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Preface

This book is essentially a guided tour of the fundamental concepts in digital signal
processing (DSP) and analysis, in which the guide is not a theoretician of the
various algorithms involved, but a user of them; a scientist that early in her life
started studying these techniques to apply them in a proper and fruitful way in her
research work. Therefore the approach to the various topics is the approach of a
user, more concerned about the way to best exploit the possibilities they offer,
rather than their purely mathematical facets.

As a physicist, my research interests are in the field of paleoclimatology and
analysis of meteo-climatic, oceanographic, and biomedical data. These interests led
me, during the last three decades, to first study and then apply the techniques
discussed in this book, as well as to teach many students how to use them correctly
in their domain of interest. My personal experience with the vast literature available
on the market often encouraged me to respond to unfulfilled curiosities with per-
sonal elaborations. For this reason, the present book is not a mere collection of the
best treatments of the various methods found in the literature, but is rich in original
insights and developments related to issues often neglected elsewhere, visualized in
original and, hopefully, clarifying ways. All methods explained in the book have
been tested in detail by the author analytically and numerically. The majority of the
figures have been produced using the software written for these tests and
simulations.

The present book evolved from course notes I developed over a period of about
15 years while teaching undergraduates and early graduates the basics of signal
processing and spectral analysis. My students at the University of Torino, Italy,
mostly had a background in physics and had been exposed to calculus, elements of
analysis (e.g., Fourier series), basic linear algebra (vectors and matrices), and some
elements of complex analysis, all of these topics being fairly standard in an
undergraduate program in many scientific sectors. When the notes reached a suf-
ficient maturity and completeness, the idea was born, of turning them into an
easy-to-use introductory book for students and researchers, not only in physics but
in all quantitative disciplines.
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In the past, DSP was taught, and related books were written, almost exclusively
for people with a sound engineering background. I, however, deem that we should
treat DSP in a similar way as how statistics is taught. Instead of claiming that every
person who wants to know a little about statistics has to learn everything there is to
know about statistics, many authors created special statistics courses and books for
humanities majors, engineers, life sciences majors, and so on. Statistics is useful in
many fields, and a helpful subset can be taught and used without previously
studying all the background theories. DSP has these same characteristics: almost
anyone can learn the basics of DSP and successfully apply these tools in their field,
without being an engineer. As in statistics, there are trade-offs between the size
of the “DSP toolbox” a person can put together and use skilfully, and the amount of
study and background required. At one extreme, one can end up with just the
step-by-step “recipe” for performing a certain task, without any need to understand
what is behind it. At the other extreme, one can reach the point where they can
select techniques from a wide array of possibilities, or even create their own, though
this will require a very good background in mathematics.

This book falls some way in between these two extremes. It covers the basics of
processing of monovariate discrete-time signals, digital filter design, and filtering
implementation, as well as an in-depth discussion of classical and advanced
methods of stationary and evolutionary spectral analysis. The books on these topics
are uncountable, but often quite sectorial. For example, it is not easy to find a
detailed treatment of the bases of signal processing and digital filters, coupled with
a comprehensive review of spectral analysis methods. This book was meant to meet
this need.

An effort has been made to make the text self-contained for readers with a good
command of basic mathematical analysis, at the level taught in scientific bachelor
programs, and to avoid the need for more advanced mathematical prior knowledge.
Where some additional information is required, for instance about functions of
complex variable, a brief review of the related notions has been integrated into the
book, expressed in simple terms, separated from the main text and confined to an
appendix, in order to make a first reading less cumbersome.

Mathematical rigor is not the emphasis of this book. I treated digital signal
processing and spectral analysis as mathematics applied to a practical topic: not as
mathematics for its own sake, but not as a set of applications without theoretical
foundations either. I tried to be precise every time when mathematical issues are
involved, but I also avoided going deep into mathematical facets, the knowledge of
which does not add anything to the practical potential of a technique in data
analysis. The book thus emphasizes results and their practical implications rather
than calculations and formal demonstrations.

The approach is definitely practical: the book aims at making the reader aware
of the purposes, the indications, the advantages, the drawbacks of the various tools,
as well as the possible sources of misuse and consequent error. For example, the
text shows how to filter a data record according to some desired specifications, and
how to carry out a spectral analysis using the most suited method, depending on the
characteristics of the series and on the spectral features to be detected. It was meant
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to help the reader solve real problems. In order to illustrate the number and variety
of fields in which the methods described in the book may be useful to extract
information from data, several pages are devoted to real-world applications in
different scientific fields, from geophysics to medicine, macroeconomics, etc. The
book contains many figures illustrating in detail the various aspects of the methods,
to make understanding intuitive. These examples are based on synthetic data (noise
and sinusoids) and real measurements. A complete set of Matlab exercises requiring
no previous experience of programming is also proposed. However, no preliminary
tutorial on Matlab is given. It would not make any sense, when excellent books and
guides are available on this topic, including the Matlab User’s Guide and Reference
Guide. Besides, only a very basic knowledge of Matlab is required to perform the
exercises, and all steps are described in detail.

The book is structured in such a way that some parts can be skipped without loss
of continuity. For example, if the reader is not interested in filters but only in
spectral analysis, they can pass directly from the first introductory part to the
chapters dealing with power spectrum estimation. However, even if digital filters
are traditionally employed by engineers, physicists, and mathematicians, they are
now being more and more extensively used in other fields such as economics,
sociology, life sciences, etc. On the other hand, spectral analysis is a fundamental
tool not only in physics (in particular in geophysics and in other sectors like
electromagnetism, optics, electronics, acoustics and so on) but also in economical,
socio-political, and biomedical research areas. Data analysis is becoming increas-
ingly needed in traditionally less quantitative disciplines, in response to the growing
amount of data now available to researchers: ranging from consumer preference and
sociological data offered by social networks to the huge flux of measurements
deriving from new high-throughput experiments in biological and medical research.

I, therefore, believe that the book can be useful not only to engineering and
physics students at an advanced undergraduate level, but also to students in geol-
ogy, biology, economics, sociology, etc., because it contains all the main tools
useful to anybody who needs to process and analyze a sequence of measurements.
Also graduate-level students and researchers lacking an extensive knowledge of
advanced mathematics could profit by its approach, which, though being quanti-
tative, has a discursive feel. Even if this work is mainly meant to be an upper
undergraduate university textbook, it can moreover be a useful tool of independent
study for further education and training in the industrial context.

I hope that with this book, digital signal processing can definitely spread out
from the domain of engineering to address the needs of all scientists and scholars.
I also hope that the techniques presented in this book will be useful to the readers in
their studies, as well as in their academic and professional lives, as they have been
in mine.

I welcome your feedback.

Torino Silvia Maria Alessio
April 2015
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Chapter 1
Introduction

1.1 Chapter Summary

Since this book is titled “Digital Signal Processing and Spectral Analysis for
Scientists”, first we should understand the meaning of the words contained in this
title. While we do not need to explain what scientists and the Sciences are, we cer-
tainly need to define precisely the remaining words, and to do so we will re-arrange
them in this order: Signal, Processing, Digital, Spectral Analysis. After doing so,
we will go through a concise description of the historical background in which the
techniques introduced in the book were developed. The structure of the book will
then be presented. Finally, some possible further reading will be suggested.

1.2 The Meaning of the Book’s Title

A signal is a formal description of a phenomenon evolving over time or space; by
signal processing we mean any operation which modifies, analyzes or otherwise
manipulates the information contained in a signal (Prandoni and Vetterli 2008). For
example, consider atmospheric pressure at some site. We could think of measuring it
at regular intervals—for example every 2.5min—using a barometer and record the
evolution of this variable over time: the resulting data set—a sequence of numbers
with a proper measurement unit, e.g., hPa—represents an atmospheric pressure sig-
nal. Simple processing operations can then be carried out on this signal: for example,
we can plot it versus time, we can compute the average pressure in a day, etc. From a
conceptual point of view, it is essential to understand that signal processing operates
on an abstract representation of a physical quantity and not on the quantity itself.
In other words, we need a formal description of the signal in order to be able to
operate on it. The description may just be a two-column table of values (the time
and the value of the variable) as in the previous example, or a mathematical func-
tion, or a statistical description. Moreover, the type of abstract representation that
© Springer International Publishing Switzerland 2016
S.M. Alessio, Digital Signal Processing and Spectral
Analysis for Scientists, Signals and Communication Technology,
DOI 10.1007/978-3-319-25468-5_1
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we adopt for the physical phenomenon of interest determines the nature of the signal
processing we will be able to perform on it. If, for instance, the signal is described
by a mathematical function, then we will know all its past, present and future values
with certainty; we will call it a deterministic signal and will treat it as such. If the
signal has random characteristics, as in the case of physical measurements affected
by random errors, then we could describe it in terms of some average values.

The adjective digital derives from “digitus”, the Latin word for finger, and refers
to the point of view on the real world according to which everything can ultimately
be represented as an integer number—exactly as mankind started to do a long time
ago, counting along the fingers of their hands. Digital signal processing is a branch
of signal processing in which everything, including time, is abstractly represented by
the set of natural numbers, regardless of the signal’s origins (Prandoni and Vetterli
2008). In our former example, we decided to measure atmospheric pressure every
2.5min, starting from some time origin. We make a first measurement, and say that
the pressure value we get is relative to time t = 0. It is also our first pressure sample
and we can assign it an adimensional time-index n = 0. Later, at t = 2.5min, we
collect another sample, and assign it to n = 1; and so on. Thus we have no difficulties
with using only integer time values. If starting from discrete time n we want to go
back to dimensional time, we will just multiply n by our sampling interval Ts =
2.5min. We have obtained a discrete-time signal by sampling a physical quantity
that conceptually exists at any instant of time, and is therefore a continuous signal as
a function of continuous time, i.e., a continuous-time signal: we could also say it is
an analog signal. We could use a recording machine capable of providing an analog
representation of the physical phenomenon, for example a barograph. An aneroid
barometer is an instrument for measuring pressure that uses a small, flexible metal
box called an aneroid cell, which is made from an alloy of beryllium and copper. The
evacuated capsule is prevented from collapsing by a strong spring. Small changes
in external air pressure cause the cell to expand or contract. This expansion and
contraction drives mechanical levers such that the tiny movements of the capsule are
amplified and displayed on the face of the aneroid barometer. If the pointer in an
aneroid barometer is replaced with a pen, then we have a barograph that produces a
paper or foil chart called a barogram, recording the barometric pressure over time.
The problem with these analog recordings is that they are not abstract signals but a
conversion of a physical phenomenon into another physical phenomenon: we do not
get sequences of numbers that can be processed. This is why we decided to sample
our analog signal to turn it into a discrete-time signal.

What about the pressure values we get in our experiment? According to the mea-
suring device we use, they will have a certain number of significant decimal places,
and therefore a number of significant digits. In a proper way, we will be able to treat
these values as integers. This is the concept of discrete amplitude. If a signal is both
discrete-time and discrete-amplitude, then it is called a digital signal. Our example is
useful for clarifying the meaning of several words with which we will soon become
familiar, but depicts a particular case: the case in which a sequence of numbers is
obtained by sampling a continuous variable of continuous time. Actually, there are
signals that are intrinsically discrete-time, such as, for example, the record of the
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number of aircraft movements per hour in Fiumicino’s airport in Rome—actually,
this would be an intrinsically digital signal.

Now, if instead of sampling a physical quantity, we decided to sample some
known mathematical function, in principle the number of digits would be unlimited,
i.e., our signal would be discrete-time but continuous-amplitude, rather than digital.
In this case time would not need to be discrete either. We would not need to perform
any sampling, we could just treat that function of time using the standard tools for
functions of continuous variables. However, if the processing wewant to apply to our
signal has to be done on a computer, a machine that uses finite-precision arithmetic,
the continuous values of the signal will inevitably be converted into a vector—an
indexed sequence—of discrete values.

It may be useful to add some words about the finite precision that our measure-
ments inevitably have in any application.1 If wemodel a phenomenon as an analytical
function, not only is the independent variable (time) a continuous variable, but so is
the function’s value; a practical measurement, however, will never achieve an infinite
precision. Consider our pressure example once more: we can use a certain type of
barometer allowing us to record just the number hPa; we can use a better instrument
and be able to record the tenth of hPa as well, but there is a limit beyond which we
cannot go. Now, if we know that our measures have a fixed number of digits, the set
of all possible measures is actually countable and we have effectively mapped our
variable onto the set of integer numbers. This process is called amplitude quantiza-
tion, or simply quantization, and it is the method that, together with sampling, leads
to a fully digital signal. Moreover, recall that even if originally, during measurement
operations, our signal had undergone no quantization effect, it would still undergo
it when we processed it by a computer: a loss of precision with respect to the ideal
continuous model is unavoidable in practice.

Due to its contingent nature, quantization is almost always ignored in the theory
of signal processing and all derivations are carried out as if the signal samples were
real numbers; therefore, in order to be precise, we should use the term “discrete-
time” signal processing, and leave the word “digital” to the world of actual devices.
Neglecting quantizationwill allow us to obtain very general results, but wemust keep
in mind that in practice, actual implementations will have to deal with the effects of
quantization. Nevertheless, “digital signal processing” (DSP) is the most common
expression to indicate the topics we are going to tackle.

In sampling a conceptually continuous-time variable, one issue arises concerning
the rapidity of the variations we want to record. If the measured quantity varies
rapidly, we can think of a device able to perform sampling with an adequately small

1In numerical analysis, “precision” is the resolution of the representation of the measured quantity,
typically defined by the number of decimal digits; more precisely, resolution is the smallest change
in the underlying physical quantity that produces a response in the measurement instrument. It
must be noted that in the fields of science and statistics, the word “precision” traditionally has a
very different meaning. It refers to repeated measurements of the same quantity and is related to
reproducibility and repeatability. It is the degree to which repeated measurements under unchanged
conditions provide the same results. On the other hand, the “accuracy” of a measurement is the
degree of closeness of the measurement of a quantity to the true value of the quantity.
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sampling interval, but we will never be able to match infinitely rapid variations: our
measuring machine, however fast, still will never be able to take an infinite amount
of samples in a finite time interval. Therefore, sampling is an operation that can
be performed without loss of information only if the variations we want to record
are not infinitely rapid, and we correctly choose the sampling time according to the
characteristics of the phenomenon of interest. Oncewe have a set ofmeasured values,
the tools of calculus have a discrete-time equivalent which we can use directly, but
the equivalence between the discrete and continuous representations only holds for
signals which are sufficiently slowwith respect to how fast we sample them: we need
to make sure that the signal does not do crazy things between successive samples,
and only if it is smooth and well behaved can we afford to have such sampling gaps.
Wewill actually study the sampling theorem, that links the speed at which we need to
periodically measure the signal to represent if faithfully to the maximum frequency
contained in its spectrum.

But what is a spectrum? What is spectral analysis? All has to do with the Fourier
idea of expressing amathematical function of time as a function of frequency, through
the transform that bears his name. For instance, the transformof amusical chordmade
up of pure notes without overtones, expressed as loudness as a function of time, is
a mathematical representation of the amplitudes and phases of the individual notes
that make it up. The function of time is often called the time-domain representation
of the signal, and the corresponding function of frequency is called the frequency-
domain representation. For discrete-time signals, Fourier tools exist that can be used
in place of the continuous-time Fourier transform, and can provide a description
of the frequency content of the signal. The main purpose of this description is the
detection of any periodicities in the data.

Now, let us resume for the last time our atmospheric-pressure example. When
we are through with our measurements, we will have a record with some duration,
composed of a finite number of samples. We are interested in the characteristic of
atmospheric pressure at a certain point of the Earth system, rather than in those of the
particular sequence we measured. In fact, the ultimate subject of the investigation
is the process that generates the measured values. For example, we typically want
to get information about its spectral content, because this can help us to investigate
external forcings that determine pressure variations, to establish the relation among
the behavior of pressure and that of other atmospheric variables, etc. We must keep
in mind that this process and the quantity we are considering may have, and usually
do have, a temporal persistence that goes beyond the finite time limits of our mea-
surements. From a theoretical point of view, this quantity is an infinitely-long signal,
typically an analog signal, of which we can measure only a finite number of samples
over a finite time span. Moreover, even if we measured an intrinsically determin-
istic quantity, the measure would be affected by random errors, i.e., noise, and the
resulting digital signal should be interpreted as the superposition of a deterministic
signal, and a random signal representing measurement errors. But most times, the
process that generates the quantity is so complicated that we do not know it enough
to be able to express it in deterministic terms, and anyway, even if we were able to
do so, the deterministic description would be too complicated to be of practical use.
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On the other hand, we saw that processing a signal requires a formal description of
the signal—a mathematical model of the signal. A statistical-probabilistic model is
then adopted, and the signal is treated as a random signal, the value of which is not
exactly specified at a given past or current instant, and the future value of which is
not predictable with certainty on the basis of past behavior. The issue then arises,
about how to estimate the spectrum of atmospheric pressure at a certain site, from
a single finite-length sequence of values it assumed in a particular experiment. This
spectral estimation problem is addressed by proper techniques, collectively known
as statistical signal processing.

1.3 Historical Background

The earliest recorded signals were digital. A classical example (mentioned, e.g.,
by Prandoni and Vetterli 2008) is provided by the Egyptian stele known as the
Royal Annals of the Old Kingdom of Ancient Egypt, of which seven fragments have
remained. This stele contained a list of the kings of Egypt from the First Dynasty to
the early part of the Fifth Dynasty, and noted significant events in each year of their
reigns, including measurements of the height of the annual Nile flood.

Digital representations of natural and social phenomena such as those depicted
by the Royal Annals stele are adequate for a society in which quantitative problems
are simple: counting sheep, days and so on. As soon as the interaction between man
and his environment becomes more complex, the models used to interpret the world
must evolve. Geometry, for example, was born of the necessity to measure and sub-
divide land property. Splitting a certain quantity into parts implies difficulties with
an integer-based world view. So, the idea of fractions, i.e., of rational numbers, was
conceived, and proved helpful until another issue become evident in western civi-
lization: in the 6th century BC, the Pythagorean School discovered that the diagonal
and the side of a square are incommensurable, i.e., that

√
2 is not a simple fraction.

The discovery of what we now call irrational numbers led to a more abstract model
of the world, the one which today is called the continuum. Rooted in geometry and
in the idea of the infinity of points in a segment, the continuum model assumes that
time and space are an uninterrupted flow that can be divided arbitrarily many times
into arbitrarily and infinitely small pieces. In signal processing language, we can
say that the analog model of the world was born. The concepts of the infinitely big
and the infinitely small contained in the analog model required almost two thousand
years to be properly mastered (Prandoni and Vetterli 2008).

The digital and analog models of the world coexisted for several centuries, one as
the tool of the trade for farmers, merchants etc., the other as an intellectual pursuit for
mathematicians and astronomers. However, the increasing complexity of an expand-
ing world pushed many minds towards science as a means to solve very tangible
problems, and not only for describing the motion of the planets. Calculus, born in
the 17th century from the work of Newton and Leibnitz, proved to be a powerful
tool when applied to practical problems such as ballistics, ship routing, mechanical
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design and so on. Still, in order to apply calculus to any real-world signal, the latter
has to be modeled as a function of a real continuous variable. As mentioned before,
there are domains of research in which signals allow for such an analytical represen-
tation: astronomy, for example, and ballistics. If we were to go back to our pressure
measurement example, however, we would need to model our measured quantity
as a function of continuous time, which means that the value of pressure should be
available at any given instant. A reasonable pressure function is not easy to obtain if
all we can have is just a set of empirical measurements, even correctly spaced in time.
So we need algorithmic procedures especially devised for discrete-time variables.
These two tracks of scientific development, which ran parallel for centuries, have
found their balance in digital signal processing that uses both continuous-time and
discrete-time mathematical approaches.

Historically, modern digital signal processing started to consolidate in the 1950s,
when mainframe computers became powerful enough to properly handle problems
of practical interest. After World War II, computers based on the technology of
vacuum tubes started being constructed. The first machine of this type was ENIAC
(Elecronic Numerical Integrator and Computer) developed by Mauchly and Eckert
at the University of Pennsylvania, USA, between 1943 and 1946. It was made of
18,000 electron tubes and 1500 relais; its electrical consuption was around 150KW,
its weight 30 tons, and occupied a room 30m long. Another important machine
was IAS, developed in Princeton, New Jersey, USA, by John Von Neumann. Von
Neumann had worked to the ENIAC project; he conceived an innovative machine,
able to execute instructions recorded in its memory. IAS started operating in 1952.

The foundations of digital signal processing were built in 1960–1965, and by the
end of the 1970s the discipline had reached maturity: indeed, the major textbooks on
the subject still in use today had already appeared by 1975. However, the theoretical
bases of DSP had already been laid by Jean-Baptiste Joseph Fourier (1768–1830),
who made important contributions to the study of trigonometric series, after earlier
seminal studies by Leonhard Euler, Jean le Rond d’Alembert and Daniel Bernoulli.
Fourier introduced trigonometric series to solve the equation for the conduction of
heat in a metallic rod and published his initial results in 1807 (“Mémoire sur la prop-
agation de la chaleur dans les corps solides”). In 1822 he published his fundamental
work, “Théorie analytique de la chaleur”. Later, major theoretical developmentswere
achieved in the 1930 and 1940s by Nyquist and Shannon, among others, in the con-
text of digital communication systems, and by the developers of the z-transform,
notably Zadeh and Ragazzini in the West, and Tsypkin in the East.

The history of applied digital signal processing, at least in the electrical engi-
neering world, began around the mid-1960s with the invention of the so-called fast
Fourier transform (FFT). However, its rapid development started with the advent of
microprocessors in the 1970s. Early DSP systems were designed mainly to replace
existing analog circuitry and did little more than mimicking the operation of ana-
log signal processing systems. It was gradually realized, however, that DSP had the
potential for performing tasks that were impractical or even inconceivable by analog
means.
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An overview of the history and development of digital signal processing would
be too long and tedious, also because the topic includes several main streams, while
for our purposes we are interested only in a few of them. We may mention:

• numerical analysis. At the beginning, the development of discrete-time system
theory was motivated by a search for numerical techniques to perform integration
and interpolation, and to solve differential equations. When computers became
available, the solution of differential equations modeling the behavior of physical
systems was implemented by digital computers;

• communication theory. As digital computers became more advanced in their com-
putational power, they were heavily used not only by the oil industry for geologic
signal processing, but above all by the telecommunications industry for speech
processing: as examples of major advancements in the field, we may think of the
contributions by Shannon and Nyquist (Fig. 1.1), namely the Shannon theorem
(Shannon 1949) and the Nyquist criteria for digital transmission (Nyquist 1928);

• z-transform theory. The basic idea of the complex series that we currently call
z-transform was known to Pierre-Simon Laplace (1749–1827) at the beginning
of the 19th century and was re-introduced in 1947 by Hurewicz as a means to
solve linear constant coefficient difference equations (see Kanasewich 1981). In
the Fifties, Ragazzini and Zadeh (1952) gave the z-transform its present name;

• frequency-domain techniques. During the Great Depression of the ’30s, the U.S.
Bureau of Standards retained its surplus employees and set them to developing a
variety of mathematical tools. Perhaps the most useful of these was a technique to
evaluate the Fourier transform from a number of discrete data points, using only
multiplications and additions. This discrete Fourier transform (DFT) technique
remained unused for a number of years before sampled-data control systems came
into common usage around 1950. It was then realized that the DFT was ideal for
use with digital computers and could be directly applied to analyzing the spectral
features of these systems;

• fast Fourier transform (Cooley and Tukey 1965). This advancement was a giant
leap and a sort of revolution in digital signal processing. Real-time processing
became possible; and finally,

• digital filter theory.

Fig. 1.1 Claude Elwood
Shannon (1916–2001), on
the left, and Harry Theodor
Nyquist (1889–1976), on the
right
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Fig. 1.2 Wilhelm Cauer
(1900–1945), on the left, and
James H. McClellan, on the
right

Analog filters were originally invented as hardware devices made of resistors,
capacitors and inductors, for use in radio receivers and long-distance telephone sys-
tems. During the first couple of decades of the past century, analog filter design
procedures were developed that were formalized in the 1930s by Paarmann (see
Paarmann 2001). Outstanding contributions in the field were given by Butterworth
and Cauer. What is known today as the Butterworth filter was published in 1930
(Butterworth 1930), while elliptic filters were invented by Cauer (1931) (Fig. 1.2, on
the left); see also Norton (1937) andWeinberg (1962). Chebyshev filters, and inverse
Chebyshev (also called Chebyshev Type II) filters, based upon Chebyshev polyno-
mials (Chebyshev 1854; Chebyshev and Oeuvres 1899), were developed during the
1950s (Cauer 1931, 1939, 1958; Henderson and Kautz 1958; Storer 1957;Weinberg
1962; Stephenson 1985). As soon as digital computers became available, simulation
of analog filters in software started being possible. It must be noted that the standard
procedure for analog filter design was, and is, to first design a lowpass filter. Band-
pass, highpass, or bandstop filters are then obtained by means of complex-variable
transformations.

Concerning digital filters, we must distinguish between IIR and FIR digital filters.
Indeed, depending on the length of the sequence that characterizes the filter in the time
domain, i.e., its impulse response, digital filters can be divided into two categories:
infinite-duration impulse response (IIR) filters and finite-duration impulse response
(FIR) filters. For reasons that will become clear later in the book, IIR filters are
sometimes also called recursive filters, while FIR are non-recursive. The history of
IIR filters, at least as far as the classical approach to their design is concerned, is
strictly related to the history of analog filters. Mathematical procedures were devised
to transform these analog filters into digital ones, the most popular being the bilinear
transform, also known as the Tustin method (Tustin 1947).

From the 1960s, the revolution of digital filtering began, and the majority of
efforts were devoted to develop efficient, optimal approaches to design FIR digi-
tal filters. The most well-known design method was published by James McClellan
(Fig. 1.2, on the right)2 and Thomas Parks (Parks and McClellan 1972; McClellan

2Photo byDicklyon (Ownwork) [CCBY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)],
via Wikimedia Commons.

http://creativecommons.org/licenses/by-sa/3.0
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and Parks 2005), based on the Remez exchange algorithm. The latter was presented
by Evgeny Yakovlevich Remez in the mid-1930s (Remez 1934a, b, c). The method,
which became known as minimax or equiripple design method, involves the theory
of optimal Chebyshev approximation. To explain what this means, we can add that
approximation theory is a mathematical theory concerned with how functions can
best be approximated with simpler functions. In particular, one can obtain polyno-
mials very close to the optimal one by expanding the given function in terms of
Chebyshev polynomials and then cutting off the expansion at the desired degree:
this is Chebyshev approximation. The function that characterizes an FIR filter in the
frequency domain, i.e., its frequency response, is a polynomial, so that FIR filter
design is actually a problem of polynomial approximation.

Turning now to spectral analysis, the related historical background is very well
described, for example, in Bloomfield (2000). The information provided here is
mainly taken from Bloomfield’s book. In 1772, Lagrange proposed a method based
on the use of rational functions to identify periodic components in data series and used
it to analyze the orbit of a comet (see Lagrange 1873). Like related methods, such as
the one proposed by Prony (see Hamming 1987), the method was tedious to apply
to any but the shortest series, and very sensitive to errors or other disturbances in the
data. The first procedure to be feasible for a moderate number of data samples was
introduced in 1847 by Buys-Ballot in a study on periodic variations in temperature
(Buys-Ballot 1847; Whittaker and Robinson 1944): it was a tabular method of which
a more sophisticated version was described by Stewart and Dodgson (1879). The
method can be used to improve the estimate of an approximately known period and
is quite cumbersome.

The Fourier analysis of a sequence may be carried out by a similar tabular tech-
nique described by Schuster (1897) (Fig. 1.3, on the left). This method was used in
the second half of the 19th century to find periodic components with known peri-
ods in tidal data, meteorological series, and astronomical series, but still required
tedious computations. Sir William Thomson, who later became Lord Kelvin, built
an instrument called a harmonic analyzer for carrying out this analysis mechanically

Fig. 1.3 Franz Arthur
Friedrich Schuster
(1851–1934), on the left, and
Maurice Stevenson Bartlett
(1910–2002), on the right
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(Thomson 1876, 1878) and claimed that it would reduce the time needed for an
analysis by a factor of 10. Stokes (1879) pointed out that the harmonic analyzer also
offered the possibility of determining unknown periods.

However, when Fourier analysis is used to search for periodic components of
unknown periods in data series, the result may be very misleading: for instance,
Knott (1897) used the harmonic analyzer on a series of Japanese earthquakes and
found periods related to the lunar cycle, but Schuster (1898) showed that they were
not statistically significant. Schuster (1898) further discussed Fourier analysis of
data series and introduced the periodogram, a fundamental tool that is still in use.
In subsequent papers published in 1900–1906 he applied the periodogram to the
analysis of various sets of data, including the sunspot series.3 In the early 1920s,
other authors applied Schuster’s method in different fields.

The statistical theory of random time series was developed in the 1920 and 1930s
(see Wold 1954): the concept of spectrum was introduced in those years, though it
had already been the subject of a note by Einstein (1914). This concept shifted the
focus from the search for unknown periodicities to the study of the relative amplitude
of all cyclicities in a data series.

In the 1940 and 1950s the attention of researchers concentrated on the problem
of estimating the spectrum of a random series from a finite-length data record and
reducing the exceedingly large variance that the periodogram shows. Daniell (1946)
proposed a smoothed version of the periodogram as a suitable estimate, an idea that
had already appeared in Einstein (1914). Bartlett (Fig. 1.3, on the right) introduced
the idea of pseudo-ensemble average, i.e., the idea of dividing the series in shorter
segments and then averaging the related periodograms (Bartlett 1948, 1950, 1955);
Hamming and Tukey introduced the idea of spectral window and investigated the
properties of windowed estimators (Hamming and Tukey 1949).

The following years saw a rapid development of the theory and practice of spec-
trum estimation: major contributions are due to Grenander and Rosenblatt (1953,
1956, 1957), Parzen (1957a, b), and Blackman and Tukey (1965). The Blackman-
Tukey estimate is a way of computing the spectrum passing through the autocorre-
lation of the series, that quantitatively describes the relation between samples sep-
arated by a certain amount of time. This expansion of the field of spectral analysis
was encouraged by the increased use of Fourier methods in several fields, mainly in
electrical engineering, and by the parallel availability of computers to carry out the
extensive computations required by these methods.

3Sunspots are temporary phenomena on the photosphere of the Sun that appear visibly as dark spots
compared to surrounding regions. They are generated by strong magnetic fields that are created
in the interior of the Sun and inhibit convective motions, thus forming areas of reduced surface
temperature. Of all solar features, the sunspots are the most easily observed and were thus studied
since the invention of the telescope by Galileo in 1609. This invention was based on previous work
by Hans Lipperhey, a German spectacle maker, in 1608. Sunspots were first observed telescopically
in late 1610 by the English astronomer Thomas Harriot and by the Frisian astronomers Johannes
and David Fabricius, who published a description in 1611. The sunspot number series is one of the
most popular indexes of solar activity and allowed for observing the well know 11-year period of
Solar activity, known as the Schwabe cycle.
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Fig. 1.4 James William
Cooley, on the left, and John
Wilder Tukey (1915–2000),
on the right

The next major advance was the introduction of the fast Fourier transform (FFT)
by Cooley and Tukey (Fig. 1.4); this efficient algorithm (Cooley and Tukey 1965)
allowed for significantly reducing the computational burden of practical spectral
estimation.

Other advances in spectral estimation were published in the following years. The
so-called parametric approach, for instance, is based on stochasticmodeling of a time
series, that after seminal work by Yule (Fig. 1.5, on the left) and Walker, dating back
as early as the 1930s (Yule 1927; Walker 1931), developed around the 1970s. This
approach is also closely related to linear prediction theory that can be traced back
to the work of Kolmogorov (1941), who considered the problem of extrapolation of
discrete time random processes. Other pioneers of this field are Levinson (1947),
Wiener (1949), and Wiener and Masani (1957–1958); one of Levinson’s contribu-
tions, namely, the Levinson-Durbin recursion, is still in wide use today.A particular
approach to stochastic modeling and linear prediction, known as the autoregres-
sive approach, was described in the 1951 thesis of Peter Whittle (Wittle 1951) and
was later popularized by Box (Fig. 1.5, on the right) and Jenkins (Box and Jenkins
1970). Fundamental contributions to parametric spectral estimation were given by

Fig. 1.5 George Udny Yule
(1871–1951), on the left, and
George Edward Pelham Box
(1919–2013), on the right
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Fig. 1.6 Michael Ghil, on
the left, and Stéphane Mallat,
on the right

Burg (1967, 1968), who introduced the maximum entropy method (MEM). Another
advanced, non-parametric spectral method, known as the multitaper method (MTM),
was developed in the 1980s (Thomson 1982, 1990a, b).

An outstanding contribution to arsenal of spectral techniques is represented by
the singular spectrum analysis (SSA) introduced by Robert Vautard, Michael Ghil
(Fig. 1.6, on the left) and collaborators (Vautard and Ghil 1989; Vautard et al. 1992;
Ghil et al. 2002) SSA is not, in a strict sense, a simple spectral analysis method: it is
a technique aimed at representing the signal as a linear combination of elementary,
data-adaptive variability modes. SSA does not provide a spectral estimate but rather
is a powerful de-noising filter, able to separate autocoherent features from random
features in a series.

As for evolutionary spectral analysis, it was born with Gabor (1946) and his short-
time Fourier transform (STFT). However, the present approach to the problem, i.e.,
wavelet analysis, is a relatively recent field. Wavelets have been developed inde-
pendently in several fields (mathematics, quantum mechanics, engineering, geosys-
mology). The first ideas date back to 1909 and are due to Alfréd Haar, a Hungarian
mathematician, who introduced the first entity classifiable as a wavelet, which is
important mainly for historical and didactic reasons. Only many years after the first
papers on the subject, the connections among the various techniques that had been
proposed in different areas were recognized, and wavelet methods were unified into
a homogeneous corpus with a sound mathematical basis. This was accomplished
around the mid-Eighties by a French group composed of a geophysicist, Jean Mor-
let, a theoretical physicist, Alex Grossmann, and a mathematician, Yves Meyer.
Morlet proposed the wavelet transform as an alternative to STFT and applied it to
seismic data (Morlet et al. 1982). The original name given to the wavelet functions
was “wavelets of constant shape”; in French they were called ondelettes. Grossmann
noticed the similarity between the transform introduced byMorlet and the formalism
of coherent states in quantummechanics. Grossmann, Morlet and their collaborators
studied the wavelet transform in detail and abbreviated the name of the new entities,
calling them simply wavelets (Grossmann andMorlet 1984; Grossmann et al. 1985).
So, the early work was in the 1980s by Morlet, Grossmann, Meyer, and others, but it
was the 1988 paper by the Belgian mathematician and physicist Ingrid Daubechies
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(Daubechies 1988) that caught the attention of the larger applied mathematics com-
munities in signal processing, statistics, and numerical analysis. Later, with more
papers by Daubechies (see, e.g., Daubechies 1990, 1992) and by the French applied
mathematician StéphaneMallat (Fig. 1.6, on the right)—(see, e.g.,Mallat 1989a, b, c,
2008)—the link was recognized between wavelet theory and many results obtained
in the field of digital signal processing, such as those in subband coding (see, e.g.,
Crochiere et al. 1976; Vetterli and Kovaĉević 1995) and pyramidal coding (Burt
and Adelson 1983). Ondelettes definitely became wavelets among the international
scientific community.

Work by Donoho, Johnstone, Coifman, and others added theoretical reasons for
why wavelet analysis is so versatile and powerful. Their results proved that wavelets
have some inherent generic advantages and are near optimal for a wide class of
problems (see, e.g., Donoho 1993), and that special wavelet systems can be created
for particular signals and classes of signals. New methods for signal detection, de-
noising (e.g., Donoho 1995), and compression (e.g., Saito 1994; Guo 1997) emerged
from the wavelet approach.

Finally, a fewwords about theMonte Carlomethod, that will bementioned several
times in this book. The Monte Carlo method is a statistical trial-and-error technique
for solving complex problems that are otherwise intractable using analytical deter-
ministic techniques. Its essence is in generating random samples of data of known
distribution to collect statistically valid results that would provide insight into the
phenomenon or process being investigated. In other words, the method is a statistical
testing approach to find approximate solutions to problems where exact mathemat-
ical treatment is too complex or time consuming. The Monte Carlo method was
developed in the 1950s at Los Alamos (NewMexico, USA) during the famous Man-
hattan Project, by a group of researchers led by Nicholas Metropolis, and including
John von Neumann and Stanisław Ulam. Actually, the idea for the method occurred
to Stanisław Ulam, a Polish-American mathematician. The name of the method is
down toMetropolis, who stated later: “I suggested an obvious name for the statistical
method—a suggestion not unrelated to the fact that Stan [Ulam] had an uncle who
would borrow money from relatives because he just had to go to Monte Carlo [as a
center of gambling]” (see Metropolis 1987).

1.4 How to Read This Book

This book is structured into five Parts.
Part I introduces basic theoretical concepts. As explained above, discrete-time

signals can be deterministic, i.e., described by a mathematical formula, or can have
intrinsic random behavior, such as in the case of measurements repeated in time
and affected by measurement errors. Part I approaches signals from a deterministic
point of view. Chapter2 deals with discrete-time signals and also with discrete-time
systems, i.e., those algorithms that are used to process discrete-time signals. Linear
time-invariant (LTI) systems are discussed, and the distinction between finite impulse

http://dx.doi.org/10.1007/978-3-319-25468-5_2
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response (FIR) and infinite impulse response (IIR) systems is introduced. In Chap.3,
the transforms used for discrete-time signals (the z-transform, the discrete-time
Fourier transform, DTFT, the discrete Fourier series, DFS, and the discrete Fourier
transform, DFT) are presented in the frame of their mutual relation. In Chap.4, dis-
crete time-signals are viewed as the result of sampling of continuous-time signals and
the issues related to the sampling operation are discussed. In Chap.5, the concept of
correlation is introduced for deterministic discrete-time signals and themathematical
tools leading to their description in the frequency domain are given. This part should
be studied by any reader who does not have a background in discrete-time signals
and systems. The mathematical details can be overlooked in a first reading, but the
fundamental concepts should be soundly acquired before proceeding further. In fact,
this Part, and Chap.3 in particular, opens the way from the time-domain descriptions
of signals and systems to the corresponding frequency-domain description. Only
thanks to this dual understanding can the reader be ready to tackle the concepts of
filtering and spectral analysis.

Part II discusses digital filters. It starts with Chap.6, presenting digital filter prop-
erties and filtering implementation methods and building the bases for the next two
chapters: Chap.7, which is about designing a FIR filter with some desired proper-
ties, and Chap.8, which deals with IIR filter design. The Appendix to Chap.8 covers
topics in complex analysis connected to classical methods of IIR filter design from
analog filters, such as trigonometric functions with complex arguments, elliptic inte-
grals, Jacobi elliptic functions, and the rational elliptic function. This Part can be
skipped if the reader is mainly interested in spectral analysis rather than in digital
filtering.

Part III is devoted to random signals and to their spectral analysis. Chapter9
introduces the statistical approach to signal analysis, presenting random variables,
ensemble averages, stationary random processes, ergodicity, the power spectrum of
a random signal and the cross-power spectrum of two random signals, as well as
the issues that arise when the averages used to describe a random process must be
estimated from a single, finite-length data record. Chapter 10 describes classical,
Fourier-based spectral methods for stationary random signals; Chap. 11 deals with
model-based stationary spectral methods, which are referred to as parametric meth-
ods. They rely on stochastic modeling of signals, which in turn is strictly related to
the problem of linear prediction of signals. As such, a short account of these topics
is also provided. Chapter12 is devoted to Singular Spectrum Analysis (SSA), while
Chap.13 concerns the time-evolutionary spectral analysis of non-stationary signals:
it briefly describes the related classical tool, the short-time Fourier transform (STFT),
and then focuses on the continuous wavelet transform (CWT), which represents a
more up-to-date approach to the problem.

Part IV is about the issues of signal decomposition, de-noising and compression.
Themain tool for these tasks is, nowadays, the discretewavelet transform (DWT) that
in Chap.14 is properly placed into the general theoretical frame of signal expansion
techniques. In Chap. 15, the DWT is exploited for devising schemes of de-noising
and compression of signals. This is a somewhat specialized topic that some readers
may want to skip.
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Finally, Part V proposes a complete set of exercises that can be worked out with
a computer in a Matlab environment. The reader thus can learn how to numerically
perform the operations required by the digital signal processing and spectral analysis
methods he has studied.

1.5 Further Reading

The most authoritative book on digital signal processing is Oppenheim and Schafer
(2009). For background in signals and systems, the reader may refer to Oppenheim
et al. (1996), or even to a very concise treatment, like the one offered byHwei (2013).
Other comprehensive books on digital signal processing include Porat (1996), Shenoi
(2005), Proakis and Manolakis (2006), Mitra (2010). Digital filters are treated in
detail in Parks and Burrus (1987) and in many other excellent books. For statistical
digital signal processing and spectral analysis, Marple (1987), Kay (1993), Percival
and Walden (1993), Stoica and Moses (2005), Hayes (2008) are very good refer-
ences. Stochastic models and linear prediction are thoroughly described in Mont-
gomery et al. (2008) and Vaidyanathan (2008). Finally, for wavelets two very good
references are Qian (2001) and Misiti et al. (2007). We must also mention Meyer
(1990), Daubechies (1992), Burrus et al. (1997), Vetterli and Kovaĉević (1995), Mal-
lat (2008), Goswami and Chan (2011), which are among themost fundamental books
on wavelets.
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Chapter 2
Discrete-Time Signals and Systems

2.1 Chapter Summary

In this chapter we define more formally the concept of discrete-time signal. Discrete-
time signals are, in general, infinite-length sequences of numerical values (Oppen-
heim and Schafer 2009) that may either arise from sampling of continuous-time
signals, or be generated directly by inherently-discrete-time processes. They are also
called sequences.Historically, discrete-time signals have often been introduced as the
discretized version of continuous-time signals, i.e., as the sampled values of analog
quantities, such as the voltage at the output of an analog circuit; accordingly, many
of the derivations proceeded within the framework of an underlying continuous-time
reality. However, the discretization of an analog signal is only one of the ways in
which a discrete-time signal can be generated. Therefore, we will introduce discrete-
time signals from an abstract and self-contained point of view, and will consider
separately (in Chap. 4) their possible derivation from sampling of continuous-time
signals.

Conceptually, a distinction must be made between deterministic signals and ran-
dom signals. Deterministic signals have a univocal mathematical description, so
that past and present signal values are known exactly and future signal values are
perfectly predictable. Random signals do not allow for such a description and there-
fore the signal evolution cannot be exactly foreseen; their treatment requires sta-
tistical/probabilistic tools. The first two parts of this book deal with deterministic
signals.

In this chapter, the fundamental concepts related to discrete-time signals (see,
e.g., Haykin and Van Veen 2002; Proakis andManolakis 2006; Shenoi 2007; Oppen-
heim and Schafer 2009; Mitra 2009) are presented, as well as the main features
of those mathematical operators, called discrete-time systems, that are employed
to process discrete-time signals. Constraints are normally imposed on discrete-time
systems that make them suitable for digital signal processing. These constraints are:
linearity, time invariance, stability and causality. The quantities used to univocally
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describe a system, i.e., the impulse response, the transfer function and the frequency
response, are then defined, and a distinction based on the length of the impulse
response is introduced. Discrete-time systems are thus classified as finite-impulse-
response (FIR) or infinite-impulse-response (IIR). The input-output relation of
discrete-time systems is finally presented, both in the form of an operation called
linear convolution, and in the form of a recursive equation, referred to as the linear
constant-coefficient difference equation (LCCDE).

2.2 Basic Definitions and Concepts

A signal can be defined as the set of values of a variable x , expressing the variation of
a physical quantity as a function of time1 t . If both x and t are continuous variables,
we can mathematically represent such a function as x = x(t). We call this function
an analog signal. The term continuous-time signal can also be used, stressing the
fact that time varies continuously.

The measurement or sampling of a continuous-time signal at a constant rate, i.e.,
at times separated by a constant increment Ts (periodic sampling; see Fig. 2.1), leads
to a sequence of real (or complex) numbers that we call a discrete-time signal

x = x[n] = x(nTs),

where the integer variable n is discrete time. Here, n is an adimensional variable. It
measures the position of the value or sample x[n] along the sequence, relative to a
fixed origin n = 0, in number of samples. Ts is referred to as the sampling interval,
sampling period, or sampling (time) step. We must always keep in mind that even
if in practical settings discrete-time signals can arise from periodic sampling of
continuous-time signals, a sequence may be generated directly from some discrete-
time process.

As well as the independent variable being either continuous or discrete, the signal
amplitude x may also be either continuous or discrete. Digital signals are those for
which both time and amplitude are discrete: the signal amplitude is quantized in some
way, usually depending on the nature of the measuring and/or recording process. In
any case, processing a discrete-time signal with a computer, a machine that uses
finite-precision arithmetic, transforms it into a digital signal. However, in this book
the focus is on the discrete-time nature of sequences and only marginally considers
the effects of signal amplitude quantization. In our discussions, x will always be a
continuous variable.

1The independent variable might, of course, also be a spatial coordinate, however, here we will
assume that we are only interested in time variations.
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Fig. 2.1 An analog signal
and its periodic sampling

The terms processing and analysis of a signal refer to the ensemble of all the
techniques aimed at

• representing the signal,
• modifying it into another form that can be interpreted more easily,
• separating the content of information in a signal from “noise”,
• extracting information that the signal contains about the state or the behavior of
the physical system from which it derives.

The kind of signal processing and analysis that will be discussed in this book
takes place in the dual domains of time and frequency and often involves apply-
ing a discrete-time system to the signal, i.e., a mathematical operator or a software
algorithm that transforms it, mapping the input sequence into an output sequence,2

according to the following scheme:

input ⇒ discrete-time system ⇒ output.

2Signal processing systems are classified along the same lines as signals. We can thus have
continuous-time systems for which both the input and the output are continuous-time signals,
discrete-time systems for which both the input and the output are discrete-time signals, and digital
systems, for which both the input and the output are digital signals. Strictly speaking, therefore,
digital signal processing deals with the transformations of signals that are discrete in both amplitude
and time. In this book, the word “digital” is used loosely as a synonym of “discrete-time”, since we
do not enter into details about the implications of amplitude quantization. In the same way, we will
use the word “analog” as a synonym of “continuous-time”.
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Fig. 2.2 Example of a stem
plot
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2.3 Discrete-Time Signals: Sequences

A real (or complex) discrete-time signal x[n] exists only for integer values of n and
is undefined elsewhere. In general, if we do not specify any particular limit values for
n, by x[n] we mean an infinitely-long sequence: n = (−∞,+∞). This expression
indicates the interval in which n varies.3

A discrete-time signal is typically represented graphically by a stem plot, like the
one shown in Fig. 2.2.

We define the energy of the signal as

E =
+∞∑

n=−∞
|x[n]|2.

The signals for which E is finite are called energy signals.4 However, E may be
infinite as well. Bounded signals that do not have finite energy have, however, finite
average power, defined as

3We use round and square brackets to indicate intervals, with the former meaning that the corre-
sponding edge value is not included in the interval, and the latter meaning that the corresponding
edge value is included in the interval. Intervals are referred to as open in the first case and closed in
the second case. For example, [−π,+π) indicates a range that includes the edge value −π (square
bracket) but excludes the edge value +π (round bracket); this is an open interval; [−π,+π ] would
be a closed interval. Whenever an edge value is ±∞, the interval will be open in the corresponding
direction.
4Note that for real signals we could simply write energy as the integral of x2[n]. However, here and
in the rest of the bookwewill stick to the definition given above, holding for general complex-valued
signals.
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P = lim
N→∞

1

2N + 1

+N∑

n=−N

|x[n]|2,

and are thus called power signals. If E is finite, obviously P is zero. Note that the
expression “average power” is often simply shortened into “power”.

A periodic signal is such that, for each n,

x[n + N ] = x[n]

and its period is the minimum integer N for which the relation holds. A periodic
signal has infinite energy over n = (−∞,+∞), but its energy over a single period,

P = 1

N

N−1∑

n=0

|x[n]|2,

is finite. The average power over n = (−∞,+∞) is finite and equal to power
calculated over a single period. Therefore periodic signals are power signals.

2.3.1 Basic Sequence Operations

Sequences can be manipulated in several basic ways. The product and sum of two
sequences x[n] and y[n] are defined as the sample-by-sample product and sum,
respectively. Multiplication of a sequence x[n] by a number α is defined as the
multiplication of each sample by α.

The following transformations of the independent variable n are considered:

1. n ⇒ n − k with integer k: translation or shift (Fig. 2.3).

k > 0: time delay (translation to the right) by k discrete-time steps;
k < 0: time advance (translation to the left) by k time steps.

2. n ⇒ −n: reflection or folding of the signal around n = 0, i.e., around the origin
of discrete times (Fig. 2.4).

3. n ⇒ k − n: folding associated with translation.

• Since k − n = −n − (−k), this is a folding operation followed by a translation
by −k time steps. But

• since k − n = −(n − k), this is also a translation by k steps, followed by a
folding.

In Fig. 2.5, an example of folding and translation by k = 2 time steps is shown.
The transformation can be achieved in two different ways. In Fig. 2.5a we see a
sequence x[n]; Fig. 2.5b shows the same sequence folded around the origin, i.e.,
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Fig. 2.3 Examples of
discrete-time signal
translations. a Original
signal; b–c shifted signals. In
order to make the
transformation easily visible,
empty circles and dashed
lines have been used for the
sample located originally at
n = 0. The signal x[n − 3] is
delayed with respect to x[n];
x[n + 2] is advanced
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Fig. 2.4 Example of folding
around the origin of discrete
times. a A signal; b its
folded version. In order to
make the transformation
easily visible, empty circles
and dotted, dash-dotted and
dashed lines have been used
for some samples
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Fig. 2.5 Example of folding
and translation by 2 time
steps. a A sequence x[n];
b the same sequence folded
around the origin, x[−n];
c the folded sequence
translated to the left by 2
steps, x[2 − n]; d the
sequence x[n − 2] obtained
by translating x[n] to the
right by 2 steps. If we now
decided to take this last
sequence and fold it, we
would once again get
x[2 − n]. In order to make
the transformations easily
visible, empty circles and
dashed lines have been used
for some samples
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x[−n]; Fig. 2.5c shows the folded sequence shifted to the left by k = 2 steps, that
is, x[2− n]; Fig. 2.5d illustrates the sequence x[n − 2], obtained by shifting x[n]
to the right by two steps. If we now decided to take this last sequence and fold it,
we would once again get x[2 − n].

4. n ⇒ kdecn with integer kdec: decimation or downsampling of the signal.
Fig. 2.6a shows a sequence, which is then downsampled by a factor kdec = 2;
Fig. 2.6b shows the decimated version.

2.3.2 Basic Sequences

When discussing the theory of discrete-time signals and systems, several basic
sequences are particularly important.
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Fig. 2.6 Example of
decimation by a factor of 2.
a A signal and b its
decimated version. In order
to make the transformation
easily visible, empty circles
and dashed lines have been
used to mark the samples
that disappear after
decimation. The dotted line
is meant to highlight the
effect of the downsampling
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Fig. 2.7 a Unit impulse and
b an example of delayed unit
impulse (by 3 time steps)
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• Unit impulse or unit sample or discrete-time δ (Fig. 2.7a):

δ[n] =
{
1 for n = 0,

0 elsewhere.

• Delayed unit impulse (Fig. 2.7b):

δ[n − k] =
{
1 for n = k,

0 elsewhere.
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Any discrete-time signal can be expressed as a sum of scaled and delayed impulses
(see Sect. 3.8.5 in the appendix of Chap.3):

x[n] =
+∞∑

k=−∞
x[k]δ[n − k] =

+∞∑

k=−∞
x[n − k]δ[k].

The term“scaled” here indicatesmultiplication of the delayed impulse by the factor
x[k]. The third member of the equality derives from the second by substituting k
with n − k.

• Unit step (Fig. 2.8a):

u[n] =
{
1 for n ≥ 0,

0 for n < 0.

Fig. 2.8b shows a shifted version of the unit step.
The unit step is useful to define the so-called causal sequences —sequences for
which x[n] = 0 for n < 0: indeed, given any signal x[n], the signal x[n]u[n] is
causal. For example, x[n] = anu[n], with a = constant, is a causal sequence.
The unit impulse and the unit step are related by

u[n] =
n∑

k=−∞
δ[k] =

∞∑

k=0

δ[n − k],

δ[n] = u[n] − u[n − 1].

• Discrete-time sinusoid:

we can derive its form from a continuous-time sinusoid. For example, let us take
a sinusoidal function with unit amplitude, phase constant (initial phase) equal to

Fig. 2.8 a Unit step and
b an example of anticipated
unit step (by 2 discrete-time
units)
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zero and analog frequency f , i.e., x(t) = sin (2π f t). Period is T = 1/ f . By
sampling x(t) with a sampling interval Ts we obtain the sequence

x[n] = sin (2π f nTs).

If we now define an adimensional frequency or normalized frequency

ν = f Ts = Ts/T,

measured in cycles/sample or (samples)−1, we get

x[n] = sin (2πνn) = sin (ωn),

where ω = 2πν is discrete-time angular frequency, an adimensional quantity
measured in radians/sample.
A discrete-time sinusoid is periodic only if its ν is a rational number.
To see this fact, we require that x[n] = x[n + N ], that is, sin [2πν(n + N )] =
sin (2πνn). This is true if, and only if, an integer k exists, such that 2πνN = 2πk.
However, this is only possible if

ν = k

N
, ω = 2π

k

N
,

that is, 1/ν = T/Ts = N/k, or

kT = N Ts .

The period of the discrete-time sinusoid is equal to the denominator of ν, after
reducing ν, if necessary, to a ratio of numbers with no common divisor. If
T/Ts = N/k is not only rational but an integer, then a single period T of the
analog sinusoid contains an integer number of sampling intervals Ts (Fig. 2.9a).
The general case of rational T/Ts = N/k implies that k periods T are needed to
contain N sampling intervals Ts exactly (Fig. 2.9b).

All discrete-time sinusoids having ν = k/N , with variable k and fixed N , share
the same period N . Hence in the discrete-time domain, period is not the inverse
of frequency: N �= 1/ν, except in the case of k = 1.
A periodic discrete-time sinusoid can thus be written as

x[n] = sin

(
2π

N
kn

)

and we notice that its phase is symmetric with respect to k (frequency index) and
n (time index). If we now keep N fixed and let k vary, thus considering a set
of sinusoids with varying frequency but common period N in the time domain,
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Fig. 2.9 Continuous-time
sinusoid and corresponding
discrete-time sinusoid: a the
case of integer T/Ts and
b the case of rational T/Ts .
T is period in seconds, and
Ts is the sampling interval in
the same units

(a)

(b)

i.e., with respect to n, we see that periodicity with period N is present also in the
frequency domain, i.e., with respect to k. This means periodicity in ν with period
N/N = 1 and periodicity in ω with period 2π N/N = 2π . The three variables
k, ν and ω all express the concept of frequency, but the period changes its value
when we express ourselves in terms of one variable or another: it is N in terms of
k, 1 in terms of ν and 2π in terms of ω.
Two discrete-time sinusoids having their k values separated by a multiple of N ,
i.e., their angular frequencies separated by a multiple of 2π , are indistinguishable:
for example, sin [(2πk + ω)n] = sin (ωn). We thus understand that all possible
distinct periodic discrete-time sinusoids with period N in k can be represented
using only N values of k, for example k = [0, N − 1]. This is analogous to the
fact that in order to represent a periodic x[n] with period N in n, we only need N
values of n, for example n = [0, N − 1]. We thus have only N possible distinct
periodic discrete-time sinusoids with period N . Each of them is characterized by
its harmonic number k.
Calculations often become easier if we represent real sines and cosines by combi-
nation of complex exponentials:

x[n] = ejωn = cos (ωn) + j sin (ωn), j = √−1

with

sin (ωn) = 1

2j
(ejωn − e− jωn), cos (ωn) = 1

2
(ejωn + e− jωn).

The properties of complex exponential sequences are analogous to those of sinu-
soidal sequences. In the following discussion, the expressions “(discrete-time)
sinusoid” and “(discrete-time) complex exponential” are considered as substan-
tially equivalent and are used indifferently.
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For a given N , the N sinusoids/complex exponentials that can be distinguished
from one another are called harmonically-related sinusoids/complex exponentials:
their frequencies are multiples, by a factor k, of the rational and non-negative
fundamental frequency

ν0 = 1

N
, ω0 = 2π

N
,

associated with the period N . Each value of the harmonic number k identifies one
harmonic of the fundamental frequency. We can thus write the kth member of the
set of N harmonic sinusoids or complex exponentials as

xk[n] =
{
ej2πkν0n = ejkω0n = ej

2π
N kn,

sin (2πkν0n) = sin (kω0n) = sin
(
2π
N kn

)
.

Note that the choice k = [1, N ]would be perfectly reasonable as well, as any other
choice: k = [n0, n0 + N ]with integer n0. Nonetheless, the notation normally used
is k = [0, N − 1], including the frequency ν = 0 in the harmonic set. Thus, n and
k share the same range of values.
In summary, discrete-time sinusoids and complex exponentials with rational ν are:

• periodic with respect to n with period N , so that we only need to consider values
0 ≤ n ≤ N − 1,

• periodic with respect to k with period N , so that we only need to consider values
0 ≤ k ≤ N − 1,

• periodic with respect to ν with period 1, so that we only need to consider values
0 ≤ ν < 1,

• periodic with respect to ω with period 2π , so that we only need to consider
values 0 ≤ ω < 2π .

An alternative and perfectly equivalent choice is k = [−N/2, N/2− 1], which is
possible if N is even. This leads to working in the frequency intervals [−π, π) in
terms of ω and [−0.5, 0.5) in terms of ν. From now on, we will assume that N is
even unless stated otherwise, so that in our discussion k can be indifferently meant
as varying in [0, N −1] or in [−N/2, N/2−1]. Angular frequency ω varies in the
2π -wide equivalent intervals [0, 2π) or [−π,+π); this 2π -wide range is referred
to as the principal interval or the fundamental interval. As for ν, it varies in the
1-wide equivalent intervals [0, 1) or [−0.5,+0.5).
A remark is mandatory here. The above-mentioned periodicity implies that any
interval of length 2π can be used to express the variability range for ω. For
example, choosing (−π,+π ] instead of [−π,+π) would be correct as well. It is
just a matter of convention. Similar considerations hold for the other frequency
variables k and ν.
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2.3.3 Deterministic and Random Signals

Processing and analyzing a signal requires the assumption of a model—a
mathematical description—of the signal. If a univocal description is possible using a
mathematical formula or a well-defined rule, then the signal is called deterministic:
at any instant, its past and present values are known and its future values are exactly
predictable.

If we are not able to give such a description, or if such a description is too
complicated to be useful, a different approach is adopted, in which the signal is seen
as evolving in a way that cannot be exactly foreseen. In this case the signal must
be treated by statistical tools (mean values, probability functions) and is classified
as a random signal. Typically, all sequences deriving from periodically repeated
measurements of physical quantities are affected by random measurement errors
and thus belong to this category.

The distinction between deterministic and random signals is sometimes subtle.
For example, even a signal constructed artificially as a sum of sinusoids may be
treated as random if the phase constants are random numbers and some noise is
superimposed to the sinusoidal signals. Synthetic signals of this kind are often used
to test the behavior and the performances of algorithms in signal processing.

In the first two parts of this book we deal with deterministic signals, while in the
third part we will discuss the statistical approach to random signals.

2.4 Linear Time-Invariant (LTI) Systems

A system is a univocal transformation, i.e., an operator T that maps an input sequence
x[n] into an output sequence y[n], also called response:

input x[n] ⇒ operator T ⇒ output y[n].

In other words, a system is an algorithm that, given x[n], determines y[n]:

y[n] = T {x[n]} .

In general, y[n] for any n = n0 depends on the values of x[n] at all discrete times n.
Such a property is expressed by saying that the most general system has memory.

Digital filters, which we will describe in Part II, are typical cases of systems. A
very simple filter is, for example, the running average or moving average operator

y[n] = 1

M1 + M2 + 1

+M2∑

k=−M1

x[n − k].
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Classes of systems are then defined setting constraints on the properties of the trans-
formation T {·}. Let us examine these constraints.

1. Linearity:

T {·} is a linear transformation, which we will indicate by L {·}, if
L {ax1[n] + bx2[n]} = aL {x1[n]} + bL {x2[n]} ,

where a and b are arbitrary constants.
Linearity implies

• additivity: L {x1[n] + x2[n]} = L {x1[n]} + L {x2[n]};
• homogeneity: L {ax[n]} = a L {x[n]}.
As examples of linear systems we may list:

• the running average,
• the accumulator, y[n] = ∑n

k=−∞ x[k],
• the delayer, y[n] = x[n − n0], etc.
An example of nonlinear system is

• y[n] = x2[n] for a real input x[n].
This system is also memoryless because y[n] only depends on the value of the
input x[n] at the same discrete time n.

2. Time invariance or translation invariance:

if y[n] = L {x[n]} implies y[n − k] = L {x[n − k]} for any integer k, then the
system is linear time-invariant (LTI).

Examples of LTI systems are:

• all the linear systems mentioned above.

An example of a non-LTI system is

• the downsampler, y[n] = x[Mn] for any integer M .

To see this fact we define x1[n] = x[n − k] and consider the corresponding out-
put y1[n] : y1[n] = x1[Mn] = x[Mn − k]. But y[n − k] = x[M(n − k)] =
x[Mn − Mk] �= y1[n]: if we send to the system the input x[n] shifted by k time
steps, as the output we do not simply get a shifted version of the output y[n],
unless we consider the trivial case M = 1.

3. Causality:

a system is causal if for any choice of n = n0, the output y[n0] depends only on
the values of the input at discrete times n ≤ n0: the system is non-anticipative,
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i.e., it does not anticipate future values of the input when producing the output.
Examples of causal systems are the following:

• the delayer, y[n] = x[n − n0], is causal if n0 ≥ 0, i.e., if it produces a time
delay, and non-causal if n0 < 0, i.e., if it produces a time advance;

• the running average, y[n] = 1/(M1 + M2 + 1)
∑+M2

k=−M1
x[n − k], is causal if

−M1 ≥ 0 and M2 ≥ 0;
• the accumulator, y[n] = ∑n

k=−∞ x[k], is causal;
• the system y[n] = x2[n] is causal;
• the downsampler, y[n] = x[Mn], is causal if M > 1. For example, for M = 5
we have y[1] = x[5], y[2] = x[10], etc.

4. Stability:

a system is stable in the bounded-input, bounded-output (BIBO) sense if, and only
if, every bounded input sequence, i.e., every sequence whose absolute values are
limited, produces a bounded output sequence: for all n,

|x[n]| ≤ A < ∞ ⇒ |y[n]| ≤ B A < ∞,

where A and B are positive finite constants. Let us stress that system stability
requires the BIBO property to hold for any bounded input.
Examples of stable systems include:

• the running average,
• the delayer,
• the downsampler,
• the system y[n] = x2[n].
An example of unstable system is

• the accumulator.

In order to verify that a given system does not satisfy the BIBO stability definition,
we only need to find a particular bounded input forwhich the output is unbounded.
In the case of the accumulator, if we set x[n] = u[n], then we have

y[n] =
n∑

k=−∞
u[k] =

{
0 for n < 0,

n + 1 for n ≥ 0.

Although this response is finite if n is finite, it is nevertheless unbounded, because
there is no fixed positive finite value B such that n +1 ≤ B A < ∞ for all integer
n ∈ (−∞,∞). Therefore the accumulator is not a stable system according to the
BIBO definition.
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2.4.1 Impulse Response of an LTI System and Linear
Convolution

Let us consider an LTI system and define its impulse response as

h[n] = L {δ[n]} ,

assuming that it exists for the considered system. If we recall the equality x[n] =∑+∞
k=−∞ x[k]δ[n − k], we can express the response of the LTI system to any input

through h[n]. In fact, we can write

y[n] = L {x[n]} = L

{ +∞∑

k=−∞
x[k]δ[n − k]

}
.

But linearity allows for writing

y[n] =
+∞∑

k=−∞
x[k]L {δ[n − k]}

and time invariance leads to

y[n] =
+∞∑

k=−∞
x[k]h[n − k] ≡ x[n] ∗ h[n] =

+∞∑

k=−∞
x[n − k]h[k] ≡ h[n] ∗ x[n].

This equation defines the linear convolution5 of x[n] and h[n]. Convolution is com-
mutative, and also distributes over addition: x[n] ∗ (h1[n] + h2[n]) = x[n] ∗h1[n]+
x[n] ∗ h2[n]. In the convolution sum, y[n] appears to be influenced by all past,
present and future values of the input x[n], provided that h[n] is not identically 0
for n ∈ (−∞,+∞): therefore, in general, the system is non-causal. The impulse
response sequence h[n] completely characterizes the LTI system in the time domain.

If we linearly convolve two causal sequences x[n] and h[n] that are, though
formally of infinite length, identically zero outside some finite interval of values of
n: x[n] �= 0 for 0 ≤ n ≤ N1 −1, h[n] �≡ 0 for 0 ≤ n ≤ N2 −1, then the convolution
sum has finite summation limits and the effective duration of the convolution is finite:
y[n] �= 0 for 0 ≤ n ≤ N1 + N2 − 2, implying an effective convolution length of
N1 + N2 − 1. We will now justify this statement through an example.

5This definition of linear convolution is valid for general complex sequences.
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2.4.2 An Example of Linear Convolution

Let us calculate the linear convolution of two causal sequences x[n] and h[n] that
are not identically zero over the intervals 0 ≤ n ≤ N1 − 1 = 12 and 0 ≤ n ≤
N2 − 1 = 4, respectively. The sequences for this example are shown in Fig. 2.10a
and b, respectively.

The procedure for obtaining y[n] = ∑+∞
k=−∞ x[k]h[n − k] is the following:

1. we choose a value n = n0 of discrete time for which we want to compute y[n];
2. we fold h[k] to get h[−k];
3. if n0 > 0 we shift h[−k] to the right by n0 samples; if n0 < 0 we shift h[−k] to

the left by n0 samples; we thus get h[n0 − k];
4. we multiply x[k] by h[n0 − k], sample by sample, to obtain an intermediate

product sequence vn0 [k] = x[k]h[n0 − k];
5. we sum all the values of vn0 [k]—only a finite number of these values will be

different from zero—to obtain y[n = n0];
6. we repeat for any n = n0—only a finite number of values of y[n0]will be different

from zero.

In general, the sample y[n0] is zero when all values of vn0 [k] are zero: hence, finding
the effective duration of y[n] is equivalent to finding in which interval of n0 values
the intermediate sequence vn0 [k] assumes only zero values.

The procedure for performing linear convolution, in the case of the two sequences
shown in Fig. 2.10, is illustrated in Fig. 2.11: the sequence x[k] appears in Fig. 2.11a;

Fig. 2.10 Example of linear
convolution: a the sequence
x[n] (N1 = 13) and b the
sequence h[n] (N2 = 5) to be
convolved with x[n]; c the
result of the linear
convolution between x[n]
and h[n]. Dashed lines and
empty circles mark the
samples affected by edge
effects, i.e., the transitory
phases of the convolution
(see text for details)
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Fig. 2.11 The linear convolution y[n] = x[n] ∗ h[n] between the sequences shown in Fig. 2.10.
a The sequence x[k]; b–d the folded and shifted sequence h[n0 − k] for three different values of
n0, namely −1, 9 and 17 = N1 + N2 − 1, respectively. Each sequence in one of the panels b–d is
useful to compute the corresponding value of y[n0]. Vertical dashed lines enclose the k-range in
which x[k] is not identically zero

Fig. 2.11b, c and d show the folded and shifted sequence h[n0 − k] for n0 = −1, 9
and 17 = N1 + N2 − 1, respectively. In order to calculate y[n0], we must multiply
each sample of x[k] included between the vertical dashed lines in Fig. 2.11a by the
corresponding sample of the proper sequence drawn in one of panels b–d.

Looking at Fig. 2.11 we see that all product terms contributing to y[n0] are zero
for n0 ≤ −1 and n0 ≥ N1 + N2 − 1. Therefore y[n] �= 0 for 0 ≤ n ≤ N1 + N2 − 2:
the actual length of y[n] is N1 + N2 − 1, as stated above. Initial and final transitory
phases are however present at the edges of the interval 0 ≤ n ≤ N1 + N2 − 2. They
correspond to those values of n0 for which the sequence h[n0 − k] has its non-zero
samples only partially included between the vertical dashed lines in Fig. 2.11, which
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enclose all non-zero x[k] samples. The values of n = n0 for which y[n] is free from
edge effects go from n = n0 = N2 − 1 to n = n0 = N1 − 1, and thus the length of
the transitory-free linear convolution is N1 − N2 + 1.

Of course, the convolution of two finite-length sequences has effective summation
limits that are finite. However, these limits depend on the y[n] sample that is being
computed, i.e., on the value of n = n0. For a given value of n, the product terms
included in

∑
k will be, in general, different from zero when

0 ≤ k ≤ N1 − 1,

0 ≤ n − k ≤ N2 − 1 ⇒ −N2 + 1 ≤ k − n ≤ 0 ⇒ n − N2 + 1 ≤ k ≤ n.

We can summarize these two conditions writing

max(0, n − N2 + 1) ≤ k ≤ min(N1 − 1, n).

For two sequences with finite lengths N1 and N2 the convolution sum can thus be
written as

y[n] =
min(N1−1,n)∑

k=max(0,n−N2+1)

x[k]h[n − k].

For instance, in Fig. 2.11c we can see that for n = n0 = 9, with N1 = 13 and N2 = 5
we have the finite summation limits max(0, 9− 5+ 1) = 5 and min(13− 1, 9) = 9,
so that y[9] = ∑9

k=5 x[k]h[9 − k].
The sequence y[n] resulting from the linear convolution between the sequences

of Fig. 2.10a, b is visible in Fig. 2.10c. The total length is N1 + N2 −1 = 17 including
the transitory phases, and N1− N2+1 = 9 without them. Further details on transitory
phases in linear convolution will be provided in Sect. 16.4.1.1.

2.4.3 Interconnections of LTI Systems

Discrete-time systems, and LTI systems in particular, can be interconnected to form
larger systems. There are two basic ways in which systems may be interconnected:
in cascade (series) or in parallel. These interconnections are shown in Fig. 2.12.

• LTI systems in cascade (Fig. 2.12a):

y[n] = (x[n] ∗ h1[n]) ∗ h2[n].

The commutative property of convolution allows writing

y[n] = x[n] ∗ (h1[n]) ∗ h2[n]),

http://dx.doi.org/10.1007/978-3-319-25468-5_16
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Fig. 2.12 Interconnections
of LTI systems: a in cascade
and b in parallel

(a)

(b)

hence the equivalent system has an impulse response equal to the convolution of
the individual impulse responses:

x[n] ⇒ h1 ∗ h2 ⇒ y[n].

• LTI systems in parallel (Fig. 2.12b): since linear convolution distributes over addi-
tion,

y[n] = x[n] ∗ h1[n] + x[n] ∗ h2[n] = x[n] ∗ (h1[n] + h2[n]) ,

hence the equivalent system has an impulse response equal to the sum of the
individual impulse responses:

x[n] ⇒ h1 + h2 ⇒ y[n].

In general, cascade and parallel interconnections of systems can be used to con-
struct larger and more complex systems. Conversely, it may be advantageous to take
a large system and break it down into smaller subsystems, for purposes of analysis
and implementation.

2.4.4 Effects of Stability and Causality Constraints
on the Impulse Response of an LTI System

The impulse response of a stable and causal LTI system is a causal, absolutely
summable sequence.

This statement can be justified considering the consequences on h[n] that derive
from requiring the LTI system to satisfy both stability and causality constraints.
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1. Stability: requiring that if |x[n]| ≤ A < ∞ for all n, then |y[n]| ≤ B A < ∞ for
all n, implies that h[n] is absolutely summable, i.e.,

S =
k=+∞∑

k=−∞
|h[k]| < ∞.

The stability condition is sufficient to ensure that S is finite because if it is so,
then the response y[n] to a bounded input x[n] is certainly bounded:

|y[n]| =
∣∣∣∣∣

k=+∞∑

k=−∞
h[k]x[n − k]

∣∣∣∣∣ =
k=+∞∑

k=−∞
|h[k]||x[n − k]|,

and if |x[n]| ≤ A then

|y[n]| ≤ A
k=+∞∑

k=−∞
|h[k]| = AS.

From this equation we also see that the constant B coincides with S and therefore
does not depend on the input sequence x[n], but only on h[n], i.e., on the system.
It can be shown that stability is also a necessary condition for S < ∞ because
if h[n] is not absolutely summable, a bounded input can be found, for which the
output is unbounded.
A direct consequence of this fact is that in a stable LTI system, a finite-length
input always produces a transient, i.e., finite-length, output.

2. Causality: for y[n = n0] to depend only on past input values x[n ≤ n0], the
condition h[n] = 0 for all n < 0 must hold, i.e., h[n] must be a causal sequence.

This can be understood writing down the explicit expression for y[n = n0]:

y[n0] =
k=+∞∑

k=−∞
h[k]x[n0 − k] =

=
k=−1∑

k=−∞
h[k]x[n0 − k] +

k=+∞∑

k=0

h[k]x[n0 − k] =

= . . . h[−3]x[n0 + 3] + h[−2]x[n0 + 2] + h[−1]x[n0 + 1] + h[0]x[n0] +
+ h[1]x[n0 − 1] + h[1]x[n0 − 1] + h[2]x[n0 − 2] + h[3]x[n0 − 3] . . .

from which it can be clearly seen that if future input values (. . . x[n0 +3], x[n0 +
2] . . .) must be absent from the expression of y[n0], the condition h[n] = 0 for
all n < 0 must hold.
In causal systems, a causal input produces a causal output, since all y[n < 0] are
zero:



44 2 Discrete-Time Signals and Systems

............ = ............

y[−1] = 0

y[0] = x[0]h[0]
y[1] = x[1]h[0] + x[0]h[1]

............ = ............

We may note that for a causal system, i.e., for a causal h[n], the convolution sum
becomes

y[n] =
+∞∑

k=0

x[n − k]h[k] =
n∑

k=−∞
x[k]h[n − k].

If we also impose causality of the input, then

y[n] =
n∑

k=0

x[n − k]h[k] =
n∑

k=0

x[k]h[n − k].

Therefore in a causal LTI system with a causal input the convolution sum giving
y[n] has finite limits k = 0 and k = n, even when x[k] and h[k] have infinite
length. This does not mean that this sum can be calculated in practice: indeed,
as n increases, it would require memorizing an unlimited number of samples of
x[k] and h[k].

2.4.5 Finite (FIR) and Infinite (IIR) Impulse Response
Systems

Now we will introduce the distinction between finite impulse response (FIR) and
infinite impulse response (IIR) systems, through some examples.

• Running average system:

h[n] = 1

M1 + M2 + 1

+M2∑

k=−M1

δ[n − k] =
{

1
M1+M2+1 for − M1 ≤ n ≤ M2,

0 elsewhere.

This impulse response has finite length and we classify the system as an FIR
system.
An FIR system is always stable, because S is certainly finite. Moreover, as we
already know, the running average system is causal if −M1 ≥ 0 and M2 ≥ 0. In
general, an FIR system may or may not be causal, but any non-causal FIR system
can be made causal by cascading it with a proper delayer.
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• Accumulator:

h[n] =
n∑

k=−∞
δ[k] = u[n] =

{
1 for n ≥ 0,

0 for n < 0.

This impulse response has infinite length and we classify the system as an IIR
system. The accumulator is causal, since h[n] = 0 for all n < 0. Since S =∑∞

n=0 u[n] is infinite, the accumulator is unstable.
• However, an IIR system may be stable as well: for example, the system with
impulse response given by

h[n] = anu[n],

with |a| < 1, has S = ∑∞
n=0 |a|n = 1/(1− |a|) < ∞ and is therefore a stable IIR

system.

2.4.6 Linear Constant-Coefficient Difference Equation
(LCCDE)

An important subclass of LTI systems consists of those systems for which the input-
output relation may be written not only in the form of a linear convolution, but also in
the form of an N th order linear constant-coefficient difference equation (LCCDE):

N∑

k=0

a′
k y[n − k] =

M∑

r=0

b′
r x[n − r ],

where a′
k and b′

r are N + 1 and M + 1 constant coefficients, respectively. Notice that
actually this is not a single equation but a set of equations, one for each n, in which
M and N in general can be finite or not. It can be shown that a system that satisfies
an LCCDE is an LTI system. If the coefficients are not constant—i.e., if they vary
with time n—the system is not an LTI system.

In literature, we can find this equation written in several ways, slightly different
from one another:

1.
∑N

k=0 ak y[n − k] = ∑M
r=0 br x[n − r ] with a0 �= 1 (as above);

2. in the same form, but with a0 normalized to 1. This is the most frequent form.
We will use the symbols a and b for this case, and the symbols a′ and b′ for the
case with a0 �= 1;

3. y[n] = ∑N
k=1 ak y[n − k] + ∑M

r=0 br x[n − r ].
This is a form explicitly resolved with respect to y[n], with a0 normalized to
1 as in case (2) and coefficients ak reversed in sign with respect to case (2). It
is a recurrence formula by which the output at time n can be calculated from
present/past values of the input and past values of the output.

4.
∑N

k=0 ak y[n − k] + ∑M
r=0 br x[n − r ] = 0,

with coefficients br reversed in sign with respect to cases (1), (2) and (3), etc.
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2.4.7 Examples of LCCDE

A general property of LTI systems is that we can write an unlimited number of
different LCCDs to represent the input-output relation of a given LTI system. We
illustrate this property through examples.

• Accumulator (a causal system):

the definition we gave of this system, y[n] = ∑n
k=−∞ x[k], is in the form of a

linear convolution. In fact, if we use the unit impulse δ[n] as the input, we see
that the impulse response h[n] of the accumulator is the unit step u[n], hence
y[n] = ∑n

k=−∞ x[k] = ∑∞
k=−∞ x[k]u[n −k] = x[n]∗u[n]. But since y[n −1] =∑n−1

k=−∞ x[k], we can write

y[n] = y[n − 1] + x[n], y[n] − y[n − 1] = x[n],

that is an LCCDE with N = 1, M = 0, a′
0 = 1, a′

1 = −1, b′
0 = 1. Thus, the

accumulator is an LTI system that satisfies an LCCDE. This kind of LCCDE, in
which the calculation of y[n] involves the use of at least one past value of the
output because N �= 0, is said to be recursive.

• Running average in the case M1 = 0, M2 > 0 (a causal system):

its definition, y[n] = 1/(M2 + 1)
∑M2

k=0 x[n − k], actually is a non-recursive
LCCDE with N = 0, M = M2, a′

0 = 1, and with b′
k = 1/(M2 + 1) for 0 ≤

k ≤ M2.
However, the same system may be represented also by a recursive LCCDE, i.e.,
an LCCDE with N �= 0:

y[n] − y[n − 1] = 1

M2 + 1

{
M2∑

k=0

x[n − k] −
M2∑

l=0

x[n − l − 1]
}

=

= 1

M2 + 1
{x[n] + x[n − 1] + . . . + x[n − M2] − x[n − 1] − . . . − x[n − M2 − 1]} =

= 1

M2 + 1
{x[n] − x[n − (M2 + 1)]} ,

because of the cancellation of all intermediate terms. This is an LCCDE with
N = 1, M = M2 + 1, a′

0 = 1, a′
1 = −1, b′

0 = b′
M2+1 = 1/(M2 + 1) and b′

k = 0
otherwise.



2.4 Linear Time-Invariant (LTI) Systems 47

2.4.8 The Solutions of an LCCDE

We have stated that an unlimited number of different LCCDEs can be used to repre-
sent the input-output relation of a given LTI system. On the other hand, just as in the
case of linear differential equations with constant coefficients that are encountered
in the theory of analog systems, in the digital case an LCCDE of a given system
does not univocally identify the output y[n] corresponding to a certain input x[n].
An LCCDE does not express the input-output relation of the LTI system in a unique
way, unless we provide further information on the system by specifying proper ini-
tial conditions that y[n] must satisfy. This happens since for any given x[n], a whole
family of LCCDE solutions exists for y[n].

Let us call x0[n] a particular input sequence for which the corresponding output
y0[n] satisfying the considered LCCDE has been found by some means. Then, any
sequence

y[n] = y0[n] + yh[n],

where yh[n] (homogeneous solution) is any solution of the homogeneous equation

N∑

k=0

a′
k y[n − k] = 0,

will also satisfy the LCCDE with the same input. The sequence yh[n] is a member
of a family of solutions having the general form

yh[n] =
N∑

m=1

Am zn
m,

where Am indicates N coefficients—undetermined a priori—and zm indicates N
complex numbers. These zm are the roots, i.e., the zeros, of the characteristic poly-
nomial

∑N
k=0 a′

k zn−k . For the sake of simplicity, we will suppose that these roots are
all distinct, i.e., simple, with multiplicity equal to 1.

In order to see this fact we assume that the homogeneous solution has the form
yh[n] = zn and we substitute it into the LCCDE:

N∑

k=0

a′
k zn−k = 0 = zn−N

(
a′
0zN + a′

1zN−1 + . . . + a′
N−1z + a′

N

)
.

The expression inside parentheses is the characteristic polynomial that must be set
to zero in order to satisfy the equation. Since its degree is N , the polynomial has
N roots that in general will be complex: zm , with m = [1, N ]. The most general
homogeneous solution is then
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yh[n] = A1zn
1 + A2zn

2 + . . . + AN zn
N =

N∑

m=1

Am zn
m,

with coefficients Am that must be uniquely determined according to the initial con-
ditions specified for the system. We assumed that all roots of the characteristic poly-
nomial are simple. The form of the terms associated with any multiple roots in yh[n]
would be slightly different, but there are always N undetermined coefficients.

In conclusion, we can state that an LCCDE univocally represents the input-output
relation of an LTI system for a given x[n] only if we specify uniquely the homoge-
neous solution by imposing additional constraints, i.e., providing additional infor-
mation in the form of auxiliary conditions. These auxiliary conditions usually consist
of specified values of y[n] at specific values of n, such as y[−1], y[−2], . . . y[−N ]
(initial conditions). Once this information has been provided, we must solve a set of
N linear equations for the N undetermined coefficients Am , so that yh[n] and then
y[n] can be explicitly calculated.

Alternatively, once y[−1], y[−2], . . . y[−N ] have been specified, the subsequent
values y[0], y[1], y[2] . . . can be iteratively generated by the recurrence formula

y[n] = −
N∑

k=1

a′
k

a′
0

y[n − k] +
M∑

r=0

b′
r

a′
0

x[n − r ] = −
N∑

k=1

ak y[n − k] +
M∑

r=0

br x[n − r ],

where we set a′
k/a′

0 = ak , hence a0 = 1, and b′
r/a′

0 = br . To generate values of y[n]
for n < −N we can rearrange the recurrence formula as

y[n − N ] = −
N−1∑

k=0

ak

aN
y[n − k] +

M∑

r=0

br

aN
x[n − r ],

and set n = −1,−2, . . . so as to be able to recursively compute y[−1− N ], y[−2−
N ], and so on.

Since we are interested in LTI systems, the auxiliary conditions must be consis-
tent with the requirements of linearity and time invariance. In Chap.3, where we will
discuss the solution of an LCCDE using the z-transform, we will implicitly incor-
porate conditions of linearity and time invariance. As we will see in that discussion,
even with these additional constraints, the solution to the LCCDE—and therefore the
system—is not uniquely determined. In particular, there are generally both causal
and non-causal LTI systems consistent with a given LCCDE. If we further prescribe
causality, the solution becomes unique.

Causality is then the constraint chosen to get a unique solution. In this case the
auxiliary conditions are often stated as initial rest conditions: the auxiliary informa-
tion is that if x[n] = 0 for n < n0, then the output y[n] is constrained to be zero
for n < n0. Usually n0 = 0 is chosen. This provides sufficient initial conditions to
univocally generate y[n] for n ≥ n0 through the recurrence equation.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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The order of an IIR system is equal to the number N of past output values that
must be memorized for use in the LCCDE.

In the case of FIR systems, we can always write the LCCDE in a non-recursive
form with N = 0, i.e., y[n] = ∑M

k=0 bk x[n − k]: no past values of the output are
involved in the calculation of y[n], and therefore no initial conditions are required.
The coefficients bk coincide with the samples of the impulse response:

h[n] =
M∑

k=0

bkδ[n − k] =
{

h[n] = bn for 0 ≤ n ≤ M,

h[n] = 0 elsewhere.

The order of an FIR system is equal to the number M of past input samples that must
be memorized to be used in the LCCDE in its “natural” non-recursive form.6

On the other hand, the LCCDE of an FIR system can always be put in recur-
sive form, as we saw in the running average example. The advantages of one form
over another in practical applications depend on considerations such as numerical
accuracy, data storage, and the number of multiplications and additions required to
compute each sample of the output. Conversely, an IIR system can be written in a
non-recursive form, but then M goes to infinity, as shown in the example provided
in the following subsection.

The memory of an LTI system is equal to the number of past input samples that
must be memorized to be used in the convolution sum, i.e., in the non-recursive form
of the LCCDE. Memory, expressed in number of samples, is thus finite and equal to
the order for an FIR system, while it is infinite for an IIR system. The convolution
sum thus appears as the way in which the memory of the system acts: for example, in
the FIR case in which y[n] = ∑M

m=0 x[n − m]h[m], the system forms the output at
time n remembering x[n] and M past samples of the input, x[n − m] for m = 1, M ,
and combining them linearly with weights h[m].

2.4.9 From the LCCDE to the Impulse Response: Examples

An LCCDE associated with proper initial rest conditions specifies an LTI causal
system. Also the impulse response h[n] completely specifies a given system. Then it
must be possible to deduce h[n] from theLCCDEand its associated initial conditions.
We will now illustrate this fact through an example. This will also offer us the
opportunity to verify once again that the same LTI system can be expressed both in
recursive and non-recursive forms.

6Note that for order M , h[n] in the above equation extends over [0, M] and has M + 1 samples.
This notation contrasts with the usual notation we adopted for finite-length sequences, according
to which we would write [0, M ′ − 1], i.e., M ′ samples, order M ′ − 1. We will have to be careful
with this inconsistency in future discussion.
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Let us consider a causal LTI system that exists and is unique,

y[n] − 1

2
y[n − 1] = x[n] (N = 1, M = 0).

Let us choose x[n] = δ[n], so as to get y[n] = h[n]:

h[n] − 1

2
h[n − 1] = δ[n]

for all n. We selected a causal system, so we also know that h[n] = 0 for n < 0.
In particular, in this case with N = 1, the initial condition is h[−1] = 0. Setting
n = 0, 1, 2, . . . we get

h[0] − 1

2
h[−1] = δ[0] = 1,

h[1] − 1

2
h[0] = δ[1] = 0 = h[1] − 1

2
⇒ h[1] = 1

2
,

h[2] − 1

2
h[1] = δ[2] = 0 = h[2] −

(
1

2

)2

⇒ h[2] =
(
1

2

)2

,

and so on. Generalizing to any n we can write

h[n] =
(
1

2

)n

u[n].

Now let us consider the non-recursive system

y[n] = x[n] + 1

2
x[n − 1] + . . . +

(
1

2

)k

x[n − k] + . . . (N = 0, M = ∞).

Setting x[n] = δ[n] we get

h[n] = δ[n] + 1

2
δ[n − 1] +

(
1

2

)2

δ[n − 2] + . . . +
(
1

2

)k

δ[n − k] + . . . =

=
{(

1
2

)n
for n ≥ 0,

0 for n < 0,

so that we find again

h[n] =
(
1

2

)n

u[n].

If the impulse response is the same, the two LTI systems are equivalent; they are IIR
systems.
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In summary, an LTI system satisfying an LCCDE

• is unique if it is causal;

– systems in recursive form have at least one ak �= 0 with k �= 0 (recall that
a0 = 1),

– systems in non-recursive form have ak = 0 for k �= 0.

Notice that the distinction concerns the form in which the LCCDE is written and
not the system itself. The system may always be put in any of the two forms;

• is classified according to the length of the impulse response h[n]:
– FIR systems in non-recursive form have N = 0 and a finite M . For them,

h[k] =
{

bk for 0 ≤ k ≤ M,

0 elsewhere.

An FIR system has
· order equal to M ,
· finite memory equal to the order,
· finite length M + 1 of the impulse response;

– IIR systems in recursive form have N �= 0; M and N are finite. Alternatively,
IIR systems may be written in non-recursive form with infinite M .
An IIR system has
· order equal to N ,
· infinite memory,
· infinite length of the impulse response.

