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Introduction

Many applications are reduced to a numerical solution to the problem of parameter
estimation. Parameters determine how a model of the real dynamic system
functions. Examples of such unknown (or not exactly known) parameters may be
the initial conditions and the coefficients of the differential equations of the model.

Let the observation vector Y ; k y0; y1; . . .; yk; . . . k; be recorded as a function of
the discrete-time points t0; t1; . . .; tk; . . . These vectors depend on h—the vector of
unknown parameters. An unknown h vector occurs, for example, in inverse and
boundary problems, as well as when the structure of a mathematical model of a
physical phenomenon or a system is known from the general laws of natural
science, but the parameters of the model are not exactly known. A posteriori data
determine the functional dependence of yk ¼ Fðtk; hÞ. Typically, such a relation-
ship is not explicitly defined.

The traditional method of solving the problem of estimation is based on the
numerical determination of the global extremum for the decision function Jð. . .Þ,
which depends on vectors of observations and vectors of estimation:

Jðy0; y1; . . .; yk; . . .; ĥðy0; y1; . . .ÞÞ.
The choice of estimation method determines the type of decision function

Jð. . .Þ. Thus, if the nonlinear least squares method applies, then the decision
function Jð. . .Þ is the sum of squares of differences between the components of the
actual observations and the components of the calculated observations, which
correspond to some approximation to the actual observations. In problems of
estimating the parameters of statistical systems, the decision function Jð. . .Þ is
often tasked with appointing a probabilistic likelihood function, which is the
approach to the occurrence probability vector’s actual observations for the
dynamical system and its initial conditions.

The traditional definition of vector estimates—delivering a global extremum of
the decision function Jð. . .Þ—produced an iterative process based on some version
of Newton-Raphson gradient methods. The process of computing has difficulties
that arise because of the existence of multiple relative extrema of the decision
function Jð. . .Þ; convergence of computing is achieved only when ‘‘guessing’’ a

xi



good first approximation. At each step of the calculation process, one needs
linearization functions that represent a dynamic system requiring the existence of
derivatives and the ‘‘good’’ of the local structure functions. There is no
information about the expected accuracy of estimation.

The general case to achieve global optimization of the decision function Jð. . .Þ
in the form of a probabilistic likelihood function does not guarantee small
estimation errors (the fundamental monograph [1, Chap. 1] states, ‘‘Contrary to
assert many textbooks estimation method maximum likelihood is not universally
gut procedure and shall not be dogmatic’’).

The iteration process requires choosing the vector of first approximation, while
the sequence linearization of the decision function requires calculating the
sequence of matrices required by the inverse Jacobian of the decision function.
Thus, another vector estimation affects all subsequent vector approximations at
each iteration step.

The goal of this book is to present a new method of estimation [2, 3] that does
not involve the difficulties mentioned so far in calculations. The method does not
require global optimization for the sum of squared residuals, which is used in
iterations to select plausible values for the components of assessments.

The proposed method does not require global optimization of the decision
function. The sequence of the vectors of approximations is replaced by a sequence
a priori and a posteriori of the regions of the parameter vector. Linearization and
the definition of the derivative method are not required, and new vector estimation
has little influence on all the vector approximations in each iteration step.

The structure of this book can be divided into two parts.
The first part of the book contains Chaps. 1 and 2, which form the theoretical

foundations of the new method of estimation. Chapters 3–9 make up the second
part of the book; they provide numerous examples of effective parameter esti-
mation in nonlinear situations for the problems of the analysis of observations and
the synthesis of optimal control.

The main lemma is presented in Chap. 1. The lemma defines the construction of
the proposed algorithm-estimator, which is designated MPA, for the multipoly-
nomial approximation algorithm, in Chap. 9.

Let W vectors be arbitrary given functions in the elements of Y random vectors
of possible observations. The moments of discrete time t0; t1; . . . are input to the
algorithm-estimator, which receives values w0;w1; . . .—components of one of the
realizations of the random vector W . The possible implementations of Y depend on
the possible realizations of the random parameter vector h and match some points
of XY . Then the possible implementations of W correspond to the points of XW .

The following form is an expression for the estimation vector of h, which is
optimal in the mean square sense:
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ĥðw;EðhÞ;EðWÞ;Q; L;WÞo ¼ EðhÞ þ Koðw � EðWÞÞ; ð0:1Þ

where

KoQ ¼ L;

w is a realization for a component of W , corresponding to some moment of
discrete time,

EðhÞ;EðWÞ;Q; L are the a priori first and second statistical moments for a joint
distribution of random h;W , respectively.

The algorithm-estimator uses the values w0;w1; . . .. The algorithm builds a

vector estimating bhð. . .Þ, linear in w0;w1; . . . and optimal in the mean square. The
a priori data constructing an algorithm are the first and second statistical moments
of the random vectors h;W .

The model of a dynamic system generates the emergence of the information on
the joint distribution of vectors h;W , sufficient to determine the first and second
statistical moments. The moments are determined using the Monte Carlo method
or by numerically determining the appropriate integrals via a modified trapezoid
method.

The basic lemma formulates sufficient conditions for a semidefinite matrix of
the difference between the estimation error covariance matrix for an arbitrary
algorithm-estimator and that for our proposed algorithm-estimator, which depends
on some weight matrix.

The proposed algorithm-estimator should be regarded as the best algorithm-
estimator since its estimation error covariance matrix is ‘‘no more’’ than a
covariance matrix generated by any other estimator. The weight matrix Ko satisfies
a matrix linear algebraic equation. The solution of the equation exists to meet the
relevant conditions of regularity. The decision of the equation does not require
determining the inverse matrix, and the recursion procedure is implemented. This
statement follows from the principle of the decomposition of observations, which
is presented in Chap. 1.

In Chap. 1, we show that for linear discrete dynamical systems, the proposed
algorithm-estimator is similar to the standard Kalman filter for the solution to the
recurrent filtration problem. The algorithm-estimator uses the similarity of the
Kalman filter algorithm to smooth in mean square problems of interpolation and
prediction.

In Chap. 2, we believe that the components of W are linear combinations of
products as great as m degrees of the components of Y-terms of the form

ya1
i1 � � � yam

im : ð0:2Þ

All m terms a1; . . .; am for the sum of powers of the products are nonnegative
solutions. The integer inequalities a1 þ . . .ı þ am � d, where the sum of m
variables of degree does not exceed a given integer d. The vector W forms a
countable sequence of polynomials in y0; y1; . . . for m ! 1; d ! 1.
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In Chap. 2, the counting sequence is called the base.
Further, we believe that the next fundamental basic supposition is true: In this

problem, the Weierstrass–Stone theorem is applicable and components of a vector
of the conditional expectations of the parameters (vector EðhjYÞ) can be arbitrarily
small errors of approximation of linear combinations of polynomials of the
sequence of W polynomials that is constructed. The approximation is optimal in
the quadratic mean. It implements the algorithm-estimator from Chap. 1. The
linear combinations of members of the basic sequence, which the algorithm
delivered in Chap. 1, define arbitrarily small errors of the estimate components of
vector EðhjYÞ. Chapter 2 provides a fragment of the modified trapezoid method.
The algorithm and the modified trapezoid method’s program are used to calculate
the values of multidimensional integrals required in determining the statistical
moments.

Chapter 3 considers the multipolynomial approximations of a set of continuous
function FðYNÞ;N variables via the algorithm-estimator introduced in Chap. 1, if
the integer d represents the maximum sum of degrees given by the approximating
multipolynomials.

Let’s suppose h ¼ FðYNÞ, where YN is a random vector, given by a distribution
on the compact set XY . Then the algorithm-estimator realizes the approximate
representation:

ĥ ¼
X

a1þ...þaN � d

‚ða1; . . .; amÞ; ya1
1 � � � yaN

N : ð0:3Þ

The magnitudes ‚ða1; . . .; aNÞ depend on Fð. . .;XY ; d;NÞ and on the statistical
moments for random YN ; h.

Let’s note that in calculus a function of real variables is frequently represented
as a segment of a power series. The series is a many-dimensional segment of some
Taylor series. But the construction of the series demands the definition of
derivatives of the corresponding order. Area convergence of the series and errors
of approximation are established separately; it is complicated to review this.

The algorithm-estimator from Chap. 1 is free of these difficulties. The definition
of derivatives is absent, a series converges in regular intervals on a compact set of
definitions of the function FðYNÞ, and the variance of random approximation errors
is calculated.

Examples of applications of multipolynomial approximations include the
following:

1. Detection of the multipolynomial term: In the set sequence, it is necessary to
discover the multipolynomial that possesses the maximum sum of degrees of
multipolynomial representations. The algorithm-estimator solves the task: The
necessary term of the sequence corresponds to close to a zero variance of errors
of approximation.
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2. Approximation errors by restrictions on derivatives: For an equation that
models the dynamic system, which has restrictions on the magnitudes of
derivatives, the influence of nonlinearity on the approximation of the compo-
nents of a state vector needs to consider how the entry conditions function.
Linear approximation errors are appreciable and sharply decrease for a squared
approximation.

3. Polynomial approximation for optimal terminal control: Let the dynamic model
of the system be

_X ¼ uðX; uðtÞÞ; ð0:4Þ

where X is the state vector, and uðtÞ is a scalar control, continuous on ½0; T�: We
need to find the optimal control juðtÞoj\ 1:

uðtÞo ¼ argmaxjuðtÞj � 1ðFðXðTÞÞ; ð0:5Þ

where Fð. . .Þ is a given function and maxðFðXðTÞÞ is a terminal criterion for
optimization.
Let uðtÞ be Bernstein’s polynomial of degree n � 1:

uðtÞ ¼
X
n�1

k¼0

hkþ1Ck
n�1ðt=TÞkð1 � ðt=TÞn�1�kÞ: ð0:6Þ

If jh1j � 1; . . .; jhnj � 1, then juðtÞj\ 1.
Solution of the terminal optimization arises in the numerical solution of the

sequence of routine tasks of nonlinear programming, which makes the maximum
terminal optimization criterion. Under the constraints jhkj\ 1; k ¼ 1; . . .; n; the
sequence of the optimal parameters ho

1; . . .; h
o
n is determined, performing terminal

condition (3.1) for the function uðtÞo.
Solution of the terminal optimization becomes much simpler if the model is

linear. Let the model have the form

_X ¼ AX þ Bu; ð0:7Þ

where A and B are the same matrices. If Xð0Þ ¼ 0, and uðtÞ is as defined in
Eq. (0.6), then a correct equality is

XðT; nÞ ¼
X
n�1

k¼0

hk�1xkðT ; nÞ;

where a vector xkðT ; nÞ is determined by numerical integration of (3.3) on segment

½0; T� and are uiðtÞ ¼ 0; i ¼ 0; . . .; k � 1; k þ 1; . . .; n, ukðtÞ ¼ Ck
n�1ðt=TÞk

ð1 � t=TÞn�1�k; 0 \ t \ T . Then the problem of terminal optimization goes into a
simple problem of determining an extreme for the function of the parameters
h1; . . .; hn under the constraints jhkj\1.
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In Chap. 4, we consider the use of multipolynomial approximation to determine
the feedback vector-functions. There are many applications of situations where, for
instance, we are given a domain of unknown parameters, H 2 Xh 2 Rn, and the
observation vector Y is of the form Y ¼ FðhÞ; Y 2 RN . We need to find the inverse
function: F�1ðYÞ ¼ h. Typically, Xh is a box in Rn. If the area of Xh is not small,
inclusion of the nonlinearity function Fð. . .Þ requires a fairly large number of
members in the representation Eq. (0.1), which indicates a sufficiently large
number d in Eq. (0.1). There are difficulties with calculations because of the large
condition number of certain matrices. A radical way to reduce the number d is a
member of iterations for the computation process. The a priori region Xh is divided
into a region that is less than the a priori area. At each subarea, multipolynomial
approximations implemented autonomous and a small number of d. For the next
iteration-selected subregion, which corresponds to a small vector discrepancy. We
present a method to use radical solutions for the under-and overdetermined sys-
tems of linear algebraic equations, the systems of nonlinear algebraic equations, on
the right sides of which are integer powers of the components of the vector Y or
trigonometric and differentiable functions of the ‘‘module’’ type.

The numerical solution of the boundary value problem for the system of
nonlinear differential equations is an example of a situation where, in the equation
for the inverse function Y ¼ FðhÞ, the function Fð. . .Þ is defined implicitly and by
numerical integration of the equations of motion.

Let the model of order 2n be of the form

dx=dt ¼ f ðx; tÞ;

where x1ð0Þ ¼ h1; . . .; xnð0Þ ¼ hn; x1ðTÞ ¼ Y1; . . .; xnðTÞ ¼ Yn; . . .; x2n ¼ Y2n. If

f ðx; tÞ is a linear function, then hi ¼ ðĥÞi and the numerical solution of the problem is
trivial. Let Fðx; tÞ be a nonlinear function: f ðx; tÞ ¼ Ax � 0:01 _I2n _x�3; A - 2n � 2n
matrix, I is the identity matrix 2n � 2n , and x�3 a vector, whose components are
cubes of the components of the vector x.

In Chap. 5, we present a method to design an organized search multipolynomial
approximation for the solution of several applications of parameter estimation with
nonlinear dynamic systems. We split the a priori existence of a box of parameters
into a set of parallelepipeds with small edge lengths. By successive search, we
define a small enough box for which the value of the decision function takes the
extreme value. Proof of the method was carried out via the following:

• parameter estimation of the Van der Pol equation according to Bellman [4];
• identification of parameters of nonlinear systems for which the following are

uncertain: parameters, forces, proportional movement, third degree of move-
ment, damping parameter of speed, setting the dry friction force;

• smoothing and filtering for model integration with nonlinear feedback;
• identification of speed characteristic of the integration c nonlinearity type a gap;
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• identification of parameter tracking system with a relay drive and a hysteresis
loop;

• estimation of the principal moments of inertia of the solid.

In Chap. 6, the nonlinear filtering is implemented if the navigational parameters
of a moving object should be based on limited information—without measuring
the distance—and on noise. Information without the noise generates nonlinear
differential equations, satisfied by the trigonometric functions for angles deter-
mining the orientation of the beam in the visual space. The end of the visual ray is
a point on the object for which the nonlinear filtering algorithm assesses the
current state of the vector components.

Option 1: Autonomous navigation
The property is a celestial body (such as satellites), and a visual beam is

generated by the optical electronic system on the surface of Earth. It is sometimes
necessary to define the navigation settings without measuring the distance; for
instance, this occurs if the equipment onboard the satellite radio fails. The input to
the algorithm-estimator is the sum of the results of an original observation
sequence of pairs of angles defining the orientation of the visual ray.

Option 2: Autonomous navigation
The property is a brilliant point (BP) on the surface of Earth. This point and the

visual ray are generated by the radiation of optical electronic systems onboard the
aircraft. The situation arises where it is necessary to determine—without an
onboard range-finder—the navigation parameters of the aircraft’s movement
relative to the BP. This scenario may occur if, for example, it is necessary to make
an emergency landing in LA not far from BP in the Arctic or in a jungle or need to
lose weight on the ground is not prepared in BP. The input to the algorithm-
estimator is similar to that in option 1. The algorithm for option 2 is characterized
by having not only the current navigation parameters, but also errors and two
orientation angles in the vector in the local vertical coordinate system board.

The simulation showed that the estimation errors are small for all estimated
values after a few iterations.

Chapter 7 described the use of the algorithm-estimator to estimate the param-
eters of stochastic systems with different structures.

In Sect. 7.1, we consider the estimation of parameters of hidden Markov
models (HMMs). In recent years, these models have been used in the statistical
analysis of biological sequences of nucleotides (DNA) and sequences of speech.
The sequences are derived from experimental data.

In Sect. 7.7 of Chap. 7, we believe there is a random process with a finite
number of states and continuous time. As is known, the state probabilities satisfy
Kolmogorov’s ordinary differential equation, for which the a priori data is the
intensity of the states. We consider the situation with some unknown intensity that
is estimated from observations.

In Sect. 7.8 of Chap. 7, we believe it is necessary to assess the current state of
the Markov process if they are observed with additive errors. The statement of
the problem is close to the formulation of the problem in Chap. 9 in [5].
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The monograph offers no constructive solution to the problem, as requires
consideration of the infinite-dimensional system of stochastic differential
equations.

In Sect. 7.9 of Chap. 7, we describe the principles underlying a multipolyno-
mial approximation algorithm, and we use the algorithm to estimate the parameters
of control time series generated by STGARCH and MGARCH models (in the
BEKK specification). These models are used in nonlinear problems of financial
mathematics.

Usually, problems like those in Sect. 7.1–Sect. 7.8 use variants of the method
of the maximum likelihood function for which the criticism in [1, 6] is given
above.

The simulation in Chap. 7 showed that the estimation of parameters of sto-
chastic systems successfully implemented the proposed algorithm-estimator. Thus,
HMM parameter estimation via d ¼ 3;mðd;NÞ ¼ 968;N ¼ 16 (the approxima-
tions of the algorithm-estimator use linear combinations of polynomials of degree
1–3 at number addends components are 968) showed that almost all 45 relative
errors of solution of the inverse problem are smaller than 0.1.

Chapter 8 outlines the methodology of designing an optimal control for a
limited linear dynamic system. Vector control sends the vector of the initial state
of the system to a given vector of the final state of the system in the shortest time.
Pontryagin’s optimality principle is used to determine the necessary and sufficient
conditions for vector control. Management is optimally by speed of acting.

The equations of motion of the system are complemented by the differential
equations for the vector of conjugate variables, whose initial conditions are some
of the trigonometric functions vector of unknown parameters. These features
provide equal one length of the initial vector conjugate variables. Specified
conditions for the initial and final states of the system of vectors and for the initial
conditions of the vector of conjugate variables determine the two-point boundary
value problem of synthesis of optimal control. The problem is solved by iterations
for the joint operation of the simple search method and the polynomial
approximation method.

The approved technique is to design time-optimal control to solve the problem of
synthesis of applied fast control of thrusters to correct Sputnik orbit and the
satellite’s position in orbit. The solution of the latter problem is necessary for
docking satellites. The simulation showed that time-optimal control of two thrusters
several times reduces correction of the satellite’s orbit or time correction of the
satellite in orbit. Each component has a diagonal component of the vector xðtÞ in
the third degree. If n ¼ 3; T ¼ 3;�10� hi � 10; i ¼ 1; 2; 3; d ¼ 7;mðd;NÞ ¼ 119;
the relative error of the estimate of each component of the parameter vector does
not exceed 5 � 10�2: Each discrepancy is reduced by a factor of more than 105 if
the a priori domain Xh is reduced by a factor of 10.

Chapter 9 presents the theory and application techniques to correct the results
nominal (a priori) data of the aerodynamic coefficients of aircraft; these data are
determined by experiments with model aircraft in a wind tunnel. The nominal data
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are a priori bank dimensionless characteristics of the aerodynamic forces and
moments; the data are determined with some errors. Therefore, the actual char-
acteristics of the aircraft movements (the angles of attack and sliding overload
angles of pitch, roll, heading) are measured equipment LA do not coincide with the
design characteristics of the movement, which are determined by numerical
integration of the equations of flight dynamics of the aircraft. The coefficients of
these equations are chosen from a bank of nominal data. Real and design char-
acteristics of the aircraft movements are input to the algorithm-estimator, which
corrects the nominal data by estimating the components of the vector of unknown
parameters, to yield the vector of experimental errors of nominal data.

Practice calculations to implement the methodology have detected a significant
effect on the accuracy of the estimation of random errors from aircraft equipment,
the statistical characteristics of which are unknown. Therefore, a regularization
procedure is necessary; it will significantly reduce the impact of the errors
mentioned. The procedure consists of adding the data from the aircraft equipment
random process similar to white noise, whose intensity is selected experimentally.
Note that this procedure was referred to earlier in the theory of artificial neural
networks.

We use the proposed method to estimate the characteristics of a number of
complex nonlinear dynamic systems. In some situations, the method requires the
development of appropriate private receptions computing. Therefore, the book
explains several options for sequential calculation steps. The options are similar to
each other, but their details are not the same.

This monograph is an presentation of a novel method for solving inverse
problems. They arise at of parameters estimation for time series, data which
collected from simulate of real experiments. These time series might be generated
by measuring the dynamics of aircraft in flight, might be a function of a hidden
Markov model used in bioinformatics or speech recognition, might be at analyzer
the dynamics of supply price from the nonlinear models of financial mathematics.
The monograph demonstrates the use of algorithms based on polynomial
approximation which have more weaker requirements to dynamic models than
popular iterative methods. Specifically, they do not require a first approximation
for goal function and they allow have non-differentiable elements in the vector
functions being approximated. The text covers all the points necessary for the
understanding and use the method of polynomial approximation for which the
mathematical fundamentals is represented. Inputs of algorithms are data received
at mathematical modelling or real experiments—for instance aeroplane flight
dynamics or biological sequence analysis. The technical material is illustrated by
the use of worked examples and methods for training the algorithms are included.

The monograph ‘‘Dynamic Systems Models: New Method ....’’ provides
researchers in aeronautics engineering, bioinformatics and financial mathematics
(as well as computer scientists interested in any of these fields) with a reliable and
effective numerical method for nonlinear estimation and solving boundary
problems.
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It will also be of interest to academic researchers and students investigate
inverse problems and their solution.

The author thanks the GosNIIAS manual at work for the conditions that led to
the creation of the book.

The book is written with the financial support of the Russian Foundation for
Basic Research.
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Chapter 1
Linear Estimators of a Random
Parameter Vector

1.1 Linear Estimator, Optimal in the Root-Mean-Square
Sense

The method of polynomial approximation is based on the following components:
(1) the formation of a vector W characteristic of basic supervision from components
of the vector YN of actual observations and from polynomial functions of these
components; (2) a Bayes approach based on assignment of an a priori stochastic
measure to a vector θ of unknownparameters and to a vectorYN of basic observations.
In the polynomial approximation algorithm, assignment of a stochastic measure
permits one to use the well-knownmethod of constructing the linear estimator, which
is optimal in the root-mean-square sense. The method was laid out in fundamental
works by A. Kolmogorov, N. Wiener, and V. Pugachev.

We emphasize that the symbol W is the total set of all possible basic observations
determined by a mathematical model and, in particular, a private set of observations,
which occurred at a given time interval.

In what follows, we will walk through the steps of the above-mentioned method
and present its development in certain directions [1–4].

Let a vector YN ∈ RN be a random vector of scalar observations, and let θ ∈ Rq

be a random vector of estimated parameters. If every observation is a vector, then
N = N1 ×n, where N1 is the number of vectors of observations of dimension n ×1.

We believe that a priori statistical data about θ and YN exist; these are the first and
central second statistical moments of the components of vectors θ, YN , represented
by the vectors and matrices

E(θ), E(YN ),

C0 = E
(
(θ − E(θ))(θ − E(θ))T )

,

Q = E
(
(YN − E(YN ))(YN − E(Yn))T )

,

L = E
(
(θ − E(θ))(YN − E(YV ))T )

.
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2 1 Linear Estimators of a Random Parameter Vector

Let the vector YN be fixed. It is well known that the cited a priori data permit us
to construct a vector θ̂(YN , N )o ∈ Rq to estimate the vector θ. The estimator will be
linear in relation to YN and optimal in the root-mean-square sense among all vectors
θ̂(YN , N ), which are linear in relation to YN .

We will represent any above-mentioned vector θ̂(YN , N ) by the formula

θ̂(YN , N ) = z + �(YN − E(YN )), (1.1)

where z is an arbitrary vector of dimensionality q ×1, and� is an arbitrary matrix of
dimensionality q × N . In (1.1) E(YN ) is found by averaging the total set of the model
observations, and the letter YN means a particular set of observations generated by
the model or a real experiment for the specified period of time.

Let’s assume that the matrices Co and C are estimation error covariance matrices
if θ̂(YN , N )o and θ̂(YN , N ) are estimation vectors:

Co = E((θ̂(YN , N )o − θ)(θ̂(YN , N )o − θ)T )

and
C = E((θ̂(YN , N ) − θ)(θ̂(YN , N ) − θ)T ).

For the linear optimal estimation vector θ̂(YN , N )o, the matrix inequality is true:

Co ≤ C. (1.2)

Lemma 1.1
θ̂(YN , N )o = E(θ) + �o(YN − E(YN )), (1.3)

where
�o Q = L . (1.4)

Proof From Eqs. (1.1) and (1.3), we will find the expressions for error estimation
vectors; after averaging these expressions, we will find the matrices C, Co. Then the
identity will be true:

C = Co + (� − �o)Q(� − �o)T + (�o Q − L)(� − �o)T

+ (� − �o)(�o Q − L)T + (z − E(θ))(z − E(θ))T . (1.5)

The second and sixthmatrix terms in Eq. (1.5) are nonnegatively definedmatrices.
Hence, the equality to zero of the third and fourth matrix terms in Eq. (1.5) for any
matrices � serves as a sufficient condition for the validity of Eq. (1.2). Lemma 1.1
is proved. ��
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Consequence 1. If � = �o, then

Co = C0 − �o LT . (1.6)

Consequence 2. Let the covariance matrix Q of the random vector Y be nonsingular
(all components of YN are linearly independent). Then from Eq. (1.4), we have

�o = L Q−1, (1.7)

Co = C0 − L Q−1LT ,

(1.8)

σ2
i = σi (0)

2 − li Q−1lT
i ,

where σ2
i is a dispersion of errors of estimating the i th component of the vector θ,

σ(0)2 is an a priori dispersion of this component, and the i th diagonal element of the
a priori matrix C0, li is the i th row of the matrix L . Hence, σ2

i ≤ σ2
i (0).

Consequence 3. Let the covariance matrix Q be singular because some compo-
nents of the random vector YN are linear combinations of other components:

Y T
N = ‖Y T

1 · (AY1)
T · Y T

2 ‖.

Here the random vectors Y1 and Y2, having dimensionality r1 × 1 and r2 × 1 accord-
ingly, are linearly independent, the matrix A has dimensionality r3 × r1, r1 + r2 + r3
= N , and the matrix L is divided into blocks

L = ‖L1 · (L1AT ) · L2‖.

Direct verification shows that in this case the solution of matrix Eq. (1.4) exists and
looks as follows:

�o = ‖L1V1,1 + L2V2,1 · 0q,r3 · L1V T
2,1 + L2V1,1‖,

where 0q,r3 is a matrix of dimensionality q × r3 whose elements are all equal to
zero, V1,1 and V2,1 are the top left and bottom left blocks of the matrix, respectively,
and V2,2 is the bottom right block in this matrix, which is the reverse of the matrix
of covariances of the random vector ‖Y T

1 · Y2T ‖)T ‖.
The formulas, similar to the aforesaid, are also true for the general case, in which

the random and linearly independent components and the components that are linear
combinations of the previous components alternate.

Consequence 4. The linear optimal estimation vector θ̂(Y, N )o is unique. In fact,
let there exist estimation vectors—unequal to one another—of form (1.3):

θ̂1(YN , N )o = E(θ) + �o
1(YN − E(YN ))
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and
θ̂2(YN , N )o = E(θ) + �o

2(YN − E(YN )).

Then
(θ̂1(YN , N )o − θ̂2(YN , N )o)T ) = (�o

1 − �o
2)Q(�o

1 − �o
2)

T

= (L − L)(�o
1 − �o

2)
T = 0.

Hence, the vectors θ̂1(YN , N )o and θ̂2(YN , N )o coincide almost everywhere on
elements of the probabilistic space for any weight matrices �o, satisfying Eq. (1.4).
The vector of linear optimal estimation is unique.

Consequence 5. Let the vector Y1 be composed of the first p components of
the vector YN and be of the form Y1 = Bθ, where B is a nonsingular matrix of
dimensionality p × p. Then the optimal (and accurate) estimator of the vector θ will
be defined by the equality as follows:

θ̂(YN , N )o = B−1Y1.

This estimator does not depend on the other components of the vector YN . Hence,
the first q column-vectors of the matrix�o should form a square matrix B−1, and the
other elements of �o should be equal to zero. As the vector θ is estimated without
errors, then all elements of the error covariance matrix of the estimator Co, defined
by Eq. (1.8), should be equal to zero.

The matrix Co in Eq. (1.8) is a difference of two matrices whose elements are
of the same order of size if the mean errors of estimation are small. Practice with
calculations revealed that using Eq. (1.8) often results in a significant loss of accuracy
because the calculated diagonal elements of Co—being dispersions of estimation
errors—turn out to be negative.

From the above, it follows that formulas for the weight matrix �o and the error
covariance matrix Co of the optimal linear estimator are reasonable to transform,
and so the structure of elements of these matrices should be explicit from them if the
formula Y1 = Bθ is true.

Then we assume that the matrix Q−1 exists. Let’s suppose that

Y T
N = ‖Y T

1 · hT ‖,

where Y1 and h are vectors of dimensionality q × 1 and (N − q) × 1. Let’s suppose
that an additive part, which is linear in relation to θ, has been extracted from the
vector Y1, and hence there exists a representation Y1 = Bθ + v, where B is a
nonsingular matrix of dimensionality q × q, v—a random p-dimensional vector.
Then the symmetric matrix Q can be divided into blocks:

Q =
(

P · RT

R · Q(h)

)
,



1.1 Linear Estimator, Optimal in the Root-Mean-Square Sense 5

where the matrices P, R, Q(h) are of dimensionality q ×q, (N −q)×q, (N −q)×
(N − q) accordingly.

The following representations of these matrixes are true:

P = E((Y1 − E(Y1))(Y1 − E(Y1))
T = BC0BT + BL(v) + L(v)T BT + Q(v),

Q(h) = E((h − E(h))(h − E(h))T ),

R = E((Y1 − E(Y1))(h − E(h))T = BL(h) + L(v, h),

where

Q(v) =E((v − E(v))(h − E(h))T ),

L(θ, v) =E((θ − E(θ))(v − E(v))T ),

L(θ, h) =E(θ − E(θ))(h − E(h))T ),

L(v, h) =E((v − E(v))(h − E(h))T ).

The matrix Q−1 can be represented by blocks P1, Q1, R1 that are similar in terms
of their dimensionality and position:

Q−1 =
(

P1 · RT
1

R1 · Q1

)
.

From the identity
Q Q−1 = Iq ,

where Iq is an identity matrix of dimensionality q × q, we find the equalities
PP1 + RRT

1 = Iq , PR1 + RQ1 = 0, RTR1 + Q(h)Q1 = IN−q . Furthermore,

L = ‖L1 · L(θ, h)‖,

where
L1 = E((θ − E(θ))(Y1 − E(Y1))

T ) = C0BT + L(θ, v).

Using relationships between blocks of matrixes Q and Q−1, we will find after a
number of transformations that

�o = B−1‖Iq − (L(θ, v)T BT + Q(v))P1 − L(v, h)RT
1

− (L(v, h)T BT + Q(v))R1 + L(v, h)Q1‖, (1.9)
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Co = B−1(−L(θ, v)T + ((L(θ, v)T BT + Q(v)P1

+ L(v, h)RT
1 )(BC0 + L(θ, v)T )

+ ((L(θ, v)T BT + Q(v))R1 + L(v, h)Q1)L(θ, h)T . (1.10)

But if v =const, then the matrices L(θ, v), Q(v), L(v, h) are composed of elements
that are equal to zero. Then from Eqs. (1.9), (1.10), it follows that for v = const,

�o = ‖B−1, 0N−q‖, Co = 0, θ̂(YN , N ) = θ,

and hence the qualitative requirements for the formulas for the matrices �o, Co—
formulated above—are held.

1.2 Vector Measure of Nonlinearity of Vector Y1
in Relation to Vector θ

According to what we saw in Sect. 1.1, it is suitable to select from the first compo-
nents of the vector YN an additive part that would linearly depend on the vector θ.
Then, using the received Eqs. (1.9), (1.10), one can reduce the possible calculation
errors that arise when one subtracts matrices or vectors with component values close
to one another. For this it is enough to compose—from all N components of the
vector YN—all possible q-dimensional vectors and by enumeration assign Y1 and
the corresponding matrix B, so that the vector of the random difference v = Y1− Bθ
would be minimal in the sense of some average norm.

Let’s plan a possible way of rationally choosing the matrix B if the vector Y1
has already been composed of, for example, the first n components of the vector
Y . To solve the problem at hand, it is enough to construct a linear, optimal in the
root-mean-square-sense, estimator ŷ1(θ, q) of vector Y1, using a linear function from
the vector θ, and to assume the weight matrix Lambda to be equal to the required
matrix B.

From formulas of forms (1.4) and (1.5), it follows that

Ŷ o
1 = E(Y1) + �(θ − E(θ)),

where
� = LC−1

0 , L = E((Y1 − E(Y1))(θ − E(θ))T ).

From here, it follows that
B = LC−1

0 .
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As amean norm of the estimation error, represented by the difference in v = Y1−Bθ,
one can take any matrix norm from the estimation error covariance matrix C(v),
defined by the formula

C(v) = E((Y1 − E(Y1))(Y1 − E(Y1))
T ).

The greater the variances of errors of estimating vector Y1 (by means of a linear
combination of components of vector θ) are, represented by diagonal elements of
matrix C(v), then the more essential, on average, is the nonlinear dependence of
vector Y1 from vector θ. The vector, composed of diagonal elements of C(v), can be
called a vector measure of nonlinearity of vector YN relative to vector θ, statistically
connected with it. If, for some Y1, this measure is equal to zero, then vector Y1 is a
linear function of the vector of parameters, B, and is estimated without errors.

Generalizing the preceding statement, we will notice that it is possible to similarly
define a vector measure of the “square-law characteristic”, and so on.

1.3 Decomposition of Path of Observations
to the Recurrence Algorithm

Let’s consider an algorithm that constructs a vector of estimators θ̂(YN , N )◦, which
permits us to find this vector without calculating elements of the reverse matrix Q−1.
The algorithm is based on serially decomposing a vector of observations and will
be used in the following in solving problems of nonlinear smoothing (interpolation),
filtration, and prediction (extrapolation).

Let’s divide vector YN into subvectors Y1 and Y∗ of dimensions k and N − k:

Y T
N = ‖Y T

1 · Y T∗ ‖

and denote the corresponding blocks of a priori matrices Q, L as follows:

Q1 = E((Y1 − E(Y1))(Y1 − E(Y1))
T ),

Q∗ = E((Y∗ − E(Y∗))((Y∗ − E(Y∗))T ),

Q∗1 = E((Y∗ − E(Y∗))((Y1 − E(Y1))
T ),

Q =
(

Q1 · QT∗1
Q∗1 · Q∗

)
,

L1 = E((θ − E(θ))(Y1 − E(Y1))
T ),
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L∗ = E((θ − E(θ))(Y∗ − E(Y∗)),

L = ‖L1 · L∗‖.

Let’s assume that a random vector Y1 is composed of k linearly independent com-
ponents and, hence, Q1 > 0. After measuring the vector Y1, we—from formulas of
forms (1.3), (1.7)—will find estimators of the vectors θ and Y∗, linear in relation to
Y1 and optimal in the root-mean-square sense:

θ̂(Y1, k)o = E(θ) + L1Q−1
1 (Y1 − E(Y1)),

ŶN ∗(Y1, k)o = E(Y∗) + Q∗1Q−1
1 (Y1 − E(Y1)).

The following formulas are true (these can be checked directly):

Q∗ = E((Y∗ − Ŷ∗(Y1, k)o)(Y∗ − Ŷ∗(Y1, k)o)T = Q∗ − Q∗1Q−1
1 QT∗1,

L∗ = E((θ − θ̂(Y1, k)o)(Y∗ − Ŷ∗(Y1, k)o)T ) = L∗ − L1Q−1
1 QT∗1,

C∗ = E((θ − θ̂(W1, k)o)(θ − θ̂(Y1, k)o)T = C0 − L1Q−1
1 LT

1 .

Before using the vector Y∗ to construct a new estimator of vector θ—linear and
optimal in the root-mean-square sense—we will call the above obtained vectors
θ̂(Y1, k)o, Ŷ∗(Y1, k)o, and thematrices Q∗, L∗, C∗ new a priori data about the vectors
θ and Y∗. Wewill emphasize that the new a priori data are not the first two a posteriori
moments of vectors θ, Y∗, found after fixing the random vector Y1.

In essence, these data are the first two statistical moments of the vectors θ, Y ∗,
whose information arises after using the linear and optimal in the root-mean-square
sense estimator—of the vector Y1.

Let the random vector Y∗ be fixed. Then the vector θ̂(Y∗, N − k)o of the vector
θ’s estimator (being linear in relation to Y∗, optimal in the root-mean-square sense
and considering new a priori data) will be of the form

θ̂(Y∗, N − k) = θ̂(Y1, k)o + �o∗(Y∗ − Ŷ∗(Y1, k)o), (3.1)

where �o∗ satisfies the matrix equation

�o∗Q∗ = L∗.

Such a matrix also exists when matrix Q is a singular matrix (consequence 3 of
Lemma 1.1).

Lemma 3.1 The following equality is true:
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θ̂(YN , N )o = θ̂(Y∗, N − k)o. (3.2)

Proof One may directly check that the matrix

‖(L1 − �o∗Q∗1Q−1
1 · �∗)‖

satisfies matrix Eq. (1.4); from Eq. (1.3), we will receive another form of writing the
linear optimal vector of estimators θ̂(Y, N )o:

θ̂(YN , N )o = E(θ) + (L1 − �o∗Q∗1Q−1
1 (Y1 − E(Y1))) (3.3)

+ �o∗(Y∗ − E(Y∗)).

Substituting in Eq. (3.3)’s expressions for the vectors θ̂(Y1, k)o, Ŷ∗(Y1, k)o, we check
the validity of Eq. (3.2). Lemma 3.1 has been proved. ��

So, upon decomposing a vector of observations, we see that there are two steps
to construct an estimation vector. In step 1, one constructs the estimation vectors
θ̂(Y1, k)o, Ŷ∗(Y1, k)o—linear in relation to Y1—and the corresponding matrices of
covariances. Elements of these vectors and matrices serve as new a priori data before
step 2.

In step 2, one constructs the vector θ̂(Y∗, N − k)o of estimation vector θ, linear in
relation to Y∗. This vector is coincident with the estimation vector θ̂(YN , N ) defined
by Eq. (1.3), linear in relation to Y and optimal in the root-mean-square sense.

Lemma 3.2 We will denote residual vectors as

ε1 = Y1 − E(Y1), ε∗ = Yε − Ŷ∗(Y1, k)o.

The residual vectors ε1, ε∗ have the property of a repeating sequence:

E(ε1ε
T∗ ) = 0.

Proof Equation (3.4) follows from the given formula for the vector
Ŷ∗(Y1, k)o (see above). Lemma 3.2 has been proved. ��

1.4 Recurrent Form of Algorithm for Estimator Vector

Let Q > 0. Then direct application of Eqs. (1.4), (1.7) would require inversion of
the matrix Q. But all components of the random vector W are linearly independent,
and hence, in the formulas of the previous section,

Q∗ > 0,�∗ = L∗(Q∗)−1.
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Then, using the decomposition process permits us—upon constructing the vector
θ̂(YN , N )o—to invert only those matrices Q1, Q∗ whose dimension is less than that
of the matrix Q.

Let Y1 be a scalar; then the matrix Q1 is also a scalar, and step 1 of the decompo-
sition process does not require matrix inversion. Repeating step 1 m times and using
in each step the new a priori data about the first and second statistical moments, we
will find an estimation vector θ̂(YN , N )o without inversion of matrices. To arrange
a recurrent process of calculations with a singular matrix Q, we will prove the fol-
lowing lemma.

Lemma 4.1 Some components of a random vector Y∗ are linear combination com-
ponents of the vector Y1 when and only when the corresponding diagonal elements
of the matrix Q∗ are equal to zero.

Proof Let
y j = hTY1,

where y j is the j th component of vector Y∗, and h is a nonrandom vector. But

hT Q1h = (Q∗1Q−1
1 QT∗1) j , hTQ1h = (Q∗) j ,

where the bottom index j marks the j th diagonal element of the corresponding
matrices. From here we will obtain

(Q∗) j = 0.

The controverse is true: let the variance (Q∗) j of the random variable E(Y∗) j +
(Q∗1Q−1

1 (Y1 − E(Y1)) j ) be equal to zero. But then this random variable is equal to
zero almost everywhere. Lemma 4.1 has been proved. ��

Let Y1 be composed of one component and let the matrix Q be singular, but with
its first diagonal element positive. If some diagonal elements of the matrix Q∗ are
equal to zero, then, as follows from Lemma 4.1, the corresponding elements of the
vector Y∗ linearly depend on Y1.

Let’s exclude these components from the composition of Y∗ and exclude the
corresponding rows and columns from the matrices Q∗, Q∗1, L∗. Then, after step 1,
we will obtain a new vector W and new (used in step 2) a priori statistical data, which
we, as before, denote as L , Q, C . Then, we regard the new vector’s first component
as the value W1, and so on.

The procedure just described defines the algorithm of the same computational
procedures, which—as a result of no more than an m-fold application—builds a
sequence of scalars Y1, vectors Y∗, Ŷ∗(Y1, 1), and matrices of the form Q∗, L∗.
Before the last procedure, the next vector Y is equal to Y1 (it is composed of one
component), and matrices Q∗, L∗ have dimensions 1 × 1 and n × 1. After the last
procedure,
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θ̂(Y∗, 1)o = θ̂(YN , N )o, C∗ = Co.

If Q > 0, then in the sequence of m matrices Q∗, all diagonal elements are greater
than zero, and the computational procedure is used m times.

Let’s represent a formalized description of the recurrent algorithm for Q > 0,
following from the principle of decomposition of an observation sequence. Let’s
assume that y1, y2, . . . , yN are components of the vector YN .

The computational process is composed of N consecutive steps. At each step, on
the basis of new, updated a priori data, a new estimation of the vector of parameters,
θ, is performed; also, the forecast is implemented, which is to estimate the rest of
the observation vector. The estimation error covariance matrix, reached at this step,
is simultaneously calculated. During the last (N th) step, there is no forecast, and the
last refinement of the estimation vector θ occurs.

For step k of the calculation process, we accept the following notations:

• The vector Vk , of dimensionality (q + N − k) × 1, is composed of n components
of the vector θ and N − k components yk+1, . . . , yN .

• The vector V̂k(yk), of dimensionality (q + N −k)×1, is a linear and optimal in the
root-mean-square-sense estimator of the vector Vk after observing the component
wk and all the previous components.

• The scalar zyk+1(yk) is the (q +1)th component of the vector V̂k(yk) (the estimator
of component yk+i after observing component yk and all previous components).

• The vector (V̂k(yk)
1), of dimensionality (q + N − k − 1)× 1, is a vector obtained

from V̂k(yk) by eliminating component zyk+1(yk) of this vector.
• The matrix Qk = E((Vk − V̂k(yk))(Vk − V̂k(yk))

T ), of dimensionality (n + N −
k) × (q + N − k), is the estimation error covariance matrix of the vector Vk after
observing the component yk and all previous components.

• The scalar qk is the (q + 1)th diagonal element of the matrix Qk (estimation
error variance of component wk+i after observing component wk and all previous
components).

• The matrix Q1
k , of dimensionality (q + N − k − 1) × (q + N − k − 1), is the

matrix obtained from the matrix Qk by eliminating the (q + 1)th row vector and
the (q + 1)th column-vector.

• The vector lk , of dimensionality (q + N − k − 1) × 1, is the (q + 1)th column-
vector of matrix Qk after eliminating the (q + 1)th component. The recurrent
algorithm is composed of N steps of calculations, in the process of which the
vectors V1, V2, . . . , VN = θ are consequently estimated by linear and optimal in
the root-mean-square-sense functions of components y1, y2, . . . , yN . At step k,
the recurrent algorithm’s formulas are of the form

V̂k+1(yk+1) = V̂k(yk)
1 + q−1

k lk(yk+1 − zyk+1(yk)), (4.1)

Qk+1 = Q1
k − q−1

k lklT
k , (4.2)
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where k = 0, . . . , N − 1,

V T
o = ‖θT · Y T

N ‖, V̂0(y0)
T = E‖θT · Y T ‖, zy1(y0) = E(y1),

Q0 =
(

C0 L
LT Q

)
.

At k = N , the recurrent algorithm determines the vector

θ̂(YN , N ) = V̂N (yN )

of the last estimation vector θ (after observing the last component yN ) and the esti-
mation error covariance matrix.

Co = QN

is the estimation error covariance matrix.
Let Y (k) be the vector of dimensionality k×1, composed of the first k components

of the vector Y .
The vector θ̂(Y (k)) of dimensionality q×1, composed of the first q components of

the vector V̂k(yk), is the linear and optimal in the root-mean-square-sense estimator
of the vector θ after observing Y (k), θ̂(0) = E(θ).

In matrix Qk , the top left block Ck of dimensionality q × q is an error covariance
matrix of the estimation vector θ after observing Y (k).

Let l(k) be a vector composed of the k first components of the vector lk . Then,
the formula, representing evolution of the covariance matrix Ck versus the number
k of watched components W , will be of the form

Ck = C0 − q−1
1 l(1)l(1)T − · · · − q−1

k−11k − 1l(k − 1)T . (4.3)

Let
ε1 = y1 − zy1(y0), . . . , εk = yk − zyk (yk−1).

Then, from Eq. (3.4), it follows that values of the residuals ε1, . . . , εk, . . . form an
updating sequence of uncorrelated random variables:

E(εkε j ) = δk, j qk . (4.4)

By definition, we have
l(k) = E((θ − θ̂)(Y (k)))εk,

and from Eq. (4.1), it follows that

θ̂(Y (k)) = E(θ) + q−1
1 l(1)ε1 + . . . + q−1

k−1l(k − 1)εk−1. (4.5)
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Subtracting the vector θ from both parts of Eq. (4.5), multiplying by εk , and
considering Eq. (4.4), we will find, after averaging, a different expression for the
vector l(k):

l(k) = E((θ − E(θ))εk), (4.6)

This relationship is essentially used later, upon solving the problem of linear optimal
interpolation.

So, at Q > 0, the recurrent algorithm implements m steps of the calculation
process, during which one constructs a sequence of optimal estimators of the vector
parameters θ, linear in relation to components of the vector W . This sequence has
the corresponding sequence of estimation error covariance matrices with decreasing
diagonal elements.

The recurrent algorithm starts to function once the multidimensional integrals
or analytical expressions have determined the a priori first and second statistical
moments for θ, YN : the vectors E(θ) and E(YN ), and the matrices L , Q, and C0.

Let Q ≥ 0. Some of the components of the vector Y can be linearly dependent on
the component located above. If, after step k, some diagonal elements of the matrix
Qk are equal to zero, then we exclude the column-vectors and row-vectors contain-
ing these elements, and from vector Y ’s composition we exclude the corresponding
components, which—according to Lemma 4.1—are linearly dependent on the pre-
vious components of this vector. As a result, the number of steps of the recurrent
algorithm will become less than m and will be coincident with the value rank Q.

From Eqs. (4.1) and (4.2), it follows that the recurrent algorithm evidently does
not require inversion of matrices, but it does include the procedure of a linear, opti-
mal in the root-mean-square-sense forecast of the observation result vector whose
dimensionality decreases to 1 beginning with N − 1.

From (4.2), it is evident that the covariance matrix Qk is a difference of twomatri-
ces. Due to calculation errors, the matrix may no longer be nonnegatively defined,
an indication that will become evident with negative diagonal elements. One can
eliminate such an effect of calculation errors.

The structure of Eq. (4.2) coincides with that of the formulas used in numerically
solving a system of linear algebraic equations by the method of elimination. Hence,
in order to increase the accuracy of calculating the elements of matrices Qk , one
can use some known computational methods, except partial ordering of the main
element.

1.5 Problem of Optimal Linear Filtration

Let’s consider some problems to be relevant to the estimation—in discrete time—of
current state vectors of a linear dynamic system disturbed with discrete white noise.
The observations linearly depend on state vectors and contain terms of the type of
discrete white noise. Similar problems have been investigated in a large number of
publications. However, one often supposes that random vectors of an initial state and
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noises have normal distributions (a known theorem of normal correlation [1, 6] is
used, or theorems of the theory of orthogonal random processes [7]).

In what follows, we will show that solutions of the above-mentioned problems
are delivered by a special case of a recurrent form of the algorithm of linear optimal
estimation. Let a linear dynamic system and observations be of the form

xk = ak−1xk−1 + ηk−1, yk = hk xk + ξk, (5.1)

where ak is a matrix of dimensionality q × q, the vector xk of dimensionality q × 1
is a vector indicating the state of the dynamic system at instant k, yk is a scalar of
observations at instant xk ,

E(ηk−1) = 0, E(ξk) = 0,

E((x0 − E(x0))(x0 − E(x0))
T ) = C0,

E(ξiξk) = δi,kσ
2
k (σk ≥ 0),

and
E(ηiη

T
k ) = δi,kψk, E(ηiξk) = δi+1,k Vk .

By results of linear observations in noises, one often labels the problem of opti-
mally (in the root-mean-square sense) estimating the current vector of the state of
a linear system, disturbed by white noises, as the “problem of linear filtration”. In
what follows, this problem is considered a problem of Bayes estimation with a vector
of the observations, subsequently equal to the vectors Y1, . . . , Yk, . . ., where Yk is a
vector of observations with components y1, . . . , yk−1, yk….

From the preceding sections (in which the recurrent process of decomposing
observations was outlined), it follows that at instant k − 1 (after observing that
random components of the vector Yk−1 as the first and second a priori statistical
moments of the random vector xk−1 serve vectors of the Bayes linear estimator),

Ek−1(xk−1) = x̂k−1(Yk−1)

and the estimation error covariance matrix of the vector

E((xk−1 − Ek−1(xk−1))(xk−1 − Ek−1(xk−1))
T ) = Cxk−1 .

Let’s find formulas for the given vector and matrix.
At instant k−1, the a priori first and second statistical moments have the following

appearance:

(1) for random vector xk ,

Ek−1(xk) = x̂k(Yk−1) = ak−1 x̂k−1(Yk−1), (5.2)
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E((xk − Ek−1(xk))(xk − Ek−1(xk))
T ) = ak−1Cxk−1aT

k−1 + ψk−1; (5.3)

(2) for random variable yk = hkak−1xk−1 + hkηk−1 + ξk ,

Ek−1(yk) = ŷk−1(Yk−1) = hkak−1 x̂k−1(Yk−1), (5.4)

E((yk − Ek−1(yk))(yk − Ek−1(yk))
T ) =

q(k) = hkak−1Cxk−1aT
k−1hT

k

+ hkψk−1hT
k + σ2

k . (5.5)

At instant k − 1, a statistical connection of the random vector xk and of the scalar yk

is represented by the relationship

E((xk − x̂k(Yk−1))(yk − ŷk(Yk−1))) = L(k)

= ak−Cxk−1aT
k−1hT + ψk−1hT

k . (5.6)

Thus, we have just presented the statistical characteristics of the random state vector
xk and those of the random variable yk , a priori before instant k.

Let the instant k have occurred and then observe value yk . Then, from Eqs. (4.1),
(4.2), we will obtain expressions for the vector of linear, optimal in the root-mean-
square-sense, estimation vector xk and for the estimation error covariance matrix:

x̂k(Yk) = x̂k(Yk−1) + L(k)q(k)−1(yk − ŷk(Yk−1)), (5.7)

Ck = Ck−1 − L(k)q(k)−1L(k)T , (5.8)

k = 1, 2, . . . .

The initial conditions take the shape of

x̂0(Y0) = E(x0), Cx0 = C0.

Equations (5.2)–(5.8) represent the recurrent algorithm of linear filtration. Its struc-
ture repeats the algorithm of the standard Kalman filter in discrete time.

In principle, there can be situations when q(k) = 0 at some k, for example, if

hkak−1Cxk−1aT
k−1hT

k + hkψk−1hT
k + hk Vk + V T

k hT
k = 0,σk = 0.

According to what we stated earlier, this means that the random variable yk linearly
depends on components of the vector Yk−1, carries no new information about the
vector xk , and should be excluded from the full observation vector.
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1.6 Problem of Linear Optimal Recurrent Interpolation
(Problem of Optimal Smoothing)

Let’s consider a problem of linear optimal recurrent interpolation: In the process of
observations y1, . . . , yk, . . . for the linear dynamic system (5.1), it is necessary to
define—as a function of k—an optimal, in the root-mean-square-sense, estimation
vector of initial conditions x0 and an estimation error covariancematrix: vector x̂0(Yk)

and matrix Cx0(k). We notice that in [6] this problem is solved on the assumption
that random vectors of disturbances and of observations have conditional normal
distributions. The solution presented in this section is based on the principle of
decomposing a sequence of observations and does not require assumptions on the a
priori distribution of random vectors.

The vector x0 ought to be considered as a vector of unknown parameters θ, and
one should use the recurrent formulas presented in Sect. 1.4. From Eqs. (4.1) and
(5.2)–(5.8), wewill obtain the recurrent relationships for the estimation vector x̂0(Yk)

and the estimation error covariance matrices Cx0(k):

x̂0(Yk) = x̂0(Yk−1 + L(x0, yk)q(k)−1(yk − ŷk(Yk−1)), (6.1)

Cx0,k = Cx0,k−1 − L(x0, yk)q(k)−1L(x0, yk)
T , (6.2)

k = 1, 2, . . . ,

at the initial conditions
x̂0 = E(x0), Cx0 = C0.

We will find values q(k), ŷk(Yk−1) at functioning—from 1 to k—of the recurrent
formulas (5.2)–(5.8) of the Kalman filter algorithm.

To determine the value L(x0, yk), we will take into account the relationship (4.6),
which—in the case under consideration—will acquire the form

L(x0, Yk) = E((x0 − E(x0))(yk − ŷk(Yk−1))). (6.3)

Because the random vector x0 is not connected statistically with noise vectors η j , ξi ,
then upon implementing Eq. (6.3), we consider these noises equal to zero and account
for only the statistical characteristics of the random vector x0. From Eq. (6.3), we
will find

L(x0, yk) = (Ak − Bk)h
T
k , (6.4)

where

Ak = E((x0 − E(x0))xT
k ), Bk = E((x0 − E(x0))x̂k(Yk−1)

T )

arematrices of dimensionality n . . . k which are defined by the recurrent relationships
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Ak+1 = C0(ak . . . a0)
T , (6.5)

Bk+1 = (Bk(In − q(k))−1L(k)hk)
T + (Akq(k)−1(L(k)hk)

T )aT
k , (6.6)

A1 = C0aT
0 , B1 = 0, k = 1, 2, . . . .

Thus, the recurrent relationships (6.1)–(6.6) fully solve the problem of linear
optimal interpolation—at the expense of recurrent formulas of the discrete Kalman
filter algorithm.

Let’s find the test whose implementation points out that the algorithm and program
of optimal linear interpolation are correct. We will assume that Pk = (a0 . . . ak−1)

and ψ0 = . . . = ψk−1 = 0.
A problem of linear optimal filtration will be solved if we initially solve a problem

of optimal linear interpolation and then, using motion equations, “transpose” the
found vector by optimally estimating the vector of initial conditions x0 to instant k.
Hence, the validity of the identity

PkCx0,k PT
k = Ck (6.7)

follows. The satisfaction of Eq. (6.7) serves as a test for the algorithm of optimal
linear interpolation.

Example Let’s consider a problem of the optimal estimation of unknown initial
conditions of three digital blocks, consequently implementing triple discrete integra-
tion of harmonious oscillations of a set frequency in the presence of additive random
disturbances at the input of the first integrator, and of random errors of observations
at the output of the third integrator. The dynamic system and observations are of
form (5.1) under the following conditions:

xk = ak xk−1 + uk + ηk−1, yk = hk xk + ξk,

ak =
⎛

⎝
1 · τ · 0
0 · 1 · τ
0 · 0 · 1

⎞

⎠ ,

uT
k = ‖0 · 0 · sin(10k) τ‖, η(k)T = ‖0 · 0 · η3(k)‖, hk = ‖1 · 0 · 0‖,

C0(1, 1) = C0(2, 2) = C0(3, 3) = 1/3,σ2
k = (0.05)2/3,

ψk(3, 3) = (0.05)2/3, Vk = 0, τ = 1/10, q = 3.

To characterize the accuracy of the optimal linear interpolation, we consider the
ratio of current and initial root-mean-square deviations (RMSD) of estimation errors
(Cx0,k(i, i)/C0(i, i))1/2 for i = 1, 2, 3.

