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Supervisor’s Foreword

The insight that there exist physical systems outside our familiar framework of local
order and disorder is not new—Wegner’s groundbreaking work on gauge theories
dates back to the 1970s, and Klitzing’s experimental discovery of the quantum
Hall effect stems from the 1980s. However, the ubiquity, complexity and richness
of topological phenomena were not recognised until much later, with topological
condensed matter physics now being arguably one of the most active branches of
the field. A key challenge is the elusiveness of the experimental signatures involved,
which is a direct consequence of the missing local order.

For insulating spin systems, where charge transport is not available as a diagnos-
tic, this lack of distinctive fingerprints is particularly pressing, all the more so as
developments over the last 15 years have provided numerous theoretical models of
topological spin liquids in search of a materials realisation. Connecting theory with
promising experiments is also limited by the lack of availability of exact approaches
or controlled approximations for strongly interacting quantum systems in more than
one spatial dimension.

The work in Johannes Knolle’s thesis stands out in its successful exact evaluation
of the dynamical structure factor of a fractionalised quantum spin liquid. This
quantity, which can be directly probed in neutron scattering experiments, provides
direct evidence, both qualitatively and quantitatively, for the fractionalisation of the
electron into Majorana fermions and topological flux degrees of freedom.

Thus, it provides precisely the kind of information that has been lacking so far
for the identification of salient experimental signatures of topologically ordered
spin systems. As a consequence, experimental interest in these results has been
immediate. Beyond this, the work is also of interest from a methodological point
of view in many-body physics, because the calculation of the dynamical correlation
function can be mapped exactly to that of a local quantum quench. This instance of
an exactly soluble non-equilibrium problem is of interest in the a priori unrelated
context of time-dependent coherent Hamiltonian evolution of quantum systems.

Overall, I hope that the material contained in this thesis will be of use not only
to students interested in background and details of the theoretical developments
underpinning this work, but also to researchers—theorists and experimentalists
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vi Supervisor’s Foreword

alike—looking for a comprehensive, self-contained and clear exposition of the
physics of quantum spin liquids in general, and the dynamical signatures of
fractionalisation in particular.

Dresden, Germany Roderich Moessner
23 March 2015



Preface

What is the nature of matter? This question has been fascinating ever since
Democritus conjectured that all substances are made of indivisible atoms. One of
the frontiers of modern physics represents the search for unconventional quantum
phases. In contrast to fundamental constituents probed at enormous energy scales
in particle physics, new phenomena can alternatively appear at low energies in
condensed matter physics upon cooling. There, complex behavior arises from the
interaction of a large number of particles, which are themselves simple. A familiar
example is that of a bar magnet, whose countless electrons align their spins below a
critical temperature and whose excitations are spinwaves. All spins point on average
in a particular direction, which gives rise to a magnetization. A cornerstone of
modern physics is Landau theory, which classifies phases of matter by their broken
local symmetries with order parameters, e.g. the magnetization. However, in the
focus of current research are topologically ordered phases falling outside of this
canonical classification. They defy a description via local order parameters and
present striking new phenomena, because new phases come with new excitations.
Most prominent is the fractionalization of electrons into unusual particles: Majorana
fermions (Kitaev 2006), Laughlin quasiparticles (Laughlin 1983), or magnetic
monopoles (Castelnovo et al. 2008). However, their experimental detection is
fundamentally complicated by the lack of local order. The objective of this thesis
is to contribute to answering a key question: How can a topologically ordered phase
be diagnosed in experiments?

Frustrated magnetic materials, in which not all interactions can be satisfied simul-
taneously, hold the promise of realizing topological quantum phases. In contrast
to ordered magnets, frustration can lead to so-called quantum spin liquids (QSL),
which remain disordered down to the lowest temperatures. These cooperative
quantum phases of interacting spin systems do not break any local symmetry but
exhibit topological order. Although various experimental instances of candidate
QSLs are known, their identification remains challenging. The main result of this
work is the discovery of discernible features of fractionalization, a hallmark of these
elusive states of matter, in dynamical response functions, which are experimentally
accessible.
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viii Preface

This thesis presents an exact theoretical study of dynamical correlation functions
in different phases of a two-dimensional quantum spin liquid. By calculating the
dynamical spin structure factor and the Raman scattering cross section, I show that
there are salient signatures—qualitative and quantitative—of the Majorana fermions
and gauge fluxes emerging as effective degrees of freedom in the exactly solvable
Kitaev honeycomb lattice model. The model is a representative of a class of spin
liquids with Majorana fermions coupled to Z2 gauge fields. The qualitative features
of the response functions should therefore be characteristic for this broad class of
topological states.

I begin the thesis with an introduction to frustrated magnetism and QSLs,
with a focus on dynamical correlations probed in experiments. Next, I provide an
introduction to the Kitaev model and discuss the exact solution, the QSL properties,
and a promising proposal for a realization in late transition metal oxides.

The core of the thesis comprises my theoretical analysis of the dynamical spin
correlation function via a mapping to a local quantum quench. I identify connections
to two condensed matter paradigms: The venerable X-ray edge problem and the
Anderson orthogonality catastrophe. I derive two complementary exact solutions
of the resulting non-equilibrium problem. The first is based on the evaluation of
Pfaffians, a generalization of determinants. The second borrows concepts from
the theory of singular integral equations, which allows to obtain results in the
thermodynamic limit.

In the “Results” chapter, I discuss the calculated spin structure factor in different
gapped and gapless phases of the Kitaev model. Clear signatures of the emergent
fractionalized particles will be visible as fingerprints betraying the presence of
QSLs in future inelastic neutron scattering or electron spin resonance experiments.
These include counterintuitive manifestations of quantum number fractionalization,
such as a neutron scattering response with a gap even in the presence of gapless
excitations, and a sharp component in the response despite the fractionalization of
electron spin.

The next chapter deals with an extended Kitaev model incorporating an addi-
tional three spin interaction breaking time reversal symmetry. This exhibits a QSL
phase harboring non-Abelian excitations, whose experimental detection is a central
goal of current condensed matter physics. The mapping of the spin correlation
function to a local quantum quench remains intact. I identify clear signatures of
Majorana bound states in the structure factor, which distinguish between Abelian
and non-Abelian phases. The incorporation of bond disorder, which is potentially
present in real materials, reveals that the distinction is surprisingly robust.

The final chapter investigates an alternative experimental probe. I compute the
inelastic Raman scattering response in the Kitaev model, which is related to a higher
order dynamical spin correlation function. The addition of a small Heisenberg
coupling breaks the integrability of the original model, and leads to an additional
important contribution to the response, which can in turn be calculated as a modified
quantum quench of Majorana fermions. Similar to the structure factor, salient
features of the fractionalized quasiparticles are manifest in the response.
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I close with a summary of my findings and an outlook. In general, exact results
for correlation functions are specific to one dimensional systems, e.g. based on the
exact Bethe-Ansatz solution (Bethe 1931). For the first time, my thesis provides
this information in complete detail for a quantum spin liquid in more than one
dimension. Since dynamical response functions have the advantage of probing the
full excitation spectrum, this dissertation shows that they provide a valuable tool for
diagnosing QSLs in candidate materials.

Cambridge, UK Johannes Knolle
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Chapter 1
Introduction

1.1 Motivation

What is the nature of matter? How can one thing change into another? Can human
intervention bring about new forms of matter? Prior to modern science, speculations
around these questions were already central to Greek natural philosophy and
later to medieval Alchemy (Principe 2013). It is thought to be Thales of Miletus
in the sixth century BC who introduced the idea that all substances are only
different modifications of a single one. A century later, Democritus conjectured
that everything is made of indivisible atoms. He proposed that the combination of
a huge number of itself simple basic entities gives rise to the plethora of forms
of matter we encounter. Following these traditions Alchemists of the Middle Ages
experimented with the combination of simple substances to create new ones, e.g.
their quest to master the transmutation of ordinary sulfur and mercury into gold.
While this attempt was unsuccessful, their systematic experimental inquiry of the
corpuscular nature of matter lay the foundations for modern chemistry (Newman
2006) and in the process they created valuable new materials, e.g. porcelain was
rediscovered by J.F. Böttger in 1708 (Hildyard 1999).

Understanding phases of matter and creating new ones remains one of the great
challenges of modern physics with central ideas of its prehistory reappearing.
In condensed matter physics, it is well established that complex behavior arises
from the interaction of a large number of itself simple particles. For example, the
interaction of point-like electrons in a solid can lead to a seemingly endless variety
of phenomena: magnetism, metallicity, superconductivity, etc. A fascinating aspect
of this field is the way in which new phases are discovered and how they are
understood. On the one hand, nature can be surprising, such that experimentalists
stumble over new findings similar to Böttger. The discovery of superconductivity in
1911 by Heike Kamerlingh Onnes was totally unexpected and it took almost half
a century until BCS theory (Bardeen et al. 1957) gave a satisfactory explanation
in terms of a macroscopic quantum wave function, see discussion in Cooper and
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2 1 Introduction

Feldman (2011). On the other hand, there are much rarer instances in which
theories predict new phases and the main challenge afterwards is the construction
of necessary experimental conditions. For example, Bose Einstein condensation,
a phase with a macroscopic number of indistinguishable particles in the same
quantum state, was first discussed in the 1920s (Einstein 1924), but it took 70 years
before its weakly interacting version was experimentally realized in a gas of cold
atoms (Davis et al. 1995).

This thesis is devoted to the study of QSL, another elusive quantum state of
matter predicted more than 40 years ago to appear in certain magnetic materials
(Anderson 1973), but still not conclusively verified experimentally. The main
objective of this thesis is the calculation of dynamical correlation functions in order
to find salient signatures for diagnosing these sought-after phases in experiments
and to gain a deeper understanding of topological order (Wen and Niu 1990), which
is characterized as a phase without a local order parameter but with a particular
ground state degeneracy. For a proper understanding of the latter, it is instructive
to first introduce our modern canonical understanding of phases of matter and their
transitions based on local symmetry.

Depending on thermodynamic quantities, such as temperature or pressure,
systems can change their internal structure abruptly, so that new phases appear, e.g.
the crystallization of H2O molecules when water freezes to ice. Another example
is a standard bar magnet made from a ferromagnetic material. In the simplest
description, its basic degrees of freedom are tiny elementary bar magnets, or spins
Si, on lattice sites i which can either point up or down. A ferromagnetic interaction
between nearest neighbor spins prefers them to point in the same direction, but
at high temperatures all elementary spins fluctuate wildly. Hence, the average
magnetization is zero, M D hSii D 0. This paramagnetic phase and the form of
the interaction do not distinguish between up and down direction, which is called
a symmetry. However, at low temperatures the interaction forces spin to align and
a particular direction is picked out, jMj > 0, such that all spins either point up or
down on average—the symmetry is broken.

A cornerstone of modern physics and at the heart of our understanding of
phases and their transitions is Landau theory. It is based on the idea of a local
order parameter quantifying a symmetry breaking, e.g. the magnetization M of
the bar magnet. Landau conjectured that close to the transition the thermodynamic
potential, the free energy, can be expanded as a Taylor series in the order parameter
and the temperature (Cardy 1996)

�F.M;T/ D 1

2
b.T/M2 C 1

4
c.T/M4 C � � � (1.1)

which completely neglects fluctuations around the average value M. The value of
M minimizing �F.M;T/ at a given T is the one realized in the system. Now,
depending on the temperature behavior of the coefficients, this simple function
can describe various different phase transitions. A common situation is given by
b.T/ D b0.T � Tc/ and c D c0 > 0 such that the minimum of F.M;T/ is found at
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M D 0 or M D ˙pb=c for T > Tc or T < Tc. In this case the magnetization
vanishes continuously at the phase transition M / jT � Tcjˇ with the critical
exponent ˇ D 1

2
. This type is known as a second order phase transition. Similarly,

one can obtain, for example, first order transitions at which the magnetization jumps,
for introductions see Cardy (1996), Goldenfeld (1992), and Chaikin and Lubensky
(2000). Phases at lower temperatures have in general a lower symmetry than the
Landau function or the microscopic Hamiltonian of the system, which is known as
spontaneous symmetry breaking. In the above example the ferromagnetic spins in
the ordered low temperature phase point in a particular direction, M is either Cpb=c
or �pb=c, but �F.M;T/ is insensitive to the sign.

The power of Landau theory stems from the idea that the construction of
�F.M;T/ in terms of order parameters is only dictated by the symmetry group
of the Hamiltonian describing the problem—microscopic details are irrelevant.
Although Landau theory is phenomenological, its universal predictions can be tested
by experiments. Close to continuous transitions, it is expected that thermodynamic
observable exhibit a power law behavior, e.g. M / jT � Tcjˇ , and the critical
exponents belong to different universality classes. The unifying element is that
completely different microscopic models can have the same exponents belonging to
the same universality class. For the above example, Landau theory gives the mean-
field exponent ˇ D 1

2
for the ferromagnetic transition which is a good approximation

in high dimensions. In low dimensions close to the critical point Tc, fluctuations in
general alter this exponent. However, despite its limitations, Landau theory is also
the starting point for incorporating fluctuations, e.g. via gradient terms, which leads
to the Ginzburg–Landau theory, and later on to the description of critical phenomena
via the renormalization group (Wilson 1971).

Landau theory and its extensions are so successful in describing phases and
transitions between them, that it is easy to believe that they describe all there is.
A first hint of phase transitions without local order parameters was given by Wegners
dual formulation of certain Ising models in terms of lattice gauge theories. They
exhibit non-analyticities in thermodynamic quantities and correlation functions as a
function of temperature, which signal a phase transition, but without the appearance
of a local order parameter (Wegner 1971). Overall, nature has turned out to be much
richer as can be anticipated. In general, physics is driven by experiments challenging
our always incomplete understanding. The discovery of the fractional quantum hall
effect (FQHE) (Tsui et al. 1982) in a two dimensional electron gas, for which the
Hall resistance �xy D h

e2
1
�

is exactly quantized with rational prefactors �, confirmed
that there exist exotic phases beyond the Landau paradigm. The observation of
distinct incompressible phases which cannot be distinguished on the basis of local
symmetry paved the way towards the development of new concepts. The idea of
topological order appeared (Wen and Niu 1990; Wen 2004) which allowed to
understand totally unexpected phenomena such as fractionalization, e.g. the point
like electron seemingly breaking apart (Laughlin 1983), see also Rajaraman (2001).

In the last three decades our theoretical understanding of topological phases
beyond the Landau paradigm has advanced considerably and revolutionary appli-
cations have been proposed in the context of topological quantum computation
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(Kitaev 2003; Nayak et al. 2008). However, beyond the FQHE the detection of
these elusive states of matter has proven to be very challenging. A promising
route is to search for topological order in collective quantum states of frustrated
magnetic materials (Balents 2010). In particular, since Anderson’s resonating
valence bond (RVB) phase (Anderson 1973) was put forward to explain high
temperature superconductivity in the cuprates (Anderson 1987), the search for the
so-called QSL has gained momentum. This thesis is devoted to the study of such
QSLs and how to detect them in experiments. By calculating dynamical correlation
functions of an exactly solvable model with a QSL ground state, I show that clear
signatures of fractionalization are visible in standard scattering experiments.

In the next section, I begin with an introduction into frustrated magnetism and
QSL including a discussion of topological order. Afterwards, I discuss experimental
signatures of frustrated magnets in current experiments of candidate materials.
I close the chapter with recent results of inelastic neutron scattering (INS) exper-
iments probing the full excitation spectrum of candidate QSL materials, which call
for detailed theoretical investigations as provided by this thesis.

1.2 Frustrated Magnetism and Quantum Spin Liquids

Magnetic materials are ubiquitous in nature. The fact that iron ores attract other
objects made of iron has been known for millennia. Already more than two thousand
years ago the first application of magnetism was the Chinese invention of the
compass needle (McElhinny 1984). Ever since, magnetic materials have found wide
ranging applications ranging from electric guitars all the way to modern computers.
A prominent example is the discovery of giant magneto resistance (Baibich et al.
1988), the big change in resistance depending on the direction of magnetization
in thin film hetero-structures, which quickly lead to a tremendous increase in the
performance of computer hard-disc drives.

In the development of modern physics, magnetic materials have provided a
gratifying field in which simple models, which give rise to widely different phe-
nomena, could be tested against experiments. For example, Onsagers exact solution
of the two dimensional Ising model (Onsager 1944), which crudely describes
ferromagnetic materials, proved a finite temperature phase transition and elucidates
many of its thermodynamic signatures, for a nice discussion about the role of models
in physics, see Peierls (1980). Afterwards, many ideas in the theory of critical
phenomena such as scaling theory and the renormalization group were developed in
the context of the Ising model (Kadanoff 1966; Wilson 1971); a thorough historical
study can be found in Niss (2011).

In most magnetic materials fluctuations, which lead to a paramagnetic phase
at high temperatures, become smaller by cooling such that systems develop some
form of long range order below a critical temperature Tc. In the focus of current
research are insulating materials with localized magnetic moments which show
qualitatively different behavior because fluctuations remain large down to lowest
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temperatures (Balents 2010). They are known as frustrated magnets because they
contain competing interactions which cannot be fully satisfied. This thesis deals with
the extreme quantum limit of a frustrated magnetic system in which the spins remain
in a fluid-like state even at zero temperature because of large quantum fluctuations.
In this chapter, I explain some of the key concepts of the field and define properties
of long-sought QSLs. A more detailed account of the field including experimental
aspects, materials physics, and theoretical developments can be found in the book
Lacroix et al. (2011).

1.2.1 Frustrated Magnetism

I concentrate on effective spin descriptions such as the venerable Heisenberg model

H D
X

ij

JijSi � Sj (1.2)

in which spins on lattice sites ri interact via exchange interactions. In a classical
description, spins Si are three component vectors. In a quantum mechanical
description necessary at low temperatures (and small jSij), they are spin operators
defined by their spin algebra. The Heisenberg model describes insulating magnets
for which the energy scale of charge fluctuations is much higher than any of
the exchange couplings Jij because of large Coulomb repulsion between localized
electrons (Auerbach 1994). For a better understanding of frustrated magnetism, it is
instructive to contrast its unusual behavior with the one of conventionally ordered
magnets. Conventional systems order into a state with long range magnetic order
below a critical temperature Tc. In a classical description of the ordered phase of the
Heisenberg model the ground state is found by locating the minima of the Fourier
transformation of the coupling constants

J.q/ D
X

i

Jije
iq.ri�rj/ (1.3)

and minimizing the energy by forming a spiral with pitch vector q. The spin
correlation function clearly shows long range magnetic order and behaves as

hSi � Sji / m2 cos
�
q � �ri � rj

��
: (1.4)

The transition from the paramagnetic high temperature state to this ordered state can
be described by Landau theory. The order parameter, given by the magnetization
mi D hSieqrii, quantifies breaking of the O.3/ spin rotational symmetry and
for q ¤ 0 also of translational symmetry. The low energy excitations of the
ordered phase are long wavelength fluctuations of the order parameter. These spin
waves are the Goldstone modes related to spontaneous breaking of the continuous
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spin rotational symmetry by the ground state magnetic ordering (Chaikin and
Lubensky 2000). In general, such a classical description carries over to conventional
quantum magnets. Without quantum fluctuations in a classical system, 1 � S, the
magnetization is m2 D S2 at zero temperature, with S D jSij the total length of the
spin. But normally the magnetization is reduced by quantum fluctuations, m < S,
which can be calculated, e.g., by a 1=S spin wave expansion (Kittel 1963), see the
introductory chapter of Chalker in Lacroix et al. (2011).

In contrast to this canonical behavior, frustrated magnets can evade magnetic
ordering down to lowest temperatures. Frustration refers to the notion that compet-
ing interactions cannot be satisfied simultaneously. In the case of the Heisenberg
model, it means that not all local energy costs of couplings Jij can be minimized.
In an intuitive picture, the large number of low energy configurations arising from
the competition of frustrated interactions leads to abundant low energy fluctuations
suppressing classical long range order, in extreme cases down to m D 0.

It is common to distinguish two prototypical types of frustration: First, geo-
metric frustration on non-bipartite lattices with only nearest neighbor interactions.
A simple example is the antiferromagnetic (AF) Heisenberg model on the triangular
lattice, see Fig. 1.1 left panel (a), for which it is impossible to satisfy all three bonds
on a given triangle. Second, competing longer range or anisotropic interactions can
lead to frustration even on bipartite lattices. An extensively studied example is the
J1 � J2 Heisenberg model on the simple square lattice

HJ1�J2 D J1
X

hi;ji
Si � Sj C J2

X

hhi;jii
Si � Sj (1.5)

with nearest neighbor (N.N.) and next nearest neighbor (N.N.N.) pairs hi; ji and
hhi; jii, see Fig. 1.1 right panel (b). Its classical ground state is found by minimizing

J1 J1

J2 J2
?

a b

(i) (ii)

ϕ

Fig. 1.1 Two prime examples of frustrated magnetic systems are shown. In the left panel (a), the
third spin on a triangle is not able to minimize simultaneously the antiferromagnetic (AF) exchange
energy with the two other spins. Left panel (b) depicts the J1 � J2 model with nearest neighbor
(N.N.) and next nearest neighbor (N.N.N.) AF interactions on the square lattice. The classical
ground state for 2J1 > J2 in (i) is a standard N.N. Néel state. For 2J1 < J2, (ii), two interpenetrating
N.N.N. Néel sublattices (red and black) with an arbitrary angle ˆ in between N.N. spins minimize
the classical ground state energy
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Fig. 1.2 The Fourier transform J.q/ of the exchange constants, Eq. (1.6), of the J1 � J2 model
is shown. The pitch vector q of the classical spiral ground state is found by locating its minima.
Depending on the N.N. and N.N.N. exchange constants three different regimes are found: Left
panel J2 < J1=2, with minima at .�; �/ which corresponds to the standard Néel ordering shown
in Fig. 1.1b (i). Right panel J2 > J1=2, with minima at .�; 0/ and .0; �/ which leads to two
interpenetrating Néel sublattices, see Fig. 1.1b (ii). The arbitrary angle ˆ leads to a classical
degeneracy of the ground states. Third, at the fully frustrated point J2 D J1=2 entire lines of
momenta qx D .�;Q/ or qy D .Q; �/ for arbitrary Q minimize the energy and lead to a huge
ground state degeneracy at the classical level, which opens the possibility for spin-disordered
phases

J.q/ D 2J1
�
cos qx C cos qy

�C 4J2 cos qx cos qy (1.6)

with respect to the spiral pitch vector q. The behavior of J.q/ is shown in the first
Brillouin zone for three different regimes in Fig. 1.2. For J2 < J1=2 the system
shows simple AF order, Fig. 1.1b (i) because the minimum of the coupling constant
J.q/ is found at q D .�; �/, see Fig. 1.2 left panel.

But for J2 < J1=2 minima in Fig. 1.2 right panel are situated at momenta
q D .�; 0/ or .0; �/ which only fixes the N.N.N. AF orientation. The system
decouples into two interpenetrating Néel sublattices with a free angle ˆ between
the N.N. spins as shown in Fig. 1.1b (ii). Incorporating quantum fluctuations via a
1=S expansion with Holstein–Primakoff bosons (Kittel 1963) shows that the ground
state energy Eg.s. D Eclassical C O.1=S/ is minimized for collinear states with
ˆ D 0; � (Shender 1982). In frustrated systems, classical ground state degeneracies
do not arise because of symmetry but are accidental. Therefore, fluctuations vary for
different ground states and can thus select states with largest entropy or lowest zero
point energies. This phenomenon, very common for frustrated magnets, is known
as order by disorder, whereby quantum or thermal fluctuations select a ground state
out of a degenerate manifold (Villain et al. 1980).

The most interesting point of the J1 � J2 model is the fully frustrated situation
J2 D J1=2 for which the classical energy is minimized for any state with qx D .�;Q/
or qy D .Q; �/ for arbitrary momenta Q, see Fig. 1.2 middle panel. Calculating the
lowest order quantum corrections to the order parameter via Holstein–Primakoff
bosons ai
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m D S � 1

V

X

i

ha�i aji (1.7)

one finds that the renormalization has an infrared divergence because the spin wave
spectrum, !q / j sin qx sin qyj, has entire lines of zeros in the Brillouin zone (BZ)
giving rise to arbitrarily large low energy fluctuations (Chandra and Doucot 1988).
The fact that the magnetization m becomes negative signals the breakdown of the
1=S expansion even for S ! 1.

More than two decades ago, it was conjectured that exotic spin-disordered, e.g.
dimerized, states appear in a finite parameter region around the fully frustrated point
J2 D J1=2 (Chubukov and Jolicoeur 1991). Unfortunately, the exact ground state of
the model is not known to date and it is an ongoing debate whether it is a QSL or a
valence bond crystal (VBC) (Reuther et al. 2011). Before explaining these two key
concepts, I will introduce a simple extension of the J1�J2 model for which the exact
ground state is known. Thereby, I motivate the use of effective short range singlet
dimer models which provide a natural setting for finding QSLs and VBCs, see the
chapter of Lhuillier and Misguich in Lacroix et al. (2011).

By the addition of a four spin interaction

HJ1�J2�K D HJ1�J2 C K
X

fi;j;k;lg

��
Si � Sj

�
.Sk � Sl/

C �
Sj � Sk

�
.Si � Sl/C .Si � Sk/

�
Sj � Sl

��
(1.8)

with fi; j; k; lg around a plaquette in cyclic order, the extended J1 � J2 � K model
becomes exactly solvable at the fully frustrated point J2 D J1=2 and K D J1=8
(Batista and Trugman 2004). It can be written as

HJ1�J2�K D 3J1
2

X

i

OPi (1.9)

in terms of projectors OPi, which projects the spin state on plaquette i onto total
spin Si

tot D 2 per plaquette. Any state with at least one singlet dimer per plaquette
has Si

tot < 2 and therefore minimizes the energy. There are two types of ground
states: First, states which are product states of N.N. singlet dimers like the one in
Fig. 1.3a. Note that there is an extensive number 2

p
NC1 (N total number of sites)

of those states because it is possible to rotate all dimers along a diagonal by �=2
at no energy cost, as shown by the arrows. Second, states with interfaces between
vertical and horizontal dimer configurations are also permissible ground states and
necessarily contain defects at the intersection (not shown) (Batista and Trugman
2004).

What are low energy excitations above the dimerized ground state? After
breaking a singlet dimer into a triplet state, both spin 1=2 can move freely along
the diagonal, see Fig. 1.3b. The two resulting excitations, called spinons, can be
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Fig. 1.3 Panel (a) shows one of the exact ground states of the extended J1 � J2 � K model,
Eq. (1.8). The blue ellipses denote singlet dimers. The arrows indicate that any diagonal array of
dimers can be rotated by �=2, leading to another viable ground state. Panel (b) shows that two
spinons of a broken dimer are free to move along the diagonal direction. The same is true for the
holon and spinon, in which the hole of a removed electron breaks up, shown in panel (c)

separated arbitrarily far apart along the 1D diagonal chain without any energy cost.
Therefore, they are a special fine-tuned example of deconfined fractional excitations
in this singlet dimer setting of the HJ1�J2�K model. They are fractional because all
local processes, e.g. breaking a dimer, are in terms of operators SC

i ; S
�
i which change

the total spin of the system Stot by ˙1, but each of the two spinons carries half of
that quantum number and can be separated infinitely far apart. I explain the concept
of deconfinement and fractionalization in more detail in the next section.

I want to end the discussion of the extended J1�J2�K model and its exact ground
state with a schematic illustration of another important idea. Assume one electron
with charge e and spin 1=2 is removed from the system. This hole creates an empty
site and a free spin 1=2. Similar to the two spinons both entities can move freely
along the diagonal, see Fig. 1.3c. The fact that the empty site, or holon without spin
but with charge e, and the spinon, without charge but with spin 1=2, can be separated
is known as spin-charge separation.

1.2.2 Quantum Spin Liquids

Are the ground states of the extended J1 � J2 � K model, which are product wave
functions of regular singlet dimer coverings, true QSLs? The answer is No, despite
the fact that these states fulfill a key feature, namely that spin correlations are short
ranged. In such a short ranged singlet dimer state, they decay exponentially

hSi � Sji / e� jri�rjj
� (1.10)

with some correlation length � . These states are not true QSL because they lack other
defining features. They are not truly liquid in the sense that dimer–dimer correlation
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functions have long range order. Although there is no generally accepted definition,
I follow Misguich in Lacroix et al. (2011) and provide the following useful working
definition of a QSL:

A QSL is a state without any spontaneous symmetry breaking at zero temperature,
with decaying spin correlations, hSi � Sji ! 0 for jri �rjj ! 1, and with fractional
excitations.

The inclusion of fractional excitations is crucial in the definition and entails a
number of exotic properties of QSL, which are explained in the remainder of the
section. Spins in a QSL are highly entangled due to coherent quantum fluctuations
giving rise to topological order intimately connected to emergent gauge fields and
fractionalization (Wen 1991, 2004).

In the following, I give a brief introduction into the physics of QSLs by
introducing quantum dimer models (QDM). They can be thought of as effective
models in the short range singlet dimer subspace with quantum fluctuations which
resonate between different singlet dimer arrangements. QDM provide the simplest
setting for the realization of QSL phases motivated by the RVB idea (Anderson
1973). Anderson observed that spin disordered wave functions are in principle
possible ground states of frustrated two dimensional lattices (Anderson 1973). As
an example he suggested as ground states

jˆg.s.i D
X

c

ˆ.c/jci (1.11)

a coherent superposition of possible dimer coverings jci on a lattice. The dimers are
made up of (local) singlets jiji D 1p

2

�j "i#ji � j #i"ji
�

which minimize the energy

of the Heisenberg coupling between two spins hijjSi � Sjjiji D � 3
4
. More recently

this RVB physics (Anderson 1987) was extensively studied after the discovery of
high temperature superconductivity in the cuprates (Bednorz and Muller 1986).
Their parent materials were conjectured to be in a QSL phase which becomes
superconducting when charge carriers are introduced by doping (Baskaran and
Anderson 1988), for a review see Lee et al. (2006).

In connection to cuprates effective QDM were introduced, which model gapped
short ranged RVB liquids with sites hi; ji restricted to N.N. (Rokhsar and Kivelson
1988). The original derivation was on the square lattice by restricting the Heisenberg
Hamiltonian to the N.N. singlet dimer subspace (Rokhsar and Kivelson 1988).
Unfortunately, it turns out that except for a special point the square lattice has a
crystalline ground state arrangement of dimers similar to Fig. 1.3a and is not a true
liquid.

The first example of a model with a short ranged RVB liquid phase is given
by the QDM on the triangular lattice (Moessner and Sondhi 2001). I explain the
main concepts of a QSL, including fractionalization and topological order, with this
influential example. For additional details, the interested reader is referred to the
pedagogical introduction in Moessner and Sondhi (2002). The Hamiltonian of the
QDM on the triangular lattice is given by
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Fig. 1.4 Left panel (a) shows the three valence bond resonances of the quantum dimer model
on the triangular lattice, Eq. (1.12). Panel (b) explains the partitioning of the QSL ground states
into topological sectors by showing the two reference lines lx; ly (dashed) which wrap around the
torus (right bottom) of the triangular lattice with periodic boundary conditions. The parities of
the number of dimers crossing the reference lines are invariant under local transformations, e.g.
the resonance moves of panel (a), thereby labeling the degenerate ground states
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(1.12)

with a sum i over all plaquettes Np and ˛ over the three different orientations shown
in Fig. 1.4a. The first kinetic term describes a resonance between different dimer
configurations and the second term introduces an energy penalty for flippable pla-
quettes. At the special Rokhsar–Kivelson (RK) point v D t the ground state wave
function is given by

jˆRK
g.s.i D

0X

c

jci (1.13)

an equal amplitude superposition of all dimer coverings in a given sector, a term
which is described below. This state does not have any local order, e.g. all spin and
dimer correlation functions are short ranged. It was shown that this disordered phase
persists for a finite parameter region v=t < 1 being a true QSL phase which harbors
fractionalized excitations.

A simplified example of fractionalization was given at the end of the last section
in which a triplet state can be separated into arbitrarily far apart spinons carrying
spin 1=2, see Fig. 1.3b. Note that for the extended J1 � J2 � K model the picture is
oversimplified since in such a regular dimer setting, or VBC, spinons are connected
by a string of defects, which in general has a finite tension such that the two spinons
cannot be separated far apart; they are confined. For the extended J1 � J2 � K model
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the string of rotated dimers does not cost energy only at the special fine-tuned and
fully frustrated point. In addition, even there spinons can only move along the 1D
diagonal directions and are otherwise confined.

In the triangular lattice QDM excitations are truly fractionalized via the same
mechanism of breaking a dimer. However, now the two spinons from a broken
singlet dimer can be separated without leaving a costly string or domain wall behind
because of the disordered dimer background with exponentially decaying dimer
correlations (Moessner and Sondhi 2001). It means that their separation to infinity
costs only a finite amount of energy—a phenomenon known as deconfinement. In a
similar fashion the model with a low density of holes exhibits spin-charge separation
because holons and spinons are also deconfined.

In 1D systems spinons appear naturally as domain walls between ordered clusters
(Tennant et al. 1995). Hence, the boundary of the string between two spinons is
only given by the two endpoints of the wall, which only cost a finite amount of
energy. In that sense fractionalization is much more natural in 1D. In a true QSL in
2D, it is the macroscopic superposition of a large number of dimer coverings from
strong quantum fluctuations which makes the string between two separated spinons
tensionless. More precisely, the difference in energy of a pair of N.N. spinons, E.0/,
and the one of two separated spinons, E.jrj/, is not divergent as the separation
jrj goes to infinity, i.e. limjrj!1 ŒE.jrj/ � E.0/� < 1. In essence, the string of
rearranged dimers between two spinons only reshuffles dimer configurations which
are already part of the ground state, hence it does not cost much energy (Balents
2010).