2.4.10 Eigenvalues and Eigenfunctions of LTI Systems

LTI systems have eigenfunctions and eigenvalues, i.e., a type of signals exists, which
can pass through an LTI system and emerge as a signal of the same kind, though in
general it will be altered both in amplitude and phase.

To see this, let us take a complex number z = rejω, where r is the (real) amplitude
and ω is the angle in radians expressing the phase, and let us construct the discrete-
time signal

x[n] = zn = rnejωn .

We now use this signal x[n] = zn , with fixed z, as the input to an LTI system. The
output will be

y[n] =
+∞∑

k=−∞
x[n − k]h[k] =

+∞∑

k=−∞
zn−kh[k] = zn

+∞∑

k=−∞
h[k]z−k,
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that is,

y[n] = zn H(z),

where we defined

H(z) =
+∞∑

k=−∞
h[k]z−k .

H(z) is, in this instance, a particular complex number, provided that the infinite sum
converges for the considered value of z. Given a certain value of z, the expression
written above represents the “recipe” to construct the output y[n] corresponding to
x[n] = zn at all discrete-time instants. The expression y[n] = zn H(z) = x[n]H(z)
tells us that a signal of the form zn is an eigenfunction of the LTI system, because
the system response to an input of this form is a signal of the same zn-type, though
multiplied by the corresponding complex eigenvalue H(z)—a factor that can alter
both the amplitude and the phase of the input signal.

We can now consider all the z-values for which the series defining H(z) con-
verges: z is now a complex variable, rather than a particular complex number. We
can represent it in the complex z-plane (Fig. 2.13), i.e., a plane in which a Cartesian
reference frame is established, having Re(z) on the abscissa and Im(z) on the ordi-
nate. The function H(z) then defines the z-transform of h[n]. This is a particular case
of a signal transform that will be discussed later. H(z) is called the transfer function
or the system function of the LTI system.

Let us now assume that H(z) converges for values of z with unitary amplitude:
z = ejω. The values of z such that |z| = r = 1 fall on the unit circle in the z-plane
(Fig. 2.13). On the unit circle, the eigenfunction is zn = ejωn: a complex exponential
sequence with angular frequencyω. The transfer function H(z) evaluated on the unit

Fig. 2.13 The z-plane. The
contour of the gray-shaded
area represents the so-called
unit circle, i.e., the locus of
the points z = ejω having
|z| = 1
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circle, which will be indicated by H(ejω), constitutes the frequency response of the
LTI system:

H(ejω) =
+∞∑

k=−∞
h[k]e−jωk .

H(ejω), the z-transform of h[n] on the unit circle, is again a particular case of
another kind of signal transform we will discuss later, namely it is the discrete-time
Fourier transform (DFT) of the impulse response.7 For a particular ω value, H(ejω)

is a complex number that describes the amplitude and phase variation that a discrete-
time complex exponential signal with frequency ω undergoes when processed by an
LTI system.
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Chapter 3
Transforms of Discrete-Time Signals

3.1 Chapter Summary

Discrete-time signals allow for several invertible transforms that are fundamental
analysis tools in digital signal processing. The first one is the z-transform: given
a complex variable z, this transform is defined as an infinite series in the complex
z-plane, which exists in the regions(s) of the plane where the series exhibits absolute
convergence to an analytic function. Absolute convergence of the z-transform
requires absolute summability of the corresponding infinite-length signal. Unit-
amplitude z values identify the unit circle in the z-plane, on which z is a complex
exponential signal characterized by its angular frequency ω that represents its phase
angle. On the unit circle, provided that convergence exists there, the z-transform
becomes a continuous function of frequency, called the discrete-time Fourier trans-
form (DTFT) of the discrete-time signal. The DTFT representation can also be
extended to sequences for which the z-transform does not exist, such as signals
that are not absolutely summable but only square-summable, or periodic signals, like
discrete-time periodic sinusoids and complex exponentials. Finally, if a discrete-time
signal actually has finite length, it may be represented in the frequency domain by a
finite number of DTFT samples, i.e., by a sequence obtained sampling its DTFT in a
proper way: this sequence is the discrete Fourier transform (DFT) of the finite-length
signal. The meaning and the properties of the DFT emerge clearly if this transform
is introduced passing through the discrete Fourier series (DFS) of the signal’s peri-
odic extension. DFT can be efficiently computed via fast Fourier transform (FFT).
Each inverse transform represents an expansion of the signal in a basis, which in
the present case is an orthogonal basis. At the end of the chapter, an appendix pro-
vides an overview of themathematical foundations of analog and discrete-time signal
expansions.
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S.M. Alessio, Digital Signal Processing and Spectral
Analysis for Scientists, Signals and Communication Technology,
DOI 10.1007/978-3-319-25468-5_3

55



56 3 Transforms of Discrete-Time Signals

3.2 z-Transform

The z-transform plays in discrete-time signal theory the same role that the Laplace
transform (see Sect. 8.3.1) plays in analog signal theory: it allows replacing opera-
tions on real signals with operations on complex signals. This is convenient because
in this way many results from the theory of functions of complex variable can
be exploited for solving problems of digital signal processing. In other words, the
z-transform brings the power of complex-variable functions’ theory to bear on prob-
lems concerning discrete-time signals and systems.

The z-transform is a generalization of the discrete-time Fourier transform (DTFT)
briefly introduced in Chap.2, which is a key tool in representing and analyzing
discrete-time signals and systems.Amotivation for introducing the z-transform is that
theDTFT does not converge for all sequences, and it is useful to have a generalization
of the DTFT that encompasses a broader class of signals. Another motivation is that
in analytical computations the z-transform notation is often more convenient than
the Fourier transform notation.

We will now define the z-transform representation of a sequence and study how
the properties of the signal are related to the properties of its z-transform.

For a generic sequence x[n] that we will assume to be bounded, i.e., limited in
amplitude (|x[n]| < ∞), the z-transform is defined as

X (z) =
+∞∑

n=−∞
x[n]z−n.

This function exists for all values of z for which the series converges. The set of these
values, which is a subset of the complex numbers, identifies a region of the z-plane
called the region of convergence, often abbreviated as ROC. By definition, the ROC
is the set of all z such that

∑+∞
n=−∞ x[n]z−n is absolutely convergent,1 that is,

+∞∑

n=−∞

∣∣x[n]z−n
∣∣ < ∞.

To determine the shape of the ROC, it is convenient to express z in polar form, as
z = re jθ, where r and θ are real, with r ≥ 0 and −π ≤ θ < π. We then get

1Why do we base the convergence condition on a sum of absolute values, |x[n]z−n |, while the
z-transform is defined as a sum of complex numbers x[n]z−n? The reason is that the value of an infi-
nite sum can potentially depend on the order inwhich the elements of the series are added. In general,
an infinite series

∑∞
n=1 an may converge (that is, yield a finite result) even when

∑∞
n=1 |an | = ∞,

but in such a case the finite value of
∑∞

n=1 an will vary if the order of the terms is changed. Such
a series is said to be conditionally convergent. On the other hand, if the sum of absolute values is
finite, the sum will be independent of the order of summation. Such a series is said to be absolutely
convergent. In the z-transform we are summing the samples of a two-sided sequence and we do not
want the sum to depend on the order of terms. The requirement of absolute convergence eliminates
this issue and guarantees that the definition of the z-transform is unambiguous.

http://dx.doi.org/10.1007/978-3-319-25468-5_8
http://dx.doi.org/10.1007/978-3-319-25468-5_2
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+∞∑

n=−∞

∣∣x[n]z−n
∣∣ =

+∞∑

n=−∞
|x[n]| ∣∣rejθ∣∣−n =

+∞∑

n=−∞
|x[n]| r−n.

The convergence condition for a given bounded x[n] depends only on r , and this
suggests that the ROC will have annular shape centered in the origin of the z-plane.

The z-transform of a sequence is a Laurent series in the complex variable z
(Churchill 1975). Therefore, the properties of Laurent series apply directly to the
z-transform and allow establishing that if we define

R− = lim
n→+∞

∣∣∣∣
x[n + 1]

x[n]
∣∣∣∣ , R+ = lim

n→−∞

∣∣∣∣
x[n + 1]

x[n]
∣∣∣∣ ,

then absolute convergence exists in

R− < |z| < R+,

provided that R− does not exceed R+. Thus, the ROC is a ring delimited by two
circles with real, non negative radii R− and R+.

From the above statements we see that the determination of the ROC can substan-
tially be reduced to the study of how |x[n]| behaves when n → +∞ and n → −∞.
For example, if we assume that the absolute value of x[n] is bounded for n → ±∞
by power laws of the type |x[n]| ≤ M− Rn− for n > 0 and |x[n]| ≤ M+ Rn+ for n < 0,
with R+ > R−, then R− and R+ are the radii delimiting the ring.2 The lower radius
R− may go to zero and the upper radius R+ may go to infinity: in other words, the
ROC may extend outward to infinity and may extend inward to include the origin.3

Inside the ROC, X (z) is an analytic function, i.e., a continuous function of z with
derivatives of any order that are themselves continuous functions of z inside the ROC
of X (z). Examples of different ROCs are shown in Fig. 3.1.

Different sequences may share the same X (z), but over different ROCs: when we
specify X (z) we must also specify the corresponding ROC, for x[n] to be univocally
determined. In other words, a certain analytic function X (z) can exist in more than
one region of the z-plane, and in each region the signal x[n] for which the series
sums up to X (z) will be different.

2The ROC may also include the circle |z| = R− or the circle |z| = R− or both, but there is no
general criterion for testing these possibilities.
3The extended complex plane is obtained by adding a single point z = ∞ to the conventional
complex plane. The point z = ∞ has modulus larger than that of any other complex number and its
phase is undefined. On the other hand, the point z = 0 has a modulus smaller than that of any other
complex number and an undefined phase. The ROC may be extended to include the point z = ∞
if and only if the sequence is causal.
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Fig. 3.1 Region of
convergence (ROC) of the
z-transform: a an example in
which R− < |z| < R+, and
b an example in which
|z| > R−, and R+ → ∞

(a) (b)

It must be noted that:

• the definition of X (z) implies periodicity with respect to the phase of z, with
period 2π;

• the convergence condition implies finite energy for xr [n] ≡ x[n]r−n , since

+∞∑

n=−∞
|xr [n]|2 ≤

{ +∞∑

n=−∞
|xr [n]|

}2

.

3.2.1 Examples of z-Transforms and Special Cases

The following examples illustrate various points related to the convergence of the
z-transform. We examine various kinds of sequences and discuss the characteristics
of their ROC.

• Unit impulse:
the z-transform of x[n] = δ[n] is obviously

X (z) =
+∞∑

n=−∞
δ[n]z−n = δ[0]z0 = 1

over the entire complex plane. The delayed impulse x[n] = δ[n − k] transforms
into X (z) = z−k over the entire complex plane, with the exception of z = 0 if
k > 0, or z = ∞ if k < 0.

• Unit step:
the z-transform of x[n] = u[n] is

X (z) = 1

1 − z−1
= z

z − 1
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over the region |z| > 1.
Another useful formula is that x[n] = −u[−n − 1] transforms into

X (z) = 1

1 − z−1
= z

z − 1

over the region |z| < 1.
• Let us consider the sequence

x[n] =
{

an for n ≥ 0,

0 for n < 0,

with a = constant: a causal sequence that may be re-written as

x[n] = anu[n].

The z-transform is

X (z) =
+∞∑

n=0

anz−n =
+∞∑

n=0

(az−1)n = 1

1 − az−1
= z

z − a
,

with the convergence condition |az−1| < 1, i.e., |z| > |a|, from which we deduce
that R− = |a| and R+ = ∞ (Fig. 3.2a).

• Let us consider the sequence

x[n] =
{

−an for n < 0,

0 for n ≥ 0,

with a = constant: a non-causal sequence that may be re-written as

x[n] = −anu[−n − 1].

Fig. 3.2 Region of
convergence for a the causal
sequence x[n] = anu[n], and
b the non-causal sequence
x[n] = −anu[−n − 1]

(a) (b)
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The z-transform is

X (z) = −
+∞∑

n=−∞
anu[−n − 1]z−n = −

−1∑

n=−∞
(az−1)n = −

+∞∑

n=1

(za−1)n =

= 1 −
+∞∑

n=0

(za−1)n = 1 − 1

1 − za−1
= 1 − a

a − z
= z

z − a
.

The z-transform is the same as in the previous case but the ROC is different
(Fig. 3.2b): the convergence condition is indeed |za−1| < 1, i.e., |z| < |a|, from
which we deduce that R− = 0, and R+ = |a|. The same z-transform with two
different ROCs corresponds to two different sequences, and only one of them is
causal.

• Periodic sequences, x[n] = x[n + N ] with n ∈ (−∞,+∞):
the z-transform does not exist.
For example, let us consider the periodic sequence x[n] = (−1)n . We may write

x[n] = x1[n] + x2[n] = (−1)nu[n] + (−1)nu[−n − 1].

But from the previous examples we understand that

X1(z) = z

z + 1
for |z| > 1 and X2(z) = − z

z + 1
for |z| < 1,

so by linearity we have X (z) = X1(z) + X2(z) = 0.
What is the ROC in this case?
Since, with obvious notation, ROC1 is |z| > 1 and ROC2 is |z| < 1, and since
the ROC must be given by the intersection of the two individual ROCs, i.e.,
ROC1

⋂
ROC2, the ROC is empty: the z-transform series does not converge for

any z for this signal. Indeed, X (z) does not exist for any infinite-length periodic
signal other than x[n] = 0. All one-sided (e.g., causal) periodic signals have a
z-transform though.

• Right-sided sequences, x[n] = 0 for n < n0, where n0 is integer and finite:
the z-transform is

X (z) =
+∞∑

n=n0

x[n]z−n,

and the ROC extends outward from a circle of radius R− to ∞; if n0 ≥ 0 the
sequence is causal and the point z = ∞ is included in the ROC; if n0 < 0 there is
no convergence in z = ∞. For example, with n0 = 0 the signal is causal, x[n] = 0
for n < 0; if, as assumed in the previous discussion, x[n] is bounded for n → ±∞
by power laws, then we can write Rn+ = 0 for any negative n. Therefore R+ must
be infinite.
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• Left-sided sequences, x[n] = 0 for n > n0:
the z-transform is

X (z) =
n0∑

n=−∞
x[n]z−n =

∞∑

n=−n0

x[−n]zn,

and the ROC extends inward from a circle of radius R+ to the origin, with the
exception of the point z = 0 if n0 > 0. For example, with n0 = 0, x[n] = 0 for
n > 0 (anticausal signal); if x[n] is bounded for n → ±∞ by power laws, then
Rn− = 0 with positive n and therefore R− must vanish.

• Two-sided sequences:
this is the general case, in which the z-transform can be split into two parts:

X (z) =
+∞∑

n=−∞
x[n]z−n =

−1∑

n=−∞
x[n]z−n +

+∞∑

n=0

x[n]z−n,

where the first addend corresponds to a left-sided sequence with n0 = −1, and
the second addend corresponds to a right-sided sequence with n0 = 0. As shown
in Fig. 3.3, the first addend converges in |z| < R+ with z = 0 included (Fig. 3.3a),
while the second addend converges in |z| > R− with z = ∞ included (Fig. 3.3b).
With R+ > R−, this implies convergence in R− < |z| < R+.

• Finite-duration sequences, x[n] = 0 for n < n1 and n > n2, where n1 and n2 are
integer and finite:
we have

X (z) =
n2∑

n=n1

x[n]z−n,

and R+ → ∞, R− → 0. Hence z can assume any value, with the exception of
z = 0 when n2 > 0 and z = ∞ when n1 < 0. Convergence exists at least in
0 < |z| < ∞, with the possible addition of z = 0 or z = ∞.

Fig. 3.3 Region of
convergence for the
z-transform of a a right-sided
sequence, and b a left-sided
sequence

(a) (b)
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3.2.2 Rational z-Transforms

The z-transform is most useful when the infinite sum that defines it can be expressed
in closed form, i.e., when it can actually be “summed” and expressed by a simple
mathematical formula, as in the examples considered above.

The majority of the z-transforms encountered in practical cases are rational func-
tions, i.e., ratios of polynomials. Moreover, the theory of rational approximation of
functions (see, e.g., Powell 1981) states that we can always approximate a continuous
function like the z-transform as closely as we want, under relatively large conver-
gence constraints, by a rational function with sufficiently high numerator and the
denominator degrees. The z-transforms of many important signals are rational func-
tions; also, and more importantly, the transfer functions of LTI systems described by
LCCDEs are rational functions.

Rational z-transforms are determined, up to a multiplicative constant, by their
zeros (roots of the numerator polynomial) and by their poles (roots of the denominator
polynomial).

Recall that a polynomial P(z)withdegree p has exactly p roots, includingpossible
multiplicities: two or more roots can indeed be coincident. These roots are complex
in general, but if the polynomial coefficients are real, the roots come in complex
conjugate pairs: if λ is a root with multiplicity n, then λ∗ is also a root. This is the
case of the polynomials forming the H(z) of an LTI system satisfying an LCCDE,
because then the coefficients of the numerator and denominator polynomials derive
directly from the LCCDE coefficients that are real and constant (Sect. 3.2.6). For
rational z-transforms, the ROC is determined by the position of the poles: X (z) goes
to infinity at a pole and therefore does not converge at that point of the z-plane. So,
the ROC cannot contain any pole. Figure3.4 shows an example of a pole pattern in
the complex plane. The unit circle is also shown as a dot-dashed curve. What are the
possible ROCs of X (z) in this example?

Fig. 3.4 An example in
which a rational z-transform
has three poles falling in the
z-plane points indicated as a,
b, c (see text). The unit circle
is represented as a
dot-dashed curve
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(a) (b)

(c) (d)

Fig. 3.5 The four different possibilities that exist for the region of convergence of a rational
z-transform, when the poles are those shown in Fig. 3.4. Each ROC corresponds to a different
sequence: a a right-sided sequence, b a left-sided sequence, c a two-sided sequence, and d another
two-sided sequence, different from the previous one. The only sequence having a DTFT represen-
tation is the one corresponding to the ROC of panel d, because only in that case the ROC includes
the unit circle (dot-dashed curve)

Given a pole pattern of a rational H(z) like the one shown in Fig. 3.4, several
possible choices for the ROC can exist, all of them satisfying the condition of con-
taining no poles, and each choice is associated with a different sequence x[n]. In
our example, there are only four possible choices for the ROC. They are shown in
Fig. 3.5. Specifically, Fig. 3.5a corresponds to a right-sided sequence; Fig. 3.5b cor-
responds to a left-sided sequence; Fig. 3.5c, d correspond to two distinct two-sided
sequences. Causality is the constraint that allows us to determine a unique solution:
only the right-sided sequence in Fig. 3.5a is causal. If, and only if, the ROC contains
the unit circle, the sequence has a DTFT representation. If we assume that the unit
circle falls between the pole at z = b and the pole at z = c, as in Fig. 3.4, then the
only case in which the DTFT converges is the one in Fig. 3.5d.

To summarize, the following properties hold:

• if x[n] is an infinite-length right-sided sequence, then the ROC extends outward
from the outermost (i.e., largest magnitude) finite pole to (and possibly including)
z = ∞;

• if x[n] is an infinite-length left-sided sequence, then the ROC extends inward from
the innermost (i.e., smallest magnitude) non-zero pole to (and possibly including)
z = 0;
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• any infinite-length two-sided sequence x[n] can be represented as a sum of a right-
sided sequence (say for n ≥ 0) and a left-sided sequence that includes every term
not included in the right-sided part. The ROC of the two-sided sequence is the
intersection of the ROCs of the two parts. If such an intersection exists, it will
always be a simply connected annular region delimited by poles, as in Fig. 3.5c, d.
There is a possibility of no overlap between the ROCs of the right-handed and
left-handed parts: in such cases the z-transform of the two-sided sequence simply
does not exist;

• if x[n] is a finite-length sequence, i.e., a sequence that is identically zero except in
a finite discrete-time interval n1 < n ≤ n2, then the entire z-plane is certainly free
from poles, except the origin, which contains a pole when n2 > 0, and z = ∞,
which contains a pole when n1 < 0. Therefore the ROC covers the entire z-plane,
except possibly z = 0 or z = ∞.

Amore detailed discussion of the ROC of a rational X (z) can be found in Oppenheim
and Schafer (2009).

3.2.3 Inverse z-Transform

One of the important roles of the z-transform is in the analysis of LTI systems.
Often this analysis involves finding the z-transform of a sequence and, after some
manipulation of its algebraic expression, finding the inverse z-transform. So, given
the algebraic expression of X (z) and its associated ROC, how can we calculate the
corresponding x[n]?

Formally, we can use the Cauchy integral theorem to write (see, e.g., Oppenheim
and Schafer 2009)

x[n] = 1

2πj

∮

C
X (z)zn−1dz,

where C is a closed counterclockwise contour that encircles the origin and is con-
tained inside theROC. This integral can be evaluated usingCauchy’s residue theorem
(Churchill and Brown 1984).

If we focus on the case of practical interest in which the series that defines X (z)
converges to a rational function of z, then X (z) has a finite number of poles and zeros.
A technique of partial fraction expansion (or decomposition; see Sect. 3.2.8) can be
adopted in this case. The aim is expressing X (z) as a linear superposition of terms
that can be easily inverted: in particular, simple terms whose inverse z-transform is
known (see Oppenheim and Schafer (2009) for a list of some common z-transform
pairs).

Thoughwewill not enter into further details on this subject, it is worthmentioning
that a rational z-transform can be expressed in the form of a ratio between polyno-
mials containing powers of z−1, as we did so far, or in the form of a ratio between
polynomials containing powers of z. One form may be more convenient than the
other as far as the inversion is concerned.
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Causal sequences have a z-transform definition sum containing only negative
powers of z, i.e., X (z) = ∑+∞

n=0 x[n]z−n . In this case, X (z) is most conveniently
given as a power series in z−1 with some coefficients cn , and with the associated
ROC. Then, the inversion becomes straightforward:

+∞∑

n=−∞
x[n]z−n =

+∞∑

n=−∞
cnz−n

leads directly to x[n] ≡ cn . It is sometimes useful to expand an X (z) given in closed
form in series of powers of z−1, so as to be able to perform this direct inversion.
For example, let us take the non-rational z-transform X (z) = log(1 + az−1), with
|z| > |a|. Using the series expansion for log(1 + β) valid for |β| < 1, which is

log(1 + β) =
∞∑

n=1

(−1)n+1 βn

n
,

we can write

X (z) =
+∞∑

n=1

(−1)n+1anz−n

n
.

Comparison of this formulawith the definition summation allows for direct inversion:

x[n] =
{

(−1)n+1 an

n for n ≥ 1,

0 for n ≤ 0.

3.2.4 The z-Transform on the Unit Circle

When the z-transform converges on the unit circle (Fig. 2.13), there X (z) represents
the discrete-time Fourier transform (DTFT) of x[n]:

X (ejω) =
+∞∑

n=−∞
x[n]e−jωn .

Note that:

• x[n] is a sequence, that is, a function of discrete time, while the DTFT is a function
of the continuous-frequency variable ω;

• X (ejω) is a periodic function with a period of 2π: indeed, since e−j2πkn = 1,

X [ej(ω+2πk)] =
+∞∑

n=−∞
x[n]e−j(ω+2πk)n =

+∞∑

n=−∞
x[n]e−jωne−j2πkn = X (ejω);

http://dx.doi.org/10.1007/978-3-319-25468-5_2
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• the expression of X (ejω) can be seen as the Fourier series expansion of the periodic
function X (ejω). Frequency ω varies from −∞ to +∞ when we go through the
unit circle an infinite number of times. This is referred to as the wrapping of the
ω axis;

• ejωn and ej(ω+2πk)n are indistinguishable, so X (ejω) must be the same at these
frequencies. For example, if we consider the frequency response H(ejω) of an LTI
system, the system must react in the same way to indistinguishable frequencies;

• when x[n] derives from an analog signal x(t) through periodic sampling with
sampling interval Ts , we can relate the frequency variables of the discrete-time
domain (ω and ν) to those of the continuous-time domain ( f and�): f = �/(2π)

= ω/(2πTs) = ν/Ts . The period of X (ejω) is 2π when expressed in terms of ω, 1
in terms of ν, 1/Ts in terms of f , and 2π/Ts in terms of �.

3.2.5 Selected z-Transform Properties

We will now list some important properties of the z-transform. From this point on
we will denote any reversible transform operation by the symmetric symbol ⇐⇒;
the context of the discussion clarifies what kind of transform is involved. So in this
section ⇐⇒ means “the right-hand term is the z-transform of the left-hand term and
the left-hand term is the inverse z-transform of the right-hand term”. For brevity, we
omit symmetry properties.

1. Linearity:
given two arbitrary constants a and b,

ax1[n] + bx2[n] ⇐⇒ aX1(z) + bX2(z),

and the ROC is at least the intersection of the individual ROCs of X1(z) and
X2(z). If the linear combination is such that one or more zeros are introduced
that cancel one or more poles, then the ROC may be larger.

2. Folding or time reversal:
x[−n] ⇐⇒ X (z−1).

The ROC of X (z−1) is such that if X (z) converges in R− < |z| < R+, then the
transform of the folded sequence converges in 1/R+ < |z| < 1/R−.

3. Time shifting, or translation, or “delay”:

x[n − m] ⇐⇒ z−m X (z).

The sequence x[n − m] shares the same ROC as x[n], with the exception of
z = 0 e z = ∞. For m > 0, poles are introduced at the origin and zeros are
introduced at infinity, and vice-versa for m < 0.
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4. Conjugation of a complex sequence:

x∗[n] ⇐⇒ X∗(z∗),

with convergence in R− < |z| < R+.
5. Multiplication by an exponential sequence an (modulation):

given a real or complex constant a,

an x[n] ⇐⇒ X (z/a),

with ROC given by |a|R− < |z| < |a|R+, where R− and R+ delimit the ROC
of X (z). The positions of the poles and zeros are modified by a factor a:

• if a is real and non-zero, a compression (shrinking) or an expansion of the
z-plane occurs for |a| > and |a| < 1 respectively, i.e., both poles and zeros
move along radial lines in the z-plane;

• if a is complex, with |a| = 1, so that a = ejθ, a rotation of the z-plane by an
angle of θ occurs, i.e., both poles and zeros move along circles centered at the
origin;

• if a is complex and |a| �= 1, both a compression/expansion and a rotation of
the z-plane occur.

An important special case is

(−1)n x[n] ⇐⇒ X (−z).

Putting the folding, time-shifting and modulation properties together we can see
that

(−1)n x[m − n] ⇐⇒ (−z)−m X (−z−1).

These special cases will be useful in Chap.14.
6. Differentiation:

nx[n] ⇐⇒ −z
d X (z)

dz
,

with convergence in R− < |z| < R+, except the possible cancellation or intro-
duction of the points z = 0 and z = ∞.

7. Real and imaginary parts of a complex sequence:

Re {x[n]} ⇐⇒ 1

2
[X (z) + X∗(z∗)] and Im {x[n]} ⇐⇒ 1

2 j
[X (z) − X∗(z∗)],

with convergence at least in R− < |z| < R+.
8. Convolution:

y[n] = x1[n] ∗ x2[x] ⇐⇒ Y (z) = X1(z)X2(z),

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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with convergence at least in the intersection of the ROCs of X1(z) and X2(z). If
a pole of one of the individual z-transforms is canceled by a zero of the other,
then the ROC of Y (z) can be larger.

9. Initial value theorem:
if x[n] is causal, then x[0] = limz→∞ X (z).

10. Final value theorem:
if X (z) exists for |z| > r and r < 1, i.e., if the ROC includes the unit circle,
then x[n] → 0 as n → ∞.
If X (z) is rational and is the z-transform of a causal sequence x[n], then the
ROC of X (z) extends outward from a circle containing all its poles; in this case,
the final value theorem implies that x[n] vanishes for n → ∞ if all poles are
internal to the unit circle.

11. Complex convolution theorem:
the z-transform of the product w[n] = x[n]y[n] of two real sequences x[n] and
y[n] takes the form of a convolution integral:

w[n] = x[n]y[n] ⇐⇒ W (z) = 1

2πj

∮

C
X (z/v)Y (v)v−1dv,

where the counterclockwise contour C must fall inside the intersection of the
individual ROCs of X (z/v) and Y (v). Alternatively we can write

w[n] = x[n]y[n] ⇐⇒ W (z) = 1

2πj

∮

C ′
X (v)Y (z/v)v−1dv,

where the counterclockwise contour C ′ must fall inside the intersection of the
individual ROCs of X (v) and Y (z/v).
If we choose a circular contour and express the variables in polar form, by setting
z = rejω and v = ρejθ, we find

W (rejω) = 1

2π

∫ +π

−π

X (ρejθ)Y

[(
r

ρ

)
ej(ω−θ)

]
dθ =

= 1

2π

∫ +π

−π

X

[(
r

ρ

)
ej(ω−θ)

]
Y (ρejθ)dθ,

that formally is the convolution integral of X (rejω) and Y (rejω) as functions
of ω, except for the fact that the integration limits are finite. Actually, this is
an integral performed over a single period of X (z) and Y (z). This operation is
referred to as the continuous periodic convolution of X (z) with Y (z). The ROC
of W (z) is given by Rx− Ry− < |z| < Rx+ Ry+, with obvious notation.
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12. Parseval’s theorem4:
for generality, this time we explicitly consider two complex sequences x[n] and
y[n]. We can write

+∞∑

n=−∞
x[n]y∗[n] = 1

2πj

∮

C
X (v)Y ∗(1/v∗)v−1dv.

The contour C must be contained inside the intersection of the individual ROCs
of X (v) and Y ∗(1/v∗). This property derives from the complex convolution
theorem applied to w[n] = x[n]y∗[n].
If x[n] = y[n], Parseval’s relation gives an expression for the energy5 of x[n]
in terms of the z-transform:

E =
+∞∑

n=−∞
|x[n]|2 = 1

2πj

∮

C
X (v)X∗(1/v∗)v−1dv.

On the unit circle, provided that convergence exists on it, this relation becomes

E =
+∞∑

n=−∞
|x[n]|2 = 1

2π

∫ +π

−π

|X (ejω)|2dω.

This is Parseval’s relation for the DTFT of x[n], which will be resumed later.

3.2.6 Transfer Function of an LTI System

An LTI system satisfying an LCCDEwith finite order has a rational transfer function
H(z), i.e., H(z) is the ratio of two polynomials in z−1. To demonstrate this, let us
consider an LCCDE with order N ,

y[n]+a1y[n −1]+ · · ·+aN y[n − N ] = b0x[n]+ b1x[n −1]+ · · ·+ bM x[n − M],

and transform it according to the time-shift property of the z-transform: we obtain

Y (z)+a1Y (z)z−1 +· · ·+aN Y (z)z−N = b0X (z)+b1X (z)z−1 +· · ·+bM X (z)z−M ,

4The name of this relation originates from a 1799 theorem about series, formulated byMarc-Antoine
Parseval, which was later applied to the Fourier series. Analogous relations for other transforms
were then derived, like the one mentioned here for the z-transform.
5Parseval’s relation written in this way is meaningful only for energy signals. It does not hold for
power signals having a DTFT only in a generalized sense (see Sect. 3.3). For power signal we must
reason in terms of average power and write Parseval’s relation differently; this will be done in
Chap.5.

http://dx.doi.org/10.1007/978-3-319-25468-5_5
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from which we get, with a0 = 1,

Y (z)/X (z) = b0 + b1z−1 + · · · + bM z−M

1 + a1z−1 + · · · + aN z−N
=
∑M

r=0 br z−r

∑N
k=0 ak z−k

= b(z)

a(z)
.

But according to the convolution property of the z-transform,

y[n] = x[n] ∗ h[n] ⇐⇒ Y (z) = X (z)H(z),

so that
H(z) = Y (z)/X (z);

in conclusion,

H(z) = b0 + b1z−1 + · · · + bM z−M

1 + a1z−1 + · · · + aN z−N
=
∑M

r=0 br z−r

∑N
k=0 ak z−k

= b(z)

a(z)
,

with a0 = 1. The corresponding sequence h[n] has, in general, infinite length.
We can summarize what we have learned about the transfer function of an LTI

system as follows:

• H(z) is the z-transform of the impulse response h[n];
• H(z) is the eigenvalue of the LTI system, corresponding to the eigenfunction zn;
• H(z) is the ratio of the z-transform of the output to the z-transform of the input,
for any input x[n].

A further comment on the relation H(z) = Y (z)/X (z) is needed here. In order to
derive this relation from the LCCDE, we only assumed

• that the system is LTI;
• that the ROCs of X (z) and Y (z) overlap at least partly, so that the ROC of H(z)
is not empty.

We did not assume the LTI system to be stable and/or causal: correspondingly, from
the LCCDEwe obtained H(z) but not its ROC, and therefore the sequence h[n] is not
univocally defined. This is consistent with the fact that an LCCDE does not identify
univocally the input-output relation of an LTI system, unless we associate proper
initial conditions with it. As a consequence, given an LCCDE, different choices for
the ROC of H(z) may be available, all of them in the form of a ring delimited by
poles but with no poles inside. Each choice leads to a different h[n], as we already
saw in the case of Fig. 3.5. However, if we constrain the system to be causal, h[n]
must be a right-sided sequence and therefore the ROC must extend outward from
the outermost pole. If we further assume stability, the ROC must include the unit
circle. The two requirements are not necessarily compatible: they are compatible if
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all H(z) poles are contained inside the unit circle. This is easily seen comparing the
stability condition for an LTI system with the condition defining the ROC of H(z):

+∞∑

k=−∞
|h[k]| < ∞,

+∞∑

k=−∞
|h[k]||z−k | < ∞.

Thus, if the ROC of H(z) includes the points with |z| = 1, then the system is stable,
and vice-versa.

For a stable and causal system,

• the ROC of the transfer function includes the unit circle and the part of the z-plane
external to the unit circle, including z = ∞;

• all H(z) poles are inside the unit circle; the zeros can be anywhere in the z-plane;
• the impulse response is a sequence h[n] that tends to 0 for n → ∞ (final value
theorem);

• the values of H(z) on the unit circle, i.e., H(z)|z=ejω = H(ejω), represent the
system’s frequency response.

3.2.7 Output Sequence of an LTI System

Given the transfer function of an LTI system, H(z), together with its ROC, and given
an input sequence x[n], we can, in principle, deduce the output sequence y[n] in
several ways.

1. Discrete-time domain

• Convolution: we can invert H(z) to get h[n] and then compute y[n] = x[n] ∗
h[n].

• LCCDE: from the expression of H(z)we can deduce the LCCDE coefficients
and then build the samples of y[n].

2. z-transform domain

• From x[n] we can calculate X (z). Then we form Y (z) = H(z)X (z) and by
inverse z-transform we obtain y[n].

However, while an FIR system is easily actuated directly in the time domain via
convolution, an operation that in the FIR case implies a finite number of additions
andmultiplications and the use of a finite number ofmemory locations on a computer,
an IIR system is not. Therefore an IIR system will be actuated in the time domain
via recursive LCCDE.
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3.2.8 Zeros and Poles: Forms for Rational Transfer
Functions

We now consider the rational transfer function of a stable and causal LTI system and
discuss three more ways of expressing it. Recall that we assumed a0 = 1.

• It can be shown that the transfer function,

H(z) =
∑M

m=0 bm z−m

∑N
k=0 ak z−k

=
∑M

m=0 bm z−m

1 +∑N
k=1 ak z−k

,

can, provided that b0 does not vanish, be factorized as

H(z) = A

∏M
m=1(1 − wm z−1)
∏N

k=1(1 − pk z−1)
,

where wm and pk are the zeros and poles of H(z), respectively, and the non-zero
factor A is equal to b0/a0; but since we set a0 = 1, we simply have A = b0. In
this expression, each factor in the numerator gives a zero of the transfer function
at z = wr and a pole at z = 0, while each factor in the denominator gives a pole
of the transfer function at z = pk and a zero at z = 0. As we stated in Sect. 3.2.2,
the roots wm of the numerator polynomial occur in complex-conjugate pairs, and
the same is true for the roots pk of the denominator polynomials.
If, on the contrary, b0 = b1 = · · · = bM1 = 0, i.e., if the bm vanish up to some
m = M1, then the factorized formula for H(z) is

H(z) = Bz−(M1+1)

∏M−(M1+1)
m=1 (1 − wm z−1)
∏N

k=1(1 − pk z−1)
,

where the factor B is equal to bM1+1/a0.
• In addition to the formula given above, another factorized form of H(z) exists,
which is obtained starting from H(z) expressed as a ratio of polynomials in z,
rather than in z−1—a transformation that is always possible. The procedure is the
following.
Let bM−r be the first numerator coefficient that is non-zero, with r ≤ M ; for
example, r = M if b0 �= 0. Then, with a0 = 1, the following expressions can be
written:

H(z) =

⎧
⎪⎨

⎪⎩

zN−M (bM−r zr +···+bM )

zN +a1zN−1+···+aN
for N ≥ M, N − M ≥ 0,

bM−r zr +···+bM

zM−N (zN +a1zN−1+···+aN )
for N < M, M − N > 0.

In the first case, the numerator degree is N − M + r with r ≤ M , hence the
numerator degree is ≤ N . The denominator degree is N . In the second case,
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the numerator degree is r ≤ M and the denominator degree is M . Note that
the exponent M − N in the denominator is non-negative in this second case. In
both cases, the numerator degree does not exceed the denominator degree (proper
fraction), as is appropriate to a causal system. Indeed, positive powers of z are
associated with time advances, while negative powers of z are associated with
time delays. If r = M , i.e., b0 �= 0, the numerator and denominator degrees are
equal (exactly proper fraction), and y[n] depends on both past (x[n − k]) and
present (x[n]) values of the input. If b0 = 0, the numerator degree is smaller than
the denominator degree (strictly proper fraction), and y[n] only depends on past
input values.
The previous expression is then properly factorized. For example, if b0 �= 0,
r = M , then H(z) can be written as

H(z) = b0zN−M zM + (b1/b0)zM−1 + · · · + (bM/b0)

zN + a1zN−1 + · · · + aN
,

and therefore we get

H(z) = b0zN−M (z − w1)(z − w2) + · · · + (z − wM )

(z − p1)(z − p2) + · · · + (z − pN )
= b0zN−M

∏M
m=1(z − wm)
∏N

k=1(z − pk)
.

In this formula, the exponent N − M can have any sign, or be zero as well. The
factor b0 is often indicated as the gain: G = b0/a0 = b0 (recall that a0 = 1). This
form of H(z) is referred to as the zero-pole-gain form.
From this expression we see that in the z-plane, at z �= 0 and z �= ∞, H(z) has M
zeros and N poles. It also has |N − M | zeros (if N ≥ M) or poles (if N < M) at
z = 0. Therefore at finite z the transfer function H(z) has N zeros and N poles.
This allows for writing H(z) as

H(z) = b0
(z − w1)(z − w2) + · · · + (z − wL)

(z − p1)(z − p2) + · · · + (z − pL)
, L = max(N , M),

in which some wk and pk can be zero. Obviously, each pole at z = 0 corresponds
to a zero at z = ∞, and each zero at z = 0 corresponds to a pole at z = ∞.
Table3.1 summarizes what we have said about the number of poles and zeros of
H(z). The total number of poles and zeros indicated in Table3.1 excludes those
possibly existing at z = ∞. The number of zeros and poles present at z = ∞ is
also indicated in Table3.1, but in square parentheses, since these zeros and poles
do not contribute to the total count.
Note that the numerator and the denominator polynomials might have one or more
roots in common. If the numerator and denominator polynomials have no roots in
common, then H(z) is said to be in minimal form, meaning that the system cannot
be described by an LCCDE having smaller values of N and M . Conversely, if
the two polynomials do have a common factor, H(z) is said to be in non-minimal
form. A non-minimal H(z) can be brought to a minimal form by canceling the
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Table 3.1 Number of zeros and poles of H(z)

z �= 0,
finite

z = 0 [z = ∞] Total z = 0 [z = ∞] Total

N ≥ M N < M

Zeros M N − M N [M − N ] M

Poles N [N − M] N M − N M

common factor of the numerator and denominator polynomials. In dealing with
rational transfer functions, it is assumed that the function is given in minimal
form, unless stated otherwise. FIR systems have N = 0, and therefore only have
M zeros, besides a multiple pole at the origin.
From the previous discussion it is clear that a rational H(z) is determined, up to a
constant factor, by its poles and zeros, and as such, it can be described graphically
by a diagram showing the positions of poles and zeros.

• Another form sometimes used for a rational H(z) is the one that can be obtained
by partial fraction decomposition. This form can be useful for the inversion of a
rational H(z) (Sect. 3.2.3).
In this case we start from a transfer function expressed as a ratio of polynomials
in z−1, and assume that the numerator has a degree M smaller than the degree N
of the denominator. This is not restrictive, since if we have instead M ≥ N , then
we can preliminarily write

H(z) = b(z)

a(z)
= c0 + c1z−1 + · · · + cM−N z−(M−N ) + · · ·

· · · + d0 + d1z−1 + · · · + dN−1z−(N−1)

1 + a1z−1 + · · · + aN−1z−N
=

= c(z) + d(z)

a(z)
,

and then work on the term d(z)/a(z), for which the condition M < N is certainly
satisfied. The coefficients of the new polynomials c(z) and d(z) are obtained by
equating the coefficients of the various powers of z−1 in the equation c(z)a(z) +
d(z) = b(z), and then solving the system thus obtained.
The term c(z), provided it is present, can be inverted directly. As for the term
d(z)/a(z), assuming that all the poles of the LTI system are simple, i.e., no two
of them are equal, it can be shown that it is possible to write

d(z)

a(z)
= d0 + d1z−1 + · · · + dN−1z−(N−1)

∏N
i=1(1 − pi z−1)

=
N∑

k=1

Ak

1 − pk z−1
,

where pk are the zeros of a(z), that is, the poles of H(z), and the Ak are coeffi-
cients called residuals of d(z)/a(z) in the poles. The residuals Ak can be found
multiplying the equation by each of the terms 1 − pk z−1, and then substituting
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z = pk . This gives

Ak = d0 pN−1
k + d1 pN−2

k + · · · + dN−1∏
i �=k(pk − pi )

,

in which the factors in the denominator are all different from zero, since the poles
have been assumed to be all distinct.
In summary, the partial fraction decomposition of H(z) for M ≥ N is

H(z) = c0 + c1z−1 + · · · + cM−N z−(M−N ) +
N∑

k=1

Ak

1 − pk z−1
,

or

H(z) =
M−N∑

i=0

ci z
−i +

N∑

k=1

Ak

1 − pk z−1
,

in the case of simple poles only. If M < N , there is no need for preliminary
polynomial division, d(z) ≡ b(z) and the first summation is absent. In this form,
H(z) is immediately invertible, since the inverse transforms of the terms involved
are known. The impulse response of the system is then found considering that the
terms ci z−i correspond to terms of the form ciδ[n − i], while the terms of the form
1/(1− pk z−1) correspond to pn

k u[n] or to −pn
k u[−n − 1], depending on the ROC

of H(z) (see Sect. 3.2.1). A causal LTI system will have

h[n] =
M−N∑

i=0

ciδ[n − i] +
N∑

k=1

Ak pn
k u[n].

The partial fraction expansion formula can be generalized to the case of multiple
poles. If r is a pole with multiplicity sr , the corresponding term in the decompo-
sition formula assumes the form

A j

1 − p j z−1
+ A j+1

(1 − p j z−1)2
+ · · · + A j+sr −1

(1 − p j z−1)sr
,

and can be easily inverted. In practice, LTI systems with multiple poles are rare in
digital signal processing applications.

3.2.9 Inverse System

For a given LTI systemwith transfer function H(z), the corresponding inverse system
is defined to be the system with transfer function Hi (z), such that if it is cascaded
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with H(z), the overall effective transfer function is unity:

G(z) = H(z)Hi (z) = 1.

This implies that Hi (z), provided it exists, is

Hi (z) = 1

H(z)
.

In the time domain, the equivalent condition is

g[n] = h[n] ∗ hi [n] = δ[n].

The frequency response of the inverse system, if it exists, is

Hi (e
jω) = 1

H(ejω)
.

If x[n] and y[n] are the input and the output of the system with transfer function
H(z), respectively, then the system with transfer function Hi (z), with y[n] as the
input, will give x[n] as the output; but not all systems have an inverse.

For example, the ideal lowpass filter that will be presented in Sect. 6.1 (see
Fig. 6.1a) does not have an inverse: indeed, there is no way to recover the frequency
components of the input signal x[n] that have been completely eliminated by the
filtering operation. The same applies to the ideal highpass filters and to any ideal
frequency-selective filter.

Many systems do have inverses, however. The class of systems with rational
transfer functions provides the best example:

H(z) = b0
a0

∏M
r=1(1 − wr z−1)

∏N
k=1(1 − pk z−1)

gives immediately

Hi (z) = a0

b0

∏N
k=1(1 − pk z−1)

∏M
r=1(1 − wr z−1)

.

If H(z) is stable, Hi (z) is not necessarily stable. Since the poles of Hi (z) evidently
are the zeros of H(z) and vice-versa, an LTI system is stable and causal and also has
a stable and causal inverse solely if not only its poles, but also its zeros lie inside the
unit circle.

Note that if the original filter is FIR, i.e., if it has a polynomial transfer function,
its inverse will be IIR, i.e., its transfer function will be a rational function. We can
deduce that if in applications only the FIR class of filters is admitted for some reason,
we just cannot invert a single filter while remaining inside the FIR class.

http://dx.doi.org/10.1007/978-3-319-25468-5_6
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3.3 Discrete-Time Fourier Transform (DTFT)

Now we will focus on the representation of signals and system in the frequency
domain.

Let us recall that the values of the complex variable z with unit amplitude,
z = ejω , define the complex exponential sequences x[n] = ejωn , having the property
of passing through an LTI system without changing their shape. The output is still
a complex exponential sequence with the same frequency as the input, though with
amplitude and phase determined by the system characteristics:

x[n] = ejωn ⇒ y[n] = ejωn H(ejω),

where ejωn is the eigenfunction of the LTI system, corresponding to the eigenvalue
H(ejω). The set of values H(ejω) for all possible ω, i.e., the function H(ejω), is the
frequency response of the LTI system, which coincides with the DTFT of h[n],

H(ejω) = H(z)|z=ejω =
+∞∑

n=−∞
h[n]e−jωn .

The frequency response of an LTI system has the following properties:

• it exists if the system is stable;
• it describes, frequency by frequency, the amplitude and phasemodulation operated
by the system on complex exponential input signals.

If instead of the impulse response of an LTI system we consider any sequence x[n],
a similar summation gives the DTFT of x[n],

X (ejω) =
+∞∑

n=−∞
x[n]e−jωn .

This definition is also referred to as the analysis relation of the DTFT.
X (ejω) is a periodic complex function of ω, with period 2π, often referred to as

the spectrum of x[n]. The amplitude of X (ejω) is called amplitude spectrum of x[n];
the phase is called phase spectrum.

The DTFT of a sequence x[n]
• describes the composition of x[n] in terms of periodic discrete-time complex
exponentials with angular frequencies spanning the interval6 [−π,π);

6Recall from Chap.2 that even if here choose a range of values for ω that spans [−π,+π), any
interval of length 2π can be used. For example, choosing (−π,+π] instead of [−π,+π) would be
correct as well; we could also choose [0, 2π), etc. Actually, whenever in our discussion we will
consider a DTFT over the positive frequency half-axis only, we will write ω ∈ [0,π].

http://dx.doi.org/10.1007/978-3-319-25468-5_2
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• exists if x[n] is absolutely summable7: the condition

+∞∑

n=−∞
|x[n]| < ∞

is sufficient to ensure uniform convergence of the DTFT definition sum to a con-
tinuous function of ω, since

|X (ejω)| =
∣∣∣∣∣

+∞∑

n=−∞
x[n]e−jωn

∣∣∣∣∣ ≤
+∞∑

n=−∞
|x[n]|;

• is useful to describe the interaction between x[n] and LTI systems, since complex
exponentials are eigenfunctions of such systems;

• does not exist in the sense of uniform convergence if the ROC of X (z) does not
contain the unit circle.

Thus, signals and systems exist, forwhich theDTFTdoes not converge uniformly, but
the z-transform exists in some domain not containing the unit circle. An absolutely
summable sequence is certainly square-summable, i.e., it also has finite energy,

E =
+∞∑

n=−∞
|x[n]|2 ≤

{ +∞∑

n=−∞
|x[n]|

}2

,

but a finite-energy sequence is not necessarily absolutely summable. In order to be
able to represent byDTFTnot only absolutely summable discrete-time signals, but all
energy signals, the condition of uniform convergence of the DTFT series is relaxed,
and convergence in the mean-square sense is accepted.

The concept of mean-square convergence involves considering a truncated series
X M(ejω), i.e., the sum of a finite number of series terms,

X M(ejω) =
M∑

n=−M

x[n]e−jωn,

and then evaluating this sum for increasing values of M . If the mean-square error
between the truncated series and the function X (ejω) decreases with increasing M ,
so that

lim
M→∞

∫ π

−π

∣∣X (ejω) − X M(ejω)
∣∣ dω = 0,

7Sequences that are absolutely summable are classified as �1-sequences; sequences that are square-
summable are classified as �2-sequences. See the appendix to this chapter for these topics.
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then convergence in themean-square sense exists. The function X (ejω) can be discon-
tinuous in this case: a typical example is the frequency response of ideal frequency-
selective filters, like the lowpass filter shown in Fig. 6.1a.

Note that for finite-energy signals that are not absolutely summable, the DTFT
exists, but the z-transform does not exist: indeed, since X (ejω) is discontinuous, it
cannot be an analytic function. In this case, evidently we cannot think of the DTFT
as the set of values assumed by the z-transform on the unit circle.

3.3.1 An Example of DTFT Converging in the Mean-Square
Sense

Let us examine the frequency response of the ideal lowpass filter with cutoff fre-
quency ωc. Ideal frequency-selective filters will be discussed in Chap.6; for the
moment, see the shape of the ideal lowpass filter shown in Fig. 6.1a. The ideal low-
pass filter is defined by

H(ejω) =
{
1 for 0 ≤ |ω| ≤ ωc,

0 for ωc < |ω| ≤ π.

This is a real function, that is, its phase is zero. So, if we hypothetically apply this
filter to a sequence, we get no phase difference between the input and the output.
The corresponding impulse response cab be computed as (see Sect. 3.3.3)

h[n] = 1

2π

∫ −ωc

+ωc

ejωndω = sin (ωcn)

πn
= ωc

π

sin (ωcn)

ωcn
= ωc

π
Sinc(ωcn/π),

with −∞ < n < +∞. Here Sinc(·) indicates the normalized cardinal sine
function that in digital signal processing and information theory is commonly
defined as8

Sinc(x) =
{

sin(πx)

πx for x �= 0,

1 for x = 0.

The sequence h[n] has infinite length and is non-causal; therefore system’s the output
cannot be calculated, either recursively or non-recursively. The ideal lowpass filter is
not computationally realizable. This filter is useful in theory but is not applicable in

8In mathematics, the historical (unnormalized) Sinc function is defined as

Sinc(x) =
{

sin(x)
x for x �= 0,

1 for x = 0.

In either case (unnormalized or normalized), the value at x = 0 is defined to be the limiting value
Sinc(0) = 1.

http://dx.doi.org/10.1007/978-3-319-25468-5_6
http://dx.doi.org/10.1007/978-3-319-25468-5_6
http://dx.doi.org/10.1007/978-3-319-25468-5_6
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practice. Later we will see that those causal approximations to frequency-selective
filters that can be used in practical applications cannot have zero phase and cannot
have discontinuities.

Moreover, the sequence h[n] is not absolutely summable:

+∞∑

n=−∞

∣∣∣∣
sin (ωcn)

πn

∣∣∣∣ = ∞,

and thus the DTFT of h[n],

H(ejω) =
+∞∑

n=−∞

sin (ωcn)

πn
e−jωn,

does not converge uniformly for all ω values, in connection to the fact that H(ejω) is
discontinuous at ω = ±ωc. However, convergence in the mean-square sense exists,
because h[n] is a square-summable sequence, i.e., has finite energy. Thus if we
consider a finite number M of series terms,

HM(ejω) ≡
+M∑

n=−M

sin (ωcn)

πn
e−jωn,

we have

lim
M→∞

∫ +π

−π

|H(ejω) − HM(ejω)|2dω = 0.

This non-uniform convergence is characterized by the fact that in the vicinity of the
discontinuity, the truncated series exhibits oscillatory behavior (Gibbs phenomenon;
Fig. 3.6).

Thus, the ideal lowpass filter has a frequency response but does not have a transfer
function. Also the other ideal frequency-selective filters, namely the ideal highpass
filter, as well as the ideal bandpass and the ideal bandstop filters (see Fig. 6.1b, c and
d, respectively), behave in a similar way. All these ideal filters allow for a frequency
response description but do not have a transfer function.

3.3.2 Line Spectra

It is useful to have a DTFT representation for certain sequences that are neither
absolutely summable nor square-summable. This is a further extension of the DTFT,
based on the theory of generalized functions, also known as distributions (Lighthill
1958). A typical example of generalized function is the Dirac δ, an analog impulse
of infinite height, zero width and unit area.

http://dx.doi.org/10.1007/978-3-319-25468-5_6
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Fig. 3.6 The Gibbs
phenomenon for a truncation
of the frequency-response
series at a finite number M
of terms. a–d: M = 1, 3, 7
and 19, respectively

(a) (b)

(c) (d)

Let us consider the periodic complex exponential sequence x1[n] = ejω0n . This
sequence is neither absolutely summable nor square-summable, and its z-transform
does not exist. Nonetheless, it is possible and useful to define the DTFT of this
sequence as the periodic impulse train shown in Fig. 3.7a,

X1
(
ejω
) =

∞∑

r=−∞
2πδ(ω − ω0 + 2πr),

where r is an integer number in (−∞,+∞). The use of the periodic impulse train
as a DTFT representation of the sequence x1[n] is justified primarily because formal
substitution of the periodic impulse train into the inverse DTFT formula, given in
the next subsection, leads to the correct result. Clearly, in this case the DTFT goes
to infinity at ω = ω0 + 2πr . Note that if ω0 = 0, x1[n] = 1 for all n, and the DTFT
reduces to X1

(
ejω
) =∑∞

r=−∞ 2πδ(ω + 2πr).
Using the Dirac δ, the concept of DTFT can be extended rigorously to the class

of sequences that can be expressed as a sum of discrete frequency components,
such as

x[n] =
∑

k

ake
jωk n, −∞ < n < +∞, 0 ≤ ωk ≤ π,

with the {ak} being some real constant coefficients. The expression

X (ejω) =
+∞∑

r=−∞

∑

k

2πakδ(ω − ωk + 2πr)
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Fig. 3.7 a Spectrum of a
periodic complex
exponential sequence:
periodic impulse train; b a
discrete spectrum, also
called a line spectrum

(a)

(b)

is a consistent DTFT representation of x[n]. Every Dirac δ in this expression repre-
sents a single spectral line at ω = ωk . We can thus state that a linear combination of
discrete-time complex exponential signals, which is called a harmonic signal, has
a discrete spectrum, a.k.a. a line spectrum (Fig. 3.7b), as opposed to the continuous
spectrum exhibited by signals that, being square-summable, allow for a conventional
DTFT representation, at least in the mean square sense.

Another signal that is neither absolutely nor square-summable is the unit step
sequence u[n]. It can be shown that this sequence can be represented by the following
DTFT:

U
(
ejω
) = 1

1 − e−jω
+

∞∑

r=−∞
πδ(ω + 2πr).

3.3.3 Inverse DTFT

Since X (ejω) is a periodic function, it can be expanded in the form of a Fourier series:

X (ejω) =
+∞∑

n=−∞
cne

jωn,

where

cn = 1

2π

∫ +π

−π

X (ejω)e−jωndω.
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By direct comparison with the definition of DTFT, i.e., X (ejω) =∑+∞
n=−∞ x[n]e−jωn ,

we deduce that x[n] = c−n , hence

x[n] = 1

2π

∫ +π

−π

X (ejω)ejωndω.

This is the definition of the inverse DTFT (IDFT), in which x[n] appears as the
superposition of an infinite number of elementary sinusoidal contributions with fre-
quencies contained in [−π,+π). Of course, the values of X (ejω) at −π and +π
coincide, due to the periodicity of X (ejω). This formula is also called the synthesis
relation of the DTFT, because it allows for synthesizing x[n] from its X (ejω) values
in the frequency interval [−π,+π).

The inverse DTFT represents an expansion of the signal in a basis, which in
the present case is an orthogonal basis formed by sines and cosines, or complex
exponentials. The reader interested in an overview of the mathematical foundations
of analog and discrete-time signal expansions can refer to the appendix to this chapter.

About the DTFT, it may be noted that:

• the signal x[n] is a sequence, and correspondingly, the DTFT definition is a sum-
mation over discrete time n;

• the DTFT is a continuous function, and correspondingly, the IDTFT contains an
integral in ω.

Moreover we can observe that

• in mathematical texts, the direct transform is most often written with e+ jωn , while
• in engineering texts, the direct transform is most often written with e− jωn , and this
is the convention normally adopted in digital signal processing—the one to which
we adhere.

3.3.4 Selected DTFT Properties

The properties of the DTFT can be derived directly from those of the z-transform,
provided that the z-transform exists and converges on the unit circle. However, the
extensions of the DTFT concept examined above also share the same properties.

1. Linearity:
ax1[n] + bx2[n] ⇐⇒ aX1(e

jω) + bX2(e
jω),

where a and b are arbitrary constants.
2. Symmetry:

the symmetry properties of the DTFT are important because they simplify cal-
culations. For briefness, here we neglect the general case of a complex sequence
and focus on the symmetry properties of the DTFT of real sequences:
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• X (ejω) = X∗(e−jω), i.e., the DTFT is a conjugate-symmetric function; we can
also call it an even function;

• Re[X (ejω)] and |X (ejω)| are even functions, while Im[X (ejω)] and arg [X (ejω)]
are odd, or conjugate-antisymmetric functions; so Re[X (ejω)] = Re[X

(
e−jω

)
],

Im[X (ejω)] = −Im[X
(
e−jω

)
], and so on.

Then Re[X (ejω)] can be expanded as a series of cosines and Im[X (ejω)] can
be expanded as a series of sines:

Re[X (ejω)] =
+∞∑

n=−∞
x[n] cos (ωn), Im[X (ejω)] =

+∞∑

n=−∞
x[n] sin (ωn);

• any real sequence can always be expressed as the sum of an even and an
odd sequence: x[n] = xe[n] + xo[n]. The even part xe[n] transforms into the
real part of X (ejω) (i.e., into a purely real function), while the odd part xo[n]
transforms into the imaginary part of X (ejω)multiplied by j (i.e., into a purely
imaginary function):

xe[n] ⇐⇒ Re[X (ejω)], xo[n] ⇐⇒ j Im[X (ejω)].

3. Folding or time reversal:
x[−n] ⇐⇒ X (e−jω),

that for a real x[n] coincides with X∗(ejω).

4. Delay:

y[n] = x[n − m] ⇐⇒ Y (ejω) = e−jωm X (ejω).

This property expresses the fact that a time shift does not alter the frequency
composition of a signal: the transform of the delayed signal differs from the
original one by just a phase factor.

5. Conjugation:

x∗[n] ⇐⇒ X∗(e−jω).

If x[n] is real, x[n] = x∗[n] ⇐⇒ X∗(e−jω) = X (ejω).
Moreover,

x∗[−n] ⇐⇒ X∗(e jω).

6. Differentiation:

nx[n] ⇐⇒ j
dX (ejω)

dt
.
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7. Continuous periodic convolution:

w[n] = x[n]y[n] ⇐⇒ W (ejω) = 1

2π

∫ +π

−π

X (ejω
′
)Y [ej(ω−ω′)]dω′.

8. Convolution theorem:

y[n] = x[n] ∗ h[n] ⇐⇒ Y (ejω) = X (ejω)H(ejω).

9. Modulation or frequency shift:

ejαn x[n] ⇐⇒ X [ej(ω−α)],

with α being some real constant. Note that if α = −π, then e−jπ = −1 and
ejαn = (−1)n; therefore a particular case of modulation is

(−1)n x[n] ⇐⇒ X [ej(ω+π)].

10. Parseval’s theorem for the DTFT:

+∞∑

n=−∞
x[n]y∗[n] = 1

2π

∫ +π

−π

X (ejω)Y ∗(ejω)dω,

and if x[n] = y[n], then
+∞∑

n=−∞
|x[n]|2 = 1

2π

∫ +π

−π

|X (ejω)|2dω.

This theorem expresses energy conservation: the energy of the signal in the time
domain is equal to the energy of the signal in the frequency domain.9

11. Transform of a real even sequence:

xe[n] = xe[−n] ⇐⇒ Xe(e
jω) = xe[0] + 2

+∞∑

n=1

xe[n] cos (ωn),

9If energy is finite, that is, if the signal is in some way transient, then this relation creates no infinity
problems, and the quantity |X (ejω)|2 appears as a frequency distribution of the energy of the signal:
it suggests the notion of energy spectrum that will be discussed later. If energy is infinite, the notion
of energy spectrum makes no sense. If the signal is a power signal, i.e., its energy is infinite but
its power is finite (this could be the case of a deterministic periodic signal; see Chap.2), another
quantity may be defined in place of the energy spectrum. This quantity is the power spectrum, that
we will actually study in detail in the case of random signals, rather than in the case of deterministic
signals. In fact, random signals typically are power signals. For a more extended discussion of these
topics in relation to deterministic signals see Chap.5.

http://dx.doi.org/10.1007/978-3-319-25468-5_2
http://dx.doi.org/10.1007/978-3-319-25468-5_5


86 3 Transforms of Discrete-Time Signals

with

arg[Xe(e
jω)] =

⎧
⎪⎨

⎪⎩

0 for Xe(ejω) > 0,

±π for Xe(ejω) < 0,

undefined for Xe(ejω) = 0.

Thus the DTFT of a real even sequence is a real even function of frequency.
12. Transform of a real sequence with even symmetry around an integer Ns �= 0

(Fig. 3.8a):

x[n] = xe[n − Ns] ⇐⇒ X (ejω) = e−jωNs Xe(e
jω).

Recalling that Xe(ejω) is a real even function of ω, and using the delay property,
we see that

• X (ejω) and Xe(ejω) have the same amplitude, and
• arg[X (ejω)] = arg[Xe(ejω)] − Nsω.

Thus, apart from ±π phase jumps caused by sign changes in Xe(ejω), the phase
of X (ejω) is linear in ω. This property is important in digital filter design theory.
Similar properties hold in the case of a half-integer Ns (Fig. 3.8b).

13. Transform of a real odd sequence:

xo[n] = −xo[−n] ⇐⇒ Xo(e
jω) = 2 j

+∞∑

n=1

xo[n] sin (ωn),
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Fig. 3.8 Real sequences with even or odd symmetry around an integer or half-integer discrete-time
value Ns �= 0. a Even symmetry, integer Ns ; b even symmetry, half-integer Ns ; c odd symmetry,
integer Ns ; d odd symmetry, half-integer Ns
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with

|Xo(e
jω)| = 2

∣∣∣∣∣

+∞∑

n=1

xo[n] sin (ωn)

∣∣∣∣∣ ,

arg[Xo(e
jω)] =

⎧
⎪⎨

⎪⎩

π/2 for Xo(ejω) > 0,

π/2 ± π for Xo(ejω) < 0,

undefined for Xo(ejω) = 0.

Thus the DTFT of a real odd sequence is an imaginary and odd function of
frequency.

14. Transform of a real sequence with odd symmetry around an integer Ns �= 0
(Fig. 3.8c):

x[n] = xo[n − Ns] ⇐⇒ X (ejω) = e−jωNs Xo(e
jω).

Recalling that Xo(ejω) is an imaginary and odd function of ω and using the delay
property we see that

• X (ejω) and Xo(ejω) have the same amplitude, and
• arg[X (ejω)] = arg[Xo(ejω)] − Nsω.

Therefore, apart from ±π phase jumps that occur any time that Xo(ejω) changes
sign, the phase of X (ejω) is again linear in ω. Similar properties hold in the case
of a half-integer Ns (Fig. 3.8d).

3.3.5 The DTFT of a Finite-Length Causal Sequence

We will now introduce the discrete Fourier transform (DFT) in a qualitative way.
Later we will follow a more rigorous approach to derive it properly. The DFT is the
main tool for the analysis of discrete-time signals in the frequency domain.

Any infinite-length discrete-time signal can be reconstructed from the values of
its X (ejω) at all frequencies ω in the interval [−π,+π), via inverse DTFT. However,
if the sequence has finite length, i.e., if x[n] is not identically zero only for 0 ≤ n ≤
N −1, the knowledge of a finite number of X (ejω) values can be sufficient, provided
that the set of ω values selected for sampling X (ejω) are properly chosen.

Intuitivelywe can justify this statement as follows. TheDTFT is a linear operation,
and therefore N values of X (ejω) taken at N frequency valuesωk , with 0 ≤ k ≤ N−1,
provide N linear equations in the N unknown values x[n]. The system has only
one solution if the coefficient matrix is non-singular, i.e., if the determinant of the
coefficient matrix does not vanish. Therefore, if the ωk are chosen in such a way that
this condition is satisfied, then the N samples of the signal x[n] can be calculated
univocally. The samples X (ejω)|ω=ωk ≡ X [k] form the DFT of x[n].
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Fig. 3.9 Sampling of the
DTFT on the unit circle: an
example with N = 12

It turns out that the proper choice for theωk corresponds to subdividing the interval
[−π,+π) on the unit circle into N equal parts (Fig. 3.9):

ωk = 2πk

N
, 0 ≤ k ≤ N − 1.

TheDFT can thus be seen as the result of periodic sampling of theDTFT at frequency
intervals �ω = 2π/N in [−π,+π) or, equivalently, in [0, 2π):

X [k] = X (ej
2π
N k) =

N−1∑

n=0

x[n]e−j 2πN kn.

Note that X [k] results from sampling a continuous function of ω, hence it is a
sequence, as the signal x[n].

More rigorously, deriving the DFT involves the following steps:

• taking a finite-length sequence;
• extending it periodically over the whole discrete-time axis;
• defining the discrete Fourier series (DFS) of the periodic sequence thus obtained.
The DFS is a periodic sequence;

• defining the DFT as a single period extracted from the DFS.

The advantages of this procedure lie in the fact that

• it highlights the fundamental characteristic of periodicity inherent in the DFT and
the related implications in practical applications;

• thanks to the introduction of the DFS, it allows to establish the formalism that is
necessary to express the properties of the DFT;

• it provides the rationale for the choice of equally spaced frequencies for DTFT
sampling.
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3.4 Discrete Fourier Series (DFS)

We now undertake the path outlined above to derive the DFT in a more rigorous way.
We start introducing the periodic extension of a causal finite-length sequence and its
representation in the frequency domain via DFS.

Given a signal x[n]with 0 ≤ n ≤ N −1 (Fig. 3.10a), consider the sequence x p[n]
obtained repeating x[n] an infinite number of times along the n-axis, without any
overlapping of adjacent x[n] images. Obviously x p[n] is a periodic sequence with
period equal to N , as illustrated in Fig. 3.10b.

The z-transform and the DTFT of x p[n] do not exist, but it is possible to represent
x p[n] as a discrete Fourier series (DFS), i.e., as a superposition of N complex
exponentials whose frequencies are harmonically related. Keeping in mind that in
the discrete-time domain only N distinct angular frequencies exist in association
with a period of N time steps, and that they are integer multiples of the fundamental
frequency 2π/N , the synthesis relation of the DFS, i.e., the inverse DFS (IDFS) can
be written as

x p[n] = 1

N

N−1∑

k=0

X p[k]ej 2πN nk .

The coefficients X p[k] of this expansion, which constitute the DFS of x p[n], can
be obtained exploiting the orthogonality of the complex exponential set: for any
integer m,

1

N

N−1∑

n=0

ej
2π
N (k−r)n =

{
1 for k − r = m N ,

0 otherwise.

Fig. 3.10 a A finite-length
sequence x[n] and b its
periodic extension x p[n]
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The analysis relation of the DFS can thus be written:

X p[k] =
N−1∑

n=0

x p[n]e−j 2πN kn.

The DFS can be interpreted in two ways:

• as a finite-length complex sequence for 0 ≤ k ≤ N − 1, or
• as a periodic complex sequence with period equal to N , for any integer k.

The second interpretation allows an exact duality between the time and frequency
domains, in the sense that both the sequence x p[n] and its frequency representation
are periodic. Therefore we will adopt this second point of view.

The sequence X p[k] can now be viewed as an infinite sequence of samples of
the z-transform of x[n], which certainly exists at least in 0 < |z| < ∞, since x[n]
has finite length. The samples of X (z) that form the DFS are taken treading the unit
circle an infinite number of times and are equally spaced in angle around the origin
of the z-plane.

3.4.1 Selected DFS Properties

We will now list the most important properties of the DFS.

1. Linearity:
ax p1[n] + bx p2[n] ⇐⇒ aX p1[k] + bX p2[k],

where a and b are arbitrary constants.
2. Folding:

x p[−n] ⇐⇒ X p[−k], x∗
p[−n] ⇐⇒ X∗

p[k].

3. Delay:
x p[n − m] ⇐⇒ e−j 2πN km X p[k].

Any shift that is greater than the period (i.e., a shift by m samples, with m > N )
cannot be distinguished from a shorter shift bym1 samples, with 0 ≤ m1 ≤ N −1,
such that m = m1 + r N , where r is an integer.
Another way of expressing m1 is m1 = m mod N , i.e., as the remainder, con-
ventionally assumed to be non-negative,10 after division of m by N . The factor
e−j(2π/N )km is often indicated as a power of the quantity

10The expression n mod N indicates the remainder after division of n by N . Let us make a couple
of examples of how the mod function works:

• we want to compute 340mod 60. Now, 340 lies between 300 and 360, so 300 = 60 × 5 is the
greatest multiple of 60 which is less than or equal to 340; we subtract 300 from 340 and get 40;
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WN = e j 2π
N ,

that is, e−j(2π/N )km = W km
N : so we can also write

x p[n − m] ⇐⇒ W km
N X p[k].

Note that for m1 = m mod N we have W km
N = W km1

N .
4. Modulation:

W −ln
N x p[n] = e+ j 2π

N ln x p[n] ⇐⇒ X p[k − l].

The ambiguity of the shift in the time domain is thus also manifest in the
frequency-domain representation.

5. Conjugation:
x∗

p[n] ⇐⇒ X∗
p[−k].

6. Duality:
the DFS analysis and synthesis relations are similar. The DFS samples are simply
given by the original periodic sequence order-reversed and multiplied by N :

x p[n] ⇐⇒ X p[k] � X p[n] ⇐⇒ N x p[−k].

This symmetry between the time and frequency domains is referred to as the
duality of the DFS.

7. Symmetry:
for real signals, the real part and the amplitude of X p[k] are even sequences,
while the imaginary part and the phase are odd sequences; the DFS is a conjugate-
symmetric complex sequence, that is, X p[k] = X∗

p[−k].
8. Periodic convolution:

let us take two sequences x p1[n] and x p2[n] sharing the same period N . If we
compute their DFSs, what sequence corresponds to X p3[k] = X p1[k]X p2[k]? In
other words, what is the inverse DFS of X p3[k]? It can be demonstrated that

x p3[n] =
N−1∑

m=0

x p1[m]x p2[n − m] ≡ x p1[n] ⊗ x p2[n] = x p2[n] ⊗ x p1[n].

The sequence x p3[n] is periodic with period N . The summation is extended to a
single period of the two sequences x p1[n] and x p2[n], and the symbol⊗ indicates
the so-called periodic convolution of the two sequences.
In Fig. 3.11, an example of a periodic convolution is shown, for two sequences
x p1[n] and x p2[n] having a period of N = 8 (Fig. 3.11a and c, respectively).

• we want to compute −340mod 60. Now, −340 lies between −360 and −300, so −360 =
60× (−6) is the greatest multiple of 60 less than or equal to−340; we subtract−360 from−340
and get 20.
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Fig. 3.11 An example of periodic convolution: the procedure for forming the sample at n = 2
of the sequence x p3[n] = x p1[n] ⊗ x p2[n]. The sequences have a period N = 8. a The original
sequence x p1[n]; b the sequence x p2[n], folded and shifted to the right by two samples; c the original
sequence x p2[n]; d the sequence x p1[n], folded and shifted to the right by two samples. The sample
x p3[2] can be obtained multiplying sample by sample the two sequences drawn as black lines and
dots, or the two sequences drawn as gray lines and empty circles; only the samples included between
the dashed lines must be considered (a single period)

This figure illustrates the calculation of the sample x p3[2]. The calculation can be
done in two ways: if we combine the two sequences of Fig. 3.11a, b (black lines
and dots) we have (see the samples included between the dashed lines) x p3[2] =
3×6+3×3+3×1 = 30; if we combine the two sequences of Fig. 3.11c, d (gray
lines and empty circles) we get the same result, x p3[2] = 3×3+6×3+1×3 = 30.
If, instead, we multiply the two sequences x p1[n] and x p2[n] sample by sample,
what is the DFS of the product sequence? The answer is, if

x ′
p3[n] = x p1[n]x p2[n],
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then

X ′
p3[k] = 1

N

N−1∑

l=0

X p1[l]X p2[k − l] ≡ 1

N
X p1[k] ⊗ X p2[k] = 1

N
X p2[k] ⊗ X p1[k].

3.4.2 Sampling in the Frequency Domain and Aliasing in the
Time Domain

We have seen that if x p[n] consists of non-overlapping, delayed repetitions of the
finite-length sequence x[n], with n = [0, N − 1], then X p[k] in the interval 0 ≤ k ≤
N − 1 consists of N samples of X (z), taken along the unit circle, during a single
revolution around the origin of the z-plane. Of course, these samples are also DTFT
samples.

Now, suppose that we have an aperiodic sequence x[n] with unspecified length,
and we take an arbitrary number N of X (ejω) values at frequencies that are integer
multiples of 2π/N . We then assume that these N samples form the DFS of a periodic
sequence x p[n] and compute x p[n] through the DFS synthesis formula. What is the
relation between x p[n] and x[n]? What happens if the actual length N ′ of x[n] is
smaller than N? What happens if it is larger? It can be demonstrated that

x p[n] =
+∞∑

l=−∞
x[n + l N ],

where l is an integer and where it is understood that x[n] = 0 for all values of n
external to the interval [0, N ′−1].We thus see that x p[n] is formed joining an infinite
number of repetitions of x[n], with each repetition delayed by N steps in respect to
the previous one, so that

• if N ′ < N , the repetitions are separated by zeros and remain distinct;
• if N ′ = N , the repetitions are juxtaposed; there are neither interposed zeros, nor
overlapping tails;

• if N ′ > N , overlapping of the tails of contiguous repetitions occurs, and the shape
of the original signal x[n] becomes corrupted in the periodic extension x p[n]: we
would no longer be able to recover x[n] from x p[n] by extracting a period. This
phenomenon is referred to as aliasing in the time domain, or simply time aliasing.

Note that time aliasing can be avoided, choosing N ≥ N ′—i.e., sampling the DTFT
of x[n] with proper density—if, and only if, x[n] has finite length.

Figure3.12 shows, for a sequence x[n]with length N ′ = 9 (Fig. 3.12a), two cases
of x p[n], the first one free from time aliasing (Fig. 3.12b, where N = 12), and the
second one contaminated by time aliasing (Fig. 3.12c, where N = 7).
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Fig. 3.12 a A sequence x[n]
with length N ′ = 9 and two
cases of periodic extension,
x p[n]: b a case which is free
from time aliasing (N = 12)
and c a case affected by time
aliasing (N = 7). See text
for details
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If N ′ > N , the information contained in the N samples of X (ejω) turns out
to be insufficient to reconstruct x[n]: the DTFT has been undersampled, and as a
consequence, the possibility of reconstructing the original signal has been lost. If,
and only if, N ′ ≤ N , the signal x[n] can be recovered from x p[n] by extracting one
period, which comprises N samples. In other words, x[n] can be represented exactly
by N transform samples taken along the unit circle with regular frequency spacing
�ω = 2π/N , if, and only if, N ′ ≤ N .

When N ′ ≤ N as required, the whole X (z), and therefore the whole X (ejω),
can be reconstructed on the basis of those N samples: knowledge of X (ejω) at all
frequencies is not required if x[n] has finite length. For the reconstruction of X (z)
from its samples, the following interpolation formula can be used:

X (z) = 1 − z−N

N

N−1∑

k=0

X p[k]
1 − ej

2π
N z−1

,

that for z = ejω provides the interpolation formula for X (ejω):

X (ejω) =
N−1∑

n=0

X p[k]Ξ
(

ω − 2π

N
k

)
,

where

Ξ(ω) = e− jω N−1
2

sin(N ω
2 )

N sin(ω
2 )

≡ e− jω N−1
2 DN (ω), ω ∈ [−π,π).
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Fig. 3.13 The Dirichlet
function for a N = 5 and
b N = 6
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Here DN (ω) indicates the Dirichlet function, or periodic Sinc function, shown in
Fig. 3.13a, b for an even and an odd value of N , respectively.11 When N is odd, the
function is periodic with period 2π; when N is even, the function is periodic with
period 4π. For our purposes, the importance of these interpolation formulas is more
theoretical than practical.

3.5 Discrete Fourier Transform (DFT)

Consider a sequence x[n] with length N—or even a shorter sequence augmented to
length N by adding zeros after the last sample. If the correspondingDTFT is sampled
at N equally spaced frequencies, then x p[n] is aliasing-free and we can write

x p[n] = x[n mod N ], n = (−∞,+∞).

Note that n mod N varies in the interval [0, N − 1]: x[n mod N ] comprises all the
existing samples of x[n]. If we introduce the rectangular sequence (Fig. 3.14),

RN [n] =
{
1 for 0 ≤ n ≤ N − 1,

0 otherwise,

11The precise definition of DN (ω) is

DN (ω) =
{

sin[N (ω/2)]
N sin(ω/2) ω �= 2πk, k = 0,±1,±2,±3 . . . ,

(−1)k(N−1) ω = 2πk, k = 0,±1,±2,±3 . . . .

This gives 1 at ω = 0.
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Fig. 3.14 Rectangular
sequence: an example with
N = 9
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we can represent the extraction of a period from x p[n], which gives back x[n], as

x[n] = x p[n]RN [n].

We can now define the DFT of x[n] as the sequence X [k] obtained extracting a
period from X p[k]:

X [k] = X p[k]RN [k].

In this way we preserve the exact duality between the time and frequency domains.
The corresponding inverse relation is

X p[k] = X [k mod N ].

Thus, the definitions of DFT (analysis relation of the DFT) and IDFT (synthesis
relation of the DFT) are respectively

X [k] =
{∑N−1

n=0 x[n]e−j 2πN kn for 0 ≤ k ≤ N − 1,

0 otherwise,

and

x[n] =
{

1
N

∑N−1
k=0 X [k]e+ j 2π

N kn for 0 ≤ n ≤ N − 1,

0 otherwise.

All summations in this formulas extend over [0, N − 1], and it must be understood
that in this interval x[n] ≡ x p[n], X [k] ≡ X p[k].

It must be noted that:

1. the DFT is made of samples of X (ejω) taken equally spaced in angle on the unit
circle during a single revolution around the origin of the z-plane;
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2. if x[n] is computed by inverse DFT at values of n outside the interval 0 ≤ n ≤
N − 1, the result is not zero but x p[n];

3. if X [k] is computed by DFT at values of k outside the interval 0 ≤ k ≤ N − 1,
the result is not zero but X p[k]. Therefore, the periodicity inherent in this signal
representation is always present. In defining the DFT we simply recognize that
we are only interested in x[n] values for 0 ≤ n ≤ N − 1, because actually x[n]
is identically zero outside that interval, and that we are only interested in X [k]
values for 0 ≤ k ≤ N − 1, because these are the only values required to apply
the inverse DFT and recover x[n];

4. when x[n] derives from periodic sampling of a continuous-time signal x(t), i.e.,
when x[n] = x(nTs), the analog spectrum of x(t), i.e., the continuous-time
Fourier transform (CTFT) of x(t), fk = k/(N Ts) (see, e.g., Bochner and Chan-
drasekharan 1949; Bracewell 2000),

X ( f ) =
∫ +∞

−∞
x(t)e−j2π f tdt,

and the spectrum of the sequence x[n], i.e., X [k], express the same frequency
content. We can see this qualitatively by writing, with t = nTs , fk = k/(N Ts),

X ( fk) =
∫ +∞

−∞
x(t)e−j2π fk tdt ≈ Ts

N−1∑

n=0

x[n]e−j2π fk tn =

= Ts

N−1∑

0

x[n]e−j 2π
N Ts

knTs = Ts X [k].

Therefore

• up to a multiplicative factor Ts , the two spectra assume the same value at
each harmonic number k, that is, at each member of the discrete frequency set
{ωk = (2π/N )k}, k = [0, N − 1], spanned by the DFT representation;

• the DFT samples do not depend on Ts , exactly as the sequence x[n] does not
contain any information about the sampling interval Ts adopted for sampling
x(t);

• Ts is the only dimensional parameter that relates the frequency-domain repre-
sentation of a continuous-time signal to the frequency-domain representation
of the corresponding discrete-time signal;

5. the rationale behind the subdivision of the interval [−π,+π) into N equal parts
is found in the DFS representation of a periodic sequence, which is based on the
set of harmonically-related complex exponential sequences.
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3.5.1 The Inverse DFT in Terms of the Direct DFT

DFT and IDFT are similar, so that the IDFT can be easily expressed in terms of the
DFT. This duality of the DFT implies that a single software algorithm can implement
both.

There are several commonly used methods to relate IDFT to DFT. A possible way
is using conjugation:

x[n] ≡ IDFT {X [k]} = 1

N

N−1∑

k=0

X [k]e+ j 2π
N kn =

(
N−1∑

k=0

X∗[k]
N

e−j 2πN kn

)∗
=

=
(
DFT

{
X∗[k]

N

})∗
.

Thus if a software algorithm, given x[n], provides X [k], then we can use the same
algorithm with X∗[k]/N as the input to get x∗[n], which coincides with x[n] if x[n]
is real.

Another possible way consists in using sample-order reversal. We start from

x[n] = 1

N

N−1∑

k=0

X [k]e+ j 2π
N kn for 0 ≤ n ≤ N − 1,

and substitute N − n in place of n. We get

x[N − n] = 1

N

N−1∑

k=0

X [k]e+ j 2π
N k(N−n) = 1

N

N−1∑

k=0

X [k]e−j 2πN kn,

or

x[N − n] = 1

N
DFT {X [k]} .

Now, as n goes from 0 to N − 1, N − n goes from N to 1. If we think of the
underlying periodic extension of x[n], we understand that in order to get x[n] from
x[N − n] we simply need to take the first sample of x[N − n] and bring it to the last
position, and then reverse the sequence order. So we can use a DFT algorithm with
X [k] as the input to calculate x[n], by re-arranging the output samples and dividing
them by N .

3.5.2 Zero Padding

Let us take a real causal sequence x[n] with finite length N . For instance, we can
consider a sequence with even symmetry around the sample n = (N − 1)/2. Note
that symmetry would not be necessary here; this is just an example. In Fig. 3.15a, we
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Fig. 3.15 a A real causal
sequence x[n], with finite
length N = 7 and even
symmetry around the sample
n = Ns = (N − 1)/2 = 3,
and b its aliasing-free
periodic extension 0 1 2 3 4 5 6
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have N = 7, and the sequence is symmetric around the point n = (N − 1)/2 = 3.
Let us also generate its aliasing-free periodic extension x p[n] (Fig. 3.15b), in which
the repetitions of x[n] are juxtaposed.

Now, consider the DTFT and DFT of x[n], as well as the DFS of x p[n]. In the
present example we expect X (ejω) to be a real even function of frequency, up to a
linear phase factor that obviously disappears if we only look at |X (ejω)|. Even if for
brevity we did not mention this fact when listing the main properties of the DFS, the
frequency representation of the corresponding periodic sequence x p[n] behaves in
a similar way, and, as a consequence, the DFT of x[n] also has this property. This,
however, is not the main point we wish to discuss here.

The main point is the following: if we are able to calculate X (ejω) in an analytical
way, then we know its values over a continuous range of frequencies. So we can plot
it and observe its shape with any desired graphic resolution: ideally, as many details
as desired can be made visible. In practical applications, however, we often must
base our picture of X (ejω) on the computation of its samples, X [k]. We might want
to use the interpolation formula given in Sect. 3.4.2 to improve the picture, but as we
shall see immediately, there is a better option. The magnitudes of X (ejω), X [k] and
X p[k] for the sequence of Fig. 3.15a are shown in Fig. 3.16a, b and c, respectively.We
assume, for themoment, that we are able to calculate X (ejω) by analyticalmeans. The
DFT magnitude (Fig. 3.16b) does not provide a detailed picture of the shape of the
underlying |X (ejω)|: N = 7 samples are enough to satisfy theoretical requirements
but inadequate to describe the true shape of |X (ejω)|. Indeed, the degree of accuracy
with which the samples of |X [k]| describe the shape of |X (ejω)| is dictated and
limited by the amount N of available x[n] values. In order to improve the visual
quality of spectral graphs, very often the DFT is interpolated, i.e., the density of the
X (ejω) frequency sampling is artificially increased, by adding a number of zeros at
the end of the sequence x[n] before computing the DFT. This operation is referred
to as zero padding. In this way, more details of the underlying |X (ejω)| become
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Fig. 3.16 Amplitude of a the DTFT and b the DFT of the sequence x[n] shown in Fig. 3.15a;
c amplitude of the DFS of the related periodic extension x p[n], shown in Fig. 3.15b. In panel b, the
DTFT curve of panel a is reported as a dashed line to help visualization of the relation between the
DTFT and the DFT. These plots extend over ω ∈ [0, 2π), corresponding to k = [0, N − 1]

visible. However, it must be kept in mind that this is only an artifice that does not
add anything to the information we actually possess about the signal, because this
information content resides in the N available samples of x[n].

For example, given x[n] with n = [0, N − 1], we can form

xz[n] =
{

x[n] for n = [0, N − 1],
0 for n = [N , 2N − 1].

The underlying DTFT remains the same, i.e., X (ejω) = Xz(ejω), but xzp[n] �= x p[n],
hence also Xzp[k] �= X p[k] and Xz[k] �= X [k]:

Xz[k] = Xz(e
jω)|ω= 2π

2N k = X (ejω)|ω= π
N k

with k = [0, 2N − 1]. The frequency sampling operated on X (ejω) is two times
denser than before.

Zeropadding is feasiblewith anynumber Nz of zeros: if N is substitutedby N+Nz ,
the distance �ω between any two adjacent transform samples, which originally was
�ω = 2π/N , becomes �ω′ = 2π/(N + Nz). The improvement of the picture
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Fig. 3.17 DFT magnitude
for the sequence with N =7
shown in Fig. 3.15a, after
zero padding up to a length
N + Nz = 16. The dashed
curve depicts the DTFT
magnitude
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offered by the DFT can be appreciated in Fig. 3.17: in this case the sequence with
N = 7 shown in Fig. 3.15a was augmented up to a length N +Nz = 16 by zero padding
before calculating the DFT. The shape of the underlying DTFT is described much
better than in Fig. 3.16b. If we arbitrarily increase Nz , thus reducing �ω′, we may
be able to draw |X (ejω)| as it appears in Fig. 3.16a, without any need for knowing
its analytical expression. This artifice is perfectly acceptable, as far as we know that
N = 7 sequence samples are enough to satisfy theoretical requirements and thus
avoid aliasing.

Finally, let usmention that Fig. 3.16 also allows us to observe an even symmetry in
the three frequency representations. For this example, an even sequence was chosen.
We may wonder what the plot of |X [k]| looks like when the sequence x[n] has no
symmetry properties. The answer can be found in the next subsection (Fig. 3.20):
this symmetry is due to the reality of x[n] and not to its even symmetry. The even
symmetry of the sequence only has to do with its transform being real up to a linear
phase factor. .

3.5.3 Selected DFT Properties

The properties of the DFT can be demonstrated considering the periodic extensions
of the various sequences involved.

1. Linearity:
if x1[n] has length N1 and x2[n] has length N2 and a and b are arbitrary constants,
then

x3[n] = ax1[n] + bx2[n]
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has length N3 = max (N1, N2). If we compute all three DFTs over at least N3

points, that is, if we augment at least the shorter sequence by zero padding, we
can write

X3[k] = aX1[k] + bX2[k].