Here are the values of these ratios versus k (multiplied by 100):



18 1 Linear Estimators of a Random Parameter Vector

k = 5 5.999520 27.159232 91.212830
k = 10 5.461143 20.283446 39.854941
k = 15 4.428993 12.284388 18.930264
k = 20 3.871042 9.313944 15.066365
k = 25 3.677751 8.687775 14.744050
k = 30 3.654168 8.662084 14.723541
k = 50 3.646723 8.608962 14.661674

k = 100 3.646521 8.607919 14.660844

The given data imply that the estimation algorithm quickly passes to a steady
state, at which a further increase in the number of observations does not increase the
accuracy of the estimation.

It is evident that in the absence of random disturbances, upon input of the first
integrator, an increase in the number of observations leads to an increase in the
accuracy of the optimal linear interpolation.
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Chapter 2
Basis of the Method of Polynomial
Approximation

2.1 Extension Sets of Observations: The Heuristic Path
for Nonlinear Estimation

The estimation algorithm outlined in Chap. 1 can be constructively implemented if
some a priori data are known. However, the algorithm does not fully use information
from observations, since its operations are linear over the results of observations. Is
it possible to increase the accuracy of the estimate, to use more complex, nonlinear
operations? A multidimensional version of K. Veyershtrassa’s theorem answers this
question affirmatively.

We believe that the real functions of many variables θ(YN ), which are further de-
fined as approximation representations, are continuous in the closed bounded domain
�YN of the multidimensional space. Fulfillment of this condition [1] allows the use
of a multidimensional analog of Weierstrass’s theorem (Stone’s corollary theorems).
The theorem states that for every ε, the following holds:

sup
YN ∈�YN

|P(YN , ε) − E(θ|YN )| ≤ ε, (1.1)

where�N is compact, E(θ|YN ) is a continuous function of N components of YN , and
P(YN , ε) is a polynomial from YN (linear combination of powers of the components
of YN ). If this condition is fulfilled, the approximation error ε tends to zero with
increasing dimension of the vector YN .

Let’s define the set �WYN
polynomial observing W (YN ), which depends on the

primary vector of observations YN . The input estimation algorithm is not supposed
to be the vectors YN and W (YN ). Inequality (1.1) makes it natural to assign that the
degree of the components of YN are components of the vectors W (YN ). The sum of
the exponents of all the degrees does not exceed a given integer d. �WYN

contains a
set of �YN original observations:

Y ∈ �Y ,�Y ∈ RN ∈ RN , W ∈ �W ∈ RN1 , N1 > N . (1.2)

J. A. Boguslavskiy, Dynamic Systems Models, DOI: 10.1007/978-3-319-04036-3_2, 19
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We will estimate the vector θ(W (YN )) via a formula similar to (1.3) of Chap. 1:

θ̂(W (YN )) = E(θ(W (YN ))) + �o(W (YN ) − E(W (YN ))), (1.3)

where
�o Q = L .

Algorithm (1.3) defines a vector of estimates, the optimal mean-square and linear
on the set of degrees of the components of YN . This vector is a polynomial of the
components of YN and the corresponding estimation of the errors’ mean cannot have
more errors; that delivers a suboptimal polynomial P(YN , ε) of (1.1).

This statement is true because algorithm (1.3) defines the optimal mean-square
evaluation on the set of linear combinations of the components of the degrees YN

and P(YN , 2N ) (linear combination of powers of the components of YN ). However,
the linear combinations P(YN , ε) are not optimal in the mean-square and true matrix
inequality C (1.3)≤C (1.1), whereC (1.3) andC (1.1) are covariance matrices of the
estimation errors, corresponding to the expressions (1.1) and (1.3) for the estimation
methods.

The set of elements W (YN ) expands with increasing d; some of its elements are
degrees of component YN in the polynomial P(YN , ε). In this case, the estimation
error, which corresponds to algorithm (1.3), is at least not greater than the ε in
formula (1.1).

Next, Sect. 2.3 represents data on the construction of the vector W (YN ). The
arrangement is such that with an increase in d, estimation errors are reduced and do
not exceed ε in (1.1).

A priori data for formula (1.3) are the vector andmatrix E(θ), E(W (YN )), C0, Q,

L numerically defined in Chap. 1, by replacing the symbol YN on the symbol W (YN ).
The elements of the vectors W (YN ) linearly depend on degrees of the observations;
therefore, formula (1.3) corresponds to a nonlinear algorithmic process. The estima-
tion error we obtain when using an extended set of observations will always be less
than many original observations �Y .

In Chap. 1, the formula was determined by calculating the estimation error co-
variance matrix obtained with this nonlinear algorithm and finding the best of their
reduction of the nonlinear terms in the function W YN .

Membership of the vector W (YN )’s degrees and the plurality of a sufficiently
large value of d in principle ensure the achievement of arbitrarily small mean-value
estimation errors.

2.2 The Statistical Basis

We assume that parameter vector θ has components θ1, . . . , θq and at fixed vector
YN belongs to a region �θ|YN ∈ Rq . This region can have a finite or infinite number
of points. The latter will be the case, for example, if θ = F(YN , ξ), where ξ is an
independent variable that varies in a region.

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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If the vector YN spans the region of �YN points, then the vector θ spans points of
some region �θ.

We suppose that YN , θ are random vectors on region �YN � �θN |Y ∈ RN+q and
that their joint stochastic measure is

p(θ, YN ) = p(Y )p(θ|YN ),

where function p(θ|YN ) is the conditional density of probabilities of the ran-
dom vector θ at the fixed vector YN . If the set �θ|YN is composed of points
θ1(YN ), . . . , θr (YN ), then

p(θ|YN ) = (δ(θ − θ1(YN )) + · · · + δ(θ − θr (YN )))/r,

where δ(. . .) is a delta function of θ variables. The vector of conditional expectation
E(θ|YN ) is represented by

E(θ|YN ) =
∫

θ∈�θ|YN

θp(θ|YN )dθ. (2.1)

Let the vector W be a function of components of the vector YN : W = W (YN ). If
the random vector YN is fixed, then the algorithm outlined in Chap. 1 delivers an
estimator of the vector θ (or a function of this vector) that is linear relative to vector
W and optimal in the root-mean-square sense on a class of linear operators.

We will use this algorithm to construct an estimator of the vector E(θ|YN ) that
will be linear relative to a vector W (YN ) and optimal in the root-mean-square sense.
We can construct an estimator because the joint density of probabilities p(θ, YN )

permits us to find the first and second statistical moments of the random vectors
E(θ|YN ), W (Y ) that are necessary for using formulas of Chap. 1. From Eq. (2.1),
we will find

E(E(θ|YN )) =
∫

YN ∈�YN ,θ∈�θ|YN

θp(θ, YN )dθdYN , (2.2)

E(W (YN )) = W (YN )p(θ, YN )dθdYn, (2.3)

L = E((E(θ|YN ) − E(Eθ|YN )))(W (YN ) − E(W (YN )))T )

=
∫

YN ∈�YN ,θ∈�θ|YN

(E(θ|YN ) − E(Eθ|YN )))(W (YN ) − E(W (YN )))T p(θ, YN )dθdYN ,

(2.4)

Q = E((W − E(W ))((W − E(W ))T )

=
∫

Y∈�YN ,θ∈�θ|YN

(W − E(W ))(W − E(W ))T p(θ, Y )dθdY. (2.5)

http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_1
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We assume that E(θ|YN ) is a continuous vector-function YN .
Let the components w1(YN ), . . . , wm(YN ) of the vector W be the first m com-

ponents of W . Let’s find the optimal in the root-mean-square-sense estimator of the
vector E(θ|YN ); we’ll do it using a linear (relative to W ) vector-function of orm (1.3)
of Chap. 1. But under this condition, the vector W is a function of YN . Hence, addi-
tionally, the vector to estimate the conditional expectation—an estimator realized via
an optimal in the root-mean-square-sense linear operator over the vector W (YN )—is
denoted as Êθ|Y (Y, m)o and defined by

Êθ|YN (YN , m)o = E(E(θ|YN )) + �o(W (YN ) − E(W (YN ))), (2.6)

where
�o Q = L . (2.7)

2.3 Polynomial Approximation

Now, we believe that elements of the basic sequence are products of integer nonneg-
ative power functions of components of the vector of primary observations YN :

wa1,...,aN (YN ) = ya1
1 · · · yaN

N , (3.1)

where the nonnegative integers a1, . . . , aN deliver all integer nonnegative solutions
of the inequality 0 ≤ a1 + · · · + aN ≤ d, d = 1, 2, . . .. For d → ∞, we obtain a
countable sequenceof basic functions.Wewill notice that in this case, Stone algebra is
a space of polynomial N variables, and Stone’s theorem serves as amultidimensional
analog of Weierstrass’s theorem. For given integers d, N , we will denote the number
of elements of the basic sequence as m(d, N ).

Lemma 4.1 The value m(d, N ) is defined by the recurrent formula

m(d, N ) = m(d − 1, N ) + (1/d!)(N + d − 1) · · · N , m(1, N ) = N .

The formula is proved by induction.

With increasing d, the value m(d, N ) quickly increases. For example, if N = 4,
then

d 1 2 3 4 5 6 7 8
m(d, N ) 4 14 34 69 125 209 329 494.

The vectorial linear combination of basic functions that at fixed integer d delivers—
onto regions �Y × �θ|Y—an optimal (in the root-mean-square-sense) estimator of
the vector Ê(θ|Y ) of the form
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Ê(θ|YN )(YN , d)o = E(E(θ|YN )) + �o(W (YN ) − E(W (YN ))), (3.2)

�o Q = L , (3.2*)

or
Ê(θ|Y )(Y, d)o =

∑

0≤(a1+···+aN )≤d

λ(a1, . . . , aN )ya1
1 · · · yaN

N , (3.3)

where . . . ,λ(a1, . . . , aN ), . . . are the vectorial weight coefficients. We will find
these coefficients if, to the right of Eq. (3.2), we substitute components of vectors
andmatrices from relationships (2.2)–(2.5) aswell as components of the vectorW (Y )

from Eq. (3.1), and set as equal the coefficients before identical products of power
functions in Eqs. (3.2) and (3.3).

Vectors . . . ,λ(a1, . . . , aN ), . . . should be input to the computer. Then formula
(3.2) or (3.3) solves the problemof polynomial approximationwithout solvingmatrix
equation (3.2*) for any vectors Y ∈ �YN .

Equation (3.2) or (3.3) solves the problem of polynomial approximation of a
vector of conditional expectation for the random vector of unknown parameters with
an error, uniformly small on the given region �Y :

sup
YN ∈�YN

|E(θ|YN ) −
∑

0≤a1+···+aN ≤d

λ(a1, . . . , aN )ya1
1 · · · yaN

N | → 0, d → ∞.

We emphasize that with increasing number d, the polynomial, approximating vec-
torial series, contains a vector E(θ|Y ) with arbitrary small root-mean-square error
on region �Y , despite having used the simple linear operator over polynomial func-
tions of results of primary observations: Simplicity of the operator represented by its
linearity, “is compensated” for by nonlinear (polynomial) functions of results of the
primary observations, processed by the linear operator.

Then, by W (d, k) we denote a vector whose components contain all possible
products of the form ya1

1 · · · yak
k , . . . , 0 ≤ a1 + · · · + ak ≤ d. We assume that all the

components of the vector W (d, N ) are linearly independent. Then the numbering
of these components can be arbitrary. However, to represent the recurrent form of
an algorithm of polynomial approximation, the numbering, defined by recurrent
relationships, is reasonable.

The recurrent form of writing the vector W (d, k) is of the form

W (d, k)T = ‖W (d, k − 1)T w(d − 1, k − 1, k − 1, yk)
T ‖, (3.5)

where

w(d−1, k−1, yk)
T = ‖W (d−1, k−1)T yk · · · W (1, k−1)T yd−1

k W (0, k−1)T yd
k ‖,

(3.6)
W (0, i) = W (i, 0) = 1, i = 0, 1, 2, . . .
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For a given integer d, successive application of relationships (3.5), (3.6) leads to
the formulas

W (d, 1)T = ‖1y1 · · · yd−1
1 yd

1 ‖,

W (d, 2)T = ‖W (d, 1)T W (d − 1, 1)T y2 · · · W (1, 1)T yd−1
2 yd

2 ‖,

W (d, 3)T = ‖W (d)T W (d − 1, 2)T y3 · · · W (1, 2)T yd−1
3 yd

3 ‖, . . .

The formulas imply a way of successively numbering the components of vector
W (d, k). These components are then denoted as w1, w2, . . . , wm(d,k).

2.4 Calculating Statistical Moments and Choice
of Stochastic Measure

Theprecedingmaterial points to the fact that at the exact calculationof integrals (2.2)–
(2.5) and at a great value of an integer d, the presented method of approximation
delivers an estimator vector of parameters in the form of a vector of conditional ex-
pectation. It is well known that the estimator is optimal in the root-mean-square sense
for all vector-functions of a vector of observations. The efficiency of this estimator—
as a carrier of information, contained in a vector of observations—depends on the a
priori stochastic measure that was chosen.

It is likely that the problem of choosing an optimal stochastic measure can be
formulated. However, a similar problem is not further considered here.

Besides the a priori region �Y × �θ|YN , there are commonly no a priori data for
stochastic characteristics of the vectors YN , θ. Hence, it is natural to use the heuristic
arguments when assigning a stochastic measure. However, the heuristics’ role can be
reduced if we connect choosing a stochasticmeasurewith the problemof numerically
determining integrals (2.2)–(2.5).

Let’s consider a method of calculating multidimensional integrals, effectively
used below for polynomial approximation in solving applied problems.

Let � ∈ Rm ; it is necessary to calculate the integral

J =
∫

x∈�

F(x)dx, (4.1)

where F(x1, . . . , xm) is a given integrand function, and � is a unity cube in
Rm : 0 ≤ xi ≤ 1.

Every cube’s edge is divided into r equal segments of length 1/r , whose ends are
vertices rm of the smaller elementary cubes denoted as E1, . . . , Ek, . . . , Erm . Then,

J =
k=rm∑

k=1

Jk, (4.2)
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where

Jk =
∫

x∈Ek

F(x)dx . (4.3)

To calculate Jk , one generalizes the method of trapezoids to a multidimensional
case. Multidimensional linear interpolation is performed, at which the integrand
function F(x) is replaced with a multilinear function F(x)′. This function is a sum
of products of functions, linear in variables x1, . . . , xm , and coincides with F(x) in
2m cube vertices Ek .

We assume that xk1 , . . . , xkm , 1 ≤ k1, . . . , km ≤ r − 1 are coordinates of that
cube vertex Ek , whose coordinates have the smallest values of all 2m cube vertices
Ek . Then, coordinates of all 2m cube vertices can be represented by the expressions

xk1(α1) = xk1 + α1/r, . . . , xkm (αm) = xkm + αm/r,

where quantities α1, . . . ,αm assume—independently of one another—the value 0
or 1. Next, xki (1) − xki (0) = 1/r, i = 1, . . . , m, are the coordinates x1, . . . , xm

of a point, belonging to Ek , that satisfy the inequalities xki (0) ≤ xi ≤ xki (1),
i = 1, . . . , m.

Let’s define linear functions of these point coordinates by

f0(xi ) = r(xki (1) − xi ), f1(xi ) = r(xi − xki (0)).

It is clear that 0 ≤ f0(xi ) ≤ f1(xi ), f0(xi ) + f1(xi ) = 1.
The interpolating function F(x)′ is defined by

F(x1, . . . , xm)′

=
∑

α1,...,αm=0,1

fα1(x1) · · · fαn (xn)F(xk1 + α1/r, . . . , xkm + αm/r). (4.4)

Summation in Eq. (4.4) is done over all binary numbers of the form α1, . . . ,αm ,
and the term’s number is equal to 2m .

Linear functions f0(xi ), f1(xi ) satisfy the identity

∑

α1,...,αm=0,1

fα1(x1) · · · fαm (xm) = 1. (4.5)

The identity is proved by induction.
Replacing in Eq. (4.3) the function F(x) with F(x)′, after integrating over cube

Ek , we will find an approximate expression for the integral Jk :

Jk 	 (1/2r)m
∑

α1,...,αm=0,1

F(xk1 + α1/r, . . . , xkm + αm/r). (4.6)
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Hence, the approximate value of the integral over every elementary cube is propor-
tional to an arithmetic average of values of the integrand function in vertices of this
cube.

Let’s consider a situation when every integral Jk is of the form

Jk =
∫

x∈Ek

F(x)dx, (4.7)

where F(x) is a yet-to-be-determined probability density of the random vector x .
The value of Jk from (4.7) will become equal to the right of Eq. (4.6) if the probability
density is assumed to be the proportional sum of products of delta-functions:

p(x1, . . . , xm) = (1/2r)m

×
∑

α1,...,αm=0,1

δ(xk1 + α1/r − x1) · · · δ(xkm + αm/r − xm). (4.8)

For this function, there is a valid normalization condition on the unit cube.
Thus, assigning the probability density to be equal to a sum of products of delta

functions delivers an exact value of the corresponding integral. But we get the same
integral value if distribution of the random vector x on the unit cube is assumed
uniform, and generalization of the method of trapezoids (presented above) is taken
as an approximate method of calculating multidimensional integrals.

Hence, there are two possibilities.

1. Assign the probability density as a sum of products of delta functions on � and
find an exact value of integral (4.7).

2. Assign the probability density as uniform on � and find an approximate value of
this integral after using a generalized method of trapezoids.

In the latter case, approximate values should also be used; then some of the
integrals being calculated can be determined analytically. This means that integrals
being calculated are elements of a priori vectors and matrices needed to determine
the vector of linear estimators in Chap. 1, optimal in the root-mean-square sense.

It should be emphasized that for a determinate connection of random vectors θ
and Y , at the exact calculation of the integrals (2.2)–(2.5) and a sufficiently great
value of d, the estimator θ̂(Y, d) is close to the estimated vector θ and practically
does not depend on the chosen probability density p(Y ). This statement follows from
Eq. (4.8).

Let’s assume that the a priori region �Y is a cube in RN , which is divided into
r N elementary cubes in realizing the generalized method of trapezoids (see above).
Let’s choose probability density p(Y ) as the corresponding sum of products of delta
functions. Then Eq. (4.8) (representing, for the method of polynomial approxima-
tion, the key convergence of the calculations) will be true for any (including small)
number r .

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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Of course, for small r , it will be necessary to use a greater number d. Hence,
the “rough” (for small r ) calculating weight coefficients λ(a1, . . . , aN ) in Eq. (3.3)
should be compensated for by a greater number m(d, N ) of terms in Eq. (3.3).
The choice of rational—according to the criterion of minimum time—calculating
numbers r and d is a subject of special consideration.

2.5 Fragment of Program of Modified Method
of Trapezoids

An approximate value of a multidimensional integral over a unit cube is equal to a
sum of approximate values, to be calculated under Eq. (4.2). However, practical use
of this method is not rational, as it requires a huge volume of computing.

In fact, if a vertex of a small parallelepiped Ek iswithin a unit cube (it is surrounded
by small parallelepipeds all around), then, formultiple uses of formulas like Eq. (4.6),
one should calculate the value of the function F(. . .) in this vertex 2n times.However,
if a vertex coincides with that of the unit cube, then the function value of F(. . .) is
calculated only once.

It is reasonable to design an algorithm that would require calculating the function
F(. . .) only once in every node of the grid covering the unit cube. In such a case,
the explicit representation of an approximate integral as a linear combination of the
function F(. . .)’s values in nodes is rather difficult, because coefficients of this linear
combination depend on the integer r .

We will present the offered algorithm as a fragment of a Pascal program for the
case of r = 5:

J:=0;
for x1:=0 to r do for x2:=0 to r do
for x3:=0 to r do for x4:=0 to r do
for x5:=0 to r do
begin
x[1]:=x1;x[2]:=x22;x[3]:=x3; x[4]:=x4;x[5]:=x5;
nj:=0;
for i:=1 to 5 do if (x[i]=0) or (x[i]=r) then nj:=nj+1;
if nj=0 then mj:=32;
if nj=1 then mj:=16;
if nj=2 then mj:=8;
if nj=3 then mj:=4;
if nj=4 then mj:=2;
if nj=5 then mj:=1;
K:=mj/32;
J:=J+KF(x[1],x[2],x[3],x[4],x[5]);
end;
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Table 2.1 Values of integers for different values of r

r k(1) k(1/2) k(1/4) k(1/8) k(1/16) k(1/32)

5 1,024 2,560 2,560 1,280 320 32
10 59,049 65,610 29,160 6,480 720 32
15 537,824 384,160 109,760 15,680 1,120 32
20 2,476,099 1,303,210 274,360 28,880 1,520 32

The fragment implies that the algorithm gives an approximate integral J as a
linear combination of the function F(. . .)’s values in vertices of small cubes. The
coefficients K of this linear combination take the values 1, 1/2, 1/4, 1/8, 1/16, 1/32,
multiplied by integers, automatically determined by the algorithm for the modified
method of trapezoids.

Table2.1 gives values of these integers for different values of r .
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Chapter 3
Polynomial Approximation and Optimization
of Control

3.1 Introduction

Polynomial approximation of a function with many variables is reasonable because it
replaces this function with a transparent differentiated function whose properties are
well investigated. In such a case, there should, of course, be a constructive algorithm
to define the coefficient of polynomials, and at an increasing power of polynomials,
the convergence of a sequence of polynomials to an approximated function that is
uniform on its field of definition should be guaranteed. Apparently, the most produc-
tive polynomial approximation is in solving optimization problems. For example, let
the vector-function parameters be defined by an algorithm of numerical integration
of a system of differential equations; it is necessary to define its extremum point. This
problem is essentially facilitated if the function of the vector parameters is replaced
by a polynomial of the vector parameters with an error uniform on the field of def-
inition and marginally small. A polynomial of the vector of parameters is a smooth
function of its arguments, and points of its extremum in a real region are defined
by well-known methods of computational mathematics. We notice that these points
can be found by a method (explained ahead here) of solving systems of nonlinear
algebraic equations if they are stationary points of the approximating polynomial.

As an approximated function is continuous, and approximation errors are uni-
formly small, then, with the exception of some cases of degeneracy (not interesting
for applied problems), the extrema of approximating polynomials should be close to
the extrema of the function being approximated.

In the modern theory of approximating functions of real variables, there is a
theorem ofWeierstrass that proves the existence of a necessary polynomial sequence
for a function of one variable. Bernstein’s polynomials provide a way for the factual
construction of a sequence of polynomials.

For functions with many variables, the validity of a multidimensional analog of
Weierstrass’s theorem follows from Stone’s theorem [1] for a continuous function,
set on a compact. Chapter2 presented a general method for the constructive design
of a sequence of approximating polynomials.

J. A. Boguslavskiy, Dynamic Systems Models, DOI: 10.1007/978-3-319-04036-3_3, 29
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In Sect. 3.2, we present a method of multidimensional polynomial approximation
for a continuous function, satisfying Stone’s theorem. The method has an algo-
rithm to construct a sequence of approximating polynomials whose approximation
errors uniformly converge to zero when its power is increased. The method does
not demand differentiability of the function and can be used in the problems of
optimizing dynamic systems’ control. We describe an application of the method for
approximately solving a similar problem.

We notice that in computational mathematics, one widely uses the representation
of a function of a vector of real variables by a segment of the series whose members
are proportional to products of integer power functions of this vector’s component.
Usually, one uses the Taylor multidimensional series as such a series. Basic difficul-
ties with using Taylor series are known: The function should be differentiable the
corresponding number of times; the area of convergence of the series is established by
special, rather complex, research. In the stated method we present, these difficulties
are absent: There is no need for the function’s differentiability (the method’s algo-
rithm uses only integration operations); the method’s area of uniform convergence
coincides with the compact on which the function is defined.

3.2 Problem of Polynomial Approximation of a Given
Function

Let’s say we have a function
θ = F(YN ), (2.1)

where YN ∈ �Y ∈ RN , θ ∈ R,�YN is a given compact in RN , F(YN ) is continuous
on �YN , and y1, ..., yN are components of vector YN .

It is necessary to find an approximate polynomial representation for F(YN ):

F(y1, . . . , yN ) �
∑

0≤(a1 +...+ aN )≤d

λ(a1, . . . , aN )ya1
1 · · · yaN

N , (2.2)

whered is a given integer value andλ(a1, . . . , aN ), . . .dependon F(YN ),�YN , d, N .
The number m(d, N ) of members in the series segment on the right of Eq. (2.2),

which is equal to the number of integer nonnegative solutions of the inequality
0 < a1+ . . .+aN ≤ d, is defined by the recurrent formula of Lemma 4.1 in Chap.2.

To use the results of Chap. 2, we assumed that vector Y is random on �Y with
density of probabilities p(Y ). From (2.1), one sees that in Eqs. (2.2)–(2.5) of Chap.2,
it is necessary to assume

�θ |YN = F(YN ),

p(θ, YN )dθdY = p(YN )δ(θ − F(YN ))dθdY.

http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
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Hence,
E(θ |YN ) = θ. (2.3)

The identity (2.3) points out that in the considered problem, Eq. (3.3) of Chap.2,
presenting a polynomial estimator of random vector E(θ |Y ) passes to a formula for
a polynomial estimator of parameter θ if vector Y and integer value d are given. Let’s
denote this estimator here as θ̂ (YN , d).

The algorithm of function F(YN ) decomposition to a power series should define
weight coefficients . . . , λ(a1, . . . , aN ), . . . , so that error |F(Y ) − θ̂ (YN , d)| of the
representation of function F(YN ) by the right part of Eq. (2.2) converges—uniformly
on �YN —to 0 at increasing d:

sup |F(YN ) − θ̂ (YN , d)| → 0, d → ∞. (2.4)

Equation (2.4) is a special case of Eq. (3.4) in Chap.2.
Equations (2.2)–(2.5) of Chap.2, defining the first and second statistical

moments of random vectors E(θ |YN ), W (YN ), will acquire the following form:

E(F(YN )) =
∫

�YN

F(YN )p(YN )dY, (2.5)

E(W (YN )) = ‖
∫

�YN

Wi (Y )p(YN )dY T ‖, i = 1, . . . , m(d, N ), (2.6)

L = E((F(YN ) − E(F(YN ))W (YN )T =

‖
∫

�YN

(F(Y ))Wi (YN )p(YN )dY T ‖, i = 1, . . . , m(d, N ), (2.7)

Q = E((W (YN ) − E(W )))W (YN )T =

‖
∫

�Y

(wi (YN ) − E(Wi (YN )))W j (YN )p(YN )dY T ‖, i, j = 1 . . . , m(d, N ). (2.8)

It is expected that choosing a stochastic measure p(YN ) delivers with random linear
independence a component of vector W (YN ) and, hence, that matrix Q−1 exists.

Theorem 2.1 A polynomial estimator of random variable θ , which is optimal in the
root-mean-square sense, is represented by

θ̂ (YN , d)o = E(F(YN )) + L Q−1(W (YN ) − E(W (YN ))). (2.9)

The proof follows from Eq. (2.6) of Chap.2.

http://dx.doi.org/10.1007/978-3-319-04036-3_3
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_3
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
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Let’s denote by

D(d)o = E((θ̂ − θ)2)

a variance of errors of the optimal estimator. The consequences of Eq. (2.9) are as
follows:

Consequence 1. D(d)o = E(F(YN ) − E(F(YN )))2 − L Q−1LT .

Consequence 2. If we have two polynomials θ̂ (YN , d1)o and θ̂ (Y, d2)o, where
d1 < d2, then D(d2)o < D(d1)o.

Consequence 3. If F(YN ) is a polynomial of power d0, then D(d0)o 0 for d = d0,
and further increasing d will not change the situation.

Consequence 4. Upon the exact calculation of integrals (2.5)–(2.8) and at a suffi-
ciently great value of d, the value of estimator θ̂ (Y, d) is close to the estimated value θ

and practically does not depend on the selected density of probabilities p(Y ). This
statement follows from identity (2.3) and relationship (2.4).

The square of the mean square of the estimation random error—divided by
the function’s value—serves as a characteristic of the mean errors of polynomial
approximation:

σ(d) = (E((θ̂(YN , d) − F(YN ))/F(Y ))/2))1/2.

The calculated polynomial approximation has a uniformly small error on �YN .
Hence, the value σ(d) serves as an exhaustive characteristic of approximation errors.

An approximated function F(YN ) can be defined by analysis, by algorithms,
or by tables. Function definition should only provide the calculation of integrals
(2.5)–(2.8).

The diagram of the principal algorithm of calculating the coefficients of polyno-
mials applies for any approximated function. The time of calculations increases with
a rise in value d and with the complexity of the approximated functions.

3.3 Applied Examples

3.3.1 Detection of a Polynomial Function

Let’s say we need a computational process that answers the questions of whether
the given function is polynomial and, if yes, what are its power and polynomial
coefficients?

A software implementation of the presented principal algorithm easily solves the
posed problem. We consequently increase the value d = 1, 2, . . . . The algorithm’s
scheme guarantees proximity to zero of the value σ(d) for approximation errors, as
soon as d becomes equal to the maximum power of the unknown polynomial. Let’s
consider an example.

Let �YN : −1 ≤ yi ≤ 1, i = 1, . . . , 4, and

F(Y ) = y51 + y1y2y3y4 + y33 + y2y4.
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The calculations were done for q = 1, . . . , 5:

d 1 2 3 4 5
m(d, n) 4 14 34 69 125

a(d) 69.8 41.8 5.5 4.9 2.8 × 10−13.

The results of the calculations show that for d = 5, the value σ(d) abruptly jumps to
zero. The algorithm confidently signals that the investigated function is a polynomial
of power 5. Sensitivity of the algorithm to small, “not polynomial” terms, to be
present in the function’s composition, illustrates the calculations’ results if a term
0.05 sin(y1 + y2 + y3 + y4) is added to the polynomial being considered:

d 1 2 3 4 5
m(d, n) 4 14 34 69 125
σ(d) 33 46.5 23.8 3.8 0.017.

3.3.2 Approximation Errors for a State Vector of Dynamic
Systems

In applications one often uses a representation of functions of many variables by
means of a segment of its decomposition into a power series relative to components
of a vector of variables that belong to an a priori region Y . Most often, this segment
is a linear function of components; sometimes the series segment is a quadratic
function, and so on. Determining the limits in which the function is represented by a
polynomial of the given power is often a difficult problem if the function is defined
by an algorithm of sequential calculations. Let’s have, for example, a numerical
integration program of a system of differential equations.

For instance, let the analyzed functions be components of a vector θ(t), satisfying
the equation

θ̇ = �(θ),

and let vector y1, . . . , yN be a vector of initial conditions: Y = θ(0). It is necessary
to find time intervals t of numerical integration of this equation in which the linear
dependence of vector θ(t) components from components of Y will be approximately
true [with a small value σ(d)], then approximate quadratic dependence, and so on.

The principal algorithm of polynomial approximation—used for the sequence of
values t and d—solves this problem.

For a differential equation with the right part Phi(θ) to be continuous and having
continuous partial derivative, vector θ(t), one needs a continuous function of the
vector of the initial conditions

θ(T ) = F(YN ), Y = θ(0),
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and the polynomial approximation algorithm, presented above, is also applied.
We emphasize that after the algorithmhasmade a sufficiently exact approximation

and defined the corresponding values . . . , λ(a1, . . . , aN ), . . ., a Cauchy problem
for any initial conditions from �Y can be solved without a numerical integration
program.

Let’s consider an example. Say we have a fourth-order nonlinear dynamic system

θ̇1 = θ2,

θ̇2 = ϕ(−2ξθ2(1/(τ1)) − θ1(1/τ
2
1 ) + 1),

θ̇3 = θ4,

θ̇4 = ϕ(−2ξθ4(1/(τ2)) − (θ3 − θ1)(1/τ
2
2 ) + 1),

where ϕ(a) = a if −gm ≤ a ≤ gm and ϕ(a) = gm if |a| > gm.

The represented model of a dynamic system can be interpreted as a serial connec-
tion of two dynamic subsystems, each of which is—in a linear region of changing
phase coordinates—an oscillatory link with time constants τ1, τ2 and with damp-
ing decrements ξ1, ξ2. The values θ1 and θ3 serve as outputs of these subsystems.
The second subsystem implements tracking value θ1 for the value θ1. Modules of
acceleration by engines of every servo-system are limited by the value gm.

For a number of values t, d, we will estimate the accuracy of the polynomial
approximation of the functional dependence of the values θ1(t), θ2(t), θ3(t), θ4(t)
from the initial conditions y1, y2, y3, y4.

Let’s assume �Y : −1 ≤ yi ≤ 1, i = 1, ..., 4, τ1 = 1, ξ1 = 0.5, τ2 = 2,
ξ2 = 0.25.

If the value gm is great, then the dynamic system is linear, and a good accu-
racy of approximation is reached for d = 1. For example, let g = 10. Then, for
d = 1, m(d, N ) = 4, the values σ(d, θi ), i = 1, . . . , 4, have an order 10−17. Then
we assume that gm = 1.95.

The accuracy data of the approximation, which appear below, were obtained by
a Monte Carlo method for 100,000 realizations and at a uniform dispersion of the
initial conditions within the region ω. The presented values should be considered as
root-mean-square deviations (RMSDs) of linear approximation errors.

Linear approximation: d = 1, m(d, N ) = 4.

t(s) 0.5 1 1.5 2 2.5 3
σ(d, θ1) 0.01100 0.0110 0.0130 0.0500 0.0250 0.0260
σ(d, θ2) 0.02400 0.0058 0.3800 0.0240 0.0019 0.0550
σ(d, θ3) 0.00063 0.0037 0.0018 0.0027 0.0046 0.0039
σ(d, θ4) 0.00130 0.0045 0.0065 0.0250 0.0076 0.0400

The represented calculation results show that the RMSD of linear approximation
errors do not exceed 5 % from the range of changing of initial conditions.
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The exception arises for t = 1.5 s, when the RMSDs of linear approximation
errors of speed θ2 reach 37 %, apparently because of unique features of transients in
the first dynamic subsystem.

For a sharp reduction in the RMSDs of approximation errors, it is necessary to
increase the power d of approximating polynomials:

t = 1.5 s.

d 1 2 3 4
m(d, N ) 4 14 34 69
σ(d, θ1) 0.0130 0.00350 0.00260 0.00140
σ(d, θ2) 0.3800 0.10000 0.06600 0.03600
σ(d, θ3) 0.0018 0.00050 0.00031 0.00019
σ(d, θ4) 0.0065 0.00170 0.00220 0.00130

One can see that the quadratic approximation (d = 2) has already sharply reduced
RMSD values.

3.4 Polynomial Approximation in Control Optimization
Problems

A mathematical model of a dynamic system is represented by the equation

θ̇ = ϕ(θ, u), (4.1)

where θ(t) ∈ Rq is a current system state vector, u(t) ∈ R1 is a current scalar of
control |u(t)| ≤ 1, ϕ(. . .) is a given vector function, differentiable by its arguments,
and θ(0) is a given vector of initial conditions.

Let’s have one of the sets of possible problems of optimizing a dynamic system:
to find a function uo(t), |u(t)o| ≤ 1, where

uo(t) = arg max|u(t)≤1
�(θ(T )). (4.2)

A continuous function �(. . .) is an optimization criterion for this problem. The
value T is given.

Pontryagin’s maximum principle [2] delivers necessary conditions that uo(t)
should satisfy. However, in a general case, the realization of conditions is compli-
cated, as it requires solutions of a two-point boundary value problem for Eq. (4.1) and
for the equations that a vector of conjugate variables satisfies. Polynomial approxi-
mation implements an approximate replacement of the initial optimization problem
to a sequence of standard nonlinear programming problems.

Now, we will denote by �(u(t)) the value �(θ(T )), obtained at control u(t),
0 ≤ t ≤ T .
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Let B(t, y1, . . . , yn) be a Bernstein polynomial of power n − 1:

B(t, y1, . . . , yn) =
n−1∑

k=0

yk+1Ck
n−1(1/T )k(1 − (1/T ))n−1, (4.3)

where y1, . . . , yn are constants, and Ck
n−1 is a number of combinations of n − 1 by

k. From (4.3) one sees that |B(t, y1, . . . , yn)| ≤ 1 if |yk+1| ≤ 1, k = 0, . . . , n − 1.
Let’s suppose that |uo(t) is a continuous function. It is known that if

yk+1 = uo(((k/n) − 1)T ), k̇ = 0, . . . , n − 1,

then constructing the polynomials B(t, y1, . . . , yn) gives proof of Weierstrass’s the-
orem [it asserts that for any continuous functions u(t), defined on the segment [0, T ],
there is a sequence of polynomials from t , uniformly converging to this function]:

sup
0≤t≤T

|uo(t) − B(t, y1, . . . , yn)| → 0, n → ∞. (4.4)

Hence, for any ε, there exists an integer yn(ε):

sup
0≤t≤T

|uo(t) − B(t, y1, . . . , yn(→))| ≤ ε. (4.5)

From (4.5) and from properties of the functions that are solutions of Eq. (4.1), it
follows that for any decreasing sequence of positive numbers,

δ1 > δ2 > . . . δk > . . . ,

a decreasing sequence of positive numbers will be found:

ε1 > ε2 . . . εk . . .

and the corresponding sequence of integers is

nε1 , nε2 , . . . , nεk ,..., . . . : (4.6)

|�(uo(t)) − �(B(t, y1, . . . , yn(εk )))| ≤ δk . (4.7)

In approximating the polynomials B(t, y1, . . . , yn(ε)) denoted in (4.7), we find that
the values y1, . . . , yn(ε) are equal to the values of the unknown function uo(t) in some
points of the segment 0, T . This circumstance interferes with the direct construction
of a sequence of approximating polynomials.

For a sequence of powers of Bernstein polynomials 1, 2, ::, s, . . . , we will solve
a sequence of standard nonlinear programming programs: At restrictions
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|y0i | ≤ 1, i = 1, . . . , s,

we will find a sequence of finite sets of numbers yo
1 , . . . , yo

s :

�(B(t, y01 , . . . , yo
s )) = max

|yo
1 |≤1,...,|yo

s |≤1
�(B(t, y1, . . . , ys)).

Theorem 4.2 In the sequence of finite sets yo
1 , . . . , yo

s , there is a subsequence cor-
responding to integers s1, s2, . . . , si , . . .. This sequence solves a problem of approx-
imating optimum control uo(t):

sup
0≤t≤T

|uo(t) − B(t, yo
1 , . . . , yo

sk
)| → 0, k → ∞. (4.8)

Proof The sequence of values �(B(t, yo
1 , . . . , yo

s )), i = 1, 2, . . . , s, . . . , is limited
from above by the value �(uo(t)).

Let the ordinal numbers of finite sets of a desired sequence be coincident with
integers (4.6):

s1 = n(ε1), . . . , sk = n(εk), . . . .

Then the inequalities are true:

�(U o(t)) ≥ �(B(t, yo
1 , . . . , yn(εk ))

o) ≥ �(B(t, y1, . . . , yn(εk ))). (4.9)

From Eqs. (4.7) and (4.9), we will obtain

sup
0≤t≤T

|(�(uo(t)) − �(B(t, yo
1 , . . . , yo

sk
))| → 0, k → ∞. (4.10)

	

Bernstein’s polynomials, belonging to the subsequence defined above, converge

to optimum control uo(t), which is one of the solutions of the optimization problem
(4.2). The theorem has been proved.

What we just presented is based onWeierstrass’s theorem, which is formulated for
continuous functions of one variable. Let the approximated function uo(t) have seg-
ments of relay control. However, such control can be approximated by a continuous-
time function with an error, uniformly small on the interval [0, T ]. Hence, in the
preceding reasoning, the function uo(t) ought to be considered a continuous-time
function that uniformly and marginally differs from the actual optimum control.

Solving the sequence of nonlinear programming problems is complicated by the
fact that the functions B(t, y1, . . . , yn(ε)) are defined implicitly—only by numerical
solutions of Eq. (4.1). However, �(B(t, y1, . . . , yn(εk ))) is continuous and defined
on the compact

|yk | ≤ 1, k = 1, . . . , n.
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This function can be approximately replaced by an obvious polynomial function.
Such a replacement can facilitate solving a sequence of nonlinear programming

problems.

3.5 Optimization of Control by a Linear System:
Linear and Quadratic Optimality Criteria

Let a mathematical model (4.1) of a dynamic system be of the form

θ̇ = Aθ + bu, (5.1)

where A, b are a matrix of dimensionality r ×r and a vector of dimensionality r ×1,
depending, generally speaking, on t . Furthermore, we assume that

−1 ≤ u(t) ≤ 1, θ(0) = 0.

For Eq. (5.1), we will numerically solve T times a Cauchy problem under conditions

0 ≤ t ≤ T, uk(t) = Ck
n−1(t/T )k

1 − (t/T ))n−1−k, k = 0, . . . , n − 1.

In this problem, n of its solutions deliver yn vectors λi (T, n), i = 1, . . . , n, of
dimensionality r × 1. If control is equal to B(t, y1, . . . , yn), then for the vector
θ(T, n), delivered by this control, the representation holds:

θ(T, n) =
n∑

i=1

yiλi (T, n). (5.2)

Let the optimality criterion in Eq. (4.2) be linear:

�(θ(T )) = αθ(T, n), (5.3)

whereα is a unity vector in Rr .Then the sequenceof standard nonlinear programming
problems, described in Sect. 3.4 and delivering a converging sequence of approxi-
mations of optimum control uo(t):

uo = arg max
u(t)≤1

αT y(T, n), (5.4)

becomes a sequence of linear programming problems:

max|yi |≤1,...,|yn |≤1

n∑

i=1

yiα
T λi (T, n),

whose solutions are evident:
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θo
i = sign(αT λi (T, n)), i = 1, . . . , n. (5.5)

The sequence of controls B(t, yo
1 , . . . , yo

n ) solves an optimum control approximation
problem at the optimality criterion of the form (5.3).

We notice that dynamic system (5.1)’s set of accessibility [3] is convex in Rr , and
problem (5.4) defines this set’s supporting function for a given vector a. If vectors a
sufficiently densely fill a unity sphere in Rr , then the vectors

θo(T, n) =
n∑

i=1

sign(αT λi (T, n))λi (T, n) (5.6)

implement a point-by-point approximation of a region of accessibility of dynamic
system (5.1) for instant T .

Let’s consider a numerical example:

θ̇1 = θ2, θ̇2 = −2(ϑ/τ)θ2 − (1/τ 2)θ1 + u,

where ε = 0.5, τ = 1, θ(0) = 0;. Let’s assume n = 10:

α1 = sinϕ, α2 = cosϕ, uo
n,= B(t, xo

1 , . . . , xo
n ).

The convergence of the sequence of solutions of linear programming problems
(values αT yo, n = n0, n0 + 1, are solutions) is characterized by a sequence of
relative differences:

�n = (αT yo(T, n) − αT yo(T, n − 1))/αT yo(T, n).

If, despite some oscillations, the modules of sequence members decrease, then the
sequence αT θo(T, n), n = n0, n0 + 1, . . . , converges to value αθo(T ). This state-
ment is true if one accounts for relationships (4.7), (4.8), proved earlier.

Let ϕ = 0.314. The sequence of values �n (from n = 6 to n = 95) has the
following appearance:

6 7 8 9 10 11 12 13 14
0.0474 0.0785 0.0596 0.0357 0.0295 0.0118 0.0107 0.0256 0.0314
15 16 17 18 19 20 21 22 23

0.0173 0.0164 0.0070 0.0065 0.0068 0.0180 0.0180 0.0121 0.0099
24 25 26 27 28 29 30 31 32

0.0040 0.0016 0.0105 0.0090 0.0064 0.0053 0.0027 0.0022 0.0042
33 34 35 36 37 38 39 40 41

0.0072 0.0044 0.0045 0.0018 0.0023 0.0013 0.0057 0.0037 0.0035
87 88 89 90 91 92 93 94 95

0.0005 0.0001 0.0008 0.0009 0.0008 0.0006 0.0005 0.0003 0.0004.
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The data presented imply that from n = 35, . . . , 40, the negative increments in
relative difference values in the modulus do not exceed 0.005. Hence, the further
increase in powers of the Bernstein polynomials, approximating optimum control,
will not increase the value of the optimality criterion in practice.

In the example being considered, numerically solving the Cauchy problem 35–40
times will produce an accessibility region for any number of vectors a, relative to
which a supporting function of this region is being built.

Let the criterion of optimality (4.2) be quadratic:

�(θ(T )) = θ(T )T Hθ(T ), (5.7)

where H is a given positively definedmatrix. Then the sequence of standard nonlinear
programming problems, described in Sect. 3.4 and delivering a converging sequence
of approximations of optimum control uo(t):

uo = arg max|u(t)|≤1
θ(T )T Hθ(T ), (5.8)

becomes a sequence of quadratic programming problems:

max|y1|≤1,...,|yn |≤1
(

n∑

i=1

yiλyi (T, n))T H(

n∑

i=1

yiλi (T, n)). (5.9)

In an upcoming example, a sequence of these problemswas solved using the function
quadprog from the software package MATLAB� 6.x.

Sequence of controls B(t, yo
1 , . . . , yo

n ) solves the optimum control approximation
problem for the optimality criterion of the form (5.7).

In the dynamic system considered above, optimum control solves a problem

uo = arg max|u(t)|≤1
(θ1(T )2 + θ2(T )2).

Hence, optimum control maximizes a distance from a point on the border of the
accessibility region before the origin of the coordinates at the instant of T = 10c.

The convergence of the sequence of solutions of quadratic programming problems
(values |θo(T, n)|2 = n0, n0 + 1, . . . are solutions) is characterized by a sequence
of relative differences

�n = (|θo(T, n)|2 − |θo(T, n − 1)|2)/|θo(T, n)|2.
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This sequence has the following appearance:

6 7 8 9 10 11 12 13 14
0.0424 0.0241 0.0471 0.0209 0.0263 0.0331 0.0098 0.0217 0.0233
15 16 17 18 19 20 21 22 23

0.0060 0.0201 0.0137 0.0058 0.0174 0.0071 0.0021 0.0187 0.0048
24 25 26 27 28 29 30 31 32

0.0071 0.0099 0.0032 0.0080 0.0062 0.0022 0.0086 0.0037 0.0032
33 34 35 36 37 38 39 40 41

0.0069 0.0027 0.0034 0.0054 0.0020 0.0042 0.0036 0.001 0.0051
42 43 44 45 46 48 49 50

0.0023 0.0009 0.0051 0.0018 0.0020 0.0034 0.0038 0.0024.

It has been seen that the sequence of Bernstein polynomials B(t, yo
1 , . . . , yo

n ),

approximating the function uo(t), approximates relay control when uo(t) = 1 or
uo(t) = −1, with two instants of switching the control’s sign. For all t , the fol-
lowing situations are true: If yo

i = ±1 for 1 ≤ i ≤ k1, then yo
i = −1(±1) for

k1 + 1 ≤ i ≤ k2 and yo
i = +1 for k2 + 1 ≤ i ≤ n. Then, when passing from k1 to

k2 +1, one always has either that k1, k2 did not change (the integer k1 −k2 increased
by 1) or that k1 or k2 increased by 1.

So, for example, in the obtained sequence of Bernstein polynomials, we have

n 40 41 42 43 44 45 46 47 48 49 50
k1 10 10 10 11 11 11 11 12 12 12 13
k2 14 15 16 16 16 17 17 17 17 18 18.

3.6 Approximate Control Optimization for a Nonlinear
Dynamic System

Let’s consider a general case, when the right side of Eq. (4.1) is a nonlinear function
of θ , and an optimization criterion is defined by relationship (4.2). Let’s replace u(t)
with Bernstein’s polynomial B(t, y1, . . . , yn). According to well-known problems
value �(θ(T )) is a continuous function from y1, . . . , yn, |yi | ≤ 1. Then the algo-
rithm of multidimensional polynomial approximation will replace F(Y (T )) with a
polynomial function of y1, . . . , yn with a uniform small error ε if the value d is large
enough:

|�(θ(T )) −
∑

0≤a1+...+an≤d

λ(T, a1, . . . , an)ya1
1 . . . yan

n | ≤ ε.

If the value ε is sufficiently small, then the solution of the optimization problem for
the original criterion differs—on a small value—from the solution of this problem
for a polynomial criterion.
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Hence, an approximate solution of the optimization problem becomes a standard
nonlinear programming problem for a polynomial optimization criterion and for
simple restrictions.

Let’s consider an example. Let a nonlinear dynamic system look like

θ̇1 = θ2,

θ̇2 = −2θ2(ξ/τ) − (1/τ 2)θ1 − (θ31 )/100 + u,

where ξ = 0.5, τ = 1, θ(0) = 0.
The following values, dependent on time T , are mean approximation errors

of the vector y(T ) by a third-order polynomial (d = 3, m(d, N ) = 34) for
u(t) = B(t, y1, y2, y3, y4):

T (s) 3 4 5 6 7 8 9 10 11 12 13 14 15
σ(d, θ1) × 104 0.6 6 9 7 90 2 4 2 20 5 50 80 2
σ(d, θ2) × 104 7 6 5 60 10 5 180 4 8 30 20 20 10.

Apparently, all relative errors of approximation by a third-order polynomial are
essentially less than 1.

3.7 Polynomial Approximation with Random Errors

Optimal in the root-mean-square-sense polynomial approximation of conditional
expectation—in the presence of random additive errors in independent variables
in approximated functions—is carried out by a change of integrand functions in
integrals (2.5)–(2.8).

Let’s assume
θ = F(y1 + ξ1, . . . , yN + ξN ),

where ξ1, . . . , ξN are independent random variables with density of probabilities
p1(ξ1), . . . , pN (ξN ) on given regions �1, . . . , �N .

Then, on the right side of Eq. (2.2) is an estimator Ê(θ|Y )(Y, d) for the random
variable E(θ |Y ).

To construct an optimal in the root-mean-square-sense polynomial approximation
of this value, it is sufficient to add—to Eqs. (2.5)–(2.8)—integration over regions
�1, . . . , �N , to replace function F(y1, . . . , yN )with function F(y1 + ξ1, . . . , yN +
ξN ), and to replace product p(Y )dY with a product

p(Y )p(ξ1) · · · p(ξN )dξ1 · · · dξN .
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3.8 Identification of a “Black Box”

Let’s consider a situationwhen the statistical connection of vectors θ and Y is defined
experimentally. Let a vector function

θ = F(Y )

of dimensionality N × 1 from N arguments y1, . . . , yN be set by using a computer
to form an algorithm of a complicated program; also, there is a region of the vector
of arguments: Y ∈ �Y . The vector Y serves as the program input, and vector θ as its
output.

In practice, it might be necessary to have a simpler and more approximate repre-
sentation of this vector function that allows one to avoid using such a complicated
program. As such a representation, we consider the polynomial representation F(Y )

in the form of a vector series, whose members are products of vectorial weight
coefficients by integer powers of arguments:

F(Y ) ∼
∑

0≤k1+...+kN ≤d

λ(k1, . . . , kN )yk1
1 . . . ykN

N , (8.1)

where the number of series members m is equal to an earlier considered integer
function integer function m(d, N ), such that

m(d, N ) → ∞, d → ∞.

In order to solve the formulated problem effectively, we will assume that Y is a
random vector for which there has been assigned a distribution function on an a priori
region�Y . If there are no a priori data about statistical characteristics of inputs of the
program, one ought to consider, apparently, that all random components of vector Y
are independent and distributed uniformly.

Under the conditions formulated, the errors of representation F(Y ) in Eq. (8.1)
will be random.Hence, vectorialweight coefficientsλ(k1, . . . , kN ) should produce—
at a prescribed d—the least root-mean-square errors of the representation F(Y ) by
a polynomial series (8.1).

Let’s assume that W is a random vector of dimensionalitym(d, N )×1, composed
from integer powers of values y1, . . . , yN at a given integer d. In Sect. 3.7, we showed
that the best in the root-mean-square-sense on region �Y polynomial representation
of vector-function F(Y ) produces a vector

Ê(Y, m) = E(θ) + L(m)Q(m)−1(W − E(W )), (8.2)

where

L(m) = E(θ − E(θ))(W − E(W ))T ,

Q(m) = E((W − E(W ))((W − E(W ))T .
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One can easily find a matrix of covariances Q(m) of random components W , and a
matrix Q(m)−1, as we are given the distribution of components, and by definition
the linear independence of vector W ′s components is provided. Statistical approx-
imations for vector E(θ) and for matrix L(m) are to be found by a Monte Carlo
method.

Let’s implement a series of r independent statistical realizations of randomvectors
Y and fix in memory r pairs of vectors Y and of corresponding vectors θ , generated
by the computer program. Under known formulas of mathematical statistics, we will
find a vector Er (θ) and a matrix Lr (m), which serve as statistical approximations for
the vector E(θ) andmatrix L(m). On the validity of the known conditions, according
to the central limit theorem for r → ∞,

Er (θ) → E(θ), Lr (m) → L(m). (8.3)

Vector Er (θ) and matrix Lr (m) serve as experimental information carriers about
a hidden mechanism of how the computer program functions. The basic theorem of
the polynomial approximation method implies that

m → ∞, r → ∞ : maxY∈�Y |F(Y ) − θ̂ (Y, m)| → 0.

Let’s suppose we have a static system model whose inputs serve as components of
vector Y andwhose outputs serve as components of vector θ . The connection of input
Y and output θ is performed by an unknown function θ = F(Y ) that permits one to
call this static system a “black box”. As a result of experimental study of the system,
it is necessary to find an analytical or algorithmic representation of vector-function
F(Y ).

The presented sequence of calculations solves the formulated problem of identi-
fication of the “black box”.
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Chapter 4
Polynomial Approximation Technique
Applied to Inverse Vector-Function

4.1 Introduction

Many assessment and control problems in applied mathematics are, in fact, problems
of numerically determining the parameter vector, θ, to elucidate the statement of the
problem to be fulfilled.

The task of assessment and judgment by observation data often consists of deter-
mining the parameter vector to find solutions of maximum likelihood equations.

Suppose we need to know the state vector corresponding to the dynamic equilib-
rium point of the nonlinear dynamic system that is undergoing stability analysis. In
this study, we shall find this vector when the system of nonlinear algebraic equations
is solved. The system itself will be determined if we set to zero all time derivatives
of the state vector components in the dynamic system equations.

The optimumconditions specified by Pontryagin’smaximumprinciple require the
two-point boundary value problem to be solved. The problem is, in fact, a parameter
vector determination problem, the parameter vector being an unknown initial data
vector for some differential equation system. Both the system state vector and the
vector of costate variables satisfy the equation.

In all of the preceding and similar cases, the constructive solution of the problem
can be reduced to finding a numerical solution of the equation in the form

F(θ) = YN , (1.1)

where θ ∈ Rq is still the unknown Eq. (1.1) root vector, where the vector is contained
in an a priori domain �θ, where the roots of Eq. (1.1) exist; YN ∈ RN is a vector
of predetermined real numbers found, for example, experimentally; moreover, YN is
allowed to have an additive random component, F(θ), which is an explicit or implicit
vector-function. Next, we shall give an example of the situation connected with the
two-point boundary value problem where the above-mentioned vector-function is
implicit. Let the model of the dynamic system be defined as a differential equation
as follows:
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d X/dt = �(X), (1.2)

where X is the state vector of the dynamic system, whereas the order of system (1.2)
is an even number. Next, we suppose that half of the X (0) vector components are
predefined, while the second (unknown) half of them are represented by components
of the vector θ. Next, we take for YN a vector composed of one half of the X (T )

vector components. Let the vector θ be predefined, and therefore the initial data vector
X (0) is predetermined accordingly. Then the vector YN is unequivocally determined
(as a numerical solution of the Cauchy problem) through numerical integration of
Eq. (1.2) over an interval [0, T ].

In the outlined situation, we introduce an implicit vector-function F(θ) to provide
a functional connection of two vectors, YN and θ. The solution of Eq. (1.1) is afforded
by the vector-function F−1(YN ), which is the inverse of the vector-function F(θ).

