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Foreword

This book is intended for students in physics or engineering attending laboratory
classes in electrical measurements. It covers the basic theory of electrical circuits,
describes analog and digital instrumentation, and applies modern methods to
evaluate uncertainties in electrical measurements. Its structure and content are the
result of a specific teaching experience lasted for more than 5 years.

Indeed when we first faced the task of offering laboratory classes in electricity to
physics students, we soon realized that available textbooks had two major short-
comings. First, the evaluation of measurement uncertainties they propose is often
inconsistent with modern methodology, as elaborated in the review of the expert
panel appointed by the Bureau International des Poids et Measures (BIPM).
Second, digital measuring devices, now ubiquitous in class and research labora-
tories, are not described or marginally mentioned. Moreover, textbooks available in
the published literature are often very specialized and do not pay enough attention
to the links that the matter dealt with has with the general framework and methods
of physics and engineering.

The material presented in these pages can be taught during the second semester
of the second year of the course of studies. At this stage, students should have
completed their basic physics studies and achieved a level of maturity enabling
them to generalize to other subjects the concepts they learn in the study of a
particular topic. Therefore, we were encouraged to use the matter subject of the
course, which is electrical circuits with the relevant instrumentation and experi-
ments, as an opportunity for students to:

• Consolidate the understanding of the concepts needed for the evaluation of the
uncertainties in experimental measurements and complete the learning of nec-
essary formal tools

• Illustrate with examples the methods to construct models of physical systems, a
very important task in the professional life, emphasizing their potentialities and
limitations
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• Familiarize with a modern electronic equipment where the understanding of the
functional relationships between different parts of the measuring device allows
for an effective exploitation even without the knowledge of the construction
details

• Learn to use the tools of linear system analysis, such as harmonic decomposi-
tion, symbolic method, the duality between frequency and time domain, and the
concept of normal modes

• Learn to design and perform simple laboratory experiments to verify physical
laws and to measure parameters used to characterize components and materials

• Take advantage of the availability of data in digital form to learn how to write
simple software for their analysis

• Learn how to report on laboratory activities in a manner suitable for a scientific
presentation of experimental results.

We are convinced that the availability of a valuable written text is a necessary
condition for students to learn and internalize the arguments dealt with during the
lectures and the laboratory sessions and to reach a level of knowledge significant at
the professional level. Since we did not find in the available literature a book, or a
reasonable combination of books, that was suitable to support the type of course we
had in mind to offer, we decided the writing of these notes.

This book consists of ten chapters, each followed by an adequate number of
exercises, which are briefly outlined below. In addition, in the first of its three
appendices we propose a series of nine experiments to carry out in the laboratory,
with an illustration mainly intended for the use of student tutors.

In line with the experimental approach we have chosen, we start in Chap. 1 with
the definition of electrical circuits and the description of components required for
their construction. We then introduce the discrete component model and discuss its
validity limits. Next, we discuss the characteristics of ideal components by intro-
ducing the concepts of impedance and admittance. Construction methods of
resistors, inductors, and capacitors are then briefly outlined. A discussion of the
skin effect is presented at this stage, and completed in a separate appendix, to
illustrate the limitations of the discrete component model with a concrete example.
This chapter assumes a certain degree of familiarity with the content of General
Physics courses, but where we deem it useful, or necessary, the relevant concepts
are recalled in special notes.

In Chap. 2, we introduce the two Kirchhoff laws and we illustrate the topological
properties of electric networks. The principal methods used under steady-state
conditions to compute the distribution of voltages and currents in a circuit are then
presented. After a brief description of problems posed by the possible nonlinearity
in the characteristics of components, we discuss the properties of linear networks:
superposition and reciprocity theorems and the concept of equivalent circuit with
related theorems (Norton and Thévenin).
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Chapter 3 examines the uncertainties associated with electrical measurements
adopting as a reference the guide developed by the International Organization for
Standardization (ISO) [1] that has standardized the treatment of measurement
uncertainties in science and industry. We first discuss the different types of
uncertainties and their causes, and introduce the concept of standard uncertainty.
Then we show how to evaluate the combined effect of various sources of uncer-
tainty. Particular emphasis is given to the possibility of correlation between the
measurements, a concept that can be usefully introduced at this stage of under-
graduate studies program. All these concepts are applied in a number of examples
in order to achieve an appropriate level of clarity.

In Chap. 4, we first discuss methods to measure steady-state currents and
voltages. After recalling the important features of measuring instruments, the use of
a current meter is illustrated and the principles of operation of the moving coil
galvanometer are presented in detail. This is followed by a discussion of voltage
measurements and an illustration of the different types of voltmeter and their
characteristics. Throughout this chapter, a special attention is given to explain to
students the influence of the instrument used to perform the measurement on its
result and the importance of systematic uncertainties that may come with it. The
chapter ends with a detailed discussion of methods for measuring the resistance
of the circuit components.

Chapter 5 begins with the definition and characterization of time-dependent
signals. We recall again the properties of the inductors and capacitors and then
proceed to the derivation of the differential equation that governs the evolution of
current and voltage in a series RLC circuit. This equation is solved for a sinusoidal
signal after illustrating the specificity and the importance of this type of signal. It is
then explained how the generalization to the space of complex numbers allows a
more easy solution of linear circuits under sinusoidal excitation by reducing the
differential equations into algebraic equations. This result is finally formalized in
the symbolic method with the introduction of the complex representation of volt-
ages and currents and the concept of complex impedance of circuit components.

In Chap. 6, the frequency response of important alternating current circuits is
obtained. It begins with resonant circuits, series and parallel, and then it deals with
bridge circuits that allow the measurement of unknown impedances. The series–
parallel transformation is used for the assessment of the effect due to nonideal
components in resonant circuits. We then introduce the notion of two-port circuits
and discuss Bode diagrams for their amplitude and phase response. The chapter
continues with a detailed solution of the RC and RL circuits in both of the high-pass
and low-pass filter configuration and a discussion of their possible use as differ-
entiators and integrators of waveforms. Then we recall the phenomenon of mutual
induction and its use in electrical transformers whose ideal behavior is evaluated in
detail. The chapter ends with a discussion of the problem of impedance matching
and a presentation of the main methods used in this regard.
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Chapter 7 is devoted to the illustration of alternating signals other than sinu-
soidal and to the experimental methods useful to characterize them. The concept of
effective value of an electrical quantity is introduced and methods for its mea-
surement are presented. Finally, phase measurements are briefly discussed.

In Chap. 8, both analog and digital oscilloscopes are introduced and their
operation is analyzed in detail. We first illustrate the principles of operation of a
cathode ray tube and the block diagram of an analog oscilloscope. We deal in detail
with the need to synchronize this instrument with the phenomena whose time
evolution we want to study and we discuss the methods to achieve it. The modern
version of the instrument, the digital oscilloscope, is then introduced and its
functional structure is described. The benefits obtained are illustrated, and emphasis
is given to the possibility of reading the instrument memory with a personal
computer to process the data numerically in a personalized way. Finally, we
describe the methods for measuring the phase shift between two electrical signals
with an oscilloscope.

Chapter 9 is devoted to the analysis of the behavior of non-sinusoidal waveforms
with particular regard to circuit excitation by pulses. We first discuss the techniques
for solving electrical circuits in the time domain and the special role played by the
step function. Then we proceed to obtain the step response of the two-port circuits
already studied in Chap. 6 in the frequency domain, with a particular emphasis on
the initial conditions to be imposed to the solution of the relevant differential
equations. Again, we find the conditions under which they behave as integrators or
differentiators of input signals. The response of RLC circuits is then studied in detail
and it is used, as an example, to evaluate the parasitic inductance in a RC high-pass
filter. The chapter ends with an exhaustive evaluation of the properties of a com-
pensated voltage divider that we analyze in both the time and the frequency
domains. In this chapter we did not use Laplace methods to be consistent with the
undergraduate level of the book and to avoid the risk of hiding behind a formal
approach, the basic physics of circuit operation.

Finally, Chap. 10 addresses the problem of the behavior of components that
cannot be treated as discrete and in particular discusses the properties of trans-
mission lines. After introducing an appropriate representation, we derive the
so-called telegrapher equation. Its solution in the time domain shows that, in the
absence of losses, signals are transmitted without distortion with a propagation
speed given by line parameters. The general solution in the frequency domain is
worked out to introduce the concept of line impedance. Then, the issue of the
termination of the line is addressed and the expression for the reflection coefficient
is obtained. After discussing the attenuation due to resistive losses, we describe the
electrical behavior of terminated transmission lines and obtain the expression for
their apparent impedance. The chapter ends with some practical considerations on
the cables used for connections in laboratory experiments.

The book contains three appendices. Appendix A is an important complement to
the main text. There we illustrate a series of nine experiments that we have used
extensively in our laboratory classes. For each of them we give a plan of action that
students should follow and a note that can be useful to tutors both in the preparation
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and in the illustration of the experiment to students. Appendix B and C deal,
respectively, with the skin effect and the Fourier analysis. They are meant to give
more information on their subject to the interested readers.

Most chapters in this book are equipped with a number of problems that students
can solve using concepts and methods discussed therein. For these problems, we
tried to maintain a level of difficulty in line with the preparation of students in the
second semester of undergraduate course of studies. Problems that require much
effort are marked with an asterisk.
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Chapter 1
The Electrical Circuit and Its Components

1.1 Introduction

An electrical circuit, or electrical network, consists of a set of physical devices
interconnected so as to allow the flow of the electrical current. The devices used
in electrical circuits are called electrical components or circuit elements. Note that
the term circuit highlights a key feature of an electrical network, consisting in the
presence of one or more closed paths through which the current can circulate.

Electrical circuits are used to transfer, distribute, or process energy or information
in electromagnetic form. This requires the manipulation of electrical currents and/or
voltages in a wide range of values and with very different time dependencies. We
can find countless examples of use of these circuits around us in everyday life.

In our smartphone, a low voltage battery converts chemical into electrical energy
and supplies a constant voltage. The circuits in the device fulfill the job to convert it
into the signals needed by logical elements to perform their functions. An example is
shown in Fig. 1.1 representing the output of a digital clock, a high frequency square
wave with carefully stabilized 5 MHz frequency, and a standard voltage swing of
1 V. When the battery needs recharging, electrical power is drawn from the main
distribution network and accumulated as chemical energy in the battery.

However, the voltage available from the network is not constant but has sinusoidal
time dependence and a rather high maximum value. Sinusoidal waveforms offer a
convenient opportunity to transmit power over long distances. They play a special
role in circuit analysis since their shape does not change when propagating in a linear
circuit.

Figure 1.2 shows the voltage available in Europe from the main distribution net-
work. This waveform needs to be transformed in a time-independent voltage of low
value, a few volts, to power most of the consumer electronics available on the market.
This is done in electrical circuits using nonlinear components, such as semiconductor
diodes.

© Springer International Publishing Switzerland 2016
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2 1 The Electrical Circuit and Its Components

Fig. 1.1 Typical output of a
digital clock. It consists of a
square wave voltage signal
with 5 MHz frequency and
1 V amplitude. Plot obtained
on the screen of a digital
oscilloscope with vertical
sensitivity 1 V per division
and horizontal sensitivity
100 ns per division

Waveforms that are even more complicated are produced by a host of sensors
that convert physical quantities into electrical signals. For example, an ionization
chamber detects the passage of a fast particle by the charge it leaves behind. The
chamber electrodes detect a very fast current signal that must be integrated to recover
a measurement of the particle energy. Therefore, integration is one of the many
operations that we must be able to perform with an electric circuit.

In many cases, it is necessary to use techniques that require concepts that go
beyond the physics of electricity and rely upon the use of devices controlling the
behavior of electrons at the microscopic level. These are subjects of the discipline of
electronics that is beyond the scope of this book. However, it is not possible nowadays
to deal in a meaningful way with electrical measurements without accounting for the
opportunities offered by electronic devices. Therefore, in this book we introduce
the reader to the most important examples of these kinds of instruments, limiting
ourselves to a functional description of their behavior with a minimum of details on
their practical implementation.

In this chapter, we describe the most common electrical components. In Sect. 1.2,
we first establish the basic framework allowing a useful definition and classification of
circuit elements. Then we introduce the ideal version of discrete components of most
common use. In Sect. 1.3, we illustrate the properties of the practical implementation

Fig. 1.2 The voltage
supplied by the public
distribution network in
Europe. It has a sinusoidal
waveform with a frequency
of 50 Hz and a root mean
square voltage of 230 V. The
root mean square is the
standard way to characterize
the amplitude of a
time-dependent signal, as we
will learn later in this book
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of each of them, the materials and the fabrication techniques involved. We also give
an introductory discussion of the skin effect to illustrate the limits of the discrete
component approximation. Finally, in Sect. 1.4 we briefly address the limits of use
we face when deploying a component in a practical circuit.

1.2 Electrical Components

The electrical components (also referred to as circuit elements) are devices designed
to control the relation between the voltage difference at their terminals and the
electrical current flowing through them. This definition of electrical or electronic1

component covers a wide spectrum of devices ranging from a simple resistor to
electromechanical devices such as the relays, from semiconductor devices such as
transistors, to the latest chips with the functionality of millions of transistors in a
single component.

Most of this book will deal with lumped parameters circuits, those in which the
signal wavelength2 is much larger than the physical dimension of the circuit and of its
components. This allows us to assume that electric and magnetic fields are uniform
within each component and possibly dependent only upon time.

When this approximation does not hold, that is, when the wavelength of the
signals propagating in the circuit is comparable to components dimensions, we say
that the circuit has distributed parameters and we cannot neglect the nonuniformity
of the electric and magnetic fields within its components. A noteworthy distributed
parameters circuit is the transmission line and we will deal in detail with it in the last
chapter of this book.

Electrical components have at least two terminals and for each of them we must
define a positive direction for the electrical current flowing through it. Moreover, for
each couple of terminals we must define the positive direction for voltage difference
or electrical tension across them.

The simplest components have just two terminals. They are characterized by the
voltage difference between their terminals and by the current flowing through them.
Figure 1.3 shows the symbol of a generic component whose terminals are identified
by the letters A and B. Denoting with v(t) = vA(t) − vB(t) the voltage drop across it
and with i(t) the current flowing through it, in general we can express them as

1Nowadays it is customary to use the term electronic for all electrical components even if electronics
itself was founded in the early 1900s with the invention, by A. Fleming and L. De Forest, of vacuum
valves, the first devices able to control the motion of electrons.
2The electromagnetic field propagates in electrical circuits with a speed of the order of light speed
in vacuum c. Denoting with ν the frequency of the signal, its wavelength is λ � c/ν. To get
an idea of the order of magnitude of lengths, consider that for ν = 1 kHz, λ = 3.0105 m, for
ν = 1 MHz, λ = 3.0102 m and for ν = 1 GHz, λ = 0.3 m. These lengths are larger than typical
dimensions of components �10−2 ÷ 10−3 m and of circuits �10−1 m.



4 1 The Electrical Circuit and Its Components

Fig. 1.3 Symbolic
representation of a generic
two-terminal electrical
component

BA
v (t)
B

v (t)
A

i(t)

{
v(t) = Ẑi(t)
i(t) = Ŷv(t)

(1.1)

where Ẑ and Ŷ are two operators named, respectively, impedance and admittance.
The operator impedance Ẑ acts on the mathematical representation of the electrical
current i(t) flowing through the component and yields the potential drop v(t) across
it. The operator admittance Ŷ acts on the mathematical representation of the potential
drop v(t) across the component and yields the electrical current i(t) flowing through it.

The operators impedance and admittance have a physical dimension: the unit
of measure of the impedance is the Ohm (symbol: Ω) while the unit of measure
of the admittance is the Siemens or Mho (symbol: Ω−1 or �). Moreover, they are
the inverse of each other and the following operational relationship holds: Ẑ =
Ŷ−1. The mathematical properties of the impedance and admittance operators are a
useful starting point to classify the circuit elements they describe. The first important
classification distinguishes linear from nonlinear components.

Linear components. Electrical components are linear if operators Ẑ and Ŷ are linear,
meaning that their mathematical expression does not contain explicitly the voltage
drop across the component or the current flowing through it. Examples of linear
components are the ideal resistor, the ideal capacitor, the ideal inductor, the ideal
amplifier. Examples of nonlinear components are the diode, whose impedance is
a function of the voltage drop at its terminals, the ferromagnetic inductor, whose
inductance is a function of the current flowing through the component. Also nonlinear
are all circuits used in digital electronics since they are stable only for a finite number
of output voltage levels.

The second important classification distinguishes active from passive compo-
nents.
Active and passive components. Active electrical components are devices able to
transfer net electrical power. On the contrary, passive components can only store or
dissipate energy. An active component is able to supply or transfer energy to other
components in the circuit. Examples of active components are the voltage generator
(battery), the transistor, the operational amplifier; examples of passive components
are the resistor, the capacitor, the inductor, the diode.
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Three terminal−components

Two terminal−components

Four terminal−components

−

+

+

−

(a)

(h)

(n) (o)

(p)

(i) (j) (k) (l) (m)

(b) (c) (d) (e) (f) (g)

Fig. 1.4 Examples of component symbols used in diagrams of electrical circuits. a resistance,
b capacitance, c inductance, d diode, e Zener diode, f DC voltage generator, g alternating voltage
generator, h potentiometer, i pnp transistor, j npn transistor, k field effect transistor (FET) channel n,
l p-channel FET, m operational amplifier, n air core transformer, o ferrite core transformer, p ground
connection

1.2.1 Electrical Symbols

It is customary to use specific graphic symbols to represent components in circuit
diagrams. The symbol specifies the qualitative properties of a component while
a number representing the value of the relevant parameter, with its physical units,
supplies quantitative information nearby the symbol. In Fig. 1.4 we show the symbols
of the most common electrical components.

For the description of real circuit elements, it is useful first to introduce ideal
components, which are described by simple expression of the operators Ẑ and Ŷ . We
shall see that we can describe satisfactorily real components as a properly connected
collection of ideal elements.
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1.2.2 Resistor

The ideal resistor is a two-terminal component whose behavior is determined
uniquely by the first Ohm’s law3; if v(t) is the voltage drop across the resistor ter-
minals and i(t) the current flowing through it, using notations in Fig. 1.3 we can
write

v(t) = vA(t) − vB(t) = Ri(t). (1.2)

where R is the resistor resistance. The expression (1.2) can be inverted yielding

i(t) = G[vA(t) − vB(t)] = Gv(t). (1.3)

where G = 1/R is the resistor conductance. The operators, impedance and admit-
tance, of the ideal resistor are simple multiplicative constants

resistor impedance : Ẑ = R (1.4)

resistor admittance : Ŷ = G = 1/R (1.5)

The ideal resistor is a dissipative component. The energy dissipated per unit of time,
i.e., the dissipated power, is given by

W (t) = v(t)i(t) = Ri2(t) = v2(t)

R
(1.6)

Dissipation of electric as heat in a resistor is universally known as the Joule effect.

Resistors in series. Two electrical components are connected in series when the
current flowing through them is identical (see Fig. 1.5). Therefore, if n resistors,
each with resistance Ri, are connected in series, the additive property of the electric
potential and a simple calculation show that the equivalent resistance of the n resistors
in series is equal to

R =
n∑

i=1

Ri

3A simple model of the electrical conduction due to Drude provides the behavior of ohmic con-
ductors. The model is based on the assumption that, inside the conductor, the electrons (point-like
particles with electrical charge e) are subject to two forces. The first is due to the external (constant)
electric field (FD = eE). The second is a viscous force proportional to the electron speed and takes
into account the diffusion effects suffered by the electrons in the solid ( FV = −γ v). In one spatial
dimension we can write mev̇ = eE − γ v. In stationary conditions the electron drift velocity (vD)
is vD = eE/γ , proportional to the electric field. Since the current density J is given by J = nevD,
where n is the electron particle density, we have J = ne2E/γ . If A is the conductor cross sectional
area and l its length, the electric field is E = V/l and the current is I = JA = (ne2/γ )(A/l)V .
The first Ohm’s law is thus recovered with the resistance R = (γ /ne2)(l/A). Furthermore, we note
that the quantity γ /ne2 represents the material resistivity ρ as defined by the second Ohm’s law
R = ρl/A.
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Fig. 1.5 Series (left) and
parallel (right) connections
of two resistors

R R1 2

R2

R1

Resistors in parallel. Two electrical components are connected in parallel when
the voltage drop across each of them is the same (see Fig. 1.5). If n resistors, each
with resistance Ri, are connected in parallel, the current flowing through the shared
connections is the sum of the individual currents flowing in each resistor. A simple
calculation shows that the equivalent resistance of the n resistors in parallel is given by

1

R
=

n∑
i=1

1

Ri

1.2.3 Capacitor

A capacitor is made of two conductors, isolated from each other and in condition
of complete electrostatic induction, and exploits the proportionality between the
electric charge q(t) accumulated on each conductor and their voltage difference v(t).
Therefore, for an ideal capacitor the following relation holds:

q(t) = Cv(t) (1.7)

where C is the capacitor capacitance. The quantity S = 1/C is the capacitor elastance,
a somewhat obsolete term. Using the definition of electrical current, i(t) = dq/dt,
in Eq. (1.7) we get

i(t) = C
dv(t)

dt
and, after integration, v(t) = 1

C

∫
i(t)dt

Therefore, for the ideal capacitor the operators, impedance and admittance, are

capacitor impedance : Ẑ = 1

C

∫
dt (1.8)

capacitor admittance : Ŷ = C
d

dt
(1.9)

It is well known that the capacitor is a device able to store electrostatic energy in
the space where the electric field is not null. The electrostatic energy EC , stored by
a capacitor of capacitance C, is given by
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EC(t) = 1

2
q(t)v(t) = 1

2
Cv2(t) = 1

2

q2(t)

C
. (1.10)

Capacitors in series. When n capacitors, each with capacitance Ci, are connected
in series, the charge on each of them is the same. Therefore, the additive property of
the electric potential and a simple calculation show that the equivalent capacitance
of n capacitors in series is given by

1

C
=

n∑
i=1

1

Ci

Capacitors in parallel. When n capacitors, each with capacitance Ci, are connected
in parallel, the voltage drop across each of them is the same while the charge on the
shared connection is the sum of the individual charges on each capacitor. A simple
calculation shows that the equivalent capacitance of the n capacitors in parallel is
equal to

C =
n∑

i=1

Ci

1.2.4 Inductor

The ideal inductor is an electrical component where the electric field is entirely due
to the variation of the magnetic flux generated by the current flowing through it.
Denoting by Φ the magnetic induction flux through the inductor and by L its self-
inductance coefficient or, in short, inductance, in an ideal and isolated inductor the
following relations holds:

Φ = Li(t) (1.11)

i(t) = 1

L
Φ = Γ Φ (1.12)

The quantity Γ = 1/L is the inductive elastance, a somewhat obsolete term. The
law of Faraday-Neumann yields

v(t) = dΦ

dt
= L

d

dt
i(t) and, after integration i(t) = 1

L

∫
v(t)dt

These relations yield the expressions for the operators, impedance and admittance,
of the ideal inductor
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inductor impedance : Ẑ = L
d

dt
(1.13)

inductor admittance : Ŷ = 1

L

∫
dt (1.14)

While a capacitor stores electrostatic energy, the inductor stores magnetic energy,
EL, in the space region where magnetic induction B is not null. For an inductor with
inductance equal to L, we have

EL(t) = 1

2
Li2(t)

where i(t) is the current flowing through the inductor.

Mutual induction. When the magnetic field, generated by the current flowing
through an inductor, links to a different inductor, it can induce an electric field there,
and the two inductors are not anymore isolated. This phenomenon known as mutual
induction is at the heart of the operation of the voltage transformer, an electrical
component we will discuss in Chap. 6 when dealing with time-dependent currents.

Here we want to show how it is possible to take it into account the simultaneous
presence of different inductors in the same circuit. For this purpose let us consider n
inductors connected in a network; denoting with Ljk(=Lkj)

4 the induction coefficient
between inductors j and k, the voltage induced in the inductor j due to the current
flowing through the inductor k is5:

Vjk = Ljk
d

dt
ik(t) (1.15)

where ik(t) is the current flowing through the kth inductor. The total voltage drop
across inductor j is then easily obtained as

Vj(t) =
∑

k

Vjk(t) =
∑

k

Ljk
d

dt
ik(t) (1.16)

Denoting with Φj(t) the magnetic induction flux linked to the jth inductor we have

Vj(t)dt =
∑

k

Ljkdik(t) = dΦj(t) (1.17)

Φj(t) =
∫ t

0
Vj(t

′)dt′ + Φj(0) =
∑

k

Ljkik(t) + Φj(0) (1.18)

4The equality Ljk = Lkj is recovered rather easily when the coefficients Ljk are derived using the
vector potential A. Details can be found in general physics textbooks, as for example The Physics
of Feynmann Vol. II-17-11 [1].
5In this notation, Ljj is the self-inductance of the jth inductor.

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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Fig. 1.6 Two inductors
connected in series; M is the
coefficient of mutual
inductance between the two
inductors

L L

M

1 2

Solving the linear equation system obtained from the last equation, we get the relation

ik(t) =
∑

j

Γjk[Φj(t) − Φj(0)] (1.19)

where the coefficients Γjk , whose physical dimension is the inverse of the inductance,
are obtained from the matrix L†

jk , adjoint of Ljk through the equation

Γjk = 1

‖Ljk‖L†
jk (1.20)

where ‖Ljk‖ denotes the determinant of matrix Ljk .
As an example of application of these results, we consider now the case of two

inductors connected in series or in parallel.

Inductors in series. Consider two inductors connected in series. Denoting with
L1 and L2 their self-inductances and with M their mutual induction coefficient6

(see Fig. 1.6) and using Eq. (1.16) we get:

v(t) = v1(t) + v2(t) = (L11 + L12 + L21 + L22)
d

dt
i(t)

= (L1 + L2 + 2M)
d

dt
i(t)

Therefore, the equivalent inductance of the two inductors in series is

L = L1 + L2 + 2M (1.21)

Inductors in parallel. Consider two inductors connected in parallel. Denoting with
L1 and L2 their self-inductances, with M their mutual induction coefficient and con-
sidering that the total current flowing through the parallel connection is the sum of
the currents i1 and i2 flowing through the individual inductors, we use relations (1.19)
to obtain

i(t) = i1(t) + i2(t) = (Γ11 + Γ12 + Γ21 + Γ22)Φ(t) (1.22)

6The correspondence between the notation used in this example and the one used previously is as
follows: L1 = L11, L2 = L22 and M = L12 = L21.
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where we have taken into account that, since the inductors are connected in parallel,
relation (1.17) yields Φ1(t) = Φ2(t) ≡ Φ(t). Applying relation (1.20), we get

Γjk = 1

‖Ljk‖L†
jk = 1

L1L2 − M2

∣∣∣∣ L2 M
M L1

∣∣∣∣
Taking the time derivative of relation (1.22) and using Γ1 = Γ11, Γ2 = Γ22, and
ΓM = Γ12 = Γ21 we finally obtain:

v(t) = 1

Γ1 + Γ2 + 2ΓM

d

dt
i(t)

Therefore, the equivalent inductance of the two inductors connected in parallel is

L = L1L2 − M2

L1 + L2 + 2M

Generalization to more than two inductors in series or in parallel only requires the
handling of more complex mathematical computations.

Note that in case the inductors are magnetically isolated, M = 0, the expressions
for the equivalent inductance are similar to those obtained for resistors in both series
and parallel connection case. Finally, we recall that M is an algebraic quantity, its sign
depending on the geometry of the inductor. More details will be given in Sect. 6.11
dealing with the voltage transformer.

1.2.5 Generators

A generator is an active electrical component supplying the energy that other com-
ponents can either store or dissipate as heat through the Joule effect. Both voltage
and current generators can be used to power electric circuits.

Voltage generator. The voltage difference v at the terminals of an ideal voltage
generator does not depend upon the current i flowing through it (although it can
possibly be time dependent). In formulas, this is expressed as

dv

di
= 0

implying that the ideal voltage generator has null impedance and infinite admittance.
Two circuit symbols are used for ideal voltage generators, one for the case of a
constant voltage, or battery (see Fig. 1.7a) and one for the case of a time depending
voltage (see Fig. 1.7b).

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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+ +

_ _
v(t)

(c)

+

_V

(a) (b)

v(t)

Z

Fig. 1.7 Circuit symbols of voltage generators. a the battery symbol; b symbol of a variable
generator; c symbol of a real voltage generator

Real voltage generator. The behavior of a real voltage generator can be represented
with an ideal generator in series with an impedance that is referred to as the internal
generator impedance (see Fig. 1.7c).

Current generator. The current i flowing through an ideal current generator does
not depend upon the voltage drop v across its terminals (although it can possibly be
time dependent). In formulas, this is expressed as

di

dv
= 0

implying that the ideal current generator has infinite impedance and null admittance.

Real current generator. The behavior of a real current generator can be represented
with an ideal generator in parallel with an impedance that is referred to as the internal
generator impedance (see Fig. 1.8).

Special ideal generators. Of particular importance are two generators frequently
used in the analysis of circuits, whose formal definitions are

• Short Circuit: a voltage generator with v(t) = 0 for any i(t)
• Open Circuit: a current generator with i(t) = 0 for any v(t)

1.2.6 Controlled Generators

The operation of many active circuits, such as for example the amplifiers, can be
better described introducing special components behaving as voltage (or current)

i(t) Zi(t)

Fig. 1.8 On the left, the circuit symbol of the ideal current generator, on the right the representation
of a real current generator. Conventionally, the arrow indicates the positive direction of the current
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I= . . .
V= . . .+

−

I=gV

R RV

R

(a) (b) (c)

Fig. 1.9 Circuit symbols of controlled voltage (a) and current (b) generators. With c we show an
example of a circuit that uses a current controlled generator. The current I = gVR, supplied by the
generator “depends” upon the voltage drop across the resistor R (in this case proportionally). If the
voltage drop on R changes, the current circulating in the output loop will change according to the
formula I = gVR

Table 1.1 Elementary Circuit Components

Ideal element Circuit symbol Impedance
(applies to I)

Admittance
(applies to V )

Resistor R G = 1/R

Capacitor 1
C

∫
dt C d

dt

Inductor L d
dt

1
L

∫
dt

Voltage generator - + 0 ∞

Current generator ∞ 0

generators whose output value depends upon the voltage or the current in a dif-
ferent component of the circuit. These components are referred to as controlled
(or dependent) generators. Figure 1.9 shows the circuit symbols used for such kind
of generators.

In conclusion of this section, we summarize in Table 1.1 symbols and properties
of the ideal components introduced so far.
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1.3 Real Components

When designing an electrical circuit we may need, for example, to use a resistance
in a given branch to obtain the effect desired; in practice, however, the component
eventually inserted in that location is a resistor having, among its many parameters,
the required resistance value. Therefore, the resistance is a property of the physical
object that we are going to use whose correct name is resistor. The resistor is ideal
when it is characterized uniquely by the value of its electrical resistance. Likewise,
the capacitance is sufficient to characterize an ideal capacitor and the inductance is
sufficient to characterize an ideal inductor. However, it is customary to identify a real
component with the name of its main property and, as a consequence, a resistor is
normally identified as a resistance. This practice, unfortunately, is likely to lead us to
forget that a real component, in particular at high frequencies, must be characterized
with more than one property, as we will discuss later in this chapter.

Electromagnetic properties of materials. It is adequate for most purposes to
characterize the electromagnetic behavior of materials in terms of the following
parameters7:

• Electrical conductivity σ . This parameter is the inverse of resistivity ρ (σ = 1/ρ)
and is used to quantify the capability of the material to support the passage of an
electrical current. Its physical units are (ohm · meter)−1.

• Electrical permittivity ε. This parameter quantifies the dielectric response of the
material to an external electric field. Its physical units are farad·meter−1

• Magnetic permeability μ. This parameter quantifies the material magnetization
when immersed in an external magnetic field. Its physical units are henry·meter−1

With the help of these parameters, we can reconsider ideal electrical components
from a different perspective that helps to understand the problems posed by their
physical realization. We will therefore say that we can build an ideal resistor only
with an ideal material having an electrical conductivity σ �= 0 and null dielectric
and magnetic permittivity: ε = μ = 0. Likewise, for an ideal capacitor we need an
ideal material with dielectric permittivity ε �= 0 and σ = μ = 0. Finally, for an ideal
inductor we need an ideal material with magnetic permittivity μ �= 0 and σ = ε = 0.
Obviously, real components are built with real materials and show parasitic effects
that, although manufacturers strive to minimize them, are unavoidable. For example,
the material of a real resistor in general will have ε �= 0, σ �= 0, and μ �= 0.
Therefore, a real resistor will also display a non-null capacitance and a non-null
inductance, which in general will both depend on the geometry and dimensions of the
component. These parasitic properties will affect the performance of the component,

7On this argument, the reader can consult any general physics textbook dealing with electromagnetic
properties of materials, such as for example [2] or [3].
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p
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p

p

Rp

Cp

LC

R

R’p

Fig. 1.10 Possible representations of real components: a Real resistor, b Real capacitor, c Real
inductor. Parasitic characteristics are denoted by the suffix p

especially for high frequency signals. A possible representation of a real resistor in
terms of discrete8 ideal components is depicted in Fig. 1.10a.

A real capacitor has always a stray resistance connecting its two terminals, due
to the finite conductivity of the dielectric separating its plates (dielectric losses). In
addition, it has an inductance because of its finite dimensions and a series resistance
due to the resistivity of its terminals (see Fig. 1.10b). Similarly, for a real inductor it
is necessary to take into account the resistance of its coil and the capacitance between
turns (see Fig. 1.10c).

We now give some details about the construction techniques and the characteristics
of passive electrical components most commonly used: resistors, capacitors, and
inductors.

1.3.1 Real Resistors

We have introduced the concept of resistance in Sect. 1.2.2 as the impedance of
an electrical component, the ideal resistor. In this section, we discuss the practical
realization of such components and their properties and limitations.

Resistors are components with a well-defined electrical resistance whose value in
practice is obtained exploiting the second Ohm’s law, which links it to the geometrical
dimension of the component and to the resistivity of its material:

R = ρ
l

A
(1.23)

where ρ is the component resistivity, l its length, and A its cross-sectional area,
assumed constant.

Materials resistivity is temperature dependent. Therefore, manufacturers quote
the value of a component resistance at a reference temperature To (usually 20 ◦C)

8Note that parasitic effects in real component depend on their geometry and extension. Therefore, a
representation in terms of discrete elements is always an incomplete approximation of the component
behavior that could be better described in terms of distributed constants.
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and its value R(T) at a generic temperature9 T is given by

R(T) = Ro[1 + α(T − To)]

where the parameter α, the temperature coefficient, is a characteristic of the resistor
material. In Table 1.2, we list values of resistivity and temperature coefficient for
materials of common use in resistor production.

The resistors available on the market range from resistance value of fractions
of Ohm up to several hundreds of megaohms (MΩ). Manufacturers adopt different
production techniques depending on the resistance value required and on the parasitic
effects to be reduced.

Wire wound resistors. Wrapping a wire of length l and cross section area A around an
insulating and refractory support, we can obtain a resistance value given by Eq. (1.23).
Selecting the material and the geometrical parameters of the wire a wide resistance
range can be covered. In practice, however, the choice of the wire material is lim-
ited to those with a small temperature coefficient. Metallic alloys, like Constantan,
Manganin and Argentan, offer the best opportunity to obtain resistance values with
very little temperature dependence, see Table 1.2.10

Thin film resistors. These resistors are made of a thin film of conducting material
with thickness ∼10−2µm deposited on an isolating substrate (typically silicon, alu-
mina or gallium arsenide). The required value of the resistance is obtained selecting
the thickness of the conducting material that is typically made of tantalum nitride
(TaN) or nichrome.

Carbon composite resistors. These resistors are obtained compressing a mixture of
carbon granules, ceramic powder and epoxy resin in a tubular insulating container.
The relative amount of carbon in the mixture controls the resistance value in this
kind of resistors.

SMD resistors. The techniques of miniaturization in electronics have led to the
development of resistors (and other components) of small size which are called
“Surface Mounted Device” or SMD.

Color code. Closing this section, we point to the reader’s attention that it is customary
to give the resistance value and its tolerance with color bars printed directly on the
resistor case. Detailed description of the codes adopted are available on the Internet
from manufacturers and a host of other sources.

9The temperature is an influence variable for the value of R. As we will see in detail in the chapter
dealing with the handling of measurement uncertainties, the influence variables are physical quanti-
ties that, although not directly involved in the definition of the physical variable of primary interest,
in this case the resistance, can have an influence on their value.
10Data taken from: “https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity.” This
site contains references to many texts and other web sites on resistivity values.

https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity
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Table 1.2 Resistivity and temperature coefficient of conducting materials

Material Alloy Resistivity (µ�cm) Temperature
coefficient (10−3K−1)

Aluminum Al 2.828 3.6

Antimony An 42 3.8

Stainless steel Fe-C 10–25 4.5–5.0

Argentan ∼(Cu 55-Zn 22-Ni 23) 35–41 0.07

Bismuth Bi 120 4

Carbon (Grafite) C 800 −0.5

Cobalt Co 5.7 5.5

Constantan ∼(Cu 55-Ni45) 52.0 ±0.02

Iron Fe 9.8 5

Manganin ∼(Cu84-Mn12-Ni 4) 43–48 0.01

Mercury Hg 96 0.89

Nickel Ni 7.2 5.4

Gold Au 2.42 3.6

Nichrome 90–104 0.11–0.19

Platinum Pl 10.5 3.7

Lead Pb 20.6 4.0

Copper Cu 1.72 4.0

Tin Sn 11.4 4.4

Tungsten Wl 5.5 5.2

Soil (average value) 109–1011

1.3.2 Real Capacitors

Real capacitors are manufactured by coupling two conducting surfaces, usually called
plates, separated by a dielectric with thickness, as far as possible, constant. The
characteristics of a capacitor, as a circuit component, depend on the technique used for
its construction. Besides the relative dielectric constant εr of the insulation material,
multiple influence variables determine the characteristics of a real capacitor. Their
effects are not always easily quantified. Among them:

• Temperature. The geometrical dimensions of the dielectric material are temper-
ature dependent because of its finite thermal expansion coefficient, and con-
sequently, the component capacitance becomes a function of its temperature.
The temperature coefficient α describes this dependence as C(T) = Co(To)

[1 + α(T − To)], where T is the operating temperature and Co(To) is the capaci-
tance value at the reference temperature To. When nonlinearity is important, i.e.,
when α depends upon T , manufacturers may prefer to give the plot of the capaci-
tance relative change as a function of the operating temperature.
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• Dielectric conductivity. Although very low, the conductivity of dielectrics used in
capacitors is finite and, often, frequency dependent. This adds a resistive compo-
nent to the capacitor impedance that can be described as a resistance Rp connected
in parallel to the capacitor (see Fig. 1.10b). Often, manufacturers quote the amount
of this effect through a parameter δ, named loss angle, which we will define in the
following section.

• Aging. The dielectric aging, particularly relevant for electrolytic capacitors, can
cause changes in its chemical–physical characteristics that make the capacitor non-
compliant with the characteristics declared by the manufacturer, and then often
unusable. This phenomenon depends on the conditions of use and in particular,
on the temperature; for example, an electrolytic capacitor used at a temperature of
45 ◦C shows a useful life span of about 15 years that is reduced to a few months
in case the component is used, or even stored, at 100 ◦C.

• Parasitic inductance. Capacitors are built with nonmagnetic materials; neverthe-
less, they have a parasitic inductance mainly depending on their geometry. Capac-
itors whose plates are rolled to shrink their size present relatively high values of
inductance. In addition, all real capacitors have some inductance (and resistance)
associated with their leads.

• Microphone effects. Materials are deformed when subject to the pressure of
acoustic waves. Some ceramics used as dielectric in capacitors are slightly
piezoelectric and their deformation causes a variation in their dielectric constant.
Consequently, the capacitance value can change depending on the amplitude and
frequency of the acoustic noise present in the near environment. This effect can be
particularly relevant in electronic amplifiers placed in proximity of loudspeakers.

Dielectric materials more commonly used in capacitors are:

• Plastic film. Various kinds of plastic films are well suited as capacitor dielectric.
Among them, polyester (PET) and polytetrafluoroethylene (PTFE) are common
choices. Film capacitors can cover a wide range of capacitances, ranging from
below 1 nF up to 30µF. They can be made with breakdown voltage from 50 V
up to a few kV. Film capacitors can be made with high precision capacitance
values, and are less affected by aging than other kinds of capacitors.

• Ceramic. Capacitors made with a ceramic as dielectric are used in high frequency
circuits and in high voltage devices. These capacitors have a low temperature coef-
ficient, typically ranging in the interval ±30 ppm/◦C for a temperature excursion
in the interval +25 ◦C, +85 ◦C. Unfortunately, ceramic capacitors tend to show
a capacitance that depends on the applied voltage across their terminals and their
use is not advisable in analog circuits.

• Glass. Glass is used in applications requiring stable and reliable components able
to operate in extreme conditions as required for example by the aerospace and
nuclear industries.

• Air. Air is often used as dielectric in variable capacitors with maximum capaci-
tance in the range of a few hundred pF.

• Paper. Paper has been widely used in the past in radio-frequency devices. Nowa-
days, it is used only for special applications such as high voltage capacitors.
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Electrolytic capacitors. High capacitance values (in the range 1 ÷ 104µF) can be
obtained with electrolytic capacitors. In these components, the dielectric is a very
thin layer of metal oxide, typically aluminum or tantalum oxide, obtained elec-
trolytically through a chemical reaction from a liquid or gel contained between the
capacitor plates. In this case the two plates are not equivalent by construction and
the lead marked with a “+” must be connected to a voltage higher than the other
lead, marked with a “−”. In this way, the capacitor is properly polarized and the
electrochemical reaction can proceed in the right direction.11 Therefore, the use of
electrolytic capacitors is limited to circuit locations where the voltage difference
does not change sign. Another limitation of these components is their slow response
time that can be compensated by a plastic or ceramic capacitor connected in parallel.
Finally, it must be remarked that aging in electrolytic capacitors proceeds through
the evaporation of the electrolyte and can be very relevant, as discussed above.

Modeling a real capacitor. A real capacitor can be represented in terms of ideal
discrete components by the diagram shown in Fig. 1.10b. The resistance Rp represents
the effect of dielectric losses; R′

p and L represent, respectively, the resistance and
the inductance due to the plates and their leads, as previously described. Often the
inductance can be neglected up to the highest frequencies used in discrete components
circuits; in these circumstances, the loss angle is defined by

tan δ = 1

ωRpC

where ω = 2πν, ν being the frequency of the sinusoidal voltage difference applied
to the capacitor terminals. The meaning of this formula will be clarified once the
behavior of circuit for alternating currents has been discussed. Here we just note that
the loss angle is frequency dependent and usually manufacturers quote its value for
discrete frequency values. Obviously, a capacitor approximates the ideal behavior
better when the loss angle is small.

An alternative to account for capacitor losses is to measure its equivalent series
resistance, ESR in short. As we will discuss later in this book, this parameter is
frequency dependent and could be computed with a parallel to series transformation
if we happen to know the values of Rp, R′

p and L.

1.3.3 Real Inductors

The procedure to build a real inductor consists in winding an adequate number of
turns of a conducting wire along a cylindrical or toroidal core. In practice, this
technique is nowadays in use only for radio-frequency circuits, up to a few hundred

11An electrolytic capacitor incorrectly connected, with the wrong polarity, is permanently damaged
and can create a dangerous situation with the emission of toxic fumes and with the possibility of
component explosion.



20 1 The Electrical Circuit and Its Components

MHz. For higher frequencies, inductances are obtained with spiral tracks on printed
circuits or even directly on the silicon wafer of integrated circuits. A large inductance
at relatively low frequencies can be usefully replaced by using a capacitor and an
operational amplifier performing as a gyrator. The gyrator is an active circuit that
converts an impedance in its inverse.12

Inductors made of a wire-winding present an inductance that depends on its
geometry13 and on the magnetic permeability of the material used for the core.
Note that saturation effects in this material can generate a nonlinear dependence of
inductance on the current flowing through it.

Besides its inductance, a real inductor has both a resistive component of the
impedance, mainly due to electrical resistance of the winding (usually denoted by
RDC to underline that this parameter is easily measured at low frequency), and a
capacitive component, due to the distributed capacitance between the different turns
of the winding. Other mechanisms responsible for power dissipation in an inductor
are parasitic Foucault’s currents in the core, due to its finite resistivity, skin effect in
the wire at high frequency, see the following section, and, at very high frequency,
irradiation of electromagnetic waves.

Total dissipation in an inductor can be usefully accounted by its quality factor Q,
a parameter that can be easily measured using a time-dependent current.14 Q is given
by the ratio of the energy stored in the inductor to the dissipated energy

Q = 2π
PL

PR
= ωLI2

RI2
= ωL

R

Since dissipation in an inductor is frequency dependent, the technical specifications
supplied by the manufacturer usually report the Q value for some frequency values
or a plot of its value as a function of the frequency. Obviously, the higher its quality
factor, the better the inductor approximates the ideal behavior.

1.3.4 Skin Effect

As an example of the limits of discrete component approximation, in this section
we give a simplified discussion of the physics of current diffusion in a conductor of
finite dimensions. When the electrical current flowing through a conductor is time
dependent, the phenomenon of self-induction modifies its space distribution. As a
result, increasing the frequency, the current is progressively confined in the conductor
periphery, hence the name skin effect. This amounts to a reduction of the useful cross

12The practical implementation of such a device requires familiarity with working principles of
operational amplifiers and cannot be discussed here.
13Only for a few geometries we can easily calculate the inductance. Among these: the toroidal
winding and, neglecting edge effects, the winding on a cylinder.
14Here it is supposed to use the inductor with a sinusoidal generator of frequency ν = ω

2π
. Periodic

currents will be treated extensively in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-31102-9_5
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Fig. 1.11 Qualitative deduction of the skin effect

section for the current flow, causing an increase in its resistance. In the following, we
give a qualitative understanding of the physics of skin effect in a simple geometry.

Consider an alternating current i(t) flowing through a cylindrical wire as shown
in Fig. 1.11. The rectangular path A1, A2, A3, A4 inside the wire has one of its edges,
A1A2, along the cylindrical axis. When the current i(t) is directed along the arrow
in the figure the field lines of the magnetic induction B are circles perpendicular
to the axis as shown in the figure. The magnetic flux across the path A1, A2, A3, A4

increases with the current intensity and the electric field resulting from self-induction
along the path has the same direction of the current at the periphery and becomes
opposite to it on the axis. This field opposes the current variation in the conductor
core but reinforces it at the edges. A similar conclusion can be reached when the
current decreases; in this case, the induced electric field in the core is directed in the
same direction of the current opposing the current variation while at the periphery
it becomes opposite to the current helping to reduce it. The overall effect is that the
alternating current becomes confined in a circular ring at the edge of the cylinder
whose depth is therefore referred to as the skin-depth. This causes the increase of the
wire resistance and the reduction of its inductance. Moreover, since, as we shall see,
this reduction is stronger the higher the oscillation frequency, both these parameters
become frequency dependent. A quantitative evaluation of the skin effect can be very
complex and simple results are obtained only for special cases. For a current flowing
parallel to the surface of a plane conductor of infinite thickness, the current density
J(x) has its maximum right at the surface and decreases with the distance x from it
according to the law:

J(x) = J0e
−

x

δ

where we have denoted with δ the skin depth given by

δ =
√

2ρ

ωμ
(1.24)



22 1 The Electrical Circuit and Its Components

Table 1.3 Skin depth in copper as a function of the signal frequency

Frequency 50 Hz 10 kHz 100 kHz 1 MHz 10 MHz

δ (mm) 7.82 0.66 0.21 66 × 10−3 21 × 10−3

In this equation, ρ and μ denote, respectively, the resistivity and the magnetic per-
meability of the conducting material and ω is the angular frequency of the oscillating
current. Table 1.3 gives the extension of the skin-depth, as derived from Eq. (1.24),
for a copper conductor as a function of the current oscillation frequency.

In Appendix A we illustrate a more formal approach to the skin effect.15

1.4 Usage Limits for Real Electrical Components

All electrical components suffer of usage limits due to the effects that the passage of
an electric current and/or the application of an electric field can cause in the materials
used for their construction. The most important limit comes from the heat production
caused by the resistivity of the material; indeed, when this heat is not transferred easily
to the environment, the temperature of the component increases eventually leading to
its damage. For this reason manufacturers of resistors and inductors usually give, in
their technical specifications, the maximum electrical power input that the component
can safely withstand.

Inductors in addition suffer from a current limitation related to the mechanical
stress due to magnetic forces generated by current–current interaction that can cause
the rupture of the conductor or of its support.

Capacitors usually do not present an important limitation due to thermal dissi-
pation but suffer from a specific problem due to dielectric strength. Indeed, every
insulating material can withstand up to a maximum electric field without losing its
insulation properties. Therefore, for every capacitor, depending on its geometry and
the dielectric used, the manufacturer gives the maximum voltage that can be applied
without damaging the component.

Problems

Problem 1 A 220 � resistor can dissipate up to 0.5 W without damage. Compute
the maximum voltage and the maximum current that it can withstand. [A. Vmax =
10.5 V, Imax = 47.7 mA.]

15More detailed discussion on the skin effect can be found in electrodynamics textbook such as, for
example, [4].
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Problem 2 Calculate the amount of energy that can be accumulated in a capacitor
of 12 nF whose dielectric can sustain a maximum voltage of 50 V. [A. 1.5 × 10−5 J.]

Problem 3 Calculate the amount of energy that can be accumulated in an inductor
of 15 mH that can sustain a maximum current of 0.5 A. [A. 1.87 × 10−3 J.]

Problem 4 The battery of your car has 0.4 MJ of stored energy, 12 V of open circuit
voltage and an internal resistance of 1.0 �. If you forget the lights on and the lamps
have an equivalent resistance of 5�, after how long will the battery be fully dis-
charged? Use the simplifying assumption that the internal resistance of the battery
remains unchanged until the discharge completes. [A. 4 h38 m.]

Problem 5 Calculate the resistance of a 1000 W electric heater, recalling that the
electricity network delivers an effective voltage of 220 V. [A. 48.4 �.]

Problem 6 A voltage generator with output V connects to the series of two resistors
R1 and R2 forming a voltage divider. Compute the voltage drop across each resistor
and their ratio. [A. ΔV1 = V R1/(R1 + R2),ΔV2 = V R2/(R1 + R2),ΔV1/ΔV2 =
R1/R2.]

Problem 7 N resistors with resistance values Rn are connected in series to form
a chain; calculate the voltage drop ΔVn across each resistor Rn when voltage V is
applied to the chain. [A. ΔVn = V Rn/

∑
i Ri.]

Problem 8 A current generator with output I connects to the parallel of two resistors
R1 and R2 that form a current divider. Compute the current value in each resistor and
their ratio. [A. I1 = IR2/(R1 + R2), I2 = IR1/(R1 + R2), I1/I2 = R2/R1.]

Problem 9 N resistors with resistance values Rn are connected in parallel. Compute
the current value in the generic n-th resistor as a function of the total current I supplied
by the generator powering the circuit. [A.In = I/Rn/

∑
i(1/Ri).]

Problem 10 Compute the voltage VAB in the circuit shown in the figure using the
expressions deduced for the voltage divider in problem 6. Assume V = 100 V, R1 =
100 �, R2 = R = 200 �. [A. VAB = 50 V.]

R

A

B

V

R

2

1

R

Problem 10

Problem 11 Assume to have a 7 A current generator and three resistors of values
0.25, 0.5, 1 � respectively. How would you arrange them to build a current generator
with output equal to 1 A? [A. Connect the three resistor in parallel and take the output
in series with the 1 � resistor.]
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Problem 12 Compute the power dissipated by each of the three resistors in the
previous problem. [A. P0.25� = 4W; P0.5Ω = 2W; P1Ω = 1 W.]

Problem 13 Compute the current in the resistor R3 in the circuit of the figure
using the expression deduced for the current divider in problem 8 assuming R1 =
100 �, R2 = R3 = 50 �. [A. IR3 = 2.5 A.]

5A R1 R3

R2

Problem 13

Problem 14 Compute the power delivered by the generator and the power dissipated
in the resistor R1 of the circuit in the figure. [A. Wg = V 2/Req, WR1 = V 2R1/R2

eq

con Req = R1 + 1
1

R2
+ 1

R3+R4

.]

R1 R3

R2V R4−
+

Problem 14

Problem 15 Compute the power delivered by the current generator and the power
dissipated in the resistor R2 of the circuit in the figure. [A. Wg = I2(R1 + R2)(R3 +
R4)/(R1 + R2 + R3 + R4), WR2 = I2R2(R3 + R4)

2/(R1 + R2 + R3 + R4)
2).]

R1

R2 R3

R4I

Problem 15

Problem 16 Compute the resistance between the two points A and B and the resis-
tance between the two points C and D of the circuit in the Figure. [A. RAB =
R1 + R3 + 1

1
R2

+ 1
R6

+ 1
R4+R5

, RCD = 1
1

R5
+ 1

R4+ 1
1

R2
+ 1

R6

.]

D

R6R3

A

B

R2

C

R5

R4R1

Problem 16
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Problem 17 Two capacitors with capacitance C1 and C2 are connected in series
and the series is connected to a voltage generator of output V. Compute the charge
accumulated on each of them. [A. Q = V C1C2/(C1 + C2.]

Problem 18 Two capacitors with capacitance C1 and C2 are connected in series
and the series is connected to a voltage generator of output V. Compute the voltage
drop across each capacitor and their ratio. [A. ΔV1 = V C2/(C1 + C2),ΔV2 =
V C1/(C1 + C2),ΔV1/ΔV2 = C2/C1.]

Problem 19 Two inductors with inductance L1 and L2 are connected in series and
the series is connected to a voltage generator of output v(t). Neglecting mutual
inductance, compute the voltage drop across each inductor and their ratio. [A. ΔV1 =
v(t)L1/(L1 + L2),ΔV2 = v(t)L2/(L1 + L2),ΔV1/ΔV2 = L1/L2.]

Problem 20 * The second Ohm’s law holds for resistors with a constant cross
section. Consider how to solve the problem of computing the resistance R of a resistor
having the form of a truncated cone with length l and a cross section radius ranging
from r1 to r2. Assume that the resistor material is homogeneous with resistivity ρ.
Many textbooks give the answer: R = ρl/πr1r2; recover the procedure leading to
this answer and show that it is wrong since it violates charge conservation. The full
response can be found in Ref. [5].
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Chapter 2
Direct Current Circuits

2.1 Introduction

Nowadays, our lives are increasingly dependent upon the availability of devices that
make extensive use of electric circuits. The knowledge of the electrical current flow-
ing in each component of a circuit, and the corresponding voltage drop, is essential
to obtain the desired function from the device exploiting it. When we obtain these
values, we say that the circuit is solved.

Circuits where voltages and currents are not time dependent are called direct
current circuits or, using an acronym, DC circuits. They are a useful starting point to
confronting the task of constructing procedures useful to obtain circuit solutions.

This chapter deals with methods to obtain the solution of a DC circuit. First, we
discuss in Sect. 2.2 the basic physical principles to be used and we recall the two
Kirchhoff’s laws. Then we introduce some basic concepts of graphs theory useful
to analyze the topological properties of electrical circuits. Using these results, we
move on in Sect. 2.3 to describe the implementation of the two principal approaches
to circuit solution, the method of nodes and the method of meshes. As an example of
the application of both methods, we give the detailed solution of the Wheatstone’s
bridge, a circuit used to obtain accuratemeasurement of a resistance.Next in Sect. 2.4,
we turn our attention to circuits made only of components whose current is linearly
dependent upon the applied voltage and we prove a number of theorems that simplify
considerably the task of solving linear circuits. Finally, in Sect. 2.5, we discuss briefly
the issue of power transfer among different parts of an electric circuit.

2.2 Kirchhoff’s Laws

The tools adopted to solve electrical circuits are based on the two Kirchhoff’s laws.
The first, known as the Kirchhoff’s law of currents, uses the concept of node, i.e., a
point connecting three ormore electrical components, and is based on the principle of
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Fig. 2.1 Schematic illustration of the two Kirchhoff’s laws: the diagram on the left refers to the law
of the nodes, while diagram on the right illustrates the loops law. The two figures show, respectively,
the positive direction of the current (indicated by the arrows) and the positive voltage (indicated
by + and −)

conservation of electric charge. The second, known as theKirchhoff’s law of voltages,
uses of the concept of loop, a closed path in a circuit, and is based on the consideration
that the electrostatic field is conservative. The formulation of Kirchhoff’s laws is the
following:

1. Kirchhoff’s law of currents, also known as the law of the nodes or the first
Kirchhoff’s law: the sum of all currents converging in a node is zero:

∑
k Ik = 0

(see Fig. 2.1).
2. Kirchhoff’s law of voltages, also known as the law of the loops or the second

Kirchhoff’s law: the sum of the potential differences across components forming
a closed loop is zero:

∑
k ΔVk = 0 (see Fig. 2.1).

The two Kirchhoff’s laws are based on the general principles of conservation of
charge and energy, respectively, and are valid independently of the nature of the
components in the circuit.

In the two Kirchhoff’s laws both Ik and ΔVk are algebraic quantities. By con-
vention, the Ik are positive when directed toward the node. Likewise, the ΔVk are
positive when the voltage increases along the arbitrarily chosen direction of the loop.

2.2.1 Network Geometry

Consider a circuit with more than one loop, such as, for example, the circuit shown
in Fig. 2.2. One can easily verify that the Kirchhoff’s laws allow writing a number
of equations that exceed the number of unknown currents required for the circuit
solution. In the circuit, three closed loops are present and to each of themwe can apply
the law of voltages. Denoting with i1, i2, and i3 the currents flowing, respectively,
in resistors R1, R2, and R3 (in the figure the positive directions of the currents are
indicated by the arrows), we obtain
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Fig. 2.2 Example of a
circuit with two independent
loops

i3
i2

1i
+

−V

R R

2R

A

B

1 3

⎧⎨
⎩

V = R1i1 − R2i2
V = R1i1 − R3i3
0 = R2i2 − R3i3

(2.1)

However, these three equations are not enough to obtain the values of the three
unknown currents since they are linearly dependent. In fact, the third equation can
be obtained by difference from the first two and it is easy to recognize that this is
only a consequence of the geometrical properties of the network. We say, therefore,
that the three loops in the circuit are not independent. To solve this circuit we must
also take into account the Kirchhoff’s law of currents applied to the two nodes in the
circuit under test. In fact, it is easy to verify that for both nodes the same equation
is obtained: i1 + i2 + i3 = 0 which means that the two nodes are not independent.
We leave to the reader the solution of the circuit with the first two Eq. (2.1) and the
relation among the currents given above.

Our next task is to consider how to determine in a generic circuit the number of
independent loops and the number of independent nodes. To answer this question,
we need to exploit some simple and intuitive concepts borrowed from graph theory.

The graphs. In mathematics, a graph consists of a set of points called vertices or
nodes of the graph, and of a set of edges or branches joining pairs of nodes. Graph
theory is devoted to the study of the topological properties1 of these structures.
Consider a graph with n nodes and r branches such as, for example, the one shown
in Fig. 2.3. By definition, a tree of the graph is a set of its branches connecting all its
nodes without making a closed path. It is easy to verify that the number of branches
in a tree must be n − 1; the set of branches that do not belong to the tree will form a
so-called co-tree that consists of r − (n − 1) branches.

Adding to the tree a branch of the corresponding co-tree will result in a closed
loop. Since r − n + 1 is the number of branches of the co-tree, you can then get
in this way r − n + 1 closed loops that are referred to as the fundamental loops of
the graph. Obviously, the number of fundamental loops is independent from the tree
initially selected.

Another operation defined on graphs is the cut, which consists of isolating some
nodes of the graph with a surface (a line in the plane). Eliminating all branches
intersected by the cut, the graph becomes divided into two parts non-connected
between them. A cut that intersects only one branch of the tree (the other intersected

1The topological properties of a geometrical entity are those invariant for elastic deformations.
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Fig. 2.3 Graph with five nodes and eight branches. In the two inserts, two trees of the graph (in
bold) with their co-trees (dashed branches) are shown. The dotted closed curves represent the
fundamental cuts intersecting only one branch belonging to the tree

branches belonging to the co-tree) is called fundamental or independent; the number
of fundamental cuts is obviously equal to the number of branches in a tree, i.e., n−1.

The parallel between graphs and electrical circuits is evident: in fact, nodes of the
graphs can be identifiedwith the nodes of the electrical circuits and the branches of the
graph can be identified with the bipolar components (possibly in series) of electrical
circuits. In particular, the number of fundamental loops in the graphs coincides with
the number m = r − n + 1 of independent loops to which apply Kirchhoff’s voltage
law, and the number of independent cuts (n − 1) coincides with the number of
independent nodes to which apply Kirchhoff’s current law.

Considering again the circuit of Fig. 2.2, we note that the network represented
there consists of three branches and two nodes. Therefore, the number of independent
loops r − (n − 1) is equal to two, while the number of independent nodes n − 1 is
equal to one, as obtained previously from a direct analysis of equations resulting
from Kirchhoff’s laws.

2.3 Solution Methods for Electric Circuits

As previously mentioned, the solution of an electrical circuit consists in the deter-
mination of the voltage at each node and the current in each branch. The principles
underlying the methods of solution are the two Kirchhoff’s laws to be used together
with relationships linking current and voltage in each component of the circuit. For
resistive components, the Ohm’s law provides these relations. In next paragraphs,
we will work out two methods, the first said method of the nodes and the second
said method of the loops that, using the two Kirchhoff’s law, give the solution of a
generic DC circuit.

2.3.1 The Method of Nodes

The method of nodes addresses the solution of a circuit by applying Kirchhoff’s law
of currents (

∑
Ik = 0) to its independent nodes. Its name should be, more correctly,
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the method of the voltage of the nodes. In fact, the application of this method starts
with the arbitrary choice of a node of reference against which tomeasure the potential
differences of all other nodes. The voltages of these n − 1 nodes are the unknowns
of our problem, while the current in each branch can be expressed in terms of the
node voltages and of the impedances of the electrical components in the branch.
Application of Kirchhoff’s law of currents to each independent node yields the n−1
equations needed to obtain the circuit solution. Note that assigning a value of voltage
to each node, with respect to the reference node, implies the automatic verification of
the Kirchhoff’s law of voltages; in fact, with this assignment, in a closed path in the
circuit the sum of the voltage drops in each branch will be always identically zero.
In other words, the value of the electric potential at a given point does not depend on
the path we follow to reach it but only on the point itself.

The steps for solving electrical circuits with this method are as follows:

1. Among the n nodes of a circuit, choose a reference node against which to measure
the voltages of the other n − 1 nodes.

2. Assign unknown voltage values (V1, V2, . . . , Vk, . . . , Vn−1) to these n − 1 nodes.
3. Evaluate the currents that converge in each node using the values of the voltages

Vk and the impedances of the circuit elements through which they flow.
4. Write the n − 1 equations expressing Kirchhoff’s current law.
5. Solve the system to obtain the n − 1 node voltages.
6. Compute the currents flowing in various circuit components using the known

values of node voltages and the relationship between voltage and current for the
circuit components connecting them. When the circuit consists only of resistors,
this relation is the first Ohm’s law.

As an application, we solve by this method the circuit of Fig. 2.2 that we already
addressed in the previous section. In this circuit there are n = 2 nodes, and then
n − 1 = 1 independent node. We choose the node B as the reference for the voltage
of the other node (in this particular case only for the voltage in A) and denote by
i1, i2, and i3 currents that, flowing in the resistors with the same index, converge
in the node A. We denote by VA the unknown voltage of node A, and we write the
Kirchhoff’s current law for this node:

3∑
k=1

ik = i1 + i2 + i3 = V − VA

R1
+ 0 − VA

R2
+ 0 − VA

R3
= 0

To simplify this expression, we introduce the conductance Gk = 1/Rk (k = 1, 2, 3)
and the solution of the previous equation becomes

VA = G1

G1 + G2 + G3
V

With a simple algebraic manipulation, it can be shown that this expression of VA

coincides with the one that can be derived from the equations given in the previous
Sect. 2.2.1.
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2.3.2 The Method of Meshes

The method of the meshes is based on the Kirchhoff’s law of voltages requiring
that the sum of the voltage drops across components forming a closed path is zero.
This method introduces a fictitious current, said the mesh current, for each of the
independent loops in the circuit. Expressing the physical currents, those that actually
flow in the various components, as the algebraic sum of the mesh currents that affect
them, the Kirchhoff’s law of currents is everywhere automatically satisfied because
all currents are now sums of closed currents (the mesh currents).

The mesh currents are now the unknowns of the problem and it is sufficient to
use the Kirchhoff’s law of the voltages applied to the independent meshes to obtain
their value. The steps for solving electrical circuits with this method are as follows:

1. Count the number n of nodes and r of branches in the circuit and compute the
number m of independent loops: m = r − n + 1. This is the number of equations
needed to solve the circuit.

