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Preface

Much effort in theoretical physics goes towards building mathematical models that
can describe as a wide a variety of physical systems as possible. To build such
models, it is necessary to introduce just the right amount of formalism: the math-
ematics must be able to capture the essential properties of the physical system,
while keeping the amount of mathematical structure which does not have a direct
physical interpretation to a minimum.

This book is concerned with the description of physical systems in terms of
ensembles on configuration space. As will be seen, this is an approach which
introduces very few physical and mathematical assumptions. As a consequence, the
formalism has wide applicability: it can be used to describe physical systems that
are deterministic as well as systems subject to uncertainty; discrete systems, par-
ticles, and field theories; classical and quantum theories. It also allows for theories
that are difficult to formulate using other approaches, such as hybrid quantum-
classical theories where there is an interaction between quantum and classical
sectors, including the coupling of quantum matter to classical gravity. Finally,
it provides insights into classical and quantum physics that not only lead to unified
approaches to concepts such as thermodynamics, weak values, locality and
superselection, but to novel reconstructions of quantum theory from physical and
geometric axioms.

We therefore believe that a detailed account of the formalism and the physics of
ensembles on configuration space is valuable in providing a useful (and beautiful)
reformulation of existing theories, and in suggesting various generalisations and
directions for formulating new theories, and hope that ideas from this book will be
incorporated into the standard toolkit of theoretical physicists.

The book is structured into four main parts. Part I deals with general concepts and
properties of ensembles on configuration space. Part II examines how quantum
mechanics emerges naturally from three very different axiomatic scenarios, based
respectively on an exact uncertainty principle, information geometry on configura-
tion space, and local representations of rotations on discrete configuration spaces.
Part III develops a theory of hybrid quantum-classical interactions, which overcomes
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various no-go theorems in the literature and provides an explicit model of interaction
between quantum systems and classical measuring apparatuses. Finally, Part IV
extends these ideas to show how quantum fields can be consistently coupled to
classical gravity. While much of the material is based on publications by the authors
and colleagues over the past 15 years or so, many results are presented here for the
first time.

The authors would like to thank a number of people and organisations. We
began our collaboration on the physics of ensembles on configuration space by
email correspondence, and worked on two papers together before finally meeting
face-to-face in Germany in 2001, courtesy of travel funding provided by the
Alexander-von-Humboldt Foundation. Our collaboration continued, and was bol-
stered by again being able to meet in person at the Perimeter Institute in 2009,
courtesy of travel funding for a conference organised by Philip Goyal. In addition to
these organisations and individuals, MH would also like to thank Howard Wiseman
at the Centre for Quantum Dynamics, for permitting time to be spent on this book
project, and wife Robyn and children Conan and Seriden for their support. MR is
grateful to Hans-Thomas Elze and Dieter Schuch for invitations to the very stim-
ulating DICE and Symmetries in Science meetings, where some of these results
were presented for the first time, and would like to thank Ruth and Ava for putting
up with the late nights and long hours. Finally, we thank Angela Lahee at Springer
for her support throughout all the stages of preparation of this book.

Brisbane, Australia Michael J.W. Hall
Braunschweig, Germany Marcel Reginatto
March 2016
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General Properties of Ensembles

on Configuration Space



Chapter 1
Introduction

Abstract Ensembles on configuration space have wide applicability. They may be
used to describe classical, quantum and hybrid quantum-classical systems, physical
systems that are deterministic or subject to uncertainty, discrete systems, particles and
fields. They also lead to novel reconstructions of quantum theory from physical and
geometric axioms. We introduce the basic elements of the theory, discuss a number
of classical and quantum examples, and provide an overview of the many general-
izations and applications that form the subjects of later chapters. The approach intro-
duces very few physical and mathematical assumptions. The basic building blocks
are the configuration space of the physical system, an ensemble of configurations,
and dynamics generated from an action principle. An important role is played by
the ensemble Hamiltonian which determines the equations of motion. It must satisfy
certain requirements which we discuss in detail. We provide examples of classical
and quantum systems and show that the primary difference between quantum and
classical evolution lies in the choice of the ensemble Hamiltonian.

1.1 The Description of Physical Systems in Terms
of Ensembles on Configuration Space

As noted in the Preface, there is great value in building a formalism for physical
theories which is both widely applicable and has a minimal amount of uninterpreted
mathematical structure. For example, we may treat the motion of a classical particle
subject to an external force usingNewtonian, Lagrangian, Hamiltonian or Hamilton–
Jacobi formulations [1, 2]. These different formalisms are equivalent in the sense
that they lead to the same predictions, but the amount of effort that goes into solving
a particular problem will depend on how well suited the formalism is to that prob-
lem.More importantly, different formalisms emphasize different aspects of a system,
thus leading to different physical pictures, and will suggest different types of gener-
alizations. For example, the Hamiltonian formalism for classical particles was well
suited for the early development of quantum mechanics, while Feynmann diagrams
in quantum field theory arose from a Lagrangian formulation. Thus, there are very
good reasons for considering more than one formulation of a physical theory.

© Springer International Publishing Switzerland 2016
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This book develops and applies a formalism for physical theories that is extremely
broad in scope—including both classical and quantum mechanics as particular
examples—and which is underpinned by a very simple physical picture: ensembles
evolving on a configuration space. The mathematical structure is correspondingly
simple (simpler than that of C∗-algebras for example). Yet it is sufficiently nontrivial
to be able to guarantee (unlike generalised probabilistic theories for example) the
existence of useful objects such as a Lie bracket for observables, canonical transfor-
mations, measurement interactions, weak values and thermal ensembles .

The aims of this introductory chapter are to (i) introduce basic elements of the
approach, largely via a number of classical and quantum examples, and (ii) preview
the many generalisations and applications that form the subjects of later chapters.

1.2 Basic Concepts and Examples

The core of the formalism may be summarised in the following

Central idea: Physical systems are described by ensembles on configuration
space, the dynamics of which is governed by an action principle.

This central idea makes reference to three familiar concepts: configuration space,
ensembles, and Hamilton’s principle of least action, briefly discussed in turn below.

The first basic concept is the configuration space of a physical system. For exam-
ple, in classical mechanics a particle may be in different locations of space, and the
configuration space is three-dimensional Euclidean space. By contrast, the config-
uration space of a two-level system, corresponding to the outcomes of a classical
coin toss or measurement on a qubit, is a discrete space with only two elements, such
as {heads, tails} or {up,down}. The primary role of a physical theory is to make
predictions about system configurations and their evolution. Thus, the mathematical
description of a physical system will always involve a choice of configuration space.

The second concept is that of an ensemble on configuration space. The underlying
physical idea here is that the formalism should be general enough to cover systems
that are subject to uncertainty. Thus, in general, the systemwill be described by some
probability distribution P defined over the configuration space.

The third concept is that the dynamics of the ensemble is specified by an action
principle. Since the principle of least action is a generic feature of all known funda-
mental physical theories, this is not contentious or surprising in itself. However, in
the context of ensembles evolving on configuration space, the requirement that the
probability distribution P remains positive and normalised under evolution will be
seen to be an important and nontrivial constraint on allowed ensemble Hamitonians.
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As a first example, consider a non-relativistic classical particle of massmmoving
in a potential V(x). Our starting point in applying the above concepts will be one of
the standard formulations of classical dynamics, the Hamilton–Jacobi equation

∂S

∂t
+ |∇S|2

2m
+ V = 0. (1.1)

A solution S of this equation provides a complete description of the motion when
there is no uncertainty: if the particle is known to be at position x at time t, then it
has momentum mẋ = ∇S(x, t) and energy −∂tS [1, 2].

It is not always appreciated that the Hamilton–Jacobi formalism is fundamentally
a theory of ensembles [3]. The gradient of S/m, in defining a velocity vector at every
point on the configuration space, allows any uncertainty regarding the position of
the particle to be naturally described by a probability density over the configuration
space, P(x, t), with the conservation of probability ensured by a continuity equation
of the usual form

∂P

∂t
+ ∇ ·

(
P

∇S

m

)
= 0. (1.2)

Equations (1.1) and (1.2) are the equations of motion of an ensemble on configu-
ration space, for the case of a classical particle. But what is the corresponding action
principle for the ensemble described by P? Equivalently, what is the correspond-
ing Langrangian or Hamiltonian that generates these equations of motion? Since P
(not x) is the fundamental quantity describing the ensemble, any suitable ‘ensemble
Hamiltonian’ specifying its evolution should depend onP and some canonically con-
jugate quantity Π [1]. In fact, for the above classical equations of motion one may
take S as the quantity canonically conjugate to P, and the corresponding classical
ensemble Hamiltonian is given by the functional

HC[P, S] :=
∫

dx P

( |∇S|2
2m

+ V

)
. (1.3)

In particular, it may be checked that Eqs. (1.1) and (1.2) are equivalent to the Hamil-
tonian equations of motion

∂P

∂t
= δHC

δS
,

∂S

∂t
= −δHC

δP
, (1.4)

where δ/δf denotes the variational derivative with respect to the function f 1 [1]. The
classical ensemble Hamiltonian in Eq. (1.3) may immediately be recognised as the
average energy of the ensemble.

1For readers unfamiliar with variational derivatives, more details are given in AppendixA of this
book. It is sufficient to recall here that for F = ∫

dx g(x, f ,∇f ), one has δF/δf = ∂g/∂f − ∇ ·
∂g/∂(∇f ). The case of discrete configuration spaces is mathematically simpler, as discussed in
Sect. 1.3.
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The formulation of the equations ofmotion for a classical particle in Eqs. (1.3) and
(1.4) may appear unfamiliar, and it certainly does not appear in standard textbooks on
mechanics. However, the form of the classical ensemble Hamiltonian HC is in fact
well known in the theory of ideal fluids (dating back to the 19th century), where the
quantity S/m is reinterpreted as a velocity potential [4]. Moreover, the fundamental
nature of this formulation quickly becomes apparent when it is realised that the
equations of motion for a quantum particle have a remarkably similar form.

In particular, let ψ(x) denote the wave function for a quantum particle of mass
m subject to potential V(x), and define the real functions P and S on configuration
space via the polar decomposition ψ = √

P eiS/�. The equations of motion for P and
S then follow via substitution into the standard Schrödinger equation for ψ , yielding
the continuity equation

∂P

∂t
+ ∇ ·

(
P

∇S

m

)
= 0 (1.5)

as before, and the modified Hamilton–Jacobi equation

∂S

∂t
+ |∇S|2

2m
+ V − �

2

2m

∇2P1/2

P1/2
= 0. (1.6)

These equations are equivalent to the Hamiltonian equations of motion

∂P

∂t
= δHQ

δS
,

∂S

∂t
= −δHQ

δP
, (1.7)

analogous to Eq. (1.4) above, where HQ is the quantum ensemble Hamiltonian

HQ[P, S] :=
∫

dx P

( |∇S|2
2m

+ V + �
2

8m

|∇P|2
P2

)
. (1.8)

Equations (1.5) and (1.6), together with the ensemble Hamiltonian HQ, were first
given by Madelung in 1926 [5]. Madelung further showed that

HQ[P, S] =
∫

dxψ∗(x)
(

− �
2

2m
∇2 + V

)
ψ(x) =

〈
−∂S

∂t

〉
, (1.9)

which may be recognised as the average quantum energy for the wave function ψ .
Thus, just as for the classical case, the ensemble Hamiltonian is equal to the average
energy of the ensemble, and also to the average of −∂tS. Further, in the limit � → 0
one has HQ → HC , and hence the quantum and classical equations of motion
become identical.

The above examples show that the dynamics of classical and quantum non-
relativistic particles can be treated using the common framework of ensembles on
configuration space, where the primary difference between quantum and classical
evolution lies in the choice of the ensemble Hamiltonian. We explore this framework
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a little further in this chapter, to give examples for discrete configuration spaces and
to note some fundamental properties of ensemble Hamiltonians. In later chapters
we will considerably develop the framework, to give a unified treatment of concepts
such as observables, fields, interaction, measurement, superselection, weak values,
and thermodynamics on configuration space, without reference to any particular
theory. This general framework is capable of attacking a number of interesting prob-
lems that either cannot be formulated in the language used by other theories or are
extremely difficult to formulate, such as consistent descriptions of measurements on
a quantum system by a classical measuring device and the coupling of quantum fields
to a classical gravitational field. It is also shown to be a powerful starting point for
the derivation of the quantum formalism from suitable axioms (see Sect. 1.5 for an
indication of the material covered in later chapters).

1.3 Further Examples: Discrete Configuration Spaces

The formalism of ensembles on configuration space is very broadly applicable. It is
worthwhile in this introductory chapter to see how it is able to incorporate classical
and quantum systems with discrete configuration spaces. Indeed, the formalism in
this case is somewhat simpler than the one for particles described in the previous
section, as no variational derivatives are involved.

1.3.1 Classical Rate Equations

Consider the evolution of a classical probability distribution P ≡ {Pj} on a discrete
set of points labelled by 1, 2, 3, . . . . This is a ubiquitous problem in the theory of
stochastic processes [6]. If Tjk denotes the rate at which probability flows from site
k to site j, then the evolution of P is given by the transition rate equation

∂Pj

∂t
=

∑
k

(
TjkPk − TkjPj

)
(1.10)

(sometimes called a classical master equation or Kolmogorov equation). The first
part of the sum generates the total probability flowing into site j, and the second
part generates the total probability flowing out. Note that the transition rates can
depend on P, and that Tkk may be chosen arbitrarily as it makes no contribution to
the rate equation. The equation is often represented pictorially by a transition graph:
the points correspond to the vertices of the graph, and for each pair of vertices (j, k)
there is a directed edge from vertex k to vertex j labeled by Tjk [6].
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Equation (1.10) is a discrete analog of the continuity equation (1.2) for probability
flow on a continuous configuration space, and similarly ensures the conservation of
probability. This may be checked via summation of both sides over j, and swapping
the dummy indices in the second term.

To model this case within the formalism of ensembles on configuration space, we
require the existenceof a canonically conjugate quantityS ≡ {Sj}on the configuration
space, and a suitable ensemble Hamiltonian H(P, S), such that the equations of
motion are given by

∂Pj

∂t
= ∂H

∂Sj
,

∂Sj
∂t

= − ∂H

∂Pj
. (1.11)

It is straightforward to construct such a Hamiltonian system: choose

H(P, S) =
∑
j,k

TjkPk(Sj − Sk). (1.12)

TheHamiltonian equations ofmotion then generate the transition rate equation (1.10)
as desired. It should be noted that this is a purely formal construction: transition rate
equations are typically obtained from an underlying microscopic description that
incorporates the fundamental physics, with a given transition rate equation being
compatible with many possible such descriptions. Nevertheless, the construction
shows that such equations, while only providing a phenomenological model, can
easily be incorporated into the formalism of ensembles on configuration space.

An important feature of the above ensemble Hamiltonian H(P, S) is that it only
depends on S via the differences between its components. It will be seen in Sect. 1.4
that this feature is generic for discrete configuration spaces, and is related to the con-
servation of probability. It may further be noted that, for the special case of constant
transition rates, the above ensemble Hamiltonian further generates the equation

∂Sj
∂t

= −
∑
k

Tjk(Sj − Sk) (1.13)

for the conjugate quantity S. As this is independent of the evolution of P, it has no
direct physical import (at least, notwithout a specific underlyingmicroscopicmodel).
However, by multiplying this equation by Pj and summing over j one immediately
obtains the connection

H(P, S) = −
∑
j

Pj
∂Sj
∂t

=
〈
−∂S

∂t

〉
(1.14)

between the ensemble Hamiltonian and the average of −∂tS, which similarly held
for the classical and quantum ensembles of the previous section. Hence, −∂tSj may
be interpreted as the energy associated with site j in this case. It will be seen in
Sect. 1.4 that this connection is guaranteed for ensemble Hamiltonians satisfying a
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homogeneity property. Other physical roles for S will be seen in later chapters (most
notably in regard to generating physical transformations of the ensemble such as
translations and reflections).

1.3.2 Finite-Dimensional Quantum Systems

For quantum systems evolving on a finite Hilbert space, the configuration space
may be chosen to be the set of discrete outcomes of any complete measurement on
the system. For example, for nondegenerate Hermitian operator Â, with orthormal
eigenstates {|aj〉}, the configuration space is {aj}. The choice of measurement is in
principle arbitrary, and corresponds to the choice of the ‘computational basis’ in
quantum computing theory.

For quantum state |ψ〉 = ∑
j ψj|aj〉, define Pj and Sj via the polar decomposition

ψj = √
PjeiSj/�. Thus, P ≡ {Pj} is the probability distribution on configuration space

for the ensemble of systems described by |ψ〉. Guided by the previous examples, an
obvious candidate for the corresponding ensemble Hamiltonian is the average energy
of the ensemble,

H(P, S) := 〈ψ |Ĥ|ψ〉 =
∑
j,k

hjk
√
PjPke

−i(Sj−Sk)/�, (1.15)

where Ĥ is the quantumHamiltonian operator and hjk := 〈aj|Ĥ|ak〉. It is then straigh-
forward to check that the Hamiltonian equations of motion (1.11) are indeed equiv-
alent to the real and imaginary parts of the Schrödinger equation

Ĥ|ψ〉 = i�
∂|ψ〉
∂t

. (1.16)

It may also be checked that Eq. (1.14) holds for the average energy, i.e., H(P, S) =
〈−∂tS〉.

Just as for the classical rate equations, the ensembleHamiltonian in Eq. (1.15) only
depends on differences between the components of S, implying that the equations
of motion are invariant under the addition of an arbitrary constant to the compo-
nents of S. In quantum mechanics this is usually interpreted in terms of the physical
irrelevance of the global phase of the wave function. However, in the more general
formalism of ensembles on configuration space, this property follows as a funda-
mental consequence of the conservation of probability (see Sect. 1.4).

It is straightforward to generalise the above results to any complete basis set {|a〉}
for a quantum system, whether finite or infinite, discrete or continuous, orthonormal
or otherwise [7] (one only requires that

∑
a |a〉〈a| = 1̂, with summation replaced



10 1 Introduction

by integration over any continuous ranges of a). One may similarly generalise the
results to quantum field theory (see for example Chaps. 5 and 11, where fields are
discussed).

1.4 Fundamental Properties of Ensemble Hamiltonians

We may abstract from the examples of the previous sections to rewrite the central
idea in Sect. 1.2 more formally, as

Central idea (formal version):Physical systems are describedby aprobability
density P on configuration space, a canonically conjugate quantity S, and an
ensemble Hamiltonian H (P, S).

This idea is very simple but surprisingly powerful. It not only incorporates and
unifies the description of standard classical and quantum dynamics, but provides a
general and useful framework for formulating more general physical theories, as will
be seen in later chapters.

The state of the system is described by the configuration ensemble (P, S). The role
of the ensemble Hamiltonian H(P, S) is to specify the dynamics of this ensemble.2

Hence, in particular, it must evolve probabilities to probabilities. This places some
important physical constraints on the choice of possible ensemble Hamiltonians, as
will now be discussed.

1.4.1 Conservation of Probability

Probabilities must always sum to unity, and hence the evolution of an ensemble
must respect this property. It will be shown here that the conservation of probability
corresponds to invariance of the dynamics under the addition of an arbitrary constant
to S.

First, for an ensemble on a discrete configuration space with probability dis-
tribution Pj, note that conservation of probability is equivalent to

∑
j Pj(t) =∑

j Pj(t + ε) = 1. Hence, to first order in ε, one has via Eq. (1.11) that

0 =
∑
j

[
Pj(t + ε) − Pj(t)

] =
∑
j

ε
∂Pj
∂t

= ε
∑
j

∂H

∂Sj
= H (P, S+ε)−H (P, S). (1.17)

Hence, by considering a sequence of infinitesimal evolutions, it follows that

2For continuous configuration spaces P and S are functions, and hence one should more properly
write the ensemble Hamiltonian as a functional, H[P, S], in this case. However, it is convenient to
use the notation H(P, S) when referring to the general case.

http://dx.doi.org/10.1007/978-3-319-34166-8_5
http://dx.doi.org/10.1007/978-3-319-34166-8_11
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H (P, S + c) = H (P, S) (1.18)

as claimed. In particular, this implies for discrete configuration spaces that the ensem-
ble Hamiltonian only depends on S via the differencesMjk := Sj − Sk: only relative
values of S are physically relevant. Note for quantum systems that this property cor-
responds to (and explains) the irrelevance of a global phase factor of the quantum
state (see previous section).

It follows, writing H (P, S) ≡ f (P,M) for some function f , that the equation of
motion for P reduces to the form of a transition rate equation,

∂Pj

∂t
=

∑
k

(
∂f

∂Mjk
− ∂f

∂Mkj

)
=

∑
k

(
TjkPk − TkjPj

)
, (1.19)

with corresponding transition rates

Tjk := (Pk)
−1 ∂f

∂Mjk
(1.20)

(and Tjk := 0 for Pk = 0). Note that, unlike the classical rate equation in Eq. (1.10),
these transition rates will generally depend on S. In particular, for the discrete quan-
tum ensemble Hamiltonian in Eq. (1.15) one finds

Tjk = �
−1

√
Pj/Pk Im

{
hjke

−i(Sj−Sk)/�
}
. (1.21)

Such quantum transition rate equations have been used by Bell to formulate a theory
of beables for fermionic fields [8], and by others to formulate modal interpretations
of quantum dynamics [9].

For a continuous configuration space the ensemble Hamiltonian is more prop-
erly written as a functional, H[P, S]. Replacing partial derivatives by variational
derivatives and summation by integration in the derivation of Eq. (1.18), one then
obtains3

0 =
∫

dx [P(x, t + ε) − P(x, t)] =
∫

dx ε
∂P

∂t
= ε

∫
dx

δH

δS
= H [P, S + ε] − H [P, S],

(1.22)
to first order in ε. Thus, in complete analogy to the discrete case in Eq. (1.18), we
have

H [P, S + c] = H [P, S]. (1.23)

Note that this property is guaranteed for the classical and quantum ensemble Hamil-
tonians HC[P, S] and HQ[P, S], in Eqs. (1.3) and (1.8) respectively, because they
only depend on S via its derivative ∇S. The general result is worth highlighting:

3Here the defining property of the variational derivative, F[f + δf ] − F[f ] = ∫
dx(δF/δf )δf for

arbitrary infinitesimal variations δf , has been used (see AppendixA of this book).
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Conservation of probability implies that

• The ensemble Hamiltonian is invariant under S → S+ c for any constant c.
• Only relative values of S have dynamical significance.

1.4.2 Positivity of Probability

A second fundamental property of probability is that it is positive, i.e., P ≥ 0. This
enforces a further nontrivial constraint on the ensemble Hamiltonian. For example,
while H(P, S) = S2 − S1 satisfies Eq. (1.18), and hence conserves probability, the
equations of motion (1.11) yield P1(t) = P1(0) − t, which eventually becomes
negative.

A necessary condition for ensuring positivity is obtained by expanding the prob-
ability about a given time t:

P(t + ε) = P(t) + ε
∂P

∂t
+ 1

2
ε2

∂2P

∂t2
+ · · · . (1.24)

In particular, one must have ∂P
∂t = 0 and ∂2P

∂t2 ≥ 0 whenever P(t) = 0, as otherwise
P will be negative at times either just before or just after time t. The first of these
conditions corresponds to the constraints

∂H

∂Sj
= 0 for Pj = 0,

δH

δS
= 0 for P(x) = 0, (1.25)

on the ensemble Hamiltonian, for discrete and continuous configuration spaces
respectively. One can similarly write down a corresponding constraint for the second
condition, involving derivatives of the ensemble Hamiltonian to second order.

For example, for classical and quantum particles the positivity condition (1.25)
reduces, via the continuity equation (1.2), to

∂P

∂t
= −∇ ·

(
P∇S

m

)
= −P∇2S

m
− ∇P · ∇S

m
= 0 for P(x) = 0. (1.26)

To verify this condition holds, note that if P(x) = 0 for some point x (at some fixed
time t), then this is necessarily a global minimum of P(x), implying that ∇P = 0 at
point x. Thus ∂P

∂t = 0 as required. One may similarly check that ∂2P
∂t2 ≥ 0.

For the discrete examples in Sect. 1.3, positivity condition (1.25) reduces, via
either of the transition rate equations (1.10) and (1.19), to

∑
k TjkPk = 0 for Pj = 0.

For the classical transition rate equation (1.10) the condition must be checked in



1.4 Fundamental Properties of Ensemble Hamiltonians 13

each case, but will of course hold for equations derived from physical microscopic
models. In the quantum case its validity follows immediately from Eq. (1.21) for the
quantum transition rates—indeed, for this case one has the stronger result Tjk = 0
for Pj = 0.

1.4.3 Homogeneity

The examples of ensemble Hamiltonians in Eqs. (1.3), (1.8) and (1.15) all satisfy the
simple homogeneity property

H (λP, S) = λH (P, S), λ ≥ 0. (1.27)

This property, while not mathematically necessary, is of fundamental interest due to
its physical implications.

First, note that taking the derivative of Eq. (1.27) with respect to λ and evaluating
the result at λ = 1 yields

H (P, S) =
〈
−∂S

∂t

〉
(1.28)

for both discrete and continuous configuration spaces (using the Hamiltonian equa-
tions of motion ∂tSj = −∂H /∂Pj and ∂tS = −δH /δP respectively). Second, con-
sider the decomposition of P into a mixture of two ensembles on the configuration
space, i.e.,

P = w1 P
(1) + w2 P

(2), w1,w2 ≥ 0, w1 + w2 = 1. (1.29)

It then follows from Eq. (1.28), assuming a discrete configuration space for definite-
ness, that

H (P, S) = −
∑
j

Pj
∂Sj
∂t

= −w1

∑
j

P(1)
j

∂Sj
∂t

− w2

∑
j

P(2)
j

∂Sj
∂t

= w1H (P(1), S) + w2H (P(2), S). (1.30)

Hence, the numerical value of the ensemble Hamiltonian is just the weighted average
of the values for the two subensembles, as required for interpreting it as an average
energy. It further follows from Eq. (1.28) that −∂tS may be interpreted as a corre-
sponding local energy density on the configuration space (however, note that the first
result does not require that this local energy density is a physical energy—see also
Sect. 2.4.2). Thus:

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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The homogeneity property implies that

• The ensemble Hamiltonian can be interpreted as the average energy of the
ensemble.

• The quantity −P∂tS is a local energy density for the ensemble.

We will see in Chap.2 that the above results leads to a substantial generalization
of the concept of weak values in quantummechanics, to any theory with observables
satisfying the homogeneity property.

The usefulness of similar homogeneity properties (for evolving the quantumwave
function) has been noted previously in nonlinear extensions of quantum theory [10–
12]. The above results show that homogeneity can be motivated at the more general
level of ensembles on configuration space, without any reference to wave functions
or to quantum mechanics. In Chaps. 3 and 9 this assumption will also be seen to be
important for the consistent description of independently evolving ensembles.

1.5 Outline of This Book

In the following chapters, we will further develop the general formalism of ensem-
bles on configuration space, and apply it in a wide variety of contexts, including
measurement, thermodynamics, axiomatic approaches to quantum mechanics, and
the coupling of classical spacetime to quantummatter. Along the waymany concepts
in classical and quantum theory will be unified and generalised via the overarching
framework provided by the configuration ensemble approach. While some of the
material has previously appeared in some form in the literature, as indicated below,
many results are presented for the first time.

We continue Part I of the book, i.e., the exposition of general properties of the
formalism, in Chaps. 2–4. First, in Chap. 2 we introduce a definition of observables
for arbitrary ensembles on configuration space, and show that these encompass both
classical and quantum observables [7, 13, 14, 24]. We also show that the formalism
allows for the generalisation of certain quantum concepts, such as eigenstates, eigen-
values, weak values and transition probabilities, to arbitrary configuration ensembles.

In Chap.3, we describe composite systems via joint ensembles [13, 14]. These
may consist of subsystems which are, e.g., independent or entangled, interacting or
noninteracting. A precise formulation of these properties is provided. We define the
extension of single-system observables to joint ensembles, and discuss their alge-
braic and separability properties. The rest of this chapter is devoted to a description
of measurement interactions, starting with basic measurement models, then more
elaborate ones describing weak measurements and measurement-induced collapse.

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_9
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_4
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_3
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InChap.4, we considermixtures of configuration space ensembles, and generalise
the quantum notions of ‘proper’ and ‘improper’ mixtures. With the help of such
mixtures it becomes possible to unify and generalise traditional classical and quantum
approaches to thermodynamics, via the definition of suitable ‘thermal mixtures.’ Our
formulation is very different to standard approaches based on the maximum entropy
principle, and is of particular interest in providing a novel Hamilton–Jacobi picture
of classical thermodynamics.

In Part II of the book, comprising Chaps. 5–7, we show how the configuration
ensemble approach provides a natural starting point for three very different axiomatic
approaches to quantummechanics. First, in Chap.5 we introduce a quantization pro-
cedure for classical ensembles which provides an alternative to standard quantization
methods [15–19].We show that it is possible to formulate an exact form of the uncer-
tainty principle, which provides the single key element that is needed for moving
from the equations of motion of a classical ensemble to those of a quantum ensemble.
The quantization procedure is used to derive the Schrödinger equation and bosonic
field equations.

In Chap.6, we look at the geometry of ensembles on configuration space for
both discrete and continuous systems [20–23]. We show that the theory has a rich
geometry, and that the geometrical structures natural to the space can be used to
obtain a geometrical reconstruction of quantum mechanics. The basic structures
used are the natural metric on the space of probabilities (information geometry) and
the description of dynamics using a Hamiltonian formalism (symplectic geometry);
requirements of consistency then lead to a Kähler geometry. This geometrical recon-
struction of quantummechanics has some remarkable features. Thewave functions of
quantum mechanics appear as the natural complex coordinates of the Kähler space,
the full group of unitary transformations is derived based on consistency require-
ments, and a Hilbert space may be associated with the Kähler space of the theory,
leading to the standard version of quantum theory.

In Chap.7, we consider local representations of rotations on discrete configuration
spaces, focusing in particular on ensembles of either one or two spin-half systems,
which we call rotational bits or ‘robits’. In the case of a single robit, the theory
is equivalent to that of a single quantum mechanical qubit. The description of a
pair of robits is more complicated, in that requirements of locality and subsystem
independence must be taken into account. We show that in this case, in addition to a
theory which is equivalent to the quantum theory of a pair of qubits, it may also be
possible to have non-quantum local models.

Part III of the book, comprising Chaps. 8 and 9, deals with hybrid classical-
quantum systems [13, 14, 24–26]. The problem of defining hybrid systems com-
prising quantum and classical components is highly nontrivial, and the approaches
that have been proposed to solve this problem run into various types of fundamental
difficulties. The formalism of configuration-space ensembles is able to overcome
many of these difficulties, allowing for a general and consistent description of inter-
actions between quantum and classical ensembles. In Chap.8, we discuss general
properties of hybrid ensembles and consider various applications: measurements of a
quantum system by a classical apparatus, scattering, harmonic oscillators, and hybrid

http://dx.doi.org/10.1007/978-3-319-34166-8_4
http://dx.doi.org/10.1007/978-3-319-34166-8_5
http://dx.doi.org/10.1007/978-3-319-34166-8_7
http://dx.doi.org/10.1007/978-3-319-34166-8_5
http://dx.doi.org/10.1007/978-3-319-34166-8_6
http://dx.doi.org/10.1007/978-3-319-34166-8_7
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_9
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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Wigner functions. In Chap.9, we focus on consistency requirements for quantum-
classical interactions. We show how the configuration ensemble approach is able
to satisfy desirable properties such as a Lie algebra of observables and Ehrenfest
relations, while evading no-go theorems based in part on such properties. We then
discuss locality aspects of the approach and present a measurement model of wide
applicability.

Finally, Part IV, comprising Chaps. 10 and 11, is devoted to ensembles of clas-
sical gravitational fields and their interaction with quantum fields [18, 19, 27, 28].
After considering the case of pure gravity in Chap.10, which we illustrate with the
example of ensembles of black holes, Chap. 11 discusses the coupling of classical
gravitational fields to quantummatter fields. In the standard approach to this problem
(i.e., semiclassical gravity), the energy momentum tensor that serves as the source of
the Einstein equations is replaced by the expectation value of the energy momentum
operator with respect to a particular quantum state. This approach, however, presents
a number of well known difficulties. We show that a viable alternative is provided by
the use of ensembles on configuration space, which leads to a theory that is consistent
and which does not have any of the problems of semiclassical gravity. We illustrate
the power of the approach with two examples: a cosmological model which consists
of a closed Robertson–Walker universe with a massive quantum scalar field and a
classical CGHS black hole in a collapsing geometry interacting with a quantized
scalar field.
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Chapter 2
Observables, Symmetries and Constraints

Abstract The notion of observable is one of the key concepts of a physical theory.
We introduce a definition of observables within the framework of ensembles on con-
figuration space, based on the idea of associating observables with generators of
canonical transformations acting on the phase space of the fundamental variables P
and S. These ensemble observables encompass both classical and quantum observ-
ables. Remarkably, for classical observables the Poisson bracket of the ensemble
observables is isomorphic to the usual bracket on standard classical phase space,
while for quantum observables it is isomorphic to the commutator in Hilbert space.
We show that the formalism allows for the generalisation of certain quantum con-
cepts, such as eigenstates, eigenvalues, weak values and transition probabilities, to
arbitrary configuration ensembles. We discuss also systems with symmetries, in par-
ticular examples which involve representations of the Galilean group for the case
of a free particle and rotations defined on discrete configuration spaces. Finally, we
generalise and reinterpret quantum superselection rules in terms of constraints on
observables.

2.1 Some General Considerations

The description of physical systems in terms of ensembles on configuration space
introduces very few physical assumptions. However, there are some issues which
concern the interpretation of the basic elements that are part of the formalism which
are of importance and which we now address.

2.1.1 Fundamental Variables and Ontology

The theory of ensembles on configuration space is a statistical theorywhich describes
states of a system (classical, quantum or hybrid) in terms of the two canonically
conjugate variables, P and S, with the time evolution of the conjugate variables
being determined by an ensemble Hamiltonian, H [P, S] (see Chap.1).
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The interpretation ofP is rather straightforward.We assume that the configuration
of a physical system is an inherently statistical concept, in which case the state of
the system must be described by an ensemble of configurations, corresponding to
some probability density P on the configuration space. The physical interpretation
of S requires more care. As we have discussed in the previous chapter, the dynamical
significance of S is invariant under addition of an arbitrary constant, and one may
define a local energy density, −P∂tS, for ensemble Hamiltonians satisfying a fun-
damental homogeneity property. Furthermore, the gradient of S plays an important
role for continuous configuration spaces because it is proportional to the velocity
vector fields which enters into the continuity equation for P (see Sect. 1.2), and its
more general role as a generator of translations will be seen below. It is clear that one
could attempt to “complete” the theory, for example by assigning a definite momen-
tum p = ∇S and a definite energy E = −∂tS to particles that belong to an ensemble.
This would lead to the usual deterministic interpretation of the Hamilton–Jacobi
equation for the case of a classical system, and to the de Broglie–Bohm formulation
for the case of a quantum system. However, we will not take this additional step and
we will rely instead on a “minimalist” interpretation in which the theory is treated
as a purely statistical one (see also the discussion of the classical limit in Sect. 9.3).
Thus, for particles and continuous configuration spaces, the fundamental concept is
that of a probability density P defined on the configuration space of the system, and
the existence of a canonically conjugate quantity S is mandated by the requirement
that P evolves according to an action principle.

A configuration ensemble defined by a pair of conjugate variables P and S which
satisfy the equations of motion derived from the ensemble Hamiltonian will also be
called a pure ensemble. This terminology corresponds to the notion of a pure state in
quantummechanics, which is described by awave functionψ = √

PeiS/� (in contrast
to a mixed state described by a density matrix). Here we apply this terminology to all
configuration ensembles, whether classical, quantum or otherwise. In addition, one
may also definemixtures of configuration ensembles, of the form {Pk, Sk;wk}, where
each of the components satisfy the equations of motion determined by the same
ensemble Hamiltonian H [P, S] and ∑

k wk = 1, so that
∑

k wk
∫
dx Pk(x, t) = 1.

Mixtures are integral to our discussion of thermodynamics on configuration space
in Chap.4. But the formalism of ensembles on configuration space has a pure state
ontology. In particular, it treats pure ensembles, rather than more general mixtures,
as physically fundamental. The latter are taken to merely reflect ignorance of the
‘true’ pure state.

2.1.2 The Dual Role of Observables

From quantummechanics, we are familiar with the dual role of the operators that are
associated with observables: they are Hermitian operators which, on the one hand,
generate transformations which are unitary and thus preserve the normalization of
the probability |ψ |2 and, on the other, have real expectation values and eigenvalues

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_9
http://dx.doi.org/10.1007/978-3-319-34166-8_4
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which in principle can be determined from measurement (hence the terminology
“observable”). It is often necessary to consider both roles when analyzing experi-
ments: typically, an effort is made to prescribe operational procedures which define
the observables that are being measured in the experiment via a particular inter-
action process (e.g., the spin of a particle in a Stern–Gerlach experiment via an
interaction with an inhomogeneous magnetic field) while at the same time including
other observables in the analysis of the experiment in their role of generators of
transformations (e.g., the energy in its role of generator of time translations, if the
interaction takes place at one time and the detection at a later time).

As is well known, for most of the Hermitian operators that one can define in quan-
tum mechanics there are no operational procedures that specify how they should be
measured. In addition, there are fundamental limitations on the precision with which
measurements can be made for observables that do not commute with additive con-
served quantities (e.g., linear or angular momentum, or charge) [1], which constitute
however the vast majority of the observables that are of interest. This does not create
serious difficulties when applying quantum theory to actual experiments, but it does
mean that the theory allows for a surplus of possible observables, all of which have
well defined properties as far as their role as generators of transformations is con-
cerned, but are problematic in their role of measurable quantities in that operational
prescriptions for eigenvalues and expectation values are not always available.

A similar situation, regarding both the dual role of observables and the large
number of possible observables allowed by the theory, also holds for standard classi-
cal dynamics on phase space: observables are functions of position and momentum
on phase space, and are regarded as both measurable quantities and generators of
canonical transformations [2].

In the discussion on observables that follows, for the general case of ensembles
on configuration space, the same considerations apply. We will first address the more
general issue of defining generators of transformations within the theory. We will
make the connection to measurements in Chap.3.

In this chapter we give a precise definition of observables, and discuss examples
for both classical and quantum ensembles.We introduce the notion of an eigenensem-
ble, and generalise the quantum mechanical notions of weak values and transition
probabilities. We address the representation of symmetries by corresponding groups
of observables, independently of whether the ensemble is classical, quantum or oth-
erwise, via examples of Galilean particles and “rotational bits”. Finally, we end the
Chapter with a discussion of constraints and the formulation of superselection rules.

2.2 Observables

A significant advantage of describing physical systems by ensembles evolving on
configuration space is the existence of an action principle (see Chap.1). In particular,
this allows the definition of a Poisson bracket for functions of the fundamental phase
space variables P and S, and allows observables to be introduced as generators of

http://dx.doi.org/10.1007/978-3-319-34166-8_3
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canonical transformations with respect to this bracket, just as in standard classical
dynamics [2]. We will see that this Poisson bracket is isomorphic to the Poisson
bracket on a classical phase space for the case of classical ensembles, and is isomor-
phic to the quantum commutator for the case of quantum observables. The existence
of such a bracketwillmore generally allow us to define dynamics for hybrid classical-
quantum systems, such as the coupling of quantum systems to classical measuring
apparatuses and of quantum fields to classical gravity (see Chaps. 8 and 11).

For an ensemble on a discrete configuration space, with ensemble Hamiltonian
H (P, S), the evolution is specified by the Hamiltonian equations of motion (see
Chap.1)

∂Pj

∂t
= ∂H

∂Sj
,

∂Sj
∂t

= − ∂H

∂Pj
. (2.1)

Defining the Poisson bracket for two arbitrary functions A(P, S) and B(P, S) by

{A,B} :=
∑
j

(
∂A

∂Pj

∂B

∂Sj
− ∂A

∂Sj

∂B

∂Pj

)
, (2.2)

these equations of motion may be rewritten in the form

∂Pj

∂t
= {Pj,H }, ∂Sj

∂t
= {Sj,H } (2.3)

in complete analogy to the case of classical phase space dynamics [2]. It immediately
follows that any function A(P, S, t) of P, S and t evolves as

dA

dt
=

∑
j

(
∂A

∂Pj

∂Pj

∂t
+ ∂A

∂Sj

∂Sj
∂t

)
+ ∂A

∂t

= {A,H } + ∂A

∂t
. (2.4)

Similarly, for an ensemble on a continuous configuration space, the Poisson
bracket of two arbitrary functionals A[P, S] is defined by

{A,B} =
∫

dx

(
δA

δP

δB

δS
− δA

δS

δB

δP

)
. (2.5)

Noting that δf (x)/δf (x′) = δ(x − x′) (see AppendixA.1 of this book), it follows that
the equations of motion for the ensemble can be rewritten as

∂P

∂t
= {P,H }, ∂S

∂t
= {S,H } (2.6)

and that again dA/dt = {A,H } + ∂A/∂t as per Eq. (2.4).
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Transformations of the fundamental phase space variables P and S that preserve
the Poisson bracket are called canonical transformations. In particular, every function
(or functional) of these variables generates an associated infinitesimal canonical
transformation, according to

δP = {P,A}ε = δA

δS
ε (2.7)

δS = {S,A}ε = − δA

δP
ε, (2.8)

where ε is an infinitesimal parameter [2].
It is natural to associate observables with the generators of such canonical trans-

formations, similarly to the case of standard classical and quantum mechanics (see
previous section). In particular, the ensemble Hamiltonian may be interpreted as
the generator of time translations. However, it will be recalled from Chap.1 that
ensemble Hamiltonians must satisfy certain fundamental constraints, to ensure the
conservation and positivity of probability. Similarly, one cannot associate an arbi-
trary function A(P, S)with an observable: the infinitesimal canonical transformation
generated by A,

P → P + ε
δA

δS
, S → S − ε

δA

δP
, (2.9)

must preserve the normalization and positivity of P. Hence, just as per Eqs. (1.18)
and (1.25) for ensemble Hamiltonians, the conditions

A[P, S + c] = A[P, S], δA

δS
= 0 if P(x) = 0 (2.10)

must be satisfied for observables on continuous configuration spaces (and corre-
sponding conditions for observables on discrete configuration spaces). The first of
these conditions implies that only relative values of S have physical significance.

There is a further fundamental requirement which we will impose on observables,
corresponding to the homogeneity property for ensemble Hamiltonians discussed in
Sect. 1.4: that they be functionals which are homogeneous of degree one in P, i.e.,

A[λP, S] = λA[P, S], (2.11)

where λ is an arbitrary positive constant. In particular, this property implies that
A can consistently be interpreted as an ensemble average (see Sect. 1.4.3), i.e., the
numerical value of A corresponds to the expectation value of the observable over the
ensemble.

We are led therefore to the following definition of observables:

Definition The observables of a configuration ensemble are a set of functions (or
functionals) of P and S satisfying the probability conservation, positivity and homo-
geneity properties in Eqs. (2.10) and (2.11).

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_1
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Note that each of the conditions in Eqs. (2.10) and (2.11) is preserved by the
Poisson bracket. First, defining I[P, S] := ∫

dx P, the conservation of probability is
simply the requirement that I is invariant under allowed canonical transformations,
i.e., that δI = ε{I,A} = 0. Hence, if it holds for two observables A and B, then it
automatically holds for {A,B} via the Jacobi identity, since

{I, {A,B}} = −{A, {B, I}} − {B, {I,A}} = 0. (2.12)

Similarly, the positivity condition may be rewritten as δP = ε{P,A} = 0 whenever
P(x) = 0 (otherwise P(x) can be decreased below 0 by choosing the sign of ε appro-
priately), which again holds for {A,B}, if it holds for A and B, as a consequence of
the Jacobi identity. Finally, it is straightforward to check that the Poisson bracket of
two functionals which are homogeneous of degree one in P is also homogeneous
of degree one in P. Hence, it may assumed without loss of generality that the set of
observables form a closed Lie algebra under the Poisson bracket.

2.3 Examples

In the previous section we have given a precise definition of observables. We now
consider a number of examples, including classical and quantum observables.

2.3.1 Position and Momentum Observables

Two examples of particular interest for continuous configuration spaces are position
and momentum observables. Given the interpretation of observables as expectation
values, following from the homogeneity property (2.11), an obvious definition for
the ensemble position observable is

X[P, S] :=
∫

dx Px. (2.13)

Note that this observable generates the transformation

P → P + ε
δX

δS
= P (2.14)

via Eq. (2.9), and hence P trivially remains positive and normalised, as required by
Eq. (2.10). The homogeneity property (2.11) is also trivially satisfied.

The definition of the ensemble momentum may be motivated by noting that in
classical and quantum mechanics the momentum observable generates translations
(for example, ψ(x − ε) = e−iε·p̂/�ψ(x) for a quantum wave function ψ(x)). Hence,
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identifying the ensemble momentum as the observable Π which generates transla-
tions, one has via Eq. (2.9) that

ε · δΠ

δS
= δP = P(x − ε) − P(x) = −ε · ∇P(x), (2.15)

and

ε · δΠ

δP
= −δS = −[S(x − ε) − S(x)] = ε · ∇S(x). (2.16)

for arbitrary infinitesimal translations ε on configuration space. The solution of these
equations is, up to an arbitrary additive constant,

Π [P, S] :=
∫

dx P∇S, (2.17)

for the ensemble momentum. In particular, this expression immediately yields
δΠ/δP = ∇S, while under an infinitesimal variation S → S + δS one has

δΠ = Π [P, S + δS] − Π [P, S] =
∫

dx P∇(δS) = −
∫

dx (∇P) δS, (2.18)

which implies, via Eq. (A.1) of the Appendix, that one also has δΠ/δS = −∇P as
required. Note that normalisation and positivity of P is trivially preserved under
translations, implying that Eq. (2.10) is satisfied by Π [P, S]. Further, the homogene-
ity requirement (2.11) is satisfied by direct inspection.

It follows from Eq. (2.17) that P∇S is a local momentum density for continuous
configuration spaces, independently of whether the ensemble is classical, quantum,
or somethingmore general. This result (together with the identification of−P∂tS as a
local energy density in Sect. 1.4), helps to establish the physical role played by S in the
formalism of ensembles on configuration space. However, tomaintain full generality,
S should not be regarded as a “momentum potential”. This would go beyond what is
required of a statistical theory. In particular, for an ensemble of classical particleswith
uncertainty described by the probability P, it will not be assumed that the momentum
of a member of the ensemble is a well-defined quantity proportional to the gradient
of S, as it is done in the usual deterministic interpretation of the Hamilton–Jacobi
equation. This avoids forcing a similar deterministic interpretation in the quantum
case. A deterministic picture can be recovered for classical ensembles precisely in
those cases in which trajectories are operationally defined [3].

Finally, the Poisson bracket for the components of the ensemble position and
momentum may be calculated from Eqs. (2.5), (2.13) and (2.17) as

{Xm,Πn} = δmn (2.19)

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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which is the same result as for the Poisson bracket of two classical position and
momentum observables [2]. A more general correspondence will be seen in the
next example. This result is relevant to representations of the Galilean group of
observables, as will be discussed in Sect. 2.5.

2.3.2 Classical Observables

In classical mechanics, observables corresponds to functions f (x, p) on the classical
phase space. We define the corresponding classical ensemble observable Cf by

Cf :=
∫

dx P f (x,∇S) (2.20)

This is similar in form to a classical average, and clearly satisfies the homogeneity
property (2.11). Hence, the numerical value of Cf may consistently be identified
with the ensemble average of the corresponding function f (x, p). Further, it is easily
checked that Cf satisfies the required normalisation condition in Eq. (2.10)—the
only dependence on S is via its gradient. The positivity condition in Eq. (2.10) is also
satisfied, noting that

δCf

δS
= δ

δS

∫
dx P f (x,∇S) = P

∂f (x,∇S)

∂S
− ∇ ·

[
P

∂f (x,∇S)

∂∇S

]

= −P∇ ·
[
∂f (x,∇S)

∂∇S

]
− ∇P · ∂f (x,∇S)

∂∇S
(2.21)

(see the Appendix to this book regarding the calculation of variational derivatives).
In particular, since P is non-negative, it must reach a global minimum at any point
x for which P(x) = 0. Hence ∇P(x) also vanishes, and thus the last line vanishes at
P(x) = 0 as required.

The Poisson bracket of any two classical observables Cf and Cg follows, using
Eq. (2.5) and integration by parts with respect to x, as

{Cf ,Cg} =
∫

dx
[−f∇x · (P∇pg) + g∇x · (P∇pf )

]

=
∫

dx P
(∇xf · ∇pg − ∇xg · ∇pf

)
= C{f ,g}, (2.22)

where all quantities in the integrands are evaluated at p = ∇xS, and {f , g} denotes
the usual Poisson bracket for phase space functions. Hence, we have the remarkable
result that
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The Poisson bracket for classical ensembles on configuration space is isomor-
phic to the usual Poisson bracket on phase space.

This isomorphism between deterministic observables on phase space and ensem-
ble observables on configuration space makes it possible to formulate thermodynam-
ics on configuration space instead of phase space (see Chap.4), and is crucial to the
construction of hybrid quantum-classical systems (see Chaps. 8 and 9).

2.3.3 Quantum Observables

In quantum mechanics, the fundamental observables are represented by Hermitian
operators. For Hermitian operator M̂ acting on the Hilbert space spanned by the kets
{|q〉}, the configuration space is defined by a choice of computational basis {|q〉} (see
Chap.1), and we define the corresponding quantum ensemble observable QM̂ by

QM̂ := 〈ψ |M̂|ψ〉
=

∫
dq dq′ (PP′)1/2ei(S−S′)/�〈q′|M̂|q〉, (2.23)

where ψ(q) := √
P(q) eiS(q)/�, P = P(q), P′ = P(q′), etc. (and where integration

with respect to q and q′ is replaced by summation over any discrete portions of the
quantum configuration space). This is just the quantum expectation value of M̂ with
respect to the wave function ψ(q), and clearly satisfies the homogeneity property
(2.11).Hence, the numerical value ofQM̂ maybe identifiedwith the ensemble average
of the corresponding operator M̂.

It follows immediately from Eq. (2.23) that QM̂ also satisfies the normalisation
condition in Eq. (2.10) since it only depends on differences of S at different points
q and q′ of configuration space. Further, the positivity condition is trivially satisfied
for a discrete configuration space, while for the continuous case one has, under an
infinitesimal variation S → S + δS,

δQM̂ =
∫

dq dq′ (PP′)1/2
i

�

(
δS − δS′) ei(S−S′)/�〈q′|M̂|q〉

=
∫

dq dq′ (PP′)1/2
i

�

[
ei(S−S′)/�〈q′|M̂|q〉 − ei(S

′−S)/�〈q|M̂|q′〉
]
δS,

immediately implying that

δQM̂

δS
= −1

�

∫
dq′ (PP′)1/2 Im

{
ei(S−S′)/�〈q′|M̂|q〉

}
, (2.24)

which vanishes for P(q) = 0 as required.

http://dx.doi.org/10.1007/978-3-319-34166-8_4
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_9
http://dx.doi.org/10.1007/978-3-319-34166-8_1
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To evaluate the Poisson bracket of any two quantum observables QM̂ and QN̂ , it
is convenient to first express the Poisson bracket in terms of the wave function ψ(q)
and its complex conjugate ψ̄(q). One has in particular for any real functional A[P, S]
that

δA

δP
= ∂ψ

∂P

δA

δψ
+ ∂ψ̄

∂P

δA

δψ̄
= 1

ψ̄ψ
Re

{
ψ

δA

δψ

}
, (2.25)

δA

δS
= ∂ψ

∂S

δA

δψ
+ ∂ψ̄

∂S

δA

δψ̄
= −2

�
Im

{
ψ

δA

δψ

}
, (2.26)

and hence, noting −ad + bc = Im{(a + ib)(c − id)}, that

{A,B} = 2

�
Im

{∫
dq

δA

δψ

δB

δψ̄

}
. (2.27)

A similar result holds for a discrete configuration space, with integration replaced
by summation and variational derivatives by partial derivatives. Recalling that M̂

and N̂ are Hermitian, so that ψ̄M̂ψ may be replaced by (M̂ψ)ψ in Eq. (2.23), it
immediately follows that

{QM̂,QN̂ } = 2

�
Im

{∫
dq (M̂ψ)N̂ψ

}
= Q[M̂,N̂]/(i�), (2.28)

where [M̂, N̂] denotes the usual quantum commutator M̂N̂ − N̂M̂. Hence, in analogy
to classical observables:

The Poisson bracket for quantum ensembles on configuration space is isomor-
phic to the usual commutator on Hilbert space.

Thus, the Poisson bracket for ensemble observables unifies the standard classical
and quantum brackets. This result is crucial to the construction of hybrid classical-
quantum systems (see Chaps. 8 and 9).

2.4 Eigenensembles, Weak Values and Transition
Probabilities

The examples discussed in the previous section show that the notion of ensemble
observables encompasses both classical and quantum observables. It also allows for
the generalisation of certain concepts which are important in quantum mechanics. In

http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_9
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particular, as we show in this section, one may introduce generalisations of quantum
mechanical eigenstates, eigenvalues, weak values and transition probabilities.

2.4.1 Eigensembles and Eigenvalues

We now want to introduce the notion of a state that is ‘sharp’ with respect to a
particular observable, which we will call an eigenensemble. We will show that it is
possible to give a general definition which fits into the canonical formalism of the
theory of ensembles on configuration space. Such states are simply generalizations
of stationary ensembles, which we will discuss first.

2.4.1.1 Stationary Ensembles

For ensemble Hamiltonians with no explicit time dependence, ‘stationary ensem-
bles’ may be defined as those ensembles for which the dynamical properties of the
ensemble are also time-independent. Recalling that only relative values of S are
dynamically relevant (see Sect. 2.2), such ensembles must satisfy the conditions

P(x, t) = P(x, t′), S(x, t) − S(x′, t) = S(x, t′) − S(x′, t′), (2.29)

for all configurations x, x′ and times t, t′, which are equivalent to ∂P/∂t = 0 and
S(x, t) = s(x) + f (t) for some functions s and f (the latter follows by noting the
second condition implies ∂[S(x, t) − S(x′, t)]/∂t = 0, yielding S(x, t) − S(x′, t) =
k(x, x′) for some function k). Noting that f ′′(t) = ∂2S/∂t2 = −(∂/∂t)(δH /δP)

(where δH /δP is replaced by ∂H /∂Pj for discrete configuration spaces), and that
the last term must vanish if the ensemble is time-independent, it follows that station-
ary ensembles are characterised by the conditions

∂P

∂t
= 0,

∂S

∂t
= −E, (2.30)

for some constant E.
The above conditions clearly generalise the concept of a stationary state in quan-

tum mechanics, where E is a corresponding energy eigenvalue. In particular, for
this case Eq. (2.30) reduces to, using Eqs. (2.1), (2.6) and (2.23) with M̂ = Ĥ,
the stationary Schrödinger equation i�∂t|ψ〉 = Ĥ|ψ〉 = E|ψ〉. In classical mechan-
ics, these conditions are equivalent to postulating a stationary state with time-
independent P and a solution of the Hamilton–Jacobi theory of the special form
S(x, t) = −Et + W(x), where E is the energy of the state and W(x) is sometimes
called Hamilton’s characteristic function [2]. We will meet stationary ensembles
again in Chap.4 (for thermal mixtures) and Chap. 8 (for hybrid quantum-classical
ensembles).

http://dx.doi.org/10.1007/978-3-319-34166-8_4
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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2.4.1.2 General Eigensembles

Just as stationary ensembles generalise quantum stationary states, wemay generalise
the notion of quantum eigenstates as follows.

Definition For a given observable A, the configuration ensemble (P, S) is defined
to be an ‘eigenensemble’ of A if and only if the physical properties of the ensemble
are invariant under the canonical transformation generated by A.

To apply this definition, note first that the probability density P is in principle
measurable, and hence must be invariant, i.e.,

δP(x) = ε{P(x),A} = 0. (2.31)

Second, since physical properties are invariant under addition of a constant to S, only
relative values of S are required to be invariant under transformations generated by
A, i.e.,

δS(x) − δS(x′) = ε{S(x) − S(x′),A} = 0 (2.32)

for all x and x′. It follows that (P, S) is an eigenensemble of observable A if and only
if

δA

δS
= 0,

δA

δP
= constant = α. (2.33)

The constant α will be called the eigenvalue of A for such an eigenensemble.
A solution of Eq. (2.33) for a particular eigenvalue α will be denoted by (Pα, Sα).

It will be seen in Sect. 2.4.2 below that the value of A on an eigenensemble is equal
to the corresponding eigenvalue, i.e.,

A(Pα, Sα) = α. (2.34)

Note that Eq. (2.33) reduces to the definition of a stationary state in Eq. (2.30) when
one identifies Awith the ensemble HamiltonianH , and α with the energy E. For the
quantum observable QM̂ in Eq. (2.23) it reduces to the definition of an eigenstate of
M̂. Of course, for more general functionsA ofP and S there may be no corresponding
eigensembles.

2.4.2 Weak Values and Local Densities

Differentiating the homogeneity property A[λP, S] = λA(P, S) in Eq. (2.11) with
respect to λ, and setting λ = 1, yields the numerical equivalence
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A[P, S] =
∫

dx P
δA

δP
. (2.35)

Thus, each observable A has an associated local density P(δA/δP) on the configura-
tion space. For the case of the ensemble Hamiltonian this is a local energy density,
−P∂tS, as noted previously in Chap.1.

The existence of such local densities may be used to show that A may be consis-
tently interpreted as an ensemble expectation value (the argument is identical to that
in Sect. 1.4.3 for ensemble Hamiltonians, and does not require any interpretation for
the local density itself). Further, Eqs. (2.33) and (2.35) immediately yield Eq. (2.34)
for eigensembles of A.

Equation (2.35) leads to a further remarkable result: a far-reaching generalisation
of the notion of the ‘weak value’ of an observable in quantum mechanics [4, 5].
In particular, we will define the weak value of an observable A, for an arbitrary
configuration ensemble (P, S), by the function

Aw(x) := δA

δP
(2.36)

on the configuration space (with the variational derivative replaced by a partial deriv-
ative for discrete configuration spaces).

Note first that the average of the weak value over the ensemble follows immedi-
ately from Eq. (2.35) as

〈Aw〉 :=
∫

dx P(x)Aw(x) = A[P, S]. (2.37)

Thus, the expectation values ofA andAw are equal. For eigensembles ofA the stronger
result Aw = α holds via Eq. (2.34).

Second, for the classical ensemble observable Cf defined in Eq. (2.20), the corre-
sponding weak value follows as

Cw
f (x) = f (x,∇S). (2.38)

Thus, the classical weak value is equal to the classical phase space function f (x, p)
evaluated at p = ∇S.

Third, for the quantum ensemble observable QM̂ defined in Eq. (2.23), the corre-
sponding weak value follows via Eqs. (2.25) and (2.36) as

Qw
M̂

(q) = 1

ψ̄(q)ψ(q)
Re

{
ψ(q)

δQM̂

δψ

}

= Re

{
〈q|M̂|ψ〉
〈q|ψ〉

}
, (2.39)

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_1
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where the property δQM̂/δψ = M̂ψ(q) has been used, following from the expression

QM̂ =
∫

dq ψ̄(q)M̂ψ(q) =
∫

dq M̂ψ(q)ψ(q) (2.40)

for Hermitian operators. Equation (2.39) may be recognised as the quantum weak
value of M̂ [4, 5]—thus justifying the use of the terminology ‘weak value’ for the
general case in Eq. (2.36).

As originally introduced by Aharonov and Vaidman, weak values correspond
to the average outcome of an apparatus weakly coupled to M̂ and postselected by
measurement result Q̂ = q in the computational basis {|q〉}1 [4, 5]. An alternative
characterisation of Qw

M̂
is that it provides the best possible estimate of the value of

M̂ from a measurement in the computational basis on state |ψ〉 [6–8]. An excellent
review on the interpretation of quantum weak values has been given recently by
Dressel [9].

It would be of great interest to assess the degree to which the above interpretations
can be applied in the general context of arbitrary observables for ensembles on
configuration space. We do not address this issue in detail here, but note that it is
natural, in this context, to consider the weak observable Aw[P, S], defined by

Aw[P] :=
∫

dx P(x)Aw(x) (2.41)

(with integration replaced by summation for discrete configuration spaces), treating
Aw(x) as a fixed function on configuration space. The weak observable only depends
on the configuration parameter x, and fromEq. (2.37) is numerically equal toA[P, S].
The weak observable corresponds to the average weak measurement outcomes in the
first interpretation above, while the difference between the weak observable and A
is relevant to defining the optimal estimate in the second interpretation above. The
connection of weak values to weak measurements is explored further in Sect. 3.5 of
Chap.3.

2.4.3 Transition Probabilities

We have seen that ensemble observables allow for general definitions of eigensem-
bles, eigenvalues and weak values, which generalize the corresponding concepts in
quantum theory. We now want to look briefly at how generalised transition proba-
bilities might be defined.

Suppose first that a particular configuration ensemble, (P, S), is an eigensemble
with respect to some observable G, with corresponding eigenvalue γ . The notation

1Weak values are defined by some authors as 〈q|M̂|ψ〉
〈q|ψ〉 ; however, it is the real part of this quantity

that has a direct interpretation in terms of weak measurements.

http://dx.doi.org/10.1007/978-3-319-34166-8_3
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(Pγ , Sγ ) would be better suited here, but we will simply use (P, S) when it can not
lead to confusion, to simplify the notation. We thus have (see Sect. 2.4.1)

δG

δS
= 0,

δG

δP
= γ, G[P, S] = 〈δG/δP〉 = γ. (2.42)

Consider further a second observable F, which has various possible measurement
values parameterized by a variable φ. It will not be assumed at this stage that the
values of φ are also eigenvalues of F. We can now ask the following question:What
is the probability of obtaining measurement result F = φ for the eigensemble of G
having eigenvalue γ ? This probability will be denoted by w(φ|γ ).

To answer this question, consider first some function f (φ) of the possiblemeasure-
ment outcomes. Then, the corresponding expectation value of this function follows
as

〈f (φ)〉 =
∫

dφ w(φ|γ ) f (φ). (2.43)

It is natural to now make the assumption that this expectation value is itself the
expectation value of some observable. This amounts to a ‘completeness’ assumption
for the set of observables. We will call this observable Af (F)[P, S]. Thus, the equality
Af (F) = 〈f (φ)〉 is satisfied.

It follows immediately from Eq. (2.43) that one has the general relation

∫
dφ w(φ|γ ) f (φ) = 〈f (φ)〉 = Af (F) =

∫
dxP

δAf (F)

δP
. (2.44)

for an arbitrary function f . The task then is to choose a particular set of functions
f which allows this relationship to be inverted, so as to solve for the value of the
transition probability w(φ|γ ). For example, one could choose a set of orthogonal
polynomials (e.g., Legendre polynomials) in the case of bounded sets ofmeasurement
outcomes. Here we consider another choice, the relatively simple ‘Fourier’ choice
fz(φ) = eizφ . Hence the left hand side of the above relationship is a Fourier transform.
We can then apply the inverse transform with respect to z, to obtain the explicit
solution

w(φ|γ ) = 1

2π

∫
dz dx P(x) e−izφ δAfz(F)

δP
. (2.45)

For discrete-valued observables, a discrete Fourier transform would be appropriate.
However, the solution given by Eq. (2.45) remains formal until we specify how

the functional Af (F) is to be constructed from a given observable F and function f .
We discuss two approaches for doing this.

The first approach is to give Af (F) an operational definition. For example, for
both quantum and classical observables weak values can be measured following
the approach proposed by Aharonov and Vaidman, via a coupling to a weak meter
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followed by a position measurement [5] (see also Sects. 2.4.2 and 3.5). Now, sup-
pose it is possible to measure weak values more generally, by a similar well-defined
procedure—e.g., Aw

f (F)(x) might be measurable via coupling to a weak F-meter fol-
lowed by a position measurement. Equation (2.43) can then be rewritten in the oper-
ationally well-defined form

w(φ|γ ) = 1

2π

∫
dz dxP(x) e−izφ Aw

f (F)(x). (2.46)

A different, more formal approach to inverting Eq. (2.43) requires defining the
observableFk for k = 2, 3, . . . , as thiswould allowone to constructmost observables
Afz(F) of interest. This effectively corresponds to defining a product algebra on the
set of observables. We carry out this construction for the classical and quantum
observables defined in Sect. 2.3. For the classical observable Cg, where g is some
phase space function g(x, p), we define

f (Cg) := Cf (g). (2.47)

Thus, for example, one has

(Cg)
2[P, S] =

∫
dx P g(x,∇S)2. (2.48)

For the quantum observable QM̂ , where M̂ is some Hermitian operator, we define

f (QM̂) := Qf (M̂). (2.49)

Thus, for example, the observable corresponding to square of the momentum is

(Qp̂)
2[P, S] =

∫
dx P

[|∇S|2 + (�2/4)|∇ logP|2] . (2.50)

Thus transition probabilities may be calculated via powers of observables in these
cases.

2.5 Symmetries and Transformations

The Poisson bracket satisfies all the properties required of a Lie algebra, i.e., linearity,
asymmetry and the Jacobi identity:

{A + B,C} = {A,C} + {B,C}, {A,B} = −{B,A}, (2.51)

{A, {B,C}} + {B, {C,A}} + {C, {A,B}} = 0, (2.52)

http://dx.doi.org/10.1007/978-3-319-34166-8_3
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asmay easily be verified directly fromEqs. (2.2) and (2.5). Hence the set of canonical
transformations, generated by a set of observables closed under the Poisson bracket,
form a Lie group (for quantum observables this group is of course the usual uni-
tary transformations). This allows us to describe systems with symmetries. We will
consider two examples below: nonrelativistic particles and rotational bits.

2.5.1 Nonrelativistic Particles

Consider first the possible descriptions of a free nonrelativistic particle—whether
classical, quantum or otherwise. We will take the configuration space to be the
Euclidean space R3. To describe such a particle, we look for a realization of the
Galilean group in terms of the algebra of Poisson brackets. The Galilean group has
10 generators: Ai which generate spatial displacements, H which generates time
displacements, Li which generate spatial rotations, and Gi which generate Galilean
transformations (“boosts”), with i = 1, 2, 3. These generators have to satisfy the
Poisson bracket relations [10]

{H,Ai} = 0, {H,Li} = 0, (2.53)

{Li,Aj} = εijkAk, {Li,Lj} = εijkLk, {Li,Gj} = εijkGk, (2.54)

{Ai,Aj} = 0, {Gi,Gj} = 0, {Gi,Aj} = mδij, {Gi,H} = Ai, (2.55)

wherem is the mass of the particle, and εijk = 1 (= −1) for even (odd) permutations
i, j, k of 1, 2, 3 and vanishes otherwise. Note the first line implies that H transforms
as a scalar under translations and rotations, while the second line implies that Ai, Li,
and Gi transform as vectors.