2. Circular shift of a sequence:
what time-domain operation corresponds to multiplying the DFT of a sequence
x[n], with 0 ≤ n ≤ N −1, by a linear phase factor e−j(2π/N )km? In other words: if

X1[k] = e−j(2π/N )km X [k],

what is the corresponding sequence x1[n]?
The sequence x1[n] does not correspond to a simple linear time shift of x[n], and
in fact both sequences are confined to the interval 0 ≤ n ≤ N − 1. The sequence
x1[n] is obtained by shifting x[n] in such a way that as a sample leaves the interval
[0, N − 1] at one end, it enters at the other end. This is equivalent to building the
periodic extension of x[n], shifting it linearly, and then extracting a period. This
is exemplified in Fig. 3.18: we consider (Fig. 3.18a) a sequence x[n], its periodic
extension x p[n] (Fig. 3.18b), its periodic extension linearly shifted by m samples,
with m = −2 (Fig. 3.18c), and finally the extraction of a period (Fig. 3.18d). We
can observe that the sample that was originally located at n = 0 goes to the position
n = N − 2 = 4.
Now, let us informally imagine that x[n] is wrapped around a cylindrical surface,
along a circumference obtained cutting the cylinder by a plane perpendicular to
its axis. Let us assume that this circumference is exactly N points long. This geo-
metrical construction is illustrated in Fig. 3.19a, in which the sequence samples
are represented by arrows. The sequence x p[n] can be obtained by repeatedly
going along the circumference. The sequence x1[n] can be obtained by rotating
the cylinder around its axis by a certain angle, with respect to the original position
assumed as a reference.
In Fig. 3.19a we see a 29-samples-long sequence, wrapped around a black cylin-
der. Note the gray arrow, representing the sample at n = 0. In Fig. 3.19b, the
black internal cylinder reproduces the original configuration, which is assumed
as a reference, while the gray external cylinder is rotated by m = −2 (i.e., by
an angle 2πm/N in a clockwise direction) with respect to the reference position.
The sequence, integral with the surface of the gray cylinder, appears circularly
shifted by m = −2: the gray arrow that originally was located at n = 0 is now
located at n = N − 2 = 27.
Formally, the circularly shifted sequence can be expressed as

x1[n] =
{

x[(n − m)mod N ]RN [n] for 0 ≤ n ≤ N − 1,

0 otherwise.
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Fig. 3.18 Example of circular shift. a A sequence x[n] with length N =6; b its periodic extension;
c the periodic extension, shifted by m = −2 samples; d a period extracted from the shifted periodic
extension

(a) (b)

Fig. 3.19 Example of circular shift illustrated using a geometrical construction in which the
sequence is wrapped along the circumference of a cylinder. a A sequence with N = 29 samples,
wrapped around a black cylinder, with each sample represented by an arrow; the arrow representing
the sample at n = 0 is highlighted in gray. The amount (m = −2) and the direction of the rotation
to be applied in this example (see text) are also shown; the direction is clockwise, because m is
negative. b The gray external cylinder is rotated by an angle 2πm/N in a clockwise direction with
respect to the previous position, indicated by the black internal cylinder. The sequence, integral
with the surface of the gray cylinder, is circularly shifted by m = −2, as witnessed by the gray
arrow, originally located at n = 0 and now located at n = N − 2 = 27
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3. Modulation:
similarly, if we consider X1[k] = X [(k −l)mod N ]RN [k], that is, if we circularly
shift the DFT by l samples, we find that the newDFT corresponds to the sequence
x1[n] = ej(2π/N )ln x[n], with n = [0, N − 1].

4. Conjugation:
x∗[n] ⇐⇒ X∗[−k mod N ]N RN [k].

5. Circular folding of a sequence:

x[−n] ⇐⇒ X [−k mod N ]N RN [k],

x∗[−n] ⇐⇒ X∗[k mod N ]N RN [k].

Circular folding, which corresponds to passing to the periodic extension of the
sequence, folding the latter and then extracting a period, can be easily imagined
with the help of the geometrical construction used above.

6. Duality:
As we already remarked in Sect. 3.5.1, the DFT analysis and synthesis relations
are similar. Usually, this duality property is formally expressed by stating (see
Oppenheim and Schafer 2009) that X [k] can be written as N x[k] index-reversed
modulo N , i.e.,

x[n] ⇐⇒ X [k] � X [n] ⇐⇒ N x[−k mod N ]RN [k].

7. Symmetry:
the symmetry properties associated with the DFT can be inferred from those of
the DFS. For real sequences, the most important symmetry properties are the
following:

• the real part and the amplitude of X [k] are even sequences,while the imaginary
part and the phase are odd sequences;

• since for a real sequence x[n] ≡ x∗[n],

X [k] = X∗[−k mod N ]RN [k] = X∗
p[−k]RN [k].

Concerning the second property, we may notice that for k = [0, N − 1] we have
k mod N = k and −k mod N = N − k. Therefore the following property holds:

X [k] = X∗[N − k] for k = [0, N − 1].

In terms of magnitudes this relation becomes

|X [k]| = |X [N − k]| for k = [0, N − 1].



3.5 Discrete Fourier Transform (DFT) 105

Fig. 3.20 Symmetry of the
DFT amplitude for a real
sequence. a A real sequence
with N = 8; b its DFT; c its
DFS; d the folded DFS (see
text) 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

(a)

(b)

(c)

(d)

Since any spectral plot shows only the amplitude of the DFT, for a real sequence
we can expect such a graph to exhibit symmetry of the samples around the point
k = N/2, as in the example of Fig. 3.20, which shows a real sequence x[n]
without any symmetry (Fig. 3.20a) and the magnitude of its DFT (Fig. 3.20b).
|X p[k]| and |X p[−k]| are shown in Fig. 3.20c and d, respectively. The plots in
the last two panels are identical, due to the symmetry of |X [k]| around k = N/2.
Other important symmetry properties of the DFT of a real sequence x[n] are listed
below:

• Re{X [k]} = Re{X [−k mod N ]}RN [k], since Re{X [k]} is an even function;
• Im{X [k]} = −Im{X [−k mod N ]}RN [k], since Im{X [k]} is an odd function;
• |X [k]| = |X [−k mod N ]|RN [k], since |X [k]| is an even function;
• arg {X [k]} = − arg {X [−k mod N ]}RN [k], since arg {X [k]} is an odd
function.

8. Parseval’s theorem for the DFT:
starting from the definition of X [k], the following relation can be demonstrated:
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N−1∑

n=0

|x[n]|2 = 1

N

N−1∑

k=0

|X [k]|2.

It must be observed that this relation holds only for a DFT evaluated on a set of
N values of the index k. Indeed, the factor in the denominator of the right-hand
side term represents the number of X [k] samples: it derives from the spacing �ω
among discrete frequencies ωk . If a zero padding has been made, this value does
not coincide with the number of x[n] samples, and we must write 1(N + Nz)

instead of 1/N (Sect. 3.5.2)
9. Circular convolution of two sequences with equal finite length:

consider two sequences x1[n] and x2[n] with length N . Note that the assumption
of equal length is not restrictive, because one sequence or both can always be
augmented by zeros. Consider their respective DTFTs X1[k] and X2[k], and
assume that the two DTFTs have the same length, which can be equal to N or
longer. If we form

X3[k] = X1[k]X2[k],

an operation of sample-by samplemultiplication thatmakes sense since the factors
are sequences with the same length, what sequence x3[n] is obtained when we
inverse-transform X3[k]?
The sequence x3[n], defined over 0 ≤ n ≤ N − 1, turns out to be given by

x3[n] = x p3[n]RN [n] =
{

N−1∑

m=0

x p1[m]x p2[n − m]
}

RN [n],

or

x3[n] =
N−1∑

m=0

x1[m] {x2[(n − m)mod N ]RN [m]} ≡ x1[n] � x2[n].

The operation indicated by the symbol � is called circular convolution of the
sequences x1[n] and x2[n] over N points.
For the time-frequency duality of the DFT, the following relation also holds:

x1[n]x2[n] ⇐⇒ 1

N
X1[k] � X2[k]

over N points.
In circular convolution, the second sequence is circularly reversed (folded) and
circularly shifted by n samples with respect to the first sequence: therefore, circu-
lar convolution is different from linear convolution. Circular convolution is really
just periodic convolution, but if we visualize circular folding and shift using a
cylindrical surface, we do not really need to actually build the periodic sequences
involved. We do so in the next example.
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3.5.4 Circular Convolution Versus Linear Convolution

Wewill now analyze in detail the difference between circular and linear convolution.
Given x1[n] with 0 ≤ n ≤ N1 − 1 and x2[n] with 0 ≤ n ≤ N2 − 1, linear

convolution is defined as

x1[n] ∗ x2[n] = x ′
3[n] =

m2∑

m=m1

x1[m]x2[n − m],

where m1 and m2 are the n-dependent finite limits of the convolution sum that
apply when we convolve two finite-length sequences: m1 = max(0, n − N2 + 1),
m2 = min(N1 − 1, n). The length of x ′

3[n] is N1 + N2 − 1 (see Sect. 2.4.2). If
N1 = N2 = N , linear convolution is 2N − 1 samples-long, and therefore cannot
coincide with the circular convolution over N points.

Tomake an example, we consider two rectangular sequenceswith N = 6, x1[n] ≡
x2[n], and calculate both linear and circular convolution.

1. Linear convolution
In Fig. 3.21 we can see:

• the first rectangular sequence (Fig. 3.21a);
• the second rectangular sequence folded around n = 0 (Fig. 3.21b), useful to
compute x ′

3[0]. Only one product term in the convolution sum is different from
zero, so x ′

3[0] = 1 × 1 = 1;
• the second rectangular sequence folded around n = 1 (Fig. 3.21c), useful to
compute x ′

3[1]. Two product terms are different from zero, so x ′
3[1] = 1× 1+

1 × 1 = 2;
• the second rectangular sequence folded around n = 5 (Fig. 3.21d), useful to
compute x ′

3[5]. Six product terms are different from zero, so x ′
3[5] = 1 × 1 +

1 × 1 + 1 × 1 + 1 × 1 + 1 × 1 + 1 × 1 = 6;
• the second rectangular sequence folded around n = 6 (Fig. 3.21e), useful to
compute x ′

3[6]. Five product terms are different from zero, so x ′
3[6] = 1× 1+

1 × 1 + 1 × 1 + 1 × 1 + 1 × 1 = 5, and so on.

The resulting shape of x ′
3[n] appears as in Fig. 3.22; its length is 2N − 1 = 11.

2. Circular convolution over N points.
Let us indicate it by x3[n]. We can imagine two coaxial cylinders, one for each
sequence, with circumferences having the same length as the sequences. For
example, in Fig. 3.23a we can see the position of the internal cylinder with respect
to the external one that serves to calculate x3[2] (this time we are observing the
cylinders from above; the numbers represent time-index values). To compute
x3[2], we multiply each pair of corresponding x1[n], x2[n] samples and then sum
the six products. The result is x3[2] = 1×1+1×1+1×1+1×1+1×1+1×1 = 6.
Hence {x3[2] = 6} �= {

x ′
3[2] = 3

}
. The other values of x3[n] are obtained in a

similar way, after rotating the internal cylinder with respect to the external one.

http://dx.doi.org/10.1007/978-3-319-25468-5_2


108 3 Transforms of Discrete-Time Signals

Fig. 3.21 Linear
convolution
x ′
3[n] = x1[n] ∗ x2[n]
between two rectangular
sequences with length N = 6.
a The sequence x1[n];
b–d: x2[n] folded around
n = 0, 1, 5, and 6,
respectively. The folded
sequences are useful for
computing samples of x ′

3[n]
(see text)
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Fig. 3.22 The result of the
linear convolution between
two 6-samples-long
rectangular sequences
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It is clear that the difference between the two types of convolution lies in the
fact that in the circular convolution over N = 6 points, the tails of a sequence
that leave the summation interval on one side enter the interval on the other side,
thus corrupting circular convolution with respect to linear convolution. But linear
convolution is what is wanted in DFT applications: it represents the theoretical
concept of convolution, the one that we need to reproduce when using DFT as a
frequency-domain signal representation tool. For example, if we want to apply an
FIR filter to a sequence, we must implement linear convolution of the sequence
with the impulse response of the filter, and if we want to do so operating in the
frequency domain via DFT, we need a way to make circular convolution equiva-
lent to linear convolution.
The issue here is aliasing in the time domain, as we can understand thinking of the
corresponding frequency sampling. Indeed, if the result of linear convolution is
2N −1 samples-long, it must be represented by a DFT which is 2N −1 samples-
long. This DFT can be seen as the sample-by-sample product of the DFTs of the
individual factor sequences, if and only if the individual DFTs are computed over
2N − 1 points each. Thus, we need to perform zero-padding before circular con-
volution. Linear and circular convolution give the same result if each sequence is
augmented by N − 1 zeros, up to the length 2N − 1 that is necessary to contain
linear convolution.
Figure3.23b illustrates the circular convolution of the two 6-points-long rectan-
gular sequences, calculated in this way: x ′′

3 [n] = x1[n]� x2[n] over 2N −1 = 11
points. In Fig. 3.23b, the circumferences of the cylinders have been increased to
2N − 1 = 11 discrete-time units; the numbers represent index values. We can
verify that in this case x ′′

3 [2] = 3 = x ′
3[2], as required. Under these conditions we

can compute linear convolution via IDFT of the product of two DFTs, and this is
interesting because very efficient algorithms exist for calculating the DFT.
Given a sequence x[n] with n = [0, N − 1] and an impulse response h[n] with
n = [0, N ′ − 1], in order to avoid aliasing when computing x[n] ∗ h[n] in the
frequency domain via DFT

• x[n] must be augmented by zero padding up to a length L ≥ N + N ′ − 1;
• a DFT over L points then gives X [k], k = [0, L − 1];
• h[n]must be augmented by zero padding up to the same length L ≥ N +N ′−1;
• a DFT over L points then gives H [k], with k = [0, L − 1];
• the two transforms must be multiplied sample by sample: Y [k] = X [k] · H [k],

k = [0, L − 1];
• the inverse transform of Y [k] finally provides y[n], with n = [0, L − 1]. If

L > N + N ′ −1, at the end of the sequence y[n] there will be L −(N + N ′ −1)
zeros that can be eliminated.

We may finally notice that time aliasing in circular convolution can be avoided
if, and only if, the sequences have finite length.
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(a) (b)

Fig. 3.23 a Two rectangular sequences x1[n] and x2[n] with N = 6, drawn as arrows on the lateral
surfaces of two coaxial cylinders, as seen from above. The circumferences are equal to N = 6
discrete-time units; x1[n] lies on the external cylinder (solid) and x2[n] lies on the internal cylinder
(dashed). The numbers represent time-index values. The mutual position of the cylinders is such
that the sample at n = 2 of the circular convolution over N = 6 points can be obtained multiplying
the corresponding solid and dashed samples, and then summing all products. b The same two N = 6
samples-long rectangular sequences, drawn on the 2N − 1 = 11 points-long circumferences of two
larger coaxial cylinders. The mutual position of the cylinders is such that the sample at n = 2 of the
circular convolution over N = 11 points can be obtained multiplying the corresponding solid and
dashed samples and then summing all products. See text for details

3.6 Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is an optimized algorithm to compute the DFT
and its inverse transform rapidly. The invention of the FFTmade the DFT practically
applicable to the analysis of data sequences. The first important article on this subject
was published by Cooley and Tukey (1965).

The computational complexity of the DFT is estimated in terms of the number of
complex multiplications that must be performed; the additions are usually neglected.
Since the quantity to be computed is

N−1∑

n=0

x[n]e−j 2πN kn, k = [0, N − 1], n = [0, N − 1],

N complex multiplications are needed for each n value, up to a total of N 2 complex
multiplications, which are equivalent to 4N 2 real multiplications. For high values
of N , this can be cumbersome even with relatively powerful machines. Exploiting
the symmetry and periodicity properties of complex exponentials, the efficiency of
the DFT algorithm can be improved, by reducing its complexity. Such optimized way
of computing the DFT is referred to as the FFT. Actually, the optimization can be
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attained in several ways, and many different varieties of FFT exist. As an example,
we discuss the so-called decimation-in-time FFT algorithm.

Let us assume, for the sake of generality, that input values x[n] are complex.
We also assume that N is even: if it is actually odd, we just add one zero at the
sequence’s end. Then, we rearrange x[n] in such a way that all the even-indexed
samples come first, and are followed by the odd-indexed samples. In this way we
can express the original N -points DFT as linear combination of two N/2-points
DFTs, separately performed on even-indexed and odd-indexed samples. The linear
combination requires N complex multiplications, so the complexity is reduced to
2(N/2)2 + N .

If N is equal to an integer power of 2, i.e., N = 2ν with integer ν, the previous
approach can be applied recursively until a linear combination of 2-points DFTs is
obtained. Figure3.24 shows the flow diagram of such an algorithm, for N = 8 = 23.

The computation is organized in ν = 3 successive stages. In each stage, N/2 = 4
DFTs over 2 points must be computed. These basic building blocks are called “but-
terflies”; an example of a butterfly is shown in Fig. 3.25a. In the flow diagrams of
Figs. 3.24 and 3.25a, transmission coefficients W n

N , with n = [0, N − 1], appear in
correspondence to the various branches. Let us recall thatwe definedWN = e−j(2π)/N .
These coefficients are called twiddle factors, and their presence indicates that passing
through that branch, a given numerical value is multiplied for the specified integer
power of WN .

In the mth stage, with m = [1, ν], a sequence of N values (that for m = 1 is the
input sequence and in the other cases is the output of the previous stage) generates

Fig. 3.24 Flow diagram for the computation of a DFT over N = 8 points, carried out via the
decimation-in-time FFT algorithm
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Fig. 3.25 a An example of
DFT over 2 points (butterfly
diagram); b a butterfly that
requires two complex
multiplications; c a
simplified butterfly that
requires only one complex
multiplication

(a)

(b)

(c)

another sequence of N values. In the last stage (m = ν) the output is the final result,
i.e., the desired DFT. We can indicate the input sequence of the mth stage by Xm[l],
with l = [0, N − 1] (but only if m = 1 this is the original sequence). The output
sequence will be Xm+1[l], with l = [0, N −1] (but only for m = ν this is the desired
DFT). The generic butterfly of the mth stage is sketched in Fig. 3.25b. The exponent
r in Fig. 3.25b is an integer that can assume values from 0 to (N − 2)/2, according
to the value of m; p and q represent values of the index l in the range l = [0, N −1].
Since there are

• 2 complex multiplications per butterfly,
• N/2 butterflies per stage,
• ν = log2(N ) stages,

the DFT complexity is now N log2(N ) � N 2.
The number of multiplications can be further reduced by a factor of 2: this

is achieved modifying the butterfly in such a way that only one twiddle factor
different from 1 is present. This is possible because W N/2

N = [
e−j(2π)/N

]N/2 =
e− jπ = −1. Using the simplified butterfly, sketched in Fig. 3.25c, the final complex-
ity is (N/2) log2 N . This constitutes a remarkable saving in terms of computational
costs: for example, with N = 1024 = 210, we have N 2 ≈ 1.05 × 106, while
(N/2) log2 N = 1024/2 × 10 ≈ 5.12 × 103.

Moreover, the decimation-in-time scheme allows reducing the number ofmemory
locations that are needed. In fact, a priori we might think that we need two memory
registers, one for the input and one for the output of each stage. However, only the
input elements p and q are necessary for computing the output elements p and q
(Fig. 3.25a, b), so that in-place computations are possible: only one set of N memory
locations is needed, because each output sequence of a given stage can cover the same
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memory locations previously reserved to the input, that is, the output of the preceding
stage.

Other types of FFT algorithms exist, such as

• the decimation-in-frequencyFFT, inwhich theDFT, rather than the input sequence,
is progressively subdivided into shorter and shorter segments;

• algorithms devised to accommodate for values of N that are not integer powers of 2,
but are the product of prime factors. Such algorithms are more computationally
complex than those for N = 2ν . In most cases, it is advisable to augment the
sequence up to the nearest N = 2ν by zero padding;

• specific algorithms for real input sequences: the input can be arranged in the form
of a complex sequence of length N/2, having the even-indexed samples of the
input in its real part and the odd-indexed samples of the input in its imaginary part.
Of course, FFT algorithms devised for complex input can be used also for real
sequences, setting Im{x[n]} = 0, but this approach is much less efficient;

• at last, for a real sequence special algorithms are available, able to compute
directly the coefficients of the so-called discrete trigonometric expansion of a
real sequence, which will be briefly presented in the next section.
FFT is useful for a number of digital signal processing applications, such as

– performing convolution,
– estimating the autocorrelation/autocovariance of a sequence and the cross-
correlation/covariance between two sequences (Part III),

– estimating the power spectrum of a discrete-time, finite-length random signal
(Part III), etc.

Since we are interested in real sequences, we must always keep in mind that
only half of the DFT contains essential information, while the rest is redundant
and can be deduced from that half, exploiting symmetry properties: in fact, for
real sequences we have X [k] = X∗[N − k]. Therefore, assuming without loss
of generality that N is even, only the DFT samples with k = [0, N/2] contain
independent information.

3.7 Discrete Trigonometric Expansion

We merely mention here that an alternative way of expressing the DFT consists in
using real sines and cosines instead of complex exponentials. Assuming that N is
even (if it is odd we place a zero at the end), the discrete trigonometric expansion
can be written as

x[n] = 1

N

{
a0 + (−1)naN/2 +

N/2−1∑

k=1

[
ak cos

(
2π

N
kn

)
+ bk sin

(
2π

N
kn

)]}
,
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with

a0 =
N−1∑

n=0

x[n], aN/2 =
N−1∑

n=0

(−1)n x[n],

ak = 2
N−1∑

n=0

x[n] cos
(
2π

N
kn

)
= 2Re{X [k]},

bk = 2
N−1∑

n=0

x[n] sin
(
2π

N
kn

)
= −2Im{X [k]}.

3.8 Appendix: Mathematical Foundations of Signal
Representation

From the mathematical point of view, the Fourier-based signal representations dis-
cussed in the previous sections, as well as their analog counterparts, are signal rep-
resentations, a.k.a. expansions, in an orthogonal basis established in a vector space.

In this appendix we present some basic concepts about vector spaces and the
related operations and properties as the mathematical foundation for signal repre-
sentation. Fourier series and transforms in both the continuous- and discrete-time
domains are well-known examples of (orthogonal) signal expansions; however, also
the wavelet transforms described in Chaps. 13 and 14 are signal expansions, and the
synthetic notes on vector spaces and signal representations provided here will prove
particularly useful when discussing them. For a more detailed treatment of these top-
ics from the point of view of signal processing the reader can consult, for example,
Wang (2013).

3.8.1 Vector Spaces

In our discussion, any signal, either a continuous-time one represented as a function
x(t), or a discrete one represented as a sequence x[n], with a finite or infinite number
of samples, will be considered as a vector in a vector space, which is just a gener-
alization of the familiar concept of three-dimensional space. A vector space is a set
V with two operations of addition and scalar multiplication defined for its members,
referred to as vectors. We will denote vectors by bold letters.

• Vector addition maps any two vectors x, y ∈ V to another vector x + y ∈ V
satisfying the following properties:

– Commutativity: x + y = y + x.
– Associativity: x + ( y + z) = (x + y) + z.

http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_14
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– Existence of zero: there is a vector 0 ∈ V such that 0 + x = x + 0 = x.
– Existence of inverse: for any vector x ∈ V , there is another vector −x ∈ V
such that x + (−x) = 0.

• Scalar multiplication maps a vector x ∈ V and a real or complex scalar a to
another vector ax ∈ V with the following properties:

– a(x + y) = ax + a y;
– (a + b)x = ax + bx, where b is another scalar;
– abx = a(bx);
– 1x = x.

We define a function space as a vector space whose elements are real- or complex-
valued functions x(t) of a real variable t , defined over either an infinite range,−∞ <

t < +∞, or a finite range, such as 0 ≤ t < T .
A function space that is particularly important in signal processing is L2(R).

This is the space of all functions with a finite, well-defined integral of the square
of the modulus of the function, i.e., functions with finite energy in the continuous-
time domain. The symbol L signifies a Lebesgue integral,12 the exponent 2 denotes
the integral of the square of the modulus of the function, and (R) states that the
independent variable t is a number over the whole real line. If x(t) is a member of
that space, we will write x(t) ∈ L2(R).

The next most basic space is L1(R), which requires a finite integral of the mod-
ulus of the function. With these functions, one is allowed to interchange infinite
summations and integrations, which is not necessarily true with L2(R) functions.

The concept of function space can be generalized to those functions satisfying∫ |x(t)|p dθ = K < ∞, which are designated by Lp(R). Although most of the
definitions and derivations we may be interested in are in terms of signals belonging
to L2(R), many of the results hold for larger classes of signals.

A more general class of signals than any Lp(R) space contains what are called
distributions. These are generalized functions, which are not defined by their having
“values” but by the value of an “inner product” with an ordinary function (see the
next subsection for the definition of inner product). An example of a distribution is
the Dirac δ function. For an introductory study of the transforms we are interested
in, such as Fourier and wavelet transforms, we can ignore the mathematical facets of
signal space classes, use distributions as if they were functions, and assume Riemann
integrals, but we should not forget that there are some cases in which these ideas are
crucial.

In functional analysis, similarly to function spaces introduced for continuous-time
functions, sequence spaces are defined for sequences. A sequence space is a vector

12Lebesgue integrals are somewhat more general than the basic Riemann integral. The value of a
Lebesgue integral is not affected by values of the function over any countable set of values of its
argument, or, more generally, a set of measure zero. For instance, a function defined as 1 on the
rationals and 0 on the irrationals would have a zero Lebesgue integral. As a result of this, properties
derived using Lebesgue integrals are sometimes said to be true “almost everywhere”, meaning they
may not be true over a set of measure zero.
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space whose elements are sequences of real or complex numbers.13 We may have
n = (−∞,+∞) or a finite range of n-values. Thus, �p(Z) is the space of p-power
summable sequences; �2(Z) is the space of square-summable sequences; �1(Z) is
the space of absolutely summable sequences, etc.

Here we will restrict our attentions to two typical vector spaces:

• the �2(Z) space of sequences x[n] that are square-summable and therefore are
discrete-time energy signals;

• the L2(R) space of functions x(t) that are square-integrable and therefore are
continuous-time energy signals.

Note that the term “vector” may be interpreted in two different ways. First, in
the most general sense, it represents a member x of a vector space, e.g., a function
x(t) ∈ L2(R) or a sequence x[n] ∈ �2(Z). Second, in a narrower sense, it can also
represent a tuple of N elements, such as the N samples of a discrete-time signal,
where N may go to infinity. From the context in the discussion, it should be clear
what a “vector” represents; moreover, we will reserve bold symbols to vectors in the
first, more general sense.

The sum of two subspaces S1 ⊂ V and S2 ⊂ V of a vector space V that are
mutually exclusive, i.e., that do not intersect each other (S1 ∩ S2 = 0), is called a
direct sum, denoted by S1 ⊕ S2. Moreover, if S1 ⊕ S2 = V , then S1 and S2 form
a direct-sum decomposition of the vector space V , and S1 and S2 are said to be
complementary, in the sense that S1 is the complement of S2 in V , and S2 is the
complement of S1 in V . The direct sum decomposition of V can be generalized to
include multiple subspaces:

V = ⊕N−1
j=0 Sj = S0 ⊕ S2 ⊕ · · · ⊕ SN−1,

where all subspaces Sj ∈ V are assumed to be mutually exclusive.

3.8.2 Inner Product Spaces

An inner product in a vector space V is a function that maps two vectors x, y ∈ V
to a real or complex scalar s ≡ 〈x, y〉 and satisfies the following conditions.

• Positive definiteness: 〈x, x〉 ≥ 0.
• Conjugate symmetry: 〈x, y〉 = 〈 y, x〉∗. If the vector space is real, the inner product
becomes symmetric: 〈x, y〉 = 〈 y, x〉.

• Linearity in the first variable: 〈ax + b y, z〉 = a 〈x, z〉 + b 〈x, z〉. It can be shown
that linearity applies to the second variable only if the coefficients of the combina-

13Equivalently, a sequence space is a function space whose elements are functions from the field Z

of integer numbers (values of n) to the field R of real or complex numbers (values of x[n]), exactly
as a continuous-time-function space is a function space whose elements are functions from the field
R (values of t) to R (values of x(t)).
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tion are real: a, b ∈ R. As a special case, when b = 0, we have 〈ax, y〉 = a 〈x, y〉.
A vector space with inner product defined is called an inner product space. All
vector spaces in our discussion will be assumed to be inner product spaces, a.k.a.
Euclidean spaces.

Some examples of the inner product are listed below:

• for two sequences of length N , the inner product is a summation,

〈x, y〉 = 〈x[n], y[n]〉 = x · y =
N−1∑

n=0

x[n]y∗[n];

• for functions x = x(t), y = y(t) the inner product is an integral,

〈x, y〉 = 〈x(t), y(t)〉 =
∫

x(t)y∗(t)dt,

where the integration limits depend on the particular functions being considered.

For real sequences or functions,

〈x[n], y[n]〉 =
∑

x[n]y[n], 〈x(t), y(t)〉 =
∫

x(t)y(t)dt.

The concept of inner product is a concept of of essential importance,14 based on
which a whole set of other important concepts can be defined.

The norm (or length) of a vector x ∈ V is defined as

‖x‖ = √〈x, x〉.

14In this part of the book we are dealing with deterministic signals. Starting from Chap.9, our
approach to signal representation and analysis will change: we will explicitly consider signals
deriving from experimental measurements, which are better described in terms of random vari-
ables/random processes and of statistical/probabilistic arguments. The present discussion covers
also the random case, except that in the case of random variables, the inner product should actually
be defined through the so-called ensemble average operator,

〈x(t), y(t)〉 = E
[
xy∗] ,

that is the “correlation” of the two random variables x and y (for zero-mean variables it is the
“covariance”). This means (see Chap.9) that the integral should include the probability density
function related to each random variable. On the other hand, in the theory of wavelet representation
of signals (Chaps. 13–15), the random nature of signals is not explicitly considered (see Sects. 14.2
and 14.3). Though keeping inmind that the statistical/probabilistic complicationwill come into play
in Chap.9, we can continue our discussion on inner-product spaces using the standard definition of
inner product.

http://dx.doi.org/10.1007/978-3-319-25468-5_9
http://dx.doi.org/10.1007/978-3-319-25468-5_9
http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_15
http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_9
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The norm is non-negative and it is zero if and only if x = 0. In particular, if the norm
is 1, then the vector is said to be normalized and becomes a unit vector. Any vector
can be normalized, dividing it by its norm.

The squared vector norm 〈x, x〉 = ‖x‖2 represents the energy of the vector. For
example, for a finite-length sequence x[n] we have in �2(Z)

‖x‖ =
√√√√

N−1∑

n=0

|x[n]|2.

This concept can be generalized to an infinite-length sequence, in which case the
range of the summation will cover all integers Z. This norm exists only if the sum-
mation converges to a finite value, i.e., if x[n] is an energy signal. All such vectors
are square-summable and form the vector space denoted by �2(Z). Similarly, the
norm of a function vector x = x(t) in L2(R) is defined as

‖x‖ =
√∫

|x(t)|2,

where the lower and upper integral limits are two real numbers, which may tend to
infinity, so that the integral spans the entire real axis. This norm exists only if the
integral converges to a finite value, i.e., if x(t) is an energy signal.

If the inner product of two vectors x and y is zero, they are orthogonal (perpen-
dicular) to each other, denoted by x ⊥ y. Two subspaces S1 ⊂ V and S2 ⊂ V of
an inner product space V are orthogonal, denoted by S1 ⊥ S2, if x1 ⊥ x2 for any
x1 ∈ S1 and x2 ∈ S2. The orthogonal complement of a subspace S1 ⊂ V is the set of
all vectors in V that are orthogonal to S1. An inner product space V can be expressed
as the direct sum of a finite or infinite number of mutually orthogonal subspaces:

V = ⊕ j S j with Sl ⊥ Sm for all l �= m.

All of these definitions can be intuitively visualized in a three-dimensional space
spanned by three perpendicular coordinates representing three mutually orthogonal
subspaces. The orthogonal direct sum of these subspaces is the three-dimensional
space, and the orthogonal complement of the subspace in the x direction is the two-
dimensional yz-plane formed by coordinates y and z.

We now introduce the distance between two vectors x and y as the norm of their
difference x − y. The distance is always non-negative and is symmetric, i.e., the
distance between x and y is equal to the distance between y and x. When distance
is defined between any two vectors in a vector space, the latter is called a metric
space. In a metric space V , a vector sequence {x1, x2, x3, . . .} is a called a Cauchy
sequence if for any ε > 0 there exists an integer L > 0 such that for any (l, m) > L ,
the distance between xl and xm is smaller than ε.
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A metric space V is a complete metric space if every Cauchy sequence {xl} ∈ V
converges to x ∈ V , in the sense that the distance between xl and x tends to 0 as l
approaches infinity. In other words, for any ε > 0 there exists an L > 0 such that this
distance becomes smaller than ε for l > L . Complete inner-product metric spaces
are referred to as Hilbert spaces.

In what follows, to keep the discussion generic, the lower and upper limits of a
summation or an integral may not be always explicitly specified, as the summation
or integral may be finite or infinite, depending on each specific case.

3.8.3 Bases in Vector Spaces

In a vector space V , the subspace S of all linear combinations of a set of M vectors
bk ∈ V , with k = [0, M − 1], is called the (linear) span of the vectors:

S = Span(bk) =
M−1∑

k=0

ck bk,

where the {ck} are real or complex coefficients. A set of linearly independent vectors
bk that spans a vector space is called a basis of that space. Now, let {bk} be a set of
linearly independent vectors in a Hilbert space H , and x an arbitrary vector that can
be approximated in a finite-dimensional subspace with dimensionality M by

x̂M =
M−1∑

k=0

ck bk .

If the least-squares error of this approximation converges to zero when the dimen-
sionality M of the space S tends to infinity:

lim
M→∞

∥∥x − x̂M

∥∥2 = 0,

then the approximation converges to the given vector:

lim
M→∞

M−1∑

k=0

ck bk = x,

and the set of vectors {bk} is said to be a complete basis. If the vectors bk are also
orthogonal, they are called a complete orthogonal basis. If the orthogonal vectors
have unit norm, we have a complete orthonormal (ON) basis.

The basis vectors are linearly independent, i.e., none of them can be represented
as a linear combination of the other ones. The vectors of a complete basis are such
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that if we included any additional vector in the basis, the vectors of the set would no
longer be linearly independent, and removing any of themwould result in inability to
represent certain vectors in the space. In other words, a complete basis is a minimum
set of vectors capable of representing any vector in the space. Also, as any “rotation”
of a given basis will result in a different basis,15 we see that there are infinitely many
bases that span the same space.

The concept of a finite space spanned by a basis composed of a finite number M
of basis vectors can be generalized to a function space composed of all functions
x = x(t) defined over some interval 0 ≤ t < T , spanned by a set of countable but
infinite basis vectors bk = bk(t), with k = (−∞,+∞):

x(t) =
+∞∑

k=−∞
ck bk =

+∞∑

k=−∞
ckbk(t).

The span of the basis vectors is16 the subspace formed by all these linear combina-
tions:

S = Span(bk) =
∞∑

k=−∞
ck bk,

and conversely, {bk} is the spanning set of S.
This idea can be further generalized to a function space composed of all functions

defined over an infinite domain −∞ < t < ∞, spanned by a basis composed of
a family of uncountably infinite functions b( f ) = b( f, t), with f = (−∞,+∞).
Any function x = x(t) in the space can be expressed as a linear combination of these
basis functions, in the form of an integral:

x(t) =
∫ +∞

−∞
c( f )b( f, t)d f =

∫ +∞

−∞
c( f )b( f )d f.

We see that the index k for the summation in the finite case is replaced by a continuous
variable f for the integral, and the coefficient ck is replaced by a continuousweighting
function c( f ) for the uncountably infinite set of basis functions b( f ) = b( f, t). An
important issue is how to find the coefficients or the weighting function, given the
vector x and the basis vectors bk or b( f ).

15Here we do not enter in details about how passing from one basis to another one can be seen as a
rotation of axes; we leave this to the intuition of the reader.
16In several cases, the signal spaces encountered in wavelet theory are actually the closure of the
space spanned by the basis set, meaning that the space contains not only all signals that can be
expressed by a linear combination of the basis functions, but also the signals which are the limit of
infinite expansions based on the considered (infinite) set. The closure of a space is usually denoted
by an over-line, as in Spank , but we will neglect the over-line in our notation, for simplicity.
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3.8.4 Signal Representation by Orthogonal Bases

Finding the coefficients or the weighting function can become straightforward if the
basis is orthogonal. Let x and y be any two vectors in the Hilbert space H spanned
by a complete orthogonal system {uk} satisfying

〈ul , um〉 = δ[l − m].

Note that in this case, {uk} is actually orthonormal. Then we have, in vector notation,

1. series expansion:
x =

∑

k

ck uk =
∑

k

〈x, uk〉 uk;

2. Parseval’s theorem17:

〈x, y〉 =
∑

k

〈x, uk〉 〈 y, uk〉∗ ,

〈x, x〉 = ‖x‖2 =
∑

k

|〈x, uk〉|2 .

Here, the dimensionality of the space, i.e., the range of k values, is not specified to
keep the discussion more general.

The results shown above can be generalized to a vector space spanned by a basis
composed of a continuum of uncountable orthogonal basis vectors u( f ) satisfying

〈
u( f ), u( f ′)

〉 = δ( f − f ′).

Any vector x in the space can be expressed as

17Actually, the first equation above should be called Plancherel’s theorem; the name “Parseval’s
theorem” should be reserved to the second equation, which is a particular case of Plancherel’s
theorem.

More precisely, Parseval’s theorem refers to the result that the Fourier transform is unitary:
loosely, this means that the sum (or integral) of the square of a function is equal to the sum (or
integral) of the square of its transform. It originates from a 1799 theorem about series by Marc-
Antoine Parseval (Parseval 1806), which was later applied to the Fourier series. It is also known as
Rayleigh’s energy theorem (Rayleigh 1889), or Rayleigh’s identity, after John William Strutt, Lord
Rayleigh. Plancherel’s theorem (Plancherel 1910) is a more general result in harmonic analysis.
It states that the integral of a function’s squared modulus is equal to the integral of the squared
modulus of its frequency spectrum. This result makes it possible to speak of Fourier transforms
of quadratically-integrable functions and quadratically-summable sequences, rather than just of
absolutely integrable functions and absolutely summable sequences. The unitarity of any kind of
Fourier transform is often called Parseval’s theorem in science and engineering fields, based on the
above-mentioned earlier (but less general) result, but the most general form of this property should
be called Plancherel’s theorem.
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x =
∫

c( f )u( f )d f.

This equation represents a given vector in the space as a linear combination (an
integral) of the basis function u( f ), weighted by c( f ). The weighting function c( f )

can be easily obtained exploiting the orthogonality of the basis. Indeed, taking the
inner product with u( f ′) on both sides of the equation we get

〈
x, u( f ′)

〉 =
〈∫

c( f )u( f )d f, u( f ′)
〉

=

=
∫

c( f )
〈
u( f ), u( f ′)

〉
d f =

∫
c( f )δ( f − f ′)d f = c( f ′).

Therefore,
c( f ) = 〈x, u( f )〉 .

Parseval’s theorem becomes, with obvious notation,

‖x‖2 = 〈x, x〉 =
∫

c( f )c∗( f )d f = 〈c, c〉 = ‖c‖2 .

In the case of a countable set of vectors uk , ‖x‖2 will still be equal to the norm of the
coefficients, but since the coefficients depend on an index rather than on a continuous
variable, ‖c‖2 will be a summation rather than an integral.

For example, let us consider the continuous-time Fourier transform (CTFT),
which is defined (see, e.g., Bochner and Chandrasekharan 1949; Bracewell 2000)
through the analysis and synthesis relations

X ( f ) =
∫ +∞

−∞
x(t)e−j f tdt,

x(t) =
∫ +∞

−∞
X ( f )ej f td f.

This is a signal representation of this type, the basis vectors u( f ) being sinusoidal
functions of different frequencies f in (−∞,+∞). On the other hand, the DFT of
a sequence with finite length N is instead an expansion based on a finite number of
basis vectors, namely, the set of complex exponentials ej2πkn/N , etc.

3.8.5 Signal Representation by Standard Bases

As a special case of the class of orthogonal bases, we can consider the standard basis
in the N -dimensional Euclidean space, in which a vector x representing N samples
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of a signal x[n] can be expressed as a linear combination of standard basis vectors:

x =
N−1∑

n=0

x[n]en = I x,

where I represents the identity operator in the form of a matrix having 1 as elements
of the main diagonal and 0 as the other elements, and

e1 = [1 0 0 0 . . .]T ,

e2 = [0 1 0 0 . . .]T ,

e3 = [0 0 1 0 . . .]T ,

etc. The superscript T indicates the transpose of the vectors in square brackets: in
fact, the vectors are normally written as column vectors.18

If we denote by e[m, n] the mth element of en , then the mth sample x[m] of x
can be expressed as

x[m] =
N−1∑

n=0

x[n]e[m, n] =
N−1∑

n=0

x[n]δ[m − n].

This result can be generalized to a vector space of infinite dimensions, spanned by
en with −∞ < n < ∞, thus giving

x[m] =
∞∑

n=−∞
x[n]δ[m − n].

We see that whenever a discrete-time signal is given in the form of a vector as a
set of samples x[m], each corresponding to a particular time instant, it is actually
expressed in terms of the standard basis, which is implicitly used.

In particular, if we let x[m] = δ[m − m ′], the equation above becomes

δ[m − m ′] =
∞∑

n=−∞
δ[n − m ′]δ[n − m] = 〈δm ′ , δm〉 ,

indicating that the set of vectors δm = δ[n − m] shifted by different amounts m
of discrete time is indeed a set of orthonormal vectors that form a standard basis
of a vector space, by which any vector x = [. . . , x[n], . . . ]T in the space can be

18In the three-dimensional case, and thinking of the samples of x[n], with n = 0, 1, 2 as the spatial
coordinates x, y and z of a point with respect to a Cartesian coordinate reference system, this would
be the familiar vector representation xi + y j + zk that uses three standard basis unit vectors along
each of the three mutually perpendicular axes. Thus we would have e1 = i , e2 = j , e3 = k, the
unit vectors indicating the direction of the axes being [1 0 0]T , [0 1 0]T and [0 0 1]T .
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expanded as

x[n] =
∞∑

m=−∞
x[m]δ[n − m] =

∞∑

m=−∞
x[m]δ[m − n], n = 0,±1,±2, . . .

It may seem only natural and reasonable to represent a signal vector by this stan-
dard basis, in terms of a set of time samples, but it is also possible, and sometimemore
beneficial, to decompose the signal into a set of components along some dimension
other than time, which means to represent the signal vector by an orthogonal basis
that can be obtained by rotating the standard basis.

The concept of representing a discrete time signal x[n] by the standard basis can
be extended to the representation of a continuous time signal x(t) defined over some
finite interval 0 ≤ t < T (see Wang 2013), and later can be further generalized to
the interval −∞ < t < ∞, by using the Dirac delta. We will do exactly this when
dealing with the sampling of continuous-time signals in Chap.4. We can write the
value of the signal at some t = τ as

x(τ ) =
∫ ∞

−∞
x(t)δ(t − τ )dt =

∫ ∞

−∞
x(t)δ(τ − t)dt.

If we let x(τ ) = δ(τ − τ ′), the above equation becomes, with δ(t − τ ) = δ(τ − t) ≡
δτ (t),

δ(τ − τ ′) =
∫ ∞

−∞
δ(t − τ ′)δ(t − τ )dt = 〈δτ ′(t), δτ (t)〉 ,

indicating that the Dirac δ shifted by different amounts τ of time indeed represents a
set of orthogonal functions that form a standard basis for a function space, by which
any function x(t) in the space can be expanded:

x(t) =
∫ ∞

−∞
x(τ )δ(τ − t)dτ .

Again, it may seem natural to represent a continuous-time signal x(t) by the
corresponding standard basis, made of time impulses. However, this is not the only
way or the best way to represent the signal. The time signal can also be represented by
a basis other than the standard basis represented by the train of shifted Dirac δ, so that
the signal is decomposed along some different dimension other than time. Such an
alternative way of signal decomposition and representation may be desirable, as the
signal can be more conveniently processed and analyzed, for any signal processing
task. This is actually the fundamental reason why different orthogonal transforms
are developed.

In summary, a signal vector can be represented under different bases that span the
related space, and all these representations are equivalent in terms of the total energy
(Parseval’s theorem). However, these representations may differ drastically in terms

http://dx.doi.org/10.1007/978-3-319-25468-5_4
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of how different types of information contained in the signal are concentrated in
different signal components, i.e., are carried by different coefficients or values of the
weighting function. Sometimes certain advantages can be gained from one particular
basis compared with another, depending on the specific application.

3.8.6 Frames and Biorthogonal Bases

So far we considered the representation of a signal vector x ∈ H as some linear
combination of an orthogonal basis uk that spans the space:

x =
∑

k

ck uk =
∑

k

〈x, uk〉 uk,

with Parseval’s theorem, written as ‖x‖ = ‖c‖, indicating that x is represented by the
expansion coefficients {ck} without any redundancy. However, sometimes it may be
difficult or even impossible to identify a set of linearly independent and orthogonal
basis vectors in the space. In such cases we could still consider representing a signal
vector x by a set of vectors

{
fk

}
which may be linearly dependent and, therefore,

do not form a basis of the space. A main issue is the redundancy that exists among
such a set of non-independent vectors. Since it is now possible to find a set of
coefficients {dk} so that∑k dk fk = 0, an immediate consequence is that the signal’s
representation is no longer unique:

x =
∑

k

ck fk =
∑

k

ck f k +
∑

k

dk fk =
∑

k

(ck + dk) fk .

Moreover, Parseval’s theorem no longer holds. The energy contained in the coeffi-
cients may be either higher or lower than the energy in the signal. In order to address
this issue when using non-independent vectors for signal representation, the concept
of frame is introduced.

For the expansion x = ∑k ck fk to be a reasonable representation of x in terms
of a set of coefficients ck = 〈

x, fk

〉
, first we must require the following relation to

hold for any vectors x, y ∈ H :

〈
x, fk

〉 = 〈 y, fk

〉
if and only if x = y.

This representation is also required to be stable in a twofold manner:

• stable representation: if the difference between two vectors is small, then the
difference between the corresponding coefficients should also be small. So, if
‖x − y‖2 → 0, then

∑
k

∣∣〈x, fk

〉− 〈 y, fk

〉∣∣2 → 0, hence
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∑

k

∣∣〈x, fk

〉− 〈 y, fk

〉∣∣2 ≤ B ‖x‖2 ,

where 0 < B < ∞ is a positive real constant. In particular, setting y = 0, so that〈
y, fk

〉 = 0, we have ∑

k

∣∣〈x, fk

〉∣∣2 ≤ B ‖x‖2 ;

• stable reconstruction: if the difference between two sets of coefficients is small,
then the difference between the corresponding reconstructed vectors (the vectors
re-assembled using the coefficients and the basis vectors) should also be small.
So, if

∑
k

∣∣〈x, fk

〉− 〈 y, fk

〉∣∣2 → 0, then ‖x − y‖2 → 0, hence

A ‖x − y‖2 ≤
∑

k

∣∣〈x, fk

〉− 〈 y, fk

〉∣∣2 ,

where 0 < A < ∞ is a positive real constant. Again, setting y = 0 and therefore〈
y, fk

〉 = 0, we have

A ‖x‖2 ≤
∑

k

∣∣〈x, fk

〉∣∣2 .

Combining these two constraints we can say that a family of finite or infinite vectors{
fk

}
in the Hilbert space H is a frame if there exist two real constants 0 < A ≤

B < ∞ such that for any x ∈ H , the following inequality holds:

A ‖x‖2 ≤
∑

k

∣∣〈x, fk

〉∣∣2 ≤ B ‖x‖2 .

Any numbers A, B for which this inequality is valid are called frame bounds. They
are not unique. The optimal frame bounds are the largest possible value for A and
the smallest possible value for B for which the inequality holds. A and B can thus be
seen as the bounds within which the normalized energy of the coefficients, defined
as ∑

k |〈x(t), fk(t)〉|2
‖x(t)‖2 =

∑
k

∣∣〈x, f k

〉∣∣2

‖x‖2 ,

must fall. This explains the word “frame”: A and B frame the normalized energy of
the coefficients.

If we can choose A = B, then we have a tight frame:

A ‖x‖2 = B ‖x|2 =
∑

k

∣∣〈x, fk

〉∣∣2 ,

or

A ‖x(t)‖2 = B ‖x(t)‖2 =
∑

k

|〈x(t), fk(t)〉|2 ,
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a relation that expresses a generalized form of Parseval’s theorem valid for tight
frames. This is the most general case in which a partitioning of the energy of the
signal among the coefficients can be written. Finally, if a tight frame has A = B = 1,
then it is an orthogonal basis.

For a tight frame we can write the generalized synthesis relation

x(t) = 1

A

∑

k

ck fk(t),

where the factor 1/A measures the redundancy of the signal’s representation. The
larger A, the more redundant the representation: 1/A is small, which means that
the value of

∑
k ck fk(t) must be strongly reduced to make it equal to the value of

x(t). The case A = 1, which identifies an orthogonal basis, thus corresponds to no
redundancy: an orthogonal basis is a non-redundant tight frame.

If the adopted frame is not tight, nothing similar to Parseval’s theorem can be
written, and the energy of the signal in the coefficient domain cannot be partitioned
exactly. However, the closer A and B, the easier an approximate energy partition-
ing, and the more accurate the way in which the signal can be approximated, i.e.,
reconstructed, combining coefficients and basis functions:

x(t) ≈ 2

A + B

∑

k

ck fk(t).

For this approximate reconstruction, a reconstruction signal-to-noise ratio SNRrec is
defined, which is bounded by

SNRrec >
B/A + 1

B/A − 1
.

We can thus see that for a tight frame, when A = B, the reconstruction is perfect.
No noise is added to the signal in the reconstruction process. A tight frame behaves
exactly as an orthogonal basis, even if the basis functions fk(θ) may even lack linear
independence.

If we use a frame which is not tight, we can nevertheless make the reconstruc-
tion exact, i.e., the analysis and the synthesis can take place without reconstruction
noise as if we were using a tight frame. The process of finding the coefficients
needed to combine the frame vectors fk , in such a way that an exact reconstruction
x = ∑k ck fk is possible, is tackled by considering it as a frame transformation, an
operator that maps the vector x to a coefficient vector c. Following this approach,
it is found that we must allow for a dual set f̃ k of frame vectors, or dual frame, to
appear. A vector x ∈ H can be equivalently represented by either of the two dual
frames, fk or f̃ k :

x =
∑

k

〈
x, f̃ k

〉
fk =

∑

k

〈
x, fk

〉
f̃ k .
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Thus, a dual set allows for exact signal reconstruction in the case of a frame. The
dual set is not unique.

In the special case in which the vectors in a frame fk actually are linearly indepen-
dent, the corresponding set of functions is called a Riesz basis. A Riesz basis

{
fk

)

and its dual
{

f̃ k

)
form a pair of biorthogonal bases—often collectively indicated as

a biorthogonal basis19—satisfying

〈
fk, f̃ l

〉
= δ[k − l], k, l ∈ Z.

The signal representationby a set of linearly independent andorthogonal basis vectors
is now generalized, so that the signal is represented by a set of frame vectors, which
are in general neither linearly independent nor orthogonal. The biorthogonal case is
special because the representation behaves exactly as an expansion in an orthogonal
basis (uniqueness, no redundancy), except for the presence of a dual set of basis
vectors.

3.8.7 Summary and Complements

We summarize below the essential points discussed in this appendix.

• A signal can be considered as a vector x in a Hilbert space, the specific type
of which depends on the nature of the signal. For example, an infinite-duration
continuous-time, finite-energy signal x(t) is a vector x ∈ L2(R), and its discrete
samples form a vector in �2(Z). Let us call S the considered space.

• A signal vector x given in the default form, either as a time function or a sequence
of time samples, can be considered as a linear combination of a set of weighted
and shifted time impulses:

x(t) =
∫

x(τ )δ(τ − t)dτ

or
x[n] =

∑

m

x[m]δ[m − n].

Here, δ(τ − t) or δ[m − n] respectively represent the standard basis that spans
the corresponding signal space. In other words, the default form of a signal x(t)
or x[n] is actually a weighting function or a countable set of coefficients of the
standard basis, which is always implicitly used in the default representation of a
signal in the time domain.

19“Biorthogonal” means that this type of “orthogonality” requires two sets of vectors.
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• The signal vector x can alternatively be represented by any of the bases that also
span the same vector space, such as an orthogonal basis obtained by performing a
transformation in the form of a rotation applied to the vectors of the standard basis.
This is, for example, the case of signal representations in the frequency domain.
Such a basis is composed of a set of either countable vectors uk or uncountably
infinite vectors u( f ). If the basis is orthogonal, we get

x =
∑

k

ck uk =
∑

k

〈x, uk〉 uk, with ck = 〈x, uk〉 ,

or

x =
∫

c( f )u( f )d f =
∫

〈x, u( f )〉 u( f )d f, with c( f ) = 〈x, u( f )〉 .

The equation for the coefficients {c[k]} or weighting function c( f ) represents the
analysis of the signal by which the signal is decomposed into a set of compo-
nents c[k]uk or c( f )u(t). The inverse relation, involving a summation or integra-
tion, is the synthesis of the signal, by which the signal is reconstructed from its
components.

• The representations of the signal under different orthogonal bases are equivalent,
in the sense that the total amount of energy or information contained in the signal,
represented by its norm, is conserved by the rotation relating the two orthogonal
bases before and after the transformation, due to Parseval’s theorem.

• In addition to the orthogonal transforms based on a set of orthogonal basis vectors,
each of which carries some independent information on the signal, we can also
consider transforms based on a set of frame vectors thatmay be non-orthogonal and
even non-independent. These frame vectors may be correlated and there may exist
certain redundancy in terms of the signal information that each of them carries.

• The special case inwhich the framevectors are actually independent on one another
leads to a signal representation in a biorthogonal basis.

We must also remember that:

• a set {uk(t)} is a basis for the vector space S if the coefficients {ck} are unique for
any particular x(t) ∈ S;

• a basis in S is orthogonal if, moreover, we have 〈uk(t), ul(t)〉 = 0 for k �= l;
• an orthogonal basis in S is also orthonormal (ON) if ‖uk(t)‖ = 1 for any k;
• if the basis is orthogonal, we can express any element x(t) in the vector space S by

x(t) =
∑

k

〈x(t), uk(t)〉 uk(t),

since by taking the inner product of uk(t) with both sides of the previous equation
we get

ck = 〈x(t), uk(t)〉 .
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The inner product of the function x(t) with the basis vector uk(t) thus “picks out”
the corresponding coefficient ck ;

• more generally, the basis may be biorthogonal: in this case, the expansion can
still be written but only if we use, together with a set { fk(t)}, a dual basis set{

f̃k(t)
}
. The elements of each sets will not be orthogonal to each other, but to the

corresponding element of the other set:

〈 fk(t), fl(t)〉 �= 0 and
〈

f̃k(t), f̃l(t)
〉
�= 0, but

〈
fk(t), f̃l(t)

〉
= δ(k − l).

This allows for writing a synthesis relation in the form

x(t) =
∑

k

〈
x(t), f̃k(t)

〉
fk(t).

The inner products
〈
x(t), f̃k(t)

〉
are the coefficients in the analysis relation for

x(t). A biorthogonal system is more complicated than an orthogonal basis, in that
it requires not only handling the expansion set, but finding, calculating, and storing
a dual set of functions. On the other hand, it is very general and allows a larger
class of expansions.

The space S that we are considering may be a subspace of L2(R), or even coin-
cide with L2(R), since our ultimate goal is to find expansions for square-integrable
functions. Therefore the norm of a function x(t) ∈ S is finite.

This expansion or representation of a function, or signal, or vector x(t) belonging
to L2(R) is extremely valuable. The inner product operates on x(t) to produce a
set of coefficients that, when used to linearly combine the basis vectors, give back
the original signal x(t). It is the foundation of Parseval’s theorem, which states
that the energy of x(t) can be partitioned among the expansion coefficients ck . For
a Fourier series, the (orthogonal) basis functions are sinusoidal, with frequencies
integer multiples of a fundamental frequency ω0. For a Taylor’s series, the (non-
orthogonal) basis functions are simple monomials t k , etc.20

If we allow for more general synthesis relations, we can use a spanning set that
is not a basis but a generalization of the concept of basis, i.e., a frame. A frame
still allows representing a signal in a similar way as we did above; however, the
coefficients are not necessarily unique. This has several advantages: the lack of

20In order to better understandwhat a basis is, wemaymention that in finite dimensions, analysis and
synthesis operations can be represented as matrix-vector multiplications. If the expansion functions
(vectors) are a basis, the synthesis matrix has these basis vectors as columns; it is square and
non-singular. If the basis is orthogonal, then the synthesis matrix is orthogonal, since its rows and
columns are orthogonal to one another; its inverse is equal to its transpose, and the matrix multiplied
by its transpose gives the identity matrix. If the synthesis matrix is not orthogonal, then the identity
matrix is the synthesis matrix multiplied by its inverse, and the dual basis consists of the rows of the
inverse. If the synthesis matrix is singular, then its columns (the basis vectors) are not independent,
and therefore do not form a basis: the uniqueness of the coefficients is lost. This leads to the concept
of frame.
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uniqueness opens up the possibility of choosing the frame leading to coefficients
that fit a certain application best, and it also makes the representation of a signal
less sensitive to noise. Since the orthogonal-basis condition is strong, it might be
difficult to find a basis satisfying the extra conditions that a certain application may
require; the frame condition is weaker, and one can often find a frame enjoying
special properties that are impossible for a basis. For frames we can write a relation
using the square of the norm of x(t) in L2(R):

A ‖x(t)‖2 ≤
∑

k

|〈x(t), fk(t)〉|2 ≤ B ‖x(t)‖2 .

Note that

• a frame is an overcomplete version of a basis set, where the word “overcomplete”
refers to the representation redundancy; it allows for exact signal reconstruction if
we resort to a dual frame; a frame can be a biorthogonal basis if the frame vectors
are independent of each other;

• a tight frame is an overcomplete version of an orthogonal basis set.

To complete the picture, we explain what is meant by an unconditional basis. The
concept of an unconditional basis is of particular interest for wavelet expansions. It
was used by Donoho 1993 and other authors to give an explanation of which wavelet
basis systems are best for a particular class of signals and why wavelet basis systems
can be very good for a wide variety of signal classes and processing tasks.

Broadly speaking, the definition of an unconditional basis given by Donoho 1993
is the following. Let us consider a function classF with a norm defined in someway,
and a basis set fk(t) such that every function x(t) ∈ F has a unique representa-
tion of the form x(t) = ∑

k αk fk(t). Let us then consider the infinite expansion
x(t) = ∑

k mkαk fk(t). If for all x(t) ∈ F , the infinite sum converges for all
|mk | ≤ 1, the basis is called an unconditional basis. If the convergence depends
on the condition mk = 1 for some x(t), then the basis is called a conditional basis.

For an unconditional basis, it may be shown that convergence of the infinite
expansion depends neither on the order of the terms in the summation, nor on the
sign of the coefficients. This means a very robust basis where the coefficients drop off
rapidly for all members of the function classF . That is indeed the case for wavelets,
which are unconditional bases for a very wide set of function classes (Daubechies
1992).

The fundamental idea of bases or frames is representing a continuous function
by a sequence of expansion coefficients. For orthogonal bases and tight frames,
the respective forms of the Parseval theorem relate the L2-norm of the expanded
function to the �2-norm of coefficients. Different function spaces are characterized
by different norms of the continuous function. If we have an unconditional basis for
the considered function space, not only can the norm of the function in the space
be related to some norm of the coefficients in the expansion, but also the absolute
values of the coefficients contain sufficient information to establish the relation. So
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there is no condition on the sign information of the expansion coefficients (the phase
if they are complex), if we only care about the norm of the function: the basis is thus
named “unconditional”.
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Chapter 4
Sampling of Continuous-Time Signals

4.1 Chapter Summary

This chapter deals with the proper choice of the sampling interval Ts that leads to
a correct representation of an analog signal by an infinite set of samples extracted
periodically from it. Here “correct representation” means “representation allowing
for the reconstruction of the continuous-time signal from its discrete-time version”.
A theorem known as the sampling theorem prescribes a lower limit for Ts , depend-
ing on the upper bandlimit of the spectrum of the analog signal. The theorem also
highlights the fact that a representative sampling of a continuous-time signal is pos-
sible if, and only if, the signal does not contain frequencies higher than the Nyquist
frequency 1/(2Ts): in other words, no finite-rate sampling can capture the variations
of a continuous-time signal which is not bandlimited, i.e., that contains periodic
components of all frequencies, up to infinity.

Other issues related to analog signals, such as the signal’s concentrations in the
time and frequency domains and their mutual inverse dependence (uncertainty prin-
ciple), as well as the definition of bounded and compact support in both domains, are
also discussed. These topics will be especially useful when dealing with the wavelet
transform (Chaps. 13 and 14). The Appendix to this chapter finally provides a sum-
mary of the relations among the variables used to express the concept of frequency
in the continuous-time and discrete-time cases.

4.2 Sampling Theorem

In this chapter we deal with discrete-time signals resulting from periodic sampling
of analog signals.When we decide to sample a continuous-time signal x(t) at regular
time intervals Ts (periodic sampling), so as to get a discrete-time form x(nTs) = x[n]
of the signal, we must select Ts in a way that the sampled signal represents correctly
the original one: in fact,
© Springer International Publishing Switzerland 2016
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Fig. 4.1 The sampling of an
analog signal viewed as the
amplitude modulation of a
periodic impulse train.
a Analog signal; b periodic
impulse train; c sampled
signal as a train of modulated
impulses

0

0

0

(a)

(b)

(c)

• if Ts is too large, loss of information about the signal details occurs;
• if Ts is too small, a large number of data is stored and processed beyond necessity.

Ts must be selected so as to allow for the reconstruction of x(t) from x[n] with
the desired accuracy, but it must not be redundant. The optimal sampling interval
can be determined studying the relation between the Fourier transform of the analog
signal, that is, the spectrum of x(t), and the DTFT of the sampled signal.

The sampling process may be viewed as an amplitude modulation, in which a
periodic train of impulses

+∞∑

i=−∞
δ(t − iTs)

is transformed into a train of modulated impulses, as shown in Fig. 4.1.
We must note here that the sampled signal has been indicated in Fig. 4.1 as xs(t),

rather than as x[n]: the following discussion becomes simpler if we use the language
and the notation of continuous-time signals for the result of the sampling process. In
this notation, each impulse is a Dirac δ, and the individual shifted impulse δ(t − iTs)

has a unit subtended area concentrated around t = iTs . Of course, xs(t) ≡ x(nTs).
The modulated impulse train can be written as

xs(t) = x(t)
+∞∑

i=−∞
δ(t − iTs).

We now turn from the time domain to the frequency domain, using continuous-
time Fourier transforms. The time-domain product of x(t) with the impulse train
becomes a continuous convolution, i.e., a convolution integral, in the frequency
domain. Let us denote by �( f ) the spectrum of the periodic impulse-train,
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Fig. 4.2 The spectrum of
the time-domain impulse
train is a frequency-domain
impulse train

�( f ) = 1

Ts

+∞∑

i=−∞
δ

(
f − i

Ts

)
.

The spectrum of the time-domain impulse train is a frequency-domain impulse train
(Fig. 4.2), in which the individual impulses are separated by 1/Ts . Then we have

Xs( f ) = X ( f ) ∗ �( f ) =
∫ +∞

−∞
X ( f − f ′)�( f ′)d f ′ =

=
∫ +∞

−∞
X ( f − f ′)

1

Ts

+∞∑

i=−∞
δ

(
f ′ − i

Ts

)
d f ′ = 1

Ts

+∞∑

i=−∞
X

(
f − i

Ts

)
.

The last step is justified by the fact that the sum of infinite terms defining �( f )

converges in such a way that integration and summation can be interchanged. In
other words, this sum can be integrated term by term.

The sampling process transforms the aperiodic spectrum of the analog signal
x(t) into a periodic spectrum: the spectrum X ( f ) of x(t), which we assume to be
bandlimited, i.e., such that X ( f ) = 0 for | f | greater than a certain frequency B f

(Fig. 4.3), is repeated an infinite number of times on the frequency axis, at regular
intervals 1/Ts , thus becoming periodic in frequency (Fig. 4.4).

Even if formally Xs( f ) is the Fourier transform of the continuous-time signal
xs(t), it coincides with the DTFT of x[n], i.e., X (ejω), that is, the DTFT of the
sampled signal viewed as a sequence.1 The only difference between Xs( f ) and
X (ejω) lies in the fact that X (ejω) is a function of ω, while Xs( f ) is a function of f .

1This statement can be understood as follows:

Xs( f ) =
∫ +∞

−∞
xs (t)e

−j2π f tdt =
∫ +∞

−∞

[
x(t)

+∞∑

n=−∞
δ(t − nTs )

]
e−j2π f tdt =

=
+∞∑

n=−∞

∫ +∞

−∞
x(t)δ(t − nTs )e

−j2π f tdt =
+∞∑

n=−∞
x(nTs )e

−j2π f (nTs ) =
+∞∑

n=−∞
x[n]e−jωn ≡ X (ejω).
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Fig. 4.3 The spectrum of
the analog signal x(t)
undergoing periodic
sampling is assumed to be
bandlimited

Fig. 4.4 The spectrum of the
sampled signal is periodic

Thus, whenwe plot these quantities, the respective x-axes are scaled onewith respect
to the other according to the relation between f and ω, that is, 2πTs f = Ts� = ω,
where � indicates analog angular frequency (Fig. 4.5). This scaling or frequency
normalization, implying that the frequency value f = 1/(2Ts) in Fig. 4.4 becomes
ω = π in Fig. 4.5, is the counterpart of the normalization that in the time domain
relates the x-axes of xs(t) and x[n]. Indeed, in xs(t) the modulated impulses are
separated by Ts , while in x[n] the samples are separated by �n = 1. Therefore the
time axis in a continuous-time plot is normalized, i.e., multiplied, by a factor Ts with
respect to the discrete-time case, and, as a consequence, in the analog frequency
domain the f -axis is normalized (multiplied) by a factor 1/(2πTs) with respect to
the ω-axis of the discrete-time case.

For the sampled signal to correctly represent the original signal, the shifted copies
of X ( f ) in Fig. 4.4 must not overlap: the situation depicted in Fig. 4.6 must be
avoided, because in that case, in the overlapping interval, the spectrum of the sampled
signal is the sum of the overlapping tails (see the dashed curves in Fig. 4.6) and is
therefore corrupted with respect to the shape of the “true” spectrum. A situation like
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Fig. 4.5 The spectrum of the sampled signal represented as the DTFT of x[n]

Fig. 4.6 A case in which in Xs( f ) the shifted copies of X ( f ) (solid curves) partially overlap: the
overlapping produces the spectrum drawn as a dashed curve. On the abscissa, 1/(2Ts) represents the
Nyquist frequency fN y (see text). Vertical dotted lines indicate the interval [− fN y,+ fN y); vertical
black and gray lines respectively indicate a frequency fa falling outside the range [− fN y ,+ fN y),
and a frequency fb falling inside the same range. The frequency fa is an alias of fb

the one illustrated in Fig. 4.6 is referred to as aliasing in the frequency domain, or
simply frequency aliasing.

If we define the Nyquist frequency (Grenader 1959) as

fN y = 1

2Ts
,

then, observing Fig. 4.6, we can state that, in case of frequency aliasing, a given
frequency fa (vertical black line) of the “true” spectrum that is located outside the
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interval [− fN y,+ fN y) (enclosed by dotted lines) becomes indistinguishable from
another frequency fb (vertical gray line) belonging to this interval. We can express
this fact saying that fa is an alias of fb.

In order to avoid frequency aliasing, we first need the analog signal’s bandlimit
B f (Fig. 4.3) to be finite, and then to satisfy the inequality (known as the Nyquist’s
criterion)

B f <
1

2Ts
≡ fN y,

that is,

Ts <
1

2B f
.

This is the conceptual content of the sampling theorem (Nyquist 1928; Shannon
1948, 1949)2 that is enunciated as follows: “A continuous-time signal that does not
contain frequency components | f | > B f can, in principle, be reconstructed from its
sampled version, if Ts < 1/(2B f ).”

Note that so far we have discussed the representativeness of the sampling, which
is a prerequisite to reconstruction, but not the way in which the original signal can
actually be reconstructed from its samples. This will be done later.

The Nyquist frequency appears to be half of the minimum sampling frequency
fs = 1/Ts needed to avoid frequency aliasing. In other words, in order to avoid
aliasing we must record at least two samples per each period Tmin = 1/B f of the
highest-frequency sinusoid present in the data: Tmin/Ts > 2. Clearly, frequency-
domain aliasing is avoidable only if the analog signal is bandlimited. This is anal-
ogous to the fact that time-domain aliasing can only be avoided if the sequence of
which we sample the DTFT has finite length.

If a bandlimited analog signal is sampled without aliasing, the shape of Xs( f )

in the range − fN y ≤ f < fN y will be identical to the shape of X ( f ), except that
the ordinate axis will be multiplied by 1/Ts . Therefore, [− fN y, fN y) is the principal
interval expressed in terms of analog frequency, i.e., the frequency range that contains
all information in the sense that it remains “visible”whenwe sample x(t) atmultiples
of Ts .

Before proceeding, let us examine explicitly the case of a border-line sinusoid,
that is, a signal given by

x(t) = cos (2π f0t − φ0)

that is sampled with a time step Ts = 1/(2 f0). Is aliasing present?

• If φ0 = 0, then x[n] = cos(πn) = (−1)n: aliasing seems to be absent, but
• if φ0 = π/2, then x[n] = sin(πn) = 0 and therefore there is aliasing.

2The sampling theorem actually was originally demonstrated neither by Nyquist, nor by Shannon.
The original proof of the sampling theorem is due to Cauchy (1841), even if Cauchy’s paper does not
explicitly contain the statement of the sampling theorem. Shannon himself recognized it (Shannon
1949): “If a function f (t) contains no frequencies higher than W cycles per second, it is completely
determined by giving its ordinates at a series of points spaced 1/2W seconds apart. This is a fact
which is common knowledge in the communication art.”
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We can thus state that sampling at a rate 1/Ts = 2 f0 is forbidden. Indeed, since the
spectrum of x(t) contains a Dirac δ centered at f = ± f0, sampling with Ts = 1/2 f0
violates the sampling theorem.

4.3 Reconstruction of a Continuous-Time Signal from
Its Samples

Let us assume that we sampled our analog signal using the maximum sampling step
Ts that meets Nyquist’s criterion. To reconstruct the continuous-time signal x(t)
from its sampled version xs(t), an analog reconstruction filter must be applied to
xs(t), able to transmit equally, without any attenuation, all the components of Xs( f )

in [−1/ {2Ts} , 1/ {2Ts}), and to completely discard the other components. We can
imagine a frequency-selective analog system as the one shown in Fig. 4.7a, with an
ideal frequency response implying no delay between output and input. The required
value in the passband is Ts , to compensate for the factor 1/Ts appearing in the
expression of Xs( f ).

The impulse response of such a filter is

h(t) =
∫ +∞

−∞
H( f )ej2π f td f =

∫ + 1
2Ts

− 1
2Ts

Tse
j2π f td f =

= Ts
1

2π j t

(
ej2π

1
2Ts

t − e−j2π 1
2Ts

)
= Ts

1

2π j t
2 j sin

(
π

t

Ts

)
,

i.e.,

h(t) = Sinc

(
t

Ts

)
= sin(π t

Ts
)

π t
Ts

.

The cardinal sine function Sinc (t/Ts) crosses the time axis zero every Ts time units.
The impulse response h(t) is shown in Fig. 4.8.

Fig. 4.7 a The real
frequency response of the
ideal analog reconstruction
filter; b amplitude of the
complex frequency response
of a realizable analog
reconstruction filter

(a) (b)
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Fig. 4.8 Impulse response
of the ideal analog
reconstruction filter
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The reconstructed signal is given by a convolution integral:

x(t) = xs(t) ∗ h(t) =
∫ +∞

−∞
xs(t

′)h(t − t ′)dt ′ =
∫ +∞

−∞
xs(t

′)
sin

(
π t−t ′

Ts

)

π t−t ′
Ts

dt ′ =

=
∫ +∞

−∞
xs(t

′)Sinc
(

t − t ′

Ts

)
dt ′.

From this equation we see that each non-zero value of the sampled signal produces
in output to the reconstruction filter a weighted version of h(t), i.e., of the Sinc(·)
function. This means that the reconstructed x(t) value at t = nTs is not influenced by
adjacent values, since h(t) crosses zero at any multiple of Ts . In other words, since
we must have x(nTs) = xs(nTs), the reconstructed waveform must go through such
points, and it would not do so if the contributions of adjacent samples were not zero.

The ideal analog filter we described above is not computationally realizable, but it
can be approximated by an analog filter having the frequency response qualitatively
shown in Fig. 4.7b. This frequency response will be discontinuity-free and complex.
Its non-zero phase may be designed to be nearly linear with respect to frequency, so
as to approximately imply a pure delay between output and input, without significant
distortions. Linear phase and its effects on filtering will be treated in Chap.6, when
discussing digital filters.

Even better, an output more similar to x(t)will be obtained if a slightly redundant
sampling frequency is adopted. As shown in Fig. 4.9, in this case an empty safe-
band is present in Xs( f ), between any two delayed copies of X ( f ) (see the vertical
dotted lines in Fig. 4.9), so that the frequency-response amplitude of the realizable
reconstruction filter (dashed curve in arbitrary units) remains close to Ts in the band
| f | ≤ B f (vertical solid lines), and practically goes to zerowhere the delayed spectral
copies come into play. This minimizes the negative effects of the gradual transition
from Ts to 0 that characterizes the realizable |H( f )|.

http://dx.doi.org/10.1007/978-3-319-25468-5_6
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Fig. 4.9 Safe reconstruction
of the analog signal by a
realizable filter (see text).
The amplitude of the
frequency response is drawn
as a dashed curve in arbitrary
units. The vertical dotted
lines identify two empty
symmetric safe-bands
bordering the spectral band
| f | ≤ B f (see text), which is
indicated by vertical solid
lines

4.4 Aliasing in the Frequency Domain and Anti-Aliasing
Filter

If x(t) is not bandlimited, that is, if its spectrumdoes not go to zero beyond somefinite
frequencyvalue B f , frequency aliasing cannot be avoided.Any time aband-unlimited
signal is sampled and then reconstructed, frequency aliasing occurs, simply because
the frequency content of a band-unlimited signal cannot be captured by a sampling
performed at a finite rate. Considering that analog finite-duration signals are known
to be band-unlimited (see Sect. 4.6), at first sight the issue appears insurmountable.
In practice, however, the spectrum must decrease rapidly enough for | f | → ∞, so
that most of the signal’s energy falls within a certain finite B f .

Thus we can avoid aliasing only if:

• we know the natural bandlimit of the analog signal, at least in the wider sense
explained above, and we correctly choose Ts according to Nyquist’s criterion;

• we impose a band limit, by lowpass filtering x(t) before sampling—provided that
this is experimentally possible—and then choosing Ts accordingly. The frequency-
truncation error is usually smaller than the error caused by aliasing. The analog
anti-aliasing filter is equal to the reconstruction filter described above. In practical
applications, a security factor will be applied to Ts : the sampling interval will be
chosen at least ≈10% smaller than that required by Nyquist’s criterion.3

To understand if a sampled signal has been recorded with the proper sampling inter-
val, we can look at its spectrum, extending over [− fN y,+ fN y): does the spectrum
decrease and tend to zero for | f | approaching fN y? If not, probably some compo-
nents with frequency | f | > fN y have been “reflected” onto the principal interval, as
in Fig. 4.6. This is very common: noise often flattens the spectrum near fN y .

3Of course the precise amount of advisable oversampling is dictated by the shape of the designed
frequency response of the realizable analog filter.
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Fig. 4.10 An example of frequency-domain aliasing: an analog sinusoidal signal with frequency
f1 = 5.5kHz (solid arrows) has been undersampled adopting a sampling rate of 8kHz, corre-
sponding to a Nyquist frequency of 4kHz (vertical dashed lines). Frequency aliasing produces an
observable spectrum with two spurious spectral lines falling inside the principal interval (dashed
arrows)

Wewill now give an example of an undersampled signal. The effects of undersam-
pling are clear if we refer to a sinusoidal signal, i.e., a single frequency component
that produces a pair of spectral lines, symmetrically located at the two sides of the
frequency origin. In Fig. 4.10, the two solid arrows describe the “true” spectrum of an
analog sinusoid x(t) = sin(2π f1t) with f1= 5.5kHz. If this signal is undersampled,
adopting a sampling interval such that fs = 1/Ts = 8kHz, the Nyquist frequency
assumes the value fN y = 4kHz (vertical dashed lines). In this way, f1 > fN y : f1 is
external to the principal interval and cannot be detected.

Due to frequency aliasing, the signal appears instead as a pair of “fake” spectral
lines at frequencies± f0 located inside the principal interval, as shown by the dashed
arrows in Fig. 4.10. These arrows are generated by the first right-hand side spectral
copy on the positive frequency half-axis, and by the first left-hand side spectral copy
on the negative frequency half-axis. So, when a sinusoid is undersampled, the two
“true” spectral lines that would represent it are eliminated from the visible spectrum,
and two spurious lines located inside the principal interval are generated by spectral
periodization.

The frequency f0 is equal to (1/Ts) − f1 = 8 − 5.5 = 2.5kHz. In other words,
f1 = (1/Ts) − f0 is an alias of the frequency f0 belonging to the principal interval.
The first spectral copy on the positive half-axis does not only give a line at f0 =
2.5kHz, but also a second line at (1/Ts) + f1 = 8 + 5.5kHz= 13.5kHz= (2/Ts) −
f0. The first copy on the negative half-axis does not only give a line at − f0 =
−2.5kHz, but also a second line at −13.5kHz (see the dashed arrows in Fig. 4.10
that fall outside the principal interval). Thus also (2/Ts) − f0 is an alias of f0.

Actually, all the infinite spectral copies on the two half-axes—and not only the
first two—generate aliases of f0. Focusing on the positive frequency half-axis, the
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frequencies that are alias of a frequency f0 belonging to the principal interval can be
expressed as

fm = m

Ts
± f0 = m fs ± f0 = 2m fN y ± f0,

where m is an integer in the range m = [1,∞). Therefore an infinite number of
continuous-time sinusoids correspond to the same discrete-time signal.

Let us check the formula for fm with a numerical experiment. Suppose we set
fs = 8kHz and generate five sinusoidal sequencies, one with frequency f0 = 2.5kHz
contained in [0, fN y], and the remaining four external to the principal interval: f1 =
1
Ts

− f0 = 5.5kHz, f2 = 1
Ts

+ f0 = 10.5kHz, f3 = 2
Ts

− f0 = 13.5kHz, and f4 =
2
Ts

+ f0 = 18.5kHz. Figure4.11a shows that if we compute and plot the amplitude
spectrum, all sinusoids appear superimposed to one another, so that we see a single
peak at 2.5kHz. Now suppose we keep the sinusoids’ frequencies unaltered but
increase the sampling rate to 80kHz, and plot the spectra again. No sinusoid is
undersampled any longer, and the spectra exhibit peaks that are distinct and correctly
positioned (Fig. 4.11b). To prove that the effects of aliasing are evident also in the
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Fig. 4.11 Frequency aliasing visualized in both frequency and time domains. a Amplitude spectra
of all the sinusoids listed in the text, as they appear when the sampling frequency is 8kHz, i.e.,
superimposed to one another; b amplitude spectra of the same sinusoids, as they appear when the
sampling frequency is 80kHz, i.e., correcty separated; c the sinusoids viewed in the time domain,
as they appear when the sampling frequency is 800kHz
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Fig. 4.12 The positive frequency half-axis with the positions of the frequencies fm , with m =
[1,∞), that are alias of a given frequency f0 belonging to the principal interval. The points A, B,
C, D mark integer multiples of the Nyquist frequency

time domain, let us finally increase the sampling rate to 800kHz, so as to be able
to plot the sinusoids in a smooth way. If we plot the five signals and superimpose
to them the samples of the 2.5kHz sinusoid generated with fs = 8kHz (Fig. 4.11c)
we understand that the latter samples (black diamonds) actually fall on all the five
curves, though they evidently represent correctly the behavior of only one of them,
namely the onewith frequency f0 = 2.5kHz. The formula for fm is further illustrated
by the scheme of Fig. 4.12.

Fig. 4.13 The positive frequency half-axis folded up at any multiple of fN y : all the frequencies fm ,
with m = [1,∞), that are aliases of a given f0 line up vertically above f0. The numerical frequency
values refer to the example of Fig. 4.10
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Aliasing is also referred to as spectral folding, because it corresponds to a folding-
up of the f -axis, as sketched in Fig. 4.13: if the axis of Fig. 4.12 is folded at the points
A, B, C, D, etc., all the aliases of f0 line up above f0.

4.5 The Uncertainty Principle for the Analog Fourier
Transform

In our discussion on sampling we mentioned the fact that all analog signals with
finite duration are known to be band-unlimited. This statement deserves some more
attention. A brief discussion on analog signals that illustrates in a more detailed
way this and other related concepts is inserted here. We will also introduce a few
definitions that will be useful when dealing with the wavelet transform (Chap.13):
in fact, wavelets are treated using the continuous-time formalism.

We start from the generic case of an analog real signal x(t) with infinite duration
butwithfinite energy, having aFourier transform (CTFT) X ( f ). Finite energy implies
that although the duration is infinite, the signal energy is concentrated in time to a
lesser or greater extent, i.e., its variations around themeanvalue cease to be significant
sooner or later, as time approaches infinity in either direction. Let us further assume
that the signal is centered around the origin in the frequency domain, a condition
that can always be satisfied by proper modulation. In order to quantify the signal’s
effective extensions in the dual domains of time and frequency and to describe the
amount of concentration that characterizes the signal in each domain, the following
parameters are introduced:

1. center:

t∗ =
∫ +∞
−∞ t x2(t)dt
∫ +∞
−∞ x2(t)dt

,

where the denominator integral represents the energy of x(t). If the signal were
complex, in the formula we would have a squared modulus;

2. root mean square (RMS) duration or RMS length or radius:

�t =
√√√√

∫ +∞
−∞ (t − t∗)2x2(t)dt

∫ +∞
−∞ x2(t)dt

;

3. RMS bandwidth:

� f =
√√√√

∫ +∞
−∞ f 2|X ( f )|2d f
∫ +∞
−∞ |X ( f )|2d f

,

where the denominator integral represents the energy of the signal in the frequency
domain, which for Parseval’s theorem for the CTFT equals the energy in the time
domain.

http://dx.doi.org/10.1007/978-3-319-25468-5_13
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Fig. 4.14 a Two Gaussian
signals with different widths
at half height, c a sinusoidal
signal, e an impulse, and the
corresponding spectra (b, d,
and f, respectively)
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The RMS length and bandwidth are not independent of one another. It can
be demonstrated that for finite-energy analog signals x(t) allowing for a Fourier
representation X ( f ), a form of uncertainty principle holds4:�t� f is always greater
than, or equal to, a fixed numerical constant. The precise value of this constant is not
important here; what is important is the meaning of this statement, i.e., that fact that
a finite-energy analog signal cannot be localized both in time and frequency. The
equal sign holds only if x(t) is a Gaussian function of time, i.e., if it is proportional
to e−t2/(2T 2), where the parameter T determines the width of the Gaussian bell at
half maximum, and therefore the related �t . The Fourier transform of a Gaussian
signal is still a Gaussian signal, with a parameter F related to the analogous time-
domain parameter T in such a way that the product FT is a constant; therefore � f

is inversely proportional to �t , and their product is a constant for a Gaussian signal
(see, e.g., Vetterli and Kovačević 1995).5

The uncertainty principle implies that an analog signal with infinite length but
finite energy

4We should call this a theorem and not a principle, since it can be demonstrated. However, this is
the name by which this result is usually referred to.
5The proof of the uncertainty principle for Fourier transforms actually assumes that the signal
vanishes faster that 1/

√
t as t → ±∞, so that limt→±∞ t x2(t) is zero. In mathematical literature,

this constraint is often expressedby saying that the uncertainty principle holds forSchwartz functions
on the real line—a class of functions that can be thought of as smooth functions that decay rapidly
towards infinity.
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• has a large spectral bandwidth if it is very concentrated in time;
• is very dispersed in time if its spectral bandwidth is narrow.

In the limit of infinite energy, a pure sinusoid would have an infinite radius and
an impulse would have an infinite bandwidth and a vanishing radius. To illustrate
these concepts, Fig 4.14 shows two Gaussian signals with different widths at half
maximum, a sinusoid and an impulse, together with the corresponding spectra.

4.6 Support of a Continuous-Time Signal in the Time
and Frequency Domains

In mathematics, the support of a function is the set of points where the function is
not zero-valued. For simplicity we will focus on a function f (t) of a real variable
t , for which the support is an interval on the real line. For our purposes we need to
know that the support, i.e., the interval of t outside which f (t) is identically zero,
can be

• bounded, e.g., (I, J ), where I and J are finite real numbers;
• unbounded, e.g., (−∞, J ];
• open, e.g., (I, J );
• closed, e.g., [I, J ];
• compact, i.e., bounded and closed.

Thus, in the previous examples,

• (I, J ) is not compact because it is not closed,
• (−∞, J ] is not compact because it is unbounded,
• [I, J ] is compact because it is closed and bounded.

We will now discuss the case of an analog signal with bounded time support.
The spectrum of such a signal can be shown to have unlimited bandwidth. On the
other hand, any analog signal that has bounded support in frequency, i.e., a limited
bandwidth, cannot have bounded time support.

In order to see this, we start from an analog signal x∞(t) with unbounded time
support, andwe observe it through an analog symmetric rectangular window wT (t) of
widthT that frames a segment of the signal, spanning the interval from−T/2 to+T/2
(Fig. 4.15a). The signal we can “see” through the window is x(t) = x∞(t)wT (t), and
has the same bounded support as the window itself.

The continuous-time Fourier transform (CTFT) of x(t) is

X ( f ) = X∞( f ) ∗ WT ( f ) = X∞( f ) ∗ sin (π f T )

π f
≡ X∞( f ) ∗ TSinc( f T ),

where WT ( f ), shown in Fig. 4.15b, is the spectrum (CTFT6) of the window wT (t),
and the symbol ∗ indicates a convolution in the analog frequency domain, that is, a

6Since the analog window wT (t) is non-causal and its support is symmetrical around the origin of
the time axis, this transform is real.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.15 a A non-causal analog rectangular window with width T0, and b its spectrum. c–d The
same for a window width of 2T0; e–f the same for a window width of 4T0

convolution integral.Given that Sinc(·) has unbounded support, X ( f ) has unbounded
support too.

From the expression of X ( f ) we understand that the spectrum of x(t) depends
not only—as it is obvious—on X∞( f ), but also on the spectrum of the window. In
turn, WT ( f ) varies according to the window width, as shown in Fig. 4.15.

The spectrum of the rectangular window has a central main lobe and lateral lobes
that become lower and lower as the distance from the main lobe increases. As the
window width increases, passing from T0 to 2T0 and then to 4T0 in Fig. 4.15a, c, e,
the support of the window increases, so that the window function becomes less
concentrated in the time domain. At the same time, its spectrum becomes more
concentrated in the frequency domain (Fig. 4.15b, d, f), even if its frequency support
remains unbounded. For example, if the support of wT doubles, the width of the main
lobe of WT halves, according to the scaling property of the CTFT:

x(kt) ⇐⇒ 1

|k| X ( f/k).
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At this point, the difference between the concept of bounded support and the
concept of concentration should be clear. The two notions are very distinct, and the
uncertainty principle deals exclusively with concentration:

• “bounded support” means that a signal is exactly zero outside a certain time or
frequency interval;

• “concentration” means that most of the signal’s energy, which we assumed to be
finite, is concentrated in a certain time interval that can be quantified through
the RMS length, or, if we are speaking about spectral concentration, in a certain
frequency interval that can be quantified through the RMS bandwidth.

The rectangular window has bounded time support, and for this obvious reason it is
also concentrated in time. Therefore

1. the support of its spectrum is unbounded;
2. the concentration of its spectrum becomes more and more pronounced as the

concentration in time diminishes, i.e., as the window’s support increases.

