along the same vertical profile as in Fig. 3.5 of the three simulated
DG LFP sources (note their similarity with the experimentally obtained ICs in Fig. 3.3b).
c Averaged 2D voltage distributions obtained with the activation of the 3 DG LFP sources are
dominated by positive hilar potentials but display different location and spread of negative
potential in dendritic layers
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to reproduce in the model the two main hippocampal LFP patterns: theta oscilla-
tions and sharp-wave ripples, SWR (see Introduction). To sample LFPs a recording
linear probe with electrodes spaced 50 lm was simulated in the middle of the
hippocampus, spanning the CA1 and DG regions.

SWR are characterized by a large negative LFP wave, and the corresponding
sink, at the CA1 str. radiatum which reverse at the pyramidal layer, and it is
accompanied by sources at the pyramidal layer and str. lacunosum-moleculare
(Fig. 3.7a). This activity is caused by a synchronous input of CA3 pyramidal cells
to CA1 eliciting a large depolarization of str. radiatum dendrites accompanied by
their return passive currents [5, 6, 18, 19]. The averaged power along the CA1-DG
during SWR is dominated by a large increase at the str. radiatum (Fig. 3.7a; his-
togram). In the simulated LFPs all the main characteristics of the LFP and CSD
profiles of SWR were replicated, remarkably the large negative LFP amplitude at
the str. radiatum and the characteristic source-sink-source current distribution
(Fig. 3.7b).

The CSD map of theta oscillation is more complex that the one obtained for
SWR because in the former case is not only one pathway (i.e., source) which is

Fig. 3.7 a Averaged LFP profile of sharp-wave ripples show a large negative LFP deflection at
str. radiatum and the corresponding dominating power at that layer (histogram). The CSD map
illustrates the characteristic source-sink-source distribution for the excitatory Schaffer input to the
CA1 pyramidal cells dendrites. b LFP, CSD and power profiles were constructed in the same way
for simulated SWR and display similar laminar profile as the experimental ones. c Averaged LFP
and CSD profile for theta oscillation during running. Largest currents and LFP power were present
in the str. lacunosum-moleculare but phase shifted sink and sources also appear at str. radiatum and
DG str. moleculare. d Simultaneous activation of the six hippocampal LFP sources presented in
this section with temporal activations extracted from experimental recordings during running result
in a similar laminar potential and CSD distribution
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dominating but the simultaneous activity of several, if not all, of them [7, 8]. The
largest theta currents and fields are present at the str. lacunosum-moleculare but
they are accompanied by shifted sink/sources at the str. radiatum and str. moleculare
of the DG and with lower intensity in str. pyramidale and oriens (Fig. 3.7c). Along
the depth profile theta waves gradually shift their polarity displaying a 180° reversal
between pyramidal layer and str. lacunosum-moleculare. Both the LFP and CSD
profile characteristics of theta oscillations were replicated in our simulations.

With the above simulations we were able to prove that our model accurately
reproduces the laminar characteristics of hippocampal LFPs. This confirms that the
six current sources identified with ICA are sufficient to account for the main LFP
patterns observed in the hippocampus. Having settled the fundamental basis of our
analytical approach, in the next sections we will employ the FEM hippocampal
model and the ICA + CSD decomposition of LFPs to investigate the biophysical
and physiological mechanisms of LFP generation in the hippocampus as a tool to
interpret the underlying activity of neural circuits.
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Chapter 4
Theta-Gamma Cross-Frequency Coupling
in the Hippocampus-Entorhinal Circuit

The hippocampal-entorhinal system is characterized by the ubiquitous occurrence
of distinct oscillatory patterns, including the prominent theta and gamma rhythms
[9, 12, 21, 32, 47]. Theta phase coordination of gamma rhythms within and across
brain regions has been studied extensively, however its cellular mechanism and
functional relevance remain largely unknown [6, 10, 16, 17, 21, 23, 33, 34, 44].

The CA1 region of the hippocampus is under the control of two major upstream
regions: hippocampal area CA3 and the entorhinal cortex. CA3 axons make
synapses with CA1 pyramidal cells in the stratum radiatum while layer 3 entorhinal
cells (EC3) innervate the stratum lacunosum-moleculare [2, 48]. Their layer-
segregated inputs mediate both dendritic excitation and feedforward inhibition in
CA1 [8]. To determine the coordination of gamma oscillations by the theta rhythm
in CA1, the dynamic interactions between the entorhinal and CA3 inputs to the
CA1 region, and their impact on the CA1 output, we used high-density extracellular
recordings, combined with source separation techniques, while rats performed
different navigational tasks and slept in their home cages.

Experiments were carried out while animals ran on a linear track (250 cm long),
a T-maze or open field [20, 35, 37, 38, 40, 43]. Theta epochs during behavioral
tasks were classified as RUN, while those during sleep were classified as REM.

4.1 Sources of Gamma Oscillations in CA1

It was already known that the phase of theta rhythm modulates the power of gamma
oscillations; however, large controversy remains regarding how many independent
gamma oscillators are present in the CA1 region and how are their exact interac-
tions [4, 14, 17, 31, 41]. Thus the first goal of this part of our research was to clarify
those points.

We took the times of theta activity during both sleep (REM) and behavior
(RUN) and concatenate epochs until having acceptable homogeneous samples of
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600 s that were used for subsequent analyses. RUN/REM comparisons were per-
formed for theta epochs from the same session and animal.