2. Select m between all possible independent loops2 by arbitrarily choosing a tree
on the graph of the circuit and proceeding as described in Sect. 2.2.1. The m loops
selected in this way are those to which the Kirchhoff’s law of voltages applies.

3. For each of the loops identified in the previous paragraph indicate a mesh current
(unknown) with an arbitrary direction.

4. Compute the currents in the individual components by addingup themesh currents
flowing in them taking into account their mutual direction.

5. Apply the law of voltages to each loop and obtain the m equations of the form∑
k Vk = 0 using the relationships between voltage and current for the compo-

nents in the circuit. In the case that only resistors form the circuit, this relationship
consists of the simple Ohm’s law. Note that the e.m.f. of each generator in the
mesh has to be taken positive if it generates a current flowing contrary to the
positive direction chosen for the mesh and negative if it generates a current along
that direction.

6. Solve the resulting system of equations to obtain the value of them mesh currents.
The currents flowing in single elements are obtained by adding up the mesh
currents that flow in the element taking into account their mutual direction.

7. The voltages at the nodes of the circuit are obtained by selecting a node as refer-
ence and assigning an arbitrary voltage to it, typically the null value. The voltage
of any other node is then obtained by applying sequentially the Ohm’s law3 to
the branches of a path that connects it to the reference node.

2 The importance of choosing independent loops can be understood from the example in the follow-
ing Sect. 2.3.3 on the solution of theWheatstone’s bridge shown in Fig. 2.5. If we had chosen for the
solution of the circuit with the method of meshes, instead of the mesh supporting the current Ia, the
one formed by the resistances R1, R2, R3, R4, the determinant of the resulting system would have
been zero, because the mesh R1, R2, R3, R4 is linearly dependent (it is the sum) of those supporting
the currents Ib and Ic.
3The voltage drop across a branch consisting of resistors and generators is simply equal to the sum
of voltage drops across each individual element in the branch.
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Fig. 2.4 Network with three
independent loops
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Wenowapply themethod of the loops described above to the solution of the circuit
of Fig. 2.4. The circuit has n = 4 nodes and r = 6 branches and then the number
of independent loops is m = r − n + 1 = 3. We choose the three meshes4 and
their positive direction as shown in the figure; we can write the following equations
that follow from the application of the Kirchhoff’s law of voltages to the loops with
currents I1, I2, and I3, respectively:

⎧⎨
⎩

R1I1 + R5(I1 − I3) + R4(I1 − I2) − V1 + V3 = 0
R4(I2 − I1) + R6(I2 − I3) + R2I2 − V3 + V2 = 0
R3I3 + R6(I3 − I2) + R5(I3 − I1) = 0

Rearranging this system and isolating the unknowns I1, I2, and I3:

⎧⎨
⎩

(R1 + R4 + R5)I1 −R4I2 −R5I3 = V1 − V3

−R4I1 +(R2 + R4 + R6)I2 −R5I3 = V3 − V2

−R5I1 −R6I2 +(R3 + R5 + R6)I3 = 0

The solution of this system is obtained with a long calculation of determinants
and minors that is left as an exercise to the interested reader.5 In case all the resistors
are equal, Rk = R, one can easily get the following solution:

4The three meshes used for the solution are generated from T-shaped tree obtained by the branches
that contain resistors R5, R6, and R4.
5As a hint to the solution we give the value of the determinant Δ of the system and the expression
for the current I1:

Δ = R1R2R3 + R1R3R4 + R2R3R4 + R1R2R5 + R2R3R5 + R1R4R5 + R2R4R5 + R3R4R5+
+ R1R2R6 + R1R3R6 + R1R4R6 + R2R4R6 + R3R4R6 + R1R5R6 + R2R5R6 + R3R5R6

I1 = 1

Δ
{[R4R5 + R6(R4 + R5)](V1 − V2) + R2(R3 + R5 + R6)(V1 − V3)

+ R3(R3V1 + R6V1 − R4V2 − R6V3)}
.
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I1 = 2V1 − V2 − V3

4R.

I2 = −2V2 − V1 − V3

4R
I3 = V1 − V2

4R

A Note on the Best Method Selection

In the preceding paragraphs, we illustrated two ways to deal with the challenge of
solving electrical circuits: the method of nodes and that of meshes. The two methods
are equivalent and the choice among them is largely subjective. A possible criterion
for this choice, based on the economy of the calculations, is the comparison between
the number of independent nodes n − 1 and the number of independent meshes
m = r − n +1; if n −1 < m it is convenient to use the method of nodes; otherwise it
is more convenient to apply the meshes method. It can be shown that if n < 4 and the
circuit has only voltage generators, the method of the nodes is the most convenient.
See in this respect the Problem 2 at the end of this chapter.

2.3.3 Example of Circuit Solution: The Wheatstone’s Bridge

A circuit particularly important for the accurate measurement of resistance values
is the Wheatstone’s bridge that is shown in Fig. 2.5. We first apply the method of
the meshes for the solution of this circuit that has four nodes and six branches. The
number of independent loops is therefore 3; the three loops selected for the solution
are indicated in the figure by the currents Ia, Ib, and Ic, which circulate in them. The
reader can easily verify that the three meshes have been identified from the tree that
starts from node A and contains the three branches with resistors R1, R5, and R3.

Fig. 2.5 Solution of the
Wheatstone’s bridge by the
method of the meshes. The
circuit has three independent
meshes for which we have
defined the three mesh
currents Ia, Ib, Ic

+

−

I

R

Ib

R

2

5

c
Ia R

3 R
4

1R

V A B



2.3 Solution Methods for Electric Circuits 35

Applying Kirchhoff’s law of voltages to these three meshes, we have

⎧⎨
⎩

R1(Ia − Ib) + R3(Ia − Ic) − V = 0
R2Ib + R5(Ib − Ic) + R1(Ib − Ia) = 0
R3(Ic − Ia) + R5(Ic − Ib) + R4Ic = 0

(you need to pay close attention to how you add up the currents in the individual
resistors). Rearranging the above equations, we have

⎧⎨
⎩

(R1 + R3)Ia − R1Ib − R3Ic = V
−R1Ia + (R1 + R2 + R5)Ib − R5Ic = 0
−R3Ia − R5Ib + (R3 + R4 + R5)Ic = 0

(2.2)

Denoting with Δ the determinant of the matrix of the coefficients of the currents,

Δ =
∥∥∥∥∥∥

R1 + R3 −R1 −R3

−R1 R1 + R2 + R5 −R5

R3 −R5 R3 + R4 + R5

∥∥∥∥∥∥
= R3[R4R5 + R2(R4 + R5)] + R1[R4(R3 + R5) + R2(R3 + R4 + R5)]

we obtain the expression for the current Ib:

Ib = 1

Δ

∣∣∣∣∣∣
R1 + R3 V −R3

−R1 0 −R5

−R3 0 R3 + R4 + R5

∣∣∣∣∣∣ = V

Δ
[R5R3 + R1(R3 + R4 + R5)]

Similarly, we get for Ic:

Ic = 1

Δ

∣∣∣∣∣∣
R1 + R3 −R1 V

−R1 R1 + R2 + R5 0
−R3 −R5 0

∣∣∣∣∣∣ = V

Δ
[R1R5 + R3(R1 + R2 + R5)]

Now we calculate the current I5 passing in R5, taking as the positive direction that
of Ib:

I5 = Ib − Ic = V

Δ
(R3R5 + R1R3 + R1R4 + R1R5 − R1R5 − R1R3 − R2R3 − R3R5)

I5 = V

Δ
(R1R4 − R2R3) (2.3)

The relation (2.3) characterizes theWheatstone bridge. In particular, theWheatstone
bridge is balanced when it has I5 = 0 which implies that between the four resistors
R1, R2, R3, and R4, the following relation holds:

R1R4 = R2R3 or equivalently
R1

R2
= R3

R4
(2.4)
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The value of an unknown resistance (R1 for example) can be obtained by balancing
theWheatstone’s bridge using forR2, R3, andR4 precision resistors that can be varied
in a known manner (resistance box).

To complete the solution of the circuit of the Wheatstone bridge we calculate the
voltages of nodes A and B. Putting to zero the value of the potential of the negative
terminal of the battery, we get for the node B

VB = R4Ic = VR4

Δ
[R1R5 + R3(R1 + R2 + R5)] (2.5)

The voltage of node A can be obtained subtracting to the voltage in B (given the sign
of I5) the voltage drop on R5:

VA = VB − R5I5 = V

Δ
{R4[R1R5 + R3(R1 + R2 + R5)] − R5(R1R4 − R2R3)}

= V

Δ
(R1R3R4 + R2R3R4 + R3R4R5 + R2R3R5) (2.6)

Of course when the bridge is balanced (I5 = 0) we have VA = VB.
Having solved the circuit of theWheatstone’s bridge with the meshes method, we

do it again with the method of the nodes. The nodes are in this case n = 4, and then
we need to apply the first Kirchhoff’s law to n − 1 = 3 nodes to obtain the equations
for the solution of the circuit. We select the nodes A, B and the positive terminal of
the generator but we note that the voltage of this last node is fixed by its connection
to the battery. This observation reduces the unknowns, and therefore the equations
we need, from three to two.6 Therefore, we choose the nodes A and B for which to
write Kirchhoff’s law of currents. We get

⎧⎪⎨
⎪⎩

−VA

R3
+ V − VA

R1
+ VB − VA

R5
= 0

−VB

R4
+ V − VB

R2
+ VA − VB

R5
= 0

To simplify the notation we introduce the conductance Gk = 1/Rk and the previous
system becomes

{
(G1 + G3 + G5)VA −G5VB = G1V

G5VA −(G2 + G4 + G5)VB = −G2V

6 In general, it can be stated that if two nodes of a circuit are connected only by an ideal voltage
generator, the number of equations necessary for its solution by the method of the nodes is reduced
by one unit.
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whose solution is

VA = [G2G5 + G1(G2 + G4 + G5)]
(G1 + G3)(G2 + G4) + (G1 + G2 + G3 + G4)G5

V

VB = G1(G2 + G5) + G2(G3 + G5)

(G1 + G3)(G2 + G4) + (G1 + G2 + G3 + G4)G5
V

It is a simple algebraic exercise to verify that the formulas of VA and VB are the same
as in Eqs. (2.6) and (2.5). The equilibrium condition of the bridge, i.e., the vanishing
of the current that flows in R5 (VA = VB), leads to the following condition on the
conductance of the resistors in the circuit:

G1G4 = G2G3

which, as we have expected, is identical to relation (2.4) we found by solving the
circuit with the method of the meshes.

2.3.4 Nonlinear Circuits

The methods for the solution of circuits, illustrated in the previous paragraphs, are
based on the Kirchhoff’s laws that, in turn, are based on the general principles of
conservation of energy and electric charge and therefore can be applied, in principle,
to circuits with nonlinear components. The difficulties encountered when trying to
solve this kind of circuits are of a mathematical nature and derive from the non-
linear relationship between current and voltage in the nonlinear element, described
by the so-called characteristic. This is the reason why in the examples of solution
of DC circuits discussed above we considered only resistors that are linear compo-
nents. However, Kirchhoff’s laws apply to all circuits, even those with nonlinear
components.

As an example of application of the Kirchhoff’s laws to a nonlinear circuit,
we analyze the circuit shown in Fig. 2.6, which makes use of a diode, a nonlinear
component. For the diode, whose junction we assume of the type pn, the relation-
ship between the voltage across it, vD, and the current flowing through it, iD, is
iD = is(evD/v0 − 1) � isevD/v0 , where is and v0 are constants (see Fig. 2.6). Applying
the Kirchhoff’s law for voltages to the unique mesh in the circuit and reversing the
relationship between iD and vD we obtain

V0 = Ri + vD = Ri + v0 log
i

is
(2.7)

Formula (2.7) allows calculating, in principle, the current i that flows in the circuit.
However, this equation is transcendent, and does not have an explicit solutionmaking
it necessary to resort to numerical or geometrical methods to solve it. The plot in
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Fig. 2.6 Example of nonlinear circuit. On the left side of the figure the so-called “characteristic
voltage–current” of a junction diode is representedwhile the right side shows the scheme of a simple
circuit with a diode. The straight line in the plane v = V0 − Ri is referred to as the load line and
gives the current in the resistor for a given voltage drop across the diode. Since the current flowing
in the two components must be the same, the intersection of the load line with the characteristic of
the diode gives the solution of the circuit

Fig. 2.6 shows how it is possible to obtain graphically the solution required. In the
diagram, the two curves are the exponential characteristic of the diode and the current
flowing in the resistance R as a function of the voltage across the diode. The point
where the two curves intersect determines the solution of the circuit: the current
flowing in R is equal to that flowing in the diode as required by charge conservation.

2.4 Analysis of Linear Networks

Circuits whose components are all linear are referred to as linear circuits. In practice,
in DC circuits only resistors are linear passive components. In fact, we recall here
that the impedance operator of an ideal resistor is given by a simple multiplicative
constant (the resistance), and it is therefore obviously linear. The linearity of a circuit
has important consequences on its properties. The relationships implied by linearity
facilitate the understanding of the behavior of the circuit and simplify considerably
their solution. Below we give the detailed statements and the proofs of the most
important theorems on linear circuits

2.4.1 Superposition Theorem

As it is known from elementary mathematical analysis, the solution of a system of
n linear equations can always be expressed as a linear combination of the known
terms. Therefore, in a linear circuit the currents in all branches and the voltage of
each node can always be expressed as a linear superposition of the intensities of
source generators (the “known terms” in the equations). In particular if there are
only n voltage generators Vk, (k = 1, . . . , n) the current in the generic branch j can
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always be expressed as
Ij =

∑
k=1,n

AkVk (2.8)

where Ak are constants determined only by the characteristics of the circuit compo-
nents. Likewise, the voltage at a generic node can be obtained as a linear combination
of the n Vk values. Similarly, if in the circuit only n current generators Ik are present,
the voltage in the generic node j can be expressed as

Vj =
∑

k=1,n

BkIk (2.9)

where once again the Bk are constants determined only by the characteristics of the
circuit components. A similar expression also gives the current in a generic branch.
The generalization to the case where they are simultaneously present in both voltage
and current generators is trivial. From this simple mathematical property, we derive
the superposition theorem that can be stated in the two following forms.

For voltage generators. In any linear circuit with only n voltage generators
V1, V2, . . . , Vn, the current flowing in a generic branch (or the voltage of a generic
node) of the circuit is equal to the sum of the currents (or the voltages) produced
by each voltage generator, taken individually, assuming that all the others have been
short-circuited.

For current generators. In any linear circuit with only n current generators
I1, I2, . . . In, the current flowing in a generic branch (or the voltage of a generic
node) of the circuit is equal to the sum of the currents (or of the voltages) produced
by each current generator considered individually, assuming that all the others have
been disconnected.

2.4.2 Thévenin’s Theorem

The practical exploitation of electrical circuits is greatly simplified by the existence of
equivalence theorems. They allow for an easy evaluation of circuits behavior when
they are connected among themselves or to a single component, the load, whose
parameters can depend on the specific application. Remarkably, using equivalence
theoremswe can avoid the tedious task of solving the circuitwhen the load parameters
are changed.

Thévenin’s theorem, in its formulation for DC circuits, states the equivalence
between a generic linear circuit and a voltage generator with a resistor in series; the
formulation of the theorem is the following:
Any linear circuit “seen” between two of its nodes, A and B, is equivalent to an ideal
voltage generator Voc whose tension is equal to the voltage measured between nodes
A and B (open-circuit voltage), in series with the resistance “seen” between the two
nodes which is called the equivalent resistance of Thévenin (see Fig.2.7).
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Norton equivalent circuit

Thévenin equivalent circuit
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Fig. 2.7 Illustration of the theorems of Thévenin and Norton. On the left, we depict a generic
linear network viewed from terminals A and B. On the right, the corresponding equivalent circuits
according to Thévenin (top) and Norton (bottom)

The equivalent resistance Req can be obtained by analyzing the circuit between
the two terminals A and B, combining resistors in series and in parallel according to
their connections when all voltage generators present in the circuit have been short-
circuited and all current generators have been opened. A method to obtain the value
of Req when the layout of the circuit is not available will be given below.

The use of the equivalent circuit of Thévenin is particularly convenient when a
resistance of the circuit, say RL, can be considered as a variable load, i.e., a parameter
that can vary from time to time, while all the other parameters of the circuit remain
unchanged. This is elucidated in the following example.

Example. Consider the circuit of Fig. 2.8a whose solution can be obtained with the
techniques already described (method of the nodes or of the meshes). Alternatively,
you can deal with the solution of the circuit in question by calculating the equivalent
of Thévenin considering RL as the load of the circuit. Removing the load RL, we
apply Thévenin’s theorem to the remaining circuit, see Fig. 2.8b. The resistance seen
between A and B (Thévenin’s equivalent resistance) amounts to Req = R1 ‖ R2 =
R1R2/(R1+R2).With a simple calculation7 one gets the open-circuit voltage between
terminalsA andB asVoc = VA−VB = (R1V2+R2V1)/(R1+R2). The current flowing
in RL will then be equal to Voc/(Req + RL).

Proof of Thévenin’s Theorem.

According to the theorem of Thévenin, if Voc is the open-circuit voltage between
terminals A and B of a circuit and Req is the equivalent resistance seen between A
and B, the current flowing in an additional load resistance r connected between A
and B is

7The calculation of Voc is immediate when using the superposition theorem.
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Fig. 2.8 Applying Thévenin’s theorem: a original circuit; b circuit with the “load” RL removed; c
equivalent circuit of Thévenin with the load RL connected

i = Voc

Req + r
(2.10)

The proof of (2.10) is equivalent to the proof of Thévenin’s theorem. Suppose
to insert in series with the load r an additional generator whose e.m.f. is V0. Since
the circuit is linear by assumption, denoting by Vk, k = 1, . . . , n the generators
belonging to the circuit, the current i′ flowing in the resistance r, in the presence of
the additional generator V0, is given by the linear combination:

i′ =
n∑

k=0

AkVk (2.11)

where Ak are appropriate constants with dimensions of a conductance. Let us now
reduce to zero the e.m.f. of the generators pertaining to the circuit, i.e., those with
k �= 0. This procedure is equivalent to replacing each generator with a short circuit.
Equation (2.11) becomes

i′ = A0V0

Under these conditions, the constant 1/A0 can be identified by construction with the
sum of r and Req:

1

A0
= r + Req

We now bring back the circuit to its original condition by setting the Vk to their
values. In addition, we set the e.m.f. of the generator inserted in the load branch to
a value of −V such that the current flowing in r is reduced to zero. From Eq. (2.11)
we get

0 = −VA0 +
n∑

k=1

AkVk

that gives
n∑

k=1

AkVk = VA0



42 2 Direct Current Circuits

In this circumstance the load branch added, the one including r, does not absorb
current and therefore V must coincide with the open-circuit voltage between the
points A and B (Voc). Finally, setting V0 = 0 we obtain the current in the load as

i =
n∑

k=0

AkVk =
n∑

k=1

AkVk = VA0 = Voc

r + R0

which proves Thévenin’s theorem.

2.4.3 Norton’s theorem

Norton’s theorem for DC circuits establishes the equivalence between a generic
linear circuit and a current generator with a resistor in parallel; the formulation of
the theorem is the following:
Any linear circuit “seen” between two of its nodes, A and B, is equivalent to an ideal
current generator whose output Isc is equal to the short-circuit current between A
and B in parallel with the resistance “seen” between the two nodes which is said
(Norton’s) equivalent resistance (see Fig.2.7).

The proof of Norton’s theorem is similar to that of Thévenin’s theorem and is left to
the reader as a useful exercise.

The same observation made for Thévenin’s theorem about the impedance seen
between two terminals, also applies to Norton’s theorem. In fact, the equivalent resis-
tances of Thévenin and Norton are identical and can be obtained in the same way.

Theorem of Open Circuit and Short Circuit

Thévenin’s and Norton’s theorems have the following remarkable corollary:
the impedance Req between two terminals of a linear circuit is equal to the ratio
between the open circuit voltage Voc and the short circuit current Isc:

Req = Voc

Isc

It should be remarked that the above expression, extremely useful for the evaluation
of the output impedance of various circuits, should not be confused with Ohm’s law,
with which it only shares the mathematical expression.

Example. Consider the circuit of Fig. 2.9 where Vs = 6.0V, R1 = 1.5 k�, R2 =
2.2 k�, R3 = 3.3 k� with A and B nodes for which we need to calculate the Norton
equivalent circuit.

We start with the calculation of the resistance Req “seen” between A and B. To get
Req we must short-circuit the voltage generator appearing in the circuit. Therefore,
Req is the parallel of R1, R2, and R3:
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Fig. 2.9 Example of application of Norton’s theorem

1

Req
= 1

R1
+ 1

R2
+ 1

R3
=

(
1

1.5
+ 1

2.2
+ 1

3.3

)
× 10−3 �−1 = 1.42 × 10−3 �−1

that yields Req = 437�

To complete the Norton equivalent circuit we must determine the value of Isc, the
short-circuit current between A and B. We get very easily

Isc = Vs

R1
= 6.0

1.5 × 103
A = 4.0mA

2.4.4 Reciprocity Theorem

The proof of this important theorem starts with the analysis of the power balance in
a given circuit. In a generic branch connecting two nodes i and j of a network, the
product of the voltage drop on the branch Vij = Vi − Vj times the current Iij flowing
through it (from node i to node j) yields the power Pij that is generated, if negative,
or dissipated, if positive, in the branch (see Fig. 2.10). Since energy is conserved, the
total balance of power must be zero and the following equality must hold

∑
branches

VijIij = 0 (2.12)

where the sum is extended to all the branches in the network. We now prove that
Kirchhoff’s laws imply the power balance. In order to proceed, we note that being
Vij = Vi − Vj, the first member of (2.12) becomes

Fig. 2.10 Notation and
conventions for the power
balance

j

Vi

Vij = Vi − Vj

Iji

Iij
Vj i
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∑
branches

VijIij =
∑

branches

ViIij −
∑

branches

VjIij =
∑

branches

ViIij +
∑

branches

VjIji (2.13)

where we used the relation Iji = −Iij. Rearranging the terms, the previous expression
becomes ∑

i

Vi ·
∑

j

Iij (2.14)

where the first sum extends to all nodes and second only to the nodes connected to i
and expresses just the sum of all the currents entering the node. Kirchhoff’s law of
the nodes states that the second sum is null for all i, and hence the equality (2.12)
follows.

Suppose now to change the arrangement of the components on the network, with-
out changing its topology, in order to build a new distribution of tensions V ′

ij and
currents I ′

ij that obviously still respect Eq. (2.12). However, it is easy to see that,
retracing the previous proof, we have also

∑
V ′

ij · Iij = 0 e
∑

Vij · I ′
ij = 0 (2.15)

In other words, the power balance remains in force even if the distribution of voltages
and currents pertain to different distributions of components (principle of conserva-
tion of virtual power).

An important application of this result is the so-called reciprocity principle. To
this aim, given a network having in the branch a the generator Va we build a second
network by removing the generator from the branch a and replacing it with a new
generatorV ′

b now in the branch b different from a. Taking voltages of the first network
and currents of the second we can write

VaI ′
a +

∑
RijIijI

′
ij = 0

where RijIij are the voltage drops on the network resistances.
Taking instead currents of the first network and voltages of the second, we get

V ′
bIb +

∑
RijI

′
ijIij = 0

From these two relations we can easily deduce that

VaI ′
a = V ′

bIb

Now if we make Va = V ′
b we get I ′

a = Ib. This proofs the following theorem:

Reciprocity Theorem
In a reciprocal network if a voltage generator V in the branch AA′ produces a current
I in the branch BB′, the same generator V in the branch BB′ produces the same current
I in the branch AA′. Similarly, in a reciprocal network if a current generator I in
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Fig. 2.11 Example of application of the reciprocity theorem

the branch AA′ produces a voltage drop V between nodes B and B′, the same the
generator I in the branch BB′ produces the same voltage drop V between nodes A
and A′.
It is easily shown that all linear networks are reciprocal while, if a network includes
nonlinear elements or controlled generators, then in general the network is not recip-
rocal.

Example of Application of the Reciprocity Theorem

As an example, we apply the reciprocity theorem to the Wheatstone’s bridge already
studied in detail in Sect. 2.3.3 and shown again in Fig. 2.11a. The application of
the reciprocity theorem allows calculating the current I5 quickly and elegantly.
Figure2.11b shows the circuit in which the generator V has been removed from
its original location (and replaced by a short circuit) and inserted into the branch
where we need to calculate the current. The reciprocity theorem ensures that the
current I5 of Fig. 2.11 a is equal to the current I ′ of Fig. 2.11b.

Consider this last figure and apply to the node N the second Kirchhoff’s law to
obtain I ′ = −(I ′

1 + I ′
2). Both resistances R1 and R3 and resistances R2 and R4 are

connected in parallel, and this leads us to

I ′
1 = R3

R1 + R3
I ′
5 e I ′

2 = − R4

R2 + R4
I ′
5

where we have used the properties of the current divider (see Problem 8 of Chap. 1)
and I ′

5 is the current flowing through R5. It is easy to get I ′
5 as

I ′
5 = V

R5 + R1‖R3 + R2‖R4

Finally, we get the desired result:

I5 = I ′ = V

R5 + R1‖R3 + R2‖R4

(
R4

R2 + R4
− R3

R1 + R3

)
(2.16)

http://dx.doi.org/10.1007/978-3-319-31102-9_1
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As a check of the reciprocity theorem, we leave to the reader the exercise to show
that formula (2.16) is equal to expression (2.3), obtained for I5 by the method of the
meshes.
The reciprocity theorem has another interesting application to the solution of the
circuit, known with the name of R − 2R ladder, used in devices that convert digital
signals into analog signals, see Problem 18 of Chap.4.

2.5 Maximum Power Transfer Theorem

The simple circuit shown in Fig. 2.12 allows us to illustrate an important theorem,
which is known as the theorem of maximum power transfer. In the diagram Rg

represents the internal resistance of the voltage generator Vo and R the external
load applied to it. Obviously, the current I that circulates in the circuit is given by
I = Vo/(Rg + R), and the voltage at the terminals of the load R is VR = RI . The
power P dissipated by the resistor R will be

P = VRI = RI2 = V 2
o R

(Rg + R)2
(2.17)

We now calculate the value of the load resistance R yielding the maximum power
transfer from the generator to the load. By calculating the derivative of expression
(2.17) with respect to R, we get

d

dR

V 2
o R

(Rg + R)2
= V 2

o

1

(Rg + R)2

(
1 − 2R

Rg + R

)

that vanishes8 for R = Rg.
We can therefore state the following maximum power transfer theorem:
If a generator of internal resistance Rg is closed on a resistive load R, the power
transferred from the generator to the load reaches a maximum if the value of the load
resistance is equal to the internal resistance of the generator.

Fig. 2.12 Circuit for the
proof of the theorem of
maximum power transfer

+

−V

Rg

Ro

8The second derivative of expression (2.17) is easily computed. Its value for R = Rg is −V2
o /8

R3
g < 0, and confirms that in R = Rg the expression (2.17) shows a maximum.

http://dx.doi.org/10.1007/978-3-319-31102-9_4
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The previous discussion is related to the concept of impedance matching that will be
dealt with in detail in Chap.6.

Problems

Problem 1 Prove Norton’s theorem following the layout of the proof of Thévenin’s
theorem illustrated in the text, adapting it where appropriate.

Problem 2 Recalling that at least three branches must converge in a node, show
that a circuit with no more than three nodes is solved with the smallest number of
equations using the method of the nodes when only voltage generators are present.
Discuss why the same conclusion cannot be guaranteed in the presence of current
generators.

Problem 3 What is themost effectivemethod, i.e., the one using the smallest number
of equations, to solve the circuit shown in the figure? [A. The method of the nodes.]

Problem 4 Which of the two circuits in the figure is solved more effectively with
the method of the meshes? [A. Circuit B.]

Problem 5 Solve the circuit shown in the figure with the most effective method and
compute the voltage drop across R5, assuming that the values of the six resistances
in the circuit are equal. [A. VC = V/4, the two methods being equivalent.]

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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Problem 6 Solve the circuit shown in the figure with the most effective method and
compute the voltage drop across R1, assuming that the values of the seven resistances
in the circuit are equal. [A. ΔVR1 = V/3, with the mesh method.]

Problem 7 Solve the circuit shown in the figure with the most effective method
and compute the current flowing in R1 and R5, assuming that the values of the four
resistances in the circuit are equal. [A. IR1 = I/2, IR5 = I/2 with the mesh method.]

Problem 8 Solve the circuit shown in the figure with the most effective method
and compute the current flowing in R1 and R5, assuming that the values of the seven
resistances in the circuit are equal. [A. IR1 = 4(I1 + I2)/11, IR5 = 6(I1 + I2)/11
with the mesh method.]
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Problem 9 Solve the circuit shown in the figure with the most effective method and
compute the current flowing in R1, R2, and R3, assuming that the values of the nine
resistances in the circuit are equal. [A. IR1 = 2I/11, IR2 = I/11, IR3 = I/11 with the
mesh method.]

Problem 10 Solve the circuit shown in the figurewith themost effectivemethod and
compute the current flowing in R4, R9, and R10, assuming that the values of the nine
resistances in the circuit are equal. [A. IR4 = 9I

21 − 5V
21R , IR9 = 11I

21 + 5V
63R , IR10 = I

3 − 2V
9R

with the mesh method.]

Problem 11 Compute the Norton equivalent with reference to the nodesA andB for
the circuit in the figure. Use the following values for its parameters: V = 5.0V , R1 =
R2 = 2.0�, R3 = R4 = 4.0�. [A. Ieq = −2.5A Req = 1.33�.]

Problem 12 Compute the Norton equivalent with reference to the nodes A and B for
the circuit in the figure. Use the following values for its parameters: I = 10A, R1 =
R2 = 2.0�, R3 = R4 = 4.0�. [A. Ieq = 5A; Req = 1.33�.]
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Problem 13 Compute the Norton equivalent with reference to the nodesA andB for
the circuit in the figure. Use the following values for its parameters: I = 10A, V =
5.0V , R1 = R2 = 2.0�, R3 = R4 = 4.0�. [A. Ieq = 2.5A, Req = 1.33�.]

Problem 14 Make use of Thévenin’s theorem to compute the current flowing in the
resistance R5 for the circuit in the figure with the following values for its parameters:
V = 10V , R1 = R3 = R5 = 200�, R2 = 600�, R4 = 400�. [A. 23mA.]

Problem 15 Make use of Thévenin’s theorem to compute the power dissipated by
the resistance R4 for the circuit in the figure. Use the following values for its para-
meters: V = 2.0V, I = 4mA, R1 = 2.0 k�, R2 = 1.0 k�, R3 = 5.0 k�, R4 =
1.0 k�. [A. 3.4mW.]



Problems 51

Problem 16 Solve the circuit indicated by (A) in the figure by an appropriatemethod
obtaining the currents in its independent meshes and compute the current delivered
by the generator V1. Then modify the circuit as shown in (B) by inserting a voltage
generatorV2.Use the theoremsof reciprocity and superposition to evaluate the change
in the output current fromV1. Compute the value ofV2 needed to reduce this current to
zero.Modify again the circuit by inserting a generatorV3 as shown in (C) and compute
the new value of the current delivered by V1. [A. I1 = V1(R1 + R3)/R1R3); I ′

1 =
(V1 − V2)(R1 + R3)/R1R3); V1 = V2; I ′′

1 = −V3/R1.]

Problem 17 Compute the Thévenin equivalent with reference to the nodes A and
B for the circuit in the figure and evaluate the voltage drop across R3 assuming V1 =
25V , V2 = −10V , R1 = 10 k�, R2 = 5 k�, R3 = 20 k�. [A. VA − VB = 1.43V.]



Chapter 3
Uncertainty in Electrical Measurements

3.1 Introduction

In this chapter, we deal with the problem of evaluating the uncertainty involved in
the measurement of physical quantities with particular emphasis to the analysis of
those of interest in electricity studies. To this purpose, in the following, we will refer
to an important document, first published in 1993, that in the years has established
the accepted standards for the evaluation of experimental uncertainties in metrology
and in scientific research in general. This document, entitled “Guide to the Expres-
sion of Uncertainty in Measurement” [1], has been published by the International
Organization for Standardization (ISO)1 in order to standardize in a rational way the
handling of uncertainties in Science and Engineering. In this book, we will refer to
it with the acronym GUM (which stands for Guide, Uncertainty, and Measurements)
adopting a convention nowadays widespread in metrology literature.

In the next Sect. 3.2, we give a short review of the basic principles of measurement
theory. In Sect. 3.3, we introduce the important concept of uncertainty as the expected
standard deviation of obtained results and we discuss the classification of uncertain-
ties based on their evaluation method. In Sect. 3.4, we show the standard procedure
to combine uncertainties of different measured variables in the evaluation of derived
quantities and we illustrate the important concept of correlation among different
measurement uncertainties. After introducing extended uncertainty in Sect. 3.5, we

1This guide has been elaborated by an expert group including scientists selected by the most impor-
tant international organizations responsible of establishing metrology standards: the Bureau Inter-
national de Poids et Mesures (BIPM), the International Electrotechnical Commission (IEC), the
International Federation of Clinical Chemistry (IFCC), the International Organization for Stan-
dardization (ISO), the International Union of Pure and Applied Chemistry (IUPAC), the Interna-
tional Union of Pure and Applied Physics (IUPAP), and the International Organization of Legal
Metrology (OIML). An introduction to the principal findings of this Guide has been published in
2002 by Les Kirkup [2]. Another text often quoted together with the Guide is the dictionary of the
terms used in metrology in English and French language [3]. This text is referred to as “VIM”, an
acronym obtained from Vocabulaire International de Mètrologie.
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present in Sect. 3.6 a brief discussion on how to handle the problem of the compat-
ibility among results of different measurements of the same quantity. After a brief
summary on uncertainty evaluation in Sect. 3.7, in the last section of this chapter,
we illustrate in detail a number of examples that make use of all the concepts and
methods discussed.

For the purposes of this chapter, we assume that the reader is familiar with ele-
mentary principles of probability theory as treated, for example, in reference [4]
or [5].

3.2 Notes on Measurement Theory

The aim of a measurement is to obtain the value2 of a physical quantity identified
as the measurand. In general, the result of a measurement is only an estimate of the
measurand value and therefore it is complete only when the uncertainty associated
to it is provided. Indeed, when the result of the measurement of a physical quantity
is reported, it is mandatory to give a quantitative indication of the quality of the
result so that users could judge its reliability. When uncertainties are unknown,
one cannot compare different measurements among themselves or with reference
data. Moreover, it is necessary that the procedure to characterize the quality of a
measurement through its uncertainty is easily understandable, easily implementable
and generally accepted by the scientific community.

The concept of uncertainty as a quantifiable attribute is relatively new in the
theory of measurements and replaces the concepts of error and error analysis that
have characterized for a long time the science of measure, or metrology.

We point to the reader’s attention that the term “uncertainty”, as defined above,
takes a precise meaning in the theory of measurement as a quantitative parameter
that we will better specified in the following.

One more point worth attention is that the authors of the GUM with the choice of
theword uncertainty underlined the necessity to operate in a probabilistic framework.
The fact that a measurement value is associated with an uncertainty means that
one can only use it to draw probabilistic conclusions and that a coherent theory of
measurement can only be constructed using probabilistic concepts.

Measurement errors Anymeasurement process is unavoidably influenced by many
physical phenomena that cannot be controlled and that affects for an unknownamount
its result. Therefore, we need to admit that the true value of a physical quantity is in
principle unknown.

2Some textbooks use thewords true value in place of value of a physical quantity; wewillmake clear
in the following that the use of the adjective true may be misleading, for example, when a quantity
could have more than one true value. The GUM deems that the use of this adjective is redundant
and therefore it suggests not using it. Nevertheless, in some circumstances the adjective true can
help to clarify the concepts. Moreover, in the measurement of fundamental physical constants the
use of the term true value may be appropriate.
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The complex of uncontrolled phenomena that in a specific measurement influence
its result is sometimes loosely referred to as the measurement error. However, the
word error has a precise meaning in the theory of measurement. Indeed the error
is defined as the difference between the (true) value of the quantity under test and
the specific value resulting in the measurement underway. Indicating with μ the true
value andwithm the result of a particularmeasurement, the definitionofmeasurement
error is given as

e = µ − m (3.1)

The measurement error, defined by the previous relation, in analogy with the true
value of a physical quantity, is therefore in principle unknown.

We can ideally divide the measurement error in two parts, traditionally referred
to, respectively, as the random error and the systematic error.

Random Error. The random error is the error component that changes in an unpre-
dictable way in repeated measurements.

Random errors are caused by variables, referred to as influence quantities3 that
are not the measurand but that can change the result of the measurement. If stochas-
tic fluctuations affect these quantities, random errors are observed when repeating
a measurement under otherwise identical conditions. This kind of errors cannot be
corrected but it is possible to reduce their impact by increasing the number of obser-
vations when their average value is expected to be null.

Systematic Error. The systematic error is the component of the measurement error
that in a series of repeated observations either remains constant or varies in a
predictable way.

Systematic errors can be reduced by significant amountwhen their origin is known
and a procedure to calculate the correction to apply to the measurement value has
been worked out.4 However, similar to the case of random errors, they cannot be
canceled.

Example. When we connect a voltmeter to an electrical circuit, the finite internal
impedance of the instrument affects the potential difference between the two contact
pointsA andB. The correction of this effect is possiblewhenwe knowboth the circuit
impedance between A and B and the voltmeter impedance. However, both these
two values have uncertainties that will propagate to the evaluation of the potential
difference obtained after correcting for the systematic effect.

3For example, the temperature of a ruler is an influence quantity in the measurement of a length
because of thermal expansion of materials.
4Common examples of systematic errors are the offset and the calibration of ameasuring instrument.
In the first case, if xv is the true value, the instruments yield a value y = x0 + xv, while in the second
case it yields y = αxv with α �= 1.
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3.3 Uncertainty

The uncertainty of the result of a measurement reflects the lack of exact knowledge
of the value of the measurand. The result of a measurement, even after correcting for
known systematic effects, remains only an estimate of the value of the measurand
because of the uncertainty that arises from random effects and from the imperfect
correction of systematic effects.

The definition of uncertainty recommended by the working group that compiled
the GUM is:

a parameter, associated with the result of a measurement that characterizes the
dispersion of the values that could reasonably be attributed to the measurand

The GUM refers to a set of causes that are responsible for generating uncertainty in
the measurements, which we report below:

(a) Incomplete definition of the measurand. For example, the definition of gravity
acceleration at the sea level is incomplete since it does not take into account that
this acceleration also changes with the latitude. Therefore, there are an infinite
number of values satisfying this (incomplete) definition.

(b) Imperfect realization of the definition of the measurand.The practical implemen-
tation of any physical situation is always subject to imperfections that prevent a
strict adherence to the ideal prescriptions. For example, the study of the free fall
of a heavy body in vacuum requires some knowledge of the residual pressure
along the body trajectory.

(c) Non representative sampling. The sample measured may not represent the
defined measurand. Suppose, for example, that a manufacturer should measure
themean value of the resistance of resistors of a given nominal value. If the resis-
tors under test originate from only one of the different productionmachines, then
the sample under test may not be representative of the quantity that he wants to
measure.

(d) Inadequate knowledge of the effects of environmental conditions on the mea-
surement or imperfect measurement of environmental conditions. For example,
nuclear physics experiments performed in underground laboratories to reduce
environmental radioactivity may be affected by the presence of radioactive ele-
ments in ground waters whose behavior is often unpredictable.

(e) Incorrect reading of analog instruments.The typical example here is the parallax
effect when reading the position of an index on a graduated ruler. This effect can
be reduced using a mirror placed below the indicator and reading the ruler only
when the index and its mirror image are superposed.

(f) Finite resolution or discrimination threshold. For example, the least significant
digit of a digital instrument puts a lower limit to its uncertainty.

(g) Inexact values of measurement standards and reference materials.
(h) Inexact values of constants and other parameters obtained from external sources

and used in the data reduction algorithm. The uncertainty on the resistance
value of a copper bar, of length l and cross section area A, deduced from the
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second Ohm’s law R = ρl/A, in addition to the contribution of uncertainties
in the geometric parameters l and A, is affected by the uncertainty of copper
resistivity ρ that is usually obtained from specialized handbooks. In particular
theHandbook of Chemistry and Physics (1990 edition) quotes ρ = 1.678µ�cm
(at a temperature T = 20 ◦C)without an explicit quantification of its uncertainty.
With the informationobtained from this source,we canonly assume that the value
of copper resistivity is included in the interval between 1.6775 and 1.6785µ�cm
with a flat probability distribution. This uncertainty contributes to the overall
uncertainty on the value of R.

(i) Approximations and assumptions incorporated in the measurement method and
procedure.

(j) Variations in repeated observations of the measurand under apparently identical
conditions, as already mentioned in previous items.

These sources of uncertainty are not necessarily independent and some or all of items
from (a) to (i) can contribute to the variations in repeated observations (j).

It is worth at this point to remark once again that in the theory of measurement
the term “error” should not be confused with the term “uncertainty”. The two terms
are not synonymous and indicate completely different concepts.

Classification of measurement uncertainties. Broadly speaking, the uncertainty of
a measurement consists of different contributions that are conventionally grouped in
two categories, according to the method adopted for their evaluation. Some of these
contributions can be computed from the statistical distribution of results obtained in
repeated observations and can be quantified by the sample estimate of the standard
deviation of the underlying probability distribution function. The remaining contri-
butions, those that do not lead to any variation in repeated observations with the
same equipment, must also be quantified through a standard deviation. In this case,
the relevant probability distributions need to be inferred on the basis of previous
experience and/or of any other relevant available information, such as for exam-
ple the technical specifications and user manual provided by the manufacturer of a
measuring instrument.

For these reasons, the following classification was introduced in the GUM and is
nowadays widely adopted:

• TYPE A UNCERTAINTIES, whose magnitude is an estimate derived from the
statistical analysis of experimental data.

• TYPE B UNCERTAINTIES, whose evaluation cannot rely on the availability of a
representative sample of the relevant probability distribution function.

It should be remarked that this classification refers only to the method used to
evaluate the different uncertainty contributions but does not have any bearing on the
probabilistic meaning of the measurement result. In other words, if the results of a
particular measurement follow a normal distribution with variance σ 2, the method
used to estimate σ 2, different for type A or B, does not change the nature and the
content of the probabilistic information that can be deduced from the results obtained.
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The two categories introduced above do not have a simple relation with the
distinction, widely used before the GUM, between random and systematic errors.
In particular, the reader should avoid the temptation to identify type B uncertainty
contributions as systematic components of uncertainty.

3.3.1 Type A Evaluation of Standard Uncertainty

We can apply the methods for type A evaluation of the uncertainty when we can
rely on an adequate number of independent measurements of the same quantity
under (apparently) similar conditions. In case themeasurement process has sufficient
resolution, we will detect a dispersion of measured values. If n observations {xi}, i =
1, . . . n are available for the quantity X , probability theory indicates [4] that the best
estimate of the quantity X is provided by the arithmetic average, x̄, of the individual
results:

x̄ = 1

n

n∑
i=1

xi

We can evaluate the measurement uncertainty associated to the estimate x̄ with the
following steps. The best estimate of the variance s2(x) of the probability distribution
describing the measurement process is obtained from the sample {xi} and is given
by

s2(x) = 1

n − 1

n∑
i=1

(xi − x̄)2

The square root of the variance is the standard deviation. The best estimate of the
variance of the simple average is:

s2(x̄) = s2(x)

n

The standard uncertainty u(x̄) associated to the estimate x̄ is the experimental stan-
dard deviation of the average

u(x̄) = s(x̄)
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3.3.2 Type B Evaluation of Standard Uncertainty

Since the statistical methods applied are well established, the evaluation of type A
uncertainties does not offer specific difficulties. On the contrary, we must base the
evaluationof typeBuncertainties on an accurate analysis of the experimentalmethods
adopted. This type of uncertainties cannot be deduced using repeated observations but
the experimenter needs to collect all the available information about the variability
of the measurand. Following the GUM, this information must be obtained using the
“scientific judgement” of people involved in the measurement. This concept includes
the use of such sources of information as:

• data previously obtained in similar conditions
• theoretical or experimental knowledge of instruments behavior
• technical specifications supplied by instrument manufactures
• calibration data
• uncertainties associated to reference data obtained from published literature.

It is appropriate that, as for type A, also the evaluation of the uncertainty of type
B consists of an estimate of the standard deviation. This choice permits to evalu-
ate in a consistent way the combined uncertainty of quantities obtained in indirect
measurements, see next section.

As a final observation, it is obvious that the quality of the evaluation of the uncertainty
obtained in this way is a function of the degree of completeness of the information
used and of the investigator’s capability to use it critically.

The examples that we will propose in the following sections will help the reader
to best understand the methods to use in the evaluation of type B uncertainties.

3.4 Combined Uncertainty

In most circumstances, the value of a measurand is not obtained directly but is rather
determined by N other measured quantities X1, X2, . . . , XN , through a functional
relationship f :

Y = f (X1, X2, . . . , XN ) (3.2)

that, in metrology, is referred to as the mathematical model of the measurement. The
expression (3.2) is a relationship between the stochastic variables Xi and Y , and the
Theory of Probability allows obtaining the expressions linking the average values
and the variances of the variables Xi (identified as input variables) to the average
value and the variance of the variable Y (the output variable).

Let’s denote with η the average, or expected, value of Y

E[Y ] = η = E[f (X1, X2, . . . , XN )]
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where E[. . .] represents the expected value operator. Furthermore, denoting with ξi

the expected values of the input variables Xi and using a Taylor series expansion of
f in the neighborhood of the ξi, we have to the first order

E[Y ] = η = E[f (ξi + Δi)] = E[f (ξi) +
∑

i

∂f

∂ξi
Δi + · · · ] (3.3)

whereΔi = Xi −ξi while the symbol ∂f /∂ξi represents the partial derivative of f with
respect to Xi computed in ξi, in this context referred to as the sensitivity coefficient
of the output variable Y with respect to the input quantity Xi. Taking into account
that the operator expected value E[. . .] is linear and that E[Δi] = 0, we get:

E[Y ] = η = f (ξi) (3.4)

This relation means that, to the first order, the average value of the output variable
Y can be obtained by computing the function f using the average values of its input
quantities Xi. It should be noted that the expression (3.4) has been obtained by means
of a first order approximation of a Taylor series expansion; therefore, it may become
inadequate to evaluate η in case the standard deviations of the input quantity Xi are
large enough to show the effect of possible non-linearity of the function f .

Moving to the evaluation of the variance σ 2
Y of Y , we have by definition σ 2

Y =
E[(Y − η)2]. Using again the first order Taylor expansion as given above in the
expression (3.3), we can write that

σ 2
Y = E[(Y − η)2] = E[(f (Xi) − f (ξi))

2] = E

⎡
⎣∑

i,j

∂f

∂ξi

∂f

∂ξj
ΔiΔj

⎤
⎦

=
∑

i,j

∂f

∂ξi

∂f

∂ξj
E

[
ΔiΔj

]

The quantityE
[
ΔiΔj

] = E[(Xi−ξi)(Xj −ξj)] is referred to as the covariance matrix:

cov(Xi, Xj) = E[(Xi − ξi)(Xj − ξj)]

It is easy to recognize that the diagonal elements cov(Xi, Xi) of this covariancematrix
are the variances of the variables Xi. Its off diagonal elements cov(Xi, Xj) quantify
the degree of mutual dependence, or correlation, between the input variables Xi and
Xj. In conclusion, the expression of the variance of Y becomes

σ 2
Y =

∑
i,j

∂f

∂ξi
· ∂f

∂ξj
cov(Xi, Xj) (3.5)
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As already commented above about the expected value, the variance σ 2
Y too is an

approximated value obtained from a first order expansion of f .

Propagation of uncertainties. We can extend the results obtained above for the
average value and the variance of the variable Y (see Eqs. (3.4) and (3.5)) to the
sample estimates of both the average value and the variance (i.e., the square value of
standard uncertainty). We therefore can write the relations equivalent to Eqs. (3.4)
and (3.5) yielding the estimate of y obtained from the measured values xi:

y = f (xi)

and of the variance estimate of the output quantity y:

u2
c(y) =

N∑
i,j

∂f

∂xi
· ∂f

∂xj
u(xi, xj) (3.6)

where u(xi, xj) = u(xj, xi) is the estimate of the covariance matrix. The relation (3.6)
above is referred to as the law of uncertainty propagation. The effects of possible cor-
relations among the input quantities becomes more evident when rewriting Eq. (3.6)
as

u2
c(y) =

N∑
i=1

(
∂f

∂xi

)2

u2(xi) + 2
N−1∑
i=1

N∑
j=i+1

∂f

∂xi
· ∂f

∂xj
u(xi, xj) (3.7)

where we have used u2(xi) = u(xi, xi).
It is worth at this point calling the reader attention to the fact that the correlation

represented by the covariance matrix does not refer to the physical variables Xi but
rather to the values xi resulting from the measurements. To elucidate this remark, let
us suppose of measuring the effective value of the input Vi and output Vout voltage
of an amplifier to measure its gain. If the major uncertainty contribution comes from
the voltmeter calibration, the results of the measurements are positively correlated
when performed with the same instrument and the correlation coefficient would
increase if the two values approach each other. On the contrary, when the two signals
are measured with completely different instruments, manufactured, for example, by
different producers, it is safe to assume that the two values are not correlated and the
off diagonal elements of the covariance matrix can be taken equal to zero.

In absence of correlations, the combined uncertainty on the value of Y simplifies
to

u2
c(y) =

N∑
i=1

(
∂f

∂xi

)2

u2(xi) (3.8)
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In this case, the variance of the output variable is simply given by the sum of the
variances of the input variables weighted by the square value of the pertaining sen-
sitivity coefficient.

It is useful to quote correlations in a dimensionless fashion. This is achieved by
manipulating the covariance matrix to obtain the so-called correlation matrix whose
elements ρij are referred to as the correlation coefficients between the two variables
xi and xj. They are given as

ρij = u(xi, xj)

u(xi) u(xj)
(3.9)

(more precisely this relation is an estimate of the correlation coefficient). From its
definition it follows that −1 < ρ < 1.

We must remark that when two variables are independent from each other, their
correlation coefficient ρ is null but on the contrary, a vanishing correlation coefficient
does not imply that the two variables are independent. In other words the condition
ρij = 0 is necessary but not sufficient to guarantee the independence of two variables.
Indeed, it can be shown that the correlation coefficient only accounts for a linear
dependence among two variables.5 Therefore, this is usually adequate when dealing
with small variations in the framework of a Taylor expansion as done in the preceding
discussion.

3.4.1 Combined Uncertainty for Monomial Functions

It is often the case that the functional relationship represented by Eq. (3.2) consists
of a monomial expression of the kind

Y = cXp1
1 Xp2

2 . . . XpN

N (3.10)

with c being a constant. When we know the exponents in this equation without
uncertainty, the expression for the variance estimate of y can be simplified as it is
possible to show easily that, in absence of correlations,6 the following relation holds:

[
uc(y)

y

]2

=
N∑
i

[
pi

u(xi)

xi

]2

(3.11)

5Suppose, for example, that the stochastic variable x has a symmetric probability distribution func-
tion so that E[x] = 0. The variable y = x2 is obviously totally dependent upon x, nevertheless
since E[y] = σ 2

x we get cov(x, y) = E[(x − 0)(y − σ 2
x )] = E[x3] − σ 2

x E[x] = 0, exploiting once
again the symmetry of the x distribution. This shows that, although the two variables are maximally
correlated, their correlation coefficient is null.
6The case with finite correlations is dealt with in Problem 16 at the end of this chapter.
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The Eq. (3.11) shows that the relative variance
[

uc(y)
y

]2
of y is equal to the sum of the

similar quantities of the xi weighted with the square value of the pertaining expo-
nent. Equation (3.11) yields directly the relative variance that is often a more direct
way to quantify the accuracy of a measurement. The value of the y variance is sim-
ply obtained by the product of the right hand side of Eq. (3.11) with y2. The result
obtained above with Eq. (3.11) also shows that, when we combine different measure-
ments, the input variables with the higher relative uncertainty are responsible for the
largest contribution to the uncertainty of the derived quantity. Therefore, when we
plan such a measurement, we should possibly avoid combining data having widely
different relative uncertainty. For example, to measure a resistance by exploiting the
Ohm’s law, it is pointless to plan for a current relative uncertainty below one part over
a thousand in case we know that we cannot achieve a voltage relative uncertainty
better than one part over a hundred.

3.5 Expanded Uncertainty and Coverage Factor

Although the (combined) standard uncertainty uc can be used to express the uncer-
tainty of a measurement result, it does not say anything about its probability distribu-
tion. In some commercial, industrial, or regulatory applications, or when health and
safety are concerned, it is often necessary to give ameasure of uncertainty that defines
an interval7 containing the true value of a measurand with a probability p8 near to
100%. Such an interval takes the name of expanded uncertainty and it is customary
to use the symbol U to denote it. The expanded uncertainty is obtained multiplying
the standard uncertainty by a constant k: U = kuc, and k takes the name of coverage
factor. The value of the coverage factor k corresponding to a given probability level
p depending upon the probability distribution function of the measurand.

Typical values of the coverage factor fall in the interval (2 ÷ 3). When it is
reasonable to assume that the estimate of ameasurand follows aGaussiandistribution,
a coverage factor k = 2 yields an interval corresponding to a �95% of probability,
while k = 3 correspond to an interval with probability exceeding 99%. In case
of a uniform probability distribution, a coverage factor k = 1.7 corresponds to
p � 100%.

The combined expanded uncertainty can be obtained using Eq. (3.6) after increas-
ing all standard uncertainties u(xi) by the same coverage factor k. However, the
interval obtained in this way does not have the same probability content of the corre-
sponding intervals for the input variables unless all the xi are described by a Gaussian

7 Sometimes, this interval is referred to as the confidence interval. However, the GUM does not
recommend its use since in statistics it has a precise meaning and, strictly speaking, it could only
be used for type A uncertainties.
8This probability value is sometimes referred to as the confidence level. Here too, the considerations
of the previous note apply.



64 3 Uncertainty in Electrical Measurements

distribution. It is not easy to associate probability content to the extended combined
uncertainty as defined above and therefore, its use is not recommended.

3.6 Compatibility of Different Measured Values

A recurring problem in the professional life of an experimentalist is the comparison
between two values of the same quantity. These values could have been obtained
with different measurement setups or one of them could have been derived from
other measured quantities, as it happens when trying to validate a physical law.

As an example of the first kind of situation, we can check the calibration of
a voltmeter using it to measure a voltage whose value has already been obtained
with an instrument whose calibration has been recently certified. For the second
situation, assume for example that we need to validate the second Ohm’s law: we
will compare the resistance value of a copper bar as measured by an ohmmeter with
the value resulting from the knowledge of copper resistivity and the measures of the
geometrical parameters of the bar as obtained for example with a caliper.

In all these circumstances, we need to compare quantitatively the values of two
different measurements. Let us callµ1 the value of the first one and u1 its uncertainty
while µ2 indicates the value of the second with u2 its uncertainty. The question we
need to answer is whether we can consider the two values compatibles with each
other after taking into account their respective uncertainties.

When the values of our measurements are real numbers, the probability that they
are exactly equal is obviously zero and therefore the absolute value of their difference
δ = |µ1 − µ2| is always finite. The question we must answer then is “which value
of δ is sufficiently large to lead us to disbelieve that the two measurements are both
correct and pertain to the same quantity?”

A quantitative approach to answering this question consists in evaluating the
probability of observing an absolute difference of measured values exceeding δ when
the two quantities we are measuring are the same and the difference between the
observed values is entirely due to the uncertainties of the two measurements. When
this probability turns out to be too small, we have to conclude that it is unlikely that
the difference observed is due to uncertainties and we will have to admit that either
the two quantities are different, or at least one of the twomeasurements is not correct.

However, to evaluate properly this probability, we would need to have a full
knowledge of the probability distribution functions describing the outcome of the
twomeasurements. This information is seldom fully available and often we will have
to rely only on the availability of standard uncertainties. In this case, we can only

evaluate the estimate of the standard uncertainty of the difference δ asuδ =
√

u2
1 + u2

2.
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If we can plausibly assume that uncertainties are due to a large number N of small
and uncorrelated effects, the central limit theorem [4] can be invoked to assume, in
first instance, that the distribution expected for the difference is a Gaussian9 with
standard deviation equal to uδ .

In these circumstances, it is possible to compute the probability that the absolute
value of themeasurement’s difference exceeds δ, or, in other words, that the observed
difference δ is entirely due to measurement uncertainties. In formulas, we have

p = 1√
2π

∫ −δ

−∞
e−x2/2u2δ dx + 1√

2π

∫ +∞

δ

e−x2/2u2δ dx = 1 − erf

(
δ√
2uδ

)

where erf(x) = 2/
√

π
∫ x
0 e−t2dt is the well-known error function.

When the difference between the two measured values is small with respect to uδ ,
we compute a probability of nearly 100% andwewill not have sufficient motivations
to believe that they do not refer to the same quantity. In case the measured difference
is equal to its standard uncertainty uδ , we compute a 32% value for the probability
that such an observed difference is due entirely to uncertainties. This probability
would fall below 5% when the measured difference becomes larger than twice uδ

and, in this case, it is more appropriate to admit that the two measured quantities
are different since we now can expect that further measurements would confirm our
conclusion in more than 95% of occurrences.

It is apparent from the previous discussion that, even in case the probability dis-
tributions would be available, we can never ascertain the compatibility between two
measurements with absolute certainty. All we can do, by following the approach
illustrated above, is to assign a probability to the hypothesis that they are not com-
patibles. Moreover, it is not easy to establish from first principles how large this
probability should be to conclude that the two measured values are not compatible.
It is very reasonable that this level should depend on the purpose that the two mea-
surements should serve. For example, when we need to decide whether the readings
of two thermometers are sufficiently in agreement to guarantee the uniformity of
the temperature in our flat we can accept a risk of being wrong higher than the one
we could afford when using the two thermometers in an experiment to validate the
principle of energy conservation.

How to behave then in the laboratory practice when one has to judge the compat-
ibility of two different measurements of the same quantity? Our practical suggestion
is to calculate the ratio between the absolute value of their difference and its standard
uncertainty obtained by propagating the uncertainty of the two measures in question.
Values of this ratio lower than unity will not require a review of the measures while

9It is worth recalling that the Gaussian shape is an asymptotic limit. Moreover, the further we move
away from the average value, the higher the value of N required to approach this limit. For this
reason, with our approach, we cannot obtain reliable values for the integrated probability when its
value becomes too small.
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values greater than two indicate that at least one of the measurement procedures
needs to be revised. For intermediate values, we will refer to the goodwill of the
experimenter!

3.7 Evaluating Uncertainties

Summing up, the basic idea behind the methods described in the GUM consists in
assuming that every measurand, that is the quantity to be evaluated, and all others
variables that can affect its value should be dealt with as random variables and not
as uniquely valued quantities. Therefore, we can only describe the measurand value
with a distribution of probability density.

To deal correctly with the problem of evaluating the measurement uncertainty it
is useful to adopt the procedure consisting of the following points:

1. make a mathematical model of the measurement system, see Eq. (3.2).
2. list all input variables subject to uncertainties.
3. calculate the standard uncertainty for each of them using type A analysis for those

with repeated measurements and type B for the others.
4. calculate the sensitivity coefficients ∂f

∂xi
.

5. compute the combined uncertainty taking into account all known correlations
among the input variables.

Before presenting some practical examples of uncertainty evaluation, it is worth-
while that we bring to the reader attention the following important recommendation
taken from the GUM:

Although the Guide provides a framework for assessing uncertainty, it cannot substi-
tute for critical thinking, intellectual honesty and professional skill. The evaluation
of uncertainty is neither a routine task nor a purely mathematical one; it depends
on detailed knowledge of the nature of the measurand and of the measurement. The
quality and utility of the uncertainty quoted for the result of a measurement therefore
ultimately depend on the understanding, critical analysis and integrity of those who
contribute to the assignment of its value.

3.8 Examples of Uncertainty Evaluation

When dealing with electrical measurements, the uncertainties to assign to the results
are often those of type B. These are the cases when the value obtained in repeated
measurements remains the same. Type A uncertainties, although always present in
any measurement, in these cases are smaller than the sensitivity of the instruments in
use and therefore cannot be detected. This kind of measurement are precise insofar
as they always give the same result when repeated; nevertheless the main interest of
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the experimenter is how accurate the measurement is, that is howmuch it is different
from the true value10 of the measurand. In the following sections, we will assume
that all the uncertainties discussed are of type B unless the contrary is explicitly
stated.

3.8.1 Voltage Measurements with an Analog Voltmeter

The uncertainty associated to measurements performed with analog electrical instru-
ments (typically multimeters) has been established in the recommendations of the
International Electro technical Commission (IEC) that have adopted the concept of
class of accuracy11 to classify instruments. This class C is the maximum possible
value of the uncertainty at any point of the range of the measuring device expressed
as the percentage of its full-scale deflection. If FS is the value corresponding to the
full-scale deflection and C is the accuracy class, then the maximum value of the
uncertainty Δmax that we can associate to a measurement obtained with this scale is:

Δmax = C

100
· FS (3.12)

For example, the measurement performed with a voltmeter of accuracy class C =
0.5 and used with the full-scale corresponding to FS = 250V yields a maximum
uncertainty of (0.5/100) × 250 = 1.25V at every point of its range. This implies
that the probability that the true value falls in the interval of width 2Δmax centered at
the measured value is nearly one, i.e., it is (almost) certain. In absence of additional
specifications for the instrument in use, we can only assume that the probability
distribution of the true value is uniform over the interval 2Δmax and centered on the
measured value. It is easy to show that the variance of this distribution isΔ2

max/3 that
yields a standard uncertainty

u = Δmax√
3

= 1.25

1.7320
V = ± 0.7V

As a further exemplification, suppose we have to measure DC voltages with an
instrument of class C = 1.5, using a range with full-scale deflection FS = 50V. We
measure two different voltage levels and obtain V1 = 30V and V2 = 40V. From the
definition of accuracy class, we compute the maximum uncertainty to associate to
the twomeasurement values:Δmax = (C/100)FV = 1.5×50/100 = 0.75V; finally

10Here, the adjective true added to the noun value has to be intended as an intensifier; instead of
true value it could be said: measurement taken with an instrument more accurate than the one in
use or a reference measure (when available).
11The term precision, traditionally used for the analog instruments, has been more recently replaced
by accuracy to be consistent with the recommendations issued by the working group and described
in the GUM.
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we estimate the relative standard uncertainty to associate to the two measurements,
(with the term relative uncertainty we intend the ratio of the uncertainty to the mea-
sured value):

Δmax

V1
= 100 × 0.75

30
= 2.50%

Δmax

V2
= 100 × 0.75

40
= 1.88%.

Note that the relative uncertainty is higher in the first measurement because of the
lower value; therefore when using instruments whose uncertainty is a fixed percent-
age of the full-scale deviation, it is advisable to set themup towork as near as possible
to the full-scale deviation.

3.8.2 Voltage Measurements with a Digital Multimeter

The uncertainty associated to a measurement obtained with a digital multimeter is
usually obtained consulting the user manual that must accompany every instrument.
Most manufacturers of professional multimeters declare a value of the expanded
uncertainty U such that the measurand is contained with a probability of 99% in the
interval of width of 2U centered at the measured value.12 Assuming that the values
obtained measuring the same voltage with different realizations of the same instru-
ment are well described by a Gaussian distribution, we calculate that this extended
uncertainty corresponds to a coverage factor k = 2.6; the standard uncertainty is
therefore: u = U/2.6.