A bounded support implies concentration, but concentration does not imply
bounded support. If a bounded support is also represented by a closed interval,
then we can speak about compact support, and classify the corresponding function
as compactly supported.

4.7 Appendix: Analog and Digital Frequency Variables

Here we here review the relations among the variables used to express the concept
of frequency, for analog and discrete-time signals. We refer to an analog signal that
undergoes sampling, so that x[n] = x(nTs).

1. A frequency can be expressed as:

• ω = (discrete) angular frequency. It represents an angle in the z-plane and is
therefore adimensional. It is measured in rad/sample;

• � = analog angular frequency. Its physical dimension is (time)−1. It is mea-
sured in rad/s. These two variables are related by ω = �Ts ;

• ν = (discrete) adimensional or normalized frequency. It is related to ω by
ν = ω/(2π) It is measured in cycles/ample;

• f = analog frequency. Its physical dimension is (time)−1. It is measured in
Hz = s−1. These two variables are related by ν = f Ts .

For example, we can write a sinusoidal signal as

sin(�t) = sin(2π f t) = sin(2π f nTs) = sin(ωn) = sin(2πνn).

To obtain the DFT of a discrete-time signal with finite length, the corresponding
DTFT is sampled at frequencies ωk that are equally spaced by �ω = (2π/N ), so
that
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Fig. 4.16 Harmonic number
k ∈ [0, N − 1] and
corresponding angular
frequency ω for each DFT
sample

ωk = k�ω = 2π

N
k.

Figure4.16 shows the relation between harmonic number (frequency index) k and
discrete angular frequency ω.
Angular frequencies ωk correspond to normalized frequencies νk equally spaced
by �ν = 1/N and given by

νk = k�ν = k

N
.

Given a sampling interval Ts , analog frequencies fk corresponding to angular
frequencies ωk are equally spaced by � f = 1/(NTs), where NTs is the record
duration, and are given by

fk = k� f = k

NTs
;

the corresponding analog angular frequencies are separated by�� = 1/(2πNTs)

and their expression is

�k = k�� = k
�ω

Ts
= k

2πNTs
.

2. The principal interval is:

• in terms of k, [−N/2, N/2 − 1] or [0, N − 1];
• in terms of ω, [−π, π) or [0, 2π);
• in terms of ν, [−0.5, 0.5) or [0, 1);
• in terms of �, [−π/Ts, π/Ts) or [0, 2π/Ts);
• in terms of f , [−1/ {2Ts} , 1/ {2Ts}) or [0, 1/Ts).
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3. The Nyquist frequency can be expressed as follows:

• kN y = N/2;
• ωN y = π rad/sample;
• νN y = 0.5 cycles/sample;
• �N y = π/Ts rad/s, for a sampling interval expressed in seconds;
• fN y = 1/(2Ts) Hz, for a sampling interval expressed in seconds.

4. We finally relate harmonic number with analog frequency. When we compute
the DFT of a sequence x[n] obtained performing periodic measurements of an
analog signal x(t), we may want to plot the amplitude spectrum |X (ejω)| as a
function of analog frequency, i.e., to return to physical dimensional frequencies
and to the real-world phenomenon that generated the measured values. Therefore
in applications it is useful to know exactly what frequency f corresponds, given
a sampling interval Ts , to each DFT point. Recall that we can let f vary in the
interval [0, 2 fN y), or, equivalently, in [− fN y, fN y). Both cases are considered in
Fig. 4.17, where values of k and f that correspond to one another are aligned
vertically. Observe that the above-mentioned equivalent intervals actually are

• [0, 2 fN y − � f ], corresponding to N values of k in [0, N − 1], and
• [− fN y, fN y − � f ], corresponding to N values of k in [−(N/2), N/2 − 1],
where � f = (NTs) is the distance between the analog frequencies at which the
DTFT is sampled to give the DFT.

Fig. 4.17 Harmonic number k and corresponding analog frequency for each DFT sample
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Chapter 5
Spectral Analysis of Deterministic
Discrete-Time Signals

5.1 Chapter Summary

In this chapter we will discuss how a discrete-time deterministic signal can be
described in terms of elementary sinusoidal oscillations. First we present the prac-
tical issues of windowing and spectral sampling. Even if the signal intrinsically has
infinite length, we only can record and use a segment of it, i.e., we can observe it
through a window of finite width. Furthermore, we cannot compute its DTFT, pro-
vided it exists, but only the DFT of the segment framed by the window, i.e., we
cannot avoid spectral sampling. The consequences of these limitations are investi-
gated through examples using sinusoidal signals, and the concepts of spectral leakage
and loss of spectral resolution are discussed. A description of the main windows used
in spectral analysis is also given. We then move to more conceptual issues. Deter-
ministic bounded signals can be energy signals, or power signals. For energy signals,
that always allow for a DTFT representation, we can use the squared magnitude
of the DTFT to define the energy spectrum, which tells us how the energy of the
signal distributes over frequency. The energy spectrum can equivalently be defined
introducing the autocorrelation/autocovariance (AC) sequence of the energy signal
and using a theorem called the Wiener-Khinchin theorem for energy signals, which
states that the energy spectrum is the DTFT of the AC sequence. Autocovariance and
autocorrelation both quantify the signal’s self-similarity and coincide if the signal
has zero mean. The AC sequence essentially describes if, how and to what extent the
signal’s variations repeat themselves after a certain number of time steps. If it is so,
then some variability patterns must exist in the signal that on average are repeated
after a number of discrete-time units. This is obviously related to the presence in
the signal of periodic components, and therefore to its spectral content. Signals that
are not square-summable, i.e., have infinite energy, can have finite average power:
these are power signals. For example, periodic signals like complex exponentials
are power signals. For power signals, another spectral quantity can be introduced
in place of the energy spectrum that does not exist in this case. This is the power
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spectrum, which describes how the power in the signal distributes over frequency.
For zero-mean signals, power is equivalent to variance. General power signals may
or may not have a DTFT representation, so their spectral representation necessarily
passes through the definition of the power spectrum as the DTFT of the AC sequence
(Wiener-Khinchin theorem for power signals). However, AC is defined differently
for power signals with respect to energy signals. Broadly speaking, the dimensions
are different: in the power-signal case, both the AC and the integral of the spectrum
have the dimension of a power (energy/time) and not of an energy. Of course, the
power spectrum can be defined only if the DTFT of the AC sequence exists: the AC
sequence cannot have infinite energy.

5.2 Issues in Practical Spectral Analysis

The discrete-time deterministic signals we have been studying so far in theory have
infinite length. Let us denote by x∞[n] an infinitely-long discrete-time deterministic
signal. In practical applications, two problems arise when we decide to analyze it:

• even if the signal x∞[n] has infinite length, we can record and analyze only a
segment x[n],withn = [0, N−1]. The operation that froma theoretically infinitely
persistent signal x∞[n] leads to the extraction of a finite-length segment is referred
to as windowing or tapering. In digital signal processing, a window or taper is a
sequence that is identically zero outside some discrete-time interval, i.e., a signal
whose time support is bounded. For example, a sequence whose values are 1
inside this interval and 0 outside is a rectangular window. The word taper is
instead used to indicate window shapes that decrease more gradually toward zero.
Mathematically, windowing is described as the multiplication of the signal by the
discrete-time window w[n]. The product w[n]x∞[n] is zero outside the window
width. Only the segment of x∞[n] that is framed by the window remains: this
is windowing. The concept has a number of applications: it is useful in spectral
analysis, in digital filter design, etc. In Sect. 5.3, a brief review of the most popular
windows is presented;

• even if spectral analysis of the signal would require calculating its DTFT, which
here is assumed to exist, we only can compute the DFT of the segment x[n]: we
cannot avoid spectral sampling, meaning that we can only compute a finite number
of spectral samples.

So, what are the consequences of these limitations? What happens when we study
the DTFT of an infinite-length signal through the DFT of a signal’s segment? These
issues are usually discussed using sinusoidal signals. The conclusions drawn in this
way have general validity and provide guidelines that are useful any time we have an
idea of what elementary oscillatory modes contribute to the variability of a signal.
Every time the basic idea of Fourier analysis comes into play, sinusoidal waveforms
are seen as the building blocks of any signal, and are used to test algorithms and
methods and to understand the way they work in the frequency domain. This occurs
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in spite of the fact that a sinusoidal signal has a DTFT representation only in the
wide sense discussed in Sect. 3.3.2.

Let us take a sinusoidal signal with frequency ω0 and initial phase ϑ , for example
x∞[n] = A cos (ω0n + ϑ), with n ∈ (−∞,+∞). We know that the DTFT of this
sequence, X∞(ejω), is a couple of impulses located at±ω0 and repeated periodically
with period 2π . In this context,

1. windowing smooths and broadens these impulsive peaks, so that peak frequencies
are less exactly defined. When two or more sinusoidal contributions are present
in the signal, windowing also reduces the possibility of resolving—i.e., distin-
guishing, separating—individual sinusoidal contributions at frequencies that are
close to each other;

2. spectral sampling potentially produces an inaccurate—or even misleading—
picture of the spectrum of the sinusoidal signal.

These issues can be understood observing that

• according to the convolution property of the DTFT, windowing, which in the time
domain is a multiplication, in the frequency domain is the continuous periodic
convolution of the spectrum of the infinitely-long signal with the DTFT of the
window sequence:

X (ejω) = 1

2π

∫ +π

−π

X∞(ejω)W (ej[ω−θ])dθ.

In turn, the spectrum of the window typically is a function ofω that in the principal
interval exhibits a mainlobe centered at ω = 0, and a certain number of sidelobes
that can be more or less pronounced (see next subsection);

• the DFT of the windowed signal x[n], i.e.,

X [k] =
N−1∑

n=0

x[n]e−j 2πN kn, k = [0, N − 1],

is obtained taking N samples of X (ejω) equally spaced in angle:

X [k] = X (ejω)|ω= 2π
N k .

We will now discuss separately the effects of windowing and spectral sampling
through examples.

http://dx.doi.org/10.1007/978-3-319-25468-5_3


156 5 Spectral Analysis of Deterministic Discrete-Time Signals

5.2.1 The Effect of Windowing

Let us consider the signal

x∞[n] = A0 cos(ω0n + ϑ0) + A1 cos(ω1n + ϑ1),

with −∞ < n < +∞, made up of two real sinusoids with different amplitudes and
frequencies, and let us compute the DTFT of the segment x[n] given by

x[n] = A0w[n] cos(ω0n + ϑ0) + A1w[n] cos(ω1n + ϑ1),

where w[n] is a generic window with length N .
Note that we are examining a sequence containing two oscillatory contributions

arbitrarily separated in frequency, in order to be able to discuss also the resolution
issue. For this purpose, and to facilitate our calculations, we write x[n] as a combi-
nation of complex exponentials:

x[n] = A0

2
w[n]e+jϑ0 e+jω0n + A0

2
w[n]e−jϑ0 e−jω0n +

+ A1

2
w[n]e+jϑ1e+jω1n + A1

2
w[n]e−jϑ1e−jω1n.

We can thus immediately write, using the modulation property of the DTFT,

X (ejω) = A0

2
e+jϑ0 W [e+j(ω−ω0)] + A0

2
e−jϑ0 W [e+j(ω+ω0)] +

+ A1

2
e+jϑ1 W [e+j(ω−ω1)] + A1

2
e−jϑ1 W [e+j(ω+ω1)],

where W [e+j(ω−ω0)] has a maximum at ω = +ω0, W [e+j(ω+ω0)] has a maximum at
ω = −ω0, etc. The value of each maximum is given by

∑N−1
n=0 w[n]. In fact,

W (ejω) =
+∞∑

n=−∞
w[n]e−jωn � W (ej0) =

+∞∑

n=−∞
w[n] =

N−1∑

n=0

w[n].

If the window has a rectangular shape,

w[n] =
{
1 for 0 ≤ n ≤ N − 1,

0 elsewhere,

then we have
N−1∑

n=0

w[n] = N .
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(a) (b)

(c) (d)

Fig. 5.1 a–b Magnitude of the DTFT of the rectangular window with length N = 8 in linear units
and squared magnitude in dB units, respectively; c–d the same for the rectangular window with
length N = 64

We thus see that X (ejω) is formed by four copies of W (ejω) centered at±ω0 and±ω1.
Each replica of W (ejω) is scaled by the complex amplitude of the corresponding
exponential contribution present in the signal. For example, the copy of W (ejω)

located at+ω0 is scaled by (A0/2)e+jθ0 . We may note that X (ejω) contains the initial
phases of the two sinusoids. However, when we take the absolute value of X (ejω),
i.e., when we pass to the amplitude spectrum, or to the squared amplitude, i.e., the
energy spectrum, the initial phases disappear.

Before proceeding further, let us focus on W (ejω) of the simplest window avail-
able, i.e., the rectangular one:

W (ejω) =
N−1∑

n=0

e−jωn = 1 − ejωN

1 − ejω
= ejω

N−1
2
sin(N ω

2 )

sin(ω
2 )

= ejω
N−1
2 N DN (ω).

Phase is linear inω. Apart from the phase factor, thewindow transform is proportional
to a Dirichlet function; its magnitude is shown in Fig. 5.1a for N = 8, and Fig. 5.1c
for N = 64. Figures5.1b, d show the corresponding square magnitudes in dB units.1

The spectrum of the digital rectangular window exhibits a mainlobe and a certain
number of smaller sidelobes that decrease in height with increasing distance from the
origin. A large percentage of the spectral content is thus concentrated around ω = 0.
The zeros of this function are found at ω = (2π/N )m, with m = ±1,±2,±3 . . . ,

hence the mainlobe extends from −2π/N to +2π/N . Its width at the base is thus
4π/N . The height of the mainlobe is N . The number of lateral lobes on each side of
themain one is given by (N/2)−1. Sidelobes have their maxima at frequencies given

120 log10 a = 10 log10 a2 is the square of a expressed in dB.
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approximately by (π/N )(2m + 1). The highest lateral lobe is the one closest to the
mainlobe, and is found at about ±3π/N ; its height is about 2N/(3π). Therefore the
ratio of the highest sidelobe height to mainlobe height, a.k.a. relative sidelobe height,
is ∼= 2/(3π), or 20 log10[2/(3π)] ∼= −13.3dB. The negative of relative sidelobe
height in dB is called the attenuation: for the rectangular window the attenuation is
13.3dB.

If we compare the case of N = 8 (Fig. 5.1a, b) with the case of N = 64
(Fig. 5.1c, d) we see that as we increase N by a factor of 8, the mainlobe becomes
narrower and higher,while the sidelobes become lower and closer together. Themain-
lobe width at the base is 4π/N � 1.57 rad for N = 8 and � 0.2 rad for N = 64. As
the number of samples increases, the transform of the rectangular window becomes
more and more similar to the impulsive function of the ideal case.

Going back to X (ejω), we can now study the effect of windowing on spectral
shape and resolution. We will adopt a rectangular window and work on the signal
x[n] introduced above, which is made up of two sinusoids with amplitudes A0 and
A0, and frequencies ω0 and ω1 separated by �ω = ω1 − ω0. Keeping the window
length fixed at N = 64, and starting from a value of �ω that allows for observing
well-separated spectral peaks, we will progressively reduce the value of �ω, and
observe the amplitude spectrum of the windowed signal. It is reasonable to expect
that well-separated spectral peaks are observed when �ω is much larger than the
width of the mainlobe of the transform of the 64-point rectangular window, i.e.,
0.2 rad. This will therefore be our starting point.

1. Figure5.2a:

ω0 = π

3
, ω1 = 2π

3
→ �ω = π

3
� 1.05 rad � 0.2 rad,

A0 = 1, A1 = 0.75 → A1

A0
= 3

4
.

As expected, the two sinusoids are very well resolved. The heights of the peaks
are 32 and 24, respectively. The first value derives from (A0/2)N with A0 = 1
and N = 64; the second derives from (A1/2)N with A1 = 0.75 and N = 64.
Thus these heights correctly reflect the amplitude ratio, A1/A0 = 3/4.

2. Figure5.2b:

ω0 = π

7
, ω1 = 4π

15
→ �ω � 0.389 rad > 0.2 rad,

A0 = 1, A1 = 0.75 → A1

A0
= 3

4
.

Also in this case the two sinusoids are fairly well resolved. The peak heights are
approximately 32 and 24, and therefore reproduce with acceptable accuracy the
ratio A1/A0 = 3/4.
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(a) (b)

(c) (d)

Fig. 5.2 Amplitude spectra of a signal with N = 64 samples, containing two sinusoids with
frequencies separated by a�ω that is a much larger than the width of the mainlobe of the transform
of the 64-point rectangular window, a larger than the width of the mainlobe, c smaller than the
width of the mainlobe, and d much smaller than the width of the mainlobe

3. Figure5.2c:

ω0 = π

7
, ω1 = π

6
→ �ω � 0.0748 rad < 0.2 rad,

A0 = 1, A1 = 0.75 → A1

A0
= 3

4
.

In this case the two sinusoids are no longerwell resolved.Moreover, the sidelobes,
adding out-of-phase, influence the peak heights, so that their ratio no longer
reflects the amplitude ratio.

This behavior, due to windowing, is described in terms of

• loss of resolution,
• leakage.

Leakage is the word used to express the fact that the sinusoidal component at
frequencyω0 “leaks” in the neighborhood ofω1 and vice-versa. Leakage is mainly
due to the presence and prominence of sidelobes. Sidelobes spread the spectral
content that would compete to a given sinusoid, so that it contributes to frequencies
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that can be quite distant from the central one. They are also responsible for altering
peak height ratios. In association to leakage, reduced spectral resolution is present,
i.e., the ability of the DTFT to separate sinusoidal peaks close to one another
diminishes, and this is mainly due to the finite width of the mainlobe.

4. Figure5.2d:

ω0 = π

7
, ω1 = 4π

25
→ �ω � 0.0539 rad 	 0.2 rad,

A0 = 1, A1 = 0.75 → A1

A0
= 3

4
.

In this case, the negative effects of windowing prevent us from distinguishing the
sinusoids.

By these examples we verified that the ability to separate close peaks is connected
to the finite width of the mainlobe of W (ejω). More precisely, the possibility of
distinguishing two spectral peaks actually relies mainly on the fact that these two
peaks must be spaced by a distance greater than the mainlobe width, but other factors
also play a role in determining resolution. Given a fixed�ω value, resolution depends
on:

• the amplitude ratio. If one sinusoid’s amplitude is much smaller than the other,
the corresponding peak—for example, let us imagine it is the peak at frequency
ω1—can be submerged by the sidelobes of the other peak at ω0;

• the rapidity with which sidelobes decrease with increasing distance from the
mainlobe. In other words, a critical factor for resolution is whether or not the
copy of W (ejω) centered on ω0 becomes small enough in the neighborhood of ω1,
and vice-versa.

In summary, resolution is sufficient and leakage is small if

• the mainlobe of |W (ejω)| is narrow,
• the sidelobes are low and decrease rapidly with increasing distance from the main-
lobe.

Our previous examples were relative to the use of a rectangular window. Using more
gradual windows with the same N , a lowering of the sidelobes can be obtained, but
this improvement is accompanied by a widening of the mainlobe. Thus a reduction
of leakage, which is mainly due to sidelobes, is inevitably accompanied by a further
loss of resolution, which is related tomainlobewidth. The condition on the frequency
spacing of the sinusoids that can be resolved becomes more restrictive. Of course,
this drawback can be overcome if N can be arbitrarily increased, since increasing
the number of samples makes the transform of any window more similar to an ideal
frequency-domain impulse. We saw this for the rectangular window in Fig. 5.1, and
will soon see it for different, more gradual windows.
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5.2.2 The Effect of Spectral Sampling

This effect is, once again, well-illustrated by an example. We consider the same type
of signal x[n] with N = 64 samples used earlier, and set, as in Fig. 5.2b,

ω0 = π

7
, ω1 = 4π

15
→ �ω � 0.389 rad,

A0 = 1, A1 = 0.75 → A1

A0
= 3

4
.

We compare its DTFT (Fig. 5.3, continuous gray curve) with the DFT calculated
over N = 64 points (Fig. 5.3, black stem plot).

Resolution is a priori sufficient, as witnessed by the fact that in the DTFT (contin-
uous gray curve) the two peaks are well resolved. However, since the DTFT peaks
fall between one sample of the DFT and the next one, when we can only observe
the DFT (black stem plot) we are not in a position to correctly evaluate either the
frequency, or the amplitude of the sinusoids contained in the signal.

In general, the “true” peaks will not coincide exactly with any of the frequencies
ωk , and we will get a potentially distorted picture of the underlying DTFT. If, while
keeping the other parameters constant (N , A0, A1), we force this coincidence to exist
by slightly moving ω0 and ω1, the DFT of the signal over 64 samples appears quite
different (Fig. 5.4a).

Fig. 5.3 Amplitude spectrum of a signal with N = 64 samples, containing two sinusoids separated
by a �ω larger than the width of the mainlobe of the transform of the 64-point rectangular window.
Resolution appears satisfactory if we observe the shape of the DTFT (continuous gray curve).
However, when we compute the DFT over N = 64 samples we can actually only observe the
black stem plot. The fact that the frequencies of the sinusoids composing the signal, in general, do
not coincide with any member of the ωk set over which the DTFT is sampled alters the picture.
The accuracy with which frequency and amplitude of the sinusoidal components can be estimated
is poor
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(a)

(b)

Fig. 5.4 aAmplitude spectrumof a signalwith N = 64 samples, containing two sinusoids separated
by a�ω larger than thewidth of themainlobe of the transformof the 64-point rectangularwindow, so
that resolution is satisfactory (see the DTFT, continuous gray curve). The black stem plot represents
the DFT computed over N = 64 points: a rather poor frequency sampling. In spite of this, the DFT
deceptively seems to reproduce the shape of the underlyingDTFTverywell, because the frequencies
of the sinusoids composing the signal were chosen in such a way that they exactly coincide with two
of the frequencies ωk at which the DTFT is sampled. No spectral content at frequencies different
from ω0 and ω1 is detected, and the non-zero DFT samples at ω0 and ω1 assume the value expected
on the basis of the sinusoids’ amplitudes. b Amplitude spectrum of the same signal. The black
stem plot represents the DFT computed over N = 128 points. The presence of a non-zero spectral
content at all frequencies is correctly detected

In this example,

ω0 = π

8
= 4

2π

64
, ω1 = π

4
= 8

2π

64
→ �ω � 0.393 rad,

so that the �ω is nearly the same as in Fig. 5.4, but in the DFT over N = 64 points,
ω0 coincides with the 5th frequency (ωk with k = 4) and ω1 coincides with the
9th frequency (ωk with k = 8). The DFT appears very “clean” and free from any
spectral content at frequencies other than ω0 and ω1, but this is an illusion due to
the poor frequency sampling. Actually, a non-zero spectral content is present at all
frequencies, as indicated by the underlying DTFT (continuous gray curve). This can
be verified by making the spectral sampling denser through zero padding up to a
length of 128 points (Fig. 5.4b).
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Let us underline once again that zero-padding does not improve resolution: the
latter depends only on the shape and the width of the window used to observe the
considered segment of the original infinite-length signal. By zero-padding we simply
performed an interpolation that makes more details of the underlying DTFT visible
in the DFT plot, within the limits of the available resolution. Zero-padding and the
consequent spectral oversampling are most often applied in order to obtain more
readable and easily interpretable spectral plots. Frequency interpolation provides
smooth spectral curves on which the position and the height of any peak can be
better determined.

5.3 Classical Windows

We briefly mentioned above the spectral effects related to the use of more gradual
windows in comparison to the rectangular one. In this section we will describe more
precisely the characteristics of the most popular windows.

The windows that are most often applied, besides the rectangular one, are the
Bartlett window, the Von Hann or Hanning window,2 the Hamming window, and
the Blackman window (Harris 1978; Nuttall 1981). These “historical” or “classical”
windows were introduced finding empirical ways to reduce relative sidelobe height
with respect to the rectangular window case. Each window is characterized by

• mainlobe width, measured, for example, at the lobe base, or at half height. This
parameter is expressed as relative width with respect to the rectangular window
case: measuring the width at the lobe base we will write (4π/N )η, where the value
of η depends on the window, and is 1 for the rectangular window;

• attenuation of the highest sidelobe.

These characteristics are more easily discussed observing the shape of the window
squared-transform plotted on a logarithmic scale, i.e., expressed in dB: this choice
allows for clearly visualizing the behavior of characteristic parameters as the time-
domain window shape varies (Fig. 5.5). We will describe separately each classical
window in both domains, starting from the rectangular one.

• Rectangular window
The squared magnitude of the transform of the rectangular window is shown on
a dB scale in Fig. 5.5a, b. It may be seen that for a given N , the mainlobe is
the narrowest among all considered windows (compare Fig. 5.5a with Fig. 5.5c–f;
these panels are relative to different window types, all having the same length).
However, the highest sidelobe, adjacent to the main one, is only ≈13dB smaller
than the mainlobe, and the decrease of sidelobes with increasing distance from
the mainlobe is slow. Doubling the window length (compare Fig. 5.5a, in which
N = 51, with Fig. 5.5b, in which N = 101), the mainlobe narrows and the number
of sidelobes increases, but the attenuation of about 13dB and the slow sidelobe
decrease remain unchanged.

2Often, the Von Hann window is called hanning, with the initial letter in lower case.



164 5 Spectral Analysis of Deterministic Discrete-Time Signals

(a) (b)

(c) (d)

(e) (f)

Fig. 5.5 a–f Squared amplitude of the DTFT in logarithmic units (dB) for various classical win-
dows. In all panels, the quantity 10 log10 |W (ejω)|2 = 20 log10 |W (ejω)| has been normalized in
such a way to be zero at zero frequency. This normalization makes the comparison among different
windows easier, and means that the magnitude |W (ejω)| of the transform is normalized to 1 at
ω = 0. In turn, this implies that the time-domain samples of a given window are normalized so as
to give 1 when summed, instead than being normalized so as to have 1 as the maximum value. The
last choice is the one normally adopted. All the windows represented here have a length of N = 51
samples, except the rectangular window shown in panel b, which is 101-samples long

• Bartlett window
The transform of the Bartlett window is the square of the rectangular window
transform. In fact, the Bartlett window can be seen as the result of the convo-
lution between two rectangular windows (see the example of linear convolution
in Sect. 3.5.4). It is, therefore, always non-negative. An increase of the sidelobe
attenuation up to about 26dB (the double of 13dB) is obtained, as can be seen in
Fig. 5.5c. However, the mainlobe width measured at the base increases to about
8π/N , so that η = 2. The decrease of sidelobes is quite slow. Note that this win-
dow, in different contexts, can include a zero sample at each edge, or not. It is
common use to call the version that includes zeros a “Bartlett window” and the
version that does not include zeros at the edges a “triangular window”. Here we
will neglect this distinction and use the two names as synonyms.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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• Hanning window
The transform of the Hanning window is the weighted sum of three Dirichlet
functions variously shifted in frequency, so as to obtain a partial cancellation
of sidelobes. More precisely, two symmetrically-positioned Dirichlet functions
with weight 1/4 each are added to a central Dirichlet function with weight 1/2.
The attenuation becomes 32dB, while the mainlobe width stays approximately at
8π/N , corresponding to η = 2. The sidelobe decrease is rapid.

• Hamming window
The transform of the Hamming window is again the weighted sum of three Dirich-
let functions variously shifted in frequency, so as to obtain a partial cancellation of
sidelobes. The weights were determined empirically, looking for values minimiz-
ing the height of the highest sidelobe. The attenuation attains about 44dB, while
the mainlobe width stays approximately at 8π/N , so that we still have η = 2. Note
that in this case the highest sidelobe is not the most central one. The attenuation
is remarkable but the decrease of sidelobes is slow.

• Blackman window
The transform of the Blackman window is the weighted sum of five Dirichlet
functions variously shifted in frequency, so as to further reduce the relative sidelobe
height with respect to the Hamming window; however, no optimization procedure
was performed to determine the weights. The attenuation is as high as 58dB, but
the mainlobe width increases to about 12π/N , giving η = 3. Attenuation is very
high and the decrease of sidelobes quite fast, but the mainlobe is the widest one
among all classical windows with the same length.

Table5.1 shows the functional form of the windows mentioned in this discussion.
Since, in the various contexts in which these windows are applied, a causal form of
the window is sometimes required, while at some other times the non-causal form
(symmetrical about the origin) is needed, both forms are shown in Table5.1. In all
cases, the sole free parameter is thewindow length. For awindow in non-causal form,
the length N is always an odd number. For a window in causal form, in principle, the
length N may be either odd, or even. However, if it is even, of course the window
maximum falls at a half-integer value of the time index. The causal forms given in

Table 5.1 Functional form of the most popular classical windows, in their causal and non-causal
forms

Window Non-causal form Causal form

−M ≤ n ≤ M 0 ≤ n ≤ N − 1

Bartlett 1 − |n|/M 2n/(N − 1) for 0 ≤ n ≤ (N − 1)/2
2 − 2n/(N − 1) for (N − 1)/2 ≤ n ≤ N − 1

Hanning 0.5[1 + cos(πn/M)] 0.5 {1 − cos [2πn/(N − 1)]}
Hamming 0.54 + 0.46 cos(πn/M) 0.54 − 0.46 cos [2πn/(N − 1)]

Blackman 0.42+ 0.5 cos(πn/M)+
+0.08 cos(2πn/M)

0.42 − 0.5 cos [2πn/(N − 1)]+
+0.08 cos [(4πn/(N − 1))]
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Fig. 5.6 Time behavior of
the most popular classical
windows in their causal form

Table5.1 refer to odd values of N . Here all windows are normalized so as to have 1
as their maximum value.

Figure5.6 shows the shapes of these windows, in their causal version. For visual
clarity, each window is plotted as if it were a function of continuous time, but of
course it is a sequence defined only for integer values of n. It can be observed that
all windows have zeros at the edges, except the Hamming window.

Classical tapers are often used, in place of the rectangular window, for spectral
analysis of deterministic and random signals. From what we have learned about the
behavior of classical windows in this subsection, and about the effects of windowing
in the previous one, we can understand that no “best” window for spectral analysis
exists. The choice of the window always represents a compromise: if resolution is
important and a minimal mainlobe width is desired for a fixed value of N , then the
rectangular window is the best choice. If minimizing leakage is important and there-
fore large attenuation and rapid decrease of the sidelobes is desired, then Hanning,
Hamming and Blackman windows are preferable.

So far, we have quantified the mainlobe width using the width at the base, i.e.,
the frequency interval between the zero crossings of the window spectrum which
are located at each side of the origin. However, in spectral analysis resolution is
often expressed in terms of mainlobe width at half height. There are two ways of
quantifying this parameter: in some cases the transform amplitude is required to be
half of its maximum value; in some other cases, the transform squared magnitude
is required to be half of its maximum value (see Chap.10). In a plot showing the
squared magnitude in dB, this means considering the level 20 log10(0.5) = −6dB,
or the level 20 log10(0.707) = 10 log10(0.5) = −3dB, respectively. These widths
are referred to as the “3-dB width” and “6-dB width”, meaning, “3 or 6dB below
maximum level”. Table 5.2 shows the 3-dB and 6-dB widths of the main classical
windows, expressed in units of 4π/N , together with the relative height of the highest
sidelobe expressed in dB.

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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Table 5.2 3-dB and 6-dB width in units of 4π/N , and relative height of the highest sidelobe in
dB, for the main classical windows used in spectral analysis

Window 3-dB width 6-dB width Relative height of sidelobes

Rectangular 0.4430 0.6034 −13.3

Bartlett 0.6511 0.9042 −26.4

Hanning 0.7347 1.0200 −31.5

Hamming 0.6600 0.9203 −43.5

Blackman 0.8383 1.1724 −58.1

Thesewidths (though halved) and the relative sidelobe heights can also be deduced
from Fig. 5.7a–e, where the squared magnitude of the transforms of the above-
mentioned windows is shown in logarithmic units (dB), for N = 51. In these plots,
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Gaussian - α = 2 .5

Fig. 5.7 Squared amplitude in dB of the transform of different classical windows with N = 51:
a rectangular window, b Bartlett window, c Hanning window, d Hamming window, e Blackman
window, fGaussianwindowwith parameterα = 2.5. In all panels, the quantity 10 log10 |W (ejω)|2 =
20 log10 |W (ejω)| has been normalized in such a way to be zero at zero frequency. The 3-dB and
6-dB levels are marked by horizontal solid lines and dashed lines, respectively; the horizontal
dotted lines indicate the relative height in dB of the highest sidelobe, i.e., the ratio between the
height of the highest sidelobe and the height of the mainlobe, expressed in dB
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Fig. 5.8 Time behavior of
the causal Gaussian window
with α = 2.5, in comparison
with the Hamming window

the 3-dB level is shown by horizontal solid lines, the 6-dB level by dashed lines, and
the level of the highest sidelobe by dotted lines. The frequency axes are in units of
2π/N , so that the value of η for each window can be read directly. Figure5.7f illus-
trates another popular window that has not beenmentioned yet, namely, the Gaussian
one that will be employed in Chap.13 for the short-time Fourier transform (STFT).
The Gaussian window has, with respect to the classical tapers presented above that
depend solely on N , one more parameter (α) that regulates the width of the Gaussian
bell: the larger α, the narrower the bell. The non-causal and causal Gaussianwindows
are respectively defined as

w[n] = e
− 1

2

[
α n

(N−1)/2

]2
, n = [−(N − 1)/2, (N − 1)/2],

w[n] = e
− 1

2

[
α

n−(N−1)/2
(N−1)/2

]2
, n = [0, N − 1].

A typical value for α is 2.5; this value has been used to produce Fig. 5.7f. The
corresponding causal window shape is shown in Fig. 5.8, in comparison with the
Hamming window.

5.4 The Kaiser Window

In addition to the classical windows presented in the previous section, many other
windows have been proposed. For example, Kaiser (1966, 1974) introduced a more
flexible window, based on optimality criteria: this window is aimed at obtaining the
narrowest mainlobe, while respecting certain constraints. More precisely, the Kaiser
window minimizes the mainlobe width under the condition of keeping the window
length fixed and constraining the energy of sidelobes to be less than, or equal to,
a fixed percentage of the spectrum total energy. The energy of sidelobes is defined
calculating the integral of the transform squared magnitude over [0, π ], excluding
the frequency interval pertaining to the mainlobe. The samples w[n] of the Kaiser

http://dx.doi.org/10.1007/978-3-319-25468-5_13
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window obtained in this way depend, for a given length N , on the energy percentage
granted to sidelobes.

The solution ofKaiser’s optimization problemcanbe expressed using themodified
Bessel function with zero order, which is defined by the series

I0(x) =
∞∑

k=0

(
xk

2kk!
)

.

The causal Kaiser window with length N is in fact given by

w[n] =
I0

[
α

√
1 −

(
|2n−N+1|

N−1

)2
]

I0(α)
,

whereα—the additional parameter that this windowpresents with respect to classical
windows—serves to adjust the mainlobe width and the relative height of sidelobes.
As α increases while N remains constant, the mainlobe widens and the height of
sidelobes decreases. On the other hand, the value α = 0 produces a rectangular
window. If we instead let N increase while keeping α constant, the mainlobe narrows
while the maximum height of sidelobes remains unchanged.

The Kaiser window is particularly useful (Kaiser 1974) for designing FIR filters
by the method of impulse response truncation using windows (see, for example,
Oppenheim and Schafer 2009)—a simple design technique widely used, especially
in past decades, and briefly presented in Sect. 7.5. The Kaiser window has been also
used in spectral analysis (Kaiser and Schafer 1980).

Figure5.9 shows the shape of the causal Kaiser window for different values of the
parameter α. As α increases, the window becomes more tapered, that is, the windows
descends more rapidly from the central maximum towards the minima at the edges.

Fig. 5.9 Shape of the Kaiser
window of length N , for
various values of the
paramenter α

http://dx.doi.org/10.1007/978-3-319-25468-5_7
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Fig. 5.10 Squared magnitude in dB of the transform of the Kaiser window, for various values of
the parameter α and for N = 51. The plotted quantity, i.e., 10 log10 |W (ejω)|2 = 20 log10 |W (ejω)|,
has been normalized in such a way to be zero at zero frequency

Figure5.10 shows the squared magnitude of the Kaiser window transform in dB,
for various values of α and for N = 51. The mainlobe width, with respect to the
rectangular window case, increases almost linearly with α, as shown in Fig. 5.11a.
Themainlobewidth plotted in this figure ismeasured at the lobe base.More precisely,

(a) (b)

Fig. 5.11 Characteristics of the Kaiser window: a width �ω of the mainlobe in units of 4π/N ,
as a function of the parameter α. The width is measured at the mainlobe base; b relative sidelobe
height in dB, as a function of parameter α
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the ordinates show the values of N�ω/4π , i.e., the ratio between themainlobe width
�ω of the Kaiser window with parameter α and the mainlobe width 4π/N of the
rectangular window. Note that N�ω/4π = 1 for α = 0, as expected since then the
Kaiser window coincides with a rectangular window. Also the relative level in dB of
sidelobes varies with α in a nearly-linear way, as shown in Fig. 5.11b. The relative
level is −13.3dB for α = 0, as expected for a rectangular window.

5.5 Energy and Power Signals and Their Spectral
Representations

A deterministic bounded signal x[n] of infinite length can be an energy signal, or
a power signal. The value of |x[n]|2 at a given n can be seen as the instantaneous
power of the signal x[n] at time n: the energy in a unit time interval. Summing over
all unit time intervals we get total energy,

E =
+∞∑

n=−∞
|x[n]|2.

If E is finite, i.e., if the sequence is square-summable, then we have an energy signal.
If E is infinite, but the average power

P = lim
M→∞

1

2M + 1

+M∑

n=−M

|x[n]|2

is finite, then we have a power signal. Note that P = 0 for energy signals. Note
also that the absolute value in the previous formulas has no effect if the signal is,
as in all cases of interest to us, real-valued, but makes the definitions work even for
complex-valued signals.

It may be useful to recall that the DTFT of an infinite-length deterministic signals
exists

1. in the sense of absolute convergence for the class of absolutely summable signals,
2. in the sense of mean-square convergence for the larger class of square-summable

signals, and
3. in the sense of generalized functions or distributions (Dirac δ; discrete spectrum)

for signals that are a linear combination of sinusoids/complex exponentials with
discrete frequencies.

If a signal is absolutely summable, then it is also square summable, so in cases 1 and 2
we have an energy signal. The periodic signals of case 3 are instead a special case of
general power signals. Finally, if a signal has finite length, then it certainly allows for
a DTFT representation. This case includes the real-world case of windowed signals.
The DTFT can then be represented by the DFT.
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Unless stated otherwise, in the following discussionwewill assume that the signal
has zero mean.

1. Deterministic Energy Signals
For energy signals, the conservation of energy is expressed by Parseval’s theorem
for energy signals,

E =
+∞∑

n=−∞
|x[n]|2 = 1

2π

∫ +∞

−∞
|X (ejω)|2dω,

which states that the energy in x[n] equals the energy in X (ejω), provided that
E < ∞. Note that the units of |X (ejω)|2 are “energy per units of ω” so that
the integral has units of energy. We can see the quantity |X (ejω)|2 as the energy
spectral density (ESD) of x[n] at frequency ω. Its graph is known as the energy
spectrum of x[n], and shows how the energy of x[n] distributes over frequencies.
The information provided by the real function |X (ejω)|2 in this sense is equiv-
alent to the information provided by the amplitude spectrum |X (ejω)|, but the
physical meaning is more precise. Therefore, spectral analysis of energy signals
is usefully performed in terms of the energy spectrum. Note that very often, the
ESD function itself is referred to as the energy spectrum of x[n], even if, strictly
speaking, the energy spectrum is the plot of ESD versus frequency. Obviously,
|X (ejω)|2 is always real and non-negative; if x[n] is real, then |X (ejω)|2 is an even
function of frequency.
The energy spectrum that we have just defined as the squared magnitude of the
DTFT can also be defined by introducing the notions of autocorrelation and auto-
covariance of an energy signal.Autocorrelation and autocovariance are sequences
that quantify the signal’s self-similarity: they describe if, how and to what extent
the signal’s variations repeat themselves after a certain delay. If the signal has zero
mean, autocorrelation and autocovariance coincide and often will collectively be
indicated by the acronym AC in the rest of the book. If AC is present in a signal,
then in the signal some variability patterns exist that on average repeat them-
selves after a number of discrete-time units, and this can be intuitively related
to the presence in the signal of periodic components—the same components that
can be detected by spectral analysis. Indeed, a theorem called Wiener-Khinchin
theorem for energy signals3 states that the energy spectrum is equal to the DTFT
of the AC sequence. This approach will be discussed in Sect. 5.7.1.

3The name of this theorem refers to Norbert Wiener (1894–1964) and Aleksandr Khinchin (1894–
1959). Norbert Wiener proved this theorem for the case of a deterministic function in 1930 (Wiener
1930); Aleksandr Khinchin later formulated an analogous result for stationary stochastic processes
and published it in 1934 (Khinchin 1934). Albert Einstein explained, without proofs, the idea in a
brief two-page memo in 1914 (see Jerison et al. 1997). Note that the name of the second author
of the theorem, a Russian mathematician, is sometimes transliterated from the Cyrillic alphabet as
“Khintchine”.
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2. Deterministic Power Signals
If x[n] is a power signal, then its energy is infinite. Periodic signals like sinusoids
and complex exponentials, for example, are power signals, and for them, as for
any power signal, the notion of energy spectrum is meaningless. The average
power, however, will be finite. Let us define

xM [n] =
{

x[n] for |n| ≤ M,

0 for |n| > M.

The DTFT of xM [n] certainly exists, due to the fact that M is finite, and is given
by

X M(ejω) =
+∞∑

n=−∞
xM [n]e−jωn =

+M∑

n=−M

x[n]e−jωn .

The power spectral density (PSD) of x[n] at frequency ω is then defined as the
real and non-negative quantity

Pxx (e
jω) = lim

M→∞
1

2M + 1
|X M(ejω)|2.

The graph of PSD is known as the power spectrum of x[n], and shows how the
power of x[n] is distributed over frequency. By extension, very often the PSD
function itself is referred to as the power spectrum of x[n]. If x[n] is real, then
Pxx (ejω) is an even function of frequency.4

Parseval’s theorem for power signals is, with obvious notation,

P = lim
M→∞

1

2M + 1

+M∑

n=−M

|x[n]|2 = 1

2π

∫ +∞

−∞
Pxx (e

jω)dω =

= lim
M→∞

1

2π(2M + 1)

∫ +∞

−∞
|X M(ejω)|2dω = lim

M→∞
1

2M + 1
EM ,

where EM represents the energy of xM [n]. The units of Pxx (ejω) are “power per
units of ω”, i.e., “variance per units of ω”, since for zero-mean signals power is
variance.

This definition of power spectrum containing a limit is highly unpractical, and we
must look for another definition. As we underlined above, infinitely-long power
signals may or may not have a DTFT. Thus, their spectral analysis necessarily
passes through the definition of the power spectrum via the DTFT of the AC

4Note that the reality of Pxx (ejω) suggests the possibility of denoting PSD simply by Pxx (ω), rather
than by Pxx (ejω).
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sequence for power signals (Sect. 5.6.2). This derives from the application of
the Wiener-Khinchin theorem for power signals (Sect. 5.7.2). The theorem states
that the signal’s power spectrum is the DTFT of the AC sequence, but AC is
defined differently for power signals, with respect to energy signals. Broadly
speaking, the dimensions are different: in the power-signal case, both the AC and
the integral of the spectrum have the dimension of a power (energy/time) and not
of an energy. This may be better understood reasoning, for a moment, in analog
terms, but it applies to discrete-time signals too, even if in this case time is an
adimensional index. Of course, the DTFT of the AC sequence must exist in order
to be able to define the power spectrum: the AC sequence cannot have infinite
energy. We will introduce briefly the spectrum of deterministic general power
signals in Sect. 5.7.2.

Before turning to the Wiener-Khinchin theorem, we must introduce autocorrelation
and autocovariance sequences.

5.6 Correlation of Deterministic Discrete-Time Signals

Correlation, also called cross-correlation, is an operation mathematically similar
to a convolution that is performed on a couple of signals to measure their degree
of similarity. Autocorrelation is correlation of a signal coupled and compared with
itself. Cross- and autocorrelation have important applications, especially in the field
of random signal analysis, where these quantities allow for a spectral representation
of the signal that would otherwise be impossible. However, here we introduce these
concepts for deterministic signals.

5.6.1 Correlation of Energy Signals

Let us consider two deterministic real sequences x[n] and y[n], both having finite
energy. The signals are assumed to have zero mean. We define the cross-correlation
of x[n] with y[n] as the sequence

rxy[l] =
+∞∑

n=−∞
x[n]y[n − l] = x[l] ∗ y[−l],

where l represents a discrete-time delay or lag of any sign. Here we used the defin-
ition of linear convolution, i.e.,

∑+∞
n=−∞ x[n]y[l − n], to express rxy[l] as the linear

convolution of the first sequence with the folded version of the second sequence.5 In

5For complex sequences, rxy[l] is the linear convolution of the first sequence with the folded- and
complex-conjugated version of the second sequence. We consider real signals in order to simplify
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the same way, cross-correlation of y[n] with x[n] is

ryx [l] =
+∞∑

n=−∞
y[n]x[n − l] = y[l] ∗ x[−l].

What we have called a “correlation” in the present discussion could also be called a
“covariance”. In fact, the word “correlation” refers to multiplying x[n] by y[n − l],
while the word “covariance” refers to multiplying the respective deviations from the
mean; sincewe assumed zeromean, there is no difference between these two concepts
in the present case. If the sequenceswere not centered,we should distinguish between
correlation and covariance.

These quantities can have any sign or be zero, and quantify how much the vari-
ations of one variable are related to those of the other variable. For example, rxy[l]
will be positive and large if the variations of y[n − l] are similar to those of x[n].
A value rxy[l] < 0 is often referred to as an anticorrelation, meaning that while one
variable increases, the other one decreases, and vice-versa. Since y[n − l]with l > 0
is a delayed version of the signal y[n], in rxy[l]we couple the sequence x[n]with the
sequence y[n] delayed by l time steps; in ryx [l] we couple the sequence y[n] with
the sequence x[n] delayed by l time steps. It follows that

rxy[l] = ryx [−l],

and therefore the sequences rxy[l] and rxy[l] provide the same information concerning
the similarity between the two signals.

If y[n] ≡ x[n] we have autocorrelation:

rxx [l] =
+∞∑

n=−∞
x[n]x[n − l] = x[l] ∗ x[−l].

Autocorrelation at lag l describes how the variations of x[n] repeat themselves after
l time steps. Any signal will be perfectly autocorrelated with itself at zero lag.

Correlation has the following properties:

1. autocorrelation at zero lag gives the signal’s energy,

E = rxx [0] =
+∞∑

n=−∞
|x[n]|2 ;

2. the value of cross-correlation can never exceed the square root of the product of
individual energies,

the notation; if we considered complex signals, all the formulas for correlation should contain a
conjugation sign, e.g., rxy[l] = ∑+∞

n=−∞ x[n]y∗[n − l]. This is necessary, for instance, if we are
dealing with a complex exponential signal.
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rxy[l] ≤ √
rxx [0]ryy[0];

3. autocorrelation has a maximum at zero lag because then the signal is coupled
with itself,

rxx [l] ≤ rxx [0];

4. autocorrelation is an even sequence, and therefore we only need to compute rxx [l]
at lag l ≥ 0 to know the entire autocorrelation sequence:

rxy[l] = ryx [−l] � rxx [l] = rxx [−l].

Sometimes, instead of rxy[l] and rxx [l], standardized quantities are preferred,
called the cross-correlation coefficient and the autocorrelation coefficient at lag l,
respectively:

ρxy[l] = rxy[l]√
rxx [0]ryy[0]

, |ρxy[l]| ≤ 1,

ρxx [l] = rxx [l]
rxx [0] , |ρxx [l]| ≤ 1.

As an illustration of the notion of auto- and cross-correlation, let us take three
sampled signals, which for convenience we will however indicate as analog signals
x(t), y(t), and z(t), with t = nTs expressed in seconds. Each signal has N = 29

samples and the sampling frequency is fs = 400Hz, corresponding to a sampling
time Ts = 0.0025s. Each signal contains a single triangular pulse. In signal x(t),
whichwill be our reference signal, the pulse occurs at a time t = 0.6s (240th sample).
In signal y(t), the pulse occurs at a time t = 0.1s (40th sample). In signal z(t), the
pulse occurs at a time t = 1.1s (440th sample). These three signals are shown in
Fig. 5.12a as solid, dashed and dotted lines, respectively. We can state that

• y(t) = x(t + 0.5) leads x(t);
• z(t) = x(t − 0.5) lags x(t).

This means that

• the delay of y(t) with respect to x(t) is −0.5 s;
• the delay of z(t) with respect to x(t) is +0.5 s.

Now, the delay between two signals is given by the negative of the lag for which the
normalized cross-correlation has the largest absolute value. The normalized auto-
correlation of x(t), denoted by ρxx (t), is obviouslymaximum at zero lag (Fig. 5.12b).
The normalized cross-correlation of x(t)with y(t), denoted by ρxy(t) (Fig. 5.12c), is
maximum at lag +0.5 s (delay −0.5 s), correctly indicating that y(t) leads x(t). The
cross-correlation of x(t)with z(t), denoted by ρxz(t) (Fig. 5.12d), is maximum at lag
−0.5 s (delay+0.5 s), correctly indicating that z(t) lags x(t). This can be understood
thinking that when computing the cross-correlation of x(t) with y(t), we must delay
y(t) by a lag of +0.5 s to make it equal to x(t).
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Fig. 5.12 Illustration of the
notions of auto-and
cross-correlation. a Three
signals, each containing a
single triangular pulse. The
signal y(t) = x(t + 0.5)
leads x(t), taken as the
reference signal; the signal
z(t) = x(t − 0.5) lags x(t).
b Autocorrelation coefficient
of x(t), denoted by ρxx (t);
c cross-correlation
coefficient of x(t) with y(t),
denoted by ρxy(t);
d cross-correlation
coefficient of x(t) with z(t),
denoted by ρxz(t)

(a)

(b)

(c)

(d)

5.6.2 Correlation of Power Signals

If we consider two centered sequences having infinite energy, provided they have
finite power we can still define a cross-correlation between them by writing

rxy[l] = lim
M→∞

1

2M + 1

+M∑

n=−M

x[n]y[n − l].

Autocorrelation consequently can be written as

rxx [l] = lim
M→∞

1

2M + 1

+M∑

n=−M

x[n]x[n − l].

This is the case, for example, of periodic sequences with period N . For these
sequences, the limits in the definitions given above coincide with mean values of
cross-products over a single period:
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rxy[l] = 1

N

N−1∑

n=0

x[n]y[n − l], rxx [l] = 1

N

N−1∑

n=0

x[n]x[n − l].

The sequences rxy[l] and ryx [l] for periodic sequences can be shown to be themselves
periodic, with period N .

These quantities can be seen as limits of convolutions betweenfinite-length signals
(compare with Sect. 5.6.1). In addition to rxy[l] and rxx [l], corresponding normal-
ized quantities (the cross-correlation coefficient and the autocorrelation coefficient)
can also be defined. Observe that if the sequences were not centered, we should
distinguish between correlation and covariance.

5.6.3 Effect of an LTI System on Correlation Properties
of Input and Output Signals

If a deterministic energy or power signal x[n] with known autocorrelation rxx [l] is
processed by an LTI system with impulse response h[n], and if y[n] is the output,
then

ryx [l] = y[l] ∗ x[−l] = h[l] ∗ (x[l] ∗ x[−l]) = h[l] ∗ rxx [l],
rxy[l] = x[l] ∗ y[−l] = (x[l] ∗ x[−l]) ∗ h[−l] = rxx [l] ∗ h[−l],
ryy[l] = y[l] ∗ y[−l] = (h[l] ∗ (x[l]) ∗ (h[−l] ∗ x[−l]) =

= (h[l] ∗ (h[−l]) ∗ (x[l] ∗ x[−l]) = rhh[l] ∗ rxx [l],

where rhh[l] = h[l] ∗ h[−l] exists if the system is stable, that is, if h[n] is absolutely
summable. From the last equation we deduce that the output energy is equal to

ryy[0] =
+∞∑

k=−∞
rhh[k]rxx [k],

where we took into account the even symmetry of the autocorrelation sequence.

5.7 Wiener-Khinchin Theorem

We can now introduce theWiener-Khinchin theorem.Wewill treat energy and power
signals separately.



5.7 Wiener-Khinchin Theorem 179

5.7.1 Energy Signals and Energy Spectrum

Given two energy signals, both allowing for a DTFT representation:

x[n] ⇐⇒ X (ejω), y[n] ⇐⇒ Y (ejω),

it can be shown, using the convolution theorem for theDTFT and the folding property
of the DTFT, that

rxy[l] ⇐⇒ X (ejω)Y (e−jω) ≡ cross − energy spectral densi t y (CESD),

which is often simply referred to as the cross-energy spectrum. In the case of y[n] ≡
x[n] we thus have

rxx [l] ⇐⇒ X (ejω)X (e−jω) = X (ejω)X∗(ejω) = ∣∣X (ejω)
∣∣2 ,

representing the energy spectrum. In fact, since

rxy[l] =
+∞∑

n=−∞
x[n]y[n − l] =

+∞∑

n=−∞
x[n + l]y[n],

passing to the frequency domain and observing that both rxy[l] and rxx [l] certainly
have finite energy for two finite-energy signals x[n] and y[n] we obtain the DTFTs,

Rxy(e
jω) =

+∞∑

l=−∞
rxy[l]e−jωl =

+∞∑

l=−∞
(x[l] ∗ y[−l]) e−jωl = X (ejω)Y (e−jω),

and

Rxx (e
jω) =

+∞∑

l=−∞
rxx [l]e−jωl =

+∞∑

l=−∞
(x[l] ∗ x[−l]) e−jωl = ∣∣X (ejω)

∣∣2 .

For Parseval’s theorem for the DTFT we can write

E =
+∞∑

n=−∞
|x[n]|2 = 1

2π

∫ +π

−π

∣∣X (ejω)
∣∣2 dω = 1

2π

∫ +π

−π

Rxx (e
jω)dω,

i.e., the quantity Rxx (ejω) = ∣∣X (ejω)
∣∣2 describes the frequency distribution of the

signal’s finite energy. Therefore we can state that the DTFT of the autocorrelation
sequence gives the frequency distribution of the signal’s energy, representing the
energy spectrum: this is the content of the Wiener-Khinchin theorem for energy
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signals (Wiener 1930; Khinchin 1934). Note that since rxx [l] is an even sequence,
its DTFT is purely real, as required for it to represent an energy spectrum.

5.7.2 Power Signals and Power Spectrum

We defined

Pxx (e
jω) = lim

M→∞
1

2M + 1
|X M(ejω)|2 = lim

M→∞
1

2M + 1

∣∣∣∣∣

+M∑

n=−M

x[n]e−jωn

∣∣∣∣∣

2

.

We can thus write

Pxx (e
jω) = lim

M→∞
1

2M + 1

+M∑

m=−M

+M∑

n=−M

x[n]x[m]e−jω(m−n).

It can be shown that the double sum appearing above can be written in terms of the
AC sequence: setting k = m − n we have

+M∑

m=−M

+M∑

n=−M

x[n]x[m]e−jω(m−n) =
+2M∑

k=−2M

(2M + 1 − |k|) rxx [k]e−jωk .

It follows that

Pxx (e
jω) = lim

M→∞
1

2M + 1

+2M∑

k=−2M

(2M + 1 − |k|)rxx [k]e−jωk =

= lim
M→∞

+2M∑

k=−2M

(
1 − |k|

2M + 1

)
rxx [k]e−jωk �

+∞∑

k=−∞
rxx [k]e−jωk,

provided that the (finite-energy) sequence rxx [k] decays sufficiently rapidly with lag.
This is an alternative definition of power spectrum as the DTFT of the AC sequence,
and is the conceptual content of the Wiener-Khinchin theorem for power signals.
Note again the reality of the AC’s DTFT, related to the even symmetry of the AC
sequence.

For some signals, the AC sequence does not decay quickly enough for the theorem
to hold. Examples are sequences with non-zero mean (a case which we already
excluded) and sequences which are periodic, such as linear combinations of complex
exponentials. The definition of power spectrum can then be accommodated through
the use of the Dirac δ function (discrete spectrum).

For a signal containing periodic and non-periodic variability components, we can
write the power spectrum in the general form
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Pxx (e
jω) = Pc

xx (e
jω) +

∑

i

2πPiδ(ω − ωi ),

where Pc
xx (e

jω) represents the continuous part of the spectrum, while the weighted
sum of impulses represents the discrete part, i.e., the spectral lines. Note that any
signalwhosemean value is non-zero has an impulse in the spectrumat zero frequency,
corresponding to a constant term that appears in the AC sequence. Thus, in order
for a signal with no periodic components to have a purely continuous spectrum, its
mean must be zero. This explains why it is advisable to always center a signal before
analyzing it.

The concept of power spectrum will be resumed and deepened later, when dis-
cussing the case of random signals. Typically, random signals are power signals,
and their spectral description uses the DTFT of the AC sequence. In that case, as
we will see in Chap.9, the conceptual substitution of energy with power involves an
additional averaging step over all possible values of the random signal, which in the
presence of a property of the random signal, known as ergodicity, actually becomes
a time average over the record length.

We can summarize our discussion on the spectral representation of infinitely-long
deterministic energy- and power- signals as follows:

1. an energy signal

• always has a DTFT;
• always has an energy spectral density (ESD) which is the squared magnitude of
the signal’s DTFT;

• always has an AC sequence;
• always has an energy spectral density expressed as the DTFT of the AC sequence;

2. a power signal

• may have a DTFT in the sense of distributions (periodic power signals);
• may have a power spectral density related to the squared magnitude of the DTFT
of the signal;

• always has an AC sequence, but this sequence is defined differently than in the
energy-signal case;

• has a power spectral density defined as the DTFT of the AC sequence, provided
that this DTFT converges, which happens if the AC sequence has finite energy,
i.e., decays with increasing lag in a sufficiently rapid manner.

http://dx.doi.org/10.1007/978-3-319-25468-5_9
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Part II
Digital Filters



Chapter 6
Digital Filter Properties and Filtering
Implementation

6.1 Chapter Summary

In this chapter we will focus on frequency-selective filters that are LTI stable sys-
tems with a real and causal impulse response and a rational transfer function. We
will examine their properties in detail. The frequency response of these filters is clas-
sified according to four prototypes: the lowpass, highpass, bandpass, and bandstop
ideal filters. However, ideal filters, which are real—i.e., their frequency response has
zero phase—and present jump discontinuities at band edges, are not computationally
realizable, and must be approximated by continuous complex functions. The condi-
tions for realizability are discussed in terms of magnitude and phase of the frequency
response. We will see that a realizable filter still presents jump discontinuities in
the phase that can be eliminated passing to another representation of the frequency
response, the so-called continuous-phase representation. Linear phase (LP) and gen-
eralized linear phase (GLP) filters are then studied, which allow to filter a sequence
without phase distortion between input and output waveforms. The absence of phase
distortion is a feature that is appreciated inmany applications.Wewill show that only
FIR filters of four types can have exactly LP/GLP, and that their impulse response
must satisfy symmetry conditions. The results obtained in this discussion will be
used in the following chapters on filter design. The last part of the chapter deals with
implementing digital filtering, a goal that is achieved by arranging the difference
equation representing the input-output relation of the filter into the most convenient
implementation structure. Finally, the possibilities offered by increasing the signal’s
sampling interval before filtering will be explored, as well as the precautions to be
adopted before downsampling a signal, in order to avoid frequency aliasing issues.
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6.2 Frequency-Selective Filters

Filtering a signal means, in general, changing its characteristics in the frequency
domain. In itsmost general form, filtering is a process thatwill transform the spectrum
of a signal according to some rule of correspondence: any time a processing operation
performed on a signal entails modifying, reshaping, or transforming the spectrum of
a signal in some way, then the processing involved will be referred to as filtering.

Filters can be classified on the basis of their operating signals as analog or digital.
In analog filters, the input, output, and internal signals are in the form of continuous-
time signals, whereas in digital filters they are in the form of discrete-time signals.
In this book, we will deal with digital filters; analog filters will be involved in our
discussion onlymarginally, in connection to the fact that, classically, digital IIR filters
are derived from their analog counterparts. Digital IIR filters evolved as a natural
extension of analog filters and are often designed through the use of analog-filter
methodologies.

There are many ways in which filters can be classified according to the task for
which they are designed. In this book, we focus frequency-selective filters.

Frequency selection means that if the input signal contains contributions in some
frequency intervals,wewant tomodify them, attenuatingor suppressing, for example,
the components pertaining to a certain frequency band, and preserving or enhancing
those pertaining to another frequency band, etc. In other words, this type of filtering
is used to select one or more desirable bands of frequency components and simulta-
neously reject one or more undesirable bands. For example, we could use lowpass
filtering to select a band of preferred low frequencies and reject a band of undesirable
high frequencies; use highpass filtering to select a band of preferred high frequencies
and reject a band of undesirable low frequencies; use bandpass filtering to select a
band of intermediate frequencies and reject low and high frequencies; or use band-
stop filtering to reject a band of intermediate frequencies and select low and high
frequencies.

Frequency-selective filters are classified referring to four ideal real and zero-phase
prototypes, which are not realizable in practice but represent a useful theoretical ref-
erence. The typical frequency responses of the four prototypes are visible in Fig. 6.1.
Due to their shape, sometimes these filters are colloquially referred to as brick-wall
filters, or top-hat filters. A frequency interval in which the frequency response of a
filter is different from zero—and is equal to 1 in the ideal case of Fig. 6.1—is called
a passband; a frequency interval in which the amplitude response is ideally equal to
zero is called a stopband. Note that the bandpass filter also summarizes in itself, as
particular cases, the lowpass and the highpass filters. Therefore when we speak of
a frequency-selective filter without providing any further specification, we usually
mean a bandpass system. More general cases may include multiband filters, with
several stopbands and passbands. In each band, |H(ejω)| is normally assumed to be
constant, but not necessarily equal to 1.

Each of the frequency responses shown in Fig. 6.1 may be seen as the desired
amplitude response of the filter to be designed, but in reality, no filter can have such
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(a) (b)

(c) (d)

Fig. 6.1 The four prototypes of frequency-selective filters: a lowpass, b highpass, c bandpass, and
d bandstop

a boxy shape. Indeed, a theorem known as the Paley-Wiener theorem1 implies that
for a causal filter to be computationally realizable, |H(ejω)| can possibly be zero at
a number of isolated ω values, but cannot be zero over a continuous ω band of finite
width. Therefore, no ideal filter can be causal. A computationally realizable causal
filter will have a |H(ejω)| characterized by

• non-constant behavior in the passband and in the stopband: typically, monotonic
or oscillatory behavior.2 If the behavior is oscillatory, this is also referred to as the
frequency response presenting ripple in either band;

• the presence of a transition band with non-zero width, interposed between the
stopband and the passband, in which monotonic behavior is usually requested.

Concerning the phase response, evidently an ideal filter should imply no phase
difference between the input and the output, but a causal system cannot have zero

1This theorem was enunciated by Raymond Paley (1907–1933) and Norbert Wiener (1894–1964)
and yielded a method for determining whether or not a causal impulse response exists for a given
magnitude frequency response (Paley and Wiener 1933, 1934).

The Paley-Wiener Theorem (see, e.g., Paarmann 2001) states that given a magnitude frequency
response that is square-integrable, then a necessary and sufficient condition for it to be themagnitude
frequency response of a causal filter is that the following inequality be satisfied:

∫ +∞

−∞

∣∣log
∣∣H(ejω)

∣∣∣∣
1 + ω2 dω ≤ ∞.

As a consequence of the Paley-Wiener Theorem, it can be shown that causal filters, having impulse
response constrained to be identically zero over the whole negative half n-axis, cannot have con-
tinuous bands where the frequency response has zero amplitude.
2As we shall see in Chap.8, some filters can be nearly flat in the passband.

http://dx.doi.org/10.1007/978-3-319-25468-5_8
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phase: H(ejω) must be complex. A non-zero phase is thus accepted; when possible,
a linear dependence of the phase on ω is sought, for a reason that will be explained
in the following discussion.

Realizable frequency-selective filters are then designed according to a number
of methods. The rejection of undesired frequencies will not be perfect; undesired
frequencies will be attenuated rather than eliminated. For this reason the stopband
of realizable filters is also called the attenuation band. The realizable frequency
response generally has a fixed formwith adjustable parameters, which are determined
in such a way that the designed filter meets certain specifications. The specifications
are somewhat arbitrary, and certain filter characteristics are sometimes ignored—
for example, phase features are ignored in the classical design of IIR filters. No
discontinuities are present in the frequency response, and the transition between
different bands is gradual, i.e., one or more transition bands appear.

6.3 Real-Causal-Stable-Rational (RCSR) Filters

We now restrict our attention to realizable frequency-selective filters that are LTI
stable systems with a real and causal impulse response and with a rational transfer
function. These systems are referred to as RCSR filters, where RCSR is the acronym
for “Real-Causal-Stable-Rational”. We must recall that for a real filter, i.e., a filter
with a real impulse response, the magnitude of H(ejω) is an even function of fre-
quency and the phase is an odd function. Due to this symmetry, the discussion of
RCSR filters can be restricted to the frequency interval 0 ≤ ω ≤ π (recall that −π

and π are indistinguishable frequencies).
A digital RCSRfilter is specified giving its rational transfer function, togetherwith

its ROC. This is equivalent to giving its LCCDE, together with initial rest conditions.
Since we assumed the system to be stable, H(z) absolutely converges on the unit
circle and there represents the filter frequency response H(ejω). This implies dealing
with functions of frequency without any discontinuity, as is true for all realizable
filters. The ideal frequency-selective filters, that present jump discontinuities at band
edges, are limit cases in which the frequency response converges only in a wider
sense, and the transfer function does not exist (see Chap. 3).

The frequency response H(ejω) can be separated into:

• the amplitude response or magnitude response |H(ejω)|, and
• the phase response arg[H(ejω)].
Wemust always remember that even in applications concerning digital signals deriv-
ing from analog signals via periodic sampling, the sampling interval Ts does not play
any role in digital filter design. Digital filters are always specified as functions of ω,
or ν. We will normally use ω.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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6.4 Amplitude Response

The amplitude response is a real function of frequency, intrinsically non-negative,
which in ideal cases can have jump discontinuities, while in realizable cases must
be a continuous function. It can be expressed and plotted using linear or logarithmic
units; in the case of logarithmic units, the square amplitude |H(ejω)|2 in dB is used,

10 log10 |H(ejω)|2 = 20 log10 |H(ejω)|.

|H(ejω)| = 1 corresponds to zero dB, |H(ejω)| = 10m corresponds to 20m dB, and
|H(ejω)| = 2m corresponds to about 6m dB, because

20 log10 2
m = 20 log10 2 · log2 2m � 20 × 0.3 × m = 6m.

At frequencies where |H(ejω)| < 1, i.e., in the attenuation band, the corresponding
amplitude in dB is negative. In this case, often the same quantity reversed in sign
is used, i.e. −20 log10 |H(ejω)|. This is called attenuation in dB and is positive if
|H(ejω)| < 1. For example, |H(ejω)| = 0.0001 corresponds to an attenuation of
−20 × (−4) = +80dB.

The input-output relation of an LTI system in the frequency domain, Y (ejω) =
H(ejω)X (ejω), when expressed using square amplitudes in dB becomes a sum: the
squared amplitude response in dB added to the squared amplitude in dB of the DTFT
of the input signal gives the squared amplitude in dB of the DTFT of the output
signal. For example, if a given component of the input signal amounts to 60dB, a
filter with an attenuation of 40dB will reduce it to 60 − 40 = 20dB in output.

6.5 Phase Response

The phase response of an RCSR filter can exhibit discontinuities that are elimi-
nated by passing to another representation of the frequency response, the so-called
continuous-phase representation.

6.5.1 Phase Discontinuities and Zero-Phase Response

Let us consider the frequency response of an LTI-RCSR filter. The phase of H(ejω)

at a given ω is the phase angle of the complex number H(ejω) that, when calculated
by a suitable software algorithm, is defined as the principal value of the angle itself,
i.e., the angle ∈ (−π, π ] such that
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ψ(ω) ≡ arg[H(ejω)] =
{
arctan 2

{
Im[H(ejω)], Re[H(ejω)]} if |H(ejω)| �= 0,

undefined if |H(ejω)| = 0.

Here, arctan 2(y, x) ≡ θ is by definition the unique angle θ ∈ (−π, π ] for which

cos θ = x√
x2 + y2

, sin θ = y√
x2 + y2

.

Any other angle related to arg[H(ejω)] by

�H(ejω) = arg[H(ejω)] + 2πr(ω),

with r(ω) being a positive or negative integer that can vary with ω, gives, together
with |H(ejω)|, the correct complex value of H(ejω).

The angleψ(ω) can be a discontinuous function. More precisely, since the filter is
RCSR, H(ejω) is a continuous function and this implies thatψ(ω) also is a continuous
function, except for two cases:

1. at frequency values ω0 for which Re[H(ejω)] < 0 and Im[H(ejω)] = 0, the value
of ψ(ω0) is set to +π , due to the definition of arctan 2. Therefore, if Im[H(ejω)]
at ω−

0 or at ω+
0 (or at both frequencies) is slightly negative, then a 2π phase jump

occurs, because ψ(ω+
0 ) and/or ψ(ω−

0 ) are set by arctan 2 to values close to −π

(see Figs. 6.2 and 6.3);
2. at frequency values ω0 for which |H(ejω)| = 0, arg[H(ejω)] is undefined. This

fact may imply a π jump as the function arg[H(ejω)] passes through ω0. These
jumps are related to the fact that |H(ejω)| is forcedly non-negative; when the
function passes through a zero with multiplicity m, then for odd m-values the
phase undergoes aπ jump,while for evenm-values the phase remains continuous.
In Fig. 6.4, zeros of the frequency response corresponding to π jumps in the phase
are marked by arrows.

Fig. 6.2 The neighborhood
of ±π in which the
phase-angle principal value,
arg[H(ejω)], may undergo
2π jumps (see text)
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Fig. 6.3 Typical behavior of
the phase-angle principal
value

Fig. 6.4 Zeros of the
frequency response that
correspond to π phase jumps

It can be shown that for rational frequency responses, the number of discontinuity
points in the principal interval of ω is necessarily finite.

In order to eliminate these discontinuities, a continuous-phase representation is
introduced for the frequency response: the expression

H(ejω) = H(ω)ejφ(ω),

where H(ω) is real but not necessarily non-negative and φ(ω) is a continuous func-
tion, replaces the representation H(ejω) = |H(ejω)|ejψ(ω). The function H(ω) is
referred to as the amplitude function or zero-phase (frequency) response of the filter.

The functions H(ω) and φ(ω) are constructed in such a way as to preserve the
continuity of φ(ω) at any discontinuity point of ψ(ω). Figure6.5 shows how a π

jump can be eliminated: the very fact of allowing H(ω) to be negative makes these
jumps disappear. Figure6.6 shows how a 2π jump can be eliminated, by adding
integer multiples of 2π to ψ(ω). The value φ(ω) is made unique by imposing the
condition 0 ≤ φ(0) < π ; of course, φ(ω) can assume values outside the interval
(−π, π ].
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Fig. 6.5 How a π phase jump can be eliminated

Fig. 6.6 How 2π phase
jumps can be eliminated



6.5 Phase Response 193

6.5.2 Linear Phase (LP)

A filter for which

φ(ω) = −ωτ,

with τ = constant, i.e., a filter with

H(ejω) = H(ω)e−jωτ ,

is referred to as a filter having linear phase (LP) in ω. The constant τ = −φ(ω)/ω is
a real number, called the (constant) phase delay and measured in number of samples.

A filter having H(ejω) = e−jωτ is an ideal delayer. This name derives from the fact
that a broadband bandpass filter that in the passband has this frequency response,
merely applies a pure delay to the input signal. In fact, if we choose a frequency
response with an ideal piecewise-constant shape in [0, π ], with ωc1 close to zero and
ωc2 close to π ,

H(ejω) =
{
e−jωτ for ωc1 ≤ ω ≤ ωc2,

0 elsewhere,

an input signal made up of elementary sinusoidal contributions with frequencies
contained in the filter passband produces the output

y[n] = 1

2π

∫ +∞

−∞
H(ejω)X (ejω)ejωndω =

= 1

2π

∫ ωc2

ωc1

X (ejω)ejω(n−τ)dω ≈ x[n − τ ].

Therefore the output is just a copy of the input, delayed by τ samples. If τ is a
fraction, then the system interpolates the output to fractional values of discrete time,
while if τ is an integer, a simple delay by τ time steps occurs. In any case, the output
is a delayed, but undistorted, copy of the input signal: no phase distortion occurs.

The absence of phase distortion is often desired, for example when the behaviors
of two different signals in a certain frequency band must be compared. Imagine we
filter two related signals using a passband filter and then want to understand which
signal leads the variations in that band and which one lags them. We ultimately
are investigating cause-effect relations among these two signals. In this case we do
not want the relative phase of the corresponding sinusoidal components in the two
signals to be altered by filtering. For this reason, considering that zero-phase filters
are not computationally realizable, linear-phase filters are well accepted, especially
with integer or half-integer delay τ .
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6.5.3 Generalized Linear Phase (GLP)

It is sometimes useful to consider phase responses that are not strictly proportional
to frequency, but are still linearly dependent on ω:

φ(ω) = φ0 − ωτg,

where φ0 and τg are constants. The corresponding ideal delayer has the following
frequency response in [0, π ]:

H(ejω) =
{
ej(φ0−ωτg) for ωc1 ≤ ω ≤ ωc2,

0 elsewhere,

that is, once again, a broadband frequency response with an ideal piecewise-constant
shape. In this case, in place of a constant phase delay τ we have a constant group
delay τg , measured in number of samples.

The meaning of the term “group delay” emerges if we consider the effect that this
ideal delayer has on the phase of a narrow-band signal, i.e., a modulated signal of
the kind

x1[n] = x[n] cos(ω0n),

in which x[n] is the modulation signal—some “lowpass” signal with spectrum con-
centrated at low frequency—and ω0 �= 0 is the frequency of the carrier wave. The
spectrum of the modulated signal is concentrated in the neighborhood of ω = ω0,
as it may be understood thinking of the modulation/frequency shift property of the
DTFT.3 Suppose we apply an ideal delayer to the modulated signal. It can be shown
that the output y[n] is still a modulated signal, such that its modulation signal is a
delayed but undistorted copy of x[n]. The phase constant φ0 affects the carrier signal
but not the modulation signal: in analog and digital terms,

y[t] = x
(
t − τgTs

)
cos

[
f0

(
t − τgTs

) + φ0
]
,

y[n] = x
[
n − τg

]
cos

[
ω0

(
n − τg

) + φ0
]
.

This behavior is illustrated in Fig. 6.7. Using themodulation signal shown in Fig. 6.7a
( f = 50Hz), with sampling time Ts = 5 × 10−5 s, and the carrier wave shown
in Fig. 6.7b ( f0 = ω0/(2πTs) = 500Hz), the modulated signal shown in panel
Fig. 6.7c has been created. The modulated signal can be expressed in analog and
digital forms as

3Modulated signals are important in telecommunication engineering. Suppose we want to transmit
a narrow-band lowpass signal through a network. This network only lets signals with frequency
close to a certain ω0 pass through (with ω0 not close to zero) and filters out the rest. If we properly
modulate the lowpass signal, we can shift its spectral content to the vicinity of ω0 and allow signal
transmission. Later we will be able to perform the inverse operation and recover the original signal.
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Fig. 6.7 Illustration of the concept of group delay. a Low-frequency modulation signal; b carrier
wave; c modulated signal; d the modulated signal after passing through an ideal delayer with
φ0 = π/2 and τg = 100 samples, corresponding in this case to 0.005 seconds (see text for details)

x1(t) = [1 + cos (2π f t)] cos (2π f0t) ,

x1[n] = [1 + cos (2πωn)] cos (2πω0n) ,

where t is time in seconds, with x1[n] = x1(nTs). Note the envelope in Fig. 6.7c
(gray curves). Now suppose we pass this modulated signal through an ideal delayer
with φ0 = π/2 and τg = 100 samples, corresponding to 0.005 seconds. Figure6.7d
shows the output signal: the delay of the envelope is evident and actually amounts
to 0.005 seconds.

The group delay τg is given by the reversed-in-sign slope of the linear function
φ(ω):

τg = −dφ(ω)

dω
.

If τg is an integer, a simple delay of the modulation signal by τg time steps occurs;
if τg is a fraction, then the system interpolates the output signal to fractional values
of discrete time.
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A system that allows for a continuous-phase representation of the type

H(ejω) = H(ω)ej(φ0−ωτg)

with constant φ0 and τg is a generalized linear phase (GLP) system. Note that LP
filters are GLP filters with φ0 = 0 and τg = τ .

6.5.4 Constraints on GLP Filters

The periodicity of H(ejω) and the required reality and causality of h[n] imply that
the parameters φ0 and τg of a GLP-RCSR filters must satisfy precise constraints.

1. Since H(ejω) is periodic with period 2π , we can write

H(ω)ej(φ0−ωτg) = H(ω + 2π)ej(φ0−ωτg−2πτg),

hence
H(ω) = H(ω + 2π)e−j2πτg .

But H(ω) must be real; a sufficient condition for this is that 2τg be integer, that
is, τg be integer or half-integer. We can thus distinguish two possible cases:

• integer τg: H(ω) = H(ω + 2π), i.e., H(ω) is periodic with period 2π ;
• half-integer τg: H(ω) = −H(ω + 2π), H(ω) = H(ω + 4π), i.e., H(ω) is
periodic with period 4π .

2. Since h[n] is required to be real, the corresponding symmetry condition on its
transform must hold: H(e−jω) = H∗(ejω). We can thus write

H(−ω)ej(φ0+ωτg) = H(ω)e−j(φ0−ωτg),

from which we get

ej2φ0 = H(ω)

H(−ω)
.

We can therefore distinguish two possible cases:

• φ0 = 0: H(ω) = H(−ω), i.e., H(ω) is an even function of frequency, and
τ = τg = constant;

• φ0 = π/2: H(ω) = −H(−ω), i.e., H(ω) is an odd function of frequency, and
τg = constant.

In conclusion, GLP-RCSR digital filters come in four types:

• Type I, with integer τ = τg and φ0 = 0;
• Type II, with half-integer τ = τg and φ0 = 0;
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• Type III, with integer τg and φ0 = π/2;
• Type IV, with half integer τg and φ0 = π/2.

Types I and II have constant phase delay, while Types III and IV have constant
group delay.

3. Requiring causality imposes further restrictions on GLP-RCSR filters. This time
the restrictions concern the impulse response.

• If φ0 = 0 (Types I and II), then H(ejω) = H(ω)e−jωτ , and therefore

h[2τ − n] = 1

2π

∫ π

−π

H(ejω)ejω(2τ−n)dω = 1

2π

∫ π

−π

H(ω)ejω(τ−n)dω.

By conjugating this expression and requiring reality for h[n] we get

h[2τ − n] = 1

2π

∫ π

−π

H(ω)ejω(n−τ)dω = 1

2π

∫ π

−π

H(ejω)ejωndω = h[n].

Now, since the filter must be causal, we must impose the condition h[n] = 0
for n < 0. But then, the condition h[n] = 0 for n > 2τ must also hold. In
conclusion,
– the filter must be an FIR filter;
– its length must be N = 2τ + 1 and its order must be N − 1 = 2τ ;
– its impulse response must satisfy the following symmetry condition:

h[n] = h[N − 1 − n].

An example of h[n] satisfying these constraints is given in Fig. 6.8a.
• If φ0 = π/2 (Types III and IV), then ejφ0 = ejπ/2 = j , H(ejω) = j H(ω)

e−jωτg . We can thus write

h[2τg − n] = 1

2π

∫ π

−π

H(ejω)ejω(2τg−n)dω = j

2π

∫ π

−π

H(ω)ejω(τg−n)dω.

By conjugating this expression and imposing reality of the impulse response
we get

h[2τg − n] = − j

2π

∫ π

−π
H(ω)ejω(n−τg)dω = − 1

2π

∫ π

−π
H(ejω)ejωndω = −h[n].

The filter must be causal, so we must impose the condition h[n] = 0 for n < 0.
But then h[n] = 0 for n > 2τg must also hold. In conclusion,
– the filter must be an FIR filter;
– its length must be N = 2τg + 1 and its order must be N − 1 = 2τg;
– its impulse response must satisfy the following antisymmetry condition:
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Fig. 6.8 a An example of
h[n] satisfying the
constraints on LP-RCSR
filters with φ0 = 0 (Types I
and II). This Type I filter has
τg ≡ τ ; its order is given by
N − 1 = 2τ . b An example
of h[n] satisfying the
constraints with φ0 = π/2
(Types III and IV). The order
of this Type III filter is given
by N − 1 = 2τg

(a)

(b)

h[n] = −h[N − 1 − n].

An example of h[n] satisfying these constraints is given in Fig. 6.8b.

In summary, only FIR filters can have exactly linear or generalized linear phase.

6.6 Digital Filtering Implementation

In the next two chapters, wewill discuss designmethods for FIR and IIR filters. Once
the desired filter has been designed, how will we actually filter our data sequence?
We will do it by implementing the LCCDE.

The design process provides the transfer function,

H(z) =
∑M

k=0 bk z−k

1 + ∑N
k=1 ak z−k

= b(z)

a(z)

that characterizes the input/output relation, since its coefficients determine the
LCCDE, which here can conveniently be written in the form

y[n] = −
N∑

k=1

ak y[n − k] +
M∑

k=0

bk x[n − k],

with finite N and M . For FIR filters, the coefficients of the LCCDE coincide with
the samples of the impulse response; the LCCDE is not recursive, and no initial
conditions are required. For IIR filters, the LCCDE is “naturally” recursive, and
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therefore a set of initial conditions is required: the input samples prior to n = 0 are
assumed to be zero, and for the output samples prior to n = 0, initial conditions are
provided. Usually, initial rest conditions are assumed. Filtering a signal of length N
by any implementation of a given LCCDE will lead to a filtered sequence with the
same length N , because, typically, the output is computed starting from the first input
sample, and obviously stopping at the last sample. At the beginning of the output
sequence, a segment with length equal to the filter order will be affected by the
assumption of initial rest conditions. This segment can be seen as an initial transitory
filtering phase.

The LCCDE can be implemented by converting it into a software algorithmwith a
structure in which the three basic operations of addition, multiplication by a constant
and delay are properly interconnected. An unlimited variety of algorithms/structures
can be devised that correspond to the same input-output relation, i.e., to the same
system. The best structure in each particular case is dictated by considerations con-
cerning both efficiency and sensitivity to effects of finite-precision arithmetic. One
consideration in choosing among different structures that are a priori equivalent is,
in fact, computational complexity: structures with the fewest constant multipliers
(high computational speed) and the fewest delay branches (reduction of memory
use) are often most desirable. But another major consideration is the potentially neg-
ative effect of finite-precision arithmetic. This effect depends on the way in which
the computations are organized, i.e., on the structure of the interconnection scheme.
Sometimes it is better to use a structure that does not have the minimum number of
multipliers and delayers, if that structure is less sensitive to this effect.

More precisely, although two structures may be a priori equivalent with regards
to their input/output relation for infinite precision representations of coefficients and
variables, i.e., in theory, they may have dramatically different behavior when the
numerical precision is limited. Indeed, different structures correspond to different
algorithms and therefore imply different effects due to the representation of variables
with finite precision and to the round-off of the results of intermediate computations.
If all computations were exact, it would not make any difference which of the equiva-
lent structureswas used. However, coefficients are stored to finite precision and so are
not exact: the filter is actually quantized, and ultimately incorrect. Also, arithmetic
calculations are not exact.4 Arithmetic errors introduce noise that is then filtered
by the transfer function between the point of noise creation and the output. These
effects are very important for IIR filter implementations, while FIR systems are less
affected by them. An in-depth discussion of LTI system realizations and quantiza-
tion error analysis can be found, for example, in Jones (2005), Schlichthärle (2011),
Oppenheim and Schafer (2009).

Butwhy does an unlimited variety of algorithms/structures correspond to the same
input-output relation, i.e., to the same system? Once a structure has been devised, we
can manipulate it to get an equivalent structure without changing the overall system

4The worst case for arithmetic errors occurs when calculating the difference between two similar
values.
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transfer function: why? We already know the answer. All manipulations are based
on the linearity of the system and the algebraic properties of the transfer function.
Indeed, since the LCCDE set is linear, equivalent sets of difference equations can be
obtained simply by linear transformations of the variables. Thus, an unlimited number
of equivalent realizations of any given system exists. Each realization represents a
different computational way for implementing the system in software.

6.6.1 Direct Forms

Let us consider an LTI system satisfying an LCCDE and therefore having a rational
H(z). To make it unique, let us also suppose it is causal. As mentioned above, the
input-output relation of such a system can be expressed as an algorithm combining
three fundamental operations, namely addition, delay by k time steps (usually k = 1)
and multiplication by a numerical factor. Such an algorithm defines the system’s
internal structure, and is represented as a block diagram (BD) interconnecting oper-
ational blocks of the three types. The pictorial symbols used for the basic blocks are
shown Fig. 6.9.

Note that delayers and multipliers are elementary LTI systems. Their transfer
function is inscribed in the geometrical symbol that represents them: a rectangle for
the delayers and a triangle for the multipliers. In fact, the transfer function of the
elementary LTI system that multiplies the input by a factor of a is H(z) = a: if
y[n] = ax[n], choosing x[n] = zn we get y[n] = zn H(z) = ax[n] = azn , from
which we deduce that H(z) = a. The transfer function of the elementary LTI system
that delays the input by k time steps is H(z) = z−k . Indeed, if y[n] = x[n − k],
choosing x[n] = zn we get y[n] = zn H(z) = x[n − k] = zn−k = znz−k , hence
H(z) = z−k . The individual delay operations included in a BD are normally unit
delays that can be implemented by providing a storage register for each unit delay
that is required.

In order to directly represent the most general LCCDE by a BD, the auxiliary
sequence v[n] = ∑M

k=0 bk x[n − k] is usefully introduced. TheLCCDE thus becomes

y[n] = −
N∑

k=1

ak y[n − k] + v[n],

corresponding to the BD shown in Fig. 6.10. Note that the coefficient a0 = 1 is
implicit. This implementation is referred to as the direct form I implementation:
direct forms use coefficients ak and bk directly. From the point of view of the transfer

Fig. 6.9 Pictorial symbols
for a adders, b multipliers,
and c delayers by k time
steps

(a) (b) (c)
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Fig. 6.10 Block diagram for the direct form I implementation of the most general N th order
LCCDE

function, this diagram first implements b(z), i.e., the zeros of H(z), and then 1/a(z),
i.e., the poles.

This BD can be rearranged and modified in a variety of ways. Let us stress once
again that each rearrangement represents a different computational algorithm for
implementing the same system. For example, the BD of Fig. 6.10 can be seen as a
cascade of two systems, the first representing the computation of v[n] from x[n],
and the second representing the computation of y[n] from v[n]. Since both systems
are LTI systems (assuming initial rest-conditions for the 1-step-delay elementary
systems), the order in which the two systems are cascaded can be reversed, as shown
in Fig. 6.11, where for convenience it has been assumed that the two delay chains
have a common length N : this implies no loss of generality, since if M �= N , some
of the coefficients ak or bk in Fig. 6.11 will simply be zero, and the symbol N in
Fig. 6.11 will actually indicate max (M, N ).

We may further note that exactly the same signal w[n] is stored in the two chains
of delay elements in Fig. 6.11. Consequently, the two chains can be collapsed into
one, as in Fig. 6.12. This implementation has the minimum possible number of delay
elements, namely, max(N , M). An implementation with the minimum number of
delays is called a canonic form implementation; therefore this structure is commonly
referred to as the direct form II or canonic direct form implementation. This time,
from the point of view of the transfer function, the diagram first implements 1/a(z),
i.e., the poles of H(z), and then b(z), i.e., the zeros.
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Fig. 6.11 Rearrangement of the block diagram of Fig. 6.10. We assume for convenience that
M = N . If in reality M �= N , some of the coefficients will be zero

Fig. 6.12 Block diagram for the direct form II or canonic direct form implementation of the N th
order LCCDE
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6.6.2 Transposed-Direct Forms

Other important and useful equivalent structures for the general system H(z) =
b(z)/a(z) can be derived introducing another way of representing LCCDE imple-
mentation. A linear signal flow graph, for which we adopt the acronym SFG and
that is also known as a Mason graph, can be used to represent a difference equation
essentially in the same way as a BD, except for a few notational differences. For-
mally, an SFG is a network of directed branches that connect at nodes. Associated
with each node is a variable or node value. An SFG represents multiplications and
additions: multiplications are represented by the weights of the branches, also called
transmittances, while additions are represented by multiple branches going into one
node. An SFG has a one-to-one relation with a system of linear equations (Chen
1967).