It is defined over an area �YN ∈ RN that is obtained from the a priori domain
�θ using a mapping F(θ). If the problem is one-dimensional (i.e., n = N = 1)
and the function F(θ) comprises an analytical function near the point θ = 0, then
the Lagrange expansion exists and determines the inverse function F−1(YN ) via a
power series in YN . Serial expansion coefficients depend on the derivatives of F(θ)
at the point θ = 0. The series converges near YN = 0. Nevertheless, practical use
of the Lagrange series is associated with the difficulty of determining its radius of
convergence; furthermore, repeated differentiation of the function F(θ) needed. Note
that an option of uniformly convergent approximation with n = 1 is afforded by the
Bernstein polynomials used in the proof ofWeierstrass’s theorem. If we approximate
the inverse function, however, computational difficulties arise when performing an
attempt of uniform markup of the interval �Y .

In contemporary applied mathematics, the only multipurpose approach to solving
such problems is the iterativeNewton technique in its various implementations. These
implementations generally rely on differential properties of the vector-function F(θ)
that are represented by its gradient vectors (see, e.g., [1, 2]). In its simplest form, the
method mentioned above determines the iteration process according to the equation

zi+1 = zi − (d F(zi )/dz)−1(F(zi ) − YN ), (1.3)

where zi is the i th approach vector for θ, 0; d F(zi )/dz is the partial derivatives
matrix of the vector-function F(θ) components with respect to zi vector components
(Jacobian matrix).

We shall arrive at formula (1.3) if we take a sum of the two first vector members
in the power series expansion of the vector-function F(θ) components about a point
θi or, alternatively, if we write out a stationary condition for the sum of squares of
corresponding differences like (F(θ) − YN )T (F(θ) − YN ) to be minimized.

The computational process converges if zi → θ as i increases.
Notorious difficulties are associated with application of gradient techniques:

• Equation (1.3) is based on linearization of the F(θ) components near the vector zi ;
therefore, what is needed to achieve iteration process convergence is some extent
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of proximity between the zero approach vector z0 and the unknown vector θ to
determine roots of Eq. (1.1); it is the choice of the appropriate z0 that is a central
problem to solve, with the involvement of both a priori data and heuristic methods.

• Calculation of the matrix elements d F(zi )/dz is needed; such calculations often
involve challenges. It is especially true in the case of the implicitly defined vector-
function F(θ) or, otherwise, if nondifferentiable functions are present in its explicit
definition; for example, partial derivatives may fail to exist at all as in the synthesis
of the optimum control problem since in that case the maximum principle affords
discontinuous functions of at least some components of the vector of costate vari-
ables.

• Equation (1.3) suggests that the iteration process depends on differential (local)
characteristics of the vector-function F(. . .) in some intermediate points zi (unre-
lated, in general, to the properties of this vector-function at the point of interest, θ;
the calculations could therefore be of poor quality if the matrix d F(zi )/dz com-
prises nearly a singular matrix or is characterized by a nonvanishing condition
number at zi .

• Another prerequisite is that the residual minima function (F(θ)−Y )T (F(θ)−YN )

must be free of complicated topography; such a topography usually arises together
with local minima in the proximity of the global minimum point of the function.

• Any substitution of YN for another vector requires for organization of a new iter-
ation process with a new zero approach the vector z0 introduced accordingly; the
data previously calculated with the earlier vector YN are now useless.

Next, we present the polynomial approximation technique applied to an inverse
vector-function, a gradient-free method that is essentially free of the disadvantages
inherent to earlier techniques.

Set N = q. Next, suppose that Eq. (1.1) defines a univalent mapping (bijection)
�θ to �YN , being a compact space, and that there exists a vector-function F−1(YN )

F−1(YN ) = F−1(y1, . . . , yN ),

where y1, . . . , yN are components of the vector YN . The vector-function F−1 is
the inverse of the vector-function F and is a continuous function over a region
�YN . Then, applying the polynomial approximation technique yields an asymptotic
representation that is the integral counterpart of the multivariate Taylor series:

F−1(y1, . . . , yN ) �
∑

λ(a1, . . . , aN )ya1
1 · · · yaN

N , (1.4)

where a1, . . . , aN are integer nonnegative solutions of the inequality

a1 + . . . + aN ≤ d,

where d is the prerequisite integer, and (a1, . . . , aN ) are real vector weight factors
that are defined by the corresponding algorithm, which, in turn, is an operator over
�θ, d, F .
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If Eq. (1.1) defines a mapping that is not a bijection, and there exist several vector
roots of Eq. (1.1), then an arithmetic mean of the roots is to be substituted in the
left-hand side of Eq. (1.4).

The basic properties of the series on the right-hand side of Eq. (1.4) are as follows:

• The construction algorithm, being (a1, . . . , aN ), only uses operations of the numer-
ical integration over an a priori domain �θ (as a whole or in part); this feature
makes it possible to build a series (1.4) with the nondifferentiable vector-function
F(θ1, . . . , θN ) as well, so the algorithm is essentially robust in terms of local
irregularities of F(θ) at some points within �θ.

• Let us introduce a uniform stochastic measure for vectors θ over �YN ; then there
exists a stochastic measure for vectors YN over �YN along with the existence of
the nullity vectors’ covariance matrix C , the nullity vectors being the vectors of
differences between the right- and left-hand sides of Eq. (1.1); the vector series
(1.4) converges uniformly over YN in the sense that every matrix element of C
tends to zero as d → ∞ (of course, assuming that the vector YN is free of any
random component with the vector θ fixed).

• There is an algorithm to calculate matrix elements of C ; the algorithm allows for
the evaluation of approximation errors that are about to arise, provided that an
integer d, a vector-function F(θ), and an a priori domain �θ are predetermined.

• Vectors λ(a1, . . . , aN ) are independent of the components of the vector Y ; so an
asymptotic representation of the roots could be defined in the case of Eq. (1.1)
for any YN ∈ �YN , without having to use any sophisticated algorithm to calculate
vectors λ(a1, . . . , aN ), provided that the vectors are calculated in advance and are
stored in the computer memory.

• Asymptotic properties of the series (1.4) afford an efficient criterion of the fact
that no roots of Eq. (1.1) exist within the domain �θ or that for at least some
points within the domain the root vectors are not unique; the criterion is that the
differences’ vector (meaning the differences between the right- and left-hand sides
of Eq. (1.4)) does not decrease in its norm as integer d increases.

Next, we will test the polynomial approximation technique applied to an inverse
vector-functionby considering anumber of nontrivial appliedproblems; the problems
were numerically solved using computer routines written in Object Pascal.

4.2 The Problem of Polynomial Approximation of an
Inverse Vector-Function

Suppose a vector θ ∈ Rq satisfies the algebraic equation

F(θ) = YN , (2.1)

where θ ∈ �θ ∈ RN , Y ∈ �YN |θ ∈ RN , q ≤ N is a predefined vector, �θ is a
predefined still restricted domain where the roots of Eq. (2.1) exist, and F(. . .) is a
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predefined continuous vector-function to establish a mapping

�θ → �YN ∈ RN .

Assumption 1: The domain �YN comprises a compact; there exists a continuous
vector-function to establish a mapping �YN → �θ; here we call the vector-function
the “inverse function” and denote it F−1(YN ).

Assumption 2: Each vector Y ∈ �YN is mapped to a unique vector θ = F−1(YN )

satisfying Eq. (2.1):
F(F−1(YN )) = YN .

Next, we give a well-known variation of sufficient conditions adequate to guarantee
the continuity of the inverse vector-function. Assume that there exist relations

F(θ + δ(θ)) = YN + δ(YN ),

where |δ(YN )| is a small quantity, and

A(θ, YN )δ(θ) � δ(YN ),

where A(θ, YN ) is a matrix. Then F−1(YN ) is a continuous vector-function if the
matrix A(θ, YY ) is nonsingular. The conditions so stated are satisfied if, for instance,
there exist linearly independent gradient vectors for the vector-function F(θ) at every
point of the a priori domain �θ.

These conditions, however, are merely sufficient ones. The highly efficient appli-
cation of the polynomial approximation technique to derive inverse vector-functions
in the case of nondifferentiable vector-functions F(θ) is illustrated next by many
examples.

Let y1, . . . , yN be components of the vector YN . We want to find a polynomial
representation

F−1(Y ) �
∑

0≤a1+...+aN ≤d

λ(a1, . . . , aN )ya1
1 . . . yaN

N , (2.2)

where d is a predetermined integer, and . . . , (a1, . . . , aN ) are vectors of the dimen-
sion q × 1 dependent on F(.),�θ, d, q, and NN .

Denote by F̂−1(YN , d) the right-hand side of Eq. (2.2). The algorithm to repre-
sent the vector-function F−1(YN ) via polynomial series expansion must define the
vector coefficients . . . , (a1, . . . , aN ) so that the error |F−1(YN ) − F̂−1(YN , d)| of
the representation of the vector-function F−1(YN ) by the right-hand side of Eq. (2.2)
uniformly converges to 0 over Y as d increases:

sup
YN ∈�YN

|F−1(YN ) − F̂−1(YN , d)| → 0, d → ∞. (2.3)
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The number of terms in the truncated series on the right-hand side of Eq. (2.2),
m(d, N ), which is equal to the number of nonnegative solutions of the inequality as
follows:

0 ≤ a1 + . . . + aN ≤ d,

is further determined by the recursion formula of Lemma 4.1 (see Chap. 2 for details).
No differentiability of the F(θ) components is required by the conditions of

the problem: In particular, the rank of the partial derivative matrix is not a “must-
consider” item (nonsingularity of the matrix is to be conventionally stated when root
vector existence analysis is performed).

The method under development [3–6] merely uses integration operations over a
domain F(θ) as applied to some functions of the F(θ) components. Its efficiency,
therefore, is independent of the local properties of the vector-function F(θ), the
features usually determining the performance of the conventional methods, which in
turn use various gradient-based techniques [2] applied to the vector-function F(θ).
The method does not require an arbitrary choice of the initial guess vector that is a
must for both iteration and gradient-based procedures. Instead, we have to assign an
a priori (surely, as small as possible) domain, where the roots of Eq. (2.1) definitely
exist although, as we will demonstrate at a later stage, the primary a priori domain
may be chosen arbitrarily large. In this case, the “reduced” working region will be
defined through sequential breakdown (dichotomization) of the initial domain.

To use a Bayesian approach (see Chap. 2 for details), we assume that the vector
θ is a random vector over �θ with a stochastic measure W (θ). Then, according to
Eq. (2.1), the variables y1, . . . , yN , . . . , ya1

1 , . . . , yaN
N , . . . will be randomly distrib-

uted as well. Denote these variables byw1, . . . , wm(d,N ) and let them be components
of the random vector of dimension m(d, N ) × 1. The vector W is a function of

W = W (θ).

From (2.1) it follows that the joint probability density of the random vectors θ, Y
can be represented by the following relations:

p(θ, Y ) = p(θ)δ(YN − F(θ)) = p(YN )δ(θ − F−1(YN )).

In order to use polynomial approximation of the conditional expectation vector pre-
sented in detail in Chap. 2, we value that

E(θ|YN ) =
∫

θ∈�θ

θδ(θ − F−1(YN ))dθ = F−1(YN ). (2.4)

Equations (2.2)–(2.6) thus afford the polynomial approximation of the inverse func-
tion F−1(Y ) for the problem of interest.

The first (primary) and second (secondary) statistical moments of the vectors
θ, W (Y ) are represented by the relations as follows:

http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
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E(F(θ)) =
∫

�θ

F(θ)p(θ)dθ, (2.5)

E(W ) = E(W (θ)) = ‖
∫

�θ

wi (θ)p(θ)dθ‖, i = 1, . . . , m(d, N ), (2.6)

L = E((θ − E(θ))W (θ)T ) =

‖
∫

�(θ)

(θ − E(θ))wi (θ)p(θ)dθ‖T , i = 1, . . . , m(d, N ), (2.7)

Q = E((W (θ) − E(W (θ)))W (θ)T ) =

‖
∫

�(θ)

(wi (θ)w j (θ)p(θ)dθ‖T , i, j = 1, . . . , m(d, N ) (2.8)

Theorem 2.1 Given the predefined integer d, the root-mean-square optimum esti-
mate of the root vector in Eq. (2.1) is given by

F̂−1(YN , d)o = E(θ) + �o(W (YN ) − E(W (YN ))), (2.9)

where
�o Q = L . (2.10)

The assertion of the theorem is obviously implied by formula (2.6) of Chap. 2.

Conclusion 1:

sup
YN ∈�YN

|F−1(YN ) − F̂−1(YN , d)o| → 0, d → ∞. (2.11)

This follows from Theorem 2.1 of Chap. 2.
Conclusion 2: If Q is a nonsingular matrix, then

�o = L Q−1. (2.12)

In this case, the optimum error estimate covariancematrix,C(d)o, can be represented
by the formula

C(d)o = C0 − L Q−1LT , (2.13)

where
C0 = E((θ − E(θ))(θ − E(θ))T ).

Denote the i th row of the matrix L by li . Then from (2.12) we get

http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2


52 4 Polynomial Approximation Technique Applied to Inverse Vector-Function

σi (d)2 = σi (0)
2 − li Q−1lT

i ,

where σi (d)2 is the error variance for estimating the i th vector component of θ, and
σi (0) is the a priori dispersion of this component (i.e., the i th diagonal entry of the
a priori matrix C0).

Therefore, if and when the error covariance matrix is a nonsingular matrix
(Q > 0), we have σi (d)2 < σ(0)2.

Conclusion 3: Assume d1 < d2. It follows from the definition of the root-mean-
square optimum estimate for given d that

C(d2)
o ≤ C(d1)

o.

Let the vectors Y1, Y2 have dimensions N1 × 1, N2 × 1, respectively, and also N1 <

N2 × 1 and Y1 ∈ Y2. Then, with the current d, we have

C(d, N2)
o ≤ C(d, N1)

o.

It now follows that the “more overdetermined” a system of algebraic equations is,
the fewer (on average) errors of the root vector component estimate using polynomial
approximation technique there are.

Conclusion 4: The formulas (2.9), (2.10) afford an estimate F̂−1(Y, d)o, which is
the root-mean-square optimum estimate, for any integer d and for any statistical con-
struction of the random vector W , including any vector to have a singular covariance
matrix Q, if only the weight matrix, �o, satisfies the matrix equation (2.10).

This follows from Conclusion 3, the consequence of Lemma 1.1 of Chap. 1.
Conclusion 5: The optimum linear estimate vector as defined by Eq. (2.9) is the

unique vector.
This follows from Conclusion 4, the consequence of Lemma 1.1 of Chap. 1.
Conclusion 6: In an exact calculation of integrals (2.5)–(2.8) and with the value

of d being large enough, the estimate ˆF−1(YN , d)o is close to the “estimate” value,
F−1(YN ), and is essentially independent of the probability density selection, F(θ).

This assertion follows from the identical equation (2.4) and the relation (2.11).
Note that in the case of general function—in particular, nonlinear and nondifferen-

tiable function F(θ)—the exact solution of the equation is impossible to obtain (2.1).
Let F1(θ), . . . , FN (θ), y1, . . . , yN be components of the vectors F(θ), Y , cor-

respondingly. Then, given Y and d, the accuracy of the problem solution will be
represented with relative residual values as follows:

re1(YN , d) = |y1 − F1(F̂−1
1 (YN , d))|/|y1|,

..............................................

reN (YN , d) = |yN − FN (F̂−1
N (Y, d))|/|yN |.

http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_1
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Given d, the formulas to get the estimate of the error variances over a set of
all vectors YN ∈ �YN are afforded by the Bayesian interpretation, which allows
for finding the estimated error random vector covariance matrix. If neither relative
residual estimated values nor error variance estimated valuesC(d)o (matrix diagonal
entries) reduce as d increases, then the method states the following: There are no
solutions of Eq. (2.1) over a domain �θ; otherwise, the solution is not unique.

4.3 A Case Where Multiple Root Vectors Exist Along
with Partitioning of the a Priori Domain

In the applied problem analysis, a situation where Assumption 2 is not fulfilled—
and thus several root vectors of Eq. (2.1) exist over an a priori domain �θ—is
commonplace. Suppose Y ∈ �YN and the vectors θ1, . . . , θk are root vectors of
Eq. (2.1), each root vector depending on YN :

θ1 = F−1
1 (YN ), . . . , θk = F−1

k (YN ).

It follows from (2.1) and probability density function normalization requirements that
the joint probability density for the random vectors θ, Y and Y can be represented
by the equality

p(θ, YN ) = p(YN )p(θ|YN ) = p(YN )(δ(θ1 − FYN
1 )) + . . . + δ(θk − FYN

k ))/k.

Therefore, we arrive at

E(θ|YN ) =
∫

�θ|YN

θ
δ(θ1 − F−1

1 (YN )) + . . . + δ(θk − F−1
k ))

k
dθ =

F−1
1 (YN ) + . . . + F−1

k (YN )

k
.

Given integer d, the vector F̂−1(YN , d), which is a root-mean-square optimum esti-
mate for the vector E(θ|YN ), will be defined by Eqs. (2.9) and (2.10). Then, instead
of (2.11), we arrive at

sup
YN ∈�YN

| F−1
1 (YN ) + . . . + F−1

k (YN )

k
− F̂−1(YN , d)| → 0, d → ∞. (3.1)
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Since, under the conditions,

F(F−1
1 (YN )) = Y, . . . , F(F−1

k (YN )) = YN ,

then, in general, we have

F((F−1
1 (YN ) + . . . + F−1

k (YN ))/k) �= YN .

So, given that several root vectors exist within the a priori domain�θ , significant rela-
tive residual values re1(YN , d), . . . , reN (YN , d)will arise, the values not decreasing
as the integer d increases. An efficient way to eliminate difficulties associated with
the existence of the several root vectors is introduced by the sequential breakdown of
the a priori domain �θ into subdomains followed by applying a polynomial approx-
imation technique to each subdomain and calculating the corresponding relative
residuals. The breakdown procedure is considered complete when the subdomains
are located with relative residuals steadily decreasing as the integer d increases. This
stage is further repeated the same way within those subdomains that still contain
nondecreasing relative residuals.

4.4 Correctness of the Estimator Algorithm and a Way
of Taking Random Observation Items into Account

Suppose δ1, . . . , δN are random component determination errors related to vector Y
in Eq. (2.1).

In this case, the formula (2.2) to derive the evaluation vector is as follows:

F̂−1(Y, d, δ) =
∑

0≤a1+...+aN ≤d

λ(a1, . . . , aN )(y1 + δ1)
a1 · · · , (yN + δN )aN . (4.1)

From (4.1) it follows that the inverse vector-function polynomial approximation
operator has the property of correctness [7] since as δ1 → 0 and δN → 0, we have

|F̂−1(YN , d) − F̂−1(YN , d, δ)| → 0.

Having said all the above, however, does not allow for construction errors of the
inverse operator itself—these errors arise when determining the weight matrix �,
the column vectors in being the vectors λ(a1, . . . , aN ).

The components of the vector-function F(θ) are linearly independent by condi-
tion; therefore, the covariance matrix Q is a positive definite matrix provided that
d > 1. If d > 1, however, and due to errors introduced by numerical evaluation
of n-dimensional integrals, the resultant matrix Q may be characterized with small
singular values [8] and therefore may have a small condition number. In this case, as
is clear from Eq. (2.10), the weight matrix� is available only as a matrix of severely
noticeable errors.
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There are two possible approaches to eliminating the computational problems
related to the effect of small singular values: (1) The algorithm inverts the matrix Q
and next “strikes out” the rows close to linear dependence. An exemplary approach
having this property is the modified Cholesky algorithm, which has been used to
solve the most of the applied problems discussed later in this chapter.

(2) A plausible stochastic measure is introduced for random errors δ1, . . . , δN

that are inherently taken into account in the construction of the algorithm.
Instead of (2.1), let the following vector equality be true:

F(θ) = YN + ξ,

where the random vector ξ can be interpreted as an additive noise arising during
measurement of the observation vector Y . The random variables ζ1, . . . , ζN are
components of the vector ξ.

∫

�

∫ a

−a
. . .

∫ a

−a
dxdydz.

We assume them to be statistically independent of θ and uncorrelated, and to be
uniformly distributed over an interval [−,]. The random items ζ1, . . . , ζN , if present,
donot change in anyway the performanceof the polynomial approximation algorithm
provided that the existence of these random variables has been properly taken into
account when calculating the first and second statistical moments for the random
vector F(θ) − ξ. In this case, the components of vector E(W ) and of every resulting
matrix Q(W ) and L(W ) consist of integral terms of the form

∫

�

∫ a

−a
. . .

∫ a

−a
(F1(ϑ) − ζ1)

c1 . . .

(FN (ϑ) − ζN )cN ×

pθ(ϑ)pξ1(ζ) . . . pξ(ζN ) × dϑdζ1 . . . dζN ,

where c1, . . . , cN are some integers, and pθ(ϑ)pξ(ζi ) are probability distribution
densities for θ and ζi , respectively.

Since pϑ(zetai ) are constant functions by convention, as mentioned earlier, the
terms of the following form become the integral terms upon integration with respect
to ζ1, . . . , ζN :

∫

�

(F1(ϑ) + a)c1+1 − (F1(ϑ) − a)c1+1

2a(c1 + 1)
× (4.2)

(FN (ϑ) + a)cN +1 − (FN (ϑ) − a)cN +1

2a(cN + 1)
pθ(ϑ)dϑ.
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If is small, the power differences are appropriately represented by expanding them
in a power series.

The integral terms can be calculated using a modification of the trapezoidal
rule, exactly as is done if no additive noise is present in experimental observa-
tions. Chapter8 presents a case study for the linear estimation problem using the LS
method; the treatment involves algorithmic approaches to eliminating the effect of
small singular values.

4.5 Implementations of the Polynomial Approximation
Technique Applied to the Inverse Vector-Function

In this section we suppose the a priori distribution of the vector θ over �θ to be
uniform, that is, to add obviousness to qualitative considerations given below.

As is illustrated with the following examples, the condition number of the matrix
Q increases rapidly as d increases; so the accuracy of calculations to evaluate vector
λ(a1, . . . , aN ) becomes inadequate with large

∑
(a1+. . .+aN ). It is thus impossible

to get an acceptably accurate solution for Eq. (2.1) as simply as by increasing the
number of items in a truncated vector series.

A straightforward way of keeping errors as small as possible with a small number
of items m(d, N ) in the series of interest is in alternating the form of the a priori
domain �θ to get a small a priori domain. Suppose, for instance, the domain is a
cube in Rq having an edge s and the center at the origin. A priori [before the vector
YN in (1.1) is determined] estimated error variations at W = 0 are equal to s2/12
due to the uniform a priori distribution of the root vector components. These values
are entries of the a priori scalar covariance matrix C0. Therefore, as follows from
formulas of Sect. 2 [see Conclusion 2 from Theorem 2.1, and Eq. (2.13)], if vector
W is nonvanishing, then the root vector components’ estimated error variations will
not exceed s2/12 and, therefore, the smaller the edge of the a priori cube, the smaller
the estimate error will be.

These qualitative findings and calculation practice have demonstrated the follow-
ing procedural step sequence to be optimal when one implements the polynomial
approximation technique.

First, we divide the a priori domain �θ into smaller subdomains and, with small
integer d (e.g., when d = 1 if the estimate vector is a vector linear combination of
the vector Y ’s components), the polynomial approximation algorithm will define the
estimate vectors and corresponding residual vectors over each of these subdomains.
Several subdomains that have short-length residual vectors may be candidates for
the subdomain containing the actual vector θ. Further, we repeat the procedure to
calculate the estimate and residual vectors with these several subdomains as before,
howeverwithd increased tominimize estimation errors.As practicewith calculations
has shown, it is the estimate vector characterized by the shortest-length residual
vector that typically corresponds to the subdomain containing the target (unknown)
root vector of Eq. (2.1).

http://dx.doi.org/10.1007/978-3-319-04036-3_8
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
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If, however, a unique root vector of Eq. (2.1) has been shown to exist, then the
breakdown proceduremay prove to be redundant. Inmany cases, polynomial approx-
imation of the inverse function F−1(Y ) becomes accurate enough upon several
iterations and with a small d value, thus avoiding the computational problems that
arise when treating an ill-conditioned high-dimension matrix Q.

Let an a priori domain �θ = �θ,0 (i.e., the first guessed domain) be a box
(parallelepiped) centered around the vector θ0), a zero-order approximation vector
having components �i

0, i = 1, . . . , n, and ai
0 being edge lengths of the box �θ,0

parallel to the coordinate axes.
Further, let the values (a0)2/12 be the components’ a priori variations for the

unknown vector θ. These values are diagonal entries of the a priori matrix C0 in
(2.13); the matrix itself is a representation of the unknown root vectors’ a priori
distribution (dispersion) around θ0.

The polynomial approximation algorithm defines [over �θ,0] an estimate vector
F̂−1(YN , d)o

1; we take it as a first-order approximation to find the root vector. From
formula (2.13) we find a covariance matrix C(d)1, which characterizes the “post
hoc” distribution of the components of the vector θ around the components of the
vector F̂−1(YN , d)o

1, the first-order approximation vector. As is clear from (2.13),
the “post hoc” distribution is narrower than the a priori distribution, due to the fact
that the diagonal entries of the matrix C(d)1 are smaller than the diagonal entries of
the matrix C0, provided that Q is a nonsingular matrix.

So, for an unknown root vector θ, the average distance to the first-order approx-
imation vector is shorter than the average distance to the zero-order approximation
vector.

The box �θ,1 (the domain where the first-order approximation vector exists) has
a vector F̂−1(YN , d)o

1 for its center, and its edge lengths are 1i ai
0 = 6(ci,i )

1/2.

i = 1, . . . , n, where ci,i is the i th diagonal entry of the covariance matrix C(d)1.

Next, the polynomial approximation algorithm defines over�θ,1 an estimate vec-
tor F̂−1(YY , d)o

2; we take it as a second-order approximation to find the root vector.
From formula (2.13), we find a covariance matrix C(d)2, which characterizes the
new “post hoc” distribution of the components of the vector θ around the compo-
nents of the vector F̂−1(YN , d)o

2, the second-order approximation vector. As is clear
from (2.13), the new “post hoc” distribution is narrower than the previous “post hoc”
distribution, due to the fact that the diagonal entries of the matrix C(d)2 are smaller
than the diagonal entries of the matrix C(d)1, provided that new Q is a nonsingular
matrix. So, for an unknown root vector θ, the average distance both to and from
the second-order approximation vector is shorter than the average distance to the
first-order approximation vector.

A repetitive procedure implemented as described above suggests that the iteration
process converges in the mean if only the covariance matrices for the vector W (with
predefined integer d) have no singularities at the “post hoc” distribution boxes. This
statement is true provided that all “post hoc” distribution spaces are contained within
the initial a priori domain.
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Note that the computer program developed to implement the method presented
above defines the estimate vector by the formula

F̂−1(YN , d)o = E(θ) + LV,

where the vector V is a solution of the linear equation

QV = W − E(W ),

and the solution is found using the Cholesky-type algorithm. The original algorithm
has been modified so that it works even when running into the “worst-case sce-
nario”, that is, when the covariance matrix Q has become a singular matrix due to
computational errors.

In the following examples, the a priori domain where the roots exist is a box
(parallelepiped) in Rq , and q-variate integrals are calculated using a modification
of the trapezoidal rule (see Chap. 2 for details); a dedicated integration procedure
has been included as a part of the computer program developed to implement the
polynomial approximation method applied to the inverse vector-function.

The algorithm divides the a priori parallelepiped into r equal parts so that the
box becomes covered with a grid to partition it into rq plate-like elements (PE) of
volume. Each integral (which is a representation of the vector andmatrix components
associatedwith thefirst and second statisticalmoments as discussed above) is a sumof
rn integrals taken over all PE. For every PE, the integral is evaluated upon completion
of the multivariate straight-line interpolation procedure applied to the integrands
that are present in integral approximations for the vector and matrix components.
Therefore, the evaluated expression of the integral over each PE is a multilinear
function at each of 2q vertices of this PE. Each vertex, however, belongs to several
adjacent (“nearest-neighbor”) PEs, where the number of the “neighbors” varies from
1 to 2q . The computer program implementing themodification of the trapezoidal rule
requires the calculation of the integrands to be performed only once at each point of
the grid covering the a priori parallelepiped, to ensure evaluation of integrals for all
“nearest-neighbor” PEs.

Any more complicated shape of the a priori domain is replaced with a paral-
lelepiped to describe the domain. In this case, the integrands in the q-variate integrals
are multiplied by the characteristic function equal to unity within the a priori field
and equal to zero at all other points of the box.

If the vector-function F(θ) in (2.1) is an implicit function, the integrand values
calculated at the points of the grid covering the a priori domain are determined by
numerical integration of the corresponding differential equations. In this case, some
variations of the initial conditions, which are the grid points as discussed above, may
be excluded to meet the boundary conditions put in for the current state vectors of
the dynamic system.

Basically, a simple search method could be considered as an alternative to the
present method; here we emphasize that the computational basis of the present
method is the approximate determination of n-variate integrals through calculating

http://dx.doi.org/10.1007/978-3-319-04036-3_2
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the grid point values of the components for the vector-function F(θ), the grid cover-
ing the a priori domain �θ. In case of a simple search method, the a priori domain is
also covered with the grid points, then the components of F(θ) are calculated, and,
finally, the point is searched where the inherent vector could approximate the root
vector θ for Eq. (2.1). Unfortunately, the number of points within such a grid must
be exceedingly large, and it is almost impractical to achieve the desired accuracy in
solving Eq. (2.1)—the accuracy that has been demonstrated using the polynomial
approximation technique in applications described later in this chapter. In some cases
(seeChap. 9 for details),we provide comparative treatment using both a simple search
method (to find a rough solution of the problem) and a polynomial approximation
technique, to afford the refined, more accurate solution.

4.6 Numerical Solutions of Underdetermined and
Overdetermined Systems of Linear Algebraic Solutions

Nowwe illustrate the accuracy of the solution of (2.1) that is achieved in the numerical
evaluation of multivariate integrals by solving a system of linear algebraic equations
with q = 4, 6 and with Hilbert matrices, which are known to have large condition
numbers and an integer-valued inverse matrix. Let (2.1) have the form

Aθ = YN ,

where A(i, j) = 1/(i + j − 1); the condition number Cond(A) is 1.5514 104 with
q = 4.

It was shown in Chap. 1 that if the vector-function F(θ) in (2.1) is a linear
function of the vector θ, then the weight matrix � does not change in replacing F(θ)
with F(θ) + v, where v is any vector independent of the (still unknown) vector θ.
Therefore, for a linear problem, the result of applying the polynomial approximation
algorithm is the invariant with respect to the a priori domain�θ form alteration—we
assume here that the domain can be of any shape [and, surely, the interval where
every component of the root vector (2.1) exists should not degenerate into a point].

Next we define an a priori cube through inequalities −1 ≤ θi ≤ 1, setting all
components of the vector Y equal to 1, and introduce a variable to characterize the
error in solving the simultaneous linear algebraic equations, which is the square root
of the sum of squared residuals.

Since the root vector θ is a linear function of the components of vector Y , the
accurate solution is to be available even if we apply linear approximation alone
(this case corresponds to d = 1 within the polynomial approximation algorithm). In
the case d > 1, the approximation also includes nonlinear items, which are integer
power series of the components of vector Y . If the integrals are accurately calculated,
the computer software is free of bugs, and computational tolerances are small to
negligible, then—as is shown in Chap. 1—the coefficients preceding nonlinear terms

http://dx.doi.org/10.1007/978-3-319-04036-3_9
http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_1
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vanish, and the results of the simultaneous linear system solution are the same with
d = 1 and d > 1. In practice, however, this increases with d, which is due to the
computational tolerances and computer software bugs.

These statements are clearly supported with computational results. Four-variate
integrals were calculated using a modification of the trapezoidal rule; in so doing,
we saw that the Cartesian coordinates of the grid points (here, as before, the grid
covers the a priori cube) were the points that arose when we divided the cube edges
into kd equal parts. We performed calculations with different k values:

d = 1,

k 2 4 6 8 10
� 1.99 × 10−13 5.51 × 10−13 1.92 × 10−12 l.52 × 10−12 4.77 × 10−12

The root vector components were integers to the eighth decimal place:

θ1 = −4 θ2 = 60 θ3 = −180 θ4 = 149.

The errors in simultaneous linear algebraic equations’ solution achieve their min-
imum values with r = 2, that is, when four-variate integrals are evaluated after the
dichotomization of each edge of the four-variate a priori cube into two equal parts.
The errors increase with the number of dividing points; presumably, this is due to
accumulated computational errors:

d = 2,

k 2 4 6 8 10
δ 1.00 × 10−7 2.01 × 10−7 2.94 × 10−7 1.26 × 10−7 1.87 × 10−6

Thus, the errors in solving the system of linear algebraic equations have increased
enormously (by several orders of magnitude) due to maintaining square terms in the
approximation of the root vector.

Next, consider a situation when the number of the vector components for YN is
less than q; in particular, it is N = 1. Then we assume that the system of linear
equations consists of the first row of the previously considered system. The polyno-
mial approximation algorithm works in this situation as before, with no changes. Let
d = 5. Then, with q = 4, we get m(d, N ) = 125. What this means is that the root
vector satisfying the remaining first row is approximated by a vector series truncated
to 125 items, and this approximation is optimized in the mean square. The a priori
covariancematrix Q, however, has a dimension of 125×125 and is a singular matrix.

The modified Cholesky algorithm, when applied to the matrix, has consistently
eliminated linearly dependent rows and columns and has transformed it into a 6× 6
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array. The roots of this underdetermined system of linear algebraic equations are as
follows:

θ1 = 0.70350, θ2 = 0.36237, θ3 = 0.22411, θ4 = 0.16246.

In this case of the singular linear system, the solution errors are small to negligible:
� = 1.68 × 10−17.

If the linear algebraic equations are to be solved simultaneously, then Aθ = YN ,
as follows from Chap. 1, and with q ≤ N , we have

F̂−1(YN , d) = B−1Y1 = θ,

where it is a nonsingular q × N array composed of q rows of the matrix A, and Y1
is a q-variate vector composed of corresponding components of the vector YN .

Next, we illustrate the effect the “extent of underdetermination” has on the solu-
tion’s accuracy in the case of linear algebraic equations. In particular, we consider
a system of six linear equations. Suppose there are mutually independent random
errors on the right-hand side of each equation. The errors are evenly distributed over
an interval [−0.0001, 0.0001], and the equations are as follows

(let the a priori domain θ be a parallelepiped in R6):

θ1 + θ2 − θ3 + θ4 + 9θ5 − 2θ6 = y1,

3θ1 + 2θ2 − 8θ3 − θ4 + 11θ5 − θ6 = y2,

4θ1 − 8θ2 + 9θ3 + θ4 + 2θ5 + 11θ6 = y3,

2θ1 + θ2 − θ3 − 3θ4 + θ5 + θ6 = y4,

−θ1 − 2θ2 + θ3 + 3θ4 − 15θ5 − θ6 = y5,

7θ1 + θ2 − θ3 + 7θ4 + θ5 − θ6 = y6.

Let’s assume that the a priori domain �θ is a box

−500 ≤ θ1, θ2, θ3 ≤ 500;−0.5 ≤ θ4, θ5, θ6 ≤ 0.5.

It is clear from the a priori data that there are two enormously different a priori areas
of existence, for the first and second root triples.

The unknown parameters θi are uniformly distributed with σa
i errors as follows:

σa
1 σa

2 σa
3 σa

4 σa
5 σa

6
353, 553 353, 553 353, 553 0.353553 0.353553 0.353553.

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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The system has been solved numerically in accordance with a recursive algorithm
as described in Chap. 1, with no explicit definition of the inverse matrix. The sys-
tem’s equations were treated in sequence, from the first to the sixth. The recursive
algorithm sequentially determines the optimum (in the mean square) six-variate vec-
tors, that is, the solutions of the first equation, the first and second equations solved
simultaneously, etc. In the sixth step, the recursive algorithm finds the solution of
the determined system of six linear equations.

Given next are values of σi/σ
a
i , i = 1, . . . , 6, namely, ratios of mean-square

deviation (MSD) errors at each step of the computation with reference to the cor-
responding a priori MSD error. The ratios characterize the progress of the solution
refinement (in terms of the progress toward accuracy) for an underdetermined sys-
tem of linear algebraic equations as a function of the number of equations in the
system. σi values were determined using a Monte Carlo method (with 100,000 sam-
plings), assuming that the random variables θ are uniformly distributed over an a
priori parallelepiped Omegaθ :

σ1/σ
a
1 σ2/σ

a
2 σ3/σ

a
3 σ4/σ

a
4 σ5/σ

a
5 σ6/σ

a
6

step1
0.66758 0.66729 0.66820 0.81589 0.81737 0.81586
step2
0.62273 0.51896 0.10380 0.81585 0.81735 0.81586
step3
0.00523 0.00433 0.00196 0.81585 0.81735 0.81586
step4
0.00102 0.00108 0.00103 0.77904 0.36499 0.76987
step5
0.00078 0.00015 0.00010 0.61678 0.00917 0.53488
step6

6.3 × 10−13 7.4 × 10−12 1.8 × 10−12 1.7 × 10−9 6.3 × 10−10 4.2 × 10−9.

It is clear from the presented data that the first three roots of the underdetermined
system—the roots distributed more widely—are determined with errors below 1as
early as upon completion of three iteration steps. Once the underdetermined system
has been transformed into the determined system, all six roots can be determined
with minute errors.

A similar consideration carried out for the system of six linear equations using a
Hilbert matrix results in the following data:

1.48 × 10−5 1.25 × 10−4 1.53 × 10−5 0.601 0.657 0.614.

We see that the last three roots are available with large errors—even though the
system is the determined one. If, however, we assume that no accidental additive
errors present on the right-hand sides of the equations, then the accuracy increases
markedly:

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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Step 6

3.66 × 10−7 4.75 × 10−6 3.12 × 10−7 0.0774 0.167 0.0976.

4.7 Solving Simultaneous Equations with Nonlinearities
Expressed by Integer Power Series

Let a component of the vector-function F(θ) be as follows:

Fi (θ) =
∑

θ
c1i
1 · · · θcqi

q .

Then the integrands in n-variate integrals representing components of the vector and
matrices E(W ), Q, and L are as follows:

(
∑

θ
c11
1 · · · θcq1

q )α1 · · · (
∑

θ
c1q
1 · · · θcq

n )αq .

In the above expression, c1i , · · · cqi ,α1, · · · αq are some integers. When develop-
ing the integer power values of corresponding multivariate polynomials, we obtain

the integrands as above in the form of linear combinations of items θ
β1
1 · · · θβq

q .
Upon integration of the integrands between predefined limits, we get accurate vec-
tor and matrix component values (vectors and matrices represent a priori statistical
moments). Computational practice, however, has demonstrated that, with d > 2,
the number of items in the linear combinations is extremely large as is the time
of computation. That is why later, in all considered problems, we have evaluated
the integrals of the functions in the form F1(θ)

k1 · · · Fq(θ)kq using a modification
of the trapezoidal rule. It appears that the time of computation is greatly decreased
compared to the time needed to calculate integrals accurately.

Next, we apply the polynomial approximation technique to find the roots of the
systemof four algebraic equationswith four unknowns,with nonlinearities expressed
by integer power series. The system of equations is as follows:

θ1 + 2θ21 + 4θ2 − 0.2θ3 − θ4 = y1,

−2θ1 + θ2 + 2θ22 + 0.8θ4 = y2,

0.7θ31 + 0.5θ2 − θ3 + 7θ4 = y3,

θ1 − θ2 + θ3 − 2θ24 = y4.

We shall find the y1, y2, y3, y4 values if we set on the left-side part of the system:
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θ1 = 1, θ2 = 2, θ3 = 3, θ4 = 4.

The a priori domain is limited by

−2 ≤ θ1 ≤ 3,−1 ≤ θ2 ≤ 4, 1 ≤ θ3 ≤ 6, 2 ≤ θ4 ≤ 7.

Here are values of r , calculated as

r = log10(Cond(Q(m)))

and represented versus m = m(d, N ):

m 40 80 120 160 200 240 280 320
r 13.25 18.29 20.23 21.98 23.11 25.41 25.36 26.92.

As is clear from the above data, the condition numbers of thematrix Q(m) become
larger as m increases. Note that “saturation” of r at large m is presumably due to
inherent errors of the Cond(Q(m)) function as implemented in the MATLAB�
5.x software. It was demonstrated by calculation that the vector measure compo-
nents describing the nonlinearity are close to unity for this and related systems of
algebraic equations. This implies that in both cases, the systems are considerably
nonlinear. Set m = 494(d = 8), and then Cond(Q(494)) = 5 × 1032. The polyno-
mial approximation algorithm has calculated the following values for the estimate
vector and the components of the relative residual vector:

F̂−1(Y, 494) 0.9503 1.8869 3.0336 4.0055
re(i, Y, 494) 0.3762 0.0793 0.0056 0.0003.

We can see that the first component of the relative residual vector is not so very small.
Next, diminish the number of segments within the interval approximating the vector
series by setting m = 310 and then

Cond(Q(310)) = 1.1542 × 1024.

The result is that procedural approximation errors will be increased when approx-
imating the conditional expectation vector, while the Cond(Q(m)) value will be
decreased by eight orders of magnitude.

In this case, the algorithm has calculated the following values for the estimate
vector and the relative residual vector components:

F̂−1(Y, 310) 0.9999 1.999 2.9999 3.9999
re(i, Y, 310) 3.50 × 10−5 9.29 × 10−7 5.05 × 10−7 8.26 × 10−8.

The resulting solution can be regarded as almost accurate since the relative residual
vector’s components are vanishing. So, for the equation of interest, the condition
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number decreased by eight orders of magnitude is entirely counterbalanced by the
reduced number of segments within the interval approximating the vector series
(now 310 instead of 494). This fact enabled us to get out of reducing the a priori
root existence domain that is otherwise necessary to get low values of the relative
residual vector components.

4.8 Solving Simultaneous Equations with Nonlinearities
Expressed by Trigonometric Functions, Exponentials,
and Functions Including Modulus

The system of equations including nondifferentiable functions on their left-hand
sides is as follows:

sin(θ1) + 2θ21 + 0.4Cos(θ2 − 0.2θ3) − θ4 = y1,

|2θ1) + θ2| + 2exp(θ2) + 0.8sin(θ4) = y2,

θ31 + |0.5θ2 + θ3| + 7θ4 = y3,

θ1 − sin(θ2 + θ3) + 2θ24 = y4.

We shall find the y1, y2, y3, and y4 values if we set, on the left-side part of the
system,

θ1 = 1, θ2 = 2, θ3 = 3, θ4 = 4.

The a priori domain is limited by

−2 ≤ θ1 ≤ 3,−1 ≤ θ2 ≤ 4, 1 ≤ θ3 ≤ 6, 2 ≤ θ4 ≤ 7.

Here are the values of r , calculated as r = log10(Cond(Q(m)) and represented
versus m; the data are as in Sect. 4.7. Set m = 494(d = 8), and then Cond(Q(494))
= 7 × 1032.

In this case, the algorithm has calculated the following values for the estimate
vector and the relative residual vector components:

F̂−1(Y, 494) 0.6006 1.8676 3.7060 3.9247
re(i, Y, 494) 1.26 0.08 0.01 0.01.

We can see that the first component of the relative residual vector is not so very
small and even larger than in the above example. It has been shown by numerical
experiments that the accuracy is not improved as m decreases. It seems likely that
the nonlinearities within the system are so large that increased approximation errors
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are no longer counterbalanced by the reduced condition number. Now we reduce the
a priori parallelepiped by placing in its center the estimate vector we just found and
setting its edges equal to 2. In this case, we get

−1 + 0.6 ≤ θ1 ≤ 1 + 0.6,−1 + 1.86 ≤ θ2 ≤ 1 + 1.86,

−1 + 3.7 ≤ θ3 ≤ 1 + 3.7,−1 + 3.9 ≤ θ4 ≤ 1 + 3.9.

Set m = 209(d = 6), and then
Cond(Q(209)) = 8.1687 × 1021.
The algorithm has calculated the following values for the estimate vector and the

relative residual vector components:

F̂−1(Y, 209)i 1.0087 1.9861 2.9647 4.0039
re(i, Y, 209) 0.03 0.01 0.0006 0.0014.

To further reduce the estimation errors,we further decrease the a priori parallelepiped,
where the roots exist by placing in its center the estimate vector we just found and
setting its edges equal to 0.2:

−0.1 + 1.009 ≤ θ1 ≤ 0.1 + 1.009,−0.1 + 1.986 ≤ θ2 ≤ 0.1 + 1.986,

−0.1 + 2.965 ≤ θ3leq0.1 + 2.965,−0.1 + 4.004 ≤ θ4 ≤ 0.1 + 4.004.

Set m = 69(d = 4), and then Cond(Q(69)) = 3.3329 × 1022. In this case, the
algorithm has calculated the following values for the estimate vector and the relative
residual vector components:

F̂−1(y, 69)i 0.9998 1, 9977 2.9989 4.0000
re(i, Y, 69) 1.57 × 10−6 2.23 × 10−3 9.54 × 10−8 4.85 × 10−8.

It is seen that the relative residuals became reasonably small. Thus, the algorithm
in fact succeeded in finding the almost exact solution of the system with “large-
scale” nonlinearities, including nondifferentiable functions with a modulus. Only
three iterations are needed.

4.9 Solving a Two-Point Boundary Value Problem for a
System of Nonlinear Differential Equations

Applying the polynomial approximation technique to this problem is not difficult;
it only requires defining the component values for the vector-function F(θ) at a
number of points within the domain �θ. The vector component values are needed to
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calculate n-variate integrals. The vector-function thus can be an implicit expression,
for instance, one resulting from the output of some computational procedure. This is a
commonplace occurrencewhen considering someboundary value problemsprovided
that there is a known ordinary differential system along with the method of solving
it. Then the components of the vector F(θ) are calculated by numerical integration
of the system at several grid points provided that the grid covers a parallelepiped of
the domain �θ. Consider a 2n-order system:

du/dt = f (u, t), (9.1)

for which we know the first n components of the initial condition vector: u1(0), . . . ,
un(0), and the variables y1, . . . , yq , are predetermined and equal to u1(T ), . . . ,

uq(T ), respectively,with themomentT fixed.Theunknowns are variablesθ1, . . . , θn ,
which are initial conditions uq+1(0), . . . , u2q(0), respectively.

The two-point boundary value problem just formulated is an equivalent of problem
(2.1) provided that the vector-function F(θ) is determined by numerical integration
of system (9.1).

If f (u, t) is a linear function of u, then F(θ) is also a linear function of the vector
θ; the two-point boundary value problem is an exactly solvable problem in this case:

F̂−1(YN , q) = θ.

So we can state that, with the polynomial approximation technique applied, the two-
point boundary value problem becomes a trivial problem in terms of computation—
for a dynamic system model with linear differential equations.

Of specific interest is solving a two-point boundary value problem for the system
of nonlinear differential equations.

An example is the two-point boundary value problem with nonlinear right-hand
side (9.1) as follows:

f (u, t) = Au − 0.001I2n .u3,

where: I is a matrix with entries that are coefficients of (2q)2 random number sam-
plings distributed uniformly over an interval [−0.5, 0.5], I2q is a 2q × 2q unit diag-
onal matrix, and u3 is a definition of the 2q-variate vector with components that are
third powers of the u components.

Next, set q = 3, T = 3s. System (9.1) has been integrated using the direct Euler
method with a step of 0.1 s:

u1(0) = 0, u2(0) = 0, u3(0) = 0, u1(3) = 1, u2(3) = −1, u3(3) = 1.

The a priori domain is a cube in R3 centered at the origin of R3 and its edge equal
to 20 : −10 ≤ θi ≤ 10, i = 1, 2, 3.

Let m == 119(d = 7). In this case, the algorithm has calculated the follow-
ing values for the θ estimate vector components and the relative residual vector
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components for the solution of the two-point boundary value problem:

F̂−1(YN , 119)i −1.5885 −0.07617 −0.9467
re(i, Y, 119) 1.35 × 10−2 7.81 × 10−3 4.80 × 10−2.

The accuracy (in terms of the relative residual vector components) is not improved
as m increases, due to computational errors. So we apply an iteration procedure; to
do so, decrease the a priori parallelepiped where the roots exist by placing in its
center the estimate vector just found and setting its edges equal to 1:

−1 − 1.5885 ≤ θ1 ≤ 1 − 1.5885,−1 − 0.07617 ≤ θ2 ≤ 1 − 0.07617,

− 1 − 0.9467 ≤ θ3 ≤ 1 − 0.9467.

Next, we again set m = 119(d = 7) and get

F̂−1(Y, 119)i −1.6210 −0.09908 −0.9962
re(i, Y, 119) 5.49 × 10−8 1.65 × 10−7 1.18 × 10−7.

The resulting small values of the relative residual vector components enable us to
state that the two-point boundary value problem has been solved almost exactly; the
single iteration was adequate to succeed. Note that 119 vectors λ(1, . . . ,n ) of series
(2.2) found in the first iteration step and stored in the computer memory make it
possible to determine the first approximation to the solution of the boundary value
problem for any vector YN with no need to solve equations like (2.10).

4.10 The System of Algebraic Equations
with Complex-Valued Roots

In Sect. 4.7, we considered a problem of applying the polynomial approximation
technique to calculate the real-valued roots of the simultaneous algebraic equations
where the components of the vector-function F(θ) in (2.1) are polynomials with
respect to components of the vector θ. Sometimes, however, it is necessary to find
all (both real-valued and complex-valued) roots of Eq. (2.1).

Let θk be a component of the vector θ, 1, . . . , k, . . . , q:

θk = θk
1exp(iθk

2), i = (−1)1/2,

exp(iθk
2) = cos(θk

2) + isin(θk
2),

and further consider all the components of the vector YN as real-valued variables.
So we find that Eq. (2.1) resolves itself into two equations of the form
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F1(θ) = YN , F2(θ) = 0,

where θ is a 2q ×1 vector with its components expressed by θk
1, θ

k
2, 1, . . . , k, . . . , q.

The a priori parallelepiped�θ,1, corresponding to the parameters θk
1, is determined

by inequalities as follows:
0 ≤ θ11, . . . , θ

q
1 ≤ α,

where the α value is selected a priori.
The a priori parallelepiped�θ,2 corresponding to the parameters θ(k)

2 is determined
by inequalities as follows:

0 ≤ θ12, . . . , θ
q
2 ≤ 2π.

Similarly to examples discussed above, we now will search approximations to roots
applying the polynomial approximation technique upon breaking down the a priori
parallelepipeds into a number of smaller parallelepipeds with edges obtained by
dividing the edges of the a priori parallelepipeds into some integer parts.

To isolate real-valued roots, we may now define the a priori domains for the
variables θk,2 (all or in part) using inequalities as follows:

− ε ≤ θk
2 ≤ ε (10.2)

or
− ε + π ≤ θk

2 ≤ ε + π, (10.3)

where ε is a small positive number. Next, we give an example of the root calculation
procedure.

Example.

θ5 + 3θ4 − θ3 + 2θ2 = 3θ = 1 (10.4)

From here we get

θ51cos(5θ2) + 3θ41cos(4θ2) − θ31cos(3θ2)

+ 2θ21cos(2θ2) + 3θ1cos(θ2) = 1, (10.5)

θ51sin(5θ2) + 3θ41sin(4θ2) − θ31sin(3θ2)

+ 2θ21sin(2θ) + 3θ1sin(θ2) = 0. (10.6)

Let α = 5, and set a manifold of a priori intervals �
j
θ1

, 1 ≤ j ≤ 50; here we
define the intervals by dividing the interval [0, 5] into 50 congruent segments.

First, we find all real-valued roots of Eq. (10.2). We apply the polynomial approx-
imation technique in a sequence for the intervals�

j
θ1
and then for the intervals (10.2)
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and (10.3) with ε = 0.0001. Setting d = 5 enabled us to solve Eqs. (10.5) and (10.6)
with an error of about 10−8 and 10−15, respectively. The resulting three real-valued
roots are as follows:

θ1 : 0.281193, 0.896830 3.385003
θ2 : −2.622590 × 10−17 3.141592 3.141592.

To determine one of two conjugate complex-valued roots, it is sufficient to set
�θ,2 : 0 ≤ θ2 ≤ π. Next we bisect the interval �θ,2 into congruent segments, and

further apply polynomial approximation over these segments and the intervals �
j
θ1
.

Thus, we have found a complex-valued root:

θ1 = 1.082337, θ2 = 1.090255.
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Chapter 5
Identification of Parameters of Nonlinear
Dynamic Systems; Smoothing, Filtration,
Forecasting of State Vectors

5.1 Problem Statement

The development of algorithms to solve the parameter identification problems with
nonlinear dynamic systems is very important when one considers numerous funda-
mental and applied problems. Such algorithms are imperative, for example, in the
following instances:

• One has created a plausible mathematical model with unknown parameters for a
real dynamic system under study; some of the variables are observable in noise
and depend on some components of the current state vector; it is necessary to find
the system parameters.

• One is creating an algorithm for adaptive control of a dynamic linear system; the
algorithm should contain a computational procedure for estimating the unknown
elements of a matrix of linear differential equations of a system model.

• One is developing a nonlinear filtration algorithm for an optimal in the root-mean-
square-sense estimate of the current state vector of the nonlinear dynamic sys-
tem; the algorithm should contain the computational procedure mentioned in the
preceding instance.

Then one considers [1] a problem of estimating an unknown parameter vector θ for
the mathematical model of the dynamic system of the form

dx/dt = f (x, θ, t), (1.1)

where x ∈ Rm is a state vector system; f (x, θ, t) is a uniform vector-function of its
arguments; θ ∈ �θ ∈ Rq is a vector of unknown parameters of the dynamic system;
and �thet is an a priori region (defined in Rq ) of the existence of the parameter
vector θ .

If we assume that

x
′T = ‖xT θT ‖T , f

′
(x

′
, t)T = ‖ f (x, θ, t)T 0T

q ‖T ,

J. A. Boguslavskiy, Dynamic Systems Models, DOI: 10.1007/978-3-319-04036-3_5, 71
© Springer International Publishing Switzerland 2016
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then we will find that the identification problem is a special case of a more general
problem, as follows: For a dynamic system

dx
′
/dt = f

′
(x

′
, t),

it is necessary to estimate an unknown vector of initial conditions x(0)
′
. If one

has found an estimation vector, then the known Cauchy problem will solve the
nonlinear filtration problem; that is, it will estimate the current state vector x(0)

′

of a dynamic system.
Therefore, the technique of identification—outlined later in this chapter—should

be regarded as a version of the solution of the nonlinear filtration problem.
The term “mathematical model of a dynamic system” includes, of course, not

only formal notation (1.1), but also a method of numerical integration of differential
equation (1.1), providing—for all points of region �θ—some accuracy and stability
of the computational process, sufficient to simulate a model of the dynamic system.
It is expected that in all points of the a priori region, model (1.1) is stable.

As an input for the algorithm to estimate vector θ , one uses a scalar sequence of
observation results, y1, . . . , yN , where the numbers yk are of the form

yk = H(k, xk). (1.2)

Here xk = x(tk), yk = y(tk), t1, . . . , tk, . . . , tN , is a sequence of observation
instants. Next, we assume that variables y1, . . . , yN are components of the vector YN .

As an output for the algorithm, one uses a vector to estimate a parameter vector—
the vector-function θ̂ (YN ) ∈ Rq , delivering a vanishing variable (a criterion for
evaluation quality)—apositive number J (. . .), bywhich a sumof squares of residuals
serves

J (YN , θ̂ ) =
N∑

k=1

(yk − H(k, xk(θ̂(YN )))2, (1.3)

where the notation xk(θ̂(YN )) means that on the right side of Eq. (1.1), we assume
θ = θ̂ (YN ).

A criterion for estimation quality of the form (1.3) is based on

arg min
θ∈�θ

J (yN , ϑ) = θ,

min
ϑ∈�θ

J (YN , ϑ) = 0,

where ϑ ∈ �θ , and function J (YN , ϑ(Y, ϑ)) is continuous with respect to ϑ ∈
�θ . In the present-day literature (see, for example, [2]), as a universal method of
solving the problem of minimizing J (YN , θ̂ ) by choosing a vector-function θ̂ (YN )
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(this problem is commonly called a problem of the nonlinear least-squares method),
one regards the development of various versions of the gradient method. However,
in the situation being considered, the creation and use of such a method can cause
difficulties, including the following:

1. The computation at instants 1, . . . , k, . . . , N of gradient vectors of the function
J (YN , θ̂ )will require the computation ofmatrices of private derivatives of the current
state vectors with respect to components of the parameter vector that is not imple-
mentable with the nondifferentiable—with respect to x—vector-function f (x, θ, t)
in Eq. (1.1).