A final key concept for QSLs is topological order (Wen 1991), which was first
introduced in the context of the FQHE (Wen and Niu 1990). Here, I will only give a
brief account of the basic idea in connection with QSLs, for an extensive discussion
see Wen (2004). A commonly accepted definition is the following:

In the absence of any symmetry breaking, topological order refers to a phase
in which the number of degenerate ground states depends on the topology of the
manifold, or its genus g, on which it is realized.

Again, as a pedagogical example of a topologically ordered phase, I will show
that the ground state degeneracy of the triangular QDM depends on the genus of
the underlying lattice. QDM are associated with hard constraints, namely that each
site forms a dimer with one and only one of its N.N. sites. This has important
consequences because locally changing a dimer configuration requires most of the
time reordering of a number of other dimers. In fact, by only considering local
plaquette flips, such as the kinetic term in the Hamiltonian, Eq. (1.12), one can show
that there are loop operators which remain invariant. Therefore, one can separate the
possible QSL ground states into different sectors which are not connected by any
local plaquette flips but only by global flips.

In particular, consider the two reference lines lx; ly of the triangular lattice with
periodic boundary conditions shown in Fig. 1.4b. A sector is defined by the two
winding numbers .Wx;Wy/ D .�1nx ;�1ny/ with nx; ny counting the number of
dimers which intersect the lines lx; ly. Each sector gives rise to a ground state
wave function, approximately Eq. (1.13). Hence, the ground state degeneracy for
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the triangular lattice on the torus is 4. More generally, the ground state degeneracy
is 22g for surfaces with genus g (g D 0; 1 for the sphere and the torus). The entirely
new aspect of topological order is the fact that there is no local operator which can
possibly detect the sector of the ground state. No local order parameter can account
for the ground state degeneracy, and therefore, Landau theory is not applicable.

There is a close link between the presence of fractionalized excitations and
topological order. This can be seen by observing that breaking a dimer into two
spinons and moving one of them around the torus, e.g. around lx, changes the
corresponding winding number, Wx, and connects different topological sectors. This
gives rise to an exponentially small energy splitting�E0 / e�cL of the ground states
depending on the size of the system, L, and some constant c.

Finally, I want to mention the important concept of an emergent gauge field
description of QSLs. The disordered ground state of the triangular lattice QDM
is known as a Z2 QSL because the effective theory describing interactions between
its elementary excitations is a Z2 gauge theory (Wen 1991). Other types of spin
liquids give rise to other gauge theories, for details see the chapter by Misguich in
Lacroix et al. (2011). In the current example, apart from gapped spinons the second
elementary excitation of this short ranged RVB state is also gapped and called a
vison. It can be approximated by a variational wave which is given by jˆRK

g.s.i with
additional Z2 phase factors ˙1 for the dimer configurations entering the sum, see
chapter of Moessner and Kaman in Lacroix et al. (2011). In the context of the Kitaev
honeycomb lattice model (Chap. 2), a similar excitation and a connected gauge field
description appears.

After having introduced the basic concepts, in the following I address a key
question related to the realization of topologically ordered phases. How can a QSL
be diagnosed in experiments?

1.3 Signatures and Dynamics of Unconventional Magnets

A good starting point for the identification of a QSL candidate material is to
look for an unusual behavior in thermodynamic measurements, e.g. the magnetic
susceptibility 	 D @M

@H H!0
, with H describing the external magnetic field. For

standard ferromagnetic (FM) and antiferromagnetic materials a simple mean-field
calculation, which is usually a good description away from the critical point Tc � T
where fluctuations are less important, gives 	 / 1

T�‚CW
with a Curie–Weiss

temperature ‚CW > 0 for FM and ‚CW < 0 for AF interactions between the spins.
The standard behavior of the inverse susceptibility 1=	.T/ for ordinary AF magnets
is shown in Fig. 1.5a. Their actual ordering temperature is close to the Curie–
Weiss temperature, Tc � j‚CWj. In frustrated magnets a large number of thermal
and/or quantum fluctuations prevent ordering around j‚CWj, but unfortunately most
compounds eventually do order at some Tc � j‚CWj, see Fig. 1.5b for a typical
behavior. However, the observation of a large frustration parameter f D j‚CWj

Tc
> 100
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Fig. 1.5 The schematic evolution of the inverse magnetic susceptibility 1=	 is shown as a function
of temperature T. Left panel (a), in a standard unfrustrated AF magnet the magnetic ordering
temperature Tc and the Curie–Weiss temperature j‚CWj are similar. In a frustrated magnet, panel
(b), order is strongly suppressed by fluctuations such that Tc � j‚CWj

is a good indication of a strongly frustrated material (Obradors et al. 1988; Ramirez
1994) providing a promising starting point for finding a QSL.

To narrow down the possibilities other thermodynamic measurements probing
the low energy density of states are helpful. Even in unfrustrated low dimensional
systems long range magnetic order is suppressed as a consequence of the Mermin-
Wagner theorem (Chaikin and Lubensky 2000), which states that in strictly 1D
and 2D isotropic systems long wavelength fluctuations prevent any ordering at
finite temperatures. Even though real materials always display some kind of
weak anisotropy and three dimensionality, thus, violating the assumptions of the
theorem, fluctuations push the ordering to lower temperatures. However, frustrated
systems do have a much higher density of low energy fluctuations as compared to
unfrustrated ones, which can be observed as an unusually large specific heat at low
temperatures, see, e.g., Ramirez et al. (1990). After such an observation, nuclear
magnetic resonance (NMR) could be used to proof the absence of static moments,
and thereafter thermal transport reveals mobility of the low energy excitations.

In the remainder, I want to concentrate on INS whose cross section in principle
has access to the full dynamical spin structure factor (Lovesey 1984)

d2


d�dE
/ Sab.q; !/ (1.14)

with Sab.q; !/ D 1
N

P
Ri;Rj

e�iq.Ri�Rj/
R1

�1 dtei!thSa.Ri; t/Sb.Rj; 0/i, see chapter of
Bramwell in Lacroix et al. (2011). Especially in single crystals it provides detailed
information about dynamical spin correlations and the nature of the excitations. In
general, dynamical response functions have the advantage that they provide access
to the full excitation spectrum beyond the low energy properties probed, e.g., by
thermodynamic measurements. In close comparison with theoretical predictions
these experiments are able to diagnose the presence of QSL phases.
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For a better understanding what unconventional INS signals look like, it is
instructive to contrast them with the ones of standard magnets. First, I begin with
experimental signatures of AF ordered materials, e.g. parent compounds of high
temperature superconductors. Next, I go to more exotic behavior by showing a
recent comparison of an INS experiment with an exact theoretical calculation for a
spin chain compound which establishes the presence of fractional spinon excitations
in 1D. Finally, I end with latest experimental results for higher dimensional QSL
candidate materials which provide an excellent motivation for the objective of this
thesis.

1.3.1 Spin Waves in High Temperature Superconductors

In systems with AFM order the single spin flip of a scattering neutron (a S D 1

excitation) directly probes coherent magnon excitations (also S D 1 excitations),
which are the Goldstones modes of the symmetry broken state. In Fig. 1.6 two INS
cross sections are shown for two parent high temperature superconductors. A key
signature of long range order is the appearance of sharp dispersive modes with
largest intensity at the AFM wave vector.

In the left panel (a), experimental data points of sharp excitations in energy
and momentum are shown along a path in the BZ for the parent cuprate La2CuO4
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Fig. 1.6 The results of INS experiments are shown together with theoretical calculations for two
different high Tc superconducting parent compounds with long range magnetic order. In the left
panel (a), for the insulating parent cuprate La2CuO4 with an N.N. Néel state, a closed spin wave
branch can be measured in the entire BZ (plotted along a path), adapted from Coldea et al.
(2001). A linear spin wave theory calculation of a Heisenberg-like model (red) can account for
the spectrum. In panel (b), an intensity plot of S.q; !/ from a theoretical calculation of an itinerant
model (with spin and charge d.o.f.) is plotted around the magnetic ordering wave vector q D .�; 0/

for parent iron based superconductors (Knolle et al. 2010) with the INS data for CaFe2As2 (Diallo
et al. 2009) (crosses) and (Zhao et al. 2009) (circles). Because of the metallic nature of the parent
compounds coherent spin waves are quickly overdamped by particle-hole excitations away from
the ordering wave vector
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(Coldea et al. 2001). The magnetic state of the square lattice of copper atoms is a
simple N.N. Néel state with an ordering wave vector q D .�; �/ (which is (1/2,1/2)
in the experimental notation). The INS signal of this insulating magnet consists of
sharp dispersive spin wave branches inside the charge gap with a linear dispersion
around the ordering wave vector q D .�; �/ and around q D .0; 0/. The red line
is a theoretical calculation of a Heisenberg model based on a simple spin wave
calculation via Holstein–Primakoff bosons, which captures the entire dispersing
branch (Coldea et al. 2001). Note that in order to fit the dispersion away from the
ordering vector, interactions beyond N.N. are necessary. Hence, non-universal high-
energy features accessible in INS are used to refine the relevant Heisenberg model
and to extract values of the exchange constants.

In the left panel (b), again sharp dispersive spin wave modes appear in the
intensity plot of S.q; !/ around the magnetic ordering wave vector q D .�; 0/ for
parent iron based superconductors (Knolle et al. 2010). The magnetic ground state of
these layered materials with a square lattice of iron atoms consists of ferromagnetic
iron chains aligned antiferromagnetically. Experimental data points are plotted on
top of the theoretical calculation from two independent INS experiments (Diallo
et al. 2009) (crosses) and (Zhao et al. 2009) (circles) for the parent compound
CaFe2As2. For these materials coherent excitations are only seen around the
ordering wave vector because the parent compounds are not insulating. Particle-
hole excitations across the Fermi surface quickly overdamp the spin waves, which is
captured in the theoretical calculation by taking into account the full spin and charge
degrees of freedom of the electrons. In the case of parent compounds of iron based
high temperature superconducting materials, a close comparison between theory
and INS experiments has established the itinerant nature of the spin waves and
has accounted for the difference in spin wave velocities in the two crystallographic
directions.

1.3.2 Spinon Continuum in Spin Chains

In 1D Heisenberg systems strong quantum fluctuations prevent magnetic long range
order down to zero temperature and the ground state has total Stot D 0 (Auerbach
1994). For spin 1=2 chains, the low energy excitations are spinons which appear as
domain walls between ordered segments. In neutron scattering always even numbers
of spinons are created because the induced spin flip of the neutron changes the total
spin by S D 1 and spinons carry S D 1=2. Therefore a continuum of excitations is
expected with sharp boundaries along the linearly dispersing onset (Tennant et al.
1995).

Figure 1.7 shows the INS results for the 1D spin chain compound CuSO4 � 5D2O
(left going branch) together with an exact calculation (right going branch) of the
corresponding Heisenberg model (Mourigal et al. 2013) based on the Bethe–Ansatz
solution (Bethe 1931). These calculations, accounting for more than 99 % of the
total spectral weight, confirm the presence of the spinon continuum. In addition, a
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Fig. 1.7 The INS results (left branch) of for the Heisenberg spin chain compound CuSO4 � 5D2O
are shown together with an exact calculation (right branch) based on the Bethe–Ansatz, adapted
from Mourigal et al. (2013). The latter accounts for more than 99 % of the total weight, thereby
confirming the presence of spinon excitations

close comparison with the experimental data reveals that two-spinon excitations
only account for 71 % of the total weight and the rest arises from four- or
higher-spinon excitations. Note that even in this 1D model with a long existing
exact solution, the calculation of the structure factor only has become possible in
recent years because the calculation of the necessary matrix elements is a highly
demanding task (Caux 2009).

In general, high energy features are less universal than characteristic low energy
properties. The latter are universal because they can be described by effective
low energy field theories (Cardy 1996; Goldenfeld 1992), which are insensitive to
microscopic details. For example, in the case of 1D spin chains similar to the one
above, only the sharp linear onset of the spectrum together with the low energy
continuum is universal. Nevertheless, the characteristic high energy behavior is
extremely useful for determining the correct description and for confirming the
presence of spinon excitations.

1.3.3 Neutron Scattering Results for Candidate Spin Liquids

Finally, I discuss recent INS results for a spin-disordered insulating magnet in more
than one dimension. This is very rare because most frustrated magnetic materials
eventually do show some kind of magnetic order at low enough temperatures albeit
with a large frustration parameter f . For example, the honeycomb iridate Na2IrO3

was conjectured to be QSL described by the Kitaev model (Jackeli and Khaliullin
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2009), see Sect. 2.3. However, susceptibility (Singh et al. 2012) and X-ray scattering
experiments (Liu et al. 2011) have shown that the system develops 3D magnetic
order below Tc D 15K with a frustration parameter of only f � 10. Subsequent INS
experiments confirmed this picture and were used to distinguish between different
candidate magnetic ground states which are close in energy because of frustration
(Choi et al. 2012).

The spin 1/2 kagome-lattice antiferromagnet ZnCu3(OD)6Cl2, which is known as
Herbertsmithite, is one of the most promising candidate materials for the realization
of a QSL. It does not show any signs of magnetic ordering down to T D 50mK
(Mendels et al. 2007) but has a large Curie–Weiss temperature j‚CWj � 300K. The
N.N. Heisenberg model on the kagome lattice is thought to be a good description of
the low energy physics (Han et al. 2012). Indeed numerical computations indicate
that its ground state is a gapped Z2 spin liquid (Yan et al. 2011). Its properties
are currently investigated (Depenbrock et al. 2012), but overall no conclusion even
about the presence of a gap in the excitation spectrum has been reached (Iqbal et al.
2014).

Figure 1.8 shows the INS cross section for Herbertsmithite along a path in the BZ
versus energy (left panel) and the energy integrated response over several BZs (right
panel) (Han et al. 2012). The main feature to observe is the total absence of sharp
modes or coherent excitations. The whole spectrum forms a continuum attributed
to the presence of spinon excitations. Surprisingly, no spin gap is observed and the
inferred structure factor cannot be explained by existing theories (Han et al. 2012).
First phenomenological calculations point to a strong influence of vizon excitations
on the structure factor of a Z2 QSL in addition to spinon excitations (Punk et al.
2014).
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Fig. 1.8 The dynamic structure factor as measured by INS is shown for the kagome lattice
antiferromagnet Herbertsmithite, which shows no sign of magnetic ordering down to T D 50mK;
figure adapted from Han et al. (2012). In the left panel (a), only a broad continuum is observed
along a path through the BZ versus energy. In the right panel (b), features of the broad scattering
are seen over the entire BZ integrated over a fixed energy range. The absence of sharp modes and
boundaries is taken as strong evidence that the response arises from spinon excitations of a QSL
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1.4 Thesis Outline

Clearly these experimental results call for detailed and controlled theoretical
investigations. Due to the absence of reliable approximations beyond 1D, e.g. for
the Heisenberg model on the kagome lattice, the task remains a big and open
challenge. My thesis aims to provide such a complete analysis for a model in 2D.
The availability of a full and exact calculation of a dynamical spin structure factor
for an exactly solvable model can guide future experimental investigations and can
serve as a benchmark for theoretical approximations.

The thesis is devoted to the Kitaev honeycomb lattice model and to a study of its
dynamical correlation functions measurable in standard experiments. In Chap. 2,
I introduce the Kitaev model. I explain in detail the exact solution in terms of
Majorana fermions and discuss a possible experimental realization in Iridium based
materials.

Chapter 3 is focused on the calculation of the dynamical spin correlations and
the corresponding structure factor. It is shown that spin correlations are ultra short
ranged and that the calculation takes the form of a quantum quench. In addition to
an approximate treatment expanding in different number of particle states, I present
two complementary exact solutions. The first one gives results for finite size systems
and is based on the evaluation of Pfaffians. The second one allows to obtain results
in the thermodynamic limit. It is based on the theory of singular integral equations
exploiting connections to the so-called X-ray edge problem.

In Chap. 4, I show the results of my analysis in different gapped and gapless
phases of the Kitaev model. The calculated structure factor has characteristic
features which can be related to the emergent fractionalized excitations of the Kitaev
QSL.

Having investigated the exact spin correlations in the original Kitaev model,
Chap. 5 investigates those in an extended Kitaev model. The addition of a time
reversal symmetry breaking three spin interaction leaves the exact solubility and the
mapping of the spin correlations to a quantum quench intact, but leads to a new QSL
phase with non-Abelian quasiparticles. I discuss the special role of flux excitations
in this phase which locally bind Majorana fermions. I show that peculiar signatures
of these bound states are manifest in the spin structure factor. I close the chapter with
a brief investigation of exchange disorder and its influence on the structure factor.

In Chap. 6, I calculate the inelastic Raman scattering response of the Kitaev
model with an additional small Heisenberg term which breaks the integrability.
I show that signatures of fractionalization, a hallmark of a topologically ordered
phase, are visible in the response. Even for very weak integrability breaking the
change in the response is remarkable, revealing basic properties of the underly-
ing phase by connecting otherwise orthogonal sectors. Hence, Raman scattering
presents a valuable alternative experimental tool for diagnosing QSLs.

Finally in Chap. 7, I summarize the results and present my conclusions. Overall,
this dissertation shows that dynamical response functions provide a valuable tool for
diagnosing QSLs in candidate materials. I close the thesis with some open questions
and with a discussion of promising directions for future research.
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Chapter 2
Kitaev’s Honeycomb Lattice Model

In this chapter, I introduce Kitaev’s honeycomb lattice model (Kitaev 2006)
explaining in detail the exact solution in terms of Majorana fermions. The model
is a rare example of an exactly solvable interacting quantum model in 2D.
It is a representative of a whole class of spin liquids with Majorana fermions
coupled to Z2 gauge fields. As such, it has become the workhorse for model
calculations of interacting and topologically ordered systems in 2D. Many aspects
have been investigated, e.g., the effect of disorder (Willans et al. 2010, 2011;
Lahtinen et al. 2014), the topological ground state degeneracy (Mandal et al. 2012),
transitions between different topological phases (Feng et al. 2007; Shi et al. 2009),
the fidelity susceptibility (Mukherjee et al. 2012), the defect production after a
quench (Sengupta et al. 2008), and the entanglement entropy (Yao and Qi 2010).

One of the beautiful aspects of the model is its simple form:

OH D �Jx

X

hijix

O
 x
i O
 x

j � Jy

X

hijiy

O
 y
i O
 y

j � Jz

X

hijiz

O
 z
i O
 z

j : (2.1)

It consists of spin 1=2, represented by Pauli matrices O
a
j , on the vertices of

the honeycomb lattice. They only interact via N.N. Ising exchange. The special
ingredient crucial for the exact solubility are the directional dependent Ising inter-
actions O
a

i O
a
j ,which pick out different components, a D x; y; z, depending on the

three inequivalent bond directions hijia connecting the vertices, see Fig. 2.1 for an
illustration. Because of its simple form several proposals exist for an experimental
realization (Duan et al. 2003; Micheli et al. 2006; Jackeli and Khaliullin 2009;
Chaloupka et al. 2010; Okamoto 2013). I will present one of them at the end of this
chapter. Next, I outline the original exact solution in terms of Majorana fermions
and static Z2 fluxes (Kitaev 2006).
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Fig. 2.1 The honeycomb lattice is shown with its three inequivalent bond directions x, y, z.
The flux operator Wp, a product of spin operators around a plaquette, is highlighted in red. The
elementary unit cell consists of two basis sites A and B (open and full circles) connected by lattice
vectors n1 and n2

2.1 Exact Solution and Projection

The remarkable observation of Alexei Kitaev was that a large number of constants
of motion exist for the model. In fact, for each plaquette p, there exists an operator

OWp D O
 x
1 O
 y

2 O
 z
3 O
 x
4 O
 y

5 O
 z
6; (2.2)

which is the product of all spins along the six corners of the plaquette with their
spin components corresponding to the outwards pointing bond direction, see Fig. 2.1

red. All different plaquette operators commute with each other,
h OWp; OWp0

i
D 0.

In addition, they also commute with the entire Hamiltonian
h OWp; OH

i
D 0, thus

they are static. Due to the fact that OW2
p D 1 the eigenvalues are Owp D ˙1. In the

following, these Z2 operators are called flux operators. The choice of the name will
be clear later on. For Owp D C1 the plaquette p is flux free, for Owp D �1, it is said
that it has a flux. The full Hilbert space

L D
M

f Ow1;:::; OwNg
Lf Ow1;:::; OwNg (2.3)

can be separated into all different flux sectors Lf Owpg for different sets of

f Ow1; : : : ; OwNg on each plaquette. In a system with N unit cells with periodic
boundary conditions, there are 2N sites for N different plaquettes. The full Hilbert
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space has dimension 22N , but only 2N different flux sectors exist. Hence, each sector
has still an exponentially large size of 2N and remains, in general, a challenging
problem.

In the last decades different fractionalization techniques have been introduced
to capture unconventional magnetic ordering phenomena, in particular for QSLs
(Lacroix et al. 2011). Normally, these methods do not permit exact solutions
but only provide useful mean-field decoupling schemes of the remaining quartic
interaction terms. As such, most often they are uncontrolled approximations.
Fortunately, in the case of the Kitaev model a fractionalization in terms of Majorana
fermions turns out to be exact. As shown below, this can be traced back to the
extensive number of conserved flux operators. In this thesis, I follow the original
proposal of Kitaev, in which spins fractionalize into Majorana fermions. It is also
possible to use different exact fractionalization techniques, e.g. Jordan–Wigner
transformations (Feng et al. 2007; Chen and Nussinov 2008). The relation between
the two different transformations is explained in Mandal et al. (2012).

Following Kitaev (2006), I introduce four Majorana fermions

ci; b
x
i ; b

y
i ; b

z
i with fba

i ; b
a0

j g D 2ıijıa;a0 and fci; cjg D 2ıij (2.4)

(a D x; y; z) on every lattice site i. These are called Majorana fermion operators
because similarly to standard complex fermions they anticommute for different
indices, but in contrast, they are their own complex conjugate c�i D ci such that
their square is unity c2i D 1. In fact, they can be thought of as either the real or
imaginary part of a standard complex fermion. It is always possible to build a single
complex fermion fi out of two Majorana fermions. For explicit calculations of matrix
elements, I always work in standard complex fermionic terms, because only then
it is possible to construct a vacuum state which is annihilated by all destruction
operators.

The spins are represented in terms of the Majorana fermions


a
i D icib

a
i ; such that

˚

a

j ; 

b
j

� D 2ıa;b and
�

a

j ; 

b
k

� D 0 for j ¤ k (2.5)

reproduces the standard Pauli spin algebra. The Kitaev Hamiltonian in terms of
Majorana fermions is written as

H D i
X

a;hijia

Ja Ouhijia cicj with bond operators Ouhijia � iba
i ba

j ; (2.6)

which is still quartic in fermion operators. Note, Ouhijia D �Ouhjiia and in the remainder
I use the convention that i 2 A sublattice and j 2 B sublattice.

It turns out that the bond operators have again eigenvalues uhijia D ˙1. Hence,
the problem can be reduced to a problem of free fermions. All bond operators
commute with H and amongst each other such that the Hamiltonian can again be
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block diagonalized in different sets of
˚
uhjiia

�
, thereby reducing the Hamiltonian

to a quadratic form in fermion operators. Rewriting the flux operators, Eq. (2.2), in
terms of Majoranas leads to

Wp D u21u23u43u45u65u61: (2.7)

The product of all link variables around a plaquette defines the flux sector. From
this relation it becomes transparent why the static operators OWp are called fluxes:
A particle moving around a plaquette p picks up a phase wp D ˙1 similar to an
Aharonov–Bohm like flux of either � or 0.

What are the different Hilbert space dimensions? Again, for 2N spins the original
spin Hamiltonian has dimension 22N . Expressing the Hamiltonian in terms of four
Majoranas enlarges the Hilbert space dimension to 42N , because each Majorana
itself has a nominal dimension of

p
2 which can be seen from the fact that

two Majoranas combine into a single complex fermion with dimension 2. To get
rid of the artificially enlarged Hilbert space dimensions a constraint needs to be
introduced. From the spin algebra of spin 1/2 it follows that ODj D �i O
 x

j O
 y
j O
 z

j D 1.
In terms of Majoranas this reduces to Dj D bx

j by
j bz

j cj, which has Eigenvalues ˙1
because D2

j D 1. Note that the Ohat signals that I work in the original Hilbert space of
spin variables, whereas, operators in terms of Majorana fermions in the artificially
enlarged Hilbert space come without a hat. A state vector in the physical Hilbert
space jˆphysi needs to satisfy Djjˆphysi D jˆphysi and in general it is necessary to
project all states in the enlarged Hilbert space

Pjˆi D
Y

j

1C Dj

2
jˆi D jˆphysi: (2.8)

Observe that all operators Dj commute with H and with all spin operators 
a
i

written in terms of Majorana fermions. The artificially enlarged Hilbert space from
the transformation of the spins to Majorana fermions is evident since several sets˚
uhjiia

�
give the same flux sector

˚ Owp
�
. In fact, the transformation leads to an

emergent Z2 gauge theory. At each lattice site a variable �i D ˙1 can be introduced
which transforms the Majorana fermions as ci ! �ici and the link variables as
uij ! �iuij�j. This gauge transformation does not change the flux sectors and leaves
the energy spectrum within a given flux sector invariant. The 2N lattice sites give
22N different choices for the sets f�1; : : : ; �2Ng, thus the 24N states of H are 22N fold
degenerate.

In the following, I introduce complex fermions in order to clarify the projection
onto physical states, Eq. (2.8), and I show that for certain operators OO the projection
is unnecessary because matrix elements hˆjPOPjˆi=hˆjOjˆi are independent of
the projection. The four different Majorana fermions, Eq. (2.5), can be combined
into two complex fermions, see Fig. 2.2 for an illustration. First, bond fermions
(Baskaran et al. 2007; Yao et al. 2009)
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Fig. 2.2 The representation of spins in terms of four Majorana fermions is shown in the left. White
and grey circles denote A and B sublattices. On the right the corresponding complex bond fermion
construction is depicted schematically

	
�

hijia
D 1

2
.ba

i � iba
j / and 	hijia D 1

2
.ba

i C iba
j / such that (2.9)

Ouhijia D 2	
�

hijia
	hijia

� 1

with i on sublattice A and N.N. hijia along the bond direction a. The link variables
Ouij are simply related to the occupation number of bond fermions. Note, in a slightly
different notation r is the unit cell coordinate with basis site A and B on the two
sublattices, see Fig. 2.2, such that

�
	a

r

�� D 	
�

hijia
and 	a

r D 	hijia .
Second, I work with complex matter fermions

fr D 1

2
.cAr C icBr/ and f �r D 1

2
.cAr � icBr/ (2.10)

which obey the standard anti-commutation relations of fermions. Note, they are also
gauge dependent.

The Hilbert space of H, Eq. (2.6), is now a direct product of bond (or gauge)
degrees of freedom and matter fermions jˆi D jFi ˝ jMi (F for flux and M

for matter). The occupation of 	�hijia
	hijia

jFi D Ouhijia C1
2

jFi determines the flux
sector. In a given flux sector with operators Ouhjiia replaced by their Eigenvalues
uhjiia , Eigenstates of the corresponding Hamiltonian H are the matter Eigenstates
jMi. Note, in principle the notation should distinguish between the Hamiltonian HOu
(dimension 24N) and Hu (dimension 2N), similarly jMi should be jM	i. However,
for simplicity I have omitted the extra labels. Moreover, I will mostly work in the
ground states flux sector with all link variables set to C1.

Going back to the projection operator, Eq. (2.8), I rewrite the local operator Di

on the two sublattices in terms of complex fermions

DAr D
h�
	x

r

�� C 	x
r

i h�
	

y
r
�� C 	

y
r

i h�
	z

r

�� C 	z
r

i h
f �r C fr

i

DBr D
h�
	x

r�n1

�� � 	x
r�n1

i h�
	

y
r�n2

�� � 	y
r�n2

i h�
	z

r

�� � 	z
r

i h
f �r � fr

i (2.11)
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such that the projection operator becomes

P D 1CP
�;r D�r CP

�;r<�0;r0 D�rD�0r0 C � � �Q�;r D�r

22N
: (2.12)

Next, I define D D Q
j Dj and P0, which is the sum of all operators in P that change

the bond fermion number in a nonequivalent way. Finally, the projection operator,
Eq. (2.8), can be factorized into Yao et al. (2009)

P D P0 1C D

2
D P0 �1C .�1/N	CNf

�

2
(2.13)

with N	 and Nf the total number of bond and matter fermions. The projection opera-
tor either annihilates states with odd total fermion number or puts even parity states
into a superposition of all nonequivalent bond fermion numbers (Yao et al. 2009).

Finally, I can show that operators OO which can be arbitrary products of spin
operators but which do not change the bond fermion number can be calculated
in unprojected states jˆi D jFi ˝ jMi (Yao et al. 2009; Baskaran et al. 2007).
A concrete example is given by nearest neighbor spin-spin correlators.

hˆjPOPjˆi D hˆjOPjˆi D
*

ˆ

ˇ̌
ˇ̌
ˇ
O

�
1C .�1/N	CNf

�

2

ˇ̌
ˇ̌
ˇ
ˆ

+

D hˆjOjˆi: (2.14)

In the equation I have used that P commutes with all spin operators and in P0 all
terms except the identity change the bond fermion number. The last equality is
ensured by always working with even total number of fermions, which is always
possible by simply changing the gauge in a given flux sector. In the remainder of
the thesis I neglect the projection operator because it is unnecessary for the correct
calculation of the specific correlation functions in the thermodynamic limit in which
I am interested in; see Sect. 6 on Raman scattering in the Kitaev model for an
exception, especially Eq. (6.25) .

2.1.1 Relation Between Hamiltonians and Bogoliubov
Transformations

In a given flux sector for a particular set of link variables the Hamiltonian in terms
of Majorana matter fermions takes the form

H D i

2

�
cA cB

� 	 F M
�MT �D


	
cA

cB



(2.15)
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with the N � N matrix Mij D uhijia Ja. Here, cA=cB is the shorthand notation of
the vector cAr=cBr of length N. For the pure Kitaev model, Eq. (2.1), the N � N
next nearest neighbor matrices Fij and Dij are identical zero, but in order to realize
a non-Abelian phase they will appear in Chap. 5. For the flux free translationally
invariant system F D D even in the non-Abelian phase, but the symmetry between
sublattices A and B can be broken explicitly by flux insertion. In fact, Eq. (2.15) is
the most general form of a non-interacting Majorana Hamiltonian. In order to be
hermitian matrices F and D need to be skew symmetric (FT D �F and DT D �D)
such that the whole Majorana matrix is skew symmetric (Kitaev 2006).

Following Eqs. (2.9) and (2.10), I introduce complex fermions cA D f � C f and
cB D i.f � � f / to obtain

H D 1

2

�
f � f

� 	 h �

�� �hT


	
f
f �



(2.16)

with

h D .M C MT/C i.F � D/ (2.17)

� D .MT � M/C i.F C D/: (2.18)

The matter Hamiltonian in a given gauge is quadratic in fermions and of the
Bogoliubov de-Gennes form, which can be solved exactly. Let T be the unitary
transformation that diagonalizes the Hamiltonian (Blaizot and Ripka 1986) with
TT� D 1 and

T

	
h �

�� �hT



T� D

	
E 0

0 �E



(2.19)

such that the diagonal form reduces to

H D
X

n>0

Ena�nan � 1

2

X

n>0

En (2.20)

with positive Eigenvalues En. For N � N sites of each sublattice, F;M;D; h; � are
N � N matrices which gives N positive Eigenvalues En. Explicitly the Bogoliubov
transformations are given by Blaizot and Ripka (1986)

fi D XT
ikak C Y�ika�k

f �j D YT
jl al C X�jla

�
l

(2.21)

with N � N matrices X,Y and an implicit summation over double indices. The
ground state is defined by aij0i D 0 and its energy is Eg:s: D � 1

2

P
n>0 En. Recall

that the final spectrum in a given flux sector is independent of a particular gauge.
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To find the global minimum of the full Hamiltonian, Eq. (2.6), it is in principle
necessary to compare all ground state energies Eg:s:.

˚ Owp
�
/ of all possible flux

sectors. Fortunately, it is known that in a translationally invariant system the ground
state is flux free (Lieb 1994). I can put, e.g., all uhijia D C1

V

hiji. This flux state is
called jF0i with the corresponding matter fermion ground state jM0i. Different flux
sectors are separated by nonzero energy gaps such that at low enough temperatures
it is reasonable to restrict calculations to the lowest flux sector (Kitaev 2006).

Since it will be important later on, I want to clarify how eigenstates of different
flux sectors can be related to each other. Let b and a be the operators in which two
different flux sectors are diagonal. For definiteness, I assume a system with extra
fluxes (sublabel F) and one without fluxes (sublabel 0). Each system is diagonalized
by its own Bogoliubov transformation

	
X�
0 Y�

0

Y0 X0


	
f
f �



D
	

a
a�



with the inverse

 
XT
0 Y�0

YT
0 X�0

!	
a
a�



D
	

f
f �



; (2.22)

as well as,

	
X�

F Y�
F

YF XF


	
f
f �



D
	

b
b�



with the inverse

 
XT

F Y�F
YT

F X�F

!	
b
b�



D
	

f
f �



: (2.23)

Via these transformations both systems can be related

	X � Y�
Y X


	
a
a�



D
	

b
b�



(2.24)

with

	X � Y�
Y X



D
 

X�
F XT

0 C Y�
F YT

0 X�
F Y�0 C Y�

F X�0
YFXT

0 C XFYT
0 YFY�0 C XFX�0

!