In the user manual of digital multimeters, the manufacturers provide instructions
to compute (expanded) uncertainty for each range of the instrument. Many manuals
report that the uncertainty is given by:

±(percentage of the reading + number of digit) (3.13)

where the word digit, sometimes exchanged with the word count of similar meaning,
indicates the value of the less significant digit for the range in use. The number of digit
represents the resolution of the instrument for that range. The first term in Eq. (3.13)
represents the uncertainty of the instrument calibration while the second term is
independent from the measured value and results from the combined effect of digital
resolution and electrical noise in the instrument circuits. These two contributions
are mutually independent and therefore they should be added quadratically when

12The interested reader can find many examples of user manuals and application notes on line with
a simple query.
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computing the total uncertainty of the measurement.13 For example, suppose we are
measuring a voltage of about 10Vworkingwith a digital multimeter on a full-scale of
20.0000V. From the user manual, we read that for this scale the uncertainty is given
by ±(0.003% reading + 2 digit); in this case the least significant digit is equivalent
to 0.0001V and we obtain: U = [(0.003%×10)2+(2×0.0001)2]1/2 V = 0.36mV.
Taking into account the coverage factor the standard uncertainty is given by

u = 0.36

2.6
mV = 0.14mV

3.8.3 Standard Resistor

The following example, taken from the GUM, shows how to use data from a calibra-
tion certificate. Suppose we have a standard resistor whose resistance Rs, nominally
10�, has been certified to be 10.000742 ± 0.000129� at a temperature To = 23 ◦C.
Let also assume that the value of Rs belongs to a normal distribution and that the
uncertainty quoted above is an expanded uncertainty (U = 129µ�) corresponding
to a coverage factor k = 2.58; this means that the value of Rs falls, with a probability
of 99%, in the interval of width 2U centered on the quoted value.14 The standard
uncertainty pertaining to the value of Rs is given by uRs = 129µ�/2.58 = 50µ�.
We remark that the value of Rs reported by the calibration certificate is only valid
when the temperature of the resistor is To = 23 ◦C. Suppose now that the resistor
is used at a temperature T �= To. Let us assume that T = (0.0 ± 0.3) ◦C, and that
the value of the temperature coefficient of the resistor is α = (7.4± 0.3)10−5 ◦C−1.
Under these hypotheses the mathematical model describing the resistance of our
resistor is

Rs(T) = Rs(To)[1 + α(T − To)]

The sensitivity coefficients are:

∂Rs(T)

∂T
= Rs(To)α; ∂Rs(T)

∂α
= Rs(To)(T − To); ∂Rs(T)

∂Rs(To)
= 1 + α(T − To).

13Unfortunately, many user manuals implicitly suggest adding them linearly thereby leading to an
overestimate of total uncertainty that can become important at the bottom of the range in use.
14Indeed we have:

∫ +2.58

−2.58
1/(

√
2π)e−t2/2dt = 0.990005.
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The best estimate of the resistance value is:

Rs(T)=Rs(To)[1 + α(T − To)] = 10.000742 × (1 − 0.000074 × 23) = 9.983721�

and finally the combined uncertainty to associate to Rs(T) is:

uc =
√[

∂Rs(T)

∂T

]2

u2
T +

[
∂Rs(T)

∂α

]2

u2
α +

[
∂Rs(T)

∂Rs(To)

]2

u2
Rs

The uncertainties on the temperature T , the temperature coefficient α and the resis-
tance value Rs(To) are not correlated and therefore the correlations terms in the
previous formula have been safely neglected. It follows that we need to evaluate just
three contributions respectively due to:

(1) uncertainty of the temperature T

[Rs(To)α]
2 u2

T = (
10.000742 × 7.4 × 10−5

)2
0.32 = (

2.22 × 10−4
)2

= 4.94 × 10−8 �2

(2) uncertainty of the temperature coefficient α

[Rs(To)(T − To)]
2 u2

α =(10.000742 ×(−23.0))2
(
0.3×10−5)2 = (−6.90 × 10−4)2

= 4.76 × 10−7 �2

(3) uncertainty of the resistance value Rs at temperature T0

[1 + α(T − To)]
2 u2

Rs
= (

1 − 7.4 × 10−5 × 23
)2

(5 × 10−5)2 = (4.99 × 10−5)

= 2.49 × 10−9 �2

Note that the most important contribution to the combined uncertainty comes from
the temperature coefficient. Adding the three contributions, we get

uc =
√
4.94 × 10−8 + 4.76 × 10−7 + 2.49 × 10−9 = 0.7m�

Finally, our result for the value of the resistor resistance when used at a temperature
T = 0 ◦C is:

Rs(T = 0 ◦C) = 9.9837 ± 0.0007�
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3.8.4 Examples of Correlated Measurements

Example 1 (Voltage measurements) The measurement of the voltage in two points
A and B of a given circuit, performed with the same digital voltmeter, yields the
following results: VA = 3.512V and VB = 3.508V. The same two values are always
obtained in repeated measurements. In the user manual of the voltmeter, we read that
the expanded uncertainty of the instrument, in the configuration in use, is given by
0.2% of the value read on the digital display. We need to evaluate the potential drop
between the two points A and B.

The best estimate for this voltage difference is easily obtained and isΔV = VA−VB =
4mV to which we must associate the correct uncertainty value. Assume now that the
quoted uncertainty (of type B), as discussed above in the Sect. 3.8.2, corresponds to
a confidence level of 99% and that the relevant probability distribution function is
Gaussian. In these hypothesis the standard uncertainty of both measured voltages is
u(V) = 7/2.6 = 3mV. If we naively, and wrongly, assume that the two uncertainties
are not correlated wewould get an uncertainty forΔV given by u(ΔV) = √

2u(V) =
4mV, yielding ΔV = (4 ± 4)mV! This result is obviously wrong insofar, for
example, it implies that the valueΔV = 0 is plausible. Moreover, it would imply that
it is possible to observe a voltage at point 2 higher than in point 1 with a probability
of 32%.

To proceed correctly, we first note that

(i) the measured values do not change when repeated, ruling out any random
component to the uncertainty and

(ii) the proximity of the measured values (they differ only of 0.1%), strongly
suggests that systematic uncertainty due to the calibration procedure are equal for
the twomeasurements since we used the same instrument. From these considerations
it follows that the uncertainty ofΔV is due only to the quantization contributions, that

is ud = 1/
√
12mV = 0.3mV; this yields u(ΔV) =

√
u2

d + u2
d =

√
2u2

d = 0.4mV.

Finally, the result of the measurement is:

ΔV = (4.0 ± 0.4)mV

Let us remark once again that the two measurements are strongly correlated since
we used the same voltmeter for both of them. Should we have used two different
instruments, this correlation would be lost and the two uncertainties should be com-
posed in full quadratically.

Let us now consider again the previous example with a more formal approach.
The uncertainty u(V) to be associated to the measurements performed with the
digital voltmeter mentioned above should be correctly expressed as u2(V) =
(0.02V/2.6)2 + (1 digit)2, where the first term represents the calibration contri-
bution while the second is due to the quantization of the voltage value, the two terms
being obviously independent from each other. The two measured values are different
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by a small amount, much smaller than the full-scale of the instrument, and therefore
it is very reasonable to assume that the correlation coefficient ρ of the two calibra-
tion contributions to the uncertainties to attach to VA and VB, is nearly one. On the
contrary, the correlation coefficient of the two quantization contributions (the second
term in the expression given above) is null. In formulas, we have:

u(VA) =
√(

0.02VA

2.6

)2

+
(
0.001√

12

)2

V; u(VB) =
√(

0.02VB

2.6

)2

+
(
0.001√

12

)2

V

At this point, separating calibration from quantization contribution, we can use the
expression (3.7) for uncertainty propagation and the definition (3.9) for the correla-
tion coefficient to obtain:

u(ΔV)=
√(

0.02VA

2.6

)2
+

(
0.02VB

2.6

)2
− 2ρ

0.02VA

2.6

0.02VB

2.6
+

(
0.001√

12

)2
+

(
0.001√

12

)2
� 0.4mV

This example should warn the reader once again that a correct evaluation of the
uncertainty to be associated with a measurement always requires a careful critical
analysis before applying any formula.

Example 2 (Interpolation) In the previous example, taking into account correlations
did lead to a lower uncertainty for the value of the output variable. This is not the
case in the following example that discusses a method to estimate the value of an
output variable by a linear interpolation between two measured quantities.

Assume that we measure the quantity y as a function of the variable15 x. Let
(x1, y1 ± u1) and (x2, y2 ± u2) be two such measurements and suppose that we need
to find the value of xo corresponding to a given value of yo falling inside the interval
(y1, y2) as shown in Fig. 3.1. In addition, let us assume that the interval (x1, x2) is
small enough to approximate y(x) with its first order expansion around xo.

Before discussing correlation effects, let us briefly recall the definitions and the
applications of the linear interpolation procedure. This method allows filling voids
in a table of data pair xi, yi, in the hypothesis that the dependence of y upon x is
linear. Figure3.1 shows how to implement a linear interpolation between two data
points (x1, y1) and (x2, y2) to find the value xo corresponding to an assigned value of
y = yo.

Using a linear approximation, we can easily deduce:

yo − y1
xo − x1

= y2 − y1
x2 − x1

from which: xo = x2 − x1
y2 − y1

(yo − y1) + x1 (3.14)

15In a practical example, x may represent the frequency of a sinusoidal input signal that is attenuated
by a factor y(x) at the output of a filter circuit.
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Fig. 3.1 Linear interpolation

x
x1 x0 x2

y1

y0

a2

y

Tocompute the uncertainty associated to the value of xo given above,wefirst calculate
the sensitivity coefficients:

∂xo

∂y1
= − (x2 − x1)(y2 − yo)

(y2 − y1)2

∂xo

∂y2
= (x2 − x1)(y1 − yo)

(y2 − y1)2

Since we are interpolating, the point yo falls within the interval defined by y1 and y2
and the sign of the two derivatives is the same.

Propagating the uncertainties defined above, we obtain for the uncertainty of xo

the following relation

u(xo) =
√(

∂xo

∂y1

)2

u2
1 +

(
∂xo

∂y2

)2

u2
2 + 2ρ

(
∂xo

∂y1

) (
∂xo

∂y2

)
u1u2 (3.15)

where ρ is the correlation coefficient between uncertainties u1 and u2. Inserting the
expressions for the sensitivity coefficients, we obtain:

u(xo) = (x2 − x1)

(y2 − y1)2

√
(y2 − yo)2u2

1 + (yo − y1)2u2
2 + 2ρ(yo − y1)(y2 − yo)u1u2

(3.16)
If we define a dimensionless variable θ through the relation yo = y1 + (y2 − y1)θ ,
its value falling in the range (0, 1), the previous expression becomes:

u(xo) = (x2 − x1)

(y2 − y1)

√
(1 − θ)2u2

1 + θ2u2
2 + 2ρθ(1 − θ)u1u2 (3.17)

When the uncertainties u1 and u2 are mutually independent (this is the case for
example when y1 and y2 are counts of random events such as radioactive decays, or
when the two measurements have been performed with completely different setups),
we can assume ρ = 0 and the uncertainty of xo becomes:
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u(xo) = (x2 − x1)

(y2 − y1)

√
(1 − θ)2u2

1 + θ2u2
2 (3.18)

On the contrary, in case the uncertainties u1 and u2 are strongly correlated, as it
happens for example when y1 and y2 are only slightly different and result from
voltage measurements obtained with the same instrument, then ρ � 1 and Eq. (3.17)
becomes:

u(xo) = (x2 − x1)

(y2 − y1)

√
(1 − θ)2u2

1 + θ2u2
2 + 2θ(1 − θ)u1u2

= (x2 − x1)

(y2 − y1)
[(1 − θ)u1 + θu2] (3.19)

It is very easy to verify that the value resulting from the formula (3.19), valid for
correlated uncertainty, is always larger than the one obtained from the expression
(3.18) that applies in absence of correlations. The reader is encouraged to find a
graphical explanation for this finding.

Finally, let us note that, in case of extrapolation the value of yo falls outside the
interval (y1, y2) and θ is not included in the interval (0, 1). Therefore, our previous
result is not valid for the extrapolation method.

Problems

Problem 1 A voltage divider has been built with two resistors whose resistance val-
ues are known with the same relative uncertainty (for example εR = 1%). Assuming
that uncertainties are not correlated, it is required to calculate the uncertainty on its

partition ratio A = R2/(R1 + R2). [A. uA/A = (1 − A)

√
ε2R1

+ ε2R2
.]

Problem 2 With two resistors of equal resistance value and the same relative uncer-
tainty (for example εR = 1%) we need to build a voltage divider to reduce by a
factor 2 the voltage V ± uV provided by a known source. Assuming that uncer-
tainties are not correlated, compute the uncertainty on the partition ratio and on the

output voltage VA. [A. uA/A = εR/
√
2, uVA/VA =

√
ε2R/2 + (uV/V)2.]

Problem 3 Consider a set of 100 resistors, each with resistance equal to 10�, and
a resistor of resistance value 990�, all values having the same relative uncertainty
εR. It is necessary to build a voltage divider to reduce signal amplitude by about a
factor 100. Which one of the two following solution should we adopt to obtain the
lowest uncertainty on the partition ratio:
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(a) the 990� resistor in serieswith a 10� resistorwhose terminals supply the output
voltage

(b) the series of all 10� resistors using the last one for the output voltage?
[A. solution b unless all uncertainties of the 10� resistors are completely cor-
related, in which case the two solutions are equivalent.]

Problem 4 A simple balance is made of a spring whose elongation is measured on
a linear scale. It is calibrated using five standard weights as shown in the following
table. Each of the table entries provides a determination of the calibration coefficient.
Evaluate the uncertainty of each of these determinationswhen the relative uncertainty
to associate with the reading on the linear scale and that of the standard weights is
1%. Use the data obtained to assess if the response of the spring can be assumed
linear in the given range of elongation.

Weight (gr) 100 300 700 900 1400
Elongation
(mm)

10.89 32.76 72.81 91.19 147.65

Problem 5 Repeat the previous problem with the measurements obtained with a
spring of better quality and make sure that its behavior can be assumed linear. In
this case, provide the best estimate of the calibration coefficient valid for the range
explored. [A. 9.95 ± 0.07 mm/gr.)

Weight (gr) 100 300 700 900 1400
Elongation
(mm)

10.00 30.21 70.56 90.50 140.39

Problem 6 Two positive currents of intensity, respectively, 199 and 301mA and
a negative current of 496mA converge in a node of an electrical circuit. Assess
whether the Kirchoff’s law of currents is being violated bearing in mind that the
currents were measured with an amperometer that provides values with a standard
relative uncertainty of 1.5%. [A. Data are compatible with the quoted law.]

Problem 7 A resistor whose nominal value is 15� is measured by the same exper-
imenter with 10 different ohmmeters all providing results with a relative standard
uncertainty of 1% of the reading, all results being listed in the table. Calculate the
best estimate of the value of the resistance with its uncertainty. [A. 15.0� with
standard uncertainty of 0.03%.]

Measurement # 1 2 3 4 5 6 7 8 9 10
Resistance (�) 14,90 15,01 14,98 14,87 15,04 14,96 15,12 15,07 15,01 15,10
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Problem 8 The same resistance of the previous problem is measured by different
experimenters using the same ohmmeter providing results with a relative standard
uncertainty of 1.5% of the reading, obtaining the results listed in the table. Calculate
the best estimate of the value of the resistance with its uncertainty. [A. 15.0� with
standard uncertainty of 1.5%]

Measurement # 1 2 3 4 5 6 7 8 9 10
Resistance (�) 15.01 14.99 14.99 15.01 15.02 14.99 15.00 15.00 14.99 15.02

Problem 9 To check the linearity of an ammeter the following measurements are
carried out. The instrument is placed in serieswith the parallel of 10 variable resistors,
see the figure, which are preliminarily inserted individually in the circuit and adjusted
to obtain a reading for 1.50mA on the instrument with a relative standard accuracy
equal to 1.5%. Finally, the 10 resistances are fed simultaneously. How much should
the measure differ from the expected value of 15mA to rule out that the instrument
is linear? [R. 0.45mA.]

1 2 10

V

R R R A

Problem 9

Problem 10 A voltage of 4.7 ± 0.2V is measured across a resistor when a current
of 0.32 ± 0.02mA flows through it. Determine the value of its resistance with the
associated uncertainty. [A. R = 14.7k� with relative uncertainty of 7.5%.]

Problem 11 The voltage measurement of a battery of nominal value 4.5V is per-
formed with a digital voltmeter that provides results with a relative uncertainty of
one part in a thousand. The measurement must be repeated because of the presence
of radio interference and the values in the table are obtained. Give the best estimate
of the voltage and of its standard uncertainty. [A. (4.53 ± 0.01)V.]

# Voltage (V) # Voltage (V) # Voltage (V) # Voltage (V)

1 4.53 8 4.58 15 4.61 22 4.57
2 4.45 9 4.43 16 4.47 23 4.57
3 4.45 10 4.51 17 4.57 24 4.50
4 4.57 11 4.61 18 4.53 25 4.50
5 4.56 12 4.55 19 4.59 26 4.49
6 4.42 13 4.42 20 4.61 27 4.55
7 4.55 14 4.52 21 4.50 28 4.57
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Problem 12 Given the circuit in the figure, the current flowing in the resistors R1

andR2 is measured by inserting in sequence the same ammeter whose impedance can
be assumed negligible. The uncertainty of this instrument is 1.5% and is due to the
accuracy of the calibration procedure. The measured current values are IR1 = 54µA
and IR2 = 56µA. Evaluates the best estimate of the current flowing in the resistor
R3 and its uncertainty. [A. IR3 = 110µA with relative uncertainty of 1.5%.]

R3

V

R1

2R

Problem 12

Problem 13 In the circuit shown in the figure, the current flowing in the resistors R1

andR2 is measured by inserting in sequence the same ammeter whose impedance can
be assumed negligible. The uncertainty of this instrument is 1.5% and is due to the
accuracy of the calibration procedure. Themeasured current values are IR1 = 498µA
and IR2 = 482µA. Knowing that the resistance of R2 is 998� with an uncertainty
of 1.5% of its value, compute the best estimate of the value of the resistance R3 and
its uncertainty. [A. R3 = 30.1 k� with relative uncertainty 1.5%.]

V

R

R

R1
2

3

Problem 13

Problem 14 In the circuit shown in the figure, the current flowing in the resistors R1

and R2 is measured with two different instruments both with a relative uncertainty of
one percent. The measured current values are IR1 = 498µA and IR2 = 482µA.
Knowing that the resistance of R2 is 998� with an uncertainty of 1.5% of its
value, compute the best estimate of the value of the resistance R3 and its uncertainty.
[A. R3 = 30.1 k� with relative uncertainty higher than 100%.]

V

R

R

2

3

A

AR1

I

I

1

2

Problem 14
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Problem 15 Two resistors in series (see Figure) form a resistive voltage divider.
The value of the two resistances was measured with the same ohmmeter and the
values obtained were R1 = 911 k� and R2 = 1030 k� both with a standard relative
uncertainty of the 3%. However, the two measurements were carried out without
recording the temperature of the resistors. The only information available is that
this temperature was certainly in the interval between T1 = 15 ◦C and T2 = 25 ◦C.
Assuming to operate at a temperature intermediate between T1 and T2 and knowing
that thematerial of the two resistors has a temperature coefficient α = 5×10−3 ◦C−1,
evaluate the uncertainty to assign to the resistances during operation and to the
partition ratio A of the voltage divider. [A. u(R1) = 30 k�, u(R2) = 34 k�, A =
0.5331, u(A) = 5 × 10−3.]

R1
R2

Problem 15

Problem 16 Compute the expression of the combined uncertainty for monomial
functions taking into account correlations among independent variables.
[A. [uc(y)/y]2 = ∑N

i=1[piu(xi)/xi]2 + 2
∑N−1

i=1

∑N
j=i+1 ρijpipj(ui/xi)(uj/xj).]
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Chapter 4
Direct Current Electrical Measurements

4.1 Introduction

The physical quantities of interest in continuous current (DC) circuits are the voltage
of nodes and the current flowing through branches. In addition, for the circuit analysis,
the knowledge of the resistance value of its components is necessary. The instruments
used to measure current intensity are the ammeters; those to measure voltage are
the voltmeters while the ohmmeters provide a direct measurement of component
resistance. Instruments capable of all these three functions, and many others needed
for circuits with time-dependent currents, are known as multimeters and are available
in all laboratories. These devices can be realized in many different ways and, broadly
speaking, are categorized as analog or digital instruments. The first kind provide the
value of the physical quantity through an index that can move continuously on a
graduated scale, the second kind provide the result of measurements as a number
appearing on a digital display.

In turn, analog instruments can be subdivided into electromechanical instruments,
wherein all the energy required to move the index (or any other movable unit) is
supplied by the circuit under test, and electronic ones, wherein a large part of the
needed energy is given by an internal energy source. Digital instruments always fall
into this second category.

This chapter is devoted to explain the principles underpinning the operation of
instruments (ammeters, voltmeters, and ohmmeters) used in the study of DC circuits.
We first recall in the next section some general properties of measuring instruments.
Then in Sect. 4.3, we discuss tools and methods for the measurement of DC electrical
currents. There we describe in full detail the functioning of the moving coil ammeter
with the purpose of giving the reader an example of the depth of analysis required
for a proper design of a measuring instrument. In Sect. 4.4, we illustrate the use
of the analog voltmeter, with special attention to the perturbation caused on the
measured voltage by the insertion of the instrument in the circuit under test. The
section continues with a description of the scheme of principle of a digital voltmeter
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and focusses on the evaluation of uncertainties arising from the output quantization.
Finally, Sect. 4.5 is devoted to resistance measurements and we describe there both
the implementation of voltmeter–ammeter method and the properties of the analog
ohmmeter.

4.2 Properties of Measuring Instruments

Measuring instruments1 consist of devices that transform the quantity to be measured
into another quantity that is easily measurable, such as for example the position of
an index that can move on a graduated ruler. The instruments used in electrical
measurements are, in general, tools that need a calibration. This means that their
reading scale must be defined by comparing their measurement results with absolute
quantities or with results of instruments already calibrated. The calibration proce-
dure should be repeated with a frequency defined by the manufacturer, so that the
instrument maintains the accuracy stated in the specifications.

The properties of interest in a measuring instrument can be numerous and depen-
dent on its particular use. However, some features are of a general nature, and valid
for all instruments. Among them, we have

• Sensitivity. Sensitivity is defined as the ratio between the variation of the response
and the variation of the solicitation. If G is the quantity under test (the measurand),
a voltage for example, and R is the response of the instrument, for example the
angular deviation of the index in an analog voltmeter, the sensitivity S of the
instrument is

S = dR

dG
(4.1)

Generally speaking, the sensitivity in not constant across the whole working range
but can depend on the value of G. We will see an example of this kind of behavior
when discussing the analog ohmmeter in the last section of this chapter.

• Accuracy. The accuracy of an instrument consists in its ability to provide for the
physical quantity under test a value as close as possible to its true value.2

• Precision. The precision is the capability of an instrument to reproduce the same
result when used in the same experimental conditions. The precision is a qualitative
concept. In the most recent publications of the Institute for Standardization (ISO),
the term precision is replaced by the terms “repeatability” and “reproducibility”.
More information is given in the original literature [1] on this subject.

1Here instrument also stands for a complex measuring system.
2Here the adjective true added to the noun value has to be intended as an intensifier; instead of true
value it could be said: measurement taken with an instrument more accurate than the one in use or
a reference measure (when available).
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(a) (b) (c) (d)

Fig. 4.1 Analogy between various distributions of shots on target and properties of accuracy and
precision of measurements. A measures accurate but not precise, B measures precise but not accurate,
C measures nor accurate nor precise, and D precise and accurate measurements. On top of each
target, we show the parent distribution of the horizontal position of the hits

• Working range. The working range is the interval of measurand values for which
the instrument is able to perform the measurement. The maximum value is called
full-scale while the minimum is called threshold.

• Promptness. The promptness is linked to the response time of the instrument to
the input quantity. The lower this time, the higher the promptness of the instrument.
The promptness remains a qualitative concept unless it refers to a mathematical
model describing the instrumental response as a function of time. For example,
the characteristic time of a mercury thermometer is a quantitative definition of its
promptness and makes it possible the comparison of different instruments based
on the same physical principle.

A note on accuracy and precision. In the terminology used in metrology, accu-
racy and precision describe two properties of a measurement completely separate
and independent: an instrument can be accurate but not precise, and vice versa. To
illustrate the difference between precision and accuracy is helpful to use an analogy
with the sport of shooting by interpreting the center of the target as the “true value”
of a measurand and the different trials as the measurements. The Fig. 4.1 shows four
different distributions of shots (A, B, C, and D) on the target that can be commented
as follows: (A) averaging the positions of the different shots we come very near to the
center, on the other hand the individual shots are rather dispersed. We can conclude
that in this case, the measures are accurate but not precise, (B) the measures are
precise but not accurate, (C) the measures are neither accurate nor precise, and (D)
the measures are accurate and precise.

In conclusions, the accuracy is related to the proximity of the measurement to
the true value while the precision is linked to the dispersion of the measurements.
From this discussion, it is obvious that a “good” instrument must be both accurate
and precise.
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Fig. 4.2 Measurement of the current flowing through the resistance R by inserting the ammeter in
series; r is the internal resistance of the ammeter. The insertion of the instrument perturbs the value
of the quantity to be measured

4.3 Electrical Current Measurements

The instrument used to measure an electrical current is the ammeter, which allows
reading, directly on a graduated ruler or through a digital display, the intensity of the
current flowing through it. To produce accurate results, the ammeter needs a careful
calibration usually performed by the manufacturer using precise and stable current
sources of known intensity.

How to use an ammeter. When we need to measure the current flowing through
a given conductor (or a series of conductors), we must open the original circuit
and insert the ammeter as shown in Fig. 4.2. In other words, the ammeter must
be inserted in series to the conductor through which flows the current we want to
measure. The insertion of the ammeter modifies the original circuit because of its
internal resistance r and modifies the current under measurement. Suppose we have
to measure the intensity of the electrical current flowing through the resistance R in
the circuit of Fig. 4.2. If V is the voltage difference between the two points A and
B, then the current through R has an intensity I = V/R. Once the ammeter, with its
internal resistance r has been inserted, the current intensity becomes:

I ′ = V

R + r
= V

R

(
1

1 + r
R

)

The term in brackets in the previous expression quantifies the systematic effect due
to the insertion of the ammeter in the circuit. Obviously, only when r = 0 the current
flowing in the perturbed circuit is equal to the one we are trying to measure. In
practice, however, we can neglect the effect of the presence of the instrument in the
circuit only when r � R. Using of Thévenin’s theorem, we can reduce any kind of
linear circuit to the scheme of Fig. 4.2. In this case, R is equal to the resistance of the
circuit as seen from the two nodes connected by the branch through which flows the
current we are measuring. These observations help us to understand that a merit of
an ammeter is to have an internal resistance as small as possible.

Shunt Resistance. Like all measuring instruments, ammeters have a full-scale limit,
i.e., a maximum current intensity that can be measured properly. With a simple trick,
we can increase the value of the full-scale limit of an ammeter adding a resistance
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Fig. 4.3 Shunt resistance

r

I
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Rs in parallel to it, as shown in the Fig. 4.3. In this circumstance, the resistance
Rs is referred to as the shunt resistance. Let us denote with I the current we want
to measure and with r the internal resistance of the ammeter; then using the two
Kirchhoff’s laws, we can write

I = IA + Is and RsIs = rIA

from which we can obtain

IA = Rs

Rs + r
I = 1

1 + r

Rs

I

This relation gives the current IA flowing through the ammeter as a function of the
shunt resistance. Now it is easy to see that to increase by a factor k the full-scale of
an ammeter, we need a shunt resistance Rs = r/(k − 1). In conclusion,

to increase by a factor k the full-scale of an ammeter it is sufficient to connect it in
parallel to a shunt resistance equal to a fraction 1/(k −1) of its internal resistance r.

As already mentioned above, there exist various types of devices capable of measur-
ing a current intensity; we will discuss in the following two of them, namely:

• the moving coil ammeter, an analog electromechanical instrument exploiting the
mechanical interaction between a current passing through a coil and the magnetic
field of a permanent magnet.

• the digital ammeter, a digital instrument that measures the voltage across a known
resistance. Application of the first Ohm’s law yields the current intensity.

The use of analog devices is becoming less common as these instruments are sup-
planted by digital devices, which are more versatile and economical. Nevertheless,
we will give some details of the physics of the analog ammeter to show the deepness
of analysis necessary for the proper design of a measuring device.
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(a) (b)

Fig. 4.4 Schematization of the moving coil ammeter: a section of the air gap of the permanent
magnet with the soft iron core around which the coil can rotate; note that in this gap the B field is
radial and of constant amplitude. Therefore, the torque on the coil does not depend on θ . In b, we
show a perspective view of the instrument

4.3.1 Moving Coil Ammeter

This instrument, also known as D’Arsonval’s ammeter from the name of its inventor,3

consists of a coil immersed in a radial magnetic field generated by a permanent magnet
of a suitable shape and a soft iron cylinder placed in the air gap of this magnet. In the
space between the magnet and the cylinder, the magnetic induction field B is radial in
direction (relative to the center of the cylinder) and constant in module. The coil can
rotate around the axis of the soft iron cylinder, perpendicular to the direction of the
magnetic field, see Fig. 4.4a. The elastic force generated by a spiral spring maintains
the coil in a stable rest position, as shown in Fig. 4.4b. The coil supports an index to
measure its angular position θ on a linear scale.

When an electric current of intensity I flows in the coil (consisting of n turns of
area S = hd), it generates a mechanical torque, directed along the rotation axis and
not dependent on θ , whose module is given by:

M = n hd B I = Φ∗I (4.2)

where we used4 Φ∗ = nhdB. The previous equation shows that the mechanical
torque generated by the current flowing through the coil is directly proportional to
its intensity. This torque causes a rotation of the coil until a new equilibrium position
is reached where the elastic torque due to the spring balances it. Since the elastic
torque of spiral spring is given by −Cθ , where θ is the rotation angle and C a constant,
the new equilibrium position is given by:

θ0 = Φ∗

C
I (4.3)

3This instrument is also known under the name of D’Arsonval’s galvanometer. The name gal-
vanometer, until the early years of last century, was used to indicate the most sensitive instruments
for measuring electric currents.
4Φ∗ is the flux linked with the n turns of the coil when immersed in a uniform field of magnetic
induction B perpendicular to its surface.
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This proves that the angular position of the moving coil at steady state is proportional
to the current flowing through it. Therefore, the value of the current I can be obtained
by the index position after calibrating the scale directly in units of electrical current
intensity.

Equation of motion of the moving coil. For the proper design of the instrument,
the mere knowledge of the steady state is not sufficient. It is also very important to
know how the equilibrium is attained. Considering the moving coil as a rigid body,
its equation of motion is

I θ̈ = Mext

where I is the inertia moment of the moving coil with respect to its rotation axis, θ

is the rotation angle from the rest position, and Mext is the module of the torque due
to the forces acting on the coil. Mext is the sum of three terms:

• the torque, due to the interaction of the coil with the magnet, whose module is
given by Eq. (4.2) and will be referred to as Φ∗I ,

• the torque of the elastic force of the spiral spring that, as we said before, is given
by −Cθ and tends to return the moving coil in the rest position, and

• the torque of a viscous force −βθ̇ , proportional to the angular rotation speed θ̇ .
This force is caused only for a small fraction by the air friction but is rather mainly
due to the effect of magnetic induction (Foucault’s current).

Let us consider in more details the origin of this component of the viscous force.
We choose to measure the angular position θ of the moving coil starting from the
position where its plane is parallel to the direction of the magnetic induction field B
in the soft iron core, see Fig. 4.4a. The magnetic flux φ linked to the coil is a function
of θ and, recalling that the B field is divergence-less, we can use the Gauss theorem
and show that φ is equal to the magnetic flux linked to the lateral surface of the half
cylinder subtended by the coil in the air gap. In this gap, B is purely radial and with
simple geometrical arguments, we can show that φ = nhdBθ = Φ∗θ .

This result implies that, during the motion of the coil, the magnetic flux linked to
it changes and gives origin to an electromotive force f = −dφ/dt = −Φ∗dθ/dt =
−Φ∗θ̇ . Using the superposition theorem, we can see that, in these conditions, the
current flowing through the coil is I + f /R where R is the resistance of the circuit
under test as seen by the ammeter and I is the current intensity we want to measure.
Putting this new current intensity in the expression (4.2) for the mechanical torque, we
obtainM = Φ∗I −Φ∗2θ̇/R, which leads us to the expression for the electromagnetic
friction coefficient β = Φ∗2/R. We remark that this value depends not only on the
instrument parameters but also on the resistance of the circuit under test.

In conclusion, the equation describing the motion of the coil is

I θ̈ + βθ̇ + Cθ = Φ∗I (4.4)

In the next section, we will illustrate in detail the solutions of this equation. However,
it is immediate to deduce again its steady-state solution when the current I does not
depend on time, neglecting all time derivatives we obtain:
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θ0 = Φ∗

C
I (4.5)

Ammeter sensitivity. Equation (4.5) allows obtaining the ammeter sensitivity, as
defined in Sect. 4.2; we identify the response of the instrument with the index angular
position θ and we get the ammeter sensitivity value as

Samp = ∂θ

∂I
= Φ∗

C
(4.6)

4.3.2 Considerations on the Motion of the Moving Coil

Coming back to Eq. (4.4), with a constant current we can assume without loss of gen-
erality that the instrument is connected to the circuit at the time t = 0. Consequently,
the current in the ammeter coil is given by I = 0 when t < 0 and I = constant for
t > 0.5 The general integral of Eq. (4.4) is:

θ(t) = A1em1t + A2em2t + Φ∗I

C
(4.7)

where the constants A1 and A2 depend on the initial conditions and will be computed
in the following. m1 and m2 are the solutions of the characteristic equation m2 +
β

I m + C
I = 0 and are given by:

m1,2 = − β

2I
±

√
β2

4I 2
− C

I
(4.8)

The dynamical properties of the motion described by Eq. (4.7) depend upon the sign
of its discriminant Δ = (β/2I )2 − C/I . The following cases are possible:

• Δ < 0. The motion is a damped oscillation. In this case, the solutions of the
characteristic equation m1 and m2 are two complex conjugate numbers yielding a
solution representing a damped sinusoidal motion, see Fig. 4.5 (plot a).

• Δ > 0. The motion is aperiodic. Indeed, in this case m1 and m2 are real and negative
numbers and the motion is approximatively exponential, see Fig. 4.5 (plot c). The
time needed for θ(t) to reach its equilibrium position θ0 will depend upon the
value of β2 − 4I C; the higher its value, the longer the coil will take to reach its
equilibrium position.

5The fact that the current changes from zero to a finite value in zero time is an approximation. In
fact, the inductance of the coil of the ammeter does not allow sharp variations of the current that
flows through it. If LB is the inductance of the coil and R is the value of the resistance “seen” by the
ammeter, then τ = LB/R is the order of magnitude of the time needed for the current to reach the
stationary value. This result will be deduced in Sect. 9.7.

http://dx.doi.org/10.1007/978-3-319-31102-9_9
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Fig. 4.5 Motion of the
moving coil: a damped
oscillation, b critically
damped and c aperiodic
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• Δ = 0. The motion is critically damped. In this case β = √
4I C and the two roots

of the associate equation are real negative and coincident. The resulting motion is
intermediate between a damped oscillation and an aperiodic motion, see Fig. 4.5
(plot b). For practical reasons, as we shall see, this is the regime of operation
chosen by manufacturers for moving coil ammeters.

Solution of the differential equation of motion. Detailed calculations. In this
section, we elaborate the general solution (4.7) of the differential equation (4.4) to
obtain the details of the different kinds of motion for the different values of the
discriminant Δ.

Δ < 0: Damped oscillation. To ease the notation, we use in the expression (4.7) the
following positions:

a = β

2I
, b =

√
C

I
− β2

4I 2
(4.9)

and we obtain for the equation of motion:

θ(t) = e−at
[
A1ejbt + A2e−jbt

] + θ0 (4.10)

Since θ is a real number, the two constants A1 and A2 must be complex conjugate
numbers: A1 = A′ + jA′′, A2 = A′ − jA′′ (where A′ and A′′ are real numbers). With a
simple mathematical manipulation6 we get the following expression for the function
θ(t):

θ(t) = Ae−at sin(bt + α) + θ0 (4.11)

6Besides the Euler’s formula, we need the following trigonometric relation:

A1 cos x − A2 sin x = A sin(x + φ) with A =
√

A2
1 + A2

2, φ = − arctan(A2/A1).
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To obtain the values of α and θ0, we have to impose the initial conditions. We assume
that, at the time t = 0 when we insert the ammeter in the circuit, the moving coil
is at rest in the position corresponding to the zero of the scale so that θ(0) = 0 and
θ̇ (0) = 0. From expression (4.11), we get

0 = A sin α + θ0

and
0 = −Aa sin α + Ab cos α

that yield

α = arctan
b

a
; and A = −θ0

√
a2 + b2

b2

and finally:

θ(t) = θ0

⎡
⎣1 −

√
a2 + b2

b2
e−at sin(bt + α)

⎤
⎦ (4.12)

The motion represented by this equation consists of an oscillation around the equi-
librium position θ0 with a (pseudo) period T = 2π/b and an amplitude decreasing
exponentially with a characteristic time 1/a (see Fig. 4.5a). Because of this oscilla-
tion, the index excursion can be disruptive; therefore, manufacturers tend to avoid
operation in these conditions.

Δ > 0: Aperiodic motion. When Δ > 0, it is easy to see that the two solutions m1

and m2 yielded by relation (4.8) are real and negative. Consequently, the motion of
the coil is represented by the sum of two exponential functions and θ(t) approaches
the equilibrium position θ0 with a time-constant longer the higher the value of Δ.
When this time-constant increases, the speed with which the coil approaches the
equilibrium position decreases and the residual mechanical friction can alter the
final position of the coil thereby affecting the result of the measurement. For this
reason, the manufacturers tend to avoid operation in these conditions.

Δ = 0: Critically damped motion. When Δ = 0, the solution of differential equa-
tion (4.4) becomes

θ(t) = θ0 + e−at(A1 + A2t) (4.13)

and with the usual initial conditions: (θ(0) = 0, θ̇ (0) = 0), we get

A1 = −θ0; A2 = −aθ0

and finally:
θ = θ0

[
1 − (1 + at) exp (−at)

]
(4.14)
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When we disconnect the ammeter from the circuit (θ = θ0, θ̇ = 0), the return of
moving coil to the initial position (the zero of the scale) is described by

θ = θ0 (1 + at) exp (−at) (4.15)

The constant a, whose expression is given by position (4.9) as a = β/2I = √
C/I

(the last equality deriving from the condition Δ = 0), has the dimensions of the
inverse of a time7 and is a measure of the promptness of the ammeter. In the following,
we give a quantitative estimate of a.

We assume typical values for the instrument parameters and namely:

• Number of turns in the coil n = 100.
• Magnetic induction field in the permanent magnet B = 0.2 T.
• Geometrical dimensions of the coil d = 2 × 10−2 m, h = 1.5 × 10−2 m.
• Intensity of the current flowing through the coil I = 40µA

We begin by computing the inertia moment, Ib, of a coil made with a copper wire
(density ρCu = 8.96 g/cm3) of diameter 2r = 0.1 mm, neglecting the mass of its
support frame:

1

2
ρCunπr2d2

(
h + d

3

)
� 3.1 × 10−8 kg m2

On top of this, we need to consider the important contribution of the index, used to
read the angular position of the coil, whose length is about 10 cm and whose mass
we assume of the order of 0.1 g:

I = (0.1 × 10−3)
(0.1)2

3
= 2.7 × 10−7 kg m2

For the electromagnetic torque acting on the coil, we get:

nB(hd)I = 100 × 0.2 × 2 × 10−2 × 1.5 × 10−2 × 40 × 10−6 = 2.4 × 10−7 N m

When conditions for critically damped motion are satisfied, from the relation (4.9),
we obtain that a = √

C/I . The spring constant C can be obtained assuming that for
an electrical current in the coil of 40µA the index rotates of an angle equal to π/2:

a =
√

C

I
=

√
nB(hd)I

I π/2
= 0.75 s−1

The inverse of a is equal to 1.3 s and, as said in the previous section, represents
the order of magnitude of the time needed for the instrument to respond to the
input (promptness of the ammeter). With this promptness, the ammeter will take

7It would be inappropriate to refer to the quantity 1/a as the characteristic time of the moving coil
ammeter in conditions of critical damping since the Eqs. (4.14) and (4.15) do not have an exponential
form because of the presence of a term linear in t.
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a few seconds to reach its steady state. On one hand this is a limitation, since the
instrument cannot detect a current changing with a frequency greater than a; but on
the other hand, it can turn out to be an advantage in case high frequency electrical
noise interferes with the measure but is not detected by the ammeter because of
insufficient promptness.

4.4 Measurement of Voltage Difference: Analog Voltmeters

The instruments used to measure a voltage difference are called voltmeters. An
analog voltmeter allows obtaining the value of a voltage difference by means of the
measurement of a current intensity and the application of the first Ohm’s law. In other
words, the analog voltmeter is nothing else but an ammeter used in an appropriate
fashion. Suppose we need to measure the voltage drop between the points A and B
of a circuit, as schematically shown in Fig. 4.6. To this purpose, we connect between
the two points an ammeter in series with a suitable resistance R′. With reference to
Fig. 4.6, we can write:

VA − VB = (R′ + r)IA = rV IA

where r is the ammeter internal resistance and IA the intensity of the current flowing
through it. Once we calibrate appropriately the scale of the ammeter in volt, we
can read directly the voltage difference between the points A and B. The instrument
consisting of the ammeter with in series the resistance R′ is an analog voltmeter. The
quantity rV = R′ + r is the internal resistance of this voltmeter. It is an important
parameter to evaluate the perturbation of the circuit under test due to the connection
with the voltmeter.

The perturbation introduced by the voltmeter. For a linear circuit, we can evaluate
the effects due to the connection with the voltmeter by making use of Thévenin’s
theorem. It states that any linear network is equivalent to the circuit of Fig. 4.7, where
V0 = VA − VB, the open circuit voltage, coincides with the voltage difference we
need to measure. The insertion of the voltmeter amounts to connecting nodes A and
B with the voltmeter internal resistance rV . Consequently, the current flowing in rV is
given by IV = V0/(Req + rV ). The voltage drop across rV , i.e., the voltage difference
measured by the voltmeter, is given by:

Fig. 4.6 Measure of the
voltage with a voltmeter. The
voltmeter is shown
schematically by the
components contained in the
dashed path, namely the
ammeter A in series with the
resistance R′

A B

rRVoltmeter
Ammeter
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Fig. 4.7 Voltmeter
connected to the Thévenin’s
equivalent of the circuit
under test. This scheme
allows computing the
perturbation to the circuit
introduced by the voltmeter
internal resistance rV

A

B Voltmeter

−

+

Req

V
Vo VV

rV

VV = IV rV = rV

Req + rV
V0 (4.16)

This result shows that the connection of a voltmeter to a circuit causes a perturbation
of the voltage difference to be measured whose magnitude is quantified by relation
(4.16). Note that the higher the internal resistance of the instrument, the lower the
perturbation it causes. An internal resistance as high as possible is therefore a factor
of merit of a voltmeters. To correct the systematic effect introduced by the voltmeter,
we need to know the value of both rV and Req and use them in Eq. (4.16) to obtain
the unperturbed voltage difference V0 as:

V0 = Req + rV

rV
VV =

(
1 + Req

rV

)
VV

This shows that the value of the systematic effect is determined by the ratio of the
equivalent circuit resistance to the voltmeter internal resistance.

Voltmeter “sensitivity”. It is customary for manufacturers of analog voltmeters to
quote the value of the internal resistance by means of a parameter, improperly called
“sensitivity” of the voltmeter. This parameter, quoted in units of Ω/V , yields the
internal resistance when multiplied by the value of the full-scale in use. For example,
if a voltmeter with sensitivity equal to 20 000 /V is used with a full-scale value of
5 V, its internal resistance is equal to 20 000 × 5 = 100 k. Usually, the sensitivity
is printed on the scale of the voltmeter as in Fig. 4.14 that shows the scale of an
analog multimeter: in the corner at the bottom left two values of the “sensitivity”
are printed: 20 000 /V for DC operation and 4000 /V for measurements with
sinusoidal currents (AC operation).

4.4.1 Digital Voltmeters

The development of integrated electronics has led to the gradual replacement of
analog instrumentation, mostly based on electromechanical sensors, with fully elec-
tronic instruments that replace the continuous graduated ruler with a digital device
providing directly a reading of the measured quantity for discrete numerical values.
With reference to electrical measurements, the pillar of digital instrumentation is
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Fig. 4.8 Block diagram of an ADC (FLASH). In the diagram, the comparators are represented
with triangles and the circuit that adds inputs is indicated with Σ

Table 4.1 Analog to digital conversion

Input voltage (V) Output voltage (V) Average value of Vin (V)

0 < Vin < 1 Vu = 0 〈Vin〉 = 0.5

1 < Vin ≤ 2 Vu = 1 〈Vin〉 = 1.5

2 < Vin ≤ 3 Vu = 2 〈Vin〉 = 2.5

3 < Vin ≤ 4 Vu = 3 〈Vin〉 = 3.5

4 < Vin ≤ 5 Vu = 4 〈Vin〉 = 4.5

5 < Vin Vu = 5 〈Vin〉 = ??

the voltage comparator. It is a nonlinear circuit8 with two inputs (marked with +
and −) and one output whose behavior is the following: as long as the voltage V+
of the positive input is lower than the voltage V− of the negative input, the output
voltage is equal to a low value, nominally zero. On the contrary, the output voltage
rises to a positive and constant value, usually a few volts, when V+ becomes higher
than V−. We now introduce a simple scheme of principle to illustrate the character-
istics of a voltmeter capable to read only a discrete number of values. As shown in
Fig. 4.8, we assume to have five voltage comparators with an upper output level of
1 V. We connect in parallel their positive inputs to the voltage to be measured while
the negative inputs are separately connected to the sequential outputs of a voltage
divider evenly spaced 1 V apart from each other. The comparators’ outputs are used
as inputs to a 5-way circuit able to count the number of positive inputs and show it
on a display.9

The behavior of this device for positive unipolar inputs is described in the Table 4.1
We can better understand the information obtained when measuring an unknown

8In this section, we limit ourselves to the functional description of the electronic devices mentioned,
leaving aside any discussion on their practical implementation that would require concepts and
notions learned later in the course of study.
9Alternatively, we could consider an analog version of this circuit obtaining an output voltage
proportional to the sum of the input voltages (see Problem 16 at the end of this chapter for a
practical embodiment of such a circuit). An instrument whose accuracy is just enough to distinguish
the number of positive outputs may then read this voltage.
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voltage value with such an instrument using the following observations. Assume to
obtain a given output value, for example the value 2. Any input signal of amplitude
comprised between 2 and 3 can generate such an output with equal probability. For
this kind of probability distribution, we can compute an expected value of 2.5 V with
a standard deviation of 1/

√
12 V. Therefore, there is an offset between the instrument

reading and the expected value of the input signal that in this simple example amounts
to 0.5 V for all measured values. This is obviously a systematic uncertainty that in
principle we can easily correct. Moreover, in practice, this offset is often, but not
always, sufficiently small to have a negligible effect on the measurement result. We
can conclude that the principal consequence of the output quantization is the random
statistical uncertainty due to the output level separation. To generalize this result,
denoting with Δ this separation, the offset is equal to Δ/2 while for the standard
uncertainty we get Δ/

√
12.

However, a closer look at Fig. 4.8 shows that there are two other potentially impor-
tant sources of uncertainty. First, since the resistances of the divider are never equal,
the separation between the output levels cannot be strictly constant. Consequently,
the offset now acquires a random component and the correction to the expected out-
put depends in an unknown manner upon the instrument reading. Fortunately, in a
device of good quality this fluctuation can be maintained at a small value compared
to the average width Δ of the channels.

Second, and far more important, the uncertainty on the value of the divider supply
voltage V affects directly the value of all the levels. In other words, if we know the
value of V with 1 % relative uncertainty, all output levels will have the same value
of relative uncertainty. It is important to note that this component of uncertainty is a
feature of the instrument in use and that all measurements taken with that particular
instrument will be affected by a correlated component of uncertainty. In contrast,
the uncertainties due to the channel amplitude Δ turn out, by their nature, to be
independent from each other.

The previous discussion has been summarized graphically in Fig. 4.9, which shows
on the abscissa the value of the input voltage and on the ordinate the value read by
the measuring device. The continuous line represents the ideal case when all output
levels have the same width and their lower edges are perfectly aligned on the first
bisectrix (dotted line). The fluctuation of the partition ratio causes the variation of the
amplitude of the channel with deviations from the first bisectrix. Taking account the
uncertainty on the divider supply voltage, the average deviation of the lower edges of
the channels from the first bisectrix is not zero (dashed straight line in the Fig. 4.9).

The scheme of principle hitherto used, though useful to illustrate the salient fea-
tures of a digital voltmeter, cannot generate the large number of levels needed for
an accurate measurement. Such a device can be obtained only by changing from a
parallel to a serial architecture, that is, by adopting a scheme in which all levels of
output are generated by the same comparator. To this purpose, we must make full
use of the resources of digital electronics.

Many digital devices are based on the ability of binary logic circuits to count
voltage pulses of standard form and to show the result as a decimal number on a
display. To convert a voltage level in a number proportional to its amplitude, one can
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Fig. 4.9 Transfer function
(digital) of an ADC, ideal
(continuous line), and real
(dashed line)
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use the device whose layout is shown in Fig. 4.10. It consists of a binary counter,
which can be periodically reset, counting the pulses generated by a precision clock
via a two inputs logic circuit, referred to as AND, which allows the passage of pulses
only when both its inputs are at a high voltage level.10 While the first input of the
AND circuit is connected to the clock, the second input is connected to the output of
a voltage comparator similar to the one described above. The positive input of this
comparator connects to the source of the voltage to be measured while the negative
input connects to the output of a digital to analog converter (DAC). This last device
takes as an input the digital output of the binary counter and returns at the output
a voltage level proportional to the number represented.11 As long as the output of
the DAC is lower than the voltage to measure, the output of the comparator is high
thereby enabling the passage through the AND circuit of pulses from the clock to the
binary counter that increments its digital output. As soon as this level is sufficiently
high to make the DAC output higher than the voltage under test, the counter stops
and the display shows the result of the measurement until the counter is reset.

A detailed analysis of this kind of voltmeter shows that the uncertainty of its
measurements can be characterized in a fashion very similar to the scheme of principle
previously discussed. This is obvious for the random component caused by the finite-
level separation. The output of the DAC circuit is affected by the uncertainty of the
conversion constant, similar to that caused in our scheme of principle by the divider
voltage supply, and by a fluctuation of the elementary voltage step similar to that
caused by differences in the resistor value in that divider.

The device we just discussed belongs to the category of analog-to-digital convert-
ers, often referred to with the acronym ADC. They are classified according to the
number n of bits used for the digital conversion and to the value of the full-scale volt-

10In digital electronics, we always need to use two voltage levels, a “low” one corresponding to “0”
and a “high” one corresponding to “1”. A particular and widespread standard of digital electronics,
called TTL, admits voltage values in the range 0 ÷ 0.8 V as “0” and voltage values in the range
2.0 ÷ 5 V as “1”.
11Problem 17 at the end of this chapter illustrates a scheme of principle to obtain a digital to analog
conversion.
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Fig. 4.10 Building a digital voltmeter with a binary counter and a digital to analog converter. The
thin lines transmit digital signals while analog signals travel on thick lines. The insert shows the
output voltage of the DAC as a function of the decimal encoding of the binary number at its input

age Vfs, that is the input voltage causing the resetting of the counter (overflow). The
channel spacing Δ will therefore be equal to Vfs/2n and corresponds to the variation
of one bit of the digitized value. For this reason, Δ is often referred to as the value of
the least significant bit (LSB). It is evident that, for the same full-scale, instruments
with a higher number of bits yield measurements that are more accurate.

Before concluding this section, we emphasize that in an ADC converter, the sig-
nal to be measured is sent to the input of a comparator consisting of an integrated
operational amplifier with high input impedance, approximatively of 1 ÷ 10 M.
For this reason often it is possible to neglect the perturbation of the measured value
induced by the internal resistance of a digital voltmeter.

4.4.2 Electrostatic Voltmeter

The electrostatic voltmeter, also said electrometer, is an electromechanical device
used to measure voltage by exploiting the electrostatic force exchanged by two elec-
trically charged conductors. Although the electrometer, similar to all the rest of
electromechanical instrumentation, is becoming obsolete and is being displaced by
digital devices, nevertheless it has the considerable advantage of not absorbing cur-
rent when measuring a DC voltage.12

This kind of instrument is still used when measuring high voltages with low
currents such as those produced by Van de Graaff generators.

12When used with a sinusoidal signal of angular frequency ω, the electrometer will have an
impedance equal to 1/ωC, with C capacitance of the electrodes. The current absorption in this
case is not null and depends on the frequency of the signal to be measured, as it will be explained
in the following of this book.
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Fig. 4.11 Scheme of the
Thomson voltmeter. M0 are
two fixed sectors, M1 is the
mobile sector that can rotate
around a pivot. M1 is shaped
so as to make the instrument
response linear for large
angular deviations

Now we describe in more detail the principles of operation of an electrometer, as
depicted in Fig. 4.11. A mobile sector M1 rotates around the pivot O and penetrates the
gap between two fixed sectors M0. When sectors are shaped in such a way to makes
their mutual capacity C proportional to the rotation angle, we will have C(θ) = kθ . In
the absence of voltage difference between the sectors, a spiral return spring maintains
the mobile sector outside the gap between the two fixed sectors. When a voltage
is applied, the electrostatic force between negative and positive charges generates a
mechanical torque whose module can be obtained by the derivative of the electrostatic
energy E with respect to the rotation angle θ :

M = − ∂E

∂θ

∣∣∣∣
V=cost

= 1

2
V 2 dC(θ)

dθ
= 1

2
V 2k

(note that we must take into account that the potential V is constant when taking the
derivative of E ). Denoting by Mr = −hθ the torque due to the return spring, the new
angular position of the moving sector at steady state is obtained when M +Mr = 0
and corresponds to:

θ = kV2

2h

Note that the response of such an instrument is not linear but quadratic. It is possible
to obviate this problem, at least in the large deviation region, with a more elaborate
shaping of sectors, as in the Thomson electrometer shown in Fig. 4.11. It is easy
to show that if we manage to obtain a logarithmic dependence of C on the rotation
angle, a linear response of the instrument can be recovered.

4.5 Resistance Measurements

Subject of this section are the methods used to measure the resistance of resistors or,
in general, of electric components having a finite resistance value.
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Fig. 4.12 Resistance
measurement with
voltmeter–ammeter method
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4.5.1 Voltmeter–Ammeter Method

The voltmeter–ammeter method requires the simultaneous measurement of the volt-
age drop ΔV across the resistor and of the intensity IR of the electrical current flowing
through it. The resistance value Rx is deduced in principle by using the first Ohm’s
law:

Rx = ΔV

IR

In Fig. 4.12, we show a possible setup for the measurement of Rx. The voltmeter
is connected in parallel to the resistor and yields the correct13 value of the voltage
difference ΔV across its terminals, while the current IA, as measured by the ammeter,
consists of the sum of the current IR flowing through Rx and of the current Iv flowing
through the voltmeter. The presence of this latter current is a neat example of a
systematic effect that needs to be corrected. Using the two Kirchhoff’s laws, we can
evaluate IR from the measurement of IA and the knowledge of the voltmeter internal
resistance rv: IA = IR + Iv and IRRx = Ivrv that together yield Iv = IRRx/rv.

The intensity of the current flowing in the resistor under test, in terms of the
current intensity IA measured by the ammeter is given by:

IR = IA
rv

rv + Rx
(4.17)

This allows us to write for Rx the following equation:

Rx = ΔV

IR
= ΔV

IA

(
1 + Rx

rv

)

Solving for Rx we finally get

Rx = ΔV

IA

⎛
⎜⎜⎝ 1

1 − ΔV

rvIA

⎞
⎟⎟⎠ (4.18)

13Here the qualifier correct means that this kind of setup is immune from systematic effects in the
voltage measurement.
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where we have isolated in brackets the correction to apply to the ratio of the measured
quantities ΔV and IA. When rv 
 ΔV/IA, i.e., when rv 
 Rx, the correction
decreases and eventually becomes negligible. Note that, in the setup of Fig. 4.12,
the internal resistance of the ammeter does not have any effect on the value of the
resistance resulting from the measurement.

Example. The measurement of an unknown resistance is performed with the setup
of Fig. 4.12. The voltage drop ΔV across its terminals is obtained by an analog
voltmeter, with sensitivity equal to 20 000/V, used with a full-scale of 5 V. Therefore
the internal resistance of this voltmeter is rv = 20 000 × 5 = 100 k. The values
provided by the voltmeter and the ammeter are, respectively, ΔV = 3.40 V and
IA = 48.5µA. Their ratio yields ΔV/IA = 70.1 k. This value is very different
from the correct value of Rx, as obtained from Eq. (4.18)

Rx = ΔV

IA

⎛
⎜⎜⎝ 1

1 − ΔV

rvIA

⎞
⎟⎟⎠ = 70.1 × 103

⎛
⎜⎜⎝ 1

1 − 70.1 × 103

105

⎞
⎟⎟⎠ = 234 k

In this case, the correction for the systematic effect amounts to a factor 3.34, very
large because the internal resistance of the voltmeter is lower than the resistance to
be measured.

Consider now a different example with the same setup. Now the same voltmeter
measures again ΔV = 3.40 V while, on the contrary, the ammeter yields a current
intensity IA = 1.58 mA, much higher than before. In this case, ΔV/IA = 2.15 k

and Eq. (4.18) gives

Rx = ΔV

IA

⎛
⎜⎜⎝ 1

1 − ΔV

rvIA

⎞
⎟⎟⎠ = 2.15 × 103

⎛
⎜⎜⎝ 1

1 − 2.15 × 103

105

⎞
⎟⎟⎠ = 2.20 k

The systematic correction is now only worth 2 % of the measured value because the
voltmeter resistance is five times higher than Rx.

When the voltmeter internal resistance is comparable to Rx, it may be convenient
to change the measurement setup by connecting the voltmeter in parallel to the series
of Rx and the ammeter. However, in this case too, we need to correct for a systematic
effect and the reader is requested to discuss it in Problem 12 at the end of this chapter.

4.5.2 Ohmmeter

The moving coil ammeter can be used within a device, the ohmmeter, which allows
measuring the value of an unknown resistance. The layout of principle of the moving
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Fig. 4.13 Layout of
principle of the analog
ohmmeter A
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coil ohmmeter is shown in Fig. 4.13. The ammeter A is shunted with a variable resistor
R and is connected in series with a voltage generator V0, a current limiting resistor
R1 and the resistance under test Rx. It is easy to show14 that the intensity ix of the
electrical current flowing through the moving coil is given by

ix = V0R

(Rx + R1)(R + rA) + RrA
(4.19)

where rA is the internal resistance of the ammeter A. The evaluation of Rx is simplified
by the variable resistor R. Its value is adjusted in such a way that the current in the
ammeter is equal to its full-scale value iFS when Rx is short-circuited. In other words,
the value of R is such that the right-hand side of Eq. (4.19) yields the value iFS when
Rx = 0. Using this result and a little algebra, we can recast that equation as it follows:

ix
iFS

= R′

Rx + R′ (4.20)

where R′ is the series of R1 with the parallel of R and rA, see Fig. 4.13. This shows that
the current intensity ix measured by the ammeter and the value Rx of the unknown
resistance are linked by a hyperbolic relationship. Consequently, the scale of the
ohmmeter is not linear but reproduces the behavior described by Eq. (4.20). An
example of such a scale is shown in the upper part of the Fig. 4.14.

Ohmmeter sensitivity. Recalling the definition (4.1), the sensitivity of the ohmme-
ter should be given by dθ/dRx, where θ is the angular rotation of the moving coil
corresponding to the resistance Rx. It is customary, however, to use, instead of θ , the
variable f = θ/θMax, i.e., the fraction of the maximum possible rotation that corre-
sponds to the full-scale value of the ammeter.15 Therefore, we define the sensitivity
of the ohmmeter with the expression

14It is sufficient to note that the current supplied by the generator is V0
Rx+R1+rA||R and to use the

formula for the current divider to evaluate the fraction flowing through rA.
15From the previous discussion, it is obvious that θ = θMax is obtained when Rx = 0.
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Fig. 4.14 Typical scale of an analog multimeter. The upper ruler pertains to the instrument used
as Ohmmeter. Two values of voltmeter sensitivity are reported at the lower left corner 20 000 and
4 000 /V, respectively, for continuous and alternating current operation

Soh =
∣∣∣∣ df

dRx

∣∣∣∣ = 1

θMax

∣∣∣∣ dθ

dRx

∣∣∣∣ (4.21)

Two factors contribute to the ohmmeter sensitivity, one depending upon the para-
meters of the moving coil, the other linked to the characteristics of the ohmmeter
circuit. Indeed, we can rewrite Eq. (4.21) as:

Soh = 1

θMax

∣∣∣∣ dθ

dRx

∣∣∣∣ = 1

θMax

∣∣∣∣ dθ

dix
· dix

dRx

∣∣∣∣ = 1

θMax

Φ∗

C

∣∣∣∣ dix
dRx

∣∣∣∣ = 1

iFS

∣∣∣∣ dix
dRx

∣∣∣∣ (4.22)

where we have used the ammeter sensitivity as given by relation (4.6). Computing
dix/dRx from Eq. (4.20), we obtain the expression of the analog ohmmeter sensitiv-
ity as

Soh = R′

(Rx + R′)2
(4.23)

Using this result, the reader can easily verify that the sensitivity of the ohmmeter
has a maximum for Rx = 0 and decreases monotonically until it vanishes null for
Rx = ∞.

Uncertainty of the ohmmeter. We conclude this section discussing the relative
(standard) uncertainty associated with the measurements obtained with the ana-
log ohmmeter. We make use of the relation (4.20) to express Rx as a function of
f = ix/iFS:

Rx = 1 − f

f
R′
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Fig. 4.15 The relative
uncertainty of the
measurement of a class 1
analog ohmmeter as a
function of the ratio
f = ix/iFS
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Denoting with u(ix) the standard uncertainty associated to the current value ix and
with u(Rx) the standard uncertainty associated to the measurement of the resistance,
the relative uncertainty resulting for Rx is:

u(Rx)

Rx
= 1

f (1 − f )
· u(ix)

iFS
(4.24)

where we have assumed negligible uncertainty for iFS . Recalling now that the amme-
ter uncertainty is given by its class C through the relation u(ix) = C × 10−2/

√
3 iFS ,

we finally obtain:
u(Rx)

Rx
= 10−2 C√

3
· 1

f (1 − f )
(4.25)

The plot of the relative uncertainty of results obtained with an analog ohmmeter of
class 1 is shown in the Fig. 4.15 as a function of the ratio f = ix/iFS . Note that this
uncertainty has a minimum when the measurements are obtained around the middle
of the scale while it becomes very high approaching both the lower and the higher
end of the scale.

Digital ohmmeters. Nowadays, the resistance of components used in the laboratory
is measured almost exclusively by means of digital Ohmmeters, which are more reli-
able and accurate than analog devices. The digital ohmmeters exploit the voltmeter–
ammeter method to obtain the resistance of components connected to their terminals
and show the numerical value of the result on a digital display.
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Problems

Problem 1 A class 2 analog multimeter performs the following measurements:

(a) a current of 35 mA on a full-scale of 50 mA
(b) a voltage of 7.5 V on a full-scale of 10 V
(c) a resistance of 8.3 k at 40 % of the full-scale.

Calculate the standard uncertainty to associate with each of these measurements.
[A. 0.58 mA, 0.12 V, 339.]

Problem 2 Find the value of the shunt resistor Rs needed to measure a current of
4 A with an ammeter with full-scale range equal to 5 mA and internal resistance
ra = 5 . Compute the internal resistance of the shunted ammeter. [A. Rs = 6.26 ×
10−3 , r′

a = 6.25 × 10−3 .]

Problem 3 With reference to the previous problem, compute the uncertainty uI to
associate to the current value due to uncertainty uRs associated to the value of the
shunt resistance Rs. [A. uI

I = ra
Rs+ra

uRs
Rs

.]

Problem 4 Transform an ammeter with a range of 50µA and internal resistance
12 in a voltmeter with a range of 100 V. Find the value of the resistance Rs to
connect in series to the ammeter and the internal resistance of the voltmeter thus
produced. [A. Rs = 2 × 106  = 2 M.]

Problem 5 With reference to the previous problem, compute the uncertainty uV to
associate to the voltage value due to uncertainty uRs associated to the value of the
series resistance Rs. [A. uV

V = uRs
Rs

.]

Problem 6 In the circuit shown in the figure, an ammeter with internal resistance
equal to 10 measures a current of 15.4 mA. Using Thévenin’s theorem, correct
this current value for the perturbation induced by the measuring instrument. [A.
16.9 mA.]

V

A
100Ω

100Ω

50Ω

Problem 6

Problem 7 In the circuit shown in the figure, a voltmeter with sensitivity 20 000/V
measures a voltage of 7.75 V on a full-scale range of 10 V. Using Norton’s theorem,
compute the value of the voltage undisturbed by the instrument. [A. 8.72 V.]
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Problem 8 With a voltmeter of known internal resistance rv and with an auxiliary
resistance of known value R, it is possible in principle to recover the parameters of
the Norton’s equivalent circuit of any unknown linear electrical network as seen by
two terminals. The necessary experimental procedure consists in measuring first the
voltage V1 at the output terminals and then to measure its value V2 when modified by
the insertion of the resistance R in parallel to the voltmeter. Find the expression of
the Norton’s current Ieq and the equivalent resistance Req. [A. Ieq = 1

R
V2V1

V1−V2
, Req =

R
V2

V1−V2
− R

rv

.]