In the framework of ensembles on configuration space, these generators are rep-
resented by suitable observables. For spatial displacements and rotations one finds
that

Ai = Πi[P, S] =
∫

d3x P (∂iS) , Li =
∫

d3x P
(
εijk xj ∂kS

)
, (2.56)

up to additive constants. These are the ensemble momentum and angular momentum
observables. The former observable, Π [P, S], was derived in Sect. 2.3.1, and the
latter may be similarly obtained by considering infinitesimal rotations of P and S.
Further, for the Galilean boost transformations it is natural to choose the observables

Gi =
∫

d3x P (mxi − t∂iS) = mXi[P, S] − tΠi[P, S], (2.57)
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where t is the time. This follows from the standard definition Gi = (mXi − tAi) in
classical mechanics [10], together with the natural choice Xi = ∫

d3x P xi for the
position observable of an ensemble on configuration space as per Eq. (2.13).

The above results do not fully determine the form ofH, whichwill of course, since
it generates infinitesimal displacements in time, be identified with the ensemble
Hamiltonian H . It is straightforward to check from the above equations that the
general solution is of the form

H = H [P, S] :=
∫

dx P
|∇S|2
2m

+ K[P, S], (2.58)

where K is any observable invariant under translations, rotations and boosts, i.e., K
is a Galilean scalar. Solutions include both the classical ensemble Hamiltonian for a
free particle (see Sect. 1.2),

H = HC[P, S] =
∫

d3x P
|∇S|2
2m

(2.59)

corresponding to K ≡ 0, and the quantum ensemble Hamiltonian for a free particle
(see Sect. 1.2),

H = HQ[P, S] =
∫

d3x P

[ |∇S|2
2m

+ �
2|∇ logP|2

8m

]
(2.60)

corresponding to K = (�2/8m)F[P], where F[P] is the Fisher information of P [11]
(see also Chap.5). A more general solution corresponds to the choice

K[P, S] =
∫

dx P k(|∇ logP|,∇2 logP, . . . ), (2.61)

where k is an arbitrary function of scalars formed by the derivatives of logP. Note
that all the above generators satisfy the homogeneity condition, Eq. (2.11), and hence
have clear interpretations as expectation values.

2.5.2 Rotational Bits

A quantum mechanical spin-half system may be characterised as having a set of
two-valued observables which generate infinitesimal rotations in three dimensions.
We want to consider such a two-level system, but now within the formalism of
ensembles on configuration space. The generator of rotation about a given direction
will be identified with the measurement of spin in that direction. Such a system may
be called a rotational bit or robit, to distinguish it from the standard quantum qubit.

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_5
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The observable corresponding to a measurement in unit direction n thus has the
form L · n, where L = (L1,L2,L3) satisfies the so(3) Lie algebra,

{Lj,Lk} = εjklLl, (2.62)

for j, k = 1, 2, 3.
It convenient to define the probability distribution P in terms of the possible

measurement outcomes of spin in the z-direction, which may be labelled by ±1/2.
Thus, P ≡ {P+,P−}, where Pα denotes the probability of measuring spin value α/2
in the z-direction. The canonically conjugate quantities are therefore labelled as
S ≡ {S+, S−}.

Note that the identification of generators with expectation values immediately
fixes the form of L3. In particular, the average value of spin measurements in the
z-direction may be calculated directly from the probability distribution,

L3(P, S) = s(P+ − P−) = (P+ − P−)/2. (2.63)

where s = 1/2 for spin-half particles (note for the quantum case we are effectively
choosing units in which � = 1).

We explore robits in detail in Chap.7, where we develop theories for a single
robit and pairs of robits. Here however we restrict to a single robit and focus on the
problem of representing rotations on a discrete configuration space.

2.5.2.1 Reduced Phase Space for a Two-Level System

The fundamental variables for a two-level system are {P+,P−, S+, S−}, thus the
phase space is four-dimensional. However, since

∑
k Pk = 1 is a quantity that is

conserved, it is possible to describe the system in a reduced phase space. To do this,
introduce coordinates

q0 = (P+ + P−)/2,

q1 = (P+ − P−)/2,

p0 = S+ + S−,

p1 = S+ − S−.

(2.64)

It is easy to check that this transformation is a canonical transformation. Since the Pk

are probabilities we must set q0 = 1/2. In these coordinates, the conditions of proba-
bility conservation andhomogeneity inEqs. (2.10) and (2.11) require that observables
G be of the form

G(q1, q2, p1, p2) = 2q0F(q−1
0 q1/2, p1), (2.65)

http://dx.doi.org/10.1007/978-3-319-34166-8_7


38 2 Observables, Symmetries and Constraints

where F is an arbitrary function and factors of 2 have been included for convenience.
Since p0 does not appear in G, the equations of motion lead to q0 being a constant
of the motion, as required.

It is now straightforward to describe the system in a phase space of dimension
4 − 2 = 2. In particular, setting q0 = 1/2 in the expression for G leads to

G(q1, p1) = F(q1, p1). (2.66)

Thus we have identified the true degrees of freedom of the system, q1 and p1.

2.5.2.2 Two-Level System with SO(3) Symmetry

We now look for the most general representation of so(3) on this two-dimensional
phase space. The generators must satisfy the Poisson brackets of Eq. (2.62), with the
condition of Eq. (2.63), where the latter corresponds to

L3 = q1. (2.67)

Equations (2.62) and (2.67) lead to

L1 = −∂L2
∂p1

, (2.68)

L2 = ∂L1
∂p1

, (2.69)

L3 = q1 = ∂L1
∂q1

∂L2
∂p1

− ∂L1
∂p1

∂L2
∂q1

. (2.70)

It is convenient to define Z := L1 − i L2, and write Eqs. (2.68) and (2.69) as the
single complex equation

∂Z

∂p1
= i z. (2.71)

Equation (2.71) has the general solution Z = exp{ip1 + a(q1) + ib(q1)}, where a and
b are real functions of q1. Thus

L1 = ea(q1) cos(p1 + b(q1)), L2 = −ea(q1) sin(p1 + b(q1)). (2.72)

Substitution into Eq. (2.70) then leads to
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L1 =
√
c2 − q21 cos(p1 + b(q1)), (2.73)

L2 = −
√
c2 − q21 sin(p1 + b(q1)), (2.74)

L3 = q1 (2.75)

where c is a constant and b an arbitrary function of q1.
To fix the value of c2, we impose the condition that the probability remain positive.

We consider an arbitrary ensemble Hamiltonian H(L) which is a function of the
generators of the so(3) Lie algebra and calculate the change induced on q1 by the
action of H. Evaluation of the Poisson bracket leads to

∂q1
∂t

=
√
c2 − q21

[
− ∂H

∂L1
sin(p1 + b) − ∂H

∂L2
cos(p1 + b)

]
, (2.76)

The condition that the probability remain positive requires

∂P+
∂t

= +∂q1
∂t

= 0 when q1 = −1

2
,

∂P−
∂t

= −∂q1
∂t

= 0 when q1 = +1

2
.

(2.77)

The positivity conditions have to be valid for all possible choices of H, which leads
immediately to c2 = 1/4 = q20.

Thus, the general solution for the Lk is given by Eqs. (2.73)–(2.75) with c2 = 1/4.
One can see that the Lk still depend on the arbitrary function b(q1). However, we can
always set b(q1) = 0 via the simple canonical transformation

q1 → q1, p1 → p1 − b(q1), (2.78)

which obviously preserves the condition of Eq. (2.67). This allows us to write the
generators of so(3) in their simplest form,

L1 =
√
1/4 − q21 cos(p1) = √

P+P− cos(S+ − S−), (2.79)

L2 = −
√
1/4 − q21 sin(p1) = −√

P+P− sin(S+ − S−), (2.80)

L3 = q1 = (P+ − P−)/2. (2.81)

We will show in Chap.7 that a single robit is equivalent to a single quantum
mechanical qubit. Notice however that we have derived the theory of a single robit
without making any assumptions which are particular to quantum mechanics. We
will develop this theme further in Chap. 7. In the case of a pair of robits, which we
also discuss in Chap.7, such an equivalence is no longer automatically fulfilled, but
one may introduce further assumptions involving locality and a restriction of the
functional form of the generators to obtain a similar equivalence to a pair of qubits.

http://dx.doi.org/10.1007/978-3-319-34166-8_7
http://dx.doi.org/10.1007/978-3-319-34166-8_7
http://dx.doi.org/10.1007/978-3-319-34166-8_7
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2.6 Constraints and Superselection Rules

In the usual quantization of a classical system subject to constraints, each classical
constraint is mapped to a linear operator constraint on the wavefunction, of the form
Ĉψ = 0 [12–14]. Thus, in standard quantum mechanics, one usually restricts to
constraints that are linear in the wave function. However, in the more general context
of ensembles on configuration space, it is natural to consider general constraints
formulated in terms of P and S [15]—which, for quantum ensembles, will typically
be nonlinear in the wave function. In particular, we define a constraint in a very
general way, as any equation of the form

C(P, S) = 0 (2.82)

that is required to hold at all times. This is completely analogous to the treatment
of constraints in classical phase space physics [2, 13], and restricts the evolution to
a submanifold of the fundamental variables (P, S). It will be seen that constraints
of the above form have a fundamental role to play in quantum theory, even when
they cannot be rewritten in the linear form Ĉψ = 0. More generally, they may be
interpreted as a generalisation of quantum superselection rules [15].

The Schrödinger equation for a quantum system is linear, implying that the super-
position of any two solutions is also a solution. However, some combinations of
states have never been observed, including coherent superpositions of integer and
half-integer spins, electric charges, and Schrödinger’s cat. Possible explanations for
why such superpositions are not observed fall into two logical categories:

1. measurement superselection rules: such superpositionsmay be allowed, but phys-
ical limitations on measurement prevent their observation;

2. state superselection rules: such superpositions are not physically allowed.

State superselection rules are stronger than measurement superselection rules (one
cannot observe what does not exist), and are clearly constraints on possible states
of quantum ensembles. However, they are not linear constraints. For example, a
superselection rule restricting possible wave functions of a quantum system to a
set of orthogonal subspaces of Hilbert space (corresponding, e.g., to different spin
values), with corresponding projection operators {Êj}, is equivalent to the nonlinear
constraint

∑
j

〈ψ |Êj|ψ〉2 = 1 (2.83)

on the wave function.
In this section, we present an example of a simple constraint on P and S that

may be applied to both classical and quantum ensembles, and which in the latter
case acts to rule out superpositions of energy eigenstates. Thus, this example shows
how constraints of the form of Eq. (2.82) may be interpreted as generalised state
superselection rules.
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In particular, consider the rather simple canonical constraint

J := P∇S = 0. (2.84)

This constraint is local, invariant under the transformation S → S + c, and may
be physically interpreted as the requirement that the ensemble momentum density
vanishes everywhere. Note that for quantum ensembles it can be re-expressed as
Im ψ̄∇ψ = 0, which clearly cannot be put in the linear form Ĉψ = 0 of the standard
approach to quantum constraints.

To investigate constraint (2.84) for a classical ensemble of particles, note that con-
sistency with the equations of motion requires ∂J/∂t = 0. The equations of motion
for the ensemble (see Sect. 1.2) yield the secondary constraint

0 = ∂(P∇S)/∂t = (∂P/∂t)∇S + P(∂(∇S)/∂t)

= −[∇ · (P∇S)]∇S − P∇[|∇S|2/(2m) + V ]
= −P∇V . (2.85)

Hence the classical force, −∇V , vanishes over the support of the ensemble, i.e., the
ensemble is constrained to be stationary. Note in particular that if the potential energy
has a single minimum, then the constraint requires the ensemble to be concentrated
solely at this minimum, i.e., the ensemble must occupy the classical ground state.

In contrast, for a quantum ensemble of particles, Eq. (2.84) requires that ∇S van-
ishes on the support of the wavefunction, and hence that S has no spatial dependence
for P 	= 0. Secondary constraints arising from consistency with the equations of
motion can be determined similarly to the classical case above. However, it is sim-
pler to directly substitute the ansatz S(x, t) = −f (t) into the Schrödinger equation
and use the continuity equation to obtain the secondary constraints

ḟ P1/2 =
[−�

2

2m
∇2 + V

]
P1/2, ∂P/∂t = 0 (2.86)

respectively. Differentiating the first of these with respect to time and applying the
second implies that ḟ = E = constant, and hence these constraints are equivalent to
the time-independent Schrödinger equation

−�
2

2m
∇2ψ + Vψ = Eψ. (2.87)

Thus the quantum ensemble is required to be in an energy eigenstate.
It is seen that in both the classical and quantum cases, the primary constraint

in Eq. (2.29) leads to the requirement that the ensemble is stationary as per the
definition in Eq. (2.30). In the quantum case this immediately yields a state super-
selection rule: superpositions of states of different energy are forbidden. Thus this

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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constraint provides a very simple example of how canonical constraints can lead to
superselection-type rules for quantum ensembles. Further examples and discussion
of constraints are given in [15].
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Chapter 3
Interaction, Locality and Measurement

Abstract Given two systems with configuration spaces X and Y , we consider their
joint description on the configuration space given by the set product X × Y . In the
formalism of ensembles on configuration space, this description requires a probabil-
ity distribution P(x, y) defined over the joint configuration space, the corresponding
conjugate quantity S(x, y), and an ensemble HamiltonianHXY [P, S]. Once a com-
posite system is defined, it becomes necessary to introduce a number of new concepts
which must be defined carefully. For example, such systems may consist of subsys-
temswhich are independent or entangled, non-interactingor interacting, andonemust
give a precise mathematical formulation of these properties. Issues of locality must
be taken into consideration. Observables which are ascribed to one of the subsystems
(and are therefore initially defined on only one of the initial configuration spaces, X
or Y ) must be extended to the joint ensemble, but this can not be done in an arbitrary
way. These concepts play an important role in the description of composite systems,
and we address them in the first sections of this chapter. The remaining sections
are devoted to a description of interactions between subsystems that model mea-
surements, starting with basic measurement procedures followed by more elaborate
procedures that describe weak measurements and measurement-induced collapse.

3.1 Introduction

To describe interactions and correlations between physical systems, such as two
particles, one must consider their joint description. In particular, if X and Y denote
the configuration spaces of two such systems, then their joint configuration space is
given by the set product X × Y . It follows that a corresponding joint ensemble of
systems is described by a joint probability density P(x, y) on X × Y , a conjugate
quantity S(x, y), and a joint ensemble Hamiltonian HXY [P, S], as described in
Chap.1.

Several questions of interest immediately arise: How are observables for ensem-
bles on X to be represented on X × Y ? What form does the joint ensemble
Hamiltonian take for noninteracting ensembles? How are measurement interactions

© Springer International Publishing Switzerland 2016
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described? Can weak measurements be generalised, from quantum ensembles to
arbitrary ensembles? What constraints does locality place on interactions between
ensembles? Is there a notion of entanglement beyond quantum entanglement?

The above questions are addressed in this chapter. Various developments and
applications, including to the representation of pairs of rotational bits, hybrid
quantum-classical interactions, and the interaction of classical spacetimeswith quan-
tum fields, are given in Chaps. 7–11.

3.2 Joint Ensembles

3.2.1 Independent Ensembles

Our physical formulation of ‘interaction’ is based on the idea that interactions lead
to correlations. This first requires a definition of ‘uncorrelated’ or ‘independent’
ensembles [1].

Definition Two ensembles, with respective configuration spaces X and Y , are
defined to be independent at some given time if the joint ensemble on X × Y is fully
described by an ensemble [PX (x), SX (x)] on X and an ensemble [PY (y), SY (y)] on
Y .

It follows for independent ensembles that no physical distinction is possible
between the joint probability density P(x, y) assigned to the joint ensemble, and
the pair of individual probability densities PX (x) and PY (y): all physical properties
are equally described by either. Hence, from basic probability theory, one must have

P(x, y) = PX (x) PY (y). (3.1)

Similarly, there can be no physical distinction between the joint function S(x, y) and
the pair of individual functions SX (x) and SY (y). Now, as discussed in Chap.2, the
conservation of probability requires that all physical quantities are insensitive under
addition of a constant to S. More precisely, observables are independent under any
transformation of the form S → S + c, where c is independent of the configuration
space of the ensemble. It follows for independent ensembles that S(x, y) must be
equivalent to SX (x), up to some additive function of y, and to SY (y) up to some
additive function of x , implying that

S(x, y) = SX (x) + SY (y), (3.2)

up to an arbitary additive constant of no physical significance.
Equations (3.1) and (3.2) fully characterise independent ensembles. It is worth

noting that in the case of a quantum ensemble, with wavefunction ψ = √
PeiS/�

(see Chap.1), these independence conditions reduce to the factorisability condition

http://dx.doi.org/10.1007/978-3-319-34166-8_7
http://dx.doi.org/10.1007/978-3-319-34166-8_11
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_1
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ψXY (x, y) = ψX (x) ψY (y) (3.3)

for the joint wavefunction ψXY (x, y), up to an arbitrary constant phase factor of no
physical significance.

3.2.2 Interaction Versus Noninteraction

Intuitively, interaction between physical systems leads to correlated behaviour. Thus,
for example, heavenly bodies orbit a common centre in Newtonian gravity, while
the position of an atom may be determined via the direction of a photon scattered
from it. We therefore take the creation of statistical correlations as the hallmark that
distinguishes interacting from noninteracting ensembles [1].

Definition Two ensembles are non-interacting, under a given joint ensemble Hamil-
tonian, if and only if all initially independent ensembles remain independent under
evolution.

It follows that, since two independent ensembles remain independent if they do not
interact, their evolution will be described by two corresponding ensemble Hamilto-
niansHX andHY . Recalling the general propertyH [P, S] = −〈∂S/∂t〉 following
from homogeneity (see Sect. 1.4), this yields the necessary condition

HXY [PX PY , SX + SY ] = −
∫

dxdy PX PY
∂(SX + SY )

∂t

=
∫

dy PY (y)HX [PX , SX ] +
∫

dx PX (x)HY [PY , SY ]
(3.4)

for their joint Hamiltonian HXY . Here integration is replaced by summation over
any discrete parts of the configuration spaces. It is easy to check that this condition,
imposed as a constraint on the functional form ofHXY for all PX (x), PY (y), SX (x)
and SY (y), is also sufficient for two ensembles to be non-interacting.

It is not difficult to find joint ensemble Hamiltonians that describe noninteracting
ensembles as per Eq. (3.4). For example, if

HX (PX , SX ) =
∫

dx PX F(∇x log PX ,∇x SX , . . . ), (3.5)

HY (PY , SY ) =
∫

dy PY G(∇y log PY ,∇y SY , . . . ), (3.6)

for two continuous configuration spaces X and Y and arbitary functions F and G,
where ‘. . . ’ denotes possible higher derivatives of log P and S, then

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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HXY [P, S] :=
∫

dx dy P
[
F(∇x log P,∇x S, . . . ) + G(∇y log P,∇y S, . . . )

]
(3.7)

satisfies Eq. (3.4).
Note that the ensemble Hamiltonians HC and HQ in Eqs. (1.3) and (1.8) are of

the forms of Eqs. (3.5) and (3.6). Hence, they can be combined to give joint ensem-
ble Hamiltonians corresponding to any one of non-interacting classical-classical,
quantum-quantum, and quantum-classical ensembles of particles. Examples of inter-
acting ensemble Hamiltonians are considered further below (see also Chaps. 8–11).

3.2.3 Independence Versus Entanglement

Quantum ensembles on configuration space have a remarkable property, first identi-
fied by Schrödinger: they are either independent or entangled [2]. For example, if the
independence condition Eq. (3.3) does not hold, then the wave function ψXY (x, y)
necessarily violates some Bell inequality, i.e., the joint ensemble exhibits statistical
correlations that have no underlying hidden variable model [3–5].

Surprisingly, the concept of entanglement remains meaningful in the general
case—even for classical ensembles. However, it is important to note that the notion of
‘entanglement’ referred to here is not in the strong sense of Bell inequality violation,
but in Schrödinger’s original weaker sense that the properties of a joint ensemble
cannot be decomposed into properties of the individual ensembles [2]. Spekkens has
similarly used this weaker sense to define entanglement for a class of ‘epistemic’
models of statistical correlation [6].

For example, consider a classical joint ensemble, corresponding to two classical
particles described by respective configuration spaces X and Y , with probability
density P(x, y) and conjugate quantity S(x, y). Noting that the product of two clas-
sical phase space functions f (x, px ) and g(y, py) is itself a classical phase space
function for the two particles, we recall from Sect. 2.3.2 that the expectation value
of this product corresponds to the classical observable

C fg = 〈 f g〉 =
∫

dxdy P(x, y) f (x, ∂x S) g(y, ∂y S). (3.8)

Now, there is clearly a trivial hidden variable model for any such observable, whether
or not the independence conditions (3.1) and (3.2) are satisfied. In particular, defining
λ := [x, y, S(x, y)], P(λ) := P(x, y), F(λ) := f (x, ∂x S), and G(λ) := g(y, ∂y S),
one has

〈 f g〉 =
∫

dλ P(λ) F(λ)G(λ). (3.9)

Hence, no Bell inequality can be violated via such observables [5].

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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Nevertheless, if the independence condition (3.2) is not satisfied, then the ‘hidden
value’ of the observable f (x, px ) for the first particle, i.e., F(λ), will in general
depend on the position of the second particle, via px = ∂x S(x, y). That is, while
knowledge of the position and momentum of the first particle at a given time is
sufficient to determine all observables for the particle at that time, it will not be
sufficient to determine them at any later time: one needs to know the evolution of
the joint quantity ∂x S(x, y). Moreover, if one locally perturbs the position of the
second particle, from y to y′, the corresponding perturbation of S(x, y) to S(x, y′)
will typically perturb the value of px in this model.

Hence, a kind of nonlocality, or inseparability, can be associated with joint ensem-
bles even in the classical case. We will, by analogy with Schrödinger’s original
discussion [2], refer to this property as ‘entanglement’:

Definition A joint ensemble on the configuration space X × Y is entangled if and
only if S(x, y) �= SX (x) + SY (y), up to some additive constant.

Note that entanglement, as defined here, is relative to particular configuration
spaces X and Y . For quantum ensembles, this corresponds to a particular choice of
computational basis for the component ensembles (see Sect. 1.3.2 of Chap.1). For
this reason, our definition of entanglement is stronger than the standard definition for
quantum ensembles (where the latter requires only that S(x, y) �= SX (x) + SY (y) for
some choice of computational basis, i.e., that the ensembles are not independent).
We require a stronger definition because for general configuration ensembles one
does not have a similar freedom to arbitrarily choose between configuration spaces.

It follows that while entanglement implies non-independence, the converse does
not hold in general. In particular, violation of the independence condition (3.1) by
a classical joint ensemble is not sufficient to give rise to any nonlocality of the sort
discussed above, as will now be shown.

For simplicity, we consider the condition S(x, y) = SX (x) + SY (y) for the case
of a classical ensemble which consists of two one-dimensional, non-relativistic, non-
interacting particles. It turns out that this condition is sufficient to ensure no nonlocal-
ity can arise, whether or not the joint probability density factorises. In particular, all
classical observables for the first ensemble can be determined from the knowledge of
PX (x) = ∫

dy P(x, y) and SX (x) alone, via Eq. (3.8), and similarly for observables
of the second ensemble. Further, the condition is preserved at all later times by the
equations of motion, as we now prove.

The ensemble Hamiltonian for two such noninteracting particles is a slight gen-
eralization of the one discussed in Sect. 1.2 and is given by

HC [P, S] =
∫

dxdy P

[
1

2mX

(
∂S

∂x

)2

+ 1

2mY

(
∂S

∂y

)2

+ VX + VY

]
, (3.10)

where mX , mY are the masses of the particles and we have assumed that there is
no interaction via the potential term and therefore V (x, y) = VX (x) + VY (y). This
ensemble Hamiltonian may also be obtained via a direct application of Eq. (3.7) to

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_1
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classical ensembles, and hence automatically satisfies the non-interaction condition
in Eq. (3.4).

Variation of HC [P, S] with respect to P leads to a Hamilton–Jacobi equation
which decouples in a trivial manner into two independent Hamilton–Jacobi equa-
tions, one for SX (x) andone for SY (y). Variationwith respect to S leads to a continuity
equation of the form C[P, S] = 0 which is linear in P . One can check that integrat-
ing C[P, S] = 0 on both sides with respect to y leads to the continuity equation
∂t PX + ∂x (PX∂x SX/mX ) = 0 for the probability density PX (x) associated with the
first particle, and a similar result is obtained for PY (y) by integrating with respect to
x . Thus, in the case of a classical ensemble of two non-interacting particles, the con-
dition S(x, y) = SX (x) + SY (y) leads to a decoupling of the equations of motion,
with separate equations for each of the two particles. Hence, non-entanglement is
preserved under evolution.

It is interesting that an additional condition is required for the corresponding
quantum case, with ensemble Hamiltonian

HQ[P, S] = HC [P, S] + �
2

4

∫
dxdy

1

P

[
1

2mX

(
∂P

∂x

)2

+ 1

2mY

(
∂P

∂y

)2
]

.

(3.11)
In this case, variation with respect to P leads to a modified Hamilton–Jacobi equa-
tion which now depends on P , and both S(x, y) = SX (x) + SY (y) and P(x, y) =
PX (x)PY (y) are required to ensure decoupling of the equations of motion and non-
entanglement. Thus in the quantum case, non-entanglement is preserved under evo-
lution only for independent ensembles.

It is seen that the conditions under which noninteracting ensembles remain unen-
tangled are different for classical and quantum ensembles. In the former case it is
guaranteed, while in the latter case it is not. More generally:

Independence is a sufficient but not a necessary condition for two noninteract-
ing ensembles to remain unentangled under evolution.

Development of the notion of entanglement for general configuration ensembles
remains a topic of interest for future work, but is not investigated further in this book.

3.3 Extending Observables to Joint Ensembles

3.3.1 General Definition

If an observable quantity can be measured on some configuration ensemble, then it
is natural to expect it can be measured independently of whether the ensemble is
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actually part of a larger joint ensemble. In the same vein, regarding observables as
generators of canonical transformations (see Chap. 2), it is natural to expect that such
transformations on a given ensemble can be carried out independently of whether or
not the ensemble is part of a joint ensemble.

These considerations suggest that, for a given observable AX [P, S] defined on an
ensemble with configuration space X , it should be possible to define a corresponding
extended observable, AXY [P, S], on an ensemble with configuration space X × Y .
This is indeed the case.

First, for a probability distribution PXY and conjugate quantity SXY on X × Y ,
define the conditional functions

PX |y(x) := PXY (x, y)/PY (y), SX |y(x) := SXY (x, y) (3.12)

on X , with PY (y) := ∫
dx PXY (x, y). Note that these may be interpreted as a type

of Bayesian updating of the ensemble on X , given knowledge of y. The conditional
probability PX |y(x) depends on the value of y whenever PXY (x, y) �= PX (x)PY (y).

Second, for an observable AX [P, S] on X , define its extension (or promotion) to
X × Y by

AXY [P, S] :=
∫

dy PY AX [PX |y, SX |y]. (3.13)

Thus, the extended observable corresponds to the average expectation value of AX

when conditioned on knowledge of y.
To illustrate the application Eq. (3.13), consider the case AX [P, S] = HQ[P, S],

the quantum ensemble Hamiltonian of Eq. (1.8). Then

AXY [P, S] =
∫

dy PY

∫
dx

PXY

PY

{
1

2m

(
∂SXY
∂x

)2

+ V + �
2

8m

P2
Y

P2
XY

[
∂

∂x

(
PXY

PY

)]2}

=
∫

dy dx P

[
1

2m

(
∂S

∂x

)2

+ V + �
2

8m

1

P2

(
∂P

∂x

)2
]

, (3.14)

where in the last equality we introduced the simpler notation P = PXY , S = SXY .We
will use this simplified notation when it is clear that P and S refer to the configuration
space of the joint ensemble.

We now show that the definition given by Eq. (3.13) satisfies several desirable
properties. For convenience we will assume the configuration spaces are continu-
ous. Analogous properties are easily obtained for discrete configuration spaces, with
variational derivatives replaced by partial derivatives and integration by summation
where appropriate.

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_1
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3.3.2 Two Invariance Properties

First, for two independent ensembles, on configuration spaces X and Y respectively,
the extension of AX may be calculated via Eqs. (3.1), (3.2), (3.12) and (3.13) as

AXY [PX PY , SX + SY ] =
∫

dy PY (y) AX [PX , SX + SY (y)]

=
∫

dy PY (y) AX [PX , SX ]
= AX [PX , SX ]. (3.15)

Here the second line follows from the property A[P, S + c] = A[P, S] of ensem-
ble observables (corresponding to conservation of probability: see Chap. 2). Thus,
for independent ensembles, the extended observable is equivalent to the original
observable.

Second, if CX := {AX , BX } denotes the Poisson bracket for two observables on
configuration space X (see Chap.2), the corresponding extended observables satisfy
the relation

{AXY , BXY } = CXY , (3.16)

where the Poisson bracket of Eq. (3.16) is the one that is defined on the configuration
space XY . This important property, proved further below, is worth highlighting:

The Lie algebra of observables on a given configuration space is preserved
under the extension to a joint configuration space.

This property implies, for example, that for hybrid quantum-classical systems the
classical observables remain classical and the quantum observables remain quantum,
in thewell-defined sense that their respective Lie algebras are preserved (see Chaps. 8
and 9).

To demonstrate Eq. (3.16), wewill consider the effect on Eq. (3.13) of carrying out
variations P → P + δP and S → S + δS. We first consider the effect of the varia-
tion P → P + δP , keeping in mind that in Eq. (3.13) AX is a function of PX |y, SX |y
only, and that PX |y = PXY /PY as per Eq. (3.12). Then we find that

δAXY =
∫

dy (δPY AX + PY δAX )

=
∫

dy

[
δPY AX + PY

∫
dxdy′ δAX

δPX |y
δPX |y

δPY (y′)
δPY (y′)

+ PY

∫
dxdx ′dy′ δAX

δPX |y
δPX |y

δPXY (x ′, y′)
δPXY (x ′, y′)

]

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_9


3.3 Extending Observables to Joint Ensembles 51

=
∫

dy

[
δPY AX + PY

∫
dx

δAX

δPX |y

(
− PXY

P2
Y

δPY + 1

PY
δPXY

)]

=
∫

dy

[
AX −

∫
dx

δAX

δPX |y
PX |y

]
δPY +

∫
dydx

δAX

δPX |y
δPXY

=
∫

dydx
δAX

δPX |y
δPXY ,

where the first and second equalities follow from the definition of the variational
derivative in Eq. (A.1) in AppendixA of this book and the chain rule; the third and
fourth equalities from the definition PX |y = PXY /PY ; and the last equality from the
homogeneity property (2.35) of observables. It follows immediately that

δAXY

δP
= δAX

δPX |y(x)
. (3.17)

Similarly, under a variation S → S + δS in Eq. (3.13), one finds

δAXY =
∫

dy PY δAX =
∫

dxdy PY
δAX

δSX |y
δSX |y .

Hence, recalling SX |y(x) = S(x, y) from Eq. (3.12),

δAXY

δS
= PY

δAX

δSX |y
. (3.18)

Finally, substituting Eqs. (3.17) and (3.18) into the definition of the Poisson bracket
in Eq. (2.5) gives Eq. (3.16), as desired.

3.3.3 Configuration Separability and Strong Separability

For an arbitrary joint ensemble on the configuration space X × Y , consider the infin-
itesimal canonical transformation generated by an observable of the first ensemble.
We first show that such a local transformation does not affect the statistics of the
configuration of the second ensemble.

If we compute the effect on P of a canonical transformation generated by an
observable AXY that is derived from AX according to Eq. (3.13), we obtain, via
Eq. (2.7) of Sect. 2.2,

δAXY P = ε
δAXY

δS
= εPY

δAX

δSX |y
= PY δAXY PX |y (3.19)

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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where δAXY denotes the variation generated by AXY and the second equality follows
from Eq. (3.18). However, Eq. (3.12) leads to the general expression

δP = PX |yδPY + PY δPX |y, (3.20)

where the variation denoted by δ is arbitrary. This implies that we must have

δAXY PY = 0, (3.21)

as required. We formalise this property as follows:

Configuration separability: Any canonical transformation carried out on the
first member of a joint ensemble does not affect the configuration statistics of
the second member (and vice versa).

Configuration separability plays an important role in modeling interactions
between quantum and classical systems (see Chaps. 8–11).

A stronger separability property holds for independent ensembles. For
such ensembles one has from Eqs. (3.1) and (3.2) that PX |y(x) = PX (x) = P(x),
PY |x (y) = PY (x) = P(y) and SX |y(x) = SY |x (y) = SX (x) + SY (y). Hence, denot-
ing the extensions of observables AX and BY on these ensembles by AXY and BY X

respectively, it follows via the definition of the Poisson bracket in Eq. (2.5), and using
Eqs. (3.17) and (3.18), that

{AXY , BY X } :=
∫

dxdy

(
δAXY

δP

δBY X

δS
− δAXY

δS

δBY X

δP

)

=
∫

dxdy

(
PX (x)

δAX

δPX |y(x)
δBY

δSY |x (y)
− PY (y)

δAX

δSX |y(x)
δBY

δPY |x (y)

)

=
∫

dx PX
δAX

δPX (x)

∫
dy

δBY

δSY |x (y)
−

∫
dy PY

δBY

δPY (y)

∫
dx

δAX

δSX |y(x)
= 0. (3.22)

Here the last line follows since the second integral in each term of the preceding line
vanishes via the conservation of probability under canonical transformations (e.g.,∫
dy (δBY /δSY |x ) = ∫

dy {PY , BY } = ∫
dy δPY = 0).

Thus, a local canonical transformation generated via some observable on one
ensemble has no influence on any observable of a second independent ensemble.
This may be regarded as a strong separability property of independent ensembles.
It generalises to arbitrary joint ensembles in the case that the observables are both
classical or both quantum, as reviewed in Chap.8. The consequences of taking strong
separability as an axiom for arbitrary observables are considered in Chap.7 for rota-
tional bits.

http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_11
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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3.4 Measurement Interactions: A Simple Example

This section considers an important example of interaction, in the context of a very
simple measurement model in which the configuration of one ensemble becomes
correlated with the configuration of a second ‘pointer’ ensemble. The model is a
straightforward generalisation of a quantum model of position measurement, first
given by von Neumann in 1932 [7], to arbitrary configuration ensembles.

In particular, let X denote the configuration space of an ensemble that is to be
measured, and Y denote the configuration space corresponding to the position of a
pointer of a measurement apparatus. We will allow the configuration space X to be
discrete or continuous, or some combination thereof, but we will assume that Y is
continuous. Indeed, since we are only interested in the pointer degree of freedom,
we will for convenience restrict Y to be one-dimensional (it is straightforward to lift
this restriction if desired).

Guided by von Neumann’s quantum measurement model, we now construct a
measurement interaction that may be interpreted as coupling the momentum of the
pointer to an observable of the ensemble undergoing measurement. First, recall from
Sect. 2.3 that the momentum observable associated with configuration space Y is
given by

ΠY =
∫

dy PY (y)
∂SY (y)

∂y
, (3.23)

and that the observable corresponding to an arbitrary function f (x) of the configu-
ration space X is given by

C f =
∫

dx PX (x) f (x). (3.24)

Noting the definition of extended observables in Eq. (3.13), this then suggests that a
suitable generalisation of von Neumann’s measurement model is given by an inter-
action ensemble Hamiltonian of the form

HI [P, S, t] := κ(t)
∫

dxdy P(x, y) f (x)
∂S(x, y)

∂y
. (3.25)

Here κ(t) determines the strength and duration of the interaction, and the integral is
seen to correspond to the average of the product of the local densities of C f and ΠY .
The integration over x is to be replaced by summation over any discrete ranges of x .

To investigate this model, assume for simplicity that κ(t) is non-negligible only
over a timescale sufficiently short that any other contributions to the ensembleHamil-
tonian can be ignored. It follows that the evolution of the joint ensemble during
the measurement interaction is given by the Hamiltonian equations of motion (see
Chap.1)

∂P

∂t
= δHI

δS
= − f (x)

∂P

∂y
,

∂S

∂t
= −δHI

δP
= − f (x)

∂S

∂y
. (3.26)

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_1
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These equations can be immediately solved, to give

P(x, y, T ) = P(x, y − K f (x), 0), S(x, y, T ) = S(x, y − K f (x), 0), (3.27)

where T is the total interaction time and K := ∫ T
0 dt κ(t).

It is seen that the measurement interaction acts to correlate the position y of the
pointer with the function f (x): if the configuration of the measured ensemble is
taken to be x , then corresponding probability density PY |x of the pointer position is
given by

PY |x (y, T ) = PY |x (y − K f (x), 0), (3.28)

i.e., it is translated by an amount proportional to f (x) and to the interaction strength
K . Further, the average position of the pointer following the measurement is given
by

〈y〉T =
∫

dxdy P(x, y, T ) y = 〈y〉0 + K 〈 f 〉0, (3.29)

and hence is translated by an amount proportional toC f . These properties are similar
to the quantum case [7], and consistent with the interpretation of the interaction
ensemble Hamiltonian HI as generating a measurement of the observable C f .

It is of interest to check that the above ensemble Hamiltonian HI satisfies the
formal definition of interacting ensembles in Sect. 3.2.2. In particular, consider the
case that the joint ensemble is initially independent, i.e.,

P(x, y, 0) = PX (x) PY (y), S(x, y, 0) = SX (x) + SY (y).

Hence, at time T one has in this case that

P(x, y, T ) = PX (x) PY (y − K f (x)), S(x, y, T ) = SX (x) + SY (y − K f (x)),
(3.30)

which by inspection cannot satisfy the independence condition (3.1) (whereas the
independence condition (3.2) is satisfied in the special case that SY (y) =constant).
Hence the joint ensemble does not remain independent, implying that the components
of the ensemble are indeed interacting under HI .

Finally, it is of interest to consider how the measured ensemble may be updated
given a measurement result y = y0, and how it is ‘disturbed’ by the measurement
process. Such updatings generalise the notion of collapse for quantum ensembles,
and will be considered further at the end of this chapter.

In particular, assuming that the ensembles are initially independent, it is consistent
to take the updated configuration ensemble on X as

PX |y0(x, T ) = PX (x), SX |y0 = SX (x) + SY (y0 − K f (x)), (3.31)

via Eqs. (3.12) and (3.30). Thus, the configuration probability density P on X is
unchanged by themeasurement,whereas the conjugate quantity S undergoes a shift in
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general. In the case that X is a continuous configuration space, this shift corresponds
a change in the ensemble momentum ΠX defined in Eq. (2.17), with

ΠX (T ) = ΠX (0) − K
∫

dx PX (x) S′
Y (y0 − K f (x))∇ f (x). (3.32)

Thus, a measurement of the configuration observable C f will typically disturb the
momentum of the ensemble, with the disturbance proportional to the interaction
strength K .

More general interactions are considered in later chapters—e.g., between rota-
tional bits in Chap.7; between classical and quantum particles in Chaps. 8 and 9; and
between classical spacetimes and quantum fields in Chap.11. In the next section,
however, we will consider a different direction of generalisation: weak measure-
ments.

3.5 Weak Measurements

It may be recalled from Sect. 2.4.2 that the weak value of observable A[P, S] on a
general configuration space X is defined by

AW (x) := δA

δP
. (3.33)

The weak value satisfies A = ∫
dx P(x) AW (x), and reduces to the usual quantum

weak value for quantum ensembles (see Chap. 2 for further discussion).
Quantum weak values originally arose in connection with weak measurements,

i.e., measurements in which an apparatus or probe is only very weakly coupled
to the quantum system of interest [8–10]. In particular, the quantum weak value
corresponds to the average displacement of a pointer weakly coupled to a quantum
observable, where the average is postselected on a measurement result X = x on
the quantum system. This section shows how weak position and momentum values
may be similarly measured via a weak interaction with a pointer, whether or not the
configuration ensemble is quantum.

3.5.1 Weak Position Measurement

Consider ameasurement of the configuration observableC f as discussed in Sect. 3.4,
where the interaction strength K is sufficiently small to ensure that the average
displacement of the pointer, as given in Eq. (3.29), is much less than the width of the
initial probability density PY (t, 0) of the pointer. Such a measurement will be said
to be weak, similarly to the quantum case. For the particular case of a continuous

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_7
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_9
http://dx.doi.org/10.1007/978-3-319-34166-8_11
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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configuration space X , with f (x) = x , this corresponds to a weak measurement of
position. However, we will not restrict our attention to this case, and so will let f (x)
be an arbitrary function of the configuration.

It follows immediately via Eq. (3.28) that if the system is postselected to have
configuration x following the interaction, then the postselected average of the pointer
position is given by

〈y〉x =
∫

dx PY |x (y) y = 〈y〉t=0 + K f (x) = 〈y〉t=0 + K CW
f (x). (3.34)

Thus, the postselected average displacement of the pointer is directly proportional
to the weak value of C f , in complete analogy to the quantum case.

It may have been noted by the astute reader that the above result does not in fact
rely on K being small, i.e., on the measurement interaction being weak. It holds
for any nonzero value of K . In this sense, weak measurements of the configuration
(when postselected on the configuration) are trivial—although it may be noted that
if the interaction is weak, then the post-measurement ensemble on X is only weakly
disturbed from the original ensemble, via Eq. (3.31). However, formore general weak
measurements the strength of the measurement interaction plays a nontrivial role, as
will now be shown for the case of weak momentum measurements.

3.5.2 Weak Momentum Measurement

Consider the case of a pointer that is weakly coupled to the momentum of a one-
dimensional particle. By analogy with Eq. (3.25) above, we will model such a weak
measurement by an interaction Hamiltonian of the form

HI [P, S] = κ(t)
∫

dxdy P(x, y)
∂S(x, y)

∂x

∂S(x, y)

∂y
. (3.35)

The weakness of the measurement is assured by a short interaction time, δt . The
change in the joint probability density over the interaction then follows as

δP = δt{P,HI } = δt
δHI

δS
= −κ0δt

[
∂

∂x

(
P

∂S

∂y

)
+ ∂

∂y

(
P

∂S

∂x

)]

to first order in δt , where κ0 denotes κ(0), and all quantities evaluated at t = 0.
Assuming that the particle and pointer ensembles are initially independent, as per
Eqs. (3.1) and (3.2), this simplifies to

δP(x, y) = −κ0δt
[
P ′
X (x) PY (y) S′

Y (y) + PX (x) P ′
Y (y) S′

X (x)
]
, (3.36)
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where a prime indicates differentiation with respect the argument. Integrating over
y further gives

δPX (x) =
∫

dy δP(x, y) = −κ0δt P
′
X (x)

∫
dy PY (y) S′

Y (y). (3.37)

We now consider the corresponding change in the probability distribution of the
pointer, when postselected on particle position x . Using the above results, we have

δPY |x (y) = δ

(
P

PX (x)

)
= δP

PX (x)
− PδPX (x)

PX (x)2

= −κ0δt

{
P ′
Y (y) S′

X (x) + P ′
X (x)

PX (x)
PY (y)

[
S′
Y (y) −

∫
dy PY (y) S′

Y (y)

]}
.

It follows that the average change in the pointer position, postselected on particle
position x , is given by

δ〈y〉x =
∫

dy y δPY |x (y)

= −κ0δt

{
S′
X (x)

∫
dy y P ′

Y (y) + P ′
X (x)

PX (x)

[〈yS′
Y (y)〉t=0 − 〈y〉t=0〈S′

Y (y)〉t=0
]}

= κ0δt

[
S′
X (x) − P ′

X (x)

PX (x)
Cov(y, S′

Y )t=0

]
, (3.38)

where integration by parts has been used to obtain the first term, and Cov(a, b)
denotes the classical covariance of random variables a and b.

Hence, choosing the initial pointer ensemble such that the covariance between y
and S′

Y (y) vanishes, and recalling that the weak value of the particle momentum ΠX

is given by ΠW (x) = S′
X (x) at time t = 0, we obtain our main result:

δ〈y〉x = κ0δt Π
W
X (x). (3.39)

Thus, the weak measurement acts to displace the pointer position by an amount
proportional to the weak momentum of the ensemble, generalising the known result
for quantum ensembles [9, 10].

3.6 Measurement-Induced Collapse

Wenowwant to use the results developed in the previous sections to outline a descrip-
tion of measurement-induced collapse that goes beyond the simple case of updating
an ensemble following measurement of a configuration observable as discussed in
Sect. 3.4. The approach that we describe here is closely related to the description of
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measurements in quantum mechanics, and in the case of quantum systems it reduces
to the usual description. However, to apply to other systems, it is clear that it must
be formulated without making the assumption of linearity that seems essential in the
quantum mechanical case. We want to show how this can be done.

The experiments that we want to describe are of the following type. We suppose
that the system is prepared in a given state. To be more specific, let us assume
that this state is an eigenstate of some observable g[P, S], thus it is described by
P(x |γ j ), S(x |γ j ) where γ j labels the corresponding eigenvalue (see Sect. 2.4). We
now consider a measurement of a different observable f [P, S] and assume that the
initial state is not necessarily an eigenstate of f [P, S]. This is a very general situation
which involves the preparation of a state followed by the measurement of a particular
observable. Furthermore, we assume that themeasurement leaves the system in a new
state P(x |φk), S(x |φk) which is an eigenstate of f [P, S], and that this happens with
probability w(φk |γ j ). In quantum mechanics, this last assumption corresponds to
measurement-induced collapse.

Measurement-induced collapse (also known as von Neumann’s “first interven-
tion” [7] or projection postulate) has been described by Dirac [11] in the following
terms:

When we measure a real dynamical variable ξ , the disturbance involved in the act of mea-
surement causes a jump in the state of the dynamical system. From physical continuity, if we
make a second measurement of the same dynamical variable ξ immediately after the first,
the result of the second measurement must be the same as that of the first. Thus after the first
measurement has been made, there is no indeterminacy in the result of the second. Hence,
after the first measurement has been made, the system is in an eigenstate of the dynamical
variable ξ , the eigenvalue it belongs to being equal to the result of the first measurement.
This conclusion must still hold if the second measurement is not actually made.

Notice that this postulate goes beyond a simple updating of the probability P of
finding the quantum system in a given configuration (such an update could be for-
mulated for example via an application of Bayes theorem) because it requires the
update of the wavefunctionψ = √

P eiS/�. Thus the generalization of measurement-
induced collapse to different types of ensembles on configuration space will require
introducing prescriptions for the simultaneous updating of both P and S.

In quantummechanics, it is straightforward to describe such measurements. If the
system is prepared in an eigenstate of the operator ĝ with eigenvalue γ j , we write this
initial state as |γ j >, where ĝ|γ j >= γ j |γ j >. Taking advantage of the superposi-
tion principle, we write |γ j >= ∑

k ck |φk >, where the |φk > are eigenstates of the
operator f̂ that is being measured and

∑
k |ck |2 = 1. Measurement-induced collapse

amounts to the statement that the measurement leaves the system in the state |φk >

with probability w(φk |γ j ) = |ck |2.
Is there a procedure that works without the assumption of linearity which seems

so fundamental here, so that it can be applied to other types of configuration space
ensembles? It turns out that there is such a procedure, which amounts to describing
the measurement process via the following three steps:

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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1. The preparation in an eigenstate of the observable g[P, S] with eigenvalue γ j ,
corresponding to a state which satisfies

δg

δS
= 0,

δg

δP
= γ j , g[P, S] = γ j , (3.40)

2. The probability w(φk |γ j ) of transition to the state P(x |φk), S(x |φk), which is
given by the expression in Eq. (2.45) of Sect. 2.4.3,

3. The final state in an eigenstate of the observable f [P, S] with eigenvalue φk ,
corresponding to a state which satisfies

δ f

δS
= 0,

δ f

δP
= φk, f [P, S] = φk . (3.41)

This shows that measurement-induced collapse can be formulated for ensembles
on configuration space. These three steps can always be carried out for a quantum
system and they lead to a uniquely determined final state. For classical and hybrid
systems there may be observables f and g which either do not allow for non-trivial
solutions of Eqs. (3.40) and (3.41) or result in preparation and/or final states which
are not uniquely determined.
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Chapter 4
Thermodynamics and Mixtures
on Configuration Space

Abstract We introduce the concept of a mixture of configuration space ensem-
bles. In very general terms, if a physical system is described by the configuration
space ensemble (Pj, Sj) with probability wj, then it may be said to correspond to
the mixture {(Pj, Sj);wj}. Mixtures for classical and quantum systems are shown
to be equivalent to phase space densities and density operators, respectively, and
obey corresponding classical and quantum Liouville equations. We also generalise
d’Espagnat’s distinction between ‘proper’ and ‘improper’ quantummixtures to mix-
tures of arbitrary configuration ensembles. With the help of mixtures it becomes
possible to unify and generalise traditional classical and quantum approaches to
thermodynamics, via the definition of suitable ‘thermal mixtures’ based on two uni-
versal primary notions: stationarity and distinguishability. Our formulation is very
different to standard approaches based on the maximum entropy principle, and is
equivalent to the standard statistical mechanics formulation in each of the quantum
and classical cases. The latter case is of particular interest, as it provides a novel
Hamilton–Jacobi picture of classical thermodynamics.

4.1 Introduction

The configuration ensemble approach must, if it is to provide a complete formal-
ism for describing physical systems, be able to incorporate statistical mechanics
and thermodynamics. However, there is an immediate difficulty in this regard: clas-
sical configuration ensembles correspond to probability densities on configuration
space, whereas the statistical formulation of classical thermodynamics is in terms
of probability densities on phase space. Similarly, quantum configuration ensembles
correspond to wave functions (see Chap. 1), whereas the statistical formulation of
quantum thermodynamics is in terms of density operators on Hilbert space.

The question therefore arises as towhether or not this difficulty can be overcome—
is it possible to give a general formulation of thermodynamics in the configuration
ensemble approach? We show here that this question can be answered in the affir-
mative.
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The central concept required is that of a mixture of configuration ensembles. In
very general terms, if a physical system is described by the configuration ensem-
ble (Pj, Sj) with probability wj, then it may be said to correspond to the mixture
{(Pj, Sj);wj}. Mixtures are introduced in Sect. 4.2, and for classical and quantum
systems are shown to be equivalent to phase space densities and density operators,
respectively, with appropriate (Liouville) equations of motion. We also generalise
d’Espagnat’s distinction between ‘proper’ and ‘improper’ quantum mixtures [1] to
mixtures of arbitrary configuration ensembles.

With the help of suchmixtures it becomes possible to define suitable ‘thermalmix-
tures’, thus unifying and generalising the thermodynamics of classical and quantum
configuration ensembles. This is a nontrivial undertaking, as discussed in Sect. 4.3.1.
For example, the usual statistical mechanics approach to classical and quantum ther-
modynamics is equivalent to maximising a suitable entropy, subject to an average
energy constraint, with the Shannon phase space entropy used for the classical case
and the von Neumann entropy for the quantum case [2]. However, while there is in
fact a natural phase space entropy for mixtures of general configuration ensembles,
arising from the inherent canonical structure of the formalism, a naive maximisation
of this entropy leads to results inconsistent with standard thermodynamics. Hence a
different approach must be taken. It is shown in the remainder of Sect. 4.3 that the
key to a successful general formulation is via mixtures of distinguishable stationary
ensembles.

In Sects. 4.4 and 4.5 our proposed formulation is shown to reduce to the standard
statistical mechanics formulation in each of the quantum and classical cases. The
latter case requires some care and is of particular interest, as it provides a novel
Hamilton–Jacobi picture of classical thermodynamics. It is remarkable that this new
picture relies heavily on an object more commonly seen in discussions of semiclassi-
cal approximations to quantum mechanics, known as the van Vleck determinant [3].
The example of one-dimensional classical systems is considered in detail in Sect. 4.6.

Finally, some remaining open issues are briefly discussed in Sect. 4.7.

4.2 Mixtures

4.2.1 General Definition

Up to now, we have considered the description of physical systems at a given time
in terms of a pair of functions P and S, where P(x) is a probability density on
the configuration space of the system, and S(x) is a function canonically conjugate
to P (see Chap.1). While this intrinsically provides a statistical description of the
system, it is straightforward to generalise this to a description in terms of mixtures
of configuration ensembles.

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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Thus, suppose that the state of a system is described by the configuration ensem-
ble (Pα, Sα), with statistical weight wα . Here α labels some set of ensembles on
configuration space, and may be continuous or discrete. This statistical mixture may
be denoted by W , with

W ≡ {(Pα, Sα);wα}. (4.1)

Recalling that the average of any observable A for the ensemble (Pα, Sα) is A[Pα, Sα]
(see Chap.2), it trivially follows that the average value of A over the mixture W is
given by

〈A〉W =
∫

dα wα A[Pα, Sα] (4.2)

(with integration replaced by summation over any discrete ranges of α).
To avoid confusion inwhat follows,we cannot use the terms ‘mixture’ and ‘ensem-

ble’ interchangeably: the latter term, when unqualified, will always refer to a single
ensemble on configuration space, (P, S). For notational convenience we will pri-
marily work with continuous configuration spaces below, but the substance of the
discussion also applies to the discrete case.

4.2.2 Classical and Quantum Mixtures

The above considerations apply to arbitrary configuration ensembles, whether classi-
cal, quantum or beyond. However, mixtures have particularly simple representations
in the classical and quantum cases:

Mixtures of configuration ensembles are equivalent to phase space densities for
the case of classical systems, and to density operators for the case of quantum
systems.

To demonstrate this in the classical case, recall first that observables for classical
configuration ensembles have the form

Cf [P, S] =
∫

dx P f (x,∇S), (4.3)

where f (x, p) is any function on classical phase space (see Sect. 2.3.2). Thus, using
Eq. (4.2) one has

〈Cf 〉W =
∫

dαdx wα Pα f (x,∇Sα) =
∫

dxdp ρW (x, p) f (x, p), (4.4)

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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for any classical mixture W , where

ρW (x, p) :=
∫

dα wα Pα(x) δ(p − ∇Sα(x)) (4.5)

is a well-defined probability density on classical phase space. Conversely, any given
phase space density, ρ(x, p), may be represented by a corresponding mixture W ≡
{(Pα, Sα);wα} of configuration space ensembles. For example, choosing

α ≡ (x0, p0), wα := ρ(x0, p0), Pα(x) := δ(x − x0), Sα(x) := p0 · x

one has

ρ(x, p) =
∫

dx0dp0 ρ(x0, p0) δ(x − x0) δ(p − p0)

=
∫

dα wα Pα(x) δ(p − ∇Sα(x)) = ρW (x, p). (4.6)

Hence, the equivalence holds as claimed. Another approach for mapping phase space
densities to mixtures of configuration space ensembles is presented in Appendix1
of this chapter.

We remark that for the special case of a single configuration ensemble, (P, S), the
corresponding phase space density in Eq. (4.5) has the simple ‘pure’ form

ρpure(x, p) = P(x) δ(p − ∇S(x)). (4.7)

It is of interest to note that the value of this phase space density at any given point,
(x′, p′) say, can be written in the form of a classical observable as per Eq. (4.3):

ρpure(x
′, p′) = Cr[P, S], r(x, p) := δ(x − x′) δ(p − p′). (4.8)

Finally, for the quantum case, recall that every configuration ensemble (P, S)
corresponds to a pure quantum state |ψ〉 with (see Sect. 2.3.3)

ψ(x) = 〈x|ψ〉 = √
P(x) eiS(x)/�. (4.9)

Hence the average of any quantum observable QM̂ = 〈ψ |M̂|ψ〉 over a mixtureW of
such ensembles follows via Eq. (4.2) as

〈QM̂〉W =
∫

dα wα 〈ψα|M̂|ψα〉 = tr[ρ̂W M̂], (4.10)

where ρ̂W denotes the quantum density operator

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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ρ̂W :=
∫

dα wα|ψα〉〈ψα|. (4.11)

Conversely, any density operator ρ can be decomposed as a mixture of pure states,
and hence as a mixture of corresponding quantum configuration ensembles. Thus,
mixtures of quantum configuration ensembles are equivalent to density operators as
claimed.

4.2.3 Dynamics and Liouville Equations

The dynamics of a mixture of configuration ensembles can always be determined by
evolving the individual components of the mixture in Eq. (4.1). However, for some
classes of configuration ensembles one can evolve the mixture directly. For example,
the dynamics of quantum configuration ensembles are equivalent to the Schrödinger
equation for pure quantum states, i�∂t|ψ〉 = Ĥ|ψ〉 (see Chap.1), which immediately
generalises to the quantum Liouville equation

i�∂t ρ̂ = [Ĥ, ρ̂] (4.12)

formixedquantumstates.However, it is less trivial to show that the classicalLiouville
equation

∂tρ = {H, ρ} (4.13)

holds for mixtures of classical configuration ensembles, where ρ(x, p) is a mixture
as per Eq. (4.5), H(x, p) is the classical phase space Hamiltonian, and {, } denotes
the Poisson bracket on phase space.

It is convenient to prove Eq. (4.13) for a configuration ensemble (P, S), with ρ

as in Eq. (4.7), as the general result then follows immediately from linearity with
respect to ρ. Recall first from Eq. (2.22) that classical observables satisfy the identity
{Cf ,Cg} = C{f ,g}, where {f , g} denotes the usual Poisson bracket for phase space
functions f (x, p) and g(x, p) (see Sect. 2.3.2). Hence, using Eqs. (4.3) and (4.7),

{Cf ,Cg} =
∫

dx P(x) {f (x, p), g(x, p)}|p=∇S

=
∫

dxdpP(x)δ(p − ∇S) {f (x, p), g(x, p)}

=
∫

dxdp ρ {f , g}

=
∫

dxdp {g, ρ} f ,

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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where the last line follows via {f , g} = ∇xf · ∇pg − ∇pf · ∇xg and integration by
parts. Noting that the classical ensemble Hamiltonian has the formH [P, S] = CH ,
it then follows from the equation of motion in Eq. (2.4) for general observables,
dA/dt = {A,H } + ∂A/∂t, that

dCf

dt
= {Cf ,CH} =

∫
dxdp {H, ρ} f .

for any phase space function f (x, p). But from Eq. (4.4) one also has

dCf

dt
= ∂

∂t

∫
dxdp ρ f =

∫
dxdp

∂ρ

∂t
f .

Comparing these expressions, the classical Liouville equation (4.13) follows as
desired.

Thus, the concept of mixtures allows recovery of the standard quantum and clas-
sical dynamics in terms of density operators and phase space densities, respectively.

4.2.4 Proper and Improper Mixtures

A mixture as defined in Eq. (4.1) may clearly be interpreted as representing igno-
rance as to which one of the configuration ensembles (Pα, Sα) has been prepared,
generalising the notion of a ‘proper mixture’ in quantum mechanics, first defined
by d’Espagnat [1]. We will also use the more descriptive term preparation mixture
when this interpretation applies.

One may similarly generalise d’Espaganat’s notion of an ‘improper mixture’ in
quantummechanics, corresponding to tracing out one component of a joint quantum
ensemble [1]. In particular, consider a joint configuration ensemble on a configuration
space X × Y , described by probability density P(x, y) and conjugate quantity S(x, y)
(see Sect. 3.1).We define the corresponding ‘improper mixture’ on the configuration
space X by

WX := {(Py, Sy);wy}, (4.14)

with

Py(x) := P(x, y)∫
dx P(x, y)

, Sy(x) := S(x, y), wy :=
∫

dx P(x, y). (4.15)

However, one should be aware that these “improper mixtures” are not true mix-
tures as defined previously in Sect. 4.2.1 because the (Py(x, t), Sy(x, t)) of Eq. (4.15)
do not necessarily evolve as ensembles on configuration space: for example, if
(P(x, y), S(x, y)) satisfy the continuity equation in the configuration space with coor-
dinates (x, y), then in general (Py(x), Sy(x)) will not satisfy the continuity equation
in the configuration space with coordinate x. Nevertheless, this straightforward gen-

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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eralization of d’Espaganat’s notion is both interesting and useful. Such mixtures
correspond to reduction of the relevant configuration space from X × Y to X, and
hence we will also use the more descriptive term reduced mixture.

For quantum systems, note from Eq. (4.9) that ψy(x) = ψ(x, y)/
√∫

dxP(x, y).
Hence, via Eq. (4.11), a quantum reducedmixture corresponds to the density operator

ρ̂WX =
∫

dy wy|ψy〉〈ψy|

=
∫

dydxdx′ |x〉〈x′|wy ψy(x) ψ∗
y (x′)

=
∫

dydxdx′ ψ(x, y) |x〉 〈x′| ψ∗(x′, y)

=
∫

dy 〈y|ψ〉 〈ψ |y〉 ≡ trY [|ψ〉〈ψ |], (4.16)

i.e., to the reduced density operator of the pure state associated with (P, S), as
expected. This will typically evolve under a master equation, rather than under the
quantum Liouville equation.

Reduced mixtures of configuration ensembles have already been implicitly con-
sidered in Chap. 3, in the context of separability and measurement properties for
joint ensembles. For example the average value of an observable for one component
of a joint ensemble, evaluated via Eq. (3.13), is equal to the average value of the
observable evaluated for the mixtureWX via Eqs. (4.2), (4.14) and (4.15). Moreover,
a suitable measurement interaction with a pointer can prepare a mixture of the form
of WX , as discussed in Sect. 3.4, providing a link between preparation and reduced
mixtures in this case.

Properties of reduced mixtures are also relevant to the discussion of hybrid
quantum-classical ensembles andWigner functions, as will be seen in Chaps. 8 and 9.

4.3 Thermodynamics on Configuration Space

4.3.1 Failure of the Canonical Approach

As remarked in the introduction to this chapter, one cannot take a simple maximum
entropy route to describe the thermodynamics of configuration ensembles, despite
the existence of a natural phase space entropy for mixtures of such ensembles. It
will be seen that a satisfactory solution to this problem is obtained by instead con-
sidering mixtures of stationary ensembles. But before we develop that approach, it
is instructive to examine the origin of the problem.

Recall first that the quantities P and S, describing a given configuration ensem-
ble, are canonically conjugate by definition (see Sect. 1.4). Thus the configuration
ensemble (P, S) represents a point in the “natural” phase space of the formalism,with

http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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a corresponding Poisson bracket {Pj, Sk} = δjk for discrete configuration spaces and
{P(x), S(x′)} = δ(x − x′) for continuous configuration spaces (see Sect. 2.2). Now,
in classical phase space mechanics the ‘canonical ensemble’ is defined by a phase
space density w(x, p) ∼ e−βH(x,p), where H denotes the Hamiltonian on the phase
space [2]. Hence, it is tempting to correspondingly define a ‘canonical mixture’ of
configuration ensembles via the prescription

w[P, S] ∼ e−βH [P,S] , (wrong!) (4.17)

where H [P, S] denotes the ensemble Hamiltonian. Note that this density w max-
imises the corresponding phase space entropy for a given average energy.

Unfortunately, however, the above ‘canonical’ prescription does not give physi-
cally correct answers. For example, in the quantumcase such amixture is equivalently
represented by a corresponding density operator as per Eq. (4.11). Noting that each
element (P, S) of the mixture can be equivalently labeled by a pure quantum state
|ψ〉, withH [P, S] = 〈ψ |Ĥ|ψ〉 as per Eq. (1.15), this density operator has the form

ρ ∼
∫

Dψ e−β〈ψ |Ĥ|ψ〉 |ψ〉〈ψ | (wrong!) (4.18)

up to a normalisation factor. Here integration is with respect to the (unique) invariant
Haarmeasure on the Hilbert space (this is equivalent to the uniform phase spacemea-
sure since (P, S) → (ψ,ψ∗) is a canonical transformation [4]). In general, however,
ρ is not equivalent to the density operator

ρ ′ ∼ e−βĤ , (4.19)

which is the known correct result for the quantum canonical ensemble, corresponding
to maximising the von Neumann entropy under an average energy constraint.

We demonstrate this inequivalence by computing a simple example. Consider
a 2-dimensional quantum system, i.e., a qubit, with Hamiltonian operator Ĥ = σz.
As is well known, the set of wave functions is represented by the Bloch sphere,
parameterized by a unit 3-vector nwith |ψ〉〈ψ | = (1 + σ · n)/2 and 〈ψ |Ĥ|ψ〉 = nz,
and hence Eq. (4.18) simplifies to

ρ ∼
∫

dn e−βnz (1 + σ · n)

=
∫ π

0
dθ sin θe−β cos θ

∫ 2π

0
dφ

[
1 + sin θ(σx cosφ + σy sin φ) + σz cos θ

]

= 2π
∫ 1

−1
du e−βu (1 + uσz)

= 4π

β

[
sinh β − σz

(
cosh β − sinh β

β

)]
, (wrong!) (4.20)

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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using standard spherical coordinates (θ, φ) and defining u := cos θ . In contrast,
Eq. (4.19) simplifies to

ρ ′ ∼ e−βσz = e−β 1 + σz

2
+ eβ 1 − σz

2
= cosh β − σz sinh β. (4.21)

Clearly the operators ρ and ρ ′ are not proportional, and thus the canonical prescrip-
tion fails. A similar failure obtains for classical configuration ensembles. We must
therefore take a different approach to describing thermodynamics on configuration
space.

4.3.2 Thermal Mixtures

We now give a prescription for defining ‘thermal mixtures’ of configuration ensem-
bles, which yields the correct results in the classical and quantum cases. In this
way the formalism of configuration ensembles yields a new and conceptually uni-
fied approach to thermodynamics, not only incorporating the standard quantum and
classical approaches but allowing one to go beyond these.

Our newapproach canbe regarded as amodification of the ‘canonical prescription’
inEq. (4.17), based on two primary notions: stationarity and distinguishability. These
notions provide further natural restrictions on the elements of the mixture appearing
in Eq. (4.17), sufficient to ensure compatibility with both classical and quantum
thermodynamics.

The notion of stationary ensembles has already been introduced in Sect. 2.4,
corresponding to those configuration ensembles for which all physical properties
are time independent. To motivate their appearance in a thermodynamical context,
we note that thermal equilibrium is an inherently time-invariant concept. Hence, for
equilibrium to be described by some mixture of ensembles, the physical properties
of this mixture must also be time invariant. Clearly, this is guaranteed if we assume
that the mixture comprises only stationary ensembles.