: (2.25)

The ground state of the system with extra fluxes , bjMFi D 0, can be obtained from
the ground state of the flux free system, ajM0i D 0, as (Blaizot and Ripka 1986)

jMFi D det
�X �X �

1
4 e� 1

2Fija
�
i a
�
j jM0i with Fij D �X ��1�

il Y�
lj : (2.26)

From this expression I can read off the overlap of the two ground state wave
functions:

hMFjM0i D det
�X �X �

1
4 : (2.27)
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2.2 Ground State Flux Sector

In the flux free ground state sector, denoted by H0, the system is translationally
invariant, Mij D Cıhijia Ja. It can be easily solved by Fourier transformation to
momentum space, fq D 1p

N

P
r eiqrfr, such that

H0 D
X

q

�
f �q f�q

� 
�q ��q

���
q ��q

! 
fq

f ��q

!

: (2.28)

The Hamiltonian looks just like a superconductor with a momentum dependent gap
�q D �iImS.q/ and the normal state dispersion �q D ReS.q/. The adjacency
matrix is given by S.q/ D P

ni
J˛.ni/e

iqni with lattice vectors nz D .0; 0/, n1 D
nx D �

1
2
;

p
3
2

�
and n2 D ny D � � 1

2
;

p
3
2

�
, see Fig. 2.1. Since the gap �q is purely

imaginary a simplified Bogoliubov transformation solves the problem (Kitaev 2006)

 
fq

f ��q

!

D
	

cos �q i sin �q

i sin �q cos �q


 
aq

a��q

!

(2.29)

with tan 2�q D � Im.S/
Re.S/ . Finally, the diagonalized Hamiltonian is given by

H0 D
X

q

jS.q/j.2a�qaq � 1/: (2.30)

The ground state is a state without fermions, aqjM0i D 0, and ground state energy
Eg:s: D �Pq jS.q/j. The excitation spectrum E.q/ D 2jS.q/j of fermionic matter

excitations a�qjM0i is gapless if jJzj < jJxjCjJyj (and permutations). At the isotropic
point, Jx D Jy D Jz, the dispersion resembles that of graphene with fermions
hopping on the honeycomb lattice, see Fig. 2.3. In this gapless B phase, there are two
Dirac points at Q D ˙. 2�

3
;� 2�

3
/ (for Jx D Jy D Jz) with a linear energy spectrum

E.q/ / jqj in their close vicinity, see Fig. 2.3. Once the exchange constants become
anisotropic the Dirac points start to move in the Brillouin zone until they merge
and annihilate, such that for jJzj > jJxj C jJyj (and permutations) the spectrum is
gapped (called A phase). The phase diagram is summarized in Fig. 2.4 in a ternary
plot with Jx C Jy C Jz D 1. Note that in the B phase the lowest excitations are
matter fermions and flux excitations are gapped. Deep in the A phases the situation
is reversed, such that the lowest possible excitations are fluxes because the gap of
the Majorana spectrum quickly exceeds the flux gap. In fact, in the strong dimer
limit Jx D Jy � Jz the lowest flux gap, which is the difference in ground state

energies with and without a flux pair, vanishes as �F / J4x
J3z

(Kitaev 2006).

After having presented the exact solution for the lowest flux sector, I want to
clarify why the ground state of the Kitaev honeycomb model is called a quantum
spin liquid. In general, the most prominent of the defining features of a QSL is that



32 2 Kitaev’s Honeycomb Lattice Model

6

5

4

3

2

1

0

3
2qy

qx
1

0 0 1 2 3 4 5 6

E
(q

x,
q y

)

Fig. 2.3 The spectrum E.q/ of the matter fermions in the ground state flux sector is shown in
the first Brillouin zone. The two Dirac cones lead to a linearly vanishing density of states at low
energies

s.p. gap

Fig. 2.4 The phase diagram of the Kitaev model is shown in a ternary plot with Jx C Jy C Jz D 1.
The central triangle around the isotropic point Jx D Jy D Jz is the gapless B phase with a gapless
Dirac spectrum of the matter fermions. The outer triangles (A phases) have a gapped single particle
spectrum. The colorbar represents the linearly increasing value of the fermionic single particle gap
in the ground state flux sector

spin correlations are short ranged even at zero temperature. So far, this is not obvious
for the Kitaev model. However, I will explicitly show in the next chapter that spin
correlations are actually ultra short ranged. They are strictly zero beyond N.N. due
to a selection rule from the flux sector. What is clear until this point is the fact
that the fractionalization of spins into Majorana fermions and static fluxes is exact.
As discussed in the introduction, fractionalization is another prominent feature of
QSLs, similar to the appearance of the emergent gauge structure. All together, these
features make the Kitaev model a prime example of a QSL. Moreover, because of its
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exact solubility it has become the workhorse for model calculations of topologically
ordered phases in 2D. The pure honeycomb model as described until now harbors
gapless and gapped QSL phases, see Fig. 2.4, and its excitations can be shown
to obey Abelian statistics (Kitaev 2006). In Chap. 5, I will show that the model
can straightforwardly be extended to give rise to a gapped QSL with non-Abelian
excitations (Kitaev 2006).

2.3 Experimental Realization

One of the appealing features of the Kitaev model is its simplicity, which brings
its actual realization within experimental reach. There are two main directions
for realizing the model. First, there are proposals built upon strongly correlated
d-electron compounds with sizable spin orbit coupling, e.g. Iridates (Jackeli and
Khaliullin 2009; Chaloupka et al. 2010; Okamoto 2013). Second, there exist ideas
centered around quantum simulators in cold atomic systems in which laser fields
can induce anisotropic effective spin exchange for ensembles of either fermionic
atoms (Duan et al. 2003), or for polar molecules (Micheli et al. 2006). In the
following, I concentrate on the first direction and explain the main idea of a possible
realization in a solid state material.

In this context, Jackeli and Khaliullin (2009) put forward a promising proposal by
deriving superexchange models for Mott–Hubbard systems with partially filled t2g

orbital levels and with strong spin orbit (SO) coupling. As an example they studied
exchange interactions between Ir4C ions in layered Iridate compounds A2IrO3 with
A D Li,Na. In such transition metal compounds the effective interaction can be
quite large giving rise to Mott insulating states (Imada et al. 1998). In general, the
effective interaction is determined by the ratio of local on-site Coulomb repulsion
and the bandwidth, which is fixed by the overlap between adjacent d-orbitals of the
transition metal. In these compounds, the bandwidth can be small since it is usually
determined by the indirect transfer through p orbitals of ligand atoms (here oxygen).
As a consequence the effective interaction becomes large.

In layered A2IrO3 materials the relevant 3d orbital has total angular momentum
L D 2, with a tenfold degeneracy (five for the orbital part Lz D �2;�1; 0; 1; 2 and
another two for each spin). In a cubic crystal field surrounding the degeneracy is
partially lifted into a higher energy eg level (fourfold degenerate) and a lower t2g

level (sixfold degenerate). In Iridates the Ir ion has a d5 configuration which can
be viewed as a hole in this lower manifold. The t2g manifold is spanned by the
three orbitals with effective angular momentum L D 1, jxyi; jxzi; jyzi. Strong spin-
orbit coupling entangles the spin S and the effective orbital angular momentum L
lifting the sixfold degeneracy into twofold (total J D 1

2
) and fourfold (total J D 3

2
)

degenerate levels. The splitting between these levels is of order 
, which is the SO
coupling constant. For late transition metal ions, e.g. Ir, it can be sizable up to 
 �
400meV making it the largest energy scale in the system (Schirmer et al. 1984).
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Fig. 2.5 The density profile of an isospin up state is shown in panel (a), figure adapted from
Jackeli and Khaliullin (2009). Because of crystal fields and strong spin orbit coupling the effective
isospin state is a coherent superposition of spin and orbital components which leads to anisotropic
exchange interactions depending on the surrounding bonding geometry. In panel (b), two different
bonding directions for the intermediate oxygens are displayed. The effective exchange interactions
are mostly mediated through these ligand oxygens and the 90ı bonding, (ii), leads to highly
anisotropic Jx; Jy; Jz coupling constants

The single hole resides in the Kramers doublet of the effective isospin J D 1
2

and the
wave functions are a coherent superposition of orbital and spin states. The spatially
anisotropic jxzi and jyzi orbitals lead to peculiar isospin densities in real space.
An example is shown in Fig. 2.5a.

The key observation of Jackeli and Khalliulin was that the exchange Hamiltonian
for the effective isospin strongly depends on the bonding geometry. The main
ingredient is the position of the ligand oxygen atom through which the dominant
exchange process is mediated. Two different bonding angles with either 180ı or
90ı are shown in Fig. 2.5b (i) and (ii). For a pair of Ir-ions connected via two 90ı
bonds of intermediate Oxygens, Fig. 2.5b (ii), the exchange processes with parallel
Jz and antiparallel Jz have different intermediate electronic configurations involving
the J D 3

2
part. It is this difference which gives the anisotropic Jx; Jy; Jz couplings

along the bond.
In a cubic system with a periodic replacement of some of the magnetic ions

by nonmagnetic ones, the Œ111� direction can form a honeycomb lattice with three
inequivalent bonds, see Fig. 2.6. The transition metal Ir is shown in light blue and
the ligand Oxygen as a small open circle (nonmagnetic ion in black). The three
different Ir–Ir bonds (green, red, blue) are bridged by three inequivalent 90ı bonds
via the Oxygens which leads to highly anisotropic exchange interactions that exactly
reproduce the Kitaev Hamiltonian (Jackeli and Khaliullin 2009).

In real materials, the instantiation of a pure Kitaev model is highly
unlikely because of deviations from a perfect 90ı bonding geometry. At best
a Kitaev-Heisenberg model with a small Heisenberg contribution might be
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O

Li,Na

Fig. 2.6 A sketch of a layered iridate compound A2IrO3 (A D Li,Na) is shown, adapted from
Jackeli and Khaliullin (2009). In a cubic system with periodic replacement of some of the magnetic
ions (here Iridium in light blue) by nonmagnetic ones (here Li or Na in black), the Œ111� direction
can form a honeycomb lattice with three inequivalent bonds. Iridium ions interact via super-
exchange via the oxygen atoms (white small circles) such that the three different bond directions
(green, red, blue) are proposed to realize the Kitaev Hamiltonian

realized (Mazin et al. 2013; Singh et al. 2012). However, several theoretical studies
have shown that the Kitaev spin liquid regime is stable for a small but nonzero
value of Heisenberg coupling (Chaloupka et al. 2010; Reuther et al. 2011).
Spin correlations still decay exponentially, as long as the Heisenberg exchange
is sufficiently weak compared to the Kitaev exchange couplings.

References

G. Baskaran, S. Mandal, R. Shankar, Exact results for spin dynamics and fractionalization in the
Kitaev model. Phys. Rev. Lett. 98(24), 247201 (2007)

J.-P. Blaizot, G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, 1986)
J. Chaloupka, G. Jackeli, G. Khaliullin, Kitaev-Heisenberg model on a honeycomb lattice: possible

exotic phases in iridium oxides. Phys. Rev. Lett. 105(2), 027204 (2010)
H.-D. Chen, Z. Nussinov, Exact results of the Kitaev model on a hexagonal lattice: spin states,

string and brane correlators, and anyonic excitations. J. Phys. A Math. Theor. 41(7), 075001
(2008)

L.-M. Duan, E. Demler, M. Lukin, Controlling spin exchange interactions of ultracold atoms in
optical lattices. Phys. Rev. Lett. 91(9), 904021–904024 (2003)

X.-Y. Feng, G.-M. Zhang, T. Xiang, Topological characterization of quantum phase transitions in
a spin-model. Phys. Rev. Lett. 98(8), 087204 (2007)

M. Imada, A. Fujimori, Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70(4), 1039–1263
(1998)



36 2 Kitaev’s Honeycomb Lattice Model

G. Jackeli, G. Khaliullin, Mott insulators in the strong spin-orbit coupling limit: from heisenberg
to a quantum compass and Kitaev models. Phys. Rev. Lett. 102(1), 017205 (2009)

A. Kitaev, Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006)
C. Lacroix, P. Mendels, F. Mila, Introduction to Frustrated Magnetism: Materials, Experiments,

Theory. Springer Series in Solid-State Sciences (Springer, Berlin, 2011)
V. Lahtinen, A.W.W. Ludwig, S. Trebst, Perturbed vortex lattices and the stability of nucleated

topological phases. Phys. Rev. B 89(8), 085121 (2014)
E.H. Lieb, Flux phase of the half-filled band. Phys. Rev. Lett. 73(16), 2158–2161 (1994)
S. Mandal, R. Shankar, G. Baskaran, RVB gauge theory and the topological degeneracy in the

honeycomb Kitaev model. J. Phys. A Math. Theor. 45(33), 335304 (2012)
I.I. Mazin, S. Manni, K. Foyevtsova, H.O. Jeschke, P. Gegenwart, R. Valentí, Origin of the

insulating state in honeycomb iridates and rhodates. Phys. Rev. B 88(3), 035115 (2013)
A. Micheli, G.K. Brennen, P. Zoller, A toolbox for lattice-spin models with polar molecules. Nat.

Phys. 2(5), 341–347 (2006)
V. Mukherjee, A. Dutta, D. Sen, Quantum fidelity for one-dimensional Dirac fermions and two-

dimensional Kitaev model in the thermodynamic limit. Phys. Rev. B 85(2), 024301 (2012)
S. Okamoto, Doped Mott insulators in (111) bilayers of perovskite transition- metal oxides with a

strong spin-orbit coupling. Phys. Rev. Lett. 110(6), 066403 (2013)
J. Reuther, R. Thomale, S. Trebst, Finite-temperature phase diagram of the Heisenberg-Kitaev

model. Phys. Rev. B 84(10), 100406 (2011)
O.F. Schirmer, A. Forster, H. Hesse, M. Wohlecke, S. Kapphan, Paramagnetic resonance and near-

infrared optical absorption of SrTiO3:Ir4C. J. Phys. C Solid State Phys. 17(7), 1321 (1984)
K. Sengupta, D. Sen, S. Mondal, Exact results for quench dynamics and defect production in a

two-dimensional model. Phys. Rev. Lett. 100(7), 077204 (2008)
X.-F. Shi, Y. Yu, J.Q. You, F. Nori, Topological quantum phase transition in the extended Kitaev

spin model. Phys. Rev. B 79(13), 134431 (2009)
Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W. Ku, S. Trebst, P. Gegenwart, Relevance

of the Heisenberg-Kitaev model for the honeycomb lattice iridates. Phys. Rev. Lett. 108(12),
127203 (2012)

A. Willans, J. Chalker, R. Moessner, Disorder in a quantum spin liquid: flux binding and local
moment formation. Phys. Rev. Lett. 104(23), 237203 (2010)

A. Willans, J. Chalker, R. Moessner, Site dilution in the Kitaev honeycomb model. Phys. Rev. B:
Condens. Matter Mater. Phys. 84(11), 115146 (2011)

H. Yao, X.-L. Qi, Entanglement entropy and entanglement spectrum of the Kitaev model. Phys.
Rev. Lett. 105(8), 080501 (2010)

H. Yao, S.-C. Zhang, S.A. Kivelson, Algebraic spin liquid in an exactly solvable spin model. Phys.
Rev. Lett. 102(21), 217202 (2009)



Chapter 3
Dynamic Spin Correlations: Mapping to a
Quantum Quench

The main objective of the thesis is to calculate the exact dynamic spin correlation
function of the Kitaev QSL. As discussed in the introduction, the possibility to
obtain exact results for interacting and nontrivial quantum systems is usually
restricted to 1D systems, but the solubility of the Kitaev model extends this pos-
sibility to 2D. Many aspects of the Kitaev model were studied since its publication,
but surprisingly no results for the full time dependence of correlation functions
existed. However, a word of caution is necessary! Similar to the situation of the
Bethe-Ansatz in 1D, obtaining exact spectra can be much easier than calculating
exact correlation functions (Caux 2009). In fact the full spectrum of the Heisenberg
chain is known since the thirties of the last century (Bethe 1931) but the full
time (or frequency) dependence of the spin correlation function was just recently
obtained and remains a challenging numerical task (Caux 2009; Mourigal et al.
2013). It turns out that the situation is similar in the case of the Kitaev model, for
which I calculate the spin correlation function numerically exactly. I discuss at the
end of this chapter what I precisely mean by numerically exact results.

In the following I calculate the dynamical structure factor which can be directly
measured in INS and ESR experiments (Lovesey 1984)

S.q; !/ D 1

N

X

Ri;Rj

X

a;b

e�iq.Ri�Rj/

Z 1

�1
dtei!tSab

ij .t/ (3.1)

with the standard spin correlation function

Sab
ij .t/ D h0j O
a

i .t/ O
b
j .0/j0i: (3.2)

Here i and j are lattice sites at positions Ri and Rj. I concentrate on the zero
temperature response such that j0i D jF0ijM0i is the ground state of the Kitaev
model.
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The structure of the chapter is as follows. First, I rederive a mapping of the spin
correlation function to a local quantum quench which is the starting point for the
exact calculations. I show that static and dynamic spin correlations are ultra short
ranged due to a selection rule from the static flux sector. Next, I calculate sum
rules which relate equal time correlations to the full dynamical response. A first
step towards a full solution can be taken by studying the Lehmann representation.
I show how to evaluate contributions from few particle processes. Afterwards, I
calculate the exact correlation functions for finite size systems via many-body path
integrals which leads to an expression in terms of Pfaffians. Next, in order to obtain
the structure factor in the thermodynamic limit, I exploit connections of the local
quantum quench to the venerable X-ray edge problem. I show how to reduce the
problem to the one of finding a solution to a singular integral equation (SIE).
The latter is solved via a beautiful mathematical method of Muskhelishvili.

3.1 Exact Mapping and Selection Rules

A first and important step for studying the dynamic spin correlation function was
done in Baskaran et al. (2007), who showed that only on-site and N.N. correlations
are non-zero. In addition, they derived an expression for the time dependence of the
spin correlation function, but they did not attempt to evaluate it. In this section, I
follow their main idea and I rederive the exact mapping to a local quantum quench
before proceeding with an exact evaluation.

3.1.1 Mapping to a Quench

The ground state of the Kitaev model is flux free and I use a particular gauge with all
Eigenvalues uhijia

D C1. From Eq. (2.9) follows that the corresponding occupation

of the bond fermions is 	�hijia
	hijia

jF0i D 1jF0i, hence 	�hijia
jF0i D 0. With the help

of these bond fermions, Eq. (2.9), I express all spin operators, Eq. (2.5), as


a
i D ici.	hijia

C 	
�

hijia
/ with i 2 sublattice A


a
j D cj.	hijia

� 	�hijia
/ with j 2 sublattice B;

(3.3)

such that the spin correlation function between spins on A and B sublattices can
be written as Sab

ij .t/ D hM0jhF0jici.t/	
�

hij0ia
.t/cj.0/	hi0jib

.0/jF0ijM0i. Note that i0

and j0 are fixed by the spin components a and b which define the corresponding
bond direction. With the time dependence in Heisenberg representation, O.t/ D
eiHtOe�iHt, I obtain
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Sab
ij .t/ D hM0jhF0jieiHtci.0/	

�

hij0ia
.0/e�iHtcj.0/ O	hi0jib

.0/jF0ijM0i (3.4)

with the full Kitaev Hamiltonian in terms of matter and gauge d.o.f. H D HOu.
To derive an expression which only depends on the matter degrees of freedom ci,
I commute the bond operators 	� to the right to let them act on the ground state of
the gauge sector jF0i. I use the identity (von Delft and Schoeller 1998)

BeA0 D eA0�DB if
�
A0;B

� D DB and ŒD;B� D 0 (3.5)

which is similar to the well-known Baker–Haussdorff formula. Since the Hamil-
tonian is diagonal in the bond fermion numbers, the commutator

h
	
�
a	a; 	

�

a0

i
D

	
�

a0ıa;a0 gives the first non-trivial result

	
�

hijia
e�iH0t D e�it.H0CVhijia/	

�

hijia
with Vhijia

D �2Jaicicj: (3.6)

Here, I have already used the fact that I study correlations in the ground state sector,
such that H0 D HuDC1 refers to the homogeneous Majorana hopping Hamiltonian
with all Eigenvalues uhijia

D C1. The new Hamiltonian Hhijia
D H0 C Vhijia

has
locally flipped the sign of the hopping along the bond hijia which is equivalent to
adding two extra fluxes on the two plaquettes on each side of the bond. In more
general terms (Baskaran et al. 2007) commuting 	�hijia

past eiHfug in a particular
gauge field configuration of a given flux sector, changes the gauge field locally by
changing the number of 	hijia

fermions. The configuration of local Z2 fluxes on the
two plaquettes neighboring the bond hijia is reversed.

In the final step, I eliminate the bond degrees of freedom. In the ground
state hF0j O	�hij0ia

O	hi0jib
jF0i D ıi;i0ıj;j0 � ıa;bıhiji;a. Thus, the first main result is an

expression of the dynamic spin correlation function only in terms of matter fermions
(Baskaran et al. 2007):

Sab
ij .t/ D �ihM0jeiH0tcie

�it.H0CVhijia /cjjM0iıa;bıhiji;a (3.7)

with Vhijia
D �2iJacicj and i 2 A; j 2 B.

I want to discuss important features of this equation: First, note that spin
correlations are ultra-short ranged; the symbol ıhiji;a encodes that all correlations
beyond nearest neighbors hiji are strictly zero. In addition, the component a along
the bond hijia dictates which specific component of the correlator Sab

ij ıa;b is non-zero.
This unusual behavior can be traced back to the static nature of the fluxes and arises
due to selection rules of the flux sector (Baskaran et al. 2007). All spin operators are
products of a Majorana fermion operator and a bond operator, which changes the
occupation number of gauge fermions 	, see Eq. (3.3). Such a change is equivalent
to altering the occupation of fluxes on the left and right plaquette neighboring the
bond. Hence, spin operators can symbolically be written as
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Fig. 3.1 The action of various spin operators on the flux free ground state is shown schematically.
A spin operator 
a

i flips the sign of the link variable uhijia (with j defined by the bond direction
a) which changes the number of fluxes neighboring the bond hijia, see (i). A two spin operator is
only nonzero if it conserves the number of fluxes. Therefore, h
a

i 

b
j i ¤ 0 only for a D b along the

corresponding bond direction hijia such that (ii) and (iv) vanish but not (iii)


a
i ! ici O…left

hiji;a O…right
hiji;a (3.8)

with operators O…left/right
hiji;a flipping the corresponding fluxes (Baskaran et al. 2007).

When calculating dynamical correlations Sab
ij .t/ D h0j O
a

i .t/ O
b
j .0/j0i in the ground

state (or any other Eigenstate) the first spin operator adds two fluxes neighboring the
b bond starting at site j. Since fluxes are static the bond fermion number is conserved
under time evolution. Therefore, the second spin operator has to remove the same
fluxes. In general, the second spin adds two fluxes neighboring the a bond starting
at site i. However, to get a nonzero correlation it can only act on the very same site j
or on the N.N. site along bond b because different flux sectors are orthogonal. These
intuitive selection rules are illustrated in Fig. 3.1.

Second, observe the special time dependence in Eq. (3.7). Although this expres-
sion had been derived in Baskaran et al. (2007) no attempt to calculate the full
dynamics was made. Calculating the spin correlation function reduces to a quadratic
Majorana fermion problem because both H0 and Hhijia

D H0 C Vhijia
are quadratic,

but it still remains a challenging task since it is now a non-equilibrium problem.
In fact, Eq. (3.7) is an exact mapping of the spin correlation function to a local
quantum quench. A Majorana fermion cj added to the ground state jM0i of H0

is evolved forward in time with a different Hamiltonian Hhijia
. Since e�itHhijia jM0i

creates extra particles and shakes up the Fermi sea, it was conjectured (Baskaran
et al. 2007) that the non-equilibrium problem is equivalent to a classic X-ray edge
problem (Nozieres and DeDominicis 1969), in which the sudden switching on of a
local potential impurity in a Fermi liquid leads to a singular frequency behavior of
the X-ray response. As discussed in depth in Sect. 3.4, the physics turns out to be
different, as no singular frequency or time behavior arises. The underlying reason
is that H0 has a linearly vanishing density of states as a function of energy because
of the Dirac spectrum. Furthermore, Hhijia

only conserves parity but not particle
number in terms of matter fermions fr, Eq. (2.10).

The ground state flux sector of the Kitaev model is translationally invariant and
spin correlations are very short ranged. Therefore, only few real space components
are necessary for the calculation of the structure factor, Eq. (3.1). Only four real
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space correlators, two site diagonal Szz
A0A0=B0B0 and two nearest neighbor Szz

A0B0=B0A0,
need to be calculated. Here and in the following, I put the unit cell coordinate r D 0

and obtain

Szz
A0B0.t/ D �ihM0jeiH0tcA0e

�it.H0CVz/cB0jM0i (3.9)

Szz
A0A0.t/ D hM0jeiH0tcA0e

�it.H0CVz/cA0jM0i (3.10)

Szz
B0B0.t/ D hM0jeiH0tcB0e

�it.H0CVz/cB0jM0i (3.11)

Szz
B0A0.t/ D ihM0jeiH0tcB0e

�it.H0CVz/cA0jM0i (3.12)

with Vz D �2iJzcA0cB0: (3.13)

The other correlators Sxx or Syy can be obtained by interchanging Jx ! Jz !
Jy ! Jx or Jy ! Jz ! Jx ! Jy. In the remainder of this chapter, I present
derivations for the first N.N. component, Szz

A0B0.t/, since all others are very similar.
For completeness, I list the final result for all of them.

3.1.2 Sum Rules and Static Correlations

A good check for a calculation of the dynamical correlation functions is given by
the sum rules

Szz
A0A0=B0.0/ D

Z C1

�1
dtı.t/Szz

A0A0=B0.t/

D 1

2�

Z C1

�1
d!

Z C1

�1
dtei!tSzz

A0A0=B0.t/

D 1

2�

Z C1

�1
d!Szz

A0A0=B0.!/; (3.14)

which connect the equal time correlation functions to the full frequency behavior
of the dynamical response. I checked that my calculations fulfill the sum rules by
calculating Szz

A0B0.t D 0/ D �ihM0jcA0cB0jM0i, the equal time correlator given by

Szz
A0B0.t D 0/ D 1

N

X

q

cos
�
2�q

�
(3.15)

with the Bogoliubov angle derived in Sect. 2.2. At the isotropic point I obtain
Szz

A0B0.t D 0; Jx D Jy D Jz D 1/ D 0:5248657 in the thermodynamic limit N ! 1.
In Fig. 3.2 the equal time correlation function is shown in the full phase diagram.
The isolated Ising dimer limit Szz

A0B0.t D 0; Jx D Jy D 0; Jz D 1/ D 1 is quickly
approached as Jx; Jy � Jz.
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Fig. 3.2 The behavior of the N.N. equal time correlation function Szz
A0B0.t D 0/ is shown in the

phase diagram parameterized by Jx C Jy C Jz D 1

3.2 Few-Particle Response and Dynamical Phase Diagram

For a first insight into the full dynamical response Szz
ij .t/, it is instructive to study the

Lehmann representation by inserting the identity 1 D P
Q
 j Q
ih Q
j into Eq. (3.9).

Szz
A0B0.t/ D �i

X

Q

eit.E0�EF

Q

/hM0jcA0j Q
ih Q
jcB0jM0i (3.16)

which gives in frequency space

Szz
A0B0.!/ D �2� i

X

Q

hM0jcA0j Q
ih Q
jcB0jM0iı

h
! �

�
EF

Q
 � E0
�i
: (3.17)

Here, j Q
i is the basis of many-body Eigenstates of the Hamiltonian Hz D .H0 C Vz/

with the corresponding many-body Eigenenergies EF
Q
 ; E0 is the ground state energy

of H0. Central aspects of the dynamical response already become transparent from
Eq. (3.17).

First, in both gapped and gapless phases, the response vanishes below the two-
flux gap � D EF

0 � E0, which is the difference between the ground state energies
in a system with and without an extra flux pair. At the isotropic point � ' 0:26J
(Kitaev 2006). It is remarkable that in an INS experiment the response of a gapless
QSL shows an excitation gap which is directly related to the emergent gauge field.

Second, above the gap �, the response reflects the physics of the matter sector.
An important consequence of the fact that H0 and Hz conserve matter fermion parity
is that the non-zero contributions to Eq. (3.17) come only from excited states j Q
i
with parity opposite to the ground state jM0i. As a result, two distinctively different
alternatives arise: either (I) the ground states of H0 and Hz have the same parity,
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in which case the states j Q
i must contain an odd number of excitations, or (II) the
ground states have opposite parity and j Q
i contains an even number of excitations,
a condition that is also fulfilled by the ground state of Hz.

From Eq. (3.16) I can calculate the contribution from different number of particle
states by studying the contributions from zero excitations jMFi, single particle
excitations j
i D b�
jMFi with energy EF


 , two particle excitations j
; 
0i D
b�
b�


0 jMFi with energy EF

;
0 D EF


 C EF

0 , etc. Note the missing tilde for the single

particle states and energies.

Szz
A0B0;.0/.!/ D �2� ihM0jcA0jMFihMFjcB0jM0iı

�
! � �

EF
0 � E0

��
(3.18)

Szz
A0B0;.1/.!/ D �2� i

X




hM0jcA0b
�


jMFihMFjb
cB0jM0iı
�
! � �

EF

 � E0

��

Szz
A0B0;.2/.!/ D �2� i

X


;
0

hM0jcA0b
�


b�

0 jMFihMFjb
0b
cB0jM0iı

�
! � �

EF

 C EF


0 � E0
��

etc.

3.2.1 Zero-Particle Contribution: ı-Function at the Flux Gap

For case (II) the sector with zero excitations is an important special case, distinct
from the sectors with two, four, or more excitations because it contains only a single
state: The ground state of Hz. Its contribution to Szz

A0B0.!/ is sharp in frequency,
whereas the contributions from sectors with non-zero excitation numbers are broad.

The calculation of the ı-function for case (II) faces a technical problem. In prin-
ciple, in Sect. 2.1.1, the relation between different flux sectors was established.
In particular, whether or not both ground states have the same parity can be
calculated by finding the non-zero parameter region of the overlap jhMFjM0ij2 Dq

det
�X �X �, with jMFi being the ground state of Hz.

The ground state of the two flux sector can be obtained from Eq. (2.26), jMFi D
det

�X �X � 14 e� 1
2Fija

�
i a
�
j jM0i, but this way jMFi always has the same parity as jM0i,

because fermions are created in pairs. One way to cure problem is to take advantage
of the gauge structure. The Kitaev model conserves parity of the total number of
fermions N D Nf CN	, a sum of bond N	 and matter fermions Nf , see the projection
operator Eq. (2.13). A simple gauge transformation can change the parity of bond
and matter sectors while keeping the total parity intact. Since Majorana fermions are
their own adjoints cA0cA0 D 1, a modified form of the Lehmann representation is
obtained by inserting the new identity operator 1 D cA0

P
Q
 j Q
ih Q
jcA0 into Eq. (3.9)
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Fig. 3.3 An illustration of the gauge transformation cA0.H0 C Vz/cA0 D .H0 C Vx C Vy/ is
shown. Instead of a single flipped bond variable uA0B0 D �1, illustrated by the red bond in the
left panel, the two other inverted link variables in red (right panel) define the same flux sector.
This gauge transformation changes the parity of the corresponding ground states while the overall
parity of N	 C Nf is conserved. It is used to calculate the even number of particle contribution of
the Lehmann representation, Eq. (3.19). Note that the spectrum EF

n of .H0CVz/ and .H0CVx CVy/

is identical

Szz
A0B0.t/ D �i

X

Q

hM0jeiH0tcA0e

�i.H0CVz/tcA0j Q
ih Q
jcA0cB0jM0i (3.19)

D �i
X

Q

hM0jeiH0te�i.H0CVxCVy/tj Q
ih Q
jcA0cB0jM0i: (3.20)

I have used the fact that

cA0e
�i.H0CVz/tcA0 D e�icA0.H0CVz/cA0t with cA0.H0 C Vz/cA0 D .H0 C Vx C Vy/

(3.21)

and Vx D �2iJxcA0cB0Cn1 , Vx D �2iJycA0cB0Cn2 is just a gauge transformation
within the same flux sector. All signs of the hoppings along the three bonds sharing
site A0 are reversed, see Fig. 3.3 for an illustration. Now many-body states j Q
i are
taken to be Eigenstates of .H0 C Vx C Vy/. Note the energies EF

Q
 are unchanged

but the parity of the new ground state, called jMx;y
F i is opposite to the parity of the

ground state jMFi of .H0CVz/. Hence, in case (II) when the overlap jhMFjM0ij2 D 0

is zero due to different parities, the overlap jhMx;y
F jM0ij2 D

r
det

�
ŒX x;y�� X x;y

�
is

non-zero. In the remainder, I omit the labelx;y if clear from the context.
Again, for the ı-function contribution I restrict the sum

P
Q
 to zero excitations,

namely to only the ground state:

Szz
A0B0;.0/.t/ D �ieit.E0�EF

0 /hM0jMx;y
F ihMx;y

F jcA0cB0jM0i: (3.22)

I show the explicit calculation of the matrix element hMx;y
F jcA0cB0jM0i and of

all site diagonal and N.N. contributions in Appendix D. The main idea behind the
calculation of all multi-particle contributions is to express jMx;y

F i in terms of jM0i,
and to rewrite all operators cA0=B0, b
 in terms of operators aq, which diagonalize the
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a b

Fig. 3.4 The ground state and dynamical phase diagrams of the model is shown in panel (a),
parameterized by Jx C Jy C Jz D 1. The phase with gapless fermionic excitations fills the central
triangle, while gapped phases occupy the three outer triangles. The dynamical response Szz.q; !/
includes a ı-function from zero particle excitations in the red region of panel (a), but not in the
green region. The weight of the ı-function is proportional to the ground state overlap jhMx;y

F jM0ij2,
Eq. (3.23). Its evolution is shown in panel (b) along the gray dashed line Jx=Jz D Jy=Jz highlighted
in panel (a). At Jx=Jz D Jy=Jz � 0:71 this overlap drops to zero since the parity of the ground
state changes, but the overlap jhMFjM0ij2 of the gauge equivalent Hamiltonian H0 C Vz becomes
nonzero in the green region

flux free sector and annihilate its ground state aqjM0i D 0, see Sects. 2.2 and 2.1.1.
The zero-particle contribution to the structure factor gives a ı-function in frequency,
here for q D 0

Szz
.0/.q D 0; !/ D 8�

q
ŒX x;y�� X x;yı

�
! � �

EF
0

� E0
��

�
8
<

:
1

N

X

k

cos2 �k C 1

N

X

k;q

cos �kIm
�Fk;q

�
sin �q

9
=

;
(3.23)

with the Bogoliubov angles �k, Eq. (2.29), and the F matrix relating the flux free
and two flux sector, Eq. (2.26).