As an example of how an SFG appears compared to the corresponding BD, in
Fig. 6.13 the two representations of the direct form-II realization of a first-order
digital filter are shown. This example can be found in Oppenheim et al. (1999). The
SFG in Fig. 6.13b corresponds to the equations

w0[n] = x[n],
w1[n] = x[n] − a1w4[n],
w2[n] = w1[n]

(a)

(b)

Fig. 6.13 a Block diagram for the direct form II of a first-order digital filter. b Signal flow graph
corresponding to the same block diagram
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w3[n] = b0w2[n] + b1w4[n],
w4[n] = w2[n − 1],
w5[n] = y[n] = w3[n].

There is direct correspondence between branches in the BD and branches in the SFG.
In fact, the important difference between the two representations is that nodes in the
flow graph represent both branching points and adders, whereas in the block diagram
a special symbol is used for adders. A branching point in the BD is represented in
the SFG by a node that has only one incoming branch and one or more outgoing
branches. An adder in the BD is represented in the SFG by a node that has two or
more incoming branches.

SFGs are therefore totally equivalent toBDs. LikeBDs, they can bemanipulated to
gain insight into the properties of a given system. The advantage of using SFGs lies in
the fact that a large body of SFG theory exists that can be directly applied to discrete-
time systems when they are represented in this way (Chow and Cassignol 1962;
Mason and Zimmermann 1960). Alternative structures for LTI causal systems can
thus be easily derived: SFG theory provides a variety of procedures for transforming
a given SFG into different forms, while leaving the overall input-output relation
unchanged.

One of these procedures, called flow graph transposition or flow graph reversal,
leads to transposed system structures that provide useful alternatives to the ones
previously presented. Transposed direct forms result from the application of the
transposition theorem, which derives from Mason’s gain formula of signal flow
graph theory (see, e.g., Mason and Zimmermann 1960). The theorem states that

• reversing the direction of each interconnection, i.e., reversing the arrows on all
network branches, while keeping transmittances unchanged,

• changing junctions (branch points) to adders and vice-versa,
• interchanging the input and output signals,

leaves the input/output relations unchanged. In BD terms, this means

• reversing the direction of each interconnection,
• reversing the direction of each multiplier,
• changing junctions to adders and vice-versa,
• interchanging the input and output signals.

Figures6.14 and 6.15 show the transposed-direct forms I and II, respectively,
directly presented in their BD version. Transposed-direct form II is a canonic
form. As we mentioned above, direct form I first implements the zeros and then
the poles. On the contrary, the transposed-direct form I first implements the poles
and then the zeros. In a similar manner, direct form II first implements the poles and
then the zeros, while the transposed-direct form II first implements the zeros and then
the poles. These differences can become important in the presence of quantization:
a very small change in the coefficients can heavily affect the positions of poles and
zeros.
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Fig. 6.14 Block diagram for the transposed-direct form I implementation of the N th order LCCDE.
This form results from applying the transposition theorem to the signal flow graph corresponding
to the block diagram in Fig. 6.10

6.6.3 FIR Direct and Transposed-Direct Forms

In the case of FIR systems, we have

y[n] =
M∑

k=0

bk x[n − k] =
M∑

k=0

h[k]x[n − k],

and the two direct-form I and II structures of Figs. 6.10 and 6.12 reduce to the
direct form FIR structure shown in Fig. 6.16a. This BD is referred to as a trans-
verse or tapped filter structure. The corresponding transposed-direct form appears
in Fig. 6.16b.

It is important to note that the structure in Fig. 6.16a simply implements y[n] =
h[n] ∗ x[n], i.e., the linear convolution of the signal with the filter impulse response.
We may recall the fact that FIR filtering via linear convolution can also be imple-
mented in the frequencydomain (seeSect. 3.5.4). Thismay seeman involute approach
to filtering, but it is convenient and is often adopted. Efficient implementations of
this approach exist, as the overlap-add method (Oppenheim et al. 1999), a technique
that combines successive frequency domain filtered blocks of an input sequence.
More material on filtering implementation via LCCDE (for both IIR and FIR filters)
and via linear convolution or overlap-add method (for FIR filters) is provided in
Sect. 16.4.1.1, where the issue of the transients present at the edge(s) of the filtered
sequence is illustrated in detail.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
http://dx.doi.org/10.1007/978-3-319-25468-5_16
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Fig. 6.15 Block diagram for the transposed-direct form II implementation of the N th orderLCCDE.
This form results from applying the transposition theorem to the signal flow graph corresponding
to the block diagram in Fig. 6.12

(a)

(b)

Fig. 6.16 Block diagrams for a direct form realization and b transposed-direct form realization of
an FIR filter



6.6 Digital Filtering Implementation 207

6.6.4 Direct and Transposed-Direct Forms for LP FIR Filters

If the considered FIR system has linear phase, the sequence h[n] has particular
symmetry properties: for LP filters of the Types I and II, h[n] = h[N − 1− n]. This
essentially allows us to halve the number of multipliers in the structure. Figures6.17
and 6.18 show the corresponding direct and transposed-direct forms, respectively. In
these examples, M = 6.

6.6.5 Cascade and Parallel Forms

The direct-form structures were obtained from the transfer function written as a ratio
of polynomials in z−1. But, as we saw in Sect. 3.2.8, H(z) can be factorized in a way
that evidences the positions of zeros and poles. Here we write that factorized form as

Fig. 6.17 Block diagram for the direct form implementation of a linear phase FIR filter

Fig. 6.18 Block diagram for the transposed-direct form implementation of a linear phase FIR filter

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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H(z) = A

∏M1
k=1

(
1 − wk z−1

)∏M2
k=1

(
1 − uk z−1

) (
1 − u∗

k z−1
)

∏N1
k=1

(
1 − pk z−1

)∏N2
k=1

(
1 − rk z−1

) (
1 − r∗

k z−1
) ,

where M1+2M2 = M and N1+2N2 = N , andwhere the first-order factors represent
real zeros atwk and real poles at pk , while the second-order factors represent complex
conjugate pairs of zeros at uk , u∗

k , and complex conjugate pairs of poles at rk , r∗
k .

This is the most general distribution of poles and zeros when all the coefficients ak

and bk are real.
This factorization suggests a class of structures consisting of a cascade of first-

and second-order systems (see, e.g., Oppenheim and Schafer 2009). A variety of
theoretically equivalent systems can be obtained by simply pairing the poles and the
zeros in different ways.

Alternatively, a partial fraction expansion of the rational H(z) can be exploited.
This time we write the partial fraction expansion as

H(z) =
Np∑

k=0

ck z−k +
N1∑

k=1

Ak

1 − pk z−1
+

N2∑

k=1

Bk
(
1 − qk z−1

)
(
1 − rk z−1

) (
1 − r∗

k z−1
) ,

where N1+2N2 = N . If M ≥ N , then Np = M − N ; otherwise, the first summation
is not included in the equation. If the coefficients of the LCCDE are real, then the
quantities ck , Ak , pk , Bk and qk are all real, while the rk are complex. In this form, the
transfer function can be interpreted as representing a parallel combination of first-
and second-order systems (see again Oppenheim and Schafer 2009).

Cascade and parallel structures can be transposed as well: the individual second-
order blocks are replaced by transposed structures. Many other classes of structures
have been developed, e.g., lattice structures, based on theory of autoregressive signal
modeling (Markel and Gray 1976). To understand their motivations and properties,
extensive theoretical background is, however, necessary. Formore information on fil-
ter realization structures, see Oppenheim and Schafer (2009), Proakis andManolakis
(2007), So (2010).

6.7 Zero-Phase Filtering

A filtering method is available, by which a sequence can be filtered with overall zero
phase, independently of the filter’s phase response (Gustafsson 1996; Mitra 2001;
Oppenheim and Schafer 2009).

This technique can be used for both FIR and IIR filters, and is known as zero-phase
filtering, or forward-reverse filtering: it is a non-causal approach in which first the
input signal is filtered, then the output is time-reversed and filtered again, and finally
the new output is time-reversed to get the end result. If x[n] is the input sequence
and h[n] is the filter’s impulse response, we can write
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x[n] ∗ h[n] = g[n];
g[−n] ∗ h[n] = r [n];

y[n] = r [−n].

We can best look at this procedure in the frequency domain. The result of the
first filter pass is X (ejω)H(ejω). Time reversal corresponds to replacing ω by −ω,
so after time-reversal we get X (e−jω)H(e−jω). The second filter pass corresponds to
another multiplication by H(ejω), i.e., X (e−jω)H(e−jω)H(ejω), which after another
time-reversal finally gives Y (ejω) = X (ejω)H(ejω)H(e−jω) = X (ejω)|H(ejω)|2 for
the spectrum of the output signal. In fact, for real-valued filter coefficients we have
H(e−jω) = H∗(ejω). Hence the output spectrum is obtained by filtering the input
sequencewith a filter with frequency response |H(ejω)|2, which is purely real-valued,
i.e., has zero phase and consequently causes no phase change between input and
output. The process doubles the overall filter order, as well as the passband ripple
and the stopband attenuation.

This method is particularly interesting for IIR filters: they cannot have exactly
linear phase, and forward-reverse filtering can compensate for the related phase
distortion. Moreover, in this technique the start-up and ending transients can be
minimized, so as to get a filtered sequence with the same usable length as the input
sequence. This is achieved by solving a system of linear equations to determine the
first filter’s initial conditions, and then extrapolating the beginning and the end of
x[n] by “reflected values”, in such a way that the slopes of original and extrapolated
sequences match at the end points. Together with the initial conditions, this reduces
the edge effects, which is interesting both for FIR and IIR filters. After the expanded
signal is filtered in forward and backward directions, the added parts are cut off.

6.8 An Incorrect Approach to Filtering

We insisted several times on the fact that a brick-wall frequency response, such as that
of an ideal lowpass filter, is not computationally realizable. At first sight, however,
it might appear very easy to apply such a filter to a sequence: couldn’t we simply
set the samples of the DFT of the data that correspond to undesired frequencies to
zero and then invert the transform? No, we can’t. This filtering procedure, though
appealing at first sight, is conceptually incorrect for the following reasons.

The ideal filter has an impulse response that is an infinite-length, non-causal
sequence h[n]. Its DTFT, i.e., the frequency response H(ejω), thus cannot be repre-
sented by a finite number of samples. When we set to zero the samples of the DFT
X [k] of an N -samples-long signal, we implicitly assume, on the contrary, that the fil-
ter frequency response can be represented by a DFT, H [k], with length N : in practice
we multiply two N -points DFTs term by term, i.e., we compute X [k]H [k], but H [k]
makes no sense. The inverse transform of H [k] is a sequence containing N samples:
hence we actually truncated the infinite impulse response h[n] to N samples. The
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Fig. 6.19 A lowpass
example of the effective
frequency response
Heff

(
ejω

)
obtained by

setting the DFT samples of a
data sequence corresponding
to undesired frequencies to
zero and then inverting the
transform. The black line
represents the desired filter;
the gray curve represents the
effective filter. a The
neighborhood of the cutoff
frequency only; b The
complete range of
frequencies [0, π ]

(a)

(b)

DTFT of this truncated sequence no longer has a boxy shape; it passes through the
desired values at any ωk , with k = [0, N − 1], but oscillates elsewhere. In other
words, in the frequency domain we implicitly applied to our data an effective fre-
quency response altered by the Gibbs phenomenon. Indeed, truncating (windowing)
the impulse response h[n] corresponds, in the frequency domain, to a continuous
periodic convolution of the ideal boxy frequency response with the DTFT of the
rectangular window.

Figure6.19 showsa lowpass exampleof the effective frequency response Heff
(
ejω

)

obtained in this way in a case with N = 1024. The cutoff frequency is 0.11π . The
gray curve in Fig. 6.19a shows, over a reduced frequency range around the cutoff
frequency, the effective response, while the black line depicts the frequency response
of the desired filter. Figure6.19b shows the whole frequency range [0, π ]. We can
see that the actual filter does not match any reasonable specifications.

6.9 Filtering After Downsampling

Let us consider a discrete-time signal obtained by sampling an analog signal at regular
time steps Ts . Now imagine that we want to apply a frequency-selective digital filter
to this discrete-time signal—e.g., a bandpass filter. Most often, we will think of
the desired bandpass filters in analog terms, and then we will translate the analog
bandlimits into the corresponding ω values. In some applications, it may be useful
to modify the sampling interval of the input sequence—for instance, to increase it
by downsampling the signal—so as to make the analog-frequency interval [ f p1, f p2]
we are interested in, which corresponds to an interval [ωp1, ωp2] when the sampling
step is Ts , correspond to a different discrete-frequency interval, in order to have a
well-conditioned filter design problem.
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A typical example of the usefulness of this approach may be the case in which
a very selective bandpass filtering in analog terms is desired, which would lead to
a narrow discrete-frequency passband very close to the origin of the ω axis. In this
instance, it is often preferred to preliminarily downsample the input, in order to
obtain a wider and better-positioned passband in terms of ω. This allows managing
filter design more easily, especially for what concerns the transition bandwidth, and
therefore the required filter order. Figure6.20 schematically illustrates how, for a
bandpass filter, the passband edges [ f p1, f p2] we may have in mind in analog terms
translate into a digital passband ωp1 and ωp2 when the signal x[n] has a sampling
interval Ts , but can lead to a different interval [ω′

p1, ω
′
p2] when the sampling step is

modified to T ′
s .

From a completely opposite point of view, we may want to change the sampling
interval of the signal from Ts to T ′

s in order to shift a discrete-frequency band on
which a given digital filter operates (e.g., the passband of an existent frequency-
selective digital filter we want to use) from a given position on the analog-frequency
axis to another position along the same axis.

In general, a variation of the sampling interval of a signal may imply

• a decrease of Ts , that is, an interpolation or upsampling of the data sequence, or
• an increase of Ts , that is, a decimation or downsampling of the data sequence.

Fig. 6.20 A bandpass filtering operation to be performed on a real-world sampled signal will
probably be thought of in terms of analog frequencies of interest, [ f p1, f p2]. Given the signal’s
sampling interval Ts , these cutoff analog frequencies lead to digital specifications [ωp1, ωp2] that
may be inconvenient for some reason (see text). If we modify the sampling interval to T ′

s �= Ts , we
can design a digital filter with a different passband [ω′

p1, ω
′
p2] that we may be able to handle in a

better way
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A common reason for upsampling is rate matching: for instance, we may want to
mix two signals with different sampling rates. A common reason for downsampling
is simply to reduce the amount of data to be processed, when the sampling rate is
excessive for the application at hand, so that the whole amount of data is not actually
needed, and can even be a hindrance, as in the previous example.

Here we will mainly focus on downsampling. Are we free to downsample a signal
without precautions? As usual, the answer can be found in the study of the effects of
downsampling in the frequency domain.

6.9.1 Theory of Downsampling

Let us take a signal x[n], with n = [0, N − 1], obtained by sampling an analog
signal x(t) at regular steps Ts . Suppose we want to downsample it by an integer
downsampling (decimation) factor kdec > 1, in order to get a signal with a new
sampling interval T ′

s = kdecTs .Wemay recall that this operation is linear but not time-
invariant. Canwe simply take xd [n] = x[kdecn], as in the example shown in Fig. 6.21?
No, we can’t. Recall that for x[n] to be aliasing-free, the analog signal x(t) must
be band-limited in the analog frequency interval −1/(2Ts) ≤ f < 1/(2Ts), that is,
− fN y ≤ f < fN y . In turn, for xd [n] to be aliasing-free, x[n] should be band-limited
in the analog frequency interval −1/(2T ′

s ) ≤ f < 1/(2T ′
s ), i.e., − f ′

N y ≤ f < f ′
N y ,

where we set f ′
N y = 1/(2T ′

s ) for the Nyquist frequency of the downsampled signal.
This shows that in order to avoid aliasing, the possible spectral content of the input
signal x[n] outside the interval [− f ′

N y, f ′
N y) must be removed prior to decimation,

by filtering x[n] with an anti-aliasing digital lowpass filter. Since f ′
N y = 1/(2T ′

s ) =
1/(2kdecTs) translates into ω′

N y = (2πTs)/(2kdecTs) = π/kdec, the anti-aliasing
digital lowpass filter must have a cutoff frequency equal to π/kdec. The output of the

Fig. 6.21 An example of
downsampling by an integer
factor kdec > 1 (here
kdec = 8). Empty circles
represent discarded input
samples; filled circles
represent selected samples
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anti-aliasing filter, x f [n], will then be safely downsampled, by taking one sample
every kdec samples: xd [n] = x f [kdecn].

We now need the expression of the spectrum of the downsampled signal to study
the effects of decimation. It can be demonstrated that5

Xd(z) = 1

kdec

kdec−1∑

i=0

X f
(
e−j2π i/kdec z1/kdec

)
,

5Let us define an impulse-train signal as

ykdec[n] =
+∞∑

i=−∞
δ[n − kdeci] =

{
1 for n ∈ kdecZ,

0 otherwise,

where Z indicates the set of integer numbers. This sequence is 1 at one out of every kdec samples,
and zero everywhere else. Equivalently, the impulse train can be written as

ykdec[n] = 1

kdec

kdec−1∑

i=0

ej2π in/kdec =

⎧
⎪⎨

⎪⎩

1
kdec

∑kdec−1
i=0 1 = 1 for n ∈ kdecZ,

1
kdec

1−ej2π in

1−ej2π in/kdec
= 0 otherwise,

where for the second case we used the expression for the finite sum of a geometric series and the
fact that ej2π in = 1. Now, let us calculate the z-transform of xd [n] = x f [kdecn], i.e.,

Xd (z) =
+∞∑

n=−∞
x f [kdecn]z−n .

We apply the substitution m = nkdec, keeping in mind that this makes the summation run only over
indexes m that are integer multiples of kdec:

Xd (z) =
∑

m∈kdecZ

x f [m]z−m/kdec .

We can now use the above impulse train sequence ykdec[n] to rewrite this as a summation over all
integers:

Xd (z) =
+∞∑

n=−∞
ykdec[n]x f [n]z−n/kdec =

+∞∑

n=−∞

⎛

⎝ 1

kdec

kdec−1∑

i=0

ej2π in/kdec

⎞

⎠ x f [n]z−n/kdec =

= 1

kdec

kdec−1∑

i=0

+∞∑

n=−∞
ej2π in/kdec x f [n]z−n/kdec =

= 1

kdec

kdec−1∑

i=0

+∞∑

n=−∞
x f [n]

(
e−j2π i/kdec z1/kdec

)−n = 1

kdec

kdec−1∑

i=0

X f

(
e−j2π i/kdec z1/kdec

)
.

This is the formula for the z-transform of the downsampler.
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hence

Xd(e
jω) = 1

kdec

kdec−1∑

i=0

X f
[
ej(ω−2π i)/kdec

]
.

The spectrum of the decimated signal results from the superposition of kdec shifted
and stretched images of X f (ejω). Stretching is connected to the fact that the argument
of the exponential term is divided by kdec in the right-hand side of this equation: this
means an expansion of the frequency axis by a factor kdec. Shifting is represented
by the term ω − 2π i in the exponent, which implies that two adjacent shifted and
stretched copies of X f (ejω) are separated by 2π on the ω axis. The expression of
Xd(ejω) tells us that in order to avoid aliasing, X f (ejω) must vanish at any frequency
from π/kdec to π : thus we should filter x[n] by an ideal anti-aliasing lowpass filter
with cutoff atωc = π/kdec, that is, at νc = 1/(2kdec), i.e., at fs = 1/(2kdecTs) = f ′

N y
in analog terms.

The ideal anti-aliasing filter is not computationally realizable, so a lowpass
approximation with a non-zero transition bandwidth is employed instead. A safety
factor on the cutoff frequency will help in achieving better results. For example, we
may want to set ωs = π/kdec, where ωs is the upper bound of the lowpass-filter’s
transition band, rather than ωp = π/kdec, where ωp is the upper passband limit.

In Figs. 6.22 and 6.23, the decimation process is illustrated by an example. Both
aliasing-free and aliasing-affected cases are considered. In Fig. 6.22, an anti-aliasing
filter has been applied to the signal prior to downsampling, so that in the interval
[−π, π) the spectrum |X f (ejω)| of the signal that undergoes decimation is not iden-
tically zero only in |ω| < π/kdec (Fig. 6.22a); the example is for kdec = 3. This
ensures that the downsampled signal is aliasing-free. Note that since the formula
for Xd(ejω) contains a summation over i = [0, kdec − 1], for kdec = 3 we need to
consider i = [0, 2]. The frequency-scaled shape of |X f (ejω)| for i = 0 (stretching
only, no shift), shown in Fig. 6.22b , exhibits equally spaced copies of the original
spectral shape as it appears in the principal interval in Fig. 6.22a, but these copies
are stretched with respect to this original shape, so that in the principal interval the
spectrum now occupies all the range [−π, π). Figure6.22c, d show stretching asso-
ciated with shift (i = 1 and 2, respectively). Finally, the shape of |Xd(ejω)| is visible
in Fig. 6.22e: this spectrum is given by the sum of the spectra appearing in panels b,
c, and d, multiplied by per 1/kdec. We can observe that aliasing is actually absent:
the shape of |X f (ejω)| is recognizable in |Xd(ejω)|.

Figure6.23 shows a case in which no anti-aliasing filter has been used: decima-
tion has been performed directly on the original signal x[n]. The spectrum of the
original signal occupies the whole principal interval [−π, π) (Fig. 6.23a). This is a
condition inwhich aliasing occurs. The frequency-scaled shape of |X (ejω)| for i = 0,
shown in Fig. 6.23b, actually exhibits stretched copies of the original spectral shape
that now extend outside the principal interval and invade the whole frequency axis.
For example, the copy centered at ω = 0 occupies the range [−3π, 3π). Finally,
Fig. 6.23c, d illustrate the effects of both stretching and shifting (i = 1 and 2, respec-
tively). Figure6.23e shows the shape of |Xd(ejω)|, determined by the sum of the
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(a)

(b)

(c)

(d)

(e)

Fig. 6.22 Spectral representation of a bandlimited discrete-time signal that undergoes decimation
by a factor kdec = 3. Anti-aliasing filtering of the original signal prior to decimation confines
the spectrum |X f (ejω)| to a part of the principal interval, namely to |ω| < π/kdec. a Spectrum
of the filtered signal; b stretching of the spectrum; c–d stretching and shifting; e spectrum of the
downsampled signal. No aliasing occurs

spectra shown in panels b, c, and d, multiplied by per 1/kdec. We can see that alias-
ing is actually present in this case: the shape of |X (ejω)| can no longer be deduced
observing |Xd(ejω)|.

It may be useful to observe that the formula we gave for Xd(ejω) expresses a
time-scaling property of the DTFT, which is similar to the following property of
the Fourier transform of analog signals: given a signal x(t) with Fourier transform
F {x(t)} ≡ X ( f ), and given a real non-zero constant a,

F {x(at)} = 1

|a| X

(
f

a

)
.

Indeed, x f [kdecn] is a time-domain scaling of x f [n] by a factor a = kdec, and results
in the described operation in the frequency domain.

In the Fourier theory of analog signals, a frequency-scaling property also exists:
if we indicate by F−1 {·} the inverse continuous-time Fourier transform, then

1

|a| x

(
t

a

)
= F−1 {X (a f )} , i.e., F

{
1

|a| x

(
t

a

)}
= X (a f ).
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(a)

(b)

(c)

(d)

(e)

Fig. 6.23 Spectral representation of a bandlimited discrete-time signal that undergoes decimation
by a factor kdec = 3.No anti-aliasing filter has been applied to the original signal prior to decimation,
and a the spectrum occupies the whole principal interval. b After stretching due to decimation, the
spectrum exits the principal interval; c–d stretching is combined with shifting to give e the spectrum
of the downsampled signal, contaminated by aliasing

Now, looking at the last two formulas we see that

• for a equal to the inverse of an integer, i.e., for a = 1/kdec, evidently we are
brought back to the previous case of downsampling;

• for an integer a > 1 this property can be brought back to the case of upsampling by
an integer factor kint , i.e., to the case in which an interpolated signal with reduced
sampling interval is defined as

xi [n] =
{

x[ n
kint

] for n = 0,±kint ,±2kint . . . ,

0 otherwise.
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Thus, interpolation is obtained by inserting the proper number of zeros between
adjacent samples. Later, the discontinuities in the result can be smoothed out
using a lowpass filter (Oppenheim and Schafer 2009). It is not difficult to show
that Xu(z) = X (zkint ).

Downsampling and upsampling are central issues in the frame of the implemen-
tation of the discrete wavelet transform (DWT) through the applicaton to a signal
of a two-channel filter bank (Chap. 14). In DWT implementation, the downsampling
and upsampling are by a factor of 2. In Chap.14 we will therefore particularize the
results obtained here for the special case of kdec = 2 and kint = 2.

6.9.2 An Example of Filtering After Downsampling

Imagine we recorded a magnetoencephalogram (MEG)6 of a resting–state normal
healthy subject. Typically these data sets include the recordings of over 100 channels,
corresponding to different sensors distributed on the scalp. We would like to extract
from one of more channels typical brain waves: δ, θ , α, β, and γ waves, which are
characterized by frequencies in the ranges 0.5–4, 4–8, 8–12, 12–30 and 30–100Hz,
respectively.7

6Magnetoencephalography is technique aimed at detecting magnetic fields produced by the brain.
At the cellular level, individual neurons in the brain have electrochemical properties that result

in the flow of electrically charged ions. Electromagnetic fields are generated by the net effect of
this slow ionic current flow. While the magnitude of fields associated with an individual neuron is
negligible, the effect ofmultiple neurons (for example, 5×104−1×105 neurons) excited together in a
specific area generates a measurable magnetic field outside the head. These neuromagnetic signals
generated by the brain are extremely weak. Therefore, MEG scanners require superconducting
sensors (SQUID, superconducting quantum interference device). The SQUID sensors are bathed
in a large liquid helium cooling unit at approximately −269 ◦C. Due to low impedance at this
temperature, the SQUID device can detect and amplify magnetic fields generated by neurons a
few centimeters away from the sensors located on the patient’s head. MEG measurements span
field magnitudes from about 10 femtoTesla (fT) for spinal cord signals to about several picoTesla
(pT) for brain rhythms. Recall that the symbols micro (μ), nano, (n), pico (p) and femto (f) in
front of a measurement unit mean 10−6, 10−9, 10−12, and 10−15, respectively. To appreciate how
small the MEG signals are, it should be recalled that Earth’s magnetic-field magnitude is about
0.5µT and the urban magnetic noise about 1nT–1µT, or about a factor of 1 million to 1 billion
larger than MEG signals. For this reason, the subject being studied and the MEG instrument must
be in a magnetically shielded room, to mitigate external interference. MEG measurements are
performed using magnetometers and/or gradiometers. The gradiometers values are expressed in
T/m (Tesla/meter), while magnetometers measure the magnetic field in Tesla. As a rule of thumb,
gradiometer measurements can be roughly converted into magnetometers units bymultiplying them
by the size of the sensor (typically, about 4cm).
7Here we are referring to the classical categorization of brain waves (see Buzsáki 2011). This
classification was introduced by International Federation of Societies for Electroencephalography
and Clinical (1974). See also Steriade et al. (1990).

http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_14
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Let us focus on a single sensor. Suppose that we know from preliminary analysis
that the corresponding signal (N ≈ 4 × 105; duration of about 7 minutes; sampling
frequency 1025Hz) has shown variability in all the above-mentioned bands. Now
we want to extract brain waves by band pass filtering. We decide to design proper
LP FIR filters to extract the variability in each band. A segment of the signal (with
values expressed in fT) can be see in the upper panel of Fig. 6.24a. The signal is
the result of measurements affected by errors, and must be considered as a random
power signal whose power spectrum must be estimated from the available set of
samples (Chaps. 9–11). In the present case, a simple estimation method called the
periodogram (Sect. 10.3) has been used to calculate the power spectrum of the single-
channel MEG signal. This spectrum is shown in the upper panel of Fig. 6.24b.

The Nyquist frequency is 1025/2Hz = 512.5Hz and corresponds to π in terms
of ω. The sampling interval is 1/1025 = 9.7561 × 10−4 s. To extract the variability
in each band, we thus would need passband filters with the following adimensional
passbands:

(a) (b)

Fig. 6.24 a Upper panel a segment of a single-channel MEG signal, expressed in fT; lower panels
extracted waveforms (values in fT). b Upper panel power spectrum of the original signal (see text);
lower panels power spectra of filtered MEG signals in the δ to γ frequency bands (black curves),
superimposed to the spectrum of the original signal (gray curves). To facilitate the comparison,
the factor 1/kdec reducing the spectral power of the decimated signals has been removed. In each
panel, vertical dotted lines enclose the passband of the filter employed

http://dx.doi.org/10.1007/978-3-319-25468-5_9
http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_10


6.9 Filtering After Downsampling 219

• 0.0010π–0.0078π for the δ range;
• 0.0078π–0.0156π for the θ range;
• 0.0156π–0.0234π for the α range;
• 0.0234π–0.0585π for the β range;
• 0.0585π–0.1951π for the γ range.

This makes no sense: the sampling interval of the data is exceedingly small for our
purposes—the Nyquist frequency is exceedingly large—and these filters would be
poorly conditioned, with a very narrow passband positioned in the neighborhood
of the zero frequency. We have no choice but decimating our data, in order to pose
our filter design problem in the correct terms. We want to be able to use filters
with a passband width representing a reasonable fraction of π , and located more or
less centrally with respect to the interval [0, π ]. A simple reasoning based on these
requirements leads to estimating proper decimation factors kdec to be 120, 40, 25, 12
and 4 for the δ, θ , α, β and γ bands, respectively. These downsamplings lead to the
following desired adimensional passbands:

• 0.1171π–0.9366π for the δ range;
• 0.3122π–0.6244π for the θ range;
• 0.3902π–0.5854π for the α range;
• 0.2810π–0.7024π for the β range;
• 0.2341π–0.7805π for the γ range.

They appear very reasonable. We now set the so-called filter tolerances, limiting the
ripple that can be present in the passband (δp) and stopband (rs). See Chap.7 for
details about filter tolerances. In this example we set: δp = 0.095, rs = 60dB, and
width of the transition bands 0.02π . Then we design the filters using the minimax
approach that will be described in the Chap.7 and that produces LP FIR filters.
The frequency responses of these filters are shown in Fig. 6.25, both in dB units
(Fig. 6.25a) and linear units (Fig. 6.25b). The order is 184: a high value, but harmless
since we have such a large amount of data.

We are not done yet: we still have to solve one issue, namely the fact that the
first three decimation factors are very high (120, 40 and 25). We should design
and apply lowpass anti-aliasing filters that would again be ill-conditioned: indeed,
their theoretical cutoffs ωc = π/kdec would be 0.0262π , 0.0785π , and 0.1257π ,
respectively. The simplest way to solve this issue is to decimate twice by smaller
factors, applying each time the proper anti-aliasing filter, which this time will have
a cutoff frequency easier to handle. So we decide to downsample as follows:

• kdec,1 = 12 the first time and kdec,2 = 10 the second time in the δ range;
• kdec,1 = 8 and kdec,2 = 5 in the θ range;
• kdec,1 = 5 and kdec,2 = 5 in the α range.

Now we design anti-aliasing LP FIR filters with order 30 (figure not shown) and
apply them to the signal. Then we downsample, and finally apply the passband filters
of Fig. 6.25.

Figure6.24 shows the result of this procedure for all frequency bands. The lower
panels of Fig. 6.24 show: in column a, the extracted wave (black curve; values in fT);

http://dx.doi.org/10.1007/978-3-319-25468-5_7
http://dx.doi.org/10.1007/978-3-319-25468-5_7
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(a) (b)

Fig. 6.25 Frequency responses of the bandpass filters used to extract δ, θ , α, β, and γ waves from
a single-channel MEG recording: a dB units, b normal units

in column b, the power spectrum estimated via periodogram of the filtered signal
(black curve), superimposed to that of the original signal (gray curve). For a better
visualization, the factor 1/kdec reducing the spectral power of the downsampled
signals has been removed. Annotations specify which frequency band each panel is
relative to; vertical dotted lines enclose the passband in each plot.

This example clearly explains how the downsampling approach can be exploited
to get a well-posed filtering problem even when the sampling rate is too high for our
purposes.
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Chapter 7
FIR Filter Design

7.1 Chapter Summary

This chapter begins with general considerations about the design process of a digital
filter. We will describe the form in which the filter specifications must be expressed
by the designer, and will examine the reasons why FIR filters might be preferred
in applications, in comparison with the arguments in favor of IIR filters. Then the
discussion will focus on FIR filter design, leaving the topic of IIR design to the next
chapter. The most popular design methods for FIR filters will be presented, and the
quantitative approximation criteria that may be established to judge the resemblance
of the approximated filter, of which four types exist, with the desired ideal one will be
discussed. The properties of LP/GLP FIR filters will then be examined in detail, and
a factorization of the zero-phase response, useful to unify the symmetry condition
for the coefficients of all four filter types, will be performed. In this factorization,
the zero-phase response is split into a fixed factor, depending on the filter type but
not on specifications, and an adjustable factor, with coefficients to be determined
according to specifications. This mathematical work paves the way to the description
of the optimum and most flexible design method for LP/GLP FIR filters, namely
the minimax method, which ensures that filters will meet specifications with the
minimum possible order and produces equiripple filters, i.e., filters with uniform
oscillations in the passband(s) and stopband(s). The properties of these optimum
FIR filters will finally be studied.

7.2 Design Process

The design of digital filters is a process that involves the three fundamental stages
listed below.
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1. Specification of the desired properties of the system. For example, we may want
an LTI-RCSR system operating a certain kind of frequency selection. On the
frequency response, amplitude constraints and, possibly, phase constraints are
imposed.

2. Approximation of these specifications using a realizable discrete-time system. A
design method must be selected, allowing us to approximate the desired ideal
filter by a realizable filter with the least possible complexity, i.e., the minimum
possible order, under the condition of satisfying the specifications according to
a certain quantitative criterion. The criterion adopted characterizes the design
method. This step implies:

• selecting a class of filters suited for approximating the desired frequency
response. For example, we may want a linear phase (LP) FIR filter;

• individuating a design method suited for finding, within the selected class, the
member that best satisfies the specifications, according to the criterion that
characterizes the method, and keeping complexity fixed;

• synthesizing this best member, i.e., realizing the system, by calculating its
impulse response and its frequency response;

• analyzing the performances of the designed filter, and rectifying either the
order, or the specifications, if the provided specifications actually are not met
at the chosen order.

3. Realization the system, i.e., actuation of the desired digital filtering by a software
implementation, according to the lines previously described in Sect. 6.6.

7.3 Specifications of Digital Filters

Digital filters are specified giving constraints on their frequency response. The con-
straints concern both their magnitude and phase responses (see Oppenheim and
Schafer 2009).

7.3.1 Constraints on the Magnitude Response

The constraints (i.e., specifications) on
∣∣H(ejω)

∣∣ include a set of band limits, a set of
desired values in each band, and a set of tolerance limits, that is, a tolerance scheme.

Figure 7.1 illustrates the example of the specifications for an FIR lowpass filter.
Here the specifications are expressed giving the passband and stopband limits,1 ωp

and ωs , the desired values of |H(ejω)| in the passband and in the stopband (usually
these values are 1 and 0 respectively), and the tolerances δp and δs . The black curve
represents an example of amplitude response that would not exceed these absolute

1In this discussion we use the symbol ωp for the upper passband limit, in place of the symbol ωc
previously used to indicate the cutoff frequency of the ideal filter.

http://dx.doi.org/10.1007/978-3-319-25468-5_6
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Fig. 7.1 Specifications for
the magnitude response of an
FIR filter: the example of a
lowpass filter. The black
curve represents an example
of amplitude response that
would meet the prescribed
specifications. The dashed
line depicts the desired ideal
response, while horizontal
solid lines represent absolute
tolerances

tolerances, represented by horizontal solid lines. Observe the transition band inter-
posed between the passband and the stopband: its width can never vanish if the filter
must be computationally realizable. In the case of IIR filters, for which the classical
design approach starts from an analog filter, the specifications are expressed in a
slightly different way, as we will see in Chap. 8.

The quantities δp and δs in Fig. 7.1 represent the maximum tolerable deviation
of |H(ejω)|, in the passband and stopband respectively, with respect to the desired
amplitude response |Hd(ejω)| (dashed line in Fig. 7.1). In the lowpass case, the desired
magnitude response is

|Hd(e
jω)| =

{
1 for ω ∈ [0,ωp],
0 for ω ∈ [ωs,π],

and the specifications can thus be expressed as

{
1 − δp ≤ |H(ejω)| ≤ 1 + δp for ω ∈ [0,ωp],
|H(ejω)| ≤ δs for ω ∈ [ωs,π],

under the constraint that ωs − ωp > 0. In many cases, |H(ejω)| exhibits oscillatory
behavior in the passband and/or in the stopband. Then δp is also referred to as the
passband ripple; δs is the stopband ripple.

Sometimes, the tolerances are expressed in logarithmic units, i.e., in dB:

{
rp = 20 log10

(
1+δp

1−δp

)
,

rs = −20 log10(δs).

These values are called passband ripple in dB and stopband attenuation in dB, respec-
tively. These values represent relative tolerances, in the sense that they contain the

http://dx.doi.org/10.1007/978-3-319-25468-5_8
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Fig. 7.2 Specifications for
the magnitude response of an
FIR filter, with relative
tolerances in dB (horizontal
solid lines): the lowpass
example. The black curve
represents the same
magnitude response that was
plotted in normal units in
Fig. 7.1

explicit values of |Hd(ejω)|, that is, 0 and 1. Figure 7.2 illustrates the meaning of
these relative tolerances.

Since
log(1 + δp) � δp, log(1 − δp) � −δp,

we can also approximately write

rp = 20 log10

(
1 + δp

1 − δp

)
= 20

[
log10(1 + δp) − log10(1 − δp)

] =
= 20 log10 e

[
log(1 + δp) − log(1 − δp)

] � 20 log10 e × 2δp,=
= (40 × 0.434)δp = 17.37δp,

where e ≈ 2.71828 is the base of the natural logarithm. The inverse relations are

⎧
⎪⎨

⎪⎩

δp = 10r p/20−1
10r p/20+1

,

δs = 10−rs/20.

Let us make a numerical example:

δp = 0.095 � rp � 17.37 × 0.095 � 1.65 dB,

rs = 30 dB � δs = 10−30/20 = 0.0316.

So far we have considered the lowpass case, in which only one passband and
only one stopband are present. However, even the simplest passband filter has two
stopbands: in the general multiband case, one or more passbands and one or more
stopbands will be present. If
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• all passbands are assigned the same tolerance δp and if the desired passband
response is Hdp(ω), usually piecewise constant,

• if all stopbands are assigned the same tolerance δs and the same desired response
Hds(ω) = 0,

then we can write, indicating by Bp the union of all passbands and by Bs the union
of all stopbands,

Hd(e
jω) =

{
Hdp(ω) for ω ∈ Bp,

0 for ω ∈ Bs,

and can express the specifications as

{
−δp ≤ [|H(ejω)| − ∣∣Hdp(ω)

∣∣] ≤ δp for ω ∈ Bp,

|H(ejω)| ≤ δs for ω ∈ Bs,

that is,

{∣∣Hdp(ω)
∣∣ − δp ≤ |H(ejω)| ≤ ∣∣Hdp(ω)

∣∣ + δp for ω ∈ Bp,

|H(ejω)| ≤ δs for ω ∈ Bs .

For the purpose of filter design, it is more convenient to express the constraints
globally, by only one inequality, rather than separately for Bp and Bs . In order to do
this, a global weighting functions is introduced, which is defined as

W (ω) =
{

1 for ω ∈ Bp,

δp/δs for ω ∈ Bs .

Defining a weighted error function as

E(ω) = W (ω)
[|H(ejω)| − |Hd(e

jω)|] ,

we can write specifications in a global form, valid for the union of Bp and Bs :

|E(ω)| ≤ ε for ω ∈ B = Bp ∪ Bs, with ε = δp.

The constraint on the weighted error function can be expressed as follows: if the
maximum absolute value of the weighted error function does not exceed ε in the
union of all passbands and stopbands, then the magnitude response |H(ejω)| meets
the specifications.

In Fig. 7.3 we can observe the simple case of a passband filter with only one
passband and two stopbands, for which Bp corresponds to

ωp1 ≤ ω ≤ ωp2,
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Fig. 7.3 Specifications for
the magnitude response of an
FIR filter: the example of a
bandpass filter. The black
curve represents an
amplitude response that
would meet the prescribed
specifications

and Bs corresponds to {
0 ≤ ω ≤ ωs1,

ωs2 ≤ ω ≤ π.

We may mention that in the most general case, each band of a multiband filter
will have its tolerance; moreover, the maximum tolerable deviation of |H(ejω)| from
|Hd(ejω)| in each band will depend on ω. This frequency-dependent deviation is
called approximation error, and indicated by ep(ω) or es(ω). Two different weighting
functions for the errors in Bp and Bs are then introduced. Maximum tolerances
independent of frequency, δp and δs , are set, and the weighting functions are defined as

{
Wp(ω) = δp/ep(ω),

Ws(ω) = δs/es(ω).

The specifications become

{
−δp ≤ Wp(ω)

[|H(ejω)| − ∣∣Hdp(ω)
∣∣] ≤ δp for ω ∈ Bp,

Ws(ω)|H(ejω)| ≤ δs for ω ∈ Bs .

with an arbitrary Hdp(ω). The global weighting function is then defined as

W (ω) =
{

Wp(ω) for ω ∈ Bp,(
δp/δs

)
Ws(ω) for ω ∈ Bs .
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Introducing the weighted error function

E(ω) = W (ω)
[|H(ejω)| − |Hd(e

jω)|] ,

we can write specifications in the union of Bp and Bs as

|E(ω)| ≤ ε for ω ∈ B = Bp ∪ Bs, with ε = δp.

Finally, we can also express the weighted error function in terms of the approxi-
mated and desired zero-phase responses (Sect. 6.5) H(ω) and Hd(ω) (see, for exam-
ple, Mitra and Kaiser 1993):

E(ω) = W (ω) [H(ω) − Hd(ω)] .

This formula will be the starting point for the minimax design, explained in Sect. 7.7.
Of course, E(ω) in this formula can assume both signs not only in the passband of
a standard lowpass filter, but also in the stopand. However, this is unessential in our
discussion, since the constraint on E(ω) only involves |E(ω)|.

7.3.2 Constraints on the Phase Response

The phase response of a digital filter is first of all constrained by the requirements
of causality and stability: all the poles of H(z) must be contained inside the unit
circle. In many applications concerning FIR filters, since zero-phase is impossible
for computationally realizable filters, phase linearity is sought too. The shape of the
input signal, as determined by the dominant frequency components contained in Bp,
is thus preserved in the output signal (see Sect. 6.5.2). Of course, only the phase in the
passband(s) is important. In the stopband(s), the elementary sinusoidal contributions
to the input signal should ideally be completely eliminated, and therefore the phase
dependence on frequency is unimportant there.

In some specialized applications, generalized linear phase is sought. For example,
this is the case of Hilbert filters: wideband lowpass or bandpass filters designed to
rotate by π/2 (a quarter of a cycle) the phase of any sinusoidal component of the
input signal contained in the passband. In this way, an output signal is obtained,
which is in quadrature with the input signal.

Hilbert filters find applications—to mention just a few examples—in modulators,
in differentiators, in voice signal processing, in medical image signal processing,
etc., as well as in multivariate analysis methods like complex principal component
analysis. Complex principal component analysis or CPCA (Horel 1984; Jolliffe 2002;
Saff and Snider 2002) represents an extension to the complex domain of the more
classical principal component analysis (PCA), a statistical method, proposed in 1901

http://dx.doi.org/10.1007/978-3-319-25468-5_6
http://dx.doi.org/10.1007/978-3-319-25468-5_6
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by Karl Pearson and developed by Harold Hotelling in 1933, which belongs to
the vast domain of factorial analysis. The main goal of PCA is the reduction of
a high number of mutually dependent variables, representing as many correlated
features of the considered phenomenon, to a few independent variables, expressing
uncorrelated features. The extension to the complex domain, known as complex
principal component analysis, has been used, for example, in geophysics, to detect
propagating disturbances in scalar spatial-temporal fields, such as temperature and
precipitation fields.

Essentially, Hilbert filters are useful any time that it is advantageous to process
a complex signal instead of the original real signal. The complex signal is derived
from the real one in a univocal way, without altering the original spectral features
of the signal. Such a complex signal is referred to as the analytic signal associated
with the original real signal. The Hilbert filter provides the quadrature signal that
is necessary to construct the analytic signal: the real part of the analytic signal is
the original real signal, while the imaginary part is obtained by filtering the latter
using a wideband Hilbert filter. The spectrum of an analytic signal is identically
zero at negative frequencies; the spectrum over non-negative frequencies is twice the
spectrum of the original real signal over the same frequency interval. Since the latter
is an even function of frequency, we can see the spectrum of the analytic signal as
the result of reflecting the spectral content of x[n] pertaining to ω < 0 over ω ≥ 0.
These applications are beyond the scope of our present discussion. In what follows,
we will mainly focus on filters having strictly linear phase and therefore our attention
will be principally reserved to Type I- and Type II- FIR filters.

Whenever linear phase is unnecessary—or unattainable, as in the case of IIR filters
that can have quasi-linear phase but can never have exactly linear phase—tolerance
limits on phase quasi-linearity can be established.

It must also be noted that accepting a linear phase in place of the desired zero
phase does not make the top-hat frequency response of an ideal filter realizable:
indeed, substituting

Hd(e
jω) =

{
1 for |ω| ≤ ωp,

0 for ωp < |ω| ≤ π

that corresponds to an impulse response which has infinite length and is non-causal,

hd [n] = sin(ωpn)

πn
,

with

Hd(e
jω) =

{
e−jωτ for |ω| ≤ ωp,

0 for ωp < |ω| ≤ π
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that corresponds to an impulse response given by

hd [n] = sin[ωp(n − τ )]
π(n − τ )

does not solve the problem, because this impulse response is still infinite in length
and non-causal.

7.4 Selection of Filter Type: IIR or FIR?

Once the specifications have been expressed, a decision must be made about approx-
imating Hd(ejω) by a rational function, typical of an IIR system, or by a polynomial
function, typical of an FIR system. FIR filters

• can have exactly linear phase;
• are always stable;
• are flexible because excellent design methods exist for them that can reproduce

almost arbitrary desired frequency responses;
• are less sensitive than IIR filters to the effects of finite-precision arithmetic in

software implementations.

However, they also present some drawbacks. FIR filters

• do not allow for any closed-form design equations: no formulas exist in which we
can directly insert the given specifications to immediately get the approximated
frequency response and consequently the impulse response. The design of FIR
filters is performed, as we shall see, through iterative procedures requiring powerful
computational facilities; on the contrary, closed-form design equations exist for
IIR filters;

• approximate any given specifications with a higher order with respect to IIR filters;
• exhibit oscillations in the passband, while an IIR filter can be practically flat, as

explained in Chap. 8.

In summary, the greatest disadvantages of FIR filters with respect to IIR filters lie in
the fact that for equal specifications FIR filters have higher order than IIR filters, and
that FIR filters cannot have a flat passband. On the other hand, IIR filters cannot have
exactly linear phase. However, this is not dramatic if we consider only applications
in which data can be processed off-line: if the whole data sequence is recorded
before filtering, a zero-phase non-causal approach can be followed that eliminates the
distortions due to nonlinear phase (Sect. 6.7). In conclusion, the strongest argument
in favor of FIR filters is probably the flexibility of the minimax design method,
presented in Sect. 7.7.

In the present discussion, we will concentrate on the design of LP/GLP frequency-
selective FIR filters (and ultimately on LP filters). Therefore we will now assume
that the decision has been made to approximate Hd(ejω) by a polynomial function.
If just LP is sought, are we then free to choose between Type-I and Type-II filters?

http://dx.doi.org/10.1007/978-3-319-25468-5_8
http://dx.doi.org/10.1007/978-3-319-25468-5_6
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Fig. 7.4 Zero-phase
response for FIR filters of
a Type I, b Type II, c Type
III, and d Type IV

(a)

(b)

(c)

(d)

To answer this question, we must recall the restrictions imposed by causality on the
zero-phase response of LP/GLP filters:

• when φ0 = 0 (Types I and II), then H(ω) is an even function;
• when φ0 = π/2 (Types III and IV), then H(ω) is an odd function;

moreover,

• when τg is an integer (Types I and III), then H(ω) is periodic with period 2π;
• when τg is a half-integer (Types II and IV), then H(ω) is periodic with period 4π.

Thus, the picture exemplified in the schemes of Fig. 7.4 emerges:

• Type-I filters: H(ω) is periodic with period 2π and is an even function (Fig. 7.4a);
• Type-II filters: H(ω) is periodic with period 4π and is an even function (Fig. 7.4b);
• Type-III filters: H(ω) is periodic with period 2π and is an odd function (Fig. 7.4c);
• Type-IV filters: H(ω) is periodic with period 4π and is an odd function (Fig. 7.4d).

Observing Fig. 7.4 we note that

• for Type-I filters, H(ω) presents even symmetry both around ω = 0 and ω = π;
therefore it can have any shape, i.e., it can represent a lowpass filter, as well as a
highpass, or a bandpass, or a bandstop filter;

• for Type-II filters, H(ω) is even around ω = 0 and ω = 2π, but is odd around
ω = π and ω = 3π. Therefore it must be zero at ω = π and cannot assume the
shape of a highpass or a bandstop filter;

• for Type-III filters, H(ω) is odd around ω = 0 and ω = π, so it must be zero at
these frequencies. Therefore it can only assume the shape of a passband filter;
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• for Type-IV filters, H(ω) is odd around ω = 0 and ω = 2π, while it is even around
ω = π and ω = 3π. At ω = 0 it must vanish, and therefore cannot represent a
lowpass or a bandstop filter.

We can conclude that only Type-I filters are suited to approximate all kinds of ideal
frequency-selective filter. Type-II filters are suited to approximate lowpass and band-
pass filters, but they are associated with half-integer time delays of the output with
respect to the input signal, which can be inconvenient. If no particular indications are
provided in favor of a Type-II filter, we will then stick to Type-I filters, characterized
by an even order. Type-III and IV filters are used for special filters, like Hilbert filters
and differentiators, about which we will not go into details.

7.5 FIR-Filter Design Methods and Approximation Criteria

FIR filter design methods can be divided into two categories:

1. methods that require only relatively simple calculations. The most popular is the
design by impulse response truncation using windows, also known as windowing
method; another example is provided by the least-squares (LS) design method.
These methods (see, e.g., Parks and Burrus 1987; Oppenheim and Schafer 2009)
provide good results but are not optimized in terms of filter order;

2. methods based on numerical optimization procedures that require iterative cal-
culations and sophisticated design software. The most interesting is the minimax
design method that produces LP filters meeting specifications at the lowest pos-
sible order. For this reason, FIR filters designed by this method are said to be
optimum filters.

A crucial point for the ease of use of a design method is the availability of some
formula allowing an approximate a priori estimate of the filter order required to
meet given specifications. In general, it is intuitive that more stringent specifications
lead to higher orders. For example, let us consider an FIR passband filter: if we
require a narrow transition band and a small ripple in the passband and/or stopband,
we will have to design a high-order filter, which implies a long impulse response,
many calculations when we apply the filter to a sequence, and an extended transitory
filtering phase. If we choose both the specifications and the order in an arbitrary way,
very likely the designed filter will not have the desired behavior. We will thus be
forced to modify some parameter—normally we will increase the filter order—and
then repeat the design procedure until specifications are met. If, for a certain design
method, an a priori estimate of the order required to meet specifications is possible,
even if this estimate is only approximated, a lot of time and computational resources
can be saved. This possibility exists in the minimax design method, and is based
on empirical formulas derived from numerical simulations, while it is limited to a
very particular case in the impulse-response-truncation method: a further argument
in favor of the minimax approach.
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Many FIR design methods are based on the definition or an error measure through
which the similarity between the frequency response of the designed filter and the
desired one can be quantified. Three design methods are normally employed in FIR
filter design. The first two are named after their characteristic error measure.

1. Minimax design method: the samples of h[n], which also are the coefficients of the
FIR transfer function, are optimized in such a way as to minimize the absolute
maximum error of the realized frequency response with respect to the desired
one, in the passband and/or stopband. The approximation thus obtained is called
minimax approximation or Chebyshev approximation. Let us focus our atten-
tion on the passband, and suppose the designed filter has an oscillatory behavior
(Fig. 7.1). The error attains its maximum value where the approximated magni-
tude response touches the tolerance limits, i.e., at the relative maxima and minima
(i.e., peaks) of the magnitude response. The absolute maximum passband error
is thus an absolute peak error. The same is true in the stopband.
Giving a tolerance scheme thus means specifying the maximum value that the
absolute peak error can assume in each band. The minimum order required to
respect these limits can then be estimated. If a Type-I filter is desired and this
minimum order is an odd number, it will be increased by one unit. Then the
coefficients of the filter, having this order and the specified band limits, are opti-
mized numerically, so that the absolute peak error in the passband and stopband
is minimized. The final result can have, in each band, an absolute peak error
equal to the corresponding pre-fixed maximum value, or even slightly lower if
the chosen order was actually redundant. However, the empirical formulas avail-
able for minimum order estimation normally underestimate it, so it is likely that
at the first attempt the minimized error exceeds the tolerance limits. The order is
then increased by two units (so as to remain an even number) and the procedure
repeated until the minimized error turns out to be contained inside the tolerance
belt in each band.
The filters obtained by minimax-error design are found to be equiripple, i.e.,
characterized by uniform oscillations in each band, as in Fig. 7.1.

2. Least-squares (LS) design method: the square error between the effective fre-
quency response and the desired one, integrated over the passband(s) and the
stopband(s), is minimized. The minimization can possibly be weighted differently
on the various bands. A variation of this method, called constrained least-squares
(LS) design, allows for performing the minimization of the integrated square error
while imposing upper and lower limits for the error in the various bands.

Simpler design methods also exist that do not explicitly use any of the error measures
mentioned above. The most popular is the design by impulse response truncation
using windows.

This method starts from a generic ideal desired frequency response Hd(ejω) that,
being a periodic function, can be represented by a Fourier series expansion. The
coefficients of the expansion are the samples of the impulse response hd [n], which
is non-causal and infinite in length, because Hd(ejω) has jumps discontinuities. The
most straightforward approach to obtaining a causal FIR approximation to such a
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system is to truncate the ideal impulse response, and this is done multiplying it by
a rectangular or tapered window. The window shape and length must be chosen in
such a way as to obtain an approximation respecting some given specifications and
tolerances concerning the frequency response of the designed filter. In the case of
a rectangular window, the windowed design implicitly uses the least-squares error
measure. Note that the impulse response hd [n] is a bilateral sequence and as such, it
must be framed by a window centered at n = 0, i.e., non-causal; later, the truncated
impulse response is delayed to get causality. Alternatively, a phase factor can be
incorporated into Hd(ejω), so as to be able to use directly a causal truncation window.

Typically, Hd(ejω) is piecewise-constant, with discontinuities at the boundaries
between bands. The Fourier series expressing Hd(ejω) thus converges only in the
mean-square sense and the truncation of the summation to a finite number of terms
involves the Gibbs phenomenon; the approximated frequency response exhibits
oscillations.

This design method is simple but not optimal: the designed filter is not guaranteed
to have the minimum order compatible with the specifications. Since the window
length N must be chosen before designing the filter and later the designed filter
must be examined to check if it actually does not exceed the pre-fixed tolerances,
the availability of an empirical formula for estimating N a priori on the basis of
these specifications is a critical factor in terms of ease of use. No empirical formula
of this type is available for classical windows: N must be found by trial and error,
and this turns out to be very time-consuming. An exception is the Kaiser window
(Sect. 5.4): Kaiser (1974) found, by numerical simulations performed on a usefully
wide range of conditions, empirical formulas to estimate a priori with reasonable
accuracy the values of α and N required for the windowing-designed filter to satisfy
given specifications. Of course, using a Kaiser window in filter design does not
eliminate the intrinsic limitations of the windowing method: most importantly, its
lack of optimality.

Another disadvantage of the windowing method is that the oscillations

• in each band are not equiripple: they are more pronounced in the vicinity of the
discontinuities. In this way, the specifications are met at two precise frequencies
but turn out to be too restrictive at all other frequencies;

• are equal in the passband and in the stopband, the distance from a discontinuity
being equal. If, as is normally the case, the specifications are more stringent in
the stopband (δs < δp), an unnecessary accuracy in the passband is involved that
pushes the filter order up.

Figure 7.5 shows three examples of lowpass Type-I FIR filter with cutoff at
ωp = 0.5π, obtained via the windowing method using a rectangular window and
different orders: N −1 = 14, 28 and 42. It can be seen that the filter is not equiripple
and that the maximum oscillations, located at each side of the discontinuity of the
ideal frequency response, have the same amplitude in both bands. This is clearly
visible in the insets of Fig. 7.5, representing expanded views of the filters’ behaviors
in the passband/stopband frequency ranges in which the maximum oscillations take
place.

http://dx.doi.org/10.1007/978-3-319-25468-5_5
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Fig. 7.5 Lowpass Type-I FIR filters with cutoff at ωp = 0.5π, obtained via the windowing method,
using a rectangular window and different orders: N −1 = 14, 28 and 42. The insets present expanded
views of the filters’ behaviors in the frequency ranges in which the maximum oscillations occur

It is intuitive that if the approximation error is uniformly distributed over frequency
and if the ripples in the passband and in the stopband are adjusted separately, any given
specifications can be met at a lower order. This qualitative observation is rigorously
confirmed by a theorem—the alternation theorem—on which the minimax design
method is based. Before going deeper into the minimax method, we must however
review the properties of GLP/LP FIR filters and define the quantities that will be
used in the minimax design algorithm.

Even if for frequency selection we will normally use Type-I filters, we need to
maintain generality for the moment, since the minimax method is formulated for the
design of any type of GLP/LP filter.

7.6 Properties of GLP FIR Filters

Let us first recall a few fundamental points. The transfer function of an FIR filter is
a polynomial function in z−1, with degree equal to the filter order N − 1,

H(z) =
N−1∑

n=0

h[n]z−n,

which has

• N − 1 poles in z = 0,
• N − 1 zeros anywhere in the z-plane at finite distance from the origin.



7.6 Properties of GLP FIR Filters 237

H(z) is the z-transform of the impulse response h[n], having finite length N . There-
fore H(z) converges on the unit circle, and the frequency response

H(ejω) =
N−1∑

n=0

h[n]e−jωn

certainly exists. Since a sequence with length N is completely determined by N
samples of its DTFT, the design of an FIR filter can equivalently be aimed at finding

• the N samples of its impulse response h[n], or
• N samples of its frequency response H(ejω).

Moreover, we know that

• a LP-RCSR-FIR filter is expressed in the continuous-phase representation by its
real zero-phase response H(ω), such that

H(ejω) = H(ω)ejφ(ω) = H(ω)e−jωτ ,

where τ = constant. A GLP-RCSR-FIR filter is expressed in a similar way, except
that the group delay τg = constant comes into play (Sect. 6.5.3).

• H(ω) can assume positive, zero, and negative values. Consequently, the filter
phase response is linearized: φ(ω) does not contain those π jumps that are found
in correspondence to odd-multiplicity zeros of the magnitude response |H(ejω)|
(Fig. 7.6; see also Fig. 6.4).

(a) (b)

(c) (d)

Fig. 7.6 Passing from the magnitude response (a) to the zero-phase response (c) linearizes the
phase response (d), that otherwise exhibits π jumps (b)

http://dx.doi.org/10.1007/978-3-319-25468-5_6
http://dx.doi.org/10.1007/978-3-319-25468-5_6
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Fig. 7.7 Symmetry of the
impulse response for
LP/GLP-RCSR-FIR filters of
a Type I, b Type II, c Type
III, and d Type IV. The
center of symmetry of each
sequence, indicated by the
vertical dashed line in the
corresponding panel, is
k = (N − 1)/2, and can be
an integer number (panels a
and c) or a half-integer
number (panels b and d)

(a) (b)

(c) (d)

• GLP-RCSR filters come in four types, and for each type the coefficients h[n]
must satisfy certain symmetry conditions (see Sect. 6.5.4). The symmetry center,
k = (N − 1)/2, is

– an integer number for Type-I and Type-III filters,
– a half-integer number for Type-II and Type-IV filters, as summarized in Fig. 7.7.

As for the magnitude of the impulse response samples, it is worth noting that it is
always possible to design a FIR filter using coefficients with magnitude of less than
1.0. This is not true for IIR filters.

We will now work on H(z) and H(ω), with the aim of unifying the symmetry
relations of the coefficients of the four filter types. This is obtained by a factorization
of H(z) and H(ω).

7.6.1 Factorization of the Zero-Phase Response

For each of the four types, H(z) can be factorized (see, for example, Mitra and Kaiser
1993) as

H(z) = F(z)G(z),

where the factor F(z), referred to as the fixed term, has a fixed functional form that,
however, changes from one filter type to another:

http://dx.doi.org/10.1007/978-3-319-25468-5_6
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F(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for Type-I filters,
1+z−1

2 for Type-II filters,
1−z−2

2 for Type-III filters,
1−z−1

2 for Type-IV filters,

while the second factor G(z), referred to as the adjustable term, has a polynomial
form,

G(z) =
2M∑

n=0

g[n]z−n,

with

M =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N−1
2 for Type-I filters,

N
2 − 1 for Type-II filters,
N−3

2 for Type-III filters,
N
2 − 1 for Type-IV filters.

The adjustable term contains 2M + 1 coefficients g[n] that are to be determined on
the basis of filters specifications.

It must be noted that G(z)

• is a Type-I transfer function: for a Type-I filter, F(z) = 1, hence we have H(z) ≡
G(z);

• is a polynomial function in z−1 with even degree 2M .

Of course, the coefficients g[n] are related to the coefficients h[n], and consequently
are symmetric, but the factorization presented above unifies the symmetry conditions
that the new coefficients g[n] must satisfy for Type I–IV filters. Indeed, for all filter
types,

g[2M − n] = g[n].

In this way, for the description of the design method we can focus on G(z), i.e., on
Type-I filters; the design of Type-II, -III and -IV filters is brought down to Type-
I design. Table 7.1 shows how the coefficients h[n] and the coefficients g[n] are
related to one another. The relation is different for each filter type. Type-I filters have
h[n] ≡ g[n].

Figure 7.8 illustrates the relation among N and M for each filter type. Note that
only M +1 samples of h[n]—and therefore of g[n]—are independent of one another.
They are indicated by black dots, while gray dots symbolize samples that can be
deduced by symmetry from the other ones. For the antisymmetric Type-III impulse
response of Fig. 7.8c, the (M + 2)th coefficient is always zero, since the center of
symmetry is an integer, M + 2 = (N + 1)/2.
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Table 7.1 Relation between the coefficients h[n] and the coefficients g[n] for each filter type

Coefficient Type I Type II Type III Type IV

h[0] g[0] g[0]
2

g[0]
2

g[0]
2

h[1] g[1] g[1]+g[0]
2

g[1]
2

g[1]−g[0]
2

h[n] g[n] g[n]+g[n−1]
2

g[n]−g[n−2]
2

g[n]−g[n−1]
2

h[N − 2] g[N − 2] g[N−2]+g[N−3]
2 − g[N−4]

2
g[N−2]−g[N−3]

2

h[N − 1] g[N − 1] g[N−2]
2 − g[N−3]

2 − g[N−2]
2

M = N−1
2 M = N−2

2 M = N−3
2 M = N−2

2

Fig. 7.8 Examples of the
relation between M and N
for GLP filters of a Type I,
b Type II, c Type III, and
d Type IV. The samples
represented by black dots are
independent of each other,
while the ones shown as gray
dots can be deduced by
symmetry from the ones in
black

(a) (b)

(c) (d)

Exploiting the symmetry of the g[n] we can write the adjustable term as

G(z) = z−M
{
g[M] + g[M − 1](z + z−1) + · · · + g[0](zM + z−M)

}
,

that on the unit circle (z = ejω) becomes

G(ejω) = e−jMω{g[M] + g[M − 1]2 cos ω + · · · + g[0]2 cos(Mω)}.

This last expression derives from the fact that on the unit circle we have

z + z−1 = ejω + e−jω = cos ω + j sin ω + cos ω − j sin ω = 2 cos ω,

and that similar relations hold for higher powers of z. Neglecting for the moment the
phase factor, we thus have

G(ω) = g[M] + g[M − 1]2 cos ω + g[M − 2]2 cos(2ω) + · · · + g[0]2 cos(Mω),

that can be rewritten as
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G(ω) =
M∑

n=0

a[n] cos(ωn),

having defined

a[n] =
{

2g[M − n] for n 	= 0,

g[M] for n = 0.

All M + 1 coefficients a[n] are independent of one another.
In a similar way, after some algebra we get

F(ejω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for Type-I filters,

e−j ω
2 cos(ω

2 ) for Type-II filters,

e−j(ω− π
2 ) sin ω for Type-III filters,

e−j( ω
2 − π

2 ) sin(ω
2 ) for Type-IV filters,

and neglecting the phase terms we can write

F(ω) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for Type-I filters,

cos(ω
2 ) for Type-II filters,

sin ω for Type-III filters,

sin(ω
2 ) for Type-IV filters.

Combining the expressions of G(ω) and F(ω) we finally get the factorized zero-phase
response, H(ω) = F(ω)G(ω). In the expression of the adjustable term, the M + 1
independent coefficients a[n] must be determined on the basis of filter specifications.
This will be the aim of the design procedure.

Resuming and combining the phase terms momentarily discarded above, we can
also derive the form of the phase factor:

φ(ω) =
{

− N−1
2 ω for Type-I and -II filters,

− N−1
2 ω + π

2 for Type-III and -IV filters.

We thus have a simple time delay by (N − 1)/2 samples for Type-I filters (integer
delay) and Type-II filters (half-integer delay).

Before proceeding, we may note that the form of the factor F(ω) in the four cases
is consistent with what we said earlier concerning the fact that only Type-I filters are
suited for all kinds of frequency selectivity. Indeed, the behavior of H(ω) at ω = 0
and at ω = π is constrained by the factor F(ω), and
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• for Type-I filters, F(ω) = 1, so that F(ω) never vanishes; H(ω) is free from
constraints deriving from F(ω), and can assume any shape;

• for Type-II filters, F(ω) = cos(ω/2), so that at ω = π we have F(ω) = 0 and
H(ω) = 0: the filter cannot be a highpass or a bandstop filter;

• for Type-III filters, F(ω) = sin ω, so that at ω = 0 and at ω = π we have F(ω) = 0
and H(ω) = 0: the filter cannot be a lowpass, a highpass or a bandstop filter;

• for Type-IV filters, F(ω) = sin(ω/2), so that at ω = 0 we have F(ω) = 0 and
H(ω) = 0: the filter cannot be a lowpass or a bandstop filter.

7.6.2 Zeros of the Transfer Function

An FIR transfer functions has only zeros and no poles, except a multiple pole in the
origin of the z-plane. The zeros of the transfer function H(z) of LP/GLP FIR filters
are determined by both factors F(z) and G(z). As for the fixed term,

F(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 for Type-I filters provides no zeros,
1+z−1

2 for Type-II filters provides a zero at z = −1,
1−z−2

2 for Type-III filters provides two zeros at z = ±1,
1−z−1

2 for Type-IV filters provides a zero at z = +1.

Concerning the zeros of G(z), from

G(z) = z−M
{
g[M] + g[M − 1](z + z−1) + · · · + g[0](zM + z−M)

}

we can deduce that

G(z−1) = zM
{
g[M] + g[M − 1](z−1 + z) + · · · + g[0](z−M + zM)

}

and therefore
G(z−1) = z2M G(z).

So, G(z) and G(z−1) share the same zeros. This property implies that for a G(z)
with real coefficients, the zeros occur in

• quadruplets off the unit circle: ri e±jθi and 1/(ri e±jθi ); if we set a = ri ejθi , this
means a, a∗, 1/a and 1/a∗;

• conjugate pairs on the unit circle: e±jθ′
i ;

• reciprocal pairs on the real axis: r ′
i and 1/r ′

i .

This is illustrated in Fig. 7.9. Note that the zeros of G(z) are also the zeros of a Type-I
transfer function H(z), while the other filter types have additional zeros due to F(z).
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Fig. 7.9 An example of the
positions of the zeros of G(z)

7.6.3 Another Form of the Adjustable Term

The form of G(ω) presented above is a possible representation of the zero-phase
response of Type-I filters. Another representation of G(ω) that is more useful in the
frame of minimax design can be obtained using the Chebyshev polynomials of the
first kind, with degree n in the real variable w:

Tn(w) =

⎧
⎪⎨

⎪⎩

cos [n arccos(w)] for |w| ≤ 1,

cosh [n arccosh(w)] for w ≥ 1,

(−1)n cosh [n arccosh(−w)] for w ≤ 1.

They can be generated recursively by the formula

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T0(w) = 1,

T1(w) = w,

. . .

Tn(w) = 2wTn−1(w) − Tn−2(w).

The behavior of these polynomials is shown in Fig. 7.10 for n = 1, 2, 3, and 4. For
|w| ≤ 1, Tn(w) cannot exceed 1 in absolute value and oscillates between −1 and 1 a
number of times proportional to n; for |w| > 1, Tn(w) increases monotonically with
|w|.

Chebyshev polynomials are even or odd functions of w for even or odd n, respec-
tively. When n is even, Tn(0) = ±1; when n is odd, Tn(0) = 0.
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Fig. 7.10 Chebyshev
polynomials of the first kind,
Tn(w), for various values of
the degree n. The box
encloses the region |w| ≤ 1
in which these polynomials
exhibit oscillatory behavior

Setting w = cos ω, so that |w| ≤ 1, we have Tn(cos ω) = cos [n arccos(cos ω)] =
cos(nω). Thus, using these polynomials, cos(nω) can be expressed as a polynomial
with degree n in cos ω. Consequently, G(ω) can be written as a polynomial of degree
M in cos ω:

G(ω) =
M∑

n=0

a[n] cos(ωn) =
M∑

n=0

α[n] cosn ω.

The coefficients α[n] in this expression can be derived from the coefficients a[n]
that are, in turn, related to the coefficients g[n], and therefore to the samples of h[n].
Only M + 1 of them are independent of each other.

7.7 Equiripple FIR Filter Approximations: Minimax
Design

The equiripple or minimax method serves to design GLP-FIR filters of all four
types. It is based on the factorization H(ω) = F(ω)G(ω), where only G(ω) contains
adjustable coefficients to be determined according to the specifications of the desired
filter. Working on the zero-phase response, rather than on the magnitude response,
is convenient and non-restrictive, since we already know the phase response of this
kind of filters (Sect. 7.6.1). From previous reasoning it is clear that we can focus on
Type-I filters, for which H(ω) = G(ω). The zero-phase response H(ω) for the other
three filter types can, if necessary, be obtained successively, using the known form
of F(ω).

We will discuss the method referring to a Type-I lowpass filter. The case of a
highpass filter is perfectly equivalent. Some differences arise when a passband or a
stopband filter are considered, because these filters have a greater number of bands.
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Fig. 7.11 Specifications for the design of a Type-I lowpass filter with N = 15 and M = 7. The
dashed lines represent the desired zero-phase response, while the solid curve shows the zero-phase
response of a filter that would meet specifications. Tolerance limits are represented by horizon-
tal dotted lines. H(ω) presents a number of local extrema (minima and maxima) in the interval
0 ≤ ω ≤ π

Let us consider a Type-I lowpass filter, with even order N − 1 and odd impulse-
response length N . The filter is required to meet the specifications shown in Fig. 7.11.
Note that the figure illustrates specifications for the zero-phase response. In the
example of Fig. 7.11, N = 15 and M = (N −1)/2 = 7. Observe that constraints are
set in the passband and in the stopband only; in the transition band, no constraints
are imposed on H(ω). However, the transition band can never vanish for realizable
filters. The constrained band are collectively classified as approximation bands.

When setting the filter specifications, we must provide the values of five parame-
ters: the order N − 1 that for each type automatically determines M ; ωp and ωs ; δp

and δs . However, we cannot set all these values arbitrarily, since they are not inde-
pendent of each other. Several minimax design algorithms have thus been proposed,
in which some of these parameters are fixed and the remaining ones are optimized by
an iterative procedure aimed at minimizing the maximum absolute approximation
error over the intervals [0,ωp] and [ωs,π]. Here we will discuss the approach in
which M , ωp, ωs , and the ratio κ = δp/δs are fixed, while the effective value of δp,
and consequently the effective value of δs , are minimized.

Among the many variants of the minimax algorithm that can be found in literature,
the most efficient is the Parks-McClellan algorithm (Parks and McClellan 1972),
also known as multiple exchange algorithm for reasons that will soon become clear.
The Parks-McClellan algorithm derives from the Remez exchange algorithm (Remez
1934a, b, c), adapted for the design of FIR filters. It has become a standard method
for FIR filter design and has been implemented in software in different ways; the
implementation by McClellan, Parks and Rabiner (McClellan et al. 1973; Rabiner
et al. 1975), referred to as the MPR algorithm, is widely used, and we shall focus
on it.
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In general mathematical terms, the MPR algorithm allows us to find the coeffi-
cients of G(ω) that minimize the absolute peak error

ε = max
ω∈B

|E(ω)|

in a closed subset B of [0,π].
Here it is convenient to modify the expression for E(ω) reported at the end of

Sect. 7.3.1, to express it in terms of G(ω):

E(ω) = W (ω)
[
H(ω) − Hd (ω)

] = W (ω)
[
F(ω)G(ω) − Hd (ω)

] =
= W (ω)F(ω)

[
G(ω) − Hd (ω)

F(ω)

]
= W (ω)

[
G(ω) − Hd (ω)

]
, with W (ω) > 0.

The desired response Hd(ω) is assumed to be (piecewise) continuous in B. In our
lowpass case, the subset B will include both the passband and the stopband:

B = 0 ≤ ω ≤ ωp ∪ ωs ≤ ω ≤ π.

The desired zero-phase response will be

Hd(ω) = Hd(ω)

F(ω)
, with Hd(ω) =

{
1 for 0 ≤ ω ≤ ωp,

0 for ωs ≤ ω ≤ π,

and the global weighting function will be expressed as

W (ω) = W (ω)F(ω), with W (ω) =
{

1 for 0 ≤ ω ≤ ωp,

κ for ωs ≤ ω ≤ π,

where κ = δp/δs is the ratio between the maximum absolute deviations admitted in
the passband and in the stopband, respectively. Moreover, we will have ε = δp.

Considering only Type-I filters for which F(ω) = 1, we simply have

G(ω) = H(ω), W (ω) = W (ω) and Hd(ω) = Hd(ω).

Thus, in the Type-I lowpass case, the minimization of max |E(ω)| in the frequency
intervals 0 ≤ ω ≤ ωp and ωs ≤ ω ≤ π is equivalent to minimizing δp, under
the condition that the final value of δp, i.e., the actual value of δp in the designed
filter, cannot exceed the corresponding pre-fixed value, while keeping M , ωp, ωs ,
and κ = δp/δs constant. Consequently, also δs is minimized.2

An important point in minimax design is the number of local extrema that H(ω)

presents in 0 ≤ ω ≤ π. Figure 7.12 shows, for our lowpass filter with M = 7, the

2In principle, we should use different symbols for the pre-fixed values of δp and δs and the corre-
sponding optimized values, but this would weigh down the notation too much.
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Fig. 7.12 Frequencies at
which H(ω) attains tolerance
limits and therefore the
absolute error is maximum.
In this Type-I lowpass
example with M = 7 (the
same as in Fig. 7.11) there
are M + 2 = 9 such
frequencies, numbered from
0 to M + 1 = 8, with
ω0 = 0, ω3 = ωp , ω4 = ωs ,
and ω8 = π. They are
highlighted by dashed
vertical lines

frequencies at which local minima and maxima are found. In this example, these are
also frequencies at which H(ω) touches the tolerance limits. Moreover, H(ω) attains
these limits also at ωp and ωs : we thus see 7 + 2 = 9 = M + 2 frequencies at which
the absolute error is maximum (see the vertical dashed lines in Fig. 7.12).

The number of local extrema of H(ω) in the interval 0 ≤ ω ≤ π actually depends
on M , because a trigonometric polynomial with degree M , such as

H(ω) = G(ω) =
M∑

n=0

α[n] cosn ω,

can have up to M − 1 local extrema in the open interval 0 < ω < π. Moreover,

dH(ω)

dω
= − sin ω

M∑

n=0

nα[n] cosn−1 ω = 0 for ω =
{

0,

π,

so that a maximum or a minimum is always present at ω = 0 and at ω = π. In
conclusion, in the closed interval 0 ≤ ω ≤ π there can be up to M + 1 local extrema
of H(ω), but maxima and minima are not necessarily all equal. More precisely, one
of the two extrema of H(ω) occurring at ω = 0 or π can be smaller than the other
extrema. When this happens, at that point H(ω) is extremal but does not attain the
tolerance limit: the absolute error is not a maximum.

We now must understand what conditions a filter must satisfy in order to be an
optimum filter, i.e., to meet specifications at the lowest possible order. The conditions
for optimality of a GLP filter designed according to the minimax criterion are given by
the alternation theorem: given any closed subset B of the closed interval 0 ≤ ω ≤ π,
a polynomial function H(ω) is the unique optimum approximation to Hd(ω) in B if,
and only if, the error function E(ω) has in B at least M + 2 alternations, i.e., if, and
only if, at least M + 2 frequencies (ω0 ≤ ω1 ≤ ω2 ≤ · · ·ωM+1) exist in B, at which
E(ω) attains its maximum absolute value with alternating signs:
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Fig. 7.13 a Zero-phase
response H(ω) and
b corresponding error
function E(ω), for the same
lowpass Type-I filter with
M = 7 shown in Figs. 7.11
and 7.12. The alternations of
the error function,
corresponding to black dots,
are M + 2 = 9, so that the
conditions of the alternation
theorem are satisfied

(a)

(b)

E(ωi ) = −E(ωi−1) = ± max |E(ω)| = ±ε,

with i = [1, M + 1] and with ε > 0.
This theorem is attributed to Chebyshev (see, e.g., Ollin 1979). Figure 7.13 shows

these alternations for our lowpass example: Fig. 7.13a depicts H(ω), while Fig. 7.13a
shows the error function E(ω). The filter is optimum according to the alternation
theorem, since there are M + 2 = 9 alternations: see the black dots in Fig. 7.13b. If
we now also observe Fig. 7.13a and the black dots on the H(ω) curve, we understand
that

• the frequencies ωi correspond to E(ω) extrema and to H(ω) values which are
equal to the tolerance limits; their number depends on M ;

• ωp and ωs correspond to E(ω) extrema, irrespective of M ; they are part of the ωi

set but do not correspond to H(ω) extrema.

In summary,

• H(ω) can have up to M − 1 local extrema in 0 < ω < π; the same turns out to
be true in the combined open intervals 0 < ω < ωp, ωs < ω < π. Moreover,
H(ω) always has a local minimum or maximum at ω = 0 and ω = π. Finally, in
ωp and ωs the tolerance limits are attained, i.e., H(ωp) = 1 − δp, H(ωs) = δs .
In our lowpass case we have only one ωp and only one ωs , so we can have up to
M − 1 + 2 + 2 = M + 3 frequencies at which |E(ω)| is maximum;

• the alternation theorem requires at least M + 2 extrema of E(ω) with alternating
signs.

We can conclude that the optimum approximation to Hd(ω) can produce an error
function E(ω) with M + 2 or with M + 3 alternations.

In ωp and ωs , |E(ω)| is always maximum, so M or M + 1 local extrema of H(ω)

must contribute to alternations. When both frequencies ω = 0 and ω = π contribute
one alternation, we have a total of M + 3 or M + 2 alternations. When only one of
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(a) (b)

(c) (d)

Fig. 7.14 H(ω) changes its shape when we gradually increase ωp , while keeping M , κ and the
width �ω of the transition band constant. Four different frequencies, ωp1 < ωp2 < ωp3 < ωp4,
characterize the filters shown in panels a, b, c, and d, respectively. Each panel shows the number of
alternations. In only one case there are M + 3 alternations: the corresponding filter is an extraripple
filter (panel b)

them contributes one alternation, we can just attain a total of M +2 alternations. But
when do M + 3 alternations occur?

In order to understand this point, let us look at Fig. 7.14 that shows all possible
Type-I lowpass cases that can occur when M , κ, and the width �ω of the transition
band are kept constant, while ωp varies. Obviously, ωs varies with ωp. As ωp varies,
the shape of H(ω) changes. We consider four values of ωp: ωp1 < ωp2 < ωp3 < ωp4

(evidently, when we set a fixed value for ωp too, the solution to the minimax approx-
imation problem becomes unique). The corresponding filters appear in Fig. 7.14a, b,
c, and d, respectively. We can observe that:

• for ωp = ωp1 (Fig. 7.14a), |E(ω)| is maximum at ω = π and in M −1 more H(ω)

extrema, but not at ω = 0. Therefore M extrema of H(ω) are also |E(ω)| maxima.
Including ωp and ωs , we have M + 2 alternations;

• for ωp = ωp2 (Fig. 7.14b), |E(ω)| is maximum both at ω = 0 and at ω = π, as
well as in M − 1 more H(ω) extrema. Therefore M + 1 extrema of H(ω) are
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also |E(ω)| maxima. Including ωp and ωs , we have M + 3 alternations: this is an
extraripple filter;

• for ωp = ωp3 (Fig. 7.14c), |E(ω)| is maximum at ω = 0 and in M − 1 more H(ω)

extrema, but not at ω = π. Therefore M extrema of H(ω) are also |E(ω)| maxima.
Including ωp and ωs , we have M + 2 alternations;

• for ωp = ωp4 (Fig. 7.14d), |E(ω)| is maximum both at ω = 0 and at ω = π, as
well as in M − 2 more H(ω) extrema. Therefore M extrema of H(ω) are also
|E(ω)| maxima. Including ωp and ωs , we have M + 2 alternations.

Even if a priori the optimum zero-phase lowpass response does not need to be equirip-
ple, in order to satisfy the conditions of the alternation theorem it must actually be
equiripple, with the possible exception of one of the extrema located at ω = 0 and
ω = π. For example, if our filter had the zero-phase response shown in Fig. 7.15, the
relative minimum in the passband, which is less pronounced than the other extrema
and is located in a position different from ω = 0 and ω = π, would give rise to two
contiguous error extrema with the same sign (see crossed dots in Fig. 7.15). Alterna-
tions (see black dots) would thus reduce to 8 = M + 1, and the conditions imposed
by the alternation theorem would not be met.

A similar argument leads to concluding that alternations must always occur at ωp

and ωs . In fact, if we exclude one of these two frequencies from the set of the ωi at
which the absolute error is maximum, the number of alternations decreases by two
units, as shown Fig. 7.16.

Similar considerations hold for highpass filters, but do not necessarily hold for
passband, stopband and multiband filters, which have more than two minimization
bands and therefore have a higher number of band edges. This issue will be discussed
in Sect. 7.11.

Fig. 7.15 The optimum
zero-phase lowpass response
H(ω) must be equiripple,
except possibly at ω = 0 and
ω = π. If, for example, one
of the minima in the
passband is smaller than the
other local extrema,
contiguous error extrema
with the same sign occur
(crossed dots). The number
of alternations (8 = M + 1;
black dots) is not sufficient
for optimality
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Fig. 7.16 A hypothetical
filter in which at ωp (empty
circle) the absolute error is
not maximum. Two
contiguous error extrema
with the same sign appear
(crossed dots). The number
of alternations (black dots) is
8 = M + 1 and is not
enough for optimality

7.8 Predicting the Minimum Filter Order

The filter order, which determines M , is an input parameter to the design algorithm:
the iterative process leading to the optimum approximation starts by setting the initial
values of the M + 2 frequencies ωi at which |E(ω)| is supposed to be a maximum.
Therefore an a priori estimate of the minimum filter order is needed.

For the lowpass case, Herrmann et al. (1973) performed an extensive set of simu-
lations to study the relations among the filter order, the tolerances δp and δs and the
frequencies ωp and ωs . They proposed the following empirical formula for the filter
length:

N = �2πD

�ω
− f (κ)�ω

2π
 + 1,

where the symbols �  indicate the ceiling function which maps a real number to the
next higher integer; �ω = ∣∣ωp − ωs

∣∣, κ = δp/δs ;

D =
(

A2 log10 δ2
p + A1 log10 δp + A0

)
log10 δs −

(
B2 log10 δ2

p + B1 log10 δp + B0

)
,

and
f (κ) = C1 log10 κ + C0.

The constants appearing in the above equations have the following values:

• A0 = −4.761 × 10−1; A1 = 7.114 × 10−2; A2 = 5.309 × 10−3;
• B0 = −2.660 × 10−3; B1 = −5.941 × 10−1; B2 = −4.278 × 10−1;
• C0 = 11.01217; C1 = 0.51244.

This empirical formula holds for δp and δs that do not exceed 0.1 and for ωp > 0.08π,
ωs < 0.92π. It also works for highpass filters (i.e., ωp > ωs). Hermann’s formula is
illustrated in Fig. 7.17, in which each panel refers to a different value of κ = δp/δs

in the range 1–500, and N is represented by labeled contour lines in the plane δp,
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Fig. 7.17 Minimum length N of a lowpass equiripple filter according to the empirical formula by
Herrmann et al. (1973). N is represented by labeled contour lines in the plane δp , �ω/π. Each
panel refers to a different value of κ = δp/δs

�ω/π. Values of δp in the range 0.01–0.1 are considered; �ω varies from 0.005 to
0.05 π. Note that in all panels, κ > 1, since normally in applications the stopband
tolerance is smaller than the passband tolerance.

Kaiser (1974) subsequently proposed the following simplified formula as a fit to
Hermann et al.’s data:

N � �−10 log10(δpδs) − 13

2.324 �ω
 + 1,

that clearly shows how N increases with decreasing δpδs and �ω. As a further
illustration of Hermann’s and Kaiser’s formulas, Fig. 7.18 shows, for κ = δp/δs = 3
and values of δp from 0.01 to 0.09, the values of N obtained from Hermann’s equation
versus �ω/π (solid lines), and those obtained from Kaiser’s approximation (dashed
lines).

Once N and the order N − 1 have been obtained through these formulas, M
is deduced according to the desired filter type (I, II, III, or IV). Note that if we
desire a Type-I lowpass filter, we will round the predicted order up to the nearest
higher even value. In a passband or stopband case, these formulas still provide useful
guidelines, provided different lowpass filters are tried, which go through the bandpass
specifications, and conclusions about N are drawn on the basis of the most demanding
lowpass filter.
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Fig. 7.18 Minimum length
N of a lowpass equiripple
filter with κ = δp/δs = 3,

computed according to the
empirical formula by
Herrmann et al. (1973) as a
function of �ω/π, for
different values of δp (solid
lines). The dashed lines
represent the values of N
obtained from Kaiser’s
approximation (see text)

At this point, we must cast light on an apparent contradiction. We stated that we
must pre-select the order, which determines M , the values of ωp, ωs , and κ = δp/δs ,
and that the effective δp and δs values are then found in the design process. But for
predicting the order we do not simply need κ = δp/δs : we need the values of the
individual pre-fixed tolerances δp and δs . In practice, we will actually start by giving
ωp, ωs , δp and δs , and evaluating the order N − 1. We will also compute M and
κ = δp/δs . In the following optimization process, which receives N − 1, ωp, ωs and
κ as inputs, the effective value of ε = δp is minimized, and, as a consequence, the
value of δs is minimized as well, while their ratio κ remains constant. In the optimum
solution to the minimax problem, the final error must not exceed the pre-set values
δp and δs , and this is possible only if a sufficiently high order was chosen. If this
is the case, the design process is complete and the effective minimized δp value is
equal to, or slightly smaller than, its pre-set limit. If, on the contrary, the order was
too low, the optimum solution will exceed the pre-set tolerance limits. The order will
then be increased (by two units in order to still have a Type-I filter) and the design
procedure repeated until specifications are met: each order thus requires a complete
optimization process.