We also require the notion of distinguishable ensembles. In particular, a set
of configuration ensembles is defined to be distinguishable if and only if there is
some observable which can distinguish unambiguously between its members; i.e.,
the ranges of the observable for each member are nonoverlapping. For example,
two quantum configuration ensembles are distinguishable if and only if the corre-
sponding wave functions are orthogonal, thus allowing them to be distinguished by
a quantum observable QM̂ for which these wave functions are eigenfunctions of M̂
corresponding to distinct eigenvalues. Similarly, two classical configuration ensem-
bles are distinguishable if and only if their phase space supports {(x,∇S) : P(x) > 0}
are nonoverlapping, thus allowing them to be distinguished by a classical observ-
able Cf for which f (x, p) takes distinct ranges of values over these supports.

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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A distinguishable set is maximal if it cannot be enlarged without losing the dis-
tinguishability property.

The motivation for considering such ensembles here is essentially to avoid over-
counting. In particular, the failure of the ‘canonical prescription’ in Eq. (4.17) is due,
in large part, to counting redundant statistical contributions from many overlapping
configuration ensembles. This is particularly clear when comparing the quantum
density operators in Eqs. (4.18) and (4.19): the first comprises integration over all
possible wave functions whereas the second is equivalent to a sum over a set of
orthogonal energy eigenstates.

We can now give our definition of thermal mixtures.

Thermal mixtures: For a given ensemble Hamiltonian H [P, S], a thermal
mixture is a mixture,W ≡ {(Pα, Sα);wα}, of a maximal set of distinguishable
stationary ensembles, with

wα ∼ e−βH [Pα,Sα ] (4.22)

for some constant β.

Note that this definition is indeed a modification of the canonical prescription in
Eq. (4.17), corresponding to restricting attention to distinguishable stationary ensem-
bles. The definition is, for our purposes, justified by its consequences for quantum
and classical systems, as examined in Sects. 4.4 and 4.5. However, it is of interest
to first briefly consider a physical justification for the general form of the thermal
weighting distribution wα in Eq. (4.22).

4.3.3 Thermal Weighting Distribution from the Zeroth Law

The entropy of the thermal weighting distribution in Eq. (4.22) is not simply related
to the thermodynamic entropy in general, as will be seen in Sect. 4.5. This motivates
finding a non-entropic argument for the form of wα in Eq. (4.22). A simple such
argument is given below, based on the zeroth law of thermodynamics, i.e., on the
property that independent systems at the same temperature remain in equilibrium at
the same temperature when placed in thermal contact [2].

It is natural to assume, in the absence of any information about a physical system in
addition to its ensemble HamiltonianH [P, S], that the weight of a given stationary
ensemble (Pα, Sα) in a thermal mixture at temperature T is of the form

wα = fT (H [Pα, Sα]), (4.23)

for some function fT that may depend on the configuration space of the system.
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In our context, the zeroth law implies that a composition of two independent and
noninteracting thermal mixtures, each in equilibrium at temperature T , is itself a
thermal mixture in equilibrium at temperature T . Now, if α′ labels the components
of the first mixture, with weighting distribution w′

α′ , and α′′ labels the component
of the second mixture, with weighting distribution w′′

α′′ , then independence of the
mixtures implies that the composite mixture is labelled by α ≡ (α′, α′′), with the
weighting distribution

wα = w′
α′ w′′

α′′ . (4.24)

Independence further implies that the joint configuration ensemble labelled by α has
the form (see Sect. 3.2.1)

(Pα, Sα) = (P′
α′ P′′

α′′ , S′
α′ + S′′

α′′), (4.25)

and Eq. (3.4) for noninteracting ensembles then implies the additivity property

H [Pα, Sα] = H ′[P′
α′ , S′

α′ ] + H ′′[P′′
α′′ , S′′

α′′ ] (4.26)

for the composite ensembleHamiltonianH ,whereH ′ andH ′′ denote the ensemble
Hamiltonians of the individual mixtures. The stationarity and maximal distinguisha-
bility of {(Pα, Sα)} is easily shown to follow from that of {(P′

α′ , S′
α′)} and {(P′′

α′′ , S′′
α′′)}.

The combination of Eqs. (4.23), (4.24) and (4.26) yields

fT (Eα′ + Eα′′) = gT (Eα′) hT (Eα′′), (4.27)

where Eα′ and Eα′ denote the values ofH ′[P′
α′ , S′

α′ ] andH ′′[P′′
α′′ , S′′

α′′ ] respectively,
where the functions fT , gT and hT may depend on the corresponding configuration
spaces. To find the functional form of wα , one needs to solve Eq. (4.27), i.e., the
functional equation

fT (u + v) = gT (u) hT (v).

Since u and v can each take a continuous range of values (corresponding to the values
of suitable ensemble Hamiltonians), then the physically reasonable assumption that
fT , gT and hT are continuous implies, via differentiation with respect to u and v
respectively, that

f ′
T (u + v) = g′

T (u) hT (v) = gT (u) h′
T (v).

Hence f ′
T/fT = g′

T/gT = h′
T/hT = −βT for some constant βT . Finally, integration

and substitution into Eq. (4.23) yields the universal form in Eq. (4.22), i.e.,

wα ∼ e−βTH [Pα,Sα ], (4.28)

as desired.

http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
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The formof the thermalweighting distributionwα thus follows as a consequence of
the zeroth law and the additivity of ensemble Hamiltonians under the composition of
independent ensembles, with no properties of phase space or entropy being required.
A generalisation of this argument may be used to find the form of the weighting
distribution when the latter is further allowed to depend on additional conserved
quantities (such as angular momentum or particle number). Similar arguments may
also be used within the standard frameworks of classical and quantum statistical
mechanics, but will not be pursued here.

4.4 Quantum Thermal Mixtures

Recall that stationary configuration ensembles are those for which all physical prop-
erties are time-independent. Equation (2.30) of Chap.2 implies that a stationary
configuration ensemble (P, S) has the general form

P(x, t) = P(x), S(x, t) = W(x) − Et (4.29)

as a function of time, for suitable functions P(x) and W(x) and constant E. The
homogeneity property H [P, S] = −〈∂tS〉 of ensemble Hamiltonians in Eq. (1.28)
immediately yields

H [P, S] = E, (4.30)

i.e., the constant E is the corresponding value of the ensemble Hamiltonian.
For quantum configuration ensembles, stationary ensembles correspond to eigen-

states of the Hamiltonian operator Ĥ, as discussed in Sect. 2.4.1. Since distinguisha-
bility is equivalent to orthogonality for the quantum case (see Sect. 4.3.2), it follows
that a maximally distinguishable set of stationary states corresponds to a complete
set of mutually orthogonal energy eigenstates. Let {|ψα} denote any such set. Thus,

Ĥ|ψα〉 = Eα|ψα〉, 〈ψα|ψα′ 〉 = 0 for α 
= α′,

where Eα ranges over the eigenvalues of Ĥ, yielding the spectral decomposition

Ĥ =
∫

dα Eα |ψα〉〈ψα|. (4.31)

Here integration is replaced by summation over any discrete components of α.
It follows immediately via the definitions in Eqs. (4.5) and (4.22) that quantum

thermal mixtures are represented by density operators of the form

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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ρβ ∼
∫

dα e−βH [Pα,Sα ] |ψα〉〈ψα|

=
∫

dα e−βEα |ψα〉〈ψα|

= e−βĤ , (4.32)

up to anormalisation factor. Thus, thermalmixtures of quantumconfiguration ensem-
bles recover the standard quantum thermodynamics [2], as desired.

It is of interest to note that the quantum vonNeumann entropy of ρβ is, via the first
line of Eq. (4.32), equal to the entropy of the thermal weighting distribution wα , i.e.,

E Q
β := −tr[ρβ log ρβ] = −

∫
dα wα logwα. (4.33)

However, an analogous relation does not hold in the classical case, as will be seen in
the following section.

4.5 Classical Thermal Mixtures

To show that the definition of thermal mixtures leads to standard thermodynamics in
the classical case is less straightforward. The result relies on a beautiful connection
between the classical Hamilton–Jacobi equation, canonical transformations, and the
so-called vanVleck determinant from semiclassical quantummechanics [3].We give
our general result here, and consider a specific example in Sect. 4.6.

Recall first that the ensembleHamiltonian for a classical ensemble on a continuous
configuration space has the general form

H [P, S] = CH [P, S] =
∫

dx P(x)H(x,∇S) (4.34)

as per Eq. (4.3), where H(x, p) is a classical phase space Hamiltonian. The Hamil-
tonian equations of motion for the ensemble, Eq. (1.4), thus reduce to

∂P

∂t
= δH

δS
= −∇ ·

(
P

∂H(x,∇S)

∂∇S

)
,

∂S

∂t
= −δH

δP
= −H(x,∇S), (4.35)

where the functional derivatives have been evaluated via Eq. (A.6) of AppendixA.
The first equation is a continuity equation for P, and the second is the classical
Hamilton–Jacobi equation for S [9].

A complete solution of the Hamilton–Jacobi equation, on an n-dimensional con-
figuration space, is parameterised (up to an arbitrary additive constant of no physical
significance) by n independent constants α1, . . . , αn, which we will denote collec-
tively by α [9]. The form of the complete solution Sα(x, t) for stationary ensembles is

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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constrained by Eq. (4.29), which together with the Hamilton–Jacobi equation implies
that H(x,∇Sα) = Eα , and hence via Eq. (4.30) that

H [Pα, Sα] = Eα = H(x,∇Sα). (4.36)

The complete solution Sα is also associated with a corresponding canonical trans-
formation on phase space, (x, p) → (x′, p′), given by [9]

x′
j = ∂Sα

∂αj
, p′

j = αj. (4.37)

Thus, the momentum p′(x, p) in the primed coordinates is a constant of the motion,
and provides a direct physical interpretation for the label α. Further, the invertibility
of the transformation implies that the components of x′ are independent functions of
x, and hence that [9]

Dα := det ϕ 
= 0, ϕjk := ∂2Sα

∂xj∂αk
. (4.38)

The quantity Dα is well known in semiclassical quantum mechanics as the van
Vleck determinant [3, 6–8]. However, here we are interested in exploiting its purely
classical properties. In particular, given a complete solution Sα of the Hamilton–
Jacobi equation, a solution of the continuity equation in Eq. (4.35) is given by
[3, 6, 7]

Pα ∼ |Dα|, (4.39)

over the region of configuration space for which Sα is well defined, withPα vanishing
outside this region. We give an explicit derivation of this result in Appendix2 of this
chapter.

Now, the members of the set of stationary ensembles {(Pα, Sα)} are clearly dis-
tinguishable, since α labels the possible measurement outcomes of the momentum
observable Cp′ in Eq. (4.37). Moreover, the set is maximally distinguishable since α

labels the complete set of stationary solutions {Sα} to the Hamilton–Jacobi equation
by definition, and hence labels the complete set of stationary solutions {(Pα, Sα)} via
Eq. (4.39). Hence, using the definitions in Eqs. (4.5) and (4.22), classical thermal
mixtures are represented by phase space distributions of the form

ρβ(x, p) ∼
∫

dα e−βH [Pα,Sα ] Pα(x) δ(p − ∇Sα(x))

=
∫

dα e−βH(x,∇Sα(x)) Pα(x) δ(p − ∇Sα(x)),
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with the second line following via Eq. (4.36). Making a change of variables from α to
k := ∇Sα (corresponding to mapping the primed momentum p′ = α to the unprimed
momentum p = ∇S [3, 9]), and substituting Eq. (4.39) for Pα , then gives

ρβ(x, p) ∼
∫

dk J e−βH(x,k) |Dα| δ(p − k),

where J = | det(∂αi/∂kj)| is the Jacobian of the transformation. Finally, noting
that this Jacobian is related to the van Vleck determinant in Eq. (4.38) via J−1 =
| det(∂ki/∂αj|)| = |Dα|, one has

ρβ(x, p) ∼
∫

dk e−βH(x,k) δ(p − k) = e−βH(x,p), (4.40)

up to a normalisation factor. Hence, thermal mixtures of classical configuration
ensembles recover the standard classical thermal statistics [2], as desired.

Note that the weighting distribution wα is parameterised in the classical case by a
momentum coordinate, as per Eq. (4.37), and not by a phase space coordinate. Hence
the entropy of the classical thermal weighting distribution cannot be equal to the
entropy of the phase space distribution ρβ(x, p), in contrast to the analogous quantum
relation in Eq. (4.33). We explore this in more detail in the following example.

4.6 Example: One-Dimensional Classical Systems

It is of interest to give an explicit example of a classical thermal mixture, corre-
sponding to a one-dimensional particle of mass m moving in a potential V(x). This
includes the case of a harmonic oscillator in particular, with V(x) = 1

2mω2x2.
We begin with the Hamilton–Jacobi equation, which is given by

∂S

∂t
+ 1

2

(
∂S

∂x

)2

+ V(x) = 0 (4.41)

from Eq. (4.35). A complete set of stationary solutions follows via substitution of
Eq. (4.29) for stationary ensembles:

Sα(x, t) = sign α

∫
dx

√
2m(Eα − V) − Eα t, Eα = |α| (4.42)

up to an arbitrary additive constant, where α is any real number. The Van Vleck
determinant in Eq. (4.38) then takes the simple form

Dα = ∂2S

∂x∂α
= ∂

∂α
sign α

√
2m(|α| − V) = m(sign α)2√

2m(Eα − V)
= m

|∂Sα/∂x| . (4.43)



76 4 Thermodynamics and Mixtures on Configuration Space

The corresponding stationary probability density on configuration space, in the
region in which Sα(x, t) is well defined, i.e., for which V(x) ≤ Eα , follows via
Eq. (4.39) and (4.43) as

Pα(x) ∼ m√
2m(Eα − V)

= m

|∂Sα/∂x| (4.44)

up to a normalisation constant, and vanishes outside this region. Thus, recalling that
the classical momentum of the particle is p = ∇S, the probability density is inversely
proportional to the speed of the particle.

Assuming a convex potential for simplicity, i.e., V ′′(x) > 0, there are just two
classical turning points for anyα, x = aα and x = bα . Hence, using ∂S/∂x = mdx/dt,
the normalisation constant can be calculated via

∫ bα

aα

dx
m

|∂Sα/∂x| =
∫ bα

aα

dx

|dx/dt| = 1

2
Tα,

where Tα is the period associated with the motion. The stationary probability density
thus has the explicit form

Pα(x) = 2

Tα

m√
2m(Eα − V)

. (4.45)

For the case of a harmonic oscillator of frequencyω, the period reduces to a constant,
Tα = 2π/ω.

Note that the stationary configuration ensemble (Pα, Sα) defined by Eqs. (4.42)
and (4.45) is well known in semiclassical quantum mechanics. In particular, extend-
ing the domains of these functions to the whole real line by taking the modulus of any
square roots, define the corresponding wave function ψα := √

Pα eiSα/�. The WKB
approximation to a quantum stationary state with energy Eα then corresponds to a
superposition of ψα and ψ−α [10].

The phase space probability density corresponding to a one-dimensional classical
thermal mixture follows immediately from Eq. (4.40) as

ρβ(x, p) ∼ e−βH(x,p) = e−β[p2/(2m)+V(x)], (4.46)

up to a normalisation constant, in agreement with classical statistical mechanics [2].
It is well known that the statistical entropy of this phase space density depends
explicitly on properties of the potential V(x).

In contrast, the thermal weighting distribution follows from Eqs. (4.22) and (4.42)
as wα = 1

2βe
−β|α|, which has a statistical entropy

Ew = −
∫

dα wα logwα = log
2e

β
. (4.47)
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This quantity is completely independent of V(x), and hence can have no simple
relationship with the thermodynamic entropy. Indeed it is not even invariant under
1 : 1 relabellings of the parameter α.

4.7 Discussion

We have shown that the concept of thermal mixtures provides a unified approach to
thermodynamics that gives the correct results for both classical and quantum systems.
However, a number of interesting questions remain to be studied in future work.

For example, is it possible tomake a general connection between thermalmixtures,
as defined in Eq. (4.22), and the thermodynamic entropy? One possibility might be to
consider the submanifoldS := {(Pα, Sα)}of the natural phase space of configuration
ensembles, corresponding to a maximal set of stationary configuration ensembles,
and determine whether the associated entropy

E (S ) := −
∫
S

dS w[Pα, Sα] logw[Pα, Sα] (4.48)

is proportional to the thermodynamic entropy for the classical and quantum cases.
Here dS is the induced phase space measure on the submanifold (which may also
be used to normalise wα for this calculation). Another possibility, in the classical
case, is to relate thermal mixtures to ergodic properties (see Ref. [5] for preliminary
work in this regard).

Furthermore, can the properties of thermal mixtures be explicitly evaluated for a
nonclassical and nonquantum example? One obvious candidate in this regard is the
hybrid quantum-classical oscillator considered in Chap.8.

Appendix 1: Representation of Phase Space Densities
by Mixtures

In Sect. 4.2.2, we showed that any phase space density can be represented by a clas-
sical mixture of configuration space ensembles. Here we present another derivation
based on the coordinate transformation generated by the Hamilton–Jacobi relation
p = ∇S(x, α), where the vector α has the same dimension as the vector p. For sim-
plicity, we only consider a two-dimensional phase space. The generalization to more
dimensions is straightforward.

We write the phase space density in the form

ρ(x, p) =
∫

dx′dp′ ρ(x′, p′) δ(x − x′) δ(p − p′) (4.49)

http://dx.doi.org/10.1007/978-3-319-34166-8_8
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and carry out the change of coordinates

p′ = ∂S(x′, α)

∂x′ . (4.50)

The only restriction on S(x′, α) comes from the requirement that the coordinate
transformation of Eq. (4.50) be invertible. We have

dx′dp′ = dx′dα
∣∣∣∣ ∂2S

∂x′∂α

∣∣∣∣ , (4.51)

ρ(x′, p′) = ρ(x′, ∂S/∂x′), (4.52)

δ(p − p′) = δ(p − ∂S/∂x′), (4.53)

which leads to

ρ(x, p) =
∫

dx′dα
∣∣∣∣ ∂2S

∂x′∂α

∣∣∣∣ ρ(x′, ∂S/∂x′) δ(x − x′) δ(p − ∂S/∂x′)

=
∫

dα

∣∣∣∣ ∂2S

∂x∂α

∣∣∣∣ ρ(x, ∂S/∂x) δ(p − ∂S/∂x). (4.54)

We now evaluate

ρ(x) =
∫

dp ρ(x, p)

=
∫

dpdα

∣∣∣∣ ∂2S

∂x∂α

∣∣∣∣ ρ(x, ∂S/∂x) δ(p − ∂S/∂x)

=
∫

dα

∣∣∣∣ ∂2S

∂x∂α

∣∣∣∣ ρ(x, ∂S/∂x)

=:
∫

dα w(α)P(x|α), (4.55)

where the last line defines a pair of new probabilities, w(α) and P(x|α). Thus we can
set

∣∣∣∣ ∂2S

∂x∂α

∣∣∣∣ ρ(x, ∂S/∂x) = w(α)P(x|α). (4.56)

It is possible to give explicit expression for both w(α) and P(x|α). Integrating Eq.
(4.56) with respect to x on both sides leads to

w(α) =
∫

dx

∣∣∣∣ ∂2S

∂x∂α

∣∣∣∣ ρ(x, ∂S/∂x), (4.57)
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where we used
∫
dx P(x|α) = 1 (see below). Using Eq. (4.56) again we get

P(x|α) = 1

w(α)

∣∣∣∣ ∂2S

∂x∂α

∣∣∣∣ ρ(x, ∂S/∂x) =
∣∣∣ ∂2S
∂x∂α

∣∣∣ ρ(x, ∂S/∂x)
∫
dx

∣∣∣ ∂2S
∂x∂α

∣∣∣ ρ(x, ∂S/∂x)
. (4.58)

Thus w(α) and P(x|α) are uniquely determined by ρ(x, p) and a choice of S(x, α).
Both w(α) and P(x|α) are non-negative and properly normalized, as we now

show. Since the integrand of Eq. (4.57) is non-negative, it follows that w(α) ≥ 0, as
required. One can also show that

∫
dα w(α) = 1, since

1 =
∫

dxdp ρ(x, p) =
∫

dxdα

∣∣∣∣ ∂2S

∂x∂α

∣∣∣∣ ρ(x, ∂S/∂x) =
∫

dα w(α), (4.59)

where in the second equality we carried out the transformation of Eq. (4.50) replacing
primed coordinates by unprimed coordinates. Finally, inspection of Eq. (4.58) shows
that P(x|α) ≥ 0 and

∫
dx P(x|α) = 1.

Using Eq. (4.56), the expression for ρ(x, p), Eq. (4.54), becomes

ρ(x, p) =
∫

dα w(α)P(x|α) δ(p − ∂S/∂x). (4.60)

This shows that ρ(x, p) is indeed mapped to a mixture of configuration space ensem-
bles.

Notice that the functions P(x|α) and S(x, α) are only defined at a given instant of
time. Given P(x|α) and S(x, α), one can derive the corresponding time dependent
expressions P(x|α, t) and S(x, α, t) by solving the equations of motion with P(x|α)

and S(x, α) as initial conditions.
While different choices of S(x, α) lead to different functional forms for w(α),

P(x|α) and δ(p − ∂S/∂x), these mixtures are all physically equivalent because they
map to the same ρ(x, p).

As a simple application, consider any ρ(x, p) together with S(x, α) = αx, so that
∂2S/∂x∂α = 1. This leads to

w(α) =
∫

dx ρ(x, α),

P(x|α) = ρ(x, α)∫
dx ρ(x, α)

= ρ(x|α),

δ(p − ∂S/∂x) = δ(p − α).

(4.61)
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Appendix 2: Solution of the Classical Continuity Equation

As noted in Sect. 4.5, a complete solution Sα of the classical Hamilton–Jacobi equa-
tion in Eq. (4.35) also generates a solution Pα for the corresponding continuity equa-
tion via the van Vleck determinant, as per Eq. (4.39) [3, 6, 7]. However, this fact
is not discussed in most text books on classical mechanics, and so for completeness
we provide the corresponding derivation here.

Wewill essentially follow Schiller [7], but with a littlemore detail. Thus, consider
a general complete solutionSα(x, t), i.e., onewhich is not necessarily stationary. First,
differentiating theHamilton–Jacobi equation ∂Sα/∂t + H(x,∇Sα) = 0 in Eq. (4.35),
with respect to xj and αk , yields

0 = ∂ϕjk

∂t
+ ∂

∂xj

[
∂H

∂(∇Sα)
· ∂(∇Sα)

∂αk

]

= ∂ϕjk

∂t
+

[
∂

∂xj

∂H

∂(∇Sα)

]
· ∂(∇Sα)

∂αk
+ ∂H

∂(∇Sα)
· ∂2(∇Sα)

∂xj∂αk

= ∂ϕjk

∂t
+

[
∂

∂xj

∂H

∂(∂Sα/∂xl)

]
ϕlk + ∂H

∂(∂Sα/∂xl)

∂ϕjk

∂xl
,

where ϕ is defined in Eq. (4.38) and repeated indices are summed over. The property
Dα = det ϕ 
= 0 in Eq. (4.38) implies that the inverse matrix ϕ−1 exists, and multi-
plying the above result by ϕ−1

kj with summation over repeated indices then gives

0 = tr

[
ϕ−1 ∂ϕ

∂t

]
+ ∇ ·

(
∂H

∂(∇Sα)

)
+ ∂H

∂(∂Sα/∂xl)
tr

[
ϕ−1 ∂ϕ

∂xl

]
. (4.62)

Second, the determinant Dα = det ϕ satisfies

det(ϕ + δϕ) = Dα det(I + ϕ−1δϕ) = Dα

∏
j

[1 + (ϕ−1δϕ)jj] = Dα(1 + tr[ϕ−1δϕ]),

to first order in δϕ, and hence one has the variational property

δDα = Dα tr[ϕ−1δϕ]. (4.63)

Multiplication of Eq. (4.62) by Dα then gives

0 = ∂Dα

∂t
+ D ∇ ·

(
∂H

∂(∇Sα)

)
+ ∂H

∂(∂Sα/∂xl)

∂Dα

∂xl

= ∂Dα

∂t
+ ∇ ·

(
Dα

∂H

∂(∇Sα)

)
. (4.64)
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Thus, the van Vleck determinant Dα satisfies the classical continuity equation in
Eq. (4.35), over the physical region of configuration space for which Sα is well
defined.

Finally, recalling thatDα 
= 0 as per Eq. (4.38), there can be noflow fromapositive
to a negative value of Dα at any point, and vice versa. Hence the absolute value |Dα|
must also satisfy the continuity equation. The probability density corresponding to Sα

is therefore Pα ∼ |Dα|, as claimed in Eq. (4.39). We emphasise that this result holds
for any complete solution of the Hamilton–Jacobi equation, not just the stationary
solutions considered in Sect. 4.5.
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Part II
Axiomatic Approaches to Quantum

Mechanics



Chapter 5
Quantization of Classical Ensembles
via an Exact Uncertainty Principle

Abstract The usual Heisenberg uncertainty relation may be replaced by an exact
equality, valid for all states. This can be shown by carrying out a decomposition of the
momentum of a quantum state into classical and nonclassical components and choos-
ing suitable measures of position and momentum uncertainty. The exact uncertainty
relation obtained in thisway is sufficiently strong to provide the basis formoving from
classical mechanics to quantum mechanics. In particular, the assumption of a non-
classical momentumfluctuation, having a strengthwhich scales inverselywith uncer-
tainty in position, leads from the classical equations of motion to the Schrödinger
equation. The approach based on the exact uncertainty principle is conceptually very
simple, being based on the core notion of statistical uncertainty, intrinsic to any inter-
pretation of quantum theory. This quantization procedure is not restricted to particles
but can also be used to derive bosonic field equations. It is remarkable that the basic
underlying concept, the addition of nonclassical momentum fluctuations to a clas-
sical ensemble, carries through from quantum particles to quantum fields, without
creating conceptual difficulties, although significant technical generalizations are
needed. This logical consistency and range of applicability is a further strength of
the exact uncertainty approach.

5.1 Introduction

The dynamics of classical and quantum non-relativistic particles can be described
using the common framework of ensembles on configuration space (see Sect. 1.2),
and from this point of view the main difference between quantum and classical
evolution lies in the choice of ensembleHamiltonian. For example, given the classical
ensemble Hamiltonian HC of a particle of mass m, we can write the corresponding
quantum ensemble Hamiltonian HQ as

sHQ[P, S] = HC [P, S] + �
2

4

∫
d3x P

|∇ log P|2
2m

. (5.1)
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This simple relationship suggests that we examine the following question: is it
possible to understand the addition of the second term on the right hand side of
Eq. (5.1) as due to some property which is characteristic of quantum systems?

Notice that the addition of this term amounts to the quantization of the classi-
cal system. Thus, this term ought to be related to something that is fundamentally
quantum. This is indeed the case. The additional term underlies an exact uncertainty
relation for quantum systems, which is related to but stronger than the more familiar
Heisenberg uncertainty relation. Moreover, the form of this additional term can be
uniquely derived from an exact uncertainty principle.

We first show how an exact uncertainty relation can be formulated for a quantum
system and then describe the quantization procedure based on the exact uncertainty
principle. In the next section, we consider a quantum system and show that it is pos-
sible to decompose the momentum into the sum of classical and nonclassical compo-
nents and that the nonclassical component satisfies an exact uncertainty relation. In
Sect. 5.3 we invert this approach: we start from a classical ensemble, assume that it is
subject to random momentum fluctuations which scale inversely with uncertainty in
position, and derive the Schrödinger equation from this exact uncertainty principle.
This quantization procedure is not restricted to particles but can also be used to derive
bosonic field equations, as shown in Sect. 5.4. To illustrate the approach, we apply
the procedure to the electromagnetic and gravitational fields, and show in the latter
case that all operator-ordering ambiguities are removed by the approach.

We will substantially follow the exposition of Ref. [1] in Sect. 5.3, and the expo-
sition of Ref. [2] in Sect. 5.4.

5.2 An Exact Uncertainty Relation

One of the fundamental distinctions between classical and quantum systems concerns
the class of states which are allowed: in the case of classical systems, it is possible
to have states in which both the position and momentum uncertainties are arbitrarily
small, while in the case of quantum systems there is a limitation imposed by the
Heisenberg uncertainty relation. Indeed, the uncertainty principle is generally con-
sidered to be a fundamental conceptual tool for understanding differences between
classical and quantummechanics. As first argued by Heisenberg in 1927 [3], the fact
that quantum states do not admit simultaneously precise values of conjugate observ-
ables, such as position andmomentum, does not necessarily imply an incompleteness
of the theory, but rather is consistent with not being able to simultaneously determine
such observables experimentally to an arbitrary accuracy. It might be asked whether
this “measure of freedom” from classical concepts can be formulated more precisely.
The answer is, surprisingly, yes—and, as a consequence, the Heisenberg inequality
ΔxΔp ≥ �/2 can be replaced by an exact equality, valid for all states [4, 5].

To obtain this equality, consider that the position and momentum observables of
a classical system can be measured simultaneously, to an arbitrary accuracy. For a



5.2 An Exact Uncertainty Relation 87

quantum systemwe therefore define the classical component of the quantummomen-
tum to be that observable which is closest to the quantum momentum observable,
under the constraint of being comeasurable with the position of the system.

More formally, for the case in which the state of a one-dimensional quantum
system is described by the wavefunction ψ(x) = √

PeiS/�, the classical component
pψ

cl of the momentum is defined by the properties

[x̂, p̂ψ

cl ] = 0, 〈ψ |( p̂ − p̂ψ

cl )
2 |ψ〉 = minimum. (5.2)

where x̂ and p̂ are the standard quantum mechanical position and momentum oper-
ators. The first property implies that p̂ψ

cl has the form

p̂ψ

cl =
∫

dx |x〉〈x | pψ

cl (x), (5.3)

which in combination with the second property leads to the unique solution [5]

pψ

cl (x) = �

2i

[
1

ψ

∂ψ

∂x
− 1

ψ∗
∂ψ∗

∂x

]
= ∂S

∂x
. (5.4)

Thus pψ

cl (x) provides the best possible estimate of momentum for a state ψ(x) con-
sistent with the position measurement result x .

Having a classical momentum component, it is natural to define the corresponding
nonclassical component of the momentum, p̂ψ

nc, via the decomposition

p̂ = p̂ψ

cl + p̂ψ
nc. (5.5)

The average of p̂ψ
nc is zero for the state ψ , and hence p̂ may be thought of as com-

prising a nonclassical fluctuation about a classical average. It is the nonclassical
component which is responsible for the commutation relation [x̂, p̂] = i�. One has
the related decomposition [4, 5]

(Δp)2 = (Δpψ

cl )
2 + (Δpψ

nc)
2 (5.6)

of the momentum variance into classical and nonclassical components, and there
is a similar decomposition of the kinetic energy. The magnitude of the nonclassical
momentum fluctuation,Δpψ

nc, provides a natural measure for that “degree of freedom
from the limitations of classical concepts” referred to by Heisenberg [3]. Note that
this magnitude can be operationally determined from the statistics of x and p, via
equations (5.4) and (5.6). It is remarkable that Δpψ

nc satisfies an exact uncertainty
relation [4, 5],

δx Δpψ
nc = �/2, (5.7)
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where δx denotes a classical measure of position uncertainty, called the “Fisher
length,” defined via

δx =
[∫

dx P

(
1

P

∂P

∂x

)2
]−1/2

. (5.8)

for probability density P(x). There is thus a precise connection between the statistics
of complementary observables.

The momentum of a quantum state may be decomposed into classical and
nonclassical components

• The classical component pψ

cl (x) provides the best estimate of momentum
for the state ψ(x) consistent with the position measurement result x .

• The nonclassical component pψ
nc satisfies the exact uncertainty relation

δxΔpψ
nc ≡ �/2.

While we have carried out the derivation for the particular case of a one-
dimensional non-relativistic quantum particle, exact uncertainty relations may be
generalised and/or applied to, for example, density operators, higher dimensions,
energy bounds, photon number and phase, entanglement, optimal estimates, weak
values and joint measurements [5–7], illustrating their general applicability.

Recalling that 〈pψ
nc〉 = 0, the exact uncertainty relation and (5.8) imply that

the intrinsically ‘quantum’ term in the ensemble Hamiltonian HQ in Eq. (5.1) is
equal to (pψ

nc)
2/(2m), i.e., to a nonclassical kinetic energy. This feature of the exact

uncertainty relation for quantum systems raises the possibility of whether a suitable
‘exact uncertainty principle’ can be used as a basis for deriving the Schrödinger
equation. This is indeed so, as will be shown in the next section.

5.3 Derivation of the Schrödinger Equation

If regarded as merely asserting a physical limit on the degree to which classical
concepts can be applied, the Heisenberg uncertainty principle is not sufficiently
restrictive in content to supply a means for moving from classical mechanics to
quantum mechanics.1 Thus Landau and Lifschitz write that [8]

This principle in itself does not suffice as a basis on which to construct a new mechanics of
particles.

1We substantially follow the exposition of Ref. [1] in this section.
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In particular, uncertainty relations expressed as imprecise inequalities are not enough
to pin down the essence of what is nonclassical about quantum mechanics.

However, an exact form of the uncertainty principle is in fact strong enough to
allow for a derivation of the equations of motion of a quantum ensemble. More
precisely, if we assume that a classical ensemble is subject to random momentum
fluctuations, where the strength of these fluctuations is precisely determined by and
scales inversely with uncertainty in position (as characterised by the position prob-
ability density), then the resulting modified equations of motion are equivalent to
the Schrödinger equation given in Eq. (5.7) [1]. This will be the main result of this
section.

In any axiomatic-type construction of quantum mechanics one must first choose
a classical starting point, to be generalised or modified appropriately. The starting
point here is a statistical one—the classical motion of an ensemble of particles on
configuration space.

5.3.1 Classical Mechanics

We have seen in Sect. 1.2 that the equations of motion for a classical, non-relativistic
particle can be derived from the ensemble Hamiltonian

HC =
∫

dnx P

(
1

2m
|∇S|2 + V

)
, (5.9)

with equations of motion

∂P

∂t
= {P,HC } = δHC

δS
,

∂S

∂t
= {S,HC } = −δHC

δP
. (5.10)

They are the Hamilton–Jacobi equation,

∂S

∂t
+ 1

2m
|∇S|2 + V = 0, (5.11)

and the continuity equation,

∂P

∂t
+ ∇ ·

(
P
1

m
∇S

)
= 0. (5.12)

Equations (5.11) and (5.12) completely determine the motion of the classical ensem-
ble.

In standard Hamilton–Jacobi theory, there is an additional assumption: that the
velocity field v(x, t) that describes the motion of the particle is related to S(x, t) by
v = 1

m∇S and therefore that the momentum of the particle is always given by

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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p = ∇S. (5.13)

This allows for the notion of individual, classical deterministic particle trajectories.

5.3.2 Nonclassical Momentum Fluctuations

We now introduce momentum fluctuations: we consider the possibility that the clas-
sical ensemble HamiltonianHC is not quite right because ∇S is actually an average
momentum and one has in addition a fluctuation N about ∇S. Then the physical
momentum is

p = ∇S + N. (5.14)

No particular underlying physical model will be assumed for the momentum fluc-
tuation N. Indeed, one could instead regard the fluctuations as fundamentally non-
analyzable, being introduced as a simple device to remove the notion of individual
particle trajectories.

The momentum fluctuationNmay conceivably depend on position. We introduce
the following notation: the average over such fluctuations for a given quantity A at
point x will be denoted by A, while the average over fluctuations and position will
be denoted by < A >. One hence has the general relation < A >= ∫

dnx P A. A
physically very reasonable randomness assumption for the momentum fluctuation
N is that it vanishes on average everywhere, i.e., N ≡ 0. However, here only two
weaker assumptions will be made:

< N >= 0, < ∇S · N >= 0. (5.15)

The first of these states that the fluctuations are unbiased, and the second that the
fluctuations are linearly uncorrelated with the average momentum ∇S.

It follows that when the momentum fluctuations are significant, they may be
taken into account by replacing the kinetic energy term 1

2m |∇S|2 in the ensemble
Hamiltonian by 1

2m |∇S+N|2 and averaging over the fluctuations, yielding the mod-
ified ensemble Hamiltonian

H =
∫

dnx P

(
1

2m
|∇S + N|2 + V

)

=
∫

dnx P

(
1

2m
|∇S|2 + V

)
+ 1

2m

∫
dnx P|N̄|2

≡ HC + 1

2m
< (ΔN )2 > (5.16)



5.3 Derivation of the Schrödinger Equation 91

where ΔN is the average rms momentum fluctuation, given by < N · N >1/2. Thus
the consequence of taking into consideration the momentum fluctuations is to add a
positive term to the ensemble Hamiltonian, arising from the additional kinetic energy
due to the fluctuations.

5.3.3 Exact Uncertainty Principle

Howcanwe estimate themagnitude of this additional term, ifwe don’t knowanything
else about the system except the probability density P and the average momentum
∇S? To estimate the magnitude of the momentum spread, we will assume that an
exact uncertainty principle holds, in the sense that the strength of the momentum
fluctuations at a given time are inversely correlated with uncertainty in position,
where the uncertainty of position is characterized by P . Clearly, this assumption is
an additional hypothesis that is independent of classical mechanics.

To make this assumption precise, consider the general case of an n-dimensional
space and a one-parameter family of probability distributions (which we label with
a parameter k > 0), related by a rescaling of variables

P(x) → Pk(x) ≡ kn P(kx). (5.17)

These transformations preserve the normalization,

∫
dnx P(x) →

∫
dnx kn P(kx) =

∫
dn y P(y) (5.18)

where we have introduced the change of variables y = kx . We also have

|∇P(x)|2 → k2n+2|∇y P(y)|2, x · ∇P(x) → kny · ∇y P(y). (5.19)

Under such a transformation, any direct measurement of position uncertainty δx
such as the rms uncertainty Δx changes according to the rule

δx → δxk ≡ 1

k
(δx) . (5.20)

Thus probability densities with different values of k represent physical systems that
only differ in how well we know the location of the particle, since the shape of the
probability densities are the same except for the rescaling. The exact uncertainty
principle that we want to make use of corresponds roughly to the assumption that
such a scaling of position by a factor 1/k scales the momentum fluctuation by a
factor k. More precisely:
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Exact uncertainty principle: The nonclassical momentum fluctuation ΔN is
determined by the uncertainty in position, where the latter is characterized by
the probability density P , such that

ΔN → kΔN (5.21)

under k transformations.

It follows that the uncertainty product δxΔN is thus preserved under k transfor-
mations, for any direct measure of position uncertainty δx .

To apply the exact uncertainty principle, note first that for theHamiltonian formal-
ism to be applicable toH , the additional term in Eq. (5.16) must be an integral over a
density that is a function of x, P and S and their derivatives. Moreover, since (ΔN )2

is determined solely by position fluctuations (where the latter are characterized by
P), then this additional term is in fact independent of S. Finally, to get the simplest
possible modification of the classical ensemble Hamiltonian which is consistent with
the exact uncertainty principle, we will search for a modified ensemble Hamiltonian
that does not contain second and higher order derivatives of P . Hence, the additional
term in the Hamiltonian of Eq. (5.16) can be written in the form

∫
dnx (ΔN )2 =

∫
dnx P f (x, P, x · ∇P, |∇P|2). (5.22)

The exact uncertainty principle requires f to transform under k transformation as
follows,

∫
dnx P(x) f

[
x, P(x), x · ∇P(x), |∇P(x)|2)] (5.23)

→
∫

dn y P(y) f (k−1y, kn P(y), kny · ∇y P(y), k2n+2|∇y P(y)|2) (5.24)

≡ k2
∫

dn y P(y) f (y, P(y), y · ∇y P(y), |∇y P(y)|2). (5.25)

This leads to the homogeneity condition

f (k−1x, knu, knv, k2n+2w) = k2 f (x, u, v,w) (5.26)

where we have introduced the more compact notation

u = P, v = x · ∇P, w = |∇P|2. (5.27)
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From this requirement we derive the first order partial differential equation

−
n∑

i=1

xi
∂ f

∂xi
+ nu

∂ f

∂u
+ nv

∂ f

∂v
+ (2n + 2)w

∂ f

∂w
= 2 f. (5.28)

The problem of finding the general integral of such an equation is equivalent to the
problem of finding the general integral of a system of ordinary differential equations
[9], in our case given by

− dx1
x1

= · · · = −dxn
xn

= du

nu
= dv

nv
= dw

(2n + 2)w
= d f

2 f
. (5.29)

This system of ordinary differential equations has (n + 3) independent integrals,
which can be chosen as

u−1w1/2xi = constant, (5.30)

u−1v = constant, (5.31)

u2/n|x|2 = constant, (5.32)

u2w−1 f = constant, (5.33)

and this implies that the general solution of Eq. (5.28) is of the form

f = (
u−2w

)
g
(
u−1w1/2x, u−1v, u2/n|x|2) , (5.34)

where g is an arbitrary function.

5.3.4 Independent Subsystems

Todetermine f completely,we need one further condition.Wewill require subsystem
independence (see Sect. 3.2), which is equivalent to the condition that the extra term
in the ensemble HamiltonianH decomposes into additive subsystem contributions
whenever the system is composed of independent subsystems. It is also equivalent
to the condition that the momentum fluctuations N1 and N2 are linearly uncorrelated
for two such subsystems, and hence can equivalently be interpreted as a further
randomness assumption for the momentum fluctuations.

To investigate the requirements of subsystem independence, it will be sufficient
to consider the case where we have a system consisting of two uncorrelated particles
of mass m that do not interact, one particle described by a set of coordinates x1 and
the other by x2. Then, P is given by Eq. (3.1),

P(x1, x2) = P1(x1)P2(x2), (5.35)

http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
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which leads immediately to

u = u1u2, (5.36)

v′ ≡ u−1v = u−1
1 v1 + u−1

2 v2 = v′
1 + v′

2, (5.37)

w′ ≡ u−2w = u−2
1 w1 + u−2

2 w2 = w′
1 + w′

2, (5.38)

where the subscripts 1 and 2 refer to quantities corresponding to the subsystems 1
and 2, respectively.

From Eqs. (5.16) and (5.22), subsystem independence requires

P f = P1P2 ( f1 + f2) . (5.39)

Using Eq. (5.34), we find that

f = (
w′
1 + w′

2

)
g

(√
w′
1 + w′

2 x, v′
1 + v′

2, (u1u2)
2/n |x|2

)
, (5.40)

where x = (x1, x2). From Eq. (5.39), this form of f must decompose into the sum of
a function of u1, v′

1,w
′
1and x1, and a function of u2,v

′
2, w

′
2and x2. Since the factor that

multiplies g and the second and third arguments of g are such functions (with respect
to w′, v′, and x respectively), these terms cannot be mixed by the functional form of
g. Taking into consideration that the first argument of g is given by

√
w′
1 + w′

2 x, we
find that g must be of the form

g (a, b, c) = C + g0(a) + bg1(a) + cg2(a), (5.41)

where C is a constant, and the functions g j must satisfy the condition

g j (λa) = λ−2g j (a) , j = 0, 1, 2, (5.42)

to allow cancellation of the factor w′
1 + w′

2 that multiplies g.
Hence f has the general form

f = C
(
w′
1 + w′

2

)+ g0(x1, x2) + (
v′
1 + v′

2

)
g1(x1, x2)

+ (u1u2)
2/n
(|x1|2 + |x2|2

)
g2(x1, x2). (5.43)

The independence condition Eq. (5.39) places strong requirements on the g j . First,
g0 is required to be a sum of a function of x1 and a function of x2. Hence it only
represents a classical additive potential term (satisfying the homogeneity condition
of Eq. (5.42) above), and will be ignored as having no nonclassical role (it can be
absorbed into the classical potentialV in theLagrangian). Second, to avoid subsystem
cross terms, g1 must be constant. But then the homogeneity condition of Eq. (5.42)
can only be satisfied by the choice g1 = 0. Third, cross terms in u1 and u2 can only
be avoided by choosing g2 = 0.
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Thus the form of f reduces to C
(
w′
1 + w′

2

)
, which from Eq. (5.39) is to be iden-

tified with the sum of f1 and f2, thus yielding the general form

f = Cw′ = C

P2
|∇P|2 (5.44)

where C is a universal constant.

5.3.5 Equations of Motion

The modified ensemble Hamiltonian follows from Eqs. (5.16), (5.22) and (5.44) as

H =
∫

dx P

(
1

2m
|∇S|2 + C

2m

1

P2
|∇P|2 + V

)
. (5.45)

Variation with respect to S leads again to Eq. (5.12), while variation with respect to
P leads to

∂S

∂t
+ 1

2m
|∇S|2 + C

2m

[
1

P2
|∇P|2 − 2

P
∇2P

]
+ V = 0. (5.46)

Equations (5.12) and (5.46) are identical to the Schrödinger equation,

i�
∂ψ

∂t
= − �

2

2m
∇2ψ + Vψ, (5.47)

provided we introduce the wave function ψ = √
PeiS/� and the constant C is set

equal to C = (�/2)2.

Schrödinger equation from an exact uncertainty principle

• The exact uncertainty relation is sufficiently strong to provide the basis for
moving from classical mechanics to quantum mechanics.

• Quantization is achieved via nonclassical momentum fluctuations having a
strength which scales inversely with uncertainty in position.

We have derived the Schrödinger equation based on three main assumptions:
an exact uncertainty principle, additivity, and an action principle with derivatives of
up to first order in P . One can show [10] that discarding the first of these assumptions
allows for an additional additive term proportional to the configuration space entropy
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R[P] := −
∫

dx P log P. (5.48)

Adding this entropic term to the quantum ensemble Hamiltonian leads to the loga-
rithmic Schrödinger equation, a nonlinear modification of quantum mechanics first
studied by Bialynicki-Birula and Mycielski [11].

It is worth remarking that the configuration space entropy satisfies all the require-
ments for observables except for homogeneity (see Sect. 2.2). However, the latter
can be regained by replacing the entropy functional by a relative entropy, i.e., by
replacing log P in Eq. (5.48) by log (P/Q), for some fixed reference distribution
Q. Further, if the set of classical ensemble observables, defined in Sect. 2.3.2, is
supplemented by this entropy, then one still has closure under the Poisson bracket.

It is of interest to note that a formally related ‘hydrodynamic’ approach toquantiza-
tion has since been given by Ván and Tülöp, in which the role of the exact uncertainty
principle is replaced by a ‘mass invariance’ principle [12]. More recently, Rudnicki
has consideredmodifying the exact uncertainty principle to yield correspondingmod-
ified exact uncertainty relations compatible with generalised Heisenberg uncertainty
relations proposed in the literature, and leading to nonlinear Schrödinger equations
[13].

5.3.6 Further Remarks on the Exact Uncertainty Relation

The Schrödinger equation has been derived above using an exact uncertainty princi-
ple to fix the strength of randommomentum fluctuation in terms of the uncertainty in
position. Note that no specific measure of position uncertainty was assumed; it was
required only that the momentum fluctuations scale inversely with position uncer-
tainty under k transformations. However, having obtained a unique form, Eq. (5.44),
for the function f in (5.22) we return now to the exact uncertainty relation relating
position and momentum uncertainties that we introduced in Sect. 5.3.

For simplicity, we only consider the case of one dimension. Recall the definition
of the “Fisher length” in Eq. (5.8):

δx =
[∫

dx P

(
1

P

∂P

∂x

)2
]−1/2

. (5.49)

For the case of a Gaussian probability density with standard deviation σ one has
δx = σ . More generally, this measure has units of position, scales appropriately
with x (δy = λδx for y = λx), and vanishes in the limit that P approaches a delta
function. Hence it represents a direct measure of uncertainty for position. We refer
to δx as the “Fisher length” of the probability density P due to its connection with
the “Fisher information” of statistical estimation theory [14].

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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From Eqs. (5.22) and (5.44) it follows that

δx ΔN = √
C = �

2
. (5.50)

Thus, the exact uncertainty principle leads to an exact uncertainty relation between
position and momentum, of the same form as the quantum exact uncertainty rela-
tion in Eq. (5.7). In particular, the nonclassical momentum fluctuation ΔN may be
identified with the rms deviation of the nonclassical momentum operator in Eq. (5.5).

The usual Heisenberg uncertainty relation can be derived from this exact uncer-
tainty relation. From the Cramer-Rao inequality of statistical estimation theory [15]
one has Δx ≥ δx , while the randomness assumptions in Eq. (5.15) imply

(Δp)2 = Var(∂S/∂x + N ) = Var(∂S/∂x) + (ΔN )2 ≥ (ΔN )2 , (5.51)

and hence it follows immediately from Eq. (5.50) that ΔxΔp ≥ �/2.

5.4 Derivation of Bosonic Field Equations

The exact uncertainty principle can be successfully generalized to derive the equa-
tions of motion for bosonic fields with Hamiltonians quadratic in the field momenta,
including scalar, electromagnetic, and gravitational fields.2 The field quantization
procedure is extremely minimalist in nature: unlike canonical quantization, it does
not use nor make any assumptions about the existence of operators, Hilbert spaces,
complex amplitudes, inner products, linearity, superposition, or the like.

It is remarkable that the basic underlying concept, the addition of “nonclassical”
momentum fluctuations to a classical ensemble, carries through from quantum parti-
cles to quantum fields, without creating conceptual difficulties (although significant
technical generalizations are needed). The approach based on the exact uncertainty
principle is thus conceptually very simple, being based on the core notion of sta-
tistical uncertainty, intrinsic to any interpretation of quantum theory. This logical
consistency and range of applicability is a further strength of the quantization pro-
cedure.

As a bonus, the exact uncertainty approach further implies a unique operator order-
ing for the functional Schrödinger equation associated with the quantum ensemble,
something which the canonical quantization procedure is unable to do.

2This section, and associated Appendices 1 and 2 of this chapter, substantially follow the exposition
of Ref. [2].
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5.4.1 Classical Ensembles of Fields

We consider a real multicomponent classical field φ ≡ (φa) with conjugate momen-
tum density π ≡ (πa) and Hamiltonian functional H̃C [φ, π, t]. For example, φ

may denote the electromagnetic field A ≡ (Aμ), or some collection of interacting
fields labeled by the index a. Spatial coordinates will be denoted by x (irrespective
of dimension), and the values of field components φa and πb at position x will be
denoted by φa

x and πb
x respectively.

We restrict to fields for which the associated Hamiltonian functional is quadratic
in the momentum field density, i.e., of the form

H̃C [φ, π, t] =
∑
a,b

∫
dx
{
Kab

x [φ]πa
x πb

x + V [φ]} . (5.52)

Here Kab
x [φ] = Kba

x [φ] is a kinetic factor coupling components of the momentum
density, and V [φ] is some potential energy functional. Note that cross terms of the
form πa

x πb
x ′ with x �= x ′ are not permitted in local field theories, and hence are not

considered here.
Themost direct way of introducing ensembles on configuration space for the fields

φ is via the Hamilton–Jacobi formulation of the field theory. Given a Hamiltonian
functional, it is straightforward towrite down the equation ofmotion for an individual
classical field as a Hamilton–Jacobi functional equation,

∂S

∂t
+ H̃C [ f, δS/δφ, t] = 0, (5.53)

where S[φ] denotes the Hamilton–Jacobi functional, and δ/δφ denotes the functional
derivative with respect to φ. In Appendix 1 of this chapter we discuss in detail how
to get from the Hamiltonian formalism for fields to the Hamilton–Jacobi functional
equation, and we provide the mathematical tools that are necessary for the formu-
lation of the Hamilton–Jacobi theory for fields. Further information on functional
derivatives and functional integrals is provided in Appendix A of this book. Readers
who are not familiar with this material are encouraged to consult both Appendices.

The description of an ensemble of such fields requires some additional mathe-
matical structure: a probability density functional P[φ]. The equation of motion for
P[φ] corresponds to the conservation of probability, i.e., to the continuity equation

∂P

∂t
+
∑
a

∫
dx

δ

δφa
x

⎛
⎝P

δ H̃C

δπa
x

∣∣∣∣∣
π=δS/δφ

⎞
⎠ = 0. (5.54)

This equation is derived in Appendix 1 of this chapter.
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Equations (5.53) and (5.54) describe the motion of the ensemble completely, in
terms of the two functionals P and S. These equations of motion can be put in the
Hamiltonian form

∂P

∂t
= ΔHC

ΔS
,

∂S

∂t
= −ΔHC

ΔP
, (5.55)

where HC denotes the ensemble Hamiltonian given by the functional integral

HC [P, S, t] := 〈H̃C 〉 =
∫

Dφ P H̃C [φ, δS/δφ, t], (5.56)

and P and S are regarded as canonically conjugate functionals.Variational derivatives
of functional integrals, such asΔHC/ΔS, are discussed in Appendix A of this book,
including for the example of a classical scalar field. Note that Eq. (5.56) implies that
HC typically corresponds to the average energy of the ensemble.

5.4.2 Momentum Fluctuations and Quantum Ensembles

Our approach to modifying the classical ensemble Hamiltonian, HC [P, S, t] of
Eq. (5.56), to derive equations of motion for a quantum ensemble of fields is again
based on a single ingredient: the addition of nonclassical fluctuations to the momen-
tum density, with the magnitude of the fluctuations determined by the uncertainty in
the field. This exact uncertainty approach leads to equations of motion equivalent to
those of a bosonic field, with the interpretational advantage of an intuitive statistical
picture for quantumfield ensembles, and the technical advantage of a unique operator
ordering for the associated functional Schrödinger equation.

The assumption that we make is similar to the one that we made in the case of
particles. Suppose then that δS/δφ is an averagemomentum density associated with
the field φ, in the sense that the true momentum density is given by

π = δS/δφ + N , (5.57)

where N is a fluctuation field that vanishes on the average for any given field φ.
No specific underlying model for N is assumed or necessary: in the approach to
be followed, one may in fact interpret the “source” of the fluctuations as the field
uncertainty itself. Thus the main effect of the fluctuation field is to remove any
deterministic connection between φ and π .

Similar to the case of particles, we consider the possibility that the momentum
fluctuations may depend on the field φ. We use the same notation as before: the aver-
age over such fluctuations for a given quantity A[φ, N ]will be denoted by A[φ], and
the average over fluctuations and the field by 〈A〉. Thus N ≡ 0 by assumption, and
in general 〈A〉 = ∫

Dφ P[φ] A[φ]. Assuming a quadratic dependence on momen-
tum density as per Eq. (5.52), it follows that when the fluctuations are significant the
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classical ensemble Hamiltonian HC = 〈H̃C [φ, δS/δφ, t)〉 in Eq. (5.56) should be
replaced by

H = 〈 H̃C [φ, δS/δφ + N , t) 〉
=
∑
a,b

∫
Dφ

∫
dx P Kab

x (δS/δφa
x + Na

x )(δS/δφb
x + Nb

x ) + 〈V 〉

= HC +
∑
a,b

∫
Dφ

∫
dx PKab

x Na
x N

b
x . (5.58)

Thus themomentumfluctuations lead to an additional nonclassical term in the ensem-
ble Hamiltonian, specified by the covariance matrix Covx (N ) of the fluctuations at
position x , where

[Covx (N )]ab := Na
x N

b
x . (5.59)

To get the simplest possible modification of the classical ensemble Hamiltonian
which is consistent with the exact uncertainty principle, wewill search for a modified
ensemble Hamiltonian that does not contain second and higher order functional
derivatives of P and S. Then,

Covx (N ) = α(P, δP/δφx , S, δS/δφx , φx , t) (5.60)

for some symmetric matrix function α. Note that in principle one could also allow the
covariance matrix to depend on auxiliary fields and functionals; however, the third
assumption below immediately removes such a possibility. Given the functional form
of Eq. (5.60), the covariance matrix is uniquely determined, up to a multiplicative
constant, by three assumptions:

(1) Independence: Consider the case in which the ensemble comprises two inde-
pendent non-interacting subensembles 1 and 2,with a factorisable probability density
functional P[φ(1), φ(2)] = P1[φ(1)]P2[φ(2)]. Then any dependence of the correspond-
ing subensemble fluctuations N (1) and N (2) on P only enters via the corresponding
probability densities P1 and P2 respectively. Thus

Covx (N
(1))
∣∣
P1P2

= Covx (N
(1))
∣∣
P1

, Covx (N
(2))
∣∣
P1P2

= Covx (N
(2))
∣∣
P2

(5.61)

for such an ensemble. Note that this assumption implies that the ensemble Hamil-
tonian H in Eq. (5.58) is additive for independent non-interacting ensembles.

(2) Invariance: The covariance matrix transforms correctly under linear canonical
transformations of the field components. Thus, noting that φ → Λ−1φ, π → ΛTπ

is a canonical transformation for any invertible matrix Λ with transpose ΛT , which
preserves the quadratic formof H̃C in Eq. (5.52) and leaves S invariant (since δ/δφ →
ΛT δ/δφ), one has from Eq. (5.57) that N → ΛT N , and hence that

Covx (N ) → ΛTCovx (N )Λ for φ → Λ−1φ. (5.62)
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Note that for single-component fields this reduces to a scaling relation for the variance
of the fluctuations at each point x .

(3) Exact uncertainty principle: The uncertainty of the momentum density fluctu-
ations at any given position and time, as characterised by the covariance matrix of the
fluctuations, is specified by the field uncertainty at that position and time. Thus, since
the field uncertainty is completely determined by the probability density functional
P , it follows that Covx (N ) cannot depend on S, nor explicitly on t .

The first two assumptions, independence and invariance, are natural on physical
grounds, and hence relatively unconstraining (note that invariance replaces the role
of k-transformations for particles in Sect. 5.3.3). In contrast, the third assumption
is of a special character: it postulates an exact connection between the nonclassical
momentum uncertainty and the field uncertainty. Remarkably, these assumptions
lead directly to the equations of motion of a bosonic quantum field, as shown by the
following Theorem and Corollary.

Theorem 1 The above assumptions of causality, independence, invariance, and
exact uncertainty imply that

Na
x N

b
x = C

P2

δP

δφa
x

δP

δφb
x

, (5.63)

where C is a positive universal constant.

The theorem thus yields a unique form for the additional term in Eq. (5.58), up to
a multiplicative constant C . The classical equations of motion for the ensemble are
recovered in the limit of small fluctuations, i.e., in the limit C → 0. Note that
one cannot make the identification Na

x ∼ (δP/δφa
x )/P from Eq. (5.63), as this is

inconsistent with the fundamental property Na
x = 0. The proof of the theorem is

given in Appendix 2 of this chapter, and is substantially different from (and stronger
than) the proofs for the analogous theorem for quantum particles [1, 10] (see also
Sect. 5.4), which rely heavily on a “scalar” formwhich does not carry over in a natural
manner to general fields.

The main result of this section is the following Corollary:

Corollary 1 The equations of motion corresponding to the ensemble Hamiltonian
H can be expressed as the single functional Schrödinger equation

i�
∂Ψ

∂t
= H̃C [φ,−i�δ/δφ, t)Ψ = −�

2

(∑
a,b

∫
dx

δ

δφa
x

K ab
x

δ

δφb
x

)
Ψ +VΨ, (5.64)

where
� := 2

√
C, Ψ := √

PeiS/�. (5.65)

The proof of the Corollary is given in Appendix 2 of this chapter. Equation (5.64)
may be recognised as the functional Schrödinger equation for a quantum bosonic
field [16, 17], and hence the goal of deriving this equation, via an exact uncertainty
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principle for nonclassical momentum fluctuations acting on a classical ensemble, has
been achieved. Note that the exact uncertainty approach specifies a unique operator
ordering, (δ/δφa

x )K
ab
x (δ/δφb

x ), for the functional derivative operators in Eq. (5.64).
Thus there is no ambiguity in the ordering for cases where Kab

x depends on the
field φ, in contrast to traditional approaches (e.g., the Wheeler-DeWitt equation,
discussed in Sect. 5.4.4 below). The above results generalise straightforwardly to
complex classical fields.

The ensemble of fields corresponding to an ensemble Hamiltonian H will be
called the quantum ensemble corresponding toHC . Note from Eqs. (5.63) and (5.65)
that the role of Planck’s constant is to fix the relative scale of the nonclassical fluctu-
ations. It is remarkable that the assumptions of independence, invariance and exact
uncertainty lead to a linear operator equation.

In certain classical field theories, in addition to the equations ofmotion for the clas-
sical ensemble there are constraint equations for P and/or S. For example, eachmem-
ber of an ensemble of electromagnetic fields may have the Lorentz gauge imposed
(e.g., see Sect. 5.4.3.1 below). As a guiding principle, we will require that the corre-
sponding quantum ensemble be subject to the same constraint equations for P and/or
S. This will ensure a meaningful classical-quantum correspondence for the results of
field measurements. However, consistency of the quantum equations of motion with
a given set of constraints is not guaranteed by the above Theorem and Corollary, and
so must be checked independently for each case.

Bosonic field equations from an exact uncertainty principle

• The basic underlying concept, the addition of “nonclassical” momentum
fluctuations to a classical ensemble, carries through from quantum particles
to quantum fields, without creating conceptual difficulties.

• The exact uncertainty approach implies a unique operator ordering for the
functional Schrödinger equation associated with the quantum ensemble.

5.4.3 Example: Electromagnetic Field

Our first example concerns the electromagnetic field. We consider formulations cor-
responding to the Lorentz and radiation gauges.

5.4.3.1 Lorentz Gauge

The electromagnetic field is described, up to gauge invariance, by a 4-component
field Aμ. In the Lorentz gauge all physical fields satisfy ∂μAμ ≡ 0, and the classical
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equations of motion in vacuum are given by ∂ν∂ν Aμ = 0. These follow, for example,
from the Hamiltonian [17]

H̃GB[A, π ] = (1/2)
∫

dx ημν (πμπν − ∇Aμ · ∇Aν) , (5.66)

where ημν denotes themetric inMinkowski space,πμ denotes the conjugatemomen-
tumdensity, and∇ denotes the spatial derivative.Here H̃GB corresponds to the gauge-
breaking Lagrangian L̃ = −(1/2)

∫
dx Aμ,ν Aμ,ν , and is seen to have the quadratic

form of Eq. (5.52) with Kμν
x ≡ ημν/2.

The exact uncertainty approach implies, via the Corollary of the previous section,
that the evolution of a quantum ensemble of electromagnetic fields is described by
the functional Schrödinger equation

i�
∂Ψ

∂t
= H̃GB[A,−i�(δ/δAμ)]Ψ, (5.67)

in agreement with the Gupta-Bleuler formalism [17].
Further, note that the probability of a member of the classical ensemble not satis-

fying the Lorentz gauge condition ∂μAμ ≡ 0 is zero by assumption, i.e., the Lorentz
gauge is equivalent to the condition that the product (∂μAμ)P[Aμ] vanishes for all
physical fields. For the quantum ensemble to satisfy this condition, as per the guiding
principle discussed at the end of Sect. 5.4.2 above, one equivalently requires, noting
Eq. (5.65), that

(∂μA
μ)Ψ [Aμ] = 0. (5.68)

As is well known, this constraint, if initially satisfied, is satisfied for all times [18] (as
is the weaker constraint that only the 4-divergence of the positive frequency part of
the field vanishes [17]). Hence the evolution of the quantum ensemble is consistent
with the Lorentz gauge.

5.4.3.2 Radiation Gauge

It is well known that one can also obtain the classical equations ofmotion for the elec-
tromagnetic field via an alternative Hamiltonian, obtained by exploiting the degree
of freedom left by the Lorentz gauge to remove a dynamical coordinate (correspond-
ing to the longitudinal polarisation). In particular, since ∂μAμ is invariant under
Aμ → Aμ + ∂μχ for any function χ satisfying ∂ν∂νχ = 0, one may completely
fix the gauge in a given Lorentz frame by choosing χ such that A0 = 0. One thus
obtains, writing Aμ ≡ (A0,A), the radiation gauge A0 = 0, ∇ · A = 0.

The classical equations of motion, ∂ν∂νA = 0, follow from the Hamiltonian

H̃R[A,π ] = 1

2

∫
dx

(
π · π

ε0
+ |∇ × A|2

μ0

)
, (5.69)
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where π denotes the conjugate momentum density. Here H̃R corresponds to the
standard Lagrangian L̃ = −(1/4μ0)

∫
dx FμνFμν , with A0 ≡ 0.

This Hamiltonian has the quadratic form of Eq. (5.52), and hence the exact uncer-
tainty approach yields the corresponding functional Schrödinger equation

i�
∂Ψ

∂t
= H̃R[A,−i�(δ/δA)]Ψ (5.70)

for a quantum ensemble of electromagnetic fields in the radiation gauge (this is
also the form of the functional Schrödinger equation obtained via the Schwinger–
Tomonaga formalism [19]).

For the electric field we have

E = −∂A
∂t

= −δHR

δπ
= − π

ε0
, (5.71)

thereforeE is directly proportional to the classicalmomentumdensityπ . Fluctuations
of the momentum density thus correspond to fluctuations of the electric field E.
Further, the constraint ∇ · A = 0 implies there is a one-to-one relation between A
and the magnetic field B = ∇ × A (up to an additive constant). Uncertainty in the
vector potential thus corresponds to uncertainty in the magnetic fieldB. Hence, in the
radiation gauge, the exact uncertainty approach corresponds to adding nonclassical
fluctuations to the electric field components of an ensemble of electromagnetic fields,
with the fluctuation strength determined by the uncertainty in the magnetic field
components.

5.4.4 Example: Gravitational Field

In our second example, we derive the Wheeler-DeWitt equation with a unique oper-
ator ordering from a classical ensemble of gravitational fields (see also Chap.10
where classical ensembles of gravitational fields are investigated further).

5.4.4.1 Ensembles of Classical Gravitational Fields

The gravitational field is described, up to arbitrary coordinate transformations, by
the metric tensor gμν . The line element may be decomposed as [20]

ds2 = gμνdx
μdxν = −(N 2 − Ni N

i )dt2 + 2Nidx
idt + hi j dx

idx j , (5.72)

in terms of the lapse function N , the shift vector Ni , and the spatial 3-metric hi j ,
with Ni = gi j N j . The equations of motion are the Einstein field equations, which
follow from the Hamiltonian functional [20]

http://dx.doi.org/10.1007/978-3-319-34166-8_10
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H̃ [hi j , π i j , N , Ni ] =
∫

dx
{
N
[
Gi jkl[hi j ]π i jπ kl − √

h (3)R[hi j ]
]

− 2 Ni D jπ
i j
}

,

(5.73)
where π i j denotes the momentum density conjugate to hi j , Dj denotes the covariant
3-derivative, h is the determinant of hi j , (3)R[hi j ] is the curvature scalar corresponding
to hi j , and

Gi jkl[hi j ] = 1

2
√
h

(hikh jl + hilh jk − hi j hkl) (5.74)

is the (inverse) DeWitt metric.
The Hamiltonian functional H̃ is the one that corresponds to the standard

Lagrangian for gravity, L̃ = ∫
dx

√
g R[g], where the momenta π0 and π i con-

jugate to N and Ni respectively vanish identically. However, the lack of dependence
of H̃ on π0 and π i is consistently maintained only if the rates of change of these
momenta also vanish; i.e., noting Eq. (5.83) of Appendix 1, only if the constraints
[20]

δ H̃

δN
= Gi jklπ

i jπ kl − √
h (3)R = 0,

δ H̃

δNi
= −2Dj π

i j = 0, (5.75)

are satisfied. Thus the dynamics of the field is independent of N and Ni , so that
these functions may be fixed arbitrarily. Moreover, these constraints immediately
yield H̃ = 0 in Eq. (5.73), and hence the system is static, with no explicit time
dependence.