We filtered CA1 pyramidal layer LFP in a broad gamma band, from 30 to
300 Hz, and extracted the signal amplitude for every frequency step by means of
complex wavelet transform (see Methods). We also filtered the LFP between 1 and
20 Hz and by the same procedure extracted the phase for every frequency step. Then
we calculated the modulation of the high frequency amplitude by the phase of the
slower frequency employing the modulation index (MI) introduced by [46]. With the
MI for every amplitude-phase pairs we constructed 2D comodulogram plots
(Fig. 4.1a, b). This procedure reveals three distinct but overlapping gamma
sub-bands during RUN (Fig. 4.1a, first panel). One of the oscillations occupies the
slower gamma spectrum (30–60 Hz) so I labeled it as slow gamma or gammaS,
another gamma oscillations span from 60 to 100 Hz so I termed it as mid-frequency
gamma or gammaM. The third component spans a wide frequency range of the upper
gamma spectrum, from 120 to 250 Hz, so I named it as fast gamma or gammaF.
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Fig. 4.1 a Gamma amplitude-theta frequency comodulogram of LFP in the CA1 pyramidal layer
(CA1 str. pyr. LFP) showed strong theta phase modulation of three gamma sub-bands during RUN
(gammaS, gammaM, and gammaF; white arrows). Each IC obtained for CA1 LFPs displayed
modulation in one dominant sub-band. White arrows indicate the frequency of peak power. Note
similar gamma frequencies in the rad and CA3pyr ICs, and the lm IC and EC3 LFP, respectively.
b Same as in a during REM sleep. c Group data of peak frequencies (six rats for CA1 and CA3
ICs, four rats for EC3 LFP). d and e REM/RUN MI ratio (D) and relative power (30–300 Hz) in
different layers (e). (*/**/***p < 0.05/0.01/0.001; t test). f Mean ± SEM of firing rate (FR) ratios
of single units between REM and RUN ([REM–RUN]/[REM + RUN]). Reproduced from [43]
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Because underlying currents of gamma LFP in the pyramidal layer reflect a
combination (in unknown proportions) of active excitatory and inhibitory currents
and passive return currents from the dendritic layers [19, 22, 27, 42], we employed
ICA to separate the observed gamma oscillations of the raw LFP into their
pathway-specific synaptic sources (see Methods). For this purpose we took the
LFPs from all the electrodes located in the CA1 region (thus including the pyra-
midal and dendritic layers), filtered them between 30 and 300 Hz and performed
ICA. The same three main ICs as shown in the previous chapter and previous work
were found: CA1pyr, radiatum (rad) and lac-mol (lm) [5, 24]. Cross-frequency
phase-amplitude analysis of the three ICs revealed significantly theta-modulated
gamma bands in all animals (p < 0.001 for each IC, surrogate test; 7 animals in
total). In the CA1pyr IC, theta oscillations most strongly modulated fast gamma
frequencies (Fig. 4.1a, second panel; mean ± s.e.m., 149.4 ± 4.3 Hz). In the rad
IC, the dominant theta-modulated gamma frequencies were between 30 and 70 Hz
(Fig. 4.1a, third panel; 47.3 ± 0.6 Hz). Compared to the rad IC, theta-coupled
gamma oscillations in the lm IC were significantly faster (p < 0.0001, t-test;
Fig. 4.1a, fourth panel; 85.7 ± 1.8 Hz). Thus ICA decomposition of CA1 gamma
LFPs was able to separate the contribution of three independent gamma generators,
each one with activity in a discrete frequency band.

To clarify the origin of those gamma generators we looked at the CA1 input
regions. CA3 pyramidal cells send their axons to the CA1 stratum radiatum and it
was already now that they elicit strong slow gamma there [19, 24, 25, 50], so they
are the most likely candidates for being responsible of radiatum gammaS. When we
applied the same procedure as described in this section to the LFP recorded in the
CA3 pyramidal layer, we found a theta-modulated gamma band similar to that in
the rad IC (p > 0.05, t-test between frequencies), with a peak frequency of
47.6 ± 1.2 Hz (Fig. 4.1a, fifth panel). These similar gamma oscillations can be
attributed to the fact that the same CA3 pyramidal cells that send axons to the CA1
also leave collaterals in the same CA3 region (Li et al. 1994; Ishikuza et al. 1990).
The CA1 stratum lacunosum-moleculare is densely innervated by axons from the
entorhinal cortex layer 3 so we also applied the same analysis to the LFPs recorded
there. Gamma oscillations there, were similar to those displayed by the lm IC
(p > 0.05, t-test between frequencies) with a peak frequency of 90.0 ± 4.9 Hz
(Fig. 4.1a, sixth panel), pointing also to EC3 projecting cells as the responsible for
the lm gammaM. The CA1pyr IC is most likely of local origin because the pyramidal
layer and perisomatic region do not receive extrinsic afferences as the dendritic
layers but is innervated by multitude of CA1 interneurons. Its peak frequency
around 150 Hz suggests that it can be elicited by fast GABAA IPSPs onto the CA1
pyramidal cells but the fact that its theta-modulated gamma frequency extends up to
250 Hz, suggests that it can capture also contributions from action potentials [29,
41, 42].

REM sleep is characterized by prominent theta rhythm in the hippocampus so
we sought to verify if theta-gamma dynamics described for the RUN state were
preserved during sleep. We found the same three ICs for CA1 gamma LFPs during
sleep. The frequency distribution of the theta modulated gamma sub-bands was
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largely similar to waking for all of them and also for CA3pyr and EC3 LFPs
(Fig. 4.1b, c; p > 0.05, t-test). We employed two different methods to quantify the
differences between both states. The modulation index (MI, Tort et al. 2008) to
quantify the strength of theta-gamma coupling and the relative power (or relative
variance of the IC; [26] of the gamma filtered ICs. Both MI and power of gammaS
in the rad IC were significantly reduced during REM compared to RUN
(p < 0.0001, t-test; Fig. 4.1b, d, e), whereas theta-gammaM coupling and power in
the lm IC were significantly increased (p < 0.0001, t-test; Fig. 4.1b, d, e). These
changes were accompanied by a parallel reduction of theta-gammaS coupling in
CA3pyr (p < 0.01, t-test; Fig. 4.1b, d) and increased theta-gammaM coupling in
EC3 LFP during REM (p < 0.01, t-test; Fig. 4.1b, d).

We also checked the firing of the neurons in the CA1, CA3 and EC3 to see if their
changes in firing rate matched with those observed in the LFPs during waking and
sleep. Individual units were extracted from the high-pass filtered LFPs and were
classified into putative pyramidal cells and interneurons based on their waveform,
autocorrelograms and other characteristics (see Methods). For each individual
neuron the mean firing rate was calculated for both states and a (REM − RUN)/
(REM + RUN) ratio used for comparison. Consistent with the LFP changes, CA3
and EC3 pyramidal neuron firing rates decreased and increased, respectively, during
REM compared to RUN (p < 0.05, Kruskal-Wallis ANOVA, followed by Tukey’s
honestly significant difference test; Fig. 4.1f). In summary, theta-modulated gamma
power in the respective dendritic domains of CA1 pyramidal cells mainly reflects the
gamma band activity in their respective afferent regions and is modulated as a
function of brain state and network architecture.