2. At differentiable f (x, θ, t) with respect to x , the computation—versus time—
of elements of the matrices of private derivatives (see item 1) will require additional
numerical integration of the system of differential equations of dimension n × m.
This integration should provide very small gradient vectors with a high computa-
tional accuracy, which is necessary if one needs to estimate the vector of unknown
parameters to a high accuracy.

3. The definition of a global minimum by the gradient method runs into com-
plications if there are local minima of the minimized functions with complex relief
(“rifts,” “plateaus,” etc.). In the neighborhood of a local minimum, the movement
about points of the region �θ in the direction of a decreasing function J (YN , ϑ) can
correspond to an increase in components of the estimation error vector. The example
we consider here shows that the particular identification problem under study has a
function—to be minimized—that is precisely of this kind.

Then one considers the nongradient algorithms, which are based only on compu-
tation of the values of the minimized functions J (YN , ϑ) or on defining its variables
H(k, xk(ϑ)) on different points of the a priori region �θ, assigned according to
some rational principles. Such algorithms are further conditionally called “orga-
nized search” algorithms because, in the process of their functioning, one “searches
through” various points of the a priori region. The family of similar algorithms also
includes a “simple search” algorithm: It uniformly covers the region �θ with a great
number of points and computes a set of variables J (YN , ϑ); the estimate vector
θ̂ (YN ) is taken to be equal to the vector for which one of these values is minimum.
Alternatives to simple search include an algorithm using the MATLAB� function
fmins as well as a polynomial approximation algorithm.
We note that the identification problem, which is reducible to the search for a

global minimum of a multivariate function that is only defined implicitly—as a
result of the numerical integration of a system of nonlinear differential equations—
is a complicated problem of computational mathematics. It partially justifies the
heuristic character of the algorithms that appear in Sect. 5.2. This heuristic character
is inherent to many numerical methods of solving complex nonlinear problems.
Hence, the criteria for proving that computational processes provide the necessary
results are not strict, and confidence in theirworking capacity is only based onpositive
results from numerically solving a number of actual identification problems.
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5.2 Heuristic Schemes of a Simple Search
and an Organized Search

Then, for definiteness, we assume that n, a priori region �θ is a cube in Rn whose
edge lengths, being parallel to the axes of coordinates, are equal to the unit, and the
center coincides with the origin of the coordinates.

In step 1 of the organized search, the a priori cube edges are divided into r equal
parts whose ends serve as vertices of rn cubes * with edge lengths of 1/r .

Every cube * has an operator computed from it: a vector g(1, i) ∈ Rq , i =
1, . . . , rq , and a function J (Y, g(1, i)). The vector g(1, i) is a center of symmetry
of cube *. In a simple search for the vector, g((1, i) coincides with one of the ver-
tices of cube *. In an organized search for the vector, g(1, i) belongs to an interior
point of cube *, which is further selected using a polynomial algorithm for multi-
approximations or the MATLAB function fmins.

Then, from rn vectors g(1, i), the vector g(1), for which this function J (y, g(1))
is minimum, is selected; the vector g(1) is the center of symmetry of the region�θ(1)
of the cube with edges of preset length a(1) < 1. The region �θ(1) is an a priori
region for step 2 of an organized search.

Additional steps are built similarly. After dividing edges of region �θ(k −1) into
r identical parts, building r4 subregions (cubes *), and selecting those on which the
variable J (Y, g(k)) is minimum, we assign vector g(k) as the center of symmetry of
subregion �θ(k), whose edge lengths are equal to a(k) < a(k − 1). The computa-
tional process stops at step K , when the variable J (YN , g(K )) becomes less than the
preset border δ. The latter is defined by a series of predesigns and ensures reaching
a desired accuracy of estimating the vector of unknown parameters.

At a given structure of operator g(k, i), positive numbers a(1), a(2), . . . , a(k),

· · · (1 > a(1) > a(2) > · · · > a(k) > · · · ) are selected after a series of computa-
tional experiments. The following heuristic conditions should be fulfilled:

1. The sequence of regions

|�θ | > |�θ(1)| > |�θ(2)| > · · · ,> |�θ(k)| > · · · ,

with decreasing edge lengths l, a(1), a(2), . . . , a(k), . . . of generating regions
�θ(1),�θ (2), . . . , �θ (k), . . ., contains the vector θ .

2. Upon increasing k : J (YN , g(k)) → 0, g(k) → θ .
If the values a(1), . . . , a(k), . . . and the integer r as selected are too small, then

beginning from some step of the computational process variable J (YN , g(k)) will
stop decreasing. Then one should increase the values a(1), . . . , a(k), . . . and inte-
ger r .

The a priori region �θ should be assigned some “margin” so that the real vector
will not be close to its border points. Then the regions�θ(1),�θ (2), . . . ., �θ (k), . . .

will remain cubes. In this case, the closeness to 1 of the numbers a(1), . . . , a(k), . . .,
the corresponding increase in the number of steps, and the uniformity of J (YN , ϑ)

ensure the validity of conditions (1) and (2).
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Noncompliance with condition (1) will lead to noncompliance with the first of
conditions (2), which has been established in the computational process. This fact is
a signal to organize a new computational process with increased values of the integer
r and of edge lengths a(1), . . . , a(k), . . ..

5.3 Mathematical Model to Test Algorithms

Comprehensive research and comparison of algorithms are impossible when func-
tions in Eqs. (1.1) and (1.2) have a general form. Hence, in what follows, the algo-
rithms to solve the identification problem are analyzed for an explicit nonlinear
dynamic system at q = 4, m = 2 and at not differentiable right part of one of the
differential equations.

Let x1 and x2 be the current coordinates and its derivative with respect to time of
a material point that moves in a horizontal plane under the action of (1) an elastic
force—described by a nonlinear (linear-cubic) Hooke’s law—aswell as (2) a velocity
damping force and (3) a dry friction force. In the parametric formulas to represent
the forces, these parameter values are unknown. We will suppose that the model of
the system being considered is of the form

dx1/dt = x2,

dx2/dt = (1 + θ1) − 0.2(1 + θ2) − 0.1(1 + θ3) sign (x2) − 0.1(1 + θ4)x31 ,

where the unknown parameters θ1, θ2, θ3, θ4 define a measure of ignorance of the
exact coefficients of acceleration from, respectively: the linear component ofHooke’s
law, the velocity damping force, the dry friction force, and the cubic component of
Hooke’s law.

An a priori region�θ is a cube in R4 with a center at the origin of coordinates and
with edges of unit length, which are parallel to the coordinates axes:−0.5 <= i <=
0.5, i = 1, . . . , 4.At instants 1, . . . , k, . . . , N , one observes the object’s coordinates
x1, y(k) = x1(k). We will suppose that x1(0) = 1, x2(0) = 0 and that in the process
of oscillatory damping of the object, there are N = 200 observations of value x1,
with an interval of 0.1 s.

Numerical integration was performed by a fourth-order Runge–Kutta method
with a constant step of 0.02 s. Here are the actual data on estimation accuracy and
on computational time consumption are given for the factual values of the esti-
mated parameters:

θ1 = 0.32, θ2 = −0.22, θ3 = −0.018, θ4 = −0.35.

The existence of a local minimum of function J (YN , ϑ) is illustrated with Data 1
and Data 2, where S are values of the function at some vectors ϑ , and four figures
under J set the corresponding relative estimation errors if, as an estimate, one regards
variables ϑi :
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δi = (ϑi − θi )/θi , i = 1, . . . , 4.

Data 1. J (. . .) = 0.0020715:

δ1 = 0.0117; δ2 = 0.2503; δ3 = −2.6027; δ4 = −0.0141.

Data 2. J (. . .) = 0.0016057:

δ1 = 0.0148; δ2 = 0.2689; δ3 = −2.6564; δ4 = 0.1979.

From the data, it follows that in order to reduce J (. . .) (passing from data 1 to
data 2), one should increase the relative estimation errors; one should move from a
point of the global minimum (ϑ = θ) to a point of a local minimum, increasing all
components of the vector ϑ − θ .

The general criteria for the quality of a search algorithm are as follows: the lowest
value S reached at computing function J (YN , ϑ)) at V points of region �θ , and the
time to be spent for these computations.

Further, these data are consistent with the calculations on Computer low produc-
tivity, which intentionally increase several times the actual value calculation time T.

Let one use, for example, the method of simple search; the point coordinates
were obtained by dividing the edges of unit cube �θ into 24 equal parts: V = 244.
Then the lowest value, reached by the simple search method at V = 244, is equal to
J (. . .) = 0.0017874 at the relative estimation errors, as follows:

δ1 = 0.0786; δ2 = −0.1851; δ3 = 2.3333; δ4 = 1.5142.

The relative estimation errors were large despite the considerable times of compu-
tation. In order to reach small (of the order of 0.001) relative estimation errors,
the value J (. . .) should be of the order of 10−7, which—for the direct search
method—corresponds to a computation time that cannot be implemented on a
low-performance PC.

In addition to the model just presented, we analyzed a nonlinear problem of
identifying parameters of an oscillatory link. The parameters were the time constant
and decrement of damping, as well as the initial conditions of a dynamic system: an
initial coordinate and initial velocity.

In this problem, we estimated four parameters, θ1, . . . , θ4, defining the motion
equation of the oscillatory link:

dx1/dt = x2,

dx2/dt = (1 + θ1)(1/T 2)x1 − 2(1 + θ2)(ξ/T )x2,

1 + θ3 = x1(0), 1 + θ4 = x2(0),
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where T = 1 s and ξ = 0.1; this rates the values of the time constant and of the
damping decrement of the oscillatory link.

The presented problem is—in line with the identification problem—a nonlinear
filtration problem, because estimating the system parameters and the initial con-
ditions makes it possible to define a current state vector of a dynamic system for
any instant.

The presented data justify organized search methods as an alternative to the direct
search method.

5.4 Organized Search with the MATLAB Function fmins

The function fmins( f (ϑ, X)) is intended to define point z(X) of a local minimum, set
by the uniform function f (ϑ) of several variables in the neighborhood of vector X .
The function fmins returns vector z(X) of the local minimum. Additionally, it returns
the variable f (z(X)) and the number of iterations involved in the computation.
Each iteration means computing the minimized function in at least one point of the
neighborhood of vector X . We will emphasize that the fmins algorithm uses only
values of the minimized functions, computed in points of the neighborhood of X
according to the principle outlined in the MATLAB HELP manual and in [3]. One
should notice that the accuracy of computing a local minimum is defined by some
constants of the fmins algorithm. The results given below correspond to the constants
of the standard MATLAB package. Let

f (ϑ) = J (YN , ϑ)

and X be a vector of the symmetry center of a region, obtained as a result of region
partitioning described above. Then the above-mentioned operator from this region
will be assigned a vector of local minimum z(X, YN ), returned by the function
fmins(J (Y, ϑ), X). We suppose that the minimized function J (YN , ϑ) in the a priori
cube has a finite number of local minima, which all differ from each other, and that
the accuracy of fmins is sufficient for the following statement: A given localminimum
is not equal to all those found earlier.

The conceptual scheme of the computation is similar to the general one outlined
above. If

δ < J (YN , g(k)) < J (YN , g(k − 1)),

then the computation process is at step k + 1, similar to that described above.
However, let

J (YN , g(k)) > J (YN , g(k − 1)) > δ.
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Then step k is repeated, but already at the partitioning of edges of region �θ(k − 1)
into a number r1 of equal parts, where r1 > r . From the uniformity of J (YN , ϑ), it
follows that there exists r1 for which

δ < J (YN , g(k)) < J (YN , g(k − 1)).

So, one can build a computational process for which values of the local minima
J (YN , g(i)), found—with some small errors—by the fmins function, form a decreas-
ing sequence of positive numbers:

J (YN , g(1)) > J (YN , g(2)) > · · · > J (YN , g(k)) > · · ·

Due to having a finite number of local minima, this sequence will necessarily find,
at some k = K , a global minimum for which

J (YN , g(K )) < δ.

Wesuppose that the estimate vector is equal to the vector g(K ). As such, it is assumed,
of course, that the values a(1), . . . , a(k), . . . have been selected such that condition
(1) is satisfied (see Sect. *5.2).

Let us build an explicit computational process for the organized search with
function fmins. Let r = 2; in step 1, the a priori cube is divided into 24 smaller
cubes *; we define 24 vectors z(Xi , Y ), i = 1, . . . , 24, where the Xi are vectors
of these cubes’ centers. The computation has pointed to the fact that among 24
numbers J (YN , z(Xi , Y )), there exist two pairs of about identical numbers, and
the remaining numbers significantly differ from each other. All the numbers lie
within the range 2.104×10−6–1.825; four components of the vector g(1)—forwhich
J (YN , d(1)) = 2.104× 10−6—are as follows: 0.3192, −0.2182, −0.0195, −0.333.

The presented data point to the fact that function J (Y, ϑ) has at least 14 local
minima. The computation time of each vector-function z(Xi , Y ) is of the order of 5
min, and the process takes 150 iterations. For this reason, the general computation
time in step 1 is T ∼ 80 min, with the total number of iterations of the order of
2,500.

Before step 2,we assumea(1) = 0.1. The computation has shown that 24 numbers
J (YN , z(Xi , Y ), obtained in step 2, can be divided into six groups approximately
composing six local minima. Groups 1–4 are composed accordingly from 3, 4, 4, 3
nearly identical numbers for which the values J (Y, z(Xi , Y )) lie within the limits
0.0002–0.0005.

The isolated quantities 1.3707×10−5 and 4.314×10−7 compose groups 5 and 6,
respectively; the four components of the vector g(2), for which J (Y, g(2)) = 4.314×
10−7, are as follows: 0.31980, −0.21974, −0.01834, −0.34697.

The time of computation and the number of iterations in step 2 are about the same
as those in step 1. The value J (Y, g(2)) is of the order of 10−7. Thus, g(2) can be
viewed as an estimate of the vector of unknown parameters: z(YN ) = g(2). Under
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these conditions, the relative estimation errors are as follows:

δ1 = −0.00062; δ2 = 0.0012; δ3 = −0.019; δ4 = 0.0087.

So, after two steps of the organized search process, using the function fmins, we see
that the general time of computation is T ∼ 160 min, the total number of iterations
(the number V of operations of computing a minimized function) J (YN , ϑ) is about
5,000, and the relative estimation errors do not exceed two.

5.5 System of Implicit Algebraic Equations

Thewhole preceding statement was based on an idea of the adequacy of the problems
of identifying and defining argminϑ∈�θ J (YN , ϑ), at whose solution the existence
of a set of local minima of the function J (YN , ϑ) caused computational difficulties.
The Bayes interpretation (outlined in Chap. 2) has no such disadvantage, as it implies
“directly” considering the problemby reducing it to analyzing the problemof defining
aq-dimensional root vector of the systemof N algebraic equations of the form (2.1) of
Chap.4. The left part of this system—the vector-function F(θ)—is set implicitly, and
its components are the N functions H(k, xk(θ)), k = 1, . . . , N , where the vectors
xk(θ) are the results of the numerical solution of the differential equation (1.1) on the
discrete-time segments [0, k] at preset vectors x(0), θ . A system of implicit algebraic
equations is of the form

H(k, xk(θ)) = yk, k = 1, . . . , N .

Equations (2.5)–(2.8) of Chap.4 imply that integrands of integrals for components
of the a priori vectors E(θ), E(W (Y )) and for elements of the matrices L , Q can
be found by numerical integration of Eq. (1.1) at a given vector x(0) and parameter
vectors ϑ , set by a grid of nodes into which the a priori region �θ is divided. As a
result, for the root vector of system (5.1), an estimation vector F̂−1(YN , d), optimal
in the root-mean-square sense, will be built. The estimation vector is implemented by
a linear combination of integer powers from components of the vector of observations
YN , delivered by amethod of polynomial approximation. It is clear that the described
sequence of computations contains no conceptual difficulties in attempting to find a
global minimum of the criterion of quality (1.3).

However, in applied problems, the dimensionality N of the vector of observations
is great; the value N can exceed the value of m(N , d), a dimensionality of the
vector W (YN ), by tens and hundreds. Because of this, some difficulties may occur
in computing elements of the matrix Q−1 of dimensionality m(N , d) × m(N , d),
necessary to obtain elements of the optimal weight matrix �.

These difficulties can be avoided if, for computation of the matrix Q−1, one uses
(see Chap.1) a sequential computational process based on decomposition of the
observation vector Y .

http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_4
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http://dx.doi.org/10.1007/978-3-319-04036-3_4
http://dx.doi.org/10.1007/978-3-319-04036-3_4
http://dx.doi.org/10.1007/978-3-319-04036-3_4
http://dx.doi.org/10.1007/978-3-319-04036-3_4
http://dx.doi.org/10.1007/978-3-319-04036-3_1
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5.6 Contraction Operator

The other way to avoid computational difficulties consists of using a contraction
operator acting on an observation vector. In this case, the entry of the identification
algorithm is not by the N -dimensional vectors F(θ), YN , but by the n-dimensional
vectors Fc(θ), Y c

N , obtained by applying a comp operator to the vectors F(θ), Y ,
reducing the dimensionality:

Fc(θ) = comp(F(θ)), Y c
N = comp(YN ).

Then the parameter vector θ satisfies an algebraic equation such as Eq. (2.1) of
Chap.4:

Fc(θ) = Y c
N . (6.1)

As at θ ∈ �θ ∈ Rq , YN ∈ �YN ∈ RN , then Y c
N ∈ �YN . Region �Y c

N
is obtained by

applying a comp operator to all vectors of region �YN :

�Y c
N

= comp(�YN ).

The contraction operator should provide the following properties:
1. For the vectors θ ∈ �θ and Y , whose components are defined by Eqs. (1.1)

and (1.2), Eq. (6.1) should be compatible and have a unique root; according to
the Bayes interpretation, problem (1.1) can be replaced by the problem of defining
a vector of conditional expectation. Because of peculiarities (Chap.4) of the joint
probability density of randomvectors θ, Y c

N , this vector is coincident with the desired
parameter vector:

E(θ |Y c
N ) = θ.

2. The vector-function E(θ |Y c
N ) is a uniform function of Y c

N .
3. The region �Y c

N
is a compact set.

Next, one considers a situation when the contraction operator is linear and is
presented by the matrix G of dimensionality Gq×N . Then

Fc(θ) = G F(θ), Y c
N = GYN .

The contraction operator reduces the information on parameter θ , used at its esti-
mation. For this reason, the variance of estimation errors with the vector-function
Fc(θ) and with the vector Y c is at least not less than that of estimate reached in
the absence of the contraction operator. This qualitative statement corresponds to a
matrix inequality

LGT (G QGT )−1GLT < L Q−1LT . (6.2)

http://dx.doi.org/10.1007/978-3-319-04036-3_4
http://dx.doi.org/10.1007/978-3-319-04036-3_4
http://dx.doi.org/10.1007/978-3-319-04036-3_4


5.6 Contraction Operator 81

The difference in diagonal elements of the right and left matrices in Eq. (6.2) can
be used to evaluate the quality of the selected matrix G.

We consider possible versions of the matrix G:
1. Smoothing contraction operator. Without loss of generality, we assume that an

integer N is proportional to n. The components g(k, i), k = 1, . . . , n, i = 1, . . . , N ,
of matrix G are defined by

g(k, i) = 1/n, if((k − 1)N/N ) + 1 <= i <= k N/n;

for the rest of i : g(k, i) = 0.
The component of the vector Y c

N is an arithmetic mean value of the components
of the observation vector YN beginning from the instant ((k − 1)N/q) + 1 and
through instant k N/q. This circumstance defines the smoothing properties of the
linear operator, which reduce the influence of additive random errors of observations
such as discrete white noise.

2. Contraction operator for quasilinear sequence of observations. Let the matrix
G be such that at the linear dependence of YN on θ , replacing Y for Y c

N leaves compo-
nents of the error estimation vector equal to zero when the polynomial approximation
algorithm is used.

We find an optimal—in the root-mean-square-sense—estimate Ŷ (θ, 1) of the
vector Y by means of a vectorial linear combination of components of the vector
θ(d = 1). From equations of Chap.1, we obtain

ŶN (θ, 1) = E(YN ) + L1Q−1
1 (θ − E(θ)),

where

L1 = E((YN − E(YN ))(θ − E(θ))T ,

Q1 = E((θ − E(θ))(θ − E(θ))T = C0.

For each vector θ , the vector Ŷ (θ, 1) is the closest (in the root-mean-square sense)
vector to one of the random N -dimensional vectors, for which the first and second a
priori statistical moments are presented by the vector E(YN ) and by the matrices

L = ((|θ − E(θ − E(θ))Y T ), Q = E((YN − E((YN − E(YN ))Y T
N ).

The vector Y c
N is thought to be equal to the vector from the a priori region �θ , for

which the factual vector YN is the closest one to the vector Ŷ (θ, 1)—in the sense of
the least squares method. As a measure of closeness, we take a value

J (θ) = (YN − ŶN (θ, 1))T (YN − ŶN (θ, 1)).

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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Thus,
Y c

N = arg( min
θ∈RN

(θ)).

Hence, we obtain

Y c
N = E(θ) = C0(L LT )−1L(YN − E(YN )).

So,
E(Y c

N ) = E(θ),

Lc = E(θ − E(θ))(Y c
N − E(Y c

N = C0,

Qc = ((Y c
N − E(Y c

N ))(Y c
N − E(Y c

N ))T ) = C0(L LT )−1L QLT (L LT )−1,

and then

�c = C0 = L LT (L QLT )−1L LT C0.

The matrix L QLT has dimensionality q × q. After we’ve used vector Y c
N , the esti-

mation error covariance matrix looks like

Cc = C0 − Lc(Qc)−1(Lc)T = C0 − L LT L QLT,−1L LT .

In the process of building itself, a matrix inequality is true:

L LT (L QLT )−1L LT < L Q−1LT .

We will show that

Cc = 0 by YN = Aθ,

and, hence, at the linear (with respect to θ) sequence of observation results, the
replacement of vector YN for vector Y c

N of dimensionality q does not reduce the
accuracy of the estimate by the polynomial approximation algorithm. The preceding
equations imply that in this case

Y c
N = (AT A)−1AY

N θ̂ (Y c
N , 1) = θ.

We notice that Y c
N is coincident with the estimate of the least squares method when

the contraction of the observation vector’s dimensionality occurs via a transition to
a system of normal equations.

3. Optimal linear contraction operator.Wewill try to define a structure of the opti-
mal matrix Go of the linear contraction operator, considering variances of estimate
errors by the polynomial approximation algorithm at linear (d = 1) approximation
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of the parameter vector θ by components of the vector Y c. The matrix Go of dimen-
sionality n × N , rank Go = q, is optimal if the method’s algorithm, using vector
Y c

N = GoYN , delivers the estimation error variances of the vector θ , which are the
closest to the estimation error variances, optimal in the root-mean-square sense, when
employing the vector YN .

The matrix inequality (6.2) implies that for the matrix Go, the diagonal elements
of the matrix

P = Go,T (Go QGo,T )−1Co

should reach a maximum. But for P , there is a true representation,

P = U/(λ1, . . . , λN )U T ,

where U is an orthogonal matrix, λ1, λ2, . . . , λN , of nonnegative eigenvalues of the
matrix P , not all of which are equal to zero. Therefore, Go should reach a maximum
value of xT Px , where x is an arbitrary vector, normalized by equality |P| = 1. But
then gi, j are elements of the matrix Go, which should satisfy a necessary condition
of extremum

∂ P/∂gi, j = 0. (6.3)

Hence, we obtain

GoT (Go QGoT )−1 I (i, j)(IN − Q QGoT (Go QGoT )−1Go)

+ (GoT (Go QGoT )−1 I (i, j)(IN − Q QGoT (Go QGoT )−1Go))T = 0,

where I (i, j) is a matrix of dimensionality n × N for which the element, belonging
to the i th row and j th column, is equal to unity; the remaining elements are equal to
zero.

After matrix transformations, we obtain

QGoT (Go QGoT )−1Go = IN . (6.4)

If there exists a matrix Go, satisfying Eq. (6.4), then at d = 1, the polynomial
approximation algorithm delivers identical estimation error variances for the vectors
Y c and Y , and the matrix inequality (6.2) turns into an equality.

Let’s represent Q in terms of blocks P, R, q, used in Chap.1 and having dimen-
sionality n × n, n × (N − q), (N − q) × (N − q), respectively. We will represent
GoT in terms of the blocks G(q, q) and G(N − q, q), having dimensionality q × q
and (N − q) × q, respectively; we denote this as

P = Go QGo,T −1
.

The matrix G(q, q) is thought to be nonsingular.

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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Then

(PG(q, q) + RG(N − q))PG(q, q)T = Iq , (6.5)

(RT G(q, q) − qG(N − q, q)PG(q, q) = 0q,q , (6.6)

(PG(q, q) + RG(N − q))PG(N − q, q)T = 0q,N−q , (6.7)

(RT G(q, q) = qG(N − q, q))PG(N − q, q))PG(N − q, q)T = IN−q,q . (6.8)

But by building itself, q > 0. Hence, Eqs. (6.6) and (6.7) imply the equalities

RT G(q, q) + qG(N − q, q) = 0,

PG(q, q) + RG(N − q) = 0.

The validity of Eqs. (6.5), (6.8) and, therefore, of Eq. (6.4) is impossible. Thus, one
cannot find a matrix Go satisfying the necessary conditions of extremum (6.3).

5.7 Computational Scheme of Organized Search
in Bayes Interpretation

In this section, we outline an explicit computational scheme for the case when all
the intermediate regions—obtained in the process of completing the partitioning
sequence described in Sect. 5.2—are cubes. The scheme will also not change when
some of the regions are parallelepipeds.

The computational scheme will correspond to the conceptual scheme (described
in Sect. 5.2) if for cubes we assume (as these cubes serve region �theta or its parts)
that as operators g(1, i), . . . , g(k, i), . . . over them are vectors F̂−1(Y c

N , d).
The elements of the a priori vectors E(θ), E(W ) and of matricesCo, L , Q, which

are necessary to build F̂−1(Y c
N , d), are defined by the computation of multidimen-

sional integrals on a sequence of cubes described in Sect. 5.2. For this purpose, one
should compute the values H(k, x(k, ϑ)), which enter expressions of these integrals’
integrands, in some points of the integration regions. With an increasing number of
points, the time of computation increases as the nth power of a number, which is
greater than 1. For this reason, we use a minimum number of points here.

We assume that—according to the Bayes interpretation—components of an iden-
tified vector are uniformly distributed on the segments [−0.5, 0.5], and, hence, their
initial variance is equal to 1/12. Let condition (1) from Sect. 5.2 be valid; at some
step of the computational process, after the corresponding partitioning of the edges
of intermediate cubes (or of parallelepipeds), a sought random parameter vector θ

occurred in a cube (belonging to the given partition)whose edge is equal to 1/s, where
s increases as the number of steps in the computational process increases. Because
of the uniform a priori distribution of this vector, the a priori matrix of covariances
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C0 is diagonal with elements (a priori variances of the vector components) equal to
1/(12s)2. Hence, at least for this cube, the estimation error variances of components
of the vector θ by the vector F̂−1(YN , d) will not be greater than 1/(12 s)2.

So, performing step (1), completing a sufficient number of steps of the
computational process, and having a sufficiently great integer r , we should see that
defining the number of points of partitioning of cube edgeswill in principle enable the
existence of at least one cube (for example, the cube to which the vector θ belongs)
for which vector g(K ), equal to the corresponding vector F̂−1(YN , d)), will lead to
the inequality

J (YN , g(K )) < δ.

The above stated proves the validity of condition (2) from Sect. 5.2 only if the par-
titioning sequence satisfies condition (1). We notice that if components of the vector

W are linear functions of components of the vector θ , then all vectors ˆF−1(YN , d)

will coincide with θ , and the inequality given above will be valid for all the cubes
already at step 1 of the computational process.

We build an for the dynamic system shown in Sect. 5.3, for the explicit compu-
tational process of organized search with the use of the Bayes interpretation. We
will assume that action of the contraction operator over the vector of primary obser-
vations, whose components have numbers from 1 to 200, consists of building a
vector of dimensionality 4, for which the i th component (i = 1, . . . , 4) is formed by
the summation of 50 primary observations, beginning from number 50(i − 1) + 1
and through number 50i . We notice that the summation imparts to the contraction
operator a property to smooth the influence of possible random errors of primary
observations such as white noise. Then we will assume that r = 5 and we’ll conduct
six steps of the computational process described above. We present the used values
a(1), . . . , a(5) and vector g(k), which is achievable at step k, the value of the sum
of squares of residuals J (YN , g(k)), as well as deli, i = 1, . . . , 4—components of
the relative estimation error vector. In all steps we assume d = 1. It means that for
each cube, obtained upon ordinary partitioning, the conditional expectation vector
of the estimated vector of unknown parameters is approximated by a linear vector-
function of four components of the vector, found by using a contraction operator—
that is, by a vectorial linear combination of these components, optimal in the
root-mean-square sense.

We notice that the decrease in the estimation accuracy, caused by a small value
d, is compensated by a great value r , which has defined small edge lengths of cubes.
Upon computing four-dimensional integrals by the method of trapezes, the method
defined, for each cube, integrands in cube points whose coordinates coincided with
all (or with some) coordinates of cube vertices as well as with all (or with some of)
coordinates of points—the middle points of cube edges.
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step1 a(1) = 1
g(1) 0.3077 −0.2347 −0.0169 −0.0308

J (Y, g(1)) = 2.0046 × 10−3

deli −0.0548 0.0629 −0.0609 −0.9119

step2 a(1) = 0.25
g(2) 0.3225 −0.2117 −0.0254 −0.2361

J (Y, g(2)) = 1.9447 × 10−4

δi −0.009447 −0.04176 0.4144 −0.3253

step3 a(2) = 0.125
g(3) 0.3245 −0.2141 −0.0238 −0.3318

J (Y, g(3)) = 2.2488 × 10−5

δi −0.003407 −0.03076 0.3223 −0.05204
step4 a(3) = 0.05
g(4) 0.3258 −0.2233 −0.01588 −0.3522

J (Y, g(1)) = 2.8909 × 10−6

δi 0.000697 0.0107 −0.1174 0.00626
step5 a(4) = 0.025
g(5) 0.3257 −0.2205 −0.01813 −0.3529

J (Y, g(5)) = 7.2759 × 10−7

δi 0.000382 −0.001518 0.007409 0.008380
step6 a(5) = 0.0025
g(6) 0.3256 −0.2211 −0.01789 −0.3511

J (Y, g(6)) = 1.2588 × 10−7

δi 0.000156 0.000782 −0.00599 0.003261

The time of computation at each step of the computational process was about 12min.
So, after computation, which took about 72 min, the unknown parameters of the

mathematical model were estimated with errors not exceeding 0.5%.
In comparison with a version using MATLAB’s fmins function, the time of com-

putation was reduced by a factor of 2.5, and the estimation errors were reduced by a
factor of 4.

Above, we used the simplest—a linear (d = 1)—approximation of the condi-
tional expectation vector. A more complex approximation permits us to reduce the
value ηr and the general time of identification. We’ll use a quadratic approximation
(d = 2), we’ll assume r = 2, and we’ll obtain the required accuracy of computing
four-dimensional integrals if integrands are computed in cube vertices and in points
of edges partitioning into four equal parts (a modified method of trapezes permits us
to compute in this way only once for each point). Then the required identification
accuracy is reached for 22 iterations (each iteration takes 85 s) and with a total time
of about 30 min. As a result, we obtain
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step22 a(22) = 0.0006
g(22) 0.320019 −0.219987 −0.018052 −0.350698

J (Y, g(22)) = 4.9156 × 10−8

deli 0.000062 −0.000055 0.002922 0.001996.

So, upon replacing a linear approximation for a quadratic one, we have reduced the
identification time by more than a factor of 2, and the maximum estimation errors do
not exceed 0.3. In the problem of identifying two parameters and a two-dimensional
vector of initial conditions for an oscillatory link, we conducted a numerical analy-
sis for five implementations of quadruples of these random variables, in which the
unknown parameters θ1, θ2, θ3, θ4 were assigned five values (see below)—depending
on the implementation number:

(1) 0.043 0.207 −0.057 −0.393
(2) −0.350 0.303 0.433 0.348
(3) −0.232 −0.207 −0.483 0.332
(4) 0.031 −0.437 0.217 0.192
(5) −0.020 0.200 0.246 −0.353.

The relative estimation errors of these random parameters, depending on the imple-
mentation number, are as follows:

(1) 0.000020 0.000253 0.001366 −0.000095
(2) 0.000001 0.000005 0.000004 −0.000015
(3) 0.000007 −0.000145 0.000028 0.000037
(4) 0.000012 −0.000071 −0.000069 −0.000118
(5) 0.000731 0.000550 −0.000462 −0.000124.

The given data imply that the polynomial approximation algorithm solves the prob-
lems of identification and of nonlinear filtration with high accuracy; moreover, in
all implementations, the relative estimation errors are vanishing. After the zeroth
approximation, this accuracy is reached for four iterations. The evolution of relative
estimation errors in the iterative process is illustrated with an example:

Zeroth approximation −0.001369 0.179021 −0.697325 −0.058656
1st iteration −0.882636 0.003379 0.085963 0.013298
2nd iteration 0.094758 −0.000561 0.015023 0.031883
3rd iteration 0.001326 0.076830 0.003879 0.008216
4th iteration 0.000012 −0.000004 −0.000069 −0.000118.

So, after four iterations, the relative estimation errors are of the order of 10−5.
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5.8 Smoothing, Filtration, and Forecasting (SFF)
by Observations in Noise for a Nonlinear
Dynamic System

In many applied problems of nonlinear dynamic system control, one needs estimates
of the state vector—of the current one or at a fixed instant—when in discrete time one
observes in noise some (generally speaking) nonlinear functions from current state
vectors. If observations are made after a fixed instant, we have a smoothing problem;
if the instants of current observations are coincident with the instants of estimation,
we have a filtration problem; if observations are made before an estimation instant,
we have a forecasting problem.

In the literature (see, for example, [4]) the optimal—in the root-mean-square-
sense—solution of the above-mentioned problems is described for linear
dynamic systems.

In Chap.1 of this book, for a linear dynamic system disturbed by random vec-
tors, and for linear observations, we gave—without a hypothesis about the laws of
random variable distribution—a derivation of a well-known recurrent algorithm of a
discrete Kalman filter (KF) based on a principle of observation decomposition. This
algorithm delivers an optimal in the root-mean-square-sense solution to the problem
of filtration: that is, to the problem of estimating the current state vector at the instant
of receiving the current observation.

In Chap.1, we also gave a solution to the problem of optimal linear interpolation,
which is the problem of optimal smoothing. For this problem, at the instant of receiv-
ing the current observation, one should find an optimal in the root-mean-square-sense
estimate of the state vector that existed earlier, at some given discrete-time instant.

There is a well-known heuristic solution (see, for example, [5]) of the nonlinear
filtration problem that delivers a discrete algorithm of the extended Kalman filter
(EFK). As a basis of the EKF structure is a sequence of linearizations of nonlinear
functions of the mathematical model of a dynamic system in the neighborhood of
the sequence of approximate estimation vectors.

The two-step scheme of the EFK algorithm is similar to that of the KF algorithm.
In step 1, after an estimation vector is built for an observation instant t , a

forecasting—an approximate definition of statistical characteristics—occurs of the
first and second moments for the state vector at instant t + 1. The forecast is carried
out with the use of a matrix of private derivatives of the state vector (Jacobian) and,
hence, implies differentiability of the right side of (8.1) and the possibility of its lin-
earization with respect to incremental components of the state vector that is obtained
when passing from t to t + 1.

In step 2, after factual observations at instant t +1, the algorithm performs a linear
correction of the predicted state vector, optimal in the root-mean-square sense.

In recent years, a scheme of the extended Kalman filter that needs no linearization
and computation of a Jacobian has been published and applied. A corresponding
algorithm for an unscented Kalman filter (UKF) is presented in [6–9].

http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_1
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We must point out that the two-step scheme of the algorithm is rather plausible
and in many applicable cases leads to quite satisfactory results. However, the scheme
is heuristic, as in the published papers there is no theoretical substantiation for it.

So, incidentally, we know of no statistical measure of estimation accuracy being
attained by the EKF and UKF algorithms.

Earlier in this chapter we examined a special case of a nonlinear smoothing prob-
lem (the problem of estimating a vector of stationary random parameters �θ in the
absence of random disturbances of the dynamic system and of random observation
errors) by means of a contraction operator. With the use of formulas of the form
(4.2) (Chap. 4), one can also easily conduct a similar consideration in the presence
of additive random observation errors.

However, using a contraction operator is conjugate with loss of information on
the estimation vector, delivered by the observation vector. Hence, we cannot assert
that the estimates of vectors obtained in Sect. 5.7, are estimates over the observation
vector, much like estimates, optimal in the root-mean-square sense.

Themethod of polynomial approximation, the decomposition of observations, and
the ensuing recurrent algorithm presented in Chap. 1 permit one to create a recurrent
algorithm of smoothing, filtration, and forecasting (RSFF algorithm) that builds a
sequence of estimation vectors that is composed of approximations convergent to
vectors of conditional expectations of estimation vectors. The RSFF algorithm is
theoreticallywell founded by the content of Chaps. 1–4. The errors in approximations
uniformly tend to zero with an increase in the integer d and in the number of nodes of
the lattice, which covers the a priori parallelepiped �x0 at computing corresponding
integrals. Next, we present a scheme of the RSFF algorithm and its test on several
nonlinear problems.

5.8.1 Mathematical Model of Dynamic System
and Observations

Let the model of the dynamic system be presented by the differential equation

dx/dt = f (x, η, t), (8.1)

where the vector x is a current system state vector, the vector of initial conditions x(0)
is fully or partly unknown, and η(t) is a random vectorial process of disturbances.
We suppose that there is a priori information on vector x(0): x(0) ∈ �x(0) ∈ Rq .

The unknown parameters of the model serve as additional components of the state
vector x of an extended dynamic system. The dependence from t in the right part
of Eq. (8.1) can be a consequence of the fact that there is a control vector of the
dynamic system that is a function of t . Normally, for the random vector η(t), we
assign a statistical structure that permits us to replace differential equation (8.1) for
a discrete-time equation:

http://dx.doi.org/10.1007/978-3-319-04036-3_4
http://dx.doi.org/10.1007/978-3-319-04036-3_4
http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_4
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xk+1 = fk(xk) + ηk, (8.1′)

where xk = x(tk), vector fk(xk) is defined by numerical integration (8.1) from
instant tk to instant tk +1 at η = 0 and at initial condition xk, and the random vectors
are centered and independent,

E(ηkη
T
k ) = �k .

As a result of successive observations, there is a scalar sequence of N random num-
bers y1, . . . , yk, . . . , yN :

yk = Hk(xk) + ξk, (8.2)

where
xk = x(tk), xT

k = ‖xk,1, . . . , xk,i , . . . , xk,n‖T ,

where ξk is a randomobservation error, E(ξk)=0, E(ξiξk)=δi,kσ
2
k , t1, . . . , tk, . . . , tN ,

is a sequence of observation instants. The variables y1, . . . , yk are components of
the vector Yk .

5.8.2 Conceptual Algorithm for Smoothing, Filtration,
and Forecasting (SFF Algorithm)

The conceptual SFF algorithm is based on a polynomial approximation of estima-
tion vectors that are optimal in the root-mean-square sense. After observations of
components of the vector YN , the SFF algorithm should build approximation vec-
tors to the components of conditional expectation vectors of the estimation vectors
x0, xN , x∗

N , and specifically, vectors x̂0(d, YN ), x̂N (d, YN ), x̂∗
N (d, YN ) of dimen-

sionality n × 1, N∗ > N . As is well known, the conditional expectation vectors are
optimal—in the root-mean-square-sense—estimates of state vectors of the dynamic
system x0, xN , x∗

N at instants 0, . . . , tN , . . . , t∗N .
These estimates are functions of the vector YN and of the integer d, and also are

functions of a priori region x(0) ∈ �x(0) ∈ Rn and of the statistical characteristics
of random variables ξi .

Furthermore, error covariancematrices of quasi-optimal estimates of these vectors
should be defined.

The problem is solved by polynomial approximation for the vector
E(X(0,N ,N∗)|YN ) of the conditional expectation of the vector

X T
(0,N ,N∗) = ‖xT

0 xT
N xT

N∗‖T
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of dimensionality 3n × 1. The components of the estimation vector of the vector
X (0, N , N∗) are presented by polynomials with respect to components of the vector
YN , whose power does not exceed a given integer d.

Let’s select the integer d and build the vector W (d, N ) of dimensionality
m(d, N ) × 1, whose components are random values of products of the form
ya1
1 , . . . , yaN

N , 0 <= a1 + · · · + aN <= d, where 0 <= ai are integers and
i = 1, . . . , N . Dimensionality W (d, N ) is equal to m(d, N ), that is, to the num-
ber of solutions of integer inequality 0 <= a1 + · · · + aN <= d. This number is
defined by a recurrent formula from Sect. 2.3 in Chap.2.

Let’s build vector V of dimensionality (q + m(d, N )) × 1:

V T = ‖X T
(0,N ,N∗) W (d, N )T ‖.

As an a priori entry to the SFF algorithm, let’s provide the a priori first and second
statistical moments for components of the random vector V . These a priori data
present an expectation vector

V̂ = E(V )

and a covariance matrix

QV = E((V − (V̂ ))(V − V̂ )T ).

The vector V̂ and thematrix QV can be found by aMonte Carlomethod if a statistical
model has been set that permits us to generate on the computer a random process of
disturbances of a dynamic system. If there are no random disturbances of a dynamic
system, then the desired a priori first and second statistical moments are to be defined
via computation of multidimensional integrals, using a modified method of trapezes.
The further presentation and solution of model examples in this chapter correspond
just to this case.

So, let us have an a priori vector V̂ = E(V ) and matrix QV = E((V − V̂ )(V −
V̂ )T ). These can be divided into the vectors E(X(0,N ,N∗)), E(W (d, N )) and matrix
blocks

C(X) = E((X(0,N ,N∗)) − E(X(0,N ,N∗))(X(0,N ,N∗)) − E(X(0,N ,N∗))
T ),

L(X, W ) = E((X(0,N ,N∗)) − E(X(0,N ,N∗))(W (d, N ) − E(W (d, N )))T ),

Q(W ) = E((W (d, N ) − E(W (d, N )))(W (d, N ) − E(W (d, N )))T ).

The estimation vector X̂(0,N ,N∗)(YN , d) and estimation error covariance matrix
C(X̂ , d) can be presented by Eqs. of Chaps. 1 and 2:

http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_2
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X̂(0,N ,N∗)(YN , d) = E(X(0,N ,N∗) + L(X, W )Q(W )−1(W (d, N ) − E(W (d, N ))),

(8.3)

C(X̂ , d) = C(X) − L(X, W )Q(W )−1L(X, W )T . (8.4)

Equation (8.3) presents an estimation vector of the vector X(0,N ,N∗), optimal in the
root-mean-square sense, on a set of polynomials from components of the vector YN

whose power does not exceed a given integer d. But

E(E(X(0,N ,N∗)|YN )) = E(X(0,N ,N∗)),

L(X |YN ), YN ), W ) = L(X, W ).

Hence,

Ê(X(0,N ,N∗)|YN )(YN , d) = X̂(0.N .N∗)(YN , d).

So, formula (8.3) simultaneously presents the estimation vector of the conditional
expectation vector E(X(0,N ,N∗)|YN )), having similar optimal qualities.

Let the matrix C(Ê(X |Y, d) be an estimation error covariance matrix
E(X(0,N ,N∗)|YN ).

The basic theorem of Chap.2 implies that

CÊ (X |Y, d) → 0, d → ∞. (8.5)

So, the SFF conceptual algorithm, via formulas (8.3) and (8.4), delivers approximate
solutions for nonlinear problems of smoothing, filtration, and forecasting. This solu-
tion is theoretically well founded, optimal (in the root-mean-square sense) on a set
of approximating polynomials s of preset power d, and uniformly converges to the
conditional expectation vector upon an increase in these polynomials’ power.

5.8.3 Qualitative Comparison of SFF Algorithm
and P�K Algorithm

Let’s suppose that we only solve a nonlinear filtration problem:

X(0,N ,N∗) = xN .

In this case, we conduct a qualitative comparison of the SFF algorithm and the
recurrent EKF algorithm.

A scheme of a recurrent EKF algorithm looks like this: The a priori data for the
vector X0 is the vector of the a priori estimate (vector of the first statistical moments)
X (0|0) and the covariance matrix of the a priori estimation errors X̂(0|0).

http://dx.doi.org/10.1007/978-3-319-04036-3_2
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Let’s assume that after observations y1, . . . , yk, at step k, 1 <= k <= N , of
the algorithm’s computation, the estimation vector x(k|k) and the estimation error
covariance matrix x̂(k|k) were defined. Then the (k + 1)st step of computation is
divided into parts I and II.

I. Computation of forecast

x̂(k + 1|k) = fk(x̂(k|k)), (8.6)

P(k + 1|k) = Fk P(k, k)FT
k + �k, (8.7)

where Fk is a Jacobian vector-function fk(x̂(k|k).

We notice that if the dynamic system is set by differential equation (8.1), then
the definition of the Jacobian Fk requires numerical integration of the corresponding
matrix system of differential equations on each segment [tk, tk + 1].

II. Computation of estimation vector and of estimation error covariance matrix

x̂(k + 1|k + 1) = x̂(k + 1|k) + K (k + 1)(yk+1 − hk+1(x̂(k + 1|k), (8.8)

P(k + 1|k + 1) = P(k + 1|k) − K (k + 1)H(k + 1)P(k + 1|k), (8.9)

where
K (k + 1) = H(k + 1)P(k + 1|k)H(k)T + σ 2

k+1,

and H(k + 1) is a Jacobian of function hk+1(x̂(k + 1|k)).
1. Let d = 1.
The SFF delivers an optimal in the root-mean-square-sense solution of the fil-

tration problem on a set of linear combinations of components of observation vec-
tor YN . The SFF uses the whole a priori information on a statistical connection
between vectors xN and YN that is contained in matrices of a priori second moments
L(X, W ), Q(W ).

In the case under consideration [C(X) = P(0|0)], the EKF algorithm obviously
does not use the a priori matrices L(X, W ), Q(W ), and relationship (8.8) presents
only the obvious (linear) dependence of EKF estimation vectors from components
of the observation vector. For this reason, at first sight, optimal in the root-mean-
square-sense linear estimates of the SFF algorithm deliver an estimate accuracy that
is at least not smaller than that of the EKF algorithm. However, components of vector
x̂(k|k) depend on the observation vectorYk and are initial conditions for the nonlinear
differential equations whose numerical integration—on segment [tk, tk + 1]—will
define x̂(k+1|k) and Fk . Thus, the estimation vectors delivered by the EKF algorithm
in fact nonlinearly depend on observations, and their accuracy can be greater than
the accuracy of the linear estimates of the SFF algorithm at d = 1. The reality of
such a situation confirms an example to be considered below.

2. The EKF algorithm has no reserves to increase the accuracy of estimation
reached by a modernization of the algorithm scheme being implemented.
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Increasing the number of terms of a power series expansion of nonlinear vector-
functions cannot be regarded as a similar modernization, because usually one cannot
evaluate the residual terms of these expansions.

Relationship (8.5) delivers exhausting data on the conceptual possibilities of the
SFF algorithm. An increase in the number of terms of the polynomial approximation
reduces estimation errors upon the average.

3.The EKF algorithm is not applicable if the model of the dynamic system contains
nondifferentiable functions.

For the SFF algorithm, there are similar restrictions because its implementation
requires only operations of numerical integration.

4. Upon the practical implementation of the SFF algorithm, the definition of a
priori vectors and matrices (X(0,N ,N∗)), E(W (d, N )), C(X), L(X, W ), and Q(W )

can demand considerable computational time. With an increase in a given integer d,
this time quickly grows. However, a priori data that are found and saved in memory
make it possible—for arbitrary but satisfying restrictions of model (8.2) observa-
tion vectors YN—to easily obtain [under formulas (8.3) and (8.4)] a polynomial
approximation vector of the conditional expectation vector and an estimation error
covariance matrix, corresponding to a selected d. In so doing, one simultaneously
approximately solves nonlinear problems of smoothing, filtration, and forecasting
(extended Kalman filter).

Practical implementation of the EKF algorithm can also demand considerable
computational time to conduct multiple integrations of matrix differential equations
to define a sequence of Jacobians Fk . For each new YN , the computational process
should be repeated.

Note that the known type of EKF algorithm roughly solves only a nonlinear
filtration problem.

5.8.4 Recurrent form of the SFF (RSFF) Algorithm

The process of the recurrent refinement of the vector X̂(0,N ,N∗)(d, YN ) of the estima-
tion vector X (0, N , N∗) is composed of m(d, N ) steps. At each step, in compliance
with the principle of the decomposition of observations (outlined in Chap.1), by the
new (being updated) a priori (for this step!) data, a refinement occurs to the current
estimation vector of vector X(0,N ,N∗) and of a vector, composed of components of
vector W (d, N ), not yet used by the algorithm. The estimate of these components
is their statistical forecast implemented after the algorithm has used a part of the
components of the vector W (d, N ). Simultaneously, one computes an estimation
error covariance maxtrix reached at this step. At the last, m(d, N )th step, one has
no forecast, and the last refinement to the vector X (0, N , N∗) and the definition of
a total estimation error covariance matrix occur.

For step k of the computational process, we assume the following notations:

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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• The vector Vk is composed of 3n components of the vector X (0, N , N∗) and of
m(d, V ) − k components wk + 1, . . . , wm(d, N ).

• The vector V̂k(wk)) is a linear and optimal—in the root-mean-square-sense—
estimate of the vector Vk after the algorithm’s use of component wk and of all the
previous components W (d, N ).

• The scalar ŵk+1(wk)) is the (3n+1)st component of the vector V̂k(wk) [an estimate
of componentwk+1 after the algorithm’s use of componentwk and all the previous
components W (d, N )].

• V̂k(wk)
1 is a vector obtained from V̂k(wk), with the exclusion of componentwk+1

of this vector.
• Thematrix Qk = E((Vk − V̂k(wk))(Vk − V̂k(wk))T ) is an estimation error covari-
ance matrix of vector Vk after the algorithm uses a component Vk and all the
previous components W (d, N ).

• The scalar qk is the (3n + 1)st diagonal element of the matrix Q1
k : Qk [estimation

error variance of estimate of component wk+1 after using the component wk and
all the previous components W (d, N )].

• Thematrix Q1
k is amatrix obtained frommatrix Qk by excluding the ((3n+1)+1)st

row-vector and the (3n + 1)st column-vector.
• The vector bk is the (3q + 1)st column-vector of the matrix Qk from which one
has excluded the (3q + 1)st component.

The recurrent algorithm is composed of m(d, N ) computational steps, in the process
of which the vectors

V1, V2, . . . , Vm(d,N ) = X (0, N , N∗

are successively estimated by linear and optimal—in the root-mean-square-sense—
functions from component w1, w2, . . . , wm(d,N ). At step k, the RSFF formulas are
of the form

V̂k+1(wk+1) = V̂k(wk)
1 + q−1

k bk(wk+1 − ŵk+1(wk)), (8.10)

Qk+1 = Q1
k − qkbkbT

k , (8.11)

where

k = 0, . . . , m(d, N ) − 1, V0 = V, V̂0(w0)
T = V,

ŵ1 = E(w1),Q0 = QV .

For the (k + 1)st step of the recurrent estimation process, the vector V̂k(wk) and
matrix Qk are new data on the first and second a priori (for step k + 1) statistical
moments of components of the vector Vk+1 before coming to the algorithm’s input
of value wk+1.

We notice that the sequence of random variables of the form wk+1 − zwk+l (wk)

creates a renewing sequence.



96 5 Identification of Parameters of Nonlinear Dynamic Systems

At k = m(d, N ), the RSFF algorithm defines a vector

X̂(0,N ,N∗)(d, YN ) = V̂m(d, N )(wm(d, N )

of the last estimate of vector X̂(0,N ,N∗) after the algorithm uses the last component
wm(d, N ) and the estimation error covariance matrix Co = Qm(d, N ).

Let W (k) be a vector of dimensionality k ×1, composed of the first k components
of the vector W (d, N ).

The vector X̂(0,N ,N∗)(W (k)), composed of the first 3n components of the vector
V̂k(wk), is a linear and optimal in the root-mean-square-sense estimate of vector
X̂(0,N ,N∗) after the algorithm uses vector W (k) and at the same time vector

X̂(0,N ,N∗)(0) = X̄(0,N ,N∗).

The top left Ck of matrix Qk of dimensionality 3n × 3n is an estimation error
covariance matrix of vector X(0,N ,N∗) after the algorithm uses vector W (k).

Let l(k) be a vector composed of the first 3n components of the vector bk . Then
the formula, which presents the evolution of the covariance matrix Ck as a function
of the number k of components of vector W (d, N ) used, is of the form

Ck = Q(k) − q−1
1 l(1)l(1)T − . . . − qkl(k − 1)l(k − 1)T . (8.12)

5.8.5 About Computation of a Priori First and Second
Statistical Moments

The above implies that saving the computation of the first and second a priori statisti-
cal moments of the vector X̂(0,N ,N∗) is crucial for implementing the RSFF algorithm.

If the model of the dynamic system is presented in Eq. (8.1), then theMonte Carlo
method is apparently a unique way of computing the above-mentioned a priori data.
In the absence of random disturbances of the dynamic system [in Eq. (8.1), η(t) = 0]
or upon representing the system model in the form of Eq. (8.1′), the a priori data are
effectively computed by a modified method of trapezes.

The given equations imply that an additional solution of the forecasting prob-
lem does not change the algorithm’s scheme and is reduced only upon an increase
in the estimated vector’s dimensionality by an amount n. That is why to simplify
the statement, we have given the computational scheme only for smoothing and fil-
tration problems—in the absence of random disturbances of the dynamic system.
However, in model examples, illustrating the method’s efficiency, one numerically
solves smoothing, filtration, and forecasting problems.

The a priori statistical moments are defined by an a priori region �X0 on which
the random distribution of vectors X0 is considered uniform and the distributions
of independent random variables ξi , i = 1, . . . , N , on segment [−a, a], is also
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considered uniform. These hypotheses are not conceptual. The method under study
permits us to consider the given distributions of random vectors x0, ξi both during a
test run and during the computation of multidimensional integrals.

Assuming that value a is insignificant, and expanding the differences in integrands
(4.2) of Chap.4 into series, we will find appropriate representations.

5.8.6 Evaluation of the Initial Conditions and Parameter
of the Van der Pol Equation

In [10] the problem of estimating the parameter λ and the derivative of ẋ(t0) for the
nonlinear differential Van der Pol equation is

( ˙̇x) + λ(x2 − 1)ẋ + x = 0,

if the error solution is absent at three points in time. We consider the problem of
estimating the parameter λ and the initial conditions x(0), ẋ(0) if the equation is
replaced by its discrete analog, which corresponds to the integration of a simple
Euler’s method for a discrete value of 1/120 s and a duration of observations of 12
s. Data reduction was performed by adding 120 consecutive primary observation
variables x(t), and the dimension of W is 12 × 1 for d = 1.

Suppose that there is a significant a priori dispersion of estimated values:

10(1 − 0.95) ≤ λ ≤ 10(1 + 0.95), (1 − 0.95) ≤ x(0) ≤ (1 + 0.95), (1 − 0.95)

≤ ẋ(0) ≤ (1 + 0.95).

The values of the estimated λ, x(0), ẋ(0) are a random number and belong to a priori
parallelepipeds in R3. We assume that the estimation error is a measure of the ratio
of σ(pos)/σ (pr)-relations of a posteriori standard deviation and a priori standard
deviation. The following table shows that the relationship depends on the values of
d and the corresponding values of m(d, N1), where N1 is the number of compressed
sequence elements:

d m(d, N1) σ (pos)/σ (pr)(λ) σ (pos)/σ (pr)(x) σ (pos)/σ (pr)ẋ
1 12 0.875 0.758 ∗ 10−6 0.937 ∗ 10−4

2 90 0.550 0.330 ∗ 10−6 0.411 ∗ 10−4

3 454 0.454 0.277 ∗ 10−7 0.344 ∗ 10−4

4 1819 0.397 0.123 ∗ 10−7 0.143 ∗ 10−4

The table shows that the estimation errors of the initial conditions are small for all
values of d. The parameter estimation error λ is slowly decreasing with increasing d.