It follows that, in the Hamilton–Jacobi formulation of the equations of motion
(see Appendix 1 of this chapter), S is independent of N , Ni and t . Noting that
π i j ≡ δS/δhi j in this formulation, Eq. (5.75) therefore yield the corresponding
constraints

δS

δN
= δS

δNi
= ∂S

∂t
= 0, Dj

(
δS

δhi j

)
= 0, (5.76)

for S. A given functional F[hi j ] of the 3-metric is invariant under spatial coordinate
transformations if and only if Dj (δF/δhi j ) = 0 [21], and hence the fourth constraint
in Eq. (5.76) is equivalent to the invariance of S under such transformations. This
fourth constraint moreover implies that the second term in Eq. (5.73) may be dropped
from the Hamiltonian, yielding the reduced Hamiltonian

H̃G[hi j , π i j , N ] =
∫

dx N
[
Gi jkl[hi j ]π i jπ kl − √

h (3)R[hi j ]
]
, (5.77)

as the basis for the Hamiltonian-Jacobi formulation [21, 22].
For an ensemble of classical gravitational fields, the independence of the dynamics

with respect to N , Ni and t implies that members of the ensemble are distinguish-
able only by their corresponding 3-metric hi j . Moreover, it is natural to impose the
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additional geometric requirement that the ensemble is invariant under spatial coor-
dinate transformations. One therefore has the constraints

δP

δN
= δP

δNi
= ∂P

∂t
= 0, Dj

(
δP

δhi j

)
= 0, (5.78)

for the corresponding probability density functional P[hi j ], analogous to Eq. (5.76).
The first two constraints imply that ensemble averages only involve integration over
hi j .

5.4.4.2 Quantum Ensembles and Operator-Ordering

The Hamiltonian H̃G in Eq. (5.77) has the quadratic form of Eq. (5.52). Hence the
exact uncertainty approach is applicable, and immediately leads to the functional
Schrödinger equation

i�
∂Ψ

∂t
= H̃G[hi j ,−i�(δ/δhi j ), N ]Ψ (5.79)

for a quantum ensemble of gravitational fields, as per the Corollary of Sect. 5.4.2.
As discussed at the end of Sect. 5.4.2, we follow the guiding principle that all

constraints imposedon the classical ensemble shouldbe carriedover to corresponding
constraints on the quantum ensemble. Thus, from Eqs. (5.76) and (5.78) we require
that P and S, and hence Ψ in Eq. (5.65), should be independent of N , Ni and t and
invariant under spatial coordinate transformations, i.e.,

δΨ

δN
= δΨ

δNi
= ∂Ψ

∂t
= 0, Dj

(
δΨ

δhi j

)
= 0. (5.80)

Applying the first and third of these constraints to Eq. (5.79) immediately yields the
reduced functional Schrödinger equation

− �
2 δ

δhi j
Gi jkl[hi j ] δ

δhkl
Ψ − √

h (3)R[hi j ]Ψ = 0, (5.81)

which may be recognised as the Wheeler-DeWitt equation in the metric representa-
tion [20].

A notable feature of Eq. (5.81) is that the Wheeler-DeWitt equation has not
only been derived from an exact uncertainty principle: it has, as a consequence of
Eq. (5.64), been derived with a precisely defined operator ordering (with Gi jkl sand-
wiched between the two functional derivatives). Thus the exact uncertainty approach
does not admit ambiguity in this respect, unlike the standard approach [20]. Such
removal of ambiguity is essential to making definite physical predictions, and hence
may be regarded as an advantage of the exact uncertainty approach.
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For example, Kontoleon and Wiltshire [23] have pointed out that Vilenkin’s pre-
diction of inflation in minisuperspace, from a corresponding Wheeler-DeWitt equa-
tion with “tunneling” boundary conditions [24], depends critically upon the operator
ordering used. In particular, considering the class of orderings defined by an integer
power p, with correspondingWheeler-DeWitt equation for a Friedmann-Robertson-
Walker metric coupled to a scalar field φ [24]

[
∂2

∂a2
+ p

a

∂

∂a
− 1

a2
∂2

∂φ2
−U (a, φ)

]
Ψ = 0, (5.82)

Kontoleon andWiltshire show thatVilenkin’s approach fails for orderingswith p ≥ 1
[23]. Moreover, they suggest that the only natural ordering is in fact the “Laplacian”
ordering corresponding to p = 1, which has been justified on geometric grounds by
Hawking and Page [25].

However, noting that the relevant Hamiltonian functional in Eq. (2.7) of Ref. [24]
is quadratic in the momentum densities of the metric and the scalar field, the exact
uncertainty approach may be applied and yields the Wheeler-DeWitt equation cor-
responding to p = −1 in Eq. (5.82). Hence the criticism in Ref. [23] is avoided. One
also has the nice feature that the associated Wheeler-DeWitt equation can be exactly
solved for this “exact uncertainty” ordering [24].

A certain degree of ambiguity remains, which derives from the need to introduce
some sort of regularisation scheme to remove divergences arising from the product of
two functional derivatives acting at the same point in the Wheeler-DeWitt equation.
Such considerations, however, do not play a role in the example that we have just
discussed, which concerns minisuperspace quantisation involving a finite number of
degrees of freedom. It is important to distinguish this regularisation problem from
the far more difficult one associated with the requirement of Dirac consistency; i.e.,
the need to find a choice of operator ordering and regularisation scheme that will
permit mapping the classical Poisson bracket algebra of constraints to an algebra of
operators within the context of the Dirac quantisation of canonical gravity [26]. Our
approach is based on the Hamilton–Jacobi formulation of classical gravity and, as
shown by Bergmann [27], the functional form of the Hamilton–Jacobi functional S
is already invariant under the action of the group generated by the constraints.

Finally, we point out that a similar approach may be applied to the Ashtekar
formalism for gravity [28], where again the Hamiltonian is quadratic in the field
momentum density.

Appendix 1: Hamilton–Jacobi Ensembles

The salient aspects of the Hamilton–Jacobi formulation of classical field theory [29]
are collected here, with particular attention to the origin of the associated continuity
equation for ensembles of classical fields.
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Two classical fields φ, π are canonically conjugate if there is a Hamiltonian
functional H̃ [φ, π, t] such that

∂φ

∂t
= δ H̃

δπ
,

∂π

∂t
= −δ H̃

δφ
. (5.83)

These equations follow from the action principle δA = 0, with the action functional
A = ∫

dt [−H̃ + ∫
dx πx (∂φx/∂t)]. The rate of change of an arbitrary functional

G[φ, π, t] follows from
dG

dt
= ∂G

∂t
+
∫

dx

(
δG

δφx

∂φx

∂t
+ δG

δπx

∂πx

∂t

)
(5.84)

and Eq. (5.83) as

dG

dt
= ∂G

∂t
+
∫

dx

(
δG

δφx

δ H̃

δπx
− δG

δπx

δ H̃

δφx

)
=: ∂G

∂t
+ {G, H}, (5.85)

where { , } is a generalised Poisson bracket.
A canonical transformation maps φ, π and H̃ to φ′, π ′ and H̃ ′, such that the

equations of motion for the latter retain the canonical form of Eq. (5.83). Equating
the variations of the corresponding actions A and A′ to zero, it follows that all physical
trajectories must satisfy

− H̃ +
∫

dx πx
∂φx

∂t
= −H̃ ′ +

∫
dx π ′

x

∂φ′
x

∂t
+ dF

dt
(5.86)

for some generating functional F . Now, any two of the fields φ, π, φ′, π ′ determine
the remaining two fields for a given canonical transformation. Choosing φ and π ′
as the two independent fields, defining the new generating functional G[φ, π ′, t] =
F + ∫

dx φ′
x π ′

x , and using Eq. (5.84), then yields

H̃ ′ = H̃ + ∂G

∂t
+
∫

dx

[
∂φx

∂t

(
δG

δφx
− πx

)
+ ∂π ′

x

∂t

(
δG

δπ ′
x

− φ′
x

)]
(5.87)

for all physical trajectories. The terms in round brackets therefore vanish identically,
yielding the generating relations

H̃ ′ = H̃ + ∂G

∂t
, π = δG

δφ
, φ′ = δG

δπ ′ . (5.88)

A canonical transformation is thus completely specified by the associated generating
functional G.

To obtain theHamilton–Jacobi formulation of the equations of motion, consider a
canonical transformation tofieldsφ′,π ′ which are time-independent (e.g., to thefields
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φ and π at some fixed time t0). From Eq. (5.83) one may choose the corresponding
Hamiltonian H̃ ′ ≡ 0 without loss of generality, and hence using the integration by
parts formula ∫

Dφ P
δF

δφ
= −

∫
Dφ

δP

δφ
F (5.89)

(seeAppendixA.2 of this book), themomentumdensity and the associated generating
functional S are specified by the functional equations

π = δS

δφ
,

∂S

∂t
+ H̃ [φ, δS/δφ, t] = 0. (5.90)

The latter is the desired Hamilton–Jacobi equation. Solving this equation for S is
equivalent to solving Eqs. (5.83) for φ and π .

Note that along a physical trajectory one has π ′ ≡ constant, and hence from
Eqs. (5.84) and (5.92) that

dS

dt
= ∂S

∂t
+
∫

dx
δS

δφx

∂φx

∂t
= −H̃ +

∫
dx πx

∂φx

∂t
= d A

dt
. (5.91)

Thus the Hamilton–Jacobi functional S is equal to the action functional A, up to an
additive constant. This relation underlies the connection between the derivation of
the Hamilton–Jacobi equation from a particular type of canonical transformation, as
above, and the derivation from a particular type of variation of the action, as per the
Schwinger–Tomonaga formalism [30].

The Hamilton–Jacobi formulation has the interesting feature that once S is spec-
ified, the momentum density is determined by the relation π = δS/δφ, i.e., it is a
functional of φ. Thus, unlike the Hamiltonian formulation of Eq. (5.83), an ensemble
of fields is specified by a probability density functional P[φ], not by a phase space
density functional ρ[φ, π ].

In either case, the equation of motion for the probability density corresponds to
the conservation of probability, i.e., to a continuity equation of the form

∂P

∂t
+
∫

dx
δ

δφx
[PVx ] = 0. (5.92)

For example, in the Hamiltonian formulation the associated continuity equation for
ρ[φ, π ] is

∂ρ

∂t
+
∫

dx

[
δ

δφx

(
ρ

∂φx

∂t

)
+ δ

δπx

(
ρ

∂πx

∂t

)]
= 0, (5.93)

which reduces to the Liouville equation ∂ρ/∂t = {H, ρ} via Eq. (5.83).
Similarly, in the Hamilton–Jacobi formulation, the rate of change of the field φ

follows from Eqs. (5.83) and (5.92) as the functional



110 5 Quantization of Classical Ensembles via an Exact Uncertainty Principle

Vx [φ] = ∂φx

∂t
= δ H̃

δπx

∣∣∣∣∣
π=δS/δφ

(5.94)

and hence the associated continuity equation for an ensemble of fields described by
P[ f ] follows via Eq. (5.92) as

∂P

∂t
+
∫

dx
δ

δ fx

⎡
⎣P

δ H̃

δgx

∣∣∣∣∣
g=δS/δ f

⎤
⎦ . (5.95)

Equations (5.92) and (5.95) generalise immediately to multicomponent fields.

Appendix 2: Proofs of the Theorem and Corollary

Proof of Theorem (Eq. 5.63): From the causality and exact uncertainty assumptions
in Sect. 5.4.2, one has Covx (N ) = α(P, δP/δφx , φx ). To avoid issues of regulari-
sation, it is convenient to consider a position-dependent canonical transformation,
φx → Λ−1

x φx , such that A[Λ] := exp[∫ dx ln | detΛx |] is finite. Then the probability
density functional P and the measure Dφ transform as P → AP and Dφ → A−1Dφ

respectively, and so the invariance assumption in Sect. 3 requires that

α(AP, AΛT
x u,Λ−1

x w) ≡ ΛT
x α(P, u,w)Λx , (5.96)

where ua and wa denote the vectors δP/δφa
x and φa

x respectively, for a given value
of x . Since Λx can remain the same at a given point x while varying elsewhere, this
homogeneity condition must hold for A and Λx independently. Thus, choosing Λx

to be the identity matrix at some point x , one has α(AP, Au,w) = α(P, u,w) for
all A, implying that α can involve P only via the combination v := u/P .

The above homogeneity condition for α therefore reduces to

α(ΛT v,Λ−1w) = ΛTα(v,w)Λ. (5.97)

Note that this equation is linear, and invariant under multiplication of α by any
function of the scalar J := vTw. Moreover, it may easily be checked that if σ and τ

are solutions, then so are στ−1σ and τσ−1τ . Choosing the two independent solutions
σ = vvT , τ = (wwT )−1, it follows that the general solution has the form

α(v,w) = β(J )vvT + γ (J )(wwT )−1 (5.98)

for arbitrary functions β and γ .
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For P = P1P2 one finds v = (v1, v2), w = (w1,w2), where the subscripts label
corresponding subensemble quantities, and hence the independence assumption in
Sect. 5.4.2, reduces to the requirements

β(J1 + J2)v1v
T
1 + γ (J1 + J2)(w1w

T
1 )−1 = β1(J1)v1v

T
1 + γ1(J1)(w1w

T
1 )−1, (5.99)

β(J1 + J2)v2v
T
2 +γ (J1 + J2)(w2w

T
2 )−1 = β2(J2)v2v

T
2 +γ2(J2)(w2w

T
2 )−1, (5.100)

for the respective subensemble covariance matrices. Thus β = β1 = β2 = C ,
γ = γ1 = γ2 = D for universal (i.e., system-independent) constants C and D,
yielding the general form

[Covx (N )]ab = C

P2

δP

δφa
x

δP

δφb
x

+ DWab
x [φ] (5.101)

for the fluctuation covariance matrix, whereWx [φ] denotes the inverse of the matrix
with ab-coefficient φa

xφ
b
x .

Since Wx [φ] is purely a functional of φ, it merely contributes a classical additive
potential term to the ensemble Hamiltonian of Eq. (5.58). It thus has no nonclassical
role, and can be absorbed directly into the classical potential 〈V 〉 (indeed, for fields
with more than one component this term is singularly ill-defined, and hence can be
discarded on physical grounds). Thus we may take D = 0 without loss of generality.
Finally, the positivity of C follows from the positivity of the covariance matrix
Covx (N ), and the theorem is proved.

Proof of Corollary (Eq. 5.64) First, the equations of motion corresponding to the
ensemble HamiltonianH follow via the theorem and Eq. (5.55) as: (a) the continuity
equation, Eq. (5.54), as before (since the additional termdoes not depend on S), which
from Eq. (5.52) has the explicit form

∂P

∂t
+ 2

∑
a,b

∫
dx

δ

δφa
x

(
PKab

x

δS

δφb
x

)
= 0; (5.102)

and (b) the modified Hamilton–Jacobi equation

∂S

∂t
= −ΔH

ΔP
= −H [φ, δS/δφ, t) − Δ(H − Hc)

ΔP
. (5.103)

Calculating the last term, this simplifies to

∂S

∂t
+ H [φ, δS/δφ, t] − 4C

P1/2

∑
a,b

∫
dx

(
Kab

x

δ2P1/2

δφa
x δφ

b
x

+ δKab
x

δφa
x

δP1/2

δφb
x

)
= 0.

(5.104)
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Second, writing Ψ = P1/2eiS/�, multiplying each side of Eq. (5.64) on the left by
Ψ −1, and expanding, gives a complex equation for P and S. The imaginary part is
just the continuity equation, Eq. (5.102), and the real part is the modified Hamilton–
Jacobi equation, Eq. (5.104) above, providing that one identifies C with �

2/4.
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Chapter 6
The Geometry of Ensembles
on Configuration Space

Abstract A description of ensembles on configuration space incorporates at least
two geometrical structures which arise in a natural way: a metric structure, which
derives from the natural geometry associated with a space of probabilities, and a
symplectic structure, which derives from the symplectic geometry associated with a
Hamiltonian description of motion. We show that these two geometrical structures
give rise to a Kähler geometry. We first consider probabilities P and introduce the
information metric. This leads to information geometry, a Riemannian geometry
defined on the space of probabilities. We then bring in dynamics via a Hamiltonian
formalism defined on a phase space with canonically conjugate coordinates P and
S. This leads to more geometrical structure, a symplectic geometry defined on this
phase space. The next step is to extend the information metric, which is defined
over the space of probabilities only, to a metric over the full phase space. This
requires satisfying certain conditions which ensure the compatibility of the metric
and symplectic structures. These conditions are equivalent to requiring that the space
have a Kähler structure. In this way, we are led to a Kähler geometry. This rich
geometrical structure allows for a reconstruction of the geometric formulation of
quantum theory. One may associate a Hilbert space with the Kähler space and this
leads to the standard version of quantum theory. Thus the theory of ensembles on
configuration space permits a geometric derivation of quantum theory.

6.1 Introduction

Geometrical methods have proven quite fruitful in physics, leading sometimes to
novel quantisation methods. For example, Hamiltonian mechanics allows for a for-
mulation in terms of symplectic geometry and this geometric formulation leads in
turn to geometric quantization. In this chapter, we consider the geometry of ensem-
bles on configuration space and show that there is a rich geometrical structure that
allows for a reconstruction of the geometric formulation of quantum theory first
introduced by Kibble [1]. Thus, in addition to the derivation of quantum theory from
an exact uncertainty principle which was discussed in the previous chapter, the the-
ory of ensembles on configuration space permits also a geometric derivation [2–4].

© Springer International Publishing Switzerland 2016
M.J.W. Hall and M. Reginatto, Ensembles on Configuration Space,
Fundamental Theories of Physics 184, DOI 10.1007/978-3-319-34166-8_6

115
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The basic elements of this geometrical reconstruction of quantum theory are the nat-
ural metric on the space of probabilities (information geometry), the description of
dynamics using a Hamiltonian formalism (symplectic geometry), and requirements
of consistency (Kähler geometry). The procedure, which can be carried out for both
continuous and discrete systems, has a number of remarkable features: the complex
structure appears by requiring consistency betweenmetric and symplectic structures;
wave functions arise as the natural complex coordinates of the Kähler space; and time
evolution is described by a one-parameter group of unitary transformations. Onemay
associate a Hilbert space with the Kähler space, which leads to the standard version
of quantum theory.

In describing the geometry of ensembles with a continuous configuration space,
we substantially follow the exposition of Ref. [2].1 For the case of a discrete config-
uration space, we substantially follow the exposition of Refs. [3]2 and [4].

6.2 Information Metric, Symplectic Structure and Kähler
Geometry

Probabilities play a fundamental role in the theory of ensembles on configuration
space. Spaces of probabilities have a natural Riemannian geometry called informa-
tion geometry.We show in this section that there is also a natural geometry associated
with ensembles on configuration space that is more general than Riemannian geom-
etry. It is a Kähler geometry, which brings together metric, symplectic and complex
structures in a harmonious way.

6.2.1 Information Geometry

We introduce information geometry for probabilities defined over both discrete and
continuous configuration spaces.

We consider first a system with a discrete configuration space (see also Chap.1).
Wemake the assumption that the configuration of the system is subject to uncertainty
and the state of the system is described by a probability P = (P1, . . . ,Pn), where n
is the number of states. The probability that the system is in state i is Pi, where Pi

satisfies Pi ≥ 0 and
∑

i P
i = 1. The use of a superscript, rather than a subscript as

in Chap.1, is convenient for contractions with a metric tensor further below.

1Reproduced with permission from: Reginatto, M., Hall, M.J.W.: AIP Conf. Proc. 1443, 96–103
(2012). Copyright 2012, AIP Publishing LLC.
2Reproduced with permission from: Reginatto, M., Hall, M.J.W.: AIP Conf. Proc. 1553, 246–253
(2013). Copyright 2013, AIP Publishing LLC.

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_1
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P1
P2

P3

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

Fig. 6.1 The simplex S2

Probability distributions can be visualized as points in the space corresponding
to the simplex Sn−1 = {P ∈ R+

n : ∑Pi = 1}. As an example, in Fig. 6.1 we show
the representation of the simplex S2.

There is a natural line element in this space, given by

ds2 = Gij dP
i dPj = α

2Pi
δij dP

i dPj, (6.1)

where α is a constant and repeated indices are to be summed over as per the usual
convention. The metric Gij that appears in Eq. (6.1) is known as the information
metric,

Gij = α

2Pi
δij. (6.2)

The value of α can not be determined a priori; it is usually set to 1/2, but it will be
convenient not to follow this convention. Instead, α will be treated as a parameter.
The line element of Eq. (6.1) defines a distance on the space of probabilities. This
distance seems to have been introduced into statistics by Bhattacharyya [5, 6] as a
way of providing ameasure of divergence formultinomial probabilities [7]. Wootters
[8] refers to this distance as the “statistical distance”.

To derive the statistical distance from the metric Gij, consider two points in
probability space, PA and PB, joined by a curve Pi(t), 0 ≤ t ≤ 1, and write the
expression for the length l of the curve in the form

l =
∫ 1

0
dt

√
Gij

dPi(t)

dt

dPj(t)

dt
. (6.3)

The statistical distance is defined as the shortest distance between PA and PB. To
compute the statistical distance, it is convenient to do the change of coordinates
Xi = √

Pi . Then
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l = √
2α

∫ 1

0
dt

√√√√ n∑
i=1

[
dXi(t)

dt

]2
. (6.4)

Since the curve P(t) is assumed to lie in the probability space, it must satisfy the
condition

∑n
i=1 P

i(t) = ∑n
i=1[Xi(t)]2 = 1; that is, the curve must lie on a unit n-

dimensional sphere in theX space. The shortest distance on the n-dimensional sphere
is equal to the angle between the unit vectors XA and XB. This leads immediately to

d(PA,PB) = √
2α cos−1

(
n∑

i=1

Xi
A X

i
B

)
= √

2α cos−1

(
n∑

i=1

√
Pi
A

√
Pi
B

)
. (6.5)

The case of a continuous configuration space has to be treated in a slightly different
manner. Consider an n-dimensional continuous configuration space,with coordinates
x ≡ {x1, . . . , xn} and probability densitiesP(x) satisfyingP(x) ≥ 0 and

∫
dnxP(x) =

1.
If we consider the action of the translation group T on P(x), T : P(x) → P(x+θ),

there is a natural metric γjk on the space of parameters θ : the Fisher–Rao metric [9],

γjk = α

2

∫
dnx

1

P(x + θ)

∂P(x + θ)

∂θ j

∂P(x + θ)

∂θ k
, (6.6)

where α is a constant. The line element dσ 2 = γjkΔ
jΔk (where |Δk| << 1) defines

a distance between the two probability distributions P(x + θ) and P(x + θ + Δ).
It will be convenient to consider another form of the metric. In particular, using

the equality ∂P(x + θ)/∂θ j = ∂P(x + θ)/∂xj, and making the change of integration
variables x → x + θ , the metric becomes proportional to the Fisher information
matrix,

γjk = α

2

∫
dnx

1

P(x)

∂P(x)

∂xj
∂P(x)

∂xk
. (6.7)

It follows that the line element dσ 2 = γjkΔ
jΔk induces a line element in the space

of probability densities,

ds2 = α

2

∫
dnx

1

Px
δPx δPx =

∫
dnx dnx′ gPP(x, x′) δPx δPx′ , (6.8)

where we have introduced the notation Px = P(x), δPx ≡ ∂P(x)
∂xj Δj. The line element

of Eq. (6.8) was introduced by Jeffreys [10]. The induced metric gPP is diagonal,
and given by

gPP(x, x
′) = α

2Px
δ(x − x′). (6.9)

This metric is the generalization of the metric of Eq. (6.2) to the case of a continuum
configuration space.
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The information metric is the natural metric on the space of probabilities. This
metric defines a geometrical structure known as information geometry.

6.2.2 Uniqueness of the Information Metric via Markov
Mappings

It has been shown by Čencov that the information metric, Eq. (6.2), is the only
metric that is invariant under a family of probabilistically natural mappings known
as congruent embeddings by a Markov mapping [11]. A simpler proof, which also
makes use of these mappings, was given later by Campbell [12]. Thus the metric of
Eq. (6.2) is unique. The proofs of Čencov andCampbell assume a discrete probability
space, therefore they do not apply directly to the metric of Eq. (6.9). However, in the
case of physical systems, one can always carry out a discretization of the continuous
configuration space and approximate it by a discrete configuration space. The con-
tinuum case is recovered in the limit of an arbitrarily fine discretization. Therefore,
if we restrict to the applications that we consider in this monograph, we may also
assume uniqueness of the metric of Eq. (6.9).

We give a brief description of these mappings because later we will have to extend
such mappings from the space of probabilities Pi to the complete phase space with
coordinates Pi, Si. We follow the presentation of Ref. [12]. A Markov mapping is a
particular type of linear transformation between a simplex Sm−1 and a simplex Sn−1

(with m ≤ n) which preserves the probability; i.e.,
∑m

a=1 P
a = ∑n

b=1 P̃
b = 1. For

m = n, the mapping is just a permutation of the components Pi, but for m < n, the
mapping relates spaces of different dimensions.

A Markov mapping may be constructed in the following way. Let A = {A1, . . . ,

Am} be a partition of the set {1, 2, . . . , n} into disjoint sets. Associate a probability
vector Q(a) = (qa1, . . . , qan) to each of the Aa, where the qab satisfy

qab = 0 if b /∈ Aa, qab > 0 if b ∈ Aa,

n∑
b=1

qab = 1. (6.10)

The probability vector Q(a) is therefore concentrated on Aa. Note that the m × n
matrixQ with elements qab has the following properties: Each column has precisely
one non-zero element and each row sums to one.

Define mappings between f : Sm−1 → Sn−1 and g : Sn−1 → Sm−1 by

P̃b =
m∑

a=1

Paqab,
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Pa =
∑
b∈Aa

P̃b, a ∈ {1, 2, . . . ,m}. (6.11)

Following Čencov, the mapping f is known as a congruent embedding of Sm−1 in
Sn−1 by a Markov mapping. The mapping g, which is also defined in terms of the
partition A, has the property that the composition g ◦ f is the identity map on Sm−1.

To illustrate such a mapping, consider a simple example where n = m + 1. Set

Q =

⎛
⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · 1 0 0
0 0 · · · 0 k (1 − k)

⎞
⎟⎟⎟⎟⎟⎠

, (6.12)

with 0 < k < 1. Then

P = (P1, . . . ,Pm) → P̃ = (P̃1, . . . , P̃m, P̃m+1) := (P1, . . . , kPm, (1 − k)Pm).

(6.13)
A vector in the tangent space of the simplex transforms in a similar way,

V = (V 1, . . . ,Vm) → Ṽ = (Ṽ 1, . . . , Ṽm, Ṽm+1) := (V 1, . . . , kVm, (1 − k)Vm).

(6.14)
To prove uniqueness of the information metric, Čencov [11] and Campbell

[12] show that the only metric that preserves the inner product < A,B > of two
tangent vectors A, B under a Markov mapping is precisely the information metric. It
is straightforward to show that the metric has this property. To see this for the simple
example discussed above, simply compute

< Ã, B̃ > =
m+1∑
i=1

{
Ãi B̃i

P̃i

}
=

m−1∑
i=1

{
Ai Bi

Pi

}
+ kAm kBm

kPm
+ (1 − k)Am (k − 1)Bm

(1 − k)Pm

=
m∑
i=1

{
Ai Bi

Pi

}
=< A,B > . (6.15)

A proof of uniqueness is, as one would expect, not straightforward. Since the details
of the proof are not needed here, we will not discuss it further and refer the reader
instead to the proofs of Čencov [11] and Campbell [12].

6.2.3 Dynamics and Symplectic Geometry

As we saw in Chap.1, the time evolution of the Pi in the discrete case may
be described using a Hamiltonian formalism. To do this, we introduce additional

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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coordinates Si which are canonically conjugate to the Pi and a corresponding Pois-
son bracket for any two functions F(Pi, Si) and G(Pi, Si),

{F,G} =
∑
i

(
∂F

∂Pi

∂G

∂Si
− ∂F

∂Si
∂G

∂Pi

)
. (6.16)

The new important insight that we will need here is that the Poisson bracket can be
rewritten geometrically as

{F,G} = (∂F/∂P , ∂F/∂S)Ω

(
∂G/∂P
∂G/∂S

)
, (6.17)

where Ω is the symplectic form, given in this case by

Ω =
(

0 1
−1 0

)
, (6.18)

where 1 is the n × n unit matrix. We thus have a symplectic structure and a
corresponding symplectic geometry. The equations of motion for Pi and Si are
given by ∂Pi/∂t = {

Pi,H}
, ∂Si/∂t = {

Si,H}
where H(Pi, Si) is the ensemble

Hamiltonian that generates time translations.
The 2n-dimensional phase space with coordinates Pi and Si has a richer structure

than the n-dimensional space of probabilities Pi; in particular, as we discussed in
Chap.2, one may introduce the notion of observables, which are functions F(P, S)
of the coordinates, together with an algebra of observables defined in terms of the
Poisson brackets of these functions. We also saw that normalization of P implies
gauge invariance of the theory under Si → Si + c, where c is a constant.

The generalization to the continuous case is straightforward. In this case, the
Poisson bracket for any two functionals F[P, S] and G[P, S] is given by

{F,G} =
∫

dnx

{
δF

δP

δG

δS
− δF

δS

δG

δP

}
. (6.19)

The Poisson bracket can be rewritten geometrically as

{F,G} =
∫

dnx dnx′ (δPx δSx) Ω(x, x′)
(

δPx′

δSx′

)
, (6.20)

where Ω(x, x′) is the corresponding symplectic form, given in this case by

Ω(x, x′) =
(

0 1
−1 0

)
δ(x − x′) . (6.21)

Thus in the continuum case we also have a symplectic structure and a corresponding
symplectic geometry. The equations of motion forP and S are now given by ∂P/∂t =

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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{P,H}, ∂S/∂t = {S,H} where H[P, S] is the ensemble Hamiltonian that generates
time translations.

The description of dynamics via aHamiltonian formalism leads to the doubling
of the dimensionality of the space (configuration space → phase space), a
symplectic structure and a corresponding symplectic geometry.

6.2.4 Kähler Geometry

The 2n-dimensional discrete phase space with coordinates Pi and Si is an extension
of the n-dimensional subspace of probabilities Pi. It is natural to ask the following
question: is it possible to extend the metric Gij in Eq. (6.2), which is only defined
on the n-dimensional subspace of probabilities Pi, to the full 2n-dimensional phase
space of the Pi and Si? This can be done, but certain conditions which ensure the
compatibility of the metric and symplectic structures have to be satisfied. These
conditions are equivalent to requiring that the space have a Kähler structure (for a
proof, see Appendix 1 of this chapter).

A Kähler structure brings together metric, symplectic and complex structures in
a harmonious way. To define such a space, introduce a complex structure Jab and
impose the following conditions [13],

Ωab = gacJ
c
b, (6.22)

JacgabJ
b
d = gcd, (6.23)

JabJ
b
c = −δac. (6.24)

Equation (6.22) is a compatibility equation between the symplectic structureΩab and
the metric gab, Eq. (6.23) is the condition that the metric should be Hermitian, and
Eq. (6.24) is the condition that Jab should be a complex structure.

The metric over the n-dimensional subspace of probabilities is the information
metric, Eq. (6.2). Then, the metric over the full space will be of the form

gab =
(

G E
ET F

)
, (6.25)

where G = diag(α/2Pi), and E and F are n × n matrices that still need to be
determined.

A simple matrix calculation using the Kähler conditions and the expression for
Ωab, Eq. (6.18), leads to general forms for the metric gab and the complex structure
Jab,
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gab =
(
G AT

A (1 + A2)G−1

)
, Jab =

(
A (1 + A2)G−1

−G −GAG−1

)
. (6.26)

where the n × n matrix A satisfies GAG−1 = AT but is otherwise arbitrary.
In the case of a continuous configuration space we can derive a similar result,

although we need to proceed in a somewhat different manner. We saw before that
the metric over the subspace of probabilities is diagonal and given by gPP(x, x′) =
(α/2Px)δ(x − x′). We assume that the full metric gab is also diagonal; that is, of
the form gab(x, x′) = gab(x)δ(x − x′). This assumption corresponds to a locality
assumption. Then gab is a real, symmetric matrix of the form

gab =
(

α
2Px

gPS
gSP gSS

)
δ(x − x′). (6.27)

The elements gPS = gSP and gSS still need to be determined.
Since Ωab(x, x′) in Eq. (6.21) is also diagonal, the Kähler conditions imply that

Jcb(x, x
′) is diagonal; i.e. Jcb(x, x

′) = Jcb(x)δ(x − x′). Using the Kähler conditions
and the expression for Ωab(x, x′) derived from Eq. (6.21), it is possible to show that
the metric and the complex structure take the form

gab =
(

α/2Px Ax

Ax (2Px/α)(1 + A2
x)

)
δ(x − x′), (6.28)

Jab =
(

Ax (2Px/α)(1 + A2
x)

−α/2Px −Ax

)
δ(x − x′), (6.29)

which depend on an arbitrary functional Ax.

The informationmetric can be extended to ametric over the full phase space but
this requires satisfying conditions which ensure the compatibility of the metric
and symplectic structures. This leads to a Kähler structure and a corresponding
Kähler geometry.

6.2.5 On the Geometry of Ensembles on Configuration Space

It may be useful to make some general remarks now regarding the approach and the
results obtained so far.

The starting point is a space of probabilities defined over a configuration space.
Thefirst step of the procedure is to introduce the informationmetric, the naturalmetric
on the space of probabilities. This leads to the most basic geometrical structure of
the construction, information geometry. The second step is to consider dynamics and
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to introduce an action principle to derive equations of motion. This is done using
a Hamiltonian formalism: introduce coordinates S canonically conjugate to the P,
a Poisson bracket structure, and an ensemble Hamiltonian. This leads to additional
geometrical structure, a symplectic structure. The third step is to extend the metric
structure of information geometry, to define a geometry over the full space of the
P and S. This can not be done in an arbitrary way. Consistency between the metric
tensor and the symplectic form leads to a Kähler geometry.

Notice that the construction is very general: it applies to any system that is
described probabilistically and which admits equations of motion that can be derived
from an action principle. In particular, the construction does not require any assump-
tions regarding classical or quantum physics.

The few assumptions that enter into the analysis lead to the beautiful result that
the natural geometry of ensembles on configuration space is a Kähler geometry.

6.2.6 Uniqueness of the Kähler Metric via Generalized
Markov Mappings

We first consider the discrete case. The Kähler conditions impose strong restrictions
on the form of the metric gab, Eq. (6.26), but that they do not determine the met-
ric uniquely because it depends on a matrix A which is to some extent arbitrary.
Additional requirements are therefore needed to determine the form of gab.

As discussed before, Markov mappings play a crucial role in the proof of unique-
ness of the informationmetric, Eq. (6.2). In this section, it will be shown that the form
of A can be determined by requiring invariance of the metric gab under a particular
type of canonical transformation which extends the notion of a Markov mapping
to the phase space with coordinates Pi and Si. The simplest way to introduce a
generalization of a Markov mapping is to treat it as a point transformation (i.e., a
transformation of the Pi) and to use the well known fact that a point transformation
can always be extended to a canonical transformation.

Consider first the simple case of Markov mappings between spaces of the same
dimension; i.e.,wheren = m. In this case, theMarkovmappings are just permutations
of the components Pi and their extension to canonical transformations is trivial: carry
out simultaneous permutations of the Pi and Si. These transformations have two
important properties: they are linear and they do not mix the Pi and the Si.

The case that is non-trivial is the case where n > m. Here there are some subtle
issues that need to be addressed, foremost that such canonical transformations will
map spaces of different dimensions. This, however, is not a fundamental difficulty
because there is a well developed theory of “nonclassical canonical transformations”
which extends the concept of canonical transformations to allow for mappings of
phase spaces of different dimensions [14, 15]. Although the canonical transformation
that we derive in this section may be formulated within this formalism, a simpler
approach is possible and therefore there will be no need to make use of the full theory
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of “nonclassical canonical transformations”. The simpler approach followed here
consists of extending the dimensionality of the space in a trivial way and imposing
constraints.

To illustrate the transformation, it will be sufficient to work out the generalization
for the case of the simple example of a Markov mapping that we discussed before,
where the dimensionality of the space of probabilities is increased by one; i.e., n =
m + 1. More general cases can be derived by considering a series of successive
transformations that are either permutations or which increase the dimensionality of
the space by one at each step.

Consider then a system with states described by the coordinates Pj, Sj, j =
1, . . .m, and a Hamiltonian H(Pj, Sj) which describes the dynamics.

As a first step, increase the dimensionality of the space in a trivial way by adding
coordinates Pm+1, Sm+1 to the phase space. This increase in the dimensionality does
not change the Hamiltonian. Therefore, the time evolution of the system remains
the same and the additional coordinates Pm+1, Sm+1 are constants of the motion.
Consider now a point transformation relating old and new coordinates Pk , P̃k which
satisfies the following relations,

Pi = P̃i,

Pm = P̃m + P̃m+1,

Pm+1 = (1 − k)P̃m − kP̃m+1 ≈ 0. (6.30)

where i = 1, . . . ,m−1, and the symbol “≈” is used to indicate aweak equality (i.e., a
constraint in the sense of an equality of numerical values, not of functions of the phase
space coordinates). Using the last two relations of Eq. (6.30), it is straightforward to
show that P̃m and P̃m+1 satisfy the constraints

P̃m ≈ kPm,

P̃m+1 ≈ (1 − k)Pm, (6.31)

which agree with Eq. (6.13). Therefore, the relations defined in Eq. (6.30) are equiv-
alent to aMarkov mapping. Notice that these constraints are preserved because Pm+1

is a constant of the motion.
The second step is to extend this point transformation to a canonical transforma-

tion. In analogy to the case discussed above in which n = m, we will look for a
linear canonical transformation which does not mix the Pi and the Si. Notice that
these two conditions lead to a unique canonical transformation (up to an additive
constant which is unimportant). To define the canonical transformation, introduce
the generating function

K =
m−1∑
i=1

{
P̃iSi

}
+ (P̃m + P̃m+1) Sm + [(1 − k)P̃m − kP̃m+1] Sm+1. (6.32)
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Derive the canonical transformation from the generating function in the standard
way; i.e., Pk = ∂K/∂Sk and S̃k = ∂K/∂P̃k . This leads to the following equations,

Pi = P̃i, Pm = P̃m + P̃m+1, Pm+1 = (1 − k)P̃m − kP̃m+1,

Si = S̃i, Sm = kS̃m + (1 − k)S̃m+1, Sm+1 = S̃m − S̃m+1, (6.33)

and

P̃i = Pi, P̃m = kPm + Pm+1, P̃m+1 = (1 − k)Pm − Pm+1,

S̃i = Si, S̃m = Sm + (1 − k)Sm+1, S̃m+1 = Sm − kSm+1. (6.34)

where i = 1, . . . ,m − 1.
We have increased the dimensionality of the phase space by two dimensions and

we have two constants of the motion, Pm+1 and Sm+1. As shown in Appendix 2 of
this chapter, consistency requires both Pm+1 ≈ 0 and Sm+1 ≈ 0, which leads to

P̃m ≈ kPm, P̃m+1 ≈ (1 − k)Pm,

S̃m ≈ Sm, S̃m+1 ≈ Sm. (6.35)

It is also shown in Appendix 2 of this chapter that the time evolution is preserved;
i.e., the dynamics in the 2(m + 1)-dimensional phase space (with coordinates with
tildes) reproduces precisely the dynamics in the 2m-dimensional phase space (with
coordinates without tildes).

Given the canonical transformation, Eq. (6.33), and its inverse, Eq. (6.34), one can
examine the restrictions imposed on the matrix A by the requirement of invariance
of the metric gab under this generalization of a Markov mapping. The calculation is
summarized in Appendix 2 of this chapter. The result is that the matrix A must be
proportional to the n×n unit matrix,A = A1, whereA is a constant. The line element
depends on two parameters only, α and A, and it takes the remarkably simple form

dσ 2 =
∑
k

[
α

2Pk
(dPk)2 + 2AdPkdSk + 2Pk

α
(1 + A2)(dSk)2

]
. (6.36)

In the continuous case, it is not possible to carry out an analogous proof based on
invariance under generalized Markov morphisms because such transformations are
no longer well defined. However, based on the results of the finite case and assuming
that the continuous configuration space may be discretized and approximated by a
finite configuration space, we will restrict to metrics of the form

gab =
( α

2Px
A

A 2Px
α

(1 + A2)

)
δ(x − x′), (6.37)

where A is a constant.
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6.2.7 Complex Coordinates and Wave Functions

Up to now, we have made use of real coordinates Pi, Si. Kähler geometry, how-
ever, is best expressed in terms of complex coordinates. We carry out a complex
transformation that shows that the metric of Eq. (6.36) describes in fact a flat Kähler
space.

Set A = A1 in Eq. (6.26) and consider first the particular case A = 0. The tensors
that define the Kähler structure take the form

Ωab =
(

0 1
−1 0

)
, gab =

(
G 0
0 G−1

)
, Jab =

(
0 G−1

−G 0

)
. (6.38)

Define now theMadelung transformation,

ψk =
√
Pk eiS

k/α, ψ̄k =
√
Pk e−iSk/α. (6.39)

Asimple calculation shows that the tensors that define theKähler geometry, expressed
in terms of ψk , ψ̄k , take the standard form which is characteristic of flat-space [13],

Ωab =
(

0 iα1
−iα1 0

)
, gab =

(
0 α1
α1 0

)
, Jab =

(−i1 0
0 i1

)
. (6.40)

One may conclude that in this case (A = 0) there is a natural set of fundamental
variables given by ψ i and ψ̄ i. In terms of these variables, the tensors that define
the Kähler geometry take their simplest form. If the constant α is set equal to �,
these fundamental variables are precisely the wave functions of quantum mechanics.
This is a remarkable result because it is based on geometrical arguments only. The
derivation does not use any assumptions from quantum theory.

Consider now the more general case A �= 0. The tensors that define the Kähler
structure take the form

Ωab =
(

0 1
−1 0

)
, gab =

(
G A1
A1 (1 + A2)G−1

)
, Jab =

(
A1 (1 + A2)G−1

−G −A1

)
.

(6.41)

In this case, define the modified Madelung transformation

φk =
√
Pk e

i
[
Sk/(αΛ−1)−γ ln

√
Pk

]
, φ̄k =

√
Pk e

−i
[
Sk/(αΛ−1)−γ ln

√
Pk

]
, (6.42)

whereΛ = 1/(1+A2) and γ = −A/(1+A2). Once more, the tensors that define the
Kähler geometry, expressed now in terms of φk , φ̄k , take the standard form which is
characteristic of flat-space,

Ωab =
(

0 i
(

α
Λ

)
1

−i
(

α
Λ

)
0

)
, gab =

(
0

(
α
Λ

)
1(

α
Λ

)
1 0

)
, Jab =

(−i1 0
0 i1

)
. (6.43)
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This shows that the geometry of theKähler space is the samewhetherA = 0 orA �= 0.
In fact, it is possible to map one case to the other using an A-dependent canonical
transformation. It is clear then that both cases lead to the same theory (provided one
sets α = � when A = 0 or αΛ−1 = � when A �= 0), and in the following sections
we will set A = 0 and use the complex coordinates (wave functions) ψ i and ψ̄ i.

The transformation from the coordinates of Eq. (6.39) to the coordinates of
Eq. (6.42) is a particular case of a family of nonlinear gauge transformations intro-
duced by Doebner and Goldin [16] (compare to their Eq. (2.2)). As pointed out by
Doebner and Goldin, the theory that results from this particular family of nonlinear
gauge transformations is physically equivalent to standard quantummechanics. Here
we arrive at the same conclusion, but now on the basis of the equivalence of the two
cases A = 0 and A �= 0 via a canonical transformation. One may therefore view the
present derivation of the geometric formulation of quantum mechanics as providing
a new route to this family of Doebner-Goldin nonlinear gauge transformations.

The continuous case is completely analogous to the discrete case. We consider
therefore only the caseA = 0. The complex coordinate transformation that is required
is the Madelung transformation, ψ = √

PeiS/α , ψ̄ = √
Pe−iS/α . In terms of the new

variables, the geometrical structures take the standard flat-space form,

Ωab =
(

0 iα
−iα 0

)
δ(x−x′), gab =

(
0 α

α 0

)
δ(x−x′), Jab =

(−i 0
0 i

)
δ(x−x′).

(6.44)
Here again, if α is set equal to �, the fundamental variables are precisely the wave
functions of quantum mechanics.

The natural geometry of ensembles on configuration space is a Kähler geom-
etry, which brings together metric, symplectic and complex structures in a
harmonious way. The natural complex coordinates of the Kähler space are
precisely the wave functions of quantum mechanics.

6.2.8 Statistical Distance in the Kähler Space

Wenowwant to introduce a new expression for statistical distancewhichwill be valid
in theKähler space. In going from the discrete n-dimensional space of probabilitiesPi

to the full 2n-dimensional phase space of the Pi and Si, the metric has been extended,
and this should be taken in consideration when carrying out the generalization of the
statistical distance.

Consider two points ψA and ψB representing states in this space which are joined
by a curveψ i(t), 0 ≤ t ≤ 1. The generalization of the expression for the distance l is

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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l =
∫ 1

0
dt

√
gij

dψ i(t)

dt

dψ̄ j(t)

dt
= √

2α
∫ 1

0
dt

∣∣∣∣
(
dψ(t)

dt
,
dψ(t)

dt

)∣∣∣∣ . (6.45)

where we have introduced the notation |(ψ,ψ)| =
√∑

i ψ
iψ̄ i.

The statistical distance in the Kähler space is defined as the shortest distance
computed with Eq. (6.45). Since the curve P(t) is assumed to lie in the probability
space, then ψ(t) must satisfy the condition

1 =
∑
i

ψ i(t)ψ̄ i(t), (6.46)

that is, the curve must lie on the unit sphere in the {ψ(t), ψ̄(t)} space. The shortest
distance on the unit sphere is equal to the angle between the unit vectors ψA and ψB.
This leads immediately to the expression for the statistical distance that appears at
the end of section III of Wootters’ paper [8], provided α is set to the standard value
of 1/2,

d(ψA, ψB) = √
2α cos−1 |(ψA, ψB)| . (6.47)

In this way we obtain a very brief, geometrical derivation ofWootters’ expression
for the statistical distance in quantummechanics,whichhederivedusing a completely
different argument [8].

6.3 Geometrical Reconstruction of Quantum Mechanics

We have shown that there is a natural Kähler geometry associated with ensembles
on configuration space. This rich geometrical structure allows for a reconstruction
of quantum mechanics. To derive this result, we look at the group of transformations
of the theory and show that the requirement of metric invariance, defined below,
leads precisely to the group of unitary transformations. This is an easily formulated
condition which requires however a finite value of α because the metric and complex
structures become singular when α → 0 (which is equivalent to taking the limit
� → 0). We also show that one may associate a complex Hilbert space with the
Kähler space. This leads to the standard formulation of quantum mechanics.

6.3.1 Group of Unitary Transformations

To understand the role of the unitary group in the case of a discrete configura-
tion space, one can argue in general terms as follows. Since the Kähler structure
includes a symplectic structure, one would expect the group of symplectic transfor-
mations, Sp(2n,R), to play a prominent role. However, the group of transformations
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of the theory must be a subgroup of Sp(2n,R) because not all symplectic transforma-
tion are allowed, as physically meaningful transformations must satisfy additional
requirements. The first requirement is that they preserve the normalization of the
probability. We will impose a second requirement, metric invariance (see below).
These two conditions are quite strong: requiring normalization of the probability
and metric invariance leads to the group of rotations on the 2n-dimensional sphere,
O(2n,R). Unitary transformations are the only symplectic transformations which are
also rotations; i.e., Sp(2n,R) ∩ O(2n,R)= U(n) [17]. Therefore, we are led to the
group of unitary transformations. Notice that the first requirement is quite general,
but the second requirement only makes sense for α > 0 because the metric becomes
singular when α → 0. We make some remarks concerning this limit at the end of
this section.

We now show explicitly that the evolution generated by any ensemble Hamil-
tonianH is described by a one-parameter group of unitary transformations. It will be
convenient to work with the complex coordinates ψk , ψ̄k (that is, we set set A = 0;
see the discussion in Sect. 6.2.7). We introduce the two requirements that we men-
tioned above: that the transformations generated by H preserve the normalization
of the probability,

∑
i P

i = ∑
i ψ

iψ̄ i = 1, and that the metric be form invariant
under those transformations; i.e., that the transformations preserve the line element
dσ 2 = 2α

∑
j dψ̄ jdψ j of the Kähler space. Requiring normalization of the proba-

bility and metric invariance leads to the group of rotations on the 2n-dimensional
sphere. Such rotations are linear with respect to ψ j and ψ̄ j. For an infinitesimal
transformation, it follows that

∂ψ j

∂t
= −i

∂H
∂ψ̄ j

,
∂ψ̄ j

∂t
= i

∂H
∂ψ j

, (6.48)

are linear in ψ and ψ̄ . Then H must be of the form

H = E(t) +
∑
j,k

[
Mjkψ̄

jψk + Njkψ
jψk + N̄jkψ̄

jψ̄k
]

(6.49)

where E(t) is a arbitrary function of time,M is Hermitian, and N is symmetric.
The third and final requirement is to consider rotations on the 2n-dimensional

sphere that are compatible with the equations of motion. Conservation of probability
requires that the ensembleHamiltonian be invariant (up to an additive constant) under
Sj → Sj + c, since to first-order [18]

0 = ε
∑
j

∂Pj

∂t
= ε

∑
j

∂H
∂Sj

= H(P, S + ε) − H(P, S), (6.50)

as we discussed in Sect. 1.4. This condition, when written in terms of complex coor-
dinates, is equivalent to invariance of the ensemble Hamiltonian under ψ → ψeic.

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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Using the notation Q := ∑
Njkψ

jψk , Eq. (6.49) leads to the equality

[
Qe2ic + Q̄e−2ic

] = 0 (6.51)

which must be valid for all c. Differentiating with respect to c gives the additional
equality

2i
[
Qe2ic − Q̄e−2ic

] = 0. (6.52)

Combining these two expressions leads to Q = 0. Since this must hold for all ψ , it
follows that Njk ≡ 0, i.e., the ensemble Hamiltonian has the Hermitian form

H = E(t) +
∑
j,k

Mjkψ̄
jψk (6.53)

as desired.
The same conclusion holds for the case of a continuous configuration space. We

consider again a canonical transformation generated by some ensemble Hamiltonian
H. Requiring normalization of the probability and metric invariance leads again to
the group of rotations, and such rotations are linear with respect to ψ and ψ̄ . There-
fore, we restrict to the group of transformations that preserve the linearity of these
equations,

ϕ(y) =
∫

dnx K(x, y)ψ(x), ϕ̄(y) =
∫

dnx K̄(x, y)ψ̄(x), (6.54)

with
{
ϕ, ϕ̄′} = {

ψ, ψ̄ ′} = δ(y − y′), as the transformation is canonical. A simple
calculation leads to the following condition,

{
ϕ, ϕ̄′} =

∫
dnx′′

[
δϕ

δψ ′′
δϕ̄′

δψ̄ ′′ − δϕ

δψ̄ ′′
δϕ̄′′

δψ ′′

]

=
∫

dnx′′ [K(x′′, y)K̄(x′′, y′)
] = δ(y − y′). (6.55)

This is precisely the condition for the transformation to be unitary.
We end this section with a few remarks concerning the limit α → 0, which corre-

sponds to the limit � → 0 in quantum mechanics. In this case, neither the Madelung
transformation, Eq. (6.39), nor themodifiedMadelung transformation, Eq. (6.42), are
well defined so we have to consider the description in terms of real coordinates rather
than complex coordinates (wavefunctions).Of the three tensors that describe theKäh-
ler structure, Eq. (6.38), only the symplectic structureΩab remains well defined: both
the metric gab and the complex structure Jab become singular when α → 0.

Therefore, in the limit α → 0, the metric gab and complex structure Jab are no
longer available and the Kähler structure is lost. The only mathematical structure
that remains is the symplectic structure, which can be used to define equations of
motion for the canonically conjugate variables Pi, Si given an appropriate ensemble
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Hamiltonian. But this means that the argument concerning the role of the unitary
group given in this section no longer applies as α → 0 because without a metric one
can no longer require metric invariance.

6.3.2 Hilbert Space Formulation

There is a standard construction that associates a complex Hilbert space with any
Kähler space. Given two complex vectors ψ i and ϕi, define the Dirac product by [1]

〈ψ |ϕ〉 = 1

2α

∑
i

{(
ψ i, ψ̄ i

) · [g + iΩ
] ·

(
ϕi

ϕ̄i

)}

= 1

2

∑
i

{(
ψ i, ψ̄ i

) [(0 1
1 0

)
+ i

(
0 i1

−i1 0

)](
ϕi

ϕ̄i

)}

=
∑
i

ψ̄ iϕi. (6.56)

An analogous result is valid in the continuous case. Given two complex functions
φ and ϕ, define the Dirac product by [1]

〈φ|ϕ〉 = 1

2

∫
dnx

{(
φ(xμ), φ∗(xμ)

) · [g + iΩ
] ·

(
ϕ(xμ)

ϕ∗(xμ)

)}

= 1

2

∫
dnx

{(
φ(xμ), φ∗(xμ)

) [(0 1
1 0

)
+ i

(
0 i
−i 0

)](
ϕ(xμ)

ϕ∗(xμ)

)}

=
∫

dnx φ∗(xμ)ϕ(xμ). (6.57)

In this way one arrives at the Hilbert space formulation of quantum mechanics.

The Kähler geometry associated with ensembles on configuration space allows
for a reconstruction of the geometric formulation of quantum theory. One may
associate a Hilbert space with the Kähler space and this leads to the standard
version of quantum mechanics.

6.4 Information Geometry and Quantum Mechanics

We have shown that the geometry of ensembles on configuration space is a Kähler
geometry, that this rich geometrical structure allows for a reconstruction of the geo-
metric formulation of quantum theory, and that one may associate a Hilbert space
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with the Kähler space, obtaining in this way the standard formulation of quantum
theory.

However, the analysis may also be interpreted as a derivation of quantum theory
from information geometry, as the starting point of the analysis is very basic: a space
of probabilities and the informationmetric. The derivation has a number of interesting
features, in the discrete case given by:

• The doubling of the dimensionality of the space (i.e., {Pi} → {Pi, Si}) and a
symplectic structure from dynamical considerations

• The complex structure that is characteristic of quantum mechanics from requiring
consistency between the metric and symplectic structures

• Wave functions ψ i as the natural complex coordinates of the Kähler space
• The representation of a particular case of a family of Doebner-Goldin nonlinear
gauge transformations in terms of canonical transformations

• Time evolution described by a one-parameter group of unitary transformations
• The Hilbert space formulation of quantum mechanics expressed in terms of geo-
metrical quantities associated with the Kähler space

Mehrafarin [19] and Goyal [20, 21] have developed reconstructions of discrete
quantum theory using information-geometrical approaches which provide alterna-
tives to the one presented here. Their approaches are based on assumptions that are
very different from the ones that we have used. Perhaps one of the main differences
between their reconstructions and ours is the handling of dynamics, which plays a
crucial role in our derivation: as we have seen in this chapter, the use of an action
principle to describe the dynamics of probabilities leads in a natural way to much
of the geometrical structure that is needed for a geometrical formulation of quantum
theory.

Appendix 1: Symplectic Geometry, Compatibility
Conditions, and Kähler Structure

We consider a finite space, but similar relations hold for infinite dimensional spaces.
A symplectic vector space is a vector space V that is equipped with a bilinear form
Ω : V × V → R that is [22]:
a. Skew-symmetric: Ω(u, v) = −Ω(v, u) for all u, v ε V ,
b. Non-degenerate: if Ω(u, v) = 0 for all v ε V , then u = 0.
The standard space is �2n, and typically Ω is chosen to be the matrix

Ωab =
(

0 1
−1 0

)
, (6.58)

where 1 is the unit matrix in n dimensions.
Consider the dual space V∗. The symplectic structure can be identified with an

element of V∗ × V∗, so that Ω(u, v) = Ωabuavb. Since the spaces V and V∗ are
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isomorphic, there is a Ωab that is the dual of Ωab. This Ωab can be identified with an
element of V × V . The convention is to set [22]

Ωab = −(Ω−1)ab =
(

0 1
−1 0

)
, (6.59)

so that ΩacΩcb = −δab.

We assume there is a metric in the space, gab = gba, and a corresponding inverse
metric gab with gabgbc = δac (indices are raised and lowered with gab and gab). The
metric also defines a map V → V∗ to the dual space in an obvious way. Therefore,
the space has two linear operators that induce maps V → V∗, Ωab and gab. They
will be related by an equation of the form Ωab = gacJcb for some choice of linear
operator Jcb. This is Eq. (6.22), the first of the Kähler conditions.

The relations ΩacΩcb = −δab and Ωab = gacJcb lead to the condition JasJ
s
c =

−δac, that is, that J
a
b is a complex structure. This is Eq. (6.24), the third of the Kähler

conditions.
Finally, Ωab = gacJcb and JasJ

s
c = −δac, together with the symmetries −Ωcb =

Ωbc and gba = gab, lead to gcd = JacgabJ
b
d which is Eq. (6.23), the second of the

Kähler conditions.
This shows that consistency requirements imply that a space with both symplectic

and metric structures must have a Kähler structure.

Appendix 2: Generalized Markov Mappings

Constants of the Motion and Dynamics

To derive the canonical transformation that generalizes the Markov mapping of
Eq. (6.13), the dimensionality of the original phase space was increased by two in a
trivial way. This led to two constants of the motion, Pm+1 and Sm+1. Pm+1 was set to
Pm+1 ≈ 0, with corresponding constraints for the P̃k of the form

P̃m ≈ kPm,

P̃m+1 ≈ (1 − k)Pm. (6.60)

These are precisely the conditions that are needed to get a generalization of the
Markov mapping of Eq. (6.13). When k = 1/2, P̃m ≈ P̃m+1, which is expected
because in this case there should be invariance under the re-labeling m ↔ m+ 1. To
fix the value of Sm+1, notice that Sm+1 ≈ c leads to constraints for the S̃k of the form

S̃m ≈ Sm + (1 − k)c,

S̃m+1 ≈ Sm − kc. (6.61)
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We can argue once more that there should be invariance under the re-labeling m ↔
m + 1 in the case when k = 1/2. But this can only be satisfied if c = 0. We can
conclude therefore that the constants of the motion must satisfy

Pm+1 = (1 − k)P̃m − kP̃m+1 ≈ 0,

Sm+1 = S̃m − S̃m+1 ≈ 0. (6.62)

The corresponding constraints for the unprimed coordinates are of the form

P̃m ≈ kPm, P̃m+1 ≈ (1 − k)Pm,

S̃m ≈ Sm, S̃m+1 ≈ Sm. (6.63)

We now need to check that the dynamics on the 2(n+1)-dimensional phase space
(with coordinates with tildes) reproduces precisely the dynamics on the original 2n-
dimensional phase space (with coordinates without tildes). Using Eqs. (6.33–6.34),
one can show that

∂P̃i

∂t
= ∂H

∂Si
,

∂P̃m

∂t
= ∂H

∂Sm
k,

∂P̃m+1

∂t
= ∂H

∂Sm
(1 − k),

∂ S̃i

∂t
= − ∂H

∂Pi
,

∂ S̃m

∂t
= − ∂H

∂Pm
,

∂ S̃m+1

∂t
= − ∂H

∂Pm
. (6.64)

These equations lead to

∂Pi

∂t
= ∂P̃i

∂t
= ∂H

∂Si
,

∂Pm

∂t
= ∂P̃m

∂t
+ ∂P̃m+1

∂t
= ∂H

∂Sm

∂Si

∂t
= ∂ S̃i

∂t
= − ∂H

∂Pi
,

∂Sm

∂t
= k

∂ S̃m

∂t
+ (1 − k)

∂ S̃m+1

∂t
= − ∂H

∂Pm
, (6.65)

which are the correct equations of motion for the original space.

Invariance of the Kähler Metric Under Generalized Markov
Mappings

The metric of the Kähler space is given by

gab =
(
G AT

A (1 + A2)G−1

)
, (6.66)

where G = diag(α/2Pi) and the n × n matrix A satisfies GAG−1 = AT . For the
calculations in this Appendix it is convenient to introduce the matrix B with matrix
elements given by
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Bjk = √
Pj/Pk Ajk . (6.67)

It is straightforward to show that B is a symmetric matrix, Bjk = Bkj.
To restrict the form of B, it will be sufficient to consider the invariance of the

metric under the particular generalized Markov mapping which corresponds to the
inverse canonical transformation given by Eq. (6.34). After taking into consideration
the constraints, Eq. (6.35), the generalized Markov mapping can be written in the
form

P = (Pi,Pm) → P̃ = (P̃i, P̃m, P̃m+1) := (Pi, kPm, (1 − k)Pm),

S = (Si, Sm) → S̃ = (S̃i, S̃m, S̃m+1) := (Si, Sm, Sm), (6.68)

where i = 1, . . . ,m − 1.
As a first step, look at the contribution to the line element dσ 2 from the mixed

terms dPkdSk . In terms of the coordinates without tildes,

dσ 2 =
m−1∑
i=1

⎧⎨
⎩BiidP

idSi +
√

Pi

Pm
BimdP

idSm +
√
Pm

Pi
BmidP

mdSi

⎫⎬
⎭

+ BmmdP
mdSm. (6.69)

There is a corresponding expression for the coordinates with tildes, and with the help
of Eq. (6.68) it can be rewritten in terms of coordinates without tildes. This leads to

dσ 2 =
m−1∑
i=1

⎧⎨
⎩B̃iidP

idSi +
⎡
⎣
√

Pi

kPm
B̃im +

√
Pi

(1 − k)Pm
B̃i(m+1)

⎤
⎦ dPidSm

⎫⎬
⎭

+
m−1∑
i=1

{[√
k3Pm

Pi
B̃mi +

√
(1 − k)3Pm

Pi
B̃(m+1)i

]
dPmdSi

}

+
⎡
⎣kB̃mm +

√
k3

1 − k
B̃m(m+1)

+
√

(1 − k)3

k
B̃(m+1)m + (1 − k)B̃(m+1)(m+1)

]
dPmdSm. (6.70)

Equate terms in Eqs. (6.69) and (6.70) proportional to the same dPadSb, where a, b =
1, . . . ,m. This leads to the four relations

Bii = B̃ii,

Bim =
√
1

k
B̃im +

√
1

(1 − k)
B̃i(m+1),
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Bmi =
√
k3B̃mi +

√
(1 − k)3B̃(m+1)i,

Bmm = kB̃mm +
√

k3

1 − k
B̃m(m+1) +

√
(1 − k)3

k
B̃(m+1)m

+ (1 − k)B̃(m+1)(m+1). (6.71)

Since the matrix B is symmetric, Bim = Bmi, which leads to

√
1

k
B̃im +

√
1

(1 − k)
B̃i(m+1) =

√
k3B̃mi +

√
(1 − k)3B̃(m+1)i. (6.72)

By symmetry, B̃im = B̃i(m+1) at k = 1/2, but this relation can only be satisfied
if B̃im = B̃i(m+1) = 0, which in turn implies Bim = Bmi = 0. Since Bim and Bmi

are independent of k, it follows that they must always be zero. This shows that the
off-diagonal elements of the matrix B are zero.

Now look at the contribution to the line element dσ 2 from terms proportional to
dPadPa and dSadSa. The terms proportional to dPadPa give the two relations

Bii = B̃ii,

Bmm = kB̃mm + (1 − k)B̃(m+1)(m+1), (6.73)

while the terms proportional to dSadSa give the two relations

1 + B2
ii = 1 + B̃ 2

ii ,

1 + B2
mm = k(1 + B̃ 2

mm) + (1 − k)
(
1 + B̃ 2

(m+1)(m+1)

)
. (6.74)

Combining Eqs. (6.73) and (6.74) leads to

Bii = B̃ii,

Bmm = B̃mm = B̃(m+1)(m+1). (6.75)

Notice that this result is valid for arbitrary values of k. Since there is nothing special
about the particular labels m and (m + 1), all the diagonal elements of the matrices
B and B̃ must be equal. Then

B = B1m×m,

B̃ = B1(m+1)×(m+1), (6.76)

where 1n×n is the n × n unit matrix and B still has to be determined.
To carry out this last step, use the relations
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B(P, S) = B(Pi,Pm, Si, Sm),

B̃(P̃, S̃) = B(P(P̃), S(S̃)) = B(P̃i, P̃m + P̃m+1, S̃i, kS̃m + (1 − k)S̃m+1).

(6.77)

The functional form of B(P, S) must be the same as the functional form of B̃(P̃, S̃),
and these expressions must be both invariant under permutations and independent of
k. The only functional form that seems to satisfy all these conditions appears to be
B(P, S) = B(

∑
i P

i). But
∑

i P
i = 1, therefore one can conclude that B is a constant

and the matrix
B = B1 (6.78)

is a constant matrix proportional to the unit matrix. This in turn implies that

A = A1 (6.79)

where A is a constant.
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11. Čencov, N.N.: Statistical Decision Rules and Optimal Inference. Translations of Mathematical
Monographs. American Mathematical Society, Providence (1981)



References 139
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Chapter 7
Local Representations of Rotations
on Discrete Configuration Spaces

Abstract A spin-half system may be characterised as having a set of two-valued
observables which generate infinitesimal rotations in three dimensions. This abstract
formulation can be given a concrete realization using ensembles on configuration
space. We derive very general probabilistic models for ensembles that consist of one
and two spin-half systems. In the case of a single spin-half system, there are twomain
requirements that need to be satisfied: the configuration space must be a discrete set,
labelling the outcomes of two-valued spin observables, and these observables must
provide a representation of so(3). These two requirements are sufficient to lead to a
model which is equivalent to the quantum theory of a single qubit. The case of a pair
of spin-half systems is more complicated, in that additional physical requirements
concerning locality and subsystem independence must also be taken into account,
and now the observables must provide a representation of so(3) ⊕ so(3). We show
in this case that, in addition to a model equivalent to the quantum theory of a pair of
qubits, it may also be possible to have non-quantum local models.