4.2 Coherence Segregation of Layer-Specific Gamma
Sources

If gamma oscillations in the hippocampal CA1 are layer specific as I proposed in
the previous section, is to be expected that their within-layer coherence is much
larger than their cross-layer coherence. As a first step to verify this, coherence maps
in the broad gamma frequency band (30–100 Hz) were constructed between LFPs
at reference sites in different layers and the remaining 255 channels. This procedure
reliably outlined the anatomical boundaries in CA1 for stratum pyramidale
(Fig. 4.2a, first panel), stratum radiatum (second panel), and stratum lacunosum-
moleculare (third panel).

Then we compared the gamma coherence (30–100 Hz) for all the three main
CA1 LFP ICs extracted in every shank of the 8-shanks probe were the appropriated
layer was recorded. The coherence matrix for a single case is displayed in Fig. 4.2b.
High coherence values (warm colors) were only obtained for same ICs in separate
shanks but not across shanks. The across animals quantification of coherence rel-
ative to distance (n = 6 rats; Fig. 4.2c) shows similar results. Gamma coherence
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remained relatively high (>0.4) for ICs from different shanks in the same layer, even
up to 1.8 mm away, whereas gamma coherence between ICs from different layers
was consistently lower even in the same shank.

4.3 Theta-Phase Coordination of Gamma Oscillations
in CA1

Theta-frequency gamma-amplitude coupling analysis was useful to reveal distinct
gamma oscillations in CA1. We next sought to study how the theta rhythm orga-
nizes those gamma oscillations in time. We next examined gamma power variation
as a function of theta phase of the LFP recorded from CA1 str. pyramidale and
filtered between 5 and 12 Hz (0° and 180° refer to positive polarity peak and
negative polarity trough, respectively). LFP and IC’s power was calculated for each
frequency step from 30 to 300 Hz by complex wavelet transform. Z-scored gamma
power for each frequency was plotted for each bin of theta phase to construct 2D
comodulograms. Two theta cycles are represented for clarity.

For the LFP recorded from CA1 pyramidal layer we found three gamma
sub-bands with distinct theta-phase distribution (Fig. 4.3a, first panel): gammaS
(indicated by one arrowhead) at the descending theta phase, gammaM (two arrow-
heads) at the theta peak, gammaF (three arrowheads) at the theta through. Theta-phase
gamma-amplitude analysis applied to the ICs confirms this phase separation and
clarifies the layer origin of each gamma component. GammaF power (>100 Hz)

Fig. 4.2 a Gamma (30–90 Hz) coherence maps between LFP recorded from a reference site
(white patch with star) and every other recording site on a 256-channel probe spanning most of a
transverse plane in the dorsal hippocampus in one example session, for CA1 str. pyramidale (top),
str. radiatum (middle), and str. lacunosum-moleculare (bottom) references. b Gamma coherence
between pathway-specific CA1 ICs (extracted separately for each shank). Similar to cross-layer
LFP coherence, ICs reflecting different synaptic pathways exhibited low coherence with other CA1
ICs across all shanks (numbered 1–7), but high coherence between like ICs from different shanks.
c Coherence of gamma ICs decreased monotonically with distance between shanks, whereas
coherence between different ICs was low, regardless of shank separation. Modified from [43]
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dominated in the CA1pyr IC and was maximal near the trough of the theta cycle
(174.8 ± 3.3°; Fig. 4.3a, c), coincident with the highest probability of spikes of the
CA1 pyramidal cells and interneurons at this phase [13, 18, 35]. GammaS (30–60 Hz)
was most prominent in the rad IC, occurring predominantly on the descending phase
of theta (128.3 ± 2.0°; Fig. 4.3a, c), which coincides with the preferred phase of
gamma oscillations in the CA3pyr LFP (138.9 ± 4.5°; Fig. 4.3a, c), and most CA3
spiking [19, 35]. The gammaM (60–120 Hz) that dominated the lm IC was
phase-locked to the peak of the reference theta waves (348.8 ± 5.3°; Fig. 4.3a, c),
coincident with maximal EC3 gamma LFPs (355.8 ± 14.8°; Fig. 4.3a, c), and
pyramidal cell firing in the entorhinal cortex L3 [35].

We also compared the theta phase distribution of gamma power during REM
sleep. Although in the raw LFP was not evident the presence of the three gamma
bands (Fig. 4.3b, first panel), all the ICs display very similar phase and frequency
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Fig. 4.3 a Gamma amplitude-theta phase modulation plots of LFP in CA1 pyramidal layer
(leftmost panel) and CA1 LFP ICs during RUN. The gammaS (single arrowhead), gammaM
(double arrowheads), and gammaF (triple arrowhead) dominated the descending phase, peak, and
trough of the CA1 pyramidal layer theta waves, respectively. Dashed black line, reference theta
phase of the LFP recorded in CA1 pyramidal layer. b Same as in (a) during REM. c Group data
(six animals for CA1 and CA3, four rats for EC3) for preferred theta phase of each layer’s
theta-modulated gamma band (30–60, 60–110, and 100–250 Hz for rad, lm, and CA1pyr,
respectively). d Z-scored theta-modulated gamma power across animals. (**/***p < 0.01/0.001,
respectively; t test). Modified from [43]
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power distribution as during RUN. The theta phase and layer distributions of slow
and mid-gamma activity was qualitatively similar to RUN (non-significant differ-
ences in theta phases of maximal gamma power, p > 0.05, t-test; Fig. 4.3b, c), but
theta-modulated gamma power decreased in the rad and CA3pyr ICs (p < 0.001,
t-test) while it increased in the lm IC and EC3 LFP (p < 0.0001, t-test) during REM
(Fig. 4.3b, d).

As a next step, we further looked at the modulation of principal cell firing by the
theta phase. For this purpose, we calculated the preferred theta phase for each
excitatory neuron during RUN and REM in CA3, EC3 and CA1 (see Methods). The
preferred firing phase of most CA3 pyramidal cells during both RUN and REM is at
the descending phase of the theta cycle (Fig. 4.4, first panel), coinciding with the
preferred phase of the radiatum gammaS. In the case of the EC3 pyramidal cells the
preferred firing phase in both states is around the peak of the theta cycle (Fig. 4.4,
second panel), coinciding with the preferred phase of the lac-mol gammaM.
During RUN CA1 pyramidal cells tend to fire at the theta through or early
ascending phase (Fig. 4.4, second panel), however during REM some cells shift

Fig. 4.4 Theta-phase modulation of pyramidal cells in CA3 (a), entorhinal cortex layer 3 (b) and
CA1 (c) during RUN and REM. Units were sorted according to their z-scored theta-phase firing
probability (raster plots). Histograms on the top represent the summed probability distribution of
preferred phases and curves the summed probability distributions of firing rates (red for RUN and
blue for REM) for all the units that were significantly theta-modulated (Rayleigh test p < 0.01).
Black curve indicate reference theta phase in the CA1 pyramidal layer or entorhinal cortex layer 5.
Note that the preferred phase for CA3 and EC3 pyramidal cells is similar to that obtained for rad
and CA3pyr gammaS and lm and EC3 LFP gammaM (compare with Fig. 4.3a, b)
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their preferred phase toward the peak, reflecting an increased drive by EC3 input
during this state [36].