Problem 9 With an ammeter of known internal resistance ra and with an auxiliary
resistance of known value R, it is possible in principle to recover the parameters of
the Norton’s equivalent circuit of any unknown linear electrical network as seen by
two terminals. The necessary experimental procedure consists in measuring first the

V

V

k

100   Ωk

50   Ω
100   Ωk

Problem 7

current I1 after connecting the ammeter at the output terminals and then to measure its
value I2 when modified by the insertion of the resistance R in series to the ammeter.
Find the expression of the Norton’s current Ieq and the equivalent resistance Req. [A.
Ieq = I1R

R− ra(I1−I2)

I2

, Req = RI2
(I1−I2)

− ra.]

Problem 10 Obtain the parameters of Thévenin’s equivalent circuit of an unknown
linear network by measuring the short-circuit current I with an ammeter of known
internal resistance ra and the open circuit voltage V with a voltmeter of known
internal resistance rv. Find the expression of Thévenin’s voltage Veq and the equivalent

resistance Req. [A. Veq = V
1+ ra

rv

1− V
I

1
rv

, Req = V
I −ra

1− V
I

1
rv

.]

Problem 11 Obtain the parameters of Norton’s equivalent circuit of an unknown
linear network by measuring the short-circuit current I with an ammeter of known
internal resistance ra and the open circuit voltage V with a voltmeter of known
internal resistance rv. Find the expression of Norton’s current Ieq and the equivalent

resistance Req. [A. Ieq = I
V
I (rv−ra)

rv(
V
I −rv)

, Req = V
I −ra

1− V
I

1
rv

)
.]

Problem 12 Compute the expression of the measured value of the unknown resis-
tance Rx when the voltmeter–ammeter method is implemented with the setup shown
in figure. [A. Rx = V/Ia − ra = V/Ia(1 − Iara/V).]
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Problem 12

Problem 13 The Wheatstone bridge shown in the figure is used for the measurement
of the unknown resistance Rx. Recalling that the bridge is balanced when the current
in the ammeter A is null, compute the relative uncertainty associated to the value of
Rx due to the standard uncertainty uA of the measurement performed by the ammeter.
Evaluate this uncertainty for an analog instrument of class 2 used on a full-scale of
50µA and the following values of remaining parameters: V = 10 V, R1 = R2 =
R3 = 1 k. [A. uR/R = (uA/V)(R2R3/R1 + R1 + R2 + R3) = 0.02 %.]

R

R

R1 2

3

V
+
_

Rx

A

Problem 13

Problem 14 A 9 V battery with negligible internal resistance powers a chain of
50 k resistors. The measurement of the potential difference between the nine con-
nections and the earthed negative pole of the battery is obtained with an analog volt-
meter of sensitivity equal to 20 000 /V used on a full-scale of 10 V. Use Thévenin’s
theorem to compute the expression for the measured voltage as a function of the
order number of the connection. [A. Vn = V/[(N − n)R/RV + N/n].]

+

V

V VV V V V V3V V

R RR R R R R R R R

5 6421 7 8 9

Problem 14

Problem 15 An analog voltmeter, whose internal resistance is rv, is used to measure
the tension ΔV between two points A and B of a circuit whose characteristics are
unknown. To get the unperturbed value of ΔV , we perform two measurements: (1)
we connect the voltmeter to the points A and B and measure the value ΔV1; (2)
we insert in series with the voltmeter a known resistance r∗ and obtain the value
ΔV2. Compute the value of ΔV from the results of these two measurements and
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determine the value of r∗ that minimizes the relative uncertainty to associate to the
value obtained. [A. ΔV = ΔV1ΔV2r∗/(ΔV1 − ΔV2)rv; r∗ = rv/2.]

Problem 16 Show that the voltage Vu across the resistance R0 of the circuit shown
in the figure is proportional to the sum of the voltages of its N inputs. [A. Vu =∑

i Vi/(R/R0 + N).]

R

V1 V2 VN

Vu

R R Ro

Problem 16

Problem 17 In the circuit in the figure, known as the “R−2R” ladder, the switches,
indicated with the numbers from 0 to 3, can be connected to ground or to voltage V .
The number of switches, in this case 4 (that is the length of the ladder) may increase
according to the need. Show that the output voltage is: Vu = ∑3

n=0 bnV/24−n, where
n is the number that identifies the switch and bn is 1 when the switch is connected to
the generator or 0 otherwise.
Hint: replace with the Thévenin’s equivalent the two leftmost resistors of value 2R
continuing with the same technique for the remainder of the circuit. Note also that
the resistance viewed from the output terminals is always R, regardless of the length
of the ladder.

2 310

2R 2R 2R

V

Vu2R

2R
R R R

Problem 17

Problem 18 The circuit in the figure is called “R − 2R inverted ladder”, and is
used, similarly to the one described in the previous problem, for the conversion
of digital signals to analog signals. Differently from the previous problem, in this
circuit the generator V delivers a constant current regardless of the position of the
switches. Show that the current measured by the (supposed ideal) ammeter is I =∑3

n=0 bn(V/R)2n−4 where n is the number of the switch as shown in the figure and
bn is 1 when the switch is connected to the ammeter or 0 otherwise.
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123 0
A

2R

R R R

2R 2R 2R
2RV

I

Problem 18 Circuit R−2R inverted ladder ” with 4 inputs (or bit).

Hint: apply the reciprocity theorem exchanging the ammeter with generator V
and assume that only one switch is connected to the generator. Applying the rules
of the current divider (see Problem 8 of Chap.1) and the principle of superposition
one quickly comes to the solution.
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Chapter 5
Alternating Current Circuits

5.1 Introduction

In previous chapters, we exhaustively studied methods and techniques to deal with
continuous current in electrical circuits. However, in most applications, electrical
circuits are exploited with time-dependent voltages and currents. In these circum-
stances, we cannot work with the simple algebraic relations we used so far to model
circuit behavior but we need to deal with equations that are differential with respect
to the time variable t.

Electric signals with time dependence can be divided into two categories1: tran-
sient signals, having finite time duration, and stationary signals that are periodic in
time. In the first case, we have no other option than solving directly the differential
equation describing the circuit behavior working with the independent variable in
the time domain. We will deal with this subject in Chap.9. It turns out that in the
second case a special role is played by sinusoidal waveforms and circuit behavior
can be more conveniently described by specifying the signal frequency.

We start this chapter in the next section by giving definitions useful to characterize
periodic signals. Then, in Sect. 5.3, after a reminder of the behavior of the most
important electric components with time-dependent voltage and current, we use
Kirchhoff’s laws to write the differential equation describing the current behavior
in a simple circuit with a time-dependent voltage generator. This equation is solved
in Sect. 5.4 for a sinusoidal voltage waveform and we come to the conclusion that
this waveform does not change when it propagates in a linear circuit. In Sect. 5.5, we
show that sinusoidal waveforms can be usefully associated with complex functions
to reduce differential equations to algebraic equations. In Sect. 5.6, we illustrate the
symbolic method that allows recovering most methods and theorems used for DC
currents for the solution of circuits under sinusoidal excitation. The formulas needed

1There exists one more category, random signals, not considered in this book devoted only to
deterministic signals.
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for the handling of electric power are given in Sect. 5.7 and finally, in the last section,
we write the most important theorems for linear network, previously discussed in
Chap.2, in a formulation more appropriate to circuits with periodic currents.

5.2 Periodic and Alternating Signals

In dealing with time-dependent currents, periodic waveforms play an important role.
It is therefore appropriate to give definitions of parameters relevant for their char-
acterization. In the following, we will indicate with s(t) a generic time-dependent
signal that can be either a voltage or a current.
Periodic signal. A time-dependent signal s(t) is periodic when it repeats the same
pattern after a given time interval T , the period of the signal. This implies that the
following relation must be satisfied:

s(t) = s(t + T ) for every t ∈ (−∞,∞)

The frequency ν of a periodic signal is the number of periods contained in a time
unit. It is equal to the inverse of the period: ν = 1/T . The frequency is measured in
hertz in the SI system, its symbol is Hz; 1Hz corresponds to one cycle per second
1Hz = 1 s−1. In electronics, where very fast signals are often encountered, we find a
widespread use of multiples of the hertz, such as the kilohertz (1 · kHz = 1000Hz),
the megahertz (1 · MHz = 106 Hz), the gigahertz (1 · GHz = 109 Hz), and the
terahertz (1 · THz = 1012 Hz).
Alternating signal. A periodic signal is qualified as alternating when its average
value is null:

⎧⎨
⎩

s(t) = s(t + T ) for every t ∈ (−∞, ∞)

1

T

∫ t+T

t
s(t′) dt′ = 0

(5.1)

Alternating signals are often indicated with the acronymAC, standing for alternating
current. Signals symmetric with respect to the time axis are obviously alternating.

All periodic signals can be made alternating by adding a constant level equal and
opposite to its average value. In Chap.7, we will show how it is possible to obtain
an alternating signal from a generic periodic signal with a very simple device.

Signal effective amplitude. Many electrical phenomena depend upon the square
value of voltage or current. For a few examples, the energy dissipated by Joule effect
in a resistor is proportional to the square of the applied voltage or of the current
flowing through it; the force exchanged by two conductors with the same current is
proportional to the square of its intensity; and the force exchanged by the two plates
of a capacitor is proportional to the square of their voltage difference. In all these
examples, the net amount of the induced effects depends on a time average of the
driving term: in the first case, the temperature increase is determined by the average

http://dx.doi.org/10.1007/978-3-319-31102-9_2
http://dx.doi.org/10.1007/978-3-319-31102-9_7
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performed by the resistor thermal capacity while, in the two remaining examples,
the conductors displacement is an average performed by their mechanical inertia.

These considerations show that useful information can be gained by measuring
the root mean square value, often referred to as the effective value, of an alternating
quantity as defined by

srms =
√

1

T

∫ t+T

t
s2(t′) dt′ (5.2)

where we use the suffix rms as an acronym for root mean square. This acronym is
widely adopted to indicate the effective value of alternating quantities and can be
found on the display of most measuring instruments.

The effective value is the usual choicewhenquoting the amplitudeof an alternating
voltage or current. For example, when in Europe we quote the value of 220V for the
voltage available from the commercial electric power distribution grid, we refer to
its effective value. This voltage has a sinusoidal waveform described by the relation
V (t) = Vo sin 2π t/T , with a period T = 20ms and a peak amplitude Vo = 311V.
Using its definition (5.2), we obtain

Vrms =
√

1

T

∫ t+T

t
V 2

o sin2(2π t′/T ) dt′ = Vo/
√
2 = 220V

5.3 Alternating Current Circuits and Their Solution

Electric and magnetic fields are always associated to the presence of electrical cur-
rents. They are the main responsibility for the different properties of AC circuits with
respect to their DC counterparts. Indeed, a time-dependent magnetic field can induce
an electromotive force in conductors that adds to the effect of the circuit generators,
while a time-dependent electric field can change the electric charge on conductor
surfaces giving origin to displacement currents in the circuits. Furthermore, radia-
tive phenomena may become very important at high signal frequency causing a loss
of power as electromagnetic radiation in the open space.

A full description of a circuit consisting of conductors and dielectric insulators in
the presence of alternating currents can only be obtained by solving Maxwell equa-
tions in the appropriate geometry and with the relevant boundary conditions. This is
a formidable task in most circumstances requiring considerable efforts. However, it
is possible to come up with a more manageable approach that makes use of simpler
equations when the following conditions are satisfied:

1. The physical dimensions of circuits and their elements are “small” with respect to
the wavelength of electromagnetic signals propagating in the circuit, see Chap.1.

2. Each circuit element can be satisfactorily described by a single electrical property
(resistance, capacitance, inductance …).

http://dx.doi.org/10.1007/978-3-319-31102-9_1
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3. Radiative phenomena can be neglected implying that power lost through electro-
magnetic waves is negligible with respect to the power circulating in the circuit.

Circuits where the first of the previous conditions is satisfied are referred to as
lumped parameters circuits and can be solved with the methods illustrated in the rest
of this chapter; on the other hand, circuits with dimensions larger than the signal
wavelength, as for example the transmission lines, are referred to as circuits with
distributed parameters and will be dealt with only in the last chapter of this book. In
the rest of this chapter we will show that with the three approximations listed above,
we can construct a theory of electrical circuits that is well verified by experimental
measurements and has innumerable and important practical applications.

5.3.1 Components of Alternating Current Circuits

Electrical components used in circuits have been already described in detail in the
first chapter of this book. Here we just give a reminder of their most important
parameters (R, C , and L) and of the physical relations defining them.
Electrical resistance is defined by the Ohm’s law, which states that the voltage
difference v(t) across terminals of a conductor is proportional to the current i(t)
flowing through it:

v(t) = Ri(t) (5.3)

Ohm’s law is not included in the fundamental equations of electrodynamics, as
formulated byMaxwell. It is phenomenological in nature and describes the properties
of electrical conduction in the matter. There are materials that do not comply with
the Ohm’s law and almost all materials can show significant deviations from it at
very high or very low applied voltages and currents.
Electrical capacitance is defined by the law stating that, in conditions of complete
electrostatic induction, the electrical charge on the plates of a capacitor is proportional
to their voltage difference v(t). Expressing the electrical charge as the integral over
time of the current i(t), and denoting with C the capacitance, we have

v(t) = 1

C

∫
i(t) dt (5.4)

Note that for continuous currents a capacitance is equivalent to an open circuit.
Inductance is defined by the law of Faraday–Newman–Lenz describing electro-
magnetic induction. This law states that the electromotive force (e.m.f.) induced in a
circuit with self-induction coefficient L is given by

v(t) = L
di(t)

dt
(5.5)
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di(t)
dt

1
C

v(t)=Ri(t) v(t)=L v(t)= i(t)dt

CLR

Fig. 5.1 AC circuit components and their symbols

Note that for continuous currents an inductance is equivalent to a short circuit:
v(t) = 0 with i(t) = const. In Fig. 5.1 we summarize the properties of these three
components together with the electrical symbols used to represent them in circuit
diagrams.

There is one more component, the voltage transformer, exploiting the
phenomenon of mutual magnetic induction as described by the law of
Faraday–Newman–Lenz. This component is more complex than those described
above and we will study it with mathematical methods appropriate for the solution
of alternating current circuits in next chapter.

5.3.2 The Solution of Alternating Current Circuits

As in the case of continuous currents, the two Kirchhoff’s laws are the basic tools
for the solution of AC circuits. However, these laws need to be suitably reformulated
for circuits where currents and voltages are time dependent.

First, consider Kirchhoff law of currents, based on the principle of electric charge
conservation. The presence in the circuit of components, such as for example a
capacitor, wherein electric charge can accumulate, implies that the charge density
ρ, on each of its plates, becomes time dependent. In this case, it is necessary to
include the displacement current2 in the charge continuity equation Js = ∂D/∂t.
The continuity equation becomes

∇(J + Js) = 0 (5.6)

Therefore, with the inclusion of Js, the Kirchhoff’s law of currents holds also in the
presence of alternating currents. Since the displacement current only exists within
components and the internal structure of components is neglected in the lumped
parameters approximation, we can disregard displacement currents in our approach
to the solution of AC circuits. Therefore, we can use first Kirchhoff’s law in the
formulation given for DC currents.

The Kirchhoff’s law of voltages is based on the principle of energy conservation.
In the case of DC currents, we exploit the conservative nature of the electrostatic

2The interested reader can find a detailed discussion of this subject in manuals of electromagnetism,
as for example [1].
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Fig. 5.2 The RLC series
circuit

C

L

R

field and obtain that in a closed loop the sum of voltage drops is equal to the sum
of all e.m.f. Ek present in the loop:

∑
Ek = ∑

Rk Ik . However, we know that in the
presence of time-dependent electromagnetic field there is an energy transfer from
the magnetic to the electric field and vice versa. The third of Maxwell’s equations

∇ × E = −∂ B

∂t

shows that the electric field is no more conservative. However, by taking into account
the e.m.f. due to variable magnetic field, as computed by the previous equation, in
inductances, where magnetic induction is important, the Kirchhoff’s law of voltages
maintains the same formulation of the case of DC currents.

The circuit shown in Fig. 5.2 is a useful starting point to illustrate the problems
posed by the task of solving3 a circuit with time-dependent voltages and currents.
This circuit consists of a unique loop with a generator of alternating voltage v(t), a
resistor with resistance R, an inductor of inductance L , and a capacitor of capacitance
C all connected in series. Applying the Kirchhoff’s law of voltages to this loop we
obtain

v(t) = vR(t) + vL(t) + vC(t)

Now we use Eqs. (5.3), (5.4), and (5.5) linking voltage and current in each of the
components in the circuit and we obtain the following integro-differential equation
for the current i(t) flowing in the loop:

L
di(t)

dt
+ Ri(t) + 1

C

∫ t

−∞
i(t′) dt′ = v(t) (5.7)

Upon further differentiation with respect to time, we obtain a second-order differen-
tial equation with constant coefficients:

L
d2i(t)

dt2
+ R

di(t)

dt
+ 1

C
i(t) = dv(t)

dt
(5.8)

3We recall that we have solved a circuit once we know the current in each of its branches and the
voltage of each of its nodes.
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At this point, the following remarks are appropriate:

1. contrarily to the case of continuous current,we do not obtain an algebraic equation
but we need to solve a differential equation, a more difficult task

2. the differential equation describing the circuit is linear, as expected since all three
components in the circuit are linear

3. the solution of Eq. (5.8) consists of two contributions: the first is a particular
solution that depends upon thewaveform of the generator voltage v(t); the second
is the general integral of the associated homogeneous equation obtained by setting
v(t) = 0.

We can easily verify that this last contribution is a transient. This can be seen
considering the characteristic equation

Lm2 + Rm + 1

C
= 0 whose solutions are: m1,2 = 1

2L

(
−R ±

√
R2 − 4

L

C

)

Therefore, the general integral of Eq. (5.8) is s(t) = Aem1t + Bem2t with A, B inte-
gration constants. It is easy to see that the real part of solutions m1,2 is always
negative. Indeed R, L , and C are all positive and the quantity under the square root,
Δ = R2 − 4L/C , is always lower than R2. Therefore, s(t) decreases exponentially
for increasing elapsed time t and we can neglect it in the steady state.

In the following section, we will solve Eq. (5.8) for a voltage waveform of partic-
ular importance: the sinusoidal signal.

5.4 Sinusoidal Signals

Sinusoidal waveforms play a very special role among alternating signals and often
they are considered, even if improperly, the alternating signals by definition. The
sinusoidal signal has the following mathematical representation:

s(t) = sp cos(ωt + ψ) = sp cos(2πνt + ψ) = sp cos

(
2π

t

T
+ ψ

)
(5.9)

In this equation sp is the amplitude of the signal (sometimes more precisely referred
to as peak amplitude), ω is the angular frequency, ν is the frequency, T is the period,
and ψ is the phase angle of the sinusoid. We recall that the sine and cosine functions
have the same shape and that it is possible to transform the first in the second with a
simple translation of the time axis since cos(t) = sin(t+π/2).Our choice ofEq. (5.9),
strictly speaking a cosine function, to represent a sinusoidal signal is conventional
and will be justified in the following.
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We will see shortly that the sinusoidal signal maintains its waveform when pass-
ing through a linear circuit. For this reason, electric power distribution grids supply a
sinusoidal voltage to their users. Moreover, we recall that, using the tools of Fourier
analysis, manymathematical functions can be expressed in terms of a sum or an inte-
gral of sinusoidal functions. Therefore, the study of linear circuits under sinusoidal
excitation with assigned frequency allows obtaining, in principle, their response to a
signal with a generic waveform using the superposition theorem and Fourier decom-
position.4

5.4.1 Differentiation and Integration of the Sinusoidal Signal

Given the sinusoidal signal (5.9), its time derivative is

d

dt
s(t) = sp

d

dt
cos(ωt + ψ) = −spω sin(ωt + ψ) = spω cos(ωt + ψ + π/2)

(5.10)

The time derivative of a sinusoidal signal remains sinusoidal with the amplitude
multiplied by the angular frequency and the phase increased by π/2, i.e., the differ-
entiated signal has a phase advance of π/2.

Integrating over time the sinusoidal signal (5.9) we obtain

∫
s(t) dt =

∫
sp cos(ωt + ψ) dt = sp

ω
sin(ωt + ψ) = sp

ω
cos(ωt + ψ − π/2)

(5.11)

The time integral of a sinusoidal signal remains sinusoidal with the amplitude divided
by the angular frequency ω and the phase reduced by π/2, i.e., the integrated signal
has a phase delay of π/2.

The importance of sinusoidal signals in circuits with alternating currents led to
the development of specific and efficient methods for the solution of these circuits.
Before addressing these methods, particularly the symbolic method, we solve the
circuit of Fig. 5.2 by giving the solution of the differential equation (5.8) with a
sinusoidal waveform for the generator output voltage: v(t) = vp cos(ωt + ψv).

As noted in the previous section, we are only interested to find a particular solution
of Eq. (5.8). Therefore, we look for a sinusoidal solution that we express as

i(t) = i p cos(ωt + ψi ) = i p cos(ωt + ψv − φ)

where φ = ψv − ψi represent the phase difference between voltage and current.
To simplify notation, we set to zero the phase ψv of the voltage signal, without

4For this reasonwe give in Appendix C.1.3 a summary of themost important formulas of the Fourier
analysis.
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any loss of generality, by changing the origin of the time axis. Using Eqs. (5.10) and
(5.11), respectively, for the derivative and the integral of a sinusoidal signal, Eq. (5.7)
becomes

−ωLi p sin(ωt − φ) + Ri p cos(ωt − φ) + 1

ωC
i p sin(ωt − φ) = vp cosωt

from which we obtain

i p

[(
1

ωC
− ωL

)
sin(ωt − φ) + Ri p cos(ωt − φ)

]
= vp cosωt (5.12)

We use simple trigonometry to separate the coefficients of cosωt and sinωt and we
get

i p

[
−

(
ωL − 1

ωC

)
cosφ + R sin φ

]
sinωt

+ i p

[(
ωL − 1

ωC

)
sin φ + R cosφ

]
cosωt = vp cosωt

Since this relation must be satisfied for any value of the time t, the coefficient of the
function sinωt must be null while the coefficients of the function cosωt on the left
and on the right side must be equal to each other. Therefore, we obtain

i p

[(
1

ωC
− ωL

)
cosφ + R sin φ

]
= 0

i p

[(
ωL − 1

ωC

)
sin φ + R cosφ

]
= vp

Dividing the first of these equations by cosφ, we can obtain the value of the unknown
phase φ:

tan φ =
ωL − 1

ωC
R

In the second equation, we can express sine and cosine as a function of the tangent
to obtain the value of i p. The solution of our problem is therefore fully specified by

i p = vp√
R2 +

(
1

ωC
− ωL

)2
φ = arctan

ωL − 1

ωC
R

(5.13)

The results obtained above for the RLC series circuit shown in Fig. 5.2 allow us to
make the following remarks that can be shown to be valid for all linear circuits under
sinusoidal excitation:
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• when the excitation v(t) is a sinusoidal function with angular frequency ω, the
stationary solution for the circuit current is a sinusoidal function with the same
angular frequency

• the method adopted to obtain the circuit solution is rather cumbersome requiring
the repeated use of trigonometric relations. It can become much more complicated
for circuits slightly more complex than the simple RLC series circuit.

In the next section, we will show how we can transform these complicated dif-
ferential equations in simpler algebraic equations by adopting a representation of
the quantities involved (voltages, currents, impedances, magnetic fluxes) with two-
dimensional vectors or with complex numbers.

5.5 Sinusoidal Function Representation by Phasors
and Complex Numbers

It is easy to see that a sinusoidal waveform, for example a voltage,

v(t) = vp cos(ωt + φ) (5.14)

can be represented by a vector in a plane. To this purpose, consider a vector V with
length vp applied in the origin O of a system of orthogonal axes in a plane. Assume
this vector lies at angle φ with the abscissa axis (see Fig. 5.3). Imagine now that,
starting at time t = 0, this vector rotates counterclockwise with a constant angular
speed ω. At time t, the angle the vector V makes with the abscissa axis is equal to
ωt+φ and we can verify easily that its projection on the axis yields the instantaneous
value of v(t). In this way, we have constructed a correspondence between the rotating

Fig. 5.3 Representation of a
sinusoidal quantity with a
vector (phasor)

ωj   t

O

ϕ

ω

e
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V
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p

y

x
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vector V and the sinusoidal waveform. This waveform, once the angular frequency
ω is given, is defined only by two parameters: its amplitude (vp) and its phase (φ),
the same two quantities used to define the vector V at time t = 0. This vector in the
analysis of AC circuits is referred to as a phasor and is represented with the following
notation:

V ∠φ

where V is the magnitude of V and φ the angle the vector makes with the x-axis.
The phasor V ∠φ represents the sinusoidal waveform v(t) defined by expression

(5.14). This correspondence canbe used to construct ageometrical solution of circuits
under sinusoidal excitation. In this book, however, we will not pursue this method
but prefer to adopt an algebraic method exploiting a representation of sinusoidal
waveforms in terms of complex numbers.

Indeed the correspondence between sinusoidal waveforms and phasors is sugges-
tive of a similar correspondence of these waveformswith complex numbers. It is well
known that these numbers can be represented as a point in a two-dimensional plane,
the Argand’s complex plane, and therefore, it is possible to construct a correspon-
dence between phasors and complex numbers. Furthermore, inspection of Euler’s
formula (e jα = cosα + j sin α, where j is the imaginary unit) suggests the idea
to associate the waveform defined by relation (5.14) to the real part of the complex
quantity vpe j (ωt+φ).

Exploiting the notation with complex numbers, we can greatly simplify the analy-
sis of circuits in the sinusoidal regime. This can be seen considering again the dif-
ferential equation (5.7) with the following position:

vp cos(ωt + ψv) → vpe
j (ωt+ψv) = vpe

jψve jωt = V e jωt (5.15)

Here the complex quantity V = vpe jψv can be seen as a different way to indicate the
phasor V ∠ψv and is referred to as the complex representation of the voltage. Having
introduced an imaginary part in their right-hand side of Eq. (5.8), we must now look
for a solution, the current, with a similar complex expression:

i pe
j (ωt+ψi ) = i pe

jψi and jωt = Ie jωt

where I = i pe jψi is the complex representation of the current. Recalling that the
derivative and the integral of an exponential function remain exponential

d

dt
eat = aeat,

∫
eat dt = 1

a
eat (5.16)

in Eq. (5.7) we can simplify the time-dependent term e jωt and obtain an algebraic
equation for the complex amplitude of the current:

I

[
R + jωL + 1

jωC

]
= V (5.17)



118 5 Alternating Current Circuits

Solving this equation for I , we obtain

I = V

R + jωL + 1

jωC

(5.18)

The module of I gives the peak amplitude i p of the solution

|I | = |V |∣∣∣∣R + jωL + 1

jωC

∣∣∣∣
= vp√

R2 +
(

ωL − 1

ωC

)2
(5.19)

while the phase difference φ between V and I is obtained as

φ = ψv − ψi = ψv −
(

ψv − arctan
I[I ]
R[I ]

)
= arctan

⎛
⎜⎝

ωL − 1

ωC
R

⎞
⎟⎠ (5.20)

where the functions R[. . .] and I[. . .] indicate, respectively, the real and the imag-
inary part of their argument. We have obtained again the solution of the previous
section, see Eq. (5.13), but the procedure adopted is faster and simpler.

This procedure can be applied to a generic class of equations including (5.7) as
a particular case. To this purpose, consider a physics problem requiring the solution
of an equation, or a system of equations, of the kind

L [x(t)] = f (t) (5.21)

whereL [. . .] represents a generic linear integro-differential operator with constant
coefficients. Using f1(t) and f2(t) to represent two different excitation functions and
denotingwith x1(t) and x2(t) the corresponding solutions of Eq. (5.21), because of the
linearity ofL we can easily show that the complex function x∗(t) = x1(t)+ j x2(t) is
also a solution of the same equationwhen f (t) is complex and equal to f1(t)+ j f2(t).

Similarly, it is easy to show that, if y∗(t) = y1(t) + j y2(t) is the solution of
Eq. (5.21) with excitation f (t) = f1(t) + j f2(t), the real part y1(t) of y∗(t) is its
solution when f (t) = f1(t). The same is true for the imaginary part y2(t) when
f (t) = f2(t). Therefore, a solution of this equation in the realm of complex numbers
is equivalent to two real solutions for the underlying physics problem.

These considerations become very useful when the function f (t) is sinusoidal
f (t) = f0 cos(ωt + φ). In this case, the use of complex exponentials allows trans-
forming the original Eq. (5.21) in an algebraic equation in the realm of complex
numbers. In these circumstances, it is useful to make the following position:
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f ∗(t) = f0 cos(ωt + φ) + j f0 sin(ωt + φ) = f0 exp[ j (ωt + φ)]
= f0 exp( jφ) exp( jωt) = f ∗

0 exp( jωt)

where f ∗
0 = f0 exp( jφ). Looking for a solution of the kind x∗(t) = x∗

0 exp( jωt), we
can use relations (5.16) to express derivatives and integrals and reduce the problem
to the solution of an algebraic equation, as done above. In this way, we can get
the expression of x∗

0 = x0 exp( jφx ) yielding amplitude and phase of the physical
solution.

5.5.1 The Symbolic Method

We have now all the elements necessary to introduce the symbolic method,5 a tech-
nique that greatly simplifies the analysis and the solution of linear circuits under
sinusoidal excitation.

Consider again relation (5.17) obtained in the previous section using the complex
representation of sinusoidal quantities. We remark that this relation has a structure
very similar to the Ohm’s law provided we regard:

• the complex representation of the current I as a current
• the complex representation of the voltage V as a voltage
• the quantity enclosed in the square brackets as an impedance composed by the
series of three elements: the impedance of the resistance R, the impedance of the
inductance jωL , and the impedance of the capacitance 1/jωC .

This observation is not limited to the RLC series circuit but is generally valid for
all linear circuits with sinusoidal currents. It is suggestive of an approach to the
solution of AC circuits widely adopted and known as the symbolic method. In short,
the solution of a generic linear circuit under sinusoidal excitation with the symbolic
method includes the following steps, see Fig. 5.4:

1. Replace sinusoidal generators of voltage or current with their complex represen-
tation

2. Replace components in the circuit with their complex impedance using the fol-
lowing table:

Resistance → Z R = R
Inductance → ZL = jωL
Capacitance → ZC = 1

jωC

5The introduction of the symbolic method is largely due to the mathematician and engineer Charles
P. Steinmetz, an advocate of the practical use of alternating current, who formalized themathematics
necessary for the study of circuits with sinusoidal currents [2].
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(a) (b) (c)
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Fig. 5.4 Schematic of the symbolic method application; a diagram of the real circuit: voltages and
currents are time dependent; b diagram of the equivalent circuit as transformed by the symbolic
method: voltages, currents, and impedances are complex quantities depending on the angular fre-
quency ω, not on time; c practical diagram where component symbols are the ones used in the real
circuit

3. Use the two Kirchhoff’s laws for currents and voltages since they are also valid
for the complex representations6

4. Solve the circuit with the same procedures adopted for DC circuits, recalling that
impedances in series are additive while for the parallel connection the equivalent
impedance is given by the inverse of the sum of the inverse of each impedance.

In summary, the definition of complex impedance allows writing the relationship
between complex representation of voltage and current in a way formally identical
to the Ohm’s law. In other words, the complex AC voltage must replace the DC
voltage, the complex AC current the DC current, and the complex impedance the
resistance. In formulas,

V = Z I (5.22)

6We show here that this statement is true for Kirchhoff’s law of currents. For sinusoidal currents
this law yields at a node:

∑
k ik(t) = ∑

k imk cos(ωt + φk) = 0, for all time values t. Using simple
trigonometry we obtain

∑
k

imk cos(ωt + φk) =
∑

k

imk(cosωt cosφk − sinωt sin φk) = 0

Since this relation must hold for all t values, the coefficients of both cosωt and sinωt must be null:
∑

k

imk cosφk = 0 and
∑

k

imk sin φk = 0

We now add the second equation, multiplied by the imaginary unit j , to the first. We get

∑
k

imk(cosφk + j sin φk) =
∑

imke
φk =

∑
k

Ik = 0

This shows that the complex representations of sinusoidal currents converging in a node fulfill
Kirchhoff’s law for currents. With a similar procedure it is possible to show that Kirchhoff’s law
for voltages remains valid for the complex representation of sinusoidal voltages.
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Equation (5.22) is referred to as the generalized Ohm’s law. Its use allows extending
to sinusoidal signals all solution methods used for DC circuits (method of nodes and
method of loops).

The most important feature of the symbolic method is that it allows solving AC
circuits, described by differential equations with time t as the independent variable,
by means of algebraic equations, much simpler to solve, where the time plays no
role and the frequency of the sinusoidal waveform is present as a parameter.
Impedance Composition. As illustrated above, the rules to apply in the composition
of impedances are similar to those used to compose resistances in DC circuits.
Resistance and reactance. In the circuit RLC series of Fig. 5.2 the complex
impedance “seen” by the generator can be expressed as

Z = R + j

(
ωL − 1

ωC

)

This expression for the impedance is not only true in the particular case under con-
sideration but is valid in general. Whatever the connections of the individual compo-
nents, we can always express the complex impedance as a sum of two terms: a real
term, possibly dependent on ω, which we refer to as the resistance, and an imaginary
term that we name reactance. Then, in general, we canwrite for a generic impedance:

Z(ω) = R(ω) + j X (ω) = |Z |e jφ

where

|Z(ω)| =
√

R(ω)2 + X (ω)2 φZ (ω) = arctan
X (ω)

R(ω)

When we apply a voltage difference of complex amplitude V to a component
with complex impedance Z = R + j X , the module7 of the current flowing in the
component is

|I | = |V |
|Z | = |V |√

R2 + X2
(5.23)

and the phase difference φI between current and voltage is

φI = − arctan
X

R

Example. As a simple application of generalized Ohm’s law, let us compute the
current flowing through a resistance R = 50.0� in series with a capacitance
C = 20.0µF connected to a sinusoidal voltage generator with output effective value
Vrms = 7.10V at a frequency of 50.0Hz.

7As shown in Sect. 5.5 the module of a complex quantity is equal to the peak value of the real
sinusoidal quantity represented. Therefore, Eq. (5.23) yields the peak amplitude of the current.
However, since this equation is linear, replacing |V | with Vrms yields Irms .
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We can express the output of the generator as v(t) = Vo cosωt. From its effective
value, we obtain Vo = √

2Vrms = 10.0V. By definition the angular frequency is
ω = 2πν = 314 s−1.

The complex impedance seen by the generator is Z = R + j X , with R = 50.0�

and X = −1/ωC = −159�. Finally,

|I | = Io = |V |
|Z | = Vo√

R2 + X2
= 10.0√

2.5 × 103 + 25.3 × 103
= 10.0

167
= 59.9mA

The current effective value is Irms = 59.9/
√
2 = 42.4mA and the current waveform

has a phase difference of an angle φI = − arctan(X/R) = 1.26 rad with respect to
the voltage waveform.

To see how a frequency dependence of the real part of the impedance comes about,
consider the same two components connected in parallel. In this case we have

1

Z
= 1

R
+ jωC yielding Z = R

1 + (ωRC)2
− j

ωR2C

1 + (ωRC)2

The real part of this impedance is equal to R in DC conditions and becomes
progressively lower as the generator frequency increases.

5.6 Electric Power in AC Circuits

Consider a generic circuit element with a voltage drop v(t) at its terminals and a
current i(t) flowing through it. Using the definition of electric power given for DC
circuits, we can calculate the instantaneous power transferred to the component as
p(t) = v(t) i(t). When the component is used under sinusoidal excitation, we can
write v(t) = Vo cosωt and i(t) = Io cos(ωt + φ), where φ is the phase difference
between current and voltage in the component we are considering. The expression
for the instantaneous power p(t) transferred to the component becomes

p(t) = v(t)i(t) = Vo cosωt Io cos(ωt + φ) (5.24)

It is easy to verify thatwhen thephase shift is not null, this power canbecomenegative,
as shown in Fig. 5.5. When this happens, energy is transferred by the component to
the rest of the circuit. The average power P , transferred to the component, is obtained
by averaging expression (5.24) over a period T = 1/ν = 2π/ω
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V(t) p(t)=V(t) I(t)

I(t)

t

Fig. 5.5 The continuous line represents the time evolution of the instantaneous power correspond-
ing to the voltage and to the current shown by the dotted lines. When it becomes negative (below
the horizontal line), power is transferred from the component to the rest of the circuit. In this figure,
the phase shift between voltage and current (the latter being in phase advance with respect to the
former) is 1 radian. Note that the instantaneous power has a frequency twice that of the voltage (or
current)

P = 1

T

∫ T

0
p(t) dt = 1

T

∫ T

0
v(t)i(t) dt = Vo Io

T

∫ T

0
cosωt cos(ωt + φ) dt

= Vo Io

T

[
T
cosφ

2
+ 1

2
cosφ

∫ T

0
cos 2ωt dt − sin φ

∫ T

0
sinωt cosωt dt

]

= Vo Io

2
cosφ = Vrms Irms cosφ (5.25)

This result shows that the average power transferred to a component under sinu-
soidal excitation is the product of three factors: the effective voltage, the effective
current, and the cosine of the phase shift between current and voltage. The factor
cosφ is referred to as the power factor and can be responsible of large reductions of
the power transferred to an electrical component.

In the previous discussion, we focused our attention on a single electrical com-
ponent. It is easily seen that the result obtained can be extended to sets of linear
electrical components connected in series and/or in parallel, as we show in the fol-
lowing example.
Example. Consider a resistance R and an inductance L connected in series and pow-
ered by a sinusoidal voltage generator with output v(t) = Vo cosωt. This setup can
represent an electrical motor connected to the commercial electric power grid, which
in Europe supplies effective voltage amplitude of 220V at frequency of 50Hz. In this
case we have Vo = 311V and ω = 314 s−1. Assuming R = 50� and L = 300mH
(values representative of the electrical motor of a typical home washing machine) we
apply the symbolicmethod to compute the current i(t) = Io cos(ωt+φ)flowing in the
resistance and the inductance. The impedance seen by the generator is Z = R+ jωL ,
and therefore the complex current is I = Vo/Z = Vo/(R + jωL). This result yields
Io = Vo/

√
R2 + ω2L2 = 310/107 = 2.91A and φ = arctan(−ωL/R) =

−1.08 rad. The power factor cosφ is obtained using elementary trigonometry.We get
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cosφ = R√
R2 + ω2L2

= 50√
(50)2 + (314 · 0.3)2 = 0.47

Finally, the average power transferred from the generator to the series of the resistance
R and the inductance L is

P = Vo Io

2
cosφ = 310 × 2.91

2
× 0.47 = 450 × 0.47 = 212W

Note that the phase shift between current and voltage causes a loss of transferred
power amounting to 50% of the power available from the generator. For this reason,
operators require that the loads connected to their electrical grid have a limited
reactance, see Problem 12 at the end of this chapter.

The attentive reader will have noticed that in Eq. (5.24) we used the real repre-
sentation of voltage and current, not their symbolic representation. In fact, since the
power is a quadratic form, the real and imaginary parts of the symbolic representa-
tion would mix providing as a result a complex number with no physical meaning.
However, using Eq. (5.25), it is easy to show that the average transferred power P
can be expressed in terms of complex amplitudes as

P = 1

2
R[V I ∗] = 1

2
R[V ∗ I ]

5.7 Theorems for AC Linear Networks

We can easily extend the validity of the theorems on linear networks, discussed in
Chap.2, to AC circuits with proofs similar to those we worked out in detail for the
case of DC currents. However, it is necessary to formulate them with a terminology
more appropriate for AC currents.

• Superposition theorem: when a network of linear impedances is powered by
more than one generator, the current flowing in a generic branch (or the voltage of
a generic node) of the circuit is equal to the sum of the currents (or the voltages)
produced by each generator, taken individually, assuming that all the others have
been replaced by their internal impedance.

• Reciprocity theorem: in a networkof reciprocal impedances, if a voltagegenerator
V in the branch AA′ produces a current I in the branch B B ′, the same generator
V in the branch B B ′ produces the same current I in the branch AA′. Similarly, if
a current generator I in the branch AA′ produces a voltage drop V between nodes
B and B ′, the same the generator I in the branch B B ′ produces the same voltage
drop V between nodes A and A′.

• Thévenin’s theorem: any network, composed by linear impedances and genera-
tors, “seen” between two of its nodes, A and B, is equivalent to an ideal voltage
generator Veq in series with an impedance Zeq . The voltage Veq is equal to the

http://dx.doi.org/10.1007/978-3-319-31102-9_2
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voltage measured between nodes A and B (open-circuit voltage), the impedance
Zeq is equal to the impedance “seen” between the twonodeswhen all the generators
in the network have been replaced by their internal impedance.

• Norton’s theorem: any network, composed by linear impedances and genera-
tors, “seen” between two of its nodes, A and B, is equivalent to an ideal current
generator Ieq in parallel with an impedance Zeq . The current Ieq is equal to the
short-circuit current flowing between nodes A and B; the impedance Zeq is equal
to the impedance “seen” between the two nodes when all the generators in the
network have been replaced by their internal impedance.

Problems

Problem 1 Show that the sum of a finite number of sinusoidal waveforms with the
same frequency and arbitrary phases remains sinusoidal.

Problem 2 Provide the explicit representation of the current described with the fol-
lowingphasors: I = 3 exp( jωt/4) A; I = 7 exp(− jωt/3) A; I = 5 exp(− jωt/6) A

Problem 3 Provide the phasors describing the following voltage waveforms: v(t) =
10 cos(ωt − 0.393) V ; v(t) = −3 sin(ωt + 0.262) V ; v(t) = 5 cos(ωt + π/2) V

Problem 4 We measure the current 5 cos(ωt + π/3) A by applying to an unknown
electrical bipolar component a voltage waveform described by 10 sin(ωt − π/6) V .
Assess whether the component is a resistance, an inductance, or a capacitance.
[A. Resistance whose value is 2�.]

Problem 5 We measure the current 1.5 sin(200t + 0.33) A by applying to an
unknown electrical bipolar component a voltage waveform described by 4.5
cos(200t + 0.33) V . Assess whether the component is a resistance, an inductance,
or a capacitance. [A. Inductance whose value is 15mH.]

Problem 6 Wemeasure the current 3 sin(300t+3π/4) A by applying to an unknown
electrical bipolar component a voltagewaveform described by 10 cos(300t−π/4) V .
Assess whether the component is a resistance, an inductance, or a capacitance.
[A. Capacitance whose value is 1µF.]

Problem 7 Compute the equivalent complex impedance of the series connection
of a 10µF capacitor, a 3.0mH inductance, and a 33� resistance at a frequency of
1.0kHz. [A. Z = (33 + 2.92 j)�.]

Problem 8 Compute the equivalent complex impedance of the series connection
of a 10µF capacitor and a 100� resistance at a frequency of 1.0kHz. [A. Z =
(100 − 15.92 j)�.]

Problem 9 Compute the equivalent complex impedance of a 25� resistance in
series with the parallel of a 30nF capacitor with a 3mH inductance at a frequency
of 10kHz. [A. Z = (25 + 188.4 j)�.]
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Problem 10 A sinusoidal voltage generator with output amplitude Vg and angular
frequency ω is connected to the series of two capacitances C1 and C2. Give the value
of the amplitude of the voltage at the interconnection point of the two capacitances
(capacitive voltage divider). [A. V = VgC1/(C1 + C2) where C2 is grounded.]

Problem 11 A sinusoidal voltage generator with output amplitude Vg and angular
frequency ω is connected to the series of two inductances L1 and L2. Give the value
of the amplitude of the voltage at the interconnection point of the two inductances
(inductive voltage divider). [A. V = Vg L2/(L1 + L2) where L2 is grounded.]

Problem 12 A sinusoidal current generator with output amplitude Vg and angular
frequency ω is connected to the parallel of the inductance L and the capacitance
C . Find the amplitude of the current flowing in each of these two components.
[A. iL = I/(1 − ω2LC); iC = I/(1 − 1/(ω2LC)).]

Problem 13 An electrical motor with inductance L and resistance R is powered by
the public grid at a frequency of 50Hz. The grid operator requires that for economic
reasons the phase shift between voltage and current in the motor is null. To this
purpose, it is necessary to connect a capacitor in parallel with the motor. Compute
the required value for its capacitance. [A. C = L/(ω2L2 + R2).]
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Chapter 6
Alternating Current: Basic Circuits
for Applications

6.1 Introduction

In this chapter, we take advantage of the simplicity and effectiveness of the symbolic
method to solve some simple circuits under sinusoidal excitation. We address both
significant examples for the understanding of physical phenomena and circuits of
general interest for practical applications. We start with a closer inspection of circuits
consisting of a resistance, an inductance and a capacitance (RLC circuits), similar
to the circuit used in the previous chapter to introduce the symbolic method. RLC
circuits have special importance since they show resonant behavior, a phenomenon
ubiquitous in physics and of relevance in fields ranging from elementary mechanics
to sub nuclear interactions.

We deal in details with these circuits in the following Sect. 6.2 under the assump-
tion of using ideal components. In Sect. 6.3, we start to consider real components, a
discussion we conclude in Sect. 6.4 after introducing a technique, the series to parallel
transformation, allowing for an easy extension of the results obtained with ideal com-
ponents. In Sect. 6.5, we discuss reactive bridge circuits and in Sect. 6.6 we describe
the properties of two-port circuits, used to transform the input signal into another
signal, the output, performing an electrical processing and analysis of information.
Sections 6.7 and 6.8 illustrate RC filter circuits, obtained with a series connection
of a resistance and a capacitance, respectively, in the low-pass and the high-pass
configuration, while similar RL circuits are the subject of Sect. 6.9. In Sect. 6.10, we
show how to use RC and RL filters to perform some mathematical operations on
electrical signals. The static transformer is introduced in Sect. 6.11 where we show
how to solve circuits using this important electrical component. Finally Sects. 6.12
and 6.13 are devoted, respectively, to an illustration of the problem of impedance
matching and to the electrical networks used to obtain this function in practice.
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6.2 Resonant Circuits

In classical physics resonance is a phenomenon observed in systems exhibiting free
standing oscillations (oscillating systems) and is obtained subjecting the system to an
external perturbation with a specific frequency. Indeed the response1 of an oscillating
system depends upon the frequency of the external perturbation and when it shows
a maximum, or a minimum, it is possible that the system is in resonance.

The impedance Z of the series connection of a capacitance C and an inductance
L is given by Z = jωL + 1/jωC. It is easy to verify that this impedance becomes
null when the angular frequency has the value ωo = 1/

√
LC. Connecting the same

two components in parallel, we have an admittance Y = 1/jωL + jωC that is null
(meaning that the corresponding impedance is infinity) again at the same angular
frequency ωo. We will show in next sections that these circuits at ω = ωo = 1/

√
LC

exhibit a resonant behavior.2

6.2.1 The Circuit RLC Series

The circuit shown in Fig. 5.2 in the previous chapter, used to introduce solution
methods for AC circuits, is referred to as the RLC series circuit or series resonant
circuit to remind how its reactive components are connected. The (complex) current
flowing through it is given by relation (5.18), as obtained in the previous chapter.
Using in this relation the two parameters ω0 = 1/

√
LC, the resonance angular

frequency, and Qs = ω0L/R, known as quality factor or simply Q factor of the
circuit, the amplitude and the phase of this current take the following expressions:

1By response here we mean the manner in which the physical system reacts to an external stress,
for example the maximum amplitude of the oscillations of a forced pendulum (the swing of our
childhood), the maximum amplitude of the acoustic vibrations in an organ pipe or the maximum
charge accumulated on the plates of a capacitor in a RLC circuit.
2In the published literature, we can come across different definitions of resonance frequency in elec-
tric circuits; some of those definitions are: the null reactance of the circuit as seen by the generator
(equivalent to null phase shift between voltage and current supplied by the generator); maximum
peak voltage or peak current at the generator; excitation frequency equal to the characteristic fre-
quency of free oscillations.

For simple circuits, as those we will discuss in next sections, all definitions are equivalent in the
sense that they give the same value of the frequency. However, when the circuits become slightly
more complex, for example when the resistance of the inductor is taken into account, different
definitions can lead to different expressions for the resonant frequency. The reader can work with
Problem 13 at the end of this chapter for more details. In any case, the different determinations of
the resonant frequency, although obtained by different mathematical formulas, in general are only
slightly different in value.

The interested reader can find a more detailed discussion of the resonance definition in
references [1–4].

http://dx.doi.org/10.1007/978-3-319-31102-9_5
http://dx.doi.org/10.1007/978-3-319-31102-9_5
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|I| = |Vg|
R

· 1√
1 + Q2

s

(
ω

ω0
− ω0

ω

)2
= |Vg|

R
· 1√

1 + Q2
s

(
ν

ν0
− ν0

ν

)2
, (6.1)

φi = arctan

[
1

R

(
1

ωC
− ωL

)]
= − arctan

[
Qs

(
ω

ω0
− ω0

ω

)]
= − arctan

[
Qs

(
ν

ν0
− ν0

ν

)]

(6.2)

where Vg is the output amplitude of the voltage generator while ν = ω/2π and
ν0 = ω0/2π are, respectively, the frequency and its resonance value.

The quality factor of the series resonant circuit Qs can take different expressions:

Qs = ω0
L

R
= 1

ω0RC
= 1

R

√
L

C

At the resonant frequency, the impedance of the LC series vanishes and consequently
the circuit behaves as a resistance connected to a generator. In these conditions, the
current flowing in the circuit has a maximum equal to I0 = V/R. In Fig. 6.1, we show
a plot of the ratio of the current amplitude I to its maximum value I0 for three different
values of the circuit quality factor Qs (Qs = 1, 10, 50). We can see that the parameter
Qs plays the role of a scale factor and determines the width of the resonance peak of
the current: the higher the value of Qs, the narrower the bell shaped current plot. It
is evident in this figure that the value of Qs does not have any influence on the value
of the resonant angular frequency ω0.
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0.0
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0.6
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ω/ω
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I o

o

Fig. 6.1 Behavior of the normalized current I/I0, with I0 = V/R, as a function of the “reduced
angular frequency” ω/ω0 in a series resonant circuit. The three curves refer to three different values
of the quality factor Qs of the circuit (1, 10 and 50 from the wider to the narrower curve). The
behavior illustrated in this plot is also valid for a RLC parallel circuit, as explained in the text
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In summary, the solution of the circuit RLC series of Fig. 5.2, powered by a
sinusoidal voltage generator with output amplitude vg(t) = Vg cos ωt, consists of the
following expressions:

Complex current

I = Vg

R + j

(
ωL − 1

ωC

) = Vg

R
· 1

1 + jQs

(
ω

ω0
− ω0

ω

) (6.3)

Complex voltage drop across R, C and L

VR = RI = RVg

R + j

(
ωL − 1

ωC

) = Vg
1

1 + jQs

(
ω

ω0
− ω0

ω

) (6.4)

VC = ZCI = Vg

jωRC − ω2LC + 1
= −j

ω0

ω

VgQs

1 + jQs

(
ω

ω0
− ω0

ω

) (6.5)

VL = ZLI = −ω2LCVg

jωRC − ω2LC + 1
= j

ω

ω0

VgQs

1 + jQs

(
ω

ω0
− ω0

ω

) (6.6)

Current

i(t) = Vg

R
· 1√

1 + Q2
s

(
ω

ω0
− ω0

ω

)2
cos

[
ωt − arctan Qs

(
ω

ω0
− ω0

ω

)]
(6.7)

Voltage drop across R, C and L

vR(t) = Vg√
1 + Q2

s

(
ω

ω0
− ω0

ω

)2
cos

[
ωt − arctan Qs

(
ω

ω0
− ω0

ω

)]
(6.8)

vC(t) = ω0

ω
· VgQs√

1 + Q2
s

(
ω

ω0
− ω0

ω

)2
cos

[
ωt − arctan Qs

(
ω

ω0
− ω0

ω

)
− π

2

]

(6.9)

vL(t) = ω

ω0
· VgQs√

1 + Q2
s

(
ω

ω0
− ω0

ω

)2
cos

[
ωt − arctan Qs

(
ω

ω0
− ω0

ω

)
+ π

2

]

(6.10)

http://dx.doi.org/10.1007/978-3-319-31102-9_5
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R

CLvg(t)

vg(t)
R R L C

Fig. 6.2 The circuit RLC parallel. On the right, the equivalent circuit after Norton’s theorem is
applied to the voltage generator and the resistance R

6.2.2 The Circuit RLC Parallel

In Fig. 6.2, we show the diagram of a circuit referred to as the parallel resonant
RLC circuit because of the parallel connection between the capacitance C and the
inductance L. This circuit is solved rather easily replacing the voltage generator vg(t)
and the resistance R with their Norton’s equivalent circuit, as shown on the right hand
side of Fig. 6.2. In the transformed circuit, Norton’s current generator (i(t) = vg(t)/R)
is connected to a load consisting of the parallel of the three components R, L and
C. We apply the symbolic method to compute the impedance seen by the current
generator:

1

Z
= 1

R
+ 1

jωL
+ jωC = 1

R
+ j

(
ωC − 1

ωL

)

yielding:

Z =
[

1

R
+ j

(
ωC − 1

ωL

)]−1

= R

1 + jR

(
ωC − 1

ωL

) = R

1 + j
RC√
LC

(
ω

√
LC − 1

ω
√

LC

)

Using the definition of the resonant angular frequency given above ω0 = 1/
√

LC
and defining the quality factor of the resonant parallel circuit as Qp = ω0RC (note
that with the same components Qp = 1/Qs), the complex impedance Z becomes:

Z = R

1 + jQp

(
ω

ω0
− ω0

ω

) (6.11)

The module |Z| of the impedance and its phase φ are:

|Z| = R√
1 + Q2

p

(
ω

ω0
− ω0

ω

)2
φ = − arctan

[
Qp

(
ω

ω0
− ω0

ω

)]
(6.12)
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The voltage V (ω), across the impedance Z , is obtained by the product of the Nor-
ton’s equivalent current I = V/R and the impedance Z . This allows computing the
expression for the ratio of the amplitude of V (ω) to the amplitude of the voltage
generator output Vg:

|V (ω)|
|Vg| = 1√

1 + Q2
p

(
ω

ω0
− ω0

ω

)2
(6.13)

Note that this equation gives the frequency dependence of the voltage drop across the
parallel of L and C and is similar to Eq. (6.1) we found for the frequency dependence
of the current flowing in the RLC series circuit. Therefore, the plots shown in Fig. 6.1
can be used to illustrate the behavior of the voltage across the parallel LC, once the
label of the y-axis is changed as needed.

In conclusion of our analysis of the RLC parallel circuit, we give in the following
the formulas for the current flowing in its components, leaving the proof as an exercise
to the reader:

iR(t) = Vg

R

⎛
⎜⎜⎜⎜⎝1 − 1√

1 + Q2
p

(
ω

ω0
− ω0

ω

)2

⎞
⎟⎟⎟⎟⎠ cos

[
ωt − arctan Qp

(
ω

ω0
− ω0

ω

)]
(6.14)

iC(t) = ω
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· VgQp/R√

1 + Q2
p
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ω

)2
cos

[
ωt − arctan Qp

(
ω

ω0
− ω0

ω

)
+ π

2
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(6.15)

iL(t) = ω0

ω
· VgQp/R√

1 + Q2
p

(
ω

ω0
− ω0

ω

)2
cos

[
ωt − arctan Qp

(
ω

ω0
− ω0

ω

)
− π

2

]
(6.16)

6.2.3 The Resonant Behavior

The equations deduced in the previous paragraphs show that in a resonant RLC series
circuit the voltage drop VL across the inductance is always in phase opposition to
the voltage drop VC across the capacitance. This means that VL shows a maximum
when VC has a minimum and vice versa. At the resonant angular frequency ω0, these
two quantities are also equal in amplitude and their sum is identically null for all
time values: the circuit behaves as consisting of a resistor connected to a voltage
generator.
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However, taken separately, both VL and VC can have very high amplitudes that
at ω = ω0 reach a maximum equal to Qs times the generator output voltage V . In
particular, when the value of the resistance R becomes very small we can observe
very high values for both VL and VC with a very small excitation. In the limit of
vanishing resistance, the current flowing in the circuit diverges at the resonance. In
practice, this means that we can observe a finite current in the circuit even in absence
of excitation. This observation is related to the fact that in these conditions the
solution of the homogeneous differential equation, associated to Eq. (5.8) describing
the circuit behavior, is stationary and not transient as usual. This is easily seen using
the symbolic version of this equation:

(
−ω2L + 1

C
+ jωR

)
I = jωV

and noting that when V = 0 we can obtain a non-trivial solution only when the
coefficient of I vanishes, that is when

ω = jR ± √
4L/C − R2

2L
= j

R

2L
± 1√

LC

√
1 − R2C

4L
= jωi ± ωr

In general, the presence of an imaginary part of the frequency means that the time
evolution of the signal is a damped oscillation. Indeed, since in this case we can write
ejωt = ejωr te−ωi t , the characteristic decay time τ , corresponding to the time interval
necessary for the amplitude to decrease of a factor 1/e, is equal to 1/ωi, while ωr is
the angular frequency of the oscillation. In terms of the circuit parameters, we obtain
τ = 2L/R and when R becomes null the decay time tend to infinity. In this case,
there is no more energy dissipation by Joule effect in the resistance and the system
can oscillate indefinitely at the resonance angular frequency ω0.

In physics, every time a system exhibits such a behavior, we say that it has a
normal mode of oscillation. The dynamics of a normal mode is characterized by
the time evolution of the energy injected in the system. In general, it consists of
an oscillation between different forms. In the present case, we need to consider the
magnetic energy stored in the inductance, equal to LI2/2, and the electrostatic energy
stored in the capacitance and equal to CV 2

C/2. Using the expressions given above
for the current flowing in the RLC series circuit and for the voltage drop across its
capacitance, we can easily show that at the resonant frequency the energy changes
from magnetic to electrostatic twice in each oscillation cycle. This is ultimately the
same dynamics shown by kinetic and potential energy in the harmonic oscillator,
which in fact is the prototype of all resonant physical systems.

However, in practice, as in any real physical system, dissipation is never absent
but when R is sufficiently small, oscillation damping is sufficiently small and allows
observing a large number of cycles. We can approximate this number to Qs/π , the
product of the decay time τ and the resonance frequency. Obviously, the higher this
number, the better we can detect the resonance, hence the name quality factor for the
parameter Qs.

http://dx.doi.org/10.1007/978-3-319-31102-9_5
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Fig. 6.3 A resonant circuit
with two inductances
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A different way of quantifying the quality of a resonance consists in comparing
the total energy in the system with the energy dissipated in an oscillation cycle. In
a resonant RLC series circuit, the total energy is equal to LI2

max/2 = LI2
rms and the

dissipated energy is RI2
rms2π/ω while their ratio is Qs/(2π). At higher quality factor,

a smaller amount of energy is dissipated to perform an oscillation cycle.
The behavior illustrated above is quite general: every physical system described

by a linear set of differential equations can exhibit normal modes. This happens
when the associated homogeneous system shows non-trivial stationary solutions.
This analysis is conveniently done exploiting the symbolic method to transform
differential equations in a system of algebraic equations. In this case, normal modes
can be found looking for values of ω that make the determinant of the coefficient
matrix equal to zero.

With this approach, we analyze the circuit of Fig. 6.3. Using the symbolic method
and applying the method of loops for the circuit solution, we obtain the following
equation system for the two loop currents shown in figure:

{
(jωL1 + jωL2)I1 + jωL2I2 = V

jωL2I1 +
(

jωL2 + 1
jωC2

)
I2 = 0

Setting to zero it coefficients determinant, we obtain:

ω2 = L1 + L2

L1L2
· 1

C2
= 1

LpC2

This is the resonance frequency we were looking for, as it can be easily understood
by noting that, when the generator is short circuited, the circuit is equivalent to a
LC parallel where the inductance is obtained with the parallel connection of the two
inductors L1 and L2.

6.3 Resonant Circuits with Real Components

The study of the series and parallel resonant circuits presented in the previous section
has been simplified assuming that all the reactive components involved, inductor and
capacitor, were ideal. In reality, however, as discussed in the first chapter of this book,



6.3 Resonant Circuits with Real Components 135

a real inductor has always a series resistance RL, due to the finite resistivity of the
wire used for its coil and possibly to the power dissipation in the ferromagnetic core.
Similarly, the power losses in the dielectric of the capacitor can be accounted for with
a resistance RC in series to the capacitance C. With these two modifications, we can
solve again the resonant series circuit with the same procedure used in Sect. 6.2.1.
We can easily find that the expression for the circuit current is still done by Eq. (6.3)
where now we need to add to resistance R both RL and RC . The complex voltage
across each component can be computed again by the product of the current and the
component complex impedance keeping in mind that we need to add reactive and
resistive contribution for the inductor and the capacitor.

The resonance frequency turns out the same of the ideal case. At resonance, the
current flowing in the circuit remains in phase with the generator voltage and the
voltage drops across reactive components are still in phase opposition. However now
they are not equal in amplitude and, as a consequence, only a fraction R/(R+RL +RC)

of the applied voltage is found across the resistance R. On the contrary, the circuit
quality factor is affected by the power dissipation in the reactive components. Its
expression becomes:

Q′
s = ωoL

R + RL + RC

We can obtain a simple representation of nonideal effects considering the inverse of
this expression. We obtain:

1

Q′
s

= R + RL + RC

ωoL
= R

ωoL
+ RL

ωoL
+ RC

ωoL
= 1

Qs
+ 1

QL
+ 1

QC

where Qs = ωoL/R is the ideal quality factor, QL = ωoL/RL is the quality factor
of the inductor3 at the angular frequency ωo and QC = ωoL/RC = 1/ωoCRC is the
analogous quality factor for the capacitor.

In the parallel resonant circuit, nonideal components have similar effects on the
Q factor and, in addition, also affect the value of the resonance frequency.4 This
statement can be more easily proved using a transformation of the impedance of real
component, known as the series-parallel transformation, which we illustrate in the
next section.

6.4 Series-Parallel Transformation

In this section, we show that the impedance of the series connection of a reactance
and a resistance is equivalent to the impedance of the parallel connection of an appro-
priate reactance with a suitable resistance and vice versa. In the following, we prove

3This is the quality factor we would observe when the inductor goes in resonance at the angular
frequency ωo with an ideal capacitor and a short circuit replacing R.
4For a detailed computation, see Problems 13 and 14 at the end of this chapter.
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this statement and we give the expression for the parameters of the transformation.
To simplify the discussion, we start our proof considering the impedance Z of a
capacitance Cp connected in parallel to a resistance Rp

Z =
(

1

Rp
+ jωCp

)−1

= Rp

1 + (ωRpCp)2
+ 1

jωCp(1 + 1
(ωRpCp)2 )

This impedance is equivalent to the series of a resistance Rs and a capacitance Cs

where

Rs = Rp

1 + (ωRpCp)2
and Cs = Cp

(
1 + 1

(ωRpCp)2

)

The product of these two relations yields ωRsCs = 1/ωRpCp, so that we can invert
them to obtain:

Rp = Rs

(
1 + 1

(ωRsCs)2

)
and Cp = Cs

1 + (ωRsCs)2

This shows that the impedance of a resistance Rs in series with a capacitance Cs is
equivalent to the impedance of the resistance Rp in parallel to the capacitance Cp

both derived by using the two previous relations.
With the same line of reasoning followed above, we can generalize the previous

result to the combination of a resistance and a generic reactance. We obtain for the
impedance of the parallel connection:

Z =
(

1

Rp
+ 1

jXp

)−1

= Rp

1 +
(

Rp

Xp

)2 + jXp

1 +
(

Xp

Rp

)2 = Rs + jXs

that we can use to obtain (Rp/Xp)
2 = (Xs/Rs)

2 leading to:

Rp = Rs

[
1 +

(
Xs

Rs

)2
]

and jXp = jXs

[
1 +

(
Rs

Xs

)2
]

We are now in the position to reconsider the case of a parallel RLC circuit with real
components. By applying a series-parallel transformation to its reactive components,
we can obtain a circuit that is formally identical to the ideal case (see Fig. 6.4).
Contrary to the case of the series circuit, now the values of both the inductance and
the capacitance are frequency dependent. Indeed, we have:

L′ = L

[
1 +

(
RL

ωL

)2
]

e C′ = C
1

1 + (ωCRC)2
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Fig. 6.4 Series-parallel transformation of resonant parallel circuit. The circuit obtained, shown on
the right hand side, is formally equivalent to the circuit with ideal components

Therefore, the resonance frequency is equal to the ideal case only when RL/ωL � 1
and ωCRC � 1, limits that need to be well satisfied to approximate ideal behav-
ior with real components. For the two parallel resistors, we have R′

L = RL[1 +
(ωL/RL)2] � ω2L2/RL and R′

C = RC[1 + 1/(ωCRC)2] � 1/ω2C2RC , where the last
two expressions hold in the limits given before. We need to consider the parallel of
these two resistances with R to compute the value of the quality factor Q′

p. For its
inverse, we easily get:

1

Q′
p

= 1

ωoC

(
1

R
+ 1

R′
C

+ 1

R′
L

)
= 1

Qp
+ ωoCRC + RL

ωoL
= 1

Qp
+ 1

QC
+ 1

QL

where Qp is the ideal value, while QC and QL are, respectively, the quality factor of
the capacitor and of the inductor we already defined in the previous section.