7.1 Introduction

Systems that consist of a pair of spin-half quantum particles have proven extremely
useful for elucidating the structure of quantum mechanics. This became apparent
after Bohm [1] provided a reformulation of the EPR paradox [2] in terms of a pair
of spin-half systems. This model was later used by Bell [3] to derive his famous
theorem. Since then, innumerable papers have been devoted to this example. Such
systems are simple enough to be tractable, yet have enough complexity to display
many of the most puzzling features of quantum mechanics.

In this chapter, we look into alternative possible physical theories of spin-half
systems. The quantum mechanical formulation is shown to be a particular case of a
more general family of theories.

A spin-half systemmay be characterised as having a set of two-valued observables
which generate infinitesimal rotations in three dimensions. This abstract formulation
can be given a concrete realization using ensembles on configuration space, as we
show in the next section. We call such a system a ‘rotational bit’, or ‘robit’, to

© Springer International Publishing Switzerland 2016
M.J.W. Hall and M. Reginatto, Ensembles on Configuration Space,
Fundamental Theories of Physics 184, DOI 10.1007/978-3-319-34166-8_7
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distinguish it from the standard quantumqubit.We have seen in previous chapters that
the formulation of ensembles on configuration space is more general than quantum
mechanics, in the sense that it allows us to describe not only quantum mechanical
systems but also classical and hybrid systems. Therefore, it is reasonable to expect
robits to be more general than qubits. Single robits however are strictly equivalent
to single qubits (see Chap.2), as reviewed in Sect. 7.2 below.

The case of a pair of robits is more involved. In Sect. 7.3 we construct a model
of a pair of robits which is very general while satisfying the following requirements
motivated by basic physical principles:

• A measurement of ‘spin’ in any direction, for either system, gives a result ±1/2
(we choose units in which � = 1)

• The corresponding spin observables correspond to a representation of the Lie
algebra so(3) ⊕ so(3), and generate local rotations of the respective systems

• No signalling is possible via a rotation of either system (evolution locality)
• No signalling is possible via a measurement of either system (update locality)
• Initially independent systems remain independent under local rotations

We show that in this case, in addition to a theory which is equivalent to the quantum
theory of a pair of qubits, it may also be possible to have non-quantum local models,
and we discuss the conditions under which such models can provide viable alterna-
tives to pairs of quantummechanical qubits. Implications of the results are discussed
in Sect. 7.4.

7.2 One Robit

Wehave already developed the theory of a single robit in Sect. 2.5.2, but as it is needed
for the analysis of the two robit system, we provide a summary of the relevant results.

We define the probability distribution P in terms of the possible measurement
outcomes of spin in the z-direction, which may be labelled by ±1/2. Thus, we may
write P ≡ {P+, P−}, where Pα denotes the probability of measuring spin value α/2
in the z-direction. The canonically conjugate quantities are labelled S ≡ {S+, S−}.
The requirement that the set of spin observables form a representation of so(3)
under the Poisson bracket, thus generating spatial rotations, imply that the observable
corresponding to a spin measurement in unit direction n has the form L · n, where
L = (L1, L2, L3) satisfies the so(3) Lie algebra,

{L j , Lk} = ε jkl Ll , (7.1)

for j, k = 1, 2, 3.
The fundamental variables for a two-level system are {P+, P−, S+, S−}, and so

the phase space is four-dimensional. However, since
∑

Pk = 1 is a quantity that is

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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conserved, it is possible to describe the system in a reduced phase space. To do this,
introduce coordinates

q0 = (P+ + P−)/2,

q1 = (P+ − P−)/2,

p0 = S+ + S−,

p1 = S+ − S−. (7.2)

It is easy to check that this transformation is a canonical transformation. Since the Pk
are probabilities, q0 is fixed to q0 = 1/2. As the conservation of probability requires
that observables are invariant under S → S + constant (see Sects. 1.4.1 and 2.2), they
are therefore independent of p0. Thus, the true degrees of freedom are q1 and p1.

The most general representation of so(3) on this two-dimensional reduced phase
space is given by

L1 =
√(

1

2

)2

− q2
1 cos(p1) = √

P+P− cos(S+ − S−), (7.3)

L2 = −
√(

1

2

)2

− q2
1 sin(p1) = −√

P+P− sin(S+ − S−), (7.4)

L3 = q1 = (P+ − P−)/2. (7.5)

up to a canonical transformation (recall that we choose units in which � = 1). The
proof is given in Sect. 2.5.2

It is instructive to compare Eqs. (7.3–7.5) to the corresponding results for the
case of a quantum mechanical qubit. The operators L̂k for spin-half satisfy the com-
mutation relations [L̂ j , L̂k] = iε jkl L̂l and may be represented in terms of the Pauli
matrices according to [4]

L̂1 = 1

2

(
0 1
1 0

)
, L̂2 = 1

2

(
0 −i
i 0

)
, L̂3 = 1

2

(
1 0
0 −1

)
. (7.6)

If we now introduce the two-component wave function

|ψ >=
(

ψ+
ψ−

)
=

(√
P+ eiS+√
P− eiS−

)
, (7.7)

we find that the expectation values of the quantum operators L̂k are in agreement
with Eqs. (7.3–7.5),

< ψ |L̂k |ψ >= Lk . (7.8)

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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Furthermore, all quantum mechanical expectation values < Â >, < B̂ > can be
expressed as observables A(q1, p1), B(q1, p1) in the reduced configuration space
and, as we saw in Sect. 2.3.3, the Poisson bracket for the observables on configuration
space is isomorphic to the usual commutator on Hilbert space. Thus

Single robits are equivalent to quantum mechanical qubits.

Finally, we look at the how Casimir functions [5] are represented in the reduced
phase space of a single robit. These are defined as the functions Fc(q1, p1) which
satisfy {Fc, Lk} = 0. The computation is straightforward, with the result that the
only solutions are those where the functions Fc are constants.

TheCasimir operator is a Hilbert space operator defined for quantummechanical
systems with symmetry and it is given in this case by Ĉ = ∑

k L̂
2
k = 3

4 1̂, where 1̂ is
the unit matrix [4]. The corresponding function on the reduced phase is then given by
C =< ψ |Ĉ |ψ >= 3

4 ; i.e., it is the particular Casimir function with Fc = 3
4 . Notice

that

C �=
3∑

k=1

L2
k = 1

4
. (7.9)

Thus we see that the algebraic relation which exists between the Casimir operator
Ĉ and the operators L̂k does not hold for the functions C and Lk . This is because
two (commuting) operators have a natural product algebra but there is no natural
product algebra available for arbitrary observables in the theory of ensembles on
configuration space, only the algebra defined by the Poisson bracket (see also the
remarks in Sect. 9.2.2 concerning product algebras).

7.3 Two Robits

We now consider the case of two robits. The formulation is similar to that of a
single robit, except that now we consider a four-level system and are interested in
representations of so(3) ⊕ so(3) in the corresponding phase space. Furthermore,
additional requirements such as locality and subsystem independence need to be
taken into consideration, as we discuss below.

We define the probability distribution P in terms of the possible measurement
outcomes of spins in the z-direction for each of the particles, so that P has the
form P ≡ {P++, P+−, P−+, P−−}. The canonically conjugate quantities are then
S ≡ {S++, S+−, S−+, S−−}.

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_9
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7.3.1 Reduced Phase Space for Two Robits

The phase space for a two-robit system is eight-dimensional, with coordinates
{Pαβ, Sαβ} where α, β ∈ {+,−}. However, since ∑

Pαβ = 1 is a quantity that is
conserved, it is possible to describe the system in a reduced phase space. To do this,
define new coordinates

q0 = (P++ + P+− + P−+ + P−−)/2, (7.10)

q1 = (P++ + P+− − P−+ − P−−)/2, (7.11)

q2 = (P++ − P+− + P−+ − P−−)/2, (7.12)

q3 = (P++ − P+− − P−+ + P−−)/2, (7.13)

p0 = (S++ + S+− + S−+ + S−−)/2, (7.14)

p1 = (S++ + S+− − S−+ − S−−)/2, (7.15)

p2 = (S++ − S+− + S−+ − S−−)/2, (7.16)

p3 = (S++ − S+− − S−+ + S−−)/2. (7.17)

It is easy to check that this transformation is a canonical transformation. The inverse
transformation is given by

P++ = (q0 + q1 + q2 + q3)/2, (7.18)

P+− = (q0 + q1 − q2 − q3)/2, (7.19)

P−+ = (q0 − q1 + q2 − q3)/2, (7.20)

P−− = (q0 − q1 − q2 + q3)/2, (7.21)

with corresponding expressions for Sαβ in terms of the p j .
Since the Pαβ are probabilities, q0 is fixed to q0 = 1/2. An argument analogous

to the one given in the previous section shows that we can describe the two-robits
system in the reduced phase space with coordinates {q1, q2, q3, p1, p2, p3} and the
constraint q0 = 1/2.

Beforemoving on to the next section, we introduce some quantitieswhichwe need
for our discussion of representations of so(3) ⊕ so(3). The marginal probabilities
for spin up or down in the z-direction, for each of the robits, are given by

P (1)
± := P±+ + P±− = (q0 ± q1) = (1/2 ± q1) , (7.22)

P (2)
± := P+± + P−± = (q0 ± q2) = (1/2 ± q2) . (7.23)

Further, the conditional probability P (1)
α|β , for spin α in the z-direction for robit 1

given spin β in the z-direction for robit 2, as well as the similarly defined conditional
probability P (2)

α|β , follow from classical probability theory as

P (1)
α|β = Pαβ

P (2)
β

, P (2)
α|β = Pβα

P (1)
β

(7.24)
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7.3.2 Two-Robit System with so(3) ⊕ so(3) Symmetry

We now look for representations of so(3) ⊕ so(3) in the reduced phase space. These
are given in terms of six generators Mj , Nk , which satisfy

{Mj , Mk} = ε jkl Ml, {N j , Nk} = ε jkl Nl , {Mj , Nk} = 0, (7.25)

for j, k, l = 1, 2, 3. The interpretation of the generators is analogous to that discussed
in Sect. 7.2. In particular, the observable corresponding to a spin measurement of
robit 1 in unit direction n is of the form M · n and the corresponding observable for
robit 2 is of the form N · n.

The identification of generators with expectation values (see Sect. 2.2) immedi-
ately fixes the forms of M3 and N3. In particular, the average value of spin measure-
ments in the z-direction may be calculated directly from the probability distribution,

M3 = s
(
P (1)

+ − P (1)
−

)
= q1, N3 = s

(
P (2)

+ − P (2)
−

)
= q2, (7.26)

where s = 1/2 for spin-1/2 particles (recall we have chosen units in which � = 1).
Now the task is to derive the remaining generators. To do this, we will impose certain
physical requirements.

7.3.2.1 Constraints from Locality

There are a wide variety of possible choices for Mj and Nk satisfying Eqs. (7.25)
and (7.26). However, a physically meaningful choice must satisfy at a minimum the
following locality requirements:

1. no signalling is possible via a rotation of either system (evolution locality),
2. no signalling is possible via a measurement of either system (update locality).

The first requirement, evolution locality, is in fact guaranteed by the property
{Mj , Nk} = 0 in Eq. (7.25), keeping in mind that the generators have the interpreta-
tion of expectation values. Note that this property of the Lie algebra is an instance
of the strong separability property discussed in Sect. 3.3.3.

The second requirement, update locality, is satisfied if the generators Mj and Nk

are of the form

Mj = P (2)
+ L j (q

(1)
+ , p(1)

+ ) + P (2)
− L j (q

(1)
− , p(1)

− ) := M+
j + M−

j , (7.27)

Nk = P (1)
+ Lk(q

(2)
+ , p(2)

+ ) + P (1)
− Lk(q

(2)
− , p(2)

− ) := N+
k + N−

k , (7.28)

where the Lk are of the same form as the single-robit generators given in Eqs.
(7.3–7.5), and the q(1)

± , q(2)
± , p(1)

± , p(2)
± , are appropriate functions of the reduced phase

space coordinates. The generatorsM±
j , N

±
k maybegiven the following interpretation:

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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theM+
j ,M

−
j correspond to so(3)generators associatedwith thefirst robit conditioned

on the second robit being spin-up and spin-down respectively, while the N+
k , N

−
k

correspond to so(3) generators associated with the second robit conditioned on the
first robit being spin-up and spin-down respectively. Note that we do not impose
the stronger requirement that the Mj and Nk are given by the formula for extending
local observables to larger configuration spaces in Eq. (3.13), as we wish to make a
minimal number of physically-based assumptions.

We now look for a concrete realization of all the quantities that appear in
Eqs. (7.27) and (7.28). We first derive expressions for M±

3 , N
±
3 . To put M3 and

N3 in a form that corresponds to the right hand side of Eqs. (7.27) and (7.28), we use
Eqs. (7.22–7.24) and write

M3 = q1 = P (2)
+

P+|+ − P−|+
2

+ P (2)
−

P+|− − P−|−
2

= q1 + q3
2

+ q1 − q3
2

, (7.29)

N3 = q2 = P (1)
+

P+|+ − P+|−
2

+ P (1)
−

P−|+ − P−|−
2

= q2 + q3
2

+ q2 − q3
2

, (7.30)

which leads immediately to

M±
3 = q1 ± q3

2
, N±

3 = q2 ± q3
2

. (7.31)

Thus the generators M±
3 act in the subspaces spanned by {(q1 ± q3)/2, p1 ± p3}

and the generators N±
3 act in the subspaces spanned by {(q2 ± q3)/2, p2 ± p3}. The

forms of the q(A)
α in Eqs. (7.27) and (7.28) follow from Eqs. (7.29) and (7.30) as

q(1)
± = M±

3

P (2)
±

= q1 ± q3
1 ± 2q2

, q(2)
± = N±

3

P (1)
±

= q2 ± q3
1 ± 2q1

. (7.32)

We can now derive the remaining generators using the same computations that we
carried out in Sect. 2.5.2. This leads immediately to the relatively simple expressions

M±
1 =

√
c±
M −

(
q1 ± q3

2

)2

cos((p1 ± p3) + b±
M) (7.33)

M±
2 = −

√
c±
M −

(
q1 ± q3

2

)2

sin((p1 ± p3) + b±
M) (7.34)

M±
3 = q1 ± q3

2
, (7.35)

N±
1 =

√
c±
N −

(
q2 ± q3

2

)2

cos((p2 ± p3) + b±
N ) (7.36)

http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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N±
2 = −

√
c±
N −

(
q2 ± q3

2

)2

sin((p2 ± p3) + b±
N ) (7.37)

N±
3 = q1 ± q3

2
, (7.38)

where c±
M , c

±
N follow from Eqs. (7.27), (7.28), (7.32–7.38) as

c±
M =

(
1/2 ± q2

2

)2

, c±
N =

(
1/2 ± q1

2

)2

, (7.39)

and b±
M and b±

N still need to be determined.
Notice that there ismore freedom in the choice of functions b±

M and b±
N than there is

in the case of a single robit because the phase space is now six-dimensional. Thus we
can set b±

M = b±
M(q1 ± q3, p1 ∓ p3, q2, p2) and b

±
N = b±

M(q2 ± q3, p2 ∓ p3, q1, p1)
and the M±

j and N±
K still provide representations of so(3). One must keep in mind

however that b±
M and b±

N are related via the symmetry Mj ↔ N j under the relabeling
(q1, p1) ↔ (q2, p2), thus b

±
M and b±

N must be the same function of their respective
arguments.

We now show that there are restrictions on b±
M and b±

N which are a consequence
of the requirements {M+

j , M−
k } = {N+

j , N−
k } = 0, which follow from the first two

equalities in Eq. (7.25) together with the relation

{Mj , Mk} = {M+
j + M−

j , M+
k + M−

k } = ε jkl Ml + {M+
j , M−

k } + {M−
j , M+

k }
(7.40)

and the corresponding relation for {N j , Nk}. Consistency between the first two equal-
ities in Eqs. (7.25) and (7.40) leads immediately to {M+

j , M−
k } = 0. A similar argu-

ment involving N j and Nk leads to {N+
j , N−

k } = 0. We derive the restrictions on b±
M

and b±
N from particular cases of {M+

j , M−
k } = {N+

j , N−
k } = 0. A short calculation

shows that {M±
1 , M∓

3 } = 0 implies that b±
M cannot be a function of p1 ∓ p3. Further-

more, we have {M1, N3} = 0 from evolution locality, which implies that b±
M cannot

be a function of p2. This leads to b±
M = b±

M(q1 ± q3, q2) and a similar argument
forces b±

N = b±
N (q2 ± q3, q1), with no further restrictions from Poisson brackets of

this type.
We will see that subsystem independence (see Sect. 7.3.2.3 below) adds a further

constraint, which results in

b±
M = b±

M(q1 ± q3, q2) = b
(
q(1)

±
)

= b

(
q1 ± q3
1 ± 2q2

)
, (7.41)

b±
N = b±

N (q2 ± q3, q1) = b
(
q(2)

±
)

= b

(
q2 ± q3
1 ± 2q1

)
, (7.42)
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for some arbitrary function b (more precisely, subsystem independence leads to the
second of the equalities above, see the discussion at the end of Sect. 7.3.2.3). Thus it
will be sufficient to consider the functional form of b given by Eqs. (7.41) and (7.42)

Since we derived the generators using the same computations that we carried out
in Sect. 2.5.2, each of the four sets of generators M±

j , N
±
k provide representations of

so(3). This can also be checked by carrying out a direct computation. Thus, taking
into consideration Eqs. (7.41) and (7.42), the expressions for Mj , Nk are given by

M1 =M+
1 + M−

1

= (1/2 + q2)

√(
1

2

)2

−
(
q(1)

+
)2

cos
(
p1 + p3 + b

(
q(1)

+
))

+ (1/2 − q2)

√(
1

2

)2

−
(
q(1)

−
)2

cos
(
p1 − p3 + b

(
q(1)

−
))

, (7.43)

M2 =M+
2 + M−

2

= − (1/2 + q2)

√(
1

2

)2

−
(
q(1)

+
)2

sin
(
p1 + p3 + b

(
q(1)

+
))

− (1/2 − q2)

√(
1

2

)2

−
(
q(1)

−
)2

sin
(
p1 − p3 + b

(
q(1)

−
))

, (7.44)

M3 =M+
3 + M−

3

=(1/2 + q2) q
(1)
+ + (1/2 − q2) q

(1)
− , (7.45)

and

N1 =N+
1 + N−

1

= (1/2 + q1)

√(
1

2

)2

−
(
q(2)

+
)2

cos
(
p2 + p3 + b

(
q(2)

+
))

+ (1/2 − q1)

√(
1

2

)2

−
(
q(2)

−
)2

cos
(
p2 − p3 + b

(
q(2)

−
))

, (7.46)

N2 =N+
2 + N−

2

= − (1/2 + q1)

√(
1

2

)2

−
(
q(2)

+
)2

sin
(
p2 + p3 + b

(
q(2)

+
))

− (1/2 − q1)

√(
1

2

)2

−
(
q(2)

−
)2

sin
(
p2 − p3 + b

(
q(2)

−
))

, (7.47)

N3 =N+
3 + N−

3

=(1/2 + q1) q
(2)
+ + (1/2 − q1) q

(2)
− . (7.48)

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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In the next two sections,we show that these expressions provide a representation of
so(3) ⊕ so(3) which satisfies the constraints imposed by subsystem independence.

7.3.2.2 Representation of so(3) ⊕ so(3)

The form of the expressions given in Eqs. (7.46–7.48) was motivated by the require-
ment of update locality. We now check that Mj and Nk satisfy Eq. (7.25) and thus
provide a representation of so(3) ⊕ so(3), as required.

Since the four sets of generators M+
j , M−

j , N+
k , N−

k provide representations of
the so(3) Lie algebra and {M+

j , M−
k } = {N+

j , N−
k } = 0, it follows that the two sets

of generators Mj = M+
j + M−

k and Nk = N+
j + N−

k also provide representations of
the so(3) Lie algebra, as required (see the discussion in Sect. 7.3.2.1 where Eq. (7.40)
is introduced). Thus the first two equalities of Eq. (7.25) are satisfied.

It remains to show that the third equality, {Mj , Nk} = 0, is also satisfied. We do
this in three steps.

We first examine the cases of M3 and N3. A simple computation shows that
{M3, Nk} = ∂Nk/∂p1 = 0 and {MK , N3} = −∂Mk/∂p2 = 0. Thus {Mj , Nk} = 0
whenever Mj = M3 or Nk = N3.

We next compute the Poisson bracket {Mj , N j }. To do this, consider the canonical
transformation which exchanges coordinate labels according to q1 ↔ q2, p1 ↔ p2
but leaves the other coordinates unchanged. Under this transformation, Mj → N j ,
N j → Mj . But this implies that {Mj , N j } = {N j , Mj }, which can be checked by
writing out the first Poisson bracket explicitly and carrying out the canonical trans-
formation. But we also have {Mj , N j } = −{N j , Mj } because the Poisson bracket is
antisymmetric. Thus, {Mj , Nk} = 0 whenever j = k.

Finally, we examine the remaining cases {M1, N2} and {M2, N1}. Consider the
canonical transformation with q1 → q1 and p1 → p1 + π/2 and the other coordi-
nates unchanged. Under this transformation,M1 → M2,M2 → −M1 and N1 and N2

remainunchanged.Thus {M1, N2} → {M2, N2} = 0 and {M2, N1} → {−M1, N1} =
0, where the equalities follow from the relation {Mj , N j } = 0 proved above. Since
the Poisson bracket is invariant under canonical transformations, we must conclude
that {M1, N2} = {M2, N1} = 0

Thus all the equalities of Eq. (7.25) are satisfied, therefore the generators Mj ,
Nk provide a representation of so(3) ⊕ so(3), as required. In particular, evolution
locality is satisfied as a consequence of {Mj , Nk} = 0.

7.3.2.3 Constraints from Subsystem Independence

In the case of two subsystems which are independent (see Sect. 3.2), the joint prob-
ability factorises and

Pαβ = P (1)
α P (2)

β . (7.49)

http://dx.doi.org/10.1007/978-3-319-34166-8_3
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Such an equation amounts to a constraint on the coordinates q1, q2, q3. For example,
for the case P++, Eq. (7.18) together with Eqs. (7.22) and (7.23) and q0 = 1/2 lead
to the relation

P++ = (1/2 + q1 + q2 + q3)/2 = P (1)
+ P (2)

+ = (1/2 + q1) (1/2 + q2) (7.50)

whenever Eq. (7.49) holds, from which we derive the constraint

C1 = q3 − 2q1q2 = 0 (7.51)

which is then required when two subsystems are independent. It is straightforward
to check that we do not get any further conditions from the other Pαβ . Notice that

q(1)
± → q1, q(2)

± → q2, (7.52)

when C1 = 0.
There is an additional requirement which concerns p3. In the case of subsystem

independence, one may introduce individual S1α , S
2
β for each of the subsystems (see

Sect. 3.2). They must however satisfy

Sαβ ≈ S(1)
α + S(2)

β , (7.53)

where we use the notation ≈ to indicate equality up to an additive constant. From
the four Eqs. (7.53) one may derive the relations

S(1)
+ − S(1)

− ≈ S++ − S−+ ≈ S+− − S−−,

S(2)
+ − S(2)

− ≈ S++ − S+− ≈ S−+ − S−−, (7.54)

or, equivalently, expressing the Sαβ in terms of p1, p2, p3,

p1 + p3 ≈ p1 − p3,

p2 + p3 ≈ p2 − p3. (7.55)

Keeping in mind that p1 ± p3 and p2 ± p3 appear in Mj , Nk in the argument of sine
and cosine functions, the most general solution of Eqs. (7.55) can be written as the
constraint

C2 = p3 − nπ = 0, n = 0,±1,±2, . . . (7.56)

We have seen in Sect. 7.3.2.1 that the generators Mj are of the form

Mj = P (2)
+ L j (q

(1)
+ , p(1)

+ ) + P (2)
− L j (q

(1)
− , p(1)

− ), (7.57)

http://dx.doi.org/10.1007/978-3-319-34166-8_3
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with a similar expression for the Nk . When the two subsystems are independent, an
additional constraintmust be satisfied given that the generators have the interpretation
of expectation values: the averages computed for the first subsystem cannot depend
on the quantities defining the second subsystem, i.e., on q2 and p2, with a similar
requirement for the second subsystem. A direct computation shows that this is indeed
the case, and that

Mj → L j (q1, p1), Nk → Lk(q2, p2), (7.58)

when C1 = C2 = 0, as required.
Finally, one can show that the constraints C1 = C2 = 0 are preserved under rota-

tions generated by Mj and Nk , which is also required for subsystem independence.
This means that {Mj ,Cλ} = {Nk,Cλ} = 0 for λ = 1, 2. The proof is presented in
the appendix of this chapter.

We end this section by commenting on how subsystem independence plays a
role when establishing the functional form of b given in Eqs. (7.41) and (7.42).
The point is that b±

M(q1 ± q3, q2) cannot be an arbitrary function of q1 ± q3 and q2
because then Eq. (7.58) would not be satisfied. The only way for Eq. (7.58) to be valid
is to set b±

M(q1 ± q3, q2) = b±
M(q(1)

± ) because then Eq. (7.52) implies b±
M(q(1)

± ) →
b±
M(q1) under subsystem independence, as required. Similar considerations lead to

b±
N (q2 ± q3, q1) = b±

N (q(2)
± ).

7.3.3 Wave Function Representation and a Condition
for Equivalence to Quantum Mechanics

We have shown that the generators Mj and Nk given by Eqs. (7.43–7.48) provide
local representations of so(3) ⊕ so(3)which depend on the function b(q) defined in
Eqs. (7.41) and (7.42).Aswe discuss below, the choice b(q) = 0 leads to the theory of
a pair of quantummechanical qubits. The alternative choices with b(q) �= 0may lead
to viable non-quantum local models. However, for each choice b(q) �= 0 it becomes
necessary to establish positivity of probability (see Sect. 1.4.2) and one must check
as well that the theory is not equivalent to quantum mechanics via some canonical
transformation. We will not discuss this issue further here. Instead, we now consider
in more detail the important case b(q) = 0.

To show equivalence to the quantummechanics of a pair of qubits when b(q) = 0,
we go to the wavefunction representation where the states are described by the wave-
function ψαβ = (ψ++, ψ+−, ψ−+, ψ−) and its complex conjugate ψ̄αβ rather than
by the coordinates qk , pk of the reduced phase space or, equivalently, the coordinates
Pαβ , Sαβ . The wavefunction is related to Pαβ , Sαβ by the equation

ψαβ = √
Pαβ eiSαβ . (7.59)

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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In quantummechanics, the generators of so(3) ⊕ so(3) are represented by matrix
operators

M̂1 = 1

2

⎛
⎜⎜⎝
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ , M̂2 = 1

2

⎛
⎜⎜⎝

0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

⎞
⎟⎟⎠ , M̂3 = 1

2

⎛
⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠ ,

(7.60)

and

N̂1 = 1

2

⎛
⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ , N̂2 = 1

2

⎛
⎜⎜⎝

0 i 0 0
−i 0 0 0
0 0 0 i
0 0 −i 0

⎞
⎟⎟⎠ , N̂3 = 1

2

⎛
⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ .

(7.61)

When b(q) = 0, the expectation values of the quantum operators M̂ j , M̂K corre-
spond precisely to the generators Mj , Nk , so that we have

< ψ |M̂ j |ψ >= Mj , < ψ |N̂k |ψ >= Nk . (7.62)

We express the generators Mj , Nk for this case in both the wavefunction and q j , p j

representations,

M1 = 1

2
(ψ∗

++ψ−+ + ψ∗
−+ψ++ + ψ∗

+−ψ−− + ψ∗
−−ψ+−)

=
√(

q0 + q2
2

)2

−
(
q1 + q3

2

)2

cos((p1 + p3))

+
√(

q0 − q2
2

)2

−
(
q1 − q3

2

)2

cos((p1 − p3)), (7.63)

M2 = i

2
(ψ∗

++ψ−+ − ψ∗
−+ψ++ + ψ∗

+−ψ−− − ψ∗
−−ψ+−)

= −
√(

q0 + q2
2

)2

−
(
q1 + q3

2

)2

sin((p1 + p3))

−
√(

q0 − q2
2

)2

−
(
q1 − q3

2

)2

sin((p1 − p3)), (7.64)

M3 = 1

2
(ψ∗

++ψ++ + ψ∗
+−ψ+− − ψ∗

−+ψ−+ − ψ∗
−−ψ−−)

= q1, (7.65)
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and

N1 = 1

2
(ψ∗

++ψ+− + ψ∗
+−ψ++ + ψ∗

−+ψ−− + ψ∗
−−ψ−+)

=
√(

q0 + q1
2

)2

−
(
q2 + q3

2

)2

cos((p2 + p3))

+
√(

q0 − q1
2

)2

−
(
q2 − q3

2

)2

cos((p2 − p3)), (7.66)

N2 = i

2
(ψ∗

++ψ+− − ψ∗
+−ψ++ + ψ∗

−+ψ−− − ψ∗
−−ψ−+)

= −
√(

q0 + q1
2

)2

M −
(
q2 + q3

2

)2

sin((p2 + p3))

−
√(

q0 − q1
2

)2

−
(
q2 − q3

2

)2

sin((p2 − p3)), (7.67)

N3 = 1

2
(ψ∗

++ψ++ − ψ∗
+−ψ+− + ψ∗

−+ψ−+ − ψ∗
−−ψ−−)

= q2. (7.68)

All quantum mechanical expectation values < Â >, < B̂ > can be expressed
as observables A(q j , p j ), B(q j , p j ) in the reduced configuration space and, as we
saw in Sect. 2.3.3, the Poisson bracket for the observables on configuration space
is isomorphic to the usual commutator on Hilbert space. Thus pairs of robits are
equivalent to pairs of quantum mechanical qubits when b(q) = 0.

Finally, we look at the how the Casimir functions [5] (i.e., the functions Fc which
satisfy {Fc, Mj } = {Fc, Nk} = 0) are represented in the reduced phase space of a
pair of robits when b(q) = 0 and show that they are necessarily constants. To see
this, evaluatefirst {Fc, M3} = {Fc, N3} = 0,which leads to Fc = Fc(q1, q2, q3, p3).
Now evaluate {Fc, M1} = 0, which leads to

{Fc, M1} =
[(

∂Fc

∂q1
+ ∂Fc

∂q3

)
M+

2

]
+

[(
∂Fc

∂q1
− ∂Fc

∂q3

)
M−

2

]

−
[
∂Fc

∂p3

∂M1

∂q3

]
= 0 (7.69)

One can check that each of the terms in square brackets must be equal to zero
because they depend on different trigonometrical functions of p1 ± q3, which leads
to Fc = Fc(q2). A similar calculation of {Fc, N1} = 0 shows that the functions Fc

cannot depend on q2 either, thus they must be constants.

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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The Casimir operator is defined by Ĉ = ∑
k

(
M̂2

k + N̂ 2
k

)
= 3

2 1̂, where 1̂ is the

unit matrix. The corresponding function on the reduced phase is C =< ψ |Ĉ|ψ >=
3
2 ; i.e., it is the particular Casimir function with Fc = 3

2 .

Pairs of robits provide local representations of so(3) ⊕ so(3) which depend
on the function b(q) defined in Eqs. (7.41) and (7.42).

• Equivalence to a pair of quantum mechanical qubits is achieved for the
choice b(q) = 0

• Alternative choices with b(q) �= 0 may lead to viable non-quantum local
models

7.4 Discussion

In the previous sectionswe derived a probabilisticmodel of an ensemble consisting of
a pair of spin 1/2 particles. This was accomplished with a minimum of assumptions:
(i) the outcome of ameasurement results in a value of spin s = ±1/2, (ii) the relevant
observables provide a representation of so(3) ⊕ so(3), (iii) requirements of locality
and subsystem independence are satisfied. More importantly, we have shown that a
particular case of this theory, obtained by setting b(q) = 0 in Eqs. (7.43–7.48), leads
to a theory which is equivalent to the quantum theory of two qubits. This is despite
the fact that none of the conditions listed above were formulated using the standard
building blocks of quantummechanics; e.g., operators that act on states in a complex
Hilbert space, unitary transformations, etc.

In is important to emphasize that the starting point for the probabilistic model
developed here is the observation that the configuration space of a spin 1/2 particle
is discrete, corresponding to two possible measurement outcomes. Since we assign
probabilities to configurations only, we end up with probabilities over the four-
outcome configuration space of the pair of spin 1/2 particles. In contrast, one can
easily get into serious difficulties if, rather than following the configuration ensemble
approach, one assumes instead a probability model where there is one joint probabil-
ity distribution for all observables. Such a model would go beyond what is justified
by the experimental results, and is in conflict with quantum mechanics.

For example, if we restrict to the particular case of singlet states (i.e., the two
particles have opposite spins in all directions), we can compare our probabilistic
models to the local hidden variable models introduced by Bell [3], which have been
the starting point for various derivations of Bell inequalities [6]. Since our models
include quantum theory as a special case, it is possible for them to violate Bell
inequalities for particular choices of the relative angle between measuring devices.
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This is quite remarkable, given the way in which the probabilistic model has been
derived using only very basic assumptions, none of which are particular to quantum
theory. It has been claimed that the axioms of standard probability theory cannot
be valid for quantum systems because Bell’s inequality is a theorem in standard
probability theory and quantum mechanics does not satisfy it. And yet the models
that we have derived here only use standard probability theory, proving that the
often repeated claim concerning the inapplicability of standard probability theory to
quantum systems cannot be justified on the basis of Bell’s theorem, and is certainly
incorrect for the type of systems that we discuss here.

Appendix: Invariance of Subsystem Independence
Constraints Under Rotations

We show that the constraints C1 = 0 and C2 = 0 given by Eq. (7.51) and Eq. (7.56)
are preserved under local rotations.

We first consider the invariance of C1. A simple computation shows that we
have {C1, M3} = {(q3 − 2q1q2), q1} = 0 and {C1, N3} = {(q3 − 2q1q2), q2} = 0, as
required. Next we compute the Poisson bracket with M1,

{C1, M1} ={(q3 − 2q1q2), M1}
=∂M1

∂p3
− 2q2

∂M1

∂p1

= − (1/2 + q2)

√(
1

2

)2

−
(
q(1)

+
)2

sin
(
p1 + p3 + b

(
q(1)

+
))

+ (1/2 − q2)

√(
1

2

)2

−
(
q(1)

−
)2

sin
(
p1 − p3 + b

(
q(1)

−
))

+ 2q2(1/2 + q2)

√(
1

2

)2

−
(
q(1)

+
)2

sin
(
p1 + p3 + b

(
q(1)

+
))

+ 2q2(1/2 − q2)

√(
1

2

)2

−
(
q(1)

−
)2

sin
(
p1 − p3 + b

(
q(1)

−
))

→ − q2L2(q1, p1) + q2L2(q1, p1) when C1 = C2 = 0

=0, (7.70)

as required. Under the canonical transformation q1 → q1 and p1 → p1 + π/2,
we have C1 → C1 and M1 → M2, which leads to {C1, M2} = 0. Finally, under
q1 ↔ q2 and p1 ↔ p2, we haveC1 → C1 and Mj → N j , which leads to {C1, N1} =
{C1, N2} = 0. Thus we conclude that {C1, Mj } = {C1, Nk} = 0 whenC1 = C2 = 0.
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Now we look at the invariance of C2. A simple computations shows that we have
{C2, M3} = {(p3 − nπ), q1} = 0 and {C2, N3} = {(p3 − nπ), q2} = 0, as required.
Next we compute the Poisson bracket with M1,

{C2, M1} ={(p3 − nπ), M1}
= − ∂M1

∂q3

= q(1)
+

2

√
(1/2)2 −

(
q(1)

+
)2

cos
(
p1 + p3 + b

(
q(1)

+
))

− q(1)
−

2

√
(1/2)2 −

(
q(1)

−
)2

cos
(
p1 − p3 + b

(
q(1)

−
))

+ (1/2 + q2)

√
(1/2)2 −

(
q(1)

+
)2

sin
(
p1 + p3 + b

(
q(1)

+
)) b′

1 + 2q2

+ (1/2 − q2)

√
(1/2)2 −

(
q(1)

−
)2

sin
(
p1 − p3 + b

(
q(1)

−
)) −b′

1 − 2q2

→ q1 − q1

2
√

(1/2)2 − q2
1

cos (p1 + b (q1))

+
√

(1/2)2 − q2
1 sin (p1 + b (q1))

b′ − b′

2
when C1 = C2 = 0

=0, (7.71)

as required. Using the same type of canonical transformations considered in the case
ofC1, we can show that the Poisson bracket ofC2 with the remaining generators also
vanishes. Thus we conclude that {C2, Mj } = {C2, Nk} = 0 when C1 = C2 = 0.

This shows that the generators satisfy all of the constraints imposed by subsystem
independence.
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Chapter 8
Hybrid Quantum-Classical Ensembles

Abstract Theproblemof defining hybrid systems comprising quantumand classical
components is highly nontrivial, and the approaches that have been proposed to
solve this problem run into various types of fundamental difficulties. The formalism
of configuration-space ensembles is able to overcome many of these difficulties,
allowing for a general and consistent description of interactions betweenquantumand
classical ensembles. Such hybrid ensembles have a number of desirable features; e.g.,
quantum-classical interactions do not blur the fundamental distinction between the
quantum and classical components; configuration separability is satisfied; and non-
relativistic systems are Galilean invariant whenever the interaction potential itself is
Galilean invariant. After demonstrating general properties of hybrid ensembles, we
consider their application to the description of measurement of a quantum system
by a classical apparatus, including examples of position and spin measurement; the
scattering of a classical particle from a quantum superposition; and the definitions
of Gaussian and coherent ensembles for quantum-classical oscillators. Finally, we
generalise quantum Wigner functions to hybrid ensembles.

8.1 Introduction

In Chap.3 we considered interactions between two arbitrary ensembles on configu-
ration space, and discussed separability, entanglement and measurement properties.
In this chapter we specialise to joint ‘quantum-classical’ ensembles, comprising a
quantum component and a classical component. Due to the physically distinct nature
of the two components, we will also refer to these as hybrid ensembles.

There are a number of reasons to model the interaction of quantum and classi-
cal systems. Some of them are practical: for certain applications, it is convenient to
assume that some components of a physical system—e.g., atomic nuclei, the electro-
magnetic field, the spacetime metric—can be modelled classically [1–4] while the
rest of the system is modelled according to quantum mechanics. For such applica-
tions, it would be desirable to have an approach which is free of inconsistencies and
allows for well defined approximation schemes.

© Springer International Publishing Switzerland 2016
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Other reasons stem from open problems in the foundations of physics. A good
example can be found in measurement theory: in the standard Copenhagen interpre-
tation of quantummechanics, the measuring apparatus must be described in classical
terms [5, 6] and this implies a coupling of some sort between a quantum system and
the apparatus which is treated as a classical system. Gravity provides another exam-
ple: since there is no full quantum theory yet, one would like to know to what extent
the quantization of gravity is forced upon us by consistency arguments alone [7],
and one way to do this is to investigate how far one can get with a hybrid system in
which the gravitational field remains classical while matter is assumed to consist of
quantum fields. Dyson has argued that it might be impossible in principle to observe
the existence of individual gravitons, and this has lead him to the conjecture that
“the gravitational field described by Einstein’s theory of general relativity is a purely
classical field without any quantum behaviour” [8]. His observations regarding the
impossibility of detecting gravitons have been supported by detailed calculations [9,
10]. If Dyson’s conjecture is true, hybrid models become unavoidable.

There are, of course, obstacles that have to be dealt with when modeling the
interaction of quantum and classical systems. First of all, quantum mechanics and
classical mechanics are usually formulated using very different mathematical struc-
tures. Thus, it becomes necessary to find a framework that can encompass both types
of systems. The formalism of ensembles on configuration space provides such a
common mathematical language. In addition to the mathematical aspects, there are
difficult conceptual issues; i.e., the idealizations that often serve as building blocks
of theories are different for classical and quantum systems.What aspects of quantum
and classical mechanics should be preserved in the description of a hybrid system?

Many models have been proposed to describe interacting classical and quantum
ensembles (a brief review of various approaches is presented in Sect. 9.1). They have
typically run into various types of fundamental difficulties such as non-conservation
of energy; absence of back-reaction of the quantum system on the classical system;
nonlocality; negative probabilities; an inherent inability to describe all interactions of
interest; and incorrect equations of motion for noninteracting independent systems.
Thus, in the past it has not been clear as to whether a satisfactory description was
even possible. The approach based on configuration space ensembles overcomes
many difficulties arising in previous approaches [11, 12]. For example [13]:

1. Probability and energy are conserved.
2. There is back-reaction of the quantum system on the classical system.
3. The correct quantum and classical equations of motion are recovered in the limit

of noninteracting independent systems.
4. The two “minimal requirements for a quantum-classical formulation” specified

by Salcedo [14, 15] are satisfied: a Lie bracket may be defined on the set of
observables, and this Lie bracket is equivalent to a Poisson bracket for classical
observables and to (i�)−1 times the quantum commutator for quantum observ-
ables.

http://dx.doi.org/10.1007/978-3-319-34166-8_9
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5. “Configuration separability” is satisfied: the quantum configuration statistics are
invariant under any canonical transformation applied to the classical component,
and vice versa (see also Sect. 3.3.3).

6. The “definite benchmark … for an acceptable quantum-classical hybrid system”
specified by Peres and Terno [16] is satisfied: the expectation values for the
position and momentum observables of linearly-coupled quantum and classical
oscillators obey the classical equations of motion.

7. Generalised Ehrenfest relations are satisfied.
8. Galilean invariance is satisfied for interaction potentials of the form V(x, q, t) =

V(|x− q|), where x and q are the configuration space coordinates of the classical
and quantum components

To our knowledge, no other formulation satisfies all of these properties. In partic-
ular, requirement 4 is highly non-trivial [14, 15, 17], and therefore provides a critical
test for any formulation of hybrid quantum-classical systems.

We briefly recall the basic elements of the formalism of ensembles on a joint
configuration space in Sect. 8.2, and show how they can be applied to describing
interactions between quantum and classical ensembles. After demonstrating general
properties of hybrid ensembles in Sect. 8.3, we consider their application to the
description ofmeasurement of a quantum system by a classical apparatus in Sect. 8.4;
the scattering of a classical particle from a quantum superposition in Sect. 8.5; and
the definition of Gaussian and coherent ensembles for quantum-classical oscillators
in Sect. 8.6. Finally, we propose a definition of hybrid Wigner functions, and give
some applications thereof, in Sect. 8.7.

This results of this chapter provide a basis for the discussion of the consistency
of the formalism and its comparison with other approaches to quantum-classical
interactions in Chap. 9, and are generalised in Chap.11 to describe the consistent
coupling of quantum matter to classical spacetime.

8.2 Quantum-Classical Ensembles

8.2.1 Quantum and Classical Mechanics
on Configuration Space

We have seen in previous chapters that quantum and classical systems are treated
on an equal footing within the formalism of ensembles on configuration space, with
differences being primarily due to the forms of their respective observables and
ensembleHamiltonians.Consider the example of particles. In either case an ensemble
of physical systems is described by a probability density P(x) on configuration space
that evolves according to an action principle. Thus there is a canonically conjugate

http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_9
http://dx.doi.org/10.1007/978-3-319-34166-8_11
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function S(x) on configuration space, and an ensemble Hamiltonian H [P, S], such
that

∂P

∂t
= δH

δS
,

∂S

∂t
= −δH

δP
, (8.1)

where δ/δf denotes the variational derivative with respect to function f (see Chap.1).
For example, as described in Sect. 1.2, the classical and quantum ensembleHamil-

tonians describing particles with mass m moving in a potential V(x) are

HC[P, S] =
∫

dx P

[ |∇S|2
2m

+ V(x)

]
, (8.2)

HQ[P, S] = HC[P, S] + �
2

4

∫
dx P

|∇ logP|2
2m

. (8.3)

The equations of motion for HC[P, S] follow as

∂P

∂t
+ ∇.

(
P

∇S

m

)
= 0,

∂S

∂t
+ |∇S|2

2m
+ V = 0, (8.4)

where thefirst equation is a continuity equation ensuring the conservation of probabil-
ity, while the second equation is the classical Hamilton-Jacobi equation. In contrast,
the equations of motion corresponding to HQ[P, S] are equivalent to the quantum
Schrödinger equation

i�
∂ψ

∂t
= −�

2

2m
∇2ψ + Vψ, (8.5)

with
ψ := √

P eiS/�. (8.6)

Classical and quantum configuration ensembles are distinguished not only by the
forms of their ensembleHamiltonians, but by their corresponding sets of observables.
As discussed in Sect. 2.3, classical observables have the form

Cf [P, S] =
∫

dx P(x) f (x,∇S) (8.7)

where f (x, p) is a function on the classical phase space,whereas quantumobservables
have the form

QM̂[P, S] = 〈ψ |M̂|ψ〉 (8.8)

where M̂ is a Hermitian operator on the quantum Hilbert space and ψ is defined in
Eq. (8.6) above. In both cases the numerical value of an observable is identified with
its average value over the ensemble (see Sect. 2.2).

Note that the ensemble Hamiltonians in Eq. (8.2) and (8.3) are just particular
instances of classical and quantum observables, with

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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HC[P, S] = CH [P, S], HQ[P, S] = QĤ [P, S], (8.9)

for the respective choicesH(x, p) = p·p/(2m)+V(x) and Ĥ = −�
2∇2/(2m)+V(x).

Thus, in each case the numerical value of the ensemble Hamiltonian corresponds to
the average ensemble energy (see also Sect. 1.4).

Wewill see in the next chapter, wherewe discuss the consistency of the formalism,
that it is necessary to put some restrictions on the type of physical systems that
may be modeled as classical ‘particles’. These restrictions do not play a role for
the material discussed in this chapter, but nevertheless it will be useful to include
some remarks on this topic here. At a very fundamental level, classical particles are
described by classical ensemble Hamiltonians and observables as discussed above.
However, there are other requirements associated with “classicality.” In particular,
when we talk about localised classical objects (for example, a measuring apparatus),
we will always mean macroscopic objects. One property of macroscopic objects is
that they cannot be isolated from the environment: a macroscopic object cannot
avoid scattering photons and other particles [18]. Thus the pointer of a measuring
device will be continuously undergoing scattering processes. Another property of
macroscopic objects is that they have very large numbers of degrees of freedom.
When describing a classical measuring apparatus wewill often discuss only one of its
degrees of freedom, say the position of a pointer, but in reality there is an enormous
number of “irrelevant” degrees of freedom, say 1023. The degree of freedom that
corresponds to the pointer is never completely isolated from all the other degrees of
freedom of the apparatus. One must therefore keep in mind that classical objects, by
virtue of being macroscopic, are complex objects which inevitably interact with the
environment. For most applications this added complication can be neglected, but in
some cases it will be crucial to take this into consideration.

8.2.2 Interacting Quantum and Classical Ensembles

Interactions between arbitrary ensembles have been previously discussed in Chap. 3.
Here we wish to focus on interactions between classical and quantum ensembles in
particular.

We will consider a classical ensemble with a continuous configuration space
labelled by x, interacting with a quantum ensemble with an arbitrary configuration
space labelled by q. The joint configuration space is therefore labelled by (q, x),
and the hybrid joint ensemble is described by a pair of functions (P, S) on this
configuration space, together with a suitable ensemble Hamiltonian HQC[P, S].

As per Sect. 3.2, the quantum and classical components of a hybrid ensemble
(P, S) are defined to be independent if and only if

P(q, x) = PQ(q)PC(x), S(q, x) = SQ(q) + SC(x), (8.10)

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
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for two quantum and classical ensembles (PQ, SQ) and (PC, SC). Further, the hybrid
ensemble is defined to be noninteracting, with respect to a given ensemble Hamil-
tonian HQC , if and only if all independent ensembles remain independent under
evolution. Noninteraction is equivalent, via Eq. (3.4), to the joint ensemble Hamil-
tonian satisfying

HQC[PQ PC, SQ + SC] =
∫

dx PX(x)HQ[PQ, SQ] +
∫

dq PQ(q)HC[PC, SC]
(8.11)

for all quantum and classical ensembles (PQ, SQ) and (PC, SC), where HQ and HC

are suitable quantum and classical ensemble Hamiltonians respectively. If Eq. (8.11)
is not satisfied, HQC will be said to describe interacting quantum and classical
ensembles.

Example: Interacting ParticlesAs a first example of interacting quantum and clas-
sical ensembles, let q denote the configuration space coordinate of a quantum particle
ofmassm, and x denote the configuration coordinate of a classical particle ofmassM.
A joint ensemble Hamiltonian corresponding to the interaction potential V(q, x, t)
is then given by

HQC[P, S] =
∫

dq dx P

[ |∇qS|2
2m

+ |∇xS|2
2M

+ V(q, x, t) + �
2

4

|∇q logP|2
2m

]
.

(8.12)

ForV(q, x) ≡ 0 there is no interaction between the quantum and classical parts of the
composite ensemble, and Eq. (8.11) is satisfied withHQC corresponding to the sum
of HQ and HC in Eqs. (8.2) and (8.3). More generally, HQC is seen to correspond
to the sum of a quantum term, a classical term, and an interaction term

HI [P, S] =
∫

dq dx P V(q, x, t) = 〈V〉. (8.13)

The Hamiltonian equations of motion corresponding to Eq. (8.12) follow via
Eq. (8.1), and are given by

∂P

∂t
+ ∇q.

(
P

∇qS

m

)
+ ∇x.

(
P

∇xS

M

)
= 0, (8.14)

∂S

∂t
+ |∇qS|2

2m
+ |∇xS|2

2M
+ V − �

2

2m

∇2
qP

1/2

P1/2
= 0, (8.15)

(see Appendix A.1 to this book regarding the evaluation of the required functional
derivatives). These are coupled partial differential equations of first-order in time (of
a type commonly encountered in hydrodynamics), andmay be numerically integrated
to solve forP(q, x, t) and S(q, x, t) providing thatP and S are specified at some initial
time t0. Several analytic solutions are considered later in this chapter.

http://dx.doi.org/10.1007/978-3-319-34166-8_3
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Example: Classical Particle Interacting with a Quantum Spin As an example of
a discrete ensemble of quantum systems interacting with an ensemble of classical
particles, consider the case where the z-component σ̂z of an ensemble of spin-1/2
particles is linearly coupled to the momentum of an ensemble of one-dimensional
classical particles. Modelling such an interaction has been attempted previously, but
with a number of fundamental difficulties arising [11, 19].

We choose the configuration space of the quantum spin to be {±1}, corresponding
to the outcomes of a measurement of σ̂z, and the configuration space of the classical
particle to be the real number line. From Eqs. (8.7) and (8.8) the quantum spin
observable σ̂z and the classical momentum observable p are represented by

Qσ̂z =
∑
s=±1

P(s) s = 〈s〉, Cp =
∫

dx P(x)
∂S

∂x
= 〈p〉,

for quantum and classical ensembles respectively. This suggests, for a hybrid ensem-
ble (P, S) on the joint configuration space {(s, x)}, representing a linear coupling
between σz and p via an interaction ensemble Hamiltonian of the form

HI [P, S] = κ(t)
∑
s=±1

∫
dx P(s, x) s

∂S(s, x)

∂x
=: κ(t) 〈sp〉, (8.16)

where κ(t) quantifies a (possibly time-dependent) coupling strength. This ensemble
Hamiltonian will be further discussed below in the context of measurement interac-
tions. Note that the total ensemble Hamiltonian will be given by adding appropriate
termsHQ andHC toHI , describing purely quantum and purely classical contribu-
tions to the evolution.

The form ofHI above may alternatively be motivated by writing down the inter-
action ensemble Hamiltonian corresponding to M̂ = κ(t)σ̂zp̂ for a one-dimensional
spin-1/2 quantum particle, via Eq. (8.8), and taking the classical limit � → 0 in the
resulting expression. This method has the advantage of immediately implying that
HI preserves the normalisation and positivity of the probability distribution P(s, x),
as an immediate consequence of it being preserved under the fully quantumevolution,
without the need to explicitly check the corresponding conditions in Sect. 1.4.

8.3 Some General Properties

In this section, we introduce certain useful concepts, such as conditional wavefunc-
tions and density operators. We will also discuss some general desirable features
of hybrid systems, such as configuration separability and invariance under Galilean
transformations for non-relativistic systems.

Quantum vs Classical: an Invariant Distinction It might be thought that the inter-
action between the quantum and classical components of a hybrid ensemble could

http://dx.doi.org/10.1007/978-3-319-34166-8_1
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render the labels ‘quantum’ and ‘classical’ meaningless: would not the quantum
component pick up ‘classical’ features, and vice versa, due to the interaction? Sur-
prisingly perhaps, this is not the case.

As discussed in Sect. 3.3, it is straightforward to extend observables for individual
ensembles to observables on a joint ensemble. In particular, using the definition of
extended observables in Eqs. (3.12) and (3.13), the classical and quantumobservables
in Eqs. (8.7) and (8.8) extend to the respective forms

C̃f [P, S] =
∫

dqdx P(q, x) f (x,∇xS) (8.17)

Q̃M̂ = 〈ψQC |M̂|ψQC〉, (8.18)

where integration over q is replaced by summation over any discrete components
and the hybrid wave function ψQC(q, x) is defined by

ψQC := √
P eiS/�. (8.19)

It follows that the respective ‘classical’ and ‘quantum’ natures of these observables
are fully preserved under evolution, as a consequence of the invariance of Pois-
son brackets under the extension of observables as per Eq. (3.16). In particular, this
property implies, via Eqs. (2.22) and (2.28), that

{C̃f , C̃g} = C̃{f ,g}, {Q̃M̂, Q̃N̂ } = Q̃[M̂,N̂]/i�, (8.20)

where {f , g} denotes the usual Poisson bracket for phase space functions f (x, p) and
g(x, p). Further, since Poisson brackets are automatically preserved under Hamil-
tonian evolution, these relations hold at all times. Thus:

Interaction does not blur the fundamental distinction between the classical and
quantum components of a hybrid ensemble.

In particular, the classical observables form a Lie algebra corresponding to the
usual Poisson bracket on phase space, and the quantum observables form a Lie
algebra corresponding to the usual quantum commutator on Hilbert space, with both
algebras being independently preserved under evolution of the ensemble.

Configuration Separability As discussed in Sect. 3.3.3, all joint ensembles satisfy
the property of configuration separability, i.e., the configuration statistics of either
component are invariant under a canonical transformation of the other component.
To translate this to hybrid ensembles, denote the quantum and classical configuration
probability densities by

PC(x) :=
∫

dq P(q, x), PQ(q) :=
∫

dx P(q, x), (8.21)

http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_3
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where integration over q is replaced by summation for discrete regions of the con-
figuration space. Configuration separability is then the property:

A local unitary transformation on the quantum component of a hybrid ensem-
ble does not affect the probability density PC(x) of the classical component.
Conversely, a local canonical transformation on the classical component does
not affect the probability density PQ(q) of the quantum component.

While this property follows as an immediate consequence of the general result
in Eq. (3.21) for joint ensembles, it is of interest to derive it directly for a quantum-
classical ensemble (P, S) [11]. Consider first a canonical transformation generated
by an arbitrary quantum observable Q̃M̂ . Any classical configuration observable is
of the form C̃g(x) (e.g., g(x) = x), with C̃g(x) = ∫

dq dx Pg = ∫
dq dx ψ̄QC gψQC via

Eqs. (8.17) and (8.19). The general Poisson bracket formula in Eq. (2.27) then gives

{C̃g(x), Q̃M̂} = 2

�
Im

{∫
dq dx ψ̄QC g(x)M̂ψQC

}
= 0, (8.22)

since M̂ acts only on the quantum component of the hybrid wavefunction and so
commutes with g(x). Hence, the expectation value of C̃g(x) is unchanged by the
transformation for any function g(x), implying that PC(x) is invariant as claimed.
Conversely, consider a canonical transformation of the classical component, gener-
ated by an arbitrary classical observable C̃f . Any quantumconfiguration observable is
of the formQg(q̂), withQg(q̂) = ∫

dq dx ψ̄QCg(q̂)ψQC = ∫
dq dx P g(q) viaEq. (8.18).

The general Poisson bracket formula in Eq. (2.5) then gives

{Q̃g(q̂), C̃f } =
∫

dqdx

(
δQ̃g(q̂)

δP

δC̃f

δS
− δQ̃g(q̂)

δS

δC̃f

δP

)

= −
∫

dqdx g(q)∇x ·
(
P

∂f (x,∇xS)

∂(∇xS)

)
= 0, (8.23)

using integration by parts with respect to x. Hence the expectation value of Q̃g(q̂) is
unchanged by the transformation, implying that PQ(q) is invariant as claimed.

Reduced Density Operators and Phase Space Densities The concept of reduced
or ‘improper’ mixtures was introduced for general joint ensembles in Sect. 4.2.4,
and is of interest for hybrid ensembles in particular. First, for a hybrid quantum-
classical ensemble (P, S), consider the corresponding reduced mixture of quantum
configuration ensembles defined by

WQ := {(Px, Sx);wx}, (8.24)

http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_4
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with
Px(q) := P(q, x)/PC(x), Sx(q) := S(q, x), wx := PC(x), (8.25)

as per the definitions in Eqs. (4.14) and (4.15), where PC(x) is the marginal classical
probability density in Eq. (8.21). The corresponding conditional wave function for
the quantum component, for a given classical configuration x, follows via Eq. (8.6)
as

ψx(q) := [Px(q)]1/2 eiSx(q)/�, (8.26)

and the statistics of the reduced mixture MQ are therefore equivalent to the condi-
tional density operator

ρ̂Q|C :=
∫

dx PC(x) |ψx〉〈ψx| = trC[|ψQC〉〈ψQC |]. (8.27)

Here the second equality formally follows as per the analogous result in Eq. (4.16)
for quantum joint ensembles, where ψQC is the hybrid wave function defined in
Eq. (8.19).

One may similarly consider the corresponding reduced mixture of classical con-
figuration ensembles, defined by

WC := {(Pq, Sq);w′
q}, (8.28)

with
Pq(x) := P(q, x)/PQ(q), Sq(x) := S(q, x), w′

q := PQ(q), (8.29)

where PQ(q) is the marginal quantum probability density in Eq. (8.21). The statistics
of this mixture are equivalent, via Eq. (4.5), to the classical phase space density

ρC|Q(x, p) :=
∫

dq PQ(q)Pq(x) δ(p − ∇xSq) =
∫

dq P(q, x) δ(p − ∇xS). (8.30)

It is important to note that ψx(q) and ρ̂Q|C do not satisfy the Schrödinger and
quantum Liouville equations in general. Nor does ρC|Q satisfy the classical Liouville
equation. This is an expected property of ‘improper’ mixtures: they only contain
partial information about a joint ensemble (see Sect. 4.2.4).

A hybrid ensemble requires both P(q, x) and S(q, x) for its full description,
and is not equivalently described by the quantum density operator ρ̂Q|C , nor
by the classical phase space density ρC|Q(x, p), in general.

http://dx.doi.org/10.1007/978-3-319-34166-8_4
http://dx.doi.org/10.1007/978-3-319-34166-8_4
http://dx.doi.org/10.1007/978-3-319-34166-8_4
http://dx.doi.org/10.1007/978-3-319-34166-8_4
http://dx.doi.org/10.1007/978-3-319-34166-8_4
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Even so, it will be seen in this chapter and the next that reduced mixtures and the
conditional density operator ρ̂Q|C remain useful concepts in discussions of measure-
ment and decoherence. They also make a natural appearance as marginals of hybrid
Wigner functions (see Sect. 8.7).

Stationary Ensembles As discussed in Sect. 2.4, stationary ensembles are defined
to be ensembles with time-independent dynamical properties. As shown there, this
is equivalent to the conditions

∂P

∂t
= 0,

∂S

∂t
= −E, (8.31)

for some constant E, equal to the average ensemble energy. Stationary ensembles
generalise the notion of quantum stationary states, and are a crucial element in pro-
viding a unified approach to classical and quantum thermodynamics on configuration
space (see Chap.4).

As an example of stationary hybrid ensembles [11], consider the case of classical
and quantum ensembles of particles, evolving under the joint ensemble Hamiltonian
HQC in Eq. (8.12), for a translation-invariant potential V(q, x, t) ≡ V(q − x). We
will minimise the classical contribution to the average energy via the ansatz∇xS = 0.
It follows via the equations of motion in Eqs. (8.14) and (8.15), and making a change
of variables from q to r := q − x, that the corresponding stationary states satisfy

∇r .

(
P

∇rS

m

)
= 0,

|∇rS|2
2m

+ V(r) − �
2

2m

∇2
r

√
P√

P
= E, (8.32)

for some constantE. These are equivalent to the time-independent Schrödinger equa-
tion [−�

2

2m
∇2

r + V(r)

]
ψ = Eψ, (8.33)

with ψ := P1/2eiS/�.
The ansatz requires that S does not depend on x, and hence (for V 	= 0) it

must be independent of r. It follows that if φn(r) denotes any real-valued energy
eigenfunction corresponding to a solution of Eq. (8.33) (there is always a complete set
of such eigenfunctions), with eigenvalue En, then there is a corresponding stationary
ensemble described by

P(q, x, t) = PC(x) [φn(q − x)]2, S(q, x, t) = −Ent. (8.34)

Here PC(x) is an arbitrary probability density on the classical configuration space,
and is equal to the marginal probability density in Eq. (8.21). The corresponding
numerical value of the ensemble HamiltonianHQC may be calculated asHQC = En.
Further, the conditional wavefunction follows from Eqs. (8.26) and (8.34) as the
displaced energy eigenstate

http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_4
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ψx(q, t) = φn(q − x)e−iEnt/�. (8.35)

Thus:

Stationary hybrid ensembles for translation invariant interaction potentials
have quantized energies, corresponding to eigenstates of quantum particles
that are subject to the potential V(q − x) with probability PC(x).

Centre-of-Mass and RelativeMotion Stationary hybrid ensembles are seen to have
simple relationships to purely quantum ensembles (as do the ‘coherent’ ensembles
in Sect. 8.6). However, more generally, hybrid ensembles can behave very differently
from both quantum and classical ensembles.

For example, again considering the ensemble Hamiltonian HQC in Eq. (8.12),
describing interacting classical and quantum ensembles of particles, one can make a
change of coordinates for the joint configuration space from (q, x) to the centre-of-
mass and relative coordinates:

x := mq + Mx

m + M
, r := q − x. (8.36)

Rewriting Eq. (8.12) with respect to these coordinates, for a rotationally and transla-
tionally invariant interaction potential V(q, x, t) ≡ V(|q− x|), and defining the total
massMT and relative mass μ by

MT := m + M, μ := mM

m + M
, (8.37)

yields [11]

HQC =
∫

dxdr P

[ |∇xS|2
2MT

+ �
2m

4(m + M)

|∇x logP|2
2MT

]
︸ ︷︷ ︸

(i) Quantum-like term: Free center-of-mass motion

+
∫

dxdr P

[ |∇rS|2
2μ

+ �
2M

4(m + M)

|∇r logP|2
2μ

+ V(|r|)
]

︸ ︷︷ ︸
(ii) Quantum-like term: Relative-motion in a potential

− 2μ

MT

∫
dxdr P

[
�
2M

4(m + M)

(∇x logP · ∇r logP)

2μ

]
︸ ︷︷ ︸

(iii) Interaction term

. (8.38)

Comparison with the quantum ensemble Hamiltonian in Eq. (8.3) shows that,
relative to the new coordinates, the hybrid ensemble Hamiltonian comprises (i) a
quantum-like term corresponding to free centre-of-mass motion, but with a rescaled
Planck constant
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�X := [m/(m + M)]1/2 �; (8.39)

(ii) a quantum-like term corresponding to relativemotion in a central potentialV(|r|),
but with a rescaled Planck constant

�R := [M/(m + M)]1/2 �; (8.40)

and (iii) an intrinsic interaction term that couples the gradients of P with respect to
x̄ and r. The presence of this last term implies, in stark contrast to classical-classical
and quantum-quantum interactions, a surprising property:

The centre-of-mass motion and the relative motion do not decouple for
quantum-classical interactions.

Indeed, the only limits in which the intrinsic interaction term can be ignored
are (a) in the limit of an infinite classical (quantum) mass, for which the ensemble
Hamiltonian reduces to the sum of a classical (quantum) centre-of-mass term and a
quantum (classical) relative motion term; and (b) in the limit � → 0, for which the
ensemble Hamiltonian reduces to the sum of two classical terms.

Galilean-Invariant InteractionsThe non-decoupling of centre-of-mass and relative
motion, as above, raises a question as to whether hybrid ensembles of nonrelativistic
quantum and classical particlesmight violate fundamental physical symmetries, such
as invariance under Galilean transformations. Here we show that this is not the
case [11].

In particular, restricting to classical and quantum particles moving in three dimen-
sions, consider the hybrid ensemble Hamiltonian HQC in Eq. (8.12) for the case of
a potential that transforms as a scalar under time and space translations and under
rotations, i.e.,

V(q, x, t) ≡ V(|q − x|). (8.41)

It is straightforward to show that the equations of motion in Eqs. (8.14) and (8.15)
are then invariant under the general Galilean transformation

q → q′ = R q − u t + a, (8.42)

x → x′ = R x − u t + a, (8.43)

t → t′ = t + τ, (8.44)

for rotation matrix R, constant vectors u and a, and constant τ , provided that P and
S transform as

P′(q′, x′, t′) = P(q, x, t) (8.45)

S′(q′, x′, t′) = S(q, x, t) + 1

2
(m + M)|u|2t − uT R(mq + M x) + c (8.46)
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for some constant c. Thus:

Galilean invariance is satisfied for hybrid ensembles of particles whenever the
interaction potential V(q, x, t) itself is Galilean invariant.

We note that the forms of the generating observables for Galilean transformations
have been discussed in Sect. 2.5.