The diagram in Fig. 4.5 summarizes the above results and proposed schematics
for CA1 network function. At the theta peak, projection neurons in entorhinal
cortex L3 increase their firing eliciting gammaM oscillations locally and in the CA1
stratum lacunosum-moleculare. After that, during the descending theta phase, CA3
pyramidal cells fire evoking gammaS oscillations also locally and in the CA1
stratum radiatum. The same CA3 axons that innervate pyramidal cell dendrites in
the str. radiatum make abundant synapses onto CA1 interneurons. This feedforward
inhibition may be responsible for the gammaF oscillations at the trough of the theta
cycle. The firing probability of CA1 pyramidal cells is maximal around and after the
theta through so it may be enhanced by the integration of coincident inputs from
EC3 and CA3 and their exact timing controlled by the fast perisomatic inhibition,
however this hypothesis still need to be demonstrated.

4.4 Variation of Theta-Coupled Gamma Oscillations
Along the CA1 Transversal Axis

Along its transversal axis the CA1 region can be divided into a proximal region
(closer to the CA2/CA3 border), an intermediate and a distal region (closer to the
subiculum). There are important anatomical differences among them, as different
entorhinal regions innervate the proximal and distal poles [45, 48]. It has also been
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Fig. 4.5 Diagram summarizing the average ordering of the maximal phases for the gamma
sub-bands, afferent input, and CA1 spike output over the theta cycle. Reproduced from [43]
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suggested a functional specialization along the transverse axis. Place cells located in
proximal sites are better and more spatially informative while those located in more
distal sites have multiple place fields and less spatial coherence [28]. Less spatially
selective cells in distal CA1 seemto be on the contrary more sensitive to the
presence of objects [7] and odor cues [30]. In addition, it has been suggested that
somatosensory information may also be processed differentially along the CA1
transverse axis [3]. This functional differences may be attributed to the innervation
of proximal CA1 exclusively by MEC axons and distal CA1 by LEC inputs [48].

We studied the variation in theta-gamma dynamics along the CA1 transverse
axis to check if they can offer a potential mechanism for the observed functional
differences. For this purpose, we classified all the recording shanks from 6 animals
as belonging to the proximal, intermediate or distal regions of CA1. Then we
applied ICA to the LFPs recorded by each shank and performed theta-frequency
gamma-amplitude analysis for the three main CA1 ICs, both during REM and RUN
states.

Radiatum gammaS in proximal sites showed a stronger theta-gamma coupling
than at distal sites, whereas the opposite relationship was observed for the gammaM
band in the str. lacunosum-moleculare (p < 0.001 and p <, ANOVA tests; n = 6
rats; Fig. 4.6a). During REM sleep, radiatum gammaS power decreased in all sites
while lm gammaM increased in all of them. However their spatial trends remained
constant: gammaS power gradually decreasing from proximal to distal and gammaM
increasing in the same direction (Fig. 4.6b). Conversely, the proximodistal distri-
bution of gammaF in the pyramidal layer changes as a function of the brain state.
During RUN the theta-gamma coupling of the pyramidal layer gammaF is stronger
in proximal sites while during REM it shifted toward the opposite CA1 border
(p < 0.001 and p <, ANOVA tests; n = 6 rats; Fig. 4.6a, b), coinciding with the
trend of the predominant oscillation in each case, str. radiatum gammaS during
RUN and str. lacunosum-moleculare gammaM during REM.

Changes in CA1pyr theta-gammaF coupling along the proximodistal axis and
between RUN and REM mostly reflected changes in its theta phase distribution.
A bimodal phase distribution, exhibiting increased power at both the trough and
peak, emerged on the distal end during RUN and at all sites during REM
(Fig. 4.7a). The altered phase distributions were limited to the CA1pyr ICs;
quantifying the phase distribution with the ‘center of mass’ of gamma power
showed significant variation in CA1pyr from proximal to distal ends during both
RUN and REM (p < 0.001, ANOVA tests; Fig. 4.7b), but not in the other com-
ponents (p > 0.05, ANOVA tests; Fig. 4.7b).

Regarding the observed variations in the strength of theta-gamma coupling and
theta-phase distribution along the proximodistal axis, no significant change in the
mean frequency of theta modulated gamma activity was observed for any of the
three ICs in both states (Fig. 4.7c).

The differences found in the relative strength of the str. radiatum gammaS,
elicited by the CA3 input to the CA1, and the str. lacunosum-moleculare gammaM,
likely elicited by the EC3 input to CA1 pointed to a heterogeneous contribution of

4.4 Variation of Theta-Coupled Gamma Oscillations Along … 59



both inputs along the CA1 axis. CA3 inputs appear to be predominant in proximal
sites and during RUN while EC3 inputs dominate in distal sites and during REM.
Pyramidal layer gammaF varies along the axis according to the brain state, reflecting
its variable modulation by both CA3 and EC3 inputs.

(a)

(b)

Fig. 4.6 a Two-dimensional distribution of the theta coupled gamma oscillations during RUN.
Each set of three panels was constructed from the gamma-amplitude theta-phase comodulograms
coupling of the ICs on each recording shank. The rad IC’s gammaS became less strongly
theta-modulated along the transversal (proximo-distal) axis, whereas lm gammaM increased its
theta-coupled gamma power. CA1pyr gammaF largely followed the rad IC gradient. The bar plot
on the right shows group data of MIs, normalized by the average across all shanks (six rats). Each
comparison showed significant variation from proximal to distal sites (p < 0.001; ANOVA).
b Similar display during REM. Note the opposite trend of CA1pyr theta-gammaF coupling along
the proximo-distal axis compared to RUN. Reproduced from [43]
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Fig. 4.7 a Theta phase distribution of CA1pyr gammaF power in RUN and REM at three
segments along the transversal (proximo-distal) axis of CA1. Note increased bimodality of the
gammaF power distribution (arrowheads) toward the distal end compared to the CA3 end
(p < 0.001 for mean phases both in RUN and REM, ANOVA tests, six rats) and stronger overall
bimodality during REM. b The ‘centers of mass’ of theta-phase (power-weighted mean phase) of
rad gammaS and lm gammaM did not show significant changes along the proximo-distal axis in
both RUN and REM (p > 0.05, t-test; 6 rats). However the CA1pyr gammaF shifts its preferred
theta-phase from the theta trough at proximal CA1 to closer to the theta peak at distal sites in both
RUN and REM (*/**p < 0.05/0.01, ANOVA tests; 6 rats). cMean frequency of the three CA1 ICs
(CA1pyr, rad, and lm) did not significantly change along the proximo-distal axis of the
hippocampus in both RUN and REM states (p > 0.05, t-test; 6 rats). Modified from [43]
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4.5 Theta-Gamma Cross-Frequency Coupling During
a Memory Task