In Fig. 3.4 I show the dynamical phase diagram. The dynamical response
Szz.q; !/ includes a ı-function contribution sharp in ! in the red region of panel
(a), but not in the green region. In the red region only even number of particle
processes contribute, in the green region only odd numbers. The weight of the

ı-function is proportional to the ground state overlap
q
ŒX x;y�� X x;y, Eq. (3.23),

whose evolution along the gray dashed line Jx=Jz D Jy=Jz is shown in panel (b).
At Jx=Jz D Jy=Jz � 0:71 the overlap drops to zero since the parity of the ground
state changes. At this point the overlap jhMFjM0ij2 becomes nonzero.
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3.2.2 Single- and Two-Particle Contributions

In case (I), both ground states of the two flux sectors have the same parity, see the
green region in Fig. 3.4. The first contribution arises due to single particle excitations

Szz
A0B0;.1/.t/ D �i

X




eit.E0�EF

 /hM0jcA0b

�


jMFihMFjb
cB0jM0i: (3.24)

The derivation of the matrix elements, hM0jcA0=B0b
�


jMFi, is shown in Appendix D.
The final result is

Szz
.1/.q D 0; !/ D 8�

p
X �X

X




ı
�
! � �

EF

 � E0

��

� 1
N

X

k;q

cos �k
�X�1�

k;


�X�1��

;q cos �q: (3.25)

For case (II) in order to fulfill the parity constraint, the next contribution beyond
the ı-function, Eq. (3.23), arises from doubly excited states.

Szz
A0B0;.2/.t/ D �i

X


;
0

hM0jeiH0te�iHx;ytb�
b�

0 jMx;y

F ihMx;y
F jb
0b
cA0cB0jM0i (3.26)

The final two-particle contribution to the structure factor is

Szz
.2/.q D 0; !/ D 8�

q
ŒX x;y�� X x;y

X


;
0

ı
�
! � �

EF

 C EF


0 � E0
��

�
�

jG2

;
0 j2 C 1

2
Re
h
iG4


;
0

�
G2

;
0

��i
�

(3.27)

with matrix elements G2

;
0 and G4


;
0 again given in Appendix D. In Chap. 4 showing
the results, I compare the different contributions of zero-, single-, and two-particle
excitations to the full response. For the 1D Heisenberg chain 70 % of the total weight
of the structure factor are due to single particle excitations (Han et al. 2012). In
contrast, it turns out that for the Kitaev model at the isotropic point (Jx D Jy D Jz)
already 98 % of the total weight are captured by single particle excitations, compare
to Fig. 4.4.
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3.3 Exact Pfaffian Approach

Up to this point, I have explained how to calculate the spin correlations up to
two-particle processes. However, the objective is to calculate the exact correlation
function which in principle amounts to summing all multi-particle processes
j
0 : : : 
i D b�


0 : : : b
�


jMF
0 i in the Lehmann representation, Eq. (3.16). Instead, I go

a different route and derive an exact expression in terms of Pfaffians via many-
particle path integrals, see Appendix A for details. Pfaffians are generalizations
of determinants for antisymmetric matrices. Their definition and some of their
properties are given in Appendix A.1. In this Pfaffian approach the correlation
function can be evaluated exactly for finite size systems.

I begin by rewriting Eq. (3.9) and all other site diagonal and N.N. real time
correlators in terms of Bogoliubov particles aq that diagonalize the flux free system,
see Sect. 2.1.1 in particular Eq. (2.22),

Szz
A0B0.t/ D eitE0

X

q;l

�
Xq0 C Yq0

�Mq;l

h
X�0l � Y�0l

i
(3.28)

Szz
A0A0.t/ D eitE0

X

q;l

�
Xq0 C Yq0

�Mq;l

h
X�0l C Y�0l

i
(3.29)

Szz
B0B0.t/ D eitE0

X

q;l

�
Xq0 � Yq0

�Mq;l

h
X�0l � Y�0l

i
(3.30)

Szz
B0A0.t/ D eitE0

X

q;l

�
Xq0 � Yq0

�Mq;l

h
X�0l C Y�0l

i
: (3.31)

The main difficulty is to find an exact expression for the matrix element

Mq;l.t/ D hM0jaqe�it.H0CVz/a�l jM0i: (3.32)

A sketch of the derivation is as follows: I construct a generating functional via a
fermion coherent state path integral for the exponential of the Hamiltonian with
a Bogoliubov de-Gennes form (with anomalous terms a�a� C h:c:). The matrix
elements are computed as derivatives with respect to the appropriate sources. With
the help of the Bogoliubov transformation, which relates the two flux sectors,
Eq. (2.24), it is possible to evaluate the Matsubara sums which I encounter in
the path integral formulation. Finally, the Gaussian integrals over antisymmetric
matrices lead to Pfaffians (Zinn-Justin 2002). A detailed derivation is given in
Appendix A and I only state the final result for a finite size system with N unit
cells.

As discussed in Sect. 2.1.1, the a operators (which diagonalize H0) and the b
operators (which diagonalize H0 C Vz) are related via Eq. (2.24) as ai D X T

ik bk C
Y�

ikb�k . I define the antisymmetric matrix
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OS�1
i;j D

"
�Bi;j Ai;j

�AT
i;j �Ci;j

#

(3.33)

with

Ai;j D X T
ikX �

jkn�.EF
k /C Y�

ikYT
jknC.EF

k /

Bi;j D X T
ikY�

jkn�.EF
k /C Y�

ikX T
jk nC.EF

k /

Ci;j D YT
ikX �

jkn�.EF
k /C X �

ikYT
jknC.EF

k / (3.34)

and n�.EF
k / D 1=

�
1C e˙itEF

k

�
the standard Fermi function with the inverse

temperature replaced by ˇ D ˙it and the single particle energies EF
k of the two

flux sector (summation over double indices). In addition, I need the 2N � 2N

diagonal matrix OB given by OB D diag
h
1C e�itEF

1 ; : : : ; 1C e�itEF
N ; 1; : : : ; 1

i
, as well

as, OS�1
Œ2N�l;q� which is the .2N � 2/ � .2N � 2/ matrix derived from OS�1 with lines

.2N � l/ and q, as well as, columns .2N � l/ and q removed.

In the final expression, products of det
� OB
�

with Pfaffians of OS�1
Œ2N�l;q� appear.

While the former can become very large the latter is very small which creates
large numerical errors. To circumvent the problem, I take advantage of the property
Pf.BABT/ D det.B/Pf.A/ for an arbitrary matrix B. However, the dimension of
OS�1
Œ2N�l;q� is .2N � 2/� .2N � 2/ while OB is 2N � 2N. With the expansion formula for

Pfaffians, Eq. (A.5), I can cure this mismatch. The matrix OS�1
f2N�l;qg has size 2N �2N

with 0’s on rows and columns .2N � l/, q and matrix elements OS�1
q;2N�l D �1

and OS�1
2N�l;q D C1 such that Pf

�OS�1
Œ2N�l;q�

�
D Pf

�OS�1
f2N�l;qg

�
. Finally, I combine

everything to derive the final result

Mq;l.t/ D e�itEF
0 .�1/ N.N�1/

2

n
Pf
� OBOS�1

f2N�l;qg OBT
�

� ıq;l � Pf
� OBOS�1 OBT

�o
(3.35)

which is evaluated numerically. Here, EF
0 D � 1

2

P
n>0 EF

n is the ground state energy
of the two flux sector.

This form of the matrix element enables an exact calculation of the correlation
function up to arbitrarily long times. However, it is restricted to a small number
of lattice sites because the size of the matrices grows exponentially. Due to the
extra fluxes the system is not translationally invariant. When working in real space
instead of reciprocal space the matrices are sparse which leads to a better numerical
performance. I can evaluate systems up to 600 lattice sites which still show strong
finite size effects in the gapless phase of the Kitaev model, especially in form of
revivals due to periodic boundary conditions.
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3.4 Exact X-Ray Edge Approach

Calculating the correlation function exactly in the thermodynamic limit (N ! 1)
requires a different method because the Pfaffian approach is limited to small system
sizes. In this section, I express the spin correlation function, Eq. (3.7), in terms
of bond fermions fr, Eq. (2.10). This results in expressions formally equivalent to
the venerable X-ray edge problem, which is introduced in detail below. I work
in interaction representation (Abrikosov et al. 2012) and I obtain for the nearest
neighbor correlator

Szz
A0B0.t/ D hTŒf0.t/C f �0 .t/�Œf

�
0 .0/ � f0.0/�S.t; 0/i (3.36)

with the time evolution governed by the bare Hamiltonian fr.t/ D eiH0tfre�iH0t. The
S-matrix is given by

S.t; 0/ D eiH0te�it.H0CVz/ D Te�i
R t
0 dt0Vz.t0/ (3.37)

with the standard time ordering operator T. The average is the usual h: : :i D
hM0j : : : jM0i.

The main simplification and the reason why a mapping to an X-ray edge problem
is possible can be traced back to the particularly simple form of the impurity Vz D
�2iJzcA0cB0 in terms of complex matter fermions

Vz.t/ D �4Jz

	
f �0 .t/f0.t/ � 1

2



: (3.38)

In fact, Vz.t/ is only a simple local but time dependent on-site potential of the form
f �0 .t/f0.t/. In the remainder of the section, I disregard the constant phase e�i2Jzt from
Vz and restore it only in the end.

The ground state jM0i is the vacuum for operators aq, which are superpositions of
creation and annihilation operators fq, see Eq. (2.29). Therefore, normal G0.t; t0/ D
�ihTf .t/f �.t0/i and anomalous F0.t; t0/ D �ihTf .t/f .t0/i bare Greens functions
(GF) of the bond fermions are expected, because both f and f � acting on the
ground state is nonzero. Whereas in the previous Pfaffian calculation in terms
of operators aq the anomalous terms appeared in Vz and the ground state was
simple, it seems that in terms of matter fermions a simple Vz is exchanged for a
complicated ground state with off-diagonal contributions. Fortunately, this is not the
case because the anomalous bare GF is zero due to the sublattice symmetry of the
Kitaev model, see Appendix B.1. Moreover, due to the fact that Vz is proportional to
the number operator f �0 f0, the full anomalous GF is zero as well: F0.t; t0/ D 0 leads

to hf0.t/Te�i
R t
0 dt0Vz.t0/f0.0/i D 0, similar to the hermitian conjugates.

Modifications of the original Kitaev model can destroy this simplification
(Tikhonov and Feigelman 2010). In such a case the approach in terms of Pfaffians
is still applicable, but the present treatment in terms of an X-ray edge problem
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would not be possible. Moreover, a non-zero magnetic field adds site off-diagonal
anomalous terms to the expression of the correlation function (Tikhonov et al. 2011)
which further complicates the problem.

For the pure Kitaev model the correlation function, Eq. (3.36), is reduced to the
seemingly simple looking equation

Szz
A0B0.t/ D i ŒG.t; 0/C G.0; t/� (3.39)

(for the site diagonal Szz
A0A0.t/ D Szz

B0B0.t/ D i ŒG.t; 0/ � G.0; t/�) with the full
positive time GF

G.t; 0/ D �ihTf .t/f �.0/e�i
R t
0 dt1Vz.t1/i (3.40)

and the full negative time GF

G.0; t/ D �ihTf .0/f �.t/e�i
R t
0 dt1Vz.t1/i: (3.41)

Note that the time ordered exponential is exactly the same in both cases, thus, G.0; t/
is not a standard GF for negative time arguments. The expressions for the full GF
are precisely of the form of a Fermi-edge, or X-ray edge, problem (Nozieres and
DeDominicis 1969; Gogolin et al. 1998).

3.4.1 X-Ray Edge Problem

The X-ray edge is a classic condensed matter problem (Mahan 1967; Nozieres and
DeDominicis 1969; Ohtaka and Tanabe 1990; Gogolin et al. 1998). It is a foundation
for our understanding of local quantum quenches and, in addition, it provides a
rare example of a non-trivial exactly solvable many-body problem. The X-ray edge
becomes manifest in singular photo-absorption spectra of simple metals close to the
energy of the Fermi level �F, which is counted from the bottom of the band. An
X-ray beam pointed at a piece of metal can excite an electron from a localized core
level at energy �c to the conduction band. Afterwards, an electron from the Fermi sea
recombines with the core hole and a photon is emitted, see Fig. 3.5. A first simple
guess that the absorption, and emission, rate I.!/ beyond the absorption threshold
!th D �F � �c is proportional to the density of states N.!/

I.!/ / N.!/� .! � !th/ (3.42)

turns out to be wrong. The reason is the sudden creation of a localized potential
due to the static core hole that is left behind. The problem is actually a true non-
equilibrium problem of a local quantum quench, see Fig. 3.5 for an illustration:
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Fig. 3.5 A schematic picture of the classic X-ray edge problem. An X-ray photon excites a
localized electron from a core level at �c to the conduction band above the Fermi energy �F . It leaves
behind a local potential from the core hole that shakes up the Fermi sea. Eventually an electron
recombines with the core hole and a photon is emitted

• At t D tAbs a local on-site potential from the static core hole is switched on and
an additional electron is added to the formerly unperturbed Fermi sea.

• The Fermi sea is perturbed and it propagates forward in time with the extra
potential.

• At t D tEm the local potential is sharply switched off. The additional electron in
the Fermi sea is removed by recombining with the core hole.

Two processes strongly change the naive guess for I.!/, Eq. (3.42): First,
conduction electrons scatter of the local potential which modifies the local density
of states. Second, the sudden switching of the potential creates an infinite number
of low-energy electron-hole pairs such that the initial many-body wave function of
the unperturbed Fermi sea j‰0i is orthogonal to the final state j‰Fi of the perturbed
Fermi sea with the extra potential. This is the famous orthogonality catastrophe
(Anderson 1967). It states that despite the fact that the single particle wave functions
with and without the local potential differ only slightly by a phase shift, the overlap
of the entire many-body Slater determinants goes to zero in the thermodynamic limit
for arbitrary weak potential strength.

jh‰0j‰Fij /
	
1

N


ˇ
����!
N!1 0: (3.43)

The X-ray edge can be thought of as a dynamical version of the orthogonality
catastrophe with the emission being changed to the singular form

I.!/ /
	

1

! � !th


˛
� .! � !th/ (3.44)
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Fig. 3.6 The qualitative change of the X-ray absorption rate I.!/ is shown once the dynamical
nature of the core hole potential is taken into account. Instead of simply being proportional to the
density of states of the conduction band, I.!/ becomes a power-law divergent function at the sharp
threshold !th D �F � �c

which is illustrated in Fig. 3.6. The power law exponents ˛ and ˇ are actually related
and can be calculated exactly in terms of phase shifts for the case of a Fermi liquid
(Gogolin et al. 1998).

3.4.2 Singular Integral Equations

The famous exact solution of the X-ray edge problem (Nozieres and DeDominicis
1969) proceeds via a mapping to a Riemann–Hilbert problem, which is known in
the mathematical literature in the context of complex valued differential equations
(Muskhelishvili 1953). However, for the present purpose of calculating exact spin
correlations in the Kitaev model several problems appear. The exact solution treats
only long time asymptotics, but I am explicitly interested in the full dynamical
behavior. In addition, the form of present bare GF is not of the simple asymptotic
Fermi liquid form, G0 / 1=t, which spoils the exact mapping to a Riemann–Hilbert
problem, and hence, forbids an exact analytical solution. In the following, I rely on
a related method introduced in the theory of SIEs which in the end allows an exact
numerical solution.

To proceed, I split the problem into a product of connected and disconnected
contributions G.t; 0/ D Gc.t; 0/L.t; 0/ (Abrikosov et al. 2012) (analogous for
G.0; t/).

G.t; 0/ D �i
hTf .t/f �.0/e�i

R t
0 dt1V.t1/i

hTe�i
R t
0 dt1V.t1/i

„ ƒ‚ …
connected diagrams Gc

hTe�i
R t
0 dt1V.t1/i

„ ƒ‚ …
disconnected diagrams L

: (3.45)
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As derived in Appendix B.2 the connected GF can be calculated from the Dyson
equation

Gc.t; 0/ D G0.t; 0/ � 4Jz

Z t

0

dt1G0.t; t1/Gc.t1; 0/; (3.46)

which has the form of a Fredholm integral equation of the second kind (Press
et al. 2007). It is singular due to the finite integration boundaries. The second
contribution to the full GF from the disconnected parts can be fully determined
from the connected GF with the help of the linked cluster theorem

L.t; 0/ D hTe�i
R t
0 dt1V.t1/i

D exp

" 1X

iD1
.�/ .4Jz/

i

i

Z t

0

dt1 � � �
Z t

0

dtiG0.t1; t2/G0.t2; t3/ � � � G0.ti; t1/

#

;

(3.47)

see Appendix B.2.1 for details.
The first and obvious trial for finding a solution is a numerical discretization of

the Dyson equation, Eq. (3.46), in real time. The fact that G0.tj; ti/ D G0.tj � ti/with
tj and ti in the interval Œ0; t� is a Toeplitz matrix, where each descending diagonal
in the matrix is constant, lends itself to exploit asymptotic forms of large Toeplitz
matrix series (Gutman et al. 2011). After having implemented these asymptotic
forms numerically, I discovered that unfortunately the whole numerical procedure
in real time is hampered by a finite jump of the bare GF G0.t/ at t D 0. Such
a discontinuity leads to bad convergence properties of the discretized Eigenvalue
problem (Press et al. 2007). Overall, via this real time discretization it is possible to
calculate the full dynamical correlation function in the thermodynamic limit for time
intervals up to t D 20 in the gapless phase. This is still too short for a reasonable
resolution in frequency space.

A different approach is to Fourier transform the Dyson equation to frequency
space. It has the obvious advantage of having finite integrals due to finite bandwidth
of the single particle density of state N.!/. I obtain a new integral equation in which
the singularity from the finite integration range in Eq. (3.46) is transformed to a 1=!
singularity in the integrand, see Eq. (B.22) in Appendix B.3.

For the exact solution, I adapt a formalism first introduced in Grebennikov et al.
(1977) for the X-ray edge problem. The mathematical foundation is explained in the
influential book by Muskhelishvili (1953). It is based on the simple and beautiful
idea to reduce a SIE to a non-SIE with the same solutions. The central point is best
sketched by writing the Dyson equation in frequency space in operator form. The
task is to find the function Gc via the SIE

f D OK2Gc (3.48)
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with the singular integral operator OK2 and the inhomogeneity f . By acting on the
SIE with a specially constructed integral operator OK1 it is possible to construct a
new integral equation

OK1f D OK1 OK2Gc (3.49)

which is non-singular and has the same solutions. Finding such an operator OK1
is in general a hopeless enterprise, but for the special case of a Cauchy type
singularity, namely 1=!, a general recipe for constructing the appropriate OK1 exists
(Muskhelishvili 1953). Despite the simple basic idea the mathematical details are
quite cumbersome so that they are relegated to Appendix B.3.

In the end, I have derived a numerically well-converging non-SIE. I find that with
8001 frequency steps for the bandwidth, the errors are not visible on the scale of the
figures, see Chap. 4 with the results.

3.4.3 Adiabatic Approximation

A simple approximation taking into account scattering on the local potential but
completely neglecting the dynamical switching is an adiabatic approximation of the
local impurity potential Vz. I assume that the flux pair is switched on adiabatically
from t D Œ�1;1� such that the S-matrix S.t; 0/ D Te�i

R t
0 dt0Vz.t0/ is replaced by

S.1;�1/ D Te�i
R1

�1 dt0Vz.t0/ (Abrikosov et al. 2012). The full GF, Eq. (3.40), is
replaced by

G.t; 0/
adiabatic�����! Gad.t; 0/ D �ihTf .t/f �.0/e�i

R1
�1 dt1Vz.t1/i (3.50)

such that the Dyson equation, Eq. (3.46), is non-singular

Gad
c .t; 0/ D G0.t; 0/ � 4Jz

Z 1

�1
dt1G0.t; t1/G

ad
c .t1; 0/ (3.51)

and can be solved by Fourier transformation G0.t; 0/ D 1
2�

R1
�1 d!G0.!/ei!t,

which gives

Gad
c .!/ D G0.!/

1C 4JzG0.!/
: (3.52)

For the X-ray edge in a Fermi liquid such an approximation is very poor since it
cannot account for the edge singularities. However, the Kitaev model differs from a
simple Fermi liquid. It has a Dirac spectrum which gives a linearly vanishing density
of states for ! ! 0, see Fig. 3.7 blue curve N.!/ D ImGA

c .!/. For this reason, there
is no Anderson orthogonality catastrophe, which is well known from Graphene at
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Fig. 3.7 The imaginary (solid blue) and real (solid red) part of the bare Greens function is shown
for the isotropic point Jx D Jy D Jz D 1 together with the local density of states in the

adiabatic approximation Nad.!/ D Im
�
Gad

c

�A
.!/ (black dashed). Note the peak from the van

Hove singularity at ! D 2Jz in the single particle density of states N.!/ D ImGA
c .!/ leads to a

dip in the adiabatic approximation, see Eq. (3.53)

zero doping (Hentschel and Guinea 2007; Yang and Lee 2007; Röder et al. 2011).
From finite size scaling I obtain the N ! 1 overlap jhM0jMFij D 0:76929, see also
Fig. 2.27. I will show in the results Chap. 4 that no singular behavior is observed
even in the full dynamical problem. In fact, several qualitative features of the exact
structure factor can be understood by relating it to the adiabatic approximation.
The local density of states Nad.!/ D Im

�
Gad

c

�A
.!/ is calculated from the standard

advanced GF (Abrikosov et al. 2012) denoted by the labelA

Im
�
Gad

c

�A
.!/ D ImGA

0 .!/�
1C 4JzReGA

0 .!/
�2 C �

ImGA
0 .!/

�2 : (3.53)

The adiabatic DOS Nad.!/ is shown for the isotropic point Jx D Jy D Jz D 1

together with the bare DOS N.!/ D ImGA
0 .!/ (blue) and ReGA

0 .!/ (red) in Fig. 3.7.
For a comparison of the exact response with the adiabatic approximation of the
structure factor, see Fig. 4.3. Note that the peak of the van Hove singularity from the
saddle points in the dispersion (Castro Neto et al. 2009) at ! D 2Jz leads to a dip
in Nad.!/, which is easily understood from Eq. (3.53) since Nad.!/ ! 1

ImGA
0 .!/

for

! ! 2Jz. The broad peak in Nad.!/ is determined by the resonance condition that�
1C 4JzReGA

0 .!/
�2

is minimal.
In a similar fashion, I revisit the Lehmann representation, Eq. (3.16), in the

adiabatic approximation. I rewrite the N.N. correlation function, Eq. (3.9), as

Szz;ad
A0B0.t/ D �ihM0jS.1; t/cA0.t/S.t; 0/cB0.0/S.0;�1/jM0i

D �ieitE0hMFjcA0e
�it.H0CVz/cB0jMFi (3.54)
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such that the Lehmann representation is

Szz;ad
A0B0.!/ D �2� i

X

Q

hMFjcA0j Q
ih Q
jcB0jMFiıŒ! � .EF

Q
 � E0/�: (3.55)

The only difference with the exact Eq. (3.17) is that the ground state jM0i has been
replaced by jMFi such that different flux sectors are not mixed. Due to the Dirac
spectrum, the low energy Eigenstates with and without two extra fluxes coincide in
the gapless phase as ! ! 0 (Chalker, 2013, private communication). Therefore, the
adiabatic approximation gives the correct behavior in the low energy limit.

References

A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical
Physics (Courier Dover Publications, New York, 2012)

P.W. Anderson, Infrared catastrophe in fermi gases with local scattering potentials. Phys. Rev. Lett.
18(24), 1049–1051 (1967)

G. Baskaran, S. Mandal, R. Shankar, Exact results for spin dynamics and fractionalization in the
Kitaev model. Phys. Rev. Lett. 98(24), 247201 (2007)

H. Bethe, Zur theorie der metalle (German). Z. Phys. 71(3–4), 205–226 (1931)
A. Castro Neto, F. Guinea, N. Peres, K. Novoselov, A. Geim, The electronic properties of graphene.

Rev. Mod. Phys. 81(1), 109–162 (2009)
J.-S. Caux, Correlation functions of integrable models: a description of the ABACUS algorithm.

J. Math. Phys. 50(9), 095214 (2009)
A.O. Gogolin, A.A. Nersesjan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems

(Cambridge University Press, Cambridge, 1998)
V. Grebennikov, Y. Babanov, O. Sokolov, Extra-atomic relaxation and X-ray-spectra of narrow-

band metals. 2. Results. Phys. Status Solidi B Basic Res. 80(1), 73–82 (1977)
D.B. Gutman, Y. Gefen, A.D. Mirlin, Non-equilibrium 1D many-body problems and asymptotic

properties of Toeplitz determinants. J. Phys. A Math. Theor. 44(16), 165003 (2011)
T.-H. Han, J.S. Helton, S. Chu, D.G. Nocera, J.A. Rodriguez-Rivera, C. Broholm, Y.S. Lee,

Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature
492(7429), 406–410 (2012)

M. Hentschel, F. Guinea, Orthogonality catastrophe and Kondo effect in graphene. Phys. Rev. B
76(11), 115407 (2007)

A. Kitaev, Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006)
S. Lovesey, Theory of Neutron Scattering from Condensed Matter. International Series of

Monographs on Physics, vol. 2 (Clarendon Press, Oxford, 1984)
G.D. Mahan, Excitons in metals: infinite hole mass. Phys. Rev. 163(3), 612–617 (1967)
M. Mourigal, M. Enderle, A. Kloepperpieper, J.-S. Caux, A. Stunault, H.M. Ronnow, Fractional

spinon excitations in the quantum Heisenberg antiferromagnetic chain. Nat. Phys. 9(7),
435–441 (2013)

N.I. Muskhelishvili, Singular Integral Equations (P. Noordhoff, Groningh, 1953), 468 pp.
P. Nozieres, C. DeDominicis, Singularities in the X-ray absorption and emission of metals. III.

One-body theory exact solution. Phys. Rev. 178(3), 1097–1107 (1969)
K. Ohtaka, Y. Tanabe, Theory of the soft-X-ray edge problem in simple metals: historical survey

and recent developments. Rev. Mod. Phys. 62(4), 929–991 (1990)
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of

Scientific Computing, 3rd edn. (Cambridge University Press, New York, NY, 2007)



References 57

G. Röder, G. Tkachov, M. Hentschel, Photoabsorption spectra and the X-ray edge problem in
graphene. Europhys. Lett. 94(6), 67002 (2011)

K. Tikhonov, M. Feigelman, Quantum spin metal state on a decorated honeycomb lattice. Phys.
Rev. Lett. 105(6), 067207 (2010)

K. Tikhonov, M. Feigelman, A. Kitaev, Power-law spin correlations in a perturbed spin model on
a honeycomb lattice. Phys. Rev. Lett. 106(6), 067203 (2011)

J. von Delft, H. Schoeller, Bosonization for beginners: refermionization for experts. Ann. Phys.
7(4), 225–305 (1998)

S.-R.E. Yang, H.C. Lee, X-ray edge problem of graphene. Phys. Rev. B 76(24), 245411 (2007)
J. Zinn-Justin, Quantum Field Theory and Critical Phenomena. The International Series of

Monographs on Physics Series (Clarendon Press, Oxford, 2002)



Chapter 4
Results for the Structure Factor

So far I have explained how to calculate the exact spin correlation function Sab
ij .t/

to obtain the Fourier transform in space and time, the dynamical structure factor
S.q; !/, Eq. (3.1). The latter is proportional to the cross section as measured in INS
and at q D 0 in ESR. So far, I have introduced the theoretical background and
details of the exact solution. In this chapter, I present the results of my analysis.
I concentrate on three representative points A, B, C in Fig. 4.1b in gapless and
gapped QSL phases.

The calculation of the correlation function can be mapped to a local quantum
quench, in which two adjacent Z2 fluxes, shown in blue in Fig. 4.1a, are inserted,
see Sect. 3.1. Here, I show that there are direct signatures—qualitative and
quantitative—in the spin structure factor of the Majorana fermions and gauge
fluxes emerging in the Kitaev model. These include counterintuitive manifestations
of quantum number fractionalization, such as a neutron scattering response with a
gap even in the presence of gapless excitations, and a sharp component despite the
fractionalization of electron spin, e.g. for the component Szz.q; !/ in the red region
of the dynamical phase diagram Fig. 4.1b.

My analysis of Sect. 3.1 has uncovered an entirely new structure in the phase
diagram of the Kitaev model, Fig. 4.1. In particular, by studying the Lehmann
representation, Eq. (3.17), I find that the relative matter fermion parity of the ground
states in the zero and two flux sector has important consequences, because two
distinctively different alternatives exist: Either (I) the ground states jM0i (flux free)
and jMFi (two extra fluxes) have the same parity, in which case the excited states
j
i, which are involved in the calculation of the structure factor, must contain an
odd number of excitations; or (II) the ground states have opposite parity and j
i
contains an even number of excitations. In case (II), the sector with zero excitations
is an important special case with a contribution to S.q; !/ sharp in frequency !.

The reason why the two ground states may have opposite parity is most
transparent deep in the gapped phase, e.g. Jx; Jy � Jz. There, each z-bond can be
occupied or empty with a single complex fermion, and the ground state of the system

© Springer International Publishing Switzerland 2016
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a b

Fig. 4.1 The calculation of the dynamical response can be mapped to a local quantum quench, in
which two adjoining Z2 fluxes, shown in blue in left panel (a), are inserted. In panel (b), the ground
state and the dynamical phase diagram of the Kitaev model is shown (Jx C Jy C Jz D 1). Only
the central triangle hosts a gapless QSL. The dynamical response Szz.q; !/ includes a contribution
sharp in ! in the red region, but not in the green region. I present results for the three different
points A, B, C in Figs. 4.3, 4.5, and 4.6

without a flux has an even number of those. The addition of the flux pair amounts
to flipping the sign of Jz, hence inverting the energy of that fermion. The ground
state with flux thence has opposite parity, as its energy is lowered by occupying
the previously empty state. It is remarkable that this sharp ı-function contribution
persists from the strong bond limit Jx; Jy � Jz all the way into the gapless phase,
compare to the red region in Fig. 4.1b.

4.1 Gapless Quantum Spin Liquid Phase

In the gapless phase case (I) no sharp ı-function is expected. In Fig. 4.2 the
behavior of the spin correlation function in real time is shown for the isotropic
point A (Jx D Jy D Jz). The on-site and N.N. correlators Szz

A0;A0=B0.t/ (r D 0)
decay exponentially at short times and have an overall oscillation at the flux gap
frequency. In the following, I concentrate on the Fourier transform in space and time
which gives the structure factor, see Appendix B.3.2 for a more detailed discussion
of the real time behavior.

In Fig. 4.3 (left panel), I show the total dynamical structure factor S.q; !/,
Eq. (3.1), on a logarithmic color scale as a function of frequency ! along the cut
M�KM through the Brillouin zone (inset). In the right panel, the q D 0 response
of the structure factor is presented. The latter contains already all the characteristic
features.

First, the response vanishes below the two-flux gap � D EF
0 � E0 ' 0:26Jz, the

difference between the ground state energies in a system with and without the flux
pair. It is remarkable that in an INS experiment the response of a gapless QSL will
show an excitation gap which is directly related to the emergent gauge field.

Second, above the gap �, the response thus reflects the physics of the matter
sector and can be related to characteristic features of the fermionic density of
states shown in the inset of the right panel. Response is substantial over the entire
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Fig. 4.2 The dynamical spin correlation function in real time is shown for the symmetric point A
(JxDJyDJz) in the thermodynamic limit N ! 1. The site diagonal Szz

A0A0.t/ (blue) and the N.N.
Szz

A0B0.t/ (red) have an overall exponential decay and a small out of phase oscillation, see the inset
for short time behavior. The large overall oscillation comes from the flux gap

Fig. 4.3 The total dynamical structure factor is shown for the symmetric point (JxDJyDJz): On
the left the full S.q; !/ on a logarithmic color scale as a function of ! along the cut M�KM
through the Brillouin zone as would be measured in inelastic neutron scattering; On the right,
the dynamical susceptibility Saa.0; !/ as measured in electron spin resonance (all components
a D z; x; y are identical at the isotropic point). The response vanishes below the two-flux gap
� D EF

0 � E0 ' 0:26Jz. A comparison with the adiabatic response, as explained in the main text,
is given by the black dashed line. The inset shows the density of states of the matter fermions with
the characteristic van Hove singularity and bandwidth which is reflected in the response

single-particle bandwidth (up to 6Jz and shifted in energy by�), with a linear onset
above the gap. However, as a qualitative signature of the effect of gauge fluxes
on matter fermion dynamics, the response is far from being simply proportional
to the density of states. Instead, the peak due to the van Hove singularity at 2Jz
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yields a dip in the response. Quite surprisingly, the overall shape including the dip
can be well approximated by replacing the instantaneous insertion of fluxes by an
adiabatically slow switching on, see Sect. 3.4.3 especially Eq. (3.53). The adiabatic
approximation is shown as a black dashed line in Fig. 4.3 right panel.