Topological Constraint for Continuous Configuration Spaces In the case of quan-
tum ensembles of particles, the topological constraint that

∮
C dS/hmust be an integer

for all loops C in configuration space corresponds to single-valuedness of the wave
function ψ = P1/2eiS/� [20, 21]. It is important to note that the same constraint may
also be applied to purely classical ensembles, as was done for example by Schiller
[22] when he formulated his theory of ‘quasi-classical mechanics’, which deals with
a particular class of classical ensembles (those that can be associated with WKB
solutions). Thus, constraints of this type are consistent with the equations of motion
derived from either classical or quantum ensemble Hamiltonians, amounting only
to a reduction of the space of physically allowed solutions, and are logically inde-
pendent of the choice of the ensemble Hamiltonian. In the case that the quantum
component has a continuous configuration space, it is natural to also impose the
topological constraint that

∮
Cx
dS/h is an integer for all loops Cx in the joint config-

uration space that correspond to some fixed classical configuration x, corresponding
to single-valuedness of the conditional wavefunction in Eq. (8.26).

8.4 Measurement of a Quantum System by a Classical
Apparatus

In the standard Copenhagen interpretation of quantummechanics, it has been repeat-
edly emphasized that any objective account of a physical experiment must be given
in classical terms. Thus, for example, Bohr stated that (page 89 of Ref. [5])

“…the point is that in each casewemust be able to communicate to others what we have done
and what we have learned, and that therefore the functioning of the measuring instruments
must be described within the framework of classical physical ideas.”

while Heisenberg wrote that (page 46 of Ref. [6])

“…the concepts of classical physics form the language by which we describe the arrange-
ments of our experiments and state the results.”

Hence, if the Copenhagen interpretation is to be taken seriously, it follows that any
dynamical description of the measurement process should be able to be formulated,
at least approximately, in terms of an interaction between classical and quantum
systems. It is of obvious interest to attempt this via the formalism of configuration
ensembles on configuration space.

http://dx.doi.org/10.1007/978-3-319-34166-8_2
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A generalisation of von Neumann’s quantum measurement model, describing a
measurement interaction between a given configuration ensemble and a ‘pointer’
ensemble, has been given in Sect. 3.4. Specialising to the case of a quantum ensem-
ble interacting with a classical ensemble of one-dimensional pointers, the hybrid
ensemble Hamiltonian describing the measurement interaction in Eq. (3.25) reduces
to the form

HI = κ(t)
∫

dqdx P(q, x) f (q)
∂S(q, x)

∂x
, (8.47)

where κ(t) is a coupling constant and integration over q is replaced by summation
for any discrete ranges. This interaction represents a linear coupling between the
momentum of the pointer and the observable corresponding to the quantum operator
f (q̂) (see Sect. 3.4).

We set f (q) = q. If the measurement interaction acts over a sufficiently short
timescale, such that other contributions to the total ensemble Hamiltonian can be
neglected, the equations of motion reduce to

∂P

∂t
= δHI

δS
= −κ(t) q

∂P

∂x

∂S

∂t
= −δHI

δP
= −κ(t) q

∂P

∂x
, (8.48)

which may immediately solved to give

P(q, x,T) = P(q, x − Kq, 0), S(q, x,T) = S(q, x − Kq, 0), (8.49)

whereT is the interaction time andK := ∫ T
0 dt κ(t). Thus, as expected, the interaction

correlates the classical pointer position with the quantum configuration: for a given
value of q the pointer position is displaced by Kq.

Note that it is natural to assume that, prior to the measurement, the quantum and
classical ensembles are independent as per Eq. (8.10), i.e., the initial joint ensemble
is of the form

P(q, x, 0) = PQ(q)PC(x), S(q, x, 0) = SQ(q) + SC(x). (8.50)

Thus, initially, the quantum ensemble is described by the wave function ψ0 =√
PQ eiSQ/�, and the pointer ensemble by the configuration space functions (PC, SC).

Example: Measurement of Position Consider first the case where the measure-
ment interaction correlates an ensemble of classical pointers with the positions of an
ensemble of one-dimensional quantum particles. Assuming the ensembles are ini-
tially independent as per Eq. (8.50), it follows that the distribution of pointer positions
following the measurement is given by

P(x,T) =
∫

dq P(q, x,T) =
∫

dq PQ(q)PC(x − Kq). (8.51)

http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_3
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Thus, the pointer distribution becomes convolved with the initial quantum distribu-
tion.

In the ideal case that the initial pointer position is sharply localised at x = 0
for each member of the ensemble, i.e., PC(x) = δ(x), the final pointer distribution
simplifies to

P(x,T) = K−1 PQ(x/K) = K−1|ψ0(x/K)|2. (8.52)

Thus, the pointer is perfectly correlated with the initial quantum distribution, up to
a scaling factor, in the limit of an ideal measurement.

The conditional quantum density operator in the ideal limit is easily determined
via Eqs. (8.24)–(8.27). In particular, noting that P(q, x,T) = PQ(q)δ(x − Kq) =
K−1PQ(x/K)δ(q − x/K), one finds

ρ̂Q|C =
∫

dq PQ(q) |q〉〈q|. (8.53)

Thus, the reduced mixture of the quantum ensemble is ‘decoherent’ with respect to
position, i.e., it is diagonal in the position basis.

Example:MeasurementofSpinAnensemble of spin-1/2 particlesmaybedescribed
by a discrete configuration space, {1,−1}, corresponding to the eigenvalues of
σ̂z, as discussed in Sect. 8.2.2 above. The measurement interaction Hamiltonian in
Eq. (8.47) then reduces to the coupling between quantum spin and classical momen-
tum in Eq. (8.16), identifying q = s = ±1.

We will assume that the pointer and spin ensembles are initially independent as
per Eq. (8.50), i.e.,

P(±1, x, 0) = w± PC(x), S(±1, x, 0) = γ± + SC(x), (8.54)

where ψ± = √
w± eiγ±/� is the initial spin wave function in the σ̂z basis. The pointer

distribution after the measurement then follows from Eq. (8.49) as

P(x,T) =
∑
s=±1

P(s, x,T) = w+ PC(x − K) + w− PC(x + K). (8.55)

Hence, the initial probability density PC(x) is displaced by K with probability w+,
and by −K with probability w−, where w± denotes the initial probability of spin
up/down in the z-direction.

Further, if the initial pointer probability density PC(x) has a spread which is small
with respect to K , then the final probability density will have two nonoverlapping
peaks, with PC(x − K)PC(x + K) = 0. The conditional density operator after the
measurement follows via Eqs. (8.26) and (8.27) as

ρQ|C = w+ |+〉〈+| + w− |−〉〈−|, (8.56)

and hence ‘decoheres’ with respect to the σ̂z basis.
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Consistency with Copenhagen Interpretation The above examples are consistent
with the elements of the Copenhagen interpretation discussed at the beginning of
this section. In particular: (i) the measuring apparatus is described classically, as is
required for the unambiguous communication and comparison of physical results;
and (ii) information about quantum ensembles is obtained via an appropriate inter-
action with an ensemble of classical measuring apparatuses, which correlates the
classical configuration with a corresponding quantum property.

It is also seen that there is a conditional decoherence of the quantum ensemble
relative to the classical ensemble, which depends upon the nature of the quantum-
classical interaction. This relevance of this property for describing measurements on
quantum systems will be further discussed in Chap.9, where the need to take into
account the many degrees of freedom of ‘real’ measuring apparatuses will also be
addressed.

Finally, note that a frequently criticised shortcoming of the Copenhagen interpre-
tation is ‘where’ to place the quantum-classical cut. In the above approach this has a
natural solution: the cut is placed at the point where an objective description of the
measuring apparatus is required, corresponding to explicitly describing the apparatus
by a classical ensemble. This is in direct contrast to the measurement problem that
arises in approaches that attempt to describe the measuring apparatus as a quantum
object.

8.5 Scattering of Classical Particles by Quantum
Superpositions

Consider a gedanken experiment that involves the scattering of two non-relativistic
particles, one a classical particle (the projectile) and the other one a quantum particle
(the target) [13]. The particles are assumed to interact in some way, e.g., via grav-
itational attraction or a Coulombic interaction. Note that this scattering experiment
may be interpreted as a type of measurement, in the sense that information about
the state of the quantum particle can be inferred from the position of the classical
particle after the interaction has taken place.

This gedanken experiment is most interesting when the quantum system is pre-
pared in such a way that the initial amplitude for the quantum particle (i.e., as
t → −∞, when the two particles are very far from each other so that the inter-
action term can be neglected), has two peaks of equal magnitude, A and B, that are
well separated. Thus, if a position measurement of the type described in Sect. 8.4 was
made well before the scattering interaction, then the quantum particle would have
been ‘found’ at the location of peak A (with probability 1/2) or at the location of peak
B (with probability 1/2). Consider now the case where the classical particle comes
very close to peak A and remains at all times at a very large distance from peak B.
What happens when the classical particle scatters from the quantum particle?

http://dx.doi.org/10.1007/978-3-319-34166-8_9
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A “naive approach” is to use a picture in which the position of the classical particle
is deterministically specified at all times, where this well-defined position is used to
model the scattering interaction. In such a picture, there appear to be two mutually
exclusive types of available models: (a) the classical particle is strongly scattered
half the time, corresponding to a quantum particle at the location of peak A, and very
weakly scattered the other half the time, corresponding a quantum particle at the
location of peak B; or (b) the classical particle simultaneously “sees” half a quantum
particle at the location of peak A and half a quantum particle at the location of peak
B, and thus always undergoes a degree of scattering equal to about one half of the
strong scattering in (a).

In option (a) the superposition state of the quantum particle is effectively replaced
by a classical mixture, whereas in option (b) it is effectively replaced by a mean-field
potential (of the type seen in semiclassical gravity [23]; see also Chap.9). The two
possibilities thus not only give conflicting predictions, but are somewhat ad hoc.
Further, they give no insight into possible classical-classical or quantum-quantum
limits of a quantum-classical scattering process.

The source of difficulties is, clearly, the use of a “naive approach”. In contrast, the
formalism of ensembles on configuration space is able to give a detailed (albeit sta-
tistical) account of quantum-classical scattering, with classical particles represented
by ensembles rather than individual systems, where this account supports neither of
the naive options (a) and (b).

To discuss the general qualitative aspects of configuration ensemble approach,
we will consider gravitational scattering of a classical particle of mass M from a
quantum particle of mass m. Hence, the hybrid ensemble Hamiltonian HQC has the
form Eq.8.12, with interaction potential V(q, x, t) ≡ G mM

|q−x| , and the equations of
motion for the joint ensemble follow immediately via Eqs. (8.14)–(8.15) as

∂P

∂t
+ ∇q.

(
P

∇qS

m

)
+ ∇x.

(
P

∇xS

M

)
= 0, (8.57)

∂S

∂t
+ |∇qS|2

2m
+ |∇xS|2

2M
+ G

mM

|q − x| − �
2

2m

∇2
qP

1/2

P1/2
= 0. (8.58)

We already know via Eq. (8.38) that the centre-of-mass and relative motions of the
particles do not decouple under these equations, in contrast to classical-classical and
quantum-quantum scattering. Qualitative features of these equations tell us further
what to expect of the solutions:

1. When | �
2

2m
∇2
q P

1/2

P1/2 | << |G mM
|q−x| |, we can neglect the term proportional to �

2

2m
∇2
q P

1/2

P1/2

in (8.58). This will be the case when the mass m of the quantum system is large
enough for this inequality to be valid. But if this is the case, (8.58) reduces to
the classical Hamilton-Jacobi equation and we end up with the equations of a
joint classical-classical ensemble. This shows that the formalism has the correct
classical limit.

http://dx.doi.org/10.1007/978-3-319-34166-8_9
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2. If the interaction term V(q, x) = G mM
|q−x| that appears in (8.58) is very small

(say at t → −∞ when the two particles are very far from each other), and
there is no initial correlation between the particles, then the non-linearity in the
equations of the quantum particle will amount to only a small perturbation and
the superposition principle will remain valid for the quantum ensemble to a very
good approximation. Thismeans that the formalism has the correct quantum limit.
Notice, however, that the equations are non-linear when the interaction term is
taken into consideration: the quantum superposition principle is thus expected to
break down when the interaction between the classical and quantum particles is
strong.

3. The ensembles are assumed to be independent prior to the interaction (i.e., at
t → −∞), when the two particles are very far from each other, and thus

P (−∞)(q, x) = P (−∞)
Q (q)P (−∞)

C (x), (8.59)

S (−∞)(q, x) = S (−∞)
Q (q) + S (−∞)

C (x), (8.60)

analogously to Eq. (8.50). Hence, before the interaction, the hybrid ensemble
consists of two independent classical and quantum components. However, after
the interaction these components will no longer be independent, i.e.,

P (+∞)(q, x) 	= P (+∞)
Q (q)P (+∞)

C (x), (8.61)

S (+∞)(q, x) 	= S (+∞)
Q (q) + S (+∞)

C (x), (8.62)

The resulting correlations between the classical and quantum components means
that a measurement of position on either component will nontrivially update
the description of the joint ensemble. The scattering interaction thus generates
an analogue of entanglement between the components (see also Sect. 3.2.3 for
further discussion of entanglement for joint ensembles).

Case (a) of the “naive approach” corresponds to “either-or” outcomes that implic-
itly assume that there is no entanglement in quantum-classical systems, in contrast
to the approach based on configuration ensembles. The latter approach is also fun-
damentally different from standard semiclassical gravity, corresponding to case (b)
of the “naive approach”: in particular, there is no ’mean-field’ representation of a
quantum gravitational field in the equations of motion (8.57) and (8.58). Thus, the
predictions of the configuration ensemble approach differ substantially from the out-
comes predicted using the “naive approach.”

The comparison between mean-field approaches and hybrid interactions is fur-
ther discussed in Chap. 9, and the configuration ensemble approach is extended to the
gravitational coupling of quantum field ensembles with classical spacetime ensem-
bles in Chap.11.

http://dx.doi.org/10.1007/978-3-319-34166-8_3
http://dx.doi.org/10.1007/978-3-319-34166-8_9
http://dx.doi.org/10.1007/978-3-319-34166-8_11
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8.6 Hybrid Oscillators and Gaussian Ensembles

The harmonic oscillator is ubiquitous in physical models, and hence it is natural
to compare the hybrid version to its fully quantum and fully classical counterparts.
Here we investigate the equations of motion for a quantum-classical ensemble of
oscillators, and show that the definitions of ‘Gaussian’ and ‘coherent’ states are
straightforward to generalise to this case.

In particular, consider a joint ensemble describing an n-dimensional quantum
particle of mass m joined by a spring to an n-dimensional classical particle of mass
M. The corresponding composite ensemble Hamiltonian then has the form of HQC

in Eq. (8.12), with interaction potential

V(q, x, t) = 1

2
k|q − x|2. (8.63)

It is convenient to define hybrid coordinates ξ := (q, x), and block matrices

C :=
(

kI −kI
−kI kI

)
, U :=

(
m−1I 0
0 M−1I

)
, E :=

(
I 0
0 0

)
(8.64)

(where I denotes the n × n identity matrix), allowing HQC to be rewritten as

Hosc =
∫

dξ P

[
1

2
(∇S)TU∇S + 1

2
ξTCξ + �

2

8
(∇ logP)TEUE(∇ logP)

]
.

(8.65)

Here ∇ denotes ∇ξ ≡ (∇q,∇x). Note that the classical-classical oscillator corre-
sponds to replacing E by 0, and that the quantum-quantum oscillator corresponds
to replacing E by 1. This is useful for comparisons between the three cases. The
Hamiltonian equations of motion in Eqs. (8.14) and (8.15) then have the form [11]

∂P

∂t
+ ∇ · (PU∇S) = 0, (8.66)

∂S

∂t
+ 1

2
(∇S)TU∇S + 1

2
ξTCξ − �

2

2

∇ · (EUE∇√
P)√

P
= 0. (8.67)

8.6.1 Gaussian Ensembles

In analogywith quantum oscillators, it is natural to consider hybrid ensembles having
Gaussian probability densities, i.e., with

P(ξ, t) =
√
detK

(2π)n/2
e− 1

2 (ξ−α)TK(ξ−α) (8.68)
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for some (possibly time-dependent) positive definite symmetric matrix K and vector
α. It is straightforward to check that a Gaussian probability density is consistent with
the equations of motion if and only if S has the quadratic form

S(ξ, t) = 1

2
(ξ − α)TL(ξ − α) + β · (ξ − α) + s, (8.69)

where L is a symmetric matrix, β is a vector, and s is a scalar (all possibly time-
dependent). We will call ensembles with P and S of this form Gaussian.

The equations of motion for K, L, α, β and s may be found by substituting the
above forms of P and S into Eqs. (8.66)–(8.67), and equating coefficients of the
respective quadratic, linear and constant terms with respect to ξ − α. After some
straightforward algebra (requiring the formula (d/dt) detK = detK tr[K̇K−1]), one
obtains

α̇ = Uβ, β̇ = −Cα, (8.70)

K̇ + KUL + LUK = 0, L̇ + LUL + C = �
2

2
KEUEK, (8.71)

ṡ = 1

2
˙(α · β) − �

2

4
tr[EUEK]. (8.72)

Note that the first three equations are independent of the projection matrix E, and
hence are also valid for classical-classical and quantum-quantum oscillators. The last
equation is not of physical interest to solve for s in general, as the expectation value
of any quantum or classical observable is independent of s via Eqs. (8.17) and (8.18).

The equations for α̇ and β̇ are precisely those corresponding to a classical-classical
oscillator with configuration α, momentum β, and phase space Hamiltonian

H(α, β) = 1

2
βTUβ + 1

2
αTCα. (8.73)

Thus, solving these equations for α and β is equivalent to solving the classical
equations of motion. It follows from Eq. (8.68) that:

The average configuration of aGaussian ensemble of hybrid oscillators is given
by the trajectory in configuration space of a fully classical oscillator.

This link to classical motion is a special case of the generalised Ehrenfest theorem
derived in Chap.9. Using the forms of C and U in Eq. (8.64), the general solutions
for α and β are

α = (c, c) + μ cos
(
ωμt + φ

)
(d/m,−d/M), (8.74)

β = −μωμ sin
(
ωμt + φ

)
(d,−d), (8.75)

http://dx.doi.org/10.1007/978-3-319-34166-8_9
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as may be checked by direct substitution, where c and d are arbitrary n-vectors, φ is
an arbitrary constant, μ is the reduced mass defined in Eq. (8.37), and ωμ := √

k/μ.
It is noteworthy that the frequency ωμ associated with the average motion is

determined by the reducedmass, even though the centre-of-mass and relativemotions
do not decouple as discussed in Sect. 8.3. The correlation between these degrees of
freedomhas been numerically investigated byChua et al. [24]. Properties ofGaussian
ensembles are further investigated in Sect. 8.7 below.

8.6.2 Coherent Ensembles

To define a hybrid analogue of quantum coherent states, we will be guided by the
covariance and minimum uncertainty properties of such states [11]. First, quantum
coherent states are linear in phase, corresponding to L = 0 in Eq. (8.69). The first
equality in Eq. (8.71) then implies that the matrixK is constant, and the left hand side
of the second equality reduces to C. Solving the reduced equality for K by writing it
out in block-matrix form yields the general form

K = 2

�

√
m

k
C +

(
0 0
0 A

)
, (8.76)

where A is any nonnegative symmetric n × n matrix. Substituting Eqs. (8.74) and
(8.76) into Eq. (8.68) yields the corresponding solution

P(q, x, t) = PA(x − xt)(
√
km/π�)n/2e−√

km|q−x−(qt−xt)|2/� (8.77)

for the probability density, where

qt = c + (μ/m)d cos
(
ωμt + φ

)
, xt = c − (μ/M)d cos

(
ωμt + φ

)
, (8.78)

denote the quantum and classical components of the average configuration α, and
PA(x) denotes the Gaussian probability density

PA(x) := (2π)−n/2(detA)1/2e− 1
2 x

TAx. (8.79)

Second, the uncertainty of the classical configuration x is clearly minimised in
the limit that PA(x) approaches a delta-function (i.e., A−1 → 0). This limit will
be therefore be taken to define coherent ensembles. The corresponding probability
density follows as

P(q, x, t) = δ(x − xt)(
√
km/π�)n/2e−√

km|q−qt |2/�. (8.80)
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Substituting Eqs. (8.74)–(8.76) into Eqs. (8.69) and (8.72) further yields the linear
form

S(q, x, t) = −1

2
n�ωmt + |d|2

4

√
kμ sin 2(ωμt + φ)

− d · (q − x)
√
kμ sin(ωμt + φ) (8.81)

for S, up to an arbitary additive constant, where ωm := √
k/m. Thus P = PQPC and

S = SQ + SC as per Eq. (8.10), implying:

Coherent hybrid ensembles decompose into independent quantum and clas-
sical ensembles, with the position of the classical particle fully determined
by the trajectory xt , and the position of the quantum particle described by a
Gaussian probability density P of width �/2

√
km centred on the trajectory qt .

The trajectories xt and qt correspond to the motion of two coupled classical
oscillators.

Finally, note that the choice d ≡ 0 satisfies Eq. (8.31), and hence corresponds to
a stationary ensemble. For this choice only the first term of S(q, x, t) in Eq. (8.81)
is nonzero, and the numerical value of the composite ensemble Hamiltonian follows
from Eq. (8.31) as

H̃osc = −∂S

∂t
= 1

2
n�ωm. (8.82)

This may be recognised as the zero-point energy of an n-dimensional quantum har-
monic oscillator of mass m, as expected from Eq. (8.33).

8.7 Hybrid Wigner Functions

Wigner functions play an important role in characterising quantum ensembles [25,
26]. Here we briefly show how they can be generalised to describe hybrid ensembles,
and investigate the relation of hybrid Wigner functions to the reduced quantum and
classical mixtures of a hybrid ensemble, and to uncertainty relations and covariance
matrices for Gaussian ensembles.

8.7.1 Definition and Basic Properties

For simplicity we will consider a hybrid system corresponding to a one-dimensional
quantum particle with position q, and a one-dimensional classical particle with posi-
tion x. Now, the Wigner function of a quantum pure state ψQ(q) is given by [25, 26]
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WQ(q, p|ψQ) := 1

π�

∫
dz e2ipz/�ψ̄Q(q + z) ψQ(q − z), (8.83)

and has many properties similar to a joint probability distribution for the quantum
position and momentum observables x̂ and p̂. For example, the marginals ofWQ give
the correct quantum probability densities of these observables for the state ψQ, and
WQ obeys the classical Liouville equation in the limit � → 0 (and exactly for the
special case of quadratic Hamiltonians) [26].

The classical analogue of the Wigner function of a classical system is therefore
the joint probability density on phase space. Since a classical configuration ensemble
(PC, SC) associates amomentum k = ∂xSC with position x (seeChap.1),we therefore
define the corresponding classical Wigner function by

WC(x, k) := δ(k − ∂xSC(x))PC(x). (8.84)

Note that this is precisely the phase space density of a ‘pure’ classical mixture, as
per Eq. (4.7) of Chap.4.

Guided by the above forms of the quantum and classical Wigner functions, we
now define the hybrid Wigner function of a quantum-classical ensemble (P, S) by
the joint phase space function

WQC(q, x, p, k) := δ(k − ∂xS)

π�

∫
dz e2ipz/�ψ̄QC(q + z, x) ψQC(q − z, x), (8.85)

where ψQC is the hybrid wave function defined in Eq. (8.19). This definition leads to
several nice properties, as will now be shown.

Independent Ensembles For a hybrid ensemble comprising independent quantum
and classical ensembles as per Eq. (8.10), i.e., with (P, S) ≡ (PQPC, SQ + SC), the
hybrid Wigner function simplifies to

WQC(q, x, p, k) = δ(k − ∂xSC)

π�

∫
dz e2ipz/�PC(x) ψ̄Q(q + z) ψQ(q − z)

= WQ(q, p)WC(x, k). (8.86)

Thus it factorises into the purely quantum and purely classical Wigner functions
defined in Eqs. (8.83) and (8.84).

Classical and QuantumMarginals It is natural to consider the marginal properties
of the hybrid Wigner function. First, if we integrate over the quantum position and
momentum degrees of freedom, q and p, we obtain

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_4
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WC|Q(x, k) :=
∫

dqdpWQC(q, x, p, k)

=
∫

dq
δ(k − ∂xS)

π�

∫
dz

[∫
dp e2ipz/�

]
ψ̄QC(q + z, x) ψQC(q − z, x)

=
∫

dq δ(k − ∂xS) |ψQC(q, x)|2

=
∫

dq P(q, x) δ(k − ∂xS) = ρC|Q(x, k), (8.87)

where ρC|Q(x, k) is the conditional phase space density in Eq. (8.30), describing
the reduced mixture of classical configuration ensembles associated with the hybrid
ensemble. This phase space density correctly describes the statistics of all classical
observables on the ensemble (see Sect. 4.2.2).

Similarly, integration over the classical position and momentum degrees of free-
dom yields, using Eq. (8.83),

WQ|C(q, p) :=
∫

dxdk WQC(q, x, p, k)

=
∫

dx
1

π�

∫
dz e2ipz/�ψ̄QC(q + z, x) ψQC(q − z, x)

∫
dkδ(k − ∂xS)

=
∫

dx PC(x)
1

π�

∫
dz e2ipz/�ψ̄x(q + z) ψx(q − z)

=
∫

dx PC(x)WQ(q, p|ψx) = Wρ̂Q|C (q, p). (8.88)

Here, PC(x) := ∫
dqP(q, x), ψx(q) is the conditional wave function defined in

Eq. (8.26), and ρ̂Q|C is the conditional density operator in Eq. (8.27) with corre-
sponding Wigner function Wρ̂Q|C (q, p). Note that ρ̂Q|C is equivalent to the reduced
mixture of quantum ensembles associated with the hybrid ensemble, and hence cor-
rectly describes the statistics of all quantum observables for the ensemble. Since
the marginalWQ|C(q, p) is just the Wigner function of ρ̂Q|C , it therefore provides an
equivalent representation of the quantum statistics [26].

The classical and quantum marginals of the hybrid Wigner function fully
describe the respective statistics of classical and quantum observables for a
hybrid ensemble.

We note it is also straightforward to integrate the hybrid Wigner function over the
quantumand classicalmomentumvariables,p and k, to recover the joint configuration
probability density:

W(q, x) :=
∫

dpdk WQC(q, x, p, k) = P(q, x). (8.89)

http://dx.doi.org/10.1007/978-3-319-34166-8_4
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Thus, the configuration marginal of the hybrid Wigner function fully describes the
joint configuration statistics.

8.7.2 Hybrid Wigner Functions for Gaussian Ensembles

The forms of P and S for a Gaussian hybrid ensemble are given in Eqs. (8.68) and
(8.69), with ξ ≡ (q, x). We are interested in one-dimensional particles (n = 1), and
hence, dropping explicit time dependence, these equations reduce to

P(ξ) =
√
detK
2π

e− 1
2 (ξ−α)TK(ξ−α), (8.90)

S(ξ) = 1

2
(ξ − α)TL(ξ − α) + β · (ξ − α) + s, (8.91)

where K and L are symmetric 2×2 matrices, α and β are 2-vectors, and s is a scalar.
To evaluate the corresponding hybridWigner function, we note first that, defining

ξ ′ := ξ − α and γ (z) := (z, 0)T , one has

P(q − z, x)P(q + z, x) = detK
4π2

e− 1
2 (ξ ′−γ )TK(ξ ′−γ )− 1

2 (ξ ′+γ )TK(ξ ′+γ )

= detK
4π2

e−ξ ′TKξ ′
e−γ TKγ

= e−K11z2 P(q, x)2. (8.92)

One also finds that

S(q − z, x) − S(q + z, x) = −2γ TLξ ′ − 2β · γ

= −2γ T [L(ξ − α) + β]

= −2γ T∇ξS

= −2z∂qS. (8.93)

Substitution into Eq. (8.85) then yields

WQC(q, x, p, k) = δ(k − ∂xS)

π�
P(q, x)

∫
dz e2ipz/� e−2iz∂qS/� e− 1

2K11z2

= P(q, x) δ(k − ∂xS)
1

�
√
2πK11

e
− 2

�2K11
(p−∂qS)2

. (8.94)

It follows that one also has the conditional momentum density

WQC(p, k|q, x) = δ(k − ∂xS)
1

�
√
2πK11

e
− 2

�2K11
(p−∂qS)2

. (8.95)
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Noting that ∂xS and ∂qS are each linear functions of q and x, we thus have:

The hybrid Wigner function of a Gaussian ensemble is a Gaussian probability
density on a joint quantum-classical phase space, with the classical momentum
density perfectly correlated with a linear function of q and x.

Further, for coherent ensembles (i.e., with L = 0), integrating the hybrid Wigner
function over q, x and k, and noting that K11 = (Δq)2 from Eq. (8.90), one finds the
uncertainty relation

ΔqΔp = �

2
. (8.96)

for the quantum position and momentum parameters. Thus:

The quantum component of a coherent ensemble saturates the Heisenberg
uncertainty relation.

8.7.3 Covariance Matrix

Finally, the hybrid Wigner function can be used to determine corresponding mean
values and covariances of q, x, p and k, and is fully determined by these quantities
in the Gaussian case. It is of interest to determine the connection between these
quantities and observables of the hybrid ensemble.

The mean values associated with the hybrid Wigner function parameters are sim-
ply given by the corresponding quantum and classical averages, as follows immedi-
ately from the marginal distributions in Eqs. (8.87)–(8.89). Thus,

〈q〉W = Q̃q̂, 〈x〉W = C̃x, 〈p〉W = Q̃p̂, 〈k〉W = C̃k, (8.97)

where 〈·〉W denotes the average evaluated with respect to WQC(q, x, p, k). For
Gaussian ensembles these averages are just the components of the vectors α and
β in Eqs. (8.90) and (8.91).

Evaluation of the covariances of the hybrid Wigner function parameters is more
involved. We first define the hybrid covariance matrix C by

Cjk := 〈vj vk〉WQC − 〈vj〉WQC 〈vk〉WQC , (8.98)

where v denotes the 4-vector (q, x, p, k). Letting Covρ(a, b) := 〈abT 〉ρ − 〈a〉ρ〈bT 〉ρ
denote the n × n covariance matrix of n-vectors a and b relative to density ρ, and
defining π := (p, k), it follows that C has the block matrix form
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C = CovW (v, v) =
(

X Y
YT Z

)
, (8.99)

with

X = CovW (ξ, ξ), Y = CovW (ξ, π), Z = CovW (π, π), (8.100)

where we recall that ξ ≡ (q, x).
The components ofX follow immediately via Eq. (8.89) as CovP(ξm, ξn), i.e., they

can be calculated directly from the configuration probability density P. The diagonal
components of Z are also straightforward to evaluate for any hybrid ensemble (P, S),
using the classical and quantum marginal densities in Eqs. (8.87) and (8.88):

Z11 = VarWQ|C p = Q̃p̂2 − (Q̃p̂)
2 = VarP (∂qS) + �

2

4

∫
dqdx

(∂qP)2

P
, (8.101)

Z22 = VarWk = VarP (∂xS). (8.102)

The diagonal components of Y can similarly be evaluated via the classical and quan-
tum marginal densities, and using the property that moments of a quantum Wigner
function correspond to symmetrised moments of the corresponding operators [26],
yielding

Y11 = CovWQ|C (q, p) = Q̃(q̂p̂+p̂q̂)/2 − Q̃q̂ Q̃p̂ = CovP(q, ∂qS), (8.103)

Y22 = CovWC|Q(x, k) = CovP(q, ∂xS). (8.104)

Further, the off-diagonal components of Y may be evaluated using the marginal
densities

WQK(q, k) :=
∫

dxdpWQC(q, x, p, k) =
∫

dx P(q, x) δ(k − ∂xS), (8.105)

WXP(x, p) :=
∫

dqdk WQC(q, x, p, k) = PC(x)
∫

dqWQ(x, p|ψx), (8.106)

with the conditional wavefunction ψx(q) as defined in Eq. (8.26), to give

Y12 = CovWQK (q, k) = CovP(q, ∂xS), (8.107)

Y12 = CovWXP (x, p) = CovP(q, ∂qS), (8.108)

where the last equality follows using
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〈xp〉WXP =
∫

dx x PC(x)
∫

dq pWQ(q, p|ψx)

=
∫

dx x PC(x) 〈ψx|p̂|ψx〉
= 〈ψQC |x̂p̂|ψQC〉 = 〈x ∂qS〉P.

Finally, the off-diagonal components of Z may be calculated using

〈pk〉W =
∫

dqdxdp p (∂xS)
1

π�

∫
dz e2ipz/�ψ̄QC(q + z, x) ψQC(q − z, x)

=
∫

dqdx (∂xS)PC(x)
∫

dp pWQ(q, p|ψx)

=
∫

dqdx (∂xS)PC(x) (∂qS) |〈x|ψx〉|2

= 〈(∂xS) (∂qS)〉P (8.109)

where the second last equality follows using the property
∫
dp pWQ(q, p|ψQ) =

(∂qSQ)PQ(x) for any wave function ψQ = PQ
1/2eiSQ/� [27], to give

Z12 = Z21 = CovW (p, k) = CovP(∂qS, ∂xS). (8.110)

Substitution of the above expressions into Eq. (8.99) gives the general expression

C =
⎛
⎝ CovP(ξ, ξ) CovP(ξ,∇ξS)

CovP(∇ξS, ξ) CovP(∇ξS,∇ξS) + �
2

4

( 〈(∂qP)2/P2〉P 0
0 0

)
⎞
⎠ (8.111)

for the hybrid Wigner covariance matrix, in terms of P and S. It is of interest to
note that each of the individual covariances is the same form that would be obtained
using the exact uncertainty principle in Sect. 5.4, with the quantum contributions
determined by adding a nonclassical momentumfluctuation to a classical momentum
(see Chap.5).

For the particular case of a hybrid Gaussian ensemble, as per Eqs. (8.90) and
(8.91), it follows that

C =
⎛
⎝ K−1 K−1L

LK−1 LK−1L + �
2

4

(
K11 0
0 0

)
⎞
⎠ . (8.112)

The same result can obtained, of course, via substitution of the explicit form in
Eq. (8.94) for the hybrid Wigner function into Eq. (8.99). It would be of interest
to consider the steering of a quantum ensemble by a classical ensemble for hybrid
Gaussian ensembles, in analogy to the case of quantum Gaussian states considered
by Wiseman et al. [28].

http://dx.doi.org/10.1007/978-3-319-34166-8_5
http://dx.doi.org/10.1007/978-3-319-34166-8_5
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Chapter 9
Consistency of Hybrid Quantum-Classical
Ensembles

Abstract The formalism of ensembles on configuration space allows for a gen-
eral description of interactions between quantum and classical ensembles. In this
chapter, we consider such hybrid ensembles and focus on consistency requirements
formodels of quantum-classical interactions.We show how the configuration ensem-
ble approach is able to satisfy desirable properties such as a Lie algebra of observ-
ables and Ehrenfest relations, while evading no-go theorems based in part on such
properties. We then discuss issues concerning locality. It is found that, in principle,
noninteracting ensembles of quantum and classical particles can be associated with
nonlocal energy flows and nonlocal signaling. However, it is shown that such effects
can be suppressed by a requirement of ‘classicality’, that localised classical systems
have a very large number of degrees of freedom. Measurement aspects are also dis-
cussed and again ‘classicality’ plays an important role, this time ensuring an effective
and irreversible decoherence. Finally, comparisons are briefly made with elements
of the mean-field approach to quantum-classical interactions.

9.1 Introduction

In Chap.8 we showed how the general formalism of ensembles on configuration
space can be applied to successfully describe quantum-classical interactions. We
demonstrated that this description has a number of nice properties, and considered
examples such as measurement of a quantum spin by a classical pointer, scattering of
a classical particle from a quantum superposition, and hybrid harmonic oscillators.
In this chapter we will address the question of the consistency of the description.

Finding a physically consistent approach to modelling interactions between quan-
tumand classical systems is a highly nontrivial task.Many proposals have beenmade,
but all have concomitant difficulties of some sort, which we now briefly discuss.

First, in the mean-field approach, phase space coordinates of a classical system
appear as parameters in a quantumHamiltonian operator. This operator directly spec-
ifies the evolution of the quantum system in the usual way, while its average over
the quantum degrees of freedom specifies a classical Hamiltonian for the classical
parameters [1, 2]. However, while computationally useful as a semiclassical approx-
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imation to a fully quantum model, the classical system evolves deterministically.
Thus, the mean-field approach cannot couple any quantum uncertainties into the
classical parameters, where such a coupling is required, for example, if measure-
ment and scattering interactions are to lead to a multiplicity of possible outcomes
[1]. Nevertheless, Elze has shown that the mean-field approach does satisfy several
basic consistency criteria [3], and hence it will be compared in more detail to the
configuration ensemble approach in Sect. 9.6 below.

Second, the phase space approach relies on modelling the classical system by
a set of mutually commuting ‘phase space’ observables on some Hilbert space [4],
and allowing a unitary interaction with the quantum system. The most sophisticated
model of this type is by Sudarshan and co-workers [5–8], in which the interaction
Hamiltonian depends on non-observable operators on the classical Hilbert space.
However, while this model has many interesting properties, the classical observables
remain ‘classical’ only for a limited class of interactions, which does not include the
standard Stern–Gerlach measurement interaction [7]. Peres and Terno have further
shown that this approach does not reproduce the correct classical limit for quantum-
classical oscillators, and indeed may result in a runaway increase of the classical
oscillator amplitude [9, 10]. Diosi et al. have proposed a variation on the phase
space approach, in which the classical phase space parameters are mapped to a set of
coherent states rather than to a set of orthonormal states [11]. However, this variation
doe not yield the classical equations of motion in the limit of no interaction, and
intrinsically imposes quantum uncertainty relations upon the classical system.

Third, the trajectory approach is based on the deBroglie–Bohm formulation of
quantum mechanics, in which quantum systems are described by an ensemble of
trajectories acted on by a ‘quantum potential’ [12–14]. Interaction with a classi-
cal system is incorporated by modifying the equations of motion for the Bohmian
trajectories in various ways [15–17]. This approach incorporates backreaction on
the classical system, and has been found useful for semiclassical calculations in
quantum chemistry. However, like the mean-field approach the classical motion is
deterministic, and moreover does not respect energy conservation [18, 19].

Finally, various counterexamples and no-go theorems show that other proposed
types of quantum-classical interaction lead to at least one of the following problems:
negative probabilities; the absence of any backreaction on the classical system from
the interaction; or to the loss of the correspondence principle in the classical limit
[1, 9, 11, 20–23].

In contrast to the above-mentioned approaches, the approach in Chap.8, based on
ensembles on configuration space, avoids these problems and satisfies many further
desirable properties. Some of these have been listed in Sect. 8.1 and/or discussed in
Sect. 8.3. Here we will focus on consistency requirements for models of quantum-
classical interactions, such as the existence of a dynamical bracket, a form of Ehren-
fest’s theorem, statistical completeness, and locality. We find that the last of these
does restrict the application of our approach in some scenarios. In particular, as was
previewed in Sect. 8.2.1, we must restrict the notion of ‘classicality’ for localised
classical systems with controllable interactions, such as particles and measurement
apparatuses (although not for classical fields such as gravity), to systems with a large

http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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number of interacting degrees of freedom. Violations of locality are then suppressed
by essentially the same mechanism that ensures measurement irreversibility.

In Sects. 9.2 and 9.3 we show how the configuration ensemble approach is able
to satisfy desirable properties such as a Lie algebra of observables and Ehrenfest
relations, while evading no-go theorems based in part on such properties. In Sect. 9.4
we discuss locality aspects of the approach. It is found that, in principle, noninter-
acting ensembles of quantum and classical particles can be associated with nonlocal
energy flows and nonlocal signaling. However, it is shown that such effects can be
suppressed by a requirement of ‘classicality.’ Measurement aspects are discussed
in Sect. 9.5, and again ‘classicality’ plays an important role—this time ensuring an
effective and irreversible decoherence. Finally, comparisons are briefly made with
elements of the mean-field approach in Sect. 9.6.

9.2 Dynamical Bracket Considerations

9.2.1 Two Minimal Conditions

Webegin our analysis of the consistency of our approach to hybrid quantum-classical
interactions by considering two minimal conditions proposed by Salcedo for the set
of observables of any quantum-classical model [24]:

(i) A dynamical bracket may be defined on the set of observables, under which the
observables form a Lie algebra, and

(ii) The dynamical bracket reduces to the classical Poisson bracket for any two
classical observables, and to (i�)−1 times the quantum commutator for any two
quantum observables.

These conditions have been previously justified on physical grounds by Caro and
Salcedo [21] and are highly nontrivial. None of the alternative proposals discussed
in Sect. 9.1 satisfy both conditions [21, 24, 25], with one exception: the mean-field
approach [3] (see also Sect. 9.6 below). For example, in the phase space approach the
classical observables commute under the dynamical bracket by construction. As a
further example, the dynamical brackets proposed by Aleksandrov [26] and Prezhdo
[27] fail conditions (i) and (ii) respectively. These minimal conditions are, therefore,
a critical test for any hybrid theory.

Fortunately, this test is easily passed by the configuration ensemble approach [23]:

The description of hybrid systems via the formalism of ensembles on con-
figuration space satisfies the minimal conditions (i) and (ii) for dynamical
brackets, as a straightforward consequence of the guaranteed existence of a
Poisson bracket.
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Checking Condition (i) Recall first that in the configuration space formalism all
physical systems, including hybrid quantum-classical systems, are described by a
probability density P on the configuration space of the system that evolves according
to an action principle (see Chap.1). This implies the existence of a canonically
conjugate functionS on the configuration space, andHamiltonian equations ofmotion
of the form

∂P

∂t
= δH

δS
,

∂S

∂t
= −δH

δP
, (9.1)

whereH [P, S] is the ensemble Hamiltonian. These equations may alternatively be
written as ∂P/∂t = {P,H } and ∂S/∂t = {S,H }, where the Poisson bracket {, } is
defined by (see Sect. 2.2)

{A,B} :=
∫

dξ

[
δA

δP

δB

δS
− δB

δP

δA

δS

]
(9.2)

for any two functions A[P, S] and B[P, S]. Here ξ parameterises the configuration
space of the system, integration is replaced by summation over any discrete com-
ponents of ξ , and the functional derivatives are replaced by a partial derivative over
such discrete components. Thus, the Poisson bracket plays the role of a dynami-
cal bracket in the configuration ensemble formalism, with the rate of change of a
(possibly time-dependent) observable A[P, S, t] following via Eqs. (9.1) and (9.2) as

dA

dt
= δA

δP

∂P

∂t
+ δA

δS

∂S

∂t
+ ∂A

∂t
= {A,H } + ∂A

∂t
(9.3)

(see also Sect. 2.2).
Further, as discussed in Sect. 2.2, observables are represented by a set of func-

tionals of P and S which satisfy

A[P, S + c] = A[P, S], δA

δS
= 0 if P(ξ) = 0, A[λP, S] = λA[P, S]. (9.4)

The first two requirements ensure conservation and normalisation of probability
under canonical transformations generated by A[P, S], and the third requirement
implies that the numerical value of A[P, S] may be interpreted as the average of the
observable over the ensemble.

The Poisson bracket is well known to be a Lie bracket [28]. In particular, it satisfies
the defining properties of linearity, antisymmetry, and the Jacobi identity. Further,
as shown in Sect. 2.2, the requirements in Eq. (9.4) are preserved by the Poisson
bracket. Hence, one can consistently assume, without loss of generality, that the set
of observables form a closed set with respect to the Poisson bracket, implying that
the minimal condition (i) above is trivially satisfied.

Checking Condition (ii) To determine whether the second minimal condition (ii) is
also satisfied, it is necessary to first recall the definitions of ‘classical’ and ‘quantum’

http://dx.doi.org/10.1007/978-3-319-34166-8_1
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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observables for hybrid ensembles. Such ensembles have a joint configuration space
parameterised by ξ = (q, x), where q labels a complete basis set of the Hilbert
space of the quantum system, and x labels the position of the classical system. For
any function f (x, p) on the phase space of the classical system, the corresponding
classical observable for the hybrid ensemble is defined as per Eq. (8.17) of Chap.8:

C̃f [P, S] :=
∫

dqdx P(q, x) f (x,∇xS), (9.5)

where integration over q is replaced by summation over any discrete components.
Further, for any Hermitian operator M̂ on the Hilbert space of the quantum system,
the corresponding quantum observable for the hybrid ensemble is defined as per
Eqs. (8.18) and (8.19):

Q̃M̂[P, S] := 〈ψQC |M̂|ψQC〉, (9.6)

where the hybrid wave function ψQC(q, x) is defined by

ψQC := √
P eiS/�. (9.7)

Note that C̃f and Q̃M̂ have the form of classical and quantum averages, respectively.
It is easily checked that the classical and quantum observables satisfy the general

requirements in Eq. (9.4). Further, one has immediately from Eq. (8.20) (see also
Sect. 2.3) that

{C̃f , C̃g} = C̃{f ,g}, {Q̃M̂, Q̃N̂ } = Q̃[M̂,N̂]/i�, (9.8)

where {f , g} denotes the usual Poisson bracket for phase space functions f (x, p) and
g(x, p), and [,] is the usual quantum commutator. Henceminimal condition (ii) above
is also satisfied.

9.2.2 Evading No-Go Theorems: An Algebraic Loophole

It is of interest to remark on how the configuration ensemble approach is able to
avoid ‘no-go’ theorems in the literature for the existence of a dynamical bracket for
hybrid systems [20–22]. Such theorems require that the dynamical bracket satisfy
further conditions in addition to the minimal conditions (i) and (ii) above.

In particular, these theorems all require that the further condition holds:

(iii) The set of observables can be extended to form a product algebra, such that
the product A ∗ B satisfies

C̃f ∗ C̃g = Cfg, Q̃M̂ ∗ Q̃N̂ = Q̃M̂N̂ , (9.9)

for classical and quantum observables respectively, and the Leibniz rule {A,B ∗
C} = {A,B} ∗ C + B ∗ {A,C}.

http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_2
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However, unlike conditions (i) and (ii), this third condition has no compelling
physical support. For example, the product of two non-commuting Hermitian oper-
ators is not a Hermitian operator, and hence Q̃M̂N̂ is not an observable. Thus, the
existence of such a product algebra clearly goes beyond the domain of observable
quantities, and so cannot be justified on physical grounds. It follows that such ‘no-go’
theorems have no import for the configuration ensemble approach, in which no such
product of observables is defined or required for physical predictions.

The above point emphasises amore general advantage of the configuration ensem-
ble approach, as a good starting point for axiomatising physical theories. Once the
basic concept of a probability density on a configuration space, evolving according
to an action principle, has been accepted, then a dynamical Lie algebra arises for
free as per Eq. (9.2). No additional algebraic structure, such as orthomodular posets
or C∗-algebras, needs to be postulated. This advantage has already been exploited in
Chaps. 5–7, where three different axiomatic approaches to quantum mechanics have
been given within the framework of configuration ensembles.

9.3 Generalised Ehrenfest Relations and the Classical Limit

Oscillator Benchmark It is well known that the average position and momentum
of linearly-coupled quantum oscillators obey the classical equations of motion. This
motivated Peres and Terno to propose that this property should generalise to coupled
quantum-classical oscillators, as a [9]

definite benchmark … for an acceptable quantum-classical hybrid formalism.

They went on to show that this benchmark fails in the ‘phase space’ approach to
quantum-classical interactions [9, 10] (see also Sect. 9.1).

In contrast, the configuration ensemble approach to hybrid interactions not only
satisfies the oscillator benchmark, but further satisfies a much stronger property: a
natural generalisation of the quantum Ehrenfest relations.

Ehrenfest Relations In particular, consider a hybrid quantum-classical ensemble
corresponding to a quantum particle of mass m interacting with a classical particle
of massM via a potential V(q, x), where q and x denote the position configurations
of the quantum and classical particles respectively. For simplicity, it will be assumed
that both q and x are one-dimensional. The hybrid ensemble is therefore described by
a probability density P(q, x), a canonically conjugate field S(q, x), and an ensemble
Hamiltonian as per Eq. (8.12):

HQC[P, S] :=
∫

dq dx P

[
(∂qS)2

2m
+ (∂xS)2

2M
+ V(q, x, t) + �

2

8m

(∂qP)2

P2

]
, (9.10)

where ∂q and ∂x denote the partial derivatives with respect to q and x respectively.

http://dx.doi.org/10.1007/978-3-319-34166-8_5
http://dx.doi.org/10.1007/978-3-319-34166-8_7
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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Now, the expectation values of the classical and quantum position observables
follow from Eqs. (9.5–9.7) as

〈x〉 = Cx =
∫

dq dx P x, 〈q〉 = Qq̂ =
∫

dq dx P q. (9.11)

Similarly, distinguishing the classical and quantum momentum observables by the
labels k and p, the expectation values of these observables follow as

〈k〉 = Cp =
∫

dq dx P ∂xS, 〈p〉 = Qp̂ =
∫

dq dx P ∂qS. (9.12)

The evolution of these expectation valuesmay be calculated via Eqs. (9.1) and (9.10),
and, as shown below, one finds [23]:

Hybrid Ehrenfest relations: The position and momentum observables of
interacting quantum and classical particles satisfy

d

dt
〈x〉 = M−1〈k〉, d

dt
〈k〉 = −〈∂xV〉, (9.13)

d

dt
〈q〉 = m−1〈p〉, d

dt
〈p〉 = −〈∂qV〉. (9.14)

These relations imply that the centroid of a narrow initial probability density
P(q, x)will evolve classically for short timescales. Hence, in this sense, hybrid
systems have a well defined classical limit.

The above relations are a clear generalisation of the standard Ehrenfest relations
for quantum systems [29]. For the particular case of linearly-coupled classical and
quantum oscillators, with

V(q, x) = 1

2
mω2q2 + 1

2
MΩ2x2 + Kqx, (9.15)

Equations (9.13) and (9.14) simplify to the closed set of equations

d

dt
〈x〉 = M−1〈k〉, d

dt
〈k〉 = −MΩ2〈x〉 − K〈q〉, (9.16)

d

dt
〈q〉 = m−1〈p〉, d

dt
〈p〉 = −mω2〈q〉 − K〈x〉. (9.17)
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Thus, the average position and momentum values obey precisely the same equations
of motion as those of two fully classical oscillators, as required by the oscillator
benchmark proposed by Peres and Terno for the acceptability of any description of
hybrid interactions [9].

Deriving the Relations To demonstrate the generalised Ehrenfest relations, note
from Eqs. (9.3), (9.10) and (9.11) that

d

dt
〈x〉 = {C̃x,HQC} = −

∫
dq dx x

[
m−1∂q(P∂qS) + M−1∂x(P∂xS)

]
, (9.18)

where functional derivatives are evaluated as shown in Appendix A.1 of this book.
Applying integration by parts with respect to q and x, to the first and second terms
respectively, yields the first relation in Eq. (9.13). The first relation in Eq. (9.14) is
derived in a similar manner.

To obtain the second relation in Eq. (9.13), note first that

δHQC

δP
= (∂qS)2

2m
+ (∂xS)2

2M
+ V + �

2

2m

∂P1/2

∂P

δ

δP1/2

∫
dq dx (∂qP

1/2)2

= (∂qS)2

2m
+ (∂xS)2

2M
+ V − �

2

2m

∂2
qP

1/2

P1/2
. (9.19)

Equations (9.3), (9.10) and (9.12) then yield

d

dt
〈k〉 = −

∫
dq dx (∂xS)

[
∂q

(
P

∂qS

m

)
+ ∂x

(
P∂xS

M

)]

+
∫

dq dx (∂xP)

[
(∂qS)2

2m
+ (∂xS)2

2M
+ V

]

− �
2

2m

∫
dq dx (∂xP)

∂2
qP

1/2

P1/2
. (9.20)

Using integration by parts in the first and second lines leads to cancellation of all
terms involving S, with only a term − ∫

dqdx P∂xV remaining. Further, the term in
the third line simplifies via integration by parts to

− �
2

m

∫
dqdx (∂xP

1/2)(∂2
qP

1/2) = �
2

m

∫
dqdx (∂q∂xP

1/2) (∂qP
1/2)

= �
2

2m

∫
dqdx ∂x

[(
∂qP

1/2)2] = 0. (9.21)

Hence the second relation in Eq. (9.13) immediately follows. The second relation in
Eq. (9.14) is obtained by similar reasoning, with ∂q replaced by ∂x as appropriate.
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9.4 Locality Considerations

9.4.1 Configuration and Momentum Separability

It is reasonable to expect, for a hybrid quantum-classical ensemble, thatmeasurement
of the classical configuration cannot detect whether or not a local transformation has
been applied to the quantum component, and vice versa. As discussed in Sect. 8.3,
this property does indeed hold:

Configuration separability: The configuration statistics of the classical com-
ponent of a hybrid ensemble are invariant under any local unitary transfor-
mation carried out on the quantum component. Conversely, the configuration
statistics of the quantum component are invariant under any local canonical
transformation carried out on the classical component.

Configuration separability may be equivalently be expressed in terms of observ-
ables:

{C̃g(x), Q̃M̂} = 0, {Q̃g(q̂), C̃f } = 0, (9.22)

as per Eqs. (8.22) and (8.23). Here g is any function of the classical and quantum
configurations, M̂ is an arbitrary Hermitian operator generating a unitary transfor-
mation on the quantum Hilbert space, and f (q, p) is an arbitrary function generating
a canonical transformation on the classical phase space. Thus, the statistics of x are
invariant under the unitary transformation generated by M̂, while the statistics of q
are invariant under the phase space transformation generated by f .

Here we will show that a similar but weaker property holds for the momentum
statistics of interacting quantum and classical particles. In particular, let xm and km
label the components of the classical position and momentum, and qm and pm label
the components of the quantum position and momentum. Then one has:

Momentum separability: The average classical momentum of a hybrid
ensemble is invariant under local unitary transformations of the quantum com-
ponent, and the average quantummomentum is invariant under local canonical
transformations of the classical component, i.e.,

{C̃km , Q̃M̂} = 0, {C̃f , Q̃p̂m} = 0. (9.23)

for arbitrary Hermitian operators M̂ and phase space functions f (x, k).

http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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The combination of configuration and momentum separability immediately
implies the dynamical bracket relations

{C̃xm , Q̃q̂n} = 0, {C̃xm , Q̃p̂n} = 0, (9.24)

{C̃pm , Q̃q̂n} = 0, {C̃pm , Q̃p̂n} = 0, (9.25)

for the position and momentum observables of the hybrid ensemble. These relations
were assumed by Salcedo in the proof of a no-go theorem for the existence of hybrid
classical and quantum dynamics [20]. However, this theorem is inapplicable to the
configuration ensemble approach because it requires a further nonphysical assump-
tion, that observables form a product algebra, which does not hold in this approach
(see also Sect. 9.2.2).

To prove the first relation in Eq. (9.23), note first that making a change of repre-
sentation of the ensemble, from the pair (P, S) to the pair (ψQC, ψ̄QC), one has

δA

δP
= ∂ψQC

∂P

δA

δψQC
+ ∂ψ̄QC

∂P

δA

δψ̄QC
= 1

ψ̄QCψQC
Re

{
ψQC

δA

δψQC

}
, (9.26)

δA

δS
= ∂ψQC

∂S

δA

δψQC
+ ∂ψ̄QC

∂S

δA

δψ̄QC
= −2

�
Im

{
ψQC

δA

δψQC

}
, (9.27)

and hence the Poisson bracket defined in Eq. (9.2) can be reexpressed in terms of the
hybrid wave function and its conjugate as

{A,B} = 2

�
Im

{∫
dqdx

δA

δψQC

δB

δψ̄QC

}
, (9.28)

generalising the analogous result in Sect. 2.3.3 for quantum ensembles. Noting that
the average classical momentum can be written in the ‘quantum’ form

C̃km =
∫

dqdx P ∂xmS = 〈ψQC |k̂m|ψQC〉, (9.29)

where ψQC is the hybrid wave function defined in Eq. (9.7) and k̂m := (�/i)(∂/∂xm),
it follows that

{C̃km , Q̃M̂} = 2

�
Im

{∫
dqdx (k̂mψQC)M̂ψQC

}
= 1

�
〈ψQC |[k̂m, M̂]|ψQC〉 = 0,

as desired.

http://dx.doi.org/10.1007/978-3-319-34166-8_2


9.4 Locality Considerations 201

Finally, to prove the second relation in Eq. (9.23), note that the average quantum
momentum can be rewritten in the ‘classical’ form

Q̃p̂m = 〈ψQC |p̂m|ψQC〉 =
∫

dqdx P ∂qmS. (9.30)

The definition of the Poisson bracket in Eq. (9.2), with the variational derivatives
evaluated as per Eq. (A.6) in Appendix A.1 of this book, then yields

{C̃f , Q̃p̂m} =
∫

dqdx

[
δC̃f

δP

δQ̃p̂m

δS
− δQ̃p̂m

δP

δC̃f

δS

]

=
∫

dqdx

[
−f (x,∇xS) (∂qmP) + (∂qmS)∇x ·

(
P

∂f

∂∇xS

)]

=
∫

dqdx P

[
(∂qm f (x,∇xS)) − (∂qm∇xS) · ∂f

∂∇xS

]

= 0

as required.

9.4.2 Strong Separability

It is natural to ask, in light of the configuration andmomentum separability properties
in Eqs. (9.22) and (9.23), whether the strong separability property

{C̃f , Q̃M̂} = 0 ? (9.31)

also holds for hybrid ensembles. That is, does the dynamical bracket between arbi-
trary classical and quantum observables vanish? It turns out that the answer to this
question is in the negative. This leads to a significant constraint on what can be mod-
elled as a ‘classical system’, to avoid the undesirable possibility of nonlocal signaling
between noninteracting quantum and classical ensembles.

It is important to note that strong separability does hold in an important case. In
particular, it is valid whenever the quantum and classical components are indepen-
dent, i.e., when

P(q, x) = PQ(q)PC(x), S(q, x) = SQ(q) + SC(x). (9.32)

Since independent ensembles remain independent when they are noninteracting, i.e.,
when the ensemble Hamiltonian splits into distinct quantum and classical contribu-
tions HQC = HQ + HC (see Sect. 3.2), one has:

http://dx.doi.org/10.1007/978-3-319-34166-8_3
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Strong separability is satisfied at all times by the observables of noninteracting
independent ensembles.

To prove the above statement, note first that the strong separability property
for independent ensembles has been demonstrated for arbitrary joint ensembles in
Sect. 3.3.3, and hence holds for hybrid ensembles in particular. An explicit proof for
the hybrid case may also be given as follows [23]. From Eqs. (9.5) and (9.7) one can
rewrite classical observables in terms of the hybrid wave function as

C̃f =
∫

dq dx ψ̄QCψQC f (x, k), k := �

2i

(∇xψQC

ψQC
− ∇xψ̄QC

ψ̄QC

)
, (9.33)

and hence, dropping the QC subscript for convenience, one has

δC̃f

δψ
= ψ̄ f + ψ̄ψ (∇kf ) · ∂k

∂ψ
− ∇x ·

(
ψ̄ψ (∇kf ) · ∂k

∂(∇xψ)

)

= ψ̄ f − �

2i

ψ̄

ψ
(∇kf · ∇xψ) − �

2i
∇x · (

ψ̄∇kf
)
. (9.34)

Moreover, from Eq. (9.6) one has δQ̃M̂/δψ̄ = M̂ψ . Hence, since the independence
condition Eq. (9.32) is equivalent to the factorisation ψ(q, x) = ψQ(q)ψC(x) of the
hybrid wavefunction, it follows that

∫
dq dx

δC̃f

δψ

δQ̃M̂

δψ̄
=

∫
dq ψ̄QM̂ψQ

{∫
dx ψ̄CψCf

− �

2i

∫
dx

[
ψ̄C(∇kf · ∇xψC) + ψC∇x · (ψ̄C∇kf )

]}

=
∫

dq ψ̄QM̂ψQ

∫
dx ψ̄CψC f (x,∇xSC) (9.35)

for independent ensembles, where integration by parts has been used to obtain the
final result. This expression is clearly real, implying immediately from the general
Poisson bracket formula in Eq. (9.28) that

{C̃f , Q̃M̂} = 2

�
Im

{∫
dq dx

δC̃f

δψ

δQ̃M̂

δψ̄

}
= 0 (9.36)

for independent ensembles.
The failure of strong separability to hold more generally is demonstrated by the

following counterexample [23]. In particular, for classical and quantum particles

http://dx.doi.org/10.1007/978-3-319-34166-8_3


9.4 Locality Considerations 203

having masses M and m respectively, consider the ‘free’ ensemble Hamiltonians

H 0
C =

∫
dqdx P

|∇xS|2
2M

, H 0
Q =

∫
dqdx P

[
|∇qS|2
2m

+ �
2

8m

|∇qP|2
P2

]
, (9.37)

corresponding to classical and quantum observables C̃f and Q̃M̂ , respectively, with
f (x, p) = p · p/(2M) and M̂ = p̂ · p̂/(2m). Evaluating their Poisson bracket via
Eq. (9.2) yields

{H 0
C ,H 0

Q } = �
2

2mM

∫
dq dx P (∇xS) · ∇x(P

−1/2∇2
qP

1/2) �≡ 0, (9.38)

i.e., it does not vanish identically. Such violations of strong separability have been
referred to as ‘ghost interactions’ by Salcedo [30]. Note, however, that this Poisson
bracket does vanish whenever the quantum and classical configurations are uncorre-
lated, i.e., whenever P(q, x) = PQ(q)PC(x).

9.4.3 Implications of Strong Separability Violation

The violation of strong separability for some observables places a strong constraint
on what types of quantum-classical interactions can be consistently described in
the configuration ensemble formalism. In particular, it will be seen that while this
violation is harmless for intrinsically interacting systems, it leads to nonlocal energy
flows and to the possibility of action at a distance between noninteracting ensembles
of quantum and classical particles.

No Implications for Intrinsically Interacting Systems First, it should be noted that
in the particular case where the hybrid ensemble describes quantum matter coupled
to classical spacetime [1, 31] (see also Chap.11), a violation of strong separability
in Eq. (9.31) is irrelevant to locality issues, as there is no sense in which interaction
between the systems can be ‘switched off’—matter bends space and space curves
matter, and so a change in one component is fully expected to drive a change in the
other component. This corresponds to the directmultiplicative coupling of the metric
tensor to the fields in the corresponding ensemble Hamiltonian (see Chap. 11).

Similar remarks applies to any hybrid ensemble for which the ensemble Hamil-
tonian can never be reduced to a simple sum of quantum and classical terms. As
discussed in Sect. 3.2.2 this is equivalent to a direct coupling between the compo-
nents at all times, i.e., to an intrinsic inseparability.

Nonlocal Energy Flow Between Noninteracting Particles In contrast, to see how
action at a distance can arise for systems that can be uncoupled, consider a hybrid
ensemble with two well-separated noninteracting components, and an ensemble
Hamiltonian of the form

H [P, S] = HC + HQ (9.39)

http://dx.doi.org/10.1007/978-3-319-34166-8_11
http://dx.doi.org/10.1007/978-3-319-34166-8_11
http://dx.doi.org/10.1007/978-3-319-34166-8_3
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It follows from Eq. (9.3) that

dHC

dt
= {HC,HC + HQ} + ∂HC

∂t
= {HC,HQ} + ∂HC

∂t
. (9.40)

Hence, if the Poisson bracket {HC,HQ} does not vanish, then energy can flow from
one ensemble to the other, despite their spatial separation. Using a subscript to denote
this nonlocal contribution to the average energy flow, one has

(
dHC

dt

)
nonlocal

= {HC,HQ} = −
(
dHQ

dt

)
nonlocal

. (9.41)

The case of two noninteracting quantum and classical particles evolving under
local (possibly time-dependent) potentials, with

HC = H 0
C +

∫
dqdx P VC(x, t), HQ = H 0

Q +
∫

dqdx P VQ(q, t), (9.42)

provides a simple and instructive example,whereH 0
Q andH 0

C are the ‘free’ ensemble
Hamiltonians in Eq. (9.37). In this case the nonlocal contribution to the rate of change
of the average classical energy follows via Eqs. (9.38), (9.41) and configuration
separability as

(
dHC

dt

)
nonlocal

= {H 0
C ,H 0

Q } = �
2

2mM

∫
dq dx P (∇xS) · ∇x(P

−1/2∇2
qP

1/2).

(9.43)

Note that the flow is second order in �, and inversely proportional to the classical
massM, and hence is expected to be very small relative to typical classical energies.
Note also that the average flow is independent of the local potentials VQ and VC (it
may similarly be shown to be independent of electromagnetic potentials).

We remark that the nonlocal energy flow can also be rewritten in the suggestive
form (

dHC

dt

)
nonlocal

=
∫

dqdx P FC|Q · vC, (9.44)

where the ‘classical velocity’ and ‘quantum-induced classical force’ are defined by

vC := ∇xS

M
, FC|Q := �

2

2m
∇x

(∇2
qP

1/2

P1/2

)
, (9.45)

respectively. These are analogous to similar expressions in Bohmian mechanics for
two quantum particles, where vC corresponds to the velocity of the C-particle, and
FC|Q to the force on theC-particle due to the quantum potential of theQ-particle [12,
14]. Thus the energy flow in Eq. (9.44) may be interpreted in terms of work done on
the classical ensemble by such a force.
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We will see in Sect. 9.4.4 that by restricting the definition of ‘classical’ systems
to have many degrees of freedom leads to the effective vanishing of such nonlocal
energy flows.

Nonlocal Signaling between Noninteracting Particles The nonlocal energy flow
to the classical particle in Eq. (9.43) is independent of the local quantum potential
VQ (it may similarly be shown to be independent of any electromagnetic potential
acting on the quantum particle). Hence, an attempt to send a signal from a quantum
ensemble of particles to a classical ensemble of particles, by changing VQ over a
short time interval [0, δt], will not lead to any change in the average classical energy
to first order in δt. Similarly, there will be no change to second order: one has

d2HC

dt2
= {{H 0

C ,H 0
Q },HC + HQ}} + ∂2HC

∂t2

= {{H 0
C ,H 0

Q },HC + H 0
Q }} +

{
{H 0

C ,H 0
Q }, C̃VQ

}
+ ∂2HC

∂t2

= {{H 0
C ,H 0

Q },HC + H 0
Q }} + ∂2HC

∂t2
, (9.46)

which is again independent of VQ. Here the last line follows using Eq. (9.43) and via
integration by parts to evaluate

{
{H 0

C ,H 0
Q }, C̃VQ

}
= �

2

2mM

∫
dq dx∇x · [

P∇x(P
−1/2∇2

qP
1/2)

]
VQ(q, t) = 0.

(9.47)

However, after some calculation, the third time derivative is found to have the form

d3HC

dt3
=

{
{H 0

Q , C̃VQ}, {H 0
C ,H 0

Q }
}

+ . . . , (9.48)

where the dots indicate contributions independent of VQ. The first term on the right
does not vanish in general. Hence, signaling from the quantumparticle to the classical
particle is possible, in principle, via controlling VQ to affect the average classical
energy.