7.9 MPR Algorithm

Examining the classical MPR algorithm implementation will lead us to appreciating
its efficiency. As in the previous section, we will refer to the Type-I lowpass case.

1. The process is initialized by assigning initial-guess values to the M + 2 frequen-
cies ωi , with i = [0, M + 1], at which |E(ω)| is supposed to be maximum. Note
that M + 2 is the minimum number of alternations prescribed by the alterna-
tion theorem. The frequencies ωi can, for example, be equally distant on each
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minimization band, but must always include ωp and ωs in adjacent positions: if
ωi=l = ωp, then ωi=l+1 = ωs .

2. The approximation error is evaluated at each ωi according to the formula

E(ωi ) = W (ωi )
[
G(ωi ) − Hd(ωi )

] = (−1)iε.

If ε were assumed to be positive, as we did until now, then according to this
formula ω0 should necessarily be a maximum of E(ω), ω1 should be a minimum,
etc., so that ωl = ωp should forcedly have an odd index l, because at ωp the error
is certainly minimum. This would be unnecessarily restrictive, so ε is allowed to
have any sign. In this way, ω0 can either be a maximum or a minimum, and so on.
The system of M + 2 equations written above is equivalent to the system

W (ωi )

[
M∑

n=0

α[n] cosn(ωi ) − Hd(ωi )

]
= (−1)iε,

containing M + 2 unknown variables that are the coefficients α[n], with n =
[0, M], and ε. In the lowpass case, we thus simply have

1 ·
[

M∑

n=0

α[n] cosn(ωi ) − 1

]
= (−1)iε in the passband,

κ ·
[

M∑

n=0

α[n] cosn(ωi ) − 0

]
= (−1)iε in the stopband.

The frequencies ωi will be adjusted during the optimization process: at the end
of the process they must be determined in such a way that the solution, which is
certainly optimum at the start on the initial-guess ωi set, is actually optimum over
the whole continuous B. In other words, the absolute value of the optimized ε
must represent the maximum absolute error at any frequency in B. When this goal
is attained, the frequencies ωi —excluding ωp and ωs—actually identify the local
extrema of the optimum polynomial function G(ω), i.e., the polynomial having
the correct α[n] coefficients.

3. Using the initial guesses for the ωi , the system must now be solved with respect
to ε and α[n], thus determining the trigonometric polynomial G(ω) = H(ω)

that assumes the correct values at the pre-set ωi frequencies. These frequencies,
however, in general will not be exactly the positions of the local H(ω) extrema,
since we chose them arbitrarily. The extrema of H(ω) will be somewhere else (let
us call ωi their actual positions). This is shown in see Fig. 7.19a, presenting an
example with order N − 1 = 20, κ = 1, ωp = 0.4π and �ω = 0.1π. The order
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Fig. 7.19 a First iteration of the MPR algorithm for the design of a Type-I lowpass filter with
order N − 1 = 20, κ = 1, ωp = 0.4π and �ω = 0.1π. The polynomial function (solid line) has
the correct values at the arbitrarily fixed ωi (vertical dotted lines, black diamonds), but its local
minima and maxima are found at some other frequencies ωi (empty circles). b The filter passband
in the iteration stages n. 2 (dashed curve) and n. 3 (solid curve). Horizontal lines in the same style
indicate deviations from 1. The frequencies of local minima and maxima of stage n. 2 (gray stars)
are assumed as new guessed frequencies for stage n. 3 (black diamonds). The local extrema of the
polynomial of iteration n. 3 are represented by empty circles. c The filter passband in the iteration
stages n. 1, 2, 3, and 4. The deviations from 1 calculated at each iteration stage are indicated by
horizontal lines. d The filter passband in the iteration stages n. 4, 5, and 6 (see text). The horizontal
lines representing deviations from 1 at each stage are so close to be indistinguishable. The inset
shows a very expanded view of a part of the passband

was evaluated by setting preliminary δp = δs = 0.06, which gave N − 1 = 19,

and then passing to order N − 1 = 20 to have a Type-I filter.3

Since the initial-guess frequencies do not represent the exact positions of the local
H(ω) extrema, the approximation error evaluated from the equation system given
at point 2. turns out to be too small in absolute value: see in Fig. 7.19a how the
solid curve representing H(ω) exceeds the limits marked by the horizontal dotted
lines located at ordinates 1 − δp and 1 + δp.

4. The positions ωi of the extrema are determined with high accuracy, by evaluating
the polynomial on a dense set of frequencies. These ωi are then chosen as the
updated frequency set on which the calculations are repeated. This is the exchange

3The value κ = 1 was chosen for graphical convenience, i.e., for getting ripples in the two approx-
imation band which are equally large and therefore equally visible.
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Fig. 7.20 Zero-phase
response of a Type-I lowpass
filter with N − 1 = 20,
κ = 1, ωp = 0.4π and
�ω = 0.1π, at iteration
stages n. 1–6 preceding
convergence, which takes
place after 7 iterations

step after which the multiple exchange algorithm is named. In the exchange step
ωi → ωi , the two frequencies ωi=l = ωp and ωi=l+1 = ωs are kept constant.
If a maximum of the absolute error is present both at ω = 0 and ω = π, only
one of these frequencies will be inserted in the new set ωi , namely the frequency
corresponding to the highest absolute error value. The value of ε is then updated,
so that it increases its absolute value with respect to the previous estimate.

5. The process is iterated until, for all indexes i , ωi − ωi descends below a small
pre-set value, and ε stabilizes.4 At the end of the optimization, the frequency
response and the impulse response of the optimum filter are obtained.

These steps are illustrated in Figs. 7.19b–d and 7.20. They all concern the Type-I
lowpass filter of Fig. 7.19a.

Figure 7.20 shows the shape of the zero-phase response at the iterative stages n.
1–6 preceding convergence of the MPR algorithm, which occurs at stage n.7. We
can see that at each iteration, the positions of local extrema change.

Figure 7.19b shows a close-up of the filter passband, in the iteration stages n. 2
(dashed curve) and n. 3 (solid curve). Horizontal lines in the same style represent the
deviations from 1 at each stage. The abscissas of the local minima and maxima of
stage n. 2 (gray stars) are assumed as new guessed abscissas of minima and maxima
for iteration n. 3 (black diamonds). The solid curve of iteration n. 3, however, still
exceeds the tolerances: its local extrema are elsewhere (empty circles). Therefore, a
new exchange step will be performed in the next iteration stage.

Figure 7.19c shows the filter passband and the deviations from 1 (indicated by
horizontal lines) in the iteration stages n. 1, 2, 3, and 4. This figure is meant to show
how the errors calculated at each iteration stage gradually increase in magnitude.
However, the increase from one iteration to the next becomes slower and slower
as stages progress. At the end, the absolute error will not increase any longer and
convergence will be achieved.

4The process is actually iterated a maximum number of allowed times, within which hopefully
convergence is achieved.
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Finally, Fig. 7.19d shows the passband in the iteration stages n. 4, 5, and 6. The
deviations from 1 at each stage are so close to one another that the corresponding
horizontal lines are indistinguishable; the inset shows an expanded view of the low-
frequency range. The absolute error is increasing more and more slowly towards
convergence. The final passband deviation from 1 at stage 7 (convergence) turns out
to be 0.0548753; at stage n.6 the passband deviation from 1 is already as high as
0.0548744.

Figure 7.21 shows the final result of the design process, i.e., the optimum Type-I
lowpass filter, viewed in the in the frequency domain (Fig. 7.21a) and in the time
domain (Fig. 7.21b).

This is the MPR algorithm in principle; however, the calculations can be simplified
in practice. Indeed, it can be shown that at each stage, ε in the system of M + 2
equations given at point 2. can be calculated explicitly as a function of the known
values of Hd(ωi ) and W (ωi ) and of the quantity

ηi =
M+1∏

k=0

(cos ωi − cos ωk)
−1 with k 	= i,

which can be easily computed. This quantity contains the ωi that in the initial and
intermediate iteration steps will be incorrect. As a result, the calculated error will be
too small in magnitude, and more iterations will be needed.

Once the value of ε has been obtained at some iteration stage, in order to evaluate
G(ω) on a dense set of frequency and thus find the new frequencies for the exchange
step there is no need to actually solve the system, i.e., to find the coefficients α[n]. A
Lagrange interpolation formula can be exploited instead, which uses only the values
G(ωi ). These values are known because

G(ωi ) = Hd(ωi ) + (−1)iε

W (ωi )
.

Fig. 7.21 Optimum Type-I
lowpass filter with order
N − 1 = 20 represented a in
the frequency domain and
b in the time domain.
Specifications are: κ = 1,
ωp = 0.4π, and �ω = 0.1π.
The convergence of the MPR
algorithm was attained after
7 iterations and produced an
optimized (final) deviation
δp = 0.05488; the pre-fixed
value specified for finding
the minimum order was
δp = 0.06

(a) (b)
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In this way, only the final values of α[n] must be computed, so as to deduce the filter
impulse response h[n]. In conclusion, we will just

• start with an arbitrary ωi set;
• compute ηi , Hd(ωi ) and W (ωi ) at each i and evaluate the corresponding value

of ε;
• compute the values of G(ωi ), interpolate these values to get G(ω) on a dense set

of frequencies and locate the extrema of G(ω);
• perform the exchange step by setting the new ωi and iterate from point n. 2 until

convergence is achieved;
• solve the system to get the α[n] coefficients. But even this is unnecessary: we can

simply perform an inverse DFT of the G(ω) obtained in the final stage, to get
the impulse response of the filter that has the minimum possible δp for the given
values of N , ωp, �ω and κ.

The process requires 4–8 iterations for a lowpass filter, and 2–3 times as much
for multiband filters. If the final solution exceeds the tolerances, the order must be
increased and the design process repeated.

7.10 Properties of Equiripple FIR Filters

It is interesting to examine the dependence of the optimized absolute maximum error
from the cutoff frequency ωp, the other design parameters κ and �ω being equal,
for different orders. In this section, by ε we mean the optimized maximum absolute
error.

Figure 7.22 shows this dependence for lowpass filters with κ = 1 and �ω = 0.2π,
having orders from 8 to 11 (N = 9 − 12). Note that filters with N = 9 and 11 are
Type-I filters, while filters with N = 10 and 12 are Type-II filters. For each order, as
ωp increases, ε attains several local minima. The curves related to different orders
intersect each other, so that for certain values of ωp, a shorter lowpass filter (N = 9
for example) turns out to be “better” than a longer filter (N = 10), since it has a
lower optimized maximum absolute error. The reason for this apparent contradiction
lies in the fact that N = 9 corresponds to a Type-I filter, while N = 10 corresponds
to a Type-II filter: we cannot directly compare different types of filters. Of course,
a Type-I filter with length N = N0 and given specifications cannot be better than a
Type-I filter with the same specifications and length N = N0 + 2. This is evident
from Fig. 7.23, where only Type-I filters are considered, with �ω = 0.1π and κ = 1.
The curves for ε shown here correspond to orders 14, 16, and 18 (N = 15, 17, and
19, respectively). There are no intersections between curves. However, the curves
representing different orders touch each other in correspondence with local minima.

These plots are useful because they allow us to understand how in some cases
extraripple solutions emerge, while in other cases normal solutions are found. To this
purpose, let us examine a close-up (Fig. 7.24) of the plot area contained in the gray
rectangle in Fig. 7.23. The black squares and the labels a–f in Fig. 7.24 identify six
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Fig. 7.22 Dependence of
the optimized absolute
maximum error ε on the
cutoff frequency ωp for
Type-I and -II lowpass filters,
with κ = 1 and �ω = 0.2π.
Each curve is relative to a
different filter length N , in
the range from 9 to 12

Fig. 7.23 Dependence of
the optimized absolute
maximum error ε on the
cutoff frequency ωp for
Type-I lowpass filters, with
κ = 1 and �ω = 0.1π. Each
curve is relative to a different
filter length N , in the range
from 15 to 19. The region
enclosed by the gray
rectangle is shown in greater
detail in Fig. 7.24

filters that differ from one another only for the precise value of their cutoff frequency
ωp. They all lie on the dashed curve, which is relative to the order N − 1 = 16
(M = 8). However, in c the dashed curve with order 16 touches the dotted curve
with order 18; in e the dashed curve with order 16 touches the solid curve with order
14; in f the dashed curve with order 16 touches again the dotted curve with order 18.
What is the meaning of points such as c, e, and f? This can be understood observing
Fig. 7.25, where each panel shows the zero-phase response of one of the six filters
a–f. A black dot highlights the value of ωp.

• Let us start from filter c: this is an extraripple solution for the order 16, with a
zero-phase response presenting M + 1 equal extrema. The number of alternations
is M + 3. Actually, as we shall see, all the local minima of each curve in Fig. 7.23
correspond to extraripple filters for the corresponding order.
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Fig. 7.24 A close-up of a
part of Fig. 7.23. The black
squares identify six different
filters, labeled with different
letters, that will be further
investigated in Fig. 7.25
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Fig. 7.25 Zero-phase
response of each of the six
Type-I lowpass filters
identified by the letters a–f in
Fig. 7.24. The order is
N − 1 = 16 (M = 8);
κ = 1,�ω = 0.1π. The
value of ωp , indicated by a
black dot in each panel,
varies from one filter to the
other
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• If we slightly decrease ωp, we get filter b: the number of extrema of H(ω) still is
M + 1, but the minimum at ω = 0 is smaller than the other extrema. The number
of alternations is M + 2: this is a normal solution.

• If we further decrease ωp, we can reach filter a: the minimum at ω = 0 that in
filter b was less pronounced than the other extrema has now disappeared, leaving
M equal extrema and M + 2 alternations. This is again a normal solution.

• Starting again from c, let us increase ωp slightly to get filter d. The number of
extrema is M + 1 as in filter c, but the minimum at ω = π is smaller than the
other extrema. The number of alternations is M + 2: once again, we get a normal
solution.

• Now we increase ωp until we reach filter e. The minimum at ω = 0 that in filter
d was less pronounced than the other extrema has now disappeared, leaving M
equal extrema and M + 2 alternations. So, this is another normal solution.

• Finally, a further consistent increase of ωp can lead us to filter f. A maximum equal
to the other ones has appeared at ω = 0. The number of extrema is M + 1 and the
number of alternations is M + 3: we attained again an extraripple solution for the
order 16, as expected since point f is, like c, a local minimum of the curve with
order 16 in Figs. 7.23 and 7.24.

We may note that points c and f in Fig. 7.24 also belong to the order-18 curve, and
that point e also belongs to the order-14 curve. How can a filter have two different
orders at the same time? The answer is, filters c and f are extraripple solutions for
order 16, but are also normal solutions for order 18. Similarly, filter e is a normal
solution for order 16, but is also an extraripple solution for order 14. For example,
the minimax design method provides the same filter c if—all other parameters being
equal—we set order 18, or order 16. The only difference is that the impulse response
of the optimum filter has two zero samples at n = 0 and at n = N − 1 when the
order is set to 18, and does not have them when the order is set to 16.

Type-II filters have similar properties, except for the fact that the zero-phase
response always vanishes at ω = π (Fig. 7.4).

7.11 The Minimax Method for Bandpass Filters

We discussed lowpass filters that, as highpass filters, have only two approximation
bands. Passband and stopband filters have three such bands, and the alternation
theorem has different implications in these cases.

The alternation theorem does not set any limit on the number of approximation
bands, so that the minimum number of alternations required for optimality always is
M +2. However, while a lowpass filter has four band limits (0, ωp, ωs , π), multiband
filters have more than band limits. For instance, a bandpass filter has six limits (0, ωs1,
ωp1, ωp2, ωs2, π), and therefore these filters can exhibit more than M +3 alternations.
This means that some statements we made for lowpass filters are no longer valid. For
example, it is not necessary that all local minima and maxima of H(ω) fall inside the
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approximation bands: there may be local extrema in the transition bands. Also, the
approximation is not necessarily equiripple in the approximation bands. These filters
are optimum in the sense of the alternation theorem, but are normally discarded in
practical applications.

In general, when the design of a multiband filter is performed, there is no guarantee
that the transitions bands will be monotonic, because the MPR algorithm leaves
them completely free from constraints. However, when a certain choice of the design
parameters leads to a solution that presents non-monotonic transition bands, or that is
not equiripple in the approximation bands, the filter is designed again after adjusting
the order, or one or more band limits, or even the weighting error function, until a
regular solution is obtained.
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Chapter 8
IIR Filter Design

8.1 Chapter Summary

Digital IIR filters have an infinitely long impulse response and therefore can be
associated with analog filters that have the same characteristics. For this reason, the
classical method for digital IIR filter design is based on the design of an analog filter,
which is later transformed into an equivalent digital filter through a mapping in the
complex plane. The advantage of such a technique lies in the fact that analog filter
design and mapping methods for analog-to-digital (A/D) transformation are well
known and have sound theoretical foundations. The process is based on a lowpass
filter, and frequency transformation methods are later applied if a different type of fre-
quency selectivity is desired. These frequency transformations are again well-known
mapping procedures in the complex plane. In this chapter, we will first discuss the
design of the main types of lowpass analog filters, namely Butterworth, Chebyshev
and elliptic lowpass filters, all of which represent different ways of approximating the
desired ideal frequency response. Then we will learn how to transform the analog
lowpass filter into an equivalent IIR digital lowpass filter via bilinear transforma-
tion, and finally how to transform the IIR lowpass filter into a highpass, bandpass
or bandstop filter, if needed. The appendix to this chapter provides deeper insight
into the mathematical facets of elliptic design, discussing elliptic integrals of the first
kind, Jacobi elliptic functions, and the elliptic rational function on which the trans-
fer function of the analog elliptic filter is based. It must be explicitly noted that all
classically-designed lowpass IIR filters are inadequate for specifications with cutoff
frequency close to zero and narrow transition band. In such cases, it may be advisable
to preliminarily downsample the signal and then design a filter with a less extreme
cutoff frequency, allowing for a wider transition band.
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8.2 Design Process

Two approaches to the design of digital IIR filters are found in literature, and are
illustrated in Fig. 8.1. The first approach consists of designing an analog lowpass fil-
ter, transforming it into an analog highpass, or bandpass, or bandstop filter if required,
and finally converting it into a digital filter. The frequency transformation thus takes
place in the analog domain. This approach is widely employed in software imple-
mentations, for example in Matlab. However, we will focus on the second approach
that consists in transforming first a lowpass analog filter into a lowpass digital fil-
ter, and then, if necessary, transforming the lowpass digital filter into a highpass, or
bandpass, or bandstop digital filter. The frequency transformation here takes place in
the digital domain. The reason for this choice is that from a methodological point of
view this procedure is conceptually simple, and also because in this book the focus
is on the techniques concerning digital filters, rather than analog filters.

Suppose we want to design a digital IIR filter with one of the four prototype-
frequency-selectivity responses, and satisfying some given specifications. These
specifications will be translated into proper specifications for an analog lowpass filter,
which will then be designed. Later, the analog lowpass filter will be transformed into
a digital lowpass IIR filter. Finally, this filter can be converted, if desired, into a digital
IIR highpass, or bandpass, or bandstop filter, satisfying the original specifications.
Since the frequency response of an analog filter is defined over −∞ < � < +∞,
while the frequency response of a digital filter is restricted to the range −π ≤ ω < π

and repeats itself periodically outside this interval, the two responses cannot be iden-
tical. The similarity of the responses is imposed over a limited interval of analog
frequencies, starting from � = 0.

Fig. 8.1 Two viable approaches for the transformation of an analog lowpass filter into a digital
lowpass, highpass, bandpass or bandstop IIR filter. Here z represents the complex independent
variable for the transfer function of the digital filter, while s represents the complex independent
variable used to express the transfer function of the analog filter
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The procedure described above requires studying:

• the design method for analog lowpass filters;
• the transformation method for converting an analog lowpass filter into a digital

IIR lowpass filter. Among the many methods for analog to digital (A/D) conver-
sion available in literature, the most popular are the method of impulse-response
invariance that however has limited applicability, and the bilinear transformation,
which is widely used and will be presented in this book;

• the transformation method for converting a digital lowpass IIR filter into a high-
pass, bandpass or bandstop filter of the same kind.

In all these approaches, the phase features of the designed filters are not considered.
These methods are therefore magnitude-only design methods. Actually, more sophis-
ticated techniques exist that can simultaneously approximate desired amplitude and
phase responses, but they require advanced optimization methods that are beyond
the scope of our discussion.

First of all, we must examine the design of analog filters. For this task, techniques
exist that have been thoroughly studied and apply to the three main analog filter
types: Butterworth, Chebyshev (of which two subtypes exist, I and II) and elliptic
filters, which are also referred to as Cauer or Zolotarev filters. From now on we will
simply indicate Chebyshev filters of types I and II as Chebyshev-I and Chebyshev-II
filters, respectively.

These analog filter types are characterized by different functional forms of the
transfer function, and represent different approximations of the ideal piecewise-
constant response; their classical design deals with the lowpass case. Starting from
Butterworth filters, passing to Chebyshev and finally to elliptic ones, the design
complexity increases while, all specifications being equal, progressively lower orders
can be adopted to satisfy them. The order being equal, more stringent specifications
can be met. For given specifications, elliptic filters have the minimum possible order,
but also exhibit a phase that is the most distant from linearity.

As we mentioned above, IIR filter design focuses on amplitude response and
considers phase response as a minor issue. In any case, these filters always exhibit
nonlinear phase response1; indeed, their phase response is difficult to control. This
is acceptable only in filtering applications in which the phase distortion undergone
by the signal does not represent a negative implication, or in off-line applications in
which the zero-phase filtering technique can be employed (Sect. 6.7).

In any application we may be interested in, we may prefer to adopt an IIR filter
rather than an FIR filter because, all specifications being equal, we desire

• a lower order; for example, a narrow transition band even at a low order;
• as flat a frequency response as possible in the passband and/or in the stopband, a

feature that cannot be achieved with an FIR filter.

By the classical IIR design method, we can obtain filters that approximate the four
ideal prototypes, with desired unitary amplitude response in the passband and desired

1Some particular IIR filters, such as polyphase filters, can have quasi-linear phase response, but
they will not be described in this book.

http://dx.doi.org/10.1007/978-3-319-25468-5_6
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zero amplitude response in the stopband, but we cannot design filters with arbitrary
characteristics, e.g., multiband filters. Multiband IIR filters can be obtained only
by those direct design methods implying advanced optimization methods that we
mentioned above. On the other hand, by the classical IIR design method we can
design a filter with given specifications just inserting the values of certain parameters
in closed-form design equations: a pocket calculator could be enough. Of course, in
our computer era this is not a decisive element.

Let us start with some fundamental notions concerning analog filters.

8.3 Lowpass Analog Filters

Lowpass analog filters are specified in a similar manner to that adopted for digital
filters. The main differences are the following:

• frequencies are given as � in rad/s; for example, a lowpass filter will be specified
giving the limits of the passband and stopband, �p and �s respectively, as well
as the absolute tolerances δp and δs in the two bands. These are the basic design
parameters;

• the transfer function is expressed as H(s), representing the Laplace transform of
the analog impulse response h(t);

• the amplitude response in the passband is normally constrained to [1 − δp, 1], the
desired passband magnitude being 1; this is mainly due to formal convenience
and consolidated use, since the value of the passband magnitude response could
be easily adjusted in such a way to make the (possibly existing) ripple symmetric
about 1, as for FIR filters.

8.3.1 Laplace Transform

Let us briefly recall that the Laplace transform is a generalization of the continuous-
time Fourier transform (CTFT). The CTFT is defined (see, e.g., Oppenheim et al.
1996; Bochner and Chandrasekharan 1949; Bracewell 2000) through the analysis
and synthesis relations:

X (j�) =
∫ +∞

−∞
x(t)e−j�t dt,

x(t) = 1

2π

∫ +∞

−∞
X (j�)ej�t d�.
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Here we used X (j�) to indicate the CTFT, in place of the more usual symbol X (�),
because this is useful in the frame of the connection between the CTFT and Laplace
transforms. Note that � = 2π f , where f is analog frequency in Hz. Analog angular
frequency is measured in rad/s.

The Laplace transform is introduced because it is useful for many purposes: first
of all, the CTFT does not converge for many continuous-time signals for which the
Laplace transform exists. Instead of using, as a basis for signal expansion, complex
exponential functions with the form ej�t , with a purely imaginary exponent, the
Laplace transform uses the more general functions est , with

s = σ + j�,

where σ and � are real variables. In the so-called s-plane, where a Cartesian reference
frame is established having Re(s) as the abscissa and Im(s) as the ordinate, the
function est represents a general set of complex exponential functions.

The (bilateral)2 Laplace transform of x(t) is defined as (see, e.g., Bracewell 2000)

X (s) =
∫ +∞

−∞
x(t)e−st dt.

The area in the s-plane composed by the values of s such that the Laplace transform
converges is referred to as the Region of Convergence (ROC). Inside the ROC, X (s)
is an analytic function.

The ROC of X (s) has the following properties:

• it is made of strips that are parallel to the imaginary axis;
• if x(t) has finite duration and is absolutely integrable, then the ROC extends over

the whole s-plane;
• if x(t) is a causal (right-hand sided) function and if the straight line Re(s) = α is

contained inside the ROC, then all values of s for which Re(s) > α are contained
inside the ROC as well;

• if x(t) is an anticausal (left-hand sided) function and if the straight line Re(s) = α

is contained inside the ROC, then all values of s for which Re(s) < α are contained
inside the ROC as well;

• if x(t) is a two-sided function and if the straight line Re(s) = α is contained inside
the ROC, then the ROC is a strip of the s-plane including the straight line;

• if X (s) is a rational function, with zeros and poles, obviously the ROC does not
contain any pole; the ROC is delimited by poles, or extends to infinity;

• if X (s) is a rational function and if x(t) is a causal (right-hand sided) function, the
ROC is the region of the s-plane extending to the right of the pole which is located
to the right of all other poles;

• if X (s) is a rational function and if x(t) is an anticausal (left-hand sided) function,
the ROC is the region of the s-plane extending to the left of the pole which is
located to the left of all other poles.

2The monolateral Laplace transform is defined over t ∈ [0,∞).
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The inverse Laplace transform is defined by the limit of an integral in the s-plane, in
which the integration contour is a straight line parallel to the imaginary axis, given
by the equation Re(s) = β:

x(t) = 1

2π j
lim

R→∞

∫ β+jR

β−jR
X (s)est ds.

Here β is a real number such that the integration contour is contained inside the ROC
of the Laplace transform, and R is a real parameter.

Finally, for an analog real signal x(t) the following property holds:

X (−s) = X∗(s) � |X (s)|2 = X (s)X (−s).

8.3.2 Transfer Function and Design Parameters

From now on, we focus on LTI stable and causal analog systems represented by
proper rational transfer functions,

H(s) = b0sq + b1sq−1 + · · · + bq

s p + a1s p−1 + · · · + ap

with q ≤ p; this condition on q and p is related to requiring that

lim
s→∞ H(s) = 0.

Note that we set a0 = 1. These systems have zeros and poles, the latter being the
zeros of the denominator of H(s). This form of the transfer function corresponds
to input-output relations in the form of linear differential equations with constant
coefficients.

The ROC of a stable H(s) is always determined by a condition of the form

Re(s) > −α,

with α a real positive number; therefore the ROC is a part of the s-plane delimited
by a straight line parallel to the imaginary axis, located in the left-hand half-plane
(σ = −α < 0). Therefore, the ROC of an analog transfer function always contains
the imaginary axis of the s-plane, i.e., the straight line identified by σ = 0, s = j�.
On the imaginary axis, H(s) represents the filter’s frequency response, i.e., the CTFT
of the filter’s impulse response. The ROC extends to the right of the straight line,
as in Fig. 8.2, and since the ROC cannot contain any poles, −α coincides with the
abscissa of the pole(s) that are located to the right of all other poles in the s-plane.
This means that for a stable system, all poles lie in the left-hand half-plane (σ < 0),
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Fig. 8.2 Complex s-plane
and region of convergence
(ROC; gray-shaded area) of
the transfer function of an
analog filter that is causal,
stable and rational. The dots
indicate poles

as in the example shown in Fig. 8.2. In this case the CTFT of the impulse response
h(t), i.e., H(j�) ≡ H(s = j�), exists and represents the frequency response of the
system.

The design of an analog filter requires the specification of absolute tolerances δp

and δs ; the corresponding relative tolerances expressed in dB are

{
rp = −20 log10

(
1 − δp

)
,

rs = −20 log10(δs).

Moreover, the design of an analog filter requires introducing four more parameters
that are functions of the basic design parameters:

• the selectivity factor k that must satisfy 0 < k < 1 (it would be 1 for an ideal filter
with no transition band),

k = �p

�s
;

• the discrimination factor k1, which must be non-negative,

k1 =
[(

1 − δp
)−2 − 1

δ−2
s − 1

]1/2

=
(

10rp/10 − 1

10rs/10 − 1

)1/2

.

For δp → 0, the numerator of k1 goes to zero, hence k1 vanishes. For δs → 0 = 0,
the denominator of k1 goes to infinity, hence k1 also vanishes in this case. Therefore
for an ideal filter k1 = 0, while in practical cases any δp > 0 implies k1 > 0. A
narrow transition band implies k � 1 and that a strong attenuation in the stopband
and/or a small ripple in the passband imply k1 � 1. In most cases we thus have

k1 � k � 1;
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• a parameter εp related to the passband absolute tolerance,

εp =
√

(1 − δp)−2 − 1;

• a parameter εs related to the stopband absolute tolerance,

εs =
√

δ−2
s − 1.

Note that εp/εs = k1.

Finally, two more parameters are useful in describing the properties of analog
filters. In order to introduce them we must pass from the transfer function to the
frequency response, which is deduced from H(s) by setting σ = 0, s = j�:

H(j�) = b0(j�)q + b1(j�)q−1 + · · · + bq

(j�)p + a1(j�)p−1 + · · · + ap
.

The additional parameters are

• the −3 dB cutoff frequency, defined as the frequency �3dB at which the magnitude
response of the filter is 0.707 = 1/

√
2 times its ideal unitary passband value, since

20 log10(0.707) = −3. Therefore the squared amplitude of the filter’s frequency
response at �3dB is 0.5;

• the asymptotic attenuation at high frequency, a parameter determined by the dif-
ference between the denominator and the numerator degrees of the proper rational
function H(s). From the formula for H(j�) we can see that for � → ∞ the
behavior of the frequency response is given by

H(j�) ≈ b0(j�)q−p;

in practice, � → ∞ must be understood as � greater than about 5 times the
maximum absolute value of the frequencies of all poles and zeros. In logarithmic
units we can write, with q ≤ p,

20 log10 |H(j�)| ≈ 20 log10 |b0| − 20(p − q) log10 �;

this is expressed by saying that the asymptotic attenuation is about 20(p − q)

dB/decade.

Classical analog lowpass filters are designed starting from the functional form of
the squared-magnitude frequency response, which can generally be expressed as

|H(j�)|2 = 1

1 + ε2
p


2
N (w)

with w = �/�p.
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In this expression, w is a normalized frequency. The function
N (w) is the attenuation
function, constructed in such a way to obtain in the passband and in the stopband
the desired filter behavior. In particular, where 
N (w) is monotonic, the same is
true also for |H(j�)|2; where 
N (w) exhibits an oscillatory behavior—and this
can happen either in the passband, or in the stopband, or in both bands—|H(j�)|2
exhibits ripples in the same band(s). If 
N (w) is constrained to be a polynomial or a
rational function, then H(s) is constrained to be rational; the order of the polynomial
or rational function 
N (w) determines the order of H(s). The attenuation function
depends on the independent variable w, but may also depend on parameters, such as
k and k1, which serve to impose to |H(j�)|2 the desired behavior.

The various types of classical analog filters that will be discussed in this chapter
are built in this way, and differ from one another only for the choice of the functional
form of 
N (w), which determines

• a flat passband and a flat stopband for Butterworth filters, i.e., no ripples,
• an oscillatory passband and a flat stopband for Chebyshev-I filters,
• a flat passband and an oscillatory stopband for Chebyshev-II filters,
• an oscillatory passband and an oscillatory stopband for elliptic filters.

Note that the word “flat” in the above statements must be meant as “nearly flat”.
Now, let us call

• TN (w) the Chebyshev polynomial of the first kind, with degree N in the normalized
frequency w;

• RN (w) the elliptic rational function with degree N in the variable w;
• cd (·) the Jacobi elliptic function known as the cd function;
• K the complete elliptic integral of the first kind with parameter k;
• K1 the complete elliptic integral with parameter k1;

the meaning of the quantities listed here will be explained in the following sections.3

The function 
N (w) is then defined as follows:


N (w) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

wN for Butterworth filters,

TN (w) for Chebyshev-I filters,

[k1TN (k−1w−1)]−1 for Chebyshev-II filters,

RN (w) = cd (NuK1, k1) , with w = cd (uK , k) , for elliptic filters.

In the last formula, u is a complex variable which is constrained to assume values
leading to real values of w. Further mathematical details can be found in the appendix
to this chapter, in which the functions mentioned above, in particular Jacobi elliptic
functions, elliptic integrals and the elliptic rational function, are described.

With the notation introduced above, a unified design method for analog lowpass
filters of the four types can be formalized. We will not pursue this approach com-

3The Chebyshev polynomial of the first kind has already been defined in Chap. 7.

http://dx.doi.org/10.1007/978-3-319-25468-5_7
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pletely: for our purposes, clarity is more important than conciseness. Nevertheless,
we will underline the analogies among Butterworth, Chebyshev and elliptic design
procedures.

The use of the normalized frequency w makes calculations easier and simplifies
the notation. The value w = 1 corresponds to the upper limit �p of the passband,
while the value w = �s/�p = k−1 corresponds to the lower limit of the stopband.

If we require filter specifications in the passband and in the stopband to be met
at the edges, �p � w = 1 and �s � w = k−1 respectively, recalling the definitions
of εp and εs we get the following constraints for the function 
N (w):

∣∣H(j�p)
∣∣2 = 1

1 + ε2
p


2
N (1)

= (1 − δp
)2 = 1

1 + ε2
p

⇒ 
N (1) = 1,

|H(j�s)|2 = 1

1 + ε2
p


2
N

(
k−1
) = δ2

s = 1

1 + ε2
s

⇒ 
N (k−1) = εs

εp
= k−1

1 .

We can deduce that any type of 
N (w)

• must be normalized to 1 at w = 1;
• must be normalized to k−1

1 at w = k−1.

The second condition expresses the general form of the so-called degree equation
(Orfanidis 2006). For Butterworth, Chebyshev-I and elliptic filters, this equation
establishes a relation among the parameters N , k and k1. As for Chebyshev-II filters,
with respect to the case of Chebyshev-I filters the constraints at �p and �s exchange
their roles: for Chebyshev-II filters, the relation among N , k and k1 is provided by
the condition 
N (1) = 1. In fact,

• by imposing 
N (1) = [k1TN (k−1)
]−1 = 1 we get k1TN (k−1) = 1, hence

TN (k−1) = k−1
1

(degree equation);
• by imposing 
N (k−1) = εs/εp = k1

−1 we get

[
k1TN (k−1k

]−1 = [k1TN (1)]−1 = k−1
1 ,

which simply means TN (1) = 1, a condition that is satisfied by Chebyshev poly-
nomials of the first kind (Fig. 7.10).

The existence of the degree equation implies that the values of the parameters
N , k and k1 cannot all be prescribed arbitrarily: given two values, the remaining
one is automatically determined. The equation that relates N , k and k1 for a given
filter type represents the specific form of the degree equation for that filter type.

http://dx.doi.org/10.1007/978-3-319-25468-5_7
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The name “degree equation” derives from the fact that this equation determines the
filter order required to meet some given specifications, i.e., the order associated with
given values of k and k1. The existence of a relation among N , k and k1 has other
remarkable implications, especially in the design of elliptic filters (see the appendix).

We started from |H(j�)|2, the squared amplitude of the frequency response. We
can go back to the squared amplitude of the transfer function by substituting

j� = s, � = s/j = −js

into |H(j�)|2. We thus get

|H(s)|2 = H(s)H(−s).

Therefore, |H(j�)|2 determines the product H(s)H(−s) but does not determine the
rational transfer function H(s) in a unique way. The set of poles of H(s)H(−s)
obviously includes both the poles of H(s) and the poles of H(−s). The position
of the poles of H(−s) can be deduced from the position of the poles of H(s) by
changing the sign of both real and imaginary parts.

The transfer function can be determined univocally by calling upon stability: a
stable H(s) will have, as its poles, all the poles of H(s)H(−s) that lie in the left-
hand half-plane. A stable H(s) cannot have poles elsewhere. When not only poles
but also zeros are present, as in the Chebyshev-II and elliptic cases, these zeros are
found—as we will see later—on the imaginary axis, in symmetric positions with
respect to the real axis. Hence, when s undergoes a sign reversal, nothing changes:
H(s) and H(−s) share the same set of zeros.

The rational transfer function of an analog filter can be written in factorized form,
using the positions zm of its zeros and the positions pn of its poles, and a gain G:

H(s) = G

∏
m(s − zm)∏
n(s − pn)

.

When no zeros are present, as in the case of Butterworth and Chebyshev-I filters, the
product in the numerator is substituted by 1:

H(s) = G
1∏

n(s − pn)
.

An important value of H(s) is the value assumed at s = 0, which we will indicate
by H0:

H0 = G

∏
m(−zm)∏
n(−pn)
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if both zeros and poles exist, and

H0 = G
1∏

n(−pn)

in the case of poles only. Therefore we can write

G = H0

∏
n(−pn)∏
m(−zm)

, or G = H0

∏

n

(−pn),

respectively. Note that H0 also is the value assumed by the frequency response H(j�)

at � = 0.
The filter’s cutoff frequency, indicated by �c, is identified on the basis of consid-

erations related to the constraints imposed in the passband and in the stopband:

• for Butterworth filters, �c > �p: these two frequencies are related to one another
but are not coincident. More precisely,

�c = �p

[(
1 − δp

)−2 − 1
]−1/2N = �pε

−1/N
p ;

• for Chebyshev-I and elliptic filters, �c = �p;
• for Chebyshev-II filters, �c = �s .

The rationale behind these choices will be explained later. Finally, an analog proto-
type filter for which no cutoff frequency is explicitly specified is meant as a normal-
ized filter having �c = 1 rad/s. Figure 8.3 illustrates the main parameters involved
in lowpass analog filter design; Table 8.1 gives the definition of each parameter and
its relation with the other ones.

Fig. 8.3 Specifications for
an analog filter, including
absolute tolerances δp and
δs , as they appear in a
linear plot of the
frequency-response
magnitude
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Table 8.1 The parameters involved in analog filter design

Parameter Expression Expression Expression

k = �p
�s

k1 =
√

(1−δp)−2−1

δ−2
s −1

=
√

10r p/10−1
10rs /10−1

= εp
εs

εp =
√

(1 − δp)−2 − 1 =
√

10rp/10 − 1 =
√

G−2
p − 1

εs =
√

δ−2
s − 1 = √

10rs/10 − 1 =
√

G−2
s − 1

δp = 1 − 1√
ε2

p+1
= 1 − 10−rp/20

rp = −20 log10(1 − δp) = 10 log10(1 + ε2
p) = −20 log10 G p

δs = 1√
ε2

s +1
= 10−rs/20

rs = −20 log10 δs = 10 log10(1 + ε2
s ) = −20 log10 Gs

8.4 Butterworth Filters

A lowpass Butterworth filter is defined as

|H(j�)|2 = 1

1 + ε2
pw2N

,

where w = �/�p, and the integer N represents the filter order. Note that with �c =
�pε

−1/N
p , i.e., �p = �cε

1/N
p , the Butterworth filter can also be written as

|H(j�)|2 = 1

1 + ε2
pw2N

= 1

1 + ε2
p

(
�
�p

)2N = 1

1 +
(

�
�c

)2N ,

a formula that does not contain any parameter εp. This is reasonable, considering the
actual absence of any ripple in Butterworth filters. Moreover, in this expression the
cutoff frequency appears in place of the passband limit, and � replaces w. Similar
formulas can be written for the other filter types: it is always possible to use �c in
place of �p (Chebyshev-I and elliptic filters) or �s (Chebyshev-II filters) to write
|H(j�)|2 in terms of �, rather than in terms of w (e.g., Porat 1996).

Figure 8.4 shows the shape of the Butterworth frequency response for a few N
values. This figure shows the square magnitude of the frequency response; the cut-
off frequency �c as a function of �p, δp and N has been defined in the previous
subsection.

The main properties of a lowpass Butterworth filter are the following:

• |H(j�)|2 is a monotonically decreasing function of frequency that goes to zero
for � → ∞;

• its maximum value is 1 and occurs at � = 0;
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Fig. 8.4 Squared magnitude of the frequency response of an analog Butterworth filter with cutoff
frequency �c = 10 rad/s and with N = 3, 4, 7, 10, 15, and 18

• with the choice of �c given in the previous subsection, |H(j�c)|2 = 0.5, so that
�c = �3dB: the cutoff frequency �c of a Butterworth filter is the −3 dB cutoff
frequency. In fact, with �c = �pε

−1/N
p , i.e., �c/�p = ε

−1/N
p , we have

|H(j�c)|2 = 1

1 + ε2
pε

−2
p

= 1

2
,

from which we actually see that �c = �3dB.
This is not true for the other analog filters types, for which the cutoff frequency is
assumed to be the abscissa of the point in which, as frequency increases starting
from zero, the frequency response attains the passband maximum tolerance for the
last time (Chebyshev-I and elliptic filters), or the stopband maximum tolerance
for the first time (Chebyshev-II filters);

• the asymptotic attenuation at high frequency is 20N dB/decade, because q = 0
and p = N ;

• it can be shown that the derivatives of any order 1 ≤ l ≤ 2N − 1 vanish at �c:

∂ l |H(j�)|2
∂�l

|�=�c = 0, 1 ≤ l ≤ 2N − 1;

in other words, Butterworth filters are maximally flat in the passband.

Substituting � = s/j = − js in the formula for |H(j�)|2 gives the squared mag-
nitude of the Butterworth transfer function: it is convenient to use the expression
containing only � and �c, from which we get
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H(s)H(−s) = 1

1 +
(

s
j�c

)2N = 1

1 + (−1)N
(

s
�c

)2N .

This function has no zeros. Its poles are the 2N complex solutions pn of the
equation 1 + (−1)N (s/�c)

2N = 0; their expression is

pn = �c exp

[
j
π(N + 1 + 2n)

2N

]
, 0 ≤ n ≤ 2N − 1.

The poles pn of H(s)H(−s) that correspond to 0 ≤ n ≤ N − 1 are located in the
left-hand half s-plane, and for stability are assigned to H(s). The poles of H(s) for
the Butterworth filter are thus

pn = �c exp

[
j
π(N + 1 + 2n)

2N

]
, 0 ≤ n ≤ N − 1,

while the remaining poles belong to H(−s). Figure 8.5 shows the position of the
poles of H(s)H(−s) for an even and an odd value of N . There are N poles of H(s)
(black dots) equispaced on a half-circle of radius �c, centered at the origin; the angle
between two adjacent poles is π/N .

The poles of H(s) satisfy the condition
∏N−1

n=0 (−pn) = �N
c . Once the positions

of the poles are known, the transfer function can be written in factorized form, as

H(s) = G
1

∏N−1
n=0 (s − pn)

,

(a) (b)

Fig. 8.5 Poles of H(s)H(−s) for a Butterworth analog filter with a N = 3 and b N = 4. These
poles all lie on a circle of radius �c centered at the origin. The black dots represent the poles of
H(s), while the empty circles represent the poles of H(−s)
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with

G = H0

N−1∏

n=0

(−pn) = H0�
N
c = �N

c ,

since for Butterworth filters we have H0 = 1. In summary, the factorized transfer
function of a Butterworth filter is

H(s) = �N
c

N−1∏

n=0

1

s − pn
=

N−1∏

n=0

(−pn)

s − pn
.

This all-pole transfer function can also be expressed as

H(s) = �N
c

s N + a1s N−1 + · · · + aN−1s + aN
,

where the coefficients ai are those of the monic polynomial4 having the pn as poles
and having aN = �N

c , i.e., aN equal to the product of reversed-in-sign poles.5 Note
that at s = 0, H(s) assumes the correct unitary value.

The design process for a Butterworth filter required to meet given specifications
proceeds as follows.

• Once the values of �p, �s , δp and δs have been chosen, the selectivity factor k
and the discrimination factor k1 are computed.

• These two factors determine the minimum required order. In fact, imposing that
tolerances are not exceeded at the edges of the approximation bands we have

∣∣H(j�p)
∣∣2 = 1

1 +
(

�p

�c

)2N ≥ (1 − δp)
2 at passband edge,

|H(j�s)|2 = 1

1 +
(

�s
�c

)2N ≤ δ2
s at stopband edge,

hence (
�p

�c

)2N

≤ (1 − δp)
−2 − 1,

(
�s

�c

)2N

≥ δ−2
s − 1.

4A monic polynomial is such that the coefficient a0 of the highest-degree term is unitary.
5The poles are N , but a relation exists among them, so that there are only N − 1 degrees of freedom
(DOF); the monic polynomial with degree N has N coefficients and therefore one of the coefficients
must actually be fixed.
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The ratio of these two inequalities gives

(
�s

�p

)2N

≥ δ−2
s − 1

(1 − δp)−2 − 1
,

and substituting the definitions of k = �p/�s and k1 = εp/εs (see Table 8.1) we
get k−2N ≥ k−2

1 , i.e., k−N ≥ k−1
1 , representing the degree equation for the Butter-

worth filter. Passing to natural logarithms we obtain the condition

N ≥ log
(
k−1

1

)

log
(
k−1
) = log(εs/εp)

log(�s/�p)
.

The minimum order found from this relation is the solution of the degree equation
for the Butterworth filter.
In general, however, the right-hand term of the last inequality is not an integer
number, and the nearest larger integer is chosen as the minimum order N .
In practice, we will normally specify �p,�s , δp and δs , which determine k and k1.
Then we will compute N and round it up to the nearest larger integer. Since in this
way we slightly increased N with respect to the (non-integer) value corresponding
to k and k1, we must then compute k1 again from the old k and the rounded
N ; we could also compute k again from the old k1 and the rounded N . Since
k is an increasing function of N (a higher order leads to a narrower transition
band), while k1 is a decreasing function of N (a higher order leads to a greater
attenuation in the stopband and/or a smaller deviation from the desired unitary
value in the passband), the designed filter will have slightly better characteristics
than those originally requested. Usually, k1 is the quantity that is re-evaluated;
δp is left unchanged and δs is re-evaluated accordingly, so as to exactly reflect
the filter behavior in the stopband. In the case of Butterworth filters, there is no
ripple and the important parameter is k, which regulates the width of the transition
band; the re-evaluated k1 simply represents that value which, when inserted in the
formula expressing the solution of the degree equation, gives an integer value.
The re-evaluated δs that derives from it gives the value of the designed frequency
response at � = �s .
For re-evaluating k1 after rounding N up, we will use the degree equation, k−1

1 =
k−N ; the formula for re-evaluating δs is then

δs =
[

1 + (1 − δp)
−2 − 1

k2
1

]−1/2

.

If, on the contrary, we decided to re-evaluate k, then �s would change, making the
transition band slightly narrower, and at this new abscissa the frequency response
would equal the original δs , which would remain unaltered, like k1.

• In principle, the cutoff frequency �c of the Butterworth filter can be chosen arbi-
trarily in the range
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�p

[(
1 − δp

)−2 − 1
]−1/2N ≤ �c ≤ �s

[
δ−2

s − 1
]−1/2N

.

This inequality derives from the conditions imposed separately at the passband
and stopband edges (see the previous point). Actually, �c is set equal to the lower
limit of this range.

• The positions of the poles pn are calculated.
• The transfer function H(s) is calculated from its factorized form. The frequency

response H(j�) follows, by setting s = j�.

An example of the result of this procedure is shown in Figs. 8.6 (dB scale) and 8.7
(linear scale). This plot was obtained setting �p = 1 rad/s, �s = 2 rad/s, δp = 0.001.
The filter order is 15. The re-evaluated k1 and δs after rounding up N to the integer
value of 15 are 3.05 × 10−5 and 6.82 × 10−4, respectively. In Fig. 8.7, horizontal
dotted lines represent (1 − δp)

2, the original value of δ2
s , and the re-evaluated squared

stopband tolerance that we indicate by δ2
s,fin. Had we chosen to re-evaluate k keeping

k1 fixed, the new �s would fall at the intersection of the of δ2
s line with the frequency

response curve.
It can be seen in Fig. 8.7 that the frequency response of the Butterworth filter is

flat (i.e., has no ripples) in the passband. In the stopband it rolls off towards zero.
When viewed on a dB plot (Fig. 8.6), the response slopes off linearly towards negative
infinity at 20 N dB per decade. Butterworth filters thus have a magnitude frequency
response that changes monotonically with ω, unlike other filter types, which exhibit
ripples and therefore are non-monotonic in the passband and/or stopband.

Fig. 8.6 Squared magnitude of the frequency response in dB of an analog Butterworth filter
satisfying the following specifications: δp = δs = 0.001, �p = 1 rad/s, �s = 2 rad/s; these
specifications lead to k = 0.5 and k1 = 4.4755 ×10−5. The minimum order is N = 15. �c is
chosen as �p[(1 − δp)

−2 − 1]−1/2N = 1.23 rad/s
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Fig. 8.7 An expanded view of the same squared-magnitude frequency response shown in Fig. 8.6,
in normal units and with tolerance limits: the horizontal dotted lines indicate (1 − δp)

2, the original
value of δ2

s , and the re-evaluated squared stopband tolerance δ2
s,fin (see text)

8.5 Chebyshev Filters

Butterworth filters may seem “too good”: due to their monotonic frequency response
and their maximally flat behavior in the passband, they appear “glued” to 1 over
the whole passband and very close to 0 over the whole stopband, thus attaining the
maximum approximation error only at the edge of the two bands. Even if at times
this behavior can be useful, in most cases it is enough if the deviation of the effective
response from the desired one does not exceed some chosen δp and δs . Intuitively,
we can understand that spreading the approximation error uniformly over all the
passband (or over the stopband), the filter specifications can be met at a lower order.
This idea is realized in Chebyshev filters.

Chebyshev filters are built using the polynomial with the same name and the
same order of the filter: TN (w). These filters exhibit ripple in the passband or in
the stopband and are equiripple. Accepting the existence of some ripple allows a
more rapid transition from the passband to the stopband, with respect to requiring
a monotonic behavior. As a consequence, the order of a Chebyshev filter meeting
some given specifications is normally lower than the order of a Butterworth filter.
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Two types of Chebyshev filters exist:

• Chebyshev-I filters are equiripple in the passband and monotonic in the stopband;
• Chebyshev-II filters, or inverse-Chebyshev filters, are equiripple in the stopband

and monotonic in the passband.

8.5.1 Chebyshev-I Filters

The lowpass Chebyshev-I filter is defined as

|H(j�)|2 = 1

1 + ε2
pT 2

N (w)
= 1

1 + ε2
pT 2

N

(
�
�c

) .

For these filters, �c = �p; N is an integer representing the filter order. Figure 8.8
shows the shape of this function for a few even values of N , while Fig. 8.9 shows the
shape for a few odd values N .

The main properties of analog Chebyshev-I lowpass filters are the following:

• at zero frequency, since TN (0) = ±1 for even values of N and TN (0) = 0 for odd
values of N (Fig. 7.10), the response is

Fig. 8.8 Squared modulus of the frequency response of an analog Chebyshev-I filter with cutoff
frequency �c = �p = 10 rad/s and passband tolerance δp = 0.075, for N = 4, 6, 8, and 10

http://dx.doi.org/10.1007/978-3-319-25468-5_7
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Fig. 8.9 Squared modulus of the frequency response of an analog Chebyshev-I filter with cutoff
frequency �c = �p = 10 rad/s and passband tolerance δp = 0.075, for N = 3, 5, 7, and 9

H0 =

⎧
⎪⎪⎨

⎪⎪⎩

1√
1+ε2

p

for N even,

1 for N odd;

• for 0 ≤ � ≤ (�c = �p
)
, i.e., for w = �/�p ≤ 1, Chebyshev polynomials

TN (w) (Fig. 7.10) never exceed 1 in absolute value, hence

1

1 + ε2
p

≤ |H(j�)|2 ≤ 1, with
1

1 + ε2
p

= (1 − δp)
2;

• for � > �c, i.e., for w = �/�p ≥ 1, Chebyshev polynomials TN (w) increase
monotonically, hence the frequency response decreases monotonically;

• asymptotically, for � → ∞, |H(j�)|2 → 0, because T 2
N (�/�c) → ∞ for � →

∞;
• the asymptotic attenuation is the same as the asymptotic attenuation of a Butter-

worth filter with the same order: 20N dB/decade.

These filters have no zeros. The positions of the poles are obtained by setting the
denominator of |H(j�)|2 to zero; the result is more easily explained using a geometric
construction, rather than formulas. We will explain this construction with reference
to Fig. 8.10, which illustrates a case with odd N and a case with even N .

The poles of H(s)H(−s) lie on an ellipse in the s-plane, which is defined through
two auxiliary circles with radii equal to the major an minor ellipse axes. The minor
axis has a length a�c, with

http://dx.doi.org/10.1007/978-3-319-25468-5_7
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(a) (b)

Fig. 8.10 Poles of H(s)H(−s) for an analog Chebyshev-I filter with cutoff frequency �c, and
geometric construction for finding their positions (see text), for δp = 0.075, and a N = 3, b N = 4.
The subdivision of the auxiliary circles (dashed) is marked by gray dots; the poles, located on the
ellipse, are indicated by empty circles for H(−s) and by black dots for H(s); the segments are
meant to help visualizing the construction in the case of the first pole belonging to H(s)

a = 1

2

(
α1/N − α−1/N

)
, α = ε−1

p +
√

1 + ε−2
p ;

the major axis has a length b�c, with

b = 1

2

(
α1/N + α−1/N

)
.

In order to locate the poles of H(s)H(−s), which obviously depend on εp and hence
on the passband ripple (N and analog cutoff frequency being fixed), the two circles
are divided by points equally spaced in angle by π/N , in such a way that the points
are symmetrically distributed with respect to the imaginary axis and one point falls on
the real axis if N is odd, but does not if N is even. This subdivision of the major and
minor auxiliary circles corresponds exactly to the way in which the circle with radius
�c, related to the poles of a Butterworth filter, is subdivided in Fig. 8.5. Finally, the
poles are located on the ellipse: the ordinates of these points are those of the points
we identified on the major auxiliary circle, and the abscissas are those of the points
we identified on the minor auxiliary circle. The poles pn located in the left-hand
half s-plane are those having 0 ≤ n ≤ N − 1; for stability they are assigned to H(s);
their expression is (see, e.g., Shenoi 2005)

pn = −�c

{
sinh(φ) sin

[
π(2n + 1)

2N

]
+ j cosh(φ) cos

[
π(2n + 1)

2N

]}
,

with 0 ≤ n ≤ N − 1, and with

φ = 1

N
sinh−1

(
ε−1

p

)
.
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The number of poles of H(s) is therefore N ; these poles satisfy

N−1∏

n=0

(−pn) =

⎧
⎪⎪⎨

⎪⎪⎩

�N
c

√
1+ε2

p

2N−1εp
for N even,

�N
c

2N−1εp
for N odd.

Recalling that in the absence of zeros we can write

H(s) = G
1∏

n(s − pn)
with G = H0

∏

n

(−pn),

from the expressions given above for H0 and
∏N−1

n=0 (−pn) we can deduce that

G = �N
c

2N−1εp
,

hence the factorized form of the transfer function is

H(s) = �N
c

2N−1εp

N−1∏

n=0

1

s − pn
= H0

N−1∏

n=0

(−pn)

s − pn
.

This all-pole transfer function can also be written as

H(s) = �N
c

2N−1εp
(
s N + a1s N−1 + · · · + aN−1s + aN

) ,

with aN equal to the product of the reversed-in-sign poles.
The design process for a Chebyshev-I filter required to meet given specifications

proceeds as follows.

• Once �p, �s , δp and δs have been chosen, the selectivity factor k and the discrim-
ination factor k1 are calculated.

• The cutoff frequency �c, the parameter εp and the minimum order N are calcu-
lated. For this purpose, we impose the conditions at the edges of the approximation
bands:

∣∣H(j�p)
∣∣2 = 1

1 + ε2
pT 2

N

(
�p

�c

) ≥ (1 − δp)
2 at passband edge,

|H(j�s)|2 = 1

1 + ε2
pT 2

N

(
�s
�c

) ≤ δ2
s at stopband edge.
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The passband-edge condition can be satisfied with the equal sign, choosing �c =
�p, since TN (1) = 1 and 1 + ε2

p = (1 − δp)
−2. The stopband-edge condition is

satisfied

– observing that �s/�c = �s/�p = k−1 > 1, which implies TN (k−1) > 1;
– observing that normally k1 � 1, i.e., k−1

1  1;
– imposing

TN (k−1) = cosh
[
N arc cosh(k−1)

] ≥ k−1
1 =

[
δ−2

s − 1
(
1 − δp

)−2 − 1

]1/2

= εs

εp
,

which provides

|H(j�s)|2 ≤ 1

1 + ε2
s

= δ2
s .

From the inequality concerning TN (k−1) we get

N ≥ arc cosh(k−1
1 )

arc cosh(k−1)
= arc cosh(εs/εp)

arc cosh(�s/�p)
.

Since both k−1 and k−1
1 are never less than 1, we can write, equivalently,

N ≥
log

(
k−1

1 +
√

k−2
1 − 1

)

log
(

k−1 + √
k−2 − 1

) ,

where the equality arc cosh(x) = log
(

x + √
x2 − 1

)
, valid for x ≥ 1, was used.

The minimum order found in this way is the solution of the degree equation for
Chebyshev-I filters, which is TN (k−1) = k−1

1 . Comparing the Chebyshev-I filter’s
formula for N with the Butterworth filter’s one, it can be shown that the values
of k and k1 being equal, the Chebyshev-I filter’s order is always smaller than the
Butterworth filter’s order.
Once again, the right-hand inequality term is not an integer number in general,
and to have the minimum order we must round it up the nearest largest integer;
as a consequence, the designed filter will have slightly better characteristics than
required by the original specifications. Ripple is present in the passband only, and
the maximum deviation specified for the stopband is not so important. If we re-
evaluate k1 using TN (k−1) = k−1

1 , while leaving δp unaltered, we can use the same
formula for re-evaluating δs already given for the Butterworth filter:

δs =
[

1 + (1 − δp)
−2 − 1

k2
1

]−1/2

.
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Fig. 8.11 Squared magnitude of the frequency response in dB of an analog Chebyshev-I filter
satisfying the following specifications: δp = δs = 0.001, �p = 1 rad/s, �s = 2 rad/s; such specifi-
cations imply k = 0.5 and k1 = 4.4755 × 10−5, from which the minimum order N = 9 is deduced;
�c is chosen equal to �p = 1 rad/s

• The positions pn of the poles are subsequently computed.
• The transfer function H(s) is finally computed from its factorized expression,

keeping into account that H0 varies according to N being odd or even. The fre-
quency response follows directly, by setting s = j�.

The result of this procedure is illustrated by Figs. 8.11 (dB units) and 8.12 (normal
units). In Fig. 8.12, horizontal dotted lines represent (1 − δp)

2, the original value of
δ2

s , and the re-evaluated squared stopband tolerance δ2
s,fin. These plots were obtained

setting �p = 1 rad/s, �s = 2 rad/s, and δp = 0.001. The filter order is 9. The re-
evaluated k1 and δs after rounding up N to the integer value of 9 are 1.42 × 10−5 and
3.18 × 10−4, respectively. Had we chosen to re-evaluate k keeping k1 fixed, the new
�s would fall at the intersection of the δ2

s line with the frequency response curve.
In Fig. 8.11, which has ordinates expressed in dB, the passband ripple is so small

that it can hardly be seen; in the stopband the response goes off towards negative
infinity but the decrease is not linear.

8.5.2 Chebyshev-II Filters

With respect to the Chebyshev-I filter, the Chebyshev-II filter represents an inverse
way of approximating the specifications, a way that assigns the ripple to the stopband.
To get this result,
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Fig. 8.12 An expanded view of the same squared-magnitude frequency response shown in Fig. 8.11,
in normal units and with tolerance limits: the horizontal dotted lines indicate (1 − δp)

2, the original
value of δ2

s , and the re-evaluated squared stopband tolerance δ2
s,fin (see text)

• we take the squared amplitude of the Chebyshev-I frequency response having, as
its εp, the inverse of that value of εs which derives from the tolerances we expressed
for the Chebyshev-II filter we want to build;

• we reverse the argument of TN (·), i.e., we pass from �/�c to �c/�. This operation
exchanges the filter behavior around the origin with the filter’s asymptotic behavior,
while leaving the behavior at � = �c unchanged; so it transforms a lowpass filter
into a highpass filter;

• we subtract from 1 the squared modulus of the highpass frequency response thus
obtained, and get back a lowpass filter.

For a Chebyshev-II filter, the cutoff frequency is chosen as �c = �s , and since we
set w = �/�p, k−1 = �s/�p, we have

w = �

�p
= �

�s

�s

�p
= �

�c

�s

�p
= �

�c
k−1,

hence
�c

�
= k−1w−1.

We thus obtain the equation that defines the lowpass Chebyshev-II filter:

|H(j�)|2 = 1 − 1

1 + ε−2
s T 2

N (k−1w−1)
= ε−2

s T 2
N (k−1w−1)

1 + ε−2
s T 2

N (k−1w−1)
=

= 1

1 + 1/
[
ε−2

s T 2
N (k−1w−1)

] = 1

1 + ε2
s /T 2

N (k−1w−1)
.
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Using k1 = εp/εs , i.e. ε2
s = ε2

p/k2
1 , we can write

|H(j�)|2 = 1

1 + ε2
p/
[
k2

1 T 2
N (k−1w−1)

] = 1

1 + ε2
p

[
k1TN

(
k−1w−1

)]−2 .

Therefore the substitution

TN (w) ⇒ [
k1TN (k−1w−1)

]−1

transforms the Chebyshev-I filter into a Chebyshev-II filter, and the equiripple behav-
ior in the passband is transformed into an equiripple behavior in the stopband.
Figure 8.13 shows the shape of |H(j�)|2 for a few even values of N ; Fig. 8.14 shows
the shape for a few odd values of N .

The main properties of Chebyshev-II filters are the following:

• at� = 0, k−1w−1 → ∞, hence |TN (k−1w−1)| → ∞,
[
TN (k−1w−1)

]−2 → 0; there-
fore

H0 = 1

for any values of the order and of the parameters;
• for 0 ≤ � < (�c = �s), corresponding to 0 ≤ w ≤ �s/�p = k−1 with k−1

1 > 1
(and therefore to arguments of TN (·) decreasing from ∞ to 1), the frequency
response decreases monotonically, because the absolute value of Chebyshev poly-
nomials decreases monotonically when the argument goes from ∞ to 1;

c

Fig. 8.13 Squared modulus of the frequency response of an analog Chebyshev-II filter, with cutoff
frequency �c = �s = 10 rad/s and δs = 0.375, for N = 4, 6, 8, and 10
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Fig. 8.14 Squared modulus of the frequency response of an analog Chebyshev-II filter, with cutoff
frequency �c = �s = 10 rad/s and δs = 0.375, for N = 3, 5, 7, and 9

• for � ≥ (�c = �s), corresponding to w ≥ �s/�p = k−1 and therefore to argu-
ments of TN (·) smaller than k−1k = 1, the frequency response satisfies

0 ≤ |H(j�)|2 ≤ 1

1 + ε2
s

= δ2
s ,

because the absolute value of Chebyshev polynomials is smaller than 1 in this
argument range;

• asymptotically, for � → ∞, k−1w−1 → 0, so that

TN (0) =
{

±1 for N even,

0 for N odd;

hence

lim
�→∞

|H(j�)|2 = 1

1 + ε2
s /T 2

N (0)
=

⎧
⎪⎨

⎪⎩

1
1+ε2

s
= δ2

s for N even,

0 for N odd;

• for even values of N , since |H(j�)|2 tends to a non-zero constant as � → ∞,
the asymptotic attenuation is 0 dB/decade; for odd values of N we can derive the
asymptotic attenuation as follows.
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A Chebyshev polynomial TN (w) with odd N is given approximately, in the vicinity
of w = 0, by TN (w) ∼= KN w, where KN is a constant. Hence at high frequencies,
at which �c/� → 0, we can write

|H(j�)|2 ∼= ε−2
s K 2

N �2
c/�2

1 + ε−2
s K 2

N �2
c/�2

≈ ε−2
s K 2

N

�2
c

�2

and
20 log10 |H(j�)| ≈ 20 log10 |KN �c/εs | − 20 log10 �.

Therefore for odd values of N the asymptotic attenuation is 20 dB/decade.

Let us now turn to the positions of the poles. They can be found using the
following property: the poles of the transfer function H(s) of a Chebyshev-II low-
pass normalized filter (�c = 1 rad/s) with a given parameter εs are the inverses of
the poles of a Chebyshev-I lowpass normalized filter, having the same order and
parameter εp = 1/εs . Then, let νn (0 ≤ n ≤ N − 1) be the Chebyshev-II poles and
pn (0 ≤ n ≤ N − 1) the Chebyshev-I poles of non-normalized filters. Passing from
normalized prototypes to general filters with �c �= 1 rad/s, the positions of poles and
zeros are multiplied by �c. Therefore, with obvious notation, if

νnorm
n = 1/pnorm

n ,

then

νn = �cν
norm
n = �c

pnorm
n

= �2
c

pn
, 0 ≤ n ≤ N − 1.

Figure 8.15a, b shows the poles of a Chebyshev-II H(s) filter (black dots) for a
case with odd N and a case with even N , respectively. The poles of H(−s) are not
shown to avoid cluttering. These poles do not fall on an ellipse and are found both
internally and externally to the circle of radius �c. Their position, for a given N and
a given cutoff analog frequency, depends on the parameter εs , i.e., from the stopband
ripple.

Recalling that for a Chebyshev-I filter with poles pn we have

N−1∏

n=0

(−pn) =

⎧
⎪⎪⎨

⎪⎪⎩

�N
c

√
1+ε2

p

2N−1εp
for even N ,

�N
c

2N−1εp
for odd N ,

and that for the Chebyshev-I filter with respect Chebyshev-II filter the equality εp =
ε−1

s holds, it can be shown that the poles νn of a Chebyshev-II filter satisfy
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(a) (b)

(c) (d)

Fig. 8.15 a, b Poles (black dots) and c, d zeros (gray squares) of the transfer function H(s) of an
analog Chebyshev-II filter, for δs = 0.375 and for N = 3 and 4, respectively

N−1∏

n=0

(−νn) =

⎧
⎪⎪⎨

⎪⎪⎩

�N
c 2N−1

εs

√
1+ε−2

s

for even N ,

�N
c 2N−1

εs
for odd N .

Chebyshev-II filters have zeros: they are shown as gray squares in Fig. 8.15c, d,
and fall at those frequencies at which TN (k−1w−1) = TN (�c/�) = 0. The zeros of
TN (w) are found at w = cos [(2m + 1) π/2N ], with 0 ≤ m ≤ N − 1, as it can be
deduced from the definition of these polynomials. This leads to deducing that the
zeros of H(s) are located on the imaginary axis, at values of s given by

um = j�c

cos
[

(2m+1)π

2N

] , 0 ≤ m ≤ N − 1.

When N is even, there are N zeros at finite distance from the origin; when N is odd,
there are only N − 1 zeros at finite distance, because m = (N − 1)/2 corresponds to
cos (π/2) in the denominator of Um , hence one of the zeros goes to infinity. It must
be noted that the position of the zeros of H(s) is independent of the parameters εs ,
εp, and of the ripple; it depends only on �c and N . The zeros are related by
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N−1∏

m=0

(−um) =

⎧
⎪⎨

⎪⎩

�N
c 2N−1 for N even,

�N−1
c 2N−1/N for N odd.

We can now write the factorized form of the transfer function: recalling that
H0 = 1 in this case,

• for even N , there are N zeros and N poles at finite distance from the origin, hence

H(s) = G
N−1∏

n=0

s − un

s − νn
with G = H0

N−1∏

n=0

(−νn)

(−un)
= H0

N−1∏

n=0

νn

un
;

• for odd N , there are N − 1 zeros and N poles at finite distance, hence

H(s) = G

∏N−2
m=0(s − um)

∏N−1
n=0 (s − νn)

with G = H0

∏N−1
n=0 (−νn)∏N−2
m=0(−um)

= −H0

∏N−1
n=0 νn∏N−2
m=0 um

.

Introducing r = N mod 2 (remainder of the division of N by 2) we can write a unified
formula holding for any N :

H(s) = G

∏N−r−1
m=0 (s − um)
∏N−1

n=0 (s − νn)
with G = H0

∏N−1
n=0 (−νn)∏N−r−1

m=0 (−um)
.

This transfer function with poles and zeros can also be expressed as

H(s) =

⎧
⎪⎨

⎪⎩

G s N +b1s N−1+···+bN−1s+bN

s N +a1s N−1+···+aN−1s+aN
for N even,

G s N−1+b1s N−2+···+bN−2s+bN−1

s N +a1s N−1+···+aN−1s+aN
for N odd,

with bN or bN−1 equal to the product of the zeros reversed in sign, for N even or odd
respectively, and with aN equal to the product of the poles reversed in sign.

The design process for a Chebyshev-II filter that must satisfy some given speci-
fications is the following.

• Once �p, �s , δp and δs have been chosen, the selectivity factor k and the discrim-
ination factor k1 are computed accordingly.

• The cutoff frequency �c, the parameter εs and the minimum order N are calculated
by imposing at the edges of the approximation bands

∣∣H(j�p)
∣∣2 = 1

1 + ε2
s /T 2

N

(
�c
�p

) ≥ (1 − δp)
2 at passband edge,



294 8 IIR Filter Design

|H(j�s)|2 = 1

1 + ε2
s /T 2

N

(
�c
�s

) ≤ δ2
s at stopband edge.

The stopband condition can be satisfied with the equal sign, choosing �c = �s ;
then, since TN (1) = 1, we have

|H(j�s)|2 = 1

1 + ε2
s

= δ2
s .

The passband condition can be considered satisfied if

– we observe that �c/�p = �s/�p = k−1 > 1, which implies TN (k−1) > 1;
– we recall that normally k1 � 1, hence k−1

1  1;
– we impose

TN (k−1) = cosh
[
N arc cosh(k−1)

] ≥ k−1
1 ,

which implies, as required,

∣∣H(j�p)
∣∣2 = 1

1 + ε2
s /T 2

N

(
�c
�p

) ≥ 1

1 + ε2
s k2

1

= 1

1 + ε2
p

= (1 − δp)
2.

From the constraint we set, the condition on the order is derived:

N ≥ arc cosh(k−1
1 )

arc cosh(k−1)
.

The minimum order is the solution of the degree equation, for Chebyshev-II filters,
which is TN (k−1) = k−1

1 , i.e., the same degree equation that holds for Chebyshev-I
filters.
In general, the right-hand member of this inequality does not lead to an integer
value of N and the calculated value needs to be rounded up to the nearest larger
integer. The expression of the minimum order is identical to the one we found for
Chebyshev-I filters: the values of k and k1 being equal, the order of the Chebyshev-
II filters is always equal to the order of the Chebyshev-I filter. Therefore the choice
between types I and II is dictated only by whether we prefer to allow for the
existence of some ripple in the passband, or in the stopband.
The need for re-evaluating k or k1 after rounding N up obviously also exists in this
case. Let us suppose we re-evaluate k1 from the degree equation. Since the ripple
lies in the stopband, once the value of k1 that makes N integer has been found, we
can leave δs unaltered and re-evaluate δp, which is relatively unessential in this
case. We will use the formula

δp = 1 − [1 + k2
1

(
δ−2

s − 1
)]− 1

2 with k1 = [TN (k−1)
]−1

.
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Fig. 8.16 Squared modulus of the frequency response in dB of a Chebyshev-II lowpass filter
satisfying the following specifications: δp = δs = 0.001, �p = 1 rad/s, �s = 2 rad/s; this leads to
k = 0.5 and k1 = 4.4755 × 10−5, from which a minimum order N = 9 is found; �c is set equal to
�s = 2 rad/s

Fig. 8.17 A close-up of the squared modulus of the frequency response shown in Fig. 8.16, in
normal units and with tolerance limits: the horizontal dotted lines indicate the original value of
(1 − δp)

2, the re-evaluated squared stopband tolerance δ2
s,fin (see text) (1 − δp,fin)

2, and δ2
s
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• Next, the positions pn of the poles of the proper type-I filter are calculated, and
the type-II poles νn are calculated accordingly.

• The positions of the zeros, denoted by um , are computed.
• The transfer function H(s) is calculated from its factorized form, and the frequency

response is deduced setting s = j�.

An example of the result of this process is given in Figs. 8.16 and 8.17. The dotted lines
in the second figure, drawn in normal units, indicate the original value of (1 − δp)

2,
the re-evaluated passband squared deviation (1 − δp,fin)

2, and δ2
s . The filter order is 9.

These plots were obtained setting �p = 1 rad/s, �s = 2 rad/s, and δs = 0.001. The
filter order is 9. The re-evaluated k1 and δp after rounding up N to the integer value
of 9 are 1.42 × 10−5 and 1.01 × 10−4, respectively. Had we chosen to re-evaluate k
keeping k1 fixed, the new �p would fall at the intersection of the (1 − δp)

2 line with
the frequency response curve.

8.6 Elliptic Filters

The design of elliptic filters is the most difficult among those for classical analog
filters. Elliptic filters are equiripple in both approximation bands and their order is
the lowest possible, all specifications being equal. The definition formula for order
N is

|H(j�)|2 = 1

1 + ε2
p R2

N (w)

where RN (w) is a real function, the so-called elliptic rational function (see Lutovac
et al. 2001) with degree N and with real coefficients. This function is sometimes
referred to also as the rational Chebyshev function.6 The only parameter explicitly
indicated in the symbol for the elliptic rational function is the order N , but when
defining an elliptic filter we must understand that implicitly RN (w) contains the
values of the specification parameters k and k1, which constrain its behavior.

N , k and k1 cannot be fixed independently, because they are related by a specific
degree equation. Let us further remark that in the definition of |H(j�)|2 we find the
square of RN (w). Therefore, in this section we will mainly focus on the essential
properties of R2

N (w). More details on RN (w) can be found in the appendix to this
chapter.

Figures 8.18 and 8.19 show the typical shape of the squared magnitude of the
frequency response of an elliptic filter, for even and odd values of N , respectively.
We can see the ripple in both approximation bands, and the transition band that can
be rather narrow even at low orders. The cutoff frequency is chosen as �c = �p.

6The last name is ambiguous, because other functions exist that are called in the same way.
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Fig. 8.18 Squared modulus of the frequency response of an analog elliptic filter with cutoff fre-
quency �c = �p = 10 rad/s and with �s = 11.3333 rad/s, δp = 0.015, for N = 2, 4, 6 and 8

Fig. 8.19 Squared modulus of the frequency response of an analog elliptic filter with cutoff fre-
quency �c = �p = 10 rad/s and with �s = 11.3333 rad/s, δp = 0.015, for N = 3, 5, 7 and 9

The study the function RN (w) requires some fundamental notions about elliptic
integrals7 and Jacobi elliptic functions. The reader who is not familiar with these
mathematical concepts and is interested in getting a general idea of these topics may
prefer to go through the appendix to this chapter at this point in the discussion. For a
more detailed treatment, see, for example, Antoniou (1993) and Orfanidis (2006). For

7This name derives from the fact that these integrals were originally studied in the frame of the
problem of calculating the length of an arc of ellipse.
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the reader interested only in elliptic filter design, the fundamental notions required
to understand the rest of the chapter are briefly presented here.

The specifications of the desired filter determine the values of the parameters k
and k1. Two complementary parameters are then introduced,

k ′ =
√

1 − k2, k ′
1 =

√
1 − k2

1 .

These four parameters are then inserted as arguments in a real function called the
complete elliptic integral of the first kind, so that four more parameters are produced
that are indicated by K , K ′, K1 and K ′

1. The definition of the complete elliptic integral
of the first kind is

K (k) =
∫ π/2

0

(
1 − k2 sin2 θ

)−1/2
dθ;

the behavior of this function is illustrated by Fig. 8.50 in the appendix. K (k) is a
monotonically increasing function of k, which tends to π/2 for k → 0 and tends
to infinity for k → 1. In the same figure, the behavior of K ′(k) is also shown: this
is a monotonically decreasing function of k. In the frame of the theory of elliptic
integrals, the parameter k and its associated parameters k ′, k1 and k ′

1 are referred to
as the elliptic moduli.

The real rational function RN (w), which is a ratio of polynomials in w, is built using
the Jacobi elliptic functions described in the appendix, in such a way to ensure the
desired behavior of the elliptic filter, which must be equiripple in both approximation
bands. The definition of the elliptic rational function is

RN (w) = cd (NuK1, k1) with w = cd(uK , k) ⇒ uK = cd−1 (w, k) ,

where cd is one of the Jacobi elliptic functions and u is a complex variable, which
assumes values leading to purely real values of w. The function RN (w) is found to be

• equiripple, and such that |RN (w)| ≤ 1, in the range 0 ≤ w ≤ 1, corresponding to
the filter passband;

• monotonically increasing in the interval 1 ≤ RN (w) ≤ k−1
1 for 1 ≤ w ≤ k−1, cor-

responding to the filter transition band;
• characterized by an equiripple inverse 1/RN (w), with |1/RN (w)| ≤ k1, in the range

k−1 ≤ w < ∞, corresponding to the filter stopband.
This feature, which ensures an equiripple behavior of the filter in the stopband, is
a consequence of imposing the so-called inversion relation

RN (w) = 1

k1 RN (w−1k−1)
,

which in turn implies that the elliptic filter satisfies the degree equation RN (k−1) =
k−1

1 . This fact can be seen substituting w = k−1 into the inversion relation and
keeping into account that RN (w) is normalized to 1 at w = 1. Since RN (w) satisfies
the inversion relation, we can also state that
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Fig. 8.20 Overall view of
the squared elliptic rational
function, R2

N (w), for
k = 0.96 and a N = 3,
b N = 4. The corresponding
values of k1 are shown in
each panel. Horizontal solid
lines mark ordinates equal to
k−2

1 , vertical solid lines mark
abscissas equal to k−1;
dotted lines represent 1 on
both axes

(a)

(b)

|H(j�)|2 = 1

1 + ε2
p R2

N (w)
= 1

1 + ε2
s /R2

N (w−1k−1)

with w−1k−1 = (�p/�)(�s/�p) = �s/�. This equation highlights the connec-
tion between the filter ripples in the passband and in the stopband and the fact that
the stopband behavior of the filter is better understood in terms of 1/RN (w).

The squared magnitude of the filter’s frequency response is determined by R2
N (w).

The shape of the squared elliptic function8 is illustrated in Figs. 8.20 (for k = 0.96,
N = 3 and 4, and k1 = 0.2385 and 0.0948, respectively) and 8.21 (for k = 0.96, N =
7 and 8, and k1 = 0.00575 and 0.00226, respectively). Inspection of these figures
reveals that poles and zeros are present, and that their number increases with order.
It can also be noted that the squared function is actually equiripple in the passband,
between w = 0 and w = 1, and that it is monotonically increasing between 1 and
k−2

1 in the transition band, between w = 1 and w = k−1. For a better visualization of
the stopband behavior, Fig. 8.22 gives 1/R2

N (w) for the same parameter values used
in Figs. 8.20 and 8.21. The equiripple behavior is evident. The function 1/R2

N (w)

oscillates between 0 and k2
1 . The previous figures represent only non-negative values

of w, but R2
N (w), and the filter’s frequency response, are symmetric around w = 0.

8Plotting the square instead of the plain function avoids many sources of confusion. Of course, we
could use |RN (w)| as well. Plots of RN (w) can be found in the appendix to this chapter.
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Fig. 8.21 Overall view of
the squared elliptic rational
function, R2

N (w), for
k = 0.96 and a N = 7,
b N = 8. The corresponding
values of k1 are shown in
each panel. Horizontal solid
lines mark ordinates equal to
k−2

1 , vertical solid lines mark
abscissas equal to k−1;
dotted lines represent 1 on
both axes

(a)

(b)

It is also important to mention that the inversion relation leads to the constraint

N K ′

K
= K ′

1

K1
,

which is a form of degree equation that can be used directly to obtain the minimum
filter order on the basis of the specifications. Finally, modular equations can be
derived from the degree equation. They allow calculating k1 in terms of N and k, or
k in terms of N and k1. These equations are useful, for example, during the elliptic
design process, to re-evaluate k1 from N and k after the calculated minimum order
has been rounded up to the nearest larger integer.

Once the desired filter specifications have been expressed, the parameters k and
k1 can be calculated. In turn, these parameters determine the values of the comple-

mentary parameters k ′ = √
1 − k2 and k ′

1 =
√

1 − k2
1 . The four values of the elliptic

integral, K , K ′, K1 and K ′
1, can thus be found. The minimum order N then follows

from the degree equation. Subsequently, after N has been rounded up to the nearest
larger integer, k1 is re-evaluated by means of the corresponding modular equation,
so as to exactly satisfy the degree equation in association with the new integer N ,
and produce the correct δs value. Alternatively, k, or both parameters, can be slightly
altered. The cutoff frequency is chosen as �c = �p.

Thanks to the behavior of RN (w), the filter exactly meets specifications at � =
�c = �p, i.e. at w = 1, and at � = �s , i.e. at w = k−1, which are the edges of the
approximation bands:
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(a) (b)

(c) (d)

Fig. 8.22 The function 1/R2
N (w) in the stopband of the elliptic filter, for a N = 3,

b N = 4, c N = 7, and d N = 8. The values of k and k1 associated to each N are the same
reported in the panels of Figs. 8.20 and 8.21. Horizontal solid lines mark ordinates equal to k2

1

∣∣H(j�p)
∣∣2 = 1

1 + ε2
p R2

N (1)
= 1

1 + ε2
p

= (1 − δp)
2 since RN (1) = 1;

|H(j�s)|2 = 1

1 + ε2
p R2

N (k−1)
= 1

1 + ε2
s

= δ2
s since RN (k−1) = 1

k1
= εs

εp
.

The transfer function of the elliptic filter is calculated on the basis of a factorized
form, given its poles and zeros. More precisely, from the squared magnitude of the
frequency response, the product H(s)H(−s) is defined; then H(s) is determined
selecting, among the zeros and poles of H(s)H(−s), those that lie in the left-hand
half s-plane, so as to ensure a stable H(s).

Observing the definition |H(j�)|2 = 1/
[
1 + ε2

p R2
N (w)

]
, we can see that the fil-

ter’s zeros, which will be denoted by zm , derive from the poles of RN (w), while
the poles derive from the zeros of the denominator. The zeros (ζl) and poles (πl) of
RN (w) are related; in fact, the zeros are

ζl = cd(ul K , k),
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with

ul = 2l + 1

N
, l = 0, 1, . . . L − 1, L = N − r

2
, r = N mod 2,

while the poles are

πl = 1

kζl
l = 0, 1, . . . L − 1.

We thus have N/2 zeros and poles for even values of N , and (N − 1)/2 zeros and
poles for odd values of N , at finite distance from the origin; in the case of odd N , an
additional pole at w → ∞ and an additional zero at w = 0 are present in RN (w).

A factorized formula for RN (w) is

RN (w) = Cwr
L−1∏

l=0

w2 − ζ 2
l

w2 − π2
l

= wr
L−1∏

l=0

(
w2 − ζ 2

l

) (
1 − k2ζ 2

l

)
(
1 − w2k2ζ 2

l

) (
1 − ζ 2

l

) ,

where

C =
L−1∏

l=0

1 − π2
l

1 − ζ 2
l

=
L−1∏

l=0

1 − 1/(k2ζ 2
l )

1 − ζ 2
l

is a normalization constant chosen in such a way to have RN (1) = 1.
From the poles and zeros of RN (w), the poles and zeros of the elliptic transfer

function are derived. Recalling that we can pass from |H(j�)|2 to H(s)H(−s) by
setting s = j�, we first consider a normalized filter (�c = 1 rad/s, w = �) so as to be
able to substitute w = � = −js into the factorized formula for RN (w). We thus get

RN (−js) = C(− js)r
L−1∏

l=0

s2 + ζ 2
l

s2 + π2
l

.

Inserting this formula into H(s)H(−s) = 1/[1 + ε2
p R2

N (−js)] we find, for the nor-
malized filter,

H(s)H(−s) =
∏L−1

l=0

(
s2 + π2

l

)2
∏L−1

l=0

(
s2 + π2

l

)2 + (Cεp
)2

(−s2)r
∏L−1

l=0

(
s2 + ζ 2

l

)2 .

From this expression, the zeros of H(s) and H(−s) of the normalized filter can be
found; they are located at ±jπl . The zeros of the non-normalized elliptic filter are
finally derived:

zm = ±j�cπm = ±�c
j

kζm
, m = 0, 1, . . . L − 1.



8.6 Elliptic Filters 303

As for the poles, we must require the denominator of H(s)H(−s) of the normalized
filter to vanish; this occurs when RN (w) = ±j/εp. This equation has complex solu-
tions wn , to which the poles of the non-normalized H(s)H(−s) are connected by
pn = j�cwn . The poles of the non-normalized elliptic filter that lie in the left-hand
half s-plane and belong to H(s) are found to be

pn = ±j�c cd[(un − jν0)K , k] with un = 2n + 1

N
, n = 0, 1, . . . L − 1.

Here the quantity ν0 is the real solution of the equation

sn( jν0 N K1, k1) = j

εp
,

sn being another Jacobi elliptic function.9 The expression of ν0 is

ν0 = − j

N K1
sn−1

(
j

εp
, k1

)
.

If N is even, r = N mod 2 = 0, and L = N/2. If N is odd, r = 1 and L = (N −
1)/2; in this case an additional real pole exists in the left-hand half s-plane, which
can be obtained from the formula for pn setting un = 1; this pole receives the index
n = L:

pL = j�ccd
[
(1 − jν0) K , k

] = j�csn (jν0 K , k) , withL = N − 1

2
.

In conclusion, in the left-hand half s-plane the transfer function of the elliptic filter
has

• for N even, 2N/2 = N zeros and poles,
• for N odd, 2(N − 1)/2 = N − 1 zeros and 2[(N − 1)/2] + 1 = N poles, that is,

N − r zeros and N poles.

Figure 8.23 shows the positions of the poles (black dots) and zeros (gray squares) of
an elliptic H(s) in cases with N = 3 and 4. The corresponding frequency response-
magnitudes are those presented in Figs. 8.19 (dotted line) and 8.18 (dash-dotted line),
respectively.

The factorized form of the transfer function is thus

H(s) = G

∏N−r−1
m=0 (s − zm)
∏N−1

n=0 (s − pn)
,

where

9For a description of the Jacobi elliptic functions cd and sn and of their inverse functions the reader
is referred to the appendix.
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(a) (b)

(c) (d)

Fig. 8.23 a Poles of the transfer function H(s) for an analog elliptic filter with N = 3 (black dots);
b the same for N = 4; c, d corresponding zeros (gray squares)

G = H0

∏N−1
n=0 (−pn)∏N−r−1

m=0 (−zm)

and

H0 = (1 − δp
)1−r =

⎛

⎝ 1√
1 + ε2

p

⎞

⎠
1−r

=
{

1√
1+ε2

p

for even N ,

1 for odd N .

To get the factorized form of the frequency response it is now sufficient to substitute
s = j� into the formula for H(s). We could also write H(s) as the gain multiplied
by a ratio of polynomials in s, but we omit this formula.

In summary, the design process for an elliptic filter satisfying some given speci-
fication is the following.

• We choose �p, �s , δp and δs and calculate the elliptic moduli, the corresponding
complete elliptic integrals and the parameter εp.

• Using the degree equation in the form N = (K K ′
1)/(K1 K ′) we compute N and

round it up to the nearest larger integer.
• We set �c = �p.
• We re-evaluate k1 from the corresponding modular equation and deduce the effec-

tive values of εs = εp/k1 and δs = 1/
√

ε2
s + 1.
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Fig. 8.24 Squared magnitude of the frequency response in dB of an analog elliptic filter meeting the
following specifications: δp = δs = 0.001, �p = 1 rad/s, �s = 2 rad/s; consequently, k1 = 2.32 ×
10−5 and k = 0.5, giving N = 6; �c = �p = 1 rad/s. The final value of the stopband ripple is
5.19×10−4

Fig. 8.25 Squared magnitude of the frequency response shown in Fig. 8.24, in normal units:
expanded views of the passband and the stopband. The horizontal dotted lines visualize the pre-fixed
and actual tolerance limits: in the passband, (1 − δp)

2; in the stopband, the original value of δ2
s and

the final value δ2
s,fin
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• At this point, since we have the correct values of N , k and k1, we could compute
RN (w) and build |H(j�)|2. However, as we did for the other analog filters, we
may prefer to directly use the factorized form of |H(j�)|2, after finding the filter’s
poles and zeros.