Third, as expected for a QSL and similar to the experimental results of the candi-
date material Herbertsmithite (Han et al. 2012), the full S.q; !/ (left panel) exhibits
only broad features. The main structure discussed for the q D 0 contribution is
simply modulated by a nearest neighbor form factor of the honeycomb lattice due
to the ultra short ranged nature of the spin correlations.

Starting from the Lehmann representation of the structure factor, Eq. (3.17),
I have shown in Sect. 3.2 how to calculate the different number of particle con-
tributions, see Eq. (3.18). At the isotropic point, single particle excitations dominate
the total response, such that its amplitude is appreciable only within the matter
fermion bandwidth up to 6Jz. Indeed, a direct comparison of the single particle
component, Eq. (3.25), with the full response yields that only about 2:5% of the
signal at the symmetric point arises from higher multi-particle contributions in
stark contrast to the case of the Heisenberg chain (Mourigal et al. 2013), where
the corresponding number is almost 30%. To investigate the role of higher particle
excitations I compare the cumulants

�n.!/ D
Z !

0

d�S.q D 0;�/�n (4.1)

of the full response (black) and the single particle contributions (color) in Fig. 4.4.
Note that beyond ! D 6Jz C � the cumulant �n is a constant for the pure single
particle results. In contrast, �n keeps growing for the full response due to higher
particle processes.

Moving away from the isotropic point A, I show in Fig. 4.5 the structure factor
for the anisotropic gapless point B (Jx D Jy D 0:7Jz). Away from the symmetric
point the saddle points of the single-particle dispersion become inequivalent and
two van Hove singularities appear in the density of states (see inset). In addition,
different spin components along z and x; y bonds are distinct showing one or two
minima in the corresponding dynamical susceptibility (right panel).

In general, the energy of the flux gap, the van Hove singularities, and the
bandwidth all scale differently with Jx; Jy; Jz, which could be used as a smoking
gun signature to diagnose a QSL in a tentative tunable experiment in the future.

4.2 Gapped Quantum Spin Liquid Phase

Next, I present the result for the gapped QSL phase corresponding to the outer
triangles in Fig. 4.1 left panel. For point C (Jx D Jy D 0:15Jz) the structure
factor in the BZ and for q D 0 are shown in Fig. 4.6. The components Szz and
Sxx=yy are strongly anisotropic with the former dominated by zero and two-particle
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Fig. 4.4 For the isotropic point the cumulants �n (n D 0; 1; 2) given by Eq. (4.1) are plotted for
the full dynamical response (black) and the single particle approximation (green, blue, red). Note
that at ! D 6Jz C� already about 98 % of the response are captured by single particle excitations.
The single particle results are calculated on a finite size system with 8450 sites (65�65 unit cells).
At low energies it shows weak wiggles from finite size effects but the overall weight at higher
energies is well converged

Fig. 4.5 The total dynamical structure factor is shown for the anisotropic point B
(0:7JxD0:7JyDJz): On the left, the full S.q; !/ on a logarithmic color scale along the cut
M�KM through the BZ; and on the right, the dynamical susceptibility Saa.0; !/ for inequivalent
components a D z; x. The inset shows the density of states of the matter fermions with two
characteristic van Hove singularities and a reduced bandwidth which is reflected in the response

and the latter by single particle excitations, case (II) and (I), respectively. In
striking opposition to the gapless isotropic case, the response includes a finite-
weight ı-function component in ! at the difference � in the ground state energies.
It is a remarkable and unexpected finding that—despite fractionalization—the INS
response has a component sharp in energy. Again note that the location in the phase
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Fig. 4.6 The total dynamical structure factor is shown for the gapped phase point C
(JxDJyD0:15Jz): On the left, the full S.q; !/ on a logarithmic color scale along the cut
M�KM through the BZ; and on the right, the dynamical susceptibility Saa.0; !/ for inequivalent
components a D z; x. The inset shows the density of states of the matter fermions with a gap
in the fermionic spectrum and a strongly reduced bandwidth. The zz-correlator has a ı-function
contribution from zero particle excitations at the flux gap � from the nonzero ground state
overlap jhM0jMx;y

F ij, Eq. (3.23). In addition the much weaker response outside of the single particle
bandwidth around 4Jz is due to two-particle processes. The weak bond correlators xx=yy are mainly
captured by single particle excitations

diagram of the dynamical transition at which this sharp response appears is distinct
from the ground state phase boundary: It lies entirely within the gapless phase, see
Fig. 4.1 red region in the right panel.

Most of the weight of the zz-correlator (black) is carried by the ı-function.
The next two-particle contribution around 4Jz is two orders of magnitude smaller.
The two-particle contribution at higher energies reflects the two-particle density of
states of the matter fermions. In fact, the full response apart from the sharp feature
at low energies, is entirely captured by the two particle approximation, Eq. (3.27),
such that both curves are indistinguishable.

In strong contrast, the weak bond xx=yy-correlators are almost entirely from sin-
gle particle excitations such that the full response and the approximate calculation,
Eq. (3.25), are indistinguishable on the scale of the figure. Moreover, the presence
of the single particle gap prevents the creation of low energy particle-hole pairs,
hence, the adiabatic approximation is very good as well. It lies right on top of the
full response for the weak bond correlators. Each of these features carries over to the
structure factor S.q; !/ in the full BZ with an overall broad modulation (left panel).

In order to check some of the above findings, I have diagonalized the original spin
model for eight spins or four dimers, see Appendix C for details. In the strong dimer
limit, Jx; Jy � Jz, in the gapped QSL phase, I observe small amplitude oscillations
with a frequency !z D 4Jz C � for the zz-correlator. The weak bond xx- or yy-
correlators oscillate with large amplitudes around the frequency !? D 2Jz. In the
gapped phase, the presence of a finite lengthscale set by the inverse fermion gap
allows the development of a heuristic based on an even smaller cluster of spins
which can be adduced to account for some of the main features. I find that, even by
only considering the properties of a single plaquette of four spins with alternating
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interactions Jz; Jx and j D Jx=Jz � 1, I can account for the main oscillation
frequencies and for the amplitude scaling with j. The main oscillation with tiny
amplitude O.j2/ of the strong bond is at a frequency 4Jz, which is outside of the
single particle bandwidth in the thermodynamic limit corresponding to an almost
flat band around 2Jz. In this toy model sizable contributions with a larger amplitude
O.1/ to the structure factor are from the weak bonds Sxx=yy. They are centered
around the frequency 2Jz. All these features are in agreement with the characteristic
behavior in the thermodynamic limit N ! 1 as shown in Fig. 4.6.

Overall, the qualitative and quantitative features described above are charac-
teristic of the QSL phase of the Kitaev model. While a potential cold atom
realization will likely harbor few perturbations to the Kitaev Hamiltonian, Eq. (2.1),
magnetic materials usually include other terms, as extensively discussed for Kitaev–
Heisenberg models following (Jackeli and Khaliullin 2009). Both the flux gap and
the fermion parity underpinning these results are robust to such perturbations. Just
as in the analogous case of the Heisenberg chain (Mourigal et al. 2013), where
integrability is imperfect in reality but all qualitative features are well-observed
experimentally, I similarly expect quantitative changes such as a small degree of
smearing out of the ı-function response or a more gradual onset of the signal around
�. Crucially, the central features I have discovered will be visible as fingerprints
betraying the presence of fractionalized Majorana fermions and emergent gauge
fluxes in INS and ESR experiments.
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Chapter 5
Non-Abelian Phase and the Effect of Disorder

5.1 Extended Kitaev Model and Its Exact Solution

Already Kitaev’s original paper (Kitaev 2006) introducing the honeycomb lattice
model is mainly concerned with an extended version of the Hamiltonian, Eq. (2.1),
which gives rise to excitations with non-Abelian statistics. These quasiparticles play
a central role in topological quantum computation due to their inherent stability
against local perturbations that could lead to decoherence, for a review see Nayak
et al. (2008). In this thesis I am mainly interested in the spin liquid properties. Thus,
the objective of this chapter is to calculate the spin excitations in such an exactly
solvable non-Abelian spin liquid and to search for salient signatures of the phase in
the structure factor.

Adding an external magnetic field to the pure Kitaev model leads in third order
perturbation theory to an additional three spin interaction which generates a non-
Abelian phase (Kitaev 2006). In the following, I add the three spin interaction ad hoc
as a term to the Hamiltonian which breaks time reversal symmetry. In the formerly
gapless phase the Dirac spectrum of the matter fermions becomes gapped and the
bands acquire a nonzero Chern number, which serves as a topological number
characterizing gapped non-interacting fermions in 2D (Kitaev 2006).

Recall that there are three inequivalent bond directions on the honeycomb lattice.
The additional interaction is such that three spins of each pair of bonds hi; ji˛ ,hj; kiˇ
that share a common site j interact via O
˛i O
�j O
ˇk . The component � of the middle
Pauli matrix is ’perpendicular’ to the two other ones ˛; ˇ.

H D �Jx

X

hijix

O
x
i O
x

j � Jy

X

hijiy

O
y
i O
y

j � Jz

X

hijiz

O
 z
i O
 z

j � K
X

hi; ji˛; hj; kiˇ
„ ƒ‚ …

�?˛;ˇ

O
˛i O
�j O
ˇk (5.1)
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With the help of the commutation relations Œ O
a; O
b� D 2i
P

c �abc O
c it is possible
to express the Hamiltonian in terms of our standard Majorana fermions cAr/cBr,
Eqs. (2.4), (2.5), and bond variables uij defining the gauge configuration, Eq. (2.6).
The extended Hamiltonian, Eq. (5.1), is still exactly solvable. As before, it can be
block diagonalized in each flux sector. The key difference is the appearance of
N.N.N. hopping terms after fermionization

OH D
X

r

X

ni2fn0;n1;n2g

iJ˛.ni/

2
OuArBrCni ŒcArcBrCni � cBrCni cAr�

�iK
X

r

X

di2d1;d3;d5

OuArBrCnj OuArCdiBrCnj ŒcArcArCdi � cArcAr�di �

CiK
X

r

X

di2d1;d3;d5

OuArCnkBr OuArCnkBrCdi ŒcBrcBrCdi � cBrcBr�di � ; (5.2)

with a slightly changed notation for the bond operators OuArBrCni D ib˛.ni/
Ar b˛.ni/

BrCni
and

˛.n0/ D z; ˛.n1/ D x; ˛.n2/ D y. The N.N. vectors are n0 D .0; 0/ and n1;n2

as defined before. Each site has six N.N.N. vectors d1 D n1 � n2;d2 D n1;d3 D
n2;d4 D �d1;d5 D �d2;d6 D �d3, see Fig. 5.1a. Note that the sign of the N.N.N.
hopping is given by the product of the two bond variables linking the two sites.
Therefore, in a fixed gauge, the hopping of the effective Majorana problem can be

b

b

c

Fig. 5.1 The inclusion of a three spin interaction (with strength K) leads to N.N.N. hopping of
the effective Majorana Hamiltonian in a given flux sector along the N.N.N. vectors d1 � d6 shown
in panel (a). The Dirac cones of the formerly gapless phase are gapped out, panel (b). In the new
phase diagram, panel (c), the formerly gapless central triangle (green) is replaced by a gapped QSL
hosting quasi-particles with non-Abelian statistics. The outer triangles (red) are gapped Abelian
QSL phases. The spectrum is gapless only at the transition lines (dashed)
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a b

Fig. 5.2 A schematic picture of two Majorana hopping Hamiltonians is presented: On the left,
HCVz with the single flipped link variable uA0B0 in red; on the right, cA0.HCVz/cA0 D HCVxCVy

with the two flipped link variables in red. Note that in the latter case, the N.N.N. hoppings indicated
by the arrows are changed differently for the A (solid arrows) and B (dashed arrows) sublattices

different for A and B sublattices. This will turn out to be important when taking into
account the effect of two extra fluxes, e.g. by either flipping a single or two bonds,
as discussed below and depicted in Fig. 5.2.

5.1.1 Flux Free Sector

The ground state of the extended Kitaev model is again flux free (Kitaev 2006;
Lieb 1994). I put all Eigenvalues of the bond operators uij D C1 and rewrite the
Majorana Hamiltonian, Eq. (5.2), in terms of complex matter fermions, Eq. (2.10),
in momentum representation fr D 1p

N

P
q e�iqrfq

H0 D
X

q

�
f �q f�q

� 
�q ��q

���
q ��q

! 
fq

f ��q:

!

(5.3)

Similarly to the pure Kitaev case the Hamiltonian looks just like a superconductor
with a momentum dependent gap �q D �iImS.q/ � �.q/ and the normal state
dispersion �q D ReS.q/. However, in contrast to Eq. (2.28) the gap has real and
imaginary components and is nonzero at the location of the former Dirac points
with S.q/ D P

ni
J˛.ni/e

iqni and �q D �4K
P

di2fd1;d3;d5g sin .qdi/.
Putting �q D j�qjei�q the Hamiltonian is diagonalized by a more general

Bogoliubov transformation

 
fq

f ��q

!

D
	

cos.�q/ ei�q sin.�q/

�e�i�q sin.�q/ cos.�q/


 
aq

a��q

!

: (5.4)
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The angles are fixed by the condition tan.2�q/ D j�qj
�q

. With the equation E.q/ D
�q cos.2�q/C j�qj sin.2�q/ the final diagonalized Hamiltonian is

H0 D
X

q

E.q/
�
2a�qaq � 1� (5.5)

with the new dispersion E.q/ D
q
�2q C j�qj2. The Dirac cones of the formerly

gapless part of the phase diagram are gapped out by the N.N.N. hopping, see
Fig. 5.1b. The new phase diagram for any nonzero value of the three spin interaction
K is shown in Fig. 5.1c. Only along the dashed lines the spectrum is gapless with a
quadratic band touching at zero energy. The outer triangles are gapped Abelian spin
liquids with trivial Chern numbers of the bands. Only the formerly gapless phase in
the central triangle has Chern numbers � D ˙1 hosting non-Abelian excitations.

5.2 Role of Fluxes and Transition from Abelian
to Non-Abelian Phase

The extended Kitaev model stays exactly solvable. Hence, the calculation of the
spin correlation function, Sect. 3.1, via an exact mapping to a quantum quench
(Baskaran et al. 2007) carries over step by step. Similarly to the pure Kitaev model
the calculation of spin correlations involves two extra fluxes neighboring the bond
along which the correlations are measured, see Eq. (3.7).

5.2.1 Two Nearest Neighbor Fluxes

I choose to insert the two fluxes next to the z-bond at r D 0 by flipping the sign of the
bond variable uA0B0. The sector with the two extra fluxes is described by the effective
hopping problem Hz D H C Vz. Previously, for K D 0 the Majorana hopping
problem was purely between N.N., hence, the impurity term Vz was a simple local
on-site potential in terms of complex matter fermions fr, Eq. (3.38). Due to this
particularly simple form of Vz the calculation of the spin correlation function could
be mapped to a standard form of the X-ray edge problem, Sect. 3.4. This is no longer
true with the present three spin interaction which introduces N.N.N. hoppings in the
Majorana Hamiltonian, Eq. (5.2). Moreover, as the sign of the N.N.N. hopping in
a fixed gauge is determined by the product of the two link variables connecting
the N.N.N. sites, Vz can also break the sublattice symmetry, as shown in Fig. 5.2.
Explicitly written out I obtain
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Vz D �2iJzcA0cB0

C2iK ŒcA0cA0Cd5 � cA0Cd5 cA0 � cA0cA0Cd6 C cA0Cd6 cA0�

C2iK ŒcB0cB0Cd2 � cB0Cd2 cB0 � cB0cB0Cd3 C cB0Cd3 cB0� : (5.6)

As discussed in detail in Sect. 3.2.1 depending on the ground state parity of jM0i
and jMFi, I need the gauge equivalent expression cA0HzcA0 D H C Vx C Vy. Here Vi

means that the link variable uA0B0Cni changes from C1 to �1

Vx C Vy D �2i
�
JxcA0cB0Cn1 C JycA0cB0Cn2

�

C2iK ŒcA0cA0Cd1 � cA0Cd1 cA0 � cA0cA0Cd2 C cA0Cd2 cA0�

C2iK ŒcA0cA0Cd3 � cA0Cd3 cA0 � cA0cA0Cd4 C cA0Cd4 cA0�

C2iK ŒcB0cB0Cd2 � cB0Cd2 cB0 � cB0cB0Cd3 C cB0Cd3 cB0� : (5.7)

As advertised above, for nonzero K the impurity Vz is more complicated, and
therefore, I cannot straightforwardly adapt the previous formalism in terms the
X-ray edge approach (Sect. 3.4). However, the exact Pfaffian approach and the few-
particle formalism introduced in Sects. 3.3 and 3.2 are still applicable. Before
calculating the spin correlations I briefly discuss the special role of fluxes in the
non-Abelian phase.

5.2.2 Continuous Flux Transport in the Non-Abelian Phase

In the non-Abelian phase each flux carries an unpaired Majorana mode (Kitaev
2006), similar to vortices in a px C ipy superconductor (Ivanov 2001). Fluxes can
only be created in pairs and the two bound Majorana fermions correspond to one
standard complex fermion at the lowest single particle energy, EF

1 , below the bulk
single particle gap at EF

2 � E01, see Fig. 5.3a. As before, the superscripts 0 and F
refer to the matter sectors without and with a flux pair.

If two N.N. fluxes are separated by a distance d, for example by flipping the
sign of link variables uAn � d1;Bn � d1 with integers n � d, the energy of the bound
state quickly goes to zero such that the ground state is twofold degenerate, a nice
discussion can be found in Lahtinen (2011). In Fig. 5.3b, I plot the energy of the
bound state EF

1 as a function of continuous flux separation d. In principle the two
fluxes can only have a discrete separation distance corresponding to the length
of the string of flipped link variables in between the two fluxes. However, it is
possible to continuously change the link variables uAB from C1 to �1, and thus,
simulate a continuous flux transport (Lahtinen 2011). Numerically I change uAB in
M equidistant steps from +1 to �1. As shown in Fig. 5.3b the energy goes to zero
exponentially and has a characteristic oscillatory behavior (Cheng et al. 2009). The
energy splitting can be well approximated at the isotropic point as
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ln

a b

Fig. 5.3 For the isotropic point Jx D Jy D Jz, K D 0:025Jz the spectrum is shown in panel
(a). Energies EF

n (red) and E0n (black) are with and without two N.N. fluxes (energy index n). The
lowest energy EF

1 of the spectrum with fluxes, which corresponds to the energy of the localized
bound state inside the single particle gap, is shown as a function of continuous flux separation d in
panel (b)

a b

Fig. 5.4 The exponentially localized wave functions ‰F
1 .nx; ny/ for flux separation d D 1 and

d D 13 lattice sites are shown in panels (a) and (b)

˙EF
1 D �0 cos .�d/ e� d

� ; (5.8)

with the energy gap of the non-Abelian phase �0 D 6
p
3K, � D kC

F � k�
F

the difference of the two Fermi momenta at the Dirac points for K D 0 and the
coherence length � D 1:4

�0
set by the inverse single particle gap (Lahtinen 2011).

In Fig. 5.4a, b, I show the wave functions of the lowest fermionic Eigenstate
‰F
1 .nx; ny/ on the discrete lattice with sites r D .nx; ny/ (41 � 41 unit cells)

corresponding to the energy EF
1 for an N.N. flux pair (d D 1) and two separated

fluxes with d D 13. In both cases the wave function of the single state is
exponentially localized around the fluxes. It is this latter non-local state, protected
by the single particle gap, which has been proposed as a robust memory to store and
manipulate quantum information (Nayak et al. 2008).

Once the fluxes are brought into proximity, the degeneracy is lifted and the
fermionic state is either occupied or empty depending on energetic details. In the
degenerate limit for large flux separation, the occupation of the state is captured by
fusion rules (Kitaev 2006; Ivanov 2001). Two fluxes 
 can either fuse to the vacuum
1 or a fermion ‰ (Kitaev 2006) which is written as
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 � 
 D 1C‰: (5.9)

In fact, the parity of the ground state corresponds to the two different fusion
outcomes of the two fluxes 
 (Lahtinen 2011). In Fig. 5.4b at each distance at which
the energy crosses zero the parity of the ground state matter sector in a fixed gauge
changes. In the following dc.Jx; Jy; Jz;K/ refers to the smallest distance at which the
energy crosses zero. Note that for the isotropic point dc > 1. Therefore, the parity
of the ground state jMFi and jM0i is the same.

Note that the parameters Jx; Jy; Jz and K shift dc. By studying the continuous
flux transport I have found a simple intuitive explanation of the parity change:
The hypersphere dc.Jc

x ; J
c
y ; J

c
z ;K

c/ D 1 separates two regions in the phase diagram.
This turns out to be important because previously for the pure Kitaev model
.K D 0/, the even and odd parity regions differed strongly, either with the presence
or the absence of a ı-function peak in the structure factor as discussed in Sect. 3.2.1
and shown in Fig. 2.4.

Overall, the single fermionic state localized at two fluxes has a two dimensional
Fock space corresponding to the two different fusion outcomes. Once the fluxes
are separated, the degeneracy of the occupation is robust to local perturbations.
A systems of 2l separated fluxes has a protected Hilbert space of size 2l providing the
basic ingredient for topological quantum computations (Kitaev 2006). In general,
protected Majorana bound states localized at flux pairs are a hallmark of the non-
Abelian phase. Hence, the main question in the calculation of the structure factor is
how these in-gap states influence the response?

5.2.3 Quantum Phase Transition in the Extended Kitaev Model

Before continuing with the calculation of the structure factor, I digress briefly into
possible transitions within the phase diagram of the extended Kitaev model.

In the Landau theory of second order phase transitions, thermal fluctuations can
trigger a continuous transition between an ordered and a disordered phase which
are distinguished by the presence or absence of a symmetry quantified by a local
order parameter. Quantum phase transitions (QPT) happen at zero temperature. In
this case the change of a parameter in the Hamiltonian leads to level crossings in the
spectrum and pushes the system across a critical point. In contrast to Landau theory,
QPT driven entirely by quantum fluctuations can occur between two disordered
phases without any symmetry breaking (Wegner 1971; Sachdev 2001; Vojta 2003).
Here, I briefly discuss such a QPT between Abelian and non-Abelian QSL phases
in the extended Kitaev model (Feng et al. 2007; Shi et al. 2009).

I fix the parameter K D 0:1Jz and study the system as a function of j D Jx=Jz D
Jy=Jz. The transition between the Abelian and non-Abelian phase occurs at j D 0:5.
In Fig. 5.5, I plot various spectral quantities as a function of j. In red I show the
ground state overlap between the flux free and the two flux sector jhM0jMx;y

F ij
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Fig. 5.5 For K D 0:1Jz the evolution of spectral properties are plotted as a function of j D
Jx=Jz D Jy=Jz to look for signatures of the transition between the Abelian and non-Abelian phase
at j D 0:5. The overlap jhM0jMx;y

F ij is shown in red and the behavior of the flux gap � in blue.
Both quantities are continuous at the transition but their derivative is discontinuous, signaling the
phase transition (Shi et al. 2009). In addition, I show the behavior of the lowest energy Eigenstate
of the flux free (black crosses) and two flux system (green diamond). The single particle gap closes
at the transition j D 0:5. Only in the non-Abelian phase with extra fluxes an in-gap energy level
appears (green diamond). It disperses as a function of j and touches zero at the point when the
parity of the matter sector changes

and in black the behavior of the flux gap �. Both quantities are continuous at
j D 0:5 but their derivatives are discontinuous, signaling the phase transition. It was
shown recently that the ground state energy E0 of the flux free ground state is
only discontinuous in the third derivative @3E0

@j3
(Shi et al. 2009). I find the same

discontinuity for the flux gap, see also Fig. 5.8 inset.
In addition, I present the behavior of the lowest energy Eigenstate E01 of the flux

free (black open circles) and the two-flux system EF
1 (black dots) . The spectrum

closes its gap when crossing the phase boundary at j D 0:5. Most interestingly, only
in the non-Abelian phase an in-gap energy level appears such that EF

1 is separated
from the single particle continuum beginning at the next level EF

2 . Similarly to
Fig. 5.4 the in-gap state disperses as a function of j and touches zero at the point
where the parity of the matter sector changes around j � 0:73.

5.3 Spin Structure Factor

Similarly to the case of pure Kitaev model in Chap. 3, the main objective is the
calculation of the structure factor S.q; !/. Since the three spin interaction conserves
the exact solubility, the spin correlation function can be expressed in the ground
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state flux sector as a quantum quench, Eq. (3.9). I put r D 0 and calculate the same
N.N. and site diagonal correlators Szz as given in Eq. (3.9) with Vz replaced by the
new expression Eq. (5.6).

Before presenting the results, I discuss the calculation of the leading few particle
contributions and the exact Pfaffian approach.

5.3.1 Few-Particle Contributions

Again, I study the contributions of the different number of particle sectors to the
Lehmann representation, Eq. (3.18). Depending on whether the ground state parity
of the flux sectors jM0i and jMFi are the same (I), or different (II), only even or odd
numbers contribute.

Following Sect. 3.2.1, in case (II) all states j
i in the Lehmann representation
Eq. (3.17) have the same parity as the ground state jM0i. Therefore, only even
number of particle processes contribute. The first contribution arises from the
ground state of the two flux sector. In addition, note that the operator cA0HzcA0 D
Hx;y is the gauge equivalent Majorana hopping Hamiltonian with the two link
variables along the x and y bonds flipped instead of the z bond, see Eq. (5.7).
I express all operators in terms of a-operators and the corresponding ground state,
Eq. (2.26), to obtain

Szz
A0B0;.0/.t/ D

q
det

�X �X �eit.E0�EF
0 /

8
<

:
1 � 2

X

k

jYk0j2 � 2
X

j;k

Y�0kF�
kjX

�
j0

9
=

;
(5.10)

Szz
A0A0;.0/.t/ D

q
det

�X �X �eit.E0�EF
0 / (5.11)

Szz
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q
det

� QX � QX �eit.E0�QEF
0 / (5.12)

Szz
B0A0;.0/.t/ D

q
det

�X �X �eit.E0�EF
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8
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:
1 � 2

X

k

jYk0j2 � 2
X

j;k

�
Y�0kF�

kjX
�
j0

��
9
=

;
:

(5.13)

In the third line, the tilde means that the Hamiltonian in the two flux sector has the
lower x and y bonds flipped cB0HzcB0 D QHx;y which does not change the spectrum
and EF

0 . The only difference with respect to the pure Kitaev model, Eqs. (3.23) and
(D.3), is the form of the Bogoliubov transformation which diagonalizes the flux
free system. Here, I work directly in real space since the extra flux in the excited
flux sector breaks translational invariance. The flux is local and simple in real space
such that the Hamiltonian matrix is sparse, which leads to a better performance
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in numerical computations as compared to a representation in momentum space.
For the Fourier transformation of the structure factor at q D 0 I obtain (summation
over double indices):

Szz
.0/
.q D 0; !/D8�

q
det

�X �X �
(

1�
X

k

jYk0j2 � Re
h
Y�0kF�

kjX
�
j0

i
)

ı
�
! �

h
E0 � EF

0

i�

(5.14)

In case (I), the first contribution arises from single particle states, see Sect. 3.2.2.
I insert the identity into the Lehmann representation of the correlator, Eq. (3.9), such
that only states with opposite parity contribute. I restrict to single particle states
j
i D b�
jMF

0 i. With the help of the identity X
j � V
lFlj D �X �
��1

j the final results

are
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The Fourier transformation gives

Szz
.1/.q D 0; !/ D 8�
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�X �X �
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��X
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(5.19)

For case (II), the first frequency dependent contribution beyond the ı-function
from the ground state overlaps, Eq. (5.14), comes from two-particle contributions.
The expression is the same as for the pure Kitaev model, see Eq. (3.27).
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5.3.2 Exact Pfaffian Approach

Calculating spin correlations in the extended Kitaev model remains equivalent to a
local quantum quench. However, because of the additional N.N.N. hoppings, the
impurity like contribution Vz, Eq. (5.6), is not a pure on-site potential anymore.
Hence, I cannot simply use the previous exact X-ray edge formalism of Chap. 3.4.
Fortunately, the exact evaluation via Pfaffians, Sect. 3.3, is still possible. As before,
I express all correlators, Eq. (3.9), in terms of the a-operators diagonalizing the flux
free ground state to obtain

Szz
A0B0.t/ D eitE0

X
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h
X�0l � Y�0l

i
Mj;l

�
Xj0 C Yj0
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Szz
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X�0l C Y�0l
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Xj0 � Yj0

�
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with the matrix element

Mj;l D hM0jaje
�it.H0CVz/a�l jM0i; (5.24)

which is calculated in terms of Pfaffians as outlined in detail in Appendix A, for the
final expression see Eq. (3.35).

5.3.3 Results: Signatures of Localized Majorana Bound States

Majorana bound states localized at fluxes and protected by a gap are a hallmark
of the non-Abelian phase. In the structure factor of the pure Kitaev model a sharp
component in energy appeared only away from the isotropic point (Jx D Jy D Jz) in,
or close to, the gapped QSL phases. In the following, I show that in the non-Abelian
phase boundstates of Majorana fermions localized at the inserted flux pair lead to a
ı-function response even at the isotropic point.

In this section, I only discuss results from the few-particle contributions, which
allows me to go to much larger systems sizes than for the Pfaffian approach.
For the pure Kitaev model, I have shown in Fig. 4.4 (Chap. 4) that single particle
contributions capture already 98 % of the full response at the isotropic point. Thus,
restricting the calculation of the structure factor to the few particle sectors should be
a good approximation at least for small K. Fortunately, the presence of a single
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Fig. 5.6 The single particle contribution of the dynamical structure factor S.q D 0; !/ (solid
black) is plotted for the isotropic point in the non-Abelian phase (Jx D Jy D Jz and K D 0:1Jz).
Note the larger ı-function contribution from the localized state at the N.N. flux pair at an energy
�C EF

1 D 0:924Jz below the single particle gap (broadening of the ı-function � D 0:025Jz and
56�56 unit cells). The adiabatic approximation is shown by the dashed line and the single particle
density of states N.!/ is given in the inset

particle gap set by the three spin interaction K avoids strong finite size effects
observed in the gapless QSL phase of the pure model. In addition, I have checked
that for small system sizes the results of the exact Pfaffian approach and the few-
particle approximation almost coincide.

I begin with the formerly gapless phase which hosts non-Abelian quasiparticles.
I concentrate on Jx D Jy D Jz and put K D 0:1Jz. Both ground states jM0i and jMFi
have the same parity, case (I), such that no sharp ı-function is expected from the
ground state overlap. In Fig. 5.6, I show the total dynamical structure factor S.q D
0; !/ (solid black), which contains all characteristic features of the full momentum
dependent S.q; !/. Its salient features can again be related to either the emergent
matter fermions, or the flux sector.

First, the continuous frequency dependent response vanishes below the contin-
uum gap Q� D �C EF

2 which is set by the sum of the two-flux gap,� D EF
0 � E0 '

0:545Jz, and the on-set of the single particle continuum at the second energy level
EF
2 D 2:002Jz.

Second, a sharp ı-function contribution from the localized fermionic bound state
is observed even at this isotropic point at an energy ! D � C EF

1 D 0:924Jz

below the on-set of the continuous response at Q�. The sharp feature carries most
of the weight of the total response. It is remarkable that in an INS experiment the
response of a non-Abelian QSL will show a sharp component directly related to the
composite flux-Majorana pair which is a hallmark of this topological phase.
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Third, above the gap Q�, the response reflects the physics of the matter sector
and can be related to characteristic features of the fermionic density of states N.!/,
see Fig. 5.6 inset. Response is substantial over the entire single particle bandwidth.
As before, I compare the response to the adiabatic approximation (black dashed)
which now contains the additional approximation that the potential is of the simple
local form Vz D �2iJzcA0cB0 which neglects inverted N.N.N. hoppings in Eq. (5.6).
Surprisingly, the overall shape including the ı-function can be well approximated by
replacing the instantaneous insertion of fluxes by an adiabatically slow switching on,
see Sect. 3.4.3, especially Eq. (3.53). However, due to the oversimplified potential Vz

the energy of the bound state comes out wrong. In reality, the additional terms in Vz,
Eq. (5.6), create an even deeper potential which pulls the true energy of the bound
state to lower energies.

Next, I show in Fig. 5.7 the inequivalent components a D z; x of the structure
factor Saa.q D 0; !/ for the anisotropic point Jx D Jy D 0:15Jz (K D 0:1Jz).
This point corresponds to the formerly gapped QSL, and it hosts an Abelian QSL
even for nonzero three spin interaction K. The components Szz (black) and Sxx=yy

(red) are strongly anisotropic, with the former dominated by zero as well as two-
particle and the latter by single particle excitations, case (II) and (I), respectively.
The response includes a ı-function component for Szz (black) at the energy of the
flux gap � D 0:0905Jz. The next contribution is at much higher energies from two
particle excitations in the two particle bandwidth Œ� C 2EF

1 ;� C 2EF
N �. Note that

Fig. 5.7 The dynamical structure factor Saa.0; !/ for inequivalent components a D z; x is shown
for the also formerly gapped phase (JxDJyD0:15Jz and K D 0:1Jz, 56�56 unit cells and ı-function
broadening � D 0:025Jz). The inset shows the density of states of the matter fermions with a
strongly reduced bandwidth. The zz-correlator has a ı-function contribution from zero particle
excitations at the flux gap � from the nonzero ground state overlap jhM0jMx;y

F ij. In addition, the
much weaker response outside of the single particle bandwidth is due to two particle processes.
The weak bond correlators xx=yy are from single particle excitations
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the origin of the ı-function in the Abelian and non-Abelian phase is different. In the
former, it is due to the ground state overlap of the two different flux sectors. In
the latter, it is a signature of the localized fermionic state in the two flux sector.
The latter is calculated from single particle contributions.