It has been suggested that such signaling via the violation of strong separability
could be avoided via the physically reasonable assumption that the only observ-
ables accessible to direct measurement are classical configuration observables
[23]. However, while such observables—such as the pointer position of a classical
measuring apparatus—automatically satisfy the configuration separability property
{C̃g(x), Q̃M̂} = 0 as per Eq.9.22, it was later discovered that this assumption is not
sufficient to avoid nonlocal signaling [32].
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In particular, for noninteracting quantum and classical particles, i.e., with an
ensemble Hamiltonian as per Eqs. (9.39) and (9.42), consider the time evolution
of a classical observable C̃g(x), where g is any function of the classical configuration
x. From Eq. (9.3) and configuration separability we have

dC̃g(x)

dt
= {C̃g(x),HC + HQ} = {C̃g(x),HC} = {C̃g(x),H

0
C }, (9.49)

with the last equality following using {C̃g(x), C̃VC } = C̃{g(x),VC} = 0 via Eq. (9.8).
Hence there is no effect of the quantum component of the ensemble Hamiltonian on
the first time derivative of the classical configuration observable. Further, the second
time derivative follows, using configuration separability with respect to C̃g(x) and
C̃VQ and the Jacobi identity, as

d2C̃g(x)

dt2
= {{C̃g(x),H

0
C },HC + H 0

Q + C̃VQ}
= {{C̃g(x),H

0
C },HC} + {C̃g(x), {H 0

C ,H 0
Q }}. (9.50)

While the last term is seen to depend on the nonlocal energy flow in Eq. (9.43), there
is again no dependence on the local potential VQ, and hence no signaling effects arise
to second order. One similarly finds that no such effects arise to third order. However,
after a lengthy calculation one obtains

d4C̃g(x)

dt4
=

{{{
C̃g(x), {H 0

C ,H 0
Q }

}
,H 0

Q

}
, C̃VQ

}
+ · · ·

= �
2

2m2M

∫
dqdx P (∇qVQ) ·

(
∇q

δA[P]
δP

)
+ · · · , (9.51)

where the dots indicate terms with no dependence on VQ, and we define A[P] :=∫
dqdx P (∇xg) · ∇x(P−1/2∇2

qP
1/2).

Thus, the fourth time derivative of the classical configuration observable has an
explicit dependence on the local quantum potential VQ. This allows nonlocal sig-
nalling, in principle, by one observer making a choice between two potentials VQ

and V ′
Q in the vicinity of the quantum ensemble, and a second observer estimat-

ing the fourth time derivative of a classical configuration observable for the classi-
cal ensemble (e.g., by measuring the observable at four closely separated times on
four respective subensembles). This has been numerically confirmed for the case
of a Gaussian hybrid ensemble (see Sect. 8.6.1), with the evolution of the classical
observable C̃x2 = 〈x2〉 found to depend on the value of the spring constant k of a
one-dimensional oscillator potential VQ = 1

2kq
2 acting on the quantum particle [32].

http://dx.doi.org/10.1007/978-3-319-34166-8_8
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We conclude that:

The violation of strong separability has no implications for intrinsically inter-
acting hybrid systems, such as classical gravitational fields coupled to quan-
tum matter fields. However, it implies that the application of the configura-
tion ensemble approach to hybrid systems must be restricted in some way, to
avoid observable nonlocal energy transfer and signaling between noninteract-
ing quantum and classical particles.

A suitable restriction is discussed below.

9.4.4 Suppression of Strong Separability Violation
via “Classicality”

We first note that if nature provides us with systems that behave as classical particles,
they are likely to correspond to macroscopic objects (e.g., measuring devices, as in
the Copenhagen interpretation of quantum mechanics), i.e., systems with interac-
tions between many internal and/or external degrees of freedom. It turns out that
effects such as nonlocal energy flows and non-local signalling are suppressed for
such objects, making them unobservable. It will be seen in Sect. 9.5 that the same
property also guarantees effective decoherence inmeasurements of quantum systems
by classical apparatuses.

We therefore make the assumption:

Classicality: Localised classical objects are always macroscopic; i.e., with a
large number of internal and external degrees of freedom.

Thus “classicality” implies, in addition to having classical equations of motion,
that a classical object (for example, a measuring device) is macroscopic. This a very
reasonable assumption, supported by observation. It is known from experiment that
microscopic objects are described by quantum theory. Therefore, a classical object
cannot be microscopic.

How are macroscopic objects different from microscopic objects? One important
property of macroscopic objects (for example, classical measuring devices) is that
they cannot be isolated from the environment: a macroscopic object cannot avoid
scattering photons and other particles [33]. Thus, for example, the pointer of a mea-
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suring device will be continuously undergoing scattering processes, implying there
are a large number of external degrees of freedom. Another important property of
macroscopic objects is that they have a very large number of internal degrees of
freedom. When describing a classical measuring apparatus, we often discuss only
one of its degrees of freedom, say the position of a pointer, but in reality there is
an enormous number of “irrelevant” degrees of freedom, say 1023, which must be
treated statistically if they are modeled at all (usually they are simply neglected, as
we have also done previously).

The important feature of classicality for our purposes is that it implies most classi-
cal observables are effectively unobservable: it is impossible to make a measurement
of detailed functions of the underlying degrees of freedom. As pointed out by Peres
in a similar context, even the constants of the motion of a large classical system
are effectively unmeasurable [34], which is only exacerbated if information is being
carried away via interactions with external degrees of freedom such as photons. The
interactions involved are simply uncontrollable (and irreversible) for all practical
purposes.

In particular, for a noninteracting quantum system interacting with a macroscopic
classical system, there will be an enormous number of relevant degrees of freedom
x. Hence, while changing the local quantum potential VQ will lead to a nonlocal
change in properties of the configuration x as discussed in Sect. 9.4.3, this correlation
involves so many degrees of freedom (involving photons heading off to infinity) that
it becomes impossible to observe—the correlation is too spread out among all the
degrees of freedom. Conversely, one cannot in practice control the local classical
potential VC to induce an observable change in the quantum system, since there are
so many diverse classical degrees of freedom correlated in a complex way.

It is interesting to consider the effect of classicality from the perspective of the
forms of nonlocal energy flow in Eqs. (9.43) and (9.44), which generalise in the
simplest case to a sum over the classical degrees of freedom (x(1), . . . x(N)):

(
dHC

dt

)
nonlocal

=
∑
n

�
2

2mMn

∫
dqdx(1) . . . dx(N) P (∇x(n)S) · ∇x(n) (P−1/2∇2

qP
1/2)

=
∑
n

∫
dqdx(1) . . . dx(N) P F(n)

C|Q · v(n)
C (9.52)

The ‘quantum-induced forces’F(n)
C|Qscale as �

2/Mm, so that the corresponding ‘accel-
erations’ scale as (�/Mm)2, and are not expected to have any simple correlation with
the corresponding ‘velocities’ v(n)

C . Hence the nonlocal energy flow will be made up
of N effectively random contributions, thus making a contribution scaling as �

2/
√
N

relative to the local classical energy (since the latter scales as N). For N ∼ 1023 this
is simply unobservable in practice. We conclude more generally that:
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Violations of strong separability are effectively unobservable under the
assumption of classicality.

We will see in the following section that classicality also plays a important role
in measurements.

9.5 Measurement Considerations

Examples of measurements of quantum configuration observables, such as position
and spin, via interactionwith an ensemble of classical pointers, have beendescribed in
Sect. 8.4, including the conditional decoherence of the quantum component relative
to the classical component. Here it is noted there is a simple model for describing
the indirect measurement of any quantum observable via interaction with a classical
pointer. The mechanism by which the macroscopic nature of such a pointer, i.e., its
classicality, leads from conditional decoherence (an ‘improper mixture’) to effective
decoherence (a ‘proper mixture’), is also discussed.

9.5.1 General Measurement Model

The measurement interaction in Sect. 8.4 of the previous chapter has the simple
generalisation [31]

HI := κ(t)
∫

dq dx ψ̄QC(q, x)

(
�

i

∂

∂x

)
M̂ψQC(q, x). (9.53)

Here κ(t) is a (possibly time-dependent) coupling constant, x denotes the position of
a one-dimensional classical pointer (with integration over q replaced by summation
over any discrete values), M̂ denotes the quantum observable being measured, and
ψQC is the hybrid wavefunction defined in Eq. (9.7). It may be checked that this
reduces to the form of the interaction ensemble Hamiltonian in Eq. (8.47) in the
special case M̂ = f (q̂).

Assuming that the measurement takes place over a sufficiently short time period,
[0,T ], such thatH0 can be ignored during the measurement, it is straightforward to
check that the equations of motion in Eq. (9.1) during the interaction are equivalent
to the hybrid Schrödinger equation

i�
∂ψQC

∂t
= κ(t)

(
�

i

∂

∂x

)
M̂ψQC, (9.54)

http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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analogous to the standard von Neumann measurement model for a quantum pointer.
For an initially independent ensemble at time t = 0 as per Eq. (9.32); i.e.,
ψQC(q, x, 0) = ψQ(q)ψC(x), this equation may be trivially integrated to give

ψQC(q, x,T) =
∑
n

〈q|Π̂n|ψQ〉ψC(x − Kλn) (9.55)

at the end of the measurement interaction, where K = ∫ T
0 dt κ(t) and M̂ has the

spectral decomposition
M̂ =

∑
n

λn Π̂n. (9.56)

Thus, λn denotes an eigenvalue of M̂, and Πn denotes the projection onto the
corresponding eigenspace. The pointer probability distribution after measurement
follows as

P(x,T) =
∫

dq |ψQC(q, x,T)|2

=
∑
m,n

〈ψQ|Π̂m

(∫
dq |q〉〈q|

)
Π̂n|ψQ〉 ψ̄C(x − Kλm) ψC(x − Kλn)

=
∑
n

p(λn|ψQ)PC(x − Kλn), (9.57)

using Π̂mΠ̂n = δmnΠ̂n, where p(λn|ψQ) := 〈ψQ|Πn|ψQ〉 is the usual quantum prob-
ability associated with eigenvalue λn for the initial quantum state |ψQ〉.

Hence, the measurement displaces the initial pointer probability density PC(x)
by an amount Kλn with probability p(λn|ψQ), thus correlating the position of the
pointer with the eigenvalues ofM. In particular, choosing a sufficiently narrow initial
distribution PC(x) (e.g., a delta-function), the displaced probability densities will be
nonoverlapping, corresponding to a ‘good’ measurement: each eigenvalue λn will be
perfectly correlated with the measured pointer position. This generalises Eq. (8.55),
for the special case of a quantum spin measurement:

The measurement of any quantum observable may be modelled via interaction
with a strictly classicalmeasuring apparatus, followed by a directmeasurement
of the classical configuration.

The existence of such a model may be regarded as supporting the Copenhagen
interpretation, in which measurement pointers and the like are regarded as truly
‘classical’ objects (see also Sect. 8.4).

http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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9.5.2 Ineffective Decoherence: Improper Mixtures

In the above measurement model, consider again a ‘good’ measurement; i.e., with
interaction strength sufficiently large to give nonoverlapping final pointer distribu-
tions

PC(x − Kλm)PC(x − Kλn) = 0 for m �= n. (9.58)

The reduced or ‘improper’ mixture of quantum ensembles corresponding to the
hybrid wave function at time T then follows from Eqs. (8.27) and (9.57) as

ρ̂Q|C :=
∫

dx trC[|ψQC〉〈ψQC |] =
∑
n

Π̂n|ψQ〉〈ψQ|Π̂n =
∑
n

wn|ψn〉〈ψn|, (9.59)

with wn := p(λn|ψQ) and |ψn〉 := Π̂n|ψQ〉/√wn. Note this generalises Eqs. (8.53)
and (8.56) for position and spin measurements.

As discussed in Sects. 4.2.4 and 8.3, reducedmixtures are not a complete represen-
tation of the hybrid ensemble. In other words, the hybrid ensemble is not equivalent
to preparing one of the mutually orthogonal states |ψn〉 of the quantum ensemble
with probability wn, essentially because the hybrid ensemble is described by a ‘pure’
state |ψQC〉 which need not evolve equivalently to such a mixture. Indeed, the hybrid
wave function could in principle evolve back into a ‘pure’ initial state.

Hence, while the conditional density operator is diagonal or decoherent with
respect to M̂, this is not sufficient to assume that the hybrid ensemble has decohered
or ‘collapsed’, i.e., that the measurement has prepared a proper mixture of hybrid
ensembles. The decoherence is ineffective without a further mechanism of some sort.
This is an analogue of the well-known measurement problem in quantum mechan-
ics, but with an important advantage: because the configuration ensemble approach
only deals with ensembles, not with individual members, there is no requirement to
‘explain’ individual outcomes.

We will now show how the notion of ‘classicality’ discussed in Sect. 9.4.4 leads
to effective decoherence. The discussion is analogous to that for the quantum mea-
surement problem.

9.5.3 Macroscopic Measuring Devices Revisited

Measuring devices are, by construction, robust and deterministic (i.e., non-chaotic),
otherwise they would not be able to provide reliable information about the quantity
that is being measured. They have a limited, well defined range of operation, and are
usually operated in the linear regime and follow well defined equations of motion.
For example, think of an old-fashioned Geiger–Müller counter with a pointer as
readout device. There is typically amplification associated with measuring devices
(e.g., the cascade of charged particles in the Geiger–Müller tube, which creates an

http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_4
http://dx.doi.org/10.1007/978-3-319-34166-8_8
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electrical current that can then be measured), and thus irreversibility is built into the
device, but it turns out that this aspect is not crucial to our discussion.

For simplicity, we consider a measurement of the spin of a quantum particle as
carried out by a classicalmeasuring device, and assume that the device ismacroscopic
and that it has all the desirable properties that we listed in the previous paragraph.
Thus the example is similar to the example of spin measurement that was considered
previously in Sect. 8.4. We will consider the degree of freedom of the pointer and
neglect the remaining “irrelevant” degrees of freedom of the measuring apparatus.
However,we now formulate the problem in twodimensions instead of one dimension;
that is, the pointer will have coordinates r = (x, y). Furthermore, we will assume
that the pointer is a macroscopic object, say a small sphere attached by a thin rod to
the rest of the apparatus, and that it interacts with its environment. The environment
will consist of photons that scatter from the pointer.

As a first step, we neglect the coupling of the pointer with the environment, which
will be added later. More precisely, we model the case in which the z-component σ̂z

of a spin-1/2 particle is linearly coupled to the momentum in the y-direction of the
classical particle. The ensemble Hamiltonian is thus given by

Hspin[P, S] =
∑
α=±1

∫
dx dy P(α, x, y)

|∇S(α, x, y)|2
2M

+ κ(t)
∑
α=±1

∫
dx dy αP(α, x, y)

∂S(α, x, y)

∂y
. (9.60)

We assume as we did before that the measurement interaction occurs over a suf-
ficiently short time period [0,T ] that the first term of Hspin can be ignored. The
equations of motion during the interaction are then

∂P(α, x, y, t)

∂t
= −α κ(t)

∂P(α, x, y)

∂y
,

∂S(α, x, y, t)

∂t
= −α κ(t)

∂S(α, x, y)

∂y
, (9.61)

which can be integrated to give

P(α, x, y,T) = P(α, x, y − αK, 0), S(α, x, y,T) = S(α, x, y − αK, 0), (9.62)

where K := ∫ T
0 dt κ(t). Thus, as expected, the interaction directly correlates the

pointer position y with the spin α in the z-direction.
We consider a scenario in which the apparatus is being used to search for the

particle with spin, such that the measuring device moves slowly in the x-direction
with constant velocity vx (this assumption is not an essential one, but it helps when it
comes to visualizing the experiment). For simplicity, we define coordinates in which
the particle with spin is at the origin and we assume that the interaction takes place
at time t = 0.

http://dx.doi.org/10.1007/978-3-319-34166-8_8
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We assume furthermore that the classical and quantum ensembles are initially
independent. Before the interaction takes place (i.e., for t < 0), the pointer is
described by P and S given by

PC(x, y, t) = 1

2πσ 2
exp

{
−1

2

(x − vxt)2 + y2

σ 2

}
, SC(x, y, t) = Mxvx. (9.63)

It is straightforward to check that S and P solve both the Hamilton–Jacobi and the
continuity equations. The initial probability of spin up/down in the z-direction before
the interaction takes place is set equal to w± with w± ≥ 0 and w+ + w− = 1.

After the interaction takes place, the marginal probability for the classical particle
will be given by the mixture

P(x, y,T) = w+ PC(x − vxt, y − K, 0) + w− PC(x − vxt, y + K, 0), (9.64)

where we have taken the limit where T → 0 (while keeping K constant). Hence, the
initial probability density PC(x, y, t) of the pointer is displaced in the y-direction by
K with probability w+, and by −K with probability w−. Since S is independent of y,
it will not change: SC(x, y, t) = Mxvx before and after the interaction.

We assume that the apparatus is designed so that the measurement gives a well
defined result, which translates into the requirement that the initial pointer probability
density PC(x) has a spread which is small with respect to K , so that the probabilities
associated with each of the elements of the mixture do not overlap.

The state of the classical pointer immediately before and immediately after the
interaction is described by the probability densities shown schematically in Fig. 9.1.
Notice that the position of the classical pointer, which was previously known to
within a region of radius ∼σ before the interaction, is described after the interaction
by a bimodal distribution in which the two peaks are displaced a distance 2K from
each other and have relative magnitudes of w±. The measuring device will continue
moving slowly in the x-direction with constant velocity vx.

Fig. 9.1 Marginal probability density for the classical ensemble. Left Before the interaction, the
classical state is localized. Right After the interaction, the classical ensemble is represented by a
mixture. The initial probability density of the pointer is displaced in the positive y-direction with
probability w+, and in the negative y-direction with probability w− (here we plot the mixture for
the case w+ = 0.6, w− = 0.4)
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9.5.4 Effective Decoherence and Regaining of Strong
Separability

The next step is to take into consideration the effect of the environment. We assume
that themacroscopic pointermoves through an environment that is filledwith photons
and that these particles are scattered by the pointer. In reality, there will be other
quantum particles which contribute to the environment, but for the purpose of this
section it will be sufficient to consider only photons.What may be the source of these
photons? To read the position of a pointer, you need to shine light on it, and this is
certainly one source. As the experiment is being carried out, the experimenter will be
looking at the pointer to see if it moves, or perhaps a video camera will be directed
to it to keep a record. But there will also be photons emitted by macroscopic objects
that are close to the pointer, or photons emitted by other parts of themeasuring device
itself. These will be always present regardless of whether an experimentalist is there
or not to look at the pointer.

A lower bound for the photons emitted by a nearby macroscopic object can be
estimated by calculating the emission of photons due to blackbody radiation. The
photon radiant emittance of a blackbody at a temperature of 300K can be estimated
from the Stefan Boltzamnn law and it is enormous, of the order of 1022 s−1 m−2.
Thus one expects the pointer to be constantly bombarded by photons. To get a crude
estimate, assume that this is roughly the flux of photons at the position of the pointer,
and assume that the cross sectional area of the pointer is about 1 mm2. Then, photons
will scatter from the pointer at a rate of ∼1013 s−1. This should be compared to the
time scale at which one can extract information from a measuring device: the fastest
electronics that are available today have a time resolution of about ten picoseconds,
that is, 10−11 s, but the limiting factor is typically the resolving time of the measuring
device, which can be substantial (for a Geiger–Müller counter, for example, it is of
the order of 10−4 s). This means that even under the best of circumstances a large
number of photons will scatter from the pointer while a measurement takes place.

At the same time, it is important to keep in mind that the equations that describe
the motion of the pointer are not affected by the photon environment: the average
transfer of momentum will be null because the “cloud” of photons is isotropic, and
the difference in momenta between the macroscopic pointer and a single photon is
so large that one can neglect the recoil of the pointer as it scatters the photons.

We can study the effect of the coupling between the pointer and the environment
using an approach that is similar to the analysis that explains the appearanceof straight
tracks in aWilson cloud chamber when an atom undergoes radioactive decaywith the
emission of an α-particle. In the late 1920s, Gamow [35] and, independently, Gurney
and Condon [36, 37] showed that one could explain alpha radioactivity using wave
mechanics. However, in this theory the alpha particle is described as a spherical
matter wave that emerges from the atomic nucleus, and this seemed at odds with
the alpha particle tracks that are observed in a Wilson cloud chamber, which are
always straight lines. The resolution was provided by Mott [38, 39], who calculated
the scattering of alpha particles by the atoms in the Wilson cloud chamber quantum
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mechanically using Born’s collision theory. He used first order perturbation theory to
show that the probability of finding the alpha particle is concentrated on a sharp cone
behind the first ionized atom, in the direction of the incoming matter wave. He then
applied second order perturbation theory and considered the case in which a second
atom becomes ionized after interacting with the alpha particle. Mott showed that
both atoms had to lie inside the cone. The same will hold for all the other atoms that
become ionized. The end result is that the probability of finding the alpha particle
is concentrated along a straight line. In this way, an initial spherically symmetric
probability distribution (the one corresponding to the spherical matter wave that
emerges from the atomic nucleus) becomes, after interaction with the environment
of the Wilson cloud chamber, a probability distribution that is concentrated on a
straight line.

The technical details of our analysis are of course very different from the ones
in Mott’s argument, because we are considering a different, very idealized physical
situation. In fact, our argument is rather simple. We suppose that a photon scatters
from the macroscopic pointer at some time t > 0; i.e., after the interaction with the
particle with spin. Since the probability of finding the pointer is given by Eq. (9.64),
this can only happen either in the vicinity of the coordinates (x = vxt, y = +K) or
in the vicinity of the coordinates (x = vxt, y = −K). After the photon is scattered,
one needs to update the probability of finding the pointer via Bayes theorem. The
net effect will be to select only one of the elements of the mixture. Let us assume
for simplicity that the scattered photon provides a measurement that is sufficient to
distinguish between the two elements of themixture, but that the resolution is so poor
that it can not do better than that. Then, in the first case, the probability of finding
the pointer will have to be updated according to

P(x, y, t) → PC(x − vxt, y − K, 0), (9.65)

while in the second case, it will have to be updated according to

P(x, y, t) → PC(x − vxt, y + K, 0). (9.66)

Notice that it is not necessary to update SC(x, y, t) because we have assumed that
we can neglect the recoil of the pointer as it scatters photons. Thus the measuring
device will continue moving in the x-direction with velocity vx.

The classical particle is nowmore localized than itwas before: there is a “collapse”
of the probability that results fromBayesian updating and only one of the elements of
the mixture survives. This means that all further scattering events in which photons
scatter from the pointer can only take place in the vicinity of the line y = +K (in
the first case, when Eq. (9.65) holds) or in the vicinity of the line y = −K (in the
second case, when Eq. (9.66) holds). Thus the update via Bayes theorem leads to the
prediction that the pointer will be seen either at y = +K or at y = +K even though
it originally was in a mixed state that included both cases. At the same time, only one
of the two possibilities in the quantum sector survives and there is a corresponding
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“collapse” given by (w+,w−) → (1, 0) (in the first case when Eq. (9.65) holds) or
(w+,w−) → (0, 1) (in the second case when Eq. (9.66) holds).

We see then that the improper mixture effectively collapses to a proper mixture
via interactions with the environment. Therefore the classical and quantum com-
ponents become independent. Thus strong separability is satisfied after the pointer
interacts with the environment, at which point effects such as nonlocal energy flow
and signaling via the quantum potential becomes impossible (see Sects. 9.4.2–9.4.4).
This happens in an extremely short time scale because, as we mentioned above, the
pointer will scatter photons at an enormously high rate. If one were to consider more
realistic types of measurements and environments, the technical difficulties would
become severe. But it seems clear that one would reach essentially the same type of
conclusion. Thus, in the measurement context, the results in Sect. 9.4.4 are further
strengthened:

Under the ‘classicality’ assumption that the measurement apparatus is macro-
scopic, the hybrid ensemble effectively decoheres into a proper mixture of
noninteracting independent ensembles. Strong separability is therefore satis-
fied for each element of the mixture, ruling out any possibility of nonlocal
energy flow and nonlocal signaling after the measurement.

9.6 Comparisons with Mean-Field Approach

We conclude this chapter by very briefly comparing the configuration ensemble
approach to quantum-classical interactions with the mean-field approach men-
tioned in Sect. 9.1. The idea of the latter approach is very simple [1, 2], and sev-
eral equivalent reformulations and extensions of the approach have recently been
given [3, 40, 41].

In particular, in the mean-field approach the classical system is described at any
time by a single point (x, p) in a 2n-dimensional classical phase space, and the
quantum system by a wave function ψQ(q) ≡ 〈q|ψQ〉 on a quantum Hilbert space.
Evolution of the hybrid system is described via a Hamiltonian operator Ĥ(x, p),
parameterised by the classical coordinates, with

ẋ = ∇p〈ψQ|Ĥ(x, p)|ψQ〉, ṗ = −∇x〈ψQ|Ĥ(x, p)|ψQ〉, i�
∂

∂t
|ψQ〉 = Ĥ(x, p)|ψQ〉.

(9.67)

Thus, the classical particle sees a classicalHamiltonian corresponding to the averaged
quantum Hamiltonian. Significantly, the classical particle follows a deterministic
trajectory in phase space, rather than being described by an ensemble on configura-
tion space.



9.6 Comparisons with Mean-Field Approach 217

Observables To compare the two approaches, it is necessary to define observables
for the mean-field approach [3, 41]. We will do this in a way that facilitates the
comparison. In particular, define the quantum configuration ensemble (PQ, SQ) via
the polar decompositionψQ = P1/2

Q eiSQ/� of the wave function. Observables are then
functionals A[PQ, SQ, x, p] with a corresponding Poisson bracket

{A,B}MF :=
∫

dq

[
δA

δPQ

δB

δSQ
− δB

δPQ

δA

δSQ

]
+ ∇xA · ∇pB − ∇pA · ∇xB. (9.68)

The above evolution equations are then equivalent to

ẋ = {x,H }MF, ṗ = {p,H }MF,
∂PQ

∂t
= {PQ,H }MF,

∂SQ
∂t

= {SQ,H }MF,

(9.69)

with Hamiltonian
H [PQ, SQ, x, p] := 〈ψQ|Ĥ(x, p)|ψQ〉. (9.70)

It is natural to define the classical and quantum observables by

C̃MF
f [PQ, SQ, x, p] :=

∫
dq PQ f (x, p), Q̃MF

M̂
[PQ, SQ, x, p] := 〈ψQ|M̂|ψQ〉,

(9.71)

for arbitrary phase space functions f (x, p) and Hermitian operators M̂. It is then easy
to show that [3]

{C̃MF
f , C̃MF

g } = C̃MF
{f ,g}, {Q̃MF

M̂
, Q̃MF

N̂
} = Q̃MF

[M̂,N̂]/i�, (9.72)

analogously to Eq. (9.8) for classical and quantum observables in the configuration
ensemble formalism.

Dynamical Bracket Versus Homogeneity and Weak Values If the set of mean-
field observables is closed under the Poisson bracket, then from Eq. (9.72) the two
minimal conditions imposed on the dynamical bracket in Sect. 9.2.1 will be satisfied.
However, the mean field approach must also include observables of the form of H
above, so as to allow interactions between the classical system and the quantum
ensemble; i.e., it must also include observables of the form [3]

A[PQ, SQ, x, p] =
{
〈ψQ|M̂(x, p)|ψQ〉, 〈ψQ|N̂(x, p)|ψQ〉

}
MF

= (i�)−1〈ψQ|[M̂(x, p), N̂(x, p)]|ψQ〉
+ (∇x〈ψQ|M̂(x, p)|ψQ〉) · (∇p〈ψQ|N̂(x, p)|ψQ〉)
− (∇p〈ψQ|M̂(x, p)|ψQ〉) · (∇x〈ψQ|N̂(x, p)|ψQ〉). (9.73)
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The last two terms imply that

A[λPQ, SQ, x, p] �= λA[PQ, SQ, x, p] (9.74)

in general, in contrast to the configuration ensemble scaling property in Eq. (9.4).
Violation of the homogeneity property raises significant issues: it implies that observ-
ables do not have a general interpretation as expectation values (see Sect. 1.4.3); that
they scale nonlinearly under a ‘collapse’ of the wave function from ψQ to λψQ; and
also that weak values cannot be defined in general (see Sect. 2.4.2).

Ehrenfest relations It is straightforward to check that the analogue of the hybrid
Ehrenfest relations in Eq. (9.13) also hold for themean-field theory [3, 41]. Thus both
approaches imply a well defined classical limit, and that the oscillator benchmark
for hybrid theories is satisfied (see Sect. 9.3).

Strong separability It follows directly from Eq. (9.73) that [3]

{C̃MF
f , Q̃MF

M̂
}MF = (i�)−1〈[ψQ|f (x, p)1̂, M̂]|ψQ〉 = 0. (9.75)

Hence strong separability is guaranteed in the mean-field approach, in contrast to
the configuration-ensemble approach, thus automatically evading issues of nonlocal
energy flows and nonlocal signaling (see Sect. 9.4).

MeasurementAs remarked in the introduction to this chapter (see also Sect. 8.5), the
mean-field approach is unable to correlate a classical pointer with the eigenvalues of a
quantumobservable, as the equations ofmotion imply that the pointer observablewill
always evolve deterministically to the same final value, for a given initial quantum
wave functionψQ. Thus, unlike the configuration ensemble approach, the mean-field
approach cannot couple quantum fluctuations into correlated classical observables,
limiting its applicability as a fundamental theory.
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Classical Gravitational Fields and Their

Interaction with Quantum Fields



Chapter 10
Ensembles of Classical Gravitational Fields

Abstract We define ensembles on configuration space for classical gravitational
fields that obey the Einstein equations. Our starting point is the Hamilton–Jacobi
formulation of general relativity. After a brief review of the Einstein–Hamilton–
Jacobi equation in the metric representation, we introduce the additional mathemati-
cal structure that is needed to formulate the theory of configuration space ensembles;
i.e., a measure over the space of metrics and a probability functional. Then we define
an appropriate ensemble Hamiltonian for the gravitational field, show that it leads
to the correct equations, and recover the Einstein equations in the usual formula-
tion. In addition, we show that the formalism of ensembles on configuration space
provides a novel approach to solving the reconstruction problem; i.e., the derivation
of the full set of Einstein equations from a Hamilton–Jacobi formulation of grav-
ity. Having derived the equations for the general case, we move on to the simpler
case of spherical symmetric spacetimes and derive the corresponding equations for
midisuperspace models of spherically symmetric gravity. We consider the example
of classical ensembles of black holes in this midisuperspace approximation.

10.1 Introduction

This chapter and the one that follows are devoted to gravity. We already intro-
duced ensembles on configuration space for general relativistic gravitational fields
in Chap.5. There we considered the problem of quantization via an exact uncertainty
principle and showed that this quantization procedure leads in the case of gravity
to the Wheeler–DeWitt equation with a specific operator ordering. Now we look at
other applications of the formalism. In this chapter we develop the theory of classical
ensembles of gravitational fields and in Chap.11 we consider hybrid systems where
quantum matter fields and classical gravitational fields interact.

We will see that classical ensembles of gravitational fields are interesting in their
own right.However, there is an additional reason for developing the theoryof classical
ensembles: namely, as preparation for the physical systems that we discuss in the
next chapter, in which quantum matter fields couple to classical gravitational fields.
The main motivation for studying such hybrid systems is the lack of a full theory of
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quantum gravity. As we discuss in more detail in the introduction to the next chapter,
one would like to see to what extent a hybrid system may provide a consistent,
satisfactory description of matter and gravitation. There is also the possibility that
the gravitational field may not be quantum in nature, in which case hybrid models
become unavoidable.

The most direct way of introducing ensembles of classical gravitational fields is
via the Hamilton–Jacobi formulation of general relativity. This is the route that we
follow in this chapter. We first write down the Einstein–Hamilton–Jacobi equation
in the metric representation and afterwards introduce some additional mathematical
structure, a measure over the space of metrics and a probability functional. Then we
define an appropriate ensemble Hamiltonian for the gravitational field, show that it
leads to the correct equations, and recover the Einstein equations in the usual formu-
lation. Having derived the equations for the general case, we move on to the simpler
case of spherical symmetric spacetimes and derive the corresponding equations for
midisuperspace models of spherically symmetric gravity. Finally, in the last section
of this chapter, we consider the example of classical ensembles of black holes.

10.2 Einstein–Hamilton–Jacobi Equation and Ensembles
for Classical Gravitational Fields

General relativity provides a geometrical formulation of gravity. In the standard
approach, the geometry of four-dimensional space-time is determined by the Einstein
equations. An alternative, perhaps less familiar way of deriving this geometry is via
the Einstein–Hamilton–Jacobi equation [1, 2], first proposed by Peres [3]. As the
Einstein–Hamilton–Jacobi equation provides the most direct way of introducing
ensembles of classical gravitational fields on configuration space (see Sect. 5.4.4),
we first review this formulation.

10.2.1 Einstein–Hamilton–Jacobi Equation

The Hamilton–Jacobi formulation of general relativity is based on a 3+1 decom-
position of space-time and results in equations for a functional S[hij], where hij is
the metric of the space-like hypersurface. To define this hypersurface, consider a
four-dimensional space-time with metric gμν ,

ds2 = gμνdx
μdxν μ, ν = 0, 1, 2, 3 x0 ≡ t. (10.1)

The space-time metric gμν can be written in the form

gμν =
[
g00 g0j
gi0 gij

]
=

[−N2 + NjNj Nj

Ni hij

]
(10.2)
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where N and Nj are known as the shift function and lapse vector. The line element
on any hypersurfaces defined by a constant x0 is given by ds2|dx0=0 = hijdxidxj, thus
the metric induced on the space-like hypersurface is given by hij, as required.

A Hamilton–Jacobi formulation for the gravitational field can be defined in terms
of the functional equations [1, 2]

H = κGijkl
δS

δhij

δS

δhkl
− 1

κ

√
h (R − 2λ) = 0, (10.3)

Hi = Dj

(
δS

δhkj

)
= 0, (10.4)

where κ = 16π (in units where both the speed of light c and the gravitational
constant G are equal to one, c = G = 1), Gijkl = (2h)−1/2 (

hikhjl + hilhjk − hijhkl
)
is

the DeWitt supermetric [1], h is the determinant of hij, R is the curvature scalar, λ is
the cosmological constant, and Dj is the spatial covariant derivative.

The momentum constraints, Eq. (10.4), are equivalent to requiring invariance of
the Hamilton–Jacobi functional S under spatial coordinate transformations [4]. To
show this, consider an infinitesimal change of coordinates xk → xk + εk (x) and the
corresponding transformation of themetric, hkl → hkl−(Dkεl + Dlεk). The variation
of S can be expressed as

δεS =
∫

d3x
δS

δhkl
δhkl =

∫
d3x

[
Dk

(
δS

δhkl

)
εl + Dl

(
δS

δhkl

)
εk

]
, (10.5)

where in the second equality we used δhkl = − (Dkεl + Dlεk) and carried out an
integration by parts. This shows that δεS = 0 requires

Dk

(
δS

δhkl

)
= 0, (10.6)

which is Eq. (10.4). Therefore, instead of basing the Hamilton–Jacobi theory of the
gravitational field on Eqs. (10.3) and (10.4), we can give an equivalent formulation
in which we keep Eq. (10.3), ignore Eq. (10.4), and require that S be invariant under
the gauge group of spatial coordinate transformations. We will follow this approach
here. One can show that S is also required to satisfy the condition [5]

∂S

∂t
= 0 (10.7)

and that there are no further constraints.
The Einstein–Hamilton–Jacobi equation, Eq. (10.3), is actually an infinite number

of equations, one per three-dimensional point. As pointed out by Giulini [6], it is
possible to introduce an alternative viewpoint in which Eq. (10.3) is regarded as an
equation to be integratedwith respect to a “test function” inwhich casewe are dealing
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with one equation for each choice of lapse function N ,

∫
d3x NH = 0; (10.8)

i.e., for each choice of foliation [6, 7]. Such an alternative viewpoint is extremely
useful when searching for solutions: although it may be impossible to find the gen-
eral solution (which requires solving the Einstein–Hamilton–Jacobi equation for all
choices of lapse functions), it may be possible to find particular solutions for specific
choices; for example, the choice S ∼ ∫

d3x
√
h is a solution that describes de Sitter

spacetime in a flat foliation [7].
We have seen that a solution of the Einstein–Hamilton–Jacobi equation H = 0

is a functional S[hkl] of the metric hkl on a three dimensional space-like hypersur-
face. How do you get to a four-dimensional spacetime and show invariance under
spacetime coordinate transformations? This problem, which is known as the recon-
struction problem, is discussed in Appendix 1 of this chapter. One can show that hkl
satisfies the rate equation

∂hij
∂t

= NGijkl
δS

δhkl
+ DiNj + DjNi, (10.9)

where the lapse function N and the shift function Nj are arbitrary functions of the
coordinates. Different choices of N and Nj correspond to different choices of gauge
(i.e., different choices of coordinates for the metric of the four-dimensional space-
time). In Appendix 1 of this chapter, we derive this equation in the standard way
by embedding the hypersurface in a four-dimensional spacetime [8]. Gerlach has
shown that it can also be derived from the Einstein–Hamilton–Jacobi formalism [4].
Below, we will show that Eq. (10.9) follows from the formalism of ensembles on
configuration space in a natural way.

10.2.2 Measure and Probability

To define classical ensembles for gravitational fields, it is necessary to introduce
some additional mathematical structure: a measure Dh over the space of metrics
hkl and a probability functional P [hkl]. We follow the exposition of Appendix B of
Ref. [9].

A standard way of defining the measure [10, 11] is to introduce an invariant norm
for metric fluctuations that depends on a parameter ω,

‖δh‖2 =
∫

dnx [h (x)]ω/2 Gijkl [h(x);ω] δhijδhkl (10.10)
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where n is the number of dimensions (in our case, n = 3) and

Gijkl = 1

2
[h (x)](1−ω)/2 [

hikhjl + hilhjk + λhijhkl
]

(10.11)

is a generalization of the inverse of the DeWitt supermetric (in [10] the particular
case ω = 0 is considered). This norm induces a local measure for the functional
integration given by

∫
dμ [h] =

∫ ∏
x

[detG (h (x))]1/2
∏
i≥j

dhij (x) . (10.12)

For the expression given in Eq. (10.11),

detG (h (x)) ∝
(
1 + 1

2
λn

)
[h (x)]σ , (10.13)

where σ = (n + 1) [(1 − ω) n − 4] /4 (one needs to impose the condition λ 	=
−2/n, otherwise the measure vanishes). Therefore, up to an irrelevant multiplicative
constant, the measure takes the form

∫
dμ [h] =

∫ ∏
x

[√
h (x)

]σ ∏
i≥j

dhij (x) . (10.14)

Without loss of generality, one may set Dh equal to dμ [h] (i.e., one may set ω = 0,
which in turn implies σ = 0), since a term of the form

[√
h (x)

]σ
may be absorbed

into the definition of P [hkl]. This choice leads to the DeWitt measure for pure gravity
in a four-dimensional space-time.

The probability functional P[hkl] has to satisfy certain conditions. It is natural to
require that

∫
Dh P be invariant under the gauge group of spatial coordinate trans-

formations. Since the family of measures defined by Eq. (10.14) is invariant under
spatial coordinate transformations [11, 12], the invariance of

∫
Dh P leads to a con-

dition on P that is similar to the one required of S. To show this, consider again an
infinitesimal change of coordinates x′k = xk + εk (x) and the corresponding trans-
formation of the metric, hkl → hkl − (Dkεl + Dlεk). The variation of

∫
Dh P can be

expressed as

δε

∫
Dh P =

∫
Dh

∫
d3x

[
Dk

(
δP

δhkl

)
εl + Dl

(
δP

δhkl

)
εk

]
. (10.15)

Therefore, δε

∫
DhP = 0 requires

Dk

(
δP

δhkl

)
= 0, (10.16)
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i.e., the gauge invariance of P. In addition to Eq. (10.35), it will be assumed that

∂P

∂t
= 0 (10.17)

also holds, analogous to the condition for S given by Eq. (10.7).
Finally, it should be pointed out that one must factor out the infinite diffeomor-

phism gauge group volume out of the measure, to calculate finite averages using
the measure Dh and the probability functional P. This can be achieved by fixing a
particular gauge when carrying out the calculation of averages. This issue will not
be discussed further here because it does not affect the derivation of the equations of
motion which we discuss in the next section.

10.2.3 Classical Ensemble Hamiltonian for the Gravitational
Field

An appropriate ensemble Hamiltonian for the gravitational field is given by [13]

H =
∫

d3x N
∫

Dh PH, (10.18)

where H is given by Eq. (10.3) and N is the lapse function that appears in Eq. (10.2),
with corresponding equations of motion

∂P

∂t
= ΔH

ΔS
,

∂S

∂t
= −ΔH

ΔP
, (10.19)

where Δ/ΔF denotes the variational derivative with respect to the functional F (see
Appendix A of this book). With ∂S

∂t = ∂P
∂t = 0, the equations of motion take the form

∫
d3x N [H] = 0, (10.20)

and ∫
d3x N

[
δ

δhij

(
NPGijkl

δS

δhkl

)]
= 0. (10.21)

Equation (10.20) is the Einstein–Hamilton–Jacobi equation and Eq. (10.21) a conti-
nuity equation. If we assume that N is an arbitrary function of the coordinates, the
terms in square brackets must vanish and Eq. (10.20) reduces to Eq. (10.3), the usual
form of the Einstein–Hamilton–Jacobi equation.
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10.2.4 Rate Equation for the Metric Field

We consider solutions of Eq. (10.21) that are valid when N is an arbitrary function of
the coordinates. Keeping in mind that ∂P

∂t = 0, the most general rate equation for the
metric hij consistent with the interpretation of Eq. (10.21) as a continuity equation is
of the form

δhij =
(

αGijkl
δS

δhkl
+ δεhij

)
δt (10.22)

for some arbitrary function α. We have include the term δεhij = − (
Diεj + Djεi

)
which allows for gauge transformations of hkl, which is permitted because the gauge
transformations are assumed to leave

∫
DhP invariant, as discussed before. In other

words, the most general infinitesimal change δhij of hij will be a combination of
motion along the “velocity field” Gijkl

δS
δhkl

and a gauge transformation. This leads to
the rate equation for hkl in its standard form,

∂hij
∂t

= NGijkl
δS

δhkl
+ DiNj + DjNi, (10.23)

where we have written N and Nj in place of α and −εj to agree with the usual nota-
tion. Equation (10.23) is identical to the equation derived from the ADM canonical
formalism provided N is identified with the lapse function and Nk with the shift
vector [8].

This shows that there is a natural, well defined intrinsic concept of time in the
formalism. It appears as a consequence of the continuity equation. We will see in the
next chapter that this concept of time is still valid for hybrid systems that describe
quantum fields interacting with a classical gravitational field.

It is remarkable that the rate equation for the metric, Eq. (10.23), can be shown
to be a direct consequence of applying the theory of ensembles on configuration
space to classical general relativity. The derivation presented here is related to the
one carried out by Gerlach for pure gravity using a Hamilton–Jacobi formulation [4].
Gerlach’s derivation, however, is much more involved than ours. In part, this is due
to the fact that we have at our disposal mathematical structure which goes beyond
the Einstein–Hamilton–Jacobi equation, namely the additional concepts, introduced
in the previous sections, which are needed for the description of ensembles of grav-
itational fields.

The equations that determine an ensemble of gravitational fields are
• The Einstein–Hamilton–Jacobi equation.
• The continuity equation.
• The rate equation for the metric field.
There is a well defined, intrinsic concept of time which derives from the con-
tinuity equation.
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10.3 Spherically Symmetric Gravity

Finding solutions of the Einstein–Hamilton–Jacobi equation can be very difficult.
Therefore, when dealing with specific problems, it is convenient to consider whether
there are any symmetries that can simplify the formulation of the problem. This leads
in general to midisuperspace models or, in the case in which the symmetries are used
to get rid of all field degrees of freedom, to minisuperspace models. Ensembles on
configuration space can be defined for bothmidisuperspace andminisuperspacemod-
els. In this section, we consider the case of spherical symmetry and the corresponding
equations for the midisuperspace model.

In the case of spherical symmetry, the line element may be written in the form

gμνdx
μdxν = −N2dt2 + Λ2 (dr + Nrdt)

2 + R2dΩ2. (10.24)

The lapse functionN and the shift functionNr are functions of the radial coordinate r
and the time coordinate t. The configuration space for the gravitational field consists
of two fields, R and Λ. Under transformations of r, R behaves as a scalar and Λ as
a scalar density. Spherically symmetric gravity is discussed in detail in a number of
papers,mostly in reference to the canonical quantizationof blackhole spacetimes. For
discussions using themetric representation, see for example [14–16]. For discussions
of the Einstein–Hamilton–Jacobi equation in the context of theWKB approximation
of quantized spherically symmetric gravity, see for example [17, 18].

We set c = G = 1 as before. The Einstein–Hamilton–Jacobi equation for the case
of vacuum gravity takes the form HΛR = 0 with

HΛR = − 1

R

δS

δR

δS

δΛ
+ Λ

2R2

(
δS

δΛ

)2

+ V , (10.25)

where

V = RR′′

Λ
− RR′Λ′

Λ2
+ R′2

2Λ
− Λ

2
. (10.26)

It follows from Eq. (10.25) that there is an inverse supermetric in the space of fields
R, Λ given by

Gab[R,Λ] =
(

0 − 1
2R

− 1
2R

Λ
2R

)
, (10.27)

where a, b range over {r, t}, and therefore that the determinant of Gab satisfies
det|G| ∼ R2. The momentum constraint takes the form

δS

δR
R′ − Λ

(
δS

δΛ

)′
= 0 (10.28)
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where primes indicate derivatives with respect to r. Wewill assume that S is invariant
under diffeomorphisms and thus that it automatically solves the momentum con-
straint.

An appropriate ensemble Hamiltonian for spherically symmetric gravity is given
by

H =
∫

dr N
∫

dμ [R,Λ] PHΛR. (10.29)

If we apply Eq. (10.12) with
√
det|G| ∼ R, we get the measure dμ [R,Λ] =

RDRDΛ. However, as we pointed out before, any function of the fields that appears
as a multiplicative factor in the measure may be absorbed into the definition of P.
We make this choice and define the measure by

dμ [R,Λ] = DRDΛ, (10.30)

with the understanding that the multiplicative factor R has been absorbed into the
definition of P.

With ∂S
∂t = ∂P

∂t = 0, and assuming N is an arbitrary function of the coordinate r,
the equations of motion derived from the ensemble Hamiltonian of Eq. (10.29) are
Eq. (10.25), the Einstein–Hamilton–Jacobi equation,

HΛR = − 1

R

δS

δR

δS

δΛ
+ Λ

2R2

(
δS

δΛ

)2

+ V = 0, (10.31)

and the continuity equation

δ

δR

(
P
1

R

δS

δΛ

)
+ δ

δΛ

(
P
1

R

δS

δR
− P

Λ

R2

δS

δΛ

)
= 0. (10.32)

In the case of spherical gravity, it is also possible to derive rate equations for
the fields from the continuity equation. The analysis is similar to that we presented
in the previous section when we considered the general case. The interpretation of
Eq. (10.32) as a continuity equation is consistent with the rate equations

Ṙ = −N
1

R

δS

δΛ
+ δεR,

Λ̇ = −N

(
P
1

R

δS

δR
+ P

Λ

R2

δS

δΛ

)
+ δεΛ,

(10.33)

where N is an arbitrary function and δεR and δεΛ are infinitesimal transformations
of the fields which leave the integral of the probability

∫
DRDΛP invariant.

To derive explicit forms for δεR and δεΛ, we will require that P be invariant under
coordinate transformations. ThenP satisfies a constraint equivalent to themomentum
constraint satisfied by S,
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δP

δR
R′ − Λ

(
δP

δΛ

)′
= 0. (10.34)

If we nowmultiply this expression by an arbitrary functionNr , integrate with respect
to the fields and coordinates, and do an integration by parts, we get

∫
dr

∫
DRDΛ

[
δP

δR
NrR

′ + δP

δΛ
(NrΛ)′

]
= 0, (10.35)

while if we do a gauge transformation that leaves
∫
DRDΛP invariant, we must

have

δε

∫
dr

∫
DRDΛP =

∫
dr

∫
DRDΛ

[
δP

δR
δεR + δP

δΛ
δεΛ

]
= 0 (10.36)

Therefore, we can identify

δεR = NrR
′, (10.37)

δεΛ = (ΛNr)
′ , (10.38)

which leads to

Ṙ = −N

R

δS

δΛ
+ NrR

′, (10.39)

Λ̇ = −N

R

δS

δR
+ Λ

R2

δS

δΛ
+ (ΛNr)

′ . (10.40)

These are the correct expressions for the rate equations for spherical gravity as
derived using the Hamiltonian formalism [15]. However, here they have been derived
directly from the formalism of ensembles in configuration space.

Ensemble of gravitational fields may be defined for the case of simplified
midisuperspace models like spherically symmetric gravity.

10.4 Ensembles of Black Holes

As an example of configuration space ensembles in spherical gravity, we consider
ensembles of black holes. We will restrict to non-rotating, uncharged black holes,
which are characterized by only one parameter, the mass of the black hole.

The Hamilton–Jacobi formulation for black holes has been discussed in detail in
the context of the WKB approximation of quantized spherically symmetric gravity,
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for example in Refs. [17, 18]. One remarkable feature is the existence of a general
solution of the Einstein–Hamilton–Jacobi equation that can bewritten in closed form.

To derive this general solution, it will be convenient to simplify the constraint
equationHΛR = 0 of spherical gravity so that we end up with an equivalent equation
that is independent of δS

δR . To do this, we use the momentum constraint and write δS
δR

as
δS

δR
= Λ

R′

(
δS

δΛ

)′
. (10.41)

If we make this substitution in HΛR and multiply HΛR by R′/Λ, we get the equation

R′

Λ
HΛR =

[
− 1

2R

(
δS

δΛ

)2

+ RR′2

2Λ2
− R

2

]′
= 0, (10.42)

or, equivalently,
1

R

(
δS

δΛ

)2

− RR′2

Λ2
+ R = 2m, (10.43)

where m is an integration constant. We now solve for δS
δΛ

and define

Q[R,Λ] := δS

δΛ
= R

√
R′2

Λ2
+ 2m

R
− 1. (10.44)

Equation (10.43) is a functional differential equations that is solved by [18]

S =
∫

dr

⎧⎨
⎩ΛQ − RR′ cosh−1 R′

Λ

√
1 − 2m

R

⎫⎬
⎭ . (10.45)

It is straightforward to check that S satisfies both the Hamiltonian and momentum
constraints. In this way, we arrive at a general solution which is valid for all choices
of gauge. The corresponding momenta are given by

δS

δΛ
= Q, (10.46)

δS

δR
= 1

Q

[
Λ(m − R) + R

(
RR′

Λ

)′]
. (10.47)

To describe an ensemble of black holes, it is necessary to define a probability
functional P. This P has to be a solution of the continuity equation, but it is exceed-
ingly difficult to find a P that solves the continuity equation with this choice of S.
Therefore, instead of the general solution, Eq. (10.45), we will consider a particular
solution that is valid for a particular slicing condition (i.e., choice of N and Nr).
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We will assume Gaussian coordinate conditions, which amounts to setting N = 1
andNr = 0. These conditions correspond to a particular gauge choice, made possible
by the invariance of general relativity under arbitrary coordinate transformations. As
shown in Appendix 2 of this chapter, the choice of Gaussian coordinate conditions
leads to a particular form for themetric of a black hole, known as the Lemaîtremetric,
and the rate equations in these coordinates leads to a very simple relation between R
and Λ,

Λ = R′. (10.48)

One can check that this relation implies that the potential term defined in Eq. (10.26)
satisfies V = 0, thus only the kinetic energy term of the Hamiltonian constraint
remains. This leads to a great simplification of the constraints, which now take the
form

− 1

R

δS

δR

δS

δΛ
+ Λ

2R2

(
δS

δΛ

)2

= 0,
δS

δR
R′ − Λ

(
δS

δΛ

)′
= 0. (10.49)

It is straightforward to check that both of these equations are solved by the choice

S =
∫

dr
√
RΛ. (10.50)

This is the functional S which solves the constraint equations for the special case of
Gaussian coordinate conditions. Notice that now the mass m of the black hole does
not appear explicitly in the expression for S, Eq. (10.50).

If we use this expression for S in the continuity equation, we get

δ

δR

(
P

1√
R

)
− δ

δΛ

(
P

Λ

2R
√
R

)
= 0. (10.51)

The equation is singular sowe replace it by the equivalent but better behaved equation

∫
dr Φ

{
δ

δR

(
P

1√
R

)
− δ

δΛ

(
P

Λ

2R
√
R

)}
= 0. (10.52)

where Φ(r) is a test function. Keeping in mind that Φ is arbitrary and P must be
invariant under coordinate transformations, the general solution is given by

P ∼ RΠ [μ]. (10.53)

where Π is an arbitrary function of the variable μ which is defined by

μ = 1

V

∫
dr

√
RΛ. (10.54)
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for some constant V . One can check that P is a scalar, as required, because both R
and μ are scalars.

As wementioned in the previous section, when we defined the measure according
to Eq. (10.30) we absorbed a multiplicative factor R into the definition of P. If we
now undo this, we end up with Π [μ] as the natural probability functional. As shown
in Appendix 2 of this chapter, RΛ2 = 2m. We can make the numerical value of
μ finite by setting V = ∫

dr, in which case the numerical value of μ is given by
μ = √

2m.
Thus the probability functional Π [μ] depends solely on the mass of the black

hole, that is, on the one parameter that determines the space-time completely. This is
a very satisfying result: the ensemble is composed of black holes of different masses,
with probabilities determined by Π [μ].

Appendix 1: The Reconstruction Problem

Given a solution of the Einstein–Hamilton–Jacobi equation; i.e., {hkl,N,Ni, S}
defined on a three-dimensional space-like hypersurface, how do you go to a four-
dimensional spacetime? This problem is known as the reconstruction problem. We
will look into this now, paying particular attention to the issue of general covariance.
We follow closely the presentation of Wald [8].

Assume that the hypersurface can be embedded into a four-dimensional space-
time with metric gμν ,

ds2 = gμνdx
μdxν μ, ν = 0, 1, 2, 3 x0 ≡ t. (10.55)

The space-time metric gμν can be written in the form

gμν =
[
g00 g0j
gi0 gij

]
=

[−M2 + MjMj Mj

Mi hij

]
(10.56)

where theM,Mj are arbitrary functions (later they will be related to the shift function
and lapse vector). Then, the line element on any hypersurfaces defined by constant
t is given by ds2|dt=0 = hijdxidxj, which means that the metric induced on the
hypersurface is indeed given by the spatial metric hij.

The extrinsic curvature Kij of the hypersurface is defined by [8]

Kij = 1

2M

(
∂hij
∂t

− DiMj − DjMi

)
(10.57)

or
∂hij
∂t

= 2MKij + DiMj + DjMi, (10.58)
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while the rate equation is of the form

∂hij
∂t

= NGijkl
δS

δhkl
+ DiNj + DjNi. (10.59)

Therefore, the embedding into the four-dimensional space-time is consistent with
the equations on the hypersurface if we identify

M = N, (10.60)

Mi = Ni, (10.61)

2Kij = Gijkl
δS

δhkl
, (10.62)

or, equivalently [8],

δS

δhij
= √

h(hijK − Kij), (10.63)

hij
δS

δhij
= 2

√
hK . (10.64)

In terms of the extrinsic derivative, the constraint equations and the rate equations
take the form

H = 1

2
Gijkl

δS

δhij

δS

δhkl
− √

hR = Kij

√
h

(
Kij − Khij

) − √
hR (10.65)

= −√
h

[
K2 − KijKij + R

] = 0, (10.66)

Hi = −2Dj

(
hik

δS

δhkj

)
= −4

√
hDjK = 0, (10.67)

Kij = 1

2N

(−ḣij + DiNj + DjNi
)
. (10.68)

The next step is to show that this leads to equations that are invariant not only
under spatial coordinate transformations, but also under more general space-time
coordinate transformations. To do this, we introduce the following four-vectors and
four-tensors [8]: Denote the unit normal nμ to the hypersurface by

nμ = (0, 0, 0,−N) , (10.69)

nμ = (−Nk/N, 1/N
)
, (10.70)

and the projection tensor hμν by

hμν = gμν + nμnν . (10.71)
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The extrinsic curvature Kα
β can be written in terms of hμν and nμ as

Kα
β = hμ

α∇μnβ, (10.72)

and it satisfies
Kα

β n
β = 0. (10.73)

The 3-space components of hμν and Kαβ agree, of course, with hij and Kij.
With the help of these quantities, one can show that [8]

Gμνn
μnν = 1

2

[
K2 − KαβKαβ + R

]
, (10.74)

hμ
αGμνn

ν = DβK
β
α − DαK, (10.75)

where Gμν ≡ Rμν − 1
2Rgμν is the Einstein tensor. Therefore

H = 0 ⇔ Gμνn
μnν = 0, (10.76)

Hi = 0 ⇔ hμ
αGμνn

ν = 0, (10.77)

which means that the constraint equations have been rewritten in a way that shows
explicitly that they are invariant under space-time coordinate transformations. Fur-
thermore, the rate equation is nothing else but the definition of the extrinsic curvature,
which can also be expressed in an invariant way, Kα

β = hμ
α∇μnβ .

This shows that we can take the equations originally defined on the hypersurface
and rewrite them as equations that are invariant under space-time coordinate trans-
formations. The reverse is also true: given the equations in space-time, we can do a
splitting of space and time and recover the equations defined on the hypersurface. In
otherwords, we have shown general covariance even though the formalismwe started
with was only required to be invariant under spatial coordinate transformations.

Appendix 2: Lemaître Coordinates From Gaussian
Coordinate Conditions

We introduce Lemaître coordinates for the Schwarzschild black hole, discuss their
physical interpretation, and show that they follow from assuming Gaussian coordi-
nate conditions.
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Physical Interpretation of the Lemaître coordinates

We follow the presentation of Stephani [19]. We start with the metric of a black hole
in Schwarzschild coordinates,

ds2Sch = −
(
1 − 2m

R

)
dT 2 + dR2

1 − 2m
R

+ R2dΩ2, (10.78)

where dΩ2 = dθ2 + sin2 θdφ2. Consider now the motion of test particles which
fall freely and radially (i.e., dθ = dφ = 0). The equations of motion can be derived
from the Lagrangian

L = 1

2
gμν

dxμ

dτ

dxν

dτ
, (10.79)

with dθ = dφ = 0, where τ is the proper time. The Lagrangian takes the form

L = −
(
1 − 2m

R

) (
dT

dτ

)2

+ 1

1 − 2m
R

(
dR

dτ

)2

. (10.80)

Since T is a cyclic coordinate, we get the conservation equation

(
1 − 2m

R

)
dT

dτ
= A = const. (10.81)

To get a second conservation equation, we use gμν
dxμ

dτ
dxν

dτ
= −1 and dθ = dφ = 0,

which leads to

−
(
1 − 2m

R

) (
dT

dτ

)2

+ 1

1 − 2m
R

(
dR

dτ

)2

= −1. (10.82)

Combining these two last two equations, we get

dR

dτ
= −

√
A2 −

(
1 − 2m

R

)
, (10.83)

wherewe have chosen the negative sign of the square root becausewe are considering
particles that fall radially into the black hole. Therefore we have the two relations

dT = A(
1 − 2m

R

)dτ, (10.84)

dR = −
√
A2 −

(
1 − 2m

R

)
dτ. (10.85)
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We set A = 1, which corresponds to the case of particles that are at rest at infinity
since

dT (R → ∞;A = 1) = dτ, (10.86)

dR (R → ∞;A = 1) = 0. (10.87)

The Lemaître coordinates are defined in terms of new time and radial coordinates
t and r which satisfy dt(T ,R) = dτ and dr = 0 with A = 1. To achieve this, we set

dt = dT +
√
2m

R

dR(
1 − 2m

R

) , (10.88)

dr = dt +
√

R

2m
dR = dT +

√
R

2m

dR(
1 − 2m

R

) . (10.89)

One can check that the two conditions dt = dτ and dR = 0 are satisfied. We
can integrate the relations for dt and dR and find explicit forms for the coordinate
transformation,

t(T ,R) = T + 2
√
2mR + 2m log

∣∣∣∣∣
√
R − √

2m√
R + √

2m

∣∣∣∣∣ , (10.90)

R(r, t) =
[
(r − t)

3
√
2m

2

]2/3

. (10.91)

The line element of the Schwarzschild black hole metric in Lemaître coordinates
takes the form

ds2L = −dt2 + 2m

R
dr2 + R2dΩ2

= −dt2 + 4

9

(
9M

2

)2/3

(r − t)−2/3dr2 +
(
9M

2

)2/3

(r − t)4/3dΩ2. (10.92)

The Lemaître coordinates therefore have the following physical interpretation:
the coordinate t corresponds to the proper time for particles which are at rest in
the Lemaître coordinate system. Furthermore, dR = dθ = dφ = 0 holds for those
particles which are initially at rest at infinity and then fall freely and radially.
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Derivation of the Lemaître Coordinates From Gaussian
Coordinate Conditions

We now derive the Lemaître coordinates fromGaussian coordinate condition,N = 1
and Nr = 0.

Using the rate equations with N = 1 and Nr = 0 and the momentum constraint,
we can write Ṙ′ as

Ṙ′ =
[
− 1

R

δS

δΛ

]′

= R′

R2

δS

δΛ
− 1

R

(
δS

δΛ

)′

= R′

R2

δS

δΛ
− 1

R

R′

Λ

δS

δR

= R′

Λ

[
− 1

R2

(
R

δS

δR
− Λ

δS

δΛ

)]

= R′

Λ
Λ̇. (10.93)

This is a differential equation involving R and Λ which has solution

Λ = f (r)R′, (10.94)

where f is an arbitrary function of r.
We candetermine f from the equation for Ṙ.Wefirst calculate Ṙ2 usingEq. (10.94),

which leads to

Ṙ2 =
(
1

R
Q

)2

= f 2 + 2m

R
− 1. (10.95)

Taking the time derivative leads to a differential equation for R,

2ṘR̈ = −2m

R2
Ṙ, (10.96)

which has solution

R =
(
9m

2

)1/3

[ρ (r) − t]2/3 (10.97)

for some arbitrary function ρ of r. Then, to find f , we evaluate the expression for Ṙ2

again, this time using Eqs. (10.95) and (10.97),
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Ṙ2 =
(
4m

3

)2/3

(ρ − t)−2/3

= f 2 + 2m

R
− 1

= f 2 + 2m

[(
9m

2

)−1/3

(ρ − t)−2/3

]
− 1

=
(
4m

3

)2/3

(ρ − t)−2/3 + (
f 2 − 1

)
, (10.98)

which forces f = ±1 so that Λ = ±R′ or

Λ2 = R′2. (10.99)

We now show that we end up with the Lemaître coordinates regardless of the
choice of ρ, so we can simply set ρ = r. To see this, use

R =
(
9m

2

)1/3

(ρ − t)2/3 , Λ = ±2

3

(
9m

2

)1/3

(ρ − t)−1/3 ρ ′, (10.100)

and write down the line element with N = 1 and Nr = 0,

ds2 = −dt2 + Λ2dr2 + R2dΩ2

= −dt2 + 4

9

(
9m

2

)2/3
(ρ − t)−2/3 (

ρ′dr
)2 +

(
9m

2

)2/3
(ρ − t)4/3 dΩ2

= −dt2 + 4

9

(
9m

2

)2/3
(ρ − t)−2/3 dρ2 +

(
9m

2

)2/3
(ρ − t)4/3 dΩ2. (10.101)

This is the line element expressed using Lemaître coordinates. Notice that setting
ρ = r in Eq.(10.100) leads to the relation

RΛ2 = 2m, (10.102)

therefore the mass of the black hole can be expressed in terms of R and Λ in a very
simple way, m = RΛ2/2.
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Chapter 11
Coupling of Quantum Fields to Classical
Gravity

Abstract We consider ensembles on configuration space that consist of quantum
fieldswhich interactwith and are the source of a classical gravitational field. These are
hybrid systemswhere gravity remains classicalwhilematter is describedbyquantized
fields. There are some well known arguments in the literature which claim that such
models are not possible. However, an examination of the most prominent ones, that
are detailed enough to allow scrutiny, indicates that the hybrid models considered
here are not excluded by any of the consistency arguments.We illustrate the approach
with two examples. Our first example is a cosmological model. We consider the case
of a closed Robertson–Walker universe with a massive quantum scalar field and
solve the equations using a particular ansatz which selects a highly non-classical
solution, one in which the scale factor of the Robertson–Walker universe is restricted
to discrete values as a consequence of the interaction of the classical gravitational
field with the quantized scalar field. We discuss this cosmological model in two
approximations, that of a minisuperspace model and that of a midisuperspace model.
Our second example concerns black holes. We consider CGHS black holes and show
that we recover Hawking radiation from the equations that describe a hybrid system
consisting of a classical CGHS black hole in a collapsing geometry interacting with
a quantized scalar field. We also show that the hybrid model provides a natural
resolution to the well known problem of time in quantum gravity.

11.1 Introduction

There are a number of reasons to consider the coupling of quantum fields to classical
gravity.

A full theory of quantum gravity is not yet available, and an approximation in
which spacetime remains classical while matter is described in terms of quantum
fields is often physically and computationally appropriate. Furthermore, since the
quantization of gravity does not appear to follow from consistency arguments alone
[1], it is of interest to investigate whether hybrid systems can provide a satisfactory
description ofmatter and gravitation. The studyof such systemsmayprovide valuable
clues that can be of help in the search for a full quantum theory of gravity.

© Springer International Publishing Switzerland 2016
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Finally, one must also consider the possibility that the gravitational field may not
be quantum in nature [2–4]. For example, Butterfield and Isham, while putting for-
ward the point of view that some type of theory of quantum gravity should be sought,
have concluded that there is arguably no definitive proof that general relativity has to
be quantized [5]. Dyson has argued that it might be impossible in principle to observe
the existence of individual gravitons [6] and this has lead him to the conjecture that
“the gravitational field described by Einstein’s theory of general relativity is a purely
classical field without any quantum behaviour” [7]. His observations regarding the
impossibility of detecting gravitons have been confirmed by detailed calculations
[8, 9]. If Dyson’s conjecture is true, hybrid models become unavoidable.