We have focused here on characterizing theta-gamma dynamics in the entorhino-
hippocampal circuits and found different gamma oscillations organized by the theta
rhythm. I also found that theta-gamma dynamics in the hippocampus displays
strong state-dependent modulation during sleep and navigation; however they have
also been implied in cognitive functions, as memory and learning [11, 34]. Thus I
sought to test if the above characterized gamma oscillations have specific modu-
lation during a hippocampus-dependent memory task. For this purpose I choose the
delayed-alternation T-maze task [1, 38, 40]. In this task rats learn to run from a
starting area through a central arm and then turn left or right, collect a water reward
a return to the starting area (Fig. 4.8a). To increase their motivation for doing the
task, rats are water deprived and can only drink during the task. After one of such
trials they are forced to wait for 5–10 s and then start over again, but to get the
reward animals have to turn to the opposite direction as in the previous trial. After a
few days of training animals learn the task reaching a performance above 80 % (an
error is when the animal chose to turn to the same direction as the previous trial). It
has been shown that rodents with impaired hippocampal function cannot success-
fully perform this task [1]. In the central arm the animal is recalling the previous
memory and uses this information to make a correct choice in the juncture of the
maze. In the lateral arms the animal is encoding the current direction and has to
keep this information in the working memory during the delay period [38, 49].

We compared the spectral activity of each of the three main CA1 LFPs ICs
(CA1pyr, radiatum and lac-mol) while the rats were running in the central arm
versus while they were running in the side arms. Only theta periods were included
in the analysis and was checked that the velocity of the animal was not significantly
different (p > 0.5 t-test) for the selected periods in each arm. Both theta-gamma
coupling (Fig. 4.8b) and gamma power (Fig. 4.8d) were significantly stronger for
each CA1 IC during center arm running, compared to the side arm with the largest
changes present in CA1 str. radiatum (p < 0.001, t-test). These behavior-related
changes were specific to the gamma sub-bands that dominate the respective ICs
during theta: gammaF (120–180 Hz) for CA1pyr, gammaS (30–60 Hz) for radiatum
and gammaM (60–100 Hz) for lac-mol (Fig. 4.1c). These results indicate that
theta-gamma coupling in the hippocampus is selectively enhanced during memory
recall.

Theta-gamma analysis indicates that both CA3 and EC3 inputs are recruited
during the recall phase of the task, although the CA3 input seems to be preferen-
tially enhanced, as reflected by the largest increase in radiatum gammaS. To further
investigate if there is a predominance of CA3 input over the EC3 we checked the
firing of the cells in the input and target regions in three additional animals with
simultaneous hippocampus and entorhinal recordings, performing the same task in a
slightly different maze (Fig. 4.9a). We aggregated spikes from each neuron type
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within each session to compare overall firing rates, because place-specific firing of
hippocampal pyramidal cells would confound single unit comparisons of firing rates
between arms [39]. CA3 pyramidal cell and CA1 interneuron firing rates were
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Fig. 4.8 a Example running trajectories during one session of a hippocampus-dependent delayed
alternation T-maze task. Colors indicate sections choose to compare LFP and unit activity during
center arm running (CENTER, red) to running in side arms (SIDE, blue). b The theta-gamma
modulation indices (MI) for CA1 ICs were significantly greater during CENTER running
compared to SIDE (t-test, n = 3 rats). c Differences in the theta modulation of the gamma power of
each IC showed that the strongest changes were at the gamma frequencies characteristic of each
afferent pathway (compare Fig. 4.1a). d Z-score-normalized power of each CA1 IC at the
frequencies of strongest theta modulation were significantly greater during CENTER (red) running
compared to SIDE (blue) (t-test; 3 rats). Changes were stronger for rad gammaS. E Mean
frequency of the three ICs did not significantly change between CENTER and SIDE running
(p > 0.05; 3 rats). Modified from [43]
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significantly greater during center arm running compared to side arms (p < 0.01 for
CA3 pyramidal cells, p < 0.05 for CA1 interneurons, t- test on center/side ratios;
Fig. 4.9b). Although CA1 pyramidal cell firing rates were not significantly changed
in the side arms compared to the center (p > 0.5 t-test, Fig. 4.9b) they showed a
significantly greater probability of firing at the theta peak, the preferred phase of
EC3 input (Fig. 4.9c, first panel). CA3 and EC3 pyramidal cells maintain their
theta-phase preference constant in the center and side arms, the descending theta
phase for the formers and the theta peak for the latter (Fig. 4.9c, second and third
panels). Together with the increased firing of CA3 pyramidal cells in the central
arm, this last result also pointed to an enhanced control of CA1 dynamics by CA3
input during memory recall.