6.5 Bridge Circuits

In Fig. 6.5, we show the AC circuit equivalent to the Wheatstone’s bridge we already
studied for DC currents. In the four branches of the bridge, we have four generic
impedances Z1, Z2, Z3 and Z4; we can solve the circuit with the symbolic method
following the procedures used for the DC case. Here, we adopt a simplified approach
to find the equilibrium condition of the bridge. With reference to Fig. 6.5, at equilib-
rium we have VA = VB. Indicating with I1 and I2 the currents flowing, respectively,

Fig. 6.5 Wheatstone’s
bridge for alternating
currents. When the voltmeter
is ideal, the current flowing
through it is null

Z

ZZ

2

43

Z1

BA

V−meter
ac
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in Z1 and in Z2, at equilibrium the currents flowing in Z3 and in Z4 are, respectively,
equal to I1 and I2 independently of the impedance of the AC voltmeter connected to
the two nodes. The equilibrium requirement VA = VB implies:

Z1I1 = Z2I2, and Z3I1 = Z4I2

Taking the ratio of these two relations, currents I1 and I2 can be eliminated and we
obtain for the equilibrium condition:

Z1

Z3
= Z2

Z4
(6.17)

or equivalently:
Z1

Z2
= Z3

Z4
(6.18)

Note that the equality between two complex numbers implies the equality for both
their amplitudes and their arguments. For this last quantity, we have:

arg

[
Z1

Z2

]
= arg[Z1] − arg[Z2] = arg

[
Z3

Z4

]
= arg[Z3] − arg[Z4]

and therefore,
arg[Z1] − arg[Z2] = arg[Z3] − arg[Z4]

Bridge circuits take different names depending on the kind of impedance in use.
They are exploited mainly for the measure of reactive components, but their use has
been much reduced since the introduction of digital instruments. Often, for practical
convenience, two of the impedances used in a bridge consist of simple resistances.
Let us then assume Z1 = R1 and Z2 = R2, pure real quantities. In this case, the bridge
equilibrium condition (6.17) is more conveniently written as

R1Z4 = R2Z3 (6.19)

Supposing that Z4 is an unknown ideal inductance L4, this relation shows immedi-
ately that we need an inductor of known inductance L3 to measure L4. In this case
the equilibrium conditions yield L4 = R2L3/R1 independently of the generator fre-
quency. It is also evident that to attain the bridge equilibrium we need that at least one
of the quantities R1, R2 or L3 should be variable continuously in a known manner.
Similarly, when Z4 represents a capacitance C4, it is necessary to have a capacitor
with known capacitance C3 and the equilibrium condition yields

C4 = R1C3

R2
(6.20)
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However, to design an electrical measurement with a bridge circuit, we must keep
in mind that very seldom it is sufficient to characterize a real component with just
one parameter. For example, in the case of an inductor we need to account also for
its series resistance. In this case Z4 = R4 + jωL4 with both L4 and R4 unknown.
When we are not interested in the measurement of R4, a possible strategy consists
in using the bridge at a frequency high enough to have ωL4 � R4 so that we can
neglect the inductor resistance and proceed as in the ideal case. However, we must
keep in mind that at high frequency the coil inter-turn capacitance becomes important
and induces an error in the inductance value. When this happens, or when we are
interested to the value of the inductor resistance, we need to introduce a resistance in
branch number 3 of the bridge in Fig. 6.5. In this case we have Z3 = R3 + jωL3 and
the complex equilibrium condition yields R4 = R2R3/R1 for the real part, while the
imaginary part becomes L4 = R2L3/R1, independently of the generator frequency.
Such a bridge can be balanced in two steps. First, we can use a variable R3 in DC
operation to achieve the first of the two conditions above. Then, switching to AC
operation, we can balance the imaginary part with a variable L3 or, alternatively, by
changing both R1 and R3 but maintaining constant their ratio.

When bridge equilibrium does not depend upon frequency, we can choose this
parameter to ease the measurement. This can be achieved by making the voltage
drops across the different branches all comparable among themselves to reduce the
effect of ambient noise. In this case, we can set the frequency by making ωL4 roughly
equal to R2.

For the case of a real capacitor, we recall that dielectric losses are the principal
nonideal effect. These losses are accounted by a resistor in parallel to the ideal
capacitance and the total impedance of the capacitor can be written as Z4 = R4/(1 +
jωR4C4). As for the case of the inductive bridge, we need a resistor R3 in parallel to
C3 so that Z3 = R3/(1 + jωR3C3). In this case, the equilibrium condition becomes:

R1R4(1 + jωR3C3) = R2R3(1 + jωR4C4)

yielding R4 = R2R3/R1 for the real part while and C4 = R1C3/R2 for the imaginary,
again independently of the frequency.

An interesting alternative to the capacitive bridge is the Wien’s bridge where the
resistor R3 is connected not in parallel but in series to the capacitor C3. In this case
Z3 = R3 − j/ωC3 and the equilibrium condition becomes

R1R4

1 + jωR4C4
= R2

(
R3 − j

1

ωC3

)

that yields

R1R4 = R2R3 + R2R4C4/C3 + jR2R3

(
ωR4C4 − 1

ωC3

)
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Its real part requires R1/R2 = R3/R4 +C4/C3 while the imaginary part yields a rela-
tion dependent upon the frequency: ω2R4R3C4C3 = 1. In this case, it is convenient
to use the generator frequency, a quantity that can be easily changed and accurately
measured, to balance the imaginary part, and a simple variable resistor for the real
part.

6.6 Two-Port Circuits

Two-port circuits are used to transform and/or manipulate electrical signals. Gen-
erally speaking, they can be represented as a black box indicating a generic circuit
with four terminals giving access to four of its nodes, see Fig. 6.6. The terminals
are coupled in ports, one being the input port where the input signal is connected,
the other, named the output port, provides the transformed signal for further use.
Often, the distinction between input and output is not structural but only functional,
as it happens in passive circuits (circuits not including voltage or current generators).
In this case, it would be possible to exchange the role of the two ports to obtain a
different circuit function.

6.6.1 Two-Port Circuit Characteristics

In this discussion of two-port circuits, we limit ourselves to linear networks that we
will solve with the symbolic method. This implies that we assume to send a sinusoidal
signal to the input port, with a given angular frequency ω and amplitude Vi. Under
these assumptions the parameters we need to characterize a linear two-port circuit
are:

• The (complex) input impedance Zi, defined as the ratio of the complex voltage
drop applied to the input port and the complex current entering the port: Zi(ω) =
Vi(ω)/Ii(ω)

• The (complex) output impedance Zu, defined as the ratio of the open circuit voltage
and the short circuit current at the output port Zu(ω) = Vu oc(ω)/Iu sc(ω). This
relation is a simple corollary to the Thévenin and Norton’s theorems.

• The transfer function H(ω), defined as the ratio of the output (complex) voltage
Vu to the input (complex) voltage Vi : H(ω) = Vu(ω)/Vi(ω). For passive circuits,

Fig. 6.6 A generic two-port
circuit + +

− −

Ii Io

VoVi
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since typically |H(ω)| < 1, the transfer function is referred to as the Attenuation
and indicated by A(ω).

For the time being, we will neglect both the input and the output impedance when
discussing the behavior of two-port circuits. This amounts to assuming that the input
is connected to an ideal signal generator, whose input impedance is equal to zero, and
that the output voltage is measured by an ideal voltmeter having internal impedance
equal to infinity. With these approximations, we will evaluate the attenuation of
simple but important passive two-port circuits.

6.6.2 The Transfer Function and Bode’s Diagrams

The transfer function in general is a complex function of the angular frequency
ω (alternatively of the frequency ν = ω/2π ). Its properties are usually represented
by two diagrams first introduced by Bode.
Bode’s diagram for the amplitude. It consists of a plot of the amplitude of the
transfer function |H(ω)| versus the angular frequency ω (or the frequency ν) with
logarithmic scales. For the amplitude of the transfer function, the unit of measure
adopted is the decibel (dB). The decibel is a way to represent magnification or
attenuation, used in many fields of physics and engineering, whose definition5 is

expression of |H| in dB = 20 log10 |H|

Bode’s diagram for the phase. It consists in a plot of the argument, or phase,
of H(ω), measured in radians or degrees, versus the angular frequency ω (or the
frequency ν) in logarithmic scale.

It can be shown, as first done by Bode (see reference [5]), that the causality
principle implies a link between the amplitude and the phase of a transfer function.
A detailed discussion of this link requires notions that are usually acquired later
during the course of studies.

Bode’s diagram for the amplitude is in practice a log–log plot, i.e., a plot of the
logarithm of the function versus the logarithm of the independent variable. In this
representation a power law, A(ω) = ωα , becomes a straight line whose angular
coefficient is the exponent α. For example, the function ω±1 will be represented by
a straight line of slope ±20 dB/decade,6 the function ω±2 by a straight line of slope
±40 dB/decade, and so on. In the study of linear circuits with lumped parameters,
functions as those described above are very common and the use of Bode’s diagrams

5In some application the quantity of interest is the ratio Ap of two powers instead of two ampli-
tudes. Since power is proportional to the square of the amplitude, the decibel definition changes to
10 log10 Ap. Actually this is its original definition, since the decibel was introduced in 1928 by Bell
laboratories to measure the power loss of telephone signals.
6A decade is a range of numerical values whose end points have a ratio of 10. In a logarithmic scale,
all decades have the same length.
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is helpful to identify them. In the following, we will come across many examples
of Bode’s diagrams. To help the reader to become acquainted with the decibels, of
common use in electronics and other applications, we report in the following table a
detailed list of magnifications/attenuations and the corresponding decibel values.

Ratio Decibel Ratio Decibel
100.00 40.00 0.01 −40.00
10.00 20.00 0.10 −20.00
3.16 10.00 0.316 −10√

2 � 1.41 3.01 1/
√

2 � 0.71 −3.01
2.00 6.02 0.50 −6.02
1.00 0.00

6.7 The Low-Pass RC Circuit

Consider a circuit consisting of the series of a resistance R and a capacitance C, as
shown in Fig. 6.7a. Assume the circuit is powered by a sinusoidal voltage generator
with angular frequency ω and amplitude Vi. We are interested in computing the
voltage drop across the terminals of the capacitance C, the output voltage of this
two-port circuit. Using the symbolic method, the current7 I is given by:

I = Vi

R + 1

jωC

(6.21)

The output voltage Vu is obtained as the product of this current and the impedance
of the capacitance:

Vu = IZC = Vi

R + 1

jωC

1

jωC
= Vi

1 + jωRC
= Vi

1 + j
ω

ω0

where in the last expression, we introduced the parameter ω0 = 1/RC, referred to as
the cutoff angular frequency (ν0 = 1/2πRC is the corresponding cutoff frequency).
The quantity τ = RC = 1/ω0, inverse of the reduced angular frequency, is usually
referred to as the circuit characteristic time for a reason that will become apparent
when we will deal with the same circuit in the time domain, see Chap. 9. It can be
easily shown that the product RC has the physical dimension of a time, as required:

7More precisely, we should say the complex representation of the current, but from here on this
will be understood.

http://dx.doi.org/10.1007/978-3-319-31102-9_9
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Fig. 6.7 RC circuit low-pass (a) and high-pass (b)

[RC] = [R] · [C] = [Voltage]
[Current] · [Charge]

[Voltage] = [Time]

The transfer function is obtained, by its definition, as the ratio of the complex
representations of the output to the input voltage:

A(ω) = Vu

Vi
= 1

1 + j
ω

ω0

(6.22)

Therefore, the amplitude and the phase of the attenuation of the low-pass RC circuit
are:

|A(ω)| = 1√
1 +

(
ω

ω0

)2
= ω0√

ω2
0 + ω2

; φ = − arctan
ω

ω0
(6.23)

Note that in the two previous expressions, the values of the components (R and C)
appear only through their product RC, and, therefore, the behavior of the circuit is
defined by only one parameter, in this case the characteristic time RC. Later in this
chapter, we will find the same result for RL circuits, which together with RC circuits
are referred to as one-parameter circuits.

When the angular frequency is equal to its cutoff value, ω = ω0, we have |A(ω)| =
1/

√
2 � −3.0 dB. Figure 6.8 shows the frequency plot of |A(ω)|, expressed both in

absolute and in decibel units, and of the phase. Inspection of the behavior of |A(ω)|, in
Fig. 6.8 explains why the circuit is qualified as low-pass. Indeed, signals of frequency
lower than the cutoff frequency suffer of little attenuation while above the cutoff, the
amplitude of the output signal decreases in proportion of the inverse of the frequency.
Circuits acting selectively on signals, allowing only the passage of some frequencies
are said filter circuits. For this reason, the RC circuit we are dealing with is a low-pass
filter since it allows the passage of low-frequency signals from its input to its output
while blocking the rest of the frequency spectrum.



144 6 Alternating Current: Basic Circuits for Applications

0 1 2 3 4

10 10101010

10 10101010

5

−30

−20

−10

0

−2 −1 0 1 2

−2 −1 0 1 2

0.0

−0.5

−1.0

−1.5

0.0

0.2

0.4

0.6

0.8

1.0

ω/ωo

A
tte

nu
at

io
n 

(d
B

)

ω/ωo

ω/ωo

−3 dB

A
tte

nu
at

io
n

ph
as

e 
 (

ra
d)

(a)

(b)

(c)

Fig. 6.8 Plots pertaining to the low-pass RC circuit. a linear plot of the attenuation (Vu(ω)/Vi). In
abscissa, we use the “reduced angular frequency” ωτ = ω/ω0. b Bode’s diagram of the low-pass
RC circuit. In abscissa, we use the reduced angular frequency, on the vertical axis the attenuation
is reported in decibel. The horizontal line at −3.01 dB corresponds to the attenuation of 1/

√
2

obtained for ω = ω0, c log-plot of the phase shift introduced by the circuit as a function of the
reduced angular frequency

6.8 The High-Pass RC Circuit

The high-pass RC circuit is obtained from the low-pass by exchanging resistance
and capacitance among themselves, as shown in Fig. 6.7b. Obviously the expression
for the current is still given by the Eq. (6.21) and the output voltage in this case is
obtained as the product of the current and the resistance R:

Vu = IR = Vi

R + 1

jωC

R = Vi
jωRC

1 + jωRC
= Vi

jωτ

1 + jωτ
= Vi

jω/ω0

1 + jω/ω0
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It follows that the attenuation of the high-pass RC circuit is:

A(ω) = jω/ω0

1 + jω/ω0
(6.24)

while its amplitude and phase are:

|A(ω)| =
ω

ω0√
1 +

(
ω

ω0

)2
= ω√

ω2
0 + ω2

; φ = arctan
ω0

ω
(6.25)
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Fig. 6.9 Plots pertaining to the high-pass RC circuit. a linear plot of the attenuation (Vu(ω)/Vi). In
abscissa, we use the “reduced angular frequency” ωτ = ω/ω0. b Bode’s diagram of the high-pass
RC circuit. In abscissa, we use the reduced angular frequency, on the vertical axis the attenuation
is reported in decibel. The horizontal line at −3.01 dB corresponds to the attenuation of 1/

√
2

obtained for ω = ω0, c log-plot of the phase shift introduced by the circuit as a function of the
reduced angular frequency
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When the angular frequency is equal to its cutoff value, ω = ω0, once again we have
|A(ω)| = 1/

√
2 � −3.0 dB. Figure 6.9 show the frequency plot of |A(ω)|, expressed

both in linear and in decibel units, and of the phase. Inspection of the behavior of
|A(ω)|, in Fig. 6.9 explains why the circuit is qualified as high-pass. Indeed, signals
with frequency higher than the cutoff frequency suffer little attenuation while below
the cutoff, the amplitude of the output signal decreases in proportion of the frequency.
Therefore, this circuit is also known as a high-pass filter since it allows the passage
of high frequency signals from its input to its output while blocking the rest of the
frequency spectrum.

6.9 RL Circuits

In this section, we apply the symbolic method to analyze the RL circuits whose dia-
grams are shown in Fig. 6.10. For the low-pass configuration, Fig. 6.10a, the current
flowing in the circuit is given by:

I = Vi

Ztot
= Vi

ZR + ZL
= Vi

R + jωL

Noting that the output voltage is Vu = RI , the attenuation of this circuit is:

A(ω) = Vu

Vi
= RI

Vi
= R

R + jωL
= 1

1 + jωL/R
= 1

1 + jω/ω0
(6.26)

where in the last step we introduced the expression of the cutoff angular frequency
for RL circuits, ω0 = R/L. For the amplitude and the phase of the attenuation, we
get:

|A(ω)| = 1√
1 +

(
ω

ω0

)2
= ω0√

ω2
0 + ω2

φ = − arctan
ω

ωo
(6.27)

R

LiV Vo

(b)

R

L

VoVi

(a)

Fig. 6.10 RL circuit: a low-pass and b high-pass
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Note that expressions (6.26) and (6.27) are identical to their equivalent obtained for
the RC low-pass circuit, the only difference being the definition of ω0.

Moving to the high-pass RL circuit, shown in Fig. 6.10b, we first remark that the
expression for the current I flowing in the circuit is the same of the low-pass circuit
(the current in a series connection does not depend upon the sequence order). In
this case, we can obtain the output voltage as Vu = ZLI = jωLI . Therefore, the
attenuation of the circuit is:

A(ω) = Vu

Vi
= jωLI

Vi
= jωL

R + jωL
= jωL/R

1 + jωL/R
(6.28)

Using the definition ω0 = R/L, amplitude and phase of A(ω) are:

|A(ω)| =
ω

ω0√
1 +

(
ω

ω0

)2
= ω√

ω2
0 + ω2

, φ = arctan
ω0

ω
(6.29)

As in the case of the low-pass, we note that the expression of the attenuation of the
high-pass RL circuit is equal to that of the high-pass RC circuit, as it is easily seen
comparing expressions (6.29) and (6.25).

RL circuits are one-parameter circuits. Using the definition of their cutoff fre-
quency, we obtain the characteristic time as τ = 1/ω0 = L/R.

6.10 RL and RC Circuits as Differentiators and Integrators

In this section, we show that RC and RL circuits we discussed in the previous sections,
under suitable conditions, are able to supply in output a signal proportional to the
derivative or the integral of the input signal.

We begin by making qualitative remarks on the similitude of the mathematical
operations of differentiation and integration with the signal transformations per-
formed by low-pass and high-pass filters.

The mathematical operation of differentiation highlights the variations of the
function operated upon: the faster the variation of the dependent variable for given
change in the independent variable, the higher the value of the derivative. In terms
of the function Fourier expansion, we see that the higher frequency components
give the larger contribution to the derivative while the contribution of low frequency
components is not very important. Therefore, we are induced to expect that the output
of a high-pass circuit could show some resemblance with the derivative of the input
signal.

On the contrary, the operation of integration tends to smooth fast variations of
the integrand function; the integral attenuates the high frequency components of the
signal while magnifying those at low frequency. Therefore, we can expect that the
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output of a low-pass circuit could show some resemblance to the integral of the input
signal.

We show now that a low-pass circuit works as an integrator for sinusoidal signals
with an angular frequency ω � ω0. The transfer function of this kind of circuits is
given by (6.22) or equivalently by (6.26). In the limit of high frequencies (ω � ω0),
we have:

A(ω) = Vu

Vi
= 1

1 + j
ω

ω0

ω�ω0−→ 1

j
ω

ω0

= ω0

jω
∝ 1

jω

Recalling the expression (5.16) for the integral of a complex exponential function,
this result shows that the output signal of a low-pass filter is proportional to the
integral of the input signal.

Similarly, to show that a high-pass circuit works as a differentiator for sinusoidal
signals, consider its transfer function as given by expression (6.24) or equivalently
by (6.28). In the low frequency limit, (ω � ω0), we have:

A(ω) = Vu

Vi
= jω/ω0

1 + jω/ω0

ω�ω0−→ jω

ω0
∝ jω

Recalling once again the expression (5.16) for the derivative of a complex exponential
function, this result shows that in this case the output signal is proportional to the
derivative of the input signal.

The results of this section can be also obtained by analyzing the circuits directly
in the time domain as we will discuss in Sects. 9.4 and 9.6.

6.11 Mutual Magnetic Induction and Transformers

Electromagnetic induction, described by the law of Faraday–Newman–Lenz, in the
presence of a variation of the magnetic flux Φ(B) linked to a circuit, produces an
electromotive force, equal in module to dΦ(B)/dt, whose sign is such as to induce
in the circuit a current generating a magnetic field opposing the flux variation. As
already discussed in the first chapter of this book (see Sect. 1.2.4), if the flux Φ(B)

is due to the magnetic field produced by the current i1 flowing in an adjacent circuit,
it can be written as Φ(B) = Mi1, where the mutual induction coefficient M depends
only upon the geometry of the two circuits. Consequently, a time dependent current
flowing in a circuit can induce an electromotive force in a separate circuit. The
intensity of this coupling can be quantified by a coupling coefficient K defined by:

K = M√
L1L2

http://dx.doi.org/10.1007/978-3-319-31102-9_5
http://dx.doi.org/10.1007/978-3-319-31102-9_5
http://dx.doi.org/10.1007/978-3-319-31102-9_9
http://dx.doi.org/10.1007/978-3-319-31102-9_9
http://dx.doi.org/10.1007/978-3-319-31102-9_1


6.11 Mutual Magnetic Induction and Transformers 149

i
1

i
1 i

2
i
2

(b) 11 2 2(a)

Fig. 6.11 Mutual induction. In a the two coils “1” and “2” have the same helicity while in b they
have opposite helicity. As explained in the text, currents entering the coil from the terminal marked
with the dot produce magnetic field with the same sense. In particular, with this convention, the
magnetic field generated by all coils in the figure points from right to left

where M is the mutual induction coefficient, L1 and L2 are the inductance, respec-
tively, of the first and the second circuit. The coupling coefficient K is always lower
than unity and reaches this value only in ideal conditions, when all the magnetic
field lines generated by the first circuit are linked to the second and vice versa.8

Electromagnetic induction is exploited in a very important electric component, the
static9 transformer that allows manipulating the amplitude of sinusoidal signals.

A static transformer consists of two coils in one of the configurations shown in
Fig. 6.11. Denoting with i1(t) and i2(t) the currents flowing, respectively, in coil 1
and 2, the absolute values of the mutually induced e.m.f. are:

|v1(t)| = |M di2(t)
dt | in coil 1

|v2(t)| = |M di1(t)
dt | in coil 2

Since the direction of the magnetic field depends upon the helicity of the coil, in
a transformer the same symbol, usually a dot, marks the terminals that produce the
same direction of the magnetic field for the same current signal, see Fig. 6.11.

This information allows identifying the polarity of an e.m.f. due to mutual induc-
tion. Assuming that the coil 1 in Fig. 6.11a is open while in coil 2 flows the current i2.
Lenz’s law implies that the e.m.f. E1 induced in coil 1 should drive a current opposing
any magnetic flux variation. Therefore, when di2/dt > 0 E1 drives a current flowing
toward the terminal identified by the black dot in coil 1. This implies that E1 < 0
and, assuming M > 0:

E1 = −M
di2
dt

Real transformer are typically built by winding its coils around a core of ferro-
magnetic material with a shape equivalent to a toroid; the ferromagnetic material

8The reader can find the proof of this statement in a good textbook of electromagnetism as for
example in Ref. [6].
9The qualifier static means that this device exploits the electromagnetic induction in circuits at rest,
implying that the flux variation is entirely due to the time derivative of a current, not to circuit
motion.
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increases the inductance of the coils and their coupling is maximized by the toroidal
shape that helps to convey the flux lines from one circuit to the other minimizing the
magnetic flux leakage.

The symbols used in circuit diagrams to represent a static transformer are shown
in Fig. 6.12a, b, respectively, for an air and a ferromagnetic core transformer. These
symbols represent ideals transformers, a concept that we will clarify in the following
of this section. Usually, the winding connected to an electric power source is identified
as the primary while the other as the secondary.

Solution of a transformer circuit. In the diagram of Fig. 6.13 we show a transformer
whose primary coil is connected to a voltage generator vp while its secondary is closed
on a load RL. For the analysis of this circuit, we assume that the primary and the
secondary coil consist, respectively, of Np and Ns turns with an ohmic resistance Rp

and Rs, respectively. We denote with Lp, Ls and M the inductance of the primary coil,
of the secondary coil and their mutual induction coefficient. We also recall that for
solenoidal coils self-inductance is proportional to the square of their turns:

Lp ∝ N2
p Ls ∝ N2

s (6.30)

Using Kirchhoff’s law of voltages, we can write the two following equations for
the two unknown currents ip and is flowing, respectively, in the primary and the
secondary winding:

(a) (b)

Fig. 6.12 Symbols representing static transformers: a air core transformer, b ferromagnetic core
transformer

M
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p
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R

Ls
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+
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R R

_

+

L

p s

p

Fig. 6.13 Diagram of a transformer with a voltage generator in the primary circuit and a resistive
load in the secondary. The reader is invited to verify that in this scheme, an increase (reduction) of
ip causes an increase (reduction) in is
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⎧⎪⎨
⎪⎩

vp = Rpip + Lp
dip
dt

− M
dis
dt

0 = −M
dip
dt

+ Ls
dis
dt

+ is(Rs + RL)

(6.31)

Note that in these two equations the term proportional to M is preceded by a minus
sign because of the Lenz’s law, of the helicity of the windings, as marked by the dots,
and of the choice of the positive direction made for the two currents ip and is. When
vp has a sinusoidal waveform, we can apply the symbolic method and the Eq. (6.31)
become:

{
Vp = RpIp + jωLpIp − jωMIs

0 = −jωMIp + jωLsIs + Is(Rs + RL)
(6.32)

whose solutions are easily obtained as:

Ip = Vp
RL + Rs + jωLs

RL(Rp + jωLp) + Rp(Rs + jωLs) + jω[Lp(Rs + jωLs) − jωM2] (6.33)

Is = Vp
jωM

RL(Rp + jωLp) + Rp(Rs + jωLs) + jω[Lp(Rs + jωLs) − jωM2] (6.34)

We can simplify these two rather complicated expressions exploiting a few approxi-
mations usually very well verified in practical applications. The first of these approx-
imations assumes that the leaked magnetic flux is negligible, allowing to set K = 1
or equivalently M = √

LpLs. Equations (6.33) and (6.34) become:

Ip � Vp
RL + Rs + jωLs

RL(Rp + jωLp) + Rp(Rs + jωLs) + jωLpRs

Is � Vp
jω

√
LpLs

RL(Rp + jωLp) + Rp(Rs + jωLs) + jωLpRs

Next, we assume that the angular frequency ω is high enough to make reactance much
higher than resistance in both the primary and the secondary circuit: Rp � ωLp, Rs �
ωLs. Furthermore, the resistance of the secondary winding must be negligible with
respect to the load: Rs � RL. With these approximations, the previous two equations
become:

Ip � Vp
RL + jωLs

jω(RLLp + LsRp)
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Is � Vp

RL + Rp
Ls
Lp

√
Ls

Lp

The third approximation assumes that the ohmic resistance Rp is negligible compared
to the load resistance RL multiplied by the ratio of the primary to the secondary
inductance (we shall see in the following that this is the impedance of the load as
“seen” by the primary winding). We obtain:

Ip � Vp
RL + jωLs

jωLpRL

Is � Vp

RL

√
Ls

Lp

With these three approximations, we can compute the output voltage of the trans-
former as Vs = IsRL and its transfer function H(ω) = Vs/Vp:

H(ω) = Vs

Vp
=

√
Ls

Lp
= Ns

Np
(6.35)

Note that this transfer function does not depend upon frequency. However, this is only
true when we can neglect the ohmic resistance of the two windings, as postulated
with the second approximation above.

A quantity of important use in the following is the ratio of the currents in the two
windings:

Is

Ip
= jω

√
LpLs

RL + jωLs
=

√
Lp

Ls
· 1

1 + RL

jωLs

(6.36)

In addition to the three approximation described above, we now assume also that the
load resistance is negligible compared with the reactance of the secondary winding
RL/ωLs � 1. Under this hypothesis, the Eq. (6.36) becomes:

Is

Ip
=

√
Lp

Ls
= Np

Ns
(6.37)

Ideal transformer. Since the four approximations adopted above are well satisfied
in many circumstances, it is useful to define the ideal transformer as a two-port
electrical component with the following characteristic property:
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Vp

Vs
= Is

Ip
=

√
Lp

Ls
= Np

Ns
≡ n (6.38)

the parameter n is referred to as the transformation ratio of the ideal transformer.
Transformers are widely used in commercial electric power grid to change the voltage
along the lines to optimize its efficiency and safety.

An important property of the ideal transformer is its capability of manipulating
load impedance. We compute the equivalent impedance of the primary winding as
Zp = Vp/Ip and similarly for the secondary winding as ZL = Vs/Is = RL with the
last identity valid only in the ideal case. Using Eq. (6.38) we obtain:

Zp = Vp

Ip
= Vp

Is

Is

Ip
= RL

Lp

Ls
= n2RL (6.39)

This relation shows that the load applied to the secondary winding is seen as multi-
plied by the squared transformation ratio by the primary winding.

An important consequence of Eq. (6.38) is the power balance relation

VpIp = VsIs (6.40)

This shows that in an ideal transformer the power input from the voltage generator
to the primary winding is equal to the power dissipated by the resistive load in the
secondary circuit, as expected since we neglected all other dissipative elements.

6.12 Impedance Matching

In the previous section, we have learned that by interposing an ideal transformer
we can manipulate the impedance of a load connected to a voltage generator, see
Eq. (6.39). In many electrical and electronic applications, it is necessary to match the
impedances of different circuits performing different functions before interconnect-
ing them. Consider, for example, a voltage generator with output amplitude Vg and
purely resistive output impedance Rg, connected to a resistive load of impedance RL.
The power PL transferred from the generator to the load is easily computed as the
product of the voltage drop across the load and the current flowing through it:

PL = V 2
g RL

(Rg + RL)2

Often in applications, it is required to extract the maximum possible amount of power
from a generator. Using the previous results, we can show that this requires that the
two resistances are equal, Rg = RL, see Sect. 2.5. If the generator has a complex
impedance Zg and the load has a complex impedance ZL, it can be easily shown that

http://dx.doi.org/10.1007/978-3-319-31102-9_2
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Fig. 6.14 Matching network

Vg

Rg

Vu

I I

Vi
RL

ui

network
Matching

the maximum power transfer is obtained when Zg = Z∗
L . Similar considerations apply

when we try to obtain the highest possible signal from an electrical sensor, a device
that transforms a physical quantity into a voltage or a current, such as a microphone,
a photodiode or a semiconductor thermometer. All these devices can be schematized
according to Thévenin or Norton and therefore, in addition to the electrical signal,
we need to take into account their output impedance too. Finally, we shall see in the
last chapter of this book that impedance matching becomes mandatory any time we
need to use a long connection cable at high frequency.10

Impedance matching between two different circuits is obtained via the interpo-
sition of a suitable matching network, as shown schematically in Fig. 6.14. This
network should consist of purely reactive components, to avoid losses due to dis-
sipative components, and therefore, impedance matching becomes only practically
feasible in AC circuits. This is the reason why commercial electric power distribution
grids are operated with sinusoidal currents at a frequency sufficiently high, to allow
impedance matching, and sufficiently low, to minimize the power loss due to eddy
currents induced in the surrounding environment.

It is always possible to assume that the impedances to be adapted are real. Consider
the case of a generator having a reactance jXg to be connected to a load with reactance
jXL. We can first compensate these two reactances by connecting the generator is
series with a reactance −jXg and similarly the load with a reactance −jXL. In this
way, we have reduced the problem to the matching of two resistive components. In
this hypothesis, the complex amplitudes of voltages and currents can be expressed
with real numbers and, with reference to Fig. 6.14, using the definition of impedance
we obtain:

Rin = Vi

Ii
and RL = Vu

Iu

Dissipation being absent in a purely reactive network, the input power ViIi/2 is equal
to the output power VuIu/2, and we can write

Rin = Vi

Ii
= V 2

i

ViIi
= V 2

i

VuIu
= V 2

i

V 2
u

RL = RL

h2
(6.41)

10A similar problem of impedance matching is encountered when we need to connect a sensor to a
signal amplifier: to minimize the noise generated at the input it is often necessary that the impedance
of the sensor is equal to an optimal value which depends by the characteristics of the amplifier input
stage.
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Fig. 6.15 Plot of VM/VD as a function of the ratio RL/Rg

where h = Vu/Vi is the output attenuation of the matching network. This result, valid
only when the input impedance to the network is purely real, shows that impedance
matching can be obtained through network attenuation equal to the square root of
the ratio of the load resistance to the output resistance of the voltage generator. We
shall see in the next section how we can design the needed network, but the result
obtained above already allows computing the voltage on the matched load.

In this case, due to the matching, the voltage at the network input is Vi = Vg/2.
Taking into account its attenuation, we have on the load VM = (Vg/2)

√
RL/Rg. This

voltage is always higher than the voltage obtained with a direct connection of the
load to the generator VD = VgRL/(Rg + RL). Figure 6.15 shows that the ratio VM/VD

reaches its minimum value, equal to unity, only for RL = Rg, i.e., when the matching
network is not needed.

6.13 Matching Networks

Equation (6.41) shows that impedance matching requires a reactive network with
attenuation h = √

RL/Rg. An ideal transformer can perform this function since
its attenuation between primary and secondary winding does not depend upon the
working frequency but only on the number of turns in the windings, see Eq. (6.39).
However, it must be noted that it is nearly impossible to obtain an ideal behavior with
a real transformer at high frequencies because of the parasitic inter-turn capacitance
and of hysteresis losses in the ferromagnetic core. Furthermore, from a practical
point of view, a transformer is a rather bulky component of difficult deployment.
Finally, very often, the matching network is also used to filter out noise at frequency
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different from the signal of interest. In this case, it is possible to match impedances
using only capacitors and/or inductors.

Following Eq. (6.41), when the load resistance is higher than the generator resis-
tance, the matching network needs to amplify its input voltage; this can only be
obtained using a resonant circuit. On the contrary, when the load has a lower resis-
tance than the generator, a simple reactive voltage divider can be deployed. Both these
situations can be handled by the generic circuit shown in Fig. 6.16. Using the series-
parallel transformation described in Sect. 6.4, the parallel of jX2 and RL is equivalent
to the series of jX ′

2 and R′
L as shown on the right side of the figure. Choosing jX1 equal

to the opposite of the transformed reactance jX ′
2 = jX2/[1 + (X2/RL)2], the network

impedance becomes equal to the transformed resistance R′
L = RL/[1 + (RL/X2)

2],
which can be made equal to the generator resistance with a suitable choice of X2. In
this way, we have a resonance between the two reactances jX1 and jX ′

2 and it is easy
to verify that the attenuation is equal to

√
1 + (RL/X2)2. The quality factor of this

resonant circuit, Q = X ′
2/R′

L, is also equal to RL/X2 because of the properties of the
series to parallel transformation. The input impedance of the network can be written
as RL/(1 + Q2).

In conclusion, when the load has a higher resistance than the generator, the match-
ing can be obtained at the operation frequency with a resonant circuit whose quality
factor is Q = √

RL/Rg − 1, which works also as a filter.
When in Fig. 6.16, the two reactances are taken with the same sign, the circuit

becomes a reactive voltage divider and therefore its attenuation is always lower
than unit. This circuit can be used to match a load with a resistance lower than the
generator. However, it is necessary to use a third reactance, opposite in sign to those
already in the circuit, to make real the input impedance. The detailed calculation of
this reactance is left to the reader as an exercise, see Problem 11 at the end of this
chapter.

When RL < Rg we can obtain a simpler division of the input voltage with the
generic circuit shown in Fig. 6.17. We first transform the series of RL and jX2 in a
parallel obtaining the equivalent circuit, shown on the right side of the figure, where
X ′

2 = X2[1 + (RL/X2)
2] and R′

L = RL[1 + (X2/RL)2]. Choosing 1/X ′
2 = −1/X1,

the conductance of the parallel of the two reactive elements is null and the network
input impedance is only given by the resistance R′

L. In this case, we have a parallel
resonance between jX1 and jX ′

2 whose quality factor Q = R′
L/X ′

2 is equal to X2/RL

because of the property of the series to parallel transformation. For this matching

jX1
jX2 RL

jX1 jX2
RL

Fig. 6.16 Matching network with a series resonance and its parallel to series transformation
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Fig. 6.17 Matching network with a parallel resonance and its series to parallel transformation

network too, the input impedance can be expressed as a function of the quality factor
as RL[1 + Q2] and the matching to the generator is obtained for Q = √

(Rg/RL) − 1.

Example. To observe the phenomenon of nuclear magnetic resonance [7] we need
to place a sample in an magnetic field oscillating at the resonance frequency. This
is obtained with the sample inside a linear solenoid powered by a sinusoidal voltage
generator. Obviously, the higher the oscillating magnetic field, the better the signal
to noise ratio achieved in the experiment. To proceed with a quantitative analysis, we
assume that the solenoid has an inductance L = 10µH and a resistance RL = 10 ohm.
We also assume that the available generator has a maximum voltage output Vg = 12 V
and an output impedance Rg = 50 ohm.

With a direct connection to the generator, the maximum peak current in the

solenoid would be equal to I = Vg/

√
(ωL)2 + (Rg + RL)2. At a working frequency

of 1 MHz we would get I = 138 mA. In a first step, we compensate the inductive
reactance of the solenoid with a series capacitance C1 equal to 2.53 nF and the peak
current becomes ID = Vg/(Rg + RL) = 200 mA.

In the second step, we match the two resistances. Since Rg > RL we can adopt
the approach illustrated in Fig. 6.17. We need a value of the quality factor Q =√

Rg/RL − 1 = 2. The value of the reactance X2 is given by X2 = QRL = 20 	. At the
working frequency, this reactance can be obtained with a capacitance C2 = 7.96 nF.
This implies that for the reactance X1 = X2[1+ (1/Q)2] we need an inductance L1 =
3.98µH. When the matching condition is satisfied, the input voltage to the matching
network is equal to Vi = Vg/2. Then, we obtain the voltage applied to the load taking
into account the attenuation of the matching network: VM = (Vg/2)

√
RL/Rg. In these

conditions, the current in the solenoid is equal to IM = Vg/(2
√

RLRg) = 268 mA, a
factor 1.3 higher than the value obtained in the preceding step.

In Fig. 6.18, we show a practical implementation of the circuitry discussed above.
Note that we have integrated the two capacitances C1 and C2 in a single component
of capacitance equal to 10.49 nF. The reader is invited to calculate the current in the
solenoid by solving this circuit for example with the method of the nodes.

Fig. 6.18 Matching a
solenoid to a real voltage
generator

Vg
10

50

3.98μΗ
μΗ10

10.49 nF

Ω

Ω
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Problems

Problem 1 Compute the transfer function of a low-pass RL filter taking into account
the inductor ohmic resistance RL.

Problem 2 Compute the transfer function of a high-pass RL filter taking into account
the inductor ohmic resistance RL.

Problem 3 Derive relations (6.14), (6.15) and (6.16).

Problem 4 Compute the parameters of the Thévenin’s equivalent circuit of a series
RLC circuit seen from the inductor terminals at the resonance frequency. [A. Zeq =
Q2

s R + jω0L; Veq = QsVg.]

Problem 5 Compute the equilibrium conditions for the bridge circuit shown in the
figure. [A. R1R4 = (R3 + R)R2; R1L4 = R2L3.]

R R

R

L

1

R

4

4

3

L 3

R

2

A

Problem 5

Problem 6 Using the series–parallel transformation, compute the equilibrium con-
ditions for the bridge circuit shown in the figure. [A. R2/R4 = R4/R3 + L4/L3;ω2 =
R4R3/L4L3.]

3L
R

3

R R

R

L

1

4

4

2

A

Problem 6

Problem 7 The Heaviside bridge, shown in the figure, can be used to measure the
mutual induction coefficient between the two windings of a transformer. Show that
at the equilibrium the following relation holds: M = (R1L3 − R2L4)/(R1 + R2),
independently of the generator frequency.
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A

Problem 7

Problem 8 Compute the complex attenuation of the circuit in the figure, using for
example Thévenin’s theorem. Show that it is a bandpass filter with transmission
maximum at ω0 = 1/RC. Compute the angular frequencies corresponding to the
attenuation equal to its peak value divided by

√
2. [A. A(ω) = 1/(3 + j(ωRC −

1/ωRC)), ω1,2 = ω0(
√

13 ± 3)/2.]

C Vu

R C

RVi

Problem 8

Problem 9 Use the loop method to obtain the equation system describing the circuit
shown in the figure. Perform the analysis of its coefficient determinant to show that
the circuit is resonant for two values of the angular frequency ω. Show that for these
frequencies the impedance seen by the generator is null. [A. ω2

1,2 = (3±√
5)/(2LC).]

L

CVi L

C

Problem 9

Problem 10 Compute the attenuation A(ω) of the two-port circuit shown in the
figure and show that it is always real but divergent at two frequency values.
[A. A(ω) = 1/[3 − (ω2LC + 1

ω2LC )], ω2
1,2 = (3 ± √

5)/(2LC).]

Vi

L C

C L Vu

Problem 10
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Problem 11 Show that the circuit of previous problem has two resonances at the
angular frequencies ω2

1,2 = (3 ± √
5)/(2LC) for which the impedance seen at the

input is null. Show also that this impedance diverges at ω = 1/
√

LC.

Problem 12 Compute the input impedance Zeq of the network shown in the figure
choosing the value of the inductance L to cancel its reactance under the hypothesis
RL � 1/ωC2. [A. Zeq = RL(1 + C2/C1)

2; L = (1/C1 + 1/C2)/ω
2.]

L RLC2

C1

Problem 12

Problem 13* In this problem, the reader can verify that different definitions of res-
onance given in the literature are not equivalent.

Solve the RLC parallel circuit taking into account the ohmic resistance of the
inductor. The diagram of the circuit is obtained by adding a resistance r in series
to the inductance L in the circuit shown in the text in Fig. 6.2. Then, compute the
transfer function H(ω) given by the ratio of the output voltage, measured across the
capacitor, and the generator voltage. Show that the amplitude of the transfer function
has a maximum at the angular frequency ωmax given by:

ωmax = ωo

√√√√
√

1 + 2
r

R
+ 2

(
r

ωoL

)2

−
(

r

ωoL

)2

where ωo = 1/
√

LC is the resonance frequency we obtained with r = 0. Adopting
a McLaurin series expansion in the small parameter r, to second order the previous
expression becomes:

ωmax � ωo

(
1 + r

2R
− 3

8

r2

R2
+ · · ·

)

The reader is warned that the calculation of ωmax is laborious and requires an appro-
priate amount of attention in the various steps that lead to the solution.

Show that the admittance of the circuit, as seen by the voltage generator, vanishes
at an angular frequency ωX , different by ωmax:

ωX =
√

1

LC
−

( r

L

)2 =
√

ω2
o −

( r

L

)2 � ωo

(
1 − 1

2

C

L
r2 + · · ·

)
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Finally show that the circuit has a normal mode of oscillation at the angular frequency
ωn:

ωn = ωo

√
1 − L

4CR2
+ r

2R
− Cr2

4L

Problem 14* With reference to the previous problem, evaluate the effect of the
resistance r of the inductor on the value of the merit factor Q of the circuit from the
width of the attenuation peak. Show that Q is approximatively given by:

Q = 1

ωo

R

L
� 1

ωo

R

L + RCr

Hint: replace the series of r and L with the parallel of req and Leq adopting a series-
parallel transformation. Both req and Leq are frequency dependent:

req = r

(
1 + ω2L2

r2

)
Leq = L

(
1 + r2

ω2L2

)

Compute Q in the approximations req � ω2
oL2/r and Leq � L, both verified at

sufficiently high frequency.
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Chapter 7
Measurement of Alternating
Electrical Signals

7.1 Introduction

The most comprehensive information on alternating signals is obtained by observing
their temporal evolution, i.e., by measuring continuously in time the value of the
signal (current or voltage as required by the problem under consideration). This kind
of measurement is generally carried out with devices capable of displaying the time
development of the waveform as the oscilloscopes, instruments that we will deal with
extensively in the following chapter. However, it is not always necessary to know
waveform details. This is the case, for example, when the waveform is known a
priori, as for a sinusoidal signals of given frequency, or when we need high-accuracy
measures that visual techniques could not be able to provide, or when the presence
of high-frequency electrical noise makes difficult and ambiguous the measurement
of the instantaneous value of the signal, or, finally, when we require an accurate
evaluation of the electrical noise present in a circuit.

In all these cases it is possible to characterize the alternating signal with a single
parameter, related to its amplitude, currently identified in its root mean square (rms)
value, also called the effective value.

The measure of AC (short for alternating current) signals, contrary to the DC
case, poses a set of problems related to the very nature of the alternating signal.
One problem, partly solved by the introduction of integrated circuits, stems from
the difficulty of building devices able to measure correctly the effective value. Even
the most modern tools can provide information not corresponding to the required
quantity in the case of AC measures. The experimenter should then always know the
principles of operation of the instrument in use to avoid gross errors in measurement
evaluations.

Technical specifications of professional instruments report whether they measure
the true-rms value, meaning that the instrument is able to process the signal through
the necessary mathematical operations to obtain its effective value. Cheaper instru-
ments, although widely used, do not measure the true-rms and their users must be
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164 7 Measurement of Alternating Electrical Signals

careful to avoid aforementioned errors. Furthermore, it must be taken into account
that the impedance of real electrical components (resistors, capacitors, inductors, and
active components) used to build measuring devices is always frequency dependent.
This implies that outside a given frequency range, referred to as the passband, the
instrument produces erroneous results. Moreover, with increasing frequency, par-
asitic series inductance and parallel capacity of the cables connecting the circuit
with the instrument can become important and may degrade the accuracy of AC
measurements for a considerable amount. These observations emphasize that the
measurement of alternating signals requires a careful analysis of the operational cir-
cumstances and more attention from the experimenter than in the case of DC signals.

In the following Sect. 7.2, we introduce the parameters used to characterize time-
dependent signals and we describe the waveforms most commonly encountered in
laboratory experiments and related instrumentation. In Sect. 7.3, we discuss the cou-
pling technique usually adopted to connect AC signals to instruments. Section 7.4 is
devoted to the illustration of problems posed by analog instruments when they are
used for the measurement of AC signals. Finally in Sect. 7.5, we illustrate the oper-
ational principles of a number of modern digital instruments for AC signals and we
discuss their use for the measurement of amplitude and phase. A brief introduction
to the problem of impedance measure concludes the chapter.

7.2 Characteristics of Alternating Signals

This chapter only deals with stationary periodic signals.1 In other words, we will not
attempt here to give a description of waveforms with finite time duration, commonly
referred to as transients,2 an important subject in the field of electronics that will be
dealt in Chap. 9.

As defined in Sect. 5.2, a generic periodic signal x(t) is qualified as alternating
when its time-averaged value is it null. Alternating signals can be characterized by
the set of parameters shown in the Fig. 7.1. Their meaning is given below as follows:

• T : signal period. T = 1/ν = 2π/ω where ν is the frequency quoted in Hz and ω

the pulsation or angular frequency, measured in rad s−1.
• Xpp: peak-to-peak amplitude. The difference between the maximum and the min-

imum value of the signal.
• Xp: peak amplitude. Maximum value in the positive half wave. This parameter is

useful only for signal symmetric with respect to the time axis.
• Xrms: effective or rms amplitude. Root mean square signal value.

1In our context the term stationary does not refer to quantities that do not depend on time, we would
use the term static instead. The alternating signals are time dependent but periodic and the infinitely
repeated waveform justifies the term stationary to qualify them.
2To have an example of transient waveform, consider a capacitor being connected to a battery
through a resistance. The current flowing to charge the capacitor has a transient waveform.

http://dx.doi.org/10.1007/978-3-319-31102-9_9
http://dx.doi.org/10.1007/978-3-319-31102-9_5
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X

t

ppm rms

T

XX

Fig. 7.1 Time evolution of a generic alternate signal. Signal characteristics illustrated in the text
are shown. The average level of the signal is null

• Xm: average absolute amplitude: obtained using the average value of the rectified
signal, as we shall see below. The average can be carried out for the single or the
double half wave.

As we discussed already in the introduction, the effective, or rms, amplitude is the
quantity more commonly used to characterize an alternating signal and this value is
usually measured by AC instruments. Its exact accepted definition is given as follows:

The effective, or rms, amplitude is the value of the continuous voltage (or current)
producing the same Joule effect as the considered alternating signal in a single
period, in a generic resistance R.

Consider for example an alternating voltage signal v(t), with period T . When this
voltage is applied at the terminals of a resistance R, the energy dissipated by Joule
effect in the resistance, in a period, is

E = 1

R

∫ T

0
v(t)2 dt (7.1)

The DC voltage Vrms (or Veff ) producing the same net effect is given by the relation
as follows:

V 2
rms

R
T = 1

R

∫ T

0
v(t)2 dt (7.2)

that yields

Vrms =
√

1

T

∫ T

0
v(t)2 dt (7.3)

A similar expression can be found for the value of the effective current Irms. In
conclusion, the effective, or rms, value is given by the positive determination of the
square root of the mean quadratic value of the alternating signal.
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Fig. 7.2 Sinusoidal signal.
Plot obtained on the screen
of a digital oscilloscope with
vertical sensitivity 50 mV per
division, and horizontal
sensitivity 250µs per
division

In the following, we apply this definition to a number of specific cases. In the exam-
ples, we will parameterize the amplitudes in terms of the peak-to-peak amplitude,
since this is the most immediate value that can be measured with an oscilloscope, as
explained in next Chap. 8.

7.2.1 Sinusoidal Signal

The sinusoidal signal with period T , represented in Fig. 7.2, is given by the following
mathematical expression:

x(t) = x0 cos(ωt) = Xpp

2
cos

(
2π

T
t

)
(7.4)

For this kind of signal we have Xp = x0 and Xpp = 2x0. Using the definition (7.3)
of effective value, we obtain the following for the sinusoidal signal:

Xrms =
√

1

T

∫ T/2

−T/2

[
x0 cos

(
2π

T
t

)]2

dt = Xpp

2
√

2
� 0.354Xpp (7.5)

The effective value of a sinusoidal signal is given by the peak-to-peak amplitude
of the waveform divided by 2

√
2.

7.2.2 Triangular Signal

The triangular signal with period T , represented in Fig. 7.3, is given by the following
mathematical expression:

x(t) =
{

2Xpp

T

(
t + T

4

)
for − T

2 < t < 0

− 2Xpp

T

(
t − T

4

)
for 0 < t < T

2

(7.6)

http://dx.doi.org/10.1007/978-3-319-31102-9_8
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Fig. 7.3 Triangular signal.
Plot obtained on the screen
of a digital oscilloscope with
vertical sensitivity 50 mV per
division, and horizontal
sensitivity 500µs per
division. Note that time
origin is shifted with respect
to definition 7.6

where Xpp is the peak-to-peak amplitude of the signal. The origin of the time axis
(t = 0) has been located at the signal maximum to simplify its mathematical expres-
sion.

Using the definition (7.3) of effective value, we obtain the following for the tri-
angular signal:

Xrms =
[

1

T

(∫ 0

−T/2

4X2
pp

T 2

(
t + T

4

)2

dt +
∫ T/2

0

4X2
pp

T 2

(
t − T

4

)2

dt

)]1/2

= Xpp√
12

� Xpp

3.46
= 0.289Xpp

The Fourier series expansion of the triangular signal, as defined by relation (7.6),
is given by the following expression:

x(t) = 2Xpp

π2

∞∑
k=1

1 − (−1)k

k2
cos

2πk

T
t = 2Xpp

π2

(
cos

2π

T
t + 1

32
cos

2π

T
3t + . . .

)
.

(7.7)
Note that all even harmonics of the triangular signal are null.

7.2.3 Rectangular Signal

The rectangular signal is described by a waveform taking just two different values
during the period T , see Fig. 7.4. It is characterized by a parameter δ (0 < δ < 1),
referred to as the duty factor, which indicates the period fraction corresponding to
the upper level. Therefore, the time interval corresponding to the higher value is δT
while the lower value corresponds to a time interval (1 − δ)T . If Xpp is the peak-to-
peak amplitude, the mathematical representation of the rectangular alternating signal
is as follows:
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Fig. 7.4 Rectangular signal with 30 % duty cycle. Plot obtained on the screen of a digital oscillo-
scope with vertical sensitivity 50 mV per division, and horizontal sensitivity 250µs per division.
It can be noticed in this experimental plot that the two signal levels are not exactly constant. This
is caused by the low-frequency cutoff introduced when using the oscilloscope in AC coupling (see
Sect. 7.3)

x(t) =
{

Xpp(1 − δ) for |t| < δT
2

−Xppδ for δT
2 < |t| < T

2

(7.8)

When δ = 0.5 the rectangular waveform defined by (7.8) becomes a square wave
since the signal assumes its two values for the same duration T/2. Using the definition
(7.3) of effective value, we obtain the following for the rectangular signal:

Xrms =
[

1

T

(∫ −δT/2

−T/2
(Xppδ)

2 dt +
∫ δT/2

−δT/2
(−Xpp(1 − δ))2 dt +

∫ T/2

δT/2
(−Xppδ)

2 dt

)]1/2

= Xppδ(1 − δ)

This relation shows that the rms value of a rectangular signal, besides depending on
the peak-to-peak amplitude, changes with its duty factor δ. In particular for a square
wave (δ = 0.5) we get the following:

Xrms = Xpp

4
= 0.25Xpp

The Fourier series expansion of the rectangular signal, as defined by relation (7.8),
is given by the following expression:

x(t) = Xppδ

∞∑
k=1

sin kπδ

kπδ
cos

2πk

T
t (7.9)

Note that for the particular case of the square wave (δ = 1/2), all even harmonics
vanish.
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Fig. 7.5 Sawtooth signal.
Plot obtained on the screen
of a digital oscilloscope with
vertical sensitivity 50 mV per
division, and horizontal
sensitivity 500µs per
division

7.2.4 Sawtooth Signal

A sawtooth signal of period T and peak-to-peak amplitude Xpp, represented in
Fig. 7.5, is given by the mathematical expression:

x(t) = Xpp

T
t for − T

2
< t <

T

2
(7.10)

This kind of waveform was used to drive the sweep of the electron beam in cathode
ray tubes once used in analog oscilloscopes (see next chapter) and home television
sets.

Applying the definition (7.3) of effective, or rms, value, we obtain the following
for the sawtooth signal:

Xrms =
[

1

T

∫ T/2

−T/2

X2
pp

T 2
t2 dt

]1/2

= Xpp√
12

� Xpp

3.46
= 0.289Xpp

Note that the triangular and the sawtooth signals are characterized by the same
conversion factor between the peak-to-peak and the effective amplitudes.

The Fourier series expansion of the sawtooth signal, as defined by relation (7.10),
is given by the following expression:

x(t) = −Xpp

π

∞∑
k=1

(−1)k

k
sin

2πk

T
t (7.11)

It contains both even and odd harmonics.



170 7 Measurement of Alternating Electrical Signals

A B A

(a) (b)
vA(t) vA(t)

R

vB(t)

C C

vB(t)

Fig. 7.6 AC coupling of two different circuits (a) and its equivalent representation (b)

7.3 AC Coupling

Before discussing the operational principles of instruments used to measure alternat-
ing signals, we describe the AC coupling technique typically adopted to connect these
instruments to the circuit under test. This technique is used specially by the most
accurate and expensive devices, for the safety of circuits and for a better definition
of the measurand.

With the expression “AC coupling,” we intend that two circuits are connected
through a capacity, as shown in Fig. 7.6a. Usually one of this two circuits is a signal
generator (indicated by the letter A in Fig. 7.6) while the other is a receiver (indicated
by the letter B in the same figure). Often the receiver has purely resistive input
impedance and the circuit can be schematized as in Fig. 7.6b.

We now proceed to evaluate the effect of the capacity C by comparing the char-
acteristics of the signal at its two terminals. Consider the Fourier expansion of the
periodic signal vA(t) generated by the circuit A, as shown in Fig. 7.6b,

vA(t) = a0

2
+

∞∑
n=1

An cos(ω1nt + φn)

where ω1 = 2π/T is the signal angular frequency. This expression consists of a time-
independent contribution a0/2 and a sum of oscillating terms. Using the superposition
principle, the signal vB(t), measured at the receiver input vB(t), can be obtained by
summing the effects of the single terms of the Fourier expansion of vA(t). Since the
capacity has infinite impedance for DC signals, the continuous component of the
signal vA is blocked.3 From the inspection of the circuit of Fig. 7.6b and using the
symbolic method, we obtain for a generic term VB = VAR/Ztot = VA jωRC/(1 +
jωRC) and for the complete signal we can write as follows:

vB(t) =
∞∑

n=1

An · jω1nRC

1 + jω1nRC
cos(ω1nt + φn)

3A similar analysis can be carried out for the case of a block capacitor used to separate the continuous
voltage component of different sections in the same circuit.
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When ω1n � 1/RC, the previous expression is correctly approximated by

vB(t) �
∞∑

n=1

An cos(ω1nt + φn) = va(t) − a0

2

Under these circumstances the two signals vB and vA differ only by the constant
amount (a0/2) and the average value of vb is null. In conclusion, the AC coupling
has the following effects:

1. it blocks the continuous component of a time-dependent periodic signal trans-
forming it in an alternating signal with null time-averaged value:

∫ +∞
−∞ v(t)dt = 0

2. as a side effect, it modifies the low frequency range (where the relation ω1n �
1/RC is not valid) of the signal spectrum, consequently distorting the signal shape
(see example in Fig. 7.4).

7.4 Analog Instruments

In Sect. 4.3.1 of Chap. 4 we described in detail the properties of the moving coil
ammeter and its use to measure a DC current. We discuss now the response of this
instrument when an alternating current circulates in the coil. The solution to this
problem is still provided by the differential equation (4.4) where now the alternating
current i(t) is used instead of the constant current I .

Qualitatively, the motion of the moving coil is determined by the difference
between the angular frequency of the alternating current and the characteristic fre-
quency ωM of the coil mechanical system.4 When ω � ωM the moving coil replicates
the time evolution of the signal while on the contrary when ω � ωM the coil will
only oscillate with very small amplitude around its equilibrium position.

To obtain the quantitative solution to this problem, we start by writing the modified
version of Eq. (4.4) as follows:

I
d2θ

dt2
+ β

dθ

dt
+ Cθ = m(t) (7.12)

where I is the inertia moment of the moving coil with respect to its rotation axis, β
is the coefficient describing the viscous torque, and C is the coefficient describing the
return torque of the spiral spring. The term m(t) is the electromagnetic torque caused
by the alternating current flowing in the coil. When this current is sinusoidal we can
write m(t) = M cos ωt, where M is the maximum torque value. Since Eq. (7.12) is

4Usually the moving coil motion is critically damped, as described in Sect. 4.3.2, and its character-
istic frequency is ωM � √

C/I .

http://dx.doi.org/10.1007/978-3-319-31102-9_4
http://dx.doi.org/10.1007/978-3-319-31102-9_4
http://dx.doi.org/10.1007/978-3-319-31102-9_4
http://dx.doi.org/10.1007/978-3-319-31102-9_4
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linear with time-independent coefficients, we can use the symbolic method to obtain
its steady-state solution, the evolution of the transient phase being irrelevant here.
After denoting the complex amplitude of the coil rotation angle with Θc, we have

(−ω2I + jωβ + C)Θc = M

Θc = M

−ω2I + jωβ + C
(7.13)

Indicating the modulus of Θc with Θ , we can write

Θ = M√
(C − ω2I )2 + ω2β2

= M√
C2 − 2ω2I C + ω4I 2 + ω2β2

This allows obtaining the following solution of Eq. (7.12):

Θ(t) = Θ cos(ωt + φ)

As in the ammeter the motion of the coil is critically damped (β2 = 4I C), the
oscillation amplitude becomes as follows:

Θ = M

C + ω2I
(7.14)

Identifying the characteristic angular frequency of the moving coil with ωM =√
C/I , we can write

Θ = M

C

[
1 +

(
ω

ωM

)2
] (7.15)

This equation confirms the qualitative picture on the coil motion presented at the
beginning of this section and shows the following:

• when ω � ωM then Θ � 0 the index of the instrument “vibrates” around the zero
value

• when ω � ωM then Θ � M/C and the index follows the time evolution of the
input current.

It is important to remark that the characteristic angular frequency is determined
by mechanical parameters and its value cannot exceed a few cycles per second.
Given these limits, the moving coil ammeter is of little use for measuring alternating
currents.

The use of diodes to rectify the AC current entering the ammeter permits to
obtain a useful response from these instruments. Figure 7.7 shows two possible setups
exploiting this idea. In both cases, diodes rectify the current before it enters the coil
in such a way to make its average value proportional to the effective amplitude of
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i  (t)A

i(t)
i(t)

i  (t)A

i(t)(b)(a)

AA

Fig. 7.7 Principle of operation of AC ammeters with rectification: (a) single half-wave rectification
and (b) full-wave rectification. The input current is shown in the left plot while the currents flowing
in the coil in the two cases are shown in Fig. 7.8

t

i (t)
A

t

i (t)
A

Fig. 7.8 Time evolution of the currents flowing in the ammeter of Fig. 7.7: on the left single half
wave, on the right full-wave rectification. The dashed line represents the average current value of
each waveform

the original alternating waveform. The diodes used in the circuits shown in Fig. 7.7a
ideally behave in the following way: for current flowing in the direction shown
in the symbol, their impedance is null and, vice versa, for current flowing in the
opposite direction this impedance becomes infinity. Therefore, when the signal is
i(t) = i0 sin ωt, this current flows in the ammeter only during the positive half wave
with the waveform shown to the left of Fig. 7.8. When expressed as a Fourier series,
this waveform is made of a continuous component, equal to its average value, and an
infinite number of oscillating components with frequency given by integer multiples
of the signal frequencyω and with amplitudes decreasing as their frequency increases.
Since the response of the ammeter is linear, the effect of each component can be
obtained using Eq. (7.15). Consequently, provided ω � ωM , only the continuous
component of the current produces a measurable displacement of the instrument
index and the measured value coincides with the time average of the current iA(t).
In the case of a single half wave, this amounts to the following:

< I >= 1

T

∫ T

0
iA(t)dt = 1

T

∫ T/2

0
i(t)dt = 1

T

∫ T/2

0
i0 sin(

2π

T
t)dt = i0

π
= Irms

2.22

(7.16)

Obviously, for the scheme of Fig. 7.7b where the full wave is rectified, this value
doubles and we obtain < I >= Irms/1.11.
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The results obtained show that it is possible to exploit a moving coil ammeter to
measure alternating sinusoidal currents adopting one of the two options illustrated
above and calibrating accordingly the scale of the instrument to indicate directly
the effective amplitude (rms) of the current. Similarly, it is possible to modify a
DC voltmeter to measure alternating voltage signals. We remark once again that the
scale of ammeters exploiting rectifying circuits for alternating signals is calibrated
for sinusoidal waveforms and, consequently, gives wrong values if used to measure
the effective value of non-sinusoidal signals.

Besides the rectified moving coil ammeter, there are others analog instruments
useful to perform AC measurements, all of them now superseded by the developments
of digital electronics. Among them, we deem useful to mention the electrodynamic
instruments that exploit the force between two coils with the same flowing current.
This force is quadratic in the current amplitude and it is therefore suitable for the mea-
sure of alternating currents. Similarly, the electrostatic voltmeters have a quadratic
response, see Sect. 4.4.2, and can be used to measure the effective value of alter-
nating voltage signals. Note however that, contrary to the DC case, a current flows
in electrostatic voltmeters when used with AC voltages. Indeed they consist of a
capacitor and therefore their impedance, very high for continuous voltages, becomes
progressively lower with increasing signal frequency.

7.5 Digital Instruments

Nowadays the scientific electronic market offers digital instruments for AC signals
based on many different designs. The diagram in Fig. 7.9 is a valid representation
for most of them. The central element determining the measurement principle is
the AC/DC converter used to transform the AC signal (voltage or current) in a DC
voltage level. This continuous voltage is digitized and transformed in a binary signal
by an analog-to-digital converter, ADC. Finally, a display element transforms the
ADC binary output in a decimal number and shows it to the user. In the following,
we describe the most important approaches to the conversion of AC signal in DC
levels.