In the standard approach used for coupling quantum fields to a classical grav-
itational field (i.e., semiclassical gravity [10]), the energy momentum tensor that
serves as the source in the Einstein equations is set equal to the expectation value of
the energy momentum operator T̂μν with respect to some quantum state �:

4Rμν − 1

2
gμν

4R + λgμν = κ

2
〈�| T̂μν |�〉 , (11.1)

where 4Rμν is the curvature tensor, 4R the curvature scalar, gμν the metric tensor of
spacetime, λ the cosmological constant and κ = 16πG (in units where c = G = 1).
There is also a non-relativistic, Newtonian analogue of Eq. (11.1). It is known as
the Schrödinger-Newton equation, and in this case a non-linear term is added to the
standard Schrödinger equation with the density of matter being represented by the
square of the wave-function [11]. Since we restrict to relativistic systems, we will not
make any further remarks about the Schrödinger-Newton equation except to point
out that it shares some of the problems of semiclassical gravity, as one would expect.

Semiclassical gravity presents a number of well known difficulties which are not
encountered when the formalism of ensembles on configuration space is used to
couple quantized fields to a classical gravitational field. Explicit examples of such
hybrid models are discussed in this chapter. These models are counterexamples to
some well known arguments in the literature which claim that such models are not
possible. Since these arguments are invariably based on gedanken experiments which
involve measurements of one sort or another, it is appropriate to address the question
ofwhether such consistency arguments based onmeasurement theory alone can show
that the gravitational field must be quantized. An examination of the most prominent
arguments in the literature which are detailed enough to allow scrutiny indicates
there is no logical necessity to quantize gravity [1]. To illustrate this, we give a brief
critique of the arguments of DeWitt [12], Eppley and Hannah [13], Page and
Geilker [14], and Feynman [15].

DeWitt has argued that that the quantum theory must be extended to all physical
systems for consistency reasons, concluding that [12]

…the quantization of a given system implies also the quantization of any other system to
which it can be coupled (…) therefore, the quantum theory must immediately be extended
to all physical systems, including the gravitational field.
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DeWitt’s argument is rather involved and we will only give its broad outline here; for
a more detailed review and critique see Ref. [1]. DeWitt considers the measurement
of a system by an apparatus and assumes that it proceeds via a particular type of
coupling. He then assumes limits on the accuracy of two of the apparatus variables,
expressed in the form of an inequality. He goes on to show that this results in limits
on the accuracy of a pair of corresponding system variables which are coupled to
those apparatus variables; that is, the corresponding system variables have to satisfy
an inequality which is similar to the one assumed for the apparatus variables. Up
to this point, there is nothing specific to quantum mechanics in his argument: the
derivationmakes use of classical Poisson brackets only, which indicates that quantum
considerations do not play a fundamental role in his calculation. As a matter of fact,
his argument is very general and it applies equally well to two classical systems that
interact, or to a classical system that interacts with a quantum system, as long as his
assumptions on the type of coupling are satisfied. The only place where quantum
mechanical considerations enter into the argument is in a further assumption: that
the limits in the accuracy of the two apparatus variables are quantum mechanical
in nature, the result of an uncertainty relation, which leads in turn to a particular
type of inequality for the corresponding system variables which are coupled to the
apparatus variables. However, one cannot conclude from this particular inequality
that the system that is being measured has to be quantized, as DeWitt does [1].
His argument therefore does not provide a proof that the quantum theory must be
extended to all physical systems; in particular, it does not prove the logical necessity
of quantizing the gravitational field.

Perhaps themost influential paper arguing for the necessity of quantizing the grav-
itational field is the article by Eppley and Hannah [13]. Their gedanken experiment
involves the interaction of a classical gravitationalwavewith a quantum system. They
do not propose any particular model for this interaction but argue nevertheless that it
would lead to a violation of momentum conservation, to a violation of the uncertainty
principle, or to the transmission of signals faster than light. It should be emphasized
that their arguments do not seem to depend on any feature that is unique to gravity or
gravitational waves (in particular, the calculations are carried out with a linearized
wave), thus their arguments should hold for any classical wave. Their argument, if
correct, would suggest that any system that interacts with a quantum system must
also be a quantum system. Their gedanken experiment is, however, fatally flawed.
Mattingly has shown that the experiment cannot be carried out even in principle [16].
The device that they propose, even if it could be built, would not be able to establish
their claims, nor is it plausible that it could be built with any materials compatible
with the values of c, �, and G. Even more damaging, their detector would have to be
so massive as to be within its own Schwarzschild radius [16]. Furthermore, Huggett
and Callender have argued that the violations of physical principles are only present
in the Copenhagen interpretation of quantum mechanics and are thus, at least par-
tially, resolvable within alternative interpretations [17]. Finally, a careful analysis
shows that even without the question of realizability or interpretation, one can not
conclude from the Eppley and Hannah gedanken experiment that the gravitational
must be quantized [1].
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The paper of Page and Geilker [14] has also been widely cited in the literature
in discussions on the necessity of quantizing gravity. They argue that semiclassical
gravity is not a viable theory but, as they do not consider any other alternatives
to semiclassical gravity, their paper has nothing to say regarding the more general
question of whether the coupling of a classical gravitational field to quantized matter
fields is possible in other hybrid theories, such as the one that we discuss in this
chapter. Thus we will not discuss this paper further, except to point out that various
difficulties with Page and Gilker’s interpretation of their experiment [18] call into
question the significance of their result.

Finally, Feynman, in his lectures on gravitation [15], has sketched a gedanken
experiment which, he argues, show the necessity of quantizing the gravitational field.
He considers a double slit experiment and places a “gravity detector” between the slits
and the screen that is assumed to be far away from the slits. The interaction takes
place via the gravitational field of the quantum system, which emits gravitational
waves that are observed when they reach the detector. The bulk of his argument is
given in the following statement:

The position of the electron is described by an amplitude (…). If the gravity interacts through
a field, it follows that the gravity field must have an amplitude also (…). But this is precisely
the characteristic of a quantum field, that it should be described by an amplitude rather than
a probability.

Feynman’s argument, like those of Eppley and Hanna and DeWitt, makes no
use of any feature that is particular to gravity. If the “gravity detector” were to be
replaced by any other detector which interacts with the quantum system via a field,
the discussion would not have to be modified in any essential way. Furthermore, his
argument applies to a very restricted class of hybrid theories. The argument points
to difficulties with semiclassical gravity, Eq. (11.1), where the gravitational field
couples to 〈�| T̂μν |�〉, the expectation value of the energy momentum tensor. With
such a coupling, much of the information that is contained in the complex amplitude
(i.e., the wave functional of the field) is discarded. But it is clear that Feynman’s
argument does not exclude hybrid systems of the type that we discuss in this chapter,
where the total system is described in terms of a pair of functionals P and S or,
equivalently, the complex functional � = √

PeiS/�.
Wemust conclude that the existing gedanken experiments do not show that gravity

must be quantized. Although there are physical arguments which speak in favor of
a quantum theory of gravity [19, 20], this is an issue that can only be decided by
experiment.

There is no proof that general relativity has to be quantized and there are
a number of reasons to consider the possibility that quantum matter fields
interact with a classical gravitational field. A consistent description of these
types of hybrid systems is possible using ensembles on configuration space.
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In the remaining sections of this chapter, we consider ensembles on configuration
space that consist of quantum fields which interact with and are the source of a
classical gravitational field. In Sect. 11.2 we formulate the theory of such ensembles
for both the general case and for the case of spherically symmetric gravity. For
simplicity we limit ourselves to the case in which matter is in the form of a quantized
scalar field, but the approach can be extended to other types of quantized matter
fields. In the two sections that follow, we illustrate the approach with two examples.
The first example is a cosmological model: in Sect. 11.3 we consider the case of a
closed Robertson–Walker universe with a massive quantum scalar field and solve the
equations using a particular ansatz, one which selects a highly non-classical solution.
Our second example concerns black holes: in Sect. 11.4 we consider CGHS black
holes and show that we recover Hawking radiation from the equations that describe
a hybrid system consisting of a classical CGHS black hole in a collapsing geometry
interactingwith a quantized scalar field.We also show that the hybridmodel provides
a natural resolution to the well known problem of time in quantum gravity.

11.2 The Coupling of Classical Gravitational Fields
to Quantum Matter Fields

In Chap.10, we developed the formalism that is needed for the description of config-
uration space ensembles of classical gravitational fields. In this chapter, we show that
one can extend this formalism to include in addition quantum matter fields which
interact with and are the source of the classical gravitational field. This is done fol-
lowing the approach for hybrid systems developed in Chaps. 8 and 9. We consider
the particular example in which matter is in the form of a quantized scalar field.
We chose this case because quantized scalar fields are simpler than other quantized
fields and therefore it is possible to develop the theory with a minimum of technical
complications. The approach can also be applied to matter described by other types
of quantized fields.

11.2.1 General Case

In Sect. 10.2.3, we saw that an appropriate ensemble Hamiltonian for classical grav-
itational fields is given by

H C
h =

∫
d3x N

∫
Dh PHC

h , (11.2)

where N is the lapse function introduced in Eq. (10.2) and HC
h is given by

HC
h = κGijkl

δS

δhij

δS

δhkl
− 1

κ

√
h (R − 2λ) , (11.3)

http://dx.doi.org/10.1007/978-3-319-34166-8_10
http://dx.doi.org/10.1007/978-3-319-34166-8_8
http://dx.doi.org/10.1007/978-3-319-34166-8_9
http://dx.doi.org/10.1007/978-3-319-34166-8_10
http://dx.doi.org/10.1007/978-3-319-34166-8_10
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whereκ = 16π (in unitswhere c = G = 1),Gijkl = (2h)−1/2 (
hikhjl + hilhjk − hijhkl

)
is the DeWitt supermetric, hij is the metric on a space-like hypersurface, h is the
determinant of hij, R is the curvature scalar, λ is the cosmological constant, and Dj

is the spatial covariant derivative.
The ensemble Hamiltonian of Eq. (11.2) leads to two functional equations: the

Einstein–Hamilton–Jacobi equation for pure gravity and an equation that may be
interpreted as a continuity equation under the assumptions thatS[hij] andP[hij] satisfy
the conditions Dk (δS/δhkl) = Dk (δP/δhkl) = 0, which correspond to invariance
under spatial coordinate transformations, and ∂S

∂t = ∂P
∂t = 0. These and other details

concerning the formulationof classical ensembles of gravitational fields are discussed
in Sect. 10.2.

A hybrid system where a quantum scalar field φ couples to the classical metric
hkl requires a generalization of Eq. (11.2), of the form [21, 22]

Hφh =
∫

d3x
∫

DhDφ PN
[
HC

φh + Fφ

]
, (11.4)

where

HC
φh = HC

h + 1

2
√
h

(
δS

δφ

)2

+ √
h

[
1

2
hij

∂φ

∂xi
∂φ

∂xj
+ V (φ)

]
(11.5)

is a purely classical term which now includes the coupling to a scalar field φ, and

Fφ = �
2

4

1

2
√
h

(
δ logP

δφ

)2

(11.6)

is an additional, non-classical term thatmust be included in the ensembleHamiltonian
when the scalar field is quantized.

The Hamiltonian equations of motion for P and S that follow from Hφh are

∂P

∂t
= ΔHφh

ΔS
,

∂S

∂t
= −ΔHφh

ΔP
, (11.7)

where Δ/ΔF denotes the variational derivative with respect to the functional F (see
Appendix A of this book). With ∂S

∂t = ∂P
∂t = 0 (see Sect. 10.2), the equations of

motion can be written as

∫
d3x N

[
HC

φh − �
2

2
√
h

(
1

A

δ2A

δφ2

)]
= 0, (11.8)

where A ≡ √
P, and

∫
d3x N

[
δ

δhij

(
PGijkl

δS

δhkl

)
+ 1√

h

δ

δφ

(
P

δS

δφ

)]
= 0. (11.9)

http://dx.doi.org/10.1007/978-3-319-34166-8_10
http://dx.doi.org/10.1007/978-3-319-34166-8_10
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The interpretation of Eqs. (11.8–11.9) is similar to the interpretation given in
the analogous case of classical gravity that we discussed in Sect. 10.2 (compare to
Eqs. (10.20–10.21) for a classical ensemble of gravitations fields), except that nowwe
are dealing with a hybrid system. Equation (11.8) is a generalization of the Einstein–
Hamilton–Jacobi equation for the case of gravity with a classical scalar field (and
reduces to it when � → 0) and Eq. (11.9) may be interpreted as a continuity equation.

11.2.2 Midisuperspace Example: Spherically Symmetric
Gravity

As we did in Chap.10, we consider the midisuperspace model that corresponds to
assuming a spherically symmetric spacetime and derive the corresponding equations.

We saw in Sect. 10.3 that the Einstein–Hamilton–Jacobi equation for the case of
spherically symmetric vacuum gravity can be written in the form HC

ΛR = 0 with

HC
ΛR = − 1

R

δS

δR

δS

δΛ
+ Λ

2R2

(
δS

δΛ

)2

+ V (11.10)

(in units where c = G = 1), where V is given by

V = RR′′

Λ
− RR′Λ′

Λ2
+ R′2

2Λ
− Λ

2
. (11.11)

The ensemble Hamiltonian of a hybrid system where matter is in the form of a
minimally coupled quantized radially symmetric scalar field of mass m is given by

HφΛR =
∫

dr
∫

DφDΛDR PN
[
HC

φΛR + Fφ

]
, (11.12)

where

HC
φΛR = HC

ΛR + 1

2ΛR2

(
δS

δφ

)2

+ R2

2Λ
φ′2 + ΛR2m2

2
φ2, (11.13)

is a purely classical term which now includes the coupling to a scalar field φ and

Fφ = 1

8ΛR2

(
δ logP

δφ

)2

(11.14)

is an additional, non-classical term thatmust be included in the ensembleHamiltonian
when the scalar field is quantized. Equation (11.12) is the analogous of Eq. (11.4)
for the case of spherically symmetric gravity.

Assuming again the constraints ∂S
∂t = ∂P

∂t = 0, the corresponding equations are

http://dx.doi.org/10.1007/978-3-319-34166-8_10
http://dx.doi.org/10.1007/978-3-319-34166-8_10
http://dx.doi.org/10.1007/978-3-319-34166-8_10
http://dx.doi.org/10.1007/978-3-319-34166-8_10
http://dx.doi.org/10.1007/978-3-319-34166-8_10


250 11 Coupling of Quantum Fields to Classical Gravity

∫
dr N

[
HC

φΛR − 1

2ΛR2

(
1

A

δ2A

δφ2

)]
= 0, (11.15)

where A ≡ √
P, and the continuity equation

∫
dr N

[
δ

δR

(
P
1

R

δS

δΛ

)
+ δ

δΛ

(
P
1

R

δS

δR
− P

Λ

R2

δS

δΛ

)

− δ

δφ

(
P

1

ΛR2

δS

δφ

)]
= 0. (11.16)

11.3 Hybrid Cosmological Model

Our first example of the coupling of a quantum field to classical gravity is a cosmo-
logical model. We consider the case of a closed Robertson–Walker universe with a
massive scalar field. We solve the equations using a particular ansatz which selects a
highly non-classical solution, one in which the scale factor of the Robertson–Walker
universe is restricted to discrete values as a consequence of the interaction of the
classical gravitational field with the quantized scalar field. This example indicates
that some of the features that one would expect from a fully quantized theory, like
discrete values for the scale factor, can already be present in the corresponding hybrid
system.

We discuss this cosmological model in two approximations: first, using a min-
isuperspace model in which the space of fields is replaced by a finite dimensional
configuration space, and then using the midisuperspace model of spherical symmet-
ric gravity that we discussed in the previous section. In both cases, we substantially
follow the exposition given in Ref. [22].

11.3.1 Minisuperspace Hybrid Cosmological Model

The line element of a closed Robertson–Walker universe can be written in the form

ds2 = −N2 (t) dt2 + a2 (t) dΩ2, (11.17)

where N is the lapse function, a is the scale factor and dΩ2 is the standard line
element on S3. This form corresponds to a special choice of foliation that is adapted
to the symmetry of the model, and for this reason the shift vector does not appear
in the line element. Symmetry reduction allows for a minisuperspace model in
which the space of fields is replaced by a finite dimensional configuration space
[19]. This leads to equations that are much simpler than the ones of the full theory.
One must keep in mind however that the predictions of minisuperspace models have



11.3 Hybrid Cosmological Model 251

to be treated with some care, because the restriction to a finite number of degrees
of freedom is a drastic reduction of the infinitely many degrees of freedom of a
field theory. For this reason it is desirable to check the conclusions derived from
the minisuperspace model. We do this in the next section where we consider the
corresponding midisuperspace solution and show that it is in agreement with the
main predictions of the minisuperspace solution.

The case of a closed Robertson–Walker universe with a massive scalar field is
treated in some detail inRef. [19] andwe refer the reader to thismonograph for amore
complete discussion. Here we will take as our starting point the Hamilton–Jacobi
equation derived in this reference. The configuration space has two coordinates,
which we call a and φ. We already introduced the coordinate a in Eq. (11.17), it is
the scale factor, and the coordinate φ represents the scalar field. For simplicity, we
restrict to a potential term that is quadratic in φ. Then, the classical Hamilton–Jacobi
equation takes the form HC

φa = 0 with

HC
φa = −ζ

1

a

(
∂S

∂a

)2

+ 1

a3

(
∂S

∂φ

)2

− 1

ζ
a + ζ

λa3

3
+ m2a3φ2 (11.18)

(in units where c = 1), where m is the mass of the scalar field, the constant ζ =
8πG/3V0 is proportional to the gravitational constantG, andV0 = 2π2 is the volume
of S3 [19]. In order to simplify the equations of the minisuperspace model and make
them more readable, we will choose units in this section for which ζ = 1 (i.e., we
will not set G = 1 in this section).

The ensemble Hamiltonian for the minisuperspace model describing a quantized
field interacting with the gravitational field can be written in the form [21]

Hφa =
∫

dadφP
[
HC

φa + Fφ

] =
∫

dadφP

[
HC

φa + �
2

4

1

a3

(
∂ logP

∂φ

)2
]

. (11.19)

Setting ζ = 1 in Eq. (11.18) and imposing the constraints ∂S
∂t = ∂P

∂t = 0, we get the
equations

− 1

a

(
∂S

∂a

)2

+ 1

a3

(
∂S

∂φ

)2

− a + λa3

3
+ m2a3φ2 − �

2

a3
1

A

∂2A

∂φ2
= 0 (11.20)

and

− ∂

∂a

(
P

a

∂S

∂a

)
+ ∂

∂φ

(
P

a3
∂S

∂φ

)
= 0, (11.21)

where A ≡ √
P.

An exact solution can be derived for the case S = 0. This is a highly non-classical
solution, in that it leads to discrete values of the scale factor which exclude the
singularity, as we show below.
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When S = 0, Eq. (11.20) reduces to

− �
2

a3
1

A

∂2A

∂φ2
− a + λa3

3
+ a3m2φ2 = 0 (11.22)

while Eq. (11.21) is automatically satisfied. Equation (11.22) has the form of a time-
independent Schrödinger equationwith quadratic potential for the real functionA (see
the discussion on stationary ensembles in Sect. 8.3). The non-negative, normalizable
solutions take the form

Pn (φ, a) = δ (a − an)
αn√
π2nn! exp

(−α2
nφ

2
)
[Hn (αnφ)]2 (11.23)

where theHn are Hermite polynomials, α2
n = a3nm/�, and the an satisfy the condition

an − λa3n
3

= 2�m

(
n + 1

2

)
(11.24)

for n = {0, 1, 2, . . .}. If the term proportional to the cosmological constant λ can be
neglected, the quantization condition takes the simple form an = 2�m

(
n + 1

2

)
.

Notice that while the transformation A = √
P leads, via Eq. (11.22), to a

Schrödinger equation for A, it is not possible to introduce solutions that are lin-
ear superpositions of the An because the potential term in the equation ends up being
a function of an.

This solution that has been derived in this section has some remarkable features.
One can see that the coupling of the quantum field to a purely classical metric leads to
a quantization condition for the scale factor a. Furthermore, the classical singularity
at a = 0 is excluded from these solutions. This is also true of the corresponding
midisuperspace solution that we consider in the next section.

11.3.2 Midisuperspace Hybrid Cosmological Model

We now discuss the same cosmological model as before but this time in terms of the
midisuperspace formulation of spherically symmetric gravity. The equations that
need to be solved are Eqs. (11.15–11.16). We want to consider a class of solutions
that is analogous to the minisuperspace solutions described in the previous section.
To do this, we look for a solution that satisfies the following two requirements: the
condition S = 0 holds, and the solution is one that is adapted to a foliation of spaces
of constant positive curvature with constant lapse function N .

With these two assumptions, Eq. (11.15) reduces to a single Schrödinger func-
tional equation for A = √

P,

http://dx.doi.org/10.1007/978-3-319-34166-8_8
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− 1

2ΛR2

(
δ2A

δφ2

)
+

[
λ

ΛR2

2
+ V + R2

2Λ
φ′2 + ΛR2m2

2
φ2

]
A = 0, (11.25)

while Eq. (11.16), is automatically satisfied. This is analogous to the situation that
we encountered in the minisuperspace model.

To solve Eq. (11.25), one can apply standard techniques developed for the
Schrödinger functional representation of quantumfield theory [19, 23–25].Wederive
here an explicit solution which corresponds to the lowest state of the minisuperspace
model which was considered in the previous section. In this case, A will be a ground
state Gaussian functional; i.e.,

A(0) ∼ exp

{
−1

2

∫ ∫
dy dzΛy Λz R

2
y R

2
z φy Kyz φz

}
. (11.26)

Instead of A(0), one may also consider the excited states which solve the functional
Schrödinger equation.We discuss the consequences ofmaking this alternative choice
at the end of this section.

The derivation of this solution is given in the Appendix to this chapter. One
can show that the equation that determines the functional A(0) can be mapped to a
functional Schrödinger equation in a space of constant curvature and the kernel Kxy

can be expressed in the simple form

Kxy = 1

2a40

∑
n

√
γn ψ(n)

x ψ(n)
y , (11.27)

where the ψ(n)
r are solutions of a time-independent Schrödinger-type equation in a

space of constant curvature,

− 1

sin2 r

∂

∂r

(
sin2 r

∂ψ(n)
r

∂r

)
+ m2a20 ψ(n)

r = γnψ
(n)
r . (11.28)

The eigenvalues γn are given by

γn = n2 − 1 + m2a20, n = 1, 2, 3 . . . . (11.29)

As shown in the Appendix to this chapter, in principle it is possible to derive an
expression for a0 which depends on the cosmological constant λ and on the energy
E(0) of the quantized scalar field, where the latter is given by [25]

E(0) ∼ a30

∫
dr sin2 r Krr . (11.30)

However,
∫
dr sin2 r Krr ∼ ∑

n γn, which diverges. This is a consequence of the
infinite zero-point energy of the quantum field. Thus it becomes necessary to use
a renormalization procedure to extract a finite result for a0. In analogy to the
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minisuperspace solution discussed in the previous section, one would expect a0 > 0
although the precise value of a0 will depend on the details of the renormalization
procedure.

We will not discuss possible renormalization procedures for this solution here.
However, we point out that for this particular case, the equation for A(0) is similar in
form to a functional Schrödinger equation for a quantum scalar field in an Einstein
universe, so it is possible to use previous results from the literature where such
renormalization procedures have been carried out (e.g., Ref. [26]).Note that this is not
the generic case: since the equations of hybrid cosmology are non-linear, in general
they will not map to a Schrödinger-type functional equation. The simplification that
is achieved here is a direct consequence of choosing S = 0. With a different ansatz,
the equations can not be solved in this way.

A similar analysis may be carried out where the ground state functional A(0)

is replaced by an excited state. Consider a first excited state A(1) specified by the
eigenfunction ψ(n)

r . This state will differ in energy from the (divergent) ground state
energy by a finite amount ΔE(n) which depends on the value of γn, with ΔE(n) =√

γn [25]. Notice that ΔE(n) can only take discrete values because γn is quantized,
and thismeans thata0 will also be restricted todiscrete values. Therefore, the coupling
of the quantum scalar field and classical gravitational field leads to the quantization
of the radius of the universe, not only for the minisuperspace model but also for the
midisuperspace model.

11.3.3 Discussion

It is of interest to consider solutions for the case of potentials that include other φ-
dependent terms in addition to the term quadratic in φ that we have considered in the
minisuperspace and midisuperspace models. In all cases, the ansatz S = 0 will lead
to equations that reduce to the form of a time-independent Schrödinger equation
with a modified potential term that is a function of a. Consider for simplicity the
minisuperspace model. In this case, we will have an energy term given by E =
a − λa3/3. If the solution of this Schrödinger equation only admits discrete energy
levels En, we will be lead again to a quantization condition for the scale factor, of the
formEn = an−λa3n/3. Thus, the quantization of the scale factor is a generic feature of
such models. In particular, consider the case in which the modified potential remains
non-negative and λ = 0. Then, the ground state energy En is strictly positive, and
the minimum value of the scale factor is given by a0 = E0. Hence, the quantum
fluctuations associated with the matter field in the ground state may be interpreted
as being directly responsible for removing the classical singularity.

Referring again to the miniusperspace model with S = 0, we point out that
the solutions {Pn} that correspond to a given modified potential have an interest-
ing property that might be of relevance to discussions of the problem of the arrow
of time. It has previously been argued by Zeh and Kiefer that, with appropriate
initial conditions, the solutions of the Wheeler–DeWitt equation for a quantized
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Robertson–Walker model with small perturbations will have the property that the
entropy, suitably defined, increases with increasing scale factor (this is connected to
the asymmetry of the potential term with respect to the intrinsic time and, in partic-
ular, to the property that the potential vanishes as a → 0) [19, 27, 28]. Thus, while
there is no external time parameter in quantum cosmology, one may introduce an
intrinsic time parameter defined in terms of the radius a (or any increasing function
of a such as log a). In a similar way, there is a natural ordering of the solutions {Pn},
in terms of a discrete time variable given by n, and this ordering leads to a “ther-
modynamic” arrow of time. This follows from the observation that the amount of
structure associated with a solution Pn (as determined, for example, by counting the
number of nodes in An for different values of n) increases with increasing n.

Hybrid cosmologies which allow for the coupling of quantum matter fields
to classical gravitational fields can have solutions which display striking non-
classical features, such as discrete values for the radius of the universe and the
elimination of classical singularities.

11.4 CGHS Black Hole in the Presence of a Quantized
Scalar Field

Our second example of the coupling of quantum fields to classical gravity concerns
black holes. We consider the CGHS black hole [29], a particular black hole model
which arises in dilaton gravity. This is a model of gravity in a two-dimensional space-
time which contains a scalar field φ, known as the dilaton, and a parameter λ which
is similar to the cosmological constant of general relativity.

Despite its simplicity, the CGHS black hole captures many of the the essential
features of general relativistic black holes [30, 31]. We show in particular that we
recover Hawking radiation from the equations that describe a hybrid system con-
sisting of a classical CGHS black hole in a collapsing geometry interacting with a
quantized scalar field. We follow closely the methods in Demers and Kiefer [31].

11.4.1 CGHS Black Hole and Classical Massless Scalar Field

The action for the CGHS black coupled to a classical massless scalar field can be
written in the form [31]

S =
∫

dx dt
√−g

[
1

G

(
Rφ + 4λ2

) − 1

2
(∇f )2

]
, (11.31)
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whereG is the gravitational coupling constant, which is dimensionless in two dimen-
sions, φ is the dilaton field, f the massless scalar field, and the parameter λ plays the
role of the cosmological constant. The action of Eq. (11.31) can be derived from the
one given in the original CGHS black hole paper [29],

S =
∫

dx dt
√−g̃

[
1

G
e−2φ̃

(
R̃ + 4

(∇̃φ
)2 + 4λ2

)
− 1

2

(∇̃f
)2]

, (11.32)

via the transformation φ = e−2φ̃ and gαβ = e−2φ̃ g̃αβ [31]. This transformation
has the advantage of eliminating the dilaton kinetic energy term which appears in
Eq. (11.32).

We write the line element in the form [31]

ds2 = e2ρ
[−σ 2dt2 + (dx + ξdt)2

]
. (11.33)

This form of the metric corresponds to a 1+1 decomposition of the two-dimensional
space-timewith lapse function σ and shift function ξ . Notice that Eq. (11.33) does not
follow the standard convention for a 1+1 decomposition because there is an overall
multiplicative factor e2ρ .

One may introduce a Hamiltonian formulation using the action of Eq. (11.31) and
the 1+1 decomposition of space-time defined by Eq. (11.33) [31, 32], and from this
Hamiltonian formulation one can derive Hamilton–Jacobi equations for the system.
We go directly to the Hamilton–Jacobi formulation of the theory, since the Hamil-
tonian formulationwill not be needed.As expected, there are two constraint equations
that need to be satisfied, a Hamiltonian constraint and a momentum constraint. The
Hamiltonian constraint takes the form

H C
φρf = −G

2

δS

δφ

δS

δρ
+ 1

2G
VG + 1

2

(
δS

δf

)2

+ VM = 0, (11.34)

where the potential terms are given by

VG = 4
(
φ′′ − φ′ρ ′ − 2λ2e2ρ

)
, VM = 1

2
f ′, (11.35)

and the primes are used to indicate derivatives with respect to x. The momentum
constraint is given by

ρ ′ δS
δρ

−
(

δS

δρ

)′
+ φ′ δS

δφ
+ f ′ δS

δf
= 0. (11.36)

It is equivalent to the requirement that S must be invariant under coordinate trans-
formations.
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For future reference, we write down the rate equations for the fields [31],

ρ̇ = −σG

2

δS

δφ
+ ξρ ′ + ξ ′, (11.37)

φ̇ = −σG

2

δS

δρ
+ ξφ′. (11.38)

ḟ = σ

2

δS

δf
+ ξφ′. (11.39)

In the next section we will consider a CGHS black hole coupled to a quantized
massless scalar field, but before we do that it will be instructive to look at how one
can define ensembles on configuration space for the purely classical system. It is
straightforward to do this using the general procedure that we introduced in Chap. 10
for classical ensembles of gravitational fields.

An appropriate ensemble Hamiltonian is given by

H C
φρf =

∫
dx σ

∫
DφDρDf P H C

φρf , (11.40)

with corresponding equations of motion

∂P

∂t
= ΔH C

φρf

ΔS
,

∂S

∂t
= −ΔH C

φρf

ΔP
. (11.41)

Taking into consideration that σ is an arbitrary function of x and making use of the
conditions ∂S

∂t = ∂P
∂t = 0, the equations of motion are the Hamiltonian constraint,

Eq. (11.34), and a continuity equation which takes the form

G

2

[
δ

δφ

(
P

δS

δρ

)
+ δ

δρ

(
P

δS

δφ

)]
− δ

δf

(
P

δS

δf

)
= 0. (11.42)

Onemust also impose the restriction that S be invariant under coordinate transforma-
tions to ensure that the momentum constraint, Eq. (11.36), is automatically satisfied.

11.4.2 CGHS Black Hole and Quantized Massless Scalar
Field

We now consider a hybrid system which consists of a classical CGHS black hole
coupled to a quantized scalar field. To do this, we use the general procedure that we
have developed in this chapter. An appropriate ensemble Hamiltonian is obtained
by modifying the expression of Eq. (11.40) according to

http://dx.doi.org/10.1007/978-3-319-34166-8_10
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Hφρf =
∫

dx σ

∫
DφDρDf P

[
H C

φρf + Ff
]

(11.43)

where

Ff = 1

2

�
2

4

(
δ logP

δf

)2

. (11.44)

As we have done before, wewill require the conditions ∂S
∂t = ∂P

∂t = 0 and assume that
S is invariant under coordinate transformations, so that the momentum constraint,
Eq. (11.36), is satisfied.

Taking into consideration that σ is an arbitrary function of x, the equations that
follow from the ensemble Hamiltonian of Eq. (11.43) are

Hφρf = −G

2

δS

δφ

δS

δρ
+ 1

2

(
δS

δf

)2

+ 1

2G
VG + 1

2
f ′2

+ �
2

8

[
1

P2

(
δP

δf

)2

− 2

P

δ2P

δf 2

]
= 0, (11.45)

and
G

2

[
δ

δφ

(
P

δS

δρ

)
+ δ

δρ

(
P

δS

δφ

)]
− δ

δf

(
P

δS

δf

)
= 0. (11.46)

This last equation is identical to the continuity equation that we derived for the
classical case in the previous section.

To find solutions to these equations we expand S in powers of G,

S = 1

G
S0 + S1 + . . . (11.47)

This is a Born–Oppenheimer type of expansion with respect to the gravitational
constant [31]. We first look for an approximate solution correct to order G0. As
shown below, it is convenient to use the product rule of probability theory to express
P in the form

P = P[ρ, φ]P[f |ρ, φ] =: P0[ρ, φ]P1[f , ρ, φ] (11.48)

where P[f |ρ, φ] = P1[f , ρ, φ] is the conditional probability of f given ρ, φ.
At order G−2 we get the equation

1

2

(
δS0
δf

)2

= 0, (11.49)

which implies that S0 is not a functional of f , S0 = S0[ρ, φ].
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At order G−1 we get the two equations

− G

2

δS0
δφ

δS0
δρ

+ 1

2G
VG = 0, (11.50)

− δ

δf

(
P0P1

δS0
δf

)
= 0. (11.51)

Equation (11.50) has the form of Eq. (11.34) but in the absence of the massless
scalar field f . Thus S0 solves the Hamilton–Jacobi functional equation for the CGHS
black hole without matter fields. Equation (11.51) is automatically satisfied due to
Eq. (11.49).

At order G0 we get the two equations

− 1

2

(
δS0
δφ

δS1
δρ

+ δS0
δρ

δS1
δφ

)
+ 1

2

(
δS1
δf

)2

+ 1

2
f ′2

+ �
2

8

[
1

P2
1

(
δP1

δf

)2

− 2

P1

δ2P1

δf 2

]
= 0 (11.52)

and

P0

[
1

2

(
δP1

δφ

δS0
δρ

+ δP1

δρ

δS0
δφ

)
− δ

δf

(
P1

δS1
δf

)]

+ P1

[
δ

δφ

(
P0

δS0
δρ

)
+ δ

δρ

(
P0

δS0
δφ

)]
= 0. (11.53)

We now show that we can recover the Schrödinger functional equation for a scalar
field from the equations of up to order G0. This requires fixing a gauge. We choose
the conformal gauge, defined by σ = 1 and ξ = 0. Then, the rate equations for the
fields, Eqs. (11.37) and (11.38), simplify to

ρ̇ = −1

2

δS0
δφ

, φ̇ = −1

2

δS0
δρ

, (11.54)

which leads immediately to

− 1

2

(
δS0
δφ

δS1
δρ

+ δS0
δρ

δS1
δφ

)
=

(
ρ̇

δS1
δρ

+ φ̇
δS1
δφ

)
, (11.55)

1

2

(
δP1

δφ

δS0
δρ

+ δP1

δρ

δS0
δφ

)
= −

(
δP1

δφ
φ̇ + δP1

δρ
ρ̇

)
. (11.56)

We have seen that S0 solves the Hamilton–Jacobi functional equation for the
CGHS black hole without matter fields, Eq. (11.50). Therefore, it is natural to choose
P0 so that it solves the continuity equation for an ensemble of CGHS black holes
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where there is no coupling to matter fields,

δ

δφ

(
P0

δS0
δρ

)
+ δ

δρ

(
P0

δS0
δφ

)
= 0. (11.57)

This is always possible because there are no other restrictions on P0.
Using Eqs. (11.55–11.57), the equations of orderG0, Eqs. (11.52–11.53), take the

simpler form

(
ρ̇

δS1
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+ φ̇
δS1
δφ

)
+ 1

2

(
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+ 1

2
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[
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δ2P1
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]
= 0 (11.58)

and (
δP1

δφ
φ̇ + δP1

δρ
ρ̇

)
+ δ

δf

(
P1

δS1
δf

)
= 0. (11.59)

If we now integrate Eqs. (11.58–11.59) with respect to the x coordinate and use the
equalities

Ṡ1 =
∫

dx

(
ρ̇

δS1
δρ

+ φ̇
δS1
δφ

)
, Ṗ1 =

∫
dx

(
δP1

δφ
φ̇ + δP1

δρ
ρ̇

)
, (11.60)

we are led to

Ṡ1 +
∫

dx

{
1

2

(
δS1
δf
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+ 1

2
f ′2 + �
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8

[
1

P2
1

(
δP1

δf

)2

− 2

P1

δ2P1

δf 2

]}
= 0 (11.61)

and

Ṗ1 +
∫

dx

{
δ

δf

(
P1

δS1
δf

)}
= 0. (11.62)

The rate equations for P1 and S1, Eqs. (11.61–11.62), can be derived from the
ensemble Hamiltonian

H Q
f =

∫
dx

∫
DfP1

[
1

2

(
δS1
δf

)2

+ 1

2
f ′2 + �

2

8

(
δ logP1

δf

)2
]

. (11.63)

We now go to thewavefunction representation via the complex canonical transforma-
tion � = √

P1eiS1/�, �̄ = √
P1e−iS1/�. The ensemble Hamiltonian H Q

f is mapped
to

H Q
f =

∫
dx

∫
Df

1

2

(
�
2 δ�̄

δf

δ�

δf
+ f ′2�̄�

)
, (11.64)
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with a corresponding equation for � given by

i��̇ =
∫

dx
1

2

(
−�

2 δ2

δf 2
+ f ′2

)
� =: Ĥf �. (11.65)

This is precisely the Schrödinger functional equation for a quantized free scalar
field f on a flat background. In this way, the perturbative expansion to orderG0 leads
to an approximate solution that describes a quantized scalar field on the background
space-time of the CGHS black hole. Notice that the information about the gravita-
tional field comes through the definition of the time via the variables ρ and φ [31],
since the time that enters into the Schrödinger functional equation is a “gravitational
time” defined via Eq. (11.60).

It is instructive to compare this derivation to the one in the paper by Demers and
Kiefer which takes as its starting point the Wheeler–DeWitt equation of quantum
gravity [31].While the end result of the perturbative expansion to orderG0 is the same
in both cases (i.e., the recovery of the Schrödinger functional equation), the derivation
that we present here is perhapsmore straightforward in that certain problematic terms
which appear in the expansion of the Wheeler–DeWitt equation are absent from our
analysis: namely, the terms that arise from the quantization of gravity, which do not
appear in our model because in our case the CGHS black hole remains classical.
Thus there are already differences between the hybrid model and quantum gravity
after considering only the first three terms of the expansion.

11.4.3 CHGS Black Hole Formation Through Collapse
of Matter and Hawking Radiation

The perturbative analysis of the previous section shows that the solution of the equa-
tions to orderG0 describes a quantized scalar field on the the background space-time
of the CGHS black hole. Following Demers and Kiefer [31], we now consider a
“collapsing” scenario and show that we recover Hawking radiation from the corre-
sponding equations.

11.4.3.1 Formation of a CGHS Black Hole by Gravitational Collapse

We model the collapsing space-time in terms of a shockwave of classical matter
which causes the formation of the black hole.

We first consider a black hole without matter fields, described in terms of the
action

S =
∫

dx dt
√−g̃

[
1

G
e−2φ̃

(
R̃ + 4

(∇̃φ
)2 + 4λ2

)]
, (11.66)
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which corresponds to the action given by Eq. (11.32) for the case in which there is
no scalar field f . It will be convenient to choose the conformal gauge, so that the line
element can be put in the form

ds2 = −e2ρ̃dx+dx−, (11.67)

where we introduced light-cone coordinates x± = t ± x.
The equations for φ̃ and ρ̃ that follow from the action of Eq. (11.66) with the line

element of Eq. (11.67) are given by [30]

− 4∂+∂−φ̃ + 4∂+φ̃∂−φ̃ + 2∂+∂−ρ̃ + λ2e2ρ̃ = 0, (11.68)

2∂+∂−φ̃ − 4∂+φ̃∂−φ̃ − λ2e2ρ̃ = 0, (11.69)

and

4∂+φ̃∂+ρ̃ − 2∂2
+φ = 0, (11.70)

4∂−φ̃∂−ρ̃ − 2∂2
−φ = 0. (11.71)

Equations (11.68–11.69) follow from the variation of the action, while Eqs. (11.70–
11.71) are constraints that arise as a consequence of having set g++ = g−− = 0 in
the metric. To find an explicit form for the CGHS black hole metric, we need to solve
for φ̃ and ρ̃.

The solutions to these equations take a simple form if we set ρ̃ = φ̃. This can
be done without loss of generality, and one can check that it leads to the black hole
(BH) solution [30, 31]

e−2ρ̃ = e−2φ̃ = M

λ
− λ2x+x− (11.72)

with line element

ds2BH = −
(
M

λ
− λ2x+x−

)−1

dx+dx−. (11.73)

The parameter M is the ADM mass of the black hole. The linear dilaton vacuum
(LDV) solution is obtained by settingM = 0, with line element

ds2LDV = (
λ2x+x−)−1

dx+dx−. (11.74)

To describe a collapsing CGHS geometry, it is necessary to introduce matter
fields. It will be sufficient to add a term to the action of Eq. (11.66) which describes
a massless classical field θ̃ . This leads to the action
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S =
∫

dx dt
√−g̃

[
1

G
e−2φ̃

(
R̃ + 4

(
∇̃φ

)
2 + 4λ2+) − 1

2
(∇̃θ)2

]
. (11.75)

We consider a scenario on which the collapse is produced by a shock wave of
classical matter θ . The Penrose diagram for this collapsing scenario is shown in
Fig. 11.1. The shock wave is imparted at λx+ = 1. The region with λx+ < 1 is the
LDV region, the region with λx+ > 1 is the BH region. (The diagram also shows the
overlapping slices at ty = tv = 0 which are used in the next section when comparing
the vacuums states of the two regions.)

For this scenario, the solution takes the form [30, 31]

e−2ρ̃ = e−2φ̃ = M

λ
(1 − λx+)Θ(λx+ − 1) − λ2x+x−

= M

λ
Θ(λx+ − 1) − λ2x+

[
x− + M

λ2
Θ(λx+ − 1)

]
(11.76)

where Θ(x) is the step function. Thus for λx+ < 1 we have the LDV solution while
for λx+ > 1 we have the BH solution with black hole mass M (after shifting the
coordinate x− by M/λ2), as required.

Having described the collapsing geometry, we now introduce coordinates in each
region which can be used to define the notion of vacuum states for a quantized scalar
field on this background geometry. This requires inertial coordinates; i.e., coordinates
which exhibit explicitly the asymptotic flatness of the metric. In the LDV region we
define light-cone coordinates y± = ty ± y according to

λx+λx−

0

−∞ 0

∞

ty = tv = 0

LDV
region

BH
region

−M/λ 1

J +
RJ +

L

J −
RJ −

L

Fig. 11.1 Penrose diagram for collapsing CGHS black hole. The shock wave is indicated by the
arrowed line, the horizon by the dashed line. The comparison between the vacuum states of the two
regions is done at the overlapping slices labeled ty = tv = 0
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λx+ = eλy+
, λx− = −M

λ
e−λy−

, (11.77)

and in the BH region we define light-cone coordinates v± = tv ± v according to

λx+ = 1 + λ

M
eλv+

, λx− = −M

λ
− e−λv−

. (11.78)

One can check that the metric in each region is asymptotically flat for these choice
of coordinates; i.e., ds2 → −dy+dy− in the LDV region and ds2 → −dv+dv− in the
BH region.

11.4.3.2 Hawking Radiation

Themain aimof this section is to show explicitly the emergence ofHawking radiation
in the hybrid model.

The presence of Hawking radiation in the collapsing geometry can be established
by considering solutions of Eq. (11.65). The main idea is to start from a vacuum
state for the scalar field in the absence of a black hole, let it evolve according to
the functional Schrödinger equation, and compare it with the vacuum solution in
the geometry that corresponds to the case of a black hole which has formed by a
collapse process. The notion of vacuum state is defined here with respect to inertial
coordinates; i.e., coordinates which exhibit explicitly the asymptotic flatness of the
metric. The collapsing geometry can be realized by assuming the presence of a shock
wave of classical matter which forms the black hole, as we did in the previous section.

We use essentially the same approach that Demers and Kiefer applied to the
Wheeler–DeWitt equation [31]. For this reason, we limit ourselves to a summary of
results rather than a detailed derivation and refer the reader to the paper of Demers
and Kiefer for a more thorough account which includes a number of intermediate
steps that we have omitted here.

The key point of the analysis is the formulation of the appropriate boundary
conditions. In the LDV region (where timelike and spacelike directions are labeled
ty and y), we impose the boundary condition f (v) → 0 as v → ±∞. This means that
f has to vanish at the origin y = 0. In the BH region (where timelike and spacelike
directions are labeled tv and v), f (v) has no restrictions at v = 0 [31].

Following Demers and Kiefer, we introduce Fourier transforms of the field f
(and set � = 1 in this section to facilitate the comparison to their equations). Due to
the difference in boundary conditions, we get different expressions for f in the two
regions,

LDV region : f (y) =
√

2

π

∫ ∞

0
dk F(k) sin(ky), (11.79)

BH region : f (v) =
√

1

2π

∫ ∞

−∞
dk G(k) eikv, (11.80)
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where F(k) and G(k) are the Fourier transforms of f in the LDV and BH regions,
respectively. Note that F(k) must be real, F(k) = F̄(k), while G(k) is complex.

The Schrödinger functional equation can be written in terms of F and G as

LDV region : i
∂�

∂ty
= 1

2

∫ ∞

0
dk

(
− δ2

δF2
+ k2F2

)
�, (11.81)

BH region : i
∂�

∂tv
= 1

2

∫ ∞

−∞
dk

(
− δ2

δGδḠ
+ k2|G|2

)
�. (11.82)

At ty = tv = 0 (see Fig. 11.1), the space slices overlap and we can compare the solu-
tions. For the ground state solutions (which take the form of Gaussian functionals)
we get [31]

LDV region : �0[f , ty = 0) = N exp

(
− 1

2�

∫ ∞

0
dk kF2(k)

)
, (11.83)

BH region : �[f , tv = 0) = N exp

(
−1

�

∫ ∞

−∞
dk |k||G|2(k)

)
. (11.84)

The state described by Eq. (11.83) is clearly different from the state described by
Eq. (11.84). To establish the presence of Hawking radiation, it is necessary to make
a quantitative comparison. To express one in terms of the other, we introduce a
Bogolubov-type relation of the form [31]

F(k) =
∫ ∞

−∞
dlα(l)G(l), (k > 0). (11.85)

One can write α(l) as an integral and also, at least approximately, in closed form (see
Eq.11.56 of Ref. [31]). Then, using the solution for α(l), the initial state described
by Eq. (11.83) can be expressed in terms of G(k) as

�0[f , ty = 0) = N exp

(
−

∫ ∞

−∞
dk k coth

(
πk

2λ

)
|G|2(k)

)
. (11.86)

We are ultimately interested in the solution of Eq. (11.82) with the initial condition
given by Eq. (11.86). It takes the form [31]

� = N(tv) exp

(
−

∫ ∞

−∞
dk k coth

(
πk

2λ
+ iptv

)
|G|2(k)

)
. (11.87)

The state described by Eq. (11.87) is known as a squeezed state [33].
With the wavefunctional of Eq. (11.87) it is now possible to evaluate the number

operator < n(k) > of the mode with wave number k for the vacuum state given by
Eq. (11.84); i.e., for the case in which the black hole is present. At tv = 0, it is given
by [31]
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< n(k) >= 1

exp (2π |k|/λ) − 1
, (11.88)

which is a Planck distribution, as expected, with temperature TBH = λ/2π .
We can therefore conclude that Hawking radiation emerges in the hybrid model

that we have considered here. Due to the dynamical background (i.e., the collaps-
ing geometry), an initial vacuum state does not remain a vacuum state but becomes
instead a thermal state with respect to observers at a later time. In the Heisenberg
picture the non-invariance of the vacuum is called ‘particle creation’ (or ‘field exci-
tation’), while in the Schrödinger picture that we have used for our analysis it corre-
sponds to the process of squeezing quantum states [19].

The two-dimensional dilatonic CGHS black hole model is clearly a toy model
which cannot capture the full complexity of general relativistic black holes, and
one must be careful when extrapolating to the four-dimensional case. However, the
results derived in this section do suggest that a hybrid system consisting of a classical
black hole coupled to a quantized scalar field may be able to account for Hawking
radiation in a consistent way, leading to an understanding of its emergence without
having to quantize gravity first. A more definite statement will clearly require further
investigation to see if a similar analysis can be successfully carried out for a more
realistic black hole model.

11.4.4 Non-perturbative Approach and the Emergence
of Time

One of the goals of this section is to look at an example which shows how time
emerges in the hybrid formalism. As is well known, quantum gravity has a serious
conceptual difficulty, known in the literature as the problem of time. This is a conse-
quence of the drastically different concepts of time in general relativity and quantum
theory: time is absolute in standard quantum theory and dynamical in general rela-
tivity, and any attempt to combine both theories to formulate a quantum theory of
gravity leads to a difficult conceptual problem [34]. The problem of time derives
from the timeless nature of the Wheeler–DeWitt equation and concerns among other
questions the problem of whether a physical concept of time may be introduced at a
fundamental level in quantum gravity. There are threemain solutions to this problem:
the choice of a concept of time before quantization, the identification of a concept
of time after quantization, and the option of a timeless theory [19].

As emphasized by Kiefer, the application of the semiclassical approximation to
the Wheeler–DeWitt equation leads to the emergence of time in the semiclassical
regime, as a semi-classical concept [34, 35]. In the case of the hybrid formulation
that we discuss here, there is no problem of time: since the gravitational field remains
classical, it is possible to introduce a “gravitational time” that is generally valid. Thus
the gravitational field acts as a clock.
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We saw in the previous sections how time emerges when we consider an approx-
imate solution based on an expansion in powers of G. We now consider instead a
non-perturbative approach. We write S and P in the form

S = S0[ρ, φ] + S1[ρ, φ, f ],P = P0[ρ, φ]P1[ρ, φ, f ] (11.89)

and look for a solution of Eqs. (11.45) and (11.46) that is based on these expressions.
We want to be able to interpret the system so that we can distinguish between a
classical gravitational sector and a quantum scalar field sector. To achieve this, we
need to choose an appropriate gauge. Once more, we consider the conformal gauge,
which as we discussed before leads to a simplification of the rate equations for
the variables φ and ρ of the gravitational field. Taking into consideration that S =
S0 + S1, we get

ρ̇ = −G

2

(
δS0
δφ

+ δS1
δφ

)
, φ̇ = −G

2

(
δS0
δρ

+ δS1
δρ

)
. (11.90)

We will use the time associated with this particular choice of gauge to define a time-
dependent functional Schrödinger equation for the quantized scalar field, using the
same approach that we used before when we considered the expansion in powers
of G. Notice that Eq. (11.90) differs from Eq. (11.54) because we now consider the
exact solution instead of attempting to find a perturbative solution.

We now consider Eqs. (11.45) and (11.46), use the expressions given in
Eq. (11.89), and group terms to allow for an interpretation that distinguishes between
the classical gravitational sector and thequantumscalar field sector. TakingEq. (11.90)
into consideration, Eq. (11.45) can be written as

{
−G

2

δS0
δφ

δS0
δρ

+ 1

2G
VG

}
+

{(
δS1
δφ

φ̇ + δS1
δρ

ρ̇

)
+ 1

2

(
δS1
δf

)2

+ 1

2
f ′2

+G

2

δS1
δφ

δS1
δρ

+ �
2

8

[
1

P2
1

(
δP1

δf

)2

− 2

P1

δ2P1

δf 2

]}
= 0, (11.91)

and Eq. (11.46) as

P1
G

2

{[
δ

δφ

(
P0

δS0
δρ

)
+ δ

δρ

(
P0

δS0
δφ

)]
+

[
δ

δφ

(
P0

δS1
δρ

)
+ δ

δρ

(
P0

δS1
δφ

)]}

+ P0

{
−

(
δP1

δφ
φ̇ + δP1

δρ
ρ̇

)
− δ

δf

(
P1

δS1
δf

)}
= 0. (11.92)

We would like to set each of the expressions in Eqs. (11.91) and (11.92) which
are in curly brackets separately equal to zero, but this is clearly not possible in the
general case. The problem is caused by the first expression in curly brackets that
appears in Eq. (11.92): S1 is a functional of f , while P0 and S0 are not. However, we
can solve the equations step by step (see below), and at the same time introduce well
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defined classical and quantum sectors, whenever

δS0
δφ

>>
δS1
δφ

,
δS0
δρ

>>
δS1
δρ

. (11.93)

This condition amounts to assuming that the dependence on the gravitational vari-
ables is much weaker for S1 than it is for S0. Such a condition does not seem unrea-
sonable: one can expect S0 to account for most of the gravitational field degrees of
freedom and for S1 to act as a correction term required by the presence of the quan-
tized scalar field. If the inequalities in Eqs. (11.93) hold, we can neglect the terms
that contain S1 in the first expression in curly brackets which appears in Eq. (11.92).
We will assume this from now on.

Thus we are left with two pairs of functional equations that can be solved sepa-
rately. The first pair of functional equations is

− G

2

δS0
δφ

δS0
δρ

+ 1

2G
VG = 0,

δ

δφ

(
P0

δS0
δρ

)
+ δ

δρ

(
P0

δS0
δφ

)
= 0, (11.94)

identical to the functional equations for a classical ensembles of CGHS black holes
described in terms of P0[φ, ρ] and S0[φ, ρ]. The second pair of functional equations
are

(
δS1
δφ

φ̇ + δS1
δρ

ρ̇

)
+ 1

2

(
δS1
δf

)2

+ 1

2
f ′2

+G

2

δS1
δφ

δS1
δρ

+ �
2

8

[
1

P2
1

(
δP1

δf

)2

− 2

P1

δ2P1

δf 2

]
= 0, (11.95)

−
(

δP1

δφ
φ̇ + δP1

δρ
ρ̇

)
− δ

δf

(
P1

δS1
δf

)
= 0. (11.96)

If we now integrate Eqs. (11.95–11.96) with respect to the x coordinate and use
the equalities

Ṡ1 =
∫

dx

(
ρ̇

δS1
δρ

+ φ̇
δS1
δφ

)
, Ṗ1 =

∫
dx

(
δP1

δφ
φ̇ + δP1

δρ
ρ̇

)
, (11.97)

we are led to

Ṡ1 +
∫

dx

{
1

2

(
δS1
δf

)2

+ 1

2
f ′2 + G

2

δS1
δφ

δS1
δρ

+�
2

8

[
1

P2
1

(
δP1

δf

)2

− 2

P1

δ2P1

δf 2

]}
= 0, (11.98)

Ṗ1 +
∫

dx

{
δ

δf

(
P1

δS1
δf

)}
= 0. (11.99)
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We can now go to the wavefunction representation via the complex canonical
transformation � = √

P1eiS1/�, �̄ = √
P1e−iS1/�. Then, Eqs. (11.98–11.99) can be

combined and put in the form of a non-linear functional Schrödinger equation,

i��̇ = Ĥf � = 1

2

(
−�

2 δ2

δf 2
+ f ′2 + G

2
Δ

)
�. (11.100)

where the non-linear correction term Δ is given by

Δ = δS1
δφ

δS1
δρ

= −1

4

(
δ ln �̄

δφ
− δ ln�

δφ

) (
δ ln �̄

δρ
− δ ln�

δρ

)
(11.101)

and the time is the gravitational time associated with the conformal gauge.
Thus, to solve the equations, we first derive expressions for P0 and S0 by solving

Eq. (11.94), and then solve for P1 and S1 by solving Eqs. (11.98–11.99) or, equiva-
lently, the non-linear functional Schrödinger equation, Eq. (11.100). The non-trivial
interaction between gravitational and matter fields comes about via the dependence
of P1 and S1 on φ and ρ, and it can be seen explicitly in Eqs. (11.90) and (11.97),
which are used to define the notion of time, and in the non-linear correction term Δ

given by Eq. (11.101) which appears in Eq. (11.100).
Thus, under the conditions of Eq. (11.93), it is possible to introduce well defined

classical and quantum sectors. Furthermore, the time that is used to define the non-
linear functional Schrödinger equation arises in a natural way from the classical
gravitational sector of the hybrid system. In the case of the hybrid formulation that we
discuss here, as opposed to the case of quantum gravity, there is no problem of time:
the gravitational field acts as a clock and it is possible to introduce a “gravitational
time” that is generally valid.

The formalism of ensembles on configuration space can be applied to classical
black holes that interact with quantum matter fields. The case of a classical
CGHS black hole and a quantized scalar field can be solved, with Hawking
radiationbeingpredicted for a collapsing space-timegeometry.Thewell known
problem of time in quantum gravity has a natural resolution in the hybrid
approach.

Appendix: Ground State Gaussian Functional Solution

We follow the presentation given in App. C of Ref. [22]. To solve Eq. (11.15) for the
case S = 0,

∫
drN

[
− 1

2ΛR2

(
1

A

δ2A

δφ2

)
+ λ

ΛR2

2
+ V
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+ R2

2Λ
φ′2 + ΛR2m2

2
φ2

]
= 0, (11.102)

consider the ansatz

A ∼ exp

{
−1

2

∫ ∫
dy dzΛy Λz R

2
y R

2
z φy Kyz φz

}
. (11.103)

Evaluate δ2A
δφ2 and collect terms that have the same power of φ. This leads to the

following pair of equations for the kernel Kxy,

∫
dr N

[
λ

ΛR2

2
+ V(R,Λ) + ΛrR2

r

2
Krr

]
= 0 (11.104)

and

∫
dr ΛrR

2
r N

[
φ′2
r

2Λ2
r

+ m2

2
φ2
r − 1

2

∫ ∫
dydzΛyR

2
yΛzR

2
z φyKyrKrzφz

]
= 0.

(11.105)
After an integration by parts in Eq. (11.105), the equations for Kxy take a form which
is standard in the context of the Schrödinger functional representation of quantum
field theory in curved spacetimes [19, 23–25].

Assume a foliation of spaces of constant positive curvature and a constant lapse
function N and look for a solution valid under these conditions. Note that the Λ and
R that appear in the line element of Eq. (10.24) satisfy

√
h = ΛR2 and hrr = Λ−2,

where hkl is the inverse metric tensor on the three-dimensional spatial hypersurface
of constant curvature. Then, Eq. (11.105) can be written in the form

∫
dr

√
hr

[
1

2
hrr

∂φr

∂r

∂φr

∂r
+ m2

2
φ2
r

− 1

2

∫ ∫
dydz

√
hy

√
hz φyKyrKrzφz

]
= 0, (11.106)

and the kernel Kxy satisfies

∫
dr

√
hrKyrKrz =

[
− 1√

hy

∂

∂y

(
hyy

√
hy

∂

∂y

)
+ m2

]
δ(y, z), (11.107)

where δ(y, z) = 1√
hy

δ(y − z) is the delta function on the hypersurface.

To get an explicit expression for Kxy that solves Eq. (11.107), introduce a fixed,
particular set of coordinates for the line element of Eq. (10.24). Let

N = 1, Nr = 0, Λ = a0, R = a0 sin r, (11.108)

http://dx.doi.org/10.1007/978-3-319-34166-8_10
http://dx.doi.org/10.1007/978-3-319-34166-8_10
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where r ∈ [0, 2π) and a0 can be interpreted as the scale factor of a closed Robertson–
Walker universe. Then the solution of Eq. (11.107) is given by

Kxy = 1

2a40

∑
n

√
γn ψ(n)

x ψ(n)
y , (11.109)

where the basis functionsψ(n)
r are solutions of a Schrödinger-type equation in a space

of constant curvature,

− 1

sin2 r

∂

∂r

(
sin2 r

∂ψ(n)
r

∂r

)
+ m2a20 ψ(n)

r = γnψ
(n)
r . (11.110)

Theψn(r) satisfy orthonormality and completeness relations. The eigenvalues γn are
given by

γn = n2 − 1 + m2a20, n = 1, 2, 3 . . . . (11.111)

Given the solution of Eq. (11.105), a0 can be expressed in terms of the cosmolog-
ical constant and the energy E of the quantized scalar field using Eq. (11.104), since
[25]

E ∼ a30

∫
dr sin2 r Krr . (11.112)

However,
∫
dr sin2 r Krr ∼ ∑

n γn, which diverges. This is a consequence of the
infinite zero-point energy of the quantum field. Therefore, to extract a finite result
for a0 it becomes necessary to introduce renormalization procedures.
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Appendix A
Variational Derivatives and Integrals

Definitions and useful properties of functionals, variational derivatives and functional
integrals are collected here, and illustrated for the well known example of a classical
scalar field.

A.1 Functional Derivatives

A functional, F[ f ], is a mapping from a set of functions on configuration space to
the real or complex numbers.Wewill denote the value of f at x by fx . The functional
derivative of F[ f ] is defined via the variation of F with respect to f , i.e.,

δF := F[ f + δ f ] − F[ f ] =
∫

dx
δF

δ fx
δ fx (A.1)

for arbitrary infinitesimal variations f → f + δ f . Thus the functional derivative is a
field density, δF/δ f , having the value δF/δ fx at position x . Note that this definition
is analogous to the definition of the partial derivative of a function g(x) via

g(x + ε) − g(x) = ε · ∇g(x)

for arbitrary infinitesimal variations x → x + ε. It follows directly from Eq. (A.1)
that the functional derivative satisfies product and chain rules analogous to ordinary
differentiation.

The choice F[ f ] = fx ′ in Eq. (A.1) yields

δ fx ′/δ fx = δ(x − x ′). (A.2)

Moreover, if the field depends on some parameter, t say, then choosing δ fx = fx (t +
δt) − fx (t) in Eq. (A.1) yields
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dF

dt
= ∂F

∂t
+

∫
dx

δF

δ fx

∂ fx
∂t

(A.3)

for the rate of change of F with respect to t . As another useful example, for a
functional of the form F = ∫

dx g(x, f,∇ f ) one has

δF =
∫

dx [g(x, f + δ f,∇ f + ∇(δ f )) − g(x, f,∇ f )]

=
∫

dx

[
∂g

∂ f
δ f + ∂g

∂∇ f
∇(δ f )

]

=
∫

dx

[
∂g

∂ f
− ∇ · ∂g

∂∇ f

]
δ f,

where integration by parts has been used in the last line, assuming that the variations
and/or the derivatives of g vanish at infinity. Hence from Eq. (A.1) one has

δF/δ f = ∂g/∂ f − ∇ · ∂g/∂(∇ f ) (A.4)

for this case. This formula is easily extended when g also depends on higher deriv-
atives of f .

A.2 Functional Integrals

Functional integrals correspond to integration of functionals over the space of func-
tions (or equivalence classes thereof). We will consider here a measure Df on this
vector space which is translation invariant, i.e.,

∫
Df ≡ ∫

Df ′ for any translation
f ′ = f +h (which follows immediately, for example, from approaches to functional
integration based on discretising the space of functions). In particular, this property
implies the useful result

∫
Df

δF

δ f
= 0 for

∫
Df F[ f ] < ∞. (A.5)

Equation (A.5) follows by noting that the finiteness condition and translation invari-
ance imply

0 =
∫

Df (F[ f + δ f ] − F[ f ]) =
∫

dx δ fx

(∫
Df

δF

δ fx

)
(A.6)

for arbitrary infinitesimal translations, where we use fx to denote the value of f at x .
Thus, for example, if F[ f ] has a finite expectation value with respect to some

probability density functional P[ f ], then Eq. (A.5) yields the “integration by parts”
formula
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∫
Df P

δF

δ f
= −

∫
Df

δP

δ f
F. (A.7)

Moreover, from Eq. (A.5) the total probability,
∫
Df P , is conserved for any proba-

bility flow satisfying a continuity equation of the form

∂P

∂t
+

∫
dx

δ

δ fx
[PVx ] = 0, (A.8)

providing that the average flow rate, 〈Vx 〉, is finite.
Finally, consider a functional integral of the form

I [F] =
∫

Df ξ(F, δF/δ f ), (A.9)

where ξ denotes any function of some functional F and its functional derivative.
Variation of I [F] with respect to F then gives, to first order,

ΔI = I [F + ΔF] − I [F]
=

∫
Df

{
∂ξ

∂F
ΔF +

∫
dx

∂ξ

∂(δF/δ fx )

δ(ΔF)

δ fx

}

=
∫

Df

{
∂ξ

∂F
−

∫
dx

δ

δ fx

[
∂ξ

∂(δF/δ fx )

]}
ΔF

+
∫

dx
∫

Df
δ

δ fx

{[
∂ξ

∂(δF/δ fx )

]
ΔF

}
. (A.10)

Assuming that the functional integral of the expression in curly brackets in the last
term is finite, this term vanishes from Eq. (A.5), yielding the result

ΔI =
∫

Df
ΔI

ΔF
ΔF (A.11)

analogous to Eq. (A.1), where the variational derivative ΔI/ΔF is defined by

ΔI

ΔF
:= ∂ξ

∂F
−

∫
dx

δ

δ fx

[
∂ξ

∂(δF/δ fx )

]
. (A.12)
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A.3 Example: Ensemble Hamiltonian for a Classical
Scalar Field

To illustrate the application of the above concepts, we consider a classical scalar
field, its corresponding ensemble Hamiltonian, and the equations of motion that
follow from this ensemble Hamiltonian.

Field theories present well known mathematical and conceptual difficulties. As
a consequence, the equations are formal in nature and it is necessary to examine
each individual field theory to establish the validity of the ensemble formalism when
applied to particular cases. This is done whenever particular field theories are dis-
cussed in the monograph. In the case of a field theory, the configuration is described
by some field φ(x) (which may comprise multi-component fields that that carry a
set of indices, which we omit here to simplify the notation). The probability density
P[φ] is a functional, defined over the space of fields. We can consider a Hamiltonian
description of the time evolution of the field, and introduce an auxiliary quantity
S[φ] that is canonically conjugate to P[φ], as discussed in Chap.5.

As an example, consider a classical scalar fieldφ. In the classical Hamilton–Jacobi
formulation reviewed in Chap.5, the equation for φ is given by

∂S

∂t
+

∫
dx

[
1

2

(
δS

δφ

)2

+ |∇φ|2 + V (φ)

]
= 0. (A.13)

The ensemble Hamiltonian H is the functional integral corresponding to the mean
energy of the field,

H [P, S] :=
∫

Df dx P

[
1

2

(
δS

δφ

)2

+ |∇φ|2 + V (φ)

]
. (A.14)

The Hamiltonian equations of motion for the dynamical variables P and S,

∂P

∂t
= ΔH

ΔS
,

∂S

∂t
= −ΔH

ΔP
, (A.15)

reduce via Eq. (A.12) to the Hamilton–Jacobi equation, Eq. (A.13), as required, and
to the continuity equation

∂P

∂t
+

∫
dx

δ

δφ

(
P

δS

δφ

)
= 0. (A.16)

Comparison with Eq. (A.8) shows that the local rate of change of the field is V =
δS/δφ.
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