Fig. 4.9 a Example trajectories during one session of a similar delayed alternation task with
wheel running during the delay period [40], which was performed by the animals used in the unit
analyses. b Population firing rate ratios within individual sessions revealed that the CA3 pyramidal
cells were significantly more active during CENTER running compared to SIDE (t-test). CA1
interneurons also fired at significantly greater rates in CENTER. Across sessions, the measured
CA1 and EC3 pyramidal cell population rates were not consistently different in CENTER versus
SIDE running (p > 0.05). c Theta phase (EC3 phase reference) distribution of spiking in CA1
(top), CA3 (middle), and EC3 (bottom) pyramidal cell populations during CENTER to SIDE
running. Lines show the distribution when spike phases were summed across all clustered
pyramidal cells, dashed lines (shading) show mean (±SEM) across single units firing > 30 spikes
during CENTER and SIDE epochs. Significance thresholds: */**/***p < 0.05/0.01/0.001.
Reproduced from [43]
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Overall, these experiments demonstrate that the changing balance of CA3 and
EC3 inputs during different phases of a hippocampus-dependent memory task can
affect the theta-organization of both gamma activity and spiking in CA1.
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Chapter 5
Discussion

5.1 Methodological Challenges in the Study of Brain
Oscillations

The study of brain oscillations is a rapidly expanding field. In recent years that it
has been boosted by the development of new technologies to perform large-scale
recordings and manipulations of brain activity in intact organisms. The increased
volume and complexity of data typically obtained in a Systems Neuroscience
experiment performed with recent methods poses an important challenge for their
analysis and interpretation. From our point of view, the development of novel
analytical approaches has been lagging behind the technical development in this
field. For this reasons one of the main goals of the present work has been to explore
new methodological approaches to the analysis of neural circuit function and in
particular brain oscillations.

The most traditional approach to study brain oscillations is to filter in the
recorded signals in narrow frequency bands to them decompose them in the spectral
domain by means of Fourier, wavelet or similar transform. Spectral characteristics
of the signal (power or phase in a certain frequency band) can be then related to
behavior or other external variables. This simple approach has been very successful
in a multitude of occasions. Some classical examples are identification of the dif-
ferent phases of sleep regarding the spectral profile of the EEG [17], the correlation
of visual stimulus properties with visual cortex gamma oscillations [31] or the
modulation of hippocampal theta frequency and power by movement speed [8].
However this approach is often too simplistic to capture the variability of com-
plexity of neural oscillatory responses that are rarely narrow band restricted or
stationary in time. Numerous recent reports point to the variability of oscillations
during behaviour and suggest that the classical view of adcrisbing cognitive
functions to particular frequency bands is no longer tenable [23, 27, 58, 61].
We found an example of this controversy in the role adscribed to neocortical
gamma oscillations as a binding mechanism for different visual features into an
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unified perception [29, 64]. Other studies challenge this assumption arguing that the
response to stimuli in the visual cortex largely varies in frequency at different points
of the same area [57]. We are moving from a view in which strictly spectrally
defined oscillations are responsibles for specific cognitive functions to recognize the
intrinsic variability and nested organization of brain oscillations that can flexibly
support multiple computational process. As an example that we can not talk about
“gamma rhythm” in general, 40–50 Hz oscillations in the visual cortex [31, 64] or
the hippocampus [5, 16, 24] may not share common generating mechanisms and
definitely serve to different functions. These issues stress the importance of iden-
tifying the population/s contributing to a given field potential oscillation as a
necessary step to infer on its physiological and computational meaning. In sum-
mary, to interpret spectral changes in population activity during behavior we need
to know the cellular generators of observed oscillations as well as their organizing
network mechanisms.

These problems are more easily addressed with invasive recording techniques, in
particular those that allow a dense mapping of the structure of interest in the three
spatial dimensions, such as large scale silicon-probe recordings. In the case of
non-invasive recordings such as EEG or MEG the problem become much compli-
cated. We understand the basic biophysical properties of electric activity propagation
in the brain tissue but our current knowledge of how the synaptic activity scales to
the population level is very far from being comprehensive. To bridge this gap we
propose that, in the first place, is necessary to understand the cellular mechanisms of
local oscillatory activity generation, by means of careful LFP and single unit
recordings and analysis. As a second step we need to employ macroscopic models to
understand how local activity is implemented at the whole structure level and how
the cytoarchitectonic and functional characteristic of a particular cellular population
influence the generation and propagation of currents on the tissue [26].

One of the most common approaches to address the inverse problem of the LFP,
i.e. to determine the subcellular currents that elicit a particular voltage distribution,
is the current source density (CSD) analysis [28]. Linear silicon probes are ideal to
perform this analysis as they allow a dense mapping of a small region with a
well-defined geometric arrangement. This approach has been very successful to
unveil the underlying currents of some of the most common electrophysiological
patterns such as evoked potentials [45], sharp-waves [73] or hippocampal theta
rhythm [6]. However due to the fact that most LFP patterns are elicited by the
mixed contribution of multiple sources in most of the cases CSD analysis alone is
not conclusive to understand their underlying mechanisms [23].

5.2 A Novel Approach to the Study of Brain Oscillations

Amongst the approaches used to address the mixed contribution of inputs to
macroscopic patterns, some sought the selective manipulation of parts of a network,
such as the activation or the silencing of specific pathways or neuron types through

70 5 Discussion



electrical, optogenetic, or pharmacological intervention [33, 42, 70]. Other
approaches pursued the disentanglement of LFPs into their original generators by
applying statistical tools and algorithms [18, 22, 53, 40]. Blind source separation
techniques, like the independent component analysis (ICA: [13, 15]), appear to be
the best suited by their capacity to find stable groups of sensors picking up a signal
whose origin is stationary in the space, a feature that can be assumed for electrical
fields generated by synaptic currents. We have developed an implementation based
on the ICA of depth profiles of LFP followed by CSD analysis of the ICs to
separate the different synaptic pathways converging on hippocampal principal cells
on the evidence that each produces field potentials of stable and distinct spatial
distribution [23, 24]. Applying this method to two-dimensional LFP recordings in
the hippocampus we were able separate their physiologically meaningful sources
and match them with known anatomical pathways and its dendritic domains. Due to
the parallel arrangement of principal cells bodies and dendrites in the hippocampus
and the stratification of the synaptic inputs, the application of ICA and the inter-
pretation of the resulting ICs are particularly simple. However it has some limita-
tions like only those synaptic inputs with enough postsynaptic current, synchrony,
and spatial clustering can be detected and separated by ICA; thus, very weak or
sparse currents are not easily discernible [26].

Temporal and spectral characteristics of the wide-band ICs can be analyzed. We
thus can detect arbitrary frequency restricted oscillatory patterns without necessary
imposing a previous narrow-band filter to the LFP. Another advantage is that the
use of pathway-specific ICs reduced the concern of a particular LFP pattern to be a
mixture of several inputs, allowing a more accurate interpretation of oscillations in
terms of their underlying mechanisms [63].