ADC

DISPLAY

CONVERTER
AC/DC

AC signal DC signal digital signal

Fig. 7.9 Block diagram of a digital instrument for measuring AC signals. The circuit in the box
labeled AC/DC CONVERTER converts the alternating signal input into a DC voltage, which is
digitized by the device shown in the figure with the acronym ADC (analog-to-digital converter),
and finally the device indicated with DISPLAY shows the voltage value

http://dx.doi.org/10.1007/978-3-319-31102-9_4


7.5 Digital Instruments 175

Rectifing Circuit

Time average circuit

continuous voltage
AC input signal

+

−

Fig. 7.10 Diagram showing the working principle of an instrument converting the average ampli-
tude of an AC signal in a DC voltage level. The circuit performing the time average of the signal
exploits an ideal operational amplifier

7.5.1 Peak or Average Converter

Low cost digital multimeters, and among them especially portable devices, compute
the signal rms value from the measure of the peak amplitude or from the average
value of the rectified signal, see Fig. 7.10. These instruments are calibrated under
the assumption that the input signal has a sinusoidal waveform. Therefore, similarly
to the case of analog ammeters, they produce inaccurate results if used with non-
sinusoidal signals, the measured value depending on the signal waveform.

Instruments based on the conversion of the peak value or of the average value
should not be used to measure non-sinusoidal signals.

7.5.2 Analog AC/DC Converters

To obtain the rms value of a voltage (or of a current) it is necessary to compute the
expression (7.3), i.e., the instrument first needs to square the signal, then perform
the time average of this new signal and finally to take the square root of the result.
These tasks become possible with the use of operational amplifiers, active electronic
components designed to perform mathematical operations, such as the sum, the
logarithm, the product, the quotient, the integral, and the derivative, of electrical
signals connected to their inputs.

In Fig. 7.11 we show the block diagram of a voltmeter based on this kind of
component: the first operational amplifier performs the product of the signal with
itself and divides this signal by the output V0 of the complete circuit through a
feedback connection.5 The RC circuit connected to the output of the first operational

5The feedback is a feature of operational amplifiers whereby the circuit output is fed back to one
of the inputs of the device. A detailed description of the design of an operational amplifier requires
notions that are usually learned at a successive stage of the course of studies.
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Mean

continuous voltage

ZY
X

AC input signal

(time average of signal)
low−pass  RC filter

Y

Z

X

+

−

[v2in(t)]

vin(t)
R

C

Fig. 7.11 Block diagram of an instrument exploiting an analog converter. The rectangle represents
a circuit capable of executing the indicated operations on inputs X, Y, and Z. The figure is based on a
schematic published on Ref. [1]. The understanding of the implementation of this scheme requires
the knowledge of the elementary principles of operational amplifiers

amplifier works as an integrator while the second amplifier has unitary gain and is
used for its high impedance to obtain the feedback signal with minimal disturbance
of the preceding circuits. Therefore, for the output V0 of the complete circuit the
following relation holds:

Vo ∝
∫

v2
in(t)

Vo
dt

that yields Vo ∝
√∫

v2
in(t) dt.

This kind of voltmeter is free from the systematic errors plaguing instruments
based on rectifier. However, we remark that in operational amplifiers the product of
two signals is obtained by summing their logarithms and this reduces the dynamic
range of the instrument.

7.5.3 Thermal AC/DC Converters

The operation of thermal AC/DC converters is based on the definition of the effective
value of a time-dependent signal as the DC level with equivalent capability of heat-
ing a resistive load by Joule effect. By construction, instruments using this kind of
converter are not sensitive to the waveform of the input signal. Moreover, all Fourier
components of the signal are equally weighted making this technique one with the
widest frequency passband. In Fig. 7.12 we show schematically the working princi-
ple of a thermal AC/DC converter. The device consists of two identical temperature
sensors and of an operational amplifier. The signal under test heats the input resistor
by Joule effect. The sensor measuring its temperature drives the positive input of the
operational amplifier whose output is used to heat an identical resistor. The sensor
measuring the temperature of this last resistor is connected to the negative input of
the operational amplifier. The output voltage of the operational amplifier decreases
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ac signal 

Joule heating Thermal insulation

input
sensor

Temperature Temperature
sensor

Joule heating

output continous voltage
proportional to input rms value

+

−

Fig. 7.12 Block diagram of an AC–DC converter based on thermal effect. The AC signal heats a
resistor R and the circuit measures a DC voltage that causes the same thermal effect in an identical
resistor. See text for more details

until its two inputs have practically equal voltage values. After a transient phase due
to the finite thermal capacity of resistors and sensors, the temperatures of the two
resistors become equal and this output voltage stabilizes to a constant value. This
value, producing the same thermal effect in an identical resistor, is equal by definition
to the effective value of the AC signal.

7.5.4 Digital Sampling

The availability of fast ADC circuits makes it possible to obtain the effective value of a
time-dependent signal by measuring and storing its instantaneous value at a sampling
frequency sufficiently higher than its frequency. Denoting with Vk, (k = 1, . . . , N)

the digitized sampled values, we have

Vrms �
√√√√ 1

N

N∑
k=1

(Vk− < V >)2 where < V >= 1

N

N∑
k=1

Vk

provided the sampled values cover an integer number of signal periods. In this expres-
sion, the subtraction of the average value is in principle redundant when the signal
is AC coupled to the ADC. However, it is advisable to keep it to correct for the
systematic effects due to the finite ADC offset. The statistical uncertainty affecting
the value of Vrms, due to the ADC finite resolution and to ambient electrical noise
superimposed to the signal, can be easily computed. As expected, it is inversely pro-
portional to the square root of the samples number N . This algorithm is implemented
with digital electronics and is used to characterize AC signals in all modern digital
oscilloscopes, as discussed in detail in next chapter.
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7.5.5 Phase Measurements

Consider the two waveforms: v1(t) = V1 cos ωt and v2(t) = V2 cos ω(t + φ). Their
product can be written as follows:

V1V2 cos(ωt) cos(ωt + φ) = V1V2

2
[cos(φ) + cos(2ωt + φ)]

It consists of a continuous component and an alternating signal with frequency equal
to the double of the frequency of the signals in input.This suggests to measure cos φ

using the ratio of the amplitude of these two components. Therefore, we can use
operational amplifiers to obtain the measure of the phase difference between two
sinusoidal signals.

It must be noted, however, that the mere knowledge of the phase cosine does not
allow determining its sign. This ambiguity can be solved introducing a phase lag of
π/2 in one of the two signals and using the same setup to measure the sine of the
original phase difference. An instrument capable of measuring both the amplitude
and the phase difference of sinusoidal signals is usually referred to as a vectorial
instrument.

Digital sampling. Similarly to the effective amplitude, the availability of high-
frequency digital sampling allows for high-accuracy measurement of the phase dif-
ference of sinusoidal signals using ad hoc algorithms yielding an estimate of its value
with accuracy better than a thousandth of a radian. A detailed presentation of these
techniques falls beyond the scope of this book. The interested reader can find more
details on this subject in Ref. [2].

7.5.6 Impedance Measurement

We can obtain the value of unknown impedances using a vectorial voltmeter, an
instrument that can measure both the amplitude and the phase difference of sinusoidal
waveforms. A simple circuit allowing to perform this task is shown in Fig. 7.13. It

Fig. 7.13 Voltage divider
for impedance measure. See
text for details

V   (t)

Z

V  (t)

Z o

in

out
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consists of a simple voltage divider whose output signal is given by

Vout = Vin
Zo

Z + Zo

From the values of the amplitude of input and output voltage and from their phase
difference we can evaluate the unknown impedance value Z as

Z = Zo

(
Vin

Vout
− 1

)
= Zo

( |Vin|
|Vout|e−jφo − 1

)
= Zo

[
cos φo

Ao
− 1 − j

sin φo

Ao

]

where Ao = |Vout|/|Vin| is the output attenuation and φo the phase difference. This
equation allows obtaining both resistive and reactive components of the impedance.
This method can be more convenient with respect to the use of a bridge circuit, which
requires the availability of an accurately measured inductance and/or of a capacitance
as reference impedances. In this case, the reference impedance Zo can be made of a
simple resistance that can be accurately measured with a simple digital multimeter.

Problems

Problem 1 An ADC digitizes a sinusoidal voltage signal taking N samples at con-
stant time intervals covering a span equal to the signal period. Sampled values are
affected by quantization errors, uncorrelated and identically distributed with vari-
ance equal to σ 2. Data are used to identify their maximum and minimum from which
the peak-to-peak Xpp is computed. Evaluate the standard uncertainty on this last
quantity. [A. upp = √

2σ .]

Problem 2 An ADC digitizes a sinusoidal voltage signal taking N samples at con-
stant time intervals covering a span equal to the signal period. Sampled values are
affected by quantization errors, uncorrelated and identically distributed with vari-
ance equal to σ 2. Show that the estimate of the effective value, obtained as the root
mean square of the sampled values, is affected by a bias related to the variance of
quantization errors. [A. V̂rms = √

V 2
rms + σ 2.]

Problem 3 An ADC digitizes a sinusoidal voltage signal taking N samples at con-
stant time intervals covering a span equal to the signal period. Sampled values are
affected by quantization errors, uncorrelated and identically distributed with vari-
ance equal to σ 2. Show that the estimate of the effective value, obtained as the root
mean square of the sampled values, besides being biased (see previous problem) is
affected by a statistical uncertainty related to the variance of quantization errors. [A.
uV = σ/

√
N .]

Problem 4 An ADC, with negligible quantization error, digitizes a sinusoidal volt-
age signal taking N samples at constant time intervals covering a span equal to the
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signal period. Sampled values are affected by an ambient noise, uncorrelated and
identically distributed with variance equal to σ 2

n . Show that the estimate of the effec-
tive value, obtained as the root mean square of the sampled values, is affected by a
bias related to the variance of ambient noise. [A. V̂rms = √

V 2
rms + σ 2

n .]

Problem 5 An ADC, with negligible quantization error, digitizes a sinusoidal volt-
age signal taking N samples at constant time intervals covering a span equal to the
signal period. Sampled values are affected by an ambient noise, uncorrelated and
identically distributed with variance equal to σ 2

n . Show that the estimate of the effec-
tive value, obtained as the root mean square of the sampled values, besides being
biased (see previous problem) is affected by a statistical uncertainty related to the
noise variance. [A. uV = σn/

√
N .]

Problem 6 A resistor R is heated by Joule dissipation. To compute its temperature,
assume that the resistor is cooled by thermal conduction and that the power lost
to the environment is given by Q = −k(T − T0). The resistor is in equilibrium
with the environment at temperature T0 before being connected to an ideal voltage
generator with output equal to V0. Denoting with C its thermal capacity, calculate the
time evolution of the resistor temperature after the connection to the generator. [A.
T = T0 + (Pτ/C)(1 − e−t/τ where P = V 2

0 /R and τ = C/k.]
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Chapter 8
The Oscilloscope

8.1 Introduction

The oscilloscope is an instrument which allows the observation of the time evolution
of electrical signals. Nowadays most physical quantities can be measured through
specialized sensors, also referred to as transducers, which convert them in to elec-
trical signals. Therefore, the oscilloscope is an indispensable tool for engineers and
physicists (and not only) and can be found in every measurement laboratory.

The first embodiment of an instrument capable of detecting fast electrical signal
dates back to the late 19th century. The oscilloscopes became of widespread use
immediately after the Second World War. They were analog instruments using a
cathode ray tube and a fluorescent screen capable of displaying the point of electron
impact. Thanks to the development of digital electronics, more recently digital oscil-
loscopes have become available that are more versatile to use and offer a wide range
of possible processing of the signals acquired.

Although the analog oscilloscope is nowadays out of date, nevertheless we start
this chapter in the next Sect. 8.2 with a detailed discussion of its operational princi-
ples. This is an effective introduction to the understanding of the functions needed
in an instrument capable of following the time evolution of fast electric signals. We
will discuss the problem of synchronizing the instrument with the experiment, then
we will illustrate a block diagram of its components and functions and finally we will
evaluate a realistic estimate of its response time. In Sect. 8.3, we will introduce the
components of a digital oscilloscope and illustrate its most important characteristics
and operational features. In Sect. 8.4, we will show how to obtain the measure of the
phase difference between sinusoidal signals, and finally in Sect. 8.5 we will discuss
some practical aspects to be kept well in mind when using an oscilloscope in the
laboratory practice.
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Fig. 8.1 Schematic representation of an analog oscilloscope

8.2 The Analog Oscilloscope

A cathode ray tube, schematically represented in the Fig. 8.1, consists of a glass
bulb hosting an electron gun in vacuum to produce a collimated electron beam. The
electrons are emitted by thermionic effect from a cathode C, indirectly heated by
thermal conduction to temperatures that can reach around 800K by the filament F in
its turn heated by the Joule effect of an electric current flowing through it.

The electrons exit the cathode with an average energy of about 0.1eV1 corre-
sponding to its temperature. The anode A1 accelerates them toward the fluorescent
screen S up to energy of the order of 103 eV. Two more anodes, A2 and A3, are used
to regulate the beam intensity and to focus it on the center of the screen. This screen
consists of a glass which serves to close the vacuum tube and on which a grid is
engraved for the measurement of the impact point of the electrons. Indeed, a fluo-
rescent substance deposited on the inner side of the screen, produces the emission
of visible light, typically in the green, when stricken by fast electrons.

In the space between the gun exit and the screen, the electron beam travels through
two pairs of flat electrodes used to deflect the impact point across the screen.A similar
systemwas used until the end of last century to produce the image in a home television
set. It is easy to show that the displacement of the beam impact point on the screen is
proportional to the voltage difference applied to the electrodes. To obtain this result,
we use a reference system with the z-axis passing through the centers of the cathode
and of the screen and the x and y axes in the plane of the screen, see Fig. 8.2.

First consider the pair of electrodes Py, in the following also referred to as the
vertical deflecting plates. When a voltage difference Vy is established across them,
the electric field Ey in the space region between these electrodes is nearly constant in
amplitude and directed along the vertical y-axis on the screen. The electrons come
from the cathode along the z-axis and at the Py entrance, they have velocity v0 along
the z direction as given by the accelerating potential V0. This is equal to the voltage
difference between the cathode and the anode A3. Taking the time origin at the instant

1The electron-volt (eV ) is an energy unit: 1 eV corresponds to the energy gained by an electron
when moving between two space points with a voltage difference of 1V.
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Fig. 8.2 Deviation of the
electron beam within an
analog oscilloscope
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when the electrons enter the space between the electrodes and start feeling the action
of the Ey field, their motion is described by the following equations:

vz =
√
2eV0

me
= v0 = constant, vy = −eEy

me
t = eVy

medy
t and vx = 0

where dy is the distance separating the electrodes Py, e is the electron charge, and me

is the electron mass. The electron trajectory lays in the plane y–z and is described by
the parametric equations

z = v0t and y = 1

2
· eVy

medy
t2

Inserting the value of the time t obtained from the first equation in the second we get
the trajectory equation:

y = z2

4dy

Vy

V0

The electrons follow a parabolic trajectory while traveling between the electrodes
but they will resume their straight uniform motion once they exit the region where
the Ey field is present. Their new flight direction will be given by the tangent to the
parabolic trajectory at the exit of the electrodes.

With the help of Fig. 8.2 we can now evaluate the displacement of the beam
impact point on the fluorescent screen. It is composed of the segment OP due to the
deflection inside the electrodes and of the segment PO′ due to the deviation of the
flight direction at the electrodes exit.

Denoting with l the extension of the electrodes along the z direction and using
the last of previous equations we obtain

OP = l2

4dy

Vy

V0
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while for the other segment we have

PO′ = L tan θ = L

(
∂y

∂z

)
z=l

= L
l

2dy

Vy

V0

where L is the distance between the electrodes exit point and the fluorescent screen.
Adding these two terms, we obtain

OO′ = l

2dy

(
l

2
+ L

)
Vy

V0
= kVy

This shows that the displacement of the beam impact point along the y-axis is pro-
portional to the voltage difference Vy applied to the vertical deflecting plates Py.

The deflection factor, k = l(l/2+L)/V0dy, depends on the geometrical parameters
of the cathode tube and on its accelerating voltage. A typical value is obtained
assuming dy = 1 cm, l = 4 cm, L = 20 cm and V0 = 1000V that yield k =
4.4 × 10−2 cm/V. This means that signal amplitude of 1V produces a deflection
of about half a millimeter, showing that it is necessary to use a signal amplifier to
connect it to the electrodes and obtain an easily measurable deflection. After an
adequate calibration of the instrument, this deflection can be used to measure the
voltage difference across the electrodes by means of a ruler engraved on the screen.

It should be noted at this point that contrary, for example, to the case of the
indicator in the moving coil ammeter, the fluorescent screen is a two-dimensional
object where x and y directions are completely equivalent. Therefore, it is possible
to use the Px electrodes to measure a potential difference Vx simultaneously to Vy,
and consequently to obtain directly on the screen a plot displaying one quantity in
function of the other.

Let us now see how to use an oscilloscope to measure the time evolution of the
voltage drop across a capacitor C while it is charged through a resistance R to the
output potential V supplied by a voltage generator. With reference to the Fig. 8.3,
we will connect the points A and B to the electrodes Py while using the electrodes
Px as it follows. Starting from the beginning of the experiment, i.e., from the instant
when the switch T is closed, we let the voltage Vx applied to these electrodes to
increase linearly in time. This moves the x coordinate of the bright spot on the screen
proportionally to the charging time while the coordinate y changes proportionally to
the voltage across the terminals of the capacitor C. In this way, we obtain a plot of
the time evolution of this voltage during the charge.

Fig. 8.3 Experimental setup
to study the charge of a
capacitor

R

C

T

−
+

V

B

A

yV
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We see from such example that in order to measure the time evolution of electric
signals the oscilloscope needs an auxiliary circuit to generate the voltage ramps to
apply to the Px electrodes. By changing the rate at which this ramp changes in time,
it will be possible to change the time scale of the instrument.

8.2.1 Synchronization

It is important to note at this point that to start the horizontal Vx voltage ramp in the
experiment just discussed we used the knowledge of the instant at which the phe-
nomenon begins. For a practical implementation themost effective approach consists
of using a switch driven by an electric pulse with the same pulse also providing the
start to the Vx voltage circuit. In this case, we would say that the oscilloscope is used
with an external synchronization pulse, commonly referred to as the trigger pulse.

This is not always feasible and often it is necessary to obtain the trigger pulse
directly from the signal under observation. In our previous experiment, assuming a
charging voltage of 10V,we could have built the pulsewith a threshold discriminator.
For example, when the voltage across the capacitor becomes higher than 0.1V, the
discriminator fires the pulse that starts the horizontal ramp. In this case, we say
that the trigger pulse is internal, since an ancillary circuit built in the oscilloscope
generates it.

Since the persistence time of the track on the fluorescent screen is very short, an
analog oscilloscope is of little use for the study of transient phenomena unless we use
a photographic camera to record and analyze results. However, it becomes extremely
useful for the analysis of periodic waveforms that allow a continuous display on the
fluorescent screen exploiting the finite persistence time of the human retina. In these
conditions, we must be periodically restarting the voltage ramp Vx whose waveform
takes a characteristic sawtooth shape. It must be noted that in these circumstances
too the trigger circuit plays an important role since it allows starting the track always
at the same point of the periodic signal avoiding confusion of subsequent sweeps on
the screen.

8.2.2 The Analog Oscilloscope: Scheme of the Instrument

The layout of an oscilloscope is well represented by the block diagram of Fig. 8.4.
The cathode ray tube (CRT) is powered with the voltages needed for the heather and
the electron gun. The signal under test is applied to the vertical deflecting plates after
being amplified by an appropriate circuit to obtain on the screen an easily measurable
displacement. A switch (not shown) allows inserting an input capacitor for cutting
the DC component of the signal if necessary to enhance the component that varies
over time (AC coupling). A sawtooth voltage is applied to the horizontal deflecting
plates and its slope can be adjusted through an amplifier to scan the request time
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Fig. 8.4 Functional scheme of a CRT oscilloscope

interval. The circuit that generates the horizontal ramp can be controlled through an
appropriate processing of the signal under measurement, internal trigger, or through
an auxiliary pulse coming from the experiment, the external trigger, selectable via a
switch contact.

Often, a probe, essentially consisting of a compensated resistive divider, which
enables to attenuate the input signal to extend the measurement range to higher
amplitudes, accompanies laboratory instruments. The use of a suitable probe is highly
recommended when measuring high voltages also for safety reasons. It should be
remembered that in general, the probe increases the impedance seen by the circuit
under test but can reduce the bandwidth of the instrument. For a deeper understanding
of working principles of an oscilloscope probe, we recommend the study of the
compensated voltage divider presented in Sect. 9.10.

It is important to remark again that the use of the oscilloscope is not limited only to
the study of the time evolution of electrical signals. Indeed, it is possible to connect
the horizontal deflecting plates to any kind of signal to study its influence on the
quantity being measured on the y-axis. To this purpose, the instrument is equipped
with an external input for the x-axis and with a switch to address it in place of the
horizontal ramp. When using this feature, we say that the oscilloscope is operated in
the x–y configuration.

As an example, we show how to use the oscilloscope to measure the voltage–
current characteristic of a diode. Following the scheme in Fig. 8.5, a bipolar oscil-
lator supplies a time-dependent voltage, for example with a sinusoidal or triangular
waveform, ranging from a negative minimum to a positive maximum. Adjusting the
amplitude of this signal, the voltage drop across the diode terminals can change in
the requested interval. The vertical input of the oscilloscope is connected in parallel
to the diode terminals to obtain the measure of the diode voltage. The voltage drop

http://dx.doi.org/10.1007/978-3-319-31102-9_9
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Fig. 8.5 Circuit to measure
the voltage-current
characteristic of a diode with
an oscilloscope +
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across the resistor is proportional to the current flowing in the diode and can be
connected to the horizontal input of the oscilloscope to obtain directly on its screen
a representation of the diode characteristic.

It is important to note in Fig. 8.5 the solution adopted for the ground connections.
Since usually all inputs to the oscilloscope are referred to the same ground, attention
must be paid to avoid short circuits. This solution requires that the oscillator output
must be floating, i.e., it should be disconnected from the ground connection of its
power supply. Otherwise, a voltage transformer must be used to obtain a floating
voltage to use in our measurement, see Chap.6. This complication can be avoided if
the oscilloscope has two independent vertical channels to measure the voltage across
the diode as the difference between the oscillator signal and the voltage drop across
the resistor. We will see in the following that this function is easily implemented in
a digital oscilloscope.

8.2.3 Response Time

In general oscilloscopes are rather fast instruments since they exploit the motion
of electrons, the lightest stable particles present in nature. Nevertheless, there is a
limit to the time duration of a signal that can be accurately measured. This limit
arises from the finite time that electrons employ to cross the space between the
deflection electrodes. In fact, it is clear from the derivation presented above that, if
the voltage varies appreciably while the electrons are deflected, its measurement will
be distorted. Denoting with l the length of the deflecting plates in the electron flight
direction, see Fig. 8.2, the transit time is given by

τr = l

v0
=

√
l2me

2eV0

With typical parameters, l = 4 cm and V0 = 1000V, this time turns out of the order
of 10−9 s. This implies that pulses with a duration longer than 10ns can be reliably
measured, corresponding to a high-frequency cutoff of the order of 100MHz. This
limit is due only by the properties of the cathode ray tube. However, in practice the
amplifier used for the input signal sets the bandpass of the oscilloscope. Indeed, in a

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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well-designed instrument the bandpass of this amplifier is sharp and narrower than
the bandpass of the tube to guarantee that all measured signals are not distorted.

8.3 The Digital Oscilloscope

In the analog instrument, the cathode ray tube performs a dual function since it is
used both to carry out the measurement through the deflection of the electron motion
and to show the result through the fluorescent screen. The advances of modern digital
electronics allow separating these two functions to get more accurate, flexible and
versatile instruments.

A digital oscilloscope exploits an analog-to-digital converter (ADC) to measure
the input voltage at fixed time intervals, a microprocessor to store the data files and
to perform additional data analysis, if required, and a display to represent the results
for the user. The first embodiment of a digital oscilloscope, which still did use a
cathode ray tube for the display, dates to about 40 years ago. The rapid progress
in the production of flat liquid crystal screens of the last 20 years has caused the
complete disappearance of the cathode ray tube from the laboratories (and from our
homes).

A digital oscilloscope, in addition to performing all the functions of an analog
one, offers a better screen and a number of modes of use exploiting the digital nature
of the instrument. The main ones are:

• Digital direct reading of voltage and time
• Recording of transient phenomena
• Simultaneous measure of multiple voltages (multi-channel instrument)
• Accurate time base
• Electronic processing of the acquired signals: sum, difference, spectral analysis
• Average of repeated measurements
• Interface for data transfer to the memory of a computer for data storage and further
analysis

Lastly, it is worth noting that a digital oscilloscope offers the opportunity to exploit
the electronic memory to record events in the past with respect to the trigger pulse
(post-trigger operation). This is achieved by filling the memory sequentially in time
in a cyclical manner and stopping the acquisition of data only upon arrival of the
trigger therefore keeping in memory the values measured before.

The theoretical limit to the frequency bandwidth of a digital oscilloscope is due
to the sampling frequency of the analog-to-digital converter that can be easily made
of the order of one gigasample per second, i.e., 109 samples every second. Indeed, as
we show in Fig. 8.6, when the signal to be measured has a frequency higher than the
sampling frequency, the reconstructed signal is strongly distorted both in frequency
and in shape (aliasing). It is possible to show that the maximum frequency that can
be reliably measured is limited to half the sampling frequency. This limit is usually
referred to as Nyquist frequency. Therefore, in a digital oscilloscope the bandpass of



8.3 The Digital Oscilloscope 189

Fig. 8.6 The figure illustrates the phenomenon known as “aliasing”. A high-frequency signal
(continuous line) is reconstructed erroneously due to an insufficient sampling. The points, sampled
at the time indicated by the arrows, are shown by the dots and the dashed line represents the
reconstructed signal

the input amplifier is limited below half the sampling frequency to avoid distorting
the measurements (anti-aliasing filter)

The readout of data from a digital oscilloscope can be done through the grating
on its display, in which case the measurement accuracy will be determined by the
division amplitude. However, the potential of the instrument is fully exploited only
when the data are used in full digital form. In the digital measurement of a voltage,
the uncertainty is given by the value of the last significant bit of the analog-to-
digital converter and by the accuracy of its calibration, see Sect. 4.4.1. In general, for
economic reasons these two contributions are made of the same order of magnitude.
As an example, an eight bit converter has a last significant bit equivalent to 1/256 of
its full range and it does not make much sense trying to calibrate it with accuracy
much better than half a percent of the full range.

As for the accuracy of time measurements, it must be emphasized that it is in
general very high, of the order of one hundred parts per million, thanks to the use
of quartz-stabilized oscillators for timing the conversion in ADCs. This accuracy,
however, is accessible only by transferring data to a computer through a special
interface. In fact, the capacity of representation of a liquid crystal display is limited:
the horizontal scan is divided into a finite number of points, typically a few thousand.
Therefore, the accuracy of time measurements obtained by reading from the display
is in the order of one part in a thousand, about an order of magnitude worse than the
intrinsic accuracy. The full use of the features of a digital oscilloscope in general can
only be achieved by transferring the data to a computer through an interface.

By way of example, we report in the Table8.1 the most important parameters of
a Tektronics TDS1012 oscilloscope shown in Fig. 8.7.

http://dx.doi.org/10.1007/978-3-319-31102-9_4
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Fig. 8.7 Tektronics TDS1012 digital oscilloscope (Copyright c©Tektronix. Reprinted with permis-
sion. All Rights Reserved)

Table 8.1 Principal
parameters of the TDS1012
digital oscilloscope

Sampling frequency 1GSample/s

Frequency bandpass 100MHz

Vertical sensitivity from 2mV/div–5V/div

Vertical resolution 8 bit

Voltage accuracy ±3%

Time base accuracy 50ppm

Buffer memory size 2500 data

8.4 Phase Measurements

The measurement of signal amplitude with a digital oscilloscope is easily done with
simplemanipulation of the voltage data supplied by the instrument. In particular,most
instruments nowadays offer a direct reading both of the peak-to-peak amplitude and
of its root mean square (rms) value. On the contrary, phase measurements require
special arrangements. Two different methods can be used when data are obtained
directly from the display. The first only uses amplitude data and it can be implemented
with a single channel analog instrument. The second method requires the measure
of time intervals and is more easily implementable with an instrument having two
independent channels. A very accurate measure of the phase difference between two
sinusoidal signals can be obtained by exporting the data from a two channel digital
oscilloscope to a personal computer. A detailed description of the algorithms needed
to process the data is beyond the scope of this book. The interested readers can find
an introduction to this argument in reference [1].
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Phase difference. Method of the ellipse. This methodmakes use of the oscilloscope
in the configuration x–y, whereby two voltage signals are sent respectively to the x
and to the y axes. To begin the analysis, suppose that the same sinusoidal signal is
sent to the two inputs. On the screen of the instrument, we will observe the plot of a
curve parametrically described by the two following equations:

{
x(t) = A cos(ωt + φ0) = A cosφ(t)
y(t) = A cos(ωt + φ0) = A cosφ(t) = x(t)

with φ(t) = ωt + φ0 e −π < φ(t) < +π . This is a segment of the straight line
inclined 45◦ with respect to the x-axis.When the signal sent to the y-axis has different
amplitude, the last equation becomes

y(t) = B cos(ωt + φ0) = B cosφ(t) = Bx(t)/A

and the curve is transformed in a segment of the straight line with inclination equal
to arctan(B/A).

In case the twoprevious signals have aphase differenceof−π/2, the twoequations
become

{
x(t) = A cos(ωt + φ0) = A cosφ(t)
y(t) = B cos(ωt + φ0 − π/2) = B sin φ(t)

and yield the parametric description of an ellipse centered in the origin and with axes
aligned to the reference system: (x/A)2 + (y/B)2 = 1.

Generalizing the value of the phase difference, we have

{
x(t) = A cos(ωt + φ0)

y(t) = B cos(ωt + φ0 + Δφ)

This is the equation of an ellipse centered in the origin but inclined with respect
to the reference system. This can be shown by obtaining from the first equation
cos(ωt + φ0) = x/A and using it in the second to write

y

B
= x

A
cosΔφ −

√
1 −

( x

A

)2
sinΔφ

Isolating the square root on the left member and squaring the resulting equation, we
get:

sin2 Δφ

[
1 −

( x

A

)2
]

=
( x

A

)2
cos2 Δφ +

( y

B

)2 − 2xy
cosΔφ

AB
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Fig. 8.8 An ellipse can be seen on the screen of an oscilloscope using two sinusoidal input signals
with the same frequency displayed in the x–y mode

that with simple algebra finally yields

(
x

A sinΔφ

)2

+
(

y

B sinΔφ

)2

− 2xy
cosΔφ

AB sin2 Δφ
= 1

that is the equation of an ellipse. The absence of terms linear in x and y implies that
this ellipse is centered in the origin. Its axes are rotated with respect to the reference
system of the screen, as shown in the Fig. 8.8.

Usually with this method the phase difference is obtained comparing the value
y0 of the signal on the y channel, measured when the amplitude of the signal on
the x channel is null, to its maximum value ym, see Fig. 8.8. When x = 0 we have
ωt + φ0 = ±π/2 and this implies that y0 = B cos(±π/2 + Δφ) = ±B sin(Δφ).
Since ym = B we obtain Δφ = arcsin(y0/ym).

Phase difference. Method of the time shift. The secondmethod for determining the
phase difference between two signals requires the measurement of the time interval
that elapses between the passages of the two signals across a point corresponding
to an assigned phase (refer to Fig. 8.9). In practice, we should always choose a
point that the signal crosses with the maximum slope to minimize the uncertainty
on the determination of the time. For sinusoidal signals, this corresponds to the
zero crossing. To increase the accuracy of measurement of the times, it is helpful
in any case to expand both the vertical and horizontal scale of the instrument to the
maximum feasible.

In conclusion, to obtain the phase difference between two sinusoidal signals it will
be sufficient to measure the time interval that elapses between the passages through
the zero level, with positive (or negative) slope, of the two signals. Denoting with t1
and t2 the two time points corresponding to these crossings, we haveωt1 = ωt2+Δφ

yielding Δφ = 2π(t1 − t2)/T where T is the period of the two sinusoidal signals
and can be measured with the same oscilloscope.



8.4 Phase Measurements 193

Fig. 8.9 The phase
difference measurement with
the method of time delay
between sinusoidal signals

Although this measurement is more easily performed with a double channel oscil-
loscope, nevertheless using the external trigger it is possible to implement it in a single
channel instrument. In this case, t1 and t2 can be obtained with two consecutive mea-
sures but one of the two signals must be always connected to the trigger input to
guarantee that the time axis does not shift between the two measurements.

8.5 A Few Practical Considerations

When using an oscilloscope, we must always keep in mind that the input amplifiers
have finite input impedance Zin, well represented in general by a resistorRin, typically
of the order of 1M	, in parallel to a capacity Cin, of the order of 10pF. Therefore,
if a circuit with a Thévenin equivalent impedance Zs provides the input signal with
amplitude Vs, the signal measured by the oscilloscope will have amplitude equal to
VsZin/(Zs + Zin). Usually Zin � Zs, and often the correction to obtain the unper-
turbed value is not important. However, the reactance of the capacity Cin decreases
with increasing signal frequency and can become comparable to Zs. When this last
impedance is purely resistive, Zs = Rs, the net effect will be the spurious presence
of a low-pass filter with a frequency cutoff ν = 1/(2πRsCin). Therefore, special
attention must be paid when measuring circuits with high output impedance.

The problem is often complicated by presence of cables to connect signals to the
oscilloscope. Cables will be dealt with in details in Chap.10 of this book. Referring to
the RG58C/U type of cable, of widespread use in laboratories, it must be stressed that
the use of a meter of this cable for the input connection implies that and additional
capacity of about 100pF is added in parallel to Cin. Furthermore, the same length
of cable has a series impedance of about 0.25µH. Assuming for example that the
circuit under test has an output capacitive reactance corresponding to 1nF, it is easy to
calculate that the presence of a few meters of cable can lead to the spurious presence

http://dx.doi.org/10.1007/978-3-319-31102-9_10
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of resonant frequencies of the order of a few MHz. In these cases, it is advisable to
connect the signal to the input with a compensated probe, a device that we discuss
in details in Sect. 9.10.

Reference

1. R. Bartiromo, M. De Vincenzi, AJP 82, 1067–1076 (2014)
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Chapter 9
Pulsed Circuits

9.1 Introduction

In previous chapters, we exploited the symbolic method to study the behavior of
electrical circuits with sinusoidal voltages and currents. The symbolic method assigns
resistance and reactance to circuit components and allows solving circuits for sinu-
soidal signals at given frequency using the two Kirchhoff’s laws. This approach to
the solution of a circuit is known as the analysis in the frequency domain.

Since a sinusoidal signal retains its shape going through a linear circuit (only
its amplitude and phase can change), there is no more information to be gained
studying it as a function of time. Preserving the waveform of the input signal is a
characteristic unique to the sinusoidal excitation; in general, even a linear circuit will
deform waveforms other than sinusoidal.1 In principle, using the Fourier expansion,
it would be possible to study signals of any shape in the frequency domain. However,
to analyze in this way pulsed signals, typically characterized by rapid rising and/or
falling edges, we should use a considerable number of harmonics in the Fourier
expansion, with a resulting increase in complexity of computations and with the
risk of missing the salient features of the waveform. In these cases, it is convenient
to analyze the circuit response directly as a function of time. Of course, the two
approaches must obtain the same result and the choice between them is only a matter
of convenience.

In general, the analysis of circuits with non-sinusoidal signals is addressed by
solving the differential equations describing them directly in the time variable.2 This
approach to solving circuits is known as the time domain analysis and is the subject of
the present chapter. In particular, in this chapter we study pulsed signals that highlight

1A generic signal shape is only preserved in the particular case of circuit consisting uniquely of
resistances.
2We have already seen in Sect. 5.3.2 that circuits with capacitance and inductance are described by
differential equations.
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interesting properties of electrical components and are of fundamental importance
for the understanding of the operation of the digital circuits underpinning most of
modern electronic devices.

We start in Sect. 9.2 introducing the voltage step, a signal playing in the time
domain a role analogous to the sinusoidal signal in the frequency domain. In Sect. 9.3,
we study the response of the high-pass RC circuit, already studied in Chap.6 in the
frequency domain, to different pulsed waveforms and in Sect. 9.4, we show that it is
possible to use this circuit to obtain in output the time derivative of the input signal.
In Sect. 9.5, we study the response of the low-pass RC circuit while in Sect. 9.6 we
show how to obtain with this circuit the time integral of the input signal. After briefly
addressing in Sect. 9.7 similar RL circuits, we discuss the response to the voltage
step of the parallel and the series RLC circuits, respectively, in Sects. 9.8 and 9.9.
Finally, we address in Sect. 9.10 the subject of signal attenuation with an instructive
comparative discussion of the compensated voltage divider in both the frequency
and the time domains.

9.2 The Step Signal

Among impulsive signals, the step signal plays a special role. This waveform has
zero amplitude before a given time instant t0 (often it is possible to set t0 = 0 without
loss of generality) and a constant value thereafter. TheHeaviside θ function is usually
adopted for its mathematical representation and, as an example, for a voltage signal
starting at t = 0 we can write v(t) = V θ(t).

From a mathematical point of view the step signal has a discontinuity at t = 0; in
fact, the limit of the function at the point t = 0 is 0 when reached from t < 0, while
it is V when reached from t > 0. We indicate the time t = 0 reached from negative
values with t = 0−, and with t = 0+ when reached from positive values. Therefore,
for the voltage step we can write: vi (0−) = 0 and vi (0+) = V .

The special role of the step function stems from the possibility to express any
signal as a superposition of step functions. In fact, given a generic function v(t), for
t > 0 the following relation holds:

v(t) = v(0) +
∫ t

0

dv

dt ′ dt ′ = v(0)θ(t) +
∫ ∞

0

dv

dt ′ θ(t − t ′)dt ′

where the key point is that, with the use of the step function, we moved the indepen-
dent variable t from the integration limit to the argument of the integrand function.

Once we know the response G(t) of a linear circuit to the unit step v(t) = θ(t),
using the superposition theorem we can compute the output signal vo of the circuit
to any input waveform vi (t). It is easy to verify that the following relation holds:

vo(t) = vi (0)G(t) +
∫ ∞

0

dvi

dt ′ G(t − t ′)dt ′ (9.1)

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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In the following,wewill see several applications of this equation,which shows that
the importance of the step function for the analysis in the time domain is somewhat
similar to that of the sine function for the analysis in the frequency domain.

9.3 High-Pass RC Circuit

Figure9.1 shows a high-pass RC circuit, already studied3 using the symbolic method
in the frequency domain. The analysis of this circuit in the time domain is performed
solving the differential equation describing the time evolution of its output voltage.

Referring to Fig. 9.1, we denote with vi (t) the input voltage and i(t) the circuit
current. Applying Kirchhoff’s law of voltages, we can write

vi (t) = vC(t) + vR(t) = 1

C

∫
i(t)dt + Ri(t) or

dvi (t)

dt
= i(t)

C
+ R

di(t)

dt
(9.2)

The output signal vo(t) is the voltage difference across the resistance R, vo(t) =
Ri(t), and using this relation Eq. (9.2) becomes

dvi (t)

dt
= 1

RC
vo(t) + dvo(t)

dt
(9.3)

This is a first-order differential equation with constant coefficients whose solution
gives the output voltage signal vo(t) as a function of time. It is worth to note that,
as in the frequency domain analysis of this circuit, R and C only appear in Eq. (9.3)
through the characteristic time τ = RC .We shall see in the following that the solution
of this equation is relevant for all circuits, both RC and RL , characterized by a
single parameter. We can solve Eq. (9.3) exploiting the solution formula of a generic
first-order differential equations.4 However, when its left-hand side is constant, a
straightforward integration shows that its solution reduces to

vo(t) = A1 + A2e
−t/RC (9.4)

where A1 and A2 are constants linked to initial and final values of the output voltage.

3See Sect. 6.8.
4The first-order linear differential equation y′(t) = α(t)y(t) + β(t) has for general solution:

y(t) = exp

(∫ t

0
α(τ) dτ

)[
c +

∫ t

0
dτ β(τ) exp

(
−
∫ τ

0
α(τ ′) dτ ′

)]

where c is the integration constant. If, as of interest in our case,α(t) andβ(t) are constants (α(t) = αo
and β(t) = βo), the previous relation simplifies to

y(t) = (c + βo/αo) exp (αot) − βo/αo

For Eq. (9.3) we have αo = −1/RC and, requiring y(∞) = V f and y(0) = Vi , we get βo/αo = V f
and c = (Vi − V f ).

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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Fig. 9.1 High-pass RC
circuit

vi(t) vo(t)R

C

The constant A1 is the level reached at t = ∞, i.e., the final value of the output
voltage. We denote it with the mnemonic symbol V f . The constant A2 is determined
by the initial value of the output voltage that we denote by Vi . For t = 0 Eq. (9.4)
gives vo(0) ≡ Vi = A1 + A2 yielding A2 = Vi − V f . Substituting these values, we
obtain

vo(t) = V f + (Vi − V f )e
−t/RC (9.5)

This equation will be used several times in the following as it represents the general
solution for circuits with a single characteristic time constant having Vi and V f ,
respectively, as initial and final values of the output signal.

9.3.1 Response to Voltage Step

When the input to the high-pass RC circuit of Fig. 9.1 is a voltage step, vi = V θ(t),
then the left-hand side in Eq. (9.3) is zero almost everywhere5 and we can find the
output signal using Eq. (9.5). To compute the constants Vi and V f we note that, at
t = 0, the input voltage vi steps up from 0 to V . The output signal must behave in
same way: indeed, the voltage drop across the capacitor is (1/C)

∫ t
0 i(t ′)dt ′ and for

t → 0 the integral tends to zero when i(0) is finite.
This leads us to state the following important rule for the analysis of capacitors

in pulsed circuits:

the voltage drop across a capacitor cannot change instantaneously if the current flowing
through it remains finite

In the present case, since the input voltage abruptly steps up from 0 to V and the
resistance R limits the current in the capacitor, the output voltage signal shows the
same discontinuity as the input, since the voltage across a capacitor cannot change
abruptly. Therefore, vo(0+) = V , and in Eq. (9.5) we set Vi = V .

The final value of the output voltage, at t = ∞, is zero, because the current in R
becomes null once the capacitor C is charged at the voltage V . Seen in another way,
we can look at the capacitor between input and output of the circuit as a component
that blocks the direct current.6 Therefore, we have V f = 0.

5This expression means that the property enunciated is not verified only for a set of points of zero
measure.
6The capacitors used to block the direct current flow are called blocking capacitors.
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Substituting the values of Vi and V f in Eq. (9.5) we get the output voltage signal
for the high-pass RC circuit as

vo(t) =
{

V e−t/RC for t > 0
0 for t < 0

(9.6)

Using the Heaviside θ(t) function, we can write this solution in a more compact way
as

vo(t) = θ(t)V e−t/RC (9.7)

9.3.2 Response to Voltage Pulse

An ideal pulse signal or, briefly, a pulse, see Fig. 9.2, of time duration T can be
mathematically written as V [θ(t) − θ(t − T )]. Therefore, a pulse is the sum of two
step signals, with opposite amplitudes, separated by a time interval T . Since the RC
circuit is linear, we can apply the superposition theorem to find its response to an
ideal pulse from relationship (9.7). It is a simple exercise to get the solution

vo(t) = V
[
θ(t)e−t/RC − θ(t − T )e−(t−T )/RC

]
(9.8)

It is instructive to justify the result in (9.8) analyzing step by step what happens
in the circuit. In the time interval 0 < t < T , the circuit response is the same as for
the step signal vo(t) = V e−t/RC . At time t = T , the input signal steps down from
V to 0 in a zero time interval; since the voltage across a capacitor cannot change
instantaneously, the output voltage will have the same “jump” as the input, as shown
in Fig. 9.2. In other words, the capacitor for “fast” voltage variations behaves like a
short circuit, so that at time t = T + the output voltage will be V (e−T/RC − 1). Note
that this value is negative. For t > T , the capacitor C discharges on the resistance R
and the output voltage tends to zero with the known exponential law (see Fig. 9.2).

The qualitative features of the output signal depend on the ratio of the pulse
duration T to the characteristic time RC of the circuit. For the signal shown in
Fig. 9.2, the two times are of the same order of magnitude. If T � RC the output is

Fig. 9.2 Response of a high-pass RC circuit to a pulse of time duration T (dashed line). In this
plot RC = 3T . Shaded areas for positive and negative voltages are equal
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(b)

(a)

Fig. 9.3 Output signal shapes of a high-pass RC circuit: for RC � T (top plot) the shape of output
and input signals are almost equal, for RC � T (bottom plot) the shape of output signal is signif-
icantly different from zero only in correspondence to the steps of the input signal (differentiating
circuit). The dashed line represents the input signal

quite similar to the input, see Fig. 9.3a, while if T � RC the output has spikes only
in proximity of the rising and falling edges of the input pulse, see Fig. 9.3b. One can
easily verify, using for example Eq. (9.8), that the total area under the output signal,
for all values of the period T , is always zero.

9.3.3 Response to Rectangular Waveform

The rectangular waveform7 is a periodic signal that in a fraction δ of its period T
remains at a “high” constant value V2 and in the rest of the period T (1−δ) remains at
a “low” value V1, see Fig. 9.4a. The steady state response of an RC high-pass circuit
to a rectangular waveform is a superposition of signals described by expression (9.8)
opportunely jointed. To find this output waveform, we consider a period of the input
waveform (0 − T ), and we assume that at time t = 0− the output voltage is Vi ,
an unknown value to be determined. Taking into account the shape of the input
signal, see Fig. 9.4a, the behavior of capacitors for impulsive signals and using the θ

function, the output signal, in the time interval 0 − T , can be written as

7This signal has already been described in Sect. 7.2.3.

http://dx.doi.org/10.1007/978-3-319-31102-9_7
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(a)

(b)

(c)

V1

V2

Vm

t

t

t

Fig. 9.4 Response of a RC high-pass circuit to a rectangular wave. Plot a input signal; plot b output
signal (with RC = T/2); plot c output signal (with RC = 0.2T )

vo(t) = (Vi + ΔV )θ(t) exp

(
− t

RC

)
− ΔV θ(t − δT ) exp

(
− t − δT

RC

)
(9.9)

where ΔV = V2 − V1. By imposing the condition of periodicity of the output wave
vo(T −) = vo(0−), after some algebra one obtains Vi = ΔV [exp(δT/RC)−1]/[1−
exp(T/RC)].

The response given by the expression (9.9) can also be obtained using the super-
position principle. At any given time, the circuit response consists of the sum of
three contributions: (i) the response to a continuous signal of amplitude V1, (ii) the
response to the infinite series of past transitions from V1 to V2, and (iii) the response
to the infinite series of past transitions from V2 to V1.

For a high-pass RC circuit the first contribution is zero. Using relationship (9.7),
the contribution of all the transitions in the past can be written as

(V2 − V1)

∞∑
n=1

e−(t+nT )/RC , and (V1 − V2)

∞∑
n=1

e−(t+nT −δT )/RC

After some simple algebra, we get

(V2 − V1)e
−t/RC

(
1 − eδT/RC

) ∞∑
n=1

e−nT/RC = (V2 − V1)e
−t/RC 1 − eδT/RC

eT/RC − 1
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where, in the last expression we used the formula for the sum of a geometric series
of common ratio e−T/RC and first element e−T/RC . To obtain the complete response
we have to add to the previous expression the circuit response to the input signal in
the (0, T ) time interval. In conclusion, the output signal is

vo(t) = (V2 − V1)

[
e−t/RC(1 − eδT/RC)

eT/RC − 1
+ θ(t)e−t/RC − θ(t − δT )e−(t−δT )/RC

]

that can be easily cast in the same form as Eq. (9.9). Let us show that this signal is
periodic. At t = 0− we have

vo(0
−) = (V2 − V1)

1 − eδT/RC

eT/RC − 1

and at t = T −

vo(T −) = (V2 − V1)

[
e−T/RC(1 − e−δT/RC )

eT/RC − 1
+ e−T/RC − e−(T −δT )/RC

]

= (V2 − V1)

[
e−T/RC(1 − eδT/RC) + e−T/RC (1 − eδT/RC )(eT/RC − 1)

eT/RC − 1

]

= (V2 − V1)
1 − eδT/RC

eT/RC − 1
= vo(0

−)

This expression shows that the output signal is periodic with the same period of input
signal.

The response of a high-pass RC to a periodic signal of any shape is always an
alternating signal, i.e., its mean value in one period is zero evenwhen the input signal
has a nonzero mean.8 In fact, integrating in a period the two members of equation
(9.3) one obtains

vi (T ) − vi (0) = 1

RC

∫ T

0
vo(t) dt + vo(T ) − vo(0) (9.10)

Since we are looking for a stationary state, input and output signals are periodic:
we have vi (T ) = vi (0) and vo(T ) = vo(0). Recalling the definition of mean value
of a function, it follows from the previous equation that the mean value of vo(t) in a
period is zero.

8The proof of this statement has already been given in a previous chapter in the frequency domain
(see Sect. 7.3). The proof, by means of the Fourier series expansion, shows that the AC coupling,
made through a high-pass RC filter, turns any periodic signal into an alternating signal, with zero
average.

http://dx.doi.org/10.1007/978-3-319-31102-9_7
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9.3.4 Response to Voltage Ramp

A voltage signal increasing linearly starting from a given time is called a ramp
signal or a voltage ramp. Assuming t = 0 as starting time, the ramp signal has the
expression: vi (t) = αt . The response of the high-pass RC circuit to the ramp is
obtained solving Eq. (9.3), that in this case is written as:

α = vo

RC
+ dvo(t)

dt
. (9.11)

The solution of (9.11) can be obtained either using the general solution formula of
first-order differential equations (see footnote on p. 197) or, more directly, as the
sum of the particular solution vo = αRC and the solution vo = Ae−t/RC (A being
the integration constant) of the associated homogeneous equation. By imposing the
initial condition vo(0) = 0, we obtain

vo(t) = αRC(1 − e−t/RC ) (9.12)

It is a useful exercise to derive again the solution (9.12) using the convolutionmethod
expressed by Eq. (9.1). To apply it, we need to know the response G(t) of the high-
pass RC circuit to the unitary voltage step. This was already computed in Sect. 9.3.1
and is given by Eq. (9.7) with V = 1. Using this expression of G(t), we obtain

vo(t) = vi (0)G(t) +
∫ ∞

0

dvi (t ′)
dt ′ G(t − t ′)dt ′ =

∫ ∞

0

dvi (t ′)
dt ′ θ(t − t ′)e−(t−t ′)/RC dt ′

where we used the relation vi (0) = 0. Moreover dvi (t)/dt = α and we can write

vo(t) =
∫ ∞

0
αθ(t − t ′)e−(t−t ′)/RC dt ′ =

∫ t

0
αe−(t−t ′)/RC dt ′ = αe−t/RC

∫ t

0
e t ′/RC dt ′

Computing the integral, we obtain for the output signal expression (9.12) we found
before solving the differential equation of the circuit.

Fig. 9.5 Response of the
high-pass RC circuit to a
voltage ramp

V

1 2 3 t/RC4
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Note also that for t � RC the output tends to the constant value αRC , propor-
tional to the time derivative of the input voltage, see Fig. 9.5. We will come back to
this remark in the following Sect. 9.4 dealing with the differentiation properties of
RC circuits.

9.3.5 Response to the Exponential Signal

A real step signal reaches its final value V in a finite time. A simple mathematical
model, which takes into account the rise time of a real signal, is represented by the
so-called exponential signal, whose expression, for t > 0, is

vi (t) = V (1 − e−t/τ ) (9.13)

where V is the final voltage of the signal and the parameter τ is related to the time
needed to approach it. For an example of this waveform, see Fig. 9.6a.

The response of the high-pass RC circuit to the exponential signal can be obtained
solving directly the differential Eq. (9.3) with vi (t) given by Eq. (9.13). However, also
in this case it is more convenient to use the technique of the convolution with the
unitary step responseG(t) = θ(t)e−t/RC wederived in the previous section. Inserting
it in Eq. (9.1) together with vi (0) = 0 and dvi/dt = (V/τ)e−t/τ , we can write

vo(t) = V
∫ ∞

0

e−t ′/τ

τ
θ(t − t ′)e−(t−t ′)/RC dt ′ = V

e−t/RC

τ

∫ t

0
e−t ′(1/τ−1/RC)dt ′

= V
e−t/RC

τ

⎡
⎢⎣e−(t−t ′)/RC

1

RC
− 1

τ

⎤
⎥⎦

t

0

= V
e−t/RC − e−t/τ

1 − τ

RC

(9.14)

Defining the variable x = t/τ and the parameter η = RC/τ (both dimensionless),
Eq. (9.14) becomes

vo(x)

V
= η

e−x/η − e−x

η − 1
(9.15)

For η = 1 this expression reduces to xe−x as one obtains taking its limit for η → 1.
Figure9.6 shows the output signal (9.15) for some values of the parameter η.
Initially, the output signal follows the rise of the input signal, with characteristic time
τ while its decay at longer times is linked to the time τC = RC needed to charge the
capacitor. Note that when the rise time of the input signal is longer or equal to the
characteristic time τC , the maximum value of the output is considerably lower than
the corresponding value of the input signal.
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Fig. 9.6 Response of
high-pass RC circuits with
different time constant to an
exponential signal. a input
signal, b η = 10, c η = 1.0,
d η = 0.1
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9.4 High-Pass RC Circuit as Differentiator

In the high-pass RC circuit, the output signal is the voltage drop across the resistance
R. When this voltage is much smaller than the voltage drop across the capacitance,
the output signal is proportional to the time derivative of the input signal.9 Indeed,
if vR(t) � vC(t), Eq. (9.2) can be approximated as vi (t) � vC(t) = ∫

i(t)dt/C , so
that i(t) � Cdvi (t)/dt and the output signal becomes

vo(t) = Ri � RC
dvi (t)

dt
(9.16)

Note that in the high-pass RC circuit, the condition vR � vC is satisfied for t � RC ,
when the charge of the capacitor is nearly complete. In conclusion, if vR � vC the
output signal of a high-pass RC circuit is proportional to the time derivative of the
input signal.

As an example, consider the response of the high-pass RC to a voltage ramp
vi (t) = αt . Mathematically, the derivative of this signal is a constant function whose
value is α. As we already noted commenting Eq. (9.12), the output signal for t � RC
becomes constant and proportional to α. Summarizing,

vo(t) = αRC(1 − e−t/RC) ∼
t�RC

α RC = RC
dvi

dt

Another example of the differentiation performed by the high-pass RC is provided by
the plots in Fig. 9.3: when RC � T , see Fig. 9.3b, the output signal is significantly
different from zero only in correspondence of the variations of the input signal while

9The same characteristic property was highlighted in the analysis of this circuit in the frequency
domain. See Sect. 6.10.

http://dx.doi.org/10.1007/978-3-319-31102-9_6


206 9 Pulsed Circuits

it tends to zero when the input remains constant. On the contrary, when RC � T ,
see Fig. 9.3a, the voltage drop on the capacitance is small compared to the drop on
the resistance and the output signal is only slightly different from the input.

9.5 Low-Pass RC Circuit

The circuit of Fig. 9.7 is a low-pass filter, as discussed in Sect. 6.7. This circuit has
a particular importance because it represents, schematically, the input stage of most
electronic devices.

In principle, the circuit of Fig. 9.7 is identical to that of Fig. 9.1; the only difference
is that now the output signal is taken across the capacitor instead of the resistor.
Therefore, the mathematical solution of the low-pass circuit can be obtained from
equations obtained in Sect. 9.3 using the relation vo ≡ vC = vi −vR . However, given
the importance of this circuit and the vastly different behavior of the two circuits, we
will illustrate in detail the properties of the low-pass RC circuit too.

Differential equation for Low-Pass RC. Starting from Eq. (9.2) and setting vo(t) =
(1/C)

∫
i(t)dt , we derive i = Cdvo(t)/dt and Kirchhoff’s law of voltages yields

the differential equation for the low-pass RC circuit:

vi (t) = vo(t) + RC
dvo(t)

dt
(9.17)

9.5.1 Response to the Voltage Step

The response of the low-pass RC circuit to the voltage step can be obtained directly
from (9.5). At t = 0, when the input voltage jumps from zero to V , the output
voltage remains at zero because the voltage drop across the capacitor cannot change
instantaneously. Hence Vi = 0. Thereafter, the capacitance is charged through the
resistor R and when its charge is completed the output voltage is V f = V . Inserting
these values in expression (9.5), we get

vo(t) = V (1 − e−t/RC) (9.18)

Fig. 9.7 The low-pass RC
circuit

vi(t) vu(t)R

C

http://dx.doi.org/10.1007/978-3-319-31102-9_6


9.5 Low-Pass RC Circuit 207

The shape of the output signal (9.18) is the same as the exponential signal defined
by relation (9.13). It can be characterized with an experimental parameter called the
pulse “rise time” and defined as the time taken by the signal to change from 10 to
90% of its maximum value; this parameter gives an indication of how fast the circuit
can react to input signals. We leave as a simple exercise to calculate that for the
output signal of the low-pass RC (9.18) the rise time is

tr = 2.2RC = 0.35

ν0

where the parameter ν0 = 1/(2π RC) is the circuit cutoff frequency.

9.5.2 Response to Voltage Pulse

The response of the low-pass RC circuit to a voltage pulse can be obtained using the
superposition principle. We just need to add the circuit responses to two step signals:
the first starting at t = 0 with an amplitude V , the second starting at t = T (T pulse
duration) with an amplitude−V . From Eq. (9.18) and using the θ function, we obtain

vo(t) = V
[
θ(t)(1 − e−t/RC) − θ(t − T )(1 − e−(t−T )/RC)

]

=
{

V (1 − e−t/RC) 0 < t < T
V (1 − e−T/RC )e−(t−T )/RC t > T

Figure9.8 shows a typical response of a low-pass RC circuit to a pulse signal.

9.5.3 Response to Rectangular Waveform

In this section, we assume as input signal a rectangular wave, already defined in
Sect. 9.3.3 and shown in Fig. 9.9a. We start by showing that, for a periodic input
voltage, in a low-pass RC circuit the average values of the input and the output signals
are equal. We first notice that, when the input is periodic, in stationary conditions the
output must be periodic too. Integrating Eq. (9.17) over a time period T , and taking

Fig. 9.8 Output signal
(continuous line) of the
low-pass RC to a pulse with
duration T (dashed line).
Here RC = T/4 V

T

t
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Fig. 9.9 Plot a: Rectangular wave of duty cycle δ = 0.3. Plots b, c and d: responses of a low-pass
RC circuit with characteristic time RC = 0.03 T , RC = 0.27 T and RC = 0.70 T respectively, to
the waveform shown in (a)

into account that vo(T ) = vo(0), we get

1

T

∫ T

0
vi (t

′)dt ′ = 1

T

∫ T

0
vo(t

′)dt ′ + RC

T
(vo(T ) − vo(0)) = 1

T

∫ T

0
vo(t

′)dt ′

Since the rectangular wave oscillates between two constant levels V1 and V2, we can
apply Eq. (9.5) to find the output signal. The output signal is periodic and we limit
the calculation to one period. Suppose, without loss of generality, that at t = 0, when
the input voltage jumps from V1 to V2, the output voltage is Vl , an unknown value to
be determined. In this case, we have Vi = Vl and V f = V2, and Eq. (9.5) yields

voa(t) = V2 + (Vl − V2) e
−t/RC 0 < t < δT

At t = δT the input voltage jumps back from V2 to V1 while the output has reached
a value Vh to be determined. In the time interval δT < t < T , we apply again the
(9.5) with V f = V1 and with Vi = Vh and we obtain
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vob(t) = V1 + (Vh − V1) e
−(t−δT )/RC δT < t < T

The values of Vl e Vh can be easily calculated imposing the continuity condition
voa(δT ) = vob(δT ) (the voltage across the output capacitor cannot change abruptly)
and the periodicity condition of the stationary solution voa(0) = vob(T ). The details
of this calculation are left to the reader as an exercise. The results are

Vl = V1 + ΔV (eδT/RC − 1)

eT/RC − 1
; Vh = V2 − ΔV (eT (1−δ)/RC − 1)

eT/RC − 1
(9.19)

where we have used the position ΔV = V2 − V1.
Another way to get the response to a rectangular wave of the low-pass circuit

is to exploit the superposition principle following the same procedure previously
used for the high-pass circuit.10 The only difference consists in the response to the
unitary voltage step given in this case by (9.18). The output signal in the time interval
0 < t < T is easily found as

vo(t) = V1 + ΔV

[
e−t/RC eδT/RC − 1

eT/RC − 1
+ θ(t)(1 − e−t/RC ) − θ(t − δT )((1 − e−(t−δT )/RC )

]

(9.20)

With a little algebra we obtain

vo(0) = V1 + ΔV
eδT/RC − 1

eT/RC − 1
; vo(δT ) = V2 − ΔV (eT (1−δ)/RC − 1)

eT/RC − 1

respectively, equal to Vl and Vh we found in (9.19). Equation (9.20) makes it possible
to show directly that the output signal is periodic with period T . Indeed vo(T ) is given
by

vo(T ) = V1 + ΔV

[
eT/RC eδT/RC − 1

eT/RC − 1
+ (1 − et/RC) − ((1 − e−(T −δT )/RC )

]

= V1 + ΔV
eδT/RC − 1

eT/RC − 1
= vo(0)

This relation shows that the output voltage has the same periodicity of the input
signal.

9.5.4 Response to Voltage Ramp

The output signal of low-pass RC circuit to a voltage ramp signal (vi (t) = αt)
can be obtained exploiting the Kirchhoff’s law of voltages applied to the circuit:
vi (t) = vR(t) + vC(t). Using for vR(t) the expression (9.12) already found for the

10See p. 201 for details.
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Fig. 9.10 Response of a
low-pass RC circuit to a
ramp signal

1 2 3 t/RC

V

high-pass circuit, we obtain

vo(t) = vC(t) = α(t − RC) + αRCe−t/RC (9.21)

Output and input voltages for the ramp signal are shown in Fig. 9.10. Notice that,
when time becomes large (t � RC), the output tends to follow the input signal
with a delay equal to RC , showing a behavior complementary with respect to the
high-pass case.

9.6 Low-Pass RC Circuit as Integrator

The output signal in a low-pass RC circuit is the voltage drop across the capacitance
C . We show that, when this voltage is much smaller than the voltage drop across
the resistance, the output is proportional to the time integral of the input signal.11 In
fact, if vR(t) � vC(t) Eq. (9.2) reduces to vi (t) � vR(t) yielding i(t) � vi (t)/R.
Therefore, the output signal can be expressed as

vo(t) = 1

C

∫ t

0
i(t ′) dt ′ � 1

RC

∫ t

0
vi (t

′) dt ′ (9.22)

Equation (9.22) shows that, if vR(t) � vC(t) corresponding to t � RC , the output
signal of a low-pass RC circuit is the integral of its input signal. This result justifies
the name “integrator circuit” often used to refer to this circuit.

As an example, let us consider the response to a voltage step starting at time t = 0:
vo(t) = V [1−exp(−t/RC)]. For time valuesmuch lower than the characteristic time
RC , the conditions for the integration (vR � vc ≡ vo) are fulfilled and, expanding

11The same characteristic was highlighted in the analysis of this circuit in the frequency domain.
See Sect. 6.10.

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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the exponential function in series of powers, we obtain

vo(t) = V [1 − 1 + t

RC
− 1

2

(
t

RC

)2

+ · · · ] = V

{
t

RC
+ O

[(
t

RC

)2
]}

Mathematically speaking, the integral of the voltage step is the product of the ampli-
tude V and the time t . This shows that as long as (t � RC) the first-order approxi-
mation is acceptable and the output voltage is proportional to the integral of the input
signal.

9.7 RL Circuits

The high-pass and low-pass RL circuits, whose diagrams are shown in Fig. 9.11, can
be solved in the time domain with the same approach adopted above for RC circuits.
As already observedwith the analysis in the frequency domain, see Sect. 6.9, we shall
see that the solutions of RL circuits can be derived from those of the corresponding
RC circuits, the only difference being the expression for the circuit characteristic
time, τ = R/L in RL circuits (as we will show again below), instead of τ = RC in
RC circuits.