The parameter estimation errorλ is greatly reduced if the organized search reduces
the estimated parameters. Hence, let the ribs of a priori the parallelepiped decrease

http://dx.doi.org/10.1007/978-3-319-04036-3_4
http://dx.doi.org/10.1007/978-3-319-04036-3_4
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by 10 times. Then, for d = 3, σ(pos)/σ (pr)(λ) was equal to 0.00576—a decrease
of about a factor of 100.

5.8.7 Smoothing and Filtration for a Model of a Two-Level
Integrator with Nonlinear Feedback

We assume that the equation of the form (8.1) for a model of a dynamic system is of
the form

dx1/dt = x2(0)dx2/dt = −x31 + sin(6t/3 + 0.5),

�x(0) : −b <= x1(0), x2(0),<= b.

Let’s do a transitionwith a discrete-time step of τ to a dynamic systemdiscretemodel,
obtained via numerical integration of the equations by a simple Euler’s method with
step τ .

Let’s assume that the model of observations (8.2) looks like the following:

yk = x1(tk) + x2(tk) + ξk,

where the intervals of time between successive observations are equal to 10τ , and
six observations are conducted: tk = 10τk, τ = 0.1 s, k = 1, . . . , 6.

The smoothing problem is solved for random variables x1(0), x2(0), and the fil-
tration problem is solved for random variables x1(6), x2(6).

The accuracyof solvingproblems at instant tN , reached fromsimulationmodeling,
is characterized by values of the standard deviation (SD) of estimation errors, where
σ1, σ2 are smoothing errors, and σ3, σ4 are filtration errors.

The values σi were defined by the Monte Carlo method at 100,000 implementa-
tions of a recurrent algorithm when random variables x1(0), x2(0), ξk, k = 1, . . . , 6
dispersed. Furthermore, the variables σi were defined upon computation of the esti-
mation error covariance matrix CN . The differences in experimental and calculated
values σi did not exceed 1This circumstance proves the correctness of formulas in the
algorithm and of its implementation. Upon numerical integration of two-dimensional
integrals, the value r changed within the limits 10–100, which had little influence on
the accuracy of smoothing and filtration.

The variables σi (0) are a priori (before observations) dispersion of estimated
variables.

The computations were conducted at d = 1, 2, 3 [the components of the estima-
tion vector of variables x1(0), x2(0), x1(6), x2(6) were linear, quadratic, and cubic
polynomials from fixed values y1, . . . , y6; at d = 1, 2, 3, the number of polynomial
members m(d, N ) was equal, respectively, to 6, 27, 83], and at a = 0.02 (random
errors of observations uniformly disperse in segment [−0.02, 0.02]).
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Let b = 1. Following are the values of a priori σi (0), characterizing the dispersion
of estimated variables prior to the beginning of observations:

σ1(0) σ2(0) σ3(0) σ4(0)
0.5774 0.5774 0.7435 0.9010.

The values σi—versus the number of observations k at d = 1—are as follows:

k σ1 σ2 σ3 σ4
1 0.5766 0.1749 0.7132 0.6565
2 0.2759 0.1730 0.4656 0.6250
3 0.2758 0.1669 0.4567 0.4838
4 0.2726 0.1254 0.3910 0.3124
5 0.2148 0.1185 0.1427 0.2806
6 0.2125 0.1169 0.0426 0.0436.

Comparing a priori σi (0) to the values of the last row of the table, we see that six
observations and their subsequent optimal linear processing in solving smoothing
problems have reduced the possible dispersion of the estimated variable by a fac-
tor of about 3–5; in solving filtration problems, this dispersion has been decreased
approximately 15–20 times.

At d = 2, the accuracy of smoothing practically did not change; at d = 3, the errors
of smoothing and of filtration sharply decreased in comparison with the results for
d = 1. The characteristics of the accuracy of smoothing and filtration are given for
six observations:

d σ1 σ2 σ3 σ4
2 0.2123 0.1159 0.0423 0.04321
3 0.0192 0.0168 0.0031 0.0038.

Thus, six observations and their optimal in the root-mean-square-sense processing at
the third power of approximating polynomials have reduced the a priori dispersion of
smoothing errors approximately 50 times; the a priori dispersion of filtration errors
has been decreased approximately 200–300 times.

We notice that at d = 1, the computational time for 100,000 implementations on
low productivity with a changing integer r is within the limits 10–100.

At d = 3, the computational time for 100,000 implementations sharply increases,
and at r = 300 is 15 min. At these settings, the computation of vectors and matrices
of the a priori data takes 2.5 min.
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5.8.8 The Solution of a Problem of a Filtration by the EKF
Algorithm

The EKF algorithm was implemented according to Eqs. (8.6)–(8.9) for a discrete
model of the considered nonlinear dynamic system. Elements of Jacobians Fk were
defined by the finite-difference method: by discrete numerical integration of the
equations of the model on segments [tk, tk + 1] at successive increments of initial
conditions (of components of vectors x̂(k|k)) by values of 0.00001, by definition of
the corresponding differences, and by their division by these values.

The results of model by a Monte Carlo method at b = 1 and 100,000 implemen-
tations of the algorithm are as follows:

σ1 σ2 σ3 σ4
− − 0.03626 0.03629.

From comparison with the data of the RSFF algorithm, it follows that the EKF
algorithm delivers filtration errors that are smaller than those of the RSFF algorithm
at d = 1. However, at d = 3, filtration errors are 10 times smaller than for the
EKF. Setting b = 1.5, we will increase the a priori region of dispersion �x(0) by 1.5
times. The errors of smoothing and filtration have increased. However, the ratio of
the RMSE of these errors to the values of the a priori SD changed little.

The data, which are similar to the data presented just above, are as follows:

σ1(0) σ2(0) σ3(0)/σ4(0)
0.8660 0.8660 1.4081 3.8242

d σ1 σ2 σ3 σ4
1 0.3114 0.30183 0.5909 0.5910
3 0.0351 0.0323 0.0164 0.0174.

The further increase in the value b stops the functioning of the RSFF algorithm:
At some initial conditions x1(0), x2(0), the computational process diverges and its
components reach values of the order of 102000–105000.

At b = 1.1, a similar termination of the functioning of the EKF algorithm occurs.

5.8.9 Identification of Velocity Characteristic of the
Integrator and of the Nonlinearity of the Type
“Backlash”

Let there be a dynamic system with unknown random parameters x3 and x4, where
x3 is a velocity characteristic of the integrator, and x4 is a nonlinearity characteristic
of the type “backlash.” We regard them as additional components of a state vector
of a dynamic system.
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Weuse an approximatemodel of nonlinearity of the type “backlash” (y is an output
of the integrator measured without random errors): If x2 > 0, then y = x1 − x4; if
x2 < 0, then y = x1 + x4.

Then the equations of the models of the dynamic system and of observations will
acquire the form

dx1/dt = x2, dx2/dt = x3100 sin(20π/3i) + 0.5,

dx3/dt = 0; dx4/dt = 0,

ωx0 : b1,1 <= x4 <= b1,2, b2,1 <= x3 <= b2,2,

yk = F(tk) + ξk,

x2(tk) > 0 : F(tk) = x1(tk) − x4 x2(tk) < 0 : F(tk) = x1(tk) + x4,

tk = k10τ, k = 1, . . . , N , N = 6, τ = 0.1s,

x1(0) = 0, x2(0) = 0.

Using the EKF algorithm is impossible because of the availability of the nondiffer-
entiated function F(tk) in the model of observations.

Then, the smoothing problem (identification problem) is solved for random vari-
ables x3, x4, the filtration problem is solved for random variable x1(6), and the
forecasting problem is solved for random variable x2(7).

Let
b1,1 = 0; b1,2 = 0.5; b2,1 = 0.5; b2,2 = 1;

for the characteristics of the estimate’s accuracy, we will assume the notation used
above.

Data of the mathematical model at d = 1 look like

1 σ1(0) σ2(0) σ3(0) σ4(0)
1 0.1443 0.1443 0.1179 0.7510
k σ1 σ2 σ3 σ4
1 0.0186 0.1441 0.1178 0.7501
6 0.0025 0.0035 0.0029 0.018.

As is obvious, the RSFF algorithm delivers a considerable accuracy of identification
of the velocity characteristic of the integrator and of the nonlinearity of the type
“backlash” despite the small number (6) of observations and the linear approxima-
tions of components of the estimation vector.
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5.9 A Servo-System with a Relay Drive and Hysteresis Loop

One uses a drive model whose velocity x2 assumes two different values, whose
module is equal to constant x3; velocity changes the sign when the module of the
value of an error in tracking a signal—varying sinusoidally—will exceed a given
constant x4.

Then the equations of models of the dynamic system and of observations will
acquire the form

dx1/dt = x2, dx2/dt = F(ε), ε = sin((2π/3)t + 0.5) − x1,

dx3/dt = 0, dx4/dt = 0,

ε > −x4 : F(ε) = x3; ε < x4 : F(ε) = −x3,

�x(0) : b1,1 <= x3 <= b1,2, b2,1 <= x4 <= b2,2,

yk = x1(tk) + ξk,

tk = k10τ, k = 1, . . . , N , N = 6, τ = 0.1s,

x1(0) = 0 = x2(0) = 0.

The smoothing problem (identification problem) is solved for random variables
x3, x4, the filtration problem is solved for random variable x1(6), and the forecasting
problem is solved for random variable x2(7).

Let
b1,1 = 0.5; b1,2 = 1; b2,1 = 0; b2,2 = 0.25;

for characteristics of an estimate’s accuracy,wewill assume the notations used above.
The data of the mathematical model look as follows:

σ1(0) σ2(0) σ3(0) σ4(0)
0.1443 0.0721 0.9204 0.1534

k σ1 σ2 σ3 σ4
6 0.0171 0.0724 0.0036 0.0006.

As is obvious, one reaches a considerable accuracy in solving problems of filtra-
tion and forecasting. The identification problem for constant x4 is not solved at the
analyzed composition of observations.
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5.10 Evaluation of Principal Moments of Inertia of a Solid

Let an instrument frame with rectangular axes X, Y, Z and with the point O of their
crossings be connected with a solid. The projections ωx , ωy, ωz on these axes of a
vector of absolute angular velocity of object ω are measured by sensors of angular
velocity. Additionally, we assume to know Mx , My, Mz , which are projections (on
these axes) of the moment of external forces, M .

In the general case, the solid has—with respect to arbitrary axes X, Y, Z—six
moments of inertia, three of which are called centrifugal. It has been known that for
point O , there exists a rectangular system of coordinates X O , YO , Z O , with respect
towhich centrifugalmoments of inertia are equal to zero, and the remainingmoments
of inertia Jx , Jy, Jz are called principal moments of inertia for the point O .

Let α, β, γ—Euler’s angles defining an angular position with respect to the set
system of coordinates X , Y , Z , and A—be an orthogonal matrix of directing cosines
for these angles.

LetωO
x , ωO

y , ωO
z , M O

x , M O
y , M O

z be projections on axes X O , YO , Z O of vectorsω

and M accordingly. We assume that ωO , M O are vectors ω, M in axes X O , YO , Z O .
Then connection of non-observable variablesωO

x , ωO
y , ωO

z , M O
x , M O

y , M O
z andmea-

surable variables ωx , ωy, ωz, Mx , My, Mz will be as follows:

ωO = Aω, (10.1)

M O = AM. (10.2)

Functions ωO
x , ωO

y , ωO
z satisfy Euler’s differential equations

J xdωO
x /dt + (Jz − Jy)ω

O
y ωO

z = X O
x , (10.3)

J ydωO
y /dt + (Jx − Jz)ω

O
z ωO

x = X O
y , (10.4)

J zdωO
z /dt + (Jy − Jx )ω

O
x ωO

y = X O
z . (10.5)

We obtain the equations of the nonlinear dynamic system by adding to
Eqs. (10.3)–(10.5) the following equations:

dJx/dt = 0; dJy/dt = 0; dJz/dt = 0,

dα/dt = 0; ; dβ/dt = 0; ; dγ /dt = 0.

Setting
yx (tk) = ωx (tk), yy(tk) = ωy(tk), yz(tk) = ωz(tk),
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yx (i) =
l∑

i=1

yx (tl(i−1+ j),

we find that at instant tk , the components of the primary observation vector y(tk) are
connected with non-observable values α, β, γ and with non-observable functions
ωO

x , ωO
y , ωO

z by the relationships

y(tk) = AT ωO(tk). (10.6)

Using the sequence of components yx (tk), yy(tk), yz(tk) of primary observation vec-
tor andEqs. (10.1) and (10.2), oneneeds to estimate theparameters Jx , Jy, Jz, α, β, γ .

Using a fourth-order Runge–Kutta method with constant step τ = 0.2 s, we will
pass to the model of the dynamic system in discrete time.

In the model of the estimation process, the primary observations yx (tk), yy(tk),
yz(tk) correspond to instants tk = 5τk, k = 1, . . . , 100.

We will find the secondary observations yx (i), yy(i), yz(i), which directly enter
the estimation algorithm, as follows, summing the components of every i vectors of
successive primary observations. In the model, l = 25, N = 4, and the file of scalar
secondary observations is composed of 12 numbers.

For functioning of the RSFF algorithm, it is necessary to find a priori first and
second statistical moments of an 18-dimensional vector, composed of estimated
variables α, β, γ, Jx , Jy, Jz and of variables yx (i), yy(i), yz(i), i = 1, . . . , 4. These
a priori data were defined via computation of integrals by a modified method of
trapezes in R6 at r = 2d and via numerical integration of Eqs. (10.3)–(10.5) under
the following conditions:

ωx (0) = 1/20, ωy(0) = 1/20, ωz(0) = 1/20,

Mx = 100, My = 100, Mz = 100.

Upon computation of integrals, the variables α, β, γ, J x, J y, J z varied within the
limits that define an a priori parallelepiped ωx(0):

−0.1 <= α, βγ <= 0.1,

J O
x (1 − 0.1) <= Jx <= J O

x (1 + 0.1),

J O
y (1 − 0.1) <= Jy <= J O

y (1 + 0.1),

J O
z (1 − 0.1) <= Jz <= J O

z (1 + 0.1),

where
J O

x = 4000, J O
y = 20000, J O

x = 15000.
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The estimate’s accuracy is presented by the ratios σi/σi (0), i = 1, . . . , 6 that have
been defined by the Monte Carlo method at 100,000 implementations: d = 1

σ1/σ1(o) σ2/σ2(o) σ3/σ3(o) σ4/σ4(o) σ5/σ5(o) σ6/σ6(o)

0.5733 0.0754 0.5791 0.1232 0.2005 0.3504.

To reduce the ratios σi/σi (0), i = 1, ..., 6, we will divide �x(0) into smaller paral-
lelepipeds, and for each of them we will repeat computations of the RSFF algorithm.
So, having divided each edge into 2, we obtain 64 smaller parallelepipeds.

For one of them, the ratio σi/σi (0), i = 1, ..., 6, looks like d = 1

σ1/σ1(o) σ2/σ2(o) σ3/σ3(o) σ4/σ4(o) σ5/σ5(o) σ6/σ6(o)

0.4716 0.0434 0.4680 0.0534 0.0561 0.0712.

If the RSFF algorithm uses d = 2, then for this parallelepiped the ratio σi/σi (0), i =
1, ..., 6, appreciably decreases:

σ1/σ1(o) σ2/σ2(o) σ3/σ3(o) σ4/σ4(o) σ5/σ5(o) σ6/σ6(o)

0.3616 0.3603 0.0228 0.0226 0.0233 0.0153.

The given data imply that the evaluation of the principal moments of inertia of a
solid has been done with errors, which are on average 50 times less than the a priori
errors. A further increase in the accuracy of evaluations is reached by increasing the
time of primary observations and the integer d.

5.11 Nonlinear Filtration at Bounded Memory of
Algorithm

In control problems, one often finds in the process of observations at time instants
t1, ..., tk, ... that the estimation algorithm is to send the estimation vectors of the
current state vectors x1, ..., xk, ... to the control system for feedback control.

The RSFF algorithm outlined earlier in principle solves a similar problem if one
successively sets value tN equal to t1, ..., tk, ... and, under the formulas given earlier,
defines estimation vectors X̂(0,1)(d, Y1), ..., X̂(0,k)(d, Yk), .... The control system is
input estimation vectors

X̂1(d, Y1), ..., X̂i (d, Yk), ...

that are composed of the last n components of the control vectors X̂(0,1)

(d, Y1), ..., X̂(0,k)(d, Yk), ... and serve as approximations, optimal in the root-mean-
square-sense estimates of the current state vectors x1, ..., xk, ... being implemented
by polynomials from components of the vectors Y1, ..., Yk, ..., whose power does
not exceed d. However, a similar solution is unacceptable because of the growing
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[with a rise in t(k)] dimensionality of vectors and matrices of a priori data, and also
because of an impermissible increase [due to inevitable errors inmathematical model
(8.1), (8.1′) and computational errors] in the volume of the “last” state vectors and
of observation vectors influencing the control selection at a given instant of time.

Hence, one needs a design of a quasi-optimal estimation algorithm with constant
memory, when, at the present instant, the control selection is obviously influencing
only a fixed number p of preceding state vectors and observation vectors. We present
the following scheme for an algorithm of a quasi-optimal nonlinear filtration with
finite memory whose special case is the EKF.

At instant tk in computer memory, p scalar observations of the form (8.2) are
fixed for instants tk−p, tk−p+1, ..., tk . The sequence of these observations composes
vector Yk,p.

We assume that during the preceding algorithm steps, by results of observa-
tions of random variables y1, ..., yk−p−1, the a priori [for an instant tk−p] vector
x̂k−p(Yk−p−1, d) and the covariance matrix x̂k−p(Yk−p−1, d) were defined, which
are a priori expectations and the second centered statistical moments of vector xk−p

components.
Then, it is necessary to create a statistical mechanism that would generate random

implementations of vector xk−p corresponding to the a priori statistical data of these
vectors (they are listed above). These random implementations are random initial
conditions for numerical integration of Eq. (8.1) [or (8.1′)] and for computation of
the implementations of random state vectors xk−p+1, ..., xk and random results of
observations [by Eq. (8.2)] on an interval of time [tk−p, tk].

Let’s conduct the factorization of an a priori covariance matrix:

Cxk−p (Yk,p−1, d) = GGT .

The factorization is implemented, for example, by a known Cholesky algorithm.
Next, the statistical mechanism consists of the implementation of random vectors

x∗
k−p:

x∗
t−p = x̂k−p(Yk−p−1, d) + Gρ,

where ρ is a random vector, whose covariance matrix is a unit diagonal matrix.
Practice with computations revealed that a simpler diagram scheme of a statistical

mechanism not requiring factorization is also possible. In this case, building random
implementations of vector x∗

k−p carries out a uniform dispersion of component x∗
t−p

on the parallelepipedwhose center vector is equal to vector x̂k−p(Yk−p−1, d) squares
of edge lengths of the parallelepiped are equal to diagonal elements of the a priori
covariance matrix x̂k−p(Yk−p−1, d), multiplied by 36.

We notice that the appreciable random errors of observations “wash away” the
influence of the a priori dispersion of vectors x∗

t−p on the estimation accuracy.
The above-mentioned statistical mechanism using aMonte Carlo method or using

a method of computation of multidimensional integrals will obtain the a priori data,
allowing one to apply the above-offered RSFF algorithm. These a priori data are
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the first and second statistical moments for the vector that has been composed from
components of vectors xk−p+1, xk , from the predicted results of observations on seg-
ment [tk−p, tk], and from their integer powers, corresponding to the given integer d.

Then, theRSFFalgorithm, under the given above formulas,will find quasi-optimal
estimates x̂k(d, Y k, p) of vectors xk−p+1, xk and of the estimation error covariance
matrix.

The vector x̂k(d, Yk,p) serves as a quasi-optimal solution of the nonlinear filtration
problem for instant tk and formemory p; the vector x̂k−p+1(d, Yk,p) and correspond-
ing blocks of the matrix—having been found—of estimation error covariances give
a priori data for implementation of the RSFF algorithm on a following interval of
time [tk−p+1, tk+1]. The outlined scheme fully defines the computational process of
the quasi-optimal nonlinear filtration with finite memory p.

Let p = 0. Then, at instant tk−1, the preceding observations y1, ..., yk−1 and suc-
cessive steps of theRSFF algorithmdefined the a priori (for instant tk ) first and second
statistical moments of vector xk−1, which are the estimation vector x̂k−1(d, Yk−1,p)

and the estimation error covariance matrix xk−1, respectively.
A statistical mechanism reproduces the corresponding dispersion of vector x∗

k−1
and builds the first and second statistical moments for components of vector ‖xk y−
k, yd

k ‖T . Then the RSFF algorithm defines the vector of quasi-optimal estimate of the
current vector xk and the error covariance matrix of this vector estimate, presenting
its dispersion after fixing a scalar of observations yk . Then the computational process
is repeated under a similar scheme.Note that at p = 0 and d = 1, theRSFF algorithm
is similar to the UKF algorithm.

At p = 0, the vector V , input earlier at derivation of the RSFF algorithm, is
composed of components of vector xk and of a sequence of variables Hk(xk) +
ξk, ..., (Hk(xk) + ξk)

d .

Let the hypotheses on which the EKF algorithm is based be true: The right parts
of Eqs. (8.1) and (8.2) are differentiable. After observations are fixed, the dispersion
of random vector xk−1 with respect to estimation vector x̂k−1(d, Yk−1,p) is small
(the norm of its covariance matrix xk−1 is small).

Linearizing components of vector fk−1(xk−1) and variables

Hk(xk) + ξk, ..., (Hk(xk) + ξk)
d

with respect to components of vector xk−1−x̂k−1(d, Yk−1,p) and calculatingmatrices
of private derivatives of the corresponding functions, we find expressions for the
expectation vector V̂ = E(V ) and covariance matrices QV in the form of functions
from estimation vector x̂k−1(d, Yk−1,p) and estimation error covariance matrices
xk−1.

Then, under Eqs. (8.6) and (8.7), the RSFF delivers vector x̂k(d, Yk,p) of the
quasi-optimal estimate of vector xk and estimation error covariance matrix xk .

Thus, at differentiable right sides of equations of models of a dynamic system
and of observations, and at p = 1, d = 1, the EKF algorithm is coincident with the
RSFF algorithm.
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Chapter 6
Estimating Status Vectors from Sight Angles

Recurrent finite memory and polynomial approximation are two techniques
commonly used when one tackles a nonlinear estimation problem that includes space
object and air and aircraft (AC) positioning and velocity vector component evaluation
from angle-of-sight data provided by either an earth-based optoelectronic system or
an AC-borne sighting system.

6.1 Space Object Status Vector Evaluation

Many observational astronomy results depend on numerical data processing,
including serial data from space objects available in an optical range. The angles
of sight are either measured by an optical sighting system or read from photo plate
prints.

Angles of sight also provide the unique information on sunlit high-orbit earth
satellite vehicles (ESVs), or sputniks, especially those with a faulty AC-borne radio
system. In this case, earth-based sighting systems often cannot reach the distant
ESVs since their radio-frequency energy performance is insufficient due to the large
distance to the ESVs. Therefore, a data processing algorithm is highly desired to
yield reasonably accurate estimates of the space object status vectors.

In a special case of high-orbit ESVs, information of this sort is available from
dedicated optoelectronic systems: An example is the Window optoelectronic system
[1] to monitor adjacent space in the optical range, which can acquire sight data of
space objects as far as 40,000km away.

We shall demonstrate in this chapter that it is the nonlinear smoothing, filtration,
and prediction algorithm described in Chap. 5 that ensures highly accurate sta-
tus vector estimates. The components of the difference vector between the initial
(a priori) and true status vectors comprise about 10–20% of the true status vector
component values.

J. A. Boguslavskiy, Dynamic Systems Models, DOI: 10.1007/978-3-319-04036-3_6, 109
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6.1.1 Equations of Motion and Observation Data Model

The equations of motion of a low-mass body in a geocentric inertial coordinate
system are given by

d Xi/dt = Vi , (1.1)

dVi/dt = −μXi/R, (1.2)

R = (X2
1 + X2

2 + X2
3)

1/2,

whereμ is the gravitational constant, and Xi , i = 1, . . . , 3 are Cartesian coordinates
of the body.

The angles of sight are two directional angles to determine the direction of the
sight ray relative to the Earth. The sight ray here is a vector directed from the observer
to the space object.

We assume that, at a time t , the sighting center is a point located at the Earth’s
surface, geographically referenced by longitude and latitude angles λ = ωt and
height (altitude) h, where ω is the Earth’s angular velocity. In the rotating right-
handed geocentric coordinate system x ′

i , the sighting center coordinates are

X ′
1 = rE cos(ϕ) − h sin(ϕ), X ′

2 = 0,

X
′
3 = rE sin(ϕ) + h cos(ϕ),

where rE is the Earth’s radius.
Two sight vector orientation angles represented by y1 in the sighting center’s local

horizon plane and by y2 in the local vertical plane are given by

y1 = arctg(b/a), y2 = arctg(c/(a2 + b2)1/2)), (1.3)

where

a = cos(λ) cos(ϕ)X1 + sin(λ) cos(ϕ)X2 + sin(ϕ)X3 − rE ,

b = sin(λ)X1 + cos(λ)X2,

c = − sin(ϕ) cos(λ)X1 + sin(ϕ) sin(λ)X2 + sin(ϕ)X3 = h.

6.1.2 Scheme of Estimator

Next,we assume that the data processing algorithm is capable of tackling the filtration
problem; namely, the algorithm has to evaluate, in the inertial geocentric coordinate
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system, three Cartesian coordinates of the space object under sight along with three
Cartesian components of its velocity vector, at some time instants.

The feasibility of the above algorithm in principle relies on the existence of a
correlation between variable angles of sight and variable Cartesian coordinates of
the space object. Such a correlation is due to the law of gravity, which affords the
gravity acceleration vector. The acceleration vector, comprising a known function of
the Cartesian coordinates of the space object, bends the path of motion.

In the absence of the acceleration vector, any estimation of the trajectory parame-
ters via measurement would be impossible. Indeed, the law of variation is the same
for all bodies moving uniformly and rectilinearly, provided that their velocity vectors
are parallel and their range to the velocity vector’s moduli ratios are constants. So, in
the outlined situation, the trajectory parameters are unobservable; that is, they cannot
be evaluated from the data.

The estimator has to evaluate the instant status vector components complyingwith
a set of six nonlinear differential equations (1.1), (1.2): It is inherently a nonlinear
filtration problem. An observation data (OD) sequence (1.3) is input to the estimator,
the OD s being nonlinear functions of the instant values Xi , i = 1, . . . , 3.

The estimator, in turn, uses the recurrent algorithmdescribed inChap. 1 alongwith
the polynomial approximation technique (see Chap.2); it also uses the linear con-
traction operator described in Chap. 5 when considering themodel nondifferentiable-
function nonlinear dynamic system parameter identification problem.

Let τ be the interval between sequential observations, that is, space object read-
ings. When the first k observations are read, the algorithm generates the cumulative
OD yint,1, yint,2; here yint,1 is a sum of the first k recorded values k1, while yint,2 is
a sum of the first k recorded values k2.

The next step is build the cumulative pairs yint3, yint4, . . . , yint2s−1, yint2s, . . .,
and so on, similarly.

The sequence of these random values is a sequence of the recurrent algorithm
entry values at time 1, 2, . . . , r, . . ., where T = k. Applying the summation operator
reduces the random following error effect on the estimation accuracy.

Let s be a selected integer. Divide a sequence of the paired cumulative OD
into a sequence of intervals, each of them containing s OD pairs. Next, apply the
following definitions.

Iteration vector 1 is an evaluation vector generated upon receiving the first pair
interval at the entry of the recurrent algorithm. Iteration vector 1 is defined at time
point sT once observations are made.

Iteration vector 2 is an evaluation vector generated upon receiving the 2sth pair
interval at the entry of the recurrent algorithm. Iteration vector 2 is defined at time
point 2sT once observations are made.

Iteration vectors 3, 4, and so forth, are defined similarly.
According to Chap.1, the construction of iteration vector 1 first requires finding

the a priori data vector andmatrix, namely, the first and second statistical moments of
a base random vector 1 whose first six components are the components of a true (still
unknown) initial space object status vector and are products of 2s cumulative OD
to an integer power, where the sum of powers is less than the predefined integer d.

http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_5
http://dx.doi.org/10.1007/978-3-319-04036-3_1


112 6 Estimating Status Vectors from Sight Angles

If d = 1, then the base vector 1 has a dimensionality of 6 + 2s; if d = 2, then the
base vector 1 has a dimensionality of 6 + 2s + (2s + 1)s, and so on.

It is the a priori dispersion of the vectors X (0), V (0) that determines the a priori
dispersion of the remaining base vector 1 components via Eqs. (1.1)–(1.3). Next,
assume that

X (0) = X (0)N + δX (0), V (0) = V (0)N + δV (0),

where X (0)N , V (0)N are the nominal initial radius vector and its velocity vector,
respectively, selected from a priori considerations.We suppose that V (0)N is a veloc-
ity vector for an object moving along a circular orbit of radius |X (0)N |. The random
vectors X (0) and V (0) pertain to two a priori parallelepipeds �X and ωV in R3,
respectively. The components of the random vectors δX (0) and δV (0) are uniformly
scattered according to the inequalities

− α|X (0) < δX1, δX2, δX3 < α|x(0)|, (1.4)

− α|V (0)| < δV1, δV2, δV3 < α|V (0)|, (1.5)

where α = 0.1 ÷ 0.2.
Further modeling results in initial (reference) coordinate uncertainties as large

as thousands of kilometers, while the initial (reference) velocity vector uncertain-
ties amount to hundreds of m/s. The linearized-approach extended Kalman filter
(EKF) is inapplicable as a data evaluation tool under the circumstances due to its fast
divergence.

The a priori first and second statistical moments of the base vector 1 compo-
nents are determined by integrals over domains �X and �V , respectively. The inte-
grals are approximated using a modification of the trapezoidal method, where each
parallelepiped edge is divided into r equal-length parts to define (r + 1)3 points
evenly covering the parallelepipeds. The integrands are evaluated at these points via
integration of Eqs. (1.1), (1.3) under initial conditions corresponding to the above
parallelepiped edge division points.

Once the a priori statistical measures of base vector 1 are determined, 2s random
values arrive in sequence at the entry of the recurrent algorithm described in Chap. 1,
the data comprising 2s cumulative angles of observed sight (AOS) taken in a time
interval sT . Once 2s calculation steps are completed, the recurrent algorithm deter-
mines iteration vector 1, the space object status vector evaluation vector X̂(sT ), V̂(sT )

at a time sT .
The estimation accuracy is characterized by the estimation error covariancematrix

calculated at every step of the recurrent algorithm. The root-mean-square (RMS)
deviations of both Cartesian coordinate estimation errors σx,i , i = 1, . . . , 3 and
Cartesian velocity vector components (σv,i , i = 1, . . . , 3), however, are determined
using a Monte Carlo sampling technique with the number of samplings as high as
100,000, to provide guaranteed estimation accuracy.

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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The procedure to determine iteration vector 2 is similar. So we assume

X (0) = X̂(sT ) + δX (0), V (0) = V̂ (st) + δV (0),

given
− α3σx,i < δXi < α3σx,i , (1.6)

− α3σv,i < δVi < α3σv,i , (1.7)

where i = 1, . . . , 3.

6.1.3 Model Predictions

The a priori initial status vector components correspond to an artificial Earth satellite
(AES) on a circular orbit:

X1(0) = 26 × 106 m X2(0) = X3(0) = 0, (1.8)

V1(0) = 0, V2(0) = 3.6852 × 103 m/s, V3(0) = 0. (1.9)

The sighting system is determined by a set of equalities:

t = 0 : λ(0) = 0. ϕ = 0, h = 0 (y1(0) = y2(0) = 0).

The true (actual) initial status vector components are determined by a set of equali-
ties (1.4), (1.5) givenα = 0.1 (option 1), orα = 0.2 (option 2), |X (0)| = 26×106 m,
|V (0)| = 3.685 × 103 m/s.

In a simulation environment, the recurrent algorithm ran under the conditions of
τ = 10s, k = 20, s = 6. These conditions mean that each 20 pairs of AOS y1, y2
observed during the sequence of the time intervals T = 200 s are replaced with
the pairs yint,1, yint,2 of the cumulative OD. Iteration vectors 1, 2, 3, … form the
resulting (output) parameters of the algorithm at times 6T, 12T, 18T , ….

A polynomial approximation technique has been used when simulating the eval-
uation vector components as d = 1 and d = 2. The case d = 1 means that, at every
step of the recurrent algorithm, the evaluation vector components comprise a linear
combination of the last 12 components of the base vector consisting of 12 cumulative
OD. The case d = 2 means that, at every step of the recurrent algorithm, the evalu-
ation vector components comprise a linear combination of 90 items, which are the
last 90 components of the base vector and consist of the products of 12 cumulative
OD raised to the power of 0, 1, 2.

In the case d = 1, the integrals comprising the first and second statistical moments
of the base vector components were calculated with r = 2.

In the case d = 2, the integrals comprising the first and second statistical moments
of the base vector components were calculated with r = 4.
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Listed next are the σx,i values (in m) and σv,i values (in m/s) resulting from
several steps of the iteration process. The values were determined using a Monte-
Carlo sampling technique with the number of samplings (NOS) set at 100,000.
Such an NOS takes about 25 s of computing time when performed on a computer
with a low productivity setting. In the case d = 2, the computing time increases
up to 20min.

Option 1, α = 0.1.

The a priori RMS σ a
x,i and σ a

v,i representing the space object status vector com-
ponent dispersion at a time 6T are as follows:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2 σ a

v,3

av, 31.87 × 106 1.87 × 106 1.83 × 106 2.71 × 102 2.69 × 102 2.60 × 102.

Iteration 1: d = 2:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2 σ a

v,3

8.34 × 104 1.57 × 104 1.04 × 104 4.625 10.15 2.98

Iteration 2: d = 2:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2 σ a

v,3

8.77 × 102 2.12 × 102 3.52 × 10−1 3.09 × 10−2 9.08 × 10−2 1.12 × 10−4

Iteration 3: d = 2:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2 σ a

v,3

7.11 3.63 1.13 × 10−5 3.03 × 10−4 1.10 × 10−3 4.70 × 10−9

Iteration 4: d = 1:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2 σ a

v,3

1.28 9.30 × 10−1 1.03 × 10−12 8.65 × 10−5 2.11 × 10−4 4.09 × 10−16

The simulation results show that each iteration reduces the space object status vector
component dispersion RMS values by a factor of ∼100. In fact, the position as well
as the velocity vector components seem precisely defined by the moment when the
fourth iteration is completed.
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Option2, α = 0.2.

The a priori RMS σ a
x,i and σ a

v,i representing the space object status vector com-
ponent dispersion at a time 6T are as follows:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2 σ a

v,3

3.76 × 106 3.73 × 106 3.67 × 106 5.45 × 102 5.39 × 102 5.23 × 102.

Iteration 1: d = 2:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2 σ a

v,3

5.00 × 105 1.60 × 105 7.89 × 104 3.44 × 10 6.55 × 10 1.62 × 10

Iteration 2: d = 2:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2 σ a

v,3

6.57 × 104 3.18 × 104 9.84 × 10 6.26 × 10−1 8.34 8.94 × 10−3

Iteration 3: d = 2:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2 σ a

v,3

2.03 × 102 1.39 × 102 1.65 × 10−3 8.71 × 10−3 3.25 × 10−2 1.53 × 10−7

Iteration 4: d = 1:

σ a
x,1 σ a

x,2 σ a
x,3 σ a

v,1 σ a
v,2σ

a
v,3

5, 804, 228.78 × 10−9 4.43 × 10−4 9.40 × 10−4 3.88 × 10−12

The data show that a twofold increase in the a priori dispersion resulted in slightly
increased RMS values of the space object status vector component estimation error
following the four iterations.

6.2 Estimation of the Air- and Space-Craft Status Vector,
Local Vertical Orientation Angles, and AC-Borne
Sighting System Adjustment

Apolynomial approximation is the technique commonly used to solve a set of nonlin-
ear algebraic equations providing themathematical formulation of a newly developed
autonomous (unaided) AC navigation method.

One possible situation in AC control practice, which is equally related to both
manned and unmanned vehicles, requires the AC navigation (i.e., instantaneous
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positioning and velocity vector determination in the frame fixed relative to the Earth)
to be performed autonomously, as self-contained activities, without the use of radio
signals from the Earth or from space. Such a situation may arise, for instance, when
the AC has to force-land in an arctic environment or in a jungle, when perform-
ing urgent airlift freight delivery operations in unprepared terrain, or when the AC
navigation system is to be adjusted in the event of a GPS receiver malfunction.

Note that any emergency/urgent landing or airlift delivery requires knowing the
motion variables (trajectory parameters) of the AC relative to the terrain for which
geographical positions are unknown. In such cases, the AC trajectory parameters
received from the GPS are of no use to navigate the AC when the terrain elevation
and/or clearance is unknown.

We shall treat a special case when the external data containing information on the
AC motion relative to the Earth are instantaneous AOS values related to the fixed
point on the top of the ground and are available from the AC-borne sighting system.
This point appears to be “shining” in some wavelength range of the electromagnetic
spectrum. The pointmay comprise a reflector disposed from theAC, to reflect (during
the repeated target runs) the continuous laser radiation or millimeter-wave band
radiation generated by the AC-borne sighting system. Alternatively, the “shining”
spots may be some distinguished points, either natural or artificial, on the top of
the Earth.

It must be emphasized that no information is required about the geographical
position and height of the “shining point” (SP).

Let’s introduce the AC-borne (Cartesian) frame (ACBF) fixed relative to the AC
and the sight ray, a vectorwith its origin at the center of the optical sighting systemand
its endpoint at the SP. It is the center of the sighting system that serves as the ACBF
origin. Two angles of sight measured by precise digital sensors determine the angular
orientation of the sight ray in theACBF.The instantAOSvalues provide theminimum
adequate information to perform high-precision autonomous navigation of the AC
relative to the Earth.

The presented modification of the AC navigation method does not require mea-
suring the present distance on the SP (see [2] for a modification including the present
distance measurement), thereby dramatically simplifying the design and scope of the
AC-borne sighting system. The algorithm of the method uses polynomial approxi-
mation of the root vector, the vector representing a solution of the model nonlinear
algebraic system to describe the autonomous navigation parameters.

The condition-specific model study of the AC flight has demonstrated that the
information on the several fixed-point reference AOS values acquired for 15 s is
adequate to determine the navigation parameters with minute uncertainties. Unex-
pectedly, a highly accurate estimation of the local vertical orientation angles has
been achieved.

The algorithm may illustrate a computer-aided technology with a potential for
getting the desired autonomous navigation “at a low price,” that is, having used the
ASC-borne sighting system with no distance-measuring equipment.
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6.2.1 Primary Navigation Errors and Formulation of the
Problem

The ASC-borne navigation equipment is assumed to include three angular velocity
sensors to measure the ASC velocity vector projections on the ASCBF axes, and
three accelerometers, to measure the similar projections of the ASC nongravitational
acceleration vector. The projections are input at a high rate into the flight navigational
computer.

Let’s introduce the accompanying frame of reference (AFR), with the AFR origin
aligning with the origin of the ACBF, the Z -axis being directed as the local gravity
vector, and the X, Y pair of axes belonging to the local horizontal plane, which
is in turn perpendicular to the local gravity vector. (Conventionally, the Z -axis is
directed as the local weight vector; the distinction between definitions, however, is
not critical in this case.) The X, Y pair of axes may be arbitrarily oriented within
the local horizontal plane. For example, the X -axis may be directed meridionally
toward the North Pole, and the Y -axis may be directed leftward to line up with the
geographic parallel. In that case, the AFR will match the Geographical Reference
System.

Three Euler angles (ψ, θ, γ ) are calculated for the AC mission initiation time
using a conventional initial alignment technique. The angles determine the initial
ACBF orientation relative to the calculated AFR. The last frame does not match the
“true” AFR due to instrumental errors, so the initial Euler angles define the ACBF
orientation relative to the calculated AFR, with some minute uncertainties.

Suppose that, once the AC mission has started, the flight navigational computer
integrates a set of kinematic and dynamic differential equations, where the right
parts depend on the measured components of the AC angular velocity vector and
the AC nongravitational acceleration vector. The integration procedure results in
the instantaneous AC position data, AC velocity vector components, and ACBF
orientation angles relative to the calculated AFR.

This frame of reference does not match the current “true” AFR; this is due to
the initial alignment uncertainties, measurement errors related to the components
of interest, and calculation errors. Then the calculated coordinates (position data),
velocity vector components, and Euler angles deviate from the true values by errors
that accumulate as the mission time elapses.

Assume next that the AC-borne sighting system can detect the SP at a distance of
10–15 km; the AC alters the course and flies toward the SP—this moment is referred
to as the initial sighting time, t = 0. Then, during the time interval T , the sighting
is performed followed by data acquisition and nonlinear estimation of navigation
parameters. Once the elapsed time T is expired, the sighting is terminated and the
algorithm yields the navigation parameters. These parameters are used for the initial
conditions to support the subsequent operation of the independent inertial navigation
system. T has an order of magnitude of about dozens of seconds.

At the time point t = 0, introduce the inertial (not rotary) orthogonal frame of
reference (IFR) with the axes X, Y, Z . At that moment, the IFR is the same as the
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calculatedAFR. The XY Z -axis is thus directed as the calculated gravity vector, while
the IFR X, Y -plane is the same as the local horizontal plane calculated at t = 0.

Due to the calculated AFR alignment errors, the Z X - and ZY -projections of the
IFR will make small angles, δϑ and δγ , respectively, with the Z -axis. The gravity
vector projections on the X -, Y -, Z - axes are then equal to

−gδϑ , −gδγ , −g,

respectively, where g is the gravity force acceleration.
The gravity force field is plane-parallel for several dozens of seconds while the

ASC flies toward the SP, so the δϑ , δγ uncertainties may be considered constant.
These uncertainties could be reasonably termed the local vertical alignment errors.

Now direct the IFR X -axis to the point within the calculated horizontal plane XY
where the SP is projected. Then the calculated vertical IFR planes will be determined
by the pairs of axes X and Z , Y and Z .

Next we define the sight ray orientation within the IFR using the angles fv and fh .
As t > 0, fv is an angle between the X -axis and the Z X -projection of the sight ray,
where Z X is the calculated vertical plane while fh is an angle between the X -axis
and the XY -projection of the sight ray, and XY is the calculated horizontal plane.
So, at t = 0, the sight ray belongs to the calculated vertical plane Z X and makes an
angle fv(0) with the X -axis; at the same time, fh(0) = 0.

While the AC moves toward the SP, the onboard computer determines the angles
fv, fh as the functions of the instantaneous (actual) sight ray orientation angles
relative to the ACBF as well as the functions of the calculated instantaneous Euler
angles that characterize the ACBF orientation relative to the IFR. The last values are
determined via integration of the ACBF angular velocity vector components with the
initial conditions known with some uncertainties due to the Euler angle calculation
errors at t = 0, as discussed above. Furthermore, there are sighting system optical
assembly adjustment errors as well as the errors related to the setting/alignment of
digital sensors intended to read the sight ray orientation angle relative to the ACBF.
When combined, all types of errors will result in the calculated sight angles fv, fh

deviating from the true values by the uncertainties δ fv and δ fh , which may be
considered constant for the time the SP sighting is being performed.

With t > 0, let ax , ay , av be the calculated projections of the AC nongravitational
acceleration vector on the X, Y, Z IFR axes, provided that the ACBF axial projec-
tions of the vector are measured by three accelerators. Let δax , δay , δav denote the
uncertainties in ax , ay , av , respectively. These uncertainties are mainly due to the
Euler angle calculation errors, where the Euler angles determine the ACBF orienta-
tion relative to the IFR. Each uncertainty is thus approximately a linear combination
(with small coefficients) of the other ki j axial projections of the nongravitational
acceleration vector. For example,

δax = k1,2ay + k1,3av.
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We assume here that the measured AC nongravitational acceleration vector con-
sists of the first acceleration vector introduced to counterbalance the gravity force
acceleration and of the second acceleration vector introduced to allow for bending
the AC pathway. Furthermore, let av = g + a

′
v and let ax , ay , a

′
v be the components

of the time-dependent nongravitational acceleration vector introduced to allow for
bending the AC pathway.

With t = 0, let H be the measured SP altitude referred to the IFR (i.e., the
Z -projection of the ST) and let V be the measured value of the ASC velocity vector.
The measurements are performed by the AC-borne sensors with error δ(H), δ(V ),
respectively. The radar altimeter and/or barometric altimeter and air speed meters
will serve as the appropriate candidate sensors.

With the SP held at a horizontal plane XY and t = 0, the actual SP altitude
equals the AC altitude referred to the AFR and is close to the value measured by the
altimeters. In hilly country, however, an appreciable measurement error δ(H) may
arise. Similarly, while the δ(V ) error is generally small to negligible under the still-air
conditions due to the minute airspeed meter uncertainties, the error may approach
the wind speed itself under windy conditions. With t = 0, let δ(V ) be an angle
between the X -axis and the X Z -projection of the velocity vector (X Z is a vertical
plane as above), and let h be an angle between the X -axis and the XY -projection of
the velocity vector (XY is a horizontal plane as above).

From now on, elsewhere we shall take for the actual parameter value its measured
or calculated value plus the measurement or calculation error.

For the purposes of the autonomous AC navigation (see some considerations
above), it is adequate to know (i) the current AC position relative to the S P and
referred to the IFR, (ii) the current velocity vector components, and (iii) the estimated
vertical misalignment errors δϑ , δγ . These estimates are required within the SP local
area context to recalculate the current (instantaneous) coordinates and velocity vector
components previously referred to the IFR into the same navigation parameters now
referred to the AFR.

The problem so formulated is to be solved by the nonlinear estimation algorithm
with due account for the existence of the error types listed above.

6.2.2 Navigation Parameters: The Nonlinear Estimation
Problem

Denote by H(t), Ax (t), Ay(t), Vh(t), Vx (t), Vz(t) the AC’s navigation parameters
referred to the IFR; the parameters characterize the current ASC position relative to
the SP and the current AC velocity vector components, respectively. The parameters
are time-dependent functions and can be represented by the equations

H(t) = H + δ(H) + (V + δ(V )) sin(θv)t − (g/2)t2 + JH (t), (2.1)
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Ax (t) = ((H + δ(H))/tg( fv + δ fv ))) + (V + δ(V )) cos(θθ )t (2.2)

+ (g/2)(δv)t
2 + JAx (t),

Ay(t) = (V + δ(V )) cos(θh)t + (g/2) sin(δγ )t2 + JAy (t), (2.3)

where

JH (t) =
t∫

0

⎛

⎝
τ∫

0

(aϑ + δaϑ )

⎞

⎠ dt,

JAx (t) =
t∫

0

⎛

⎝
τ∫

0

(ax + δax )

⎞

⎠ dt,

JAy (t) =
t∫

0

⎛

⎝
τ∫

0

(ay + δay )

⎞

⎠ dt;

differentiating (2.1)–(2.3), we obtain the expressions for Vh(t), Vx (t), and Vz(t).
The AOS fϑ(t) and fh(t) are measured as functions of time and deviate from

the “true” AOS values by the constant uncertainties δ fϑ and fh , respectively. The
measurement results, Yϑ(t) and Yh(t), are related to the navigation parameters by
the formulas

Yϑ(t) = fϑ(t) = arctg(H(t)/Ax (t) + δ fϑ , (2.4)

Yh(t) = fh(t) = arctg(H(t)/Ay(t) + δ fh . (2.5)

From (2.1)–(2.5) it follows that the measurement results depend nonlinearly on the
eight unknown parameters, which include δ fϑ , δ fh , δ(h), δ(ϑ), δ(v), and δ(h). The
error-controlling parameters δax , δay , and δav are omitted in the list of unknown
parameters.

The nonlinear estimator problem is to evaluate the eight unknown parameters
using the sequence of the measured AOS values stored in the flight navigational
computer memory during flight time. The estimation results then have to be sub-
stituted into (2.1)–(2.3), whereupon the autonomous navigation parameters will be
determined accordingly.

Theoretically, eight taken measurements will be enough. Then the unknown para-
meters will become the roots of a set of eight nonlinear algebraic equations. The
equations are solved numerically using the polynomial approximation algorithm.
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6.2.3 Calculation Model and Estimation Results

This section describes the model and the results obtained when considering the eval-
uation problem containing five unknown parameters δ fv , δ(H), δ(V ), δϑ , θv . The
remaining three parameters—δ fh , δγ , θh—are evaluated in a similar way.

Suppose that an a priori existence domain of five unknown parameters comprising
the roots of a set of the five nonlinear algebraic equations is represented by an a priori
dispersion parallelepiped in R5 centered on the origin. Judgment-based data suggest
that the following parameters of the a priori parallelepiped are acceptable for the
purposes of the nonlinear estimation algorithm accuracy analysis:

|δ fϑ | < 0.002, |δ(H)| < 100m |δ(V )| < 50m/s,

|δϑ | < 0.02, |θϑ | < 0.05.

These data slightly exceed the likely practical error threshold.
The evaluation scheme involves two iteration steps.
In iteration step 1, the data acquisition period T is divided into four equal parts

(quartered). By ti , i = 1, . . . , 4, denote the respective division time points, and
save the measurements Yϑ(ti ). The algorithm has to solve a set of four nonlinear
algebraic equations:

Yϑ(ti ) = arctg(H(ti )/Ax (ti )) + δ fϑ , i = 1, . . . , 4,

on the assumption that δ(H), δ(V ), δϑ , and fv are roots of this set of equations. The
variable δ fϑ affords a nuisance parameter and needs no estimation during iteration
step 1. Even so, it was demonstrated by calculations that estimation error variances
are small for values to be estimated during iteration step 1.

Replace the four unknown parameter values in formula (2.4) with the estimates
obtained with estimation error values added to them. The result is that the respective
four edges of the new a priori parallelepiped will be dramatically shrunk, to deter-
mine the reduced possible scattering of the unknown parameters upon completion
of iteration step 1. The new edge lengths are equal to twice the square roots of the
estimation error variances calculated in iteration step 1. The variances are determined
according to the corresponding formulas of Chap. 4 or, alternatively, using a Monte
Carlo sampling technique within the math simulation model of the autonomous nav-
igation algorithm.

In iteration step 2, the data acquisition period T is divided into three equal parts
(trisected). By ti , i = 1, . . . , 3, denote the respective division time points, and save
the measurements Yϑ(ti ). The algorithm has to solve a set of three nonlinear alge-
braic equations:

Yϑ(ti ) = arctg(H(ti )/Ax (ti ) + δ fϑ , i = 1, . . . , 3,

http://dx.doi.org/10.1007/978-3-319-04036-3_4
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on the assumption that δ(H), δ(V ), θv, and δϑ are roots of this set of equations. The
estimation errors (which arose in iteration step 1) related to the variables θϑ and δϑ

afford nuisance parameters and need no estimation in iteration step 2.
After considering Eqs. (2.1)–(2.3) and the simulation data, one sees that the para-

meters to be evaluated are poorly observable whenever the AC nongravitational
acceleration vector is lacking (vanishes), so there is no way of bending the pathway
at the segment while the nonlinear estimation data are acquired. Hence, we suppose
when simulating the algorithm’s operation that, from the time t = 0 on the above
nongravitational acceleration vector is perpendicular to the current AC velocity vec-
tor and rotates this vector with angular velocity during the time interval t. Denote the
value of the vector by ag. Then the following equations hold:

JH (t) = (g/2)t2+ag(cos(θv)−cos(θv+ωt)/ω2)−(sin(θv)t/ω))+
∫ t

0

(∫ τ

0
δav dτ

)
dt,

JAx (t) = (g/2)t2+ag(− sin(θv)+sin(θv+ωt)/ω2)−(cos(θv)t/ω))+
∫ t

0

(∫ τ

0
δax dτ

)
dt,

where ω = ag/V .
In iteration step 1, the four-dimensional root vector has been approximated by

a formal vector power series section, the series being composed of 14 vector items
(addends), as specified by the polynomial approximation technique. Each item is
proportional to the product of the four AOS measurements to an integer power fϑ ,
each AOS containing δ fϑ , the random (still constant) adjustment errors, and Euler
angle calculation errors. The sum of powers is 2 or less.

In iteration step 2, the three-dimensional root vector has been approximated by
a formal vector power series section, the series being composed of 19 vector items
(addends). Each item is proportional to the product of the threeAOSmeasurements to
an integer power fϑ , each AOS containing δϑ , the random (still constant) adjustment
errors, and Euler angle calculation errors. The sum of powers is 3 or less.

A modified trapezoidal method was used to evaluate both four- and three-
dimensional integrals, representing, according to the polynomial approximation tech-
nique, the first and second statistical moments. The integrands were calculated at the
division points selected to split the edges of the a priori parallelepiped into 10 equal-
length parts.

The accuracyof estimation is characterizedby theRMSvaluesσ(δ(H)), σ (δ(V )),

σ (θv), σ (δ fv ), and σ(δϑ) determined using a Monte Carlo sampling technique with
the NOS to be 1,000 (in iteration steps 1 and 2). During each sampling, uniformly
distributed random values were generated by the random number generator imple-
mented into the Delphi 7 software package; the values fell within the limits dictated
by the edge lengths of the parameter-specific a priori parallelepiped.

The simulation was performed subject to the conditions T = 15s, at the time
point

t = 0, H = 1500m, Ax = 15000m, V = 150m/s,
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with the options of ag = 1m/s2 and ag = 3m/s2.
The resulting estimation error RMS values are as follows:

Option 1, ag = 1 m/(s2): Summarized errors after two iterations:

σ(δ(H)),m σ(δ(V )),m/s σ(θϑ), rad σ(δ fv ), rad σ(δ fv ), rad
6.29 0.57 0.0029 0.001 0.0000003

Option 2, ag = 3m/s2 : Summarized errors after two iterations:

σ(δ(H)),m σ(δ(V )),m/s σ(θϑ), rad σ(δ fϑ ), rad σ(δ fv ), rad
2.47 0.6 0.0029 0.001 0.0000003

Note that simulating 1,000 steps of the nonlinear estimation procedure takes about
5min of computing time when performed at the computer with low productivity.

It follows from the simulation results that the navigation parameters could be
determined with a sufficiently high accuracy using ag = 1 ÷ 3 m/(s2).

Another point to notice is the highly accurate local vertical calculation error
estimates: A δϑ accuracy level is attainable within a 15-s measurement period. None
of the currently available navigation-based real-time correctionmethods canmaintain
such a level of accuracy. Random errors such as the discrete stochastic (“white”)
noise inherently present in the sight-ray ST tracking error angles are easy to handle
by modifying the nonlinear estimation algorithm according to the results of Chap. 4.
Their smoothing can be performed, for example, by feeding the algorithm with RMS
angles of sight measured with a frequency of 10 ÷ 100Hz at the selected points
within the time interval T .
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Chapter 7
Estimating the Parameters of Stochastic Models

Division 1: Hidden Markov Models

The polynomial approximation method is used to evaluate the experimental data
on the transition and emission probability matrices and the intensities of the matrix
model of theMarkov process with a finite number of states and with continuous time.

7.1 Introduction

The Baum–Welch algorithm is usually recommended to estimate the parameters of
a hidden Markov model (HMM). However, it is not reliable, as it supplies the esti-
mation vector, which corresponds to some nearness of a local maximum likelihood.
This chapter offers a new algorithm-estimator to estimate the HMM parameters;
using the polynomial approximation technique, the Bayes approach, and informa-
tion compression, it builds approximations to a vector of the conditional expectation.

It considers sample observable symbols and for s = 5 hidden states generates
multiple sequences of 15,000 observable characters. The algorithm-estimator cal-
culates the estimates of the unknown 25 transition probabilities and 20 emission
probabilities via third-order (d = 3) polynomial approximations. We have seen that
from 45 relative errors of an estimation, almost all are less than 0.1. The input to
the algorithm-estimator was 16 experimental frequencies received by compression
of the primary information.