An example of the result of this process is shown in Figs. 8.24 and 8.25. The filter has
been designed setting �p = 1 rad/s and �s = 2 rad/s. Tolerance limits have been cho-
sen as δp = δs = 0.001. The filter order is 6. The horizontal dotted lines in Fig. 8.25
visualize the pre-fixed and actual tolerance limits: in the passband, (1 − δp)

2; in the
stopband, the original value of δ2

s and the re-evaluated squared stopband tolerance
δ2

s,fin. The final values of k1 and δs after rounding N up to 6 are 2.32 ×10−5 and 5.19
×10−4, respectively. Had we chosen to re-evaluate k keeping k1 fixed, the new �s

would fall at the intersection of the horizontal δ2
s line with the frequency response

curve.

8.7 Normalized and Non-normalized Filters

We will now discuss the differences between filters with �c = 1 rad/s and filters
with �c �= 1 rad/s, tolerances and transition bandwidth being equal, for each of the
four analog filter types. This is useful in practice, since most software toolboxes, like
Matlab for example, refer to normalized filters for some calculations. The factorized
forms for the H(s) of non-normalized filters that were derived in the previous sections
are summarized in Table 8.2.

Considering that

• the positions of the poles and zeros of a non-normalized filter are those of the poles
and zeros of the corresponding normalized filter, multiplied by �c, and that

• the value of H0 must remain equal passing from the normalized filter to the generic
one,

Table 8.2 Factorized forms of the transfer function H(s) for analog filters with generic cutoff �c;
see text for the meaning of the symbols

Filter H(s) G H0

Butterworth G 1∏N−1
n=0 (s−pn )

H0
∏N−1

n=0 (−pn) = �N
c 1

Chebyshev-I G 1∏N−1
n=0 (s−pn )

H0
∏N−1

n=0 (−pn) = �N
c

2N−1εp

1√
1+ε2

p

For N even

1 For N odd

Chebyshev-II G
∏M−1

m=0 (s−um )
∏N−1

n=0 (s−νn)
H0

∏N−1
n=0 (−νn)

∏M−1
m=0 (−um )

1

Elliptic G
∏M−1

m=0 (s−zm )
∏N−1

n=0 (s−pn )
H0

∏N−1
n=0 (−pn )

∏M−1
m=0 (−zm )

1√
1+ε2

p

For N even

1 For N odd

M = N − r , with r = N mod 2
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if we call Hnorm(s) the transfer function of the normalized filter and write

H(s) = μHnorm(s),

where μ is a factor by which we must multiply the transfer function when �c passes
from 1 rad/s to a generic value, observing Table 8.2 we can draw the conclusions that
follow.

• Butterworth and Chebyshev-I filters:
there are N poles and no zeros; μ = �N

c , to compensate for the variation of the
factor

∏
n(−pn).

• Chebyshev-II and elliptic filters:
there are N poles and N − r zeros; if N is even, μ = 1; if N is odd, then μ = �c,
because of the existence of one unpaired pole.

Note that the zeros that seem to be “missing" with respect to the number of poles
actually exist, but are found at � → ∞. Therefore, in all cases, the number of poles
equals the number of zeros, but some zeros can be at infinite distance from the origin
in the s-plane.

Still observing Table 8.2, we can write a unified factorized formula valid for all
filter types:

H(s) = G

∏M−1
m=0 (s − zm)

∏N−1
n=0 (s − pn)

with G = H0
∏N−1

n=0 (−pn)∏M−1
m=0 (−zm)

,

where H0 and M vary according to the filter type and the value of the order, which
may be even or odd; more precisely,

• for Butterworth and Chebyshev-I filters we have M = 0;
• for Chebyshev-II and elliptic filters we have M = N − r , with r = N mod 2.

In the unified factorized formula for H(s), the symbols zm and pn have been used to
respectively indicate zeros and poles of any analog filter type.

8.8 Comparison Among the Four Analog Filter Types

As a conclusion of our work on lowpass analog filters, we will compare Butterworth,
Chebyshev-I, Chebyshev-II and elliptic filters, all designed on the basis of the same
specifications (those adopted in the previous discussion): this comparison appears in
Fig. 8.26. It can be seen that the Butterworth filter has the widest transition band and
the highest order, while the elliptic filter has the narrowest transition band and the
lowest order.
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(a)

(b) (c)

Fig. 8.26 Squared amplitude of the frequency response in dB of Butterworth, Chebyshev-I,
Chebyshev-II and elliptic filters, all designed according to the same specifications, i.e., those adopted
for Figs. 8.6, 8.11, 8.16 and 8.24. a The four responses over the range 0 ≤ � ≤ 2.5 �s . A vertical
solid line marks the cutoff frequency of the Butterworth filter, which is different from both �p and
�s ; the latter are represented by vertical dotted lines. b Expanded view of the filters’ passbands.
Horizontal dotted lines lines visualize tolerance limits: 0 dB (i.e. 1) and −0.0087 dB, corresponding
to the original absolute tolerance δp = 0.001. The ripple corresponds to the originally specified δp
for all filters but the Chebyshev-II filter, for which δp is re-evaluated after rounding up the order to
the nearest larger integer (see the horizontal solid gray line). c Expanded view of the filters’ stop-
bands. Horizontal lines visualize δ2

s for each filter, in the same line style adopted for the frequency
response curve. The stopband ripple generally does not correspond to the originally specified stop-
band tolerance (δs = 0.001, i.e., 60 dB attenuation), because δs is re-evaluated after rounding N
up to the nearest higher integer; the Chebyshev-II filter is an exception to this rule (see the horizontal
solid gray line), because in this case δp is re-evaluated instead

8.9 From the Analog Lowpass Filter to the Digital One

We discussed how analog lowpass filters of four types can be designed according
to some desired specifications. We are now ready to transform them into digital
lowpass filters. These transformations are forms of mapping in the complex domain,
aimed at preserving different features of the filter. For example, a method exists,
aimed at preserving the shape of the impulse response, and is referred to as impulse
invariance transformation. The analog impulse response is sampled periodically
with a sampling step Ts , so as to obtain the impulse response of the digital filter; the
sampling step is chosen so as to capture correctly the shape of the analog impulse
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response, but since no analog filter with finite order can be exactly bandlimited,
frequency response distortion may occur due to aliasing. This method is useful only
when the analog lowpass filter to be transformed is free from ripple in the stopband, a
case in which aliasing turns out to be tolerable. Another method is aimed at converting
a representation of the analog filter in the form of a differential equation into a
corresponding representation in the form of an LCCDE, and is referred to as the
finite difference approximation technique. However, the method most often adopted
in practice is the bilinear transformation that preserves the characteristics of the
transfer function when H(s) is transformed into the corresponding H(z).

8.9.1 Bilinear Transformation

In the following discussion we will denote the frequency response of the analog
filter that is converted into a digital filter by Ha(j�). The corresponding gain will be
indicated by Ga . Digital IIR filters are named after their analog parents.

The bilinear transformation uses the variable change10

s = 2

Ts

1 − z−1

1 + z−1
= 2

Ts

z − 1

z + 1
⇒ z = 1 + sTs/2

1 − sTs/2
,

where Ts is a parameter that represents the sampling interval with which continuous
time is supposed to be converted into discrete time. The value of Ts is irrelevant to
our purposes, and we can as well set Ts = 1 s. This transformation is also referred to
as the linear fractional transformation, for obvious reasons. If we eliminate fractions
from its expression we get

(
Ts

2

)
sz +

(
Ts

2

)
s − z + 1 = 0,

which is linear in each complex variable when the other one is fixed. The transfor-
mation is thus bi-linear in s and z. The mapping in the complex domain operated
by the bilinear transformation is sketched in Fig. 8.27. Inserting s = σ + j� into the
transformation we get

z = 1 + σ Ts/2 + j�Ts/2

1 − σ Ts/2 − j�Ts/2
;

10This transformation, and other analogous transformations discussed later, are often expressed in
literature in terms of z−1 (unit delay), a form that is useful when the H(z) to be obtained is more
conveniently written as the ratio of polynomials in z−1, or even in the corresponding factorized
form. We will also, however, write the form in terms of z, considering that in this book, in most
cases ratios of polynomials in z or corresponding factorized forms are used.
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Fig. 8.27 Mapping from the
s-plane to the z-plane in the
bilinear transformation

we thus see that

σ < 0 ⇒ |z| =
∣∣∣∣
1 + σ Ts/2 + j�Ts/2

1 − σ Ts/2 − j�Ts/2

∣∣∣∣ < 1,

σ = 0 ⇒ |z| =
∣∣∣∣
1 + j�Ts/2

1 − j�Ts/2

∣∣∣∣ = 1,

σ > 0 ⇒ |z| =
∣∣∣∣
1 + σ Ts/2 + j�Ts/2

1 − σ Ts/2 − j�Ts/2

∣∣∣∣ > 1.

Therefore

1. the whole left-hand half s-plane is mapped into the interior of the unit circle of the
z-plane. As a consequence, the bilinear transformation is a stable transformation,
in the sense that a stable analog filter leads to a stable digital filter;

2. the imaginary axis of the s-plane is mapped onto the unit circle of the z-plane.
As � varies from −∞ to +∞, a single rotation around the origin of the z-
plane is performed along the unit circle, so that ω varies from −π to π , and the
relation between � and ω is univocal: there is no aliasing in the frequency domain.
Substituting σ = 0 into the transformation and observing that on the unit circle
we can write

z = ejω = 1 + j�Ts/2

1 − j�Ts/2
,

we get

ω = 2 arctan

(
�Ts

2

)
, � = 2

Ts
tan
(ω

2

)
.

The relation between � and ω is nonlinear, and � is warped into ω, as illustrated,
with Ts = 1 s, in Fig. 8.28.
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Fig. 8.28 Warping of the
�-axis into the ω-axis in the
bilinear transformation

As a first example, let us consider the transfer function

Ha(s) = (s + 1)/s2 + 5s + 6

and transform it into H(z) using the bilinear transformation with Ts = 1 s:

H(z) = Ha

(
2

Ts

1 − z−1

1 + z−1

)
= Ha

(
2

1 − z−1

1 + z−1

)
=

= 2
(
1 − z−1

)
/
(
1 + z−1

)+ 1
[
2
(
1 − z−1

)
/
(
1 + z−1

)]2 + 5
[
2
(
1 − z−1

)
/
(
1 + z−1

)]+ 6.

Simplifying we obtain

H(z) = 3 + 2z−1 − z−2

20 + 4z−1
= 0.15 + 0.1z−1 − 0.05z−2

1 + 0.2z−1
.

As an alternative, we could have started from s = (2/Ts)[(z − 1)/(z + 1)] to get a
ratio of polynomials in z.

8.9.2 Design Procedure

Suppose we want to design an IIR digital lowpass filter of a certain type (e.g., a
Butterworth filter) using the Butterworth analog design procedure and then applying
the bilinear transformation. Then we must proceed as follows:

• we specify ωp, ωs , δp, and δs of the desired digital lowpass filter;
• we choose a value for Ts . We can arbitrarily set Ts = 1 s;
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• we perform a pre-warping, i.e., we transform ωp and ωs into �p and �s :

�p = 2

Ts
tan
(ωp

2

)
, �s = 2

Ts
tan
(ωs

2

)
;

• we design the analog lowpass filter of the desired type that meets the specifications
�p, �s , δp and δs ; in this way we obtain some Ha(s);

• finally we write

H(z) = Ha

(
2

Ts

1 − z−1

1 + z−1

)
= Ha

(
2

Ts

z − 1

z + 1

)

and simplify to get H(z) in the form of a rational function in z−1 or in z.

It is however useful to derive an explicit expression for H(z), in the zero-pole-gain
form, as a function of the analog gain Ga and of the zeros zm and poles pn of the
analog filter. For this purpose we go back to the general factorized form

Ha(s) = Ga

∏M−1
m=0 (s − zm)

∏N−1
n=0 (s − pn)

with

Ga = H0

∏N−1
n=0 (−pn)∏M−1
m=0 (−zm)

,

where H0 and M depend on the filter type and on the order being even or odd, and
substitute, assuming Ts = 1 s,

s = 2
1 − z−1

1 + z−1
= 2

z − 1

z + 1
.

We get

H(z) = Ga

∏M−1
m=0 [2(z − 1)/(z + 1) − zm]

∏N−1
n=0 [2(z − 1)/(z + 1) − pn]

=

= Ga
(z + 1)−M

(z + 1)−N

∏M−1
m=0 [2(z − 1) − zm(z + 1)]

∏N−1
n=0 [2(z − 1) − pn(z + 1)]

=

= Ga(z + 1)N−M

∏M−1
m=0 [z(2 − zm) − (2 + zm)]

∏N−1
n=0 [z(2 − pn) − (2 + pn)]

,

that is,

H(z) = Ga

∏M−1
m=0 (2 − zm)

∏N−1
n=0 (2 − pn)

(z + 1)N−M

∏M−1
m=0 [z − (2 + zm)/(2 − zm)]

∏N−1
n=0 [z − (2 + pn)/(2 − pn)]

.
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In conclusion we can write

H(z) = G (z + 1)N−M

∏M−1
m=0

(
z − zd

m

)
∏N−1

n=0

(
z − pd

n

) ,

having set

G = Ga

∏M−1
m=0 (2 − zm)

∏N−1
n=0 (2 − pn)

for the gain of the digital filter, and zd
m , pd

m for the zeros and the poles of the digital
filter, respectively. The zeros and poles of the digital filter are related to the zeros
and poles of the analog filter by

zd
m = 2 + zm

2 − zm
, pd

n = 2 + pn

2 − pn
.

Note that in H(z) the factor (z + 1)N−M introduces N − M zeros at z = −1 that
correspond to N − M zeros of the analog filter at s = ∞, so that we have as many
zeros as poles: N zeros and N poles. This factorized form also highlights the fact
that the filter order does not change passing from the analog to the digital domain.

The frequency responses of all the examples described in the next subsection can
be obtained from this general factorized formula, by setting z = ejω.

8.9.3 Examples

By the bilinear transformation we can transform the analog Butterworth, Chebyshev
and elliptic lowpass filters designed in the previous sections into digital IIR filters.
All the analog-filter-design examples given in Sects. 8.4, 8.5 and 8.6 started from the
following digital specifications: δp = δs = 0.001, equivalent to rp = 0.0087, and
rs = 60; �p = 1 rad/s and �s = 2 rad/s. These analog frequencies correspond, with
Ts = 1 s, to choosing for the target digital filters the characteristic frequencies ωp =
2arctan(1/2) = 0.2952π and ωs = 2arctan(1) = 0.5π .

1. Applying the bilinear transformation to the analog Butterworth lowpass filter
shown in Figs. 8.6 and 8.7 we obtain a digital IIR Butterworth filter with order
N = 15. Details of the squared-magnitude frequency response of the designed
digital filter are shown in Fig. 8.29a, b as solid lines. The phase response, the phase
delay and the group delay are shown as solid lines in Fig. 8.29c–e, respectively.

2. Applying the bilinear transformation to the analog Chebyshev-I lowpass filter
shown in Figs. 8.11 and 8.12 we obtain a digital IIR Chebyshev-I filter with order
N = 9. Details of the squared-magnitude frequency response of the designed
digital filter are shown in Fig. 8.29a, b as dashed lines. The phase response,
the phase delay and the group delay are shown as dashed lines in Fig. 8.29c–e,
respectively.
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Fig. 8.29 Bilinear transformation. a, b Details of the squared-magnitude frequency responses of the
IIR digital filters obtained transforming the corresponding analog filters designed in Sects. 8.4–8.6
(see text). Butterworth filter: order 15 (solid line); Chebyshev-I filter: order 9 (dashed line);
Chebyshev-II filter: order 9 (dot-dashed line); elliptic filter: order 6 (dotted line). Correspond-
ing c phase response, d phase delay and e group delay. In panels c, d and e, the vertical gray lines
mark ωp and ωs

3. Applying the bilinear transformation to the analog Chebyshev-II lowpass filter
shown in Figs. 8.16 and 8.17 we get a digital IIR Chebyshev-II filter with order
N = 9. Details of the squared-magnitude frequency response of the designed
digital filter are shown in Fig. 8.29a, b as dot-dashed lines. The phase response,
the phase delay and the group delay are shown as dot-dashed lines in Fig. 8.29c–e,
respectively.

4. Applying the bilinear transformation to the analog elliptic lowpass filter shown in
Figs. 8.24 and 8.25 we obtain a digital IIR elliptic filter with order N = 6. Details
of the squared-magnitude frequency response of the designed digital filter are
shown in Fig. 8.29a, b as dotted lines. The phase response, the phase delay and
the group delay are shown as dotted lines in Fig. 8.29c–e, respectively.

Inspection of Fig. 8.29a, b reveals a perfect correspondence between the digital
squared-magnitude responses and the analog ones presented in the previous sec-
tions. The phase responses (Fig. 8.29c) appear markedly non-linear. The π -jumps in
the Chebyshev-II and elliptic cases are due to zeros of the magnitude response in
the stopband, which for these two types of filters is not monotonically decreasing.
Phase and group delay (Fig. 8.29d and e, respectively) is, in all cases, far from being
constant in the filter’s passband.
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8.10 Frequency Transformations

We learned how to design digital IIR lowpass filters from the corresponding analog
lowpass filters. Now we must see how filters with different frequency selectivity, i.e.,
highpass, bandpass and bandstop filters, can be designed. They are obtained by trans-
forming the frequency axis of an IIR lowpass filter, through a proper transformation
applied to the independent variable z. These algebraic transformations, which are
very similar to the bilinear one, were introduced by Constantinides (1970).

The procedure for the design of such filters includes the following steps:

• in general, from the specifications given for the desired filter, the specification of
the intermediate lowpass digital IIR filter are deduced. From these specifications,
those of the analog lowpass filter from which the process must start are calculated.
Except in particular cases that will be discussed separately, we are free to choose
the lowpass analog cutoff frequency �c arbitrarily, and normally we will set �c =
1 rad/s;

• the analog lowpass filter is designed according to the transformed specification,
using one of the approximation approaches discussed in Sect. 8.3;

• through bilinear transformation, the analog lowpass filter is converted into an
intermediate digital IIR lowpass filter;

• the algebraic transformations mentioned above are applied to get the final digital
IIR highpass, or bandpass, or bandstop filter.

Obviously, a highpass Chebyshev-I filter is obtained starting from a lowpass
Chebyshev-I filter, etc.

We will now investigate what properties these frequency transformations must
possess. Let us consider the transfer function of a lowpass digital IIR filter: in order
to avoid ambiguities, we will write it as HLP(Z), with Z indicating the corresponding
independent variable. We will then call H(z) the transfer function of the final IIR
filter (a highpass filter, for example). We seek a transformation of the kind11

Z = R(z),

such that
H(z) = HLP(Z) for Z = R(z).

The transformation from the lowpass to the final filter consists of substituting Z =
R(z) in HLP(Z). Assuming that HLP(Z) is a rational function with real coefficients,
representing a stable and causal filter, we want H(z) to possess the same features.
This implies that

1. R(z) must be a rational function of z with real coefficients;
2. the unit circle in the Z-plane must be mapped onto the unit circle in the z-plane;

11Usually, in literature, these transformation are given in terms of z−1 rather than in terms of z,
because the form of H(z) as a rational function in z−1 is considered. Here we prefer to use the
variable z directly.
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3. the interior of the unit circle in the Z-plane must be mapped onto the interior of
the unit circle in the z-plane;

4. the exterior of the unit circle in the Z-plane must be mapped onto the exterior of
the unit circle in the z-plane.

The functional form of the R(·) that satisfies these requirements turns out to be

Z = R (z) = ±
n∏

i=1

z − c∗
i

1 − ci z
,

with n zeros in c∗
i and n poles in 1/ci . The coefficients ci are not necessarily all

complex and must satisfy |ci | < 1 for stability and for ensuring the correspondence
between the interiors of the two unit circles; choosing n and the coefficients ci in
proper ways, a wide range of transformations can be achieved.

In order to justify these statements, let us observe that R(z) can be seen as the
transfer function of a filter: an allpass filter, i.e., a filter with unitary amplitude
response at any frequency, but with a phase response able to change the position
along the frequency axis of the lowpass filter characteristics and turn them into those
required for the final filter. For example, the bandpass of the lowpass filter may be
turned into a stopband, etc. In other words, the substitution of Z with R(z) in HLP(Z),
which modifies the lowpass digital filter, can be interpreted as a filtering operation.

Let us assume that the poles pi = 1/ci of R(z) are strictly external to the unit
circle in the z-plane: |ci | < 1. Then we write Z = rejθ , z = ρejω and ci = Ci ejφi ,
thus obtaining

rejθ = ±
n∏

i=1

ρejω − Ci e−jφi

1 − Ciρej(ω+φi )
.

The squared modulus of this expression is

r2 =
n∏

i=1

ρ2 + C2
i − 2ρCi cos (ω + φi )

1 + ρ2C2
i − 2ρCi cos (ω + φi )

,

to which each pole of R(z) contributes by one factor. Then we get the following
picture:

r > 1 ⇒ ρ2 + C2
i > 1 + ρ2C2

i → (
1 − C2

i

)
ρ2 >

(
1 − C2

i

) ⇒ ρ > 1,

r = 1 ⇒ ρ2 + C2
i = 1 + ρ2C2

i → (
1 − C2

i

)
ρ2 = (1 − C2

i

) ⇒ ρ = 1,

r < 1 ⇒ ρ2 + C2
i < 1 + ρ2C2

i → (
1 − C2

i

)
ρ2 <

(
1 − C2

i

) ⇒ ρ < 1,

that describes exactly the behavior we desire.
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If we think of the digital lowpass transfer function in the zero-pole-gain form, we
understand that a frequency transformation of this kind replaces each pole and each
zero of the lowpass filter with a number of poles and zeros that is equal to the order
of the mapping filter with transfer function R(z). Thus poles and zeros of the final
filter will be found at different positions with respect to the lowpass intermediate
filter,12 but they will always be internal to the unit circle in the z-plane, thanks to the
constraints we imposed on the transformation. So the transformation actually turns
an IIR stable filter into another IIR stable filter.

The transformations that are most widely used correspond to the following para-
meters:

• n = 1 for lowpass → lowpass13 and lowpass → highpass transformations. In this
case, only one coefficient is present, which we will denote by α and that must be
real:

R(z) = ± z − α

1 − αz
;

the plus sign gives a lowpass → lowpass transformation, while the minus sign
produces a lowpass → highpass transformation;

• n = 2 for lowpass → bandpass and lowpass → bandstop transformations. In this
case, there are two coefficients, c1 and c2, and

R(z) = ±
(
z − c∗

1

) (
z − c∗

2

)

(1 − c1z) (1 − c2z)
;

the plus sign gives a lowpass → bandstop transformation, while the minus sign
produces a lowpass → bandpass transformation. Indeed, the sign in front of R(z)
determines if the frequency θ = 0 of the lowpass filter is moved elsewhere, or if
the Nyquist frequency θ = π is moved instead: more precisely,

– the minus sign in front of R(z) produces the condition known as zero-frequency
mobility, or DC mobility14;

– the plus sign in front of R(z) produces the condition known as Nyquist mobility.

R(z) has two zeros in c∗
1,2 and two poles in 1/c1,2. If we set the denominator of

Rz to zero, we find the poles 1/c1,2. We expand the product in the denominator and
set α1 = −(c1 + c2), α2 = c1c2. We require α1 and α2 to be real and write:

(1 − c1z) (1 − c2z) = c1c2z2 − (c1 + c2)z + 1 = α2z2 + α1z + 1 = 0.

12The new positions of poles and zeros can be found considering a generic factor (Z − qi ) con-
tributing to the lowpass transfer function in the zero-pole gain-form. Here qi represents either a
zero, or a pole, and of course the factor can be in the numerator or in the denominator, respectively.
We can then substitute Z with R(z) and set the factor equal to zero, to find qi .
13The final lowpass is obviously required to have a different cutoff frequency.
14DC stands for direct current: here it means “zero frequency”.
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The roots of this equations are the poles of R(z):

1

c1,2
= −α1 ± √

�

2α2
with � = α2

1 − 4α2.

But since we imposed α2 = c1c2 we can write

c1,2 = −α1 ∓ √
�

2
.

We can thus see that

– if � > 0, then the coefficients c1,2 are real and distinct;
– if � = 0, then the coefficients c1,2 are real and coincident;
– if � < 0, then the coefficients c1,2 are complex, but form a complex-conjugate

pair:
c1 = c∗

2, c2 = c∗
1 .

Hence in general we can write

α1 = − (c1 + c2) = − (c∗
1 + c∗

1

) = − (c∗
2 + c∗

2

) = −2Re(c1) = −2Re(c2),

α2 = c1c2 = c1c∗
1 = |c1|2 = c2c∗

2 = |c2|2 .

The numerator of R(z) can be written as

± (z − c∗
1

) (
z − c∗

2

) = ± [z2 − (c∗
1 + c∗

2)z + c∗
1c∗

2)
] = ± (z2 + α1z + α2

)
,

and in conclusion we can write for n = 2,

R(z) = ± z2 + α1z + α2

α2z2 + α1z + 1
.

Note that when
∣∣c1,2

∣∣ < 1 we always have |α1| < 2 and |α2| < 1.

In summary, the transformations of a lowpass filter into another lowpass filter
with different cutoff frequency (a case that we mention for completeness but that
will not be discussed) and of a lowpass filter into a highpass filter are first-order
transformations, while those of a lowpass filter into a bandpass or bandstop filter are
second-order transformations. In terms of frequency, in the four cases the functional
form of R(z) implies a different relation between θ and ω, i.e., a different mapping
of the frequency axis. Moreover, the order of the transformation determines the order
of the final filter, which does not vary with respect to the intermediate lowpass case
when the transformation has order 1, while it doubles when the transformation has
order 2.
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Table 8.3 Frequency transformations for frequency-selective digital IIR filters: θc is the cutoff
frequency of the intermediate digital lowpass filter; ωc concerns final lowpass or highpass filters;
the pair ωc1, ωc2 concerns final bandpass or bandstop filters; the transformation from a lowpass
filter to another lowpass filter with different cutoff frequency is reported for completeness but is not
discussed in the text

Filter type Transformation Associated parameters

Lowpass Z = z−α
1−αz α = sin [(θc−ωc)/2]

sin [(θc+ωc)/2]

Highpass Z = − z−α
1−αz α = cos [(θc+ωc)/2]

cos [(θc−ωc)/2]

Bandpass Z = − z2+α1z+α2
α2z2+α1z+1

α1 = −2αβ/(β + 1)

α2 = (β − 1)/(β + 1)

α = cos [(ωc2+ωc1)/2]
cos [(ωc2−ωc1)/2]

β = cot
(

ωc2−ωc1
2

)
tan θc

2

Bandstop Z = z2+α1z+α2
α2z2+α1z+1

α1 = −2α/(β + 1)

α2 = −(β − 1)/(β + 1)

α = cos [(ωc2+ωc1)/2]
cos [(ωc2−ωc1)/2]

β = tan
(

ωc2−ωc1
2

)
tan θc

2

The four frequency transformations are summarized in Table 8.3. In the case of a
second-order R(z), α1 and α2 are usually expressed as functions of two other para-
meters, which are indicated with α and β. The last column in Table 8.3 gives the
expressions of these two parameters that obviously depend on the design character-
istic frequencies: the cutoff frequency θc of the intermediate lowpass filter and

• the cutoff frequency ωc of the final lowpass/highpass filter in the first two trans-
formations,

• the cutoff frequencies ωc1 and ωc2 of the final bandpass/bandstop filter in the last
two transformations.

The formulas listed in the third column of Table 8.3 will be derived in the following
subsections.

8.10.1 From a Lowpass to a Highpass Filter

This transformation implies the mapping sketched in Fig. 8.30; thus on the two fre-
quency axes, θ = −π leads to ω = 0, θ = −θc leads to ω = ωc, and θ = 0 leads to
ω = π . Since this is a first-order transformation, a value of θ corresponds to a single
value of ω; the negative half θ -axis covers the positive half ω-axis, and vice-versa.
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Fig. 8.30 Mapping of the frequency axis in the transformation from a lowpass to a highpass IIR
filter, illustrated using the shapes of ideal filters: the values of θ and ω that correspond to one another
are connected by arrows. This scheme derives from the functional form of R(z) and holds for any
α with |α| < 1

Let us now see how the dependence of α on θc and ωc (Table 8.3) can be derived.
We start writing the transformation

Z = − z − α

1 − αz

on the unit circles, obtaining

ejθ = − ejω − α

1 − αejω
.

We then form

ejθ ± 1 = − ejω − α

1 − αejω
± 1 = −ejω + α ± (1 − αejω

)

1 − αejω
=

= − (ejω ∓ 1
)∓ α

(
ejω ∓ 1

)

1 − αejω
= −(1 ± α)

ejω ∓ 1

1 − αejω

from which we get
ejθ − 1

ejθ + 1
= (1 − α)

(
ejω + 1

)

(1 + α)
(
ejω − 1

) .

Now, if we take the imaginary part of the left-hand member we have

Im

(
ejθ − 1

ejθ + 1

)
= sin θ

1 + cos θ
= tan

θ

2
.

In a similar way, the imaginary part of the factor ejω+1
ejω−1 in the right-hand member

gives a term − sin ω
1−cos ω

= − cot ω
2 . Therefore we can write
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tan
θ

2
= α − 1

α + 1
cot

ω

2
.

This equation must be solved with respect to α:

(α + 1)
sin θ/2

cos θ/2
= (α − 1)

cos ω/2

sin ω/2
,

cos ω/2

sin ω/2
+ sin θ/2

cos θ/2
= α

(
cos ω/2

sin ω/2
− sin θ/2

cos θ/2

)
,

hence

α = cos θ/2 cos ω/2 + sin θ/2 sin ω/2

cos θ/2 cos ω/2 − sin θ/2 sin ω/2
=

= cos
(

θ−ω
2

)

cos
(

θ+ω
2

) .

The parameter α relates any pair (θ, ω) of corresponding values. The value of α is
then determined establishing a pair of values, known a priori, that must correspond
to one another: the design frequencies −θc and ωc (see the solid arrows in Fig. 8.30).
In other words, the relation

e−jθc = − ejωc − α

1 − αejωc
,

must hold. The formula shown in Table 8.3 can thus be immediately deduced:

α = cos
(−θc−ωc

2

)

cos
(−θc+ωc

2

) = cos
(

θc+ωc
2

)

cos
(

θc−ωc
2

) .

We may note that as expected, the transformation as appears on the unit circles,

ejθ = − ejω − α

1 − αejω
,

also implies that

• ω = 0 corresponds to ejθ = −1, θ = ±π ;
• ω = ±π corresponds to ejθ = 1, θ = 0.

We may incidentally mention that the transformation of a lowpass filter into
another lowpass filter with different cutoff frequency proceeds along exactly the
same lines. The only difference is that the correspondence is between the interval
[0, π ] of θ and the interval [0, π ] of ω; θc leads to ωc, the two zero-frequencies
correspond to each other and the two Nyquist frequencies correspond to each other.
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Fig. 8.31 Curves of θ(ω) in
the transformation from a
lowpass to a highpass IIR
filter, for various values of α;
to avoid cluttering, only the
range [0, π ] of ω is plotted

The relation between ω of the highpass filter and θ of the lowpass filter is non-
linear. This can be seen graphically, considering a particular value of α, letting
ω vary from 0 to π and deriving the corresponding θ values from the equations
Z = − (z − α) / (1 − αz), θ = arg (Z). Repeating this procedure for various val-
ues of α, the curves shown in Fig. 8.31 can be found that represent another way of
illustrating the present mapping. The case α = 0 is special, because it produces a
linear relation between ω and θ : indeed, α = 0 implies cos[(θ − ω)/2] = 0. Since
for 0 ≤ ω ≤ π we have −π ≤ θ ≤ 0, the cosine in the numerator of α will vanish
for θ − ω = −π , θ = ω − π . The cutoff frequencies −θc and ωc are then related by
θc + ωc = π , and the transformation is reduced to Z = −z.

The value of α for a particular design depends on θc and ωc. However, if in the ana-
log domain we start assigning �c = 1 rad/s, we get θc = 2 tan (�c/2) = 0.2952 π ,
and α turns out to depend on ωc only. Figure 8.32 shows α as a function of ωc in this
case; according to the prescribed value of ωc, α can be positive, zero or negative,
but its absolute value is always less than 1. The transition from positive to negative
values of α takes place at ωc = π − θc = 0.7048 π (see the dotted lines in Fig. 8.32),
as can be understood remembering that α = 0 gives θc + ωc = π .

Now let us make an example of this frequency transformation. Imagine that we
want a highpass Chebyshev-I filter satisfying the following specifications: ωc =
ωp = 0.6 π ; transition bandwidth �ω = ωc − ωs = 0.1 π , hence ωs = 0.5 π ; δp =
δs = 0.001, hence rp = 0.0087, rs = 60. We start from a lowpass analog Chebyshev-
I filter with �c = �p = 1 rad/s. The bilinear transformation with Ts = 1 s leads us
to a digital lowpass IIR filter having θc = θp = 2 arctan (�c/2) = 0.2952 π . We
can now substitute into α the values θc = 0.2952 π and ωc = 0.6 π , thus getting
α = 0.1847. At this point we need θs , from which to deduce �s for the analog
design; the frequency θs of the intermediate digital lowpass filter must be such that
after frequency transformation we have ωs = ωc − �ω = 0.5 π , as desired. We can
write, in agreement with the mapping of Fig. 8.30,
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Fig. 8.32 The parameter α

for the transformation from a
lowpass to a highpass IIR
filter, as a function of ωc: θc
is constant, because
�c = 1 rad/s is assumed for
the analog lowpass filter. The
dotted lines mark the
coordinates α = 0,
ωc = 0.7048 π

e−jθs = − ejωs − α

1 − αejωs
.

This gives θs = − arg
(
e−jθs

) = 0.3837 π , from which we get �s = 2 tan (θs/2) =
1.3764 rad/s.

We can also adopt a different approach to get θs and then �s . A given value of α

relates univocally any value of ω to the corresponding value of θ . Hence the pair of
values (−θs , ωs), when substituted into the expression of α, must give α = 0.1847.
We can thus solve the transcendental equation

α − cos
(

θs+ωs
2

)

cos
(

θs−ωs
2

) = 0

to find the unknown θs . This can be done numerically by iterative methods, for
example by the Newton-Raphson method (Pao 1999).15

Similar considerations hold for filters that are not Chebyshev-I. However, in the
case of a Butterworth filter we must face another difficulty: �c �= �p, and precisely,
�c > �p. On the other hand, the analog Butterworth lowpass filter design starts from
�p, �s and from the tolerances. But in order to find �p from some given �c (in the
present case, 1 rad/s) through the formula given in Sect. 8.4, the filter order should
already be known. A simple way of finding �p is to proceed by trial-and-error: for
instance, we can consider a dense set of values of �p between 0 and �c = 1 rad/s.
From the given values of δp and δs , and for each value of �p, we can find the integer
N and the corresponding �c guessed value. We will proceed until this guessed value
becomes equal to 1; the corresponding �p and the order N found in this way are the
correct values for the analog design process.

15This method also requires writing the derivative of the transcendental equation with respect to θs .
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(a) (b)

Fig. 8.33 Details of a the frequency response of a lowpass Chebyshev-I IIR filter and b the fre-
quency response of the corresponding highpass Chebyshev-I IIR filter satisfying the following spec-
ifications: ωc = ωp = 0.6 π ; transition bandwidth �ω = ωc − ωs = 0.1 π , hence ωs = 0, 5 π ;
δp = δs = 0.001, hence rp = 0.0087, rs = 60; order N = 13

Now we know what is needed to design the analog lowpass filter from which
to start and obtain |Ha(j�)|2, convert it into a digital IIR lowpass filter by bilinear
transformation, thus getting

∣∣HLP(ejθ )
∣∣2, and finally, using the proper frequency trans-

formation, obtain the final highpass IIR filter. For this purpose, given the frequencies
ωp and ωs of the highpass filter that we desire, the corresponding θ -frequencies of
the intermediate lowpass IIR filter will be deduced, and then the frequencies � of
the analog filter representing the starting point will be calculated (with �c = 1 rad/s).
Then, after computing α, we will substitute Z with R(z) = − (z − α) / (1 − αz) in
the factorized form of the lowpass transfer function obtained by bilinear transforma-
tion. For all design steps, the deviations δp and δs remain the same.

The result of such a process is illustrated in Fig. 8.33; the resulting highpass-filter
order is N = 13 and is the same as the lowpass-filter order. Figure 8.33a shows the
details of the frequency response of the lowpass IIR filter, while Fig. 8.33b shows
the same for the highpass IIR filter. The correspondence between the values of θ

and ω of interest, shown in Fig. 8.34, is exactly the one described in the foregoing
discussion.

Another possible approach consists in fixing a priori a convenient value of α,
instead of fixing �c = 1 rad/s. E.g., for the lowpass → highpass case, the choice
α = 0 implies, as we already mentioned, a very simple transformation,
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Fig. 8.34 Frequency
mapping in the design of the
highpass IIR filter shown in
Fig. 8.33

Fig. 8.35 Mapping of the
frequency axis in the
transformation from a
lowpass to a bandpass IIR
filter, illustrated using the
shapes of ideal filters: values
of θ and ω that correspond to
each other are connected by
arrows; this scheme follows
from the functional shape of
R(z) and holds for
any α1, α2

Z = −z and θ = ω − π.

8.10.2 From a Lowpass to a Bandpass Filter

In the bandpass and bandstop cases, the frequency transformation problem is more
involved, because there are more free parameters.

The transformation from a lowpass to a bandpass filters implies the mapping
sketched in Fig. 8.35. In this second-order transformation, a single value of θ in
[−π, π ] corresponds to a pair of negative and positive values of ω. We can visualize
this mapping imagining a first rotation of θ on its unit circle from −π to π that covers
the values of ω in [−π, 0], and a second rotation of θ that covers the values of ω in
[0, π ]. In Fig. 8.35, a further characteristic frequency is introduced with respect to
the highpass case. This is ω0 = arccos(α), with α defined as in Table 8.3.
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We can now derive the expression of α1 and α2 for this transformation, as functions
of θc, ωc1 and ωc2. We start writing the transformation,

Z = − z2 + α1z + α2

α2z2 + α1z + 1
,

that on the unit circles of the Z - and z-planes becomes

ejθ = − e2 jω + α1ejω + α2

α2e2 jω + α1ejω + 1
.

It may be seen that ω = 0 corresponds to θ = ±π , as desired. We then form

ejθ − 1

ejθ + 1
= e2 jω + α1ejω + α2 + α2e2 jω + α1ejω + 1

e2 jω + α1ejω + α2 − α2e2 jω − α1ejω − 1
.

The imaginary part of the left-hand member equals tan θ/2. Working on the right-
hand member, and taking the imaginary part of it, after some algebra the following
equation can be obtained:

tan
θ

2
= −α1 + (1 + α2) cos ω

(1 − α2) sin ω
.

We now observe that, according to the mapping, +θc leads to ωc2 and −θc leads to
ωc1 (see the solid arrows in Fig. 8.35, relative to the range ω ≥ 0); we thus can write

tan
θc

2
= −α1 + (1 + α2) cos ωc2

(1 − α2) sin ωc2
,

tan

(−θc

2

)
= − tan

θc

2
= −α1 + (1 + α2) cos ωc1

(1 − α2) sin ωc1
,

that is an equation system in the two unknowns α1 and α2. Solving the first equation
for α1,

α1 = − tan
θc

2
(1 − α2) sin ωc2 − (1 + α2) cos ωc2,

and substituting into the second equation, we get

α2 = tan θc
2 (sin ωc1 + sin ωc2) + (cos ωc2 − cos ωc1)

tan θc
2 (sin ωc1 + sin ωc2) − (cos ωc2 − cos ωc1)

,

that with some algebra provides

α2 = tan θc
2 cot

(
ωc2−ωc1

2

)− 1

tan θc
2 cot

(
ωc2−ωc1

2

)+ 1
.
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If we then set

β = tan
θc

2
cot

(
ωc2 − ωc1

2

)
,

we finally obtain the expected equation,

α2 = β − 1

β + 1
.

Then we substitute again α2 into α1, thus getting

α1 = − 2

β + 1
tan

θc

2

[
sin ωc2 + cos

(
ωc2−ωc1

2

)

sin
(

ωc2−ωc1
2

) cos ωc2

]
.

But since

sin ωc2 + cos
(

ωc2−ωc1
2

)

sin
(

ωc2−ωc1
2

) cos ωc2 = cos
(

ωc2+ωc1
2

)

sin
(

ωc2−ωc1
2

) ,

we derive, after setting

α = cos
(

ωc2+ωc1
2

)

cos
(

ωc2−ωc1
2

) ,

α1 = − 2

β + 1
tan

θc

2

[
cos
(

ωc2+ωc1
2

)

sin
(

ωc2−ωc1
2

)
]

=

= − 2

β + 1
tan

θc

2

[
cos
(

ωc2+ωc1
2

)

cos
(

ωc2−ωc1
2

)
cos
(

ωc2+ωc1
2

)

sin
(

ωc2−ωc1
2

)
]

=

= − 2

β + 1

cos
(

ωc2+ωc1
2

)

cos
(

ωc2−ωc1
2

) tan
θc

2
cot

(
ωc2 − ωc1

2

)
=

= − 2αβ

β + 1
,

as reported in Table 8.3.
The relation between the frequencies ω of the bandpass IIR filter and θ of the

lowpass IIR filter is nonlinear. We can see it graphically starting, as in the case of the
highpass filter, by setting �c = 1 rad/s, hence θc = 2 tan(�c/2) = 0.2952π . Then
considering a particular pair of values of ωc1 and ωc2, we calculate α and β and
hence the coefficients α1 and α2. By taking values of ω from 0 to π , we calculate
the corresponding values of θ from the equations Z = −(z2 + α1z + α2)/(α2z2 +
α1z + 1), θ = arg (Z). Repeating this process for several pairs of {ωc1, ωc2} values,
we can find the curves shown in Fig. 8.36.
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Fig. 8.36 Curves of θ(ω) in the transformation from a lowpass to a bandpass IIR filter, for values
of α and β that derive from considering various pairs of cutoff frequencies ωc1, ωc2: θc is constant,
because �c = 1 rad/s is assumed for the analog lowpass filter; to avoid cluttering, only the interval
[0, π ] of ω is plotted

Fig. 8.37 The parameter α

in the transformation from a
lowpass to a bandpass IIR
filter, as a function of ωc1 and
ωc2: θc is constant, because
we assume �c = 1 rad/s for
the analog lowpass filter

The value of α for a particular filter design depends on ωc1 and ωc2. The map of
Fig. 8.37 shows α as a function of the passband cutoff frequencies.16 The parameter
β depends only on the passband width, ωc2 − ωc1. In Fig. 8.38, the solid curve shows
β as a function of ωc2 − ωc1: β increases steeply as passband width decreases.

16Obviously we assume that ωc1 < ωc2: α can then be positive, zero or negative, but its absolute
value never exceeds 1.
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Fig. 8.38 The parameter β

in the transformation from a
lowpass to a bandpass IIR
filter (solid curve) and in the
transformation from a
lowpass to a bandstop IIR
filter (dashed curve), as a
function of ωc2 − ωc1: θc is
constant, because
�c = 1 rad/s is assumed for
the analog lowpass filter.
Note that a logarithmic
y-axis has been used for this
plot

We now make a transformation example. Imagine that we want a passband filter
meeting some specifications ωc1, ωc2, transition bandwidth �ω, hence ωs1 = ωc1 −
�ω, ωs2 = ωc2 + �ω, tolerances δp and δs . From ωc1 and ωc2 we can compute α;
setting �c = 1 rad/s we immediately get θc; on this basis we can calculate β and then
α1 and α2. We still must determine θs , and consequently �s .

Normally, when specifying the desired bandpass IIR filter we would give two
symmetric transition bands of equal width. However, in this design method this
result cannot be achieved: the transformation produces a final filter with transition
bands of different width. The widest one turns out to be ωs2 − ωc2. Therefore we will
specify ωs2, so as to constrain the less favorable case. According to the frequency
mapping, ωs2 corresponds to +θs . We thus write

ejθs = − e2 jωs2 + α1ejωs2 + α2

α2e2 jωs2 + α1ejωs2 + 1
,

from which we find
θs = arg

(
ejθs
)
.

The frequency ωs1 corresponds instead to −θs and in the final filter its effective value
ωeff

s1 will be greater than the originally foreseen value ωc1 − �ω, thus producing a
narrower left-hand transition band.

Once θs has been calculated in this way, we can deduce �s . All parameters needed
for the analog lowpass design are now available. Later we apply the bilinear trans-
formation to convert the analog lowpass filter into a digital lowpass filter and finally
apply our frequency transformation to get the final bandpass filter. An example of
the result of a Chebyshev-I design of this kind is shown in Fig. 8.39. The filter meets
the following specifications: ωp1 = ωc1 = 0.2 π ; ωp2 = ωc2 = 0.4 π ; ωs2 = 0.44 π ;
δp = δs = 0.001, hence rp = 0.0087, rs = 60. The resulting values of the design
parameters are: α = 0.6180, hence ω0 = 0.2879 π ; β = 1.5388, α1 = −0.7492,
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(a) (b)

Fig. 8.39 Details of a the frequency response of the Chebyshev-I lowpass IIR filter and b the
frequency response of the corresponding bandpass Chebyshev-I IIR filter satisfying the follow-
ing specifications:ωp1 = ωc1 = 0.2 π ;ωp2 = ωc2 = 0.4 π ;ωs2 = 0.44 π ; δp = δs = 0.001, hence
rp = 0.0087, rs = 60; lowpass order N = 14; bandpass order N = 28

α2 = 0.2122; θs = 0.3778 π , hence �s = 1.3493 rad/s. The order is found to be
N = 14 for the lowpass IIR filter and N = 28 for the final passband IIR filter.

The correspondence between the values of θ and ω of interest is shown in Fig. 8.40.
Inspection of this plot confirms what was described earlier. Note that the gray lines
refer to the first θ rotation along the unit circle of the Z-plane from −π to π , which
covers the negative range of ω values, while the black lines refer to the second θ

rotation, covering the positive range of ω values.
In order to reduce the number of parameters and make the design easier, we can

fix a value for β: the usual choice is then β = 1. This means (see Table 8.3) assuming

θc = ωc2 − ωc1,

i.e., fixing θc on the basis of the passband width of the final filter. Then �c =
2 tan(θc/2) �= 1 rad/s, and

α = cos
(

ωc2+ωc1
2

)

cos θc
2

.
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Fig. 8.40 Frequency mapping in the design of the bandpass filter shown in Fig. 8.39: gray lines
describe the first θ rotation along the unit circle of the Z-plane from −π to π that covers the negative
range of ω values, while black lines describe the second θ rotation, covering the positive range of
ω values

Fig. 8.41 Curves of θ(ω) in
the transformation from a
lowpass to a bandpass IIR
filter, for values of α that
derive from considering
various pairs of cutoff
frequencies ωc1, ωc2, and for
β = 1: as α increases, the
curves gradually pass from
being concave up to being
concave down; to avoid
cluttering, only the interval
[0, π ] of ω is plotted

Since with β = 1 we have α1 = −α and α2 = 0, the transformation is reduced to

Z = − z2 − αz

1 − αz
;

for computing θs we will use

θs = − arg

(
e2 jωs2 − αejωs2

1 − αejωs2

)
.

In Fig. 8.41, the curve ω(θ) for various values of α and for β = 1 is shown.
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If, in addition to β = 1, we also assume α = 0, the transformation becomes
extremely simple:

Z = −z2.

Since

• for α = 0 we must require that ωc2 + ωc1 = π ,
• for β = 1 we must require that ωc2 − ωc1 = θc,

we have
ωc1 = π − ωc2 = ωc2 − θc,

hence

ωc2 = θc

2
+ π

2
, ωc1 = π

2
− θc

2
,

ωc2 + ωc1

2
= π

2
,

as is needed for α to vanish. This is a very particular case because it corresponds to a
bandpass filter with a passband that is symmetrical with respect to the middle point
of the ω range [0, π ].

8.10.3 From a Lowpass to a Bandstop Filter

No substantial differences exist between this transformation and the lowpass →
bandpass one. The sign of the transformation changes, as well as the expressions
of β, α1 and α2, so that the mapping now appears as in Fig. 8.42. This is again
a second-order transformation, and therefore the same θ in [−π, π ] produces two
different values of ω with opposite signs. As illustrated in Fig. 8.43, we can imagine
ω that moves anticlockwise along the unit circle of the z-plane, starting from −ω0

(marked by the black cross), as θ rotates anticlockwise along the unit circle of the
Z-plane, starting from −π . When θ reaches π , after a first complete rotation along
the unit circle of the Z-plane, ω attains +ω0. But π coincides with −π , and θ starts
a new anticlockwise rotation along the unit circle of the Z-plane; ω, continuing its
anticlockwise motion in the z-plane, reaches again −ω0 when this second θ rotation
is completed.

The expressions for α1 and α2 for this transformation (see Table 8.3) are derived
from the given values of θc, ωc1 and ωc2, in a way that is similar to what we did in
the passband case. We start writing the transformation,

Z = z2 + α1z + α2

α2z2 + α1z + 1
,
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that on the unit circles of the Z - and z-planes becomes

ejθ = e2 jω + α1ejω + α2

α2e2 jω + α1ejω + 1
.

We may note that ω = 0 correctly corresponds to θ = 0.
The right-hand member of the equation

ejθ − 1

ejθ + 1
= e2 jω + α1ejω + α2 − α2e2 jω − α1ejω − 1

e2 jω + α1ejω + α2 + α2e2 jω + α1ejω + 1

is worked out algebraically and its imaginary part is isolated. This provides the
relation

tan
θ

2
= (1 − α2) sin ω

(1 + α2) cos ω + α1
.

Fig. 8.42 Mapping of the
frequency axis in the
transformation from a
lowpass to a bandstop IIR
filter, illustrated using the
shapes of ideal filters: values
of θ and ω that correspond to
each other are connected by
arrows; this scheme follows
from the functional shape of
R(z), independently of the
particular values assumed by
α1 and α2

Fig. 8.43 The path in the
z-plane followed by ω when
θ performs two subsequent
complete rotations on the
unit circle of the Z-plane: the
black cross indicates the
beginning and the end of the
path; the first θ rotation is
represented by the light gray
arrow and the corresponding
θ values are highlighted by a
frame; the second θ rotation
is represented by darker gray
arrows (see text)



334 8 IIR Filter Design

The mapping prescribes correspondence between +θc and ωc1, as well as correspon-
dence between −θc and ωc2. Thus, the following equation system must hold:

tan
θc

2
= (1 − α2) sin ωc1

(1 + α2) cos ωc1 + α1
,

tan

(−θc

2

)
= − tan

(
θc

2

)
= (1 − α2) sin ωc2

(1 + α2) cos ωc1 + α1
.

Solving the first equation for α1,

α1 = (1 − α2) sin ωc1 − tan θc
2 (1 + α2) cos ωc1

tan θc
2

,

and substituting into the second equation gives

α2 = cos
(

ωc2−ωc1
2

)− tan θc
2 sin

(
ωc2−ωc1

2

)

cos
(

ωc2−ωc1
2

)+ tan θc
2 sin

(
ωc2−ωc1

2

) = 1 − tan θc
2 tan

(
ωc2−ωc1

2

)

1 + tan θc
2 tan

(
ωc2−ωc1

2

) .

Now, if we set

β = tan
θc

2
tan

(
ωc2 − ωc1

2

)

we finally get (Table 8.3)

α2 = 1 − β

1 + β
.

Then we substitute again the expression of α2 in the expression of α1 and obtain

α1 = − 2

1 + β

(
sin ωc1 cos ωc2 + cos ωc1 sin ωc2

sin ωc1 + sin ωc2

)
=

= − 2

1 + β

[
sin (ωc1 + ωc2)

sin ωc1 + sin ωc2

]
=

= − 2

1 + β

[
cos
(

ωc2+ωc1
2

)

cos
(

ωc2−ωc1
2

)
]

.

We finally set

α = cos
(

ωc2+ωc1
2

)

cos
(

ωc2−ωc1
2

) ,

to obtain

α1 = − 2α

β + 1
,
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Fig. 8.44 Curves of θ(ω) in
the transformation from a
lowpass to a bandstop IIR
filter, for values of α and β

that derive from considering
various pairs of cutoff
frequencies ωc1 and ωc2; to
avoid cluttering, only the
interval [0, π ] of ω is plotted

as expected (Table 8.3).
The nonlinear relation between ω and θ for the stopband case, deduced from

θ = arg(Z) = arg
(
z2 + α1z + α2

)
/
(
α2z2 + α1z + 1

)
, appears in Fig. 8.44.

In this transformation, the expression of α is the same found in the lowpass →
bandpass case, and therefore as ωc1 and ωc2 vary, α assumes the same values shown
in Fig. 8.37; the behavior of β as a function of ωc2 − ωc1 appears as a dashed curve
in Fig. 8.38. The parameter β increases rapidly with increasing passband width.

Let us now turn to a design example. We start establishing the specifications of
the final filter, including only one stopband limit, namely ωs2. We set �c = 1 rad/s
and immediately get θc; we compute α from ωc1 and ωc2, as well as β from ωc1, ωc2

and θc; then we evaluate α1 and α2. At this point we only need to fix θs . Also in this
case, the transformation produces, in the final filter, two transition bands of different
widths. The widest one turns out to be the right-hand one, ωc2 − ωs2, and this is the
reason why we only specified ωs2. According to the mapping, ωs2 corresponds to
−θs , so we can write

e−jθs = e2 jωs2 + α1ejωs2 + α2

α2e2 jωs2 + α1ejωs2 + 1
,

from which we get
θs = − arg

(
e−jθs

)
.

The frequency ωs1 corresponds instead to +θs , and in the final filter its effective value
ωeff

s1 will be smaller than the value originally foreseen, i.e., ωc1 + �ω, thus producing
a narrower left-hand transition band. Once θs has been found in this way, we can
compute �s and design the analog lowpass filter of the desired type, which is then
converted into a lowpass digital filter via bilinear transformation; at last, the frequency
transformation will be applied to produce the final filter. An example of Chebyshev-
I filter designed according to this procedure is shown in Fig. 8.45. Specifications
are: ωp1 = ωc1 = 0.2 π ; ωp2 = ωc2 = 0.4 π ; ωs2 = 0.44 π ; δp = δs = 0.001, hence
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(a) (b)

Fig. 8.45 Details of a the frequency response of the lowpass Chebyshev-I IIR filter and b the
frequency response of the corresponding bandstop Chebyshev-I IIR filter satisfying the following
specifications: ωc1 = 0.2 π ; ωc2 = 0.4 π ; ωs2 = 0.36 π ; δp = δs = 0.001, hence rp = 0.0087,
rs = 60; lowpass order N = 11; bandstop order N = 22

rp = 0.0087, rs = 60. The resulting parameter values are: α = 0.6180, hence ω0 =
0.2879 π ; β = 0.1625, α1 = −1.0633, α2 = 0.7205; θs = 0.4156 π , hence �s =
1.5292 rad/s. The order is found to be N = 11 for the lowpass filter and N = 22 for
the final bandstop filter.

Figure 8.46 shows the correspondence between the values of θ and ω of interest,
which is in agreement with what was described above. In Fig. 8.46, the gray lines
are relative to the first θ rotation along the unit circle of the Z-plane from −π to π

that covers the negative range of ω values, while the black lines are relative to the
second θ rotation, covering the positive range of ω values.

To reduce the number of parameters we can directly set β = 1. Since β =
tan [(ωc2 − ωc1) /2] tan (θc/2), assuming β = 1 means choosing

θc = π − (ωc2 − ωc1) .

In fact, if we call γ and δ any two angles, then tan γ tan δ = 1 if tan γ = 1/ tan δ =
cot δ, which is true if δ = π/2 − γ . As a consequence, α assumes the form

α = cos
(

ωc2+ωc1
2

)

cos
(

π−θc
2

) .
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Fig. 8.46 Frequency mapping in the design of the bandstop IIR filter shown in Fig. 8.45: the gray
lines refer to the first θ rotation along the unit circle of the Z-plane from −π to π that covers the
negative range of ω values, while the black lines refer to the second θ rotation, covering the positive
range of ω values

But β = 1 also implies α1 = −α, α2 = 0, and the transformation simplifies to

Z = z2 − αz

1 − αz
.

From this equation, we can understand that in order to compute θs we can use

θs = arg

(
e2 jωs2 − αejωs2

1 − αejωs2

)
.

In Fig. 8.47, the curve ω(θ) is given for several values of α and for β = 1.
The very special choice β = 1, α = 0 is considered too:

• for α = 0 we must require that ωc2 + ωc1 = π ;
• for β = 1 we must require that θc = π − (ωc2 − ωc1).

Then
ωc1 = π − ωc2 = ωc2 − π + θc

and therefore

ωc2 = π − θc

2
, ωc1 = π − ωc2 = θc

2
.

The transformation reduces to
Z = z2.
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Fig. 8.47 Curves of θ(ω) in
the transformation from a
lowpass to a bandstop IIR
filter, for values of α that
derive from considering
various pairs of cutoff
frequencies ωc1, ωc2, and for
β = 1: as α increases, the
curves gradually pass from
being concave up to being
concave down; to avoid
cluttering, only the interval
[0, π ] of ω is plotted

8.11 Direct Design of IIR Filters

The design of non-standard IIR filters, e.g., multiband filters, cannot be dealt with
using the methods described in the previous sections.17 The filter must be designed
directly in the discrete-time domain, requiring it approximates the desired piecewise-
constant desired response. The phase issue is completely neglected. These methods
are referred to as “direct methods” because no analog filter comes into play and the
design takes place in the discrete-time domain only. The optimality of the designed
filter is not discussed.

Among the many methods available in literature, including the Prony method,
the Dezky method, the Steiglitz-McBride method etc., the most widely applied is
probably the Yule-Walker method (Porat and Friedlander 1984). Its name reflects the
way by which the coefficients of the filter’s frequency response are calculated: they
are found solving a set of equations referred to as modified Yule-Walker equations.
We will come across this name, and the ARMA modeling that forms the basis of the
method, when we discuss parametric methods for the estimate of the power spectrum
of a random signal. Direct methods of IIR filter design are beyond the scope of this
book.

8.12 Appendix

This appendix discusses elliptic integrals of the first kind, Jacobi elliptic functions,
and the elliptic rational function, on the basis of which the transfer function of analog
elliptic filters is constructed.

17Actually it is possible to use frequency transformations to pass from a digital lowpass filter, derived
from an analog lowpass filter, to a digital multiband filter, but these are high-order transformations
that push the order of the final filter up considerably. Moreover, direct design techniques avoid
constraints and compromises that are unnecessary.
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8.12.1 Trigonometric Functions with Complex Argument

Ordinary (circular) trigonometric functions and hyperbolic trigonometric functions
can be defined not only for real arguments, but also for complex arguments (Saff and
Snider 2002).

Consider a complex variable z = x + iy, where x and y are real. The complex
exponential function ez is periodic, with imaginary period j2π , and this same imag-
inary period is shared by the hyperbolic trigonometric functions sinh z and cosh z
that are linear combinations of ez and e−z :

sinh z = ez − e−z

2
, cosh z = ez + e−z

2
.

Using sinh z and cosh z, other hyperbolic trigonometric functions can be defined in
the complex domain, such as the hyperbolic tangent. Using the Euler formula

ejy = cos y + j sin y,

which holds for any real y, the exponential function ez can be written as

ez = ex eiy = ex (cos y + j sin y).

From Euler’s formula it also follows that

e−jy = cos y − j sin y,

and that the inverse relations hold:

sin y = ejy − e−jy

2 j
, cos y = ejy + e−jy

2
.

These formulas for real y suggest extending trigonometric functions to complex
angles z, by writing

sin z = ejz − e−jz

2j
, cos z = ejz + e−jz

2
.

These functions of the complex argument z = x + iy are thus obtained directly from
the exponential function, by substituting z with jz; like ez , they are periodic functions.
Their period is real and equal to 2π . Through sin z and cos z, the other trigonometric
functions, for example the tangent, can be extended to the complex domain. Unlike
their real counterparts, the functions sin z and cos z are not limited to 1 in absolute
value, and can assume any real or complex value. However, they still satisfy

sin2 z + cos2 z = 1.
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Fig. 8.48 Period-strips for a
sin z, cos z and b sinh z,
cosh z

(a)

(b)

Clearly, sin z and cos z are real if y = 0, i.e., if z is real. For complex z, sin z is real
if cos y = 0, and cos z is real if sin y = 0.

These functions of complex variable are said to be singly periodic, because they
possess a single period in the complex plane that we shall call T . For them, the
complex z-plane can be divided into an infinite number of strips of width T and
infinite length, called period-strips. Given any point z inside one of these period-
strips, a corresponding point z + mT can be found inside any other period-strip,
such that the values of the considered function at the two points (congruent points)
are identical. The period-strips for sin z and cos z have width 2π and are juxtaposed
to one another, being all oriented parallel to the imaginary axis (Fig. 8.48a), while
those for sinh z and cosh z, having the same width 2π , are oriented parallel to the
real axis (Fig. 8.48b). The functions tan z and tanh z have different periods: π and
jπ , respectively.

If w = f (z), where f (z) is a sine or a cosine, circular or hyperbolic, it can be
shown that an infinite-length strip of width π , lying inside a period-strip and centered
on a zero of the considered function—i.e., a half period-strip—will be mapped onto
the whole complex w-plane with biunivocal correspondence. If f (z) represents a
circular or hyperbolic tangent, then a whole period-strip (instead of a half period-
strip) will be mapped onto the whole complex w-plane.

It can be shown that the following properties hold:

sin(jz) = j sinh z,

sinh(jz) = j sin z,

cos(jz) = cosh z,

cosh(jz) = cos z.
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Fig. 8.49 Complex sine:
a amplitude, b real part, and
c imaginary part

(a)

(b)

(c)

This implies, in particular, that

sin z = −j sinh(jz),

cos z = cosh(jz).

Observing that

sin z = sin(x + jy) = sin x cos(jy) + cos x sin(jy) = sin x cosh y + j cos x sinh y,

cos z = cos(x + jy) = cos x cos(jy) − sin x sin(jy) = cos x cosh y − j sin x sinh y,

we can understand that since cosh y never vanishes, and since sin x and cos x never
vanish simultaneously, the zeros of sin z and cos z are located on the real axis. For
example, Fig. 8.49 shows the behavior of sin z. Observe the single periodicity with
respect to the real axis, with period 2π .
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8.12.2 Elliptic Integrals

The elliptic integral of the first kind is defined as

z(φ, k) =
∫ φ

0

(
1 − k2 sin2 θ

)−1/2
dθ,

where k, with 0 ≤ k ≤ 1, is a real quantity called elliptic modulus. In this expression,
the amplitude φ, the integration variable θ and the integral itself, z(φ, k), are complex
quantities.

If we substitute for φ the real value φ = π/2, we get a real value for z, which is
known as the complete elliptic integral of the first kind:

K (k) = z
(π

2
, k
)

=
∫ π/2

0

(
1 − k2 sin2 θ

)−1/2
dθ.

In the frame of our discussion about IIR filters, the elliptic modulus can assume
the meaning of a selectivity factor, as well as the meaning of a discrimination factor.
More precisely, four integrals of this type come into play in IIR filter design: if k rep-
resents a selectivity factor and k1 represents a discrimination factor, and if we define
the complementary elliptic modulus of k as k ′ = √

1 − k2, while the complementary

elliptic modulus of k1 is k ′
1 =

√
1 − k2

1 , we need four complete elliptic integrals:

K (k), K (k ′), K (k1) and K (k ′
1), which we will simply indicate as K , K ′, K1 and K ′

1,
respectively. Figure 8.50a shows the behavior of K (k) (solid curve). This integral is
a monotonically increasing function of k, which goes to π/2 for k → 0 and goes to
infinity for k → 1. Figure 8.50a also shows K ′ as a function of k: this is a monoton-
ically decreasing function of k (dashed curve). The two curves intersect each other
at k = 1/

√
2 = 0.707. If K and K ′ are plotted versus k2 instead of k, these curves

become symmetric, as visible in Fig. 8.50b. Note that K (k = 0) = K ′(k = 1) = π/2
and K (k = 1) = K ′(k = 0) → ∞.

8.12.3 Jacobi Elliptic Functions

Jacobi elliptic functions are a set of twelve functions; the basic ones are the Jacobi
elliptic sine sn(z, k), the Jacobi elliptic cosine cn(z, k) and the function dn(z, k).
They are defined implicitly through the elliptic integral of the first kind: they are
obtained from the elliptic integral of the first kind by inverting, first of all, the function
z(φ, k), so that the amplitude φ is written as a function of z, with k as a parameter,
i.e., φ(z, k). Then the basic Jacobi elliptic functions are defined as
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(a) (b)

Fig. 8.50 a Complete elliptic integrals of the first kind, K (solid line) and K ′ (dashed line), plotted
versus k; b the same plotted versus k2

sn(z, k) = sin [φ(z, k)] ,

cn(z, k) = cos [φ(z, k)] ,

dn(z, k) =
√

1 − k2 sin2 [φ(z, k)].

The remaining nine functions are constructed by combining the three basic functions.
For our discussion on IIR filters, we need the function

cd(z, k) = cn(z, k)

dn(z, k)
.

This is the most important Jacobi elliptic function in the frame of elliptic filter
design theory. The only other Jacobi elliptic function used in the same theory is
sn(z, k). Note that for φ = π/2, z = K (k), and we have sn(K , k) = sin (π/2) = 1,
cd(K , k) = cos (π/2) = 0.

For k → 0 and k = 1, the Jacobian elliptic functions have limiting forms consisting
of circular and hyperbolic trigonometric functions, respectively. For example, the
four functions sn, cn, dn and cd reduce to circular trigonometric and hyperbolic
trigonometric functions, respectively:

sn(z, 0) = sin z, sn(z, 1) = tanh z;
cn(z, 0) = cos z, cn(z, 1) = sech z;
dn(z, 0) = 1, dn(z, 1) = sech z;
cd(z, 0) = cos z, cd(z, 1) = 1.
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Fig. 8.51 The function
sn(z, k) for k = 0.05:
a amplitude, b real part, and
c imaginary part

(a)

(b)

(c)

At low values of k, the two functions sn and cd that we are most interested in are very
similar to sin z and cos z, respectively for instance, compare Fig. 8.49 with Fig. 8.51,
which shows the function sn(z, k) for k = 0.05.

Jacobi elliptic functions possess properties that are similar to the properties of
trigonometric and hyperbolic functions. For example, the three basic functions sn,
cn and dn satisfy

sn2(z, k) + cn2(z, k) = 1,

k2sn2(z, k) + dn2(z, k) = 1.

As a function of z, with fixed k, each of the Jacobi elliptic functions is a doubly
periodic function in the z-plane (Abramowitz and Stegun 1972; Olver et al. 2010).
Indeed, the existence of singly-periodic functions in the complex plane naturally
leads to exploring if functions exist that have two, or even more, distinct periods. It
can be shown that

• no functions exist with three, or more, periods;
• if a function possesses two periods, their ratio cannot be real; in other words, the

two periods must be relative to different directions in the complex plane. They
cannot lie along the same straight line.
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Within these restrictions, a single-valued function being doubly periodic with periods
equal to any two given complex numbers a and b can be constructed, so as to have
f (z + ma + nb) = f (z) for any z and for any pair of integer numbers m, n. A
function of this kind is called an elliptic function.

The double periodicity associates with each z-value an infinite two-dimensional
grid of points z + ma + nb in the z-plane, at which the function assumes identical
values. Around these grid points we can visualize an infinitely extended tiling of
the z-plane, made up of period-parallelograms with sides a and b such that, for
any z, the grid identifies a set of congruent points inside the parallelograms. Since
the grid points z + ma + nb can also be written as z + (m − n)a + n(a + b), or as
z + m(a − b) + (n + m)b, it is clear that the periods of a function of this kind are
not unique and can be set, for example, not only equal to a, b, but also to a, a + b, or
a + b, b, etc. Changing the definition of the function periods in this way changes the
shape, but not the area, of the period-parallelograms. Therefore a proper choice of
the periods allows for restricting the attention to rectangular tilings, i.e., to period-
rectangles. In this way, it is possible to work with pairs of periods including one
purely real period and one purely imaginary period.

Inside each period-rectangle, the function f (z) must possess at least one sin-
gularity, because otherwise it would have no singularities at all and therefore, for
Liouville’s theorem of complex analysis (see, e.g., Kreyszig 2011), it would be a
constant. Moreover, the line integral of the function along the rectangle’s contour
must vanish, because the contributions to the integral given by opposite sides of the
rectangle are equal in absolute value and opposite in sign, due to the double peri-
odicity of the function. Cauchy’s residue theorem then implies that the sum of the
residues in the singularities contained inside the rectangle must vanish too. Since a
single pole with zero residue is a removable singularity, the simplest doubly-periodic
elliptic function f (z) will either have a double pole with zero residue, or two simple
poles with residues equal in magnitude and opposite in sign, inside each period-
rectangle. The complexity, a.k.a the order, of the function is measured by the sum of
the orders of the poles contained inside a period-rectangle. Therefore, no first-order
elliptic functions exist, and two kinds of second-order elliptic functions exist. More-
over, if f (z) is an elliptic function, then 1/f (z) is also an elliptic function, with the
same order and the same periods. This tells us that a second-order elliptic function
also has either a double zero, or two simple zeros inside each period-rectangle.

A second-order elliptic function, with one double pole with zero residue in each
period-rectangle, was originally described by Weierstrass, and is named after this
author. It is a very simple function that can be used to systematically build second-
order elliptic functions having two simple poles per period-rectangle. These derived
functions, properly normalized, are the Jacobi elliptic functions that possess two
simple zeros and two simple poles per period-rectangle.

We know it is convenient to define six different circular trigonometric functions:
sine, cosine, tangent and their respective reciprocal functions. In a similar manner,
twelve different Jacobi elliptic functions naturally emerge from the theory. The func-
tions sine/cosine and tangent have periods 2π and π respectively, i.e., have periods
that differ by a factor of 2. Similarly, Jacobi elliptic functions can be properly grouped
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according to their periods, and these periods differ from one group to the other by
a factor of 2. It is standard practice to describe these periods in terms of a pair of
parameters, one real and one imaginary: K and jK ′, respectively. These parameters
play the role that in the trigonometric and hyperbolic cases belongs to π/2.

These quarter periods define a rectangle located in the first quadrant of the complex
z-plane, having the points 0, K , jK ′ and K + jK ′ as vertexes which, is referred to
as the fundamental rectangle. Each vertex is indicated by a letter (see Fig. 8.52): S
(starting point), C (corner on the real axis), D (diagonally opposite point), and N
(normal to the real axis).

The fundamental rectangle has one pole and one zero on its contour. The positions
of the pole and of the zero on the contour univocally identify one of the twelve
functions. Indeed, if we denote by p one of the symbols s, c, d, n, and by q one of
the remaining symbols, we can indicate any Jacobi elliptic function by pq(z, k); the
number of combinations of the symbols p and q is 4 × 3 = 12. Then we will call P
the z-plane point corresponding—in the sense that will immediately be explained—
to the symbol p, S the z-plane point corresponding to the symbol s, and so on. Each
Jacobi elliptic function pq(z, k) is built in such a way to have a simple zero in the
vertex P and a simple pole in the vertex Q of the fundamental rectangle: for example,
sn(z, k) has a simple zero in S (z = 0) and a simple pole in N (z = jK ′); cd(z, k)

has a simple zero in C (z = K ) and a simple pole in D (z = K + jK ′), etc.
We must explicitly note here an important fact: only one of the two parameters

K , K ′ can be chosen arbitrarily. For example, if we set a value for K , then K ′ is
automatically determined. This is evident from the definition we gave of the Jacobi
elliptic functions in terms of inversion of the elliptic integral of the first kind, and
also from what we said about K and K ′ in Sect. 8.12.2. This remark clarifies that the
fundamental rectangle has dimensions that vary with K , while its shape is constrained
by the ratio K ′/K . In other words, the elliptic modulus k alone determines area and
shape of the fundamental rectangle. This implies that the six Jacobi elliptic functions
that have a zero or a pole in the origin of the complex plane, i.e., sc, sd, sn, cs, ds, and
ns, are odd functions, while the remaining six functions are even functions. Another
consequence of this relation between K and K ′—that we may see as a normalization
of Jacobi elliptic functions—is that the following properties hold:

Fig. 8.52 The fundamental
rectangle in the complex
z-plane for Jacobi elliptic
functions. The points S, C, D
and N appear in an
anticlockwise sequence at
the corners of the
fundamental rectangle



8.12 Appendix 347

Table 8.4 Periods, zeros and poles of the twelve Jacobi elliptic functions

Periods z-position of a pole z-position of a zero

jK ′ K + jK ′ K 0 0 K K + jK ′ jK ′

4K , 2jK ′ sn cd dc ns sn cd dc ns

4K , 4jK ′ cn sd nc ds sd cn ds nc

2K , 4jK ′ dn nd sc cs sc cs dn nd

Fig. 8.53 Poles and zeros of the Jacobi elliptic function cd(z, k). The gray-shaded rectangle is the
fundamental one

pq(z, k) = 1

qp(z, k)
= pr(z, k)

qr(z, k)
= rq(z, k)

rp(z, k)
,

where r is one of the symbols s, c, d, n, provided it is different from both p and
q. The three functions sn, cn, and dn are the original elliptic functions that Jacobi
obtained in 1827 inverting the elliptic integral of the first kind, while the other nine
functions were introduced in 1882 by Glasher as reciprocal and quotients of the first
three functions.

Table 8.4 lists, for each of the twelve functions, the real period and imaginary
periods in the z-plane, the position of the zero on the edge of the fundamental rec-
tangle, and the position of the pole. The other poles are found at congruent points
with respect to the indicated point, i.e., in the set of points that can be obtained per-
forming translations by 2mK + 2njK ′ in the z-plane, with integer values of m and
n. Similarly, the other zeros can be found performing translations by 2mK + 2njK ′.
E.g., for cd(z, k), the poles and zeros are given by

zeros : z = K + 2mK + 2njK ′ = (2m + 1)K + 2njK ′,
poles : z = K + jK ′ + 2mK + 2njK ′ = (2m + 1)K + (2n + 1)jK ′,

where n and m are arbitrary integer numbers (positive, negative or zero). The resulting
grid of poles and zeros is shown in Fig. 8.53.

The periods listed in Table 8.4 can be explained as follows.
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(a)

(b)

(c)

(d)

Fig. 8.54 Jacobi elliptic functions for real values of z and for several values of k: a sn(z, k),
b cn(z, k), c dn(z, k), and d cd(z, k)

The difference between the z-position of a zero and that of the nearest pole is a
half-period of pq(z, k). This half-period is plus or minus a member of the triplet K ,
jK ′, K + jK ′. The other two members of the triplet are quarter-periods of pq(z, k).
For instance, for sn the above-mentioned difference is jK , so that actually we can
list three periods: not only 2jK ′ and 4K , but also 4K + 4jK ′. The same is true for
cd. To make another example, let us consider cn: the half-period is K + jK ′, so that
we have the periods 2K + 2jK ′, 4K and 4jK ′, and so on. In Table 8.4, only real and
imaginary periods are reported; the complex ones are not included.

From Table 8.4 we see that for sn and cd we need 2 × 4 = 8 fundamental rec-
tangles to cover one period-rectangle. Yet another concept is that of fundamental
region, i.e., the minimum region of the complex z-plane that through the mapping
z → w covers the whole complex w-plane. We will soon see that for w = cd(z, k),
the fundamental region is made up of 4 fundamental rectangles: hence it is a half
period-rectangle.

We can start our study of Jacobi elliptic functions by observing their periodicity
in the case of real argument z: in this case the functions are real. Figure. 8.54 shows,
in separate panels, the behavior of the four functions sn(z, k), cn(z, k), dn(z, k) and
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Fig. 8.55 Comparison among the four Jacobi elliptic functions sn(z, k), cn(z, k), dn(z, k), and
cd(z, k), for real values of z and for k = 0.7

(a) (b)

(c) (d)

Fig. 8.56 Magnitude of the Jacobi elliptic functions: a sn(z, k), b cn(z, k), c dn(z, k), and d cd(z, k).
The figure illustrates the case of k = 0.2

cd(z, k) for real values of z and for several values of k, while Fig. 8.55 compares
these four functions among them, for a single value of k and for real z values.

When the argument z is complex, the behavior of the magnitude of these four
functions appears as shown in Figs. 8.56 and 8.57, in which k = 0.2, and k = 0.99,
respectively. A double periodicity with respect to Re(z) and Im(z) is clearly visible,
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(a)

(c)

(b)

(d)

Fig. 8.57 Magnitude of the Jacobi elliptic functions over one period on both real and complex
axes: a sn(z, k), b cn(z, k), c dn(z, k), and d cd(z, k). The figure illustrates the case of k = 0.99

as well as the presence of regularly distributed peaks corresponding to poles. These
peaks have been truncated in the figures, for obvious graphic convenience.

We mentioned above that sn and cd are an odd and an even functions of z, respec-
tively, in analogy with sine and cosine functions. Moreover, in analogy with sine
and cosine being translated by a quarter period one with respect to the other, the
functions sn and cd are translated by K one with respect to the other, and satisfy, for
any complex z,

cd(z, k) = sn(z + K , k) = sn(K − z, k),

an equation that can be used as an alternative definition of cd, once sn has been
defined. Another useful property of cd is

cd(z + jK ′, k) = 1

k cd(z, k)
.

Let us now examine, for w = cd(z, k), the mapping between the z-plane and the
w-plane. We defined the fundamental region as the smallest region of the z-plane
that, when mapped through the function w = cd(z, k), covers the whole w-plane.
This region is centered on the simple zero in C , and the point C is surrounded by
four fundamental rectangles that form the fundamental region. Each of these four
rectangles is mapped onto a different quadrant of the w-plane, according to the
scheme shown in Fig. 8.58.
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(a)

(b)

Fig. 8.58 a The function w = cd(z, k) in the z-plane: fundamental region (union of the four gray-
shaded fundamental rectangles), period rectangle (union of the eight gray-shaded and white fun-
damental rectangles), and mapping of z onto the four quadrants of the complex w-plane. Arrows
indicate the direction of movement along the boundary of the region formed by the two darkest-gray
fundamental rectangles, in connection with the discussion reported in the text about purely real w
values. b Numbering of the complex w-plane quadrants. Note that the poles are in common with
adjacent period-rectangles, so that a period-rectangle actually possesses two poles and two zeros

The fundamental region of w = cd(z, k) is

0 ≤ Re(z) ≤ 2K , −K ′ ≤ Im(z) ≤ K ′.

In Fig. 8.58a, the numbers 1–4 indicate the quadrants of the complex w-plane, drawn
in Fig. 8.58b, onto which the individual gray-shaded fundamental rectangles in the
z-plane are mapped: for instance, the two lower fundamental rectangles are mapped
onto the first and second quadrant of the w-plane.

Let us now think of the complex s-plane with respect to which the transfer func-
tions of analog filters are defined, and of the equation s = j� that relates the variable
s with analog angular frequency �. Now, let us assume that some real values of the
variable w represent frequency: s = jw. We can simply think of a normalized ellip-
tic filter with �c = �p = 1 rad/s, w = � and s = j� = jw: this is not restrictive,
since the conversion of a normalized filter into a filter with any cutoff frequency is
straightforward (Sect. 8.7). Now, let us extend our attention to the whole complex
w-plane: the first and second quadrant of the w-plane correspond to the left-hand half
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s-plane, since s = j
[
Re(w) + jIm(w)

] = −Im(w) + jRe(w). This turns out to be the
property that ensures the elliptic analog filter, which is defined through the Jacobi
elliptic function cd, to have its poles in the left-hand half s-plane, and therefore to be
a stable filter.

In Fig. 8.58a we can also see one more copy of fundamental region, represented
by the four white fundamental rectangles. The union of all eight rectangles describes
a complete period-rectangle, identified by

0 ≤ Re(z) ≤ 4K , −K ′ ≤ Im(z) ≤ K ′.

For the purpose of elliptic filter design, we need to know in which points of the
z-plane the complex function w = cd(z, k) assumes purely real values, fit to be used
as normalized frequencies.

For what values of z is w real? Fig. 8.59 shows the magnitude of the function
w = cd(z, k) for k = 0.5. The values of the function falling on the white contour
turn out to be real. They correspond to the boundary of the region formed by the
two darkest-gray fundamental rectangles in Fig. 8.58a, having the points D+, N ′,
S′, C , S, N , and D− as vertexes. In Fig. 8.58a, arrows indicate the direction of
movement along this boundary; note that we distinguish, e.g., between point D− that
is approached coming from point N , and point D+ from which we move away when

Fig. 8.59 The magnitude of cd(z, k) for k = 0.5. This complex function assumes real values along
the white contour (see text)
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Fig. 8.60 Real values assumed by w = cd(z, k) while going through the path D+ → N ′ → S′ →
C → S → N → D− in Fig. 8.58a. a Values plotted in 3-D above the complex z-plane; b values
plotted in 2-D versus the value assumed by z along the above-mentioned path, indicated by arrows
in panel a. The z-values shown on the horizontal axis correspond to the z-plane coordinates of the
points D+, N ′, S′, C , S, N , and D−. These are complex values, so the horizontal axis in this panel
is not an ordinary real Cartesian axis. In this example, k = 0.5

approaching N ′. Halfway through the segment N → N ′ there is a pole. The path we
are considering begins immediately at the right of the pole and ends immediately at
the left of it, so that the pole is not included in the contour: the symbols D−, D+
used in Fig. 8.58a actually are meant to suggest this fact.

Now observe Fig. 8.60a, which shows a three-dimensional plot of the real values
assumed by w = cd(z, k) along the above-mentioned contour. Note that here we see
cd(z, k) and not just its absolute value. Starting from point D+ at which cd(z, k)

is close to −∞, while we go through the prescribed path in the direction indicated
by the arrows in Figs. 8.58a and 8.60a, the values of the function w increase, and
tend to +∞ as we get close to D−. The function reverses in sign at point C : it is
negative before C and positive after C . This appears logical if we observe the numbers
representing quadrants of the w-plane in Fig. 8.58a and b: the negative Re(w) half
axis borders the third quadrant of the w-plane, while the positive Re(w) half axis
borders the fourth quadrant.



354 8 IIR Filter Design

Fig. 8.61 Characteristic real values assumed by w = cd(z, k) in the vertex-points of the z-plane
path visible in Fig. 8.58a (see text), and distribution of the bands of the elliptic filter along the path

In summary, for the function w = cd(z, k) the path along the double fundamental
rectangle D+ → N ′ → S′ → C → S → N → D− in Fig. 8.58a is mapped onto the
real w-axis. This fact is further illustrated in Fig. 8.60b: in particular, the path C →
S → N → D− corresponds to the positive half-w-axis.

Using a real parameter 0 ≤ t ≤ 1 in each path segment and recalling that in analog
filter design we set w = �/�p, k = �p/�s , we can describe the path C → S →
N → D− that leads to real non-negative w-values as follows.

• C → S: z = K − K t ⇒ 0 ≤ w ≤ 1 ⇒ filter’s passband, 0 ≤ � ≤ �p;
• S → N : z = jK ′t ⇒ 1 ≤ w ≤ k−1 ⇒ transition band, �p ≤ � ≤ �s ;
• N → D−: z = K t + jK ′ ⇒ k−1 ≤ w < ∞ ⇒ stopband, �s ≤ � < ∞.

Similar expressions for the negative half-axis can be written along the path D+ →
N ′ → S′ → C ; these values can be derived using the properties of cd(z, k) (Orfanidis
2006). The distribution of the bands of the elliptic filter along the path is further
illustrated in Fig. 8.61.

If instead of the path described above, which is located in the upper quadrants of
the z-plane, we select a similar path in the lower quadrants, we obtain exactly the
same real w-values: indeed, the negative part of the real w-axis does not belong only
to the third quadrant of the w-plane, but also to the second quadrant; the positive part
of the real w-axis does not belong only to the fourth quadrant of the w-plane, but
also to the first quadrant.

We thus understood in which points of the z-plane the function cd assumes those
real values that are fit to represent the normalized frequencies w in the design of
analog elliptic filters.

In the calculations concerning analog elliptic filters, the inversion of Jacobi elliptic
functions w = cd(z, k) and w = sn(z, k) is also required (Orfanidis 2005, 2006):
for example, we need to compute z = cd−1(w, k), so as to find, for a given k, the
value of z that corresponds to a certain value of w. In general, such a z value is not
univocally defined, but it becomes univocally defined if we restrict ourselves to the
fundamental region of the z-plane corresponding to the gray-shaded rectangles in
Fig. 8.58a, i.e., 0 ≤ Re(z) ≤ 2K , −K ′ ≤ Im(z) ≤ K ′. In fact, in a period-rectangle
two values of z exist that correspond to a fixed value of w = cd(z, k). One of these
values is found in the fundamental region, and the other one in the adjacent region
(the union of the white rectangles in Fig. 8.58a). For example, if z = cd−1(w, k) lies
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in the fundamental region, then z1 = 4K − z lies in the adjacent region and we have
w = cd(z, k) = cd(z1, k). Similar considerations hold for sn(z, k): in this case, the
fundamental region is

−K ≤ Re(z) ≤ K , −K ′ ≤ Im(z) ≤ K ′.

However, if we remember that sn(z, k) = cd(K − z, k), we understand that actually
we only need to devise a method to invert cd; then we will use z = sn−1(w, k) =
K − cd−1(w, k) to invert sn, if needed. This inversion is performed by the Landen-
Gauss transformation, presented in the next subsection.

We can conclude this discussion by noting that often z values are expressed in
units of real quarter period K , by writing

uK = z, u = z

K
.

The variable u is thus a complex variable that can be represented in yet another plane:
the u-plane. In terms of u, the fundamental region of cd(z, k) becomes

0 ≤ Re(u) ≤ 2, −K ′/K ≤ Im(u) ≤ K ′/K ,

and the positions of the zero and of the pole on the edge of the fundamental rectangle
are determined by K ′/K only: the pole in D corresponds to u = 1 + j(K ′/K ), while
the zero in C corresponds to u = 1. The function w = cd (z, k) is then written as
w = cd (uK , k), and similar expressions are written for the other Jacobi elliptic
functions. Moving in the u-plane along a path corresponding to the z-plane path used
so far, w = cd (uK , k) will obviously be real. This is actually the notation that we
saw in Sect. 8.3.2.

8.12.4 Landen-Gauss Transformation

We must now explain how the Jacobi elliptic functions are computed numeri-
cally, with focus on cd and sn. When k → 0, the ratio K ′/K tends to infinity,
and Jacobi elliptic functions degenerate into trigonometric circular functions; their
period-rectangles degenerate into period-strips. When k → 1, then K ′/K → 0, and
Jacobi elliptic functions degenerate into trigonometric hyperbolic functions; their
period-rectangles degenerate into the corresponding period-strips. A symmetry exists
between the two limit cases:

• in the trigonometric limit (k = 0) we have k ′ = 1, K = π/2 and K ′ → ∞;
• in the hyperbolic limit (k = 1) we have k ′ = 0, K → ∞ and K ′ = π/2.

Therefore the Jacobi elliptic functions lie, in a sense, along a continuous path that
extends from trigonometric functions to hyperbolic functions; the parameter k and
its complementary value k ′ measure the “position” of the considered function along



356 8 IIR Filter Design

this path, i.e., they give the “distance” of the function from the path ends. At the
middle of this path, the fundamental rectangle is a square, with K = K ′ ≈ 1.854
and k = k ′ = 1/

√
2.

The Landen-Gauss transformation (Orchard and Willson 1997) is a method for
moving along this path by discrete steps, in one direction or in the opposite one,
by modifying k or k ′ in such a way that at each step the ratio K ′/K is doubled or
halved. The values of the considered function before and after this transformation
are algebraically related. In this way, we can move from any value of k to a value for
which the considered Jacobi elliptic function is numerically indistinguishable from
the corresponding limit-function that represents the beginning or the end of the path.
Then we can evaluate the proper limit function and successively we can thread the
same path in the opposite direction, calculating the intermediate elliptic function at
each step from the previous one through the algebraic relations that connect them.
We thus can go back until the desired elliptic function is found that corresponds to
the value originally given for k. Usually, since it is simpler to compute trigonometric
functions rather than hyperbolic ones, the procedure is applied towards and then
backwards from the trigonometric path end.