We have also employed in this work an innovative methodology to simulate
LFPs at a mesoscopic scale. It consists in explicitly modelling the geometry of the
tissue, simulating neurons as current sources whose weight and temporal activation
was taken from experimental measures and solving the electromagnetic differential
equations to calculate electric fields and potentials with FEM. Despite its simplicity,
the model was able to reproduce with high accuracy the characteristics of experi-
mentally recorded hippocampal LFPs. The experimental data necessary to correctly
implement the model was only available by the use multielectrode recordings and
the ability of ICA to render spatial loadings and temporal activations of LFP
sources (that is, to solve the inverse problem of LFPs). Previous approaches used
realistic connectivity and/or membrane electrogenesis to explore the intracellular
factors and population dynamics that produce significant amount of transmembrane
currents [46, 55, 62]. The advantage of the FEM approach is that explicit modeling
of the population’s architecture and the conducting volume allows investigating
whether or not these currents build macroscopic LFPs. The FEM approach is
widely used in MEG and scalp EEG [12, 60, 66], but to our knowledge this has not
been used before in LFP studies.

5.2 A Novel Approach to the Study of Brain Oscillations 71



The present work highlights the importance of tissue geometry in the spreading
of field potentials. Thus, the question of the spatial reach of LFPs [39, 41, 69, 71]
will not have a unique answer; it will depend on the particular architecture of the
region where they are recorded as well as the synchrony of the presynaptic neurons.
These factors cannot be properly investigated without realistic modelling of spatial
factors, which turn to be essential to understand and interpret LFPs.

The conclusion drawn in this work could be potentially applicable to LFPs
generated in other structures with similar curved geometrical characteristics. That is
the case of cortical sulcus in humans and other mammals in which cortical layers
bend to form giri and sulci. LFPs in the cortex are in general of lower amplitude
than in the hippocampus due to the dispersion of cell bodies in comparison with the
densely packed cellular layers in hippocampus, which leads to a partial cancellation
of extracellular currents. Despite this difference, which will lead to important
quantitative alterations in LFPs magnitude, it seems plausible that the same geo-
metrical and dynamical factors that we have shown, determine the characteristics of
DG LFPs will rule also for potentials inside cortical sulci. These considerations may
have special importance for MEG, due to fact that the principal contributors to
MEG signals are the neurons located with their main axis perpendicular to the
cortical surface, which are mainly those situated in the sulci [47, 54].

5.3 Theta-Gamma Dynamics Reveals Network
Computations During Behaviour

The results presented in the third section of the Results demonstrate that low
frequency gamma oscillations link together the CA3-CA1 regions and that the
strength of this relationship is strongest during memory recall, associated with
increased theta coupled gammaS power and a shift of preferred spike theta phase
from the peak to near the trough in a fraction of CA1 pyramidal cells. A distinct and
higher frequency gamma pattern (gammaM) is dominant near the peak of the theta
cycle, coincident with increased firing of EC3 pyramidal neurons and their exci-
tation of the distal apical dendrites of CA1 pyramidal cells (current sink). Gamma
coherence is high within the same dendritic layer but low across layers.
During REM sleep CA3 spiking output and the associated gammaS in CA1 str.
radiatum are decreased, accompanied by an increased EC3 spiking and elevated
gammaM power in str. lacunosum-moleculare.

Our findings support previous observations that gammaS oscillations occur on
the descending phase of theta in the CA1 pyramidal layer, brought about by the
gamma-timed spiking of CA3 pyramidal cells [3, 16, 24, 25, 43]. However, they are
at variance with the postulated theta phase assignment of EC3-mediated gamma
bursts by Colgin et al. [14]. In the latter study, the authors suggested that the
CA3-driven gammaS is followed by an EC input-driven faster gamma burst in the
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65–140 Hz range at the trough of the theta cycle [14]. One potential source of the
conflicting results is the use of single site recordings in the Colgin et al. study,
which is not sufficient to decompose the spatial origin of the respective gamma
generators [9, 21, 23, 43]. Because the main generators of LFPs are often postsy-
napic currents, a single oscillating population may generate coherent LFPs in dis-
tant areas without necessarily entraining the downstream population. Although the
authors showed phase coupling between entorhinal unit firing and the lumped
gammaM and gammaF band LFPs in the CA1 pyramidal layer, they did not report
the theta phase of either spiking or gamma activity in EC3. In contrast to the
framework put forward by Colgin et al. [14], we find that the peak firing of EC3
pyramidal cells and the associated current sink in the CA1 str. lacunosum-
moleculare occurs, on average, at the peak of the theta cycle [4, 6, 10, 38, 50, 53],
coincident with the gammaM burst and, thus, before the dominant CA3-mediated
gammaS on the descending phase of theta.

The differential firing rate changes of CA3 and EC3 principal cell can account
for the CA1 firing patterns and gamma oscillations, we observed both across brain
states and in the T-maze task. These two major inputs can either compete or
cooperate depending on the nature of the task [2, 20, 37, 44, 59]. The EC3 input
may become more effective through theta-rhythmic frequency potentiation by
suppressing feed-forward inhibition [11, 44, 72] or facilitating mechanisms for
overcoming it [37, 59, 65]. Furthermore, during REM sleep, firing rates of CA3
pyramidal neurons decrease [48, 52], paralleled with the reduced power of gammaS
in CA1 str. radiatum and decreased spike-field CA3-CA1 coherence [63]. This
reduced CA3 output coincides with an increased firing of EC3 neurons and elevated
gammaM power in the str. lacunosum-moleculare and the shifting of theta phase
preference of a significant fraction of CA1 pyramidal neurons from the trough to the
peak [49, 56]. Thus, a weakened CA3 output leads to a relatively stronger control of
the EC3 input on the discharge of CA1 neurons, as was also observed in the side
arms of the T-maze task, where demands on memory retrieval are diminished.

An increased gain control over CA1 neurons by the direct EC3 input can explain
why after lesion of the CA3 input, place-related firing of CA1 pyramidal cells can
persist [7]. The shift in gain control can also explain why spatial information
encoded by CA1 pyramidal cells varies as a function of their position in the
proximodistal axis [35] and why during recall the CA3 input shows increased
control over CA1 activity patterns [51]. One potential substrate of the CA3-EC3
competition is the O-LM to bistratified interneuron inhibitory connection. Increased
firing of O-LM interneurons near the theta trough [67] suppresses inputs to the
distal dendrites, whereas itindirectly disinhibits dendritic segments in str. oriens and
radiatum [44], thereby facilitating the effectiveness of the CA3 input to CA1
pyramidal cells.