As an example of solution of a RL circuit, consider the circuit in Fig. 9.11a. It is
easily seen that it is the high-pass circuit since the output signal is taken across the
inductance, whose impedance increases with the signal frequency. The Kirchhoff’s
law of voltages in this case yields vi (t) = vR(t) + vL(t) = Ri(t) + Ldi(t)/dt .
Differentiating it and taking into account that the output voltage expression is vo(t) =
Ldi(t)/dt , we get

dvi (t)

dt
= R

L
vo(t) + dvo(t)

dt

As expected, this differential equation is similar to the one obtained for theRC circuits
in Sect. 9.3, and, under the same assumptions adopted there, the solution is still given
by Eq. (9.5) provided we use the appropriate expression for the characteristic time.
However, before we can compute the constants Vi and V f for RL circuits, we have
to analyze the response of an inductance to pulsed signals, similar to what we did
for a capacitance in Sect. 9.3.

vi(t) vo(t)

− −

++

R

L

vi(t) vo(t)

R(a) (b)
+

−
L

−

+

Fig. 9.11 The RL circuits: high-pass (a) and low-pass (b) configuration

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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The voltage drop across an inductance is given by v(t) = L di/dt , so the current
in the inductor is i = (1/L)

∫
v(t)dt + Io (Io, integration constant). For t → 0 the

integral, which gives the variation of the current, tends to zero, unless the value of
the voltage v(t) is infinite (not physically acceptable). One can therefore state the
following important rule for the behavior of an inductance:
the current through the inductance cannot change instantaneously if the voltage drop
across it remains finite

Using the results obtained above, we can show that the responses of ideal RL
circuits can be deduced from those of the corresponding ideal RC circuits. However,
although in principle, for example, a low-pass filter can be assembled with a resistor
and a capacitor or with a resistor and an inductor, in practice the real behavior will be
different because of differences in parasitic effects. In general, the influence of the
parasitic parameters, as we have seen in the first chapter, is greater in inductors than
in capacitors. In particular, at low frequency the ohmic resistance of the winding of
the inductor puts a lower limit, greater than zero, to the inductor impedance while,
at high frequency, the parasitic capacitance between the turns of the inductor will
decrease its impedance. This can affect appreciably the circuit response both at short
and long timescales.

9.8 RLC Parallel Circuit: Response to Voltage Step

Consider the circuitRLC parallel shown in Fig. 9.12with a voltage step vi (t) = V θ(t)
as input signal. Applying Kirchhoff’s law of currents to one of its nodes and taking
the output vo(t) across the parallel LC, we can write

vi − vo

R
− 1

L

∫
vo dt − C

dvo

dt
= 0

Differentiating this expressionwith respect to time,we get a second-order differential
equation with constant coefficients12:

C
d2vo

dt2
+ 1

R

dvo

dt
+ 1

L
vo = 1

R

dvi

dt
(9.23)

Since the time derivative of the function θ is zero almost everywhere, the solution of
(9.23) depends only on the roots of the characteristic equation

Cs2 + 1

R
s + 1

L
= 0 (9.24)

12Note that we already encountered this equation in studying the motion of the movable coil in
the D’Arsonval ammeter; obviously, owing to the similarity of the two differential equations, the
solution we obtain in this section are qualitatively similar to those obtained in Sect. 4.3.2 for the
position of the moving coil.

http://dx.doi.org/10.1007/978-3-319-31102-9_4


9.8 RLC Parallel Circuit: Response to Voltage Step 213

Fig. 9.12 RLC parallel
circuit

CL

R

vo(t)vi(t)

Its solutions are:

s1,2 = − 1

2RC
±
√(

1

2RC

)2

− 1

LC
(9.25)

Introducing the two parameters k, attenuation constant, and To, period without atten-
uation,13 defined by

k = 1

2R

√
L

C
To = 2π

√
LC (9.26)

the solutions of the characteristic Eq. (9.25) can be rewritten in a more compact way
as

s1,2 = 2π

To

(
−k ± j

√
1 − k2

)
(9.27)

The value of the parameter k determines the qualitative behavior of the output signal.

Critically damped response. If k = 1, Eq. (9.27) has two coincident real negative
roots s1,2 ≡ s = −2π/To. The solution of differential equation is

vo(t) = Voα test (9.28)

whereVo andα are integration constants to be determined considering the capacitance
and the inductance response to the impulsive signal. At the time t = 0− both the
voltage across the capacitor and the current flowing through the inductor are zero. As
we have already seen in the preceding sections, at time t = 0+ both these quantities
will remain zero. This implies that vo(0+) = 0 and that the current flowing in R
is i(0+) = (vi (0+) − vo(0+))/R = V/R. This current can only flow through the
capacitance since the inductance blocks fast current changes. Using Eq. (9.28), the
current in the capacitance C is i(0+) = Cdvo/dt = VoCα. Equating the currents
through R and C , we get

V

R
= VoCα from which we get: Voα = V

RC

13Note that k and To have already been introduced in the analysis of the resonant circuit RLC
parallel (Chap.6). In fact k = 1/2Q p , where Q p is the quality factor of the circuit and To is exactly
the period corresponding to the resonant frequency of the circuit.

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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Using this value, we finally obtain

vo(t) = V

RC
t e−2π t/To (9.29)

Underdamped response. If k < 1, the solutions s1 e s2, given by expression (9.27)
are complexwith the real part negative. The output signalwill be a dumped oscillation
whose expression is given by

vo(t) = exp(−2πkt/To)[A exp( j2π
√
1 − k2t/To) + B exp(− j2π

√
1 − k2t/To)].

with A and B integration constants. Imposing vo(0) = 0, we get A = −B. Moreover,
since the current at t = 0+ flows only through the capacitance, we have in addition
dvo(0)/dt = V/C R yielding A = − jTo/4πC

√
1 − k2. With a little algebra, we

obtain
vo

V
= 2k√

1 − k2
e−2πkt/Tosin

(
2π
√
1 − k2

t

To

)
(9.30)

As shown in Fig. 9.13, the maximum signal amplitude decreases for lower k values
while the oscillation persistence increases.

Overdamped response. If k > 1, both solutions (9.27) are real and negative and the
output signal is the sum of two decreasing exponentials. With the same procedure
we used above we arrive at the expression

vo(t)

V
= 2k√

k2 − 1
e−2πkt/Tosinh

(
−2π

√
k2 − 1

To
t

)
(9.31)
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Fig. 9.13 RLC parallel output response signal to a voltage step as input for three different values
of the k parameter (k = 1: critical damping, k < 1 underdamped signals)
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When k � 1 it is possible to simplify formula (9.27) using

s1,2 = −2πk

To
± 2πk

To

√
1 − 1

k2
(9.32)

Expanding the square root in a power series, we get

√
1 − 1

k2
� 1 − 1

2k2
+ O

[
1

k

]3

so that, when 2k2 � 1, we have

s1 = − π

Tok
e s2 = −4πk

To

It is easy to show that s1 � s2 and, except for time values close to t = 0, the output
voltage is well approximated by the following relation:

vo

V
� e−π t/kTo = e−Rt/L

Note that this expression is the output signal of a RL circuit: indeed, for given R
and L , large value of k corresponds to small values of C meaning that the presence
of the capacitor in the circuit can be neglected.

9.9 RLC Series Circuit: Response to Voltage Step

The RCL series response to voltage step is analogous to that of the RCL parallel.
In fact the differential equation for the current i(t) flowing through the unique loop
of the circuit (see Fig. 9.14), as obtained by applying Kirchhoff’s law of voltages, is
given by

Fig. 9.14 The RLC series
circuit

−−

+ +

vo(t)vi(t)

R

C

L
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L
d2i(t)

dt2
+ R

di(t)

dt
+ 1

C
i(t) = dvi (t)

dt
(9.33)

This equation is similar to Eq. (9.23) for the output voltage of theRLC parallel circuit.
Using the same procedure as in the previous section, we can write for the current the
expression: i(t) = Aes1t + Bes2t , where s1 e s2, are the solutions of the characteristic
equation

s1,2 = −R/2L ±
√

(R/2L)2 − 1/LC

For the initial conditions, we first note that, due to the inductance L , i(0+) = 0,
yielding B = −A. Furthermore, at t = 0+ the generator voltage drops across the
inductance because vR(0+) = Ri(0+) = 0 and vC(0+) = 0 because the capacitance
remains not charged. This gives di/dt |t=0+ = V/L from which we obtain A =
(V/L)/(s1 − s2), and the solution i(t) of Eq. (9.33) is

i(t) = V/L

s1 − s2

(
es1t − es2t

)
(9.34)

Note that defining the parameter ks = R/2
√

C/L and T0 = 2π
√

LC , we can
write the solutions s1,2 as in formula (9.27) substituting k with ks . Therefore, all the
observations and classifications we made in Sect. 9.8 on the waveform of the output
voltage signal of the RLC parallel circuit can be used for the current signal of the
RLC series circuit.

9.9.1 Exponential Pulse

The study of the response of a RLC series circuit to an exponential pulse vi (t) =
V (1− e−t/τ ), besides yielding a result that can be compared with experimental data,
is useful to describe an application presented in the next section.

This response is conveniently obtained exploiting the convolution method
expressed by Eq. (9.1). Using the response to unitary voltage step given by Eq. (9.34),
we can easily obtain

i(t) = V/L

s1 − s2

[
es1t − e−t/τ

1 + τ s1
− es2t − e−t/τ

1 + τ s2

]

With a little algebra, we can reformulate this expression as

i(t) = V τ/L

(1 + τ s1)(1 + τ s2)

[
1 + τ s2

τ(s1 − s2)
es1t − 1 + τ s1

τ(s1 − s2)
es2t + e−t/τ

]
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Fig. 9.15 The solid line represents the response of a RLC series to an exponential pulse. The
values of the circuit components are R = 50�, L = 0.25µH, C = 1nF and the exponential
pulse characteristic time is τ = 1ns. Dashed line represents the response of the circuit when
C → ∞. In this latter case, the circuit behaves like a RL high pass filter

When the voltage output is taken across the series of C and L (see Fig. 9.14), we
have

vo(t) = vi (t) − Ri(t)

= V (1 − e−t/τ ) − V τ R/L

(1 + τ s1)(1 + τ s2)

[
1 + τ s2

τ(s1 − s2)
es1t − 1 + τ s1

τ(s1 − s2)
es2t + e−t/τ

]

(9.35)

This signal vo(t) has a rather complex expression formed by the sum of three expo-
nential functions with three different characteristic times, namely the rise time τ of
the input signal, 1/s1 and 1/s2 both determined by the solution of the characteristic
equation associated to the differential Eq. (9.33). Introducing the characteristic times
of the circuit: τL = R/L and τC = RC14 we can write s1 and s2 as

s1,2 = − 1

2τL

(
1 ∓

√
1 − 4

τL

τC

)
yielding: s1 − s2 = 1

τL

√
1 − 4

τL

τC

14The time τL = R/L is the characteristic times of the circuit shown in Fig. 9.14 for C → ∞
(this means that this circuit behaves like a high-pass RL), and similarly the time τC = RC is the
characteristic times of the circuit for L → 0 (this means that this circuit behaves like a low-pass
RC).



218 9 Pulsed Circuits

and the expression (9.35), after some algebra, becomes

vo(t) = V (1 − e−t/τ ) − V
ττC

τCτL − ττC + τ 2

×
{
e−t/τ − 1

2

[
1 − 2τL/τ − 1√

1 − 4τL/τC

]
es1t − 1

2

[
1 + 2τL/τ − 1√

1 − 4τL/τC

]
es2t

}
(9.36)

In Fig. 9.15,we plot the exponential pulse response for the seriesRLCcircuit given by
Eq. (9.36) and the response of the RL filter obtained by short-circuiting the capacitor.
As can be seen from the comparison of the two waveforms shown in the figure, the
short timescale response of the circuit (the first peak) is mainly determined by the
impedance of the inductance, the capacitor behaving as a short circuit on timescales
t � τC . On the contrary, the second part of the response can be explained by the
impedance of the capacitance, the inductance behaving as a short circuit on timescales
t � τL .

Measurement of the parasitic inductance of a capacitor. As shown in Fig. 9.15 the
inductance determines the short time response of the circuit. On timescales t � τC ,
the circuit can be considered a high-pass RL circuit, whose response function is
obtained either as limit of the expression (9.36) for τC → ∞ or directly from (9.15)
taking into account that for a high-pass RL the η parameter becomes η = τL/τ =
L/Rτ . We can write the response function as

vo(t) = V
η

η − 1

(
e−x/η − e−x

)
with x = t

η
and η = τL

τ

It easy to show that the maximum of vo(t) is vmax = V η1/(1−η) and if η � 1, then

vmax = V η1/(1−η) � V η = V L

Rτ

This expression shows that in this limit the first peak amplitude of the output voltage
is proportional to the value L of the inductance and, when V , R, and τ are known,
its value can be used to estimate L .

This relationship suggests a method for the measurement of the stray inductance
of a capacitor, applying an exponential pulse to the capacitor under test. Figure9.16
shows the voltage measured across a 10nF real capacitor for exponential pulse with
rise time of 10ns and amplitude of 5V supplied by a voltage generator with 50�

output impedance. From the sharp peak in picture we obtain L � 0.2µH.
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Fig. 9.16 The oscillogram
shows the voltage across a
10 nF capacitor as a function
of time for an input given by
an exponential pulse with
rise time τr = 10 ns and
amplitude 5V obtained with
a 50� voltage generator.
The initial peak is due to the
parasitic inductance that can
be estimated to be 0.2µH.
The oscilloscope settings:
Vertical 1V/div., Horizontal
250ns/div. The bandwidth is
100MHz

9.10 Compensated Voltage Divider

The last section of this chapter is devoted to the detailed illustration of a simple but
important circuit, known as the compensated voltage divider. It is used to attenuate
(i.e., reduce the amplitude without deformation) electrical signals. In principle the
attenuation of a voltage signal can be obtained using the simple resistive divider
shown in Fig. 9.17a whose transfer function (attenuation) is A = R2/(R1 + R2),
ideally independent of frequency.

However, in practice, stray capacitances can significantly affect the behavior of
the circuit. Consider, for example, the case of a stray capacitance in parallel to R2

(see Fig. 9.17b).15 The transfer function of the circuit in Fig. (9.17b) can be found
exploiting the Thévenin equivalent circuit as “seen” from the resistance R2, where
we pick up the attenuated signal. This circuit, shown in Fig. 9.17c, is a low-pass
RC filter that attenuates high frequency more than low frequency components and
integrates the input signal. Its transfer function is given by expression (6.22) with
ωo = 1/ReqC and Req = R1 ‖ R2.

As a numerical example, we consider R1 = 9M�, R2 = 1M�, C =20pF
(these are the typical values of a “×10” oscilloscope probe with an attenuation ratio
of a factor 10); we get ωo = 1/ReqC = 55 × 103 s−1 corresponding to a frequency
νo = 8.8kHz, an unacceptably low value even for oscilloscopes of average quality.
The rise time of the response of this circuit to a voltage step is tr = 40µs and the
signal shape is heavily distorted, see Fig. 9.8.

15For example, this is the case when R2 represents the input resistance of a measuring instrument. In
fact any real device has a finite value of the input capacitance. The input capacitance of oscilloscopes
varies in the range 15–50pF. Furthermore, the connection cables between the attenuator and the
measuring instrument add a capacitance of the order of 100pF/m and an inductance of the order of
0.1µH/m.

http://dx.doi.org/10.1007/978-3-319-31102-9_6
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(a) (b) (c)R1 R1

Vi ViR2 R2

Req

Vo

C
Vo

C
VoVeq = Vi

R2
R1+R2

Fig. 9.17 a Resistive attenuator. b Resistive attenuator with a stray capacitance C . c Thévenin
equivalent of the circuit (b)

We can obtain an attenuator with a frequency independent transfer function shunt-
ing both R1 and R2 with capacitances larger than the strays as shown in Fig. 9.18. In
the next section, we analyze this circuit to find the conditions that must be satisfied
by its components to build a compensated attenuator.

9.10.1 Compensated Attenuator—Analysis in Frequency
Domain

The transfer function H(ω) of the circuit shown in Fig. 9.18 is easily computed:

H(ω) = Vo

Vi
= Z2

Z1 + Z2
= 1

1 + Z1

Z2

= 1

1 + R1

R2

1 + jωR2C2

1 + jωR1C1

(9.37)

where Z1 = R1/(1 + jωR1C1) is the impedance of the parallel of R1 and C1 and
Z2 = R2/(1 + jωR2C2) is the impedance of the parallel of R2 and C2. In general,
H , given by expression (9.37), depends on frequency except when

R1C1 = R2C2 (9.38)

If this condition is verified, the transfer function becomes

H(ω) = R2

R1 + R2
= C1

C1 + C2
(9.39)

Fig. 9.18 Schematic of the
compensated attenuator

Vi Vo

R1

R C2 2

1C
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In this case, we say that the attenuator is compensated.16

In the general case (R1C1 = R2C2), the H(ω) modulus and phase, omitting the
simple but rather long mathematical derivation, are given by

|H(ω)| = R2

R1 + R2

√√√√√√
1 + ω2R2

1C2
1

1 + ω2

(
R1R2

R1 + R2

)2

(C1 + C2)
2

(9.40)

tan φ = ωR1(C1R1 − C2R2)

R1 + R2 + ω2C1(C1 + C2)R2
1 R2

(9.41)

The asymptotic behavior of the attenuation H(ω) for ω → 0 and for ω → ∞ can
be obtained by Eq. (9.37) or (9.40):

H(ω) ∼
ω→0

R2/(R1 + R2) ≡ AR H(ω) ∼
ω→∞C1/(C1 + C2) ≡ AC (9.42)

As expected, at sufficiently low frequency the impedance of the capacitances is
very high, and the attenuation is determined only by the resistors (AR). The circuit
behaves as a purely resistive voltage divider. On the contrary, at sufficiently high
frequency the impedance of the capacitors becomes small enough to allow neglecting
the resistances and the attenuation is given only by the capacitances (AC ). The circuit
behaves as a purely capacitive voltage divider. Using definition (9.42) of AR and AC ,
and with the position ωo = 1/R1 C1, Eqs. (9.40) and (9.41) can be written in a more
understandable way:

|H(ω)| = AR

√√√√√√
1 +

(
ω
ωo

)2

1 +
(

ω
ωo

)2 (
AR
AC

)2 (9.43)

tan φ = ω

ωo

AC − AR

AC + AR

(
ω
ωo

)2 (9.44)

These relations show that the compensation of our voltage divider is obtained when
the resistive attenuation AR is equal to the capacitive attenuation AC . It is easy to
show that AR = AC is equivalent to relation (9.38).

16Oscilloscope probes consist of a compensated voltage divider were R2 is the input resistance of
the instrument and C2 its stray input capacitance. Resistance R1 and capacitance C1 depend upon
the attenuation factor of the probe. Capacitor C1 is variable and is adjusted to compensate the probe
response.
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Fig. 9.19 Transfer function of an undercompensated attenuator as function of the variable ω/ωo
where ωo = 1/R1C1. Upper plot shows the modulus of H(ω) divided by AR , lower plot shows the
phase of H(ω) in the same frequency interval. In these plots AC = AR/2. The meaning of symbols
is given in the text

When the attenuator is not compensated, there are two possibilities:

• AR > AC , or R1C1 < R2C2. The attenuator is undercompensated. High frequen-
cies are attenuated more than low frequencies and the circuit tends to “integrate”
the input signal.

• AR < AC , or R1C1 > R2C2. The attenuator is overcompensated. Low frequencies
are attenuated more than high frequencies and the circuit tends to “differentiate”
the input signal.

Figure9.19 shows an example of an undercompensated attenuator with a ratio
between the two asymptotic attenuations given by AR/AC = 1/2.

9.10.2 Compensated Attenuator—Analysis in Time Domain

In this section, we study the attenuator of Fig. 9.18 in the time domain and we derive
its response to a voltage step.

We denote with vi (t) and vo(t), respectively, the input and the output signals of
the circuit. Equating the current in the parallel of R1 and C1 to the current in the
parallel of R2 and C2, we can write

vi − vo

R1
+ C1

d(vi − vo)

dt
= vo

R2
+ C2

dvo

dt
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or equivalently

(C1 + C2)
dvo

dt
+
(

1

R1
+ 1

R2

)
vo = vi

R1
+ C1

dvi

dt
(9.45)

Introducing the parameters C p = C1 + C2 and Rp = R1R2/(R1 + R2), with vi (t) =
V θ(t) Eq. (9.45) becomes

C p
dvo

dt
+ 1

Rp
vo = V

R1

where we have taken into account that the time derivative of input signal is zero
almost everywhere. The solution of this first-order differential equation is

vo(t) = VCe
−t/RpC p + V

R2

R1 + R2

where the first term is the general solution of the homogeneous equation and the
second the particular solution vo(t) = const . The integration constant VC can be
determined in first instance assuming that, at t = 0 both capacitors charge instanta-
neously17 so that the capacitive attenuation is immediately obtained:

vo(0) = V
C1

C1 + C2
yielding VC = V

(
C1

C1 + C2
− R2

R1 + R2

)

Finally, we obtain for the output signal as

vo(t) = V

[(
C1

C1 + C2
− R2

R1 + R2

)
e−t/RpC p + R2

R1 + R2

]

Because of this equation, we can state

• in general if R1C1 = R2C2, for “short times” (t � RpC p) the output voltage
is determined by the values of the capacities, in particular at t = 0 we have
vo = V C1/(C1 + C2), while for “large times” (t � RpC p) the output voltage
is determined by the values of the resistances, in particular for t → ∞ we have
vo = V R2/(R1 + R2); see Fig. 9.20.

• if the compensation condition R1C1 = R2C2 is satisfied, the attenuation at “short
times” and at “large times” are equal and the shapeof the signal remains unchanged,
confirming the result obtained in frequency domain.

Circuit with a real generator. The derivation in previous paragraph is unsatisfactory
as it admits, not realistically, that at time t = 0 an infinite current flows in the
capacities. It iswell known that real voltage generators have afinite internal resistance

17Note that, from a mathematical point of view, at t = 0 also the current has a discontinuity and
through the capacitors flow an “infinite” current that loads them instantaneously. More realistic
physical considerations will be made in the following.
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Fig. 9.20 The figure shows
the response to voltage step
of a compensated (middle
track), overcompensated
(upper track), and
undercompensated (lower
track) voltage divider

Rg limiting the maximum current they can supply. Amore realistic description of the
behavior of a compensated attenuator must include the resistance Rg in the circuit
schematic as shown in Fig. 9.21. If v1 denotes the voltage drop on the parallel of R1

and C1, Kirchhoff’s law of voltages yields

vg − v1 − vo = i Rg (9.46)

where vo is the output voltage and vg and i are voltage and current output of the
generator. This current flows through the two parallel of resistance and capacitance
and can be expressed as

i = v1
R1

+ C1
dv1
dt

and i = vo

R2
+ C2

dvo

dt
(9.47)

Using Eq. (9.46) to eliminate v1 and assuming a voltage step function as input signal,
vg(t) = V θ(t), we have18:

v1 = V − vo − i Rg and
dv1
dt

= −dvo

dt
− Rg

di

dt
(9.48)

Fig. 9.21 Compensated
attenuator

C2

R1

Rg

C1

R2
vovg

−

+

18We remind that the derivative of vg(t) proportional to the θ(t) function is zero “almost every-
where”.
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Equating the two expressions of the current given in relations (9.47) we get

V − vo − i Rg

R1
− C1

(
dvo

dt
+ Rg

di

dt

)
= vo

R2
+ C2

dvo

dt
(9.49)

Isolating the known term:

V

R1
= vo

(
1

R1
+ 1

R2

)
+ dvo

dt
(C1 + C2) + Rg

(
i

R1
+ C1

di

dt

)

Using again the second Eq. (9.47), this expression becomes

V

R1
= vo

(
R1 + R2

R1R2

)
+ dvo

dt
(C1+C2)+ Rg

(
vo

R1R2
+ C2

R1

dvo

dt
+ C1

R2

dvo

dt
+ C1C2

d2vo

dt2

)

Dividing by RgC1C2, the differential equation for vo(t) becomes

d2vo

dt2
+
[(

1

C1
+ 1

C2

)
1

Rg
+ 1

R1C1
+ 1

R2C2

]
dvo

dt
+
[

1

RgC2C1

R1 + R2

R1R2
+ 1

R1R2C1C2

]
vo

= V

Rg R1C1C2

This equation gives the circuit response to voltage step when the generator inter-
nal resistance is not negligible. However, in most cases of practical interest, Rg is
small with respect to the two resistors R1 and R2. In these cases, we can simplify it
neglecting the terms without Rg in the denominator obtaining

d2vo

dt2
+ 1

RgCs

dvo

dt
+ vo

RgCs RpC p
= V

Rg R1CsC p
(9.50)

where Cs = C1C2/(C1+C2) and C p = C1+C2 are, respectively, the capacitance of
the series and of the parallel of C1 and C2 and Rp = R1R2/(R1 + R2) is the parallel
of R1 and R2. The characteristic equation of (9.50) has the roots

m1,2 = − 1

2RgCs

(
1 ±

√
1 − 4

RgCs

RpC p

)

When Rg � RpC p/Cs , expanding the square root to the first order, we obtain

m1,2 = − 1

2RgCs

[
1 ±

(
1 − 2

RgCs

RpC p

)]
or explicitly

⎧⎪⎪⎨
⎪⎪⎩

m1 = − 1

RgCs
+ 1

RpC p
� − 1

RgCs

m2 = − 1

RpC p
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As expected, this second-order circuit has two characteristic times: a “short” time
τ f = RgCs that describes, as will be shown in the following, the charge of Cs (series
of C1 and C2) and a “long” time τs = RpC p that determines the dynamics of charge
partitioning through the resistances and the time needed to reach the resistive value
of attenuation.

To obtain the general solution of Eq. (9.50) we need a particular solution that can
be easily obtained looking for a time-independent solution:

vo = V
Rp

R1
= V

R2

R1 + R2

Finally, we get:

vo(t) = V f e
−t/τ f + Vse

−t/τs + V
R2

R1 + R2

The two integration constants V f and Vs can be determined imposing the initial
condition at t = 0. Since initially C2 is uncharged, we have vo(0) = 0, so that

V f + Vs = −V
R2

R1 + R2
(9.51)

Also C1 is initially uncharged and we have v1(0) = 0. Applying Eq. (9.46), we get
i(0) = V/Rg . The second equation in (9.47) gives

dvo

dt

∣∣∣∣
t=0

= V

RgC2

and we finally obtain
V f

τ f
+ Vs

τS
= − V

RgC2
(9.52)

Equations (9.51) and (9.52) form a system whose solution is

V f = −V
C1

C1 + C2
and Vs =

(
C1

C1 + C2
− R2

R1 + R2

)
V

Finally, the attenuation as a function if the time is

vo(t)

V
=
(

C1

C1 + C2
− R2

R1 + R2

)
e−t/τs − C1

C1 + C2
e−t/τ f + R2

R1 + R2

The “long times” asymptotic value is reached when t � τ f and t � τs . As
expected, it is equal to the resistive partition ratio R2/(R1+ R2). When the two times
τ f = RgCs and τs = RpC p are significantly different with τ f � τs , as it happens
often in real devices, when τ f � t � τs we get:
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vo(t)

V
� C1

C1 + C2

This is the time interval where the attenuation is given by the capacitive partition
ratio. In these conditions τ f is the signal rise time while τs is the timescale needed
for the signal to reaches its asymptotic value (R2/(R1 + R2)).

It is interesting to note that in a compensated divider, the two timescales remain
different but the amplitude of the slow component of the signal Vs is null. This
component is entirely due to themismatch of the resistive and capacitive attenuations
and, therefore, does not exist in a compensated attenuator.19

9.10.3 Frequency Limitation of Compensated Attenuators

Awell-compensated attenuator, as we have shown in previous sections, has a transfer
function that is independent of the signal frequency and its output is a reduced but
nondeformed copy of the input signal. However, the results of the previous section
suggest that this is only true for signal duration longer that the short timescale τ f

given by the output resistance of the signal generator and the series of the capacitances
in the divider.

A similar conclusion can be reached also analyzing the circuit in the frequency
domain. When the frequency is high enough we can neglect the two resistances
and the attenuator is seen by the generator as the series of the two capacities C1

and C2. Taking into account the output resistance Rg of the generator, the circuit
behaves like the low-pass RC shown in Fig. 9.7 with a characteristic time is given by
τ = RgC1C2/(C1 + C2) ≡ τ f . Therefore, signals with angular frequency greater
then ωo = 1/τ f = (C1 + C2)/RgC1C2 will be attenuated. However, for many
practical applications this frequency is quite high. If we take for example Rg = 50�
and C2 = 200pF, typical values of input resistance and capacitance of a commercial
oscilloscope connected with a matched cable, and we assume an attenuation×10, so
thatC1 � C2/10, we get a cutoff frequency of 160MHz, adequate for most purposes.

Problems

Problem 1 A: Obtain the differential equation for the output voltage vo(t) across
the inductance L of the RL circuit shown in Fig. 9.11a when the input voltage is vi (t).
B: Determine under what conditions the voltage vo(t) is proportional to the derivative
of vi (t) in the case the input signal is a pulse of duration τ . C: Solve the differential
equation found in A in the case vi (t) is a voltage step function of amplitude V

19Oscilloscope probes are compensated minimizing the slow component of their response to a
square wave calibration pulse supplied by the instrument.
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using appropriate initial conditions. [A. A: dvi (t)/dt = (R/L)vL(t) + dvL(t)/dt ;
B: (L/R) � τ ; C: vL(t) = V exp(−Rt/L).]

Problem 2 A: Obtain the differential equation for the output voltage vo(t) across
the resistance R of the RL circuit shown in Fig. 9.11b when the input voltage is
vi (t) B: Determine under what conditions the voltage vR(t) is proportional to the
integral of vi (t) in the case the input signal is a pulse of duration τ . C: Solve the
differential equation found inA in the case vi (t) is a voltage step function of amplitude
V using appropriate initial conditions. [A. A: vi (t) = (L/R)vR(t) + dvR(t)/dt ;
B: (L/R) � τ ; C: vR(t) = V (1 − exp(−Rt/L)).]

Problem 3 In the circuit shown in the figure the switch T is open at time t = 0.
Determine the voltage across the capacitance C as a function of time. [A. vC(t) =
V1 + (V2 − V1) exp(−t/RC).]

Problem 4 Obtain the differential equation for the voltage v(t) across the capaci-
tance C of the circuit shown in the figure. Solve the differential equation when vi is
a voltage step function of amplitude V . [A. v(t) = V R2/(R1 + R2) exp(−t (R1 +
R2)/(R1R2C)).]

Problem 5 Solve the previous problem using the Thévenin’s theorem.

Problem 6 In the circuit shown in the figure the switch T is closed at time t = 0.
Determine the voltage across the capacitance C as a function of time. [A. v(t) =
V R3/(R1 + R3) exp(−t (R3 + R1)/(R3C(R1 + R2 + R1R2/R3))).]

Problem 7 Solve the previous problem using the Thévenin’s theorem

Problem 8 Obtain the differential equation for the current iL(t) through the induc-
tance L in the circuit shown in the figure, when vi (t) is the input voltage. [A.
vi (t)R3(R1R3+ R1R2+ R2R3) = iL +L(R1+ R3)/((R1R3+ R1R2+ R2R3)diL/dt .]
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Problem 9 Solve the previous problem using the Norton’s theorem

Problem 10 Obtain the differential equation for the voltage vC(t) across the capac-
itance C in a RLC series circuit when vi (t) is the input voltage. Solve the differen-
tial equation, using the appropriate boundary conditions, when vi is a voltage step
function of amplitude V . [A. vi (t) = vC(t) + RCdvC (t)/dt + LCd2vC(t)/dt2;
vC(0) = 0, dvC/dt (0) = 0.]

Problem 11 As an alternative to the exponential pulse, a real voltage step can be
described as a linear ramp of time duration T up to the constant value V . Using
the convolution method, find the response of a high-pass RC circuit to this input
waveform.Comment the solution obtained in terms of the behavior of the capacitorC .
[A. vo(t) = 0 for t < 0, vo(t) = αRC[1− exp(−t/RC)] for 0 < t < T, vo(t) =
αRC[1 − exp(−T/RC)] exp[−(t − T )/RC] for t > T .]

Problem 12 The circuit shown in the figure represents a real RL filter where the
inductor L has a stray resistance RL . Obtain the differential equation for the current
iL(t) through the inductance L in response of an input voltage vi (t). Solve the differ-
ential equation when vi is a voltage step function of amplitude V . Finally obtain the
output voltage vo(t) across the real inductor. [A. vo(t) = V RL/(R+ RL)+V R/(R+
RL)exp(−t/τ) with τ = L/(R + RL).]

Problem 13 In the circuit shown in the figure the switch T is closed at time t = 0.
Obtain the differential equation for the current iL(t) in the inductance L as a function
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of time and determine the appropriate boundary conditions for the solution. [A. V =
R1iL(t)+(L + R1R2C)diL(t)/dt + R1LCd2iL(t)/dt2 where iL(0) = V/(R1+ R2),
diL/dt (0) = V/L(R1 + R2).]

Problem 14 The circuit in the figure is a diagram of the cable connection of a
signal to an oscilloscope. Derive in time domain the differential equation yielding
the signal vo(t) across the resistance R2 when the input signal is vi (t). Find the
appropriate boundary conditions for the solution when the input is a voltage step
function. [A. vi (t) = (1+ R1/R2)vo(t)+(R1C +L/R2)dvo(t)/dt +LCd2vo(t)/dt2;
vo(0) = 0, dvo/dt (0) = 0.]

Problem 15 The circuit in the figure represents a filter L R realized with a real
inductor whose series resistance is RL and whose parasitic capacitance is C . Obtain
the differential equation that describes the response vo(t) to a signal vi (t). Find
the appropriate boundary conditions in case the input signal is a step function of
amplitude V. [A. vi (t) + RCdvi (t)/dt + LCd2vi (t)/dt2 = (1 + RL/R)vo(t) +
(RC + L/R)dvo(t)/dt + LCd2vo(t)/dt2; vo(0) = V, dvo/dt (0) = −V/RC .]



Chapter 10
The Transmission Line

10.1 Introduction

The methods adopted in the previous chapters and the results obtained are only
valid when the size of components and circuits are small enough to allow neglecting
variations of the electromagnetic (e.m.) field inside them. In this case, we say that we
are dealing with lumped elements circuits. However, when the frequency of electrical
signals increases, their wavelength λ decreases, and if λ becomes comparable with
the physical dimensions of components, the lumped elements approximation is no
more verified.

As an example, consider an e.m. sinusoidal signal of frequency ν = 300MHz;
assuming that this signal propagates in a real component at a speed comparable with
light speed c, its wavelength is λ = c/ν ∼ 1m and λ/4 ∼ 25cm is the space sepa-
ration between the maximum and the minimum wave amplitude. If the component
linear dimensions are comparable to λ/4, the electromagnetic field changes across it
and the methods used for the solution of lumped circuits cannot be applied. In these
conditions, the circuit is said to have distributed constants and its solution cannot be
obtained from Kirchhoff’s laws but requires in principle to use directly Maxwell’s
equations.

In various circumstances, it is necessary to transmit electrical signals between
circuits far apart (from a few meters up to many kilometers of distance). A common
example of such a connection is the home television equipment, which consists in
an antenna,1 the signal generator, and in the television set, a circuit that receives,
amplifies, and decodes the signal. Typical distance between the antenna and tele-
vision set is a few dozen meters and their connection is made via a third circuit,
commonly known as the TV antenna cable, which transmits without distortion the

1More accurately, the antenna selects a signal transmitted in the air and transfers it to its output
terminals. The largemajority of television signals are broadcast in the “Ultra High Frequency” range
(UHF), an international acronym to indicate the frequency range of 0.3–3GHz, (λ = 1–0.1m).
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signal captured by the antenna to the TV set. Comparing the order of magnitude of
its length (�10m) with the wavelength of broadcast television signals (�1m), it is
clear that within the cable the electromagnetic field is not constant.

In this chapter, we will illustrate a model that helps to understand how the signal
propagates along the cable and the methods used to solve circuits with distributed
constants. We first give in the next Sect. 10.2 a precise definition of a transmission
line and then introduce a model in terms of infinitesimal discrete components. The
analysis of this model will lead us to the telegrapher equation and will uncover
the role of two important parameters determining the line behavior, namely the
propagation speed and the line characteristic impedance. The general solution of the
telegrapher equation is the subject of Sect. 10.3 that also covers the particular case
of a lossless line. Next, in Sect. 10.4 we discuss the properties of the coaxial cable
while the problem of line termination is addressed in Sect. 10.5 where we describe
the reflection of electromagnetic signals at the line ends. In Sect. 10.7, we consider
signal attenuation observed in lossy lines and finally in Sect. 10.8 we compute the
line impedance in the frequency domain.

10.2 Transmission Lines

The circuits used to carry electrical signals over long distances are called transmis-
sion lines. They can be described as a set of two conductors, electrically isolated,
with one of the spatial dimensions much greater than the others and with the cross-
section, normal to the long dimension, constant in shape and area. Ideally, the two
conductorsmust be in conditions of complete electrostatic induction and nomagnetic
flux dispersion is allowed.

Examples of transmission lines are given in Fig. 10.1. They are two wires that
run parallel to each other at a constant distance; a wire placed on an infinite ground
plane; a conducting strip separated from a ground plane by a dielectric; two coaxial
cylindrical conductors (coaxial cable).

(a) (b) (c) (d)

Fig. 10.1 Some types of transmission lines and the value of their capacity C and inductance L,
per unit of length: a two-wire line, C = πε/ cosh−1(D/d), L = μ/π cosh−1(D/d); b wire on a
(infinite) ground plane, C = πε/ cosh−1(2h/d), L = μ/π cosh−1(2h/d); c strip on a (infinite)
ground plane C � εw/h, L � μh/w; d coaxial cable, C = 2πε/ ln(D/d), L = μ/2π ln(D/d)
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dx

v(x, t)

i(x, t)

v(x + dx, t)gdx

i(x + dx, t)LdxRdx

Cdx

Fig. 10.2 Schematization of a transmission line element

10.2.1 Model of the Transmission Line

To analyze quantitatively the behavior of a transmission linewe consider an infinitesi-
mal element of the line of length dx where it is still possible to use the approximation
of lumped components. The whole line is then modeled as a succession of such
elements, as shown in Fig. 10.2. In this schematization, the transmission line is a
passive circuit formed by components (resistors, inductors and capacitors) distrib-
uted along the entire length of the line. The main features of the line are described
by the following four parameters:

1. the resistance per unit length R, which represents the ohmic resistance of its
conductors (units: �m−1)

2. the inductance per unit length L, which depends (except in the special case of a
magnetic dielectric) only by the geometry of the line (units: Hm−1)

3. the capacity (known as shunt capacity) per unit length C, which depends on the
geometry of the line and on the dielectric constant of the insulator that separates
the two conductors forming the line (units: Fm−1)

4. The conductance per unit length g, which takes into account of the losses of the
dielectric (units: �−1m−1).

The application of the Kirchhoff’s laws to the line element shown in Fig. 10.2 brings
to the following equations:

v = Rdx i + Ldx
∂i

∂t
+

(
v + ∂v

∂x
dx

)

i =
(

i + ∂i

∂x
dx

)
+

(
v + ∂v

∂x
dx

)
gdx + Cdx

∂

∂t

(
v + ∂v

∂x
dx

)

Simplifying and disregarding the second-order terms, we get

⎧⎪⎨
⎪⎩

−∂v

∂x
= Ri + L

∂i

∂t

− ∂i

∂x
= gv + C

∂v

∂t

(10.1)
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The solution of this system of partial differential equations, together with the
boundary conditions, allows computing the voltage and the current as a function
of the time t and of the x coordinate along the line. To obtain an equation for the
voltage v(x, t), we take the derivative of the first of equations (10.1) with respect to x
and of the second with respect to t. Removing the term of mixed derivative ∂2i/∂t∂x,
we obtain

LC
∂2v

∂t2
− ∂2v

∂x2
+ (gL + RC)

∂v

∂t
+ gRv = 0 (10.2)

If we take the derivative of the first of equations (10.1) with respect to t and of the
secondwith respect to x, we obtain an equation similar to (10.2) for the current i(x, t):

LC
∂2i

∂t2
− ∂2i

∂x2
+ (gL + RC)

∂i

∂t
+ gRi = 0 (10.3)

This equation, either for the voltage or for the current, is known as the telegra-
pher equation, because it was used to describe the signal transmission along cables
connecting far apart telegraph stations. We can easily recognize that Eqs. (10.2)
and (10.3) describe a propagating signal by solving a simplified version in the time
domain.

Lossless transmission line. When the energy dissipation in the line can be
neglected, we can consider R = g = 0 in the Eq. (10.2) for the voltage (or in
the Eq. (10.3) for the current), so that for a “lossless” line we get:

LC
∂2v

∂t2
− ∂2v

∂x2
= 0 (10.4)

This is the well-known equation describing wave propagation in one dimension with
speed given by

u = 1√
LC

The general solution of Eq. (10.4) is

v(x, t) = vf (x − ut) + vb(x + ut) (10.5)

where vf and vb are any two functions that fulfill the boundary conditions of the
specific problem and that are differentiable up to second order.

It is easy to see that vf (x − ut) and vb(x + ut) represent signals that propagate
respectively in positive and the negative direction of x (the subscript f and b stand
respectively for forward and backward). Note that the signals described by the func-
tions vf (x − ut) and vb(x + ut) propagate along the lossless line without undergoing
deformations.

The expression for the current in the line is obtained substituting the voltage (10.5)
in the second equation of system (10.1) with g = 0 and, noting that ∂vf ,b/∂t =
∓u∂vf ,b/∂x, we get
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− ∂i(x, t)

∂x
= −Cu

∂vf

∂x
+ Cu

∂vb

∂x
(10.6)

After integration over x, we obtain the following expression for the current:

i(x, t) = vf (x − ut) − vb(x + ut)

Zc
(10.7)

where we introduce the constant

Zc =
√

L

C
(10.8)

Zc is the characteristic impedance of the line, an important parameter to describe the
line behavior, as we will see soon.

10.3 Solution of Telegrapher Equation

The system (10.1) consists of two first order differential equations with constant
coefficients and can be more easily resolved using the Fourier transform method
that, as already seen for the solution of AC circuits, is equivalent to solve the circuit
equations when voltages and currents have sinusoidal waveform. Writing v(x, t) =
V(x) exp(jωt), the Eq. (10.1) become

⎧⎪⎨
⎪⎩

−dV

dx
= (R + jωL)I = ZoI

− dI

dx
= (g + jωC)V = YoV

(10.9)

where V = V(x) and I = I(x) are respectively the complex tension and complex
current. In Eq. (10.9) we introduced the quantities Zo and Y0, called respectively the
line complex impedance and the line complex admittance per unit’s length. Note that,
in this case, Zo �= Y−1

o .
Differentiating with respect to x the Eq. (10.9) we get, after simple algebra,

d2V

dx2
= ZoYoV (10.10)

d2I

dx2
= ZoYoI (10.11)

The Eqs. (10.10) and (10.11) are another form in which we can write the telegrapher
equation when we search for sinusoidal function solutions. The relationships (10.10)
and (10.11) show that complex voltage and current in a transmission line must satisfy
exactly the same equation.
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The general solution of differential equation (10.10) is

V(x) = Vf e
−γ x + Vb e

γ x (10.12)

where the constant γ is the complex propagation constant that in terms of the line
parameters, is given by

γ = √
ZoYo = √

(R + jωL)(g + jωC), (10.13)

The constant γ has the physical dimension of the inverse of length while Vf and Vb

are the (complex) integration constants with physical dimension of voltage.
The expression for the current can be derived from the Eq. (10.9)

I = − 1

Zo

dV

dx
=

√
Yo

Zo
(Vf e

−γ x − Vbe
γ x)

Generalizing relation (10.8), we can define the characteristic impedance of the trans-
mission line as

Zc =
√

Zo

Yo
=

√
R + jωL

g + jωC
(10.14)

that in general is a complex quantity with the physical dimension of impedance. The
current I takes the following expression:

I = Vf

Zc
e−γ x − Vb

Zc
e γ x (10.15)

The expressions of the space and time evolution of voltage and current along the line
are given by

v(x, t) = Vf e
−αxej(ωt−βx) + Vb e

αxej(ωt+βx) (10.16)

i(x, t) = Vf

|Zc| e
−αxej(ωt−βx+φ) − Vb

|Zc| e
αxej(ωt+βx+φ) (10.17)

where φ is the phase difference between voltage and current (for both forward and
backward signals) and the complex constant γ has been separated in its real (α) and
imaginary (β) part: γ = α + jβ.

In both expressions of the voltage and current, it is easy to recognize

• a progressive wave ej(ωt−βx), i.e., traveling forward, in the positive x direction with
speedu = ω/β,whose amplitudeVf ismodulatedby adecreasing exponential e−αx

• a regressive wave ej(ωt+βx), i.e., traveling backward, in the negative x direction
with the same speed u and whose amplitude Vf is modulated by increasing expo-
nential eαx.
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Note that, whatever is the propagation direction of the wave, the modulus of the wave
amplitude decreases with time. The current in the line, as function of coordinate and
time, is given in (10.17); it is worth to note that the proportionality between current
and voltage is valid only for each separate mode of propagation, but not for the
superposition of the two modes.

10.3.1 Lossless Line

As stated above, for a lossless or ideal transmission line, all the dissipative elements
(R and g) can be neglected. In this approximation, the characteristic impedance Zc,
defined in (10.14), becomes

Zc =
√

Zo

Yo
=

√
R + jωL

g + jωC
→

√
L

C
(10.18)

and the propagation constant γ , defined in (10.13) becomes

γ = √
ZoYo → jω

√
LC ≡ jβ (10.19)

Before describing some important properties of the ideal line, we observe that for
sufficiently high frequencies a real line, with R and g different from zero, tend to
behave as an ideal line. In fact, if ω 	 R/L and ω 	 g/C the expression of Zc and
γ are simplified and (10.18) and (10.19) can be considered valid in any transmission
line for signals of sufficiently high frequency.

The expressions of Zc and γ characterizing the ideal line, (10.18) and (10.19),
allow us to say

• Zc becomes real, and then the phase shift between the current signal and voltage
is zero, as happens with the resistors.

• The propagation constant γ is purely imaginary and therefore the amplitude of the
signal remains constant during propagation.

• Zc and u do not depend on ω and therefore all signals (even non-sinusoidal) prop-
agate along the line without deformation (neglecting dispersion in the line dielec-
tric).

Using the relation (10.19), we obtain the expression for the propagation velocity
of the signals along the ideal line: q

u = ω/β = 1√
LC

(10.20)

that is the result already obtained in the time domain in Sect. 10.2.1. Both L and C
depend on the geometry of the line, so that one could deduce that the propagation
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velocity of signals along the line depends on its geometry. However, it is possible
to show that, when the cross section of the line is constant and the dielectric is
homogeneous,2 the product LC is independent of the geometry and is equal to με.
Thismeans that the signal velocity in the line depends only on the dielectric properties
of the insulator used in the line.

u = 1√
LC

= 1√
με

� c√
ε

(10.21)

where c is light speed in vacuum and where we accounted for the observation that
materials used in real lines are not ferromagnetic (μ � μo). A general proof of
(10.21) can be found in Ref. [1] (Sect. 1 of Chap. 10).

10.4 The Coaxial Cable

The most widespread type of transmission lines is the coaxial cable whose sketch is
shown in Fig. 10.1d. In the following, we compute its main characteristic parameters.

Capacity per unit length. Consider a length l of a coaxial cable, the capacity of the
two conductors (internal and external cylinder) is given by the ratio Q/ΔV with Q
charge on the two conductors and ΔV tension between the two conductors. The flux
of electric field through the cylindrical surface of radius r and length l is

Φ(E) =
∫

E · ds = 2πr lE(r)

and applying the Gauss’s lawwe obtain E(r) = 1/(2πε l) Q/r, where ε is the dielec-
tric constant of the insulator between the two conductors. The voltage difference is
obtained integrating the electric field: ΔV = ∫ D/2

d/2 E(r) dr = Q/(2πε l) lnD/d and
finally, the capacity per unit length of a coaxial cable is

C = ε
2π

lnD/d
(10.22)

Inductance per unit length. Consider a rectangular surface with one side of length
l along the cable direction and the other side along the radial direction from d/2 to
D/2, see Fig. 10.1d. If i is the current in the inner conductor, the magnetic field B, by
Biot–Savart law, is normal to the considered rectangular surface and its modulus is
B(r) = μ/(2π)(i/r), whereμ is the magnetic permeability of the insulator material.
The magnetic field flux through the considered rectangular surface is

2These properties can be satisfied by the line types shown in Fig. 10.1b, d, but not of the type
Fig. 10.1a, c, the reason is that, for the latter, the dielectric is not homogeneous and the relation
(10.21) is only approximately verified.
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Table 10.1 Common coaxial cables parameters

Coax Rc (�) C (pF/m) L (nH/m) D (mm) d (mm) R (�/km) εr u/c

RG58C/U 50 101 253 3.55 0.90 34 2.3 0.66

RG174/U 50 100 253 1.55 0.48 140 2.3 0.66

RG59/U 75 65 380 4.5 0.65 161 2.3 0.66

Φ(B) =
∫

B · dA = l
∫ D/2

d/2
B(r) dr = μil/(2π) ln(D/d)

Recalling the definition of inductance, given by the relationship Φ(B) = Li, the
inductance per unit length of a coaxial cable is given by:

L = μ
lnD/d

2π
= με

1

C
(10.23)

From the explicit expression for C and L, we note that in the product LC the geo-
metrical properties of the line cancel out, as we stated in general way at the end of
previous section. This computation confirms that the propagation velocity of sig-
nals in coaxial cables depends only on electromagnetic properties (ε and μ) of the
material used as insulator. From relations (10.22) and (10.23), we obtain the explicit
expression of the characteristic impedance of a coaxial line:

Zc =
√

L

C
= 1

2π

√
μ

ε
ln

D

d

Note that the logarithmic dependence of Zc on the geometrical parameters D and d
limits the range of the values of characteristic impedance practically achievable to
the interval (10–200)�. In Table10.1 we report the values of some parameters of
coaxial cables of common use in the laboratory.

10.5 Reflections on Transmission Lines

In this section, we will study the behavior in the time domain of an ideal lossless
transmission line terminated on a resistive load (see Fig. 10.3). We limit our study
to a simple resistive load in order to focus the reader’s attention to the specific
phenomenon of signal reflection in lines avoiding complications due to the change
in signal shape brought by the load reactance.

The general solution for voltage and current signals in an ideal transmission line,
as indicated by the Eqs. (10.5) and (10.7), is formed by the sum of two voltage
and current signals: a progressive one propagating in the positive x direction and a
regressive one propagating in the negative x direction. Consider a line, of length l
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Fig. 10.3 Transmission line
connected to a voltage
generator of internal
impedance Rg and
terminated with a load R

vi(t

l

)v(t)
R

Rg

and characteristic impedance Rc, connected at one end to a voltage step generator,
of amplitude Vo and internal impedance Rg, and terminated at the other end on the
load R (see Fig. 10.3). At time t = 0 the ideal line behaves like a resistance of value
Rc and at its input terminal a voltage Vf = VoRc/(Rc + Rg) and a current If = Vf /Rc

appear. Using these as boundary conditions, the solution for the voltage and current
forward signals propagating along the line, are:

v(x, t) = Vf θ(x − ut) i(x, t) = If θ(x − ut) (10.24)

The relations (10.24) show that the voltage and current steps propagate in the linewith
a speed u = 1/

√
LC so that after a time interval l/u they reach the line termination.

The load R represents a discontinuity and the solution (10.24) is no longer valid. In
order to satisfy the boundary conditions imposed by the load R, we must return to the
general solution (10.5) and (10.7) to find a combination of progressive and regressive
waves that satisfy the Ohm’s law on the load R. This requires that the current in the
resistor Vf +Vb

R is equal to the current in the line Vf −Vb

Rc
. We easily obtain

R = Vf + Vb

(Vf − Vb)/Rc
(10.25)

Introducing the reflection coefficient ρ, the amplitude of the reflected wave becomes
Vb = ρVf . Substituting this expression in Eq. (10.25), we find the expression of
reflection coefficient as function of the line characteristic impedance Rc and of the
load resistance R:

ρ = R − Rc

R + Rc
(10.26)

The following cases are noteworthy:

• R = ∞: Open Line. In this case ρ = 1, the progressive signal is reflected with the
same sign and amplitude.

• R = 0: Shorted Line. In this case ρ = −1, the progressive signal is reflected with
opposite sign and same amplitude.

• R = Rc: Matched Line. In this case ρ = 0, no reflection takes place and the line is
equivalent to a line of infinite length.
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10.5.1 Shorted and Open Line

Consider an ideal transmission line of characteristic impedance Rc, connected to a
voltage step generator v(t) = Voθ(t) of internal impedanceRg = Rc. Suppose that the
line, of length l, is terminatedwith a short circuit (see Fig. 10.3whereR = 0).We now
illustrate the time evolution of the voltage signal at the line input. At t = 0 the step
signal starts to propagate along the linewith amplitudeVf = VoRc/(Rg+Rc) = Vo/2.
Defining the line time delay as td = l/u, when t = td the signal reaches the short-
circuited end of the line (R = 0) and it is reflected with inverted amplitude (ρ = −1).
For t > l/u, in the line there are two signals: the forward signal of amplitude +Vo/2
and the reflected one of amplitude −Vo/2. The total signal is sum of the two, and the
reflected signal cancel out the forward one while propagating toward the generator.
At t = 2l/u the reflected signal reaches the line input. Since at this end the line is
matched (Rg = Rc, i.e., ρ = 0), the steady state is reached and the total signal at the
input is reduced to zero. The mathematical expression of the voltage signal at the
line input, for a short-circuited line, is the following:

vi(t) = Vo

2
[θ(t) − θ(t − 2l/u)]

If the line end is terminated with an open-circuit (R = ∞), the reflection coefficient
is ρ = +1 and reasoning as in the previous case, we deduce that for t > 2l/u at
the line input the total signal is doubled with respect to the signal at t = 0. The
mathematical expression of the voltage signal at the line input, for an open line, is
the following:

vi(t) = Vo

2
[θ(t) + θ(t − 2l/u)]

The voltage signals as function of time are shown in Fig.10.4 for the two different
cases discussed above. It worth to note that before the time t = 2l/u, the signal at the
line input is the same independently of the line termination. It is also worth noting
that in both cases at steady state the line behaves as a lumped parameter component
of negligible resistance.

Open-circuit LineShort Circuit Line

tt

Vo

2l/u 2l/u

2
Vo

Vo

Vo

2

Fig. 10.4 Signals at the input of a transmission line of length l (continuous line) when terminated
with short circuit (left) or with an open-circuit (right). Generator signal is a voltage step of amplitude
Vo. The generator signal is drawn as dot-dash line, the forward signal is drawn as dashed line and
the reflected signal id drawn as two dots and dash line
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10.5.2 Multiple Reflections

When a line is notmatched at both ends, the phenomenon ofmultiple reflections takes
place. Consider again the circuit of Fig. 10.3 and assume that the internal impedance
of the generator Rg is different from the characteristic impedance of the line Rg �= Rc

and that the line is closed on a load with R �= Rc. When a progressive wave reaches
the load R at the line end, it will be reflected with a reflection coefficient ρf =
(R−Rc)/(R+Rc), while regressivewaveswill be reflectedwith a reflection coefficient
ρb = (Rg − Rc)/(Rc + Rg) when they reach the line input. With a voltage step
generator v(t) = Voθ(t) connected to the line, at t = 0 the amplitude of the forward
signal propagating in the line is V1 = VoRc/(Rg + Rc). When this signal reaches the
line termination, it is reflected with a reflection coefficient ρf ; the amplitude of the
reflected signal (propagating backward) is V2 = ρf V1, and, once it reaches the line
input, this signal is again reflected with a reflection coefficient ρb and a new forward
signal is generated with amplitude V3 = ρbρf V1 = ρbV2. For ideal lines (without
energy dissipation), the signal will bounce indefinitely back and forth between the
two terminations. The amplitude of the signal at a given point and at a given time
is the sum of all signals present at that time in the location considered; the Fig. 10.5
shows a diagram useful for calculating this amplitude.

Figure10.6 shows an example of multiple reflections in a line. Since the absolute
value of ρ is always smaller than unity, the reflections occur at both ends of the line
with progressively smaller wave amplitude.

2td

4td

ρfρb

5td

3td

td

v5 = ρbv4

v4 = ρfv3

v3 = ρbv2

v2 = ρfv1

v1

0
x = 0 x = l

Fig. 10.5 Multiple reflection chart for an ideal line that is not matched at either end. ρb and ρf
are respectively the reflection coefficients for waves traveling backward and forward. The vertical
axis shows the time and on inclined lines, we show the amplitude of the traveling wave. Figure10.6
shows the waveforms at x = 0 (line input) and at x = l (line end) for particular values of ρb and ρf
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Fig. 10.6 Waveforms of signals at the ends of a not matched line when the input is a step function.
At line input the resistance is Rc/3 with reflection coefficient ρb = −1/2 and at the line end
termination is an open circuit with ρf = 1

10.6 Line Discharge

Consider an ideal transmission line uniformly charged at constant voltageV as shown
in Fig. 10.7 with the switch S closed. In this condition, the current flowing along the
line is i = V/R2. If at t = 0 the switch is open, the line starts to discharge and when
t = 0+ at terminal 1 both voltage and current change to new values V ′ and i′. This
results in a step discontinuity that propagates along the line with voltage and current
amplitude respectively equal to Vf = V ′ − V and if = i′ − i.

When t = 0+, in R1 flows a current equal to V ′/R1. This current comes from
the line where it flows in the opposite of the propagation direction. Therefore, i′ =
−V ′/R1 yielding if = −V ′/R1 − V/R2. In the line we have if = Vf /Rc, so that

if = Vf

Rc
= V ′ − V

Rc
= − V ′

R1
− V

R2

Solving for V ′, one obtains

V ′ = V
R1

R2
· R2 − Rc

R1 + Rc
and Vf = −V

Rc

R2
· R1 + R2

R1 + Rc
(10.27)

Fig. 10.7 Discharge of a
transmission line. The figure
shows the current flowing
through terminal 1
immediately after the switch
S is open

V R2

S

R1

21

i
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V

0 2tdtd

V/2

t

V

0 td 2td t

Fig. 10.8 Waveforms at both ends of a discharging transmission line

The Vf signal is reflected at the end of the line with a reflection coefficient ρ =
(R2 − Rc)/(R2 + Rc) and after a time 2td (td is the line delay time) the voltage at the
line input is

V ′(2td) = V + Vf + ρVf = V

(
1 − 2Rc(R1 + R2)

(R1 + Rc)(R2 + Rc)

)
(10.28)

When the line is matched in output (R2 = Rc), Eq. (10.27) shows that V ′ = 0.
This means that each point along the line is grounded when reached by the step
propagating in the forward direction. In this case the reflected step vanishes. When
the line is matched in input (R1 = Rc), Eq. (10.28) gives V ′(2td) = 0. This means
that each point along the line is grounded only when reached by the reflected step.
When the line is not matched at one of its terminals, its discharge requires a number
of multiple reflections.3

As an example, assuming R1 = Rc and R2 = ∞, we have V ′ = −Vf = V/2 and
ρ = 1. The resulting voltage waveforms at the two line ends are shown in Fig. 10.8.
At terminal 1, the voltage is immediately halved as the switch is open and vanishes
when the reflected negative step reaches its location. On the contrary, terminal 2 is
grounded when the forward negative step arrives and is reflected at the open line end.

10.7 Lossy Transmission Line

The real part of the propagation constant γ , which vanishes for a lossless line,
becomes finite when the dissipative parameters R and g cannot be neglected. Recall-
ing relations (10.16) and (10.17) we recognize that in a lossy line the signal attenuates
while propagating along the line. The expression (10.13) of the propagation constant
γ can be rearranged as

γ = √
(R + jωL)(g + jωC) = jω

√
LC

√(
1 + R

jωL

)(
1 + g

jωC

)

3The interested reader can find valuable information on this subject in Ref. [2].
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Fig. 10.9 Attenuation
length of the coaxial cable
RG58C/U as a function of
signal frequency
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where jω
√

LC is the value of γ for lossless lines. In the high frequency limit, if
ω 	 R/L and ω 	 g/C we can expand the second term of the γ expression in the
variable 1/ω neglecting the second-order term:

γ � jω
√

LC

[
1 − j

1

2

(
R

ωL
+ g

ωC

)]
= jω

√
LC + 1

2

(
R

Rc
+ gRc

)
(10.29)

where Rc = √
L/C is the characteristic impedance of the line. The expression

(10.29) seems to imply that at high frequency, i.e., for short pulses, the behavior
of a real line deviates from the ideal one for the constant attenuation coefficient
α = (R/Rc + gRc)/2. However, this is not the case in practice because in real lines
the attenuation coefficient α is frequency dependent. This is due to the skin effect that
progressively reduces the effective section of the conductors, and increases the value
of the parameter R for increasing frequency. In addition, dielectric losses, and the
related parameter g, typically also increase with the frequency. The Fig. 10.9 shows
the dependence of the attenuation length4 1/α, as a function of the frequency for a
cable type widely used in laboratories.

Line Attenuation Measurement. In this paragraph, we show how to measure the
attenuation coefficient α of a real transmission line. Consider a line of characteristic
impedance Rc and length l terminated with a short circuit. The line is fed with a
voltage step generator of internal impedance Rg = Rc (see Fig. 10.3 with Rg = Rc

and R = 0). If Vo is the step amplitude, at t = 0+, as already shown before, the
amplitude of the forward signal is Vo/2. After a time interval 2l/u the reflected
signal reaches the line input and is added to the generator signal. The reflected
signal, reversed in sign (ρ = −1), travels in the real line for a total length 2l, so its
amplitude is attenuated by a factor e−2lα . If ε is the voltage measured at the line input
at the time t = 2l/u, then

4The attenuation length is the length of the line corresponding to a signal amplitude reduction by a
factor e, the Neper number.
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ε = Vo

2
(1 − e−2αl) � Voαl

(
for t = 2l

u

)

where we used a power series expansion of the exponential limited to the first order
in l. From the previous equation, we can easily obtain α:

α = ε

Vol

10.8 Transmission Lines in Sinusoidal Steady State

Consider a transmission line of length l connected to a sinusoidal voltage generator
of internal impedance Rg equal to the characteristic impedance of the line. If the line
is terminated with a load ZL, the reflection coefficient, for forward traveling signals
is (ZL − RC)/(ZL + RC) and is zero for backward signals. In steady state,5 the input
(complex) impedance of the line is given by the ratio between the (complex) voltage
present at the input and the input (complex) current.

The voltage at the line input is given by the sum of direct and reflected wave as
follows:

vin(x = 0, t) = Vf e
jωt + Vbe

jωt−γ 2l = Vf
(
ejωt + ρejωt−γ 2l

)
(10.30)

Using Eq. (10.17), we get the input current as

iin(0, t) = [vf (e
jωt − ρ ejωt−γ 2l)]/Rc (10.31)

and finally, we get the expression of the (complex) input impedance of the line as:

Zin = Rc
1 + ρ e−γ 2l

1 − ρ e−γ 2l
(10.32)

For a lossless line, γ = jβ = jω
√

LC and the (10.32) becomes6:

Zin = Rc
ZL + jRc tan βl

Rc + jZL tan βl
(10.33)

The previous expression is further simplified assuming that the load of the line is a
short circuit (ZL = 0); in this condition, the input impedance is

Zin = jRc tan βl (10.34)

5Steady state means that all the voltage and current transients are over.
6To obtain relation (10.33) it is useful to multiply numerator and denominator of (10.32) by e+γ l .
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Fig. 10.10 Ratio of the amplitude of the input impedance of a shorted ideal line to its characteristic
impedance, as a function of the dimensionless parameter ωl

√
(LC)

The ratio Zin/Rc as a function of ω l
√

LC (a sort of “reduced angular frequency”) is
shown in Fig. 10.10. Note that, in ideal conditions, this impedance varies between 0
and ∞. This behavior can be easily verified in the laboratory by measuring the input
voltage amplitude as a function of the signal frequency. In particular, it is easy to
verify that the impedance has a minimum for βl equal to integer multiple values of
π/2. This behavior can be understood in terms of interference between the direct and
the reflected signals at the line input. In fact, at this point the two signals have a phase
shift equal to the value of 2βl. The Eq. (10.31), with ρ = −1, shows that the input
current vanishes for βl equal to an odd multiple of π/2 while the tension remains at
a finite value, as seen from the Eq. (10.30). In this (ideal) condition, the impedance
seen by the generator diverges. Conversely for βl equal to an integer multiple of
π/2 and with ρ = −1, it is now easily shown, using again (10.30) and (10.31), that
the input voltage is zero while the current remains at a finite value. In this (ideal)
condition, the impedance seen by the generator is zero. Finally, it is easy to show that
in case of real lines, the input impedance remains always finite and different from
zero.