In this chapter, we consider the problem of estimating the parameters of the HMM
when unobservable states and observable numbers belong to sets from afinite number
of elements. The statistical design of an HMM has the following scheme:

Let {xt } be an s-state Markov chain, generated by an s × s stochastic matrix
A = {a(i, j)}, t = 1, . . . , T : P(xt = j |xt−1 = i) = a(i, j), i, j = 1, . . . , s. Let
{yt } be a probabilistic function of {xt } that defines the emission probability via an
s × r matrix E = {e( j, k)}, k = 1, . . . , r :
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P(yt = k|xt = j) = e( j, k),

where each row sums to 1.
We suppose that at some whole 1 ≤ i, j ≤ s, 1 ≤ k ≤ r values, a(i, j), e( j, k)

can be equal to zero. However, the matrix A should be ergodic. Next, we suppose
that the x1, x2, . . . , xT states are not observed, and the y1, y2, . . . , yT symbols form
an observable sequence ST . The described statistical construction is HMM, with ele-
ments of the A and E matrices as parameters. The number of independent parameters
is s(s − 1) + s(r − 1).

TheHMMis applied in the analysis andpredictionof experimental data sequences.
Examples of such sequences include a sequence of nucleotides in DNA analysis and
a sequence of phonemes in a problem of speech recognition [1, 2].

Thegoal of this chapter’s Sect. 7.1 is a solutionof an inverse problem for theHMM:
to create a Bayesian algorithm-estimator of elements of the matrices A and E . An
input of the algorithm-estimator is the observable sequence ST . These estimations
are asymptotic optimal in the mean square.

Publication [3] presents the Baum–Welch algorithm for HMM parameter estima-
tion. This algorithm involves an iterative sequence of estimation and maximization
(EM) steps. At any estimation step, the forward and backward algorithms [1, 4] use
the HMM parameters found during the previous step and define the likelihood for
ST . The estimates from these algorithms are used in the current maximization step
in order to determine new values of the HMM parameters, which enlarge the value
of the likelihood function for ST .

The algorithm ensures the theoretical convergence of the calculation process to
the local maximum likelihood function and determines elements of the A and E
matrices corresponding to the maximum likelihood principle.

The disadvantages of the Baum–Welch algorithm can be described as follows:

1. “The Baum–Welch algorithm is guaranteed to find local maximum on the proba-
bility ‘surface’ but there is no guarantee that this local optimum is anywhere near
the global optimum nor a biologically reasonable solution” [1, p. 154].
This statement confirms an example (see Appendix) corresponding to a situation
at s = 2, r = 2. A direct computational search determined a sequence of local
maxima of the likelihood of theHMM in a neighborhood of true (known)matrices
of the transition and emission probabilities. These local maxima did not coincide
with elements of the true matrices and omitted from them expansion of the area
of the computational search.

2. The Baum–Welch algorithm does not calculate a measure of the exactitude of an
estimation (for example, an estimation error covariance matrix) on each pitch of
iterations.
All known algorithms of an applied statistic that use amaximum likelihood princi-
ple have the disadvantages just enumerated. References [1] and [4] do not contain
examples of the application of the Baum–Welch algorithm in biological sequence
analysis. Only the example for s = 2, r = 6 is demonstrated [1] (the example is
based on a criminal situation in a casino).
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In the task of biological sequence analysis, there are situations when an investi-
gator possesses a priori data about the matrices A and E . Let an a priori HMM be
given for some family of microorganisms. This HMM generates observable sym-
bols of sequences; when aligned, the sequences of the nucleotides of the family of
microorganisms are statistically similar.

We accept that [1, 4]

1. A newmicroorganism has been discovered whose structure differs from the struc-
tures of the mentioned family.

2. The aligned sequence of nucleotides of the new microorganism has been discov-
ered.

There is interest in defining the parameters of a new a posteriori HMM that could
generate the mentioned new sequence of nucleotides.

This example illustrates the expediencyof creating aBayesian algorithm-estimator
of the HMM’s parameters. This Bayesian algorithm-estimator should not contain the
basic deficiencies of the Baum–Welch algorithm.

A review of some problems using the Bayesian algorithm for estimating parame-
ters of theHMMhas been presented in Chaps. 1 and 2 of this book. One possible solu-
tion of the problem with a Bayesian algorithm-estimator is stated in Chaps. 1 and 2
for an arbitrary dynamic system. In this case, the Bayesian algorithm-estimator is
constructed via a multipolynomial series composed of vectorial linear combinations
of products of powers of observations. These are empirical frequencies—statistics
from the elements of the observable sequence. These vectorial series represent the
optimum in the mean square approximations of the conditional expectation and are
realized using the multipolynomial approximation algorithm (algorithm-estimator
used in Chaps. 1 and 2).

The algorithm-estimator does not require the determination of the global max-
imum or the local maximum for the likelihood function. The algorithm-estimator
calculates the current matrix’s correlations of estimation errors during all calcula-
tion steps. This circumstance provides an analysis of a possibility of iterations. They
are possible if D(pri) > D(pos), where D(. . .) are the a priori and a posteriori
variances of estimation errors.

From the many-dimensional analog of Weierstrass’s theorem (a corollary of
Stone’s theorem [5]), it follows that with magnification of a power of a multipoly-
nomial series, they uniformly converge to the conditional expectation.

This chapter describes the technology involved in using the algorithm-estimator to
estimate the HMM parameters. The multipolynomial series is composed of vectorial
linear combinations of products of powers of empirical frequencies, statistics from
the elements of the observable sequence. The proof of the law of large numbers has
been established. The law states that if the length of the sequence ST is increased, then
the random empirical frequencies converge to values proportional to the likelihood
of empirical frequencies.

The algorithm builds the matrices Â, Ê , which serve as estimates of the unknown
A and E matrices and also are functions of the empirical frequencies. The matrices

http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_2
http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_2
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Â, Ê are approximate solutions of a system of the algebraic equations whose right
members are the likelihood of the empirical frequencies.

To realize the Bayesian concept, we suppose the matrices A and E have random
elements. We present an algorithmic mechanism to generate these elements. The
mechanism supposes a simple computational process; it determines a priori limits,
in which the unknown elements of the transition and emission matrices dissipate
relative to the given a priori (nominal) probabilities. The given nominal matrices and
the given limits of a dispersion should be interpreted as a priori data supplying the
initial approximate information about the estimated HMM.

We verify the algorithm by estimating the HMM parameters at s = 5, r = 4,
where it is necessary to estimate 25 random transition and 20 random emission
probabilities. In this case, each vector of random parameters has dimension 45 × 1
and determines an element of some random HMM. The algorithm-estimator acts on
random observable sequences, which are generated by the elements of the aforemen-
tioned set of the HMM.

7.2 The Basic Structure of the Algorithm-Estimator

We shall briefly present the structure of the algorithm-estimator, which can be used to
estimate the vector θ parameters of an arbitrary parameterized dynamic system, and
not just the HMM. Following the Bayesian approach, we suppose that the θ vector
is random, with some distribution that can be generated by a computer program.

We describe the basic structure of the algorithm-estimator in connection with the
general problem of estimating the unknown θ , whose dimension is q ×1, if there is an
observable sequence ST , which depends on θ :ST = ST (θ). The θ will be estimated
upon fixing the sampling of ST .

The algorithm-estimator’s structure is described next.

Step 1 By constructing the YN vector statistics with y1, . . . , yN components, we
compress the information contained in ST .

Step 2 For given positive integers d and N , denote by a1, . . . , aN any system of
nonnegative integers such that not all of them equal zero, and they satisfy
the inequality a1 + . . . + aN ≤ d. Denote by m(d, N ) the number of all
such systems. It can be shown by induction that m(d, N ) is determined by
the recursion relation

m(d, N ) = m(d − 1, N ) + (N + d − 1) · · · N/d!, m(1, N ) = N .

We introduce a vector WN (d) of dimension m(d, N ) × 1 with components
w1, . . . , wm(d,N ) such that each component is equal to ya1

1 · · · yaN
N for some

a1, . . . , aN .
Next, we define a basic vector V (d, N ) of dimension (q + m(d, N )) × 1,
V (d, N ) = ||θ WN (d)||T .
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Step 3 Algorithmic maintenance will generate a set of the random θ parame-
ters and the random observable sequences ST . As a result, the computer
memory will contain the set of realizations of the random basic vectors
V (d, N ) sufficient for calculating—via the Monte Carlo method—the sta-
tistical characteristics of the basic vectors V (d, N ), namely, the expectation
vector V (d, N ) = E(V (d, N )) and the covariance matrix CV (d, N ) =
E((V (d, N ) − E(V (d, N )))(V (d, N ) − E(V (d, N )))T ).

Step 4 For given d, N and the YN vector statistics, we introduce a vector Ê(θ |YN )

(WN (d)) that is regarded as a solution of the estimation problem. We shall
construct the set of vectors of linear combinations of the components of the
vector WN (d). Then the vector Ê(θ |YN )(WN (d)) is an element of this set
and is themean-square-optimal (on the set of vectors of linear combinations!)
estimate of the vector θ .

The Ê(θ |YN )(WN (d)) vector can be presented as

Ê(θ |YN )(WN (d)) =
∑

a1+...+aN ≤d

λ(a1, . . . , aN )ya1
1 · · · yaN

N , (2.1)

where the λ(a1, . . . , aN ) vectors are some weight vectorial factors.
The V (d, N ) vector and the CV (d, N ) matrix represent the initial data for the

process of recurrent calculations of the weight vectorial factors λ(a1, . . . , aN ) that
consists of m(d, N ) steps. In the last step in Eq. (2.1), the λ(a1, . . . , aN ) vectors are
determined, together with the C(d, N ) matrix, which is the covariance matrix for
the error of estimating the θ) vector via the Ê(θ |YN )(WN (d)) estimation vector.

The formulas for the process of recurrent calculations are found using a principle
of a decomposition of observations (see Chaps. 1 and 2). This formula operates
correctly if the moving matrix of the estimation errors is singular.

Let E(θ |YN )| be a vector of conditional expectations. Using themultidimensional
analog ofWeierstrass’s theorem (a corollary of Stone’s theorem [5]), we prove that if
the integer d is increased, the error estimation vector |Ê(θ |YN )(WN (d))− E(θ |YN )|
uniformly tends to zero in some domain.

If the numberm(d, N ) of the approximating polynomial series is not small, a large
number of calculations has to be performed (after the initial choice of the integers
q, N , d) to determine the vector coefficients λ(a1, . . . , aN ). However, after these
coefficients have been calculated and stored in computer memory, the estimation
vectors are determined by simple calculations on the basis of Eq. (2.1) after any new
observations of the YN vector statistics.

7.3 Statistics and Empirical Frequencies

Weachieve information compression and suppose that the statistics—some functions
from sample ST—are input in the algorithm-estimator.

http://dx.doi.org/10.1007/978-3-319-04036-3_1
http://dx.doi.org/10.1007/978-3-319-04036-3_2
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We let b be a positive integer. We split the sequence ST into a sequence ST (b) of
blocks, each of which contains b successive observable symbols.

We designate various (not coincident) blocks as u1, u2, . . . , uL , L ≤ rb. The ul

is the block from b consecutive observable y1(l), . . . , yb(l).
The given sequence ST (b) is composed of the blocks u1, u2, . . . , uL , L ≤ rb. If

all the e( j, k) emission probabilities are positive and the length of the sequence ST

is also large enough, then L → rb, T → ∞ will hold. Additionally, T (b) = [T/b],
where T (b) designates a length of ST (b). Furthermore, we believe that the transition
and emission probabilities are all positive.

The block ul is discovered f (l, b, T ) times in the sequence ST (b). We name the
random integers f (l, b, T ) empirical frequencies. The vector composed of empirical
frequencies f (l, b, T ) is the vector of the statistics (N = L) for the problem of
estimating the HMM’s parameters.

As the input for the algorithm-estimator, after forming the ST (b) sequence,
we enter f (l, b, T ) random empirical frequencies, where the l values are integers
1, . . . , L .

7.4 The Law of Large Numbers

Denote by L(l, b, A, E, T ) the likelihood of the following event: The block of the
mentioned ST (b) random subsequence is ul :y1(l), . . . , yb(l).

Let ε > 0, and let Q(i, j, ε) be the event that the following inequalities are
satisfied:

|( f (l, b, T ) − L(l, b, A, E, T ))/T (b)| ≥ ε, (4.1)

where l = i, i + 1, . . . , j − 1, j .
We will prove that for an ergodic HMM with a finite number of states,

Pr (Q(1, rb, ε)) → 0, T → ∞. (4.2)

This statementmay be referred to as the law of large numbers for relative empirical
frequencies. But

Pr (Q(1, rb, ε)) ≤
rb∑

l=1

Pr (Q(l, l, ε).

To prove (4.2), it is enough to show that for any integers l = 1, . . . , rb, the
statement

Pr (|( f (l, b, T ) − L(l, b, A, E, T ))/T (b)| > ε) → 0, T → ∞,

is correct and
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L(l, b, A, E, T ) � f (l, b, T )/T (b), l = 1, . . . , rb. (4.3)

However, the values L(l, b, A, E, T ) are some function by the unknown A and E
matrices. Then Eq. (4.3) is a system of algebraic equations concerning elements of
the A, E matrices and with right members discovered from the observable sequence
ST (b). The Bayesian estimator actually solves system (4.3) approximately.

We give a simple example: the behavior of the relations f (l, b, T )/T (b) for
different values of l. For example, let s = r = 2, b = 3, and

π1 = (1 − (a(1, 2) + a(2, 2)))/(a(1, 1) + a(2, 1) − a(1, 2) − a(2, 2)),

π2 = 1 − π1,

where π1, π2 are the stationary probabilities of nonobservable states.
The random blocks u1, . . . , u8 look like ul : 111, 112, 121, 122, 211, 212, 221,

222. Then Eq. (4.3) looks like

π1(e(1, 1)a(1, 1)e(1, 1)a(1, 1)e(1, 1) + e(1, 1)a(1, 1)e(1, 1)a(1, 2)e(2, 1)

+e(1, 1)a(1, 2)e(2, 1)a(2, 1)e(1, 1) + e(1, 1)a(1, 2)e(2, 1)a(2, 2)e(2, 1))+

π2(e(2, 1)a(2, 1)e(1, 1)a(1, 1)e(1, 1) + e(2, 1)a(2, 1)e(1, 1)a(1, 2)e(2, 1)+

e(2, 1)a(2, 2)e(2, 1)a(2, 1)e(1, 1) + e(2, 1)a(2, 2)e(2, 1)a(2, 2)e(2, 1))

� f (1, b, T )/T (b);

π1(e(1, 1)a(1, 1)e(1, 1)a(1, 1)e(1, 2) + e(1, 1)a(1, 1)e(1, 1)a(1, 2)e(2, 2)

+e(1, 1)a(1, 2)e(2, 1)a(2, 1)e(1, 2) + e(1, 1)a(1, 2)e(2, 1)a(2, 2)e(2, 2))+

π2(e(2, 1)a(2, 1)e(1, 1)a(1, 1)e(1, 2) + e(2, 1)a(2, 1)e(1, 1)a(1, 2)e(2, 2)+

e(2, 1)a(2, 2)e(2, 1)a(2, 1)e(1, 2) + e(2, 1)a(2, 2)e(2, 1)a(2, 2)e(2, 2))

� f (2, b, T )/T (b);

π1(e(1, 1)a(1, 1)e(1, 2)a(1, 1)e(1, 1) + e(1, 1)a(1, 1)e(1, 2)a(1, 2)e(2, 1)

+e(1, 1)a(1, 2)e(2, 2)a(2, 1)e(1, 1) + e(1, 1)a(1, 2)e(2, 2)a(2, 2)e(2, 1))+

π2(e(2, 1)a(2, 1)e(1, 2)a(1, 1)e(1, 1) + e(2, 1)a(2, 1)e(1, 2)a(1, 2)e(2, 1)+

e(2, 1)a(2, 2)e(2, 2)a(1, 1)e(1, 1) + e(2, 1)a(2, 2)e(2, 2)a(2, 2)e(2, 1))

� f (3, b, T )/T (b);
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π1(e(1, 1)a(1, 1)e(1, 2)a(1, 1)e(1, 2) + e(1, 1)a(1, 1)e(1, 2)a(1, 2)e(2, 2)

+e(1, 1)a(1, 2)e(2, 2)a(2, 1)e(1, 2) + e(1, 1)a(1, 2)e(2, 2)a(2, 2)e(2, 2))+

π2(e(2, 1)a(2, 1)e(1, 2)a(1, 1)e(1, 2) + e(2, 1)a(2, 1)e(1, 2)a(1, 2)e(2, 2)+

e(2, 1)a(2, 2)e(2, 2)a(2, 1)e(1, 2) + e(2, 1)a(2, 2)e(2, 2)a(2, 2)e(2, 2))

� f (4, b, T )/T (b);

π1(e(1, 2)a(1, 1)e(1, 1)a(1, 1)e(1, 1) + e(1, 2)a(1, 1)e(1, 1)a(1, 2)e(2, 1)

+e(1, 2)a(1, 2)e(2, 1)a(2, 1)e(1, 1) + e(1, 2)a(1, 2)e(2, 1)a(2, 2)e(2, 1))+

π2(e(2, 2)a(2, 1)e(1, 1)a(1, 1)e(1, 1) + e(2, 2)a(2, 1)e(1, 1)a(1, 2)e(2, 1)+

e(2, 2)a(2, 2)e(2, 1)a(2, 1)e(1, 1) + e(2, 2)a(2, 2)e(2, 1)a(2, 2)e(2, 1))

� f (5, b, T )/T (b);

π1(e(1, 2)a(1, 1)e(1, 1)a(1, 1)e(1, 2) + e(1, 2)a(1, 1)e(1, 1)a(1, 2)e(2, 2)

+e(1, 2)a(1, 2)e(2, 1)a(2, 1)e(1, 2) + e(1, 2)a(1, 2)e(2, 1)a(2, 2)e(2, 2))+

π2(e(2, 2)a(2, 1)e(1, 1)a(1, 1)e(1, 2) + e(2, 2)a(2, 1)e(1, 1)a(1, 2)e(2, 2)+

e(2, 2)a(2, 2)e(2, 1)a(2, 1)e(1, 2) + e(2, 2)a(2, 2)e(2, 1)a(2, 2)e(2, 2))

� f (6, b, T )/T (b);

π1(e(1, 2)a(1, 1)e(1, 2)a(1, 1)e(1, 1) + e(1, 2)a(1, 1)e(1, 2)a(1, 2)e(2, 1)

+e(1, 2)a(1, 2)e(2, 2)a(2, 1)e(1, 1) + e(1, 2)a(1, 2)e(2, 2)a(2, 2)e(2, 1))+

π2(e(2, 2)a(2, 1)e(1, 2)a(1, 1)e(1, 1) + e(2, 2)a(2, 1)e(1, 2)a(1, 2)e(2, 1)+

e(2, 2)a(2, 2)e(2, 2)a(2, 1)e(1, 1) + e(2, 2)a(2, 2)e(2, 2)a(2, 2)e(2, 1))

� f (7, b, T )/T (b).

The Bayesian estimator approximately solves these equations relative to the
unknown values a(i, j), e(k, l).

The monograph [6] states the proof of the law of large numbers for an ergodic
Markov chain with a finite number of states. Some techniques of this proof are used
later in the proof of statement (4.2).
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Let’s consider the ergodic HMM. Denote the vector of the stationary probabilities
by π :

AT π = π,

where π1, . . . , πs are components of the π vector.
Let the initial states of the HMMhave a distribution of the stationary probabilities.

Then any random member of the sequence of the states of the ergodic HMM has the
same distribution.

The following ratios are evident:

L(l, b, A, E, T ) =
s∑

i1=1

πi1�(i1), (4.4)

where

�(i1) = e(i1, y1(l))
s∑

i2=1

a(i1, i2)e(i2, y2(l)) · · ·

s∑

ib=1

a(ib−1, ib)e(ib, yb(l)).

Build an I (l, i), i = 1, . . . , T (b), sequence from T (b) random values, where
I (l, i) = 1 if ul is an element of the ST (b) sequence with serial number equal to i .
Otherwise, I (l, i) = 0.

The distribution of a randomvariable I (l, i) does not depend on i since the random
variables I (l, i) and I (l, j) are independent because of the stationary distribution
for the initial states of the ergodic HMM. Then

Pr (I (l, i) = 1) = L(l, b, A, E, T ). (4.5)

But

f (l, b, T ) =
T (b)∑

i=1

I (l, i)/T (b), (4.6)

E(

T (b)∑

i=1

I (l, i)/T (b) =
T (b)∑

i=1

P(I (l, i) = 1))/T (b). (4.7)

From (4.6), (4.7), it follows that

E( f (l, b, T )/T (b)) = L(l, b, A, E, T ). (4.8)
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According to Chebyshev’s inequality and (4.8),

P(|( f (l, b, T )/T (b)) − L(l, b, A, E, T )| > ε) <

E(( f (l, b, T )/T (b)) − L(l, b, A, E, T ))2)/ε2.

Therefore, (4.2) will be proved if we show that

J (T ) → 0, T → ∞, (4.9)

where J (T ) = E(( f (l, b, T )/T (b)) − L(l, b, A, E, T ))2.
Then we get

E(( f (l, b, T )/T (b))2) = (1/T (b)2)

T (b)∑

i=1

T (b)∑

j=1

E(I (l, i)I (l, j)) =

(1/T (b))2
T (b)∑

i=1

T (b)∑

j=1

P(I (l, i) = 1)P(I (l, j) = 1) = L(l, b, A, E, T )2.

Therefore, the J (T ) value is identically equal to zero and the ratio (4.8) is fair.
So the law of large numbers (4.2) is proved if we assume that the initial states of the
HMM are stationary.

We get an approximate consideration of the general case if, in formula (4.4),
instead of the components πi , we write down components of another π̃ vector that
does not coincide with the vector π .

We use the following basic property of the ergodic Markov chain.
If Pr (i, j)(n) is the transition probability of the j state from the i state in n steps,

then for the ergodic Markov chain, one can find C and 0 < ρ < 1, which are
constants such that (see [7])

|Pr (i, j)(n) − π j | ≤ Cρn . (4.10)

Therefore, by choosing the integer n in (4.10), we see that for any ε numbers in
(4.2), it is possible to define the beginning of a new observable sequence so that the
components of vectors π̃ and π differ small enough in (4.4). Then the magnitude of
J (T ) becomes equal to a small value that is distinct from zero, but the validity of
the law of large numbers (4.2) is saved.

A shift of the beginning of the observable sequence to the right reduces the empir-
ical frequency by a constant but does not, in practice, influence its ratio to the T (d)

value whenever the length of the initial observable sequence is large enough.
The law of large numbers delivers the information on the moving accuracy of the

estimation of elements of the A, E stochastic matrices. It is enough for this purpose
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to calculate the moving values of a difference ( f (l, b, T )/T (b))− L(l, b, Â, Ê, T ),
where Â, Ê are matrices of moving estimations of the unknown A, E matrices.

The L(l, b, Â, Ê, T ) value of the likelihood is convenient for calculations using
the formula

L(l, b, Â, Ê, T ) = πT D(y1(l)) ÂD(y(l, 2)) Â · · ·

D(y(l, b − 1)) ÂD(y(l, d))I (s), (4.11)

where D(y1(l)) = diag(ê(1, y j (l)), ê(2, y j (l)), . . . , ê(s, y j (l)) I (s) is the s × 1
vector, whose elements are equal to 1.

Identity (4.11) is proved by induction.

7.5 A Bayesian Statistical Construction

The unknown random θ vector is a vector made of transition and emission proba-
bilities—the elementsa(i, j) and e( j, k)of the A, E stochasticmatrices of dimension
s × s + s × r . We shall designate the a priori (nominal) matrices Aap and Eap. In a
mathematical simulation, these stochastic ergodic matrices are built with a random
number generator. The random a(i, j) and e( j, k) elements of the matrices A, E
were determined stochastically.

a(i, j) = aap(i, j)(1 + ρεi, j )∑s
j=1 aap(i, j)(1 + ρεi, j )

, (5.1)

where 1 ≤ i, j ≤ s, and

e( j, k) = eap( j, k)(1 + ρε j,k)∑r
k=1 eap( j, k)(1 + ρε j,k)

, (5.2)

where 1 ≤ j ≤ s, 1 ≤ k ≤ r.
In (5.1) and (5.2), εi, j , ε j,k are random independent values that are generated

by the sensor of random uniformly distributed numbers within the limits of −1 ≤
εi, j , ε j,k ≤ 1. The constant ρ approximately realizes a priori representations about
relative limits, in which elements of estimated stochastic matrices can be dissipated
relative to their a priori values. So, for example, if ρ = 0.5, then elements of unknown
stochasticmatrices can approximately, within the limits of∓50, be dissipated relative
to the set of a priori values. At the prescribed value ρ, it is easy to determine using
the Monte Carlo method or analytically if we have a boundary in which there can be
a dissipation of elements of the stochastic matrices (5.1), (5.2).

For example, if the a priori probabilities are equiprobable for some row of a
stochastic matrix, then relation (5.1) or (5.2) defines random variables, for which the
f (x) marginal density distribution is
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f (x) = 1/(2sρ2(s − 2)!x2)
∫ 1+ρ

1−ρ

y2
[(v+s−1)/2]∑

0

(−1)kCk
s−1(v + s − 1 − k)s−2dy,

where v = (y((1/x) − 1) + s − 1)/ρ, (1 − ρ)/(s(1 + ρ)) ≤ x ≤ (1 + ρ)/(s(1 −
ρ)). If this inequality is not fulfilled, then f (x) = 0. Then we can easily discover
numerically a priori variances: performances of the dissipation of these random
variables. Certainly, the value ρ can depend on the numbers i, j, k, although it is a
constant in this example.

Formulas (5.1) and (5.2) determine the set of random HMMs. These HMMs
generate the set of the observable sequences and correspond to the set of empirical
frequencies.

Let’s note that in [8] it is suggested to use Dirichlet’s distribution for a special
case of (5.1), (5.2) when ρ = 1; also, one a priori probability would be equaled.
In this case, the a posteriori distribution of elements of stochastic matrices would
be conjugate concerning the a priori distribution. But generating of set of stochastic
matrices noticeablywould become complicated using aMonteCarlomethod: Instead
of generating simple, uniformly distributed random numbers, generating the gamma
distribution would be necessary.

7.6 Estimating Hidden Markov Model Parameters
by the Algorithm-Estimator

We shall consider features and results of an application of the algorithm-estimator for
the estimation of HMM parameters in some approximate task of biological sequence
analysis [1, 4]. Furthermore, we consider the situation where s = 5 and r = 4.
We assume that the 25 a(i, j) transition probabilities and the 20 e( j, k) emission
probabilities are greater than zero. Therefore, it is necessary to estimate the 25 + 20
= 45 unknown parameters of the HMM. We arbitrarily select the nominal (a priori)
stochastic matrices a(i, j), e(i, j) using the standard program for generating random
uniformly distributed values.

Using Chap.5 from [1, 4], we find that a stochastic design supposes the following
interpretation in the field of approximate representations and problems of biological
sequence analysis.

Let the a priori HMM be known. This HMM generates a family of known
sequences of nucleotides, which, as is known, consist of four kinds of symbols.
The new sequence of nucleotides is observed with properties that differ from the
properties of known sequences. We suppose that after smoothing, the observable
new sequence is generated by some new HMM, which belongs to the set of random
HMMs.

We believe that the algorithm for generating random elements of this set is pre-
sented by formulas (5.1) and (5.2) by ρ = 0.5: The values of the parameters of
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the new (unknown) HMM differ from the parameters of the old HMM on random
variables, which modulo do not surpass half the parameters of the old HMM.

Next, it is necessary to use the algorithm-estimator to estimate the 45 parameters
corresponding to the new HMM; the algorithm-estimator’s inputs are the observable
new sequences of nucleotides. The estimation should be made for any stochastic
matrices, determined by (5.1) and (5.2), that depend on the 45 parameters entered
here.

Following a series of sequential steps, the next step is to show the technology of
applying the common principles of the algorithm-estimator stated in Sect. 7.2 of this
chapter to a solution of the concrete problem of the Bayesian estimation of the HMM
parameters.

We suppose that the observable sequences, consisting of four numbers, are gener-
ated via 50,000 sequential pitches of the HMM by tuning of the algorithm-estimator
and the subsequent modeling. We also suppose that d = 2 and L = N = 16.

Step 1 Weconstruct theYN vector’s statisticswith f (1, d, T ), . . . , f (L , d, T ) com-
ponents.

Step 2 For the given positive integers d and N , we introduce the vector WN (d) of
dimension m(d, N ) × 1, consisting of powers of the empirical frequencies
and the basic vector V (d, N ) of dimension (58+ m(d, N ))× 1, V (d, N ) =
||θ WN (d)||T .

Step 3 Weadjust the algorithm-estimator.Using aMonteCarlomethod,we calculate
the statistical characteristics of the basic vectors V (b, N ), the expectation
vector V (d, N ) = E(V (d, N )), and the covariance matrix CV (d, N ) =
E((V (d, N ) − E(V (d, N )))(V (d, N ) − E(V (d, N )))T ). The number of
realizations in a Monte Carlo method equals 1,000.

Step 4 The algorithm-estimator determines the θ̂ = Ê(θ |YN )(WN (d)) estimation
vector of dimension 45 × 1 and estimation error vector for the set of the
random HMM, generated by formulas (5.1) and (5.2).

Every θ̂ = Ê(θ |YN )(WN (d)) vector is a mean-square-optimal (on the set of
the linear combinations from components of the WN (d) vector!) estimate for the
E(θ |WN (d)) vector of conditional expectations of the vector θ of dimension 45× 1.

Let the random variable θ belong to a set of 45 estimated parameters, and let

θ̂ = Ê(θ |YN )(WN (d)) be a set of their estimations. Then 45 values � = θ̂−θ
θ

are random elements of the set of random relative estimation errors. Just ahead we
present three random arrays composed from 45 relative errors Delta of an estima-
tion. The algorithm-estimator receives the arrays with d = 1, 2, 3, m(d, N ) =
16, 152, 968 and some set of 45 arbitrary random values εi, j at (5.1), (5.2).
All variables are statically independent and have a uniform distribution on segment
[−1, 1].
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Relative error estimation of a(i, j), d = 1, m(d, N ) = 16

j |i 1 2 3 4 5
1 −0.53574 −0.95833 0.14018 0.25977 0.02330
2 0.19204 −0.31701 −0.63790 −0.23418 0.21034
3 −0.27376 0.31587 0.00589 −0.77283 −0.53393
4 0.12913 0.19244 −0.02867 0.02773 −0.22581
5 0.01988 −0.20032 0.35250 −0.09939 0.24392

Relative error estimation of e(i, j)

j |i 1 2 3 4
1 0.00022 −0.17170 −0.12741 0.07749
2 0.00192 −0.00157 0.00881 −0.00650
3 −0.91501 −0.11010 0.08346 0.18855
4 −0.16284 −0.08714 0.13341 −0.22516
5 0.11035 0.41215 −0.31740 −0.09563

Relative error estimation of a(i, j), d = 2, m(d, N ) = 152

j |i 1 2 3 4 5
1 −0.46880 −0.84398 0.09516 0.25502 0.02875
2 0.15887 −0.24949 −0.52316 −0.25239 0.17226
3 −0.34296 0.24351 0.10000 −0.56704 −0.46242
4 0.10396 0.24173 0.01249 0.03510 −0.27459
5 −0.05516 −0.10083 0.39981 −0.074225 0.23523

Relative error estimation of e(i, j)

j |i 1 2 3 4
1 0.06656 −0.15174 −0.16568 0.03388
2 0.08239 −0.12901 0.09147 −0.10179
3 −0.91128 0.11792 0.11097 0.10496
4 −0.13402 −0.07391 0.13880 −0.33272
5 0.00122 0.36223 −0.42267 0.03543

Relative error estimation of a(i, j), d = 3, m(d, N ) = 968

j |i 1 2 3 4 5
1 −0.21301 −0.34295 0.08603 0.05804 0.00854
2 0.03436 −0.04485 −0.17120 0.08529 0.03101
3 −0.13541 0.05226 0.06203 −0.30946 0.06254
4 0.18316 −0.06709 −0.05169 0.09499 −0.07779
5 −0.05086 0.08488 0.13496 0.00272 −0.03244
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Relative error estimation of e(i, j)

j |i 1 2 3 4
1 0.00187 0.09547 −0.28177 0.11510
2 0.00783 0.04463 −0.02480 −0.01512
3 −0.09949 −0.10106 0.02721 0.02622
4 0.06925 −0.04654 0.09503 −0.31728
5 −0.00730 −0.01923 −0.10126 0.02996

At d = 3, m(d, N ) = 968, N = 16 [the algorithm-estimator’s approxima-
tions use the linear combinations of of third-degree polynomials at f (1, d, T ), . . . ,

f (L , d, T ) components, value terms 968], almost all 45 relative errors of solving
the inverse problem are smaller than 0.1.

Appendix

Let’s construct an example HMM for which a point of the local maximum likelihood
(stationary points of this function in the space ofHMMparameters) essentially differs
from the HMM’s parameters, generating an observable sequence ST .

	yCTb s = r = 2, a(1, 2) = sin2( f1), a(2, 1) = sin2( f2), e(1, 1) =
sin2(v1), e(2, 1) = sin2(v2), π1 = sin2( f0), π2 = cos2( f0).

Let s = r = 2, a(1, 2) = sin2( f1), a(2, 1) = sin2( f2), e(1, 1) = sin2(v1),

e(2, 1) = sin2(v2), π1 = sin2( f0), π2 = cos2( f0).
We shall define an a priori HMM with independent parameters f0 = π/4, f1 =

0.35π/2, f2 = 0.75π/2, v1 = 0.64π/2, and v2 = 0.27π/2. We shall designate O
a point in R4 with coordinates f1, f2, v1, v2. We shall accept that an a priori HMM
builds an observable random sequence ST , which ismade from T = 15,000 1 charac-
ters 1, 2. The log of likelihood J (ST ) is a random variable. However, at T = 15,000,
its dispersion is small upon matching with J (ST ). Furthermore, we approximately
believe the likelihood of the corresponding constant observable sequence ST and
HMM, which are close to the a priori HMM, is not random.

Around the center of point O , we shall construct a sequence of parallelepipeds
enclosed around each other to which belong a vector of the HMM’s parameters. At
a sequential increase in the edge lengths of the parallelepipeds, the random search
method allows [9] us to construct a finite-sequence HMM. The vector of parame-
ters of every HMM supplies a local maximum likelihood on the set of the vectors
corresponding to the parallelepiped. Local maximum likelihoods form an increas-
ing sequence. Therefore, there is a sequence of HMMs that are not equal to the a
priori HMM and have a greater local maximum. This fact contradicts the maximum
likelihood principle, which states that for observable sequences ST , the maximum
likelihood should be reached on the a priori HMM. Therefore, it is not necessary
to consider as reliable an algorithm as the Baum–Welch algorithm, which defines
HMM parameters supplying local maximum likelihoods, when estimating HMM
parameters.
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Division 2: Estimating the Intensity Matrix for a Model of a
Markov Process

7.7 Introduction

While working out a stochastic model of the dynamics of the evolution of a real
process proceeding in a medium, there may be a situation when one has the right to
suppose that the medium, and consequently the process depending on it, satisfy the
a priori conditions as follows:

• At any instant, the process is only in one of a finite number of states, n;
• Pr(t, t + δ, i, j), the probability of transition at instant t + δ to a state j if at
instant t the process was in a state i , is defined by a relationship

Pr(t, t + δ, i, j) = λi, jδ + o(δ)

for i �= j and 1 ≤ i, j ≤ n. Nonnegative values λi, j are called intensities of the
transition [10]; n(n − 1) of these values form an intensity matrix of dimension
n × n whose diagonal elements are not defined. The values of the intensities are
commonly considered the average frequencies of transitions, and the value λi, j

can serve as a measure of the influence of state i on state j . Hence, the estimator of
elements of the intensitymatrix for an evolving complicated real system, satisfying
the listed a priori conditions, can be found useful for experimental determination
of a numerical measure of connections between any states of the system. The given
a priori conditions are known to define a stochastic construction of a homogeneous
Markov process with a finite number of states and with continuous time. There are
numerous examples of using models of such processes to describe the dynamics of
the functioning of real systems (see, for example, [11]). TheKolmogorov equations
[10] deliver exhaustive information about the dynamics of the process

dpi/dt = λ1,i p1 + · · · + λi−1,i pi−1 − λi pi + λi+1 pi + 1+ · · · + λn,i pn, (2.1)

λi = λi,1 + · · · + λi,i−1 + λi,i+1 + · · · + λi,n, (2.2)

where, at the given initial conditions, pi is the probability of continuing the process
at instant t in a state with number i, i = 1, . . . , n.

Hence, to research characteristics of a real process, it is necessary to estimate
it previously on experimental data intensity matrix elements. In this section, we
describe an application of the polynomial approximation method for this type of
estimation if theMarkov process under study is ergodic: There are final probabilities,
independent of the initial conditions.

For this purpose, the conditions λi, j > 0 are sufficient to be true.



7.7 Introduction 141

7.7.1 Maximum Likelihood Method of Observing Instants
of Direct Transitions

Let’s consider versions of constructing a set of observations whose results form a
digital file of inputs to an algorithm of the statistical maximum likelihood method
to calculate estimators of the intensity matrix’s elements. Let’s consider the simplest
construction: when a sequence of observations results in a sequence of the fixed
instants in which numbers of current states of the Markov process are changed.

Let’s assume that the process at instant t is in state i. Then, according to the a
priori conditions, this state generates a Poisson stream of requests of intensity λi (2.2)
that compels the process to direct (without previously visiting intermediate states)
the transition with intensities λi,1, . . . , λi,i−1, λi,i+1, . . . , λi,n to one of the states
with numbers 1, . . . , i − 1, i + 1, . . . , n at a random instant t + Ti . Then q j (Ti j , a
probability of the fact that the state number j will become this state, is defined by

qi = (λi, j/λi )(1 − exp(−λi Ti j )) (2.3)

where t+Ti j is an instant of the direct transition from state number i to state number j.

Equation (2.3) follows from the solution at the initial conditions q1(t) = 0, . . . ,
qi−1(t) = 0, qi (t) = 1, qi+1(t) = 0, . . . , qn(t) = 0 of the Kolmogorov equations if
one assumes that the states 1, . . . , i − 1, i + 1, . . . , n are deadlocked [12].

Let the diagram of observations have been constructed so that for all pairs of
integers i and j (i �= j and 0 ≤ i, j ≤ n), which are fixed by numbers of direct
transition, and k[k = 1, . . . , K (i, j)], the random variables Tk, i, j , which are time
intervals between instants of a direct transition from i to j, and also an integer
K (i, j) that is a number of such direct transitions in the general (nonrandom) time
of the observation process. Let’s try to estimate elements of the intensity matrix by
the maximum likelihood method on the basis of results of observations of direct
transitions. We will assume that

x1,2, . . . , x1,n,

..........................

xi,1, . . . , xi,i−1, xi,i+1, . . . , xi,n,

.....................................

xn,1, . . . , xn,n−1

are unknown elements of the intensity matrix and

x1 = x1,2 + . . . + x1,n,
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.....................................

xi = xi,1 + . . . + xi,i−1 + xi,i+1 + . . . + xi,n,

...............................................

xn = xn,1 + . . . + xn,n−1.

Then, if we take into consideration the Markov property of the random process,
Eq. (2.3) implies that L(x1,2, . . . , xn,n−1), a function of the likelihood of the results
of observations constructed above, can be represented by

L(x1,2, . . . , xn,n−1) =
n∏

i=1

(xi,1/xi )
K (i,1)×

· · · × (xi,i−1/xi )
K (i,i−1)(xi,i+1/xi )

K (i,i+1) · · · (xi,n/xi )
K (i,n)×

(1 − exp(−xi T1,i,1)) · · · (1 − exp(−xi TK (i,1),i,1)) × · · ·

(1 − exp(−xi T1,i,n)) · · · (1 − exp(−xi TK (i,n),i,n)). (2.4)

According to the maximum likelihood method, as an estimator of elements of
the intensity matrix, one ought to consider values x1,2, . . . , xn,n−1, delivering a
maximum of the function L(x1,2, . . . , xn,n−1).

However, it is easy to verify that if K (i, 1) = . . . = K (i, i − 1) = K (i, i) =
K (i, i + 1) = . . . = K (i, n) = K , then the method gives absurd values for the
estimators of the variables xi,1, . . . , xi,i−1, xi,i+1, . . . , xi,n .

In fact, here we have

L(x1,2, . . . , xn,n−1) =
n∏

i=1

(xi,1 · · · xi,i−1xi,i+1 · · · xi,n)K /(x K (n−1)
i )×

(1 − exp(−xi T1,i,i )), . . . , (1 − exp(−xi TK ,i,1))

(1 − exp(−xi T1,i,n)), . . . , (1 − exp(−xi TK ,i,n)). (2.5)

But the harmonic mean is no more than the arithmetic mean and becomes equal
to it at equality of all the arguments of these functions of many variables. Hence, at
the fixed variable xi = c, the function

(xi,1/xi )
K , . . . , (xi,i−1/xi )

K , (xi,i+1/xi )
K , . . . , (xi,n/xi )

K

reaches its maximum if
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xi,1 = · · · = xi,i−1 = xi,i+1 = · · · = xi,n = c/,

and then
L(x1,2, . . . , xn(n−1 = (1/(n − 1))K (n−1)×

(1 − exp(−cT1,i,1)), . . . , (1 − exp(−cTK ,i,1))×

(1 − exp(−cT1,i,n)), . . . , (1 − exp(−xi TK ,i,n)). (2.6)

Maximum of the right of Eq. (2.4) is reached for c → ∞, which leads to absurd
values of estimators. Therefore, the maximum likelihood method is unsuitable for
estimation at least in one special case of results of observations of direct transitions.
Hence, later, we do not consider this kind of observation.

7.7.2 Algorithm of Estimating Observation States in Instants
of Indirect Transitions

Let a process of observations be such that in the instants 0, . . . , T, . . . , k′, the integer
variables i(0), . . . , i(T ), . . . , i(kT ), . . . , that is, the numbers of states in which a
random process was found to be in the instances, multiple to a selected variable T,
are held fixed. In these instants, the process implements indirect transitions in the
sense that during an interval of time [0, T ], there can be random instants when the
process stays in other states.

The variable θ(i, j) is the probability that the process at instant t + T is in state
number j if at instant t it was at state number i . The variable is defined by numerical
integration of the Kolmogorov equations (2.1) from instant t = 0 to instant t = T at
the initial conditions as follows:

p1(0) = 0, . . . , pi−1(0) = 0, pi (0) = 1, pi+1(0) = 0, . . . ,

. . . , pn(0) = 0 : θ(i, j) = p j (T ).

The variables θ(i, j), where 1 ≤ i, j ≤ n, form a stochastic matrix of tran-
sition probabilities of a homogeneous Markov chain (Markov process in discrete
time). These variables are a function F(. . .) from the matrix of coefficients of the
Kolmogorov differential equations, defined by matrix �, an intensity matrix of the
model of the Markov process:

θ(i, j) = F(i, j,�).

The above-mentioned function is defined implicitly: by numerical integration
of the Kolmogorov equations on a segment [0, T ] at the given initial conditions.
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As an input of a standard procedure of calculations, one uses the given above vector
of initial conditions and the intensity matrix�; the procedure returns a vector of state
probabilities at instant T . This vector serves as a corresponding stochastic matrix of
transition probabilities.

Let f (i) be the number of observations when the Markov process was in state i.
Let ϕ(i, j) be the number of observations when at instant k′ the process was in state
j and at instants (k − 1)T it was in state i. The ratio ϕ(i, j)/ f (i) can be considered
the average frequency of transitions from state i to state j at instants, multiple of T .

It is well known that this relation is an estimator θ̂ (i, j) of transition probability
θ(i, j) of a homogeneous Markov chain (Markov process in discrete time) by the
criterion of maximum likelihood function:

θ̂ (i, j) = ϕ(i, j)/ f (i). (2.8)

If θ(i, j) > 0, 1 ≤ i, j ≤ n, then estimator (2.8) is asymptotically unbiased and
consistent.

The computational process to construct an estimator�(d) for the intensity matrix
� is composed of the following steps.

1. By observations at instants, multiple of T, one defines a matrix of average fre-
quencies whose elements are the relations ϕ(i, j)/ f (i), 1 ≤ i, j ≤ n.

2. By the method of polynomial approximation of an inverse function, one approx-
imately defines a root vector of the system of algebraic equations:

F(i, j, ˆ�(d) = ϕ(i, j)/ f (i), 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1. (2.9)

As components of the root vector of this system, there are n(n − 1) elements of
the matrix of estimators �(d) for elements of the intensity matrix �.

To construct an optimal (in the root-mean-square sense for a given integer d)
estimator of elements of matrix �, it is necessary to calculate the integrals [over an
a priori cube in Rn(n−1)], corresponding to the first and second a priori statistical
moments. The coordinates of vertices of the cube are prescribed by positive numbers,
namely, the left and right borders for intensities i, j, which are selected from a
prioristic considerations.

The a priori cube is covered with a grid of nodes, which correspond to a set of
intensitymatrices of�

′
. For everymatrix�

′
, n(n−1)-dimensional vector F(i, j,�

′
)

is defined as a result of numerical integration from t = 0 to t = T of the Kolmogorov
equations (2.1) for n vectors of initial conditions

p1(0), . . . , pi−1 = 0, pi = 1, pi+1 = 0, . . . , pn0 = 0, 1 ≤ i ≤ n.

The matrix of coefficients of the equations corresponds to the intensity matrix�
′
.

Let n = 2; one estimates the intensities �1,2,�2,1. In this case, probabilities p1
and p2 will be defined from the relationships
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ṗ1 = −�1,2 p1 + �2,1 p2,

and p2 = 1 − p1. From here, the equations (II.3.2) for estimators �̂1,2, �̂2,1 will
acquire the form

exp(−(�̂1,2 + �̂2,1)T )

+ λ̂2,1

�̂1,2 + �̂2,1
× (1 − exp(−(�̂1,2 + �̂2,1))T ) = ϕ(1, 2)/ f (1), (2.10)

exp(−(�1,2 + �2,1)T )

+ ˆ�1,2

�̂1,2 + �̂2,1
(1 − exp(−(�̂1,2 + �̂2,1))T ) = ϕ(2, 1)/ f (2). (2.11)

Adding Eqs. (2.10) and (2.11), we will find �̂1,2 + �̂2,1 and then we will find a
matrix of intensities without applying the polynomial approximation method.

However, already at n = 3, we will have six unknown intensities, a system of
two differential Kolmogorov equations and six nonlinear algebraic equations with
implicitly definable left parts for the estimators of elements of the intensity matrix.
In this case, one should apply the polynomial approximation method.

Thus, it follows that for an ergodic Markov process, the estimators of intensities
are unbiased and consistent once the system of algebraic equations (2.9) is solved
precisely. The necessary accuracy is reached by increasing an integer d, which cor-
responds to a sufficiently large number of terms in a representation of the root vector
of Eq. (2.9) in terms of a linear vectorial combination of integer powers of numbers
ϕ(i, j)/ f (i). After the number of terms has been increased, this linear combination
converges uniformly to an exact root vector.

Let’s notice that the given statements are true only if variable T is assigned to
be “not very big”. In fact, for an ergodic process, at a big variable T, the vector
of the solution of the Kolmogorov equations is coincident with the vector of final
probabilities and, hence, does not depend on the initial conditions. Then, the left
and right parts of system (2.9) do not depend on i, and to determine the unknown
intensities, there remain only n − 1 algebraic equations.

Numerically, the question of the dependence of an estimator accuracy on the
estimated variable is considered in an example presented in the next section.

7.7.3 A Numerical Example

Further, upon considering the numerical example, we used a fourth-order Runge–
Kutta method to integrate the Kolmogorov equations.

We consider that all elements of the intensity matrix do not exceed 1 and are
one realization of six random numbers, uniformly distributed on a segment [0, 1].
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Then, upon generating an ergodic homogeneous Markov process with three states
and continuous time, and also upon modeling the functioning of an algorithm that
estimates intensities, we assume that factual variables of elements of the intensity
matrix have had values as follows:

λ1,2 = 0, 827353; λ1,3 = 0, 099387; λ2,1 = 0, 051879;
λ2,3 = 0, 176995; λ3,1 = 0, 009050; λ3,2 = 0, 703354.

The accepted values of intensities show both strong influence (transitions 1 →
2, 3 → 2), and weak influence (transitions 2 → 1, 3 → 1) of states to each other.
The number of time intervals of length T, at whose ends were fixed states obtained
at indirect transitions, was equal to 1,000,000 in the statistical model. Here is an
example of the implementations of values of stochastic functions f (i) and ϕ(i, j),
found by statistical modeling at T = 1 s:

f (1) = 44, 196 ϕ(1, 1) = 17, 141 ϕ(1, 2) = 23, 225 ϕ(1, 3) = 3, 830;
f (2) = 761, 571 ϕ(2, 1) = 24, 323 ϕ(2, 2) = 646, 764 ϕ(2, 3) = 90, 484;
f (3) = 194, 233 ϕ(3, 1) = 2, 732 ϕ(3, 2) = 91, 582 ϕ(3, 3) = 99, 919.

Consistency of the digital statistical model of a Markovian process, controlled
by the intensity matrix given above, and the method of numerical integration of the
Kolmogorov equations on the interval [0, T ] confirms the approximate coincidence
of values of transition probabilities θ(i, j), found by numerical integration, and their
estimators θ̂ (i, j)), defined by Eq. (2.8) on the basis of the results of statistical
modeling.

The results of numerical integration and statistical modeling at T = 1s are pre-
sented next. As is obvious, for all i, j, the variables θ(i, j) and θ̂ (i, j)) approximately
coincide:

θ(1, 1) = 0.389 θ(1, 2) = 0.522 θ(1, 3) = 0.087.
θ̂ (1, 1)) = 0.387 θ̂ (1, 2) = 0.525 θ̂ (1, 3) = 0.086.
θ(2, 1) = 0.032 θ(2, 2) = 0.848 θ(2, 3) = 0.119.
θ̂ (2, 1)) = 0.031 θ̂ (2.2) = 0.849 θ̂ (2, 3) = 0.118.
θ(3, 1) = 0.014 θ(3, 2) = 0.471 θ(3, 3) = 0.514.
θ̂ (3, 1) = 0.014 θ̂ (3, 2) = 0.471 θ̂ (3, 3) = 0.514.

The given data imply that for T = 1 s, the observations are informational because
the variables θ(i, j) and θ̂ (i, j) appreciably depend on i and, hence, should define
six unknown intensities from the solution of six nonlinear algebraic equations (2.9).
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However, if one assumes T = 4 s, then the dependence of these variables on i
essentially reduces, which is illustrated by the data as follows:

θ̂ (1, 1) = 0.052 θ̂ (1, 2) = 0.758 θ̂ (1, 3) = 0.188,
θ̂ (2, 1) = 0.044 θ̂ (2, 2) = 0.763 ∗ θ̂ (2, 3) = 0.191,
θ̂ (3, 1) = 0.042 θ̂ (3, 2) = 0.752 θ̂ (3, 3) = 0.205.

Hence, at T = 4 s, there occur not six, but only three equations, carrying essential
information about six unknown intensities.

The numerical data presented below illustrate the accuracy of estimation of inten-
sity values with the help of an algorithm of the polynomial approximation method.
In terms of d(i, j), one denotes errors of estimating the intensity λi, j . The dimension
of these variables is 1/c.

Iteration 1 means that the Bayesian method of solving six nonlinear equations
is applied in conditions when an a priori region of the roots’ existence of system
(2.9)—is a cube in R6 whose edges all have length 1 and are parallel to axes of
coordinates, and all the cube center coordinates are equal to 1/2.

Iteration 2 means that the edge lengths of the a priori cube are reduced five times,
and the center coordinates are equal to values of estimators of the intensities, found
at iteration 1.

T = 0.5 s
Iteration 1:

d(1, 2) = −0, 003421 d(l, 3) = 0, 000995 d(2, l) = 0, 000622
d(2, 3) = −0, 001623 d(3, 1) = 0, 002634 d(3, 2) = −0, 000720

Iteration 2:

d(1, 2) = −0, 002057 d(l, 3) = −0, 000779 d(2, 1) = −0, 000286
d(2, 3) = 0, 002098 d(3, 1) = 0, 000487 d(3, 2) = −0, 000858

T = 1 s
Iteration 1:

d(l, 2) = −0, 002386 d(l.3) = −0, 012476 d(2, 1) = −0, 000499
d(2, 3) = −0, 007302 d(3.1) = −0, 008781 d(3, 2) = −0, 000570

Iteration 2:

d(l, 2) = 0, 006013 d(l, 3) = −0, 001362 d(2, 1) = −0, 000032
d(2, 3) = −0, 001242 d(3.1) = −0, 000413 d(3, 2) = −0, 000544

For T = 2–4 s, the accuracy of iteration 1 is insufficient for transition to iteration 2
(estimators of some intensities are negative) due to the above-noted small information
of three of six equations. However, if the a priori data for iteration 2 are accepted
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equal to those used for T = 0.5–1 s, then estimation is made in a situation of small
information, though with appreciably smaller accuracy.

Iteration 2:
T = 2 s:

d(l, 2) = 0, 000374 d(l, 3) = 0, 001687 d(2, 1) = 0, 000160
d(2, 3) = −0, 001720 d(3.1) = −0, 000537 d(3, 2) = −0, 001181

T = 4 s:

d(l, 2) = −0, 036779 d(l, 3) = 0, 030037 d(2, 1) = −0, 001369
d(2, 3) = −0, 005763 d(3, 1) = 0, 003625 d(3, 2) = −0, 015354.

Division 3: Nonlinear Filtration of Markov Random
Process with Finite Number of States

We present and justify a multipolynomial approximation algorithm (MPA algorithm)
for nonlinear filtering components of the state vector Markov random process with a
finite number of states. The situations when the stochastic matrix conditional proba-
bility of Markov random process is known exactly, and when there are a priori errors
of its elements, are considered. The statement of the nonlinear filtering problem is
close to the general formulation of the problem from [11], Chap.9. We assume that
the current number of states of Markov random processes is measured with errors,
the distribution of which is given. The algorithm is based on a multipolynomial
approximation vector of conditional expectation and does not require review of deci-
sions regarding the infinite-dimensional system of stochastic differential equations
given in [11]. Examples considered are those in which an equal number of states
of 25 Markov random processes’ estimated vector consist of 150 successive states,
measured with errors. The MPA algorithm of nonlinear filtering is reduced 10 times
a posteriori dissipation compared with the a priori.

7.8 Introduction and Statement of the Problem

The monograph [13], Chap.9, described the general problem of nonlinear filtering
of a Markov random process, which has a finite or countable number of states. The
monograph examines a pair of stochastic processes (θ, Y ) = (θt , yt ), 0 <= t <= T ,
where the unobserved integer θt is aMarkov randomprocesswith a finite or countable
number of states, and the observed process yt admits the stochastic differential

dyt = At (θt , Y )dt + Bt dWt ,

http://dx.doi.org/10.1007/978-3-319-04036-3_9
http://dx.doi.org/10.1007/978-3-319-04036-3_9
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where Wt is a Wiener process, and At (. . .), Bt are some functionals. The Markov
random process θt has continuity to the right and a set (known) probability density
of transition from one state to another.

Many problems of applied statistics of random processes come via the scheme
in [11], where the unobserved process takes discrete values and the noise has the
character of a “white” noise. For the statement of the nonfiltering problem, define
an algorithm that uses the observations Y (0, t) to build θ̂ (0, T )|Y (0, T ), which is
estimation of the process θt . In [13] assume that θ̂ (0, T ) is the posterior probability
of θt and prove that it is the function satisfying Eq. (9.21) in [13] and following
from it the infinite system of nonlinear stochastic differential equations (9.23) in
[11]. Therefore, in general, these equations cannot constructively use the algorithm
for nonlinear filtering. Our proposed consideration is close to [11] in their statement
of the problem formulation, but, in contrast to [11], it gives an easily implemented
nonlinear filtering algorithm.