During encoding of newly learned information, EC input is expected to boost the
efficacy of the CA3-CA1 pathway [34, 59]. Indeed, in vitro experiments have
demonstrated that pairing temporo-ammonic (EC3 to CA1) and Schaffer collateral

5.3 Theta-Gamma Dynamics Reveals Network Computations … 73



excitation to CA1 can multiplicatively induce long-term potentiation and CA1
spiking via dendritic plateau potentials and heterosynaptic effects, depending on the
relative frequency and timing of these inputs [2, 11, 19, 30, 32, 59, 65]; but see [1].
The strongest potentiation is observed when the distal dendrites are excited
10–30 ms prior to the arrival of the CA3 input, matching the roughly one quarter
theta cycle delay between the occurrence of gammaM and gammaS in CA1.
The heterosynaptic boosting effect of the entorhinal input can be selectively sup-
pressed by perisomatic inhibition mediated by cholecystokinin (CCK)-expressing
interneurons [2]. Our findings demonstrate that the timing of these spike level
interactions can be monitored by the mesoscopic changes of the LFP theta-gamma
oscillations. Additional experiments are required to disentangle the roles of the
medial and lateral entorhinal cortical inputs [36] and the thalamic nucleus reuniens
[68] in the expression of gamma in the str. lacunosum-moleculare.

Overall, our experiments demonstrate that layer-specific gamma oscillations in
the hippocampus reliably identify the temporal dynamics of the afferent inputs and
that temporal coordination in the entorhinal-hippocampal system is mainly sup-
ported by theta and low frequency gamma oscillations, but not by high gamma
coherence [63].

5.4 Conclusions

We have implemented a novel method to the study of LFPs and applied it to
hippocampal recordings from behaving rats. The first important conclusion we get
from this work is that for a correct analysis and interpretation of LFPs it is necessary
an appropriated spatial mapping of the structure of interest. Due to the propagation
of electric potentials in the brain tissue, single point recordings, as traditionally
performed with tetrodes or wire electrodes, are not able to discern the origin (local,
propagated, mixed) of the recorded LFPs. On the contrary, high-density
two-dimensional recordings, as those presented here, are optimal because they
account for the spatial variations of LFPs in laminated structures such as the hip-
pocampus or neocortex.

We employed ICA to decompose hippocampal LFPs recorded along the
dorsoventral and transversal axes of the hippocampus into six main contributing
sources (independent components, ICs). Those sources display distinct laminar
distribution and their CSD maps reveal main currents restricted to particular
sub-layers, allowing us to identify their synaptic nature comparing with known
anatomical synaptic domains. The three main CA1 ICs were identified as the
ipsilateral CA3 input to the str. radiatum dendrites (rad IC), the entorhinal cortex
layer 3 input to the str. lacunosum-moleculare dendrites (lm IC) and perisomatic
currents, likely inhibitory,in the CA1 pyramidal cell bodies (CA1pyr IC). In the DG
they were identified as the lateral perforant path input to the distal GC dendrites
(LPP IC), the medial perforant path input to the middle GC dendrites (MPP IC),
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and perisomatic currents in the GC somas, likely inhibitory, (GCsom). However,a
more rigorous identification of those ICs as strictly pathway-specific or as a mixture
of different inputs with shared dendritic domains would require additional tests, like
selective optogenetic manipulations in well-defined cellular populations. This is
especially relevant for the CApyr and GCsom components, which likely capture
currents elicited by somatic action potentials in addition to postsynaptic currents.

Simulations performed with FEM in the tridimensional model of the hip-
pocampus reproduce with high fidelity the spatial distribution of the different
hippocampal current sources. The simultaneous activation of the six sources with
time series obtained from experimental recordings allows us to reproduce the
laminar characteristics of SWR and theta oscillations. These results confirm the
accuracy of our solution for the inverse problem of hippocampal LFPs and that
those six sources are enough to account for most of the variability of the recorded
LFPs in the CA1 and DG regions. We have decided not to include here other results
pertaining to the CA3 were another prominent IC can be isolated [4, 63].

The above results illustrate the usefulness of our novel method to analyze LFPs.
It consists in first extract and identify the current sources contributing to their
generation and then implement the obtained solution in a model that allows the
forward simulation of LFPs. By comparing the original and simulated LFPs we can
refine and better interpret our original solution.

In the second section of the Results, we employed the acquired knowledge about
the sources of hippocampal LFPs to address the study of theta-gamma interactions
in the hippocampal-entorhinal circuit during behaviour. We found that the three
main LFP sources characterized in the first section of the Results display different
spectral profiles in the gamma band and theta-phase preference. Slow gamma
(gammaS, 30–60 Hz) was elicited by the CA3 input to the CA1 and peaked on the
descending theta phase, while mid-frequency gamma (gammaM, 60–120 Hz)
brought about by entorhinal layer 3 input dominated on the peak of the theta cycle.
A third source of very fast oscillations (gammaF, 100–180 Hz) peaked on the theta
trough and was of local origin. The preferred phase of rad slow gamma was shared
by similar frequency oscillations in the input region, CA3, and was also the
theta-phase with higher probability of firing of CA3 pyramidal cells.
Correspondingly, the preferred phase of lm gammaM was shared by similar fre-
quency gamma oscillations in the layer 3 of the medial entorhinal cortex and was
also the theta phase with higher probability of discharge of EC3 pyramidal cells.
Those theta-coupled gamma oscillations were present in both exploration and REM
sleep albeit with different strength. Theta-coupled gamma oscillations not only vary
as a function of behavioral state but also with the location along the CA1 transversal
axis. CA3 gammaS was stronger during running and dominated at proximal sites,
while gammaM was stronger during REM and dominated at distal CA1 sites.
Perisomatic gammaF oscillations varied in their proximodistal distribution and
theta-phase preference as a function of brain state according to which gammaS or
gammaM was the dominant pattern. This illustrates a competition of CA3 and
entorhinal inputs to control CA1 local circuits operation.

5.4 Conclusions 75



We also checked theta-gamma dynamics in CA1 during memory guided navi-
gation (a delayed-alternation T maze task known to relay on the hippocampus). We
found that during the recall phase of the task (the central arm running) theta-gamma
coupling increased for all the ICs but especially for the rad gammaS. In addition,
during this phase the firing rate of CA3 pyramidal cells was increased. On the
contrary, at the encoding phase of the task (side arms running) CA3 firing rates
were lower and a subset of CA1 pyramidal cells shift their theta phase preference to
the theta peak, the phase of the EC3 input. Those results demonstrate that CA3 and
EC3 inputs can compete or cooperate to control the firing of CA1 cells according to
behavioral demands.
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