As discussed in Sect. 5.2.3, clear signatures of the QPT from the Abelian to
the non-Abelian phase are observable in spectral properties. For example, higher
derivatives of the ground state energy and the flux gap are discontinuous. An
important question is whether there are clear signatures of the transition in the
structure factor. In addition, are there traces of the transition between different parity
sectors, from case (I) to case (II)? In contrast to the pure Kitaev model the structure
factor with additional three spin interactions has a sharp contribution in both sectors.
In Fig. 5.8, I show the weight of the ı-function of the structure factor S.q D 0; !min/

as a function of j D Jx=Jz D Jy=Jz (K D 0:1Jz). The inset displays the corresponding
energy !min. For j < 0:73, case (II), the sharp component stems from the finite
ground state overlap, !min D � (blue crosses). The phase transition between the
Abelian and non-Abelian phase at j D 0:5 is clearly seen as a kink in the weight
of the ı-function and in derivatives of !min D �. Therefore, the QPT between both
QSL phases is clearly observable in the structure factor.

In case (I) j > 0:73, the lowest contribution at !min D �C EF
1 (red) arises from

the localized bound state at energy EF
1 of the single particle spectrum. Surprisingly,

the evolution of the weight and energy across the two different parity sectors is

S(
q=

0,
  

  m
in

)

Fig. 5.8 The evolution of the weight of the ı-function S.q D 0; !min/ is shown as a function of
j D Jx=Jz D Jy=Jz (K D 0:1Jz). The inset displays the corresponding energy !min. For j < 0:73,
case (II), !min D � (blue crosses) but for case (I), j > 0:73, the lowest contribution is at !min D
� C EF

1 (red). The phase transition between the Abelian and non-Abelian phase at j D 0:5 is
clearly seen as a kink in the weight and in derivatives of !min D �. In contrast, the evolution
across the two different parity sectors is smooth
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K/Jz

+ E1
F

+ E
1
0

Fig. 5.9 It is shown how the weight of the ı-peak S.q D 0;�C EF
1 / (black dashed) vanishes as

the system goes gapless with K ! 0 (isotropic point). It vanishes as a high power in K. The single
particle gap closes (blue) such that the in-gap state (red) drops to zero energy above the flux gap

totally smooth and no singularity can be found in the derivatives. Note that EF
1 ! 0

at the transition point, see Fig. 5.5. I checked that the full frequency dependence
for j < 0:73 (zero+two-particle contributions) and for j > 0:73 (single particle
contributions) smoothly interpolates between the sectors. Only in the on-set of
the continuum S.q D 0; ! > !min/ weak traces of the transition are visible.

Finally, Fig. 5.9 presents how the ı-peak S.q D 0; !min/ (black dashed) vanishes
at the isotropic point as the system goes gapless with K ! 0. As the system
approaches the Abelian phase the single particle gap (blue) closes such that the in-
gap state merges with the continuum (red). The ı-function (black dashed) vanishes
as a high power in K. Due to the gapless nature of the limiting phase (K D 0), I have
not been able to determine the precise exponent from finite size scaling.

5.4 Effect of Disorder

A key question for the non-Abelian phase is the stability of its characteristic
features with respect to various perturbations. Most importantly, how robust is the
sharp ı-function contribution from the localized bound state at the flux pair, which
distinguishes the non-Abelian phase from the Abelian one at the isotropic point?
In this section, I concentrate on a particular perturbation and study the effect of
exchange disorder on the structure factor in the non-Abelian phase.

Recently, several groups have studied disordered effective Majorana models.
By calculating a topological invariant for systems without translational invariance
(Loring and Hastings 2010), it is possible to study the stability of the non-Abelian
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phase with respect to increasing disorder. On the one hand, it was shown for
one particular model that the non-Abelian phase is stable with respect to a small
density of sign disorder in the corresponding effective Majorana hopping problem
(Laumann et al. 2012), but for strong sign disorder the non-Abelian character is
lost. On the other hand, random exchange constants can also enlarge the region
of the non-Abelian phase, which was found for a different exactly solvable QSL
(Yao and Kivelson 2007) by studying energy level statistics (Chua and Fiete 2011).
All studies agree that at very large disorder strength, a so-called thermal metal
phase appears (Chalker et al. 2001; Laumann et al. 2012; Kraus and Stern 2011).
This is a gapless state characterized by broken time reversal symmetry and by a
logarithmically diverging density of states, which exhibits characteristic oscillations
at low energies (Lahtinen et al. 2014).

In the context of the extended Kitaev model, the effect of disorder including
the appearance of the thermal metal phase was recently verified in Lahtinen et al.
(2014). I follow their work and model a randomly deformed lattice by a local flat
random distribution of the exchange couplings Jij,

Jij ! .1C ıij/ with ıij 2 Œ�ıJ; ıJ� : (5.25)

The system is still exactly solvable but with disordered hopping amplitudes of the
effective Majorana Hamiltonian in the ground state flux sector with uij C1. I restrict
myself to the isotropic point Jx D Jy D Jz for ıJ ! 0 and set K D 0:1Jz. Note for
ıJ > 1 the sign of the couplings is negative which effectively introduces new fluxes
or moves existing ones around.

In Fig. 5.10, I show several disorder averaged quantities as a function of disorder
strength ıJ. In the left panel, the averaged single particle gap in the flux free

Fig. 5.10 Disorder averaged spectral properties are shown for the isotropic point Jx D Jy D Jz

and K D 0:1Jz as a function of disorder strength ıJ (1000 disorder realizations, 23�23 unit cells).
In the left panel, I show the disorder averaged single particle gap in the flux free system hE01i (red
dashed), the average energy of the in-gap state of the two localized Majorana modes in the two flux
sector hEF

1 i (black), the averaged overlap between the two ground states hjhM0jMFiji (blue) and
the average flux gap h�i (green). In the right panel, I plot the disorder averaged participation ratio
hp01i and hpF

1 i in the flux free (black) and the two flux (blue) sector for the lowest lying Eigenstate
as a function of disorder strength ıJ, see text for discussion
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system hE01i (red dashed) drops and closes around ıJ � 1:1. The in-gap state of
the two localized Majorana modes in the two flux sector, hEF

1 i (black), shows only
weak dependence on ıJ for small disorder strength; it only drops to zero once the
single particle gap pushes it down. Similar to the flux gap h�i (green), the overlap
hjhM0jMFiji (blue) is only effected when approaching the critical disorder strength
ıJ D 1. Slightly above this value few isolated fluxes appear and additional fermionic
states are localized. However, above ıJ > 1, the flux gap (green) quickly grows with
a large standard deviation (not shown). Due to flux–flux interactions the insertion of
an additional N.N. flux pair can cost a significant amount of energy if other fluxes
are close. The maximum of the two flux gap at ıJmax � 1:18 corresponds to a flux
density of 1/3 (Lahtinen et al. 2014). It can be understood in the following way: 1/3
is the largest flux density with the possibility of having only N.N.N. fluxes (no N.N.
flux pairs). Then, the two extra N.N. fluxes from the quantum quench form a four
flux cluster which is energetically costly. At higher flux densities the insertion of
two extra N.N. fluxes mostly moves existing fluxes around.

Another important quantity to look at is the participation ratio

pn D
Z

d2rj‰n.r/j4 (5.26)

which quantifies how localized a wave function ‰n.r/ is. In Fig. 5.10 right panel,
I plot the participation ratio hp01i and hpF

1 i in the flux free (black) and the two flux
(blue) sector for the lowest energy Eigenstates ‰0

1.r/; ‰
F
1 .r/. As expected for the

localized mode, hpF
1 i is large for all values of ıJ < 1 and hardly changes as long

as the single particle gap is appreciable. In the zero flux sector the participation
ratio hp01i grows linearly until its maximum around ıJ � 1:1 is reached, where
isolated fluxes locally bind fermionic modes. For larger disorder strength more and
more fluxes are introduced, therefore localized Majorana modes hybridize forming
a metallic state. This delocalization is clearly seen by a sharp drop in hp01i beyond
ıJ > 1:1 and signals the appearance of the thermal metal phase (Lahtinen et al.
2014).

Next in Fig. 5.11, the disorder averaged single particle density of states of the
two flux sector NF.!/ D P

n ı
�
! � EF

n

�
is shown. I have used 12,000 disorder

realizations and 23 � 23 unit cells. As a comparison, I show N.!/ without disorder
for 51 � 51 unit cells (black) (broadening � D 0:025Jz of the ı-functions). Note
that with increasing ıJ the upper and lower band edges are smeared out and the gap
is filled. In the inset, I show how the single peak from the localized in-gap state
is broadened. Its disappearing around ıJ � 0:7 is expected to have a strong effect
on the structure factor, because it is this bound state which leads to the dominant
ı-function contribution below the single particle continuum.

Finally in Fig. 5.12, I present the disorder averaged single particle contribution
of hS.q D 0; !/i. Similarly to the DOS, the edges of the continuum are quickly
washed out but the sharp in-gap component is surprisingly stable. For increasing
disorder strength, the ı-function contribution in the single particle gap is broadened
(see inset). However, as long as the average single particle gap hE01i is larger than
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Fig. 5.11 The disorder averaged single particle density of states for the two flux sector hNF.!/i is
shown for the isotropic point (Jx D Jy D Jz, K D 0:1Jz). I have used 12,000 disorder realizations
and 23 � 23 unit cells. As a comparison I show the result without disorder in black (51 � 51 unit
cells and broadening � D 0:025Jz for the ı-functions). The inset zooms in around the energy of
the localized in-gap state
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Fig. 5.12 The disorder averaged single particle contribution of S.q D 0; !/ is shown for the
isotropic point (Jx D Jy D Jz and K D 0:1Jz) for several ıJ (12,000 disorder realizations and
23 � 23 unit cells). As a comparison, I show S.q D 0; !/ without disorder in black (51 � 51

unit cells and broadening � D 0:025Jz of the ı-functions). For increasing disorder strength the
ı-function contribution is broadened, but a well-separated peak is still resolved until ıJ � 0:7, see
inset for a zoom in at low energies
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the energy of the in-gap state hEF
1 i, a well-separated peak is resolved. Overall, the

main features of the response are robust up to quite strong disorder strength, at least
up to ıJ � 0:7.

I have also calculated the structure factor in the thermal metal phase, e.g.
ıJ D 1:2, but several problems appear: The parity of the two ground states with
and without flipped fluxes changes randomly. Even if both have the same parity
the overlap is very small O.10�4/. Moreover, on average the lowest lying state is
not anymore localized at the bond at which the correlator is measured. Overall, the
intensity of the single particle contributions drops abruptly for ıJ > 1 which signals
the influence of higher particle contributions and the limitation of simple disorder
averaging.
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Chapter 6
Raman Scattering

In recent years, inelastic Raman scattering has been proven to be a valuable tool
for probing collective excitations in strongly correlated electron systems because
its polarization dependence allows to probe different regions of the Brollouin
zone, see Devereaux and Hackl (2007) for a review. Inelastic Raman scattering
is a photon-in photon-out process. Light couples to electronic charges in solids
and the transferred energy can excite different types of excitations. For example,
optical phonons lead to sharp lines at well-known positions and orientations of the
incoming and outgoing photon polarizations, whereas at higher energies a much
broader signal can be attributed to two-magnon scattering occurring in materials
with antiferromagnetic correlations (Devereaux and Hackl 2007). In Mott insulators,
the Raman excitation process couples the induced electron–hole pair exactly to
the two-magnon states which are relevant for magnetism (Shastry and Shraiman
1990). Thereby, Raman scattering has been successfully used for understanding the
dynamics and interactions of magnons in various antiferromagnetically ordered 3d
transition metal oxides, especially in the high-Tc superconductor parent compounds
(Chubukov and Frenkel 1995a,b; Blumberg et al. 1996, 1997).

More recently, it has been theoretically proposed (Cépas et al. 2008; Ko et al.
2010) that inelastic Raman scattering is also a promising technique to unravel
the features of magnetic excitations in QSLs, even though a simple spin wave
picture of the low energy excitations is not applicable. A general signature should
be an overall polarization independence or only weak dependence of the signal
(Cépas et al. 2008). Indeed, recent Raman scattering experiments revealed spin-
liquid like features in the Heisenberg spin one-half Kagome-lattice antiferromagnet,
Herbertsmithite ZnCu3(OH)6Cl2 (Wulferding et al. 2010).

Kitaev’s honeycomb lattice model investigated in this thesis provides an exactly
solvable example of a Z2 quantum spin liquid which may be realized in A2IrO3

systems (Jackeli and Khaliullin 2009; Chaloupka et al. 2010; Singh et al. 2012),
see Sect. 2.3. In these compounds, Ir4C ions are in a low spin 5d5 configuration
and form weakly coupled hexagonal layers. Due to strong spin-orbit coupling, the

© Springer International Publishing Switzerland 2016
J. Knolle, Dynamics of a Quantum Spin Liquid, Springer Theses,
DOI 10.1007/978-3-319-23953-8_6
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atomic ground state of Ir4C ion is a Kramers doublet of magnetic moments in
which the spin and orbital angular momenta are strongly entangled. In general,
the N.N. interactions between these magnetic moments can be described by the
Kitaev–Heisenberg (KH) model containing both, a highly anisotropic ferromagnetic
FM Kitaev interaction and an isotropic AF Heisenberg exchange interaction.
The Hamiltonian OH D OHK C OHH of the KH model reads

OH D �JK

X

hijia

O
a
i O
a

j C JH

X

hiji
O� i � O� j: (6.1)

The Kitaev QSL is stable in the KH model with respect to sufficiently small
Heisenberg interactions, as shown by several studies (Chaloupka et al. 2010;
Reuther et al. 2011; Schaffer et al. 2012). Thus, it might be realizable in A2IrO3

systems, although the first proposed material Na2IrO3 is magnetically ordered below
15K (Singh et al. 2012).

In this chapter, I perform a theoretical analysis of the inelastic Raman scattering
response from the KH model in the limit of small Heisenberg interaction such that
the Kitaev spin liquid is the ground state of the model. To evaluate the Raman
operator, I use the semi-phenomenological Loudon–Fleury approach (Fleury and
Loudon 1968; Shastry and Shraiman 1990) which assumes that the matrix elements
of the interaction between photons and excitations in the system are frequency
independent. I compute contributions to the Raman response I.!/ from both Kitaev
and Heisenberg interactions. I show that the main contributions arise from pure
Kitaev IK.!/ and Heisenberg terms IH.!/, while the mixed Kitaev–Heisenberg
terms are either zero due to selection rules from the flux sector or they involve
weaker and subleading higher order multi-particle processes.

6.1 Loudon–Fleury Raman Vertex

The Raman scattering operator is given by the photon-induced super-exchange
operator which for the KH model contains two terms R D RKCRH , the counterpart
of the Loudon–Fleury vertex (Fleury and Loudon 1968; Shastry and Shraiman 1990)
for the Heisenberg model:

R D
X

hijia

.O�in � na/.O�out � na/
�
KK O
a

i O
a
j C KH O� i � O� j

�
; (6.2)

na denotes the N.N. vectors, and O�in;out indicates the polarizations of the incident and
the outgoing photons. The constants KK / JK and KH / JH are proportional to the
corresponding exchange constants in the KH Hamiltonian; hence, 
 D KH=KK � 1

is small in the Kitaev spin liquid limit.
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The Raman response of the KH model, Eq. (6.1), is directly related to the Fourier
transformation

I.!/ D
Z 1

�1
dtei!tiF.t/ (6.3)

of the Raman vertex correlation function

iF.t/ D hTR.t/R.0/i; (6.4)

here h:i is the average in the full ground state j‰0i of the KH Hamiltonian, and T is
the time ordering operator. Treating the Heisenberg term OHH as a perturbation, and
switching to the interaction picture, the correlation function can be written as

iF.t/ D h0jS�.t;�1/R.t/S.t; 0/R.0/S.0;�1/j0i; (6.5)

S.t; t0/ D T exp

�
�i
Z t

t0
OHH.�/d�

�
: (6.6)

Note that the expectation value is now computed with respect to the Kitaev ground
state j0i. One can then perturbatively compute the Raman response by expanding to
leading order in 
.

In the following, I derive the leading contributions of Eq. (6.5) by restricting my
analysis to the Kitaev limit KH=KK D JH=JK D 
 � 1. I explicitly take the small
parameter 
 out of the definition of the coupling constants such that OH D OHK C
 OHH

and R D RK C 
RH . The Kitaev like contributions of the Heisenberg Hamiltonian
and Raman vertex are absorbed into the Kitaev exchange constants such that JK !
JK.1C
/, KK ! KK.1C
/. Hence, all terms in HH and RH change the flux sector
when acting on the ground state j0i. Note that I remove the Ohat when working in
terms of Majorana fermions. I obtain for the S matrix up to O.
2/

S.t; t0/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

1C 
T.�i/
Z t

t0
d�HH.�/

„ ƒ‚ …
	h

.1/
H .t;t0/

C
2 T .�i/2

2

Z t

t0
d�1

Z t

t0
d�2HH.�2/HH.�2/

„ ƒ‚ …
	h

.2/
H .t;t0/

C � � �

9
>>>>>=

>>>>>;

;

(6.7)

such that the leading order Raman response

iF.t/ '


0

ˇ̌
ˇ̌
h
1C 
h.1/H .t;�1/C 
2h.2/H .t;�1/

i�
ŒRK.t/C 
RH.t/�

�
h
1C 
h.1/H .t; 0/C 
2h.2/H .t; 0/

i
ŒRK.0/C 
RH.0/�

�
h
1C 
h.1/H .0;�1/C 
2h.2/H .0;�1/

i ˇ̌
ˇ̌0
�

(6.8)
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can be approximated by

iF.t/ � h0jRK.t/RK.0/j0i C 
2h0jRH.t/RH.0/j0i: (6.9)

All terms linear in 
 vanish due to orthogonality of the flux sectors. The two
terms in Eq. (6.9) are the main contributions FK and FH . Note that the contribution
FH is a sum of purely local terms, see discussion in the next section, especially
Eq. (6.19).

The omitted 
2 terms involve non-local contributions. For example, four fluxes
which are inserted by the term RH can be locally annihilated by a suitable term in
HH . The remaining matter degrees of freedom are non-local, e.g. of the schematic
form hM0jcicjci0cj0 jM0iıhi;jiN:N: ıhi0;j0iN:N: or higher orders in Majorana operators. Such
multi-particle excitations are proportional to density–density fluctuations (Tikhonov
et al. 2011) having higher orders of the matter fermion density of states and would
contribute a small correction at low frequencies which is broad in energy (Tikhonov
et al. 2011). This is because in a Dirac system with only Fermi points instead of a
proper Fermi surface, particle-hole excitations are suppressed at low energies due to
the linearly vanishing density of states (Kotov et al. 2012). This perturbation theory
amounts to approximating the ground state of the KH model with the integrable
one. However, the calculation of the response goes one step beyond integrability by
including contributions to the Raman vertex arising from the integrability-breaking
Heisenberg term.

In the remainder of this chapter, I restrict my calculation of the Raman response
to the leading terms, which is equivalent to a static flux approximation

I.!/ � IK.!/C IH.!/: (6.10)

6.1.1 Kitaev Contribution

First, I study the Kitaev contribution IK.!/ and express the vertex in terms of
Majorana fermions. I work in the ground state flux sector such that

RK D
X

r

X

˛Dx;y;z

KK .O�in � n˛/ .O�out � n˛/
i

2
fcArcBrCn˛

� cBrCn˛
cArg (6.11)

can be written in terms of complex matter fermions as

RK D
X

q

�
f �q f�q

�	 Reh.q/ iImh.q/
�iImh.q/ �Reh.q/


 
fq

f ��q

!

(6.12)
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with

h.q/ D
X

˛

KK .O�in � n˛/ .O�out � n˛/ eiqn˛ : (6.13)

In order to calculate the Raman response function in the ground state of the zero
flux sector, I perform a final Bogoliubov rotation to get an expression in terms of aq

operators that diagonalize the Kitaev Hamiltonian, Eq. (2.29),

RK.t/D
X

q

n
r.q/a�q.t/aq.t/Cg.q/a�q.t/a

��q.t/Cg�.q/a�q.t/a�q.t/�r.q/a�q.t/a
��q.t/

o
:

(6.14)

Using the simple time dependence of the Heisenberg picture, aq.t/ D aqe�it2jS.q/j,
and defining the two functions

r.q/ D Reh.q/ cos 2�q � Imh.q/ sin 2�q (6.15)

g.q/ D iReh.q/ sin 2�q C iImh.q/ cos 2�q; (6.16)

I finally obtain the Raman Kitaev contribution for ! > 0

IK.!/ D 4�
X

q

ı .! � 4jS.q/j/
�

Im Œh.q/S�.q/�
jS.q/j

�2
; (6.17)

which is totally independent of polarization.

6.1.2 Heisenberg Contribution

The Heisenberg vertex RH can be separated into three parts from the inequivalent
bond directions

RH D
X

hijiz

KH .O�in � nz/ .O�out � nz/
h

 x

i 

x
j C 


y
i 


y
j

i

C
X

hijix

KH .O�in � nx/ .O�out � nx/
h

 z

i 

z
j C 


y
i 


y
j

i

C
X

hijiy

KH
�O�in � ny

� �O�out � ny
� h

 x

i 

x
j C 
 z

i 

z
j

i
: (6.18)
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Fig. 6.1 The calculation of the Raman response due to the Heisenberg part can be mapped to a
local quantum quench, in which four adjoining Z2 fluxes, shown as gray hexagons, are inserted.
For example, the contribution from nearest-neighbor 
 y

Ar

y
Br interactions along a z-bond which flips

the sign of the link variables is shown by green dashed bonds

Each of the terms RH;hiji˛ puts in four fluxes around the ˛-bond at site r, see Fig. 6.1.
The orthogonality of the flux sector greatly simplifies the calculation of the Raman
intensity by making it bond diagonal

iFH.t/ D
X

hiji˛

X

hkliˇ
hRH;hiji˛ .t/RH;hkliˇ .0/i D

X

hiji˛
hRH;hiji˛ .t/RH;hiji˛ .0/i: (6.19)

As the system is translationally invariant, I concentrate on the Raman operator
of a single z bond, e.g. RH;hArBriz / 
 x

Ar

x
Br C 


y
Ar


y
Br. In case of an anisotropic

system the other x/y-contributions can be obtained by cyclic permutation of the
exchange constants Jx; Jy; Jz and a rotation of the in- and out-going scattering angles
by multiples of 2�

3
. The Raman intensity from the z-bond is given by

iFH;z.t/ D 
2 ŒKK .O�in � nz/ .O�out � nz/�
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Br.0/

�i (6.20)

with two different types of matrix elements: First, spin component diagonal ele-
ments, e.g. h
 x
 x
 x
 xi, and second, off-diagonal ones, e.g. h
 x
 x
 y
 yi. The former
operator can be calculated without projection onto the physical state (Baskaran et al.
2007) because it neither changes the flux sector nor the bond fermion number.
The off-diagonal term not only conserves the flux sector but also changes the
bond fermion number 	. Therefore, it is necessary to project the contribution from
this term onto the physical state (Yao et al. 2009). However, while the correlation
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function h
 x.t/
 x.t/
 y.0/
 y.0/i is non-zero, its contribution to the Raman response
is exactly canceled by the h
 y.t/
 y.t/
 x.0/
 x.0/i term, see below.

The calculation of the diagonal term

h
 x
Ar.t/


x
Br.t/


x
Ar.0/


x
Br.0/i (6.21)
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i �

precedes in a similar fashion as for the spin correlation function, see Sect. 3.1.
I eliminate the bond fermions to work only in the ground state flux sector. Recall,
the expectation value is taken over the ground state j0i D jF0ijM0i. I use a gauge
with 	�i 	ijF0i D jF0i and commute all bond operators to the right

	
�

hAr;BrCnxix
	
�

hAr�nx;Brix
e�itH0 D e�itHK ŒhAr;BrCnxix;hAr�nx;Brix�	

�

hAr;BrCnxix
	
�

hAr�nx;Brix

(6.22)

where HK ŒhAr;Br C nxix; hAr � nx;Brix� is the Majorana hopping Hamiltonian
with flipped link variables uhAr;BrCnxix D �1 and uhAr�nx;Brix D �1 which
corresponds to four fluxes around the z-bond. Note that H0 is the standard hopping
Hamiltonian in the ground state flux sector. In the remainder, I use the shorthand
notation HK ŒhAr;Br C nxix; hAr � nx;Brix� D HK ŒCnx;�nx�. The diagonal cor-
relation function is expressed entirely in the ground state flux sector

h
 x
Ar.t/


x
Br.t/


x
Ar.0/


x
Br.0/i D hM0jeitH0cArcBre�itHK ŒCnx;�nx�cBrcArjM0i :

(6.23)

This expression can be further simplified with the gauge equivalent
cArcBre�itHK ŒCnx;�nx�cBrcAr D e�itcArcBrHK ŒCnx;�nx�cBrcAr D e�itHKŒCny;�ny� such that I
obtain the final expression

h
 x
Ar.t/


x
Br.t/


x
Ar.0/


x
Br.0/i D hM0jeitH0e�itHKŒCny;�ny�jM0i: (6.24)

It is a quantum quench in which the ground statejM0i of H0 is time evolved with the
four flux Hamiltonian HK

�Cny;�ny
�
, compare to Sect. 3.1.

Next, I study the off-diagonal term h
 x
 x
 y
 yi for which it is necessary to
include the projection operator Pjˆi D Q

j
1CDj

2
jˆi D jˆphysi, see Eq. (2.8). Note

that operators Dj commute with the Hamiltonian HK and all spin operators 
a
i .

As discussed in Sect. 2.1, the projection can be factorized into P D P0 1C
Q

j Dj

2
,

Eq. (2.13) where P0 is the sum of all operators that change the bond fermion number
in an inequivalent way. I work with even total fermion number and use the fact that
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P commutes with all spin operators such that hP
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x
Br.t/


y
Ar.0/


y
Br.0/Pi D

h
 x
Ar.t/


x
Br.t/


y
Ar.0/


y
Br.0/P

0i which can be simplified in a similar fashion as
before to
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In this expression, only the part DArDBr of P0 together with the product of 	
operators does not change the bond fermion number. On the one hand, the operator
DArDBr eliminates the additional bond fermions, but on the other hand, it introduces
new matter fermions. Finally, I obtain for the off-diagonal component

h
 x
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x
Br.t/


y
Ar.0/


y
Br.0/i D hM0jeitH0e�itHKŒCny;�ny�cArcBrjM0i (6.26)

such that overall the full Heisenberg response of the z-bond is given by
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o
: (6.27)

6.1.3 Few-Particle Response

Following Sect. 3.2, for the Lehmann representation I insert a complete set of
states

P

 j
ih
j into Eq. (6.27) with Eigenstates j
i of the four flux Hamiltonian

HK
�Cny;�ny

�
. After Fourier transformation to frequency domain I obtain for the

Raman intensity of the Heisenberg part

IH;z.!/ D Ixx
H;z.!/C Iyy

H;z.!/C Ixy
H;z.!/C Iyx

H;z.!/ (6.28)

with the diagonal and off-diagonal components

Ixx
H;z.!/ D 2�

X




ı Œ! � .E
 � E0/� jhM0j
ij2; (6.29)

Ixy
H;z.!/ D 2�

X




ı Œ! � .E
 � E0/� hM0j
ih
jcA;rcB;rjM0i:

Note that Ixx
H;z.!/ D Iyy

H;z.!/ at the isotropic point (Jx
K D Jy

K D Jz
K) and Ixy

H;z.!/ D
�
Iyx
H;z.!/

��
. The ground state of the four flux sector jMFi has the same parity as
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the zero flux sector jM0i, therefore only even number of excitations b�
, which
diagonalize the four flux sector HK

�
r C ny; r � ny

�
, contribute. In the following,

I derive the formulas of the leading few-particle contributions similar to Sect. 3.2.
I numerically calculate the main contributions IŒ0�H .!/; I

Œ2�
H .!/ from zero- j
i D jMFi

and two-particle j
i D b�

0b

�


jMFi processes.
The first contribution to the sum of the Lehmann representation, Eq. (6.29),

comes from the ground state overlaps
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(6.31)

It gives a sharp ı-function peak at the four flux gap �F in the Raman response.
The next signal from single particle contributions b�
jMFi is zero because of their
opposite parity to the zero flux ground state jM0i. Only even number of particles
contribute. The first frequency dependence arises from two-particle contributions
b�
b�


0 jMFi which leads to

Ixx;Œ2�
H;z .!/ D 2�

X


;
0

ı .! � ŒE
 C E
0 � E0�/ jhM0jb�
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0 jMFij2

Ixy;Œ2�
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0

ı .! � ŒE
 C E
0 � E0�/ hM0jb�
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0 jMFihMFjb
0b
cA0cB0jM0i:

(6.32)

The matrix elements are given at the end of Appendix D. I have numerically studied
systems up to 62 � 62 unit cells (7688 spins). It turns out that the off-diagonal
contribution Ixy;Œ2�

H;z .!/, which involves the projection operator, is purely imaginary.
Therefore, it is exactly canceled by the complex conjugate Iyx

H;z.!/ and does not
contribute to the total Raman response. I truncate the 
 sum at this two particle level
since the intensity of higher order processes is significantly reduced.

6.2 Results

The Raman response, shown in Fig. 6.2, is markedly different from the known
strongly polarization dependent behavior seen in the two-magnon response of
antiferromagnetically ordered systems. In fact, the characteristic features of the
weakly polarization-dependent response I.!/ can be related either to the flux, or
the Majorana fermion sector: First, the polarization-independent Kitaev contribution
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Fig. 6.2 The Raman response I.!/ (black curve) is shown together with its various contributions
for JK D 10JH . The Kitaev contribution IK.!/, shown in green, is independent of the photon
polarization and shows characteristic features of the matter fermion density of states including the
linear onset at low energies and the band-edge at 12JK , note the additional factor of 2 in Eq. (6.17).
The van Hove singularity at 2JK is seen as a small dip at 4JK (a discontinuity of the derivative).
The zero and two-particle responses, IŒ0�H .!/ and IŒ2�H .!/, of the Heisenberg Raman contribution
are shown in blue and red (dashed) respectively. A ı-function peak occurs at the four flux gap
�F D 0:446JK , while the frequency dependence of the two-particle contribution reflects the local
two-particle density of states in the presence of four fluxes

IK.!/ reflects the Majorana matter fermion density of states in the ground state flux
sector. It has a linear onset at low energies, a sharp band-edge at 12JK , and a dip at
4JK due to the van Hove singularity. Second, the Heisenberg contribution, which has
a weak polarization dependence with a simple overall intensity change, is related to
flux excitations, e.g. IH.!/ D 0 for ! < �F. A striking feature is a sharp peak
at the energy of the four flux gap �F D 0:446JK originating from the zero-particle
contribution (overlap between ground states), see Eq. (6.28). This is a clear signature
of a pure flux excitation for the isotropic gapless QSL (Jx

K D Jy
K D Jz

K). Note that
normally sharp lines in Raman scattering are attributed to optical phonons which
appear at different energy scales (Devereaux and Hackl 2007). In addition, IH.!/

has a broad response in energy reflecting the two-particle density of states of matter
fermions propagating in the background of four inserted fluxes.

My analysis of the Raman response relies on the stability of the Kitaev QSL
with respect to the addition of small Heisenberg exchanges. I expect that for small
Heisenberg couplings, all the features which I find in the response are robust. They
will only be somewhat renormalized by non-local fluctuations originating from the
dynamics of the fluxes generated by the Heisenberg exchange or disorder which
is present in real materials. Crucially, there is a window of parameters where the
features that I obtain should be observable, thus, making Raman scattering an
important experimental tool for diagnosing Kitaev QSLs.
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In conclusion, I have shown that Raman scattering renders visible both flux
and Majorana fermion excitations potentially relevant to Iridates. It thus presents
a valuable alternative tool for diagnosing topological quantum states.
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Chapter 7
Conclusion and Outlook

I have presented a study of exact dynamical correlation functions in different
phases of a model QSL with the objective to look for discernible signatures of
the emergent fractionalized quasiparticles in response functions directly accessible
in standard experiments. The main result is the identification of salient features—
qualitative and quantitative—of the Majorana fermions and gauge fluxes emerging
in the Kitaev honeycomb lattice model. For the first time, my thesis provides such
exact calculations of dynamical correlation functions of a 2D QSL. The resulting
characteristic signatures of fractionalization, which is a hallmark of a topologically
ordered phase, are visible as fingerprints betraying the presence of a QSL in future
INS, ESR, and Raman scattering experiments.