We believe that t takes discrete values of 0, 1, . . . , k, . . . , T . At these discrete
moments, the sequence states that theMarkov random process θt arises. Components
of the process take the unobserved integers θ0, θ1, . . . , θk, . . . , θT , where θk is the
number of states of aMarkov randomprocess. Themaximumof these integers defines
the order of the random process: the number M of its states.

It is assumed that successive observations are of the form

yk = θk + ηk, (1.1)

where k = 0, 1, . . . , T, ηk are random values with a given distribution.
An unobserved Markov random process is generated by the stochastic matrix

of conditional probabilities, whose the elements q(i, j) = P(i | j) are known with
random errors εi, j that have a given distribution.

In terms of features of the nonlinear filtering problem, for the estimation problem
of a random vector θ(0, T ), the estimated vector has a large dimension. The dimen-
sion of the estimated vector θ(0, T ) set out in the following example is not small; it
is equal to 150. Therefore, the proposed algorithms for nonlinear filtering provides
data compression to reduce the dimension of the matrix used. Compression occurs
by dividing the observed sequence y0, y1, . . . , yT into segments and then summing.

Equation (1.1) and values q̃(i, j) = q(i, j)(1+εi, j )model the situation in which
the dynamic system has M types of consecutive random failures. Every one of them
after an accident and instant repairs goes to one of the types of failures. The transition
probabilities determine the a priori stochastic matrix of conditional probabilities.

Failure detection of a species produces a nonlinear filtering algorithmwhose input
is the value of yk , which is measured from the current random error ηk , the random
number of the current state. We consider the version where the matrix of conditional
probabilities is known (εi, j = 0) and the option where the matrix of conditional
probabilities is unknown q̃(i, j) = q(i, j)(1 + εi, j ).

TheMPAalgorithm,which is justified ahead, is the basis of the proposed nonlinear
filtering algorithm. The estimation algorithm builds θ̂ (0, T )|Y (0, T )) in the approx-
imate expression form for the conditional expectation vector E(θ(0, T )|Y (0, T )).



150 7 Estimating the Parameters of Stochastic Models

Therefore, the evaluation is nearly optimal in themean square. The algorithm approx-
imates the conditional expectation E(θ(0, T )|Y (0, T ) polynomials, which is a linear
combination of powers of the components of the observed vectorY (0, T ). Vector esti-
mates converge to the conditional expectation of uniformity on some of the increase
in the degree of the approximating polynomials.

The algorithm determines a family of random virtual Markov random processes,
which “immerses” this model (1.1). Its components are the corresponding pertur-
bation matrices of conditional probabilities and perturbed observations of the form
(1.1). Statistical analysis of the Monte Carlo family members is defined in the t
corresponding vector of mean and covariance matrix estimation errors for basic vec-
tors consisting of the perturbed quantities θ0, θ1, . . . , θT , y0, y1, . . . , yT . Through a
system of linear algebraic equations, these data explicitly define the approximating
polynomial coefficients of the vector andmatrix evaluations of covariance estimation
errors.

Diagonal elements of the covariance matrix are determined at the time of T a
posteriori dissipation numbers, states of the unobserved Markov process θt . The
effectiveness of the proposed nonlinear filtering algorithm is the value ρ(0, T ). It
is the square root of the ratio of the a posteriori variance, which characterizes the
dispersion of the posterior component of the estimated vector, to the a priori variance,
which characterizes the dispersion of this vector in the absence of observations.

7.8.1 Basic Scheme of the Proposed Nonlinear Filtration
Algorithm

Fundamentally, the MPA algorithm assumes that unknown vector sequential states
of the Markov random process θt are random on the set of possible realizations.
We assume that the a priori statistical generator for the computer-generated random
values ηt , εi, j in (1.1) is given. This generator makes the MPA algorithm estimating
components of the vector θ(0, T ) Bayesian. Further, for particular calculations, we
assume that the random values ηk, εi, j in (1.1) are distributed uniformly and can be
called by the standard Random program in Turbo Pascal.

The MPA algorithm provides the approximation method we implement with the
multidimensional power series of the vector E(θ(0, T )|Y (0, T ) of the conditional
mathematical expectation of the vector θ(0, T ) if the vector ofmeasurementsY (0, T )

is fixed and a priori statistical data on random values of errors ηt , εi, j are given.
The vector E(θ(0, T )|Y (0, T )) is known to be the optimal, in the mean-square-

sense, estimate of the random vector θ(0, T ).
We describe the steps of the MPA algorithm’s operation.

Step 1 We assume that one has created a computer program that generates the
Markov random process, corresponding to the option where the matrix of
conditional probabilities is known without error or to the option where the
matrix of conditional probabilities is known with bugs, which are given
an a priori distribution. Using a statistical model of the distribution of
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random errors of measurement ηt , εi, j , construct the set of possible real-
izations of random functions Y (0, T ), which consists of sequences of the
form y0, y1, . . . , yk, . . . , yT ∈ �YT . One of these sequences is observable.
We believe that the nonlinear filtering algorithm implements multipolyno-
mial representation in ideal degreesmeasuredby thequantities y0, y1, . . . , yT

according to the model (1.1). The degree of the polynomials does not exceed
a given integer d.
Suppose that d is a given positive integer and that the set of integers
a1, . . . , aT consists of all nonnegative solutions of the integer inequality
a1+ . . .+aT ≤ d,whose number we denote by m(d, T ). The value m(d, T )

is given by the recurrent formula proved by induction. We obtain the vector
WT (d) of dimension m(d, T ) × 1, whose components w1, . . . , wm(d, T )

are all possible values ya1
1 . . . yaT

T of the form that represents the powers of
measurable values.
We will look for an approximate representation of the conditional expec-
tation vector E(θ(0, T )|Y (0, T )) on the set of polynomials with respect
to components of the vector WT (d). Then we’ll use an obvious statement:
E(θ(0, T )|Y (0, T )) = E(θ(0, T )|WT (d)).
Then,we construct the base vectorV (d, N )of dimension (1+T +m(d, T ))×
1, V (d, N ) = ‖θ(0, T ) WT (d)‖. We apply the Monte Carlo method to
find the prior first and second statistical moments of the vector V (d, T ),
that is, the mathematical expectation V̄ (d, N ), and the covariance matrix
CV (d, T ) = E((V (d, T ) − V̄ (d, T ))(V (d, T ) − V̄ (d, T ))T ).
We consider the algorithm fundamental for solving the problem of finding
the estimate of the conditional expectation vector E(θ(0, T )|WT (d) that is
optimal in the mean square sense. This vector is known to be the optimal in
themean-square-sense estimate of the vector θ(0, T ) once the vectorY (0, T )

is fixed. Therefore, it is justified that it is the conditional expectation vector
that tends to estimate.
We construct the algorithm that ensures polynomial approximation of the
vector E(θ(0, T )|WT (d)). To do this, we find the approximate estimate of
the vector E(θ(0, T )|WT (d)), which is linear with respect to components of
the vector WT (d) and optimal in the mean square sense.

Step 2 For given d and T and a fixed vector WT (d), we assign the vector θ̂ (0, T )

(WT (d)) to be the solution to the estimation problem. This vector gives an
approximate estimate of the vector E(θ(0, T )|WT (d)) that is optimal in the
mean square sense on the set of vector linear combinations of components
of the vector WT (d):

θ̂ )(0, T )(WT (d)) =
∑

a1+...+aT ≤d

λ(a1, . . . , aT )ya0
1 · · · yaT

T . (2.1)

The vector V̄ (d, N ) and the matrix CV (d, N ) are the initial conditions for
the process of recurrent calculations that realizes the principle of observation
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decomposition of Chap.1 and consists ofm(d, T ) steps. Once the final step is
performed, we obtain vector coefficients λ(a1, . . . , aT ) for (2.1). Moreover,
we determine the matrix C(d, T ), which is the estimation error covariance
matrix for the vector E(θ(0, T )|WT (d)) of conditional mathematical expec-
tation estimated by the vector θ̂ (0, T )(WT (d).
To obtain the explicit expression for the estimation vector, we calculate ele-
ments of the vector V (d, T ) and the covariance matrix CV (d, T ) that are
the first and second (centered) statistical moments for the vector V (d, T ),
respectively.

This vector and this matrix can be divided into blocks of the following structure:

E(E(θ(0, T )|WT (d))) = E(θ(0, T )),

E((E(θ(0, T )|WT (d)) − E(E(θ(0, T )|WT (d))((E(θ(0, T )|WT (d)

− E(E(θ(0, T )|WT (d))))T ) = E((θ(0, T ) − E(θ(0, T ))(θ(0, T ) − E(θ))T ),

LT (d) = E((E(θ(0, T )|WT (d) − E(E(θ(0, T )|WT (d)))

((E(θ(0, T )|WT (d) − E(E(θ(0, T )|WT (d)))))T ) =

E(θ(0, T )WT (d)T ) − E(E(θ(0, T ))E(WT (d))T ,

QT (d) = E((WT (d) − E(WT (d)))(WT (d) − E(WT (d)))T ).

The right-hand sides of these blocks are the first and second (centered) statistical
moments calculated by the Monte Carlo method. However, their left-hand sides also
serve as the first and second (centered) statistical moments of components of the
vector of conditional mathematical expectations. Hence, we can use mathematical
models of form (1.1) to find these statistical moments experimentally for vectors of
conditional expectations as well. This obvious proposition gives us the basis for the
practical implementation of the computational procedure of estimating the vector of
conditional expectations.

We introduce an estimate

θ̂ (0, T )(WT (d) = E(θ) + �T (d)(WT (d) − E(WT (d)), (2.2)

where the matrix �T (d), 1 + T × m(d, T ) satisfies the equation

�T (d)QT (d) = LT (d).

We also introduce

z̃θ(0,T )(WT (d)) = z + �̃T (d)(WT (d) − E(WT (d))), (2.3)

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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where z and �̃T (d) are the arbitrary vector and matrix of dimensions 1 + T ×
1 and 1 + T × m(d, T ). Suppose C(d, T ) and C̃(d, T ) are the estimation error
covariance matrices for the vector E(θ(0, T )|WT (d)) generated by the estimates
θ̂ (0, T )(WT (d)) and z̃θ(0.T )(WT (d)).

Lemma The matrix C̃(d, T )−C(d, T ) is a nonnegative definite matrix: C(d, T ) ≤
C̃(d, T ).

The lemma follows from the identity of Chap. 1. Corollary of the lemma. For the
vector E(θ(0, T )|WT (d)), the vector θ̂ (0, T )(WT (d)) is the optimal in the mean-
square-sense estimate among the set of estimates that are linear with respect to
components of the vector WT (d). If QT (d) > 0, the estimation vector is unique and

θ̂ (0, T )(WT (d)) = E(θ(0, T )) + LT (d)QT (d)−1(WT (d) − E(WT (d))). (2.5)

The estimation error covariance matrix C(d, T ) of the vector E(θ(0, T )|WT (d))

is given by the formula

C(d, T ) = Cθ(0,T ) − �T (d)LT (d). (2.6)

If QT (d) ≥ 0, the vectors that provide a linear and optimal in the mean-square-
sense estimate are not unique; however, the variances of components of the difference
between these vectors are zeros. Formula (2.1) gives explicit expressions for the
vector coefficients of the form λ(a1, . . . , aT ). To find these relations, we open the
explicit expressions for components of the vector WT (d) and the right-hand side of
(2.1) and equate them to the right-hand side of formula (2.1).We consider asymptotic
estimation errors when we use (2.1). Suppose the vector YT is fixed. We assume that
the vector E(θ(0, T )|WT (d)) is given by the function of WT (d) on some a priori
region that is compact; the function is continuous on this region. Then the following
theorem holds.

Theorem

Sup YT ∈�YT
|θ̂ (0, T )(WT (d)) − E(θ(0, T )|WT (d)| ⇒ 0, d ⇒ ∞. (2.7)

Proof The multidimensional analog ofWeierstrass’s theorem, which is the corollary
of Stone’s theorem [14], states that for any number ε > 0, there exists a multidimen-
sional polynomial P(WT (dε)) such that

Sup YT ∈�YT
|P(WN (dδ)) − E(θ |WT (d))| < δ.

��
We can rewrite this relation as

Sup YT ∈�YT
|P(WN (d)) − E(θ(0, T )|WT (d))| ⇒ 0, d ⇒ ∞. (2.8)

http://dx.doi.org/10.1007/978-3-319-04036-3_1
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We assume that C is the covariance matrix of the random vector P(WT (d) −
E(θ(0, T )|WT (d)):

C = E((P(WT (d)) − E(θ(0, T )|WT (d))(P(WT (d)) − E(θ(0, T )|WT (d)))T .

It follows from (2.8) that

C ⇒ 0T , d ⇒ ∞. (2.9)

By construction, the vector estimate θ̂ (0, T )(WT (d)) provides the estimate of the
vector θ(0, T ) that is linear with respect to components WT (d) and optimal in the
mean square sense. However, it follows from the lemma that for any other nonoptimal
linear estimate, including estimates of the form P(WT (d), the relation C ≥ C(d, T )

holds. Hence, taking into account (2.8), we obtain

C(d, T ) ⇒ 01+T , d ⇒ ∞. (2.10)

Proposition (2.9) is equivalent to (2.6). Thus, by (2.1), the algorithmdetermines the
vector series that, with the increasing number m(d, N ) of its terms, approximates the
vector of conditional mathematical expectation of the vector θ(0, T ) of the estimated
parameters with an arbitrary uniformly small mean square error.

7.8.2 Effective Work of Nonlinear Filtration Algorithm
at Estimating States of a Nominal Model
Markov Random Process if Random Observation
Errors are Large and Uniformly Distributed in
[−100, 100]

In mathematical simulation, it was assumed that the stochastic matrix conditional
probability q(i, j), which generates a Markov random process, i, j , has dimension
5 × 5 and, therefore, contains 25 members. The length m process contains T = 15
components yk, k = 0, 1, . . . , 14, integers, which is in line with the model (1.1),
there are k, with errors ηk , independent random variables distributed uniformly on
[−100, 100].

For compression, every 10 consecutive numbers are added, and the resulting T =
15 value blocks the entrance to the construction of the approximating polynomials.

Consider a situation where there is no prior knowledge of the elements of the
error of the conditional probabilities and there are options for multipolynomials in
T = 15:

d = 1.
Approximating multipolynomials are linear combinations 1 degree to 15 whole

sizes—15 successive states of the process—and the number of different multipoly-
nomials of degree 1 is m(d, T ) = 15.
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d = 2.
Approximating multipolynomials are linear combinations 1 degree to 15 whole

sizes—15 successive states of the process— and the number of different multipoly-
nomials of degree 1 is m(d, T ) = 90.

d = 3.
Multiapproximating polynomials are linear combinations no more than 3 degrees

to 15, and the number of integers of all the different multipolynomials of degree at
most 3 is m(d, T ) = 815.

d = 4.
Multiapproximating polynomials are linear combinations no more than 4 degrees

for 15 integers of the number of all different multipolynomials of degree at most 3
is m(d, T ) = 3876.

Columns 3–6 of below table contain the values T guest θ̂ (0, T ) of integers θ(0, 15)
for different integers d, which are given in column 2 at the T = 15 segment θ(0, T )

for the evaluated Markov random process, in the absence of random errors η.

d = 1 d = 2 d = 3 d = 4
k θ(0, T ) θ̂(0, T ) θ̂(0, T ) θ̂(0.T ) θ̂(0, T )

1 4.000 7.955 4.111 4.310 3.555
2 2.000 6.827 3.281 3.142 2.928
3 1.000 4.643 3.441 2.712 0.819
4 3.000 5.317 2.620 3.424 4.225
5 4.000 6.093 4.033 2.010 3.281
6 4.000 5.278 2.797 3.165 4.491
7 4.000 5.366 2.670 2.532 3.623
8 2.000 8.225 3.398 3.239 2.085
9 4.000 5.236 0.385 1.879 4.162
10 2.000 6.624 3.712 1.553 1.781
11 5.000 6.590 3.651 3.036 4.754
12 4.000 6.855 3.225 3.119 4.643
13 1.000 5.130 2.023 3.419 1.661
14 3.000 7.501 2.174 3.115 2.700
15 4.000 6.186 2.241 −0.830 4.085

Division 4: Multipolynomial Approximations for Estimating
the Parameters of a Time Series Generated by GARCH
Models

In this section, the principles underlying an MPA algorithm are described, and the
algorithm is used to estimate the parameters of control time series generated by
STGARCH and MGARCH models (in the BEKK specification). These models are
used in the consideration of nonlinear problems of financial mathematics.
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7.9 Introduction

To analyze and forecast the volatility of a time series with members specified as the
logarithms of successive ratios of current asset prices as functions of stock market
closing times, financial analysts use mathematical models representing a priori infor-
mation on the evolution of the series. Widely used are ARCH and GARCH models,
which go back to [15] and [16] (evolution of the conditional variance of members
in a scalar time series) and to Engle and Kroner (1995) (evolution of the conditional
covariance matrix for a vector time series). Given a time series, the parameters of an
a priori model for the evolution of its members, the initial conditions, and the forecast
time series segments comprise the vector θ of unknown parameters. After obtaining
experimental data, namely, time series members, and choosing a mathematical evo-
lution model, one has to estimate the vector θ . This task is usually approached using
iterativemaximum likelihood estimation, which in theoryworks only asymptotically,
namely, when the length of the time series increases indefinitely.

The implementation of this method encounters fundamental and technical dif-
ficulties (associated with the need for computing gradients and Hessians at every
iteration step), which motivates attempts to develop new approaches to the estima-
tion of model parameters and other unknowns. Some of the fundamental difficulties
are as follows:

1. When a likelihood function is constructed, the distribution of the randomelements
in the sample has to be determined, taking into account the restrictions imposed
on the components of θ , which is a difficult and frequently unfeasible task.

2. A maximizer of the likelihood function is determined numerically by applying a
variant ofNewton’s iterativemethod,which is complicated by the need to guess an
admissible vector of initial conditions (i.e., a first-approximation iteration vector
that ensures the convergence of the iterations).

3. The numerical method does not necessarily yield a global maximizer of the likeli-
hood function. Instead, one of the numerous local maximizers might be obtained.

It should be noted that in his fundamental book, Zaks [17] says that, contrary to
many textbooks, maximum likelihood estimation is not a universally good approach,
and it should not be applied indiscriminately.

Ahead we propose an MPAmethod (or algorithm) for estimating the components
of θ . Free of the above shortcomings, the algorithm has been successfully used to
estimate the components ofmultidimensional parameter vectors in complex dynamic
systems. Given a fixed (and finite) time series, under certain conditions, the MPA
algorithm produces an estimate vector that uniformly converges on a certain domain
to the conditional expectation vector as the degrees of the approximating polynomials
increase indefinitely. Therefore, the estimate vector generated by theMPA algorithm
is roughly optimal in the mean square sense (it is well known that the conditional
expectation vector gives an estimate that is optimal in the mean square sense).

It should be emphasized that in the particular computational problems considered
ahead, we simultaneously estimate not only the unknown model parameters but also
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the components of the initial condition vector and the vector of forecast time series
segments, which is necessary for financial risk estimation.

The estimation accuracy is analyzed by applying mathematical modeling. For this
purpose, we construct control time series such that the member structure of each of
them corresponds exactly to the evolution model and to an arbitrarily given random
vector of admissible parameters satisfying the restrictions of the models.

A control time series is input into the MPA algorithm, which estimates the vector
θ and determines the estimate vector θ̂ . Next, the exact vector (θ̂i − θi )/θi of relative
errors in the estimate is determined; here, θi is the i th component of θ .

In the mathematical model, each control time series precisely corresponds to a
certain precisely known vector θ consisting of a given vector of initial conditions,
a given vector of model parameters satisfying the model restrictions, and a forecast
vector computed using the evolution equations. Therefore, for each particular time
series, the corresponding vector θ , the estimate vector, and, hence, the vector of
relative errors in the estimate are precisely known to the estimation algorithm. Next,
the dispersion characteristics of the estimation errors are determined using Monte
Carlo computations.

For the STGARCH and MGARCH models considered later, the variances of the
estimation errors were found to be nearly zero for suitably chosen parameters of the
MPA algorithm.

The use of a control time series rather than an actual one (with the unknown corre-
spondence of the latter to the evolutionmodel used) and a diagnostic test is motivated
by the need for analyzing the estimation accuracy in the MPA algorithm. Only con-
trol time series corresponding to arbitrarily given random vectors θ restricted by the
model structure provide, in conjunction with the found vectors of relative errors,
adequate data on the accuracy of the estimation algorithm.

Note that the analysis of the estimation accuracy by directly computing vectors
of relative estimation errors differs from the traditional approach, in which the direct
estimation error analysis is replaced by analyzing the conditions for the fulfillment
of a prescribed significance level for the time series members with an actual (and
unknown!) evolution model.

As justification of the MPA approach, we demonstrate a technically simple esti-
mation procedure for STGARCH and MGARCH nonlinear evolution models with
complex-structured parameter restrictions, in which case the traditional approach is
hardly applicable because of the fundamental and technical difficulties mentioned
above.

The implementation of the method proposed would considerably facilitate the
analysis and forecasting of time series for complex nonlinear evolution models.

This Chapter, Division 4 is organized as follows. Section7.10 describes the
fundamentals of the MPA method. In Sects. 7.11 and 7.12, the MPA algorithm is
used to numerically estimate the parameters of nonlinear GARCH models, such
as STGARCH (nonlinear GARCH model) and MGARCH (multivariate GARCH
model), in the BEKK specification. The conclusions are given at the Sect. 7.13.
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7.10 Fundamentals of the Method

The MPA algorithm effectively estimates vectors of high dimensions (several hun-
dreds) and does not require the determination of an extremum of the objective func-
tion (in this case, the likelihood function). TheMPAalgorithm is based on polynomial
approximation of the conditional expectation vector. Therefore, the MPA algorithm
is a polynomial approximation of the nonlinear least squares method.

A fairly general model of a time series is given by expressions (2.1) and (2.2):

ht = F(t, ht−1, . . . , ht−q , r2t−1, . . . , r2t−p, θ0), (2.1)

where t = 1, . . . , T ; ht is the conditional variance of the time series member indexed
by t (with respect to information fixed at time t −1);r2t−1, . . . , r2t−p are the squares of
the values observed at the corresponding discrete times; q and p are given integers;
F(. . .) is a given function; and θ0 is them-dimensional vector of unknown parameters
in the domain defined by the model restrictions. The components of the total n × 1
vector θ of unknown parameters include the unknown initial conditions h0, . . . , h −
q +1, the vector θ0, and the forecast values hT +1, hT +2, . . . , hT +z of ht at the future
stock market closing times T + 1, . . . , T + z. Thus, q + m + z = n.

The observed vector RT , that is, the time series r1, . . . , rT , has the scalar compo-
nents

rt = h1/2
t Vt , (2.2)

where Vt is a sequence of independent identically distributed random variables with
zero expectation and unit variance. Their distribution is arbitrary and is generated by
a standard software program.

If the elements of the time series are vectors, then ht in (2.1) is replaced by the
conditional covariance matrix Ht and h1/2

t in (2.2) is replaced by H1/2
t .

The goal is to estimate the vector θ , namely, construct an estimate θ̂ (RT ) of θ as
a function of the components of RT .

The MPA algorithm as applied to the estimation of θ can be schematically repre-
sented as the following sequence of steps.

Step 1 Define the domain �θ of admissible parameters by applying two stages of
Monte Carlo simulations.
In stage 1, all the components θi of θ are assumed to be independent random
variables with the a priori structure θi = c0(i) + c1(i)ξi , where c0 and c1
are a priori constants and ξi are independent random variables uniformly
distributed on the interval [0, 1].
In stage 2, the random set of vectors θ obtained in stage 1 is “screened”. The
resulting set �θ consists of the vectors that pass the screening procedure and
satisfy a priori restrictions.
As a result, the set found in stage 1 is compressed and the resulting set
accurately takes into account the restrictions and relations imposed on the
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parameters by the model. Of course, after stage 2, the components of each
random vector θ are no longer statistically independent.
Later in this section, in the parameter estimation for the STGARCH model
(problem 1) and the MGARCH model (problem 2), the number of random
vectors in the set after stage 1 ranges from several thousands (problem 1)
to several hundreds of thousands (problem 2). After stage 2, in both prob-
lems, the resulting domain (�θ ) contains several hundreds of random vectors
satisfying a priori constraints.

Step 2 Construct the domain�(RT + z) of admissible time series in which T mem-
bers are observed, while z members are not observed but forecasted (can
be calculated). Each element of this domain is a (T + z) × 1 vector whose
components r1, . . . , rT , rT +1, . . . , rT +z are obtained from (2.1) and (2.2) if
θ is an element of�θ . Each of the numbers r1, . . . , rT is consecutively com-
puted using Eqs. (2.1) and (2.2) with a new random variable Vt generated by
the standard program. The forecast numbers rT +1, . . . , rT +z are computed
according to (2.1) with the use of random variables Vt for the construction
of r2t−1, . . . , r2t−p. In the course of constructing �(RT + z), the integers T
and z are given, while the vector θ runs over all the elements of �θ .

Step 3 Assume that L is a given integer such that T/L is also an integer.Construct the
domain �(RT , T/L) of compressed admissible time series corresponding
to the model. The goal is to reduce the dimension of the input matrix of the
MPA algorithm in order to reduce the required storage. For this purpose,
the time series with T elements is divided into nonoverlapping segments,
each containing L consecutive elements. Each element of �(RT , T/L) is
the sum of the time series elements contained in an segment. As a result,
the original time series r1, . . . , rT is replaced by a compressed one with
the elements denoted by g1, . . . , gT/L . The vector with these components is
denoted by GT/L .

Step 4 Construct the domain�V (T/L , d) of basic vectors, each being an admissible
input vector in the MPA algorithm.
Specifically, given a positive integer d, let a1, . . . , aT/L be nonnegative inte-
gers that solve the inequality a(1)+ . . .+ a(T/L) ≤ d. The number of such
solutions is denoted by m(d, T/L) and is given by the following recurrence
formula, which is proved by induction:

m(d, T/L) = m(d − 1, T/L) + (T/L + d − 1) · · · T/L

d! , m(1, T/L) = T/L .

As d increases, m(d, T/L) increases quickly. For example, at T/L = 6,
d · · · · · · · · · 1 · ·2 · ·3 · ·4 · · · ·5 · · · ·6 · · · ·7 · · · ·8
M(d, T/L) · 6 · 27 · 83 · 209 · 461 · 923 · 1715 · 3002.
Define a vector WT/L(d) of dimension m(d, T/L) × 1 with components
w1, . . . , wm(d,T/L). These components are all possible products of powers

of g1, . . . , gT/L and have the form ga(1)
1 . . . g

a(T/L)
T/L . The domain�V (T/L , d)
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is the set of basic vectors V (d, T/L) of dimension (n +m(d, T/L))×1 that
have the form V (d, T/L) =‖ θ · WT/L(d) ‖.
By the definition of WT/L(d), it is clear that if d2 > d1, then we have the
vector relation

WT/L(d1) ∈ WT/L(d2). (2.3)

The random vectors V (d, T/L) and their statistical characteristics, that is,
the vector V̄ (d, T/L) and the matrix CV (d, T/L), which are determined in
step 5, describe the statistical relation between the observation vector GT/L

and the components of θ , specifically, its parts—the unobserved vector of
initial conditions and the vector of forecast values rT +1, . . . , rT +z .
This statistical relation is used later to construct approximations to an optimal
estimate vector and to the estimation error covariance matrix.

Step 5 Solve Eqs. (2.1) and (2.2) repeatedly with various random vectors θ ∈ �θ

generated using the statistical mechanism described above. TheMonte Carlo
approach is used to determine approximations to the a priori first and
second statistical moments of V (d, T/L), namely, the expectation vector,
which is approximately equal to E(V (d, T/L)), and thematrixCV (d, T/L),
which is approximately equal to the covariance matrix E((V (d, T/L) −
E(V (d, T/L)))(V (d, T/L) − E(V (d, T/L)))T . Step 5 implements the
learning of the algorithm. As a result, the latter is adjusted to solve the
particular problem given by Eqs. (2.1) and (2.2).

Step 6 Let the solution of the estimation problem with given d, T/L and a fixed
vectorGT/L be ann×1vector θ̂ (WT/L(d)), which is an approximate estimate
of the conditional expectation E(θ |GT/L) and has the form

θ̂ (WT/L(d)) = E(θ) + �T/L(d)(WT/L(d) − E(WT/L(d)), (2.4)

where �T/L(d) is a matrix of size n × m(d, T/L) satisfying the equation

�T/L(d)QT/L(d) = LT/L(d),

LT/L(d) = E(θ − E(θ))(WT/L(d) − E(WT/L(d))T ),

QT/L(d) = E((WT/L(d) − E(WT/L(d))(WT/L(d) − E(WT/L(d))T ).

The estimation error covariance matrix CT/L(d) is given by the formula

CT/L(d) = C(0) − LT/L(d)QT/L(d)−1LT/L(d))T , (2.5)

where
C(0) = E((θ − E(θ))(θ − E(θ))T .
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The vectors E(θ) and the matrices LT/L(d), QT/L(d) formally involved in (2.4)
and (2.5) are approximated by the corresponding blocks of the vector V̄ (d, T/L)

and the matrix CV (d, T/L). Equality (2.4) gives estimates for the components of
θ , including the forecast values hT +1, hT +2, . . . , hT +z , since it takes into account
the statistical relation between this vector and the observation vector WT/L(d). This
relation is established for the second stochastic moments—the matrices LT/L(d)

and QT/L(d), whose approximations are obtained using the Monte Carlo method in
step 5.

For the problem of estimating θ , formula (2.4) provides a solution that is optimal
in the mean square sense on the set of linear combinations of the components of
WT/L(d). This assertion follows from the matrix inequality

CT/L(d) ≤ C, (2.6)

where C is the estimation error covariance matrix obtained if the estimate vector is
arbitrary [if the vector E(θ) and the weight matrix �T/L(d) in (2.4) are replaced by
an arbitrary vector and an arbitrary matrix of suitable sizes].

Formulas (2.4) and (2.5) give an explicit approximate solution of the nonlinear
estimation problem, namely, expressions for θ̂ (WT/L(d)) and CT/L(d).

However, these formulas are poorly implementable, since they involve matrix
inversion; that is, the matrix equation satisfied by �T/L(d)) has to be solved. Based
on the observation decomposition principle, we construct a recurrence process such
that not the entire vector WT/L(d) but rather only its single (current) component is
used in each step in formula (2.4). The recurrence is implemented by sequentially
running over the components of WT/L(d).

The vector V̄ (T/L , d) of dimension (n+m(d, T ))×1 and thematrixCV (d, T/L)

of dimension (n + m(d, T )) × (n + m(d, T )) found for the component w1 are used
as the initial conditions for this process.

The process consists of m(d, T/L) computing cycles, and the above dimensions
are reduced at each of them. At the last cycle, the dimensions are n and n × n,
respectively. This cycle produces the estimate vector θ̂ (WT/L(d)) and the covariance
matrix CT/L(d), satisfying (2.4) and (2.5).

The computation of the elements of CT/L(d) provides a method for preliminary
observability analysis of the estimated parameters for the given model. The recur-
rence computations do not require matrix inversion and indicate situations where
the current component of WT/L(d) is close to a linear combination of the preceding
components, in which case QT/L(d) is close to a singular matrix.

The algorithm is tuned by using Monte Carlo computations, which yield an
approximate expectation vector V̄ (T/L , d) and an approximate covariance matrix
CV (d, T/L). Therefore, the algorithm takes into account a priori information on the
stochastic structure of the components of the entire set of admissible vectors R(T )

and the corresponding vectors WT/L(d).
It should be emphasized that these vectors arise at all possible realizations of

random vectors θ in �θ . The above tuning is the price paid for the effective solution
produced by the MPA algorithm for the nonlinear estimation problem. This is a key



162 7 Estimating the Parameters of Stochastic Models

difference of theMPAalgorithm from, for example, the standardKalman filter, which
is intended for linear estimation problems. The same circumstance distinguishes the
MPA algorithm from numerous attempts to extend the Kalman filter to nonlinear
filtering problems.

Except for the computational errors, the estimates produced by the algorithm do
not involve any additional errors (for example, those associated with the linearization
of nonlinear functions). Therefore, it should be expected that the a priori dispersion
characteristics of the estimated parameters are always higher than the calculated a
posteriori dispersion characteristics, which substantiates the use of iteration.

The conditional expectation vector E(θ |GT/L) is optimal in the mean square
sense. The estimation error covariancematrix corresponding to this estimate vector is
denoted byC(T/L , min). Consider a sequence of increasing integers d:1, 2, :, k, . . ..
It follows from (2.3) and (2.5) that as d increases, the expected estimation errors
decrease in the sense of the sequence of matrix inequalities

CT/L(1) ≥ CT/L(2) ≥ ... ≥ CT/L(k) ≥ ... ≥ C(T/L , min), (2.7)

which are bounded on the right. Moreover, all the estimate vectors corresponding
to different integers d satisfy (2.4). Therefore, they are approximately optimal in
the mean square sense. Taking into account this fact and inequalities (2.7), we can
expect that as d increases, E(θ |GT/L) can be arbitrarily accurately approximated
by the vector θ̂ (WT/L(d)) with the corresponding integer d. Indeed, assume that
E(θ |GT/L) is a continuous function of the components of GT/L on a closed bounded
domain S ∈ RT/L . Then the Stone–Weierstrass theorem [18] implies that there exists
a sequence of polynomials in the components of GT/L that converges uniformly to
E(θ |GT/L) on S.

For any particular problem, no method is available that provides an a priori choice
of d required for achieving an estimate of prescribed accuracy. No such methods are
available for nearly all multistep computational processes, for example, for Newton’s
method. That is why we need a sequence of trial computations with several integers
d. The numerical results presented ahead confirm that, with trial computations, the
estimate vectors θ̂ (WT/L(d)) converge rapidly not only to the conditional expectation
vector E(θ |GT/L) but also to the vector θ of unknown parameters. The formulas
involved in the recurrence algorithm and their substantiation can be found.

7.11 Parameter Estimation for a Nonlinear STGARCH
Model

Consider a nonlinear STGARCHmodel that has heteroskedasticity and smoothes the
jumps in the time series elements (smooth transition) by using the logistic function.
The model has the form

rt = h1/2
t ξt ,
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where ht is the conditional variance, ξt is a sequence of independent identically
distributed random variables with zero mean and unit variance, and

ht = θ1 + θ2r2t−1 + (θ3 + θ4r2t−1)(1 + exp(−θ5rt−1 − c))−1 + θ6ht−1.

The components of θ must satisfy inequalities ensuring that the conditional vari-
ances are positive and the elements of the time series have unconditional variances
θ1 > 0, θ1 + θ3 > 0, θ2 > 0, θ2 + θ4 > 0, θ6 > 0, θ5 > 0, θ2 + θ6 < 1, and
θ2 + θ4 + θ6 < 1.

According to the above publications, while constructing the domain �θ (step 1),
we can set c0(1) = 0, c1(1) = 1, c0(2) = 0, c1(2) = 1, c0(3) = −1, c1(3) = 2,
c0(4) = −1, c1(4) = 2, c0(5) = 0, c1(5) = 3, c0(5 + i) = 0, and c1(5 + i) = 1
for 1 ≤ i ≤ 7.

The goal is to estimate n = 12 parameters, of which six (θ1, . . . , θ6) are model
parameters, one (θ7) is the parameter of initial conditions h(0), and five parameters
(θ8, . . . , θ12) are forecast values of the conditional variances h(T +1), . . . , h(T +5).
Thus, q = p = 1, m = 6, and z = 5. Let T = 330 and L = 55.

For 10 arbitrary 12-dimensional vectors θ chosen from �θ , the MPA algorithm
was used to determine the relative estimation errors. The order of these errors turned
out to be identical for all the vectors. The following table presents the relative errors
(θi − θ̂i )/θi in the estimate of θi and the components of the estimate vector θ̂ for
one of these vectors. Here, d is the degree of the approximating polynomials and
m(d, T/L) is the number of terms in the approximating polynomials.

d = 4, m(d, T/L) = 209

i (θi −θ̂i )
θi

θ̂i

1 −2.810 × 10−6 9.473 × 10−1

2 3.044 × 10−6 7.756 × 10−1

3 −3.966 × 10−6 9.452 × 10−1

4 5.093 × 10−6 −6.594 × 10−1

5 6.170 × 10−6 1.4983 × 10−1

6 1.825 × 10−6 6.745 × 10−4

7 1.280 × 10−6 3.151 × 10−1

8 −8.053 × 10−6 1.357 × 10−0

9 −6.717 × 10−6 2.062 × 10−0

10 −7.470 × 10−6 2.383 × 10−0

11 −6.076 × 10−6 2.024 × 10−0

12 −6.530 × 10−6 1.751 × 10−0

For d = 1, 2, 3, the modeling results have shown that the relative estimate errors
are large (specifically, on the order of 1). For d = 4, however, the quantitative changes
lead to an abrupt qualitative change and the relative estimate errors become close to
zero. For given d, t, L , the components of the estimate vector were computed within
several seconds.
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7.12 Parameter Estimation for a Multivariate MGARCH
Model

A multivariate MGARCH model is used if each element of a time series is a vector
with components equal to the logarithms of the price ratios for several assets at
the current market closing time t . Such a situation arises, for example, in optimal
portfolio construction.

In financial mathematics, MGARCHmodels in the BEKK specification are used.
Here we estimate the parameters of the BEKK model presented in [16, 19–21]. At
time t , the number of different assets is s and they differ from each other by the index
i = 1, . . . , s. Let s = 5, and let the length of the vector time series be T = 250.

Consider a stochastic vector process rt , t = 1, . . . , 250, of dimension s × 1 such
that E(rt ) = 0. Let Ft−1 denote the information set generated by the observed vector
series including the time t − 1. According to the above-mentioned publications, for
a fixed Ft−1, the vector rt is assumed to satisfy

rt = H1/2
t ξt , (4.1)

where Ht = (H1/2
t )T H1/2

t (Ht = [hi j t ]) is the s × s conditional covariance matrix
of the components of rt and ξt is a sequence of independent identically distributed
random vectors such that E(ξtξ

T
t ) = I . These assumptions define a standard multi-

variate GARCH model with no linearly dependent structures for rt . In finance, rt is
interpreted as the vector of the differences between the logarithms of the asset prices
of s asset types. The symmetric BEKK model [19] is defined by the relation

Ht+1 = CT C + AT rtr
T
t A + BT Ht B, (4.2)

where A, B, C are s × s matrices whose elements are unknown parameters.
Assume that thematrices H1/2

t and (H1/2
t )T are definedviaCholesky factorization

and H1/2
t is an upper triangular matrix. The matrix H1/2

t (0) is an initial diagonal
matrix whose elements are unknown along with the elements of A, B, C .

The MPA algorithm is used to estimate the matrix of initial conditions and the
matrices of the model, altogether n2 + n2 + n2 + n = 80 parameters. The follow-
ing a priori restrictions are imposed on A, B, C, H1/2

t (0) when their elements are
estimated:

1. The elements of all the matrices belong to the interval [−1/2, 1/2] and are uni-
formly distributed.

2. The symmetric BEKK model has time-invariant conditional covariances if and
only if the eigenvalues of the matrix A

⊗
A + B

⊗
B are less in absolute value

than 1; here,
⊗

denotes the Kronecker product of matrices [19].

We construct an a priori domain�(θ) of randomvariables that are the components
of the 80-dimensional parameter vectors of the estimated matrices subject to restric-
tions 1 and 2. Using Eqs. (4.1) and (4.2), theMPA algorithm constructs time series for
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each of the 80-dimensional vectors and produces �θ(RT )—the space of admissible
time series with parameter vectors satisfying a priori restrictions 1 and 2. For any
given 80-dimensional vector from �(θ), the MPA algorithm uses the correspond-
ing (250 × 5)-dimensional vector of observations to determine an 80-dimensional
estimate vector that approximates the conditional expectation vector. The latter is
approximated more accurately if the degree d of the approximating polynomials is
higher and, accordingly, their length m(d, T/L) is longer.

For L = 200 and for an arbitrary 80-dimensional vector from �(θ), the follow-
ing tables give the relative errors of the estimates (left column) and the estimates
themselves (right column) for the elements of A, B, C, H1/2

t (0) for various d.
For all the components of the 80-dimensional vectors, the relative errors of the

estimates are similar to each other. For this reason, the results are given only for the
first five and last five components of these vectors.

d = 1, m(d, T/L) = 6

i (θi −θ̂i )
θi

θ̂i

1 −1.316 × 101 −9.663 × 10−2

2 4.214 × 10−2 −1.244 × 10−1

3 1.774 × 10−1 −1.258 × 10−1

4 −1.351 × 100 −1.209 × 10−1

5 5.998 × 10−1 −9.619 × 10−2

76 2.922 × 10−1 6.831 × 10−1

77 2.755 × 10−2 7.5369 × 10−1

78 −2.097 × 10−3 7.617 × 10−1

79 −8.845 × 10−1 8.087 × 10−1

80 −2.441 × 10−1 1.005 × 100

d = 2, m(d, T/L) = 27

i (θi −θ̂i )
θi

θ̂i

1 −1.466 × 101 −1.06 × 10−1

2 1.216 × 10−1 −1.140 × 10−1

3 1.506 × 10−1 −1.299 × 10−1

4 −1.066 × 100 −1.063 × 10−1

5 7.263 × 10−1 −6.577 × 10−2

76 3.864 × 10−1 5.92208 × 10−1

77 1.715 × 10−1 5.922 × 10−1

78 −5.517 × 10−2 8.021 × 10−1

79 −7.169 × 10−1 7.368 × 10−1

80 −1.166 × 10−1 9.019 × 10−1
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d = 3, m(d, T/L) = 83

i (θi −θ̂i )
θi

θ̂i

1 −1.003 × 101 −7.523 × 10−2

2 4.352 × 10−1 −7.335 × 10−2

3 1.046 × 10−1 −1.369 × 10−1

4 −1.125 × 100 −1.093 × 10−1

5 5.029 × 10−1 −1.194 × 10−1

76 1.397 × 10−1 8.302 × 10−1

77 3.460 × 10−1 5.068 × 10−1

78 −5.469 × 10−2 8.017 × 10−1

79 −6.423 × 10−1 7.048 × 10−1

80 −1.672 × 10−1 9.428 × 10−1

d = 4, m(d, T/L) = 209

i (θi −θ̂i )
θi

θ̂i

1 −4.192 × 10−6 −6.820 × 10−3

2 −1.079 × 10−7 −1.298 × 10−1

3 1.349 × 10−6 −1.529 × 10−1

4 −5.584 × 10−6 −5.143 × 10−1

5 5.446 × 10−7 −2.403 × 10−1

76 5.602 × 10−6 9.651 × 10−1

77 2.066 × 10−6 7.750 × 10−1

78 1.207 × 10−6 7.601 × 10−1

79 −1.160 × 10−6 4.291 × 10−1

80 3.969 × 10−6 8.077 × 10−1

It can be seen that the relative errors for d = 4 are close to zero. For given d, T, L ,
the time required for computing the estimates does not exceed several seconds.

7.13 Conclusions

TheMPAalgorithm is an effective high-speed tool for accurate estimation of the para-
meters of control time series generated by the STGARCH and MGARCH models.
The main advantages of the method are as follows:

1. The MPA method constructs approximations to the conditional expectation vec-
tors for the unknown model parameters. Therefore, the approximations to the
estimate vector are optimal in the mean square sense. The minimization of the
mean square errors in the estimate is a transparent criterion, because it is directly
related to the estimate errors rather than to an abstract likelihood function, for
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which the estimate vector for its maximum exhibits good properties only for a
large sample size.

2. In contrast to the usual approach used in statistical analysis, the asymptotic accu-
racy of the estimate is not a function of the sample size but rather a function of the
sum d of the degrees of the approximating polynomials at a constant sample size.
The Stone–Weierstrass theorem (which is the multidimensional analog of Weier-
strass’s approximation theorem) implies that the absolute value of the estimation
error decreases uniformly with increasing d. The modeling results obtained for
GARCHmodels of two types (the tables of relative estimate errors) have demon-
strated that the estimates have nearly zero errors starting with d = 4. A similar
situation occurs in models of other types (e.g., A-FIGARCH).

3. The MPA method as applied to parameter estimation for control time series has
the following key advantages over the maximum likelihood method: There is
no need to guess a good first approximation or global (not local!) maximizers;
the parameters (coefficients) of the model equations are estimated simultaneously
with the components of the vector of initial conditions and the forecast conditional
variances; and the method does not involve cumbersome calculations of gradients
and Hessians.
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Chapter 8
Designing Motion Control to a Target
Point of Phase Space

8.1 Introduction

Numerous applications consider the ultimate goal of the object to be motion control,
a situation where, at some time point, the current phase coordinates of the object
become aligned with the desired phase coordinates. Thus, an important task to han-
dle when developing computer-controlled information complexes of modern mobile
objects is to develop algorithms and computer programs capable of “carrying” the
mobile object to a target point with specified phase coordinates.

Currently, there are numerous pilot and mockup projects of low-thrust engines
designed to ensure space maneuvering with low propellant consumption. Neverthe-
less, there are no publications where the minimum-time earth satellite vehicle (ESV)
near-circular orbit correction problem would be considered using the low-thrust
engines.

(Note that the minimum time of the motion all powered by the low-thrust engines
corresponds to the motion to a target point optimized for minimum propellant
consumption). Here we demonstrate the use of the simple search and polynomial
approximation techniques as numerical design tools for time-optimal control imple-
mentation. When applied to a special case of two low-thrust engines in on–off mode,
the optimized control lets us perform, in minimum time, the near-circular ESV orbit
correction—or, alongside with orbit correction, adjust, in minimum time, the in-orbit
ESV position. The last task is a commonplace occurrence when two ESVs are in the
proximity stage prior to docking.

The methods are of specific interest as applied to the air- and spacecraft (ASC)
governed by load factor and roll orientation parameters. In this case, the methods
numerically solve a problem of designing the proper control to “carry” the ASC to
a target point of phase space.

J. A. Boguslavskiy, Dynamic Systems Models, DOI: 10.1007/978-3-319-04036-3_8, 169
© Springer International Publishing Switzerland 2016
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8.2 Setting Boundary Value Problems and Problem-Solving
Procedures

Let a controlled object be represented by the equation

dx/dt = f (x, u), (2.1)

where x ∈ Rn is the status vector of the dynamic system, u is the control vector
constrained by condition u ∈ U, f (x, u) is the dimension-(n × 1) vector-function,
and x(0) = x0 is the prescribed initial condition vector.

Whenmodeling the control of the motion to a given phase-space point, the vector-
function u(t) solves a boundary value problem, that is, operates to fulfill the condition

x(T ) = xT , (2.2)

where xT is the prescribed vector pertaining to the attainability domain relevant to
the vector x0.

The following treatment explains boundary value problems in detail.
This boundary value problem arises when designing the control configuration to

provide minimum-time control functionality, which means the “as soon as possible”
(ASAP) principle applied to minimize the T value in (2.2).

The solution of the boundary value problem reduces to the determination of a
vector of unknown parameters

θT = ‖θ1, . . . , θn‖T ;

this vector determines the structure of the control vector. It is assumed next that there
exists an a priori domain �θ ∈ Rn (typically, a parallelepiped in Rn), which may (or
must) contain the vector of parameters: θ ∈ �θ.

It was found that, within the context of the motion control problems, the vector
θ is precisely the root vector of some set of nonlinear algebraic equations. Thus, a
numerical procedure to solve a boundary value problem is considered established
once the efficient procedure is established to solve numerically a relevant set of
nonlinear algebraic equations of the form

F(θ) = Y, (2.3)

where Y is the dimension-(n × 1) vector defined as the context of the boundary
value problem dictates, and F(θ) is the prescribed n × 1 vector-function with the
condition-specific structure as the boundary value problem dictates.

A characteristic property of the boundary value problem that arises when design-
ing the control configuration to provide motion to a given phase-space point is that
the vector-function F(θ) in (2.3) is assigned implicitly, as a result of the numerical
solution of a set of differential equations.
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In the boundary value problem

u = u(t, x, P),

P is the conjugate variable vector (see below for detail), and

|P(0)| = 1, P(0) = ϕ(θ(n − 1)), θ(n − 1)T = ‖θ1, . . . , θn−1‖,
Y = x(θn),

ϕ(. . .) is the prescribed vector-function; for every θ, the vector Y in (2.3) is found
by numerical integration of the equations

dx/dt = f (t, x, u(t, x, P)),

d P/dt = �(t, x, P, u(t, x, P)),

over a domain [0, n], where �(. . .) is the known vector-function.
For some types of boundary value problems, the control vector components com-

prise the piecewise continuous functions of time and belong to the relay control class.
So, enormous difficulties, both conceptual and computational, arise when attempting
to find the Jacobian—a ∂F/∂θ—partial derivative matrix F(θ) vector components
to vector components) in a specific case of the implicitly assigned vector-function
F(Y ).

This fact prevents us from using the conventional modifications of Newton’s
method as a tool to solve the set of equations (2.3) numerically. The Newtonian
procedure is simply a way to develop the iteration process

θi = θi−1 − G(∂F(θi−1)/∂θ)−1(F(θi−1) − Y ),

where θi is an approximate solution vector for the set (2.3) at the i th iteration step,
and G is a positive definite matrix.

Along with the need to calculate the inverse(s) of the Jacobian matrices, the
Newtonian procedure typically requires a selection (from a priori considerations)
of a zeroth-order approximation vector (first guess) θ0 closely adjacent to the root
vector of the set (2.3).

Next, a combination of a simple search technique and a polynomial approxima-
tion technique as applied to the inverse vector-function F−1(Y ) is used to find an
approximate solution of the set (2.3). The simple search procedure is to cover the a
priori domain with a family of points (vectors ϑ), then calculate the residual vectors
F(ϑ) − Y , and finally determine the vector ϑo:

ϑo = arg min
ϑ∈�θ

|F(ϑ) − Y |.
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The vectorϑo is used for the initial approximation to the root vector of the set (2.3)
and comprises a center of some domain �∗

θ ∈ �θ. The refined approximation to the
root vector is then found over the points of the * using a polynomial approximation
technique.

The procedure affords the asymptotic representation for F̂−1(Y ), which is an
integral counterpart of the multidimensional Taylor series.

The vector-weighting factors contributing to the vector series representation are
found as the first and second statistical moments of the F(θ) vector-function com-
ponents to an integer power, calculated on the hypothesis that the components of an
unknown vector θ comprise random values evenly distributed over �∗. Determining
these factors therefore requires calculation of the n-order integrals over the domain
�∗; sometimes, it is a computation-intensive task.

A need for such computational work is commonly justified by the reasons that a
two-point boundary value problem is to be solved per single computation cycle for
all vectors Y belonging to the same a priori domain �Y [the domain is defined by
Eq. (2.3) with the �∗ domain being prescribed].

Theoretically, the uniform convergence is guaranteed by the underlying theorem
of the polynomial approximation method as set forth above. The practical experience
as applied to the numerical solution of boundary value problem has shown, however,
that computational difficulties exist, especially regularly arising at d > 8 ÷ 10 due
to the ill-conditioned character of matrix algorithm to solve a set of linear algebraic
equations (the process implemented here is to find vector coefficients of a power
series).

If the �∗
θ domain is small, however, a small d value of about 3 ÷ 5 is enough to

reasonably minimize the errors during polynomial approximation of the root vector
in (2.3)—only if the vector lies within�∗

θ . Then the above computational difficulties
will be eliminated.

This is the reason why the following computational scheme was applied to solve
the selected boundary value problems. The edges of a parallelepiped �∗

θ are divided
into r equal parts; this results in the formation of rn smaller parallelepipeds. In each
of them, the polynomial approximation algorithm finds the estimated root vector
with d = 3 ÷ 5. The estimated vector for which the sum of squared error (SSE) is
minimized when solving the set (2.3) is refined via several iterations and becomes
the output of the algorithm designed to find a solution of the set (2.3).

The described procedure to divide the domain �∗
θ into smaller subdomains is

equally necessary in a special case where several root vectors of the set (2.3) are
about to exist within �∗

θ .
The remaining sections of this chapter describe the principal scheme and compu-

tational process adapted to handle applied problems (i.e., minimum-time–oriented)
using the simple search and polynomial approximation procedures.
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8.3 Necessary and Sufficient Conditions for Time-Optimal
Control

The Pontryagin maximum principle [1], when applied to real-time processes,
expresses the necessary conditions for time-optimal control. Furthermore, for lin-
ear dynamic systems, it expresses the sufficient conditions for time-optimal control
and affords a two-point boundary value problem for a set of differential equations
satisfied by the status vector of the object as well as the conjugate variable vector.
This boundary value problem is a case study of the situation where a vector-function
of a set of nonlinear algebraic equations of form (2.3) is assigned implicitly.

Nondifferentiable and/or discontinuous functions represented by an optimumcon-
trol vector in real time, with an allowance for control constraints, prevent us from
applying the variety of gradient methods to find a numerical solution of a bound-
ary value problem. These functions, however, have no effect on the computational
algorithm of a modification of the polynomial approximation method applied to the
inverse vector-function where no gradient calculation is required.

Note that it is the occurrence of such functions that prevents us from applying
the two-point boundary value problem solution algorithms described in [2] with no
restrictions, to implement them in optimum control design.

Let the simulation model of the control object be represented by the equation

dx/dt = Ax + b1u1 + · · · + bkuk, (3.1)

where n is a dimension-(n × n) matrix, b1, . . . , bk are dimension-(n × 1) vectors,
and u1, . . . , uk are unknown scalar controls (functions of time constrained by

|ui (t)| < 1, i = 1, . . . , k.

Then the conjugate variable vector P ∈ Rn will be represented by the equation

d P/dt = −AT P. (3.2)

Necessary and sufficient conditions for the time-optimal linear control introduced
in the formof the constraints uo

1, . . . , uo
k , to transfer, in aminimumof time θn , a vector

x from a fixed point x(0) to a fixed point x(θn), state that the optimum scalar controls
uo
1, . . . , uo

k must comply with the maximum principle (see [1] for details):

uo
1, . . . , uo

k = arg max|u1|<1,...,|uk |<1
PT (b1u1 + · · · + bkuk), (3.3)

from which

uo
1 = u1(P), . . . , uo

k = uk(P).
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Furthermore, the following condition must hold:

H(θn) > 0, (3.4)

where H is a Hamiltonian:

H = PT (Ax + b1u1 + · · · + bkuk).

Let po
1, . . . , po

n be the unknown components of the vector P(0). From the homo-
geneity of Eq. (3.2), it follows that the condition may be imposed on P(0):

|P(0)| = 1. (3.5)

Let us pass on to the new unknowns θ1, . . . , θn−1, connected to po
1, . . . , po

n via
trigonometric formulas that ensure the fulfillment of the condition (3.5):

po
1 = cos(θ1),

po
2 = sin(θ1) cos(θ2),

....................................

po
n−1 = sin(θ1) sin(θ2) · · · cos(θn−1),

po
n = sin(θ1) sin(θ2) · · · sin(θn−1),

where n > 1. The a priori domain for the unknowns θ1, . . . , θn−1 is specified by
inequations

0 < θ1, . . . , θn−1 < 2π. (3.6)

The corresponding vectors P(0) evenly cover the surface of a unit ball in Rn ,
while the unknowns θ1, . . . , θn−1 are subjected to fixed-increment variations.

If we substitute u1(P), . . . , uk(P) for u1, . . . , uk in (3.1), (3.2), we arrive at a
two-point boundary value problem where, for Eq. (3.2) and for a set of second-order
differential equations

dx/dt = Ax + b1u1(P) + · · · + bkuk(P), (3.7)

Equation (2.3), n initial conditions x0, and n terminal conditions xT are defined.
n − 1 unknown parameters 1, . . . , n − 1 combined with the time-optimal unknown
time of motion n = T create the vector of unknowns θ, with its components
θ1, . . . , θ(n−1), θn .

Suppose an a priori domain of existence �θ is defined for the vector θ and a
numerical integration method is selected for Eqs. (3.2), (3.7). Then, for any θ ∈ �θ,
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the corresponding vector x(θn) can be found. We take it as vector Y ; the functional
relationship of Y and is found via numerical integration of Eqs. (3.2), (3.7).