If the line termination is an open circuit (ZL → ∞), the input line impedance
is Zin = Rc/j tan βl and the role of zeros and divergence points is exchanged with
respect to previous case when the line termination was a short circuit.

“Short line”. Another interesting point on the input impedance of a line regards the
case when βl � 1, i.e., when we can consider the line as a short line. In this limit,
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which can be applied to the majority of the cables length used in the laboratory, it is
possible to make the approximation tan βl � βl, so the Eq. (10.33) becomes

Zin � Rc
ZL + jωRcβl

Rc + jZLβl
= ZL + jωLl

1 + jωZLCl

where we used the definitions of β and Rc. If the line termination is an open circuit
(ZL = ∞) its total input impedance becomes Zin = 1/jωCl, that is the impedance
of the capacity of a cable of length l (remember that C is the capacitance per unit
length of the line). Conversely, if the line termination is a short circuit (ZL = 0) its
total input impedance becomes Zin = jωLl, i.e., the impedance of the inductance of
a cable of length l. Only in the case where ZL = RC = √

L/C the cable is “seen”
as a resistance value of RC , as it happens for matched lines. For values of ZL < RC

the line impedance can be interpreted as “inductor like” while if ZL > RC the line
impedance can be interpreted as “capacity like”.

These results show that, when it is not possible to match the impedances of cables
connecting different parts of ameasurement apparatus, it will be necessary, especially
if one works at high frequency, to maintain their length to a minimum to reduce the
side effects caused by parasitic inductances or capacitances.

Problems

Problem 1 Compute the delay of a 100MHz signal when is transmitted by a 10m
length ideal transmission line. It is known that the wavelength of this signal in the
line is 1m. [R ×10−8 s.]

Problem 2 The setup shown in figure is used to avoid reflections in splitting signals
that propagate in transmission lines. Supposing the characteristic impedance of the
line is 75�, compute the value of R that avoid reflections. [A. R = 25�.]

R
R

R

Problem 2

Problem 3 The setup in the figure can be used instead of that of the previous prob-
lem to avoid reflections in signals split. Compute the value of R assuming that the
characteristic impedance of the lines is 75�. [A. R = 75�.]
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R

R

R

Problem 3

Problem 4 An ideal transmission line of length l and with characteristic impedance
Rc is connected to another ideal line of length l/2 and with characteristic impedance
Rc/3. The latter line endswith an open circuit. A voltage step generator v(t) = Voθ(t)
is connected to the former as shown in the figure. Compute the voltage waveform at
the input of the first line, supposing that the propagation velocity in the two lines is
the same. Assume that all lines are lossless.

l2l1

Zc = R0/3

R0 Vi

Zc = R0

Problem 4

Problem 5 The “Blumlein line” is a device used to generate short high voltage
pulses. The time duration can be few nanoseconds and the voltage may reach hun-
dreds kilovolts. One particular realization of this device is shown in the figure. It
consists of two parallel strips making a line of characteristic impedance Rc. The line
is matched, i.e., is terminated with its characteristic impedance Rc. At the other end,
a third strip is inserted, half way between the first two strips, for a fraction of the
total length of the line. In this way, we obtain two lines of impedance Rc/2 and of
the same length of the third strip. The central strip is charged at potential V and then
is short-circuited, by means of a spark gap (SG in figure) that works like a switch.
Determine the duration and the amplitude of the pulse on the resistance at the termi-
nation. [Hint: the structure in the figure is equivalent to two lines of characteristic
impedance Rc/2 connected in series through a resistor Rc]

Rc

Rc/2
Rc

Rc/2SG

V

Problem 5

Problem 6 A pulse generator using a relay with contacts wetted in mercury was
commonly used, until the 70’s of the last century, to obtain voltage pulses with rise
times of the order of one nanosecond. The schematic of the circuit is shown in the
figure. To obtain a pulse, the relay contact is closed after charging the line on left at
voltage Vg. Prove that the signal on the load Rc (equal to the characteristic impedance
of the line) is a pulse of amplitude Vg and time width τ l, τ being the specific delay of
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the line and l the length of the line charged at Vg. Suppose that Rg 	 Rc and assume
that the relay with contacts wetted in mercury is an ideal switch.

l

Rg

Vg Rc

Pulse Generator
Relay

Problem 6

Problem 7 A voltage step generator is connected to the parallel of two cables of
identical impedance RL and specific delay τ . The first cable, shown on the left of the
figure, is short circuited and its length is equal to l. The second cable, of arbitrary
length, connects to a matched load RL. Show that at this load we obtain a voltage
pulse of duration 2τ l.

Short
Circuit

Rg

l

RL

Problem 7
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Appendix A
Laboratory Experiments

A.1 Introduction

In this appendix, we illustrate nine experiments that we have used extensively in our
laboratory classes. They are designed as the necessary complement to the matters
dealt with in the main text and they allow for the practical implementation of the
many concepts that we deem students should internalize when attending the lecture
classes.

The sequence and the content of these experiments have been designed keeping
in mind a series of considerations. First, we required that in each laboratory session
students should produce quantitative information about the relevant physical quanti-
ties, a fundamental requirement for a course aimed at teaching the principles of the
measurement science.

Second,we devised a learning pathwhereby students begin by using simple instru-
ments and by performing basic data analysis and conclude their laboratory experience
exploiting advanced instrumentation and devising rather complex procedures of data
handling. In this perspective, we started by using simple analog devices in order to
introduce later in the sequence the use of the most modern digital instrumentation
and to allow data transfer to a computer for further specialized elaboration.

The third consideration is perhaps the most important.We thought that it is impor-
tant that students understand that it is never easy to obtain accurate results in exper-
imental science. We wanted to make them aware that the measurement process can
have by itself an important impact on the measured quantity, and the analog instru-
mentation, when still available, can be extremely useful to exemplify this concept in
practice. Similarly, we wanted to make them able to minimize the impact of parasitic
elements related to cables connecting the measured circuit to the measuring instru-
mentation. Finally, we wanted that students learn that there are always variables of
influence that can have an important effect on the quantity of interest and that critical
thinking is the most effective approach to gain control of this important aspect of
experimental science.
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In the following sections, we illustrate the aim of each of these experiments,
followed by a list of the necessary equipment. Then we give a plan of action that
students should adopt to fulfill the requirement of each experimental session. Students
should be required to write a report on each experiment adopting the proper style of
a scientific publication. Finally, we give for each experiment a note that can be useful
to tutors in the preparation of the experiment and in its illustration to students. We
remark that these notes are written for experienced teachers and, therefore, they can
turn out to be of little use for most undergraduate students without appropriate help
from their tutor.

A.2 Experiment: Laboratory Instrumentation
and the Measure of Resistance

Aim of the experiment: to gain confidence with electrical instrumentation and to
learn how to evaluate correctly the effects of averaging on uncertainties.

Material available for the experiment:

• Analog multimeter
• Digital multimeter
• 100 resistors with identical nominal value
• Cables and connectors

Plan of the Experiment

Measure the resistance of 100 resistorswith identical nominal value. For each resistor,
measure the resistance value with both the analog and the digital ohmmeter. For the
analog instrument, it is required to interpolate its reading between the divisions of
its ruler. Collect the values and their uncertainty in a spreadsheet. Use the data to
perform the following tasks.

1. Compare the two averages obtained fromdata collectedwith the digital instrument
and data collected with the analog meter.

2. Verify the compatibility of these two values taking into account the uncertainties
provided by the user manuals of the instruments.

3. Build a histogram of the resistance values measured with the digital instrument.
Check compatibility with the nominal value of resistors taking into account its
uncertainty as stated by the color code.

4. Build a histogram of the difference between each analog value and the corre-
sponding digital measurement. Calculate the estimated standard deviation of the
distribution. Discuss the origin of the dispersion.

5. In this experimental session, your colleagues are measuring the same resistors
with different instruments. Collect the average values obtained by them and use
these data to
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• obtain a more accurate estimate of the average value of the 100 measured
resistances and

• verify the compatibility of your analog result with the class of the instrument
to assess if a new calibration is needed.

Notes to the Tutor

In this first experimental session, students must gain confidence with instrumentation
and learn how to evaluate the effects of averaging on uncertainties. The tutor will
introduce them to the electrical laboratory instrumentation: resistors, and the color
code to read their resistance value, solder-less breadboards to mount circuits and
cables to connect them to power supplies and measuring instruments.

Then he will illustrate the use of measuring instruments, namely an analog and
a digital multimeter. For the analog instrument, he will illustrate the use of the
mirror for compensation of parallax error and will discuss the need to interpolate the
reading between the divisions of the graduated scale. For the digital instrument, he
will discuss the two contributions to the uncertainty, namely the calibration factor
and the quantization error, and the different nature of their correlations. The tutor
should explain that in digital instruments in general, uncertainties of type B due to
calibration are different from those due to quantization. These two contributions are
not correlated with each other and should be added in quadrature.

Students must learn to consult the user manual of each instrument to evaluate
features and capabilities, identifying formulas and parameters needed to assess the
uncertainty of measurement. They will configure them for use as ohmmeter and
control that the instrumental zero is properly set by measuring a short circuit.

In the preparation of this experiment, the tutor must choose a nominal value of the
resistance such that the nonlinear scale of the analog instrument is used in the low
resistance end so that the distance of its divisions is sufficiently wide to allow for a
visive interpolation between them. For the execution of the measures, resistors can
be mounted in groups of ten on breadboards with ten resistors each. Rotating them
among students, one can obtain multiple measurements of the same resistances with
different ohmmeters. Each student will measure with both the analog and the digital
instrument.

By making sure that each student measures at least a hundred resistors, after data
collection each student should perform the following analysis:

• Calculate and compare the two mean values using digital or analog data. Evaluate
the uncertainty on these averages taking into account the correlation between
the different components of the uncertainties of the individual measures. After
completing this task, students should have understood that, since the experimental
uncertainty is strongly correlated, in first approximation the relative uncertainty
of the average is equal to the relative uncertainty of the single measurements.

• Verify the compatibility of the average values obtained with the two instruments,
taking into account the uncertainties supplied by the manufacturers of the instru-
ments (type B uncertainties).
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• Build a histogram of the values of the resistances measured with the digital instru-
ment, which usually present a smaller uncertainty. Assess their compatibility with
the accuracy of the nominal value of the resistance provided by their manufac-
turer, typically 5%. Discussing the shape of the histogram obtained, explain that
the resistance of a resistor depends on the setting of the machine that produced it.
If care is taken to avoid choosing all resistors from the same batch, the histogram
has more than one peak.

• Build a histogram of the difference between digital and analog measurement of
each resistor and calculate themean and standard deviation of the estimate.Discuss
the shape of the histogram (if well done, it will be a bell curve that resembles a
Gaussian) and the origin of the dispersion (reading error manly of the analog
instrument, which are random and not correlated, and generally better half of
the difference between the divisions on the graduated scale). Students should
realize that by visual inspection they could interpolate much better than half the
division spacing. In absolute terms, a skilled eye can distinguish a thickness with
an uncertainty better than 0.1mm.

• Compare the average values obtained by different students to verify that none
of the instruments used requires a calibration check. Usually digital instruments
maintain calibration over time and the distribution of the observed values falls
within the manufacturer’s specifications. Therefore, from these measurements one
can get a more accurate estimate of the average resistance using all available
values since now they are not correlated. An analysis of the difference in analog
measurements with this value is now an accurate test to identify any instrument
out of specification.

A.3 The Voltmeter–Ammeter Method and Ohm’s Law

Aim of the experiment: to learn how to implement the voltmeter-ammeter method
for measuring resistance values and to validate Ohm’s law for two different types of
conductors.

Material Available:

• DC voltage generator (V= 0 ÷ 30 V).
• Digital multimeter and/or analogmultimeter (two instruments) formeasuring volt-
age, current and DC resistance.

• Solder-less breadboard for assembling the circuit. Resistors of different values.
• Light bulb (rated at 5V).
• Wires for connecting the components of the circuit.

Plan of the Experiment

1. Choose a resistor based on the maximum allowed power dissipation and the
maximum voltage planned for the experiment. Use a large safety limit and check
that the resistor remains cold when the maximum voltage is applied.
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2. Choose the instrument to use as voltmeter and explain the motivation of your
choice.

3. Assemble on the breadboard the circuit with the ammeter “upstream” of the
voltmeter and perform a series of measurements of the voltage drop V across the
resistor and the current in the circuit for a series of predetermined values of the
generator output voltage V0.

4. Calculate initially the resistance value with its uncertainty from a single pair of
measurements and assess the extent of possible systematic effects.

5. Make a plot of the values of the voltage drop V as a function of the current
I flowing in the resistor (after making the correction for systematic effects, if
needed).

6. Apply the weighted least squares method to fit a straight line y = mx + q to the
data obtained. Choose whether current or voltage should be represented with x
and justify your choice. Calculate the parameters, and their uncertainties, that best
fit the results. Compare the value and the uncertainty of the resistance measured
in this way with those obtained in Step 4 and comment on the results.

7. Comment on the value of the offset q . Is a value of q different from zero acceptable
for an ohmic conductor? Is your result compatible with the hypothesis q = 0?

8. Replace the resistance with the light bulb and repeat the measurements of voltage
and current. Carry out the measurements by increasing the values of V0 until
the bulb becomes incandescent, paying attention to avoiding burning it. For each
experimental point, wait for the measurement to stabilize (the bulb must reach
thermal equilibrium with the environment). Draw a graph of the values of the
voltage as a function of current and comment on the result.

Notes to the Tutor

The experiment consists in determining the voltage-current characteristic of a resistor
and an incandescent lamp.

Preliminarily, the students must choose the configuration of instruments. In gen-
eral, they should perform themeasurement with an ammeter in series with the resistor
and the voltmeter in parallel to it. Discuss the reasons for this choice keeping in mind
that the resistance of the ammeter can change depending on the used range and that
digital voltmeter presents quite high internal resistance. Explain to the students that,
because of internal resistance, the voltagemeter of the power supply does notmeasure
the voltage drop across the resistor.

Determine the maximum power that can be dissipated by the available resistors
and measure the maximum voltage that can be supplied by the DC voltage generator.
The value of the resistance must allow that measures extend up to the full scale of the
analog ammeter where the relative uncertainty is smaller. If Pmax is the maximum
allowable power dissipation with appropriate safety factor (as it will be evident at
the end of the experiment, we must avoid heating the component) and Vmax is the
maximumvoltage available, the full scale of the ammeter I f s should be chosen so that
I f s · Vmax < Pmax . At this point, the optimal value of the resistor for the validation
of Ohm’s law is equal to Vmax/I f s .
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Students must perform the measurements by varying the applied voltage up to
the maximum possible: discuss the choice of the number of measurement points and
their separation, paying attention to the need to determine with good accuracy the
value of the intercept with the currents axis for Ohm’s law validation.

After evaluating the uncertainties of measured values of currents and voltages,
students must fit a generic straight line to their data points using the least squares
method without weighting for errors. If data points have very different uncertainties,
discuss the need for taking into account the errors on the ordinate. In this case, discuss
the criteria for choosing the quantity to use as ordinate. Evaluate slope and intercept
with related uncertainties. Use the slope for the evaluation of the resistance value and
its uncertainty. Discuss possible corrections due to the impedance of the voltmeter.
Compare the value found with the nominal value and the value measured with digital
multimeter.

Discuss the significance of the intercept by comparing it with its uncertainty. If
the measurement was carried out with care, in general the value of the intercept is
well compatible with the zero. If it does not, probably low voltage data points were
either too few or too inaccurate. It is also possible that not enough attention was paid
to the need to avoid heating the resistor.

In the second part of the experiment, students will exchange the resistor for the
light bulb and increase gradually the applied voltage so it becomes incandescent,
being careful not to burn it. After deciding the number of measurement points, they
will measure the voltage-current characteristic. They should be brought to identify
the nonlinearity and discuss the cause. Once the students realize that it is extrinsic
nonlinearity caused by the temperature change, theywill performmeasurement again
with a number of data points adequate to document the nonlinear behavior and
allowing for time to reach thermal equilibrium at each change of voltage to obtain a
reproducible result.

Possibly, require students to derive an estimate of the temperature of the filament
from the resistance measurements carried out and the temperature coefficient of
tungsten resistivity. Seize the opportunity to introduce Wien’s displacement law for
blackbody radiation.

A.4 Experiment: Resistivity Measurements

Aim of the experiment: to measure the resistance of different samples of graphite
mixtures as a function of their length to derive their resistivity, with its uncertainty,
from the second Ohm’s law.

Material available:

• Digital Multimeter
• Cables and terminals
• Caliper
• Samples of graphite mixtures (pencil leads)
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Plan of the Experiment

1. Connect the ohmmeter to the sample through a fixed and a sliding contact.
2. For each of the available samples, measure the value of resistance R as a function

of the distance l between contacts along the axis of the cylindrical pencil lead.
3. Use the digital multimeter for the resistance measurement and the caliper for the

measurement of l. For the interpretation of the experiment remember that the
resistance of a conductor is directly proportional to its length l, and inversely
proportional to its cross sectional area S.

4. Construct the plot of R as a function of the length; evaluate the resistivity from the
slope of the best fitting straight line and the diameter of the sample as measured
by the caliper.

5. Comment on the results obtained comparing resistivity and hardness of samples.
6. Discuss the values obtained for the intercept, its significance, and its possible

origin.

Notes to the Tutor

Aim of the experiment is to learn how to measure the coefficient of electrical resis-
tivity using a simple setup. After completing this work, students should have real-
ized how they avoided important systematic effects obtaining the required quantity
through a difference measurement.

The experiment can be done with samples obtained using leads for pencil of
varying hardness. Pencil leads are made of a mixture of graphite and clay in which
this last component, the more resistive, increases in percentage with the hardness.
The instruments to use are a digital ohmmeter to measure the resistance and a caliper
for measuring the length and diameter of cylindrical pencil leads (2mm diameter is
a good choice).

For contact between the sample and the ohmmeter, the brass contacts of a cable
joiner strip can be used.

Students must first carry out measurements on the same pencil lead at different
lengths. They should realize the presence of systematic effects comparing the value
of the resistivity obtained from different lengths of sample. Next, they should realize
that using the difference between two measurements with different lengths, reliable
results can be obtained. The source of systematic effect should be identified in the
contact with the sample: extended contacts lead to poor definition of the sample
length and possibly intrinsic contact resistance.

At this point students should be encouraged to measure pencil leads of different
hardness. They will perform a linear fit of the results to evaluate the slope and the
intercept with related uncertainty. They will obtain the resistivity of each sample,
with its uncertainty, using the slope of the fit and the value of the sample diameter as
measured by a caliper. The relation between resistivity and hardness should become
apparent.

Finally, students should concentrate on the analysis of intercepts of thefitting lines.
They should realize that they are significantly different from zero and that their value
correlateswith the sample resistivity. This observation lends support to the hypothesis
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that their origin is due to a poor definition of the contact localization producing an
offset in the length measurements. However, the tutor should make students aware
of the existence of non-ohmic contact resistance that possibly contributes to the
intercept value.

In the discussion of these experiments, the tutor should explain to students how the
impact of the contact localization and contact resistance on the measurement can be
made irrelevant. This requires using 2 power contacts to inject current in the sample
and 2 sensing knife contacts, well defined and placed inside the power contacts, to
measure the voltage drop with a high impedance voltmeter. This configuration would
allow the use of a fixed length of sample.

A.5 Experiment: Measurement of the Partition Ratio
Along a Chain of Resistors

Aim of the experiment: to assess the disturbance induced by a voltmeter on the
measured voltage.

Material Available:

• DC voltage generator (V0 = 1÷30V).
• Analog voltmeter.
• Digital multimeter for measuring voltage and resistance.
• A resistor chain of 10 elements.

Plan of the Experiment

1. Measure the resistance value of individual resistors
2. Power the resistor chain with a voltage of 10V and measure the voltage along the

chain using the analog voltmeter with a full-scale range of 10V
3. Power the resistor chain with a voltage of 2V and measure the voltage along the

chain using the analog voltmeter with a full-scale range of 2V
4. Use the results obtained to calculate the partition ratio as a function of the resistor

number and compare with their unperturbed values.
5. Use the analog voltmeter impedance to correct the systematic effect observed.

To this purpose, assume that all resistances in the chain are equal to the average
of their measured values with uncertainty equal to the standard deviation of their
measured distribution.

Notes to the Tutor

With this experiment, students have the opportunity to assess an example of the
disturbance induced by measuring instruments on measured parameters.

The experiment consists in measuring the partition ratio of the electrical voltage
along a chain ofN resistors of equal resistance as a function of the order number n that
distinguishes the single resistor. The expected value, neglecting the small fluctuation
of the value of individual resistances, is equal to the ratio n/N .
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In preparation of the experiment, choose resistors such that the resistance of the
chain is comparable to internal resistance of the analog voltmeter (100k�) but small
compared to that of a digital voltmeter (10M�).

During the experiment, the students will measure the partition ratio for two differ-
ent supply voltages in order to use the analog voltmeter with two different full-scale
ranges, and hence with two different values of the internal resistance. Having found
that the two measures of the partition ratio do not coincide with each other and that
none of them coincides with the expected outcome, students can repeat the measure-
ments with a digital voltmeter and obtain a measure consistent with expectations.

Once the cause of the discrepancy is identified in the finite resistance of the analog
voltmeter, students will proceed with the necessary analysis to take into account its
effect. For this purpose, they can assume that all resistances in the chain are equal to
the average of their measured values with uncertainty equal to the standard deviation
of their measured distribution. Then they can apply Thevenin’s theorem and obtain
the correct expression for the expected voltage in the presence of the connection to
the voltmeter, see Chap.4, Problem 14.

At this point, they can use this result in two different ways:

• Recover the voltmeter internal resistance Rv from the user manual and correct the
measured voltages to estimate the unperturbed values.

• Use the difference between the unperturbed and the measured partition ratios to
derive N−1 estimates of the resistance Rv with the relative uncertainty. Note that,
as it is intuitive, this measure is less uncertain when the perturbation is larger and,
consequently, take the weighted average of the N − 1 estimates to obtain the most
accurate value for Rv with its uncertainty.

A.6 Experiment: Characterization of RC Filters

Aim of the experiment: to measure the transfer function, amplitude and phase, of a
low-pass and a high-pass RC filter.

Material Available:

• Digital oscilloscope with voltage probes
• Waveform generator
• Resistors and capacitors
• Connecting cables
• Solder-less breadboard

Plan of the Experiment

1. Design an RC filter with cutoff frequency of the order of 1kHz, choosing its
components in such a way as to minimize the impact of the output impedance of
the waveform generator and of the input impedance of the oscilloscope, or the
probe used to connect to it, during the measurements of the transfer function.

http://dx.doi.org/10.1007/978-3-319-31102-9_4
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2. Measure the value of resistance and capacitance of the two selected components.
3. Assemble the low pass filter and measure attenuation and phase of its transfer

function as a function of the frequency of the input sinusoidal signal. Choose the
value of the input voltage taking into account the presence of ambient noise and
the full-scale range of the oscilloscope. Choose the number of data points and
their spacing to optimize the information needed to accomplish the task in the
next step. Evaluate uncertainties for all attenuation and phase data points.

4. Determine the value of the cutoff frequency, and its uncertainty, from both atten-
uation and phase data. Compare with the value obtained from measured values
of resistance and capacity.

5. Repeat function transfer characterization for the high pass filter and compare with
theoretical expectation computed using the data on frequency cutoff obtained in
the previous step.

Notes to the Tutor

In this experimental session, students must first become acquainted with the use of an
oscilloscope and a waveform generator. The tutor should first explain how to perform
simple operations with these two instruments.

The tutor should discuss the systematic effect of the output impedance of the
voltage generator, of the oscilloscope input impedance, and of the stray capacitance of
cables used to connect to it. As an alternative to such cables, the use of a compensated
probe can be illustrated.

The tutor should help students to choose among the different voltage amplitude
measurements provided by a digital oscilloscope. Peak-to-peak amplitude can be
used when the signal is much higher than ambient noise. Otherwise, effective ampli-
tude should be preferred.

The tutor should also show how to use a digital oscilloscope to measure the phase
delay between two sinusoidal signals, see Sect. 8.4 in Chap. 8.

The tutor should discuss the uncertainty of the measurements of amplitude and
time obtained via the oscilloscope and their propagation on the measurement of the
attenuation and phase.

For the design of the filter, its resistance R must be sufficiently higher than the
output resistance of the waveform generator, usually equal to 50�, and sufficiently
lower than the input resistance of the oscilloscope, usually of the order of 1 M�. A
value of R in the range 1–10 k� is therefore adequate.

For the characterization of the filter transfer function, students must understand
that they need to plan the number of data points taking into account that a Bode plot
should be drawn in logarithmic scale. They will be led to think in decades and to
space data point accordingly.

The cutoff frequency of the filter corresponds to an attenuation 1/
√
2 or to a

phase delay of 45 degrees. The student should be encouraged to find these value
interpolating between suitable data points. For optimal results, the acquisition of new
data pointsmay be required. In the evaluation of the cutoff frequency by interpolation,
studentsmust take into account that the uncertainties of the attenuationmeasurements
are correlated while those of phase measurements are uncorrelated.

http://dx.doi.org/10.1007/978-3-319-31102-9_8
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Students should compare these two determinations of the cutoff frequency with
the value given by the product of the resistance and capacity values. A best estimate of
this quantity should then be obtained as the weighted average of the three available
results. This value will be used to compute the transfer function of the high pass
filter built with the same capacitor and resistor. A comparison of this function with
experimental data will be used as a validation check of the work done before.

A.7 Experiment: Characterization of an RLC Series
Resonant Circuit

Aim of the experiment: to measure the transfer function, amplitude and phase, of a
passband RLC filter.

Material Available:

• Digital oscilloscope with voltage probes
• Waveform generator
• Two resistors of nominal resistance 470 and 4.7�

• A capacitor of nominal capacity 10nF
• An inductor of nominal inductance 10mH
• Digital multimeter
• Connecting cables
• Solder-less breadboard

Plan of the Experiment

1. Measure of components parameters, possibly with a vectorial bridge
2. Compute the expected value of the resonance frequency
3. Compute the quality factor of the circuit for the twovalues of the available resistors
4. Using computed values, choose an adequate number of frequencies for the mea-

surement of the transfer function
5. Measure amplitude and phase of the transfer function for the two values of the

available resistors
6. Measure an accurate value of the resonant frequency from the phase of the transfer

function
7. Measure the value of the quality factor for the two resistors
8. Compare measurements with expected values and comment on the results

Notes to the Tutor

In this experiment, very accurate measurements can highlight a number of small
parasitic effects. Therefore, the tutor will advise students to use an ×10 probe and
will show how to compensate it. Moreover, he will suggest using a single channel
with external trigger for the best accuracy of phase measurements.

Students will measure first the value of resistances, capacitance and inductance
and evaluate their uncertainties. The tutor should make sure that the capacitors used
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have a low thermal coefficient, to avoid drifts of the resonance frequency when
students touch components.

For the measurement of the transfer function, the notions learned in the previous
session must be used.

The resonant frequency is best measured as the point corresponding to the null
phase, obtained by means of an interpolation procedure between two appropriate
measured values.

The resonant frequency measured in this way is usually compatible with the
value obtained from components parameters. However, the values measured with
the two different resistors may not turn out compatible among them if an accurate
measurement is performed and if the inductor has a ferromagnetic core. However,
changing the input voltage to make the current in the coil at the resonance equal in
the two cases, the nonlinear response of this core can be made irrelevant and a good
matching of the two frequencies recovered.

After measuring the resonant frequency, students should check that it corresponds
to the maximum of the transfer function amplitude.

At this point, they can measure the quality factor identifying, on the two sides of
the resonance, the frequency value corresponding to a reduction of this amplitude of
a factor

√
2.

Phase measurements can be used to obtain quality factor from the two frequencies
corresponding to a phase shift of +45 and −45 degrees. The phase and amplitude
determination of the quality factor are in general compatible but they can be differ-
ent from the value expected from component parameters, at least when the lower
resistance is used, unless the series resistance of the inductor and the capacitor are
taken into account.

Students should compare the value of the attenuation at the resonance obtained
with the two resistors and come up with an explanation for their difference. They
should link this observation with the findings on the quality factors.

If a vectorial bridge is available, the tutor will encourage students to charac-
terize the components with both real and imaginary parts of their impedance. The
frequency dependence of these values should be remarked, assuming the available
instrumentation allows for it.

For an advanced version of this experiment, see Ref. [1].

A.8 Experiment: Study of Voltage Dividers

Aim of the experiment: to measure the transfer function (amplitude and phase) and
the response to a voltage step of different kinds of voltage dividers.

Material available:

• Digital oscilloscope with voltage probes
• Waveform generator
• Resistors and capacitors



Appendix A: Laboratory Experiments 263

• Connecting cables
• Solder-less breadboard

Plan of the Experiment

1. Build a voltage divider with an attenuation of 20 dB, using for the grounded
impedance a 470� resistor in parallel to a 33nF capacitor.

2. Choose for the remaining impedance a resistor in parallel to a capacitor to obtain
respectively a compensated, over-compensated, and under-compensated divider.
For the three cases, measure the attenuation and the phase delay as a function of
frequency for sinusoidal signals.

3. Using a rectangular pulse of suitable duration, document the step function
response for the three cases and comment on the results.

Notes to the Tutor

When we take into account stray capacitances, a voltage divider is characterized
by the low frequency attenuation given by the resistive partition ratio, and the high
frequency attenuation given by the capacitive partition ratio. These two values are
in general different. In a compensated divider, the high frequency attenuation is
made equal to the low frequency value. This leads to the well-known relation among
components value, see main text, Chap.9.

In this laboratory session, the students will work with three different dividers with
different frequency response. They will characterize them in the frequency domain
and compare with theoretical predictions as given in Chap.9 of the book.

They will then move to the time domain to observe the divider’s response to a
step function. The tutor can use the experimental findings to introduce them to the
time-frequency duality. He will point out the two phenomena of overshooting, when
the circuit response is higher for high frequency components of the input signal, and
of undershooting, when the opposite is true.

In these experiments, it is possible to identify the sharp pulse due to the stray
inductance in series with the capacitors as described in Sect. 9.10 of the main text.

A.9 Experiment: Study of RC Circuits in the Time Domain

Aim of the experiment: to measure the time constant of an RC circuit from its response
to a step function and to demonstrate the use of the same circuit as an integrator or,
after the inversion of its components, as a differentiator.

Material Available:

• Digital oscilloscope with voltage probes
• Waveform generator
• Resistors and capacitors
• Digital multimeter
• Connecting cables

http://dx.doi.org/10.1007/978-3-319-31102-9_9
http://dx.doi.org/10.1007/978-3-319-31102-9_9
http://dx.doi.org/10.1007/978-3-319-31102-9_9


264 Appendix A: Laboratory Experiments

• Solder-less breadboard

Plan of the Experiment

1. Build an RC circuit in the low-pass configuration with a characteristic time of
1ms, choosing its components in such a way so as to minimize the impact of the
output impedance of the waveform generator and of the input impedance of the
oscilloscope, or of the probe used to connect to it.

2. Select from the waveform generator a unipolar pulse of duration suitable to study
both the charge and the discharge of the capacitor.

3. Measure the input and output signals with the digital oscilloscope over a time
span adequate to the determination of the time constant of the circuit. Read the
data from the oscilloscope with a personal computer.

4. Linearize the time response of the circuit and recover the time constant from a
linear fit from both the charge phase and the discharge phase of the capacitor.
Compare the two values obtained in this way.

5. Use the best determination of the time constant and evaluate theoretically the
maximum duration of a rectangular input pulse to obtain in output its integral with
an error lower than 3%. Verify your finding with an appropriate measurement.

6. Change the input pulse from rectangular to sawtooth and document the circuit
response. Comment on the result.

7. Modify the circuit in a high-passfilter using the samecomponents.Use a triangular
input signal in a range of parameters where it works as a differentiator, and
document that:

• for the constant duration, the output signal amplitude is proportional to input
amplitude;

• for the constant input amplitude, the output signal amplitude is inversely pro-
portional to the duration of the input.

Notes to the Tutor

In this experimental session, the students will build and study an RC integrator circuit
with assigned characteristic time. They must select suitably the resistance R, taking
into account the output impedance of the signal generator and the input impedance
of the oscilloscope used to measure the voltages, and consequently the capacitor C.

Students will measure the response function of the circuit to a unipolar pulse of
sufficiently long duration to achieve complete charge and discharge of the capacitor.
Thedatameasured for input andoutput voltagewill be imported from theoscilloscope
to the computer for data analysis.

The theoretical expression for the output voltage needs to be linearized through
an appropriate logarithmic transformation to obtain the characteristic time by a lin-
ear fit possibly weighing data with their uncertainties. Note that the uncertainty of
transformed data can become very large toward the end of the capacitor charge (or
discharge). A criterion should be worked out to exclude them from the fitting range.

In this experimental session, it is important to discuss the existence of an offset
in the response of the analog-digital converter. It can be corrected through the acqui-
sition of the signal when the circuit input is left open (this works in the presence of
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a little noise, otherwise the offset measurement should be made with a zero-mean
noise generator or by measuring a small periodic signal over an integer number of
periods). With a good determination of the full charge voltage, the values obtained
for the characteristic time for the charge and the discharge of the capacitor will be
compatible between them.

Note that this experiment lends itself to a detailed discussion of the uncertainties
in the measurement of voltages with an analog-digital converter. In particular, it will
be possible to distinguish the contribution of digitization from that of the overall
calibration and from that of the differential nonlinearity of the converter and the
nonlinearity of the oscilloscope input amplifiers. The study of the residues of the
fit, insensitive to the calibration integral, can be used to obtain an evaluation of the
importance of the nonlinearity with respect to digitization if the ambient noise is
made negligible.1

In the second part of the session, students need to compute the maximum useful
pulse width for which the RC circuit provides in output the integral of the input
with a relative error lower than an assigned value. This requires the solution of a
transcendental equation that can be solved numerically in various ways (for example
by the method of Newton).

The result will be tested experimentally by integrating a square wave of the
required width. Finally, the circuit will be used with the same pulse duration for
integrating a ramp obtaining a parabola at the output.

In the last part of the experiment, the two components of the filter will be inverted
to observe the response of a differentiator. Triangular input pulses with duration
longer than the circuit characteristic time must be selected to obtain a rectangular
output. The student will document that amplitude of the output is proportional to the
input derivative.

A.10 Experiment: The Toroidal Transformer

Aim of the experiment: to measure the transfer function, amplitude and phase, of a
real transformer and to document the hysteresis loop of its magnetic core.

Material Available:

• A ferrite toroidal transformer with given number of turns for its windings
• Digital oscilloscope with voltage probes
• Waveform generator
• A resistor of nominal resistance 10�

• Digital multimeter
• Connecting cables
• Solder-less breadboard

1This is an advanced topic.
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Plan of the Experiment

1. Use a sinusoidal waveform of variable frequency tomeasure the transfer function,
amplitude and phase, of the transformer leaving its secondary winding open and
feeding its primary directly with the function generator.

2. Explore the range of frequencies from a few kilohertz to a few hertz and plot the
transformation ratio as a function of the frequency for two different amplitudes
of the input voltage (first 100 mV and subsequently 10 V). If necessary, use the
oscilloscope in the averaging mode to increase the signal-to-noise ratio.

3. Document carefully the waveforms, with special attention to the case of low
frequency and high input voltage. Describe and comment your results.

4. Subsequently, connect in series to the primary a 10� resistance and, instead of
the applied voltage, measure the signal at its terminals with the oscilloscope to
obtain a measurement of the current flowing in the primary.

5. Compute the H field amplitude in the toroidal solenoid from the circulating
current and use the voltage at the terminals of the open secondary winding to
obtain the B field amplitude. For this purpose, use the digital data transferred
to a computer from the memory of the oscilloscope to integrate numerically the
voltage signal of the secondarywinding. Plot the hysteresis loop of the transformer
core.

Notes to the Tutor

For this experimental session, it is necessary to prepare toroidal transformers with
ferrite core. In the design phase of these components, you need to know the value
of the magnetic field H required to saturate the magnetic material. For the toroidal
core, it is advisable to use a ceramic ferrite with the widest hysteresis loop available.

The number of turns, equal for both windings, must be chosen taking into account
the output impedance and voltage of the function generator, in order to obtain the
saturation of the magnetic core at low frequency with the available maximum input
voltage.

In the first part of the session, students will measure amplitude and phase on the
secondary as a function of the frequency taking care to use a low voltage on the pri-
mary to avoid the nonlinearity of the ferrite. A constant transformation ratio should
then be observed, decreasing toward the low frequency range where the resistance
of the primary is no longer negligible with respect to its reactance. In correspon-
dence, the onset of a phase shift between primary and secondary voltage should be
detected. At sufficiently high frequency, a reduction of the transformation ratio could
be observed due to the effects of inter-turn capacity.

In the second part of the experiment students will increase the voltage on the
primary winding to a value that makes visible the nonlinearity of the ferrite core.
They will document and describe the distortions observed.

In the last part of the experiment, students will change the circuit on the primary
winding by inserting a 10� resistance to obtain a signal proportional to the current
flowing in the primary, and therefore the H-field in the ferrite. This signal will be
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digitized by the oscilloscope simultaneously to the voltage signal induced on the
secondary, proportional to the derivative of the B field in the ferrite.

Transferring data from the oscilloscope to a digital computer, students can evaluate
B by numerical integration of the signal on the secondary and obtain a graph of the
hysteresis loop by plotting B as a function of H .

Special attention must be paid to cancel the offset of the analog-digital converter.
This can be done via hardware, subtracting to the secondary voltage a measurement
of white noise, if enough is available. Alternatively, it can be done via software,
adding to the secondary voltage an increasing fraction of the last significant bit prior
to integration until the hysteresis loop closes upon itself.

The symmetry of the hysteresis loop must be exploited to find the initial value of
the B field in the numerical integration.

Reference

1. R. Bartiromo, M. De Vincenzi, AJP 82, 1067–1076 (2014)
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Skin Effect

To calculate the distribution of AC current inside a conductor, it is necessary to
abandon the simplification that, considering the circuit components dimensionless,
led to the formulation of the two Kirchhoff’s laws. Instead, we need to use directly
Maxwell’s equations to solve the problem.

Consider a current flowing in a homogeneous conductor of resistivity ρ. If the cur-
rent oscillation frequency is low enough to neglect displacement current, Ampère’s
law allows writing

∇ × B = μ0 J (B.1)

where J(t, r) describes the space distribution of the current density. In addition, from
the law of Faraday-Lenz we obtain

∂B
∂t

= −∇ × E = −∇ × (ρJ) (B.2)

where in the last expression we made use of Ohm’s in the formulation E = ρJ.
Assuming that resistivity ρ is uniform and taking the rotor of this expression, we
obtain

∂

∂t
(∇ × B) = −∇ × (∇ × J) = ρ∇2J (B.3)

where we used the vector identity

∇ × (∇ × J) = ∇(∇ · J) − ∇2J

and the continuity equation for electrical current∇ ·J = 0. Taking the time derivative
of Ampère’s law, we get the relation

© Springer International Publishing Switzerland 2016
R. Bartiromo and M. De Vincenzi, Electrical Measurements
in the Laboratory Practice, Undergraduate Lecture Notes in Physics,
DOI 10.1007/978-3-319-31102-9
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∂J
∂t

= ρ

μ0
∇2J (B.4)

This diffusion equation describes the space-time evolution of many physical phe-
nomena.2

The solution of Eq. (B.4) depends upon the geometry of the problem and its
boundary conditions. In general, it is obtained with a complex procedure, which is
beyond the scope of these notes. On the contrary, it is rather easy to show that the time
and space scales characterizing its solutions are related. Indeed, given that with the
assigned boundary conditions the solution of Eq. (B.4) has a time evolution described
by an angular frequencyω, we can define a new dimensionless time variable τ = ω t .
The partial derivative with respect to t can be expressed as

∂J(t, x)

∂t
= ω

∂J(τ, x)

∂τ

and the original Eq. (B.4) becomes

∂J(τ, r)
∂τ

= ρ

μ0ω
∇2J(τ, r)

The quantity Δ = √
ρ/μoω has the physical dimension of a length and yields the

space scale of the solution. Indeed, defining a new dimensionless space variable
r̂ = r/Δ, it is possible to reduce the equation to a form that is independent on both
ρ and ω and on the unity of measure of the independent variables

∂J(t, r̂)
∂τ

= ∇2J(τ, r̂) (B.5)

Once solved with the appropriate boundary conditions, the solution describes any
system with the same geometry and the same ratio of physical dimensions to the
quantity Δ.

We now consider again the simple case of the infinite conducting plane we dis-
cussed inSect. 1.3.4.Wechoose a reference systemwith the x-axis normal to the plane
and the y- and z-axes running along the plane surface. In these conditions the current
density is bound by symmetry to change only along the direction x perpendicular to
the plane. We make use of the symbolic method (see Chap.5) to describe sinusoidal
time dependence. In addition, we adopt the dimensionless variables defined above.
The z component of the current density can be expressed as

Ĵz(τ, x̂) = Ĵz(x̂)e jτ

2For example the diffusion equation describes how the temperature varies in time along a rod
heated from one extreme, how a drop of milk spreads in coffee or how charge carriers move in
a semiconductor. In general, the diffusion equation describes all those phenomena induced by a
random walk at the microscopic level.

http://dx.doi.org/10.1007/978-3-319-31102-9_1
http://dx.doi.org/10.1007/978-3-319-31102-9_5
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and, upon insertion in Eq. (B.5), we get

∂2 Ĵz(x̂)

∂ x̂2
= j Ĵz(x̂)

The characteristic of this differential equation has solutions given by ±√
j = ±(1+

j)/
√
2. We get easily

Ĵz(x̂) = J+e
1+ j√

2
x̂ + J−e

− 1+ j√
2

x̂

The current density must remain bounded when moving inside the conducting plane.
Therefore J+ = 0. In the original physical variables the solution becomes

Jz(x) = Jz(0)e
− x

Δ
√
2 e− j x

Δ
√
2

A similar expression holds for the component in the other direction in the plane y.
Using the continuity equation for the electric charge ∇ · J = 0, we can show that
in the direction normal to the plane the component of the current density is null.3

Therefore, we obtain

J(t, x) = J(0)e− x
Δ

√
2 e

− j
(
ωt− x

Δ
√
2

)

In conclusion, the module of current density decreases exponentially moving inside
the plane with a decay length δ = √

2ρ/μoω as stated at the end of the Chap.1 in
the main text.

3Since for all values of x we have ∂ Jz/∂z = 0 and ∂ Jy/∂y = 0, we also obtain ∂ Jx/∂x = 0
everywhere. Using this result in Eq. (B.4) we get ∂ Jx/∂t = 0. Therefore Jx is constant in time and
space. Since it is null at the beginning of the experiment it remains identically null everywhere.

http://dx.doi.org/10.1007/978-3-319-31102-9_1


Appendix C
Fourier Analysis

Fourier analysis allows representing a large class of mathematical functions as lin-
ear superposition of sinusoidal functions. This appendix summarizes fundamental
formulas of this analysis and shows some examples of Fourier series and Fourier
integral representation of functions of particular interest for circuit analysis. Proofs
of theorems andmathematical details of Fourier analysis are beyond the scope of this
appendix and the reader is referred to the numerous and valuable textbooks available
on this topic.

C.1 Fourier Series

Any periodic function s(t) with period T can be expanded as a Fourier series, i.e.,
as an infinite sum of sinusoidal functions.4 The Fourier series can be written in three
equivalent formulations, the choice among them being a matter of convenience:

s(t) = a0

2
+

+∞∑
n=1

(an cos nω1t + bn sin nω1t) (C.1)

s(t) = a0

2
+

+∞∑
n=1

An cos(nω1t − φn) (C.2)

s(t) =
+∞∑

n=−∞
cne

jω1nt (C.3)

4More rigorously, a mathematical function can be be expanded as a Fourier series only if it meets
the conditions known as the Dirichlet conditions. The periodic functions, even discontinuous, used
as models of physical signals always meet these conditions.

© Springer International Publishing Switzerland 2016
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where the parameter ω1 = 2π/T is known as fundamental angular frequency and
ν1 = ω1/2π is the fundamental frequency. It can be shown that the coefficients an

and bn in previous expression (C.1) are given by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 = 2

T

∫ T
2

− T
2

s(t) dt

an = 2

T

∫ T
2

− T
2

s(t) cos nω1t dt

bn = 2

T

∫ T
2

− T
2

s(t) sin nω1t dt

(C.4)

With simple algebra and using trigonometric identities, we obtain the following
relationships among the parameters in the Eqs. (C.1)–(C.3):

An =
√

a2
n + b2

n φn = arctan
bn

an

cn = an − jbn

2
, c−n = c∗

n = an + jbn

2
, c0 = a0 (C.5)

The Fourier series of a periodic function is the sum of a time-independent constant
a0/2, which is the average value of the function over the period T , and an infinite
number of harmonic functions5 each with a frequency multiple of the fundamental
one: ωn = nω1(n = 1, 2, . . .).

The formulation of the Fourier series given in (C.1) is useful when the periodic
function has a definite parity: for even functions (s(t) = s(−t)), all the sine coeffi-
cients are zero (bn = 0, n = 1, . . . ,∞), whereas for odd functions (s(t) = −s(−t)),
all the cosine coefficients are zero (an = 0, n = 1, . . . ,∞).

The formulation of the Fourier series given in (C.2) shows explicitly the amplitude
An of each individual harmonic in the signal.

The compact expression given in (C.3) is derived with the use of Euler’s formula;
this formulation of Fourier series is the starting point to obtain the expansion of a non
periodic function in terms of sinusoidal functions (the Fourier integral or Fourier
transform) as it will be shown in Sect.C.1.2.

C.1.1 The Spectral Diagram. Examples

The spectral diagram consist in a plot of amplitudes An and phases φn , as defined in
(C.5) as a function of the harmonic number n. The spectral diagram of amplitudes
gives at a glance the “weight” of each harmonic contained in the time dependent
signal.

5Here, harmonic function means sine or cosine function.
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Example 1: Rectangular Waveform. As discussed in Sect. 7.2, the rectangular
waveform is defined by its period T , the duty factor δ and the amplitude Vo. To find
its spectral diagram, it is convenient to choose the origin of time (t = 0) in such a
way that the time function is even (see Fig.C.1).

For even functions, the coefficients bn are all zero, and the values of a0 and an

can be computed using the relations (C.4). Defining τ = δT , we get

ao = 2Voδ

an = 2Vo

T

∫ +τ/2

−τ/2
cos nω1t dt = 2Vo

πn
sin

nω1τ

2
= 2V0

πn
sin nπδ

Finally, we get:

s(t) = Voδ

[
1 + 2

∞∑
n=1

sin nπδ

nπδ
cos nω1t

]
ω1 = 2π

T
(C.6)

As an example, Fig.C.1 shows two rectangular waveforms with duty-factor of 10
and 30% respectively, and their spectral amplitude diagram for the first 30 harmonics.

It is worth to note that the shorter pulse has greater amplitude of high frequency
components than the longer pulse.
Example 2: Rectified Sinusoidal waveform. We calculate now the spectrum of a
sinusoidal signal after “cutting” its negative part. This waveform is obtained with a
simple (nonlinear) circuit made by a diode and a resistor (see Sect. 7.4). The study of
the rectified waveform is not purely academic as these signals are present as noise in
laboratories when a large amount of direct-current power is required (up to several
hundred kilowatts). The presence of multiple harmonics of the mains frequency (50
or 60Hz corresponding respectively to angular frequency ω = 314 s−1 or 377 s−1)
increases the probability to have electrical noise6 in the circuits downgrading the
quality of the power distribution.

Let us start computing the Fourier series of the output of the half-wave rectifier
(see Fig. 7.7a in Chap. 7) when the input signal is v(t) = V sinωot . The output signal
is the positive part of the input signal as shown in Fig.C.2a. During one wave period
T = 2π/ω the output signal is given by

f (t) =
{

V sin(ωot) if 0 < t < T/2

0 if T/2 < t < T

Choosing the form (C.1) to represent the Fourier series, with ω1 = ωo = 2π/T , the
coefficients an and bn are

6 Electrical noise can be defined as all the components of the signals in the circuit not caused by
the input.

http://dx.doi.org/10.1007/978-3-319-31102-9_7
http://dx.doi.org/10.1007/978-3-319-31102-9_7
http://dx.doi.org/10.1007/978-3-319-31102-9_7
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Fig. C.1 Fourier spectrum (|An | as a function of the harmonic number n) of two rectangular waves,
both with period T =10 a.u., amplitude V0 = 1 a.u. and duty-factor, respectively, 10 and 30%
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0
sinωot dt = V
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π
(C.7)

an = 2V

T

∫ T/2

0
sinωot cos nωot dt

= 2V

T

∫ T/2

0
sin

2π

T
t cos

2π

T
nt dt = V

1 + (−1)n

π(1 − n2)
(C.8)

bn = 2V

T

∫ T/2

0
sinωot sin nωot dt = 0, for n �= 1
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If n = 1

b1 = 2V

T

∫ T/2

0
sin2

2π

T
t dt = V

2
(C.9)

In conclusion the Fourier series of the output signal of half-wave rectifier is

f (t) = V

π
+ V

2
sin

2π

T
t − 2V

3π
cos

4π

T
t − 2V

15π
cos

8π

T
t + · · ·

= V

π
+ V

2
sinωot − 2V

3π
cos 2ωot − 2V

15π
cos 4ωot + · · ·

FigureC.2a shows both the time shape of the signal and its spectral diagram.
A better way to rectify a sinusoidal signal is the “full-wave rectification,” obtained

with the use of a diode bridge circuit, as discussed in Sect. 7.4. This circuit is capable
to invert the sign of the negative part of the input wave, doubling the efficiency with
respect to the half-wave rectifier. In this case, the period of the rectified wave is equal
to half of the period of the original sinusoidal waveform. If T is the period of the
input signal, the fundamental harmonics is ω1 = 2ω0 = 4π/T , therefore,

a0 = 4V

T

∫ T/2

0
sinω0t dt = V

4

π
(C.10)
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Fig. C.2 Output signals and spectral diagrams of a half-wave rectified signal panel (a) and of a
full-wave rectifier panel (b)
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an = 4V
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bn = 4V
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In conclusion the Fourier series of the output signal of full-wave rectifier is

f (t) = 4V

π

(
1 − 1

3
cos

4π

T
t − 1

15
cos

8π

T
t − 1

35
cos

12π

T
t + · · ·

)

Note that the mean value of the output signal of full-wave rectifier is 4V/π , two
times greater than the half-wave rectifier. FigureC.2b shows time shape and spec-
tral diagram of a full rectified-wave. As can be seen from the figure, the full-wave
rectification doubles the continous level component of the output, while it decreases
considerably the amplitude of the AC components with respect to the half-wave
rectifier.

C.1.2 The Fourier Transform

It is possible to obtain the spectral characteristic of nonperiodic signals using the
Fourier Transform or Fourier Integral. A heuristic method to understand the Fourier
transform takes into account the Fourier series in the form (C.3). Assumewe compute
the Fourier series for a signal in the time interval −T,+T . Now, leaving the signal
unchanged, increase the time interval in which the signal is defined to infinite T →
∞; in this limit the discrete variable ω1n becomes a continuous variable ω1n → ω

and the sums become integrals in time.
The formal definition of theFourier Transform (orFourier Integral) of the function

s(t) is

S(ω) =
∫ +∞

−∞
s(t) e− jωt dt (C.13)

The function S(ω) is called the spectrum of the signal s(t).
The function s(t) can be obtained from the function S(ω) using the inverse trans-

form

s(t) = 1

2π

∫ +∞

−∞
S(ω) e jωt dω (C.14)
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Fig. C.3 Bottom figure a Fourier transform of rectangular pulse of time width T , and b Fourier
transform of one exponential pulse e−t/τ (t > 0) with τ = 0.43T . The two pulses have approxi-
mately the same time length (e−T/τ = 0.1). Top figure time shape of the two signals

In order that the Fourier transform exists, the functions must satisfy certain condi-
tions. A sufficient (but not necessary) condition is that the function s(t) is absolutely
integrable or

∫ |s(t)|dt < ∞.

Example 1: The rectangular pulse. The Fourier transform of a rectangular pulse
of time width T and amplitude V is given by

S(ω) =
∫ T

2

− T
2

V e− jωt dt = V
e jωT/2 − e− jωT/2

jω
= V T

sin(ωT/2)

ωT/2
(C.15)

The function S(ω) gives, for eachω, the weight of the corresponding frequency in the
composition of the signal s(t). Usually the absolute value |S(ω)| is plotted against
ω to show the content of the corresponding frequency in the signal

|S(ω)| = V T

∣∣∣∣
sinωT/2

ωT/2

∣∣∣∣ (C.16)

In this case the spectrum has the absolute maximum at ω = 0 and local maxima at
ω = ±kπ/T with zeros at ω = ±2kπ/T . The width in angular frequency of each
peak is approximatively Δω � 1/T .



280 Appendix C: Fourier Analysis

Example 2: The exponential pulse. As a second example, the Fourier transform of
an exponential pulse s(t) = s0e−t/τ (t > 0) is computed as

S(ω) =
∫ ∞

0
s0e

−t/τ e jωt dt = s0τ

1 + jωτ
(C.17)

The modulus and the phase of S(ω) are respectively:

|S(ω)| = V0τ√
1 + (ωτ)2

φ = arctanωτ (C.18)

In Fig.C.3 we show the Fourier transform of a rectangular pulse and an exponential
pulse of about the same time length.

Example 3: The sinusoidal waveform of finite duration. As the last example of
Fourier analysis lets us showwhy it is not theoretically possible to realize a sinusoidal
signal generator that contains only a single frequency. The impossibility is not due
to technical limitations but to the fact that the signal starts at a given time t = 0 and
ends at another time t = T .

We use the notation s(t) = s0[θ(t) − θ(t − T )] sinω0t for a signal of angular
frequency ω0 that starts at t = 0 and stops at T = 2kπ/ω0 with k integer. The
choice k integer corresponds to an integer number of wave periods and simplifies
the following mathematical expressions (see Fig.C.4). The Fourier transform S(ω)

of s(t) is

S(ω) =
∫ +∞

−∞
s(t)e− jωt dt =

∫ T

0
s0 sinω0te− jωt dt

= s0
2 j

∫ T

0
s0

(
e j (ω0−ω)t − e− j (ω0+ω)t

)
dt

= s0
2

(
1 − e− j2kπ(ω/ω0−1)

ω − ω0
+ 1 − e− j2kπ(ω/ω0+1)

ω + ω0

)
= s0ω0

ω2
0 − ω2

(
1 − e− j2kπω/ω0

)

(C.19)
where in the last relation we used that, for k integer, exp(± j2kπ) = 1. The spectrum
of a time limited sinusoidal signal is given by the modulus of the function S(ω) given
in Eq. (C.19) and is shown in Fig.C.5. As stated above, its spectral diagram shows

Fig. C.4 Sinusoidal signal
of finite time duration

t

s(t)
T
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Fig. C.5 Frequency spectra of sinusoidal signals lasting 5 cycles (dashed line) and 10 cyles (con-
tinous line). By increasing the number of cycles, the width of the main peak around ωo decreases
while its amplitude increases linearly

the presence of many harmonics in addition to the fundamental one ω0. Increasing k,
the contribution to the spectrum of harmonics other than ω0 decreases as the figure
shows. The decrease in the (relative) contribution of the harmonics, different from
the fundamental one, is also seen taking the limit of S(ω) for ω → ω0:

lim
ω→ω0

S(ω) = kπs0/ω0

that shows a linear increase with k of the spectrum around ω0. Moreover, it can be
seen that the width of the main peak of the spectrum decrases with the inverse of k.

C.1.3 Fourier Analysis and Symbolic Method

Consider again Eq. (5.7) describing the behavior of an RLC-series circuit. In this
equation both the unknown variable i(t) and the excitation v(t) are time-dependent
functions. Using their Fourier transform representations:

v(t) = 1

2π

∫ +∞

−∞
V (ω)e jωt dω, i(t) = 1

2π

∫ +∞

−∞
I (ω)e jωt dω (C.20)

http://dx.doi.org/10.1007/978-3-319-31102-9_5
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we can obtain the Fourier transform of both their derivative and their integral. For
the current i(t) we obtain

di(t)

dt
= 1

2π

d

dt

∫ +∞

−∞
I (ω)e jωt dω = 1

2π

∫ +∞

−∞
jωI (ω)e jωt dω (C.21)

where we inverted the order of the integration in ω with the differentiation respect
to t , and similarly

∫
i(t)dt = 1

2π

∫
dt

∫ +∞

−∞
I (ω)e jωt dω = 1

2π

∫ +∞

−∞
I (ω)

jω
e jωt dω (C.22)

Equivalent expressions can be written also for the tension v(t). Using these results
in (5.7) we can write

1

2π

[
L

∫ +∞

−∞
jωI (ω)e jωt dω + R

∫ +∞

−∞
I (ω)e jωt dω + 1

C

∫ +∞

−∞
I (ω)

jω
e jωt dω

]

= 1

2π

∫ +∞

−∞
V (ω)e− jωt dω

Since this relation is valid for all values of time t , it requires that

(
jωL + R + 1

jωC

)
I (ω) = V (ω) (C.23)

This is the same equationwe found in Sect. 5.5.1where the solution ofACcicuitswith
the symbolic method was discussed. Therefore we recognize now that the symbolic
method is based on the transformation of time-dependent functions to frequency-
dependent functions using formulas based on the Fourier Analysis.

http://dx.doi.org/10.1007/978-3-319-31102-9_5
http://dx.doi.org/10.1007/978-3-319-31102-9_5
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A
AC bridge circuits, 137
AC coupling, 168, 170, 185
Accuracy, 67, 80, 81
ADC, 94, 174, 188
Admittance, 4
Aliasing, 188, 189
Alternating signal

rectangular, 167
sawtooth, 169
sinusoidal, 166
triangular, 166

Ammeter
D’Arsonval, 84
digital, 83
full-scale, 82
internal resistance, 82
moving coil, 83
perturbation introduced by, 82
promptness, 89
sensitivity, 85

Analog ohmmeter, evaluation of uncertainty,
101

Analog oscilloscope, 182, 185
Analog-to-digital converter, see ADC
AND circuit, 94
Attenuation, 141, 219
Attenuation coefficient, 245
Attenuation constant, 213
Attenuation in decibel, 142
Attenuator, compensated, 219
Average power, 122

B
Balanced, bridge, 35
Bandwidth, 186, 219
Bode’s diagrams, 141
Bridge

Heaviside’s, 158
Wheatstone’s, 34, 45, 137
Wien’s, 139

C
Capacitance, 14, 110, 120
Capacitor

electrolytic, 19
in parallel, 8
in series, 8
real, 15, 17

Cathode ray tube (CRT), 185
Characteristic impedance, 235, 236

typical values, 239
Class of the ammeter, 101
Coaxial cable, 232, 238

capacity per unit length, 238
inductance per unit length, 238

Coefficient of self-inductance, 8
Compensated attenuator, 219
Components

active, 4
in alternating current, 110
linear, 4
nonlinear, 4
passive, 4
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Conductance, 6
Conductivity, 14
Converter AC/DC, 174
Correlated quantities, 72
Correlation, 60
Correlation coefficient, 61, 73
Co-tree, 29
Covariance, 60, 61
Covariance matrix, 60
Coverage factor, 63, 69
Critical motion, 88

D
DAC circuit, 94
D’Arsonval, ammeter, 84
Decibel, 141
Differentiator, 205
Digital sampling, 178
Diode, 4, 37
Displacement current, 111
Distributed parameters, 110
Drude, model of, 6

E
Effective amplitude, see rms
Elastance, 8
Electrical permittivity, 14
Error, 54

random, 55
systematic, 55

Exponential pulse, 216
Exponential signal, 204

F
Fourier transform, 235

G
Generalized Ohm’s law, 120
Generator

controlled, 12
current, 12
real, 12
voltage, 11

Graph, 29

H
Heaviside θ function, 196
Heaviside’s bridge, 158
High-pass RC, 197

rectangular wave response, 200
sinusoidal signal, 144
voltage pulse response, 199
voltage ramp response, 203
voltage step response, 198

I
Ideal line, 237
Ideal transformer, 152
Impedance, 4

input, 140
output, 140

Impedance matching, 153, 154, 157
Independent loops, 34
Inductance, 8, 110, 119, 211, 218
Inductors

in parallel, 10
in series, 10

Input variables, 59, 66
Instantaneous power, 122
Integrator, 210

K
Kirchhoff’s laws, 27

for alternating current and voltage, 111
for complex current and voltage, 120

L
Linear circuits, 38
Loop method, 37
Lossless line, 237
Low-pass RC, 206, 207

integrator, 210
rectangular waveform response, 207
voltage pulse response, 207
voltage ramp response, 209
voltage step, 206

Lumped parameters, 3, 110, 141

M
Magnetic permeability, 14
Mathematical model, 66
Maximum power transfer, 153
Maximum power transfer theorem, 46
Measurement

of impedance, 178
of phase, 178, 191, 192
of reactive components, 138
of resistance, 97, 98

Measurement error, 54
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Method of loops, 121
Method of meshes, 32, 34
Method of nodes, 30, 121
Multiple reflections, 242
Mutual induction, 9
Mutual induction coefficient, 10, 148

N
Node, 27, 29
Norton’s theorem, 42, 125, 131
Nuclear magnetic resonance, 157
Nyquist frequency, 188

O
Ohmmeter, 98

sensitivity of, 99
Open-circuit, 12
Operational amplifier, 20, 95, 175, 176
Oscilloscope synchronization, 185
Output impedance, 42

P
Parasitic capacitance, 212
Parasitic inductance, 218, 219
Passband, 164, 176
Phase, measure of, 191
Phase, measurement of, 178, 192
Phasors, 116
Power, 22, 44
Power balance, 43

in transformer, 153
Power factor, 123
Precision, 80, 81
Probe, 186
Promptness, 81, 89
Propagation constant, 236
Propagation of uncertainties, 61
Pulse, 199, 207

Q
Q factor, 128
Quality factor, 128

RLC parallel, 131
RLC series, 129

R
R-2R ladder, 105
Random error, 55
Range, 81

RC high-pass, 144, 145, 199, 205
differentiator, 147

RC low-pass, 142, 144, 207, 209, 210
integrator, 147
sinusoidal signal, 142

Reactance, 121
Real inductor, 15
Reciprocity theorem, 43, 106, 124
Reflection coefficient, 240, 242
Resistance, 6, 14
Resistor, 6

carbon composition, 16
color code, 16
real, 15
SMD, 16
thin film, 16
wire wound, 16

Resonance, 128, 132
Resonant circuits, 128
Rise time, 207
RL circuits, 146, 147, 211
RLC parallel, 131, 212
RLC series, 115, 128, 215, 216
Rms, 108

S
Self induction coefficient, 110
Sensitivity, 80, 85

of ohmmeter, 99
of voltmeter, 91

Sensitivity coefficients, 60, 66, 69
Series-parallel transformation, 135
Short-circuit, 12
Shunt, 83
Signal frequency, 108
Signal period, 108
Skin depth, 21
Skin effect, 20, 245
Special generators

open-circuit, 12
short-circuit, 12

Static transformer, 148, see also transformer
Step signal, 196
Stray capacitance, 219
Stray inductance, 218
Superposition theorem, 38, 124
Systematic error, 55

T
Telegrapher equation, 234
Temperature coefficient, 16, 17, 69
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Thévenin’s theorem, 39, 105, 125
proof, 40

Theorem of
maximum power transfer, 46
Norton, 42, 125
open circuit and short circuit, 42
reciprocity, 43, 124
superposition, 124
Thévenin, 39, 105, 125

Thermal AC/DC converter, 176
Thermal expansion coefficient, 17
Time domain

analysis, 195
Transfer function, 140, 141, 143
Transformer, 148, 149

coupling coefficent, 148
ideal, 153
power balance, 153
real, 149
transformation ratio, 153

Transient, 107, 113, 164
Transmission line

attenuation length measurement, 245
characteristic impedance, 236
ideal, 237
input impedance, 246
multiple reflections, 242
propagation constant, 236
propagation speed, 234
propagation velocity, 237
reflection coefficient, 240
sinusoidal regime, 246

Tree, 29, 34
Trigger oscilloscope, 185

True value, 54
TTL, 94

U
Uncertainty, 56

analog ohmmeter, 101
correlated measurements, 71
coverage factor, 63
propagation, 61
type A and type B, 57

Uncertainty for monomial functions, 62

V
Value, 54
Vectorial instrument, 178
Voltage comparator, 92
Voltage divider, 219
Voltage ramp, 203, 209
Voltmeter, 90

digital, 91
electrostatic, 95
perturbation introduced by, 90
“sensitivity”, 91

W
Wave speed, 234
Wheatstone’s bridge, 34, 45, 137

balanced, 35
Wien’s bridge, 139
Working range or range, 81
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