A first transformation, referred to as the Landen transformation, allows mapping
the parameters and the values of the elliptic integral. Starting from a given value of k,
a sequence of values kn rapidly decreasing toward zero is generated by the recursion
formula (Orchard and Willson 1997; Orfanidis 2006)

kn =
(

kn−1

1 + k ′
n−1

)2

, n = 1, 2, . . . M, with k ′
n−1 = (1 − k2

n−1

)1/2
,

which is initialized by setting k0 = k. The recursion is stopped at n = M , when kM ,
which is zero in the trigonometric limit, has become smaller than a specified tolerance
level.18 For all values of k encountered in the practice of elliptic filter design, which
are normally included in the range 0 ≤ k ≤ 0.999, the recursion can stop at M = 5,
since the following kn values turn out to be less than 10−15; for k ≤ 0.99 they are
less than 10−20. The inverse recursion formula is

kn−1 = 2
√

kn

1 + kn
, n = M, M − 1, . . . 1.

The recursion formula for k corresponds to a recursion formula for the complete
elliptic integral K : if we set Kn = K (kn), then we have

Kn−1 = (1 + kn)Kn,

18This tolerance level can be taken equal to the machine epsilon ε, which is defined as the absolute
value of the difference between a positive floating point number and the closest higher floating
point number. The machine epsilon depends on the particular software used: for example, in Matlab
ε = 2−52 = 2.2204 × 10−16.
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and therefore, starting from the initial value K0 = K (k = k0), we have K0 = (1 +
k1)K1 = (1 + k1)(1 + k2)K2 etc.:

K = (1 + k1)(1 + k2) · · · (1 + kM)KM , KM = π

2
.

In fact, kM is close to zero, hence KM is very close to π/2. By applying the Landen
recursion to k ′, we can compute K ′ in a similar way.

The Landen recursion also allows for evaluating efficiently the function cd(uK , k),
as well as the function sn(uK , k). To this purpose, the Landen transformation must
be associated with the retrograde recursion referred to as the Gauss transformation
(Byrd and Friedman 1971):

1

cd(uKn−1, kn−1)
= 1

1 + kn

[
1

cd(uKn, kn)
+ kncd(uKn, kn)

]
, n = M, M − 1, . . . 1.

The recursion is initialized with n = M , where kM is so small that the function
cd is indistinguishable from a cosine: cd(uKM , kM) ≈ cos(uπ/2). In such a way,
the computation of w = cd(uK , k) for any complex value of u proceeds evaluating
wn = cd(uKn, kn), with start at wM = cd(uKM , kM) and end at w0 = cd(uK0, k0) =
cd(uK , k) = w:

w−1
n−1 = 1

1 + kn

(
w−1

n + knwn
)
, n = M, M − 1, . . . 1.

The recursive procedure described above can also be used to calculate the corre-
sponding inverse functions: it is sufficient to proceed in the opposite direction, i.e.,
onwards from n = 1 to n = M :

wn = 2wn−1

(1 + kn)
(

1 +
√

1 − k2
n−1w2

n−1

) , n = 1, 2, . . . M.

Starting from a given complex value w = cd(uK , k), and setting w0 = w, we will
carry on the recursion till wM = cos(uπ/2) that can be easily inverted to yield u =
(2/π) arccos(wM), and therefore z = uK . However, in this case care must be taken
about the fact that u is not univocally defined, and that in order to make it unique, we
must select that value that falls inside the fundamental region, 0 ≤ Re(u) ≤ 2 and
−K ′/K ≤ Im(u) ≤ K ′/K . In a similar way, we can use this transformation to invert
w = sn(uK , k), except that we will write u = (2/π) arcsin(wM) and that u will be
constrained to lie inside the range − ≤ Re(u) ≤ 1, −K ′/K ≤ Im(u) ≤ K ′/K .

8.12.5 Elliptic Rational Function

The elliptic rational function RN (w) is a real rational function in the real variable w,
with order N , which is even for even N and odd for odd N . It is defined as follows:
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RN (w) = cd (NuK1, k1) with w = cd(uK , k) ⇒ uK = cd−1 (w, k) .

Let us underline that in this definition, it is meant that the variable w is real, and there-
fore composed by values of cd(uK , k) computed along the path shown in Fig. 8.60a.

Let us set
u1 = Nu, RN (w) = cd(u1 K1, k1).

Now we must understand on what path in the complex u- and u1-planes the function
cd (NuK1, k1) = cd (u1 K1, k1) is computed, and what values it assumes.

Figure 8.62a shows, for N = 3, the path in the complex u-plane that is followed
to compute w-values and corresponding RN (w)-values. The real and imaginary parts
of u are reported on the inner axes; the outer axes show the corresponding values
of Re(u1), Im(u1). Also characteristic values of RN are shown. The path borders a
large rectangle which is the union of three smaller rectangles. The large rectangle is
a fundamental one for w = cd(uK , k), while the smaller rectangles are a division of
the large rectangle into N = 3 equal parts. Each of them is a fundamental rectangle
for RN (w) = cd(u1 K1, k1). This figure is useful to visualize what happens to the
variable u1, and therefore to RN (w) = cd(u1 K1, k1), as u goes around the edge of
the fundamental rectangle belonging to w = cd(uK , k). The path is exactly the one
indicated as C → S → N → D− in Figs. 8.58a and 8.60; the only difference is that
we are now using u = z/K instead of z. In Fig. 8.62b, the case N = 4 is illustrated
in a similar way.

From Fig. 8.61 we can see that the values assumed by w along the path depicted in
Fig. 8.62a for N = 3 and in Fig. 8.62b for N = 4 are: 0 at the beginning of the path,
1 in the origin of the u-plane, k−1 on the upper-left corner of the large rectangle in
Fig. 8.62a or b, and infinity at the path end. This is shown in Fig. 8.62c. This figure is
meant to show which band of the elliptic filter corresponds to each different stretch
of the path in the u-plane (see the solid arrow for the passband, the dashed arrow for
the transition band, and the dash-dotted arrow for the stopband).

As shown in Fig. 8.62, the parameter k1 is constrained by the relation N K ′/K =
K ′

1/K1 that can be understood as follows. An elliptic filter must be equiripple both in
the passband and in the stopband. This is achieved by defining the function RN (w) in
such a way that it is equiripple in the filter’s passband, and then imposing on RN (w)

the condition known as inversion relation,

RN (w) = 1

k1 RN (w−1k−1)
,

which ensures an equiripple filter behavior in the stopband too (Sect. 8.6). The
inversion relation incorporates in itself the elliptic degree equation, RN (k−1) = k−1

1 :
indeed, by substituting w = k−1 into the inversion relation we get

RN (k−1) = k−1
1 R−1

N (k−1k) = k−1
1 R−1

N (1) = k−1
1 ,

since RN (1) is normalized to 1.
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(a)

(b)

(c)

Fig. 8.62 a Mapping of RN (w) = cd (u1 K1, k1) in the u-plane, with u1 = Nu, under the condition
N K ′/K = K ′

1/K1, for N = 3. The inner axes represent Re(u) and Im(u); the outer axes add the
information about Re(u1) and Im(u1). The arrows depict the path that is followed; this path in
the u-plane corresponds to the z-plane path C − S − N − D− visible in Fig. 8.58a. See text for
details. b The same for N = 4. c Real values assumed by w along the same path in the u-plane
and corresponding bands of the elliptic filter whose frequency response is built using RN (w). The
arrows in different styles highlight this band distribution—they are solid in the passband, dashed
in the transition band, and dash-dotted in the stopband
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Now, the inversion relation implies the constraint N K ′/K = K ′
1/K1. In order to

see this, we start from the property

cd(z + jK ′, k) = 1

k cd(z, k)

and set z = uK to write

cd(uK + jK ′, k) = 1

k cd(uK , k)
.

Now we compare the two arguments of the elliptic rational functions that appear in
the inversion relation, i.e.,

w = cd(uK , k),

w−1k−1 = 1

k cd(uK , k)
= cd(uK + jK ′, k) = cd[(u + jK ′/K ) K , k],

we note that in the second argument u is substituted by u + jK ′/K with respect
to the first argument. We thus can write, recalling that RN (w) = cd(u1 K1, k1) =
cd(NuK1, k1) and setting z = NuK1,

RN (w−1k−1) = cd[N (u + jK ′/K ) K1, k1] = cd(NuK1 + jN K ′K1/K , k1).

On the other hand, using again the above-mentioned property of the cd function in
terms of k1 and K ′

1, we get

cd(NuK1 + jK ′
1, k1) = 1

k1 cd(NuK1, k1)
= 1

k1
RN (w).

In conclusion, for the inversion relation to hold, i.e., in order to have

RN (w−1k−1) = 1

k1 RN (w)
,

the following equation must hold for any u:

cd(NuK1 + jN K ′K1/K , k1) = cd(NuK1 + jK ′
1, k1).

But then we must impose the condition N K ′K1/K = K ′
1, i.e.,

N K ′

K
= K ′

1

K1
, q.e.d.

This constraint gives the fundamental rectangle of RN (w) = cd (u1 K1, k1) the shape
and the dimensions in the u-plane that are needed for it to be contained horizontally
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inside the fundamental rectangle of w = cd(uK , k) exactly N times. With reference
to Fig. 8.62b (N = 4), as u starts its path and moves along its own real axis from 1 to
1 − 1/N = 3/4, thus covering a distance 1/N = 1/4, u1 moves along its real axis
from 4 to 3, thus covering a distance 1 and completing one side of a first fundamental
rectangle of cd (u1 K1, k1). In the following stretch of path, u goes from 3/4 to 1/2,
while u1 goes from 3 to 2, i.e., it goes by one more unit distance, and completes
one side of a second fundamental rectangle of cd (u1 K1, k1). Then, u goes from
1/2 to 1/4, while u1 goes from 2 to 1, i.e., it goes by one more unit distance, and
completes one side of a third fundamental rectangle of cd (u1 K1, k1). Finally, u goes
from 1/4 to 0 while u1 goes from 1 to 0, i.e., it goes by one more unit distance,
and completes one side of a fourth and last fundamental rectangle of cd (u1 K1, k1).
Now the path becomes vertical: u moves from 0 to jK ′/K , while u1 goes from 0 to
jN K ′/K = jK ′

1/K1 (note that the imaginary axes in Fig. 8.62b are scaled in such a
way to show this correspondences clearly). A similar return journey follows, with u1

that travels a unit distance for four times, while u travels a single unit distance. Along
the path, real values of cd (u1 K1, k1) are found, in a one-to-one correspondence with
real w values. This produces the real attenuation function RN (w) used to construct
the squared frequency response of the elliptic filter. The choice of k1 dictated by the
degree equation and the simple geometric relation between the u- and u1-fundamental
rectangles that is a consequence from that choice are the ingredients for getting an
RN (w) which is a rational function of w = cd(uK , k).

cd
(N

u
K

1
,k

1
)

4/N = 1
3/N2/N

Re(u)
1/N0

0

Im(u)

K/K

0

1/ k1

− 1/ k1

Fig. 8.63 The elliptic rational function for N = 4 and k = 0.5, drawn in 3-D above the complex u-
plane. The gray segments on the plot floor describe the path followed in the u-plane, and correspond
to the passband, the transition band and the stopband of the elliptic filter. The two circles mark the
points at which the functions goes to infinity, while the two diamonds mark the points at which the
function vanishes
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Figure 8.62b also illustrates, for N = 4, how the poles and zeros and the character-
istic values of RN (w) = cd (u1 K1, k1) are distributed with respect to the fundamental
rectangle of cd(uK , k). A three-dimensional view of RN (w) in the u-plane for N = 4
is shown in Fig. 8.63, for k = 0.5. The gray segments on the plot floor describe the
path followed in the u-plane, and correspond to the passband, the transition band and
the stopband of the elliptic filter. The two circles mark the points at which the func-
tions goes to infinity, while the two diamonds mark the points at which the function
vanishes.

The w-values corresponding to the zeros and poles of RN (w) for N = 4, visible
in Figs. 8.62b and 8.63, correspond to the following values of w:

w ≡ ζ0 = cd(K/N , k) = sn

(
N − 1

N
K , k

)
(a zero),

w ≡ ζ1 = cd

(
N − 1

N
K , k

)
= sn(K/N , k) (another zero),

w ≡ π0 = cd(K/N + jK ′, k) = 1

k cd(K/N , k)
(a pole),

w ≡ π1 = cd

(
N − 1

N
K + jK ′, k

)
= 1

k cd
(

N−1
N K , k

) = 1

k sn(K/N , k)
(another pole),

where we adopted the symbols ζl and πl , with i = 0 or 1, to indicate zeros and poles,
respectively. In Fig. 8.63, these points are distinguished by different markers:

• ζ0 (Re(u) = 1/4, Im(u) = 0) is symbolized by a black diamond;
• ζ1 (Re(u) = 3/4, Im(u) = 0) is symbolized by an empty diamond;
• π0 (Re(u) = 1/4, Im(u) = jK/K ′) is symbolized by a gray circle;
• π1 (Re(u) = 3/4, Im(u) = jK/K ′) is symbolyzed by a gray empty circle.

Note that these values are exclusively determined by k and N .
The general formulas for the zeros and the poles of RN (w) are found as follows.

• To find the zeros, we impose RN (w) = cd(NuK1, k1) = 0 and get

Nul K1 = (2l + 1)K1,

with

ul = 2l + 1

N
, l = 0, 1, . . . L − 1, L = N − r

2
, r = N mod 2.

Therefore
ζl = cd(ul K , k), l = 0, 1, . . . L − 1.

• To find the poles πl , we can use the inversion relation, RN (w−1k−1) = 1/

[k1 RN (w)], from which we deduce
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(a)

(b)

Fig. 8.64 Overall view of the elliptic rational function RN (w) for a N = 7 and b N = 4, and for
the indicated values of k and k1. In both panels, horizontal solid lines mark ordinates equal to ±k−1

1 ,
while vertical dotted and solid lines indicate the abscissas w = 1 and w = k−1, respectively (see
text)

πl = 1

kζl
.

All the zeros of RN (w) fall in the filter’s passband; all the poles fall in the stopband.
Note that in the case of N = 4, L = 2, so that l assumes only the values 0 and 1
and we only have u0 = 1/N and u1 = 3/N = (N − 1)/N . We thus find exactly the
u-values of the example of Fig. 8.63.

We therefore have N/2 zeros and poles of RN (w) for even N and (N − 1)/2
zeros and poles for odd N at finite distance from the origin; for odd N , an additional
pole is present at w → ∞, and an additional zero is present at w = 0, as can be seen
observing Fig. 8.62a, which is relative to N = 3.

The rational function RN (w) is illustrated in Figs. 8.64 and 8.65, for N = 7 and
8 and k = 0.96. Note that when N changes, k being equal, in agreement with the
degree equation, k1 also changes. These moduli are involved in the calculation of the
values of RN (w), even if they do not appear explicitly in the function’s name.

Figure 8.64a, b shows the function for N = 7 and 8, respectively. The adopted
values of k and k1 are displayed. Only positive values of w are included in these
plots; for negative w the function repeats itself symmetrically or antisymmetrically,
according to N being even or odd. Horizontal solid lines mark ordinates equal to
±k−1

1 , which identify a belt in which no values of RN (w) are found for w > k−1
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(a) (b)

(c) (d)

(e) (f)

Fig. 8.65 Detailed behavior of the elliptic rational function RN (w) for N = 7 and 8 and for the
indicated values of k and k1: close-ups of a, b RN (w) in the passband of the corresponding elliptic
filter, c, d RN (w) in the transition band, and e, f 1/RN (w) in the stopband. Horizontal solid lines
in panels c, d mark the ordinate k−1

1 . In panels c–f, vertical solid lines correspond to w = k−1;
horizontal solid lines mark the ordinates k−1

1 (panels c, d) and ±k1 (panels e, f ; see text)

(stopband of the elliptic filter); the function assumes the value 1 at w = 1 (vertical
dotted line) and the value k−1

1 at w = k−1 (vertical solid line). Expanded views of
the function are given by Fig. 8.65a, b, for N = 7 and 8, respectively:

• Figure 8.65a shows RN (w) for N = 7 and w comprised between 0 and 1 (vertical
dotted lines), i.e., in the passband of the corresponding elliptic filter;

• Figure 8.65b shows the same for N = 8;
• Figure 8.65c shows RN (w) for N = 7 and w comprised between 1 (vertical dotted

line) and k−1 (vertical solid line), i.e., in the transition band of the elliptic filter;
the horizontal solid line marks the ordinate k−1

1 , which is the value assumed by
RN (w) for w = k−1; moreover the function assumes the value 1 at w = 1;

• Figure 8.65d shows the same for N = 8;
• Figure 8.65e shows 1/RN (w) for N = 7 and w > k−1 (vertical solid line), i.e., in

the filter’s stopband; horizontal solid lines mark the ordinates ±k1, identifying a
belt inside which 1/RN (w) is contained when w > k−1;

• Figure 8.65f shows the same for N = 9.
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(a)

(b)

(c)

Fig. 8.66 The elliptic rational function in the range w = [−1, 1], for a different values of N from
3 to 8, and k = 0.96; b different values of k, and N = 7; c different values of k, and N = 8

Figure 8.64 illustrates how, as we learned in the foregoing discussion, the function
exhibits an increasing number of poles and zeros, as N increases; Fig. 8.65 shows
that the function is, as anticipated,

• equiripple and such that −1 ≤ RN (w) ≤ 1 in the range 0 ≤ w ≤ 1 (filter pass-
band),

• monotonically increasing in the interval 1 ≤ RN (w) ≤ k−1
1 for 1 ≤ w ≤ k−1 (tran-

sition band),
• characterized by an equiripple inverse 1/RN (w), with |1/RN (w)| ≤ k1, in the range

k−1 ≤ w < ∞.

The symmetry/antisymmetry of the function around w = 0, according to N being
even or odd, is illustrated by Fig. 8.66a that shows, for N = 3 to 8 and in the range
w = [−1, 1], the dependence of RN (w) on N at fixed k = 0.96. Figure 8.66b, c
illustrate instead the dependence of RN (w) on k at fixed N over the same w range;
considered values of N are 7 (Fig. 8.66b) and 8 (Fig. 8.66c).

Having thus found the expressions of the zeros and poles of the rational elliptic
function, we can finally build RN (w) as a rational function from its zeros and poles,
obtaining the factorized form already encountered in Sect. 8.6:

RN (w) = Cwr
L−1∏

l=0

w2 − ζ 2
l

w2 − π2
l

= wr
L−1∏

l=0

(
w2 − ζ 2

l

) (
1 − k2ζ 2

l

)
(
1 − w2k2ζ 2

l

) (
1 − ζ 2

l

) ,
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where

C =
L−1∏

l=0

1 − π2
l

1 − ζ 2
l

=
L−1∏

l=0

1 − 1/(k2ζ 2
l )

1 − ζ 2
l

is a normalization constant chosen so as to have RN (w) = 1 for w = 1. Through
this factorized form, the solution of the degree equation for the elliptic filter can be
derived, which gives k1 in terms of N and k, or k in terms of N and K1. In this way
a formula becomes available to re-evaluate, for example, k1 from N and k, when in
elliptic design N is rounded up to the nearest higher integer (Orfanidis 2006). To
this purpose, the inversion relation at w = 0, RN (k−1) = k−1

1 , is used. The factorized
form of RN (w) with w = k−1 is then written, and a property of the sn function,

sn2(ul K , k) = 1 − ζ 2
l

1 − k2ζ 2
l

,

is exploited. The so-called modular equation for k1 is thus obtained,

k1 = k N
L−1∏

l=0

sn4(ul K , k).

Moreover, the fact that the degree equation is invariant with respect to the substitution
k → k ′

1, k1 → k ′ can be exploited. This invariance is shown by the fact that with
such a substitution, the formula N K ′/K = K ′

1/K1 becomes N K1/K ′
1 = K/K ′, i.e.,

N K ′/K = K ′
1/K1 as before. Due to the degree-equation invariance, the modular

equation found for k1 also serves to write k in terms of k1 and N , through the
complementary moduli:

1 − k = k ′ = (k ′
1

)N
L−1∏

l=0

sn4(ul K
′
1, k1).

This equation is known as the modular equation for k.
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Chapter 9
Statistical Approach to Signal Analysis

9.1 Chapter Summary

So far we have considered deterministic signals, for which each sample is univocally
determined by a mathematical function or by some rule, so that past and present
values of the signal are perfectly known and future values are exactly predictable. In
reality, however, we often analyze sequences that derive from periodically repeated
measurements of some quantity—e.g., temperature, gross domestic product, voltage
at an EEG electrode—performed during a finite time interval, and we are interested
in the characteristic of the quantity, rather than in those of the particular discrete-
time signal we measured. In fact, the ultimate subject of the investigation is the
process that generates the measured values: for example, we typically may want to
get information about its spectral features. The generating process may, in general,
depend on time.

We must keep in mind that the generating process may have—and usually does
have—a temporal persistence that goes beyond the finite time limits of our mea-
surements. From a theoretical point of view, the process is an infinitely-long signal,
typically an analog signal, of which we can measure only a finite number of samples
over a finite time span. We must also consider that even if we were measuring an
intrinsically deterministic process, any measurement would be affected by random
fluctuations/errors. The resulting discrete-time signal should thus be interpreted as
the superposition of a deterministic signal and a random signal. Most times, any-
way, the process that generates the measured quantity is so complicated that we do
not know it enough to be able to express it in deterministic terms, i.e., through a
well-defined rule or formula; and even if we were able to do so, the deterministic
description would be too complicated to be of practical use.

On the other hand, processing and analyzing a signal requires a mathematical
description of the signal—a mathematical model. In the present case, a statistical-
probabilistic model is adopted: a record of measurements is classified as a discrete-
time random signal, or process, derived by the sampling of some analog random
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signal, or process. Note that the words signal and process in this sense are used
interchangeably, even if strictly speaking, the process generates the signal. The value
of any random signal is not exactly specified at a given past or current instant, and
future values are not predictable with certainty on the basis of past behavior. In other
words, the sequencewe are analyzingwould not be exactly reproducible by repeating
the set of measurement (Blackman and Tukey 1958; Hannan 1960).

This chapter provides a brief introduction to the basic theory of discrete-time
random processes.

A discrete-time random process is represented as an indexed sequence of random
variables, with the index representing discrete time, to allow for time dependence.
Each random variable at some given time n can be described by theoretical average
quantities, like themean, the variance, and the autocorrelation/autocovariance. These
are called ensemble averages, because the averaging is performed over the infinite
number of values that in principle could be the outcome of a measurement performed
at time n. To compute these theoretical averages, we should specify the probabilistic
laws characterizing the random variable. Since these laws are unknown in most
cases, the problem is simplified assuming for the random process both stationarity,
i.e., no dependence on time, and ergodicity, a property that allows for substituting
ensemble averages with other quantities: time averages that can be calculated even
if only a single infinite-length sequence derived from the process is—in principle—
accessible. These time averages are then estimated in practice from a finite-length
data record. Amore detailed treatment of these topics may be found in Hayes (1996).

A discrete-time random signal of infinite length has infinite energy and there-
fore does not allow for a DTFT representation. However, it can be a power signal,
with finite-energy autocorrelation/autocovariance. TheDTFT of autocovariance then
provides a spectral representation of the discrete-time random power signal. This
representation is the power spectrum, introduced at the end of the chapter. Also the
representation of the common spectral content of two random signals and of the
phase relations of the respective frequency components is briefly discussed. This
representation is the cross-power spectrum.

9.2 Preliminary Considerations

A sequence x[n] made of measurements of a quantity, performed at different times
n for a finite time duration (n = [0, N − 1]), stems from an infinitely-long random
process (Fig. 9.1). The latter is typically a continuous-time, i.e., analog, process, even
if it could be intrinsically discrete-time as well. Unless stated otherwise, hereafter
we will assume that the original process is continuous-time.

An analog random process generates an infinitely-long analog random signal, i.e.,
some persistent andmeasurable continuous-time random quantity, the characteristics
of which, in general, vary with time. In essence, this signal is the random process.

Due to its nature, when measurements are performed, this analog random sig-
nal can realize itself into an infinite number of different infinitely-long sequences,
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Fig. 9.1 The relation between a random process and the sequence x[n], n = [0, N − 1] collecting
the results of its repeated measurements. Based on x[n] we seek information about the generating
random process

referred to as sample sequences or realizations of the process. This means that if
we were able to measure the random quantity over an infinite time duration, and
were able to perform the measurement process an infinite number of times (imagine
an infinite number of experimenters simultaneously measuring the same quantity,
each experimenter being able to work for an infinite amount of time), we would
obtain an infinite number of different infinitely-long sequences. The infinite set of
realizations, i.e., the collection of all sample sequences that can be realizations of
the given process, is referred to as the ensemble of sample sequences (ensemble of
realizations). This ensemble represents a discrete-time random signal, or process. It
is characterized by some probability laws and is statistically representable in terms
of average properties; the averages, as well as the probability laws, may depend on
time, as a consequence of the dependence on time of the original analog random
process. The averages at time n can—unlike the individual values measured at time
n—be reproducible (meaning that two different experimenters would find the same
averages), and therefore meaningful.

In reality, we can perform measurements only over a finite time span, and we will
assume we do so once: the single finite-length sequence we obtain is then a segment
of one of the infinite, infinitely-long possible realizations of the process. We will
call it a segment of a sample sequence. Our goal is to extract from this segment
reliable information about the discrete-time random signal, which we assume to
faithfully represent the original analog signal. In other words, we assume that any
sampling process performed in the frame described above gives a frequency-aliasing-
free result, since it meets Nyquist’s criterion.

Herewemust underline the fact that the discussion on frequency aliasingwemade
about deterministic signals applies to randompower signals aswell.More precisely, it
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applies to their power spectrum, i.e., the quantity that replaces that “energy spectrum”
we introduced for finite-energy deterministic signals.1

The sectors of mathematics involved in this approach to signal analysis are:

• probability theory, that deals with the probability with which the various possible
outcomes of themeasurement of a random signal, performed at some time n, occur;

• statistics, that summarizes the effective outcomes through the definition of average
quantities. Statistics deals with the properties of populations rather than individu-
als. In this case, an individual is the result of a single measurement performed at
time n, while a population is the set of all possible outcomes of this measurement
operation performed at time n.

Our present goal is to extend to discrete-time random signals the description in
the frequency domain that we introduced for discrete-time deterministic signals.
That description was based on the z-transform and on the DTFT of the sequence
x[n]. However, we know that for the DTFT of x[n] to exist, the sequence must have
finite energy; or it can be a periodic sequence x[n], for which the DTFT exists in
the sense of distributions. The process realizations that we called sample sequences,
from which we extract a finite-length random record, do not, in general, have finite
energy, nor are they periodic—typically they are aperiodic power signals. How can
we give a spectral representation of these signals?

Manyproperties of a discrete-time randompower signalmaybe expressed through
a related signal, namely one of its characteristic average quantities: its autocorrela-
tion/autocovariance sequence. Under some conditions that will be discussed later,
this sequence has finite energy, and therefore allows for a DTFT representation. This
representation has an interesting interpretation in terms of the frequency distribution
of the average power in the random signal—energy per unit of discrete time—and
leads to the notion of power spectrum of the random signal. The power spectrum is
the desired spectral representation, and is also useful to describe the transformation
operated by a discrete-time LTI system on random power signals.

9.3 Random Variables

The statistical-probabilistic description of discrete-time random signals requires
introducing quantitatively the concept of the random variable, with which a con-
tinuous probabilistic variable is associated, which is called the probability density
function (see, e.g., Helstrom 1991).

Let us suppose that a given experiment, i.e., a measurement of a random signal
performed at the discrete time n, can a priori give any result among those contained

1In particular, most often the noise superposed to the useful signal will be a wideband process: its
spectral bandwidth will be larger than the signal bandwidth. If we choose the sampling interval on
the basis of the bandlimit that the useful signal is supposed to have, then we may get aliasing of
the noise component, which can corrupt the spectrum at all frequencies—not only in the vicinity
of the Nyquist frequency. Of course, this issue becomes irrelevant if we are in a position to apply
an anti-aliasing filter before sampling, since then also the noise bandwidth becomes limited.
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inside a certain interval of permitted values. The result we effectively obtain from
the measurement is the precise value xn assumed in that particular experiment by the
random variable xn , representing the time-dependent random process as it behaves at
time n. The quantity xn is a single value extracted at random from the population of
the possible values of xn . We will assume that, at any instant n, these possible values
cover a continuous range spanning the whole real axis; the corresponding variable
will be indicated by Xn ∈ (−∞,+∞). This is not particularly restrictive.2

The random variable xn is associated with some probability law: not all mea-
surement outcomes are equally probable. This probability law is described by the
probability density function pxn (xn, n). Loosely speaking, the probability density
function describes the relative likelihood for the random variable xn related to time
n to take on a given value xn . The probability density function is non-negative every-
where, and its integral over the entire range of admitted values equals one.

The probability of the random variable to take on a value fallingwithin a particular
range is given by the integral of the probability density function over that range—it is
given by the area under curve representing the probability density function, between
the lowest and highest range bounds. We can thus introduce the probability distri-
bution function Pxn (xn, n), which expresses the probability that the measurement
outcome is ≤ xn , i.e., it is contained in (−∞, xn]:

Pxn (xn, n) =
∫ xn

−∞
pxn (Xn, n)dXn .

We can imagine to hypothetically repeat our experiment at an infinite num-
ber of time instants n and form with the outcomes xn the sequence3 x[n], with
n = (−∞,+∞). Each sequence element is a particular value taken on, inside the
continuous range of possible values, by the random variable xn involved in the n-th
experiment: x[n] ≡ xn . Now, let us consider two measurement experiments per-
formed at different times n and m. The mutual dependence of the corresponding
random variables xn and xm is described by the joint probability density function,
denoted as pxn , xm (xn, n, xm, m).

The time-ordered set {xn} of the random variables for n = (−∞,+∞), together
with their complete probabilistic description, including all simple and joint proba-
bility laws, quantitatively defines a random process, also referred to as a stochastic
process.4

2Note that if we assume for simplicity that the population of possible values is the same at any time
n, as we actually did, we could drop the n index and simply write X. However, we will not drop the
index n, because later this might generate confusion.
3From now on, and until the end of the next chapter, we will indicate the sequences composed by
measurement outcomes by x[n], rather than by x[n], to avoid confusing themwith random variables,
for which we adopted the symbol xn .
4Stochastic comes from the Greek word στ óχoς , which means “aim”. It also denotes a target stick;
the pattern of arrows around a target stick stuck in a hillside is representative of what “stochastic”
means.
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Applying the random-process model to practical signal processing implies that
the particular sequence we want to analyze, x[n] with n = [0, N − 1], is interpreted
as a segment of one of the members of the ensemble of sample sequences of the
underlying random process. A complete probabilistic characterization of the process
would require specifying all possible simple and joint probability density functions,
i.e., all pxn and pxn , xm . However, probability laws are normally unknown and the
analysis focuses on the attempt to estimate some process properties on the basis of
a finite-length segment of a typical sample sequence (see, eg., Hayes 1996; Proakis
andManolakis 1996). In the following discussion wewill define the conditions under
which these estimates can reliably be obtained.

This approach to signal processing is often referred to as statistical signal process-
ing (Gray and Davisson 2004; Kay 1993; Scharf and Demeure 1991).

9.4 Ensemble Averages

Statistical averages relevant to component variables xn of a random process are
referred to as ensemble averages, in the sense that they are obtained averaging over
the ensemble of sample sequences. For example, the average value, or mean value,
or simply the mean of a random process is defined as

mxn = E[xn] =
∫ +∞

−∞
Xn pxn (Xn, n)dXn .

This is the firstmoment of the process, and in general depends on n. In this formula, E
indicates the linear operator of ensemble average. The concept of ensemble average
is illustrated in Fig. 9.2.

The mean is also referred to as the expected value of the random variable, or
the expectation relative to the random variable. The meaning of expected values
becomes clear if we compare once again deterministic and stochastic processes.
While a deterministic process implies

• precise relation between causes and effects,
• repeatability (reproducibility),
• predictability,

a random process is such that

• the relation between causes and effects is not given in a mathematical sense,
• there is a “stochastic regularity” among the different observations, but
• this regularity can be observed only if a large number of observations is carried
out, such that the expectations of the involved variables can be inferred.

Moments of higher order are also defined, bymeans of the same ensemble average
operator. Amoment of given order k > 0may be computed applying E directly to the
k-th power of xn , or applying E to the k-th power of the deviation of xn from themean.
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Fig. 9.2 A scheme depicting the framework in which ensemble averages are calculated

In the latter case, the moment is called a central moment. The most important central
moment is the second, i.e., the variance; the corresponding non-central moment is
the square mean or mean square value. In formulas:

E[x2
n ] =

∫ +∞

−∞
X2

n pxn (Xn, n)dXn,

σ 2
xn

= E[(xn − mxn )
2] = E[x2

n ] − 2E[xn]mxn + m2
xn

= E[x2
n ] − m2

xn
.

Taking the cube of xn or xn − mxn , instead than the square, third-order moments can
be defined, etc. These higher-order moments are used less often than the mean and
the variance. If pxn is symmetric about the mean value, like a Gaussian function,
all odd-order central moments vanish. Intuitively, we may thus understand that they
give indications about the asymmetry of pxn . Moreover, as the order increases, the
influence on a given central moment of the values that are far from the mean grows.
All these moments, in general, depend on the time index n and can be computed only
knowing pxn . In all cases of practical interest in this book, they are finite quantities.

Another important average can be calculated only if we know pxn , xm . This is the
two-dimensional autocorrelation sequence that for real data is defined as

φxx [n, m] = E[xn xm] =
∫ +∞

−∞

∫ +∞

−∞
XnXm pxn , xm (Xn, n,Xm, m)dXndXn.
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In addition to the autocorrelation sequence, one can consider the two-dimensional
autocovariance sequence, defined as5

γxx [n, m] = E[(xn − mxn )(xm − mxm )] = φxx [n, m] − mxn mxm .

The reader should be aware that the terms autocorrelation and autocovariance cor-
respond to different definitions in different fields. In some scientific sectors, the
two terms are considered as synonyms. We must therefore stress the fact that in
the present discussion, autocorrelation is defined using xn xm , while autocovariance
is defined considering (xn − mxn )(xm − mxm ): autocorrelation and autocovariance
coincide if, and only if, the mean values mxn and mxm vanish. Also, let us stress the
we are considering real random signals. In the general case of complex signals the
above definitions must be written as

E[|xn |2] =
∫ +∞
−∞

|Xn |2 pxn (Xn, n)dXn,

σ 2
xn

= E[∣∣xn − mxn

∣∣2] = E[|xn |2 − 2E[xn]mxn + ∣∣mxn

∣∣2 = E[|xn |2] − ∣∣mxn

∣∣2 ,

φxx [n, m] = E[xn x∗
m ],

etc. For example, we must use these more general definitions for complex exponen-
tials with random features (see Sect. 9.7).

Both autocorrelation and autocovariance measure the mutual dependence among
the values of a random process at different times, and in a sense describe the memory
of the process. If

φxx [n, m] = E[xn xm] = E[xn]E[xm] = mxn mxm ,

then the variables xn and xm are said to be uncorrelated or linearly independent.
Linear independence is a different condition from statistical independence, which
implies

Pxn ,xm (xn, n, xm, m) = Pxn (xn, n)Pxm (xm, m).

Statistical independence means that two random variables convey no information
about each other and, as a consequence, receiving information about one of the two
does not change our assessment of the probability distribution of the other. It is a
stronger constraint that implies linear independence; the contrary is not necessarily
true.

5We must observe, recalling the general discussion on vector spaces reported in the appendix of
Chap. 3, that the autocovariance between the real random variables xn and xm associated with times
m and n can be seen as an inner product:

〈
(xn − mxn ), (xm − mxm )

〉
. This inner product actually

involves the ensemble average operator, as we anticipated in Sect. 3.8.2. The Fourier representation
of the random process {xn}, which later will be attained using autocovariance, is thus based on a
definition of inner product that is not the standard one.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
http://dx.doi.org/10.1007/978-3-319-25468-5_3
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9.5 Stationary Random Processes and Signals

The model described above is quite complex. A simplification of the problem occurs
when probability density functions are invariant with respect to a translation of the
timeorigin, i.e., theydonot dependonn. This is the case of stationary random signals.
The moments become constant and are denoted simply by mx , σ 2

x , E[x2], and so on.
The joint probability density function now depends only on the time difference,
also called lag, l = n − m, and therefore φxx and γxx become monodimensional
sequences:

φxx [n, n − l] = φxx [l] = E[xn xn−l],
γxx [n, n − l] = γxx [l] = E[(xn − mx )(xn−l − mx)].

This suggests the introduction of a less stringent formof stationarity that is very useful
in practice. Very often we are faced with random process that are not stationary in
the strict sense defined above—or at least we cannot know if they are truly stationary
or not, since we do not know their probability laws—but are stationary in a wide
sense or weakly stationary, meaning that mean and variance, which are assumed to
be finite, are constant, and both autocorrelation and autocovariance are functions of
lag only. From now on, we will abbreviate the expressions “wide sense stationary”
and “wide sense stationarity” by the acronym WSS.

An example of a WSS process is white noise, a random process in which all xn

are linearly independent. This means that even if we know a white-noise sequence
up to the (n − 1)-th sample, based on these past data we have no clue about the n-th
sample. For this process, the variance is finite, and a zero mean is normally assumed
(mx = 0), so that autocorrelation and autocovariance coincide and are given by

γxx [l] = E[xn xn−l ] =
{
E[x2

n ] = σ 2
x for l = 0,

E[xn]E[xn−l] = m2
x = 0 for l �= 0.

The second equation derives from the fact that E[xn] and E[xn−l ] are both equal to
mx for a stationary process. In a single formula, we can write

γxx [l] = σ 2
x δ[l].

Let us now mention some general properties of the autocorrelation and autoco-
variance sequences of a real stationary random signal.

• γxx [l] = φxx [l] − m2
x : for a signal with zero mean, also called a centered signal,

autocorrelation and autocovariance are coincident;
• φxx [0] is equal to the mean square value E[x2

n ];
• γxx [0] is equal to E[(xn − mx )

2] = σ 2
x : the variance of a process equals its auto-

covariance at zero lag;
• φxx [l] = φxx [−l] and γxx [l] = γxx [−l]: autocorrelation/autocovariance is an even
function of lag;
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• |φxx [l]| ≤ φxx [0] and |γxx [l]| ≤ γxx [0]: autocorrelation/autocovariance is maxi-
mum at zero lag;

• if yn = xn−n0 , then φyy[l] = φxx [l] and φyy[l] = φxx [l]: a time shift of the signal
does not affect its autocorrelation/autocovariance.

Autocovariance is of particular interest for our purposes, because it acts as the inter-
mediary between a WSS random process and its spectral representation, which is
referred to as the power spectral density (PSD), or power spectrum. The autoco-
variance sequence can be standardized dividing it by the variance of the process.
In this way it becomes the autocorrelation coefficient sequence, a.k.a. standardized
autocovariance:

ρxx [l] = E[xn xn−l ]
E[x2

n ] = γxx [l]
σ 2

x

.

This quantity varies in the range [−1, 1].
When two different WSS random processes {xn} and {yn} are considered, auto-

correlation is replaced by cross-correlation and autocovariance is replaced by cross-
covariance: for real signals6

φxy[n, n − l] = E[xn yn−l ],
γxy[n, n − l] = E[(xn − mx)(yn−l − my)].

In this frame it is useful to introduce the notion of jointly wide-sense stationarity.
Two random processes are called jointly WSS if they are individually WSS, and if
their cross-correlation and cross-covariance depend only on the lag:

φxy[n, n − l] = φxy[l],
γxy[n, n − l] = γxy[l].

This sequence is often standardized to become the cross-correlation coefficient
sequence, a.k.a. standardized cross-covariance:

ρxy[l] = E[xn yn−l ]√
E[x2

n ]E[y2n ] = γxy[l]
σxσy

.

As an example of jointly WSS processes, we may mention the input and out-
put of an LTI system, when the input is WSS. Cross-covariance is the basis of a
representation of the common spectral content of two jointly WSS random series
and of the phase relations of the respective frequency components, which is referred
to as the cross-power spectral density (CPSD), or cross-power spectrum, or simply
cross-spectrum.

6For complex signals we would write φxy[n, n − l] = E[xn y∗
n−l ], etc.
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9.6 Ergodicity

Ensemble averages are mathematical entities that in practice must be substituted by
other averageswe can compute even ifwe do not know the probability laws governing
the process. We may think of calculating time averages, like

• the temporal mean of a random signal,

xn = lim
N→∞

1

2N + 1

+N∑

n=−N

xn,

and, after reducing the signal to zero mean by subtracting 〈xn〉 from each xn ,
• the temporal autocorrelation/autocovariance sequence

xn xn−l = lim
N→∞

1

2N + 1

+N∑

n=−N

xn xn−l .

It can be shown that if {xn} is a WSS random process with finite mean, these limits
exist. These averages, being functions of an infinite collection of random variables,
are random variables as well. However, under a condition known as ergodicity, tem-
poral averages are constant and are equal to the corresponding ensemble averages.
More precisely, the random variables xn and xn xn−l have mean values equal to mx

andφxx [l] respectively, and their variances vanish. In practical applications, normally
it is assumed as a working hypothesis that if a sequence belongs to a WSS process,
then that process is also ergodic.

The conditions under which a stationary process is ergodic are involute and diffi-
cult to apply in practice. The reader interested in amoderatelymathematical treatment
of ergodicity may consult Hayes (1996). Ergodicity implies that a single part of a
sample sequence, provided it is long enough, contains all possible values of the sig-
nal, with frequencies of occurrence matching the probability laws that characterize
the ensemble of sample sequences and the process itself. Intuitively, for a stationary
signal to be ergodic, the statistical dependence between two temporal segments of the
process that are separated by some lapse of time must tend to zero rapidly enough,
as the time separation increases. We can expect it will be so, provided we remove
from the signal the constant component by centering the signal, and we also remove
any constant-slope trends and periodic components known a priori, such as daily
oscillations in temperature series, seasonal cycles, etc. For a Gaussian process, in
which the variables xn take on values distributed according to a Gaussian probability
density function, it can be shown that the only obstacle to ergodicity is the presence
of a deterministic component with a line spectrum, as in the examples mentioned
above. If the deterministic component is subtracted, ergodicity can be assumed, and a
posteriori, the quality of this assumption can supported by the fact that a continuous
spectrum is actually observed. Here we are using the word “spectrum” in a wide
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sense, since we have not explained yet how a quantitative spectral representation of
a WSS random signal can be obtained.

Wemust remark that the time averages introduced above still cannot be computed
in reality, since no measurements can be performed for an infinite amount of time. In
practice, we will be able to compute estimates of the mean and of the AC, based on
a finite-length data record. We will deal with this issue in Sect. 9.10.3. The shorter
the data segment we possess, the larger the estimation error we get. The need for a
large N is often in conflict with the requirement of stationarity: we cannot assume
stationarity if the record duration is larger than the typical time-scale over which the
statistics of the signal varies significantly.

9.7 Wiener-Khinchin Theorem for Random Signals
and Power Spectrum

From now on, we will assume, unless stated otherwise, that we are dealing with a WSS
zero-mean random process—i.e., a centered process—for which autocorrelation and
autocovariance coincide, and will continue our discussion in terms of γxx [l]. This
assumption results in no loss of generality, since for any process that has non-zero
mean, a corresponding zero-mean process may always be formed by subtracting the
mean. We must recognize that strictly speaking, in order to center a WSS random
signal we should know the “true”meanmx , while the best we can do is to estimate the
mean in some way and then subtract it from the data. Nevertheless, we will make this
assumption. Autocorrelation/autocovariance can thus be meaningfully indicated by
the single acronym AC; the words “autocorrelation” and “autocovariance” become
synonyms.

The theoretical AC sequence γxx [l] allows, through its DTFT, to define an average
measure of the spectral properties of an ergodic WSS random signal. Indeed, this
sequence is aperiodic and often has finite energy, so that it allows for a z-transform
and a DTFT representation. This property derives from the fact that for ergodic
processes, the variables xn become less and less correlated as their time separation
increases, so that

lim
l→∞ γxx [l] = 0,

and this guarantees the existence of the z-transform of γxx [l], which we will denote
by Γxx (z). The series that defines Γxx (z) has an ROC characterized by

R < |z| <
1

R
, |R| < 1,

i.e., the upper radius of convergence is the inverse of the lower radius. The ROC
includes the unit circle because γxx [l] → 0 for l → ∞ (see the example shown
in Fig. 9.3). The upper and lower convergence radii are inversely related to one
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Fig. 9.3 An example of
region of convergence for
Γxx (z), the z-transform of
the theoretical AC sequence

another because γxx [l] is an even real sequence, so that Γxx (z) = Γxx (1/z). Another
consequence of this property is that the poles of Γxx (z) come in conjugate pairs.

The DTFT of γxx [l], i.e., Γxx (z)|z=ejω = Γxx (ejω), is the frequency representation
sought for the stationary ergodic random process. This is a real and even function of
ω: indeed, Γxx (ejω) = Γxx (e−jω), because γxx [l] is an even real function of lag.

From the expression of the inverse z-transform for n = 0, it can be shown that
since γxx [0] = σ 2

x , then

σ 2
x = 1

2π j

∮

C
Γxx (z)z

−1dz,

where C is a closed anticlockwise contour contained inside the ROC of Γxx (z).
Therefore on the unit circle of Fig. 9.3 (dash-dotted curve) we have

σ 2
x = 1

2π

∫ π

−π

Γxx (e
jω)dω = 1

2π

∫ π

−π

Pxx (e
jω)dω,

where we indicated by Pxx (ejω) = Γxx (ejω) the power spectral density (PSD) of the
random process. Colloquially, the PSD is called power spectrum, even if, strictly
speaking, the power spectrum is the plot of PSD versus frequency. This important
equation expresses the fact that up to a multiplicative constant 7 1/(2π), the variance
of a random process is given by the integral over frequency of its power spectrum.
In other words, the function

Pxx (e
jω) ≡ Γxx (e

jω) =
+∞∑

l=−∞
γxx [l]e−jωl ,

which is a real and even function of ω representing the distribution of variance over
frequency, is the DTFT of the AC sequence γxx [l]. This statement is the conceptual
content of the Wiener-Khinchin theorem for random power signals that are weekly
stationary and ergodic.

7The factor 1/(2π) derives from using ω as the frequency variable.
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When, as we assumed, the signal has zero mean, σ 2
x = E[x2

n ] represents the finite
average power of the signal, i.e., the average of the energy computed over a unit
discrete-time interval. We thus see that the area under the curve Pxx (ejω) gives the
average power, and Pxx (ejω) represents the frequency distribution of this average
power: this is why Pxx (ejω) is referred to as the “power spectrum” of the signal.
Note also that the only difference between the Wiener-Khinchin definition of power
spectrum given in Sect. 5.7.2 for deterministic power signals and the present one
concerning random power signals lies in the definition of the AC sequence, which
in the random-signal case includes an expectation operation.

The reality of the power spectrum suggests to simply write Pxx (ω) rather than
Pxx (ejω); we will do so from now on.

Note that Pxx (ω) is a theoretical quantity that in practice must be substituted by
a proper estimate. The estimate must be defined in such a way that we are able to
compute it even if we only possess a finite-length data record representing a segment
of a typical sample sequence. We will tackle this issue later.

A second definition of power spectrum can be given:

Pxx (ω) = lim
N→∞E

⎡

⎣ 1

N

∣∣∣∣∣

N−1∑

n=0

xne
−jωn

∣∣∣∣∣

2
⎤

⎦ ,

which is equivalent to the first one, under the mild assumption that the AC theoretical
sequence decays sufficiently rapidly, so that

lim
N→∞

1

N

N−1∑

l=−(N−1)

|l| |γxx [l]| = 0.

The equivalence of the two definitions can be verified as follows (Stoica and Moses
2005):

lim
N→∞E

⎡

⎢⎣
1

N

∣∣∣∣∣∣

N−1∑

n=0

xne
−jωn

∣∣∣∣∣∣

2
⎤

⎥⎦ = lim
N→∞

⎡

⎣ 1

N

N−1∑

m=0

N−1∑

i=0

E
{

xm x∗
i
}
e−jω(m−i)

⎤

⎦ =

= lim
N→∞

1

N

N−1∑

l=−(N−1)

(N − |l|) γxx [l]e−jωl =

=
∞∑

l=−∞
γxx [l]e−jωl − lim

N→∞
1

N

N−1∑

l=−(N−1)

|l| γxx [l]e−jωl = Pxx (ω),

http://dx.doi.org/10.1007/978-3-319-25468-5_5
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where we used a well-known summation formula:

N−1∑

m=0

N−1∑

i=0

f [m − i] =
N−1∑

l=−(N−1)

(N − |l|) f [l],

f (·) being an arbitrary sequence, and for generality assumed a complex set of random
variables {xn}. The above definition of Pxx (ω) resembles the definition of energy
spectral density of the deterministic case. The main differences between the two
formulas are the appearance of the expectation operator in the random-signal case,
and the normalization factor 1/N .

To present a first example of a theoretical power spectrum,we can consider awhite
noise signal. As mentioned above, white noise is a stationary signal or process that
from the statistical point of view is made up of variables xn that are uncorrelated,
with zero mean and finite variance. Stationarity requires all xn to have the same
probability distribution. Since white noise is defined only in terms of its AC, γxx [l] =
σ 2

x δ[l], an infinite variety of white-noise random processes exist: being stationary
and uncorrelated in time does not restrict the values that a signal can assume. Any
distribution of values is possible, provided that the mean value is zero. If samples
have a normal distribution, the signal is said to be Gaussian white noise. Gaussian
white noise is a good approximation of many real-world situations. But even a binary
signal, which can only take on the values +1 or −1, will be white if the sequence
values are statistically uncorrelated. We can find also uniformly distributed white
noise, Poisson-distributed white noise, etc.

For white noise we have γxx [l] = σ 2
x δ[l], and since the DTFT of δ[n] equals

1, Pxx (ω) = σ 2
x : white noise has a flat spectrum. It contains the same power at all

frequencies; no frequency is privileged. Actually, the word “white” refers to white
light, in which all colors are equally present.

Another important random signal that is found inmany applications is the random-
phase sinusoid, a real-valued signal defined as

xn = A sin (nω0 + ϑ) ,

where amplitude A and frequency ω0 are fixed constants and ϑ is a uniformly-
distributed random variable between 0 and 2π . The probability density function for
ϑ is

fϑ(Θ) =
{

1
2π for 0 ≤ Θ < 2π,

0 otherwise.

Observe that the presence of a random initial phase makes the sinusoid a random
signal. A deterministic sinusoid would have a deterministic phase linearly increasing
with n. The signal is stationary and its mean,

mx = E [xn] = E [A sin (nω0 + ϑ)] ,
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is

mx =
∫ ∞

−∞
A sin (nω0 + Θ) fϑ(Θ)dΘ = A

2π

∫ π

−π

sin (nω0 + Θ) dϑ = 0,

so the process has zeromean. TheACmay be determined in a similar fashion: writing

γxx [n, m] = E {xn xm} = E {A sin (nω0 + ϑ) A sin (mω0 + ϑ)}

and using the trigonometric identity 2 sin α sin β = cos(α −β)− cos(α +β) we get

γxx [n, m] = 1

2
A2E {cos[(n − m)ω0]} − 1

2
A2E {cos[(n + m)ω0 + 2ϑ]} .

The first term is the expected value of a deterministic quantity, and the expectation
sign does not affect a deterministic quantity; the second term is equal to zero, as we
can qualitatively understand by comparing it with the expression of mx . Therefore,
we have

γxx [n, m] = 1

2
A2 cos[(n − m)ω0] = 1

2
A2 cos[lω0] = γxx [l], with l = n − m.

So theAC is periodicwith the same frequency possessed by the sinusoid, and depends
only on lag l, thus ensuring the WSS nature of the process. The power spectrum is
then

Pxx (ω) =
+∞∑

l=−∞
γxx [l]e−jωl = 1

2
A2

+∞∑

l=−∞
cos[lω0]e−jωl .

Using Euler’s relation, we can write

Pxx (ω) = 1

4
A2

+∞∑

l=−∞

(
ejω0l + e−jω0l

)
e−jωl = π A2

2
[δ(ω − ω0) + δ(ω + ω0)] ,

where the DTFT relation ejω0l ⇐⇒ 2πδ(ω − ω0) has been used. Thus the process
has a line spectrum.

Similarly, we could treat the random-phase complex exponential signal

xn = Aej(nω0+ϑ),

which has zero mean as well, and has an AC sequence given by

γxx [n, m] = E
{

xn x∗
m

} = E
[
Aej(nω0+ϑ) Ae−j(mω0+ϑ)

] = A2ej(n−m)ω0 .
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This AC depends only on n − m: setting l = n − m we get

γxx [l] = A2ejlω0 ,

because ejlω0 is a deterministic term and the expectation operation applied to it leaves
it unaltered. Thus the process is WSS, and its power spectrum is

Pxx (ω) = 2π A2δ(ω − ω0).

We may note, incidentally, that defining the random-phase sinusoidal signal as

xn = A cos (nω0 + ϑ) = A

2

[
ej(nω0+ϑ) + e−j(nω0+ϑ)

]
,

which appears perfectly equivalent to using a sine function ifwe consider the presence
of the variable initial-phase term, the result concerning the random-phase complex
exponential signal immediately leads to the formula derived above:

Pxx (ω) = π A2

2
[δ(ω − ω0) + δ(ω + ω0)] .

Thus on the positive frequency half-axis, the theoretical spectral of a random-phase
sine or cosine with amplitude A and of a random-phase complex exponential with
amplitude A/2 are identical.

It can be shown (Hayes 1996) that if two or more processes are uncorrelated,
then the AC of their sum equals the sum of the respective ACs. Due to the linearity
of the Fourier transform, the power spectra are also additive. Thus a random-phase
sinusoidal or complex exponential signal with white noise e[n] added will have the
same power spectrum, augmented by a term equal to the variance σ 2

e of the additive
white noise. The possible presence in the signal of other sinusoids/complex exponen-
tials with different parameters would produce in the power spectrum additive terms
similar to the term produced by the single sinusoid/complex exponential considered
here. We will exploit this result in Sect. 10.3.3.

9.8 Cross-Power Spectrum of Two Random Signals

In addition to the spectral features of a single WSS random process, we may be
interested in the common spectral characteristics of two processes, {xn} and {yn},
which we will assume to be real, individually WSS and jointly stationary, ergodic,
andwith zeromean. For this purpose, wemay define the cross-power spectral density
of the two processes by transforming their cross-covariance. Actually, it is conve-
nient to start from the sequence of cross-correlation coefficients, also referred to

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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as normalized cross-covariance or standardized cross-covariance, between two real
random variables xn and yn:

ρxy[l] = E[xn yn−l ]√
E[x2

n ]E[y2n ] = γxy[l]
σxσy

.

Standardization cannot be avoided here, since in general we are comparing vari-
ables with different ranges of numerical values and different measurement units.8

Evidently, ρxy[l] = ρyx [−l]; moreover, most random processes wemay be interested
in are such that

lim
l→∞ ρxy[l] = 0,

so that the z-transform of ρxy[l] exists and converges on the unit circle, providing
the desired frequency representation of the cross-relation between the two random
variables xn and yn . This representation is the cross-power spectral density (CPSD)
or cross-power spectrum, often simply called cross-spectrum, even if the term “cross-
spectrum” should be reserved to the plot of CPSD versus frequency:

Pxy(e
jω) =

+∞∑

l=−∞
ρxy[l]e−jωl .

Since in general ρxy[l] is not an even sequence, the cross-spectrum is a complex
quantity that contains both amplitude and phase information:

• its modulus gives the magnitude cross-power spectrum, which informs about the
frequency distribution of the cross-covariance of the two signals;

• its phase gives the phase cross-power spectrum, which indicates whether a given
cyclicity at some frequency in one of the variables is in or out of phase with the
corresponding cyclicity in the second one. Obviously this information is meaning-
ful only at those frequencies at which the modulus of the cross-spectrum between
the two variables is substantial. Provided it is so, phase information is essential in
evaluating possible cause-effect relations between the two variables.

Often themagnitude squared coherence (MSC) is also defined, by taking the squared
modulus of the cross-power spectrum and dividing it by the PSDs of the individual
variables:

MSCxy(ω) =
∣∣Pxy(ejω)

∣∣2

Pxx (ω)Pyy(ω)
.

Its values are in the range from 0 to 1.

8If we considered the general case of complex sequences, the above formulawould become ρxy[l] =
E[xn y∗

n−l ]√
E[|xn |2]E[|yn |2] .
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These theoretical quantities must then be substituted with proper estimates. These
estimates must be defined in such a way that we are able to compute them even if
we only possess two finite-length data records x[n] and y[n], representing segments
of typical sample sequences of the two processes. We will do so later, and we will
assume that the available records have the same length N .

9.9 Effect of an LTI System on a Random Signal

The concepts of AC, power spectrum, cross covariance and cross-spectrum allow us
to describe the transformation that a random power signal undergoes when processed
by a discrete-time LTI system.

Here we need to recall some z-transform properties (see Sect. 3.2.5). Given a
sequence x[n] that we assume to be complex in general, and that has a transform
X(z), we have

x∗[n] ⇐⇒ X∗(z∗),
x[−n] ⇐⇒ X(1/z),

x∗[−n] ⇐⇒ X∗(1/z∗).

It is useful for future discussion to note that if the sequence

• is real, then
x[n] = x∗[n] ⇐⇒ X(z) = X∗(z∗);

• has even symmetry around the time origin, then

x[n] = x[−n] ⇐⇒ X(z) = X(1/z);

• is both real and even, then

x[n] = x∗[−n] ⇐⇒ X(z) = X∗(z∗) = X(1/z) = X∗(1/z∗).

Now, let us consider a stable discrete-time LTI system with impulse response
h[n], transfer function H(z) = ∑∞

n=−∞ h[n]z−n and frequency response H(ejω) =∑∞
n=−∞ h[n]ejωn . Here it is convenient for future use of the results to consider

a general complex system and feed it with a complex input sequence x[n] being
amplitude-bounded and representing a sample sequence of a discrete-time complex
WSS random process {xn} with zero mean. The output sequence,

y[n] =
+∞∑

k=−∞
h[n − k]x[k] =

+∞∑

k=−∞
h[k]x[n − k],

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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belongs to a complex stationary process {yn}. Indeed, the mean value of the system’s
output is

myn = E

{ +∞∑

k=−∞
h[k]x[n − k]

}
=

+∞∑

k=−∞
h[k]E {x[n − k]} = mx

+∞∑

k=−∞
h[k] = mx H(ej0),

i.e., a constant. Moreover, my = 0 for a centered input with mx = 0.
Now we compute γyx , γxy and γyy , as well as their z-transforms. Note that for

complex sequences we define autocovariance as

γxx [l] = E
{
x[n]x∗[n − l]} = γ ∗

xx [−l]

and cross-covariance as
γxy[l] = E

{
x[n]y∗[n − l]} .

1. The output-input cross-covariance is given by

γyx [l] = E
{
y[n]x∗[n − l]} = E

{( +∞∑

k=−∞
h[k]x[n − k]

)
x∗[n − l]

}

=
+∞∑

k=−∞
h[k]E {

x[n − k]x∗[n − l]} .

Letting m = n − k, hence n − l = m − (l − k), we get

γyx [l] =
+∞∑

k=−∞
h[k]E {

x[m]x∗[m − (l − k)]} =
+∞∑

k=−∞
h[k]γxx [l − k] = h[l] ∗ γxx [l] :

the output-input cross-covariance is equal to the convolution of the impulse
response with the input AC sequence.
Passing to the z-transform, and neglecting the issue of cross-covariance standard-
ization that in this case is unessential, we get

Γyx (z) ≡ Pyx (z) = H(z)Γxx (z) = H(z)Pxx (z) � Pyx (ejω) = H(ejω)Pxx (ω),

where we introduced the symbols Pxx (z) and Pyx (z) to represent power spectra in
the z-domain. Thus, the cross-spectrum between output and input is the product
of the input signal’s power spectrum with the filter’s frequency response.

2. The input-output cross-covariance is

γxy[l] = E
{
x[n]y∗[n − l]} = E

{
x[m + l]y∗[m]} = γ ∗

yx [−l]
= h∗[−l] ∗ γ ∗

xx [−l] = h∗[−l] ∗ γxx [l].
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Thus the input-output cross-covariance is equal to the convolution of the folded
complex conjugate of the impulse response with the input AC sequence.
Passing to the z-transform we have

Pxy(z) = H∗(1/z∗)Pxx (z) � Pyx (e
jω) = H∗(ejω)Pxx (ω),

i.e., the cross-spectrum between input and output is the product of the input
signal’s power spectrum with the complex conjugate of the filter’s frequency
response.

3. The AC of the (centered) output is

γyy[l] = E
{
y[n]y∗[n − l]} =

= E

{
y∗[n − l]

+∞∑

k=−∞
h[n − k]x[k]

}
=

=
+∞∑

k=−∞
h[n − k]E {

y∗[n − l]x[k]} =

=
+∞∑

k=−∞
h[n − k]γxy[k − n + l] =

+∞∑

k=−∞
h[n − k]γxy[l − (n − k)] =

=
+∞∑

m=−∞
h[m]γxy[l − m] = h[l] ∗ γxy[l] = h[l] ∗ h∗[−l] ∗ γxx [l] = h∗[−l] ∗ γyx [l],

where we used the fact that convolution can be written as
∑+∞

k=−∞ h[n − k]x[k]
or as

∑+∞
k=−∞ h[k]x[n − k].

Passing to the z-transform we have

Pyy(z) = H(z)H∗(1/z∗)Pxx (z) � Pyy(ω) = H(ejω)H∗(ejω)Pxx (ω) = |H(ejω)|2Pxx (ω) :

the power spectrum of the output signal is equal to the spectrum of the input
signal multiplied by the squared magnitude of the filter’s frequency response.

From the above result concerning Pyy(ω) we can deduce the average output power:

γyy[0] = 1

2π

∫ π

−π

|H(ejω)|2Pxx (ω)dω.

Bymeans of this equation we can show an important property of the power spectrum
of a real, WSS and ergodic random signal x[n]. Let us suppose we apply to x[n] an
ideal (real) narrowband filter with arbitrary center frequency ω0 and bandwidth B:

H(ejω) =
{
1 for |ω − ω0| ≤ B/2,

0 otherwise.



392 9 Statistical Approach to Signal Analysis

The expected power at the filter’s output is due to the input frequency components
close to ω0 and is measured by γyy[0]. Recalling that Pxx (ω) is an even function of
ω and setting ω1 = ω0 − B/2, ω2 = ω0 + B/2 we can write the output power as

γyy[0] = 1

2π

∫ π

−π

|H(ejω)|2Pxx (ω)dω

= 1

2π

[∫ −ω1

−ω2

Pxx (ω)dω +
∫ +ω2

+ω1

Pxx (ω)dω

]

= 1

2π

∫ +ω2

+ω1

[Pxx (−ω) + Pxx (ω)] dω

= 1

2π

∫ +ω2

+ω1

2Pxx (ω)dω = 1

π

∫ +ω2

+ω1

Pxx (ω)dω.

But power is always non-negative; therefore if we let the filter bandwidth tend to
zero, the inequality

lim
ω2−ω1→0

γyy[0] ≥ 0

must hold. Therefore
Pxx (ω0) ≥ 0

and since ω0 is arbitrary, we can conclude that the power spectrum of x[n] is a real,
even and non-negative function of frequency.

9.10 Estimation of the Averages of Ergodic Stationary
Signals

We will now discuss how the average properties of a WSS ergodic random process
can be estimated from a finite-length segment of a typical sample sequence x[n],
n = [0, N − 1]. Thanks to ergodicity, ensemble averages can be substituted by
time averages. After some general notions concerning estimation theory, we will
deal with the estimation of the mean, variance and autocovariance of a randomWSS
ergodic process, as well as with the estimation of the cross-covariance of two ergodic,
individually and jointly WSS processes. The estimation of the power spectrum and
of the cross-power spectrum is left to the following two chapters.

9.10.1 General Concepts in Estimation Theory

The estimate of a parameter, which we will call α, of a random signal {xn} is a
function of the random variables for which a sample is available:
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(a) (b)

Fig. 9.4 a “Goodness” of an estimator: in this example, estimator 2 is better than estimator 1,
because for the former the probability of the estimate α̂ being close to the true value α is higher.
b An example of confidence interval for an estimator

α̂ = F(x0, x1, x2, . . . xN−1).

Therefore the estimate α̂ is a random variable, the probability density function of
which will be indicated by pα̂(α̂). The functional form and the values of pα̂(α̂)

depend on the choice of the estimator F(·) and on the probability densities of the
variables xn . If pα̂(α̂) has a symmetric shape, then its center is the “true value” α of
the parameter, as in the case of Fig. 9.4a. An estimator is “good” if the probability
of α̂ being close to α is high: for example, in Fig. 9.4a, estimator 2 is better than
estimator 1.

We can quantify how much pα̂(α̂) is concentrated around α through the concept
of confidence interval. Referring to Fig. 9.4b, if we call 1 − β the probability of α̂

being comprised between α − �1 and α + �2, then we can say that α̂ falls inside
the range (−�1,+�2) around its true value “at the confidence level of 1 − β”. In
order to be able to compute�1 and�2 for a given value of β we should know pα̂(α̂);
the usual working hypothesis in the absence of such information is that pα̂(α̂) is
Gaussian, or nearly Gaussian.

Often for a given parameter several estimators are proposed, and the need for a
comparison among their performances arises. The properties of estimators that are
used to compare them are

• polarization or bias,
Bα̂ = α − E[α̂],

where E[α̂] indicates the expected value of the estimate, and
• variance,

σ 2
α̂ = E[(α̂ − E[α̂])2].

If σ 2
α̂
is small, then pα̂(α̂) is concentrated around the mean value E[α̂], which, if

Bα̂ = 0, coincides with the true value α.
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The comparison between different estimators is often complicated by the fact that
an estimator with a bias Bα̂ which is smaller than the bias of another estimator has, at
the same time, a larger varianceσ 2

α̂
, or vice-versa. An estimator is said to be consistent

if both the bias and the variance tend to zero when the number of observations N
increases. Consistency is an important characteristic of an estimator.

9.10.2 Mean and Variance Estimation

Suppose we know N values of the random sampled signal x[n], n = [0, N − 1].
Each sample is the observed value of the random variable xn . For estimating the
mean value of {xn}, the sample mean is used, which is the arithmetic mean of the
results of our measurements:

m̂x = 1

N

N−1∑

n=0

x[n].

Under simplifying hypotheses, namely that the process is Gaussian and that the
variables xn are real and statistically independent, it can be shown that m̂x is the
maximum likelihood estimate of mx .

Maximum likelihood estimators are awidely used class of estimators, based on the
joint probability of the observed values as a function of the parameter to be estimated.
The maximum likelihood estimate is the value of the parameter that maximizes the
probability of getting, when measuring the variables xn , exactly those x[n] values
that have been observed, with n = [0, N − 1].

As a sum of Gaussian variables, m̂x is a Gaussian variable; therefore it is com-
pletely characterized by its mean E[m̂x ] and variance σ 2

m̂x
. But

E[m̂x ] = 1

N

N−1∑

i=0

E {x[i]} = E {xn} = mx ,

and therefore the polarization is zero. It can, moreover, be shown that

σ 2
m̂x

= σ 2
x

N
,

hence σ 2
m̂x

→ 0 for N → ∞: the sample mean is a consistent estimate.
As for estimating the variance of the process {xn}, we must distinguish between

two cases:

1. mx is assumed to be known.
Then the maximum likelihood estimate of the variance is
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σ̂ 2
x = 1

N

N−1∑

n=0

(x[n] − mx )
2,

that turns out to be consistent;
2. both mx and σ 2

x have to be estimated, and this is the most frequent situation.
Then the maximum likelihood estimate for mx is the sample mean, while for σ 2

x
the maximum likelihood estimate is the sample variance

σ̂ 2
x = 1

N

N−1∑

n=0

(x[n] − m̂x )
2,

in which m̂x replaces mx that is unknown.
Let us set v̂ = σ̂ 2

x . It can be shown that

E
[
σ̂ 2

x

] = E[v̂] = N − 1

N
σ 2

x ,

hence Bv̂ �= 0: the sample variance is biased, but is asymptotically unbiased,9

because as N → ∞, E[σ̂ 2
x ] = E[v̂] → σ 2

x .
The variance of the sample variance is found to be

σ 2
v̂ = E

{(
v̂ − E

[
v̂
])2} = 1

N

[
E

{
x4[n]} − (

E
{

x2[n]})2
]
,

which goes to zero for N → ∞: the sample variance is a consistent estimate.

9.10.3 Autocovariance Estimation

The sequence to be estimated is γxx [l] = E[xn xn−l ]. This suggests to apply the
definition of sample mean to x[n]x[n − l]. For l ≥ 0 we get the estimate

γ̂xx [l] = c′
xx [l] = 1

N − l

N−1∑

n=l

x[n]x[n − l].

9Some authors prefer the definition

σ̂ 2
x = 1

N − 1

N−1∑

n=0

(x[n] − m̂x )2

that makes the sample variance an unbiased estimate of the variance of the random signal.
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For l < 0 we can write a similar formula, in which we let the summation run from
0 to N − 1 − |l|, and divide by N − |l|. However, since c′

xx [l] is an even sequence,
once its values for l ≥ 0 have been computed, the values for l < 0 can be deduced
by symmetry. This observation allows writing simply

c′
xx [l] = 1

N − |l|
N−1∑

n=|l|
x[n]x[n − |l|]

for lags of any sign. Under the hypothesis that x[n]x[n − l] belongs to a Gaussian
process, this is the maximum likelihood estimate for γxx [l]. Note that c′

xx [l] exists
for |l| ≤ N − 1, while the theoretical AC exists for any lag in (−∞,+∞).

The estimate c′
xx [l] is unbiased: indeed,

E
{
c′

xx [l]
} = γxx [l] for |l| < N .

An approximate expression for the variance of c′
xx [l] can be derived, which holds

for |l| � N :

σ 2
c′

xx [l]
∼= N

(N − |l|)2
+∞∑

r=−∞
{γxx [r ] + γxx [r + l] + γxx [r − l]} .

This expression shows that for moderate lag values, σ 2
c′

xx [l] is approximately

proportional to 1/N . It can thus be deduced that σ 2
c′

xx [l] → 0 for N → ∞: c′
xx [l] is a

consistent estimate.
Another estimator proposed for γxx [l] is

cxx [l] = 1

N

N−1∑

n=|l|
x[n]x[n − |l|] = N − |l|

N
c′

xx [l].

Since the expected value of c′
xx [l] is γxx [l],

E {cxx [l]} = N − |l|
N

γxx [l] for |l| < N .

Thus cxx [l] is biased, with polarization

Bcxx [l] = γxx [l] − N − |l|
N

γxx [l] = |l|
N

γxx [l],

but asymptotically unbiased. For |l| � N we can write
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σ 2
cxx [l] ∼= (N − |l|)2

N 2

N

(N − |l|)2
+∞∑

r=−∞
{γxx [r ] + γxx [r + l] + γxx [r − l]}

= 1

N

+∞∑

r=−∞
{γxx [r ] + γxx [r + l] + γxx [r − l]} .

This expression goes to zero for N → ∞, so cxx [l] is a consistent estimate.
The main difference between c′

xx [l] and cxx [l] lies in the behavior of the variance
of these two estimates when |l| increases, while N is kept constant. As |l| → N ,
i.e., as N − |l| → 0, σ 2

c′
xx [l] increases remarkably, and this is due to the fact that at

large lags only a few samples remain, over which x[n]x[n − l] can be averaged. This
conceptual point is reflected formally in the presence of the factor (N − |l|)2 in the
denominator of σ 2

c′
xx [l]. On the other hand, σ

2
cxx [l] does not have the same tendency to

increase at large lag values. However, as |l| → N , E[cxx [l]] → 0, so that the bias of
cxx [l] becomes as large as γxx [l]. Thus, for |l| → N neither of the two estimates is
satisfactory.

However, if we examine the behavior of bias and variance of cxx [l] when |l| is
kept constant and N increases, as we did above for c′

xx [l], we find that both σ 2
cxx [l]

and Bcxx [l] decrease as N increases, hence cxx [l] is a consistent estimate; recall that
this is also true for c′

xx [l], that is unbiased and has a variance σ 2
c′

xx [l] which decreases
for increasing N . From this point of view, both estimates thus appear acceptable. In
conclusion, using either c′

xx [l] or cxx [l] the estimate is expected to improve using a
large number N of samples and limiting the estimate to lag values not too close to N .
It is useful to note that AC estimates can be computed through the linear convolution
of the first sequence with the folded version of the second sequence. We will simply
flip the second series from left to right before computing the convolution, and then
will apply the proper factor, 1/N for cxx [l] and 1/(N − |l|) for c′

xx [l].
Finally we mention that these AC estimates can be standardized, leading to

estimates ρ̂xx [l] of ρxx [l].

9.10.4 Cross-Covariance Estimation

The cross-covariance γxy[l] of two different individually and jointly WSS random
processes can be estimated, assuming 0 ≤ l ≤ N − 1, as10

cxy[l] = 1

N

N−1∑

n=l

x[n]y[n − l] for l ≥ 0, cxy[l] = cyx [−l] for l < 0.

10This definition is valid for real signals. If we considered general complex signals, we should write

cxy[l] = 1

N

N−1∑

n=l

x[n]y∗[n − l] for l ≥ 0, cxy[l] = c∗
yx [−l] for l < 0.

Of course this applies to cxx [l] and c′
xx [l] too.
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The corresponding expected value is

E
{
cxy[l]

} = N − |l|
N

γxy[l] for |l| < N .

This is a biased, but asymptotically unbiased, estimate of γxy[l]. The variance
σ 2

cxy
is found to be inversely proportional to N , so this is a consistent estimate.

Standardization can then be applied to cross-covariance, to obtain an estimate ρ̂xy[l]
of ρxy[l].

9.11 Appendix: A Road Map to the Analysis
of a Data Record

Before studying spectral estimation methods in the next two chapters, it may be
useful to schematically list what steps are normally taken when a data record is first
examined and then analyzed in detail. The steps listed below constitute a road map
to what in the past has been referred to as time-series analysis (TSA), where “time
series” is synonymous with sequence or data record and is a widely used term in
statistical signal processing—the processing of random signals. The data in a time
series is referred to as monodimensional or bivariate data, meaning that a single
dependent variable has been measured versus a single independent variable, which
typically is time.11

In the following list, the steps forTSAare indicated by (+) if they are considered as
essential, and by (−) if they are optional. The list does not have a strict chronological
order, and some steps may be closely related or alternative to some other steps. It is
not exhaustive and is meant as a mere collection of suggestions for further study:

+ temporal plot and visual inspection;
+ unevenly-spaced data? ⇒ interpolation.

Spectralmethods for unequally-spaced data actually exist, like theLomb-Scargle
periodogram (see Scargle 1982), a variation of the DFT in which an unequally-
spaced time series is decomposed into a linear combination of sinusoidal func-
tions; however, interpolation is a common practice;

+ detection, counting (as a percentage of total) and substitution of missing data
through interpolation techniques (gap filling): e.g., linear interpolation, splines;
advanced methods like SSA (singular spectrum analysis; see Chap. 12);

+ elementary statistical analysis (mean, standard deviation; histogram⇒Gaussian
distribution?);

− search for outliers (data very distant from the mean) and noise spikes, and pos-
sible exclusion/replacement of related data samples;

− estimation of the AC sequence;

11In contrast, multivariate data is typically produced by a variable measured; as a function of more
than one independent variable, for example, space and time.

http://dx.doi.org/10.1007/978-3-319-25468-5_12
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− de-noising: filtering, SSA, Discrete Wavelet Transform (DWT; see Chap. 14),
etc.;

− trend removal: functional fits, advanced methods like SSA, etc.;
− separation/removal of known periodicities and dominant signals (e.g., seasonal-

ity) in order to approach gaussianity/ergodicity; pre-whitening;
+ stationarity?

• Yes⇒ stationary spectral analysis by classical and advancedmethods; significance
tests for spectral peaks (ergodicity assumed). See Chaps. 10 and 11;

• No⇒ evolutionary spectral analysis: Short Time Fourier Transform (STFT), Con-
tinuous Wavelet Transform (CWT). See Chap. 13.

Stationarity and ergodicity deserve some more words. They are basic assumption
for all the spectral estimationmethods presented in the next two chapters.Obstacles to
stationarity and ergodicity in a series may include trends, changes of series variance,
deterministic cycles, etc.

Deterministic cycles of known origin appear inmany types of series. For example,
meteo-climatic records most often contain the 1 year cycle due to seasons and/or the
1 day cycle related to Earth’s rotation, depending on the record duration and on the
sampling interval. The subtraction from the data of these deterministic components
known a priori often helps spectral analysis, allowing for the detection of spectral
features that would otherwise be submerged by these dominant signals. One easy
way to remove such cycles in data measured at regular intervals—e.g., to remove the
annual cycle of the seasons from data measured once per month—is to calculate the
sample mean of every month of the calendar year and then subtract the mean of all
Januaries from each January sample, the mean of all Februaries from each February
sample, and so on.

This procedure can be considered as away to get closer to ergodicity before apply-
ing spectral estimation methods. It can also be classified as a form of pre-whitening:
by this term we mean an operation performed on a signal to make it more similar
to white noise. and thus more suitable to be analyzed by statistics-based methods.
More in general, pre-whitening can be achieved using a predictor that models the
persistence in the signal. The predictor attempts to forecast the sample at time n on
the basis of past samples. Later this persistence is subtracted from the n-th signal
sample, so that, ideally, it becomes uncorrelated from previous samples. We will
discuss in Chap. 11, in the frame of the parametric approach to spectral estimation,
the modeling of persistence in a sequence, performed by stochastic models. Their
use for pre-whitening before spectral analysis is not common practice in all research
fields.

Trends and changes in variance are obstacles to the stationarity assumption. There
are research fields in which trends, in particular, may be very pronounced. These
trends are usually removed before analysis.

Incidentally, we may mention that the cases in which the goal of time-series
processing is spectral analysis must be distinguished from the cases in which the
goal is signal modeling. While in the former case, spectral analysis of non-stationary

http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_11
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series is simply tackled by evolutionary methods, such as the wavelet transform dis-
cussed in Chap. 13, in the latter case the issue of stationarizing a non-stationary series
is often considered. In several research fields, modeling a signal is a fundamental
part of time-series analysis. Modeling a random signal means building a mathemat-
ical model for the process that generates the data. This is useful, for example, for
predicting the signal’s future behavior, and can be done using the above-mentioned
stochastic models. Many modeling/forecasting methods are based on the assump-
tion that a non-stationary time series can be rendered approximately stationary (i.e.,
“stationarized”) through the use of mathematical transformations. For example, a
stationarized series is relatively easy to predict: you simply predict that its statistical
properties will be the same in the future as they have been in the past. The predic-
tions for the stationarized series can then be “untransformed”, by reversing whatever
mathematical transformations were previously used, to obtain non-obvious predic-
tions for the original series. Thus, finding the sequence of transformations needed to
stationarize a time series can provide important clues in the search for an appropriate
series model. Another reason for trying to stationarize a time series is to be able
to obtain meaningful sample statistics such as means, variances, and correlations
with other variables. Such statistics are useful descriptors of future behavior only
if the series is stationary. For example, if the series is consistently increasing over
time, its sample mean and variance will grow with the size of the sample, and will
always underestimate the mean and the variance in future times. Also, if the mean
and variance of a series are not well-defined, then neither are its correlations with
other variables.

In time series modeling, many different ways to stationarize a series have been
devised. A simple but often effective way to stabilize the variance across time is to
apply a power transformation (square root, cube root, log, etc.) to the time series. Lin-
ear or functional trends, including seasonal cycles, can be identified through series
regression on linear or nonlinear functions of time (polynomials, sinusoids etc.) and
then subtracted from the data. Another helpful transformation meant at stazionariza-
tion, widely applied especially to economic time series, is the differencing operation.
The d-th differencing operator applied to a time series x[n] creates a new series the
value of which at time n is the difference x[n + d] − x[n].

Most business and economic time series are far from stationarity when expressed
in their original measurement units. First, they may include the effects of inflation.
Inflation adjustment, or “deflation”, is accomplished by dividing a monetary time
series, e.g., in dollars, by a price index such as the Consumer Price Index (CPI). The
deflated series is then said to be measured in “constant dollars”, whereas the original
series was measured in “nominal dollars” or “current dollars”. Inflation is often a
significant component of apparent growth in any series measured in dollars, or yen,
euros, etc. By adjusting for inflation, the real growth, if any, can be detected.

However, even after deflation and/or possibly seasonal adjustment, most eco-
nomic time series will typically still exhibit trends, cycles, and other non-stationary
behavior. If the series has a stable long-run trend and tends to revert to the trend line
following a disturbance, it may be possible to stationarize it by de-trending, perhaps

http://dx.doi.org/10.1007/978-3-319-25468-5_13
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in conjunction with application of a suitable transformation, like the logarithmic one.
Such a series is said to be trend-stationary.

Sometimes, even de-trending is not sufficient to make the series stationary. If the
mean, variance, and autocorrelations of the series are not constant in time even after
the previously-mentioned expedients, perhaps the statistics of the changes x[n +
d] − x[n] in the series, with a suitable choice of d, will be constant. Such a series is
said to be difference-stationary. In some cases, it can be hard to distinguish between
a series that is trend-stationary and one that is difference-stationary, and the so-
called “unit root tests” may be used to get a more definitive answer. These are
statistical hypothesis-tests of stationarity that are designed for determining whether
differencing is required. A number of unit root tests are available, and they are based
ondifferent assumptions andmay lead to conflicting answers.Oneof themost popular
tests is the Augmented Dickey-Fuller (ADF) test (see Said and Dickey 1984). For
more details on these issues see, e.g., Chatfield (2013).
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Chapter 10
Non-Parametric Spectral Methods

10.1 Chapter Summary

The techniques described in this chapter belong to the field of statistical spectral
analysis, meaning the analysis of the frequency content of stationary and ergodic
random signals. The problem is how to get a good estimate of the true power spectrum
on the basis of a finite number of samples of a typical sample sequence. The simplest
approach is the periodogram, which can be defined in two equivalent ways: as the
Fourier transform of some estimate of the AC sequence—in this case the estimate is
the correlogram, or Blackman-Tukey periodogram—or as the square modulus of the
Fourier transform of the data sequence, divided by its length—in this case the estimate
is called the Schuster’s periodogram, or simply the periodogram. Unfortunately, even
adopting a consistent estimate for the AC sequence, the periodogram/correlogram
does not turn out to be a consistent estimate of the power spectrum. It is also biased,
though asymptotically unbiased, but the main issue is its inconsistency and the high
variance of the spectral estimates. The search for a stable and consistent estimate of
the power spectrum leads to the methods of Bartlett and Welch, based on averaging
a number of independent or nearly-independent periodograms obtained dividing the
stationary signal into subsequences, and to the Blackman-Tukey method, based on
smoothing the correlogram by convolving it with a proper spectral window.

A brief account of the estimation of the cross-spectrum of two random signals,
which is useful when we are interested in the common spectral content of two series
and on the phase relations of the respective frequency components, is also given.

Next we describe statistical tests that can be used to establish confidence intervals
for spectral estimates, as well as significance levels allowing us to judge if a peak
detected in a spectrum can be considered as due to a real feature present in the data,
or if instead it is compatible with the hypothesis of it just being a fluctuation due to
noise.

The multitaper method (MTM) is then presented, which is another Fourier-based
approach in which independent periodogram estimates are averaged. However, these
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estimates are not obtained segmenting the record, but applying to it a number of tapers
orthogonal to one another by construction. The MTM is interesting because of its
good performances in terms of resolution and variance of the spectral estimate, even if
the statistical test traditionally adopted to establish the significance of peaks detected
by the MTM is based on a restrictive assumption: the true spectrum is assumed to be
the superposition of a continuous, possibly colored-noise-like component, and one
or more spectral lines, corresponding to harmonic processes. This assumption can
lead to misleading test results if it is not handled carefully.

We will also discuss the use of the FFT for practical computation of spectral
estimates, and the different normalization schemes adopted in literature for the power
spectrum. This is an issue that should not be overlooked, because it may cause
confusion when one attempts to compare the spectra of a given signal obtained by
different authors and methods.

From now on, for simplicity we will return to the usual notation x[n] for sequences,
dropping the distinction introduced in Chap. 9 between random variables and sample
sequences. We will assume that the signals we analyze have been centered and
therefore have zero mean, so that autocorrelation and autocovariance coincide and
are simply denoted by the acronym AC. In statistical spectral analysis, the data record
is often referred to as a time series. We will hereafter use the terms sequence, (time)
series and data record, or simply record, interchangeably.

10.2 Power Spectrum Estimation

The methods for estimating the power spectrum of an ergodic WSS random signal
are the subject of the present chapter and of the following one. Here we will try to
give the bigger picture of this topic.

Spectral analysis, i.e., the application of the multitudinous methods of power-
spectrum estimation that have been proposed in literature, is perhaps the most widely
used tool for the study of the characteristics of the random process that is thought to
generate the data. Spectral analysis is aimed at investigating the existence of possible
cyclicities or pseudo-cyclicities in the signal, or, on the contrary, to ascertain its noise-
like nature, with the ultimate goal of relating the process that generates the data with
the factors that influence the process and determine its variability. This is of interest
in many fields of physics and other disciplines, like social and economic sciences,
life sciences, etc.

Here we must first of all clarify what is meant by cyclicity or pseudo-cyclicity,
and by noise-like nature.

Cyclicity refers to the discrete component of the theoretical spectrum, i.e., the
spectral lines that correspond to phase-coherent harmonic signals (phase-coherent
sinusoidal oscillations): the Fourier transform of a clean periodic signal of infinite
length yields a spectrum with a Dirac function at the frequency of the signal, i.e.,
a peak of zero width and infinite magnitude. In spectra computed from windowed
signals, these lines will obviously be broadened and smeared out by the effect of
windowing, but this is not the point here.

http://dx.doi.org/10.1007/978-3-319-25468-5_9
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Pseudo-cyclicity or quasi-periodicity refers to narrowband spectral features due
to anharmonic “quasi-oscillatory” signals in the data, which may exhibit phase and
amplitude modulation, and intermittent oscillatory behavior, but can nonetheless be
recognized as significant by proper statistical tests, relative to some suitably defined
null hypothesis.

Noise is represented by the continuous component of the spectrum. The spectrum
of noise does not exhibit prominent peaks and presents an overall shape that can be
flat (white noise) or can be slowly variable with frequency (colored noise).

In many applications, signals are frequently associated with narrowband, but not
strictly harmonic variability, and truly harmonic signals are rarely detected. Actu-
ally, the presence of true lines in the theoretical spectrum of a signal is an obstacle
to ergodicity, so that these harmonic components should, in principle, be properly
removed before spectral analysis. Removing them means, first of all, detecting them
and accurately finding their frequency, amplitude, and phase. This is the purpose of
harmonic analysis. Even neglecting the ergodicity issue mentioned above, classical
spectral methods are inadequate for harmonic analysis: they can only give indirect
information on the amplitude of the signal component at a given frequency, through
the area under the peak centered at that frequency, the width of which is, roughly
speaking, inversely proportional to the length N of the available sequence; this area
is nearly constant, since the height of the peak is also proportional to N . A method
for harmonic analysis attempts, instead, to determine directly the finite amplitude
of a pure line in the spectrum of a sequence of finite length. Dedicated methods of
frequency estimation for harmonic processes/signals exist.

Going back to the estimation of the power spectrum, we must clearly state that
application of the statistical techniques of estimation theory nearly always requires
more information on the signal nature than is available. As a consequence, the most
widely employed spectral methods remarkably rely on empirical considerations.
The scenario of these techniques is wide and intricate, and no method is the best
method ever: each one has its indications, its advantages and its limitations. In the
analysis of a data record it is thus always advisable to apply more than one method.
The spectral features recurring independently of the estimation technique can be
considered as plausibly true, while those features that are detected by one method
only can be suspected to be due to mathematical/numerical artifacts. In all cases,
when the analysis detects an outstanding spectral feature, such as a prominent peak
at some frequency, it is desirable to have at hand proper statistical tests by