Hence, the solution of the two-point boundary value problem to afford a
time-optimal dynamic systemcontrol (3.1)was reduced to the solutionof the equation
of the form (2.3); that is, the inverse vector-function F(Y )−1 should be determined
given that the vector-function F(Y ) is defined implicitly, via numerical integration
of Eqs. (3.2), (3.7). One can see from these equations that F(Y )−1 is a contin-
uous function. Therefore, the principal requirement is fulfilled, which claims the
uniform convergence of polynomial approximation for the inverse vector-function
F−1(Y ).

Numerous examples of tackling the time-optimal control problems are given in [1]
for caseswhere the dynamic system equations have an order of 2 or less. Approximate
methods were developed [3] for more sophisticated problems where a nonlinear
programming technique is implemented, so there is no need for solving the boundary
value problem for Eqs. (3.2), (3.7).

Note that these methods are quite difficult to implement: The procedure involves
consideration of various special cases of convergence and typically requires conver-
sational programming system to be used. That iswhy it is often claimed that “themost
accurate and precise numerical solutions of the ‘calculus of variations’ problems are
associated with the solution of relevant systems; the successful treatments, however,
were extremely scarce, despite the repeated attempts” [3, p. 115]. The two-point
boundary value problem is a special case of the system considered in [3].

Later in this chapter, we will detail the calculation process by stage to produce
the approximate solution of the boundary value problem stated above. The indi-
vidual stages involve the repeated numerical solutions of the Cauchy problem for
Eqs. (3.2), (3.7).

The conditions of themaximumprinciple given above are the necessary conditions
and the sufficient conditions at one time. So, for any dimension-(n − 1× 1) θ vector
(the initial condition vector in Eq. (3.2)) as well as for any positive quantity θn ,
Eqs. (3.2), (3.7) determine the time-optimal controlswhen transferring, in aminimum
of time θn , a prescribed initial condition vector x0 to some terminal condition vector
x(θn).

The last-mentioned vector is determined after joint integration of Eqs. (3.2), (3.7)
given the initial conditions x0, θn−1 and the integration time θn .

It is well known from the optimal control theory that the Hamiltonian value
amounts to a constant nonnegative quantity H = const > 0 over an entire optimum
motion pathway, including the control discontinuity points (control sign reversal
points).

The currently used numerical integration technique is feasible when solving the
Cauchy problem provided that the above condition is met over an object motion
pathway to a sufficient degree of accuracy for all allowable dimension-(n−1) vectors
θ as well as for the quantity θn .
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8.4 The Stages of the Calculation Process

Stage 1. Upper-bound estimation of θn for prescribed vectors x0, Y .
What is the way to get the upper-bound estimate for the quantity θn , the unknown

minimum time to move a dynamic system from a point x0 to the prescribed point Y .
We take as an estimate ϑn , a time value attainable when using some reasonable—but,
in general, far from being optimal—control satisfying the imposed constraints.

Let n of the time points ϑ1, . . . ,ϑn−1,ϑn satisfy the inequalities

ϑ1, . . . ,ϑn−1,ϑn,

and let some control u1 reverse its sign at these points, to amount to ±1 or ∓1, the
remaining n − 1 control vanishing.

It is the explicit algebraic equations or numerical integration of themodel dynamic
system (3.1)with imposed boundary conditions that determine� algebraic equations
in unknowns ϑ1, . . . ,ϑn−1,ϑn .

xo, x(ϑn) = xT .

For these equations, a vector-function F(ϑ) is prescribed explicitly or implicitly:
a vector Y , the prescribed vector Y , will be found via integration of (3.1). In the case
studies of problems described ahead, a fundamental matrix �(ϑ) of system (3.1) is
known, and a set of algebraic equations is as follows [given u1(0) = 1]:

�(ϑn)x0 + b1

n∑

i=1

(−1)i−1

ϑi∫

ϑi−1

�(ϑn − ϑ)dϑ = xT .

Similar sets will be obtained when we replace u1(0) = 1 with u1(0) = −1,
u1 with u2, and so forth.

Solving such sets of equations approximately using a simple search technique
(amplified with a polynomial approximation technique applied to inverse functions
if necessary), we shall find 2n numbers n comprising the values of possible time
points when a particular case of reasonable control will be terminated. Name the least
of these numbers ϑn an upper-bound estimate for the quantity θn . The inequalities
(3.6) given above, together with the inequality θn < ϑn , define an a priori domain
�θ ∈ Rn .

Stage 2. Approximate determination of the root vector of system (2.3) using a
simple search technique.

Divide the edges of a parallelepiped �θ into r equal parts; this results in the
parallelepiped being covered with a grid of rn points. Take their coordinates as the
components of the parameter vector θ corresponding to rn numerical integrations of
Eqs. (3.2), (3.7) given that x(0) is a prescribed vector. The integrations will result in
rn difference vectors [the prescribed vector x(T ) minus the vectors x at times when
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relevant integration(s) are terminated]. Then the components of the approximate root
vector θ∗ of set (2.3) are equal to the coordinates θ∗

1, . . . , θ
∗
n−1, θ

∗
n of the point where

the difference vector has the minimum length.
Stage 3. Refining the root vector of set (2.3) using a polynomial approximation

technique. The vector θ∗ is a center of a parallelepiped �∗. The subsequent calcula-
tion process was described in Sect. 8.2.

8.5 Near-Circular Orbit Correction in Minimum
Practicable Time Using Micro-Thrust Operation of
Two Engines

Let’s employ the conceptual calculation scheme described in Sect. 8.1 in handling a
problem of the time-optimum earth satellite vehicle (ESV) orbit correction. Suppose
here that the satellite follows a near-circular orbit.

The difference between the actual ESV orbit and its circular (nominal) orbit is
assumed to be small, so the acceleration induced by the Earth’s gravitational field can
be first power linearized using difference ESV coordinates (actual position less nom-
inal position); note that the linearization is not mandatory when using a polynomial
approximation technique with the algorithm common for linear and nonlinear sys-
tems. The actual ESV motion parameters comply approximately with known linear
differential equations in a rotating Cartesian “local vertical local horizontal (LVLH)
frame, or vehicle-centric system. These equations represent the “disturbed-in-small,”
near-circular-orbit ESV motion.

We shall find the equations bywriting the rigid-body dynamic equations ofmotion
(EOMs) referred to a Cartesian frame rotating with an angular velocity of ω = V/R,
where V is the nominal ESV velocity, and R is the length of the nominal ESV
radius-vector.

The origin of the LVLH frame is precisely the nominal ESV position at the near-
circular orbit, the x1-axis being directed as the nominal ESV radius-vector, and the
x2-axis being directed as the ESV velocity vector. Two engines are used to adjust
the orbit of the actual ESV. Due to thrust forces, the accelerations a1, a2 are created
directly either as x1, x2 or in the opposite directions; the limit acceleration value
is a0. Then the instantaneous position coordinates s1 and s2 as well as the orbital
velocity components v1 and v2 in the LVLH frame satisfy the differential equations
of motion for the actual ESV:

ds1/dt = v1, dv1/dt = 3ω2s1 + 2ωv2 + a1,

dv2/dt = −2ωv1 + a2, ds2/dt = v2.

We shall conveniently call an independent variable (the quantity f = ωt) the
nominal ESV radius-vector rotation angle. Then the equations of motion will be as
follows:
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dx1/d f = x2, (5.1)

dx2/d f = 3x1 + 2x3 + bu1, (5.2)

dx3/d f = 2x2 + bu2, (5.3)

where

x1 = s1, x2 = v1/ω, x3 = v2/ω, b = a0/ω
2, |u1|, |u2| < 1.

The equations for the conjugate variable vector components are as follows:

dp1/d f = −3p2, (5.4)

dp2/d f = −p1 + 2p3, (5.5)

dp3/d f = −2p2, (5.6)

with the initial conditions

po
1 = cos(θ1), po

2 = sin(θ1) cos(θ2), po
3 = sin(θ1) sin(θ2).

The Hamiltonian of the problem is defined by the expression

H = p1x2 + p2(3x1 + 2x3 + bu1) + p3(−2x2 + bu2).

It follows from the maximum principle that the optimum controls will be defined
by

uo
1 = sign(p2), uo

2 = −sign(p3). (5.7)

Now we set ω = 10−3, s−1. The following values are predetermined:

x1(0) = 1000, x2 = 1000, x3 = −1000, b = 1000.

The selected b-value corresponds tomicro-thrust when themaximumacceleration
produced by the force of thrust from each engine is 1mm/s2.

We have to select the controls u1, u2 in such a way as to transfer a three-
dimensional status vector to an origin in minimum time, namely, to satisfy the con-
ditions

x1(ωT ) = x2(ωT ) = x3(ωT ) = 0.

Then the optimum controls will guarantee the minimum propellant consumption
when adjusting the near-circular ESV orbit.
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With this in mind, we shall now solve a two-point boundary value problem;
namely, we need to find the unknown initial conditions θ1, θ2 and the unknown
quantity θ3 = f at the moment when the orbit adjustment is terminated.

Stage 1. According to the aforesaid, find an upper-bound estimate for the control
time T that is required to select the a priori domain �θ. For the purposes of this
intermediate task, define the reasonable control as follows. Put u1 = 0, and let
us search the relay (two-position) control u2 characterized by two unknown sign
switching points.

At these times, let the f be the gain the values of ϑ1 and ϑ2, respectively.
The quantity ϑ3 = ωT is an f value at the moment when the orbit adjustment is

terminated—which is the time by when the status vector is to be put to the origin.
Furthermore, the following inequalities must hold:

ϑ1 < ϑ2 < ϑ3.

With u1 = 0, the solution of a set of differential equations (5.1)–(5.3) is as follows:

x( f ) = �( f )x(0) + b

f∫

0

�( f − τ )u(τ )dτ , (5.8)

where
u(τ )T = ‖0 0 u2(τ )‖.

�( f ) is the fundamental matrix for Eqs. (5.1)–(5.3) and is defined by the equation

�( f ) =
⎛

⎝
4 − 3 cos( f ) sin( f ) 2(1 − cos( f ))

3 sin( f ) cos( f ) 2 sin( f )

−6(1 − cos( f )) −2 sin( f ) 4 cos( f ) − 3.

⎞

⎠ (5.9)

Put
u2(0) = 1 |u2( f )| = 1.

From (5.8), (5.9), we shall now determine a set of three algebraic equations with
which the unknowns ϑ1,ϑ2, and ϑ3 must comply:

x1(0)(4 − 3 cos(ϑ3)) + x2(0) sin(ϑ3) + x3(0)2(1 − cos(ϑ3))

+4b(ϑ1 − ϑ2 − 0.5ϑ3 + sin(ϑ3 − ϑ1)

− sin(ϑ3 − ϑ2)) = 0,

x1(0)3 sin(ϑ3) + x2(0) cos(ϑ3) + x3(0) + 2 sin(ϑ3)
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+4b(−0.5 − x2(0) cos(ϑ3) + cos(ϑ3 − ϑ1) + cos(ϑ3 − ϑ2) + 1) = 0,

−x1(0)6(1 − cos(ϑ3)) − x2(0)2 sin(ϑ3) + x3(0)(4 cos(ϑ3) − 3)

+b(6(−ϑ1 + ϑ2 − 0.5ϑ3) + 8(0.5 sin(ϑ3)

− sin(ϑ3) − ϑ1) + sin(ϑ3 − ϑ2)) = 0.

The edges of the cube 0 < ϑ1,ϑ2,ϑ3 < 5π are divided into 500 parts, and the
error vectors are determined at the points ϑ1 < ϑ2 < ϑ3 via solving a set of algebraic
equations where the right parts stand for the vector components. The shortest vector
affords the value 3, which is taken for the upper-bound estimate for the correction
time. We have found ϑ3 = 11.10867. At that, the errors of solving a set of algebraic
equations were, respectively,

δ1 = −7.10, δ2 = −6.78, δ3 = −8.90.

Stage 2. The edges of the square 0 < ϑ1,ϑ2 < 2π are divided into 200 parts, and
the square is covered by 2002 points. Then we apply the simple Euler procedure with
an increment of 0.01 radian, and integrate Eqs. (5.1)–(5.6) with fixed θ3 < ϑ3 and
imposed controls (5.7), to find 2002 approximate minimum-time control pathways.
Upon varying the value θ3 < ϑ3, the algorithm selects a pathway from the ensemble
of pathways, to minimize the |x( f )| value at the endpoint of integrations.

Corresponding ϑ1,ϑ2, and ϑ3 values are taken for the first guess when solving
the time-optimal control problem:

ϑ∗
1 = 0.665, ϑ∗

2 = 0.085, ϑ∗
3 = 2.198.

The orbit correction errors are therefore

δ1 = 514.516, δ2 = 3.625, δ3 = 247.763.

Obviously, the simple search technique is a fairly “rough-and-ready” method: It
produces significant errors when adjusting the near-circular ESV orbit, despite the
huge number of points to cover the parallelepiped.

Stage 3. Now we shall refine the solution of the boundary value problem using a
polynomial approximation technique.

Prior to iteration 1, let’s define a parallelepiped �∗
θ via the conditions

θ∗
1 − 0.005, θ1 < θ∗

1 + 0.005,

θ∗
2 − 0.005, θ2 < θ∗

2 + 0.005,

θ∗
3 − 0.5, θ3 < θ∗

3 + 0.5.
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Then perform iteration 1 over the domain �∗
θ . We put d = 3 and apply a poly-

nomial approximation technique combined with the numerical integration of the
Eqs. (5.1)–(5.6) using the simple Euler procedurewith an increment of 0.0001 radian.
The first approximation vector components will be obtained:

θ
(1)
1 = 0.667386, θ

(1)
2 = 0.079556, θ

(1)
3 = 2.67411.

The orbit correction errors have been reduced and now are as follows:

δ1 = 33.46 δ2 = 119.56 δ3 = 16.76.

Let’s define a parallelepiped �1
θ via the conditions

θ
(1)
1 − 0.005 < θ1 < θ

(1)
1 + 0.005,

θ
(1)
2 − 0.005 < θ2 < θ

(1)
2 + 0.005,

θ
(1)
3 − 0.5 < θ3 < θ

(1)
3 + 0.5.

Then, with d = 4, we will perform iteration 2 using a polynomial approximation
technique; the second approximation vector components will be obtained accord-
ingly:

θ
(2)
1 = 0.667574 θ

(2)
1 = 0.667574 θ

(2)
1 = 0.667574.

The orbit correction errors have been dramatically reduced and now are as follows:

δ1 = 0.21, δ2 = 0.16, δ3 = −0.42.

Iteration 3 results in some correction error reduction as well:

δ1 = −0.16, δ2 = −0.23, δ3 = 0.13.

Thus, the boundary value problem, under conditions of interest, has been solved
almost exactly following two to three iterations, and, therefore, a time-optimum
near-circular ESV orbit correction problem has been solved almost exactly as well.

One can see from the comparison of the θ(2)
3 value and the 3 value found in stage

1 that the minimum orbit correction time has dropped by factor of 4 due to the use of
two low-thrust engines as against the minimum orbit correction time attainable with
a single low-thrust engine.

When implementing the time-optimal relay correction, the u1, u2 values will be
as follows:

0 < f < 1.560, u1 = −1;

1.560 < f < 2.665, u1 = +1;
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0 < f < 1.1.140, u2 = −1;

1.140 < f < 1.980, u2 = +1;

1.980 < f < 2.665, u2 = −1.

The Hamiltonian H is nearly constant at the final minimum-time pathway. Here
are those first digits of the f value that do not change within the sign constancy
intervals of the controls u1, u2:

0 < f < 1.140, H = 432.459;

1.1.140 < f < 1.560, H = 432.5;

1.560 < f < 1.980, H = 432.6;

1.980 < f < 2.665, H = 432.676.

It must be emphasized that the described calculation process consists of the
repeated, typical numerical solutions of the Cauchy problem for a variety of ini-
tial conditions. Apart from the last stage, where a few iterations are included, the
numerical solutions use a simple Euler procedure with reasonably large increments.

8.6 Correcting the Near-Circular Orbit and Position
of the Earth Satellite Vehicle in Minimum Practicable
Time Using Micro-Thrust Operation of Two Engines

A more challenging problem is solved in the similar way; namely, the time-optimal
controls u1, u2 have to adjust the near-circular orbit and eliminate the ESV posi-
tion error along its pathway. A task of this sort may arise in the proximity path
section of two ESVs prior to docking. If the actual ESV x2-coordinate is x4, then
Eqs. (5.1)–(5.3) must be augmented by the equation

dx4/d f = x3,

and the equations for the conjugate variable vector components will be as follows:

dp1/d f = −3p2,

dp2/d f = −p1 + 2p3,

dp3/d f = −2p2 − p4,

dp4/d f = 0,
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with the initial conditions

po
1 = cos(θ1),

po
2 = sin(θ1) cos(θ2),

po
3 = sin(θ1) sin(θ2 cos(θ3),

po
4 = sin(θ1) sin(θ2 sin(θ3).

Next, we solve the boundary value problem for the initial conditions

x1(0) = 1000, x2(0) = 1000, x3(0) = −1000, x4(0) = 1000.

The optimum controls uo
1( f ), uo

2( f ) will be defined by Eq. (5.7).
Let θ4 be the unknown f at the endpoint of the minimum-time adjustment. Then,

upon the solution of the boundary value problem, the parameters θ1, θ2, θ3, and
θ4 must allow the goal of the adjustment to be met, that is, satisfying the terminal
conditions

x1(θ4) = x2(θ4) = x3(θ4) = x4(θ4) = 0.

Stage 1. In order to find the ϑ4 value, an upper-bound estimate for θ4, define the
reasonable control as follows:

u1( f ) = 0, |u2| = 1, u2(0) = 1.

The function uo
2( f ) reverses its sign once the current f value turns into precisely

the unknown values
ϑ1 < ϑ2 < ϑ3 < ϑ4;

the control terminates once f = ϑ4. The fundamental dimension-(4 × 4) matrix
�( f ) for the equations can be found from matrix (5.9) with the bottom row

‖6(sin f − f ) − 2(1 − cos( f )) − 3 f + 4 sin( f ) 1‖

and the rightmost column ‖0 0 0 1‖T added to it.
The unknown parameters satisfy a set of four algebraic equations:

x1(0)(4 − 3 cos(ϑ4)) + x2(0) sin(ϑ4) − x3(0)2(1 − cos(ϑ4))

+4b(ϑ1 − ϑ2 + ϑ3 − 0.5ϑ4 − 0.5 sin(ϑ4)

+ sin(ϑ4 − ϑ1) − sin(ϑ4 − ϑ2) + sin(ϑ4 − ϑ3)) = 0,

x1(0)3 sin(ϑ4)) + x2(0) cos(ϑ4) − x3(0)2 sin(ϑ4))+

4b(−0.5 − 0, 5 cos(ϑ4)
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+ cos(ϑ4 − ϑ1) − cos(ϑ4 − ϑ2) + cos(ϑ4 − ϑ3)) = 0,

−x1(0)6(1 − cos(ϑ4)) − x2(0) sin(ϑ4) + x3(0)2(4 cos(ϑ4) − 3)

+b(6(−ϑ1 + ϑ2 − ϑ3 + 0.5ϑ4) + 8(0.5 sin(ϑ4)

− sin(ϑ4 − ϑ1) + sin(ϑ4 − ϑ2) − sin(ϑ4 − ϑ3))) = 0,

x1(0)6(sin(ϑ4) − ϑ4) − x2(0)2(1 − cos(ϑ4)) + x3(0)2(3ϑ + 4 sin(ϑ4))+

x4(0) + b(3(ϑ2
1 − ϑ2

2 + ϑ2
3 − 0.5ϑ2

4) + 6(−ϑ1 + ϑ2 − ϑ3)ϑ4

+8(−0.5 cos(ϑ4) + cos(ϑ4 − ϑ1) + cos(ϑ4 − ϑ2) + cos(ϑ4 − ϑ3) + 0.5)) = 0.

Apply simple search to find the approximate root values for a set of algebraic
equations:

ϑ1 = 0.99 ϑ2 = 6.12 ϑ3 = 11.72 ϑ4 = 14.18.

So henceforth we adopt θ4 < 14.
Stage 2.Applying the simple search technique over a variety of theminimum-time

pathways, we have found an approximate solution for the boundary value problem:

θ∗
1 = 0.419; θ∗

2 = 0.350; θ∗
3 = 0.468; θ∗

4 = 4.250,

which affords significant errors. There are fairly large orbit correction errors at this
stage:

δ1 = −40.10, δ2 = −143.03, δ3 = 254.20, δ4 = 485.43.

Now we take the approximate solution so found for the first guess when seeking
the exact solution of the problem.

Stage 3. Now we shall refine the solution of the boundary value problem using
a polynomial approximation technique. Let’s define a parallelepiped �∗

θ via the
conditions

θ∗
1 − 0.001 < θ1 < θ∗

1 + 0.001,

θ∗
2 − 0.001 < θ2 < θ∗

2 + 0.001,

θ∗
3 − 0.001 < θ3 < θ∗

3 + 0.001,

θ∗
4 − 0.001 < θ4 < θ∗

4 + 0.001.

Then we perform iteration 1 over the domain �∗
θ . We put d = 3 and apply

a polynomial approximation technique; the first approximation vector components
will be obtained:
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θ
(1)
1 = 0.419; θ

(1)
2 = 0.345; θ

(1)
3 = 0.470; θ

(1)
4 = 4.246.

The correction errors are still fairly large and now are as follows:

δ1 = −101.75; δ2 = −81.51; δ3 = 91.60; δ4 = 62.38.

Let’s define a parallelepiped �1
1 via the conditions

θ11 − 0.0001 < θ1 < θ11 + 0.0001,

θ12 − 0.0001 < θ2 < θ12 + 0.0001,

θ13 − 0.0001 < θ3 < θ13 + 0.0001,

θ14 − 0.0001 < θ4 < θ14 + 0.0001.

Then, with d = 3, perform iteration 2 over the domain �1
θ using a polyno-

mial approximation technique; the second approximation vector components will
be obtained:

θ
(2)
1 = 0.419; θ

(2)
2 = 0.345; θ

(2)
3 = 0.470; θ

(2)
4 = 4.265.

The correction errors have been reduced dramatically and now are as follows:

δ1 = −0, 40; δ2 = −0.81; δ3 = 0.41; δ4 = −0.42.

These small errors can be reduced even more due to iteration 3.
It is seen that the near-circular ESV orbit correction and the ESV position error

elimination problem have been solved almost exactly following as few as two itera-
tions, which is due to the polynomial approximation algorithm applied.

One can see from the θ(2)
4 value and the 4 value found in stage 1 that the minimum

correction time has dropped by factor of 3 due to the use of two low-thrust engines as
compared to the minimum correction time attainable with a single low-thrust engine.

When we implement the time-optimal correction, the relay law control governing
the control variations u1, u2 will be as follows:

0.000 < f < 2.220, u1 = −l,

2.220 < f < 2.870, u1 = +1,

2.870 < f < 4.260, u1 = −1,

0.000 < f < 1.190, u2 = −1,
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1.190 < f < 2.510, u2 = +l,

2.510 < f < 3.950, u2 = −l,

3.950 < f < 4.260, u2 = +1.

The Hamiltonian H is nearly constant at the minimum-time pathway.
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Chapter 9
Inverse Problem of Dynamics: The Algorithm
for Identifying the Parameters of an Aircraft

9.1 Introduction

The development of efficient parameter identification methods for the model of a
dynamic system based on real-time measurements of some components of its state
vector should be taken as one of themost important problems of applied statistics and
computational mathematics. Calculating the motion of the system given the initial
conditions and its mathematical model is conventionally called the direct problem
of dynamics. The inverse problem of dynamics would be the problem of identifying
the system model parameters based on measurements of certain components of the
state vector provided that the general structural scheme of the model is known from
physical considerations. Such an inverse problem corresponds to an identification
problem for the dynamic system representing an aircraft. In this case, the general
structural scheme of the model (motion equations) follows from the fundamental
laws of aerodynamics.

In many cases, modern computational methods and wind tunnel experiments can
provide sufficient data on nominal parameters of the mathematical model, which
are the nominal aerodynamic characteristics of the aircraft. Nevertheless, there are
problems [1] that require correcting the nominal parameters based on measurements
taken in real flights. These imply

(1) Verifying and interpreting theoretical predictions and results of wind tunnel
experiments (flight data can also be used to improve ground predictionmethods).

(2) Obtaining more exact and complete mathematical models of the aircraft dynam-
ics to be applied in designing stability enhancement methods and flight control
systems.

(3) Designing flight simulators that require a more accurate dynamic aircraft profile
in all flight modes (many motions of aircrafts and flight conditions can be nei-
ther reconstructed in the wind tunnel nor calculated analytically to a sufficient
accuracy or efficiency).

J. A. Boguslavskiy, Dynamic Systems Models, DOI: 10.1007/978-3-319-04036-3_9, 187
© Springer International Publishing Switzerland 2016
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(4) Extending the range of flight modes for new aircrafts, which can include a
quantitative determination of stability and impact of control when the configu-
ration is changed or when special flight conditions are realized.

(5) Testing whether the aircraft specification is compliant.

Furthermore, dimensionless numbers at the nodes of one- or two-dimensional
tables found in wind tunnel experiments serve as nominal values in the aerodynamic
parameter identification problem of the aircraft. This causes the vector that corrects
these parameters, which are determined by the algorithm processing the digital data
flows received from the aircraft sensors, to have a significant dimension of the order
of about several tens or hundreds.

An implementation of multiple NASA-recommended algorithms for identifica-
tion problems, the Systems Identification Programs for Aircraft (SIDPAS) software
package written in the MATLAB� M-files language is available on the Internet as
an appendix to [1]. Various existing identification methods published in monographs
on statistics and computational mathematics are widely reviewed in [1].

For the most general identification method, one should take the known nonlinear
least squares method [2] that forms the sum of squared errors, or the differences
between the real measurements and their calculated analogs obtained by numerical
integration of motion equations of the system for some realization of the vector of
unknown parameters.

Successful identification yields the vector of parameters that delivers the global
minimum to the above-mentioned sum of squared errors. Still, this criterion is sta-
tistically valid only for linear identification problems, in which measurements are
linear with respect to the unknown vector of parameters.

Implementing the nonlinear least squaresmethod to correct nominal parameters of
the aircraft based on its test flight data involves computational challenges. These arise
when the dimension of the correction vector is big and the sumof squared errors as the
function of the correction vector has multiple relative minima or when variations of
the Newton’s method are applied with the sequence of local linearization performed
to find stationary points of this function. In [1], the regression method supported
by the lesq.m, smoo.m, derive.m, and xstep.m files in SIDPAS is recommended for
practical applications.

Suppose the motion equations of the system and the sequence of measurements
have the form

dx/dt = f (x,ϑ + θ, u) (1.1)

yk = Hk(x(tk)) + ξk, (1.2)

where x(tk) is the (n × 1)-dimensional vector of the system states at the current
instant t and at the given instants tk, k = 1, . . . , N ,ϑ is the (r ×1)-vector of nominal
(known) parameters of the system, θ is the vector of unknown parameters that serves
as the correction vector for the nominal vector ϑ after the results of measurements
are stochastically processed, u is the control vector of the system, f (. . .) is the given
vector-function, yk is the sequence of vector-results of measurements, Hk(. . .) is the
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given vector-function, and ξk, k = 1, . . . , N , is the sequence of random vector-errors
of measurements with the given random generator for the mathematical simulation.

We can state the identification problem for the vector θ as follows. Find the
estimate as the function of the vector YN formed of the results of all measurements
y1, . . . , yN .

The regression method given in [1] solves this problem under the following lim-
itations:

(1) all components of the state vector can be measured: yk = x(tk) + ξk ;
(2) at themeasurement instants tk , the algorithm constructs the estimate of the vector

of derivatives dx/dt ;
(3) the vector-function f (x,ϑ + η, u) linearly depends on the vector η.

Relations (1.1) and (1.2) show that when conditions (1)–(3) are met and N is
sufficiently big, the estimation vector satisfies the overdetermined system of linear
algebraic equations, withmethods to solve it being well known. The given conditions
seem to be rather rigid and may be hard to implement. For instance, it is arguable
whether one can construct the vector of derivatives dx/dt sufficiently accurately
given the real turbulent atmospheric conditions, which imply that the outputs of the
angle of attack and sideslip sensors inevitably include random and unpredictable
frequency components.

All this justifies the development of new identification algorithms that can be
applied to dynamic systems of a rather general class and do not possess drawbacks
ofNASAalgorithms. The proposedmultipolynomial approximation algorithm (MPA
algorithm) serves as such a new identification algorithm.

9.2 Statement of the Problem and Basic Scheme
of the Identification Algorithm

The general scheme for identifying aerodynamic characteristics of the aircraft by the
test flight data is as follows [1]. Motion equations of the aircraft (1.1) and system
(1.2) of measurements of motion characteristics of the aircraft are given. The vector
ϑ is the vector of nominal aerodynamic parameters determined in the wind tunnel
experiment. Calculated by the results of real (test) flight, the vector η is used to
correct the vector ϑ.

When the aircraft flies, its computer fixes the digital array of initial conditions and
time functions, namely, current control surface angles and measurements of some
motion parameters of the aircraft [some components of the vector x(t) of the state of
the aircraft] received from its sensors. Note that selecting the criterion for optimal or,
at least, rational mode to control the test flight is a separate problem and lies beyond
our further consideration. The current motion characteristics measured as the time
function, such as angles of attack and sideslip, and components of the vector of angu-
lar velocity and g-load obtained by the inertial system of the aircraft are registered for
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real (not known for sure) aerodynamic parameters of the aircraft (parameters ϑ + η)
and can be called measured characteristics of the perturbed motion.

Once the flight under the mentioned (given) initial conditions and time functions
(control surface angles) is completed, nominal motion equations [equations of form
(1.1) for θ = 0] are integrated numerically for the nominal aerodynamic parameters
of the aircraft. For the calculated characteristics of the nominal motion of the aircraft,
one should take the obtained data—components of the state vector of the aircraft—
as the function of discrete time. Differences between measurable characteristics of
the perturbed motion and calculated characteristics of the nominal motion serve as
carriers of data on the unknown vector η, which shows the difference between real
and nominal aerodynamic parameters.

The input of the MPA identification algorithm receives the vector of initial con-
ditions and control surface angles as functions of time and arrays of characteristics
of nominal and perturbed motions.

The output of the algorithm is θ̂(YN ), which is the correction vector for nominal
aerodynamic parameters.

The identification algorithm is efficient if the motion equations, integrated numer-
ically with the corrected aerodynamic parameters, yield such motion characteristics
ϑ + θ̂(YN ) (corrected characteristics, in what follows) that are close to real (measur-
able) characteristics.

In this work, we consider the technology of applying the BayesianMPA algorithm
[3, 4] to solve identification problems on the example of the aircraft, for which
nominal aerodynamic parameters of the pitching motion are the nominal parameters
of a “pseudo” F-16 aircraft.

We replace real flights by mathematical simulation, with characteristics of the
perturbed motion obtained by integrating the motion equations of the aircraft numer-
ically. In these equations, nominal aerodynamic parameters at the nodes of the cor-
responding tables are changed to random values that do not exceed in modulus the
given 25–50% of nominal values at these nodes.

Fundamentally, the MPA algorithm assumes that the vector of unknown parame-
ters η is random on the set of possible flights. We assume that the apriori statistical
generator for computer-generated random vectors η and ξk is given. This genera-
tor makes the algorithm estimating components of the vector η (the identification
algorithm) Bayesian. Further, for particular calculations, we assume that random
components of the mentioned vectors are distributed uniformly and can be called by
the standard Random program in Turbo Pascal.

The MPA algorithm provides the approximation method we implement with the
multidimensional power series of the vector E(θ|YN ) of the conditionalmathematical
expectation of the vector η if the vector of measurements YN is fixed and apriori
statistical data on random vectors θ and ξk are given.

The vector E(θ|YN ) is known to be the optimal, in the root-mean-square sense,
estimate of the random vector θ.

We describe the steps of operation of the MPA algorithm when it identifies the
vector θ [5, 6].
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We assume that readers have created a computer program that generates aMarkov
process, corresponding to option 1 (matrix of conditional probabilities is knownwith-
out error) or option 2 (matrix of conditional probabilities with known bugs), which
is given an apriori statistical distribution. Using a statistical model of the distribution
of random errors of measurement θt , construct the set of possible realizations of
random functions Yt , which consists of sequences of the form y0, y1, . . . , Yk, . . ..
One of these sequences is observable.

Step 1. Suppose d is a given positive integer number and the set of integer numbers
a1, . . . , aN consists of all nonnegative solutions of the integer inequality
a1 + · · · + aN ≤ d, whose number we denote by m(d, N ). The value
m(d, N ) is given by the recurrent formula proved by induction.
We obtain the vector WN (d) of dimension m(d, N ) × 1, whose compo-
nents w1, . . . , wm(d, N ) are all possible values ya1

1 · · · yan
N of the form that

represent the powers of measurable values.
Thenwe construct the base vector V (d, N ) of dimension (r +m(d, N ))× 1,
V (d, N ) = ‖θWN (d)‖.

Step 2. We use a known statistical generator of random vectors θ and ξk to solve
repeatedly theCauchy problem for Eq. (1.1) for given initial conditions x(0),
a control law u(t), and various realizations of random vectors η and xik .
We apply the Monte Carlo method to find the prior first and second sta-
tistical moments of the vector V (d, N ), that is, the mathematical expec-
tation V̄ (d, N ), and the covariance matrix CV (d, N ) = E((V (d, N ) −
V̄ (d, N ))(V (d, N ) − V̄ (d, N ))T ).
Implementation of step 2 is a learning process for the algorithm, adjusting
it to solve the particular problem described by Eqs. (1.1) and (1.2).

Step 3. For given d and N and a fixed vector YN , we assign the vector θ̂(WN (d)) to
be the solution to the estimation problem. This vector gives an approximate
estimate of the vector E(η|YN ) that is optimal in the root-mean-square sense
on the set of vector linear combinations of components of the vectorWN1(d):

θ̂(WN (d)) =
∑

a1+···+aN ≤d

λ(a1, . . . , aN )ya1
1 · · · yaN

N . (2.1)

The vector V̄ (d, N ) and thematrixCV (d, N ) are the initial conditions for the process
of recurrent calculations that realizes the principle of observation decomposition [5]
and consists of m(d, N ) steps. Once the final step is performed, we obtain vector
coefficients λ(a1, . . . , aN ) for (2.1). Moreover, we determine the matrix C(d, N ),
which is the estimation error covariance matrix for the vector E(θN |YN ) of condi-
tional mathematical expectation estimated by the vector θ̂(WN (d)).

Calculating the elements of the matrix C(d, N ), we have the method of prelimi-
nary (prior to the actual flight) analysis of observability of identified parameters for
the given control law, structure of measurements, and their expected random errors.
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Recurrent calculations do not require matrix inversion and indicate the situations
when the next component of the vector WN (d) is close to a linear combination of
its previous components. To implement the recursion, we process the components
of the vector WN (d) one after another. However, the adjustment of the algorithm
performed by applying the Monte Carlo method to find the vector V̄ (d, N ) and
the matrix CV (d, N ) takes into account a priori ideas on the stochastic structure
of components of the whole set of possible vectors WN (d) that can appear in any
realizations of the random vectors θ and ξk allowed by the apriori conditions.

This adjustment is the price we have to pay if we want theMPA algorithm to solve
nonlinear identification problems efficiently. This is what makes the MPA algorithm
differ fundamentally from, for instance, the standard Kalman filter designed to solve
linear identification problems only or frommultiple variations of algorithms resulting
from attempts to extend the Kalman filter to nonlinear filtration problems.

In [5], a multidimensional analog of the Weierstrass’s theorem (the corollary of
Stone’s theorem [7]) is used to prove that when the integer d increases, then the
error estimates of the vector E(η|YN ) and the vector |θ̂(WN (d)) − E(θ|YN )| tend to
zero uniformly on some region. Formulas of the recurrent algorithm are given and
justified in [3, 4].

This scheme for the MPA algorithm operation shows that it can be applied to
identify parameters of almost any dynamic system provided that the structures of
the motion equations and measurements of forms (1.1) and (1.2) and prior statistical
generators of random unknown parameters and errors of measurements are given.
The MPA algorithm is devoid of the above-listed limitations and drawbacks, which
gives it substantial advantages over NASA identification algorithms. Apart from
errors of computations, the algorithm does not add any other errors (such as errors
due to linearization of nonlinear functions) into the identified parameters. Therefore,
one should expect the apriori spread of identifiable parameters always to be greater
than the posterior spread. This is why we can use iterations.

Let’s compare the sequential steps of the standard discrete Kalman filter and the
MPA algorithm.

1. The Kalman filter identifies the vector η, which can be represented by part of the
components of the state vector of the linear dynamic system for the observations
that linearly depend on state vectors. The apriori data are the first and second
moments of components of random initial state vectors, uncorrelated random
vectors of perturbations, and observation errors.We need these data for sequential
(recurrent) construction of the estimation vector that is root-mean-square optimal.
Usually assigned, apriori data can also be determined by theMonte Carlo method
if the complex mechanism of their appearance is given.

2. To find an asymptotic solution to the nonlinear identification problem, the MPA
algorithm, unlike the Kalman filter, requires a priori statistical data on both
the initial and all hypothesized future state vectors of the dynamic system and
observations. These a priori data are represented by the first and second sta-
tistical moments for the random vector V (d, N ): the vector V̄ (d, N )) and the
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matrix CV (d, N ). These moments are calculated using the Monte Carlo method.
However, there are cases when they can be obtained by numerical multidimen-
sional region integration.

1.1. Once conditions from step 1 are met, the Kalman filter constructs the recur-
rent process, at every step of which the current estimation vector optimal in
the root-mean-square sense and the estimation error covariance matrix are
calculated.

2.1. Based on step 2, theMPA algorithm implements the recurrent computational
process, which does not requirematrix inversion. At each step of the process,
we construct

a. the current estimation vector θ̂(WN (d)) linear with respect to components
of the vector WN (d) and optimal in the root-mean-square sense on the
set of linear combinations of components of this vector; moreover, the
uniform convergence θ̂(WN (d)) → E(θ|YN ), d → ∞, is attained on
some region;

b. the current estimation error covariance matrix (we emphasize that known
numerical methods of constructing approximations of the vector of non-
linear estimates cannot calculate current estimation error covariance
matrices).

Implementation of items 2 and 2.1 makes the MPA algorithm more efficient than
any known linear identification algorithm since it

i. does not involve linearization,
ii. does not apply variants of the Newton method to solve systems of nonlinear

algebraic equations,
iii. forms the estimation vector that tends uniformly to the vector of conditional

mathematical expectation for the growing integer d,
iv. obtains the estimation error covariance matrix.

It is worth emphasizing that in this work we just develop the fundamental basis of
the computational technique for solving the complex problem of aircraft parameter
identification.

9.3 Identification of Aerodynamic Coefficients
of the Pitching Motion for a Pseudo F-16 Aircraft

We illustrate the efficiency of the offered MPA algorithm on an example of the
identification of 48 dimensionless aerodynamic coefficients for an aircraft close to
an F-16, which we shall conditionally name “pseudo F-16”. The term “close” is
justified because the coefficients are taken from SIDPAS [1] but are perturbed by the
addition of some random numbers.
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Table 9.1 Nominal values of the functions CZ0 (α), Cm0 (α), CZq (α), Cmq (α)

Number αi CZ0 (αi ) Cm0 (αi ) CZq (αi ) Cmq (αi )

1 0.7700 −0.1740 −8.8000 −7.2100
2 0.2410 −0.1450 −25.8000 −5.4000
3 −0.1000 −0.1210 −28.9000 −5.2300
4 −0.4160 −0.1270 −31.4000 −5.2600
5 −0.7310 −0.1290 −31.2000 −6.1100
6 −1.0530 −0.1020 −30.7000 −6.6400
7 −1.3660 −0.0970 −27.7000 −5.6900
8 −1.6460 −0.1130 −28.2000 −6.0000
9 −1.9170 −0.0870 −29.0000 −6.2000
10 −2.1200 −0.0840 −29.8000 −6.4000
11 −2.2480 −0.0690 −38.3000 −6.6000
12 −2.2290 −0.0060 −35.3000 −6.0000

Table 9.2 Nominal values of increments �(CZ0 (αi )),�(Cm0 (αi )),�(CZq (αi )),�(Cmq (αi ))

Number αi �(CZ0 (αi )) �(Cm0 (αi )) �(CZq (αi )) �(Cmq (αi ))

1 0.7700 −0.1740 −8.8000 −7.2100
2 −0.5290 0.0290 −17.0000 1.8100
3 −0.3410 0.0240 −3.1000 0.1700
4 −0.3160 −0.0060 −2.5000 −0.0300
5 −0.3150 −0.0020 0.2000 −0.8500
6 −0.3220 0.0270 0.5000 −0.5300
7 −0.3130 0.0050 3.0000 0.9500
8 −0.2800 −0.0160 −0.5000 −0.3100
9 −0.2710 0.0260 −0.8000 −0.2000
10 −0.2030 0.0030 −0.8000 −0.2000
11 −0.1280 0.0150 −8.5000 −0.2000
12 0.0190 0.0630 3.0000 0.6000

Tables9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11 here show that iden-
tification errors are small; modules of their relative values do not surpass several
hundredths. The considered problem corresponds to minimization of the object func-
tion of 48 variables, which comprise the sum of squared differences of the actual and
computational angles of attack, g-load, and pitch angles, observable with a frequency
of 10 Hz during 25s of flight of the aircraft maneuvering in a vertical plane.

9.3.1 Pitching Motion Equations

We use the XY Z rectangular coordinate system adopted by NASA. Then, for the
unperturbed atmosphere and conditions V = const, the pitching motion equations
have the form [1]
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Table 9.3 The characteristicsα(t), NZ (t), θ∗(t) of the nominal motions for the chosen control law
δs(t)

Number obs. k δs(k) α(k) NZ (k) θ∗(k)

1 −0.0200 3.6820 0.1021 0.0132
11 −0.2200 8.2964 −0.1685 −0.3945
21 −0.4200 11.0977 −0.5334 −1.2461
31 −0.6200 13.1919 −0.4477 −2.2247
41 −0.8200 17.0629 −0.7728 −0.2382
51 −1.0200 19.7287 −0.6512 0.6855
61 −1.2200 19.9789 −1.1308 1.1146
71 −1.4200 20.0598 −1.1344 1.4359
81 −1.6200 20.6696 −1.1186 2.8558
91 −1.8200 24.6576 −0.9641 7.2201
101 −2.0200 32.4354 −1.6031 17.5706
111 −2.1800 35.9159 −1.7715 25.8128
121 −1.9800 34.2309 −1.4610 28.3457
131 −1.7800 31.7080 −1.5248 29.5992
141 −1.5800 30.0324 −1.1643 30.9954
151 −1.3800 29.9805 −1.1621 34.2532
161 −1.1800 29.9772 −1.1614 37.1835
171 −0.9800 29.8635 −1.1625 39.6161
181 −0.7800 27.4286 −1.2336 39.7559
191 −0.5800 18.7935 −0.5743 32.3636
201 −0.3800 12.4703 −0.4193 23.5913
211 −0.1800 9.8365 −0.0427 17.6449
221 0.0200 9.9999 −0.0398 12.7981
231 0.2200 9.6174 −0.0423 6.7279
241 0.4200 5.0095 −0.2203 −3.3684
249 0.5800 −0.9453 0.5373 −15.2658

Table 9.4 Relative errors of the identifications of CZ0 (αi ) by ρ = 0.25

Number αi Nom.koef. CZ0 (αi ) Perturb.koef. CZ0 (αi ) δ(CZ0 (αi ))

1 0.6512 0.6326 0.02854
2 0.0205 0.0260 −0.26410
3 −0.3778 −0.3646 0.03491
4 −0.7395 −0.7213 0.02456
5 −1.0610 −1.0657 −0.00443
6 −1.4038 −1.4016 0.00159
7 −1.7679 −1.7424 0.01444
8 −2.0582 −2.0453 0.00627
9 −2.2774 −2.3388 −0.02693
10 −2.4568 −2.5459 −0.03625
11 −2.5639 −2.6698 −0.04130
12 −2.5404 −2.6505 −0.04334
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Table 9.5 Relative errors of the identifications of Cm0 (αi ) by ρ = 0.25

Number αi Nom.koef. Cm0 (αi ) Perturb.koef. Cm0 (αi ) δ(Cm0 (αi ))

1 −0.2130 −0.2054 0.03582
2 −0.1816 −0.1783 0.01851
3 −0.1567 −0.1550 0.01061
4 −0.1618 −0.1611 0.00439
5 −0.1634 −0.1631 0.00209
6 −0.1427 −0.1388 0.02754
7 −0.1372 −0.1338 0.02439
8 −0.1495 −0.1502 −0.00467
9 −0.1175 −0.1220 −0.03771
10 −0.1139 −0.1190 −0.04484
11 −0.0957 −0.1043 −0.08937
12 −0.0399 −0.0394 0.01236

Table 9.6 Relative errors of the identifications of CZq (αi ) by ρ = 0.25

Number αi Nom.koef. CZq (αi ) Perturb.koef. CZq (αi ) δ(CZq (αi ))

1 −9.9636 −8.8984 0.10691
2 −25.2235 −26.1655 −0.03735
3 −28.4644 −29.2857 −0.02885
4 −31.4821 −31.8270 −0.01096
5 −31.3125 −31.6274 −0.01006
6 −30.8417 −31.1249 −0.00918
7 −27.5461 −28.0921 −0.01982
8 −28.1388 −28.6036 −0.01652
9 −28.9682 −29.4069 −0.01515
10 −29.7908 −30.2114 −0.01412
11 −38.6789 −38.7933 −0.00296
12 −35.7355 −35.8053 −0.00195

dα/dt = ωY + (g/V )(NZ + cos(θ∗ − α)),

dωY /dt = MY /JY ,

dθ∗/dt = ωY ,

NZ = CZ (α, δs)q S/G,

MY = Cm(α, δs)q Sb,

whereV = 300 ft/s, H = 20,000 ft,α is the angle of attack, NZ is the g-load,which is
the vector of aerodynamic forces projected onto the Z -axis and divided by the weight
of the aircraft, MY is the vector of the moment of aerodynamic forces projected onto
the Y -axis, ω is the vector of the angular velocity of the aircraft projected onto the
Y -axis, θ is the angle between the X -axis and the horizontal plane, q is the value of
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Table 9.7 Relative errors of the identifications of Cmq (αi ) by ρ = 0.25

Number αi Nom.koef. Cmq (αi ) Perturb.koef. Cmq (αi ) δ(Cmq (αi ))

1 −5.5807 −6.1771 −0.10686
2 −4.1294 −4.3066 −0.04291
3 −3.9913 −4.1368 −0.03645
4 −4.0250 −4.1662 −0.03510
5 −4.9363 −5.0012 −0.01315
6 −5.5024 −5.5314 −0.00527
7 −4.5272 −4.5870 −0.01320
8 −4.8711 −4.8936 −0.00462
9 −5.0970 −5.0915 0.00108
10 −5.3245 −5.2912 0.00626
11 −5.5637 −5.4908 0.01310
12 −4.8726 −4.8937 −0.00434

Table 9.8 Relative errors of the identifications of CZ0 (αi ) by ρ = 0.50

Number αi Nom.koef. CZ0 (αi ) Perturb.koef.CZ0 (αi ) δ(CZ0 (αi ))

1 0.5324 0.4255 0.20083
2 −0.1999 −0.2092 −0.04637
3 −0.6556 −0.5969 0.08959
4 −1.0629 −0.9303 0.12481
5 −1.3911 −1.2772 0.08188
6 −1.7546 −1.6697 0.04839
7 −2.1699 −2.0331 0.06304
8 −2.4704 −2.3417 0.05209
9 −2.6379 −2.6342 0.00138
10 −2.7936 −2.8450 −0.01839
11 −2.8799 −2.9723 −0.03208
12 −2.8518 −2.9530 −0.03548

the dynamic pressure, G is the weight, JY is the moment of inertia with respect to
the Y -axis, S is the area of the surface generating aerodynamic forces, b is the mean
aerodynamic of the wing, CZ (α, δ) and Cm(α, δ) are dimensionless coefficients of
the aerodynamic force and moment, respectively, and δs is the angle of the stabilizer
deflectors measured in degrees.

The functions CZ (α, δs) and Cm(α, δs) are given by the relations [1]

CZ (α, δs) = CZ0(α) − 0.19(δs/25) + CZq (α)(b/(2V ))ωY ,

Cm(α, δs) = Cm0(α)δs + Cmq (α)(b/(2V ))ωY + 0.1CZ .
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Table 9.9 Relative errors of the identifications of Cm0 (αi ) by ρ = 0.50

Number αi Nom.koef. Cm0 (αi ) Perturb.koef. Cm0 (αi ) δ(Cm0 (αi ))

1 −0.2520 −0.2441 0.03123
2 −0.2183 −0.2166 0.00781
3 −0.1924 −0.1934 −0.00523
4 −0.1966 −0.1994 −0.01457
5 −0.1979 −0.2014 −0.01792
6 −0.1834 −0.1747 0.04747
7 −0.1773 −0.1697 0.04301
8 −0.1860 −0.1858 0.00145
9 −0.1481 −0.1599 −0.08004
10 −0.1438 −0.1569 −0.09149
11 −0.1225 −0.1420 −0.15942
12 −0.0738 −0.0811 −0.09934

Table 9.10 Relative errors of the identifications of CZq (αi ) by ρ = 0.50

Number αi Nom.koef. CZq (αi ) Perturb.koef. CZq (αi ) δ(CZq (αi ))

1 −11.1272 −8.6840 0.21957
2 −24.6470 −25.6672 −0.04139
3 −28.0288 −28.8049 −0.02769
4 −31.5642 −31.3356 0.00724
5 −31.4249 −31.1306 0.00937
6 −30.9833 −30.6296 0.01142
7 −27.3921 −27.6113 −0.00800
8 −28.0776 −28.1104 −0.00117
9 −28.9364 −28.9144 0.00076
10 −29.7817 −29.7303 0.00172
11 −39.0577 −38.2130 0.02163
12 −36.1709 −35.1346 0.02865

9.3.2 Parametric Model of Aerodynamic Forces
and Moments

The nominal values of four functions of the angle of attackCZ0 (α), Cm0(α), CZq (α),

Cmq (α) are given with the argument step of (55 − 1)/12 degrees at 12 nodes
(Table9.1) in the range −10◦ ≤ α ≤ 45◦.

To determine the values of functions between the nodes, we use linear inter-
polation. Having analyzed Table9.1, we can see that functions CZ0(αi ), Cm0(αi ),

CZq (αi ), Cmq (αi ) are essentially nonlinear. Table9.2 confirms this visual impres-
sion. It presents increments for functions of each step of Table9.1. As is apparent,
the increments noticeably vary.

We study the identification problem for the perturbed analogs of the func-
tions CZ0(α), Cm0(α), CZq (α), Cmq (α). The number of nominal coefficients that
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Table 9.11 Relative errors of the identifications of Cmq (αi ) by ρ = 0.50

Number αi Nom.koef. Cmq (αi ) Perturb.koef. Cmq (αi ) δ(Cmq (αi ))

1 −3.9514 −6.9359 −0.75528
2 −2.8588 −5.1596 −0.80480
3 −2.7526 −4.9893 −0.81258
4 −2.7899 −5.0189 −0.79894
5 −3.7625 −5.8672 −0.55939
6 −4.3649 −6.3936 −0.46477
7 −3.3644 −5.4530 −0.62079
8 −3.7422 −5.7627 −0.53993
9 −3.9940 −5.9631 −0.49299
10 −4.2490 −6.1601 −0.44976
11 −4.5274 −6.3594 −0.40464
12 −3.7451 −5.7631 −0.53882

determine these functions is 12+ 12+ 12+ 12 = 48. Let us single out the problem
that is the most complex for the MPA algorithm, when the actual coefficients differ
from the nominal coefficients by the unknown bounded by the prior limit value ηi

at each point of the table. Then, for accumulated results of measurements of para-
meters of the perturbed motion, the MPA algorithm is to estimate 48 components
of the vector of random estimates, the vector of differences between the actual and
nominal coefficients.

Suppose ϑi and Bi are the i th components of the nominal and actual (perturbed)
vectors of aerodynamic coefficients ϑ, i = 1, . . . , 48; namely, the number of actual
coefficients to be identified is 48 in this case. We assume that the parametric model

Bi = ϑi + θi

holds. The vector θ serves as the vector of perturbations of nominal data errors of
aerodynamic parameters, and identification yields the estimates of its components.
We give the structure of these components by the formula θi = ϑiρiεi , 0 < ρi <

1,−1 < εi < 1. The positive number ρi gives the maximum value that, by identifi-
cation conditions, can be attained by the ratio of the absolute values of the random
value of perturbations θi and nominal coefficients ϑi .

9.3.3 Transient Processes of Characteristics
of Nominal Motions

We wish to identify—estimate—during one test flight the 48 unknown aerodynamic
coefficients for the set of angles of attack αi , i = 1, . . . , 12. For a testing maneu-
ver, the characteristics α(t), NZ (t), θ∗(t) of transient processes are as carrier of
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information of the identified coefficients. Therefore, during flight, the aircraft should
“visit” vicinities of angles of attack −10◦ ≤ α ≤ 45◦.

9.3.4 Estimating Identification Accuracy of 48 Errors
of Aerodynamic Parameters of the Aircraft

The primary task of the MPA algorithm consists of identification (via estimation)
of 48 increments of 4 functions. If entry conditions and increments are determined,
values of the unknown coefficients follow from obvious recurrent formulas.

To estimate the accuracy, we assume that the current values of α, NY , θ∗ are
measured every 0.1 s over a 25s time period. We assume that random errors of
measurement represent the discrete white noise bounded by the true measurable
value multiplied by the given value ε. A number of the primary observations equals
3 ∗ 250 = 750.

We compress primary observations for smoothing the high-frequency errors and
reducing a dimension of the matrix covariance. The file of the primary observations
is divided into 12 groups and as an input of the algorithm of the identification the
dimension-(12× 1) vector serves.Components of this vector are the sumsof elements
of each of 12 groups.

To characterize the accuracy of identification of the random parameter θi , the
degree of perturbation of the aerodynamic coefficients ϑ, we determine the relative
errors of estimation (θi − θ̂i )/θi for every component of the identifiable functions.
The relative errors designate δ(CZ0(αi )), δ(Cm0(αi )), δ(CZq (αi )), δ(Cmq (αi )), i =
1, . . . , 12.

As is apparent, relative errors of identification are small and do not surpass several
hundredths at ρ = 0.25.

Practice calculations for the implementation methodology detected a significant
effect on the accuracy of the estimation of random errors of the aircraft equipment,
whose statistical characteristics are unknown. Therefore, a regularization procedure
that significantly reduced the impact of the mentioned errors was needed. This
procedure added the data from the aircraft equipment random process similar to
white noise, whose intensity is selected experimentally. Note that this procedure was
referred to earlier in the theory of artificial neural networks [8].

9.4 Conclusions

The presented data show that the multipolynomial approximation algorithm can pro-
vide a computational basis for developing an efficient parameter identification tech-
nique for the nonlinear dynamic system, including identification of the aerodynamic
parameters of an aircraft. We emphasize that tables characterizing a sufficiently high
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accuracy of aerodynamic parameter identification are obtained when there are no
iterations and d = 1, which corresponds to the case when the estimation vector

ˆ(ϑ + θ)(WN (d)) is represented by the vector linear combination of measured data
that is optimal on the family of linear operators over the vector of measurements.
This is due to good (in terms of the identification problem) properties of the paramet-
ric system of equations of the pitching motion of the “pseudo F-16” aircraft. It can
become much more complicated when it comes to the identification problem of the
parametric system of equations of complete (spatial) motion of the aircraft. In such a
case, we may need to use polynomials of the power d > 1 and increase requirements
on the computer performance and RAM. This was the case for identification attempts
made for some parameters of F-16 complete motion equations. We emphasize that
the inputs of the MPA algorithm we considered were not real (were not the results
of the operation of real sensors of the aircraft during its test flight); they were deter-
mined by mathematical simulation, that is, via the numerical integrations of motion
equations for perturbed parameters of aerodynamic forces and moments.
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