7.1 Experimental Prospect and Materials

Materials with bond dependent anisotropic spin interactions can exhibit novel QSL
phases. The original dream that the layered Iridium oxide Na2IrO3 captures the
physics of the Kitaev model (Jackeli and Khaliullin 2009; Singh et al. 2012) turned
out be too optimistic, because this material orders into a spiral AF state at low
temperatures. Unfortunately, it seems that in these quasi-2D materials the influence
of spin anisotropic interactions is miniscule and not even necessary for explaining
the observed magnetism. A new boost to the field comes from theoretical proposals
with 3D generalizations of the Kitaev model (Mandal and Surendran 2009; Lee et al.
2014; Hermanns and Trebst 2014; Kimchi et al. 2014), which conjectured that 3D
analogues of the honeycomb lattice might be more promising for realizing QSLs.
Indeed, the recently synthesized 3D hyperhoneycomb ˇ-Li2IrO3 (Takayama et al.
2014) and the 3D harmonic honeycomb � -Li2IrO3 (Biffin et al. 2014) seem to be
much closer to the Kitaev regime than their layered cousins. Despite the fact that
they are still magnetically ordered, it seems that a dominant Kitaev interaction is

© Springer International Publishing Switzerland 2016
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crucially needed to describe the peculiar non-coplanar magnetic ordering. Hence,
they might not be far from the QSL region, which could therefore conceivably be
reachable by doping or pressure.

Many aspects of the 2D Kitaev model carry over to 3D generalizations including
the exact solubility in terms of Majorana fermions and static fluxes. The low energy
response of future INS experiments on the presently known ordered 3D Iridates
will be dominated by spin wave excitations. However, it is tempting to speculate
that some traces of the characteristic high energy features which I discover in
the QSL regime could still be observable. Just as in the analogous case of one
dimensional spin chains, which often eventually order because of residual inter-
chain couplings, a broad spinon continuum can be well observed experimentally.
In fact, integrability is always imperfect but qualitative high-energy features are
likely to survive. Similarly, in any instantiation of Kiteav QSLs in real materials,
I expect quantitative changes such as a small degree of smearing out of the distinct
signatures which I have discovered in this thesis. Importantly, central aspects of
fractionalization are expected to remain observable.

7.2 Signatures of Fractionalization

The calculated spin structure factor of the 2D Kitaev model is mostly broad in
energy and momentum as expected for a fractionalized system. However, there are
clear characteristic manifestations of the QSL nature of the ground state: First, in
both gapped and gapless phases, the response vanishes below the two-flux gap. It is
remarkable that in an INS experiment, the response of a gapless QSL shows an
excitation gap which is directly related to the emergent gauge field. Second, above
the gap, the response reflects the physics of the matter sector, e.g. the van Hove
singularity of the matter fermions hopping on the honeycomb lattice appears as a
dip in the structure factor. Third, a surprising and counterintuitive manifestation of
quantum number fractionalization in the anisotropic model is a sharp component as
a function of frequency in the response from a pure flux excitation.

A similar feature, even for an isotropic system, can be found in an extended
Kitaev model. The inclusion of a three spin interaction, which captures pertur-
batively the effect of an external magnetic field, gaps out the Dirac spectrum of
the formerly gapless regime. The resulting QSL phase hosts excitations with non-
Abelian statistics. As a hallmark of this non-Abelian phase and in stark contrast
to the Abelian phase of the original model, flux pairs lead to bound in-gap states
of Majorana fermions. The latter are manifest in the dynamical structure factor
as a sharp component at an energy below the single particle continuum. The clear
distinction in the response between a ı-function in-gap component and a continuum
at higher energies is surprisingly robust with respect to the inclusion of exchange
disorder, which is always present in real materials.

Overall, an intuitive understanding of the INS response in Kitaev QSLs emerges
in which spins fractionalize into a static Z2 flux pair and additional itinerant
Majorana fermions. Fluxes form a flat band which leads to the ultra short ranged
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nature of the spin correlations. In addition, these infinitely heavy quasiparticles
are responsible for the broad momentum independence and for the gap in the
response even for a gapless QSL. On top of this, Majorana fermions propagate in
the perturbed flux background and scatter of the additional flux pair, which can
even lead to the formation of bound states. The resulting fermionic density of states
determines the shape of the response above the flux gap.

Apart from the spin structure factor, I identify similar signatures of fraction-
alization in Raman scattering. This establishes this experimental method as an
alternative tool for diagnosing QSLs in candidate materials, which is of particular
interest given the difficulty of using neutrons to study materials hosting iridium
ions, e.g. the compounds Na2/Li2IrO3. The Raman signal of the integrable Kitaev
model is polarization-independent and reflects the density of states of the emergent
Majorana fermions in the ground state flux sector. The addition of an extra weak
integrability-breaking Heisenberg exchange term generates a second contribution.
The latter is connected to the abrupt insertion of four emergent Z2 fluxes, which
results in a weakly polarization dependent response, and which also contains a sharp
peak but here at the energy of a pure localized four-flux excitation. Beyond this
concrete example of Raman scattering, the calculation with the weakly perturbed
Kitaev model suggests that while a QSL phase might be stable with respect to weak
integrability breaking, the induced change in response functions can in some cases
be considerable.

In conclusion, dynamical response functions have the advantage that they probe
the full excitation spectrum, which allows a detailed comparison between exper-
iments and theoretical calculations beyond the low energy properties dominating,
e.g., thermodynamic measurements. The signatures of fractionalization, which I
discover in low and high energy properties, establish INS, ESR, and Raman
scattering as valuable tools for diagnosing QSLs in candidate materials.

7.3 Methodological Progress and Connection
to Non-equilibrium Physics

Exact calculations of correlation functions are usually restricted to 1D systems
because of the special methods available, e.g. the Bethe-Ansatz. Due to the absence
of corresponding theoretical methods in 2D up to date, the study of QSLs can be
roughly divided into two lines of research. On the one hand, slave-particle mean-
field treatments offer an intuitive physical picture of QSL phases, but they are
ultimately uncontrolled approximations. On the other hand, numerical methods such
as ED, DMRG, or quantum Monte Carlo permit exact or at least well-controlled
calculations, but they are limited to small system sizes, to systems with a robust
excitation gap, or to models that avoid the sign problem. These obstacles often limit
a full understanding. The exact results of this thesis establish a third line of research,
which allows to calculate exact correlation functions in 2D in the thermodynamic
limit, thereby providing a benchmark at an integrable point, as well as a possible
starting point for perturbation theory.



102 7 Conclusion and Outlook

Despite the fact that the Kitaev model has an exact solution, the full analysis of its
correlation functions turns out to be a challenging task. By eliminating the emergent
gauge degrees of freedom, the calculation of the dynamical spin correlation function
can be mapped to a local quantum quench of Majorana fermions perturbed by the
sudden insertion of a nearest neighbor Z2 flux pair. I derive two complementary
exact solutions for this non-equilibrium problem, which enable me to obtain results
in the entire phase diagram and in the thermodynamic limit. These methods can be
applied to other non-equilibrium problems in the future.

The analysis of the quench proceeds in three steps: First, the Lehmann repre-
sentation allows an intuitive understanding of central features of the response. In
addition, it permits an approximate treatment of arbitrary quantum quenches by
studying the contributions of different number of particle sectors. Second, I derive
an exact solution via many-body path integrals for a finite size system which leads
to an expression in terms of Pfaffians—a generalized determinant for antisymmetric
matrices. This approach can be easily generalized to arbitrary non-local quench
types. Third, I deduce an alternative exact solution based on a formal similarity
of the local quench with a classic X-ray edge problem which reduces it to a non-
linear integral equation. I adapt a fine method from the theory of singular integral
equations which allows obtaining exact results for arbitrarily large systems. This
mathematical formalism provides a general recipe for numerically exact calculations
of a whole class of local quantum quenches.

Besides offering a deeper understanding of QSLs, I hope my thesis will have
an impact on two different methodological strands of research. On the one hand,
the benchmark results for an interacting 2D quantum spin system should lead to
an improved understanding of widely used approximations and of purely numerical
methods. On the other hand, the formalism which I have developed can address open
questions concerning quench dynamics of integrable models.

7.4 Open Questions and Outlook

Finally, I close the thesis by indicating open issues and by suggesting promising
directions for future research. Arguably, the most interesting question is how general
my findings are? The Kitaev model is a representative of a class of QSLs with
Majorana fermions coupled to a Z2 gauge field. Therefore, the qualitative features
I discover in response functions should be characteristic of this broad class of
topological states.

While a potential cold atom realization likely harbors few perturbations to the
Kitaev Hamiltonian, magnetic materials usually include other terms, e.g. additional
Heisenberg interactions. Both the flux gap and the fermion parity underpinning
my results are robust to such perturbations. Just as in the analogous case of the
Heisenberg chain, where integrability is imperfect in reality but all qualitative
features are well-observed experimentally, so I similarly expect quantitative changes
such as a small degree of smearing out of the ı-function response or a more gradual
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onset of the signal around the flux gap. A suitable starting point for studying how
breaking of integrability washes out these sharp features in the structure factor
is given by slave-particle mean-field approaches because they exactly reproduce
ground state properties of the integrable limit of the Kitaev–Heisenberg model
(Burnell and Nayak 2011; Schaffer et al. 2012). Hence, after using my exact results
as a benchmark at the integrable point, it is possible to take into account integrability
breaking corrections. In addition, it would be of great interest to calculate the Raman
scattering of the Kitaev–Heisenberg model via numerical methods, e.g. via ED or
DMRG, to confirm the validity of our perturbative treatment in Sect. 6.1.

A different interesting question concerns the influence of finite temperatures
(Nasu et al. 2014) on dynamical correlation functions in the Kitaev model. Due
to the fact that fluxes can be thermally excited, I expect that with increasing
temperature the sharp gap of the structure factor will be slowly filled in and again
the sharp ı-function component is likely to be broadened.

In the non-Abelian phase of the extended Kitaev model, a pair of fluxes leads to
a fermionic boundstate below the continuum, which in turn results in a ı-function
component in the structure factor. This particular example points to a generic
phenomenon. Hence, a more general study of the effect of boundstates on dynamical
response functions presents a promising area for future investigations.

Another direction for new research is the application of the theoretical methods
explained in detail in this thesis to generalizations of the Kitaev model to other
classes of QSLs and, especially, to higher dimensions. For the latter, the calculation
of the spin correlation function still takes the form of a local quantum quench
because each spin operator acting on the ground state introduces fluxes. The
response in the resulting quench will be mainly determined by the low energy
spectrum of the matter fermions. Therefore, depending on the Fermi surface
topology, singular behavior may appear.

From a different perspective, there are numerous open questions in the field of
non-equilibrium physics which can be partly addressed by the methods developed
in this thesis. One possibility is the study of defect production after different local
and global quench types including the effect of disorder.

Overall, one of the gratifying features of this work has been the bringing together
of questions on fractionalization at the cutting edge of modern condensed matter
physics with problems in many-body physics—both from the old days and very
current ones—from the X-ray edge to quantum quenches. For this reason alone,
I expect the topics discussed here, along with the methods developed, to remain of
considerable general interest for the foreseeable future.
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Appendix A
Pfaffians from Path Integrals

In this appendix, I present the calculation of the dynamical spin correlation function
for a finite size systems via an expression in terms of Pfaffians. In particular,
I concentrate on calculating the matrix element, Eq. (3.35),

Mq;l D hM0jaqe�itHa�l jM0i (A.1)

with anomalous terms in the Bogoliubov de Gennes Hamiltonian, see Eq. (2.16),

H D
X

ij

�
hija

�
i aj C 1

2
�
�
ijaiaj C 1

2
�ija

�
i a�j

�
: (A.2)

For the calculation of the correlation function, H is the two flux Hamiltonian, H D
H0 C Vz. However, the following derivation is completely general for an arbitrary
Hamiltonian H with the state jM0i not being its ground state or any Eigenstate. The
only requirement is that it can be written in terms of operators ai which annihilate
jM0i (the ground state of ai).

A.1 Pfaffians: Definition and Properties

As shown below, the so-called Pfaffians appear in Gaussian Grassmann integration
(Zinn-Justin 2002). Before embarking on the detailed calculation of the matrix
element, I briefly define what a Pfaffian is. I list some of the properties further
down. A Pfaffian is a generalization of the determinant for skew-symmetric (or anti-
symmetric) matrices �A D AT . It is always possible to write the determinant
of a skew symmetric matrix as a square of a polynomial in the matrix entries
(Zinn-Justin 2002)

© Springer International Publishing Switzerland 2016
J. Knolle, Dynamics of a Quantum Spin Liquid, Springer Theses,
DOI 10.1007/978-3-319-23953-8

105



106 A Pfaffians from Path Integrals

Pf2 .A/ D det .A/ : (A.3)

The formal definition of a Pfaffian for a 2N � 2N skew symmetric matrix A is

Pf .A/ D 1

2NNŠ

X

P2i1:::i2N

sgn.P/ai1;i2ai3;i4 � � � ai2N�1;i2N (A.4)

with matrix elements ai;j and sign sgn.P/ D ˙ of the permutation P. Hence, the
Pfaffian is a unique choice of the sign for the square root Pf.A/ D ˙pdet.A/. Note
that the Pfaffian of an odd dimensional matrix is zero. Several properties known
from determinants carry over in a modified way to Pfaffians (Zinn-Justin 2002;
Wimmer 2012):

• Multiplying a row and a column with a constant is the same as multiplying the
entire Pfaffian with this constant.

• Interchanging two rows and the corresponding columns flips the sign of the
Pfaffian.

• Adding multiples of a row and the corresponding column to another row and
corresponding column leaves the Pfaffian invariant.

Another very useful property for numerical computations is the expansion formula
for Pfaffians

Pf .A/ D
2NX

iD2
.�1/ia1iPf .A1i/ (A.5)

with the reduced matrix A1i being the matrix with rows and columns 1 and i
removed. In addition, I will use the relation

Pf.BABT/ D det.B/Pf.A/ (A.6)

for an arbitrary 2N � 2N matrix B.

A.2 Path Integrals

In order to calculate the matrix element, Eq. (A.1), via path integrals, I rewrite it
with the help of projectors as

Mq;l D
X

n

hnja�Na�N�1 : : : a
�
1aqe�itHa�l a1 : : : aN jni

D Tr
n
e�itHa�l a1 : : : aNa�Na�N�1 : : : a

�
1aq

o
: (A.7)
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Here, N is the total number of degrees of freedom. I commute a�l to the right and aq

to the left

Mq;l D .�1/qClTr
n
a�N : : : a

�
lC1a

�
l�1 : : : a

�
1e

�itHa1 : : : aq�1aqC1 : : : aN

o

� ıq;lTr
n
a�N : : : a

�
1e

�itHa1 : : : aN

o
(A.8)

such that one creation and one annihilation operator is missing in the first term and
all operators are present in the second term.

For the calculation of both matrix elements in Eq. (A.8) I continue with path
integrals. In Sect. A.4 I propose an alternative way.

The standard strategy proceeds as follows (Negele and Orland 2008): I derive
a generating functional F.J�; J/ such that the matrix elements, or higher order
Greens functions, are obtained by differentiating with respect to the corresponding
sources J�

k , Jl. (This is equivalent to deriving Wick’s theorem.)

Tr
n
a�N : : : a

�
1e

�itHa1 : : : aN

o
D @2N

@JN : : : @J1@J�
1 : : : @J�

N

FŒJ�
k ; Jl� (A.9)

The identity of anti-commuting Grassmann variables � can be written as (Negele
and Orland 2008)

1 D
Z NY

iD1
d��

i d�ie
�P

i �
�
i �i j�ih�j: (A.10)

such that

Tr
˚
e�itH� D

X

n

hnje�itHjni

D
Z NY

iD1
d��

i d�ie
�P

i �
�
i �i
X

n

hnj�ih�je�itHjni

D
Z NY

iD1
d��

i d�ie
�P

i �
�
i �ih��je�itHj�i: (A.11)

Now, I insert M-1 times the identity 1

Tr
˚
e�itH�

D
Z MY

lD1
d� l�d� le�P

l �
l��l

Z
d��d�e����h��je�i�tHj�M�1i

h�M�1je�i�tH � � � h�1je�i�tHj�i (A.12)
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with �t D t
M . The label i for the degrees of freedom is not written explicitly.

I relabel ��� D �M�, � D �0 and normal order the exponential in each time
step. All creation operators a� act on the left time step and all destruction operators
a on the right

h� lje�i�tHj� l�1i D e�i�t
n
hij�

l�
i �l�1

j C 1
2�ij�

l�
i �l�

j C 1
2�

�
ij�

l�1
i �l�1

j

o

e�
l�
i �l�1

i : (A.13)

Overall, I obtain (with all indices)

Tr
˚
e�itH� D

Z MY

lD1

NY

iD1
d� l�

i d� l
i

„ ƒ‚ …
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� exp

8
<

:
�

NX

i;jD1
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2
�ij�
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j C 1

2
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ij�
l�1
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j


�
9
=

;
: (A.14)

Instead of going to the continuum limit as usually done, I Fourier transform to
Matsubara space

� l
i D 1p

M

pD M
2X

pD� M
2

'
p
i ei!pl with !p D 2�

M

	
p C 1

2



: (A.15)

The sum over Matsubara frequencies can be split into positive and negative
components (note e�i!�p�1 D eCi!p ). I put a common factor it into the definition
of h and �,

Tr
˚
e�itH� D

Z
DŒ��

� exp

8
<̂

:̂
�

N; M
2X

i;jD1;pD0

h
'

p�
i '

�p�1
i

i
"
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>=
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(A.16)

which can be further simplified in the large M ! 1 limit:

Tr
˚
e�itH� D

Z
DŒ�� exp

(

�
X
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'p� '�p�1�

�
i!p C 1

2
h 1
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2
�� i!p � 1
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The large M limit actually introduces a phase ambiguity which needs to be handled
with care, see further down.

To evaluate Eq. (A.17), I follow Sect. 2.1.1 and diagonalize the Hamiltonian

H D 1

2

h
a�i ai

i � h �

�� �hT

�"
aj

a�j

#

� Ǫ � OH Ǫ (A.18)

with the Bogoliubov transformation OT (Blaizot and Ripka 1986)

Ǒ D OT Ǫ and OT OH OT�1 D 1

2

�
�n 0

0 ��n

�
(A.19)

with Eigenvalues �n on the diagonal and a positive sign on the upper N � N block
and a negative sign for the lower N � N block. Note, in Eq. (2.19) the Eigenvalues
are called En but here the Eigenvalues come with an additional factor it. To keep this
in mind they are relabeled by �n. The Hamiltonian becomes

H D
X

n>0

�nb�nbn � 1

2

X

n>0

�n (A.20)

and by having redefined the energies, I do not need to carry around the additional
factor of it. I also ignore the constant phase in the remainder and restore it in the
final expression. As before the Eigenvector matrices are given by

OT�1 D
�X T Y�

YT X �

�
and OT D

�X � Y�
Y X

�
(A.21)

with each entry being an N � N matrix. Recall, the present Bogoliubov transfor-
mation relates the flux free sector (a operators diagonalizing H0) and the two flux
sector (b operators diagonalizing H0 C Vz), therefore, my curley notation follows
the convention of Sect. 2.1.1.

A.2.1 Determinant

To evaluate Eq. (A.17) I introduce O'p� D �
'p� '�p�1� and O'p� OT�1 D O p� D�

 
p�
1  

p
2

�
to obtain
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9
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: (A.22)
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Written in components I evaluate the Gaussian integral
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(A.24)

I used the formula
P1

pD�1 log .i!p C�n/ D log Œ1C exp .��n/�, see, for exam-
ple, the book Altland and Simons (2006). Note, in the last line I have taken out the
factor it from the definition of �n to recover the standard energies EF

n .

A.2.2 Generating Functional

I construct the generating functional by adding source terms to the path integral
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I define OJp� D
h
Jp�

i �J�p�1
i

i
and rewrite the sources as

P
p O'p� OJp C OJp� O'p. With the

Bogoliubov transformation the Gaussian integrals are calculated as
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The expression is in Matsubara frequency space. Since all operators a�i ; aj in

Tr
n
� � � a�i � � � e�itH � � � aj � � �

o
act on the same real time index M, I Fourier transform

back

Jp�
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to get

FŒJ�; J� D D0 exp
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(A.28)

I only need time index M for the functional derivatives, e.g. @2

@JM
i @JM�

j
FŒJ�; J�, thus

I can put m D m0 D M and all the exponentials are 1. Then, the sum over
Matsubara frequencies can be put into the matrix because the transformation OT is
independent of p. Because of the previous large M limit, the resulting sums are
actually not convergent and need to be properly regularized. Therefore, there is a
phase ambiguity in carrying out the sums. To proceed, I extend the sum from �1
to C1 and introduce the following preliminary definitions

1X

pD�1

1

i!p ˙�n
� n�.�n/: (A.29)

I take care of the regularization further down when comparing the path integral
approach to an alternative calculation, see Sect. A.4. In fact, n�.�n/ D 1

1Ce˙�n

turns out to be the Fermi function.
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With these definitions I obtain

FŒJ�; J� D D0 exp
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1
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i �Ji

� OT�1
�

n�.�n/ 0

0 nC.�n/
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�J�
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(A.30)

and the factor of 1
2

is due to the fact that the sums are extended to negative
frequencies. I dropped the time index M. The matrix can now be simplified to

OT�1
�

n�.�n/ 0

0 nC.�n/

�
OT D

�A B
C D

�
with

A D X Tn�X � C Y�nCY
B D X Tn�Y� C Y�nCX
C D YTn�X � C X �nCY
D D YTn�Y� C X �nCX (A.31)

such that overall the generating functional is

FŒJ�; J� D D0 exp

	
1

2

˚
J�

i Ai;jJj � J�
i Bi;jJ

�
j � JiCi;jJj C JiDi;jJ

�
j

�

: (A.32)

I can check its validity by looking at the situation without anomalous terms. In this
case, I need Ai;j D �DT

i;j to recover the standard result (Negele and Orland 2008).
At this point, the phase ambiguity from the regularization of the sums becomes
obvious. It needs to be resolved in a different way, see Sect. A.4.

A.2.3 Matrix Elements

In principle, I could start with differentiating with respect to the sources to calculate
both matrix elements, Eq. (A.8), but the procedure turns out to be difficult due to the
appearance of the anomalous contributions. To make progress in deriving a version
of the Wick theorem with anomalous terms, I proceed in a different way. I reorder
the exponential into an antisymmetric matrix

FŒJ�; J� D D0 exp
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; (A.33)
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which gives the final expression for the generating functional. The matrix OS�1
i;j D

�OS�1
j;i is antisymmetric by construction.
Next, I concentrate on the matrix elements, e.g.

Tr
n
a�N : : : a

�
1e

�itHa1 : : : aN

o
D .�1/N

Z
DŒ��e�SŒ�;����M�
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1 �01 : : : �

0
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„ ƒ‚ …

D1

@2N

@JN : : : @J1@J�
1 : : : @J�

N

FŒJ�; J�

: (A.34)

On the left side, in the trace all creation and annihilation operators act on the same
time t D 0. In constructing the path integral all a� act on the left time step h��j
which gives a factor .�1/N and all a act on the right time step with index 0. As usual
I identify the time steps M D 0 such that Eq. (A.9) is recovered. I have dropped the
time index.

For Grassman variables differentiation is the same as integration (Zinn-Justin
2002) such that

R
d�iA D @

@�i
A or

@2N

@JN : : : @J1@J�
1 : : : @J�

N

FŒJ�; J� D
Z

dJN : : : dJ1dJ�
1 : : : dJ�

NFŒJ�; J�: (A.35)

I use this mathematical identity for deriving all the matrix elements because in the
end integration is formally easier. First, I check the simple single-particle Greens
function
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(A.36)

such that

Tr
n
a�j e�itHai

o
D D0Ai;j: (A.37)

In a similar way, I obtain

Tr
˚
aje

�itHai
� D D0Bi;j

Tr
n
a�j e�itHa�i

o
D D0Ci;j: (A.38)

A comparison with Eqs. (A.55)–(A.57) of Sect. A.4 fixes the phase ambiguity.
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Second, I consider the higher Greens functions by relabeling ŒJ�
1 : : : J

�
NJ1 : : : JN �

! Œ�1 : : : �2N �. I start with the matrix element with creation and annihilation
operators running over the entire degrees of freedom 1 : : :N.
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(A.39)

The Gaussian integration of antisymmetric matrices with Grassmann variables, see,
e.g., the book Zinn-Justin (2002), gives a Pfaffian for
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Third, in the matrix element Mq;l, see Eq. (A.8), there is a second contribution
with one creation and one annihilation operator missing.
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How to evaluate this integral? Expanding the exponential only terms of the order
.2N � 2/ survives
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2N�1.N � 1/Š
X

P2i1:::�	il:::����i2N�k :::i2N

sgn.P/S�1
i1;i2S

�1
i3;i4 : : : S

�1
i2N�1;i2N

D Pf.OS�1
Œ2N�k;l�/:

(A.42)

The matrix OS�1
Œ2N�k;l� is defined as the .2N � 2/� .2N � 2/ matrix with lines .2N � k/

and l, as well as, columns .2N � k/ and l removed. I obtain

Tr
n
a�N : : : 

��a

�
k : : : a

�
1e

�itHa1 : : :��al : : : aN

o
D D0.�1/

.N�1/.N�2/
2 Pf

�OS�1
Œ2N�k;l�

�
: (A.43)
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A.3 Final Result

Finally, I want to combine all contributions. In Eq. (A.43) I need to calculate the
Pfaffian of a .2N � 2/ � .2N � 2/ matrix (two lines and columns in OS�1

Œ2N�k;l�
removed). While programming the above expressions I realized that the determinant
D0 is getting very large while the Pfaffians are very small which creates problems
due to numerical errors. To overcome this issue, I take advantage of the property
Pf.BABT/ D det.B/Pf.A/ Eq. (A.6). I construct a matrix OB by observing that the
determinant can be written as

D0 D
Y

n

.1C e�itEF
n / D det

2

66666
6666
4

1C e�itEF
1

: : :

1C e�itEF
N

1
: : :

1

3

77777
7777
5

D det. OB/:

(A.44)

Then, I can easily calculate D0Pf
�OS�1

�
D Pf

� OBOS�1 OBT
�

, which cures the numerical

errors. For the other Pfaffian, I use the expansion formula, Eq. (A.5), to derive the
identity

Pf

2

66
666
4

�	l ��������2N � k

�	l C � C �
j j

��������2N � k C � C �
j j

3

77
777
5

„ ƒ‚ …
	OS�1

Œ2N�k;l�

D .�1/lCk � .�1/NC1Pf

2

66
666
4

0 0

0 0 0 C1 0
0 0

0 �1 0 0 0

0 0

3

77
777
5

„ ƒ‚ …
	OS�1

f2N�k;lg

(A.45)

in which the Pfaffian on the right is calculated from the 2N�2N matrix OS�1
f2N�k;lg with

all 0’s on rows and columns .2N � k/, l and the matrix elements OS�1
l;2N�k D �1 and

OS�1
2N�k;l D C1. Combining prefactors .�1/ .N�1/.N�2/

2 D .�1/ N.N�1/
2 � .�1/N�1 gives

.�1/kClTr
n
a�N : : :����a

�
k : : : a

�
1e

�itHa1 : : :��al : : : aN

o
D D0.�1/ N.N�1/

2 Pf
�OS�1

f2N�k;lg
�

(A.46)

with a Pfaffian over the desired 2N � 2N matrix. Now, I can again combine det( OB)
and Pf(OS�1

f2N�k;lg) via Eq. (A.6).
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Finally, putting together all contributions of the matrix element

Mq;l D h0jaqe�itHa�l j0i
D .�1/qClTr

n
a�N : : : a

�
lC1a

�
l�1 : : : a

�
1e

�itHa1 : : : aq�1aqC1 : : : aN

o

� ıq;l � Tr
n
a�N : : : a

�
1e

�itHa1 : : : aN

o
(A.47)

I obtain

Mq;l D e�itEF
0 .�1/ N.N�1/

2

n
Pf
� OBOS�1

f2N�k;lg OBT
�

� ıq;l � Pf
� OBOS�1 OBT

�o
: (A.48)

All numbers are of the same order such that the numerical calculation is well
behaved. I calculate the Pfaffians with the numerical algorithm developed in
Wimmer (2012).

A.4 Pfaffians Without Path Integrals

In this section I outline an alternative way of calculating the matrix elements
Eq. (A.1) with anomalous terms in the Hamiltonian H. In doing so, I can fix the
proper regularization for the sums in Eq. (A.29). I recover identical results as for the
path integral formalism for the single particle Greens function.

Again, a Bogoliubov transformation diagonalizes the two flux Hamiltonian. The
operators transform as in Eq. (2.21)

ai D X T
ik bk C Y�

ikb�k

a�j D YT
jl bl C X �

jl b
�
l (A.49)

with a summation over double indices.

A.4.1 Single Particle Greens Function

First, I consider the single particle Greens function of the “diagonal” operators b

he��nb
�
nbn bkb�pi D (A.50)
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with a sum over n implied in the exponent. For the statistical average h: : :i I choose
all states with a definite number of b particles.

D he��nb
�
nbn.ık;p � b�pbk/i D he��n Onn.1 � Onp/iık;p

D he��1 On1e��2 On2 : : : e��N OnN .1 � Onp/e
��p Onpiık;p

D
Y

n¤p

.1C e��n/ h.1 � Onp/e
��p Onpi

„ ƒ‚ …
D1

ık;p D
Y

n>0

.1C e��n/

„ ƒ‚ …
D0

1

1C e��p
„ ƒ‚ …

	n�.�p/

ık;p

(A.51)

All together I get

he��nb
�
nbn bkb�pi D D0n

�.�p/ık;p (A.52)

and similarly

he��nb
�
nbn b�kbpi D D0n

C.�p/ık;p: (A.53)

Second, I consider the single particle Greens function of the original a operators
in which I am mainly interested in

he�Haia
�
j i D

D
e�H

h
X T

ik bk C Y�
ikb�k

i h
YT

jpbp C X �
jpb�p

iE

D
D
e�H

h
X T

ikX �
jpbkb�p C Y�

ikYT
jpb�kbp

iE

D

8
<̂

:̂
X T

ikX �
jp he�Hbkb�pi
„ ƒ‚ …

Eq. (A.52)

CY�
ikYT

jp he�Hb�kbpi
„ ƒ‚ …

Eq. (A.53)

9
>=

>;
: (A.54)

I obtain the familiar result

he�Haia
�
j i D D0

n
X T

ikX �
jkn�.�k/C Y�

ikYT
jknC.�k/

o

„ ƒ‚ …
	Ai;j see Eq. (A.37)

(A.55)

with the definition of the matrix A being equivalent to the one obtained via path
integrals, compare to Eq. (A.37). Here, n�.�k/ is indeed the Fermi function and the
phase ambiguity is resolved. Similarly, I calculate the other possibilities.
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he�Haiaji D D0

n
X T

ikY�
jkn�.�k/C Y�

ikX T
jk nC.�k/

o

„ ƒ‚ …
	Bi;j see Eq. (A.38)

(A.56)

he�Ha�i a�j i D D0

n
YT

ikX �
jkn�.�k/C X �

ikYT
jknC.�k/

o

„ ƒ‚ …
	Ci;j see Eq. (A.38)

(A.57)

A.4.2 Two Particle Greens Function

Third, I calculate the two particle Greens function for the a operators.

he�Haiai0a
�
j a�j0i D

D
e�H

h
X T

ik bk CY�
ikb�k

ih
X T

i0k0bk0 CY�

i0k0b
�

k0

i

h
YT

jpbpCX �
jpb�p

ih
YT

j0p0bp0 CX �

j0p0b
�

p0

iE

D he�HfX T
ikX T

i0k0X �
jpX �

j0p0bkbk0b�pb�p0 C Y�
ikY�

i0k0YT
jpYT

j0p0b
�
kb�k0bpbp0

C X T
ikY�

i0k0YT
jpX �

j0p0bkb�k0bpb�p0

C X T
ikY�

i0k0X �
jpYT

j0p0bkb�k0b�pbp0

C Y�
ikX T

i0k0YT
jpX �

j0p0b
�
kbk0bpb�p0 C Y�

ikX T
i0k0X �

jpYT
j0p0b

�
kbk0b�pbp0gi

(A.58)

I need to consider all six different combinations of b operators and evaluate the
averages

he�Hbkbk0b�pb�p0i D he�Hbkbk0b�k0b
�
kiık;p0ık0;p C he�Hbkbk0b�kb�k0iık;pık0;p0

D he��nb
�
nbn bk bk0 b�k0

„ƒ‚…
1�Onk0

b�kiık;p0ık0;p C he��nb
�
nbn bkbk0 b�kb�k0

„ƒ‚…
�b

�

k0 b
�
k

iık;pık0;p0

D he��nb
�
nbn.1 � Onk0/.1 � Onk/i

�
ık;p0ık0;p � ık;pık0;p0

�

D
Y

n>0

.1C e��n/

„ ƒ‚ …
D0

n�.�k/n
�.�k0/

�
ık;p0ık0;p � ık;pık0;p0

�
:

(A.59)
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Overall, I obtain:

•

he�Hbkbk0b�pb�p0i D D0 � n�.�k/n
�.�k0/

�
ık;p0ık0;p � ık;pık0;p0

�
(A.60)

•

he�Hb�kb�k0bpbp0i D D0 � nC.�k/n
C.�k0/

�
ık;p0ık0;p � ık;pık0;p0

�
(A.61)

•

he�Hbkb�k0bpb�p0iD D0 � n�.�k/n
C.�k0/ık;p0ık0;pCD0 � n�.�k/n

�.�p/ık;k0ıp;p0

(A.62)

•

he�Hbkb�k0b�pbp0iD �D0 � n�.�k/n
C.�k0/ık;pık0;p0CD0 � n�.�k/n

C.�p/ık;k0ıp;p0

(A.63)

•

he�Hb�kbk0bpb�p0iD �D0 � nC.�k/n
�.�k0/ık;pık0;p0CD0 � nC.�k/n

�.�p/ık;k0ıp;p0

(A.64)

•

he�Hb�kbk0b�pbp0iDD0 � nC.�k/n
�.�k0/ık0;pık;p0CD0 � nC.�k/n

C.�p/ık;k0ıp;p0 :

(A.65)

I collect all terms

he�Haiai0 a
�
j a�j0i D D0ık;k0ıp;p0fX T

ikY�i0k0YT
jpX �

j0p0 n
�.�k/n

�.�p/

C X T
ikY�i0k0X �

jpYT
j0p0 n�.�k/n

C.�p/C Y�ikX T
i0k0YT

jpX �

j0p0 n
C.�k/n

�.�p/

C Y�ikX T
i0k0X �

jpYT
j0p0 nC.�k/n

C.�p/gC

� D0ık;pık0;p0fX T
ikX T

i0k0X �
jpX

�

j0p0 n
�.�k/n

�.�k0/

C Y�ikY
�

i0k0YT
jpYT

j0p0 nC.�k/n
C.�k0/

C X T
ikY�i0k0X �

jpYT
j0p0 n�.�k/n

C.�k0/C Y�ikX T
i0k0YT

jpX �

j0p0 n
C.�k/n

�.�k0/g

C D0ık;p0ık0;pfX T
ikX T

i0k0X �
jpX

�

j0p0 n
�.�k/n

�.�k0/
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C Y�ikY
�

i0k0YT
jpYT

j0p0 nC.�k/n
C.�k0/

C X T
ikY�i0k0YT

jpX �

j0p0 n
�.�k/n

C.�k0/

C Y�ikX T
i0k0X �

jpYT
j0p0 nC.�k/n

�.�k0/g (A.66)

and regroup them

he�Haiai0 a
�
j a�j0i

D D0
h
YT

jpX �

j0pn�.�p/CX �
jpYT

j0pnC.�p/
i

„ ƒ‚ …
	Cj;j0

h
X T

ikY�i0kn�.�k/CY�ikX T
i0knC.�k/

i

„ ƒ‚ …
	Bi;i0

C

� D0
h
X T

i0k0X �

j0k0 n
�.�k0/CY�i0k0YT

j0k0 nC.�k0/
i

„ ƒ‚ …
	Ai0 ;j0

h
X T

ikX �
jkn�.�k/CY�ikYT

jknC.�k/
i

„ ƒ‚ …
	Ai;j

C D0
h
X T

i0k0X �

jk0 n
�.�k0/C Y�i0k0YT

jk0 nC.�k0/
i

„ ƒ‚ …
	Ai0 ;j

h
X T

ikX �

j0kn�.�k/C Y�ikYT
j0knC.�k/

i

„ ƒ‚ …
	Ai;j0

:

(A.67)

I obtain

he�Haiai0 a
�
j a�j0i D D0

�Cj;j0Bi;i0 � Ai0;j0Ai;j C Ai0;jAi;j0
�

(A.68)

with the previous definition of the matrices A,B, and C in Eq. (A.31). Finally, the
right-hand side can be written as a Pfaffian.

he�Haiai0a
�
j a�j0i D D0Pf

2

66
4

0 �Bi;i0 Ai;j Ai;j0

Bi;i0 0 Ai0;j Ai0;j0

�Ai;j �Ai0;j 0 �Cj;j0

�Ai;j0 �Ai0;j0 Cj;j0 0

3

77
5 (A.69)

A.4.3 Arbitrary Greens Function

So far, I have managed to show two things: On the one hand, I fixed the proper
regularization of Matsubara sums in Eq. (A.29), which gives indeed the appropriate
Fermi functions. On the other hand, I can write higher order Greens functions
in terms of a Pfaffian in agreement with the result derived from path integrals.
However, I have only shown the latter for the two particle Greens function. To obtain
the general result, it would be necessary to generalize the procedure to arbitrary
orders. I expect the same result as from path integrals:
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he�Hai1 � � � ain a�j1 � � � a�jni

D D0Pf

2

666666
666666
666
4

0 �Bi1;i2 � � � �Bi1;in Ai1;j1 Ai1;j2 � � � Ai1;jn

�Bi2;i1
: : :

::: Ai2;j1
: : :

:::
:::

:::
:::

:::

�Bin;i1 � � � � � � 0 Ain;j1 � � � � � � Ain;jn

0 �Ci1;i2 � � � �Ci1;in

OAT �Ci2;i1
: : :

:::
:::

:::

�Cin;i1 � � � � � � 0

3

777777
777777
777
5

„ ƒ‚ …
	OS�1 see Eq. (A.33)

(A.70)



Appendix B
X-Ray Edge and Singular Integral Equations

In this appendix, I show the explicit calculation of the dynamical spin correlation
function in terms of matter fermions, Szz

A0B0=A0.t/ D i ŒG.t; 0/˙ G.0; t/�, via the
X-ray edge approach which enables me to obtain exact results in the thermodynamic
limit N ! 1.

B.1 Mapping Without Anomalous Terms

At first sight, it seems that the spin correlation function Szz
A0B0.t/ D hŒf0.t/ C

f �0 .t/�Œf
�
0 .0/ � f0.0/�S.t; 0/i, Eq. (3.36), has contributions both from normal and

anomalous bare GF (Abrikosov 2012)

G0.t; t
0/ D �ihTf0.t/f

�
0 .t

0/i D �i
h
‚.t � t0/hf0.t/f �0 .t0/i �‚.t0 � t/hf �0 .t0/f0.t/i

i

(B.1)

F0.t; t
0/ D �ihTf0.t/f0.t

0/i D �i
�
‚.t � t0/hf0.t/f0.t0/i �‚.t0 � t/hf0.t0/f0.t/i

�

and analogous for F�
0 / hf �0 f �0 i. The averages can be calculated with the time

dependence in the Heisenberg picture as iPaq D �
aq;H0

� D 2jS.q/jaq, which

leads to aq.t/ D aqe�it2jS.q/j such that the normal averages are hf0.t/f �0 .t0/i D
1
N

P
q cos2 �qe�i2jS.q/j.t�t0/ and hf �0 .t0/f0.t/i D 1

N

P
q sin2 �qeCi2jS.q/j.t�t0/. In the

following, I need the bare normal GF in frequency space
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G0.!/ D
Z 1

�1
dtG0.t/e

i!t (B.2)

G0.!/ D 1

N

X

k

"
cos .�k/

2

! � 2jS.k/j C iı
C sin .�k/

2

! C 2jS.k/j � iı

#

:

which gives the standard retarded and advanced GF, see, for example, Abrikosov
(2012)

G
R
A
0 .!/ D 1

N

X

k

"
cos .�k/

2

! � 2jS.k/j ˙ iı
C sin .�k/

2

! C 2jS.k/j ˙ iı

#

I (B.3)

the former is analytic in the upper and the latter in the lower half plane. From this
expression the bare GF can be calculated up to arbitrary precision by adapting the
size N of the BZ momentum grid.

A major simplification and one of the reasons why it is possible to compute the
correlation function exactly via an X-ray edge analogy is the fact that the anomalous
average hf0.t/f0.t0/i D �i

N

P
q sin �q cos �qe�i2jS.q/j.t�t0/ is always zero. Recall that

��q D ��q and the sum over q has positive and negative contributions. Then
cos ��q D cos �q is even, jS.�q/j D jS.q/j is even, but sin ��q D � sin �q is odd;
thus, the anomalous average is zero.

Moreover, due to the fact that Vz is of the simple local form f �0 f0 the full
anomalous GF is also zero

hf0.t/f0.t0/i D 0 �! hf0.t/f0.0/Te�i
R t
0 dt0Vz.t0/i D 0 (B.4)

which is easily shown by expanding the exponential and applying Wicks theorem
(Abrikosov 2012). Therefore, the correlation function is reduced to Szz

A0B0=A0.t/ D
i ŒG.t; 0/˙ G.0; t/�, Eq. (3.39). It is mathematically equivalent to an X-ray edge
problem but the physics turns out to be quite different because of the vanishing
density of states and the fact that it is a quench of Majorana fermions.

B.2 Dyson Equation

I concentrate on calculating the full GFs, Eqs. (3.40), (3.41), exactly by mapping
them to an integral equation (Nozieres and DeDominicis 1969). The full GF
is split into a product of connected and disconnected contributions G.t; 0/ D
Gc.t; 0/L.t; 0/, analogous for G.0; t/, and I expand the time ordered exponential
for the connected part
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Gc.t; t
0/

D �i

*

Tf .t/

" 1X

nD0

.i/n

nŠ
.4Jz/

n
Z t

t0
dt1 : : :

Z t

t0
dtnf �0 .t1/f0.t1/ : : : f

�
0 .tn/f0.tn/

#

f �0 .t
0/
+

c

:

(B.5)

The sublabel h: : :ic indicates that in the expansion at a given order n the pairing from
Wick’s theorem is such that all times t, t1, t2, . . . , tn, t0 are connected. For example,
the most obvious is the pairing .t; t1/,.t1; t2/,. . . ,.tn; t0/, but this is not the only one.
In general, different pairings can be thought of as a relabeling of the time indices ti
in the expansion which can be done in nŠ ways at order n. This factor cancels the 1

nŠ
of the expansion such that

Gc.t; t
0/ D G0.t; t

0/C
1X

nD1
.�4Jz/

n
Z t

t0
dt1 : : :

Z t

t0
dtnG0.t; t1/G0.t1; t2/ : : :G0.tn; t

0/

(B.6)

which is an infinite series whose sum gives the Dyson equation

Gc.t; t
0/ D G0.t; t

0/ � 4Jz

Z t

t0
dt1G0.t; t1/Gc.t1; t

0/: (B.7)

The diagrammatic form of the Dyson equation is shown in Fig. B.1 panel (a).
The same procedure gives a Dyson equation for the negative time GF, Eq. (3.41),

Gc.t
0; t/ D G0.t

0; t/ � 4Jz

Z t

t0
dt1G0.t1; t/Gc.t

0; t1/: (B.8)

= x+
t t' t t' t t1 t'

C(t) =

a

b

x

x x
x

x

x
+1/2 +1/3 + . . .

Fig. B.1 The diagrammatic form of the Dyson equation, Eq. (B.7), is shown in the upper panel
(a). The closed loop contribution C.t/ D P1

nD1 Cn.t; 0/, Eq. (B.10), is presented in the lower
panel (b). The bare GF G0 is represented by a single line and the fully connected GF Gc by a
double line. The impurity potential 4Jz and the intermediate time integral are denoted by a cross
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B.2.1 Closed Loops

The second contribution to the full GF, see Eq. (3.45), comes from the disconnected
parts

L.t; t0/ � hTe�i
R t

t0 dt1V.t1/i D e
P1

nD1 Cn.t;t0/ (B.9)

with Cn being the closed loop pairing of the nth order expansion of the exponential.
The last equality is known as the Linked Cluster theorem (Abrikosov 2012). Closed
loop pairing means that starting at time t1, the paring goes all the way back to t1,
e.g., at order n the pairs .t1; t2/,.t2; t3/,. . . .tn; t1/ appear. As before it is possible
to account for the multiplicity of the equivalent diagrams by relabeling .n � 1/

time arguments which gives a factor of .n � 1/Š. Together with the 1
nŠ of the

exponential a nonuniversal factor 1
n appears in every order. This factor is a general

feature of closed loop expansions and equivalently appears in the calculation of the
thermodynamic potential (Abrikosov 2012)

1X

nD1
Cn.t; t

0/ D �
1X

nD1

.�4Jz/
n

n

Z t

t0
dt1 : : :

Z t

t0
dtnG0.t1; t2/G0.t2; t3/ : : :G0.tn; t1/:

(B.10)

Notice the extra minus sign from the closed loop. In Fig. B.1 panel (b) the
diagrammatic form of the expansion is shown.

Of course, I would like to sum this series similar to the Dyson equation, Eq. (B.7),
but what about the factor 1

n ? With the identity

(B.11)

it is possible to overcome this problem (Nozieres and DeDominicis 1969) and I
obtain for the closed loop contribution

L.t; t0/ D e
P1

nD1 Cn.t;t0/ D e4Jz
R t

t0 dt1
R 1
0 d
G
c .t1;t1C0CIt0;t/ (B.12)

with a new Dyson equation for the 
-dependent connected GF G

c .t; t

0I � 0; �/ which
depends on the integration boundaries � 0 and �

G

c .t; t

0I � 0; �/ D G0.t; t
0/ � 4Jz


Z �

� 0

dt1G0.t; t1/G


con.t1; t

0I � 0; �/: (B.13)

.4Jz/
n

n C 1
D

Z 1

0

d�.�4Jz/
n
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B.2.2 Discretization in Real Time

The first and obvious way to solve the Dyson equations, Eqs. (B.7) and (B.13), is
to treat them numerically in their discretized forms. For example, Eq. (B.7) can be
written as

Gc.tj; 0/ D G0.tj; 0/C
MX

nD1
OKtj;tn Gc.tn; 0/ (B.14)

with the time interval Œ0; t� divided into M steps with size �t D t
M and the matrix

OKtj;tn � �4Jz�tG0.tj; tn/. The closed loops are calculated as
P1

nD1 Cn.t; t0/ D
�Tr

P1
nD1 1n

� OK
�n D Tr log

�
1 � OK

�
. Finally, I use the identity Tr log D log det to

obtain an expression which can be evaluated numerically instead of the additional

-integral, Eq. (B.12),

L.t; t0/ � hTe�i
R t

t0 dt1V.t1/i D det
�
1 � OK

�
: (B.15)

I tried to take advantage of the fact that OK / OG0 D G0.tj; ti/ D G0.tj � ti/ with tj
and ti in the interval Œ0; t� is a Toeplitz matrix, but a complication appears: For time
arguments .tj � ti/ larger or smaller than 0 the bare GF G0.tj � ti/ is smooth and
depends only on the difference of the time arguments but at t D 0 a discontinuous
step appears (because at t D 0 the‚-functions in Eq. (B.1) switch). Thus the kernel
of the integral equation is not smooth which spoils the convergence properties of a
numerical treatment significantly (Press et al. 2007). The singularity also prevents
the efficient use of asymptotic formulas of large Toeplitz matrix series (Gutman
et al. 2011).

B.3 Dyson Equation in Frequency
Representation-Muskhelishvili Method

A different way to solve the Dyson equation and to calculate the closed loop
contributions is based on the idea to reduce a singular integral equation to a non-
singular integral equation with the same solutions and with much better convergence
properties (Muskhelishvili 1953). I elaborate a formalism which was first introduced
in Grebennikov et al. (1977) for the X-ray edge problem. The authors investigated
whether the exact result for the edge singularity (Nozieres and DeDominicis 1969),
which crucially relies on the specific form G0.t/ / i�0

t of the long time asymptotic
of the bare GF, is sufficient to describe the full X-ray photoelectron spectra. Their
main conclusion is that for special fillings and for singularities in the density of
states the behavior is not only governed by the low energy (or long time) asymptotic
form of the bare GF.
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I illustrate the treatment of the integral equation by looking at the Dyson equation
for the positive time connected GF, Eq. (B.7), which I rewrite in a slightly modified
form as

Gc.�; t/ D G0.�/ � u
Z t

0

d�1G0.� � �1/Gc.�1; t/ (B.16)

with the interaction constant u D 4Jz and the connected GF Gc.�; t/ which depends
explicitly on the time argument � and the upper integration boundary t. Instead of
the 
-integral, Eq. (B.13), the closed loop contribution can also be calculated via

1X

nD1
Cn.t; 0/ D u

Z t

0

dt1Gc.� D 0�; t1/: (B.17)

Once the connected GF Gc.�; t/ is known, I am able to calculate the full GF, and
thus, the full dynamical correlation function.

I Fourier transform the first time argument Gc.!; t/ D R1
�1 d�ei!�Gc.�; t/ and

the bare GF G0.!/ D R1
�1 d�ei!�G0.�/ such that the Dyson equation, Eq. (B.16), is

Gc.!; t/ D G0.!/ � uG0.!/

Z 1

�1
d!1
2� i

ei.!�!1/t � 1
! � !1 Gc.!1; t/: (B.18)

Next, I introduce the renormalized function

QGc.!; t/ D Gc.!; t/

G0.!/
(B.19)

and the Dyson equation becomes

QGc.!; t/ D 1 � u
Z 1

�1
d!1
2� i

ei.!�!1/t � 1
! � !1 Gc.!1; t/: (B.20)

By showing that the function defined by the closed loop integral around the upper

half plane
H QGc.!;t/

!�!0 D 0, it is proven that QGc.!; t/ is analytic in the upper half plane.
Similarly, e�i!t QGc.!; t/ turns out to be analytic in the lower half plane. Then, I use
analytic properties of the bare GF (Abrikosov 2012), which I separate into advanced
and retarded components GA

0 and GR
0 , to split the integration into two parts. (Note

that the chemical potential � D 0 in my case in contrast to Grebennikov et al.
(1977).)

QGc.!; t/ D 1 � u
Z 0

�1
d!1
2� i

ei.!�!1/t � 1
! � !1

QGc.!1; t/G
A
0 .!1/ (B.21)

� u
Z 1

0

d!1
2� i

ei.!�!1/t � 1
! � !1

QGc.!1; t/G
R
0 .!1/
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Finally, I use the standard relations ReGA
0 D ReGR

0 and ImGA
0 D �ImGR

0 to connect
the retarded and advanced GF GR

0 D GA
0 � 2iImGA

0 in order to obtain a singular
integral equation (SIE) with a Cauchy type kernel

Œ1 C uReG0.!/� QGc.!; t/ C 1

i�

Z 1

�1
d!1

QGc.!1; t/

!1 � !
iuImGA

0 .!1/ (B.22)

� �
ei.!�!1/t C �

1 � ei.!�!1/t
�

‚.�!1/
� D 1:

In this equation only the first term of the sum under the integral is singular.
So far I succeeded in doing two things: First, the range of integration is finite

since the density of state ImGA
0 has only finite support. Second, I have brought the

present SIE into a form, such that I can remove the Cauchy type singularity via
the technique of Muskhelishvili (1953).

In the most general form, a standard SIE for the function QGc.!; t/ can be
written as

f D OK2
QGc

f .!/ D A2.!/ QGc.!; t/ C 1

i�

Z

L

K2.!; !1/ QGc.!1; t/

!1 � !
d!1

f .!/ D A2.!/ QGc.!; t/ C B2.!/

i�

Z

L

QGc.!1; t/

!1 � !
d!1 C 1

i�

Z

L

k.!; !1/ QGc.!1; t/

!1 � !
d!1

(B.23)

with B2.!/ D K2.!; !/ and k.!; !1/ D K2.!; !1/ � K2.!; !/. In the last line, I
have separated out the singular term / B2.!/.

Comparing my SIE, Eq. (B.22), with the general form, Eq. (B.23), I can read off

A2.!/ D Œ1 C uReG0.!/� (B.24)

K2.!; !1/ D iuImGA
0 .!1/

�
ei.!�!1/t C �

1 � ei.!�!1/t
�

‚.�!1/
�

(B.25)

B2.!/ D iuImGA
0 .!/ (B.26)

f .!/ D 1: (B.27)

Now, the central idea is to find a new integral operator OK1 that reduces OK2 such that
the new integral equation

OK1f D OK1
OK2

QGc (B.28)

is non-singular and has the same solutions as the SIE f D OK2
QGc. The key question

is how to find such an operator OK1?
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With the help of the Poincare-Betrand formula for principal values (Nozieres and
DeDominicis 1969)

P
1

!1 � ! P
1

!1 � !2 D P
1

!2 � !
�

P
1

!1 � !2 � P
1

!1 � !
�

C �2ı.!1 � !/ı.!1 � !2/
(B.29)

I write the reduced integral equation, Eq. (B.28), as

OK1 � 1 D ŒA1.!/A2.!/C B1.!/B2.!/� QGc.!; t/C ŒA1.!/B2.!/C B1.!/A2.!/�

� 1

i�

Z

L

QGc.!1; t/

!1 � ! d!1 C 1

i�

Z

L
d!1

QGc.!1; t/

!1 � ! (B.30)

� fA1.!/ ŒK2.!; !1/ � K2.!; !/�C ŒA2.!1/K1.!; !1/ � A2.!/K1.!; !/�g

C 1

�2

Z

L
d!2

QGc.!2; t/

!2 � !
Z

L
d!1K1.!; !1/K2.!1; !2/

�
1

!1 � !2 � 1

!1 � !
�
:

To remove the singular part and to simplify the equation I impose the two conditions

1 D A1A2 C B1B2

0 D A1B2 C B1A2
(B.31)

which partly determine the reduction operator OK1
B1.!/ D �uiIm QGA.!/ (B.32)

A1.!/ D 1 � uRe QGA.!/ (B.33)

with QGA.!/ D GA
0 .!/

1C uGA
0 .!/

: (B.34)

However, I am still left with infinitely many choices for the kernel K1.!; !1/ but a
good choice motivated by the physics turns out to be

K1.!; !1/ D B1.!1/e
i.!�!1/t D �uiIm QGA.!1/e

i.!�!1/t (B.35)

because it incorporates some of the long time behavior via the renormalized GF
QGA.!/ D GA

0 .!/

1CuGA
0 .!/

, compare to Eq. (3.52). With the help of the Kramers–Kronig

relation for the advanced GF which is analytic in the lower half plane

Re QGA.!/ D � 1
�

Z 1

�1
d!1

Im QGA.!1/

!1 � ! (B.36)
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and the identity .1 � uRe QGA/ D Im QGA.1CuReGA
0 /

ImGA
0

I obtain after some algebra a non-

singular integral equation. The final non-SIE is

QGc.!; t/ D I.!; t/C u

�

Z 0

�1
d!1ImGA

0 .!1/L.!; !1; t/ QGc.!1; t/ (B.37)

with I.!; t/ D 1C u

�

Z 1

�1
d!1Im QGA.!1/

ei.!�!1/t � 1
! � !1 (B.38)

and L.!; !1; t/ D I.!; t/ � ei.!�!1/tI.!1; t/
! � !1 : (B.39)

The equation is basically determined by OK1 acting on f D 1 and acting on the non-
singular term proportional to the ‚-function in K2.!; !1/, see Eq. (B.22). The rest
cancels to zero.

This non-SIE, Eq. (B.37), can be solved numerically by discretizing the integra-
tion range. The integration interval is finite and the convergence is much better than
in the real time formulation. The equation gives QGc.!; t/ which allows to calculate
the desired full GF G.t; 0/ D Gc.t; 0/L.t; 0/ via

Gc.t; 0/ D Gc.t; t/ D 1

i�

Z 1

0

d!ImGA
0 .!/

QGc.!; t/e
�i!t (B.40)

L.t; 0/ D e
P1

iD1 Ci.t;0/ D eu
R t
0 dt1Gc.0

�;t1/ D e� u
i�

R t
0 dt1

R 0
�1 d!ImGA

0 .!/
QGc.!;t1/:

B.3.1 Negative Time Greens Function

For negative times I carry out the same steps and rewrite the Dyson equation,
Eq. (B.8), similar to Eq. (B.16) as

Gneg
c .�; t/ D G0.��/ � u

Z t

0

d�1G0.�� C �1/G
neg
c .�1; t/: (B.41)

I obtain

QGneg
c .!; t/ D Ineg.!; t/C u

�

Z 1

0
d!1ImGA

0 .!1/L
neg.!; !1; t/ QGneg

c .!1; t/ (B.42)

with Ineg.!; t/ D 1C u

�

Z 1

�1
d!1Im QGA.!1/

e�i.!�!1/t � 1
! � !1 (B.43)
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and Lneg.!; !1; t/ D Ineg.!; t/ � e�i.!�!1/tIneg.!1; t/

! � !1 : (B.44)

Finally, I calculate the full GF G.0; t/ D Gc.0; t/L.t; 0/ via

Gc.0; t/ D Gneg
c .t; t/ D � 1

i�

Z 0

�1
d!ImGA

0 .!/
QGneg

c .!; t/ei!t (B.45)

with the same loops L.t; 0/ as for positive times.

B.3.2 Real Time Results, Decaying GF and Finite Loops

In Fig. B.2, I show the real time behavior of the positive and negative time connected
GF Gc.t; 0/;Gc.0; t/ and the loop contribution L.t; 0/ as calculated by the X-ray
edge method outlined above at the isotropic point (Jx D Jy D Jz D 1). The
GFs decay exponentially at short times, see logarithmic inset, but surprisingly
the loop contribution also seems to decay in contradiction to the absence of the
Anderson orthogonality catastrophe. However, this decay is a numerical artifact of
Eq. (B.17). It numerically calculates the sum of all linked clusters C.t; 0/ and the
finite frequency grid necessarily introduces a cut-off which is quickly amplified in

Fig. B.2 For the isotropic point the real time decay of the full positive time GF Gc.t; 0/ and
negative time GF Gc.0; t/ are shown together with the time dependent overlap (or closed loop
contribution) L.t; 0/ as calculated by the Muskhelishvili method (inset: logarithmic scale). Note
the decay of the loop contribution is a numerical artifact, see text for discussion
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the exponent L.t; 0/ D eC.t;0/. This disadvantage of Eq. (B.17) was already noted
in the original paper of Nozieres and DeDominicis (1969) see footnote 17 on page
1104. It is better to use Eq. (B.12) with the 
-integral.

Instead of doing this, I take advantage of the complimentary Pfaffian calcu-
lation and combine the two exact methods. In the Pfaffian approach the second
contribution to the matrix element in Eq. (3.35) is precisely the loop contribution.
For calculating jL.t; 0/j, the overall sign does not matter and I can calculate the
determinant instead of the Pfaffian such that much larger system sizes up to 5000
sites can be easily obtained.

In Fig. B.3, I show the loop contribution jL.t; 0/j as calculated from the X-ray
edge approach (red) and from various system sizes of the Pfaffian approach together
with the exact N ! 1 value of the overlap, jhM0jMFij D 0:7693, as obtained from
finite size scaling. For the full dynamical correlation functions, I calculate the loops
via Pfaffians until they are converged with the t ! 1 value of the overlap. Note
that for small times both approaches agree as expected.

Fig. B.3 The time dependent overlap or closed loop contribution L.t; 0/ D heiH0te�it.H0CVz/i D
hTe�i

R t
0 dt0Vz.t0/i is shown as calculated from the Muskhelishvili method (red), Eq. (B.40), and

from the Pfaffian approach for various finite size systems. For N D 5000 unit cells the Pfaffian
calculation of the time dependent overlap is well converged to the N ! 1 value of the ground
state overlap jhM0jMFij, which I have calculated from finite size scaling. For large times revivals
due to the periodic boundary conditions appear for small system sizes



Appendix C
Exact Diagonalization of Four Dimers

To test some of my findings, I diagonalize the original spin model for eight spins or
four dimers, see Fig. C.1. As expected, only N.N. spin correlations are nonzero. The
bond direction dictates which of the correlation function is nonzero and I obtain
hSz

z.0/S
z
8.0/i D 0:57735 for the equal time N.N. spin correlator at the isotropic

point Jx D Jy D Jz D 1, which is close to the exact value 0.52487 of the infinite
size system.

From exact diagonalization in the strong dimer limit, e.g. Jx; Jy � Jz, (gapped
QSL phase) I always observe small amplitude oscillations with a frequency ! D
4Jz C � for the zz-correlator. The weak bond xx- or yy-correlators oscillate with
large amplitudes around the frequency ! D 2Jz. These results are in agreement
with the strong dimer limits of the other calculations via Pfaffians or the X-ray
edge, compare to Fig. 4.6 in the results Chap. 4. As a concrete example, for Jz D
1; j D Jx D Jy D 0:15 I show in Fig. C.2 the real time behavior of the strong bond
correlator Szz

18.t/ (black) and the weak bond correlator Sxx
12.t/ (red) in the left panel.

The main frequencies can be read of from the Fourier transform in the right panel.
Szz
18.!/ (blue) has a large amplitude at the flux gap energy � D 0:045 and a tiny

oscillation at ! D 4Jz C � (see arrow). The weak Sxx
12.!/ (red) shows oscillations

around ! D 2Jz all in agreement with Fig. 4.6.
In the gapped phase, the presence of a finite length-scale set by the inverse

fermion gap allows the development of a heuristic based on an even smaller cluster
of spins which can be adduced to account for some of the main features. I find that
even considering the properties of a single plaquette of 4 spins with alternating inter-
actions Jz; Jx (and j D Jx=Jz � 1), I can account for the main oscillation frequencies
and for the amplitude scaling with j found in the N ! 1 strong dimer limit. Up

to order j2 the strong bond correlator is Szz
A0B0.t/ D e�itj2 � j2

4
e�it.4JzCj2 , while

the weak one behaves as Sxx
A0A1.t/ D 1

4
sin.2tJz/ sin.2tJzj/ C j

4
cos.2tJz/ cos.2tJzj/.

Observe that the main oscillation with tiny amplitude O.j2/ of the strong bond is at
a frequency 4Jz outside of the single particle bandwidth which is an almost flat band
around 2Jz (after fermionization in the thermodynamic limit). In agreement with this

© Springer International Publishing Switzerland 2016
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Fig. C.1 The four dimer or 8
spin problem with periodic
boundary conditions. I
checked our main findings on
this small cluster by doing
exact diagonalization of the
original spin system
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Fig. C.2 Exact diagonalization results are presented for four dimers and Jz D 1; j D Jx D
Jy D 0:15. The real time behavior of the strong bond correlator Szz

18.t/ (black) and the weak bond
correlator Sxx

12.t/ (red) is shown in the left panel. The main frequencies can be read of from the
Fourier transformation in the right panel. The strong bond correlator Szz

18.!/ (blue) has a large
amplitude at the flux gap energy � D 0:045 and a tiny oscillation at ! D 4Jz C � (see arrow).
The weak Sxx

12.!/ (red) has oscillations around ! D 2Jz. Compare to the exact structure factor in
the N ! 1 limit Fig. 4.6

toy model, sizable contribution to the structure factor comes from the weak bonds
Sxx=yy around the frequency 2Jz, whereas the 4Jz oscillations due to multi-particle
processes of the strong Szz bond are orders of magnitude smaller.



Appendix D
Calculation of Matrix Elements

In this Appendix, I show details of the calculation for the matrix elements
encountered in Sect. 3.2.

First, I concentrate on hMx;y
F jcA0cB0jM0i encountered in the zero particle response

Eq. (3.22). In terms of matter fermions, Eq. (2.10), and with the ground state relation
Eq. (2.26) I obtain

hMx;y
F jcA0cB0jM0i D �idet

�X �X �
1
4 hM0je 1

2F�
ji ajai

�
2f �0 f0 � 1

�
jM0i: (D.1)

I express the matter fermions in terms of the Bogoliubov operators which diag-

onalize the flux free system f0 D P
q

h
cos �qaq C i sin �qa��q

i
and expand the

exponential. With hM0jajaia
�
ka��qjM0i D ıj;�qıi;k � ıi;�qıj;k and the property Fji D

�Fij (Blaizot and Ripka 1986) I obtain

hMx;y
F jcA0cB0jM0i D idet

�X �X �
1
4

2

41� 2

N

X

k

sin2 �k C 2i

N

X

q;k

cos �kF�
k;q sin �q

3

5 (D.2)

which gives the real space and real time spin correlation functions

Szz
A0B0;.0/.t/ D det

�
X �X

� 1
2

eit.E0�EF
0 /

2

41 � 2

N

X

k

sin2 �k C 2i

N

X

q;k

cos �kF�
k;q sin �q

3

5

(D.3)

Szz
A0A0;.0/.t/ D det

�
X �X

� 1
2

eit.E0�EF
0 / (D.4)

Szz
B0B0;.0/.t/ D det

�
X �X

� 1
2

eit.E0�EF
0 / (D.5)
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Szz
B0A0;.0/.t/ D det

�
X �X

� 1
2

eit.E0�EF
0 /

2

41 � 2

N

X

k

sin2 �k � 2i

N

X

q;k

cos �kFk;q sin �q

3

5 :

(D.6)

Next, I concentrate on the matrix element

hM0jcA0j
i D hM0jcA0b
�


jMFi (D.7)

which can be written in terms of ai operators diagonalizing the flux free system,
Eq. (2.24), as

hMFjcA0j
i D 1p
N

det
�
X �X

� 1
4
X

q

ei�q



M0jaq

h
Y
;lal C X
;la�l

i �
1 � 1

2
Fija

�
i a�j

�
jM0

�

(D.8)

(summation of double indices). After letting the operators ai act on their ground
state jM0i I obtain

hMFjcA0j
i D 1p
N

det
�X �X �

1
4
X

q

ei�q
�X
;q � Y
;lFl;q

�
(D.9)

which can be further simplified with the relation (Blaizot and Ripka 1986)

X
;q � Y
;lFl;q D �X �
��1

q (D.10)

to

hMFjcA0j
i D 1p
N

det
�X �X �

1
4
X

q

ei�q
�X �

��1

q : (D.11)

Similarly, I obtain

hMFjcB0j
i D � ip
N

det
�X �X �

1
4
X

q

e�i�q
�X �

��1

q : (D.12)

Overall, I calculate for the single-particle contribution to the real space and real time
correlation functions

Szz
A0B0;.1/.t/ D det

�X �X �
1
2
X




eit.E0�EF

/
1

N

X

k;q

ei.�qC�k/
�X �

��1

;q ŒX ��1k;
 (D.13)
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Szz
A0A0;.1/.t/ D det

�X �X �
1
2
X




eit.E0�EF

/
1

N

X

k;q

ei.�q��k/
�X �

��1

;q ŒX ��1k;
 (D.14)

Szz
B0B0;.1/.t/ D det

�X �X �
1
2
X




eit.E0�EF

/
1

N

X
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Note that M D �X �
��1 X�1 has only positive real entries and is symmetric M D

MT D M�.
All matrix elements for the non-Abelian phase, see Chap. 5, are calculated in a

similar way. The only difference is that I work in real space such that f0 D XT
0jaj C

Y�0ja
�
j instead of the expression in momentum space.

The matrix elements for the two particle contributions, Eq. (6.32), are calculated
in a similar fashion as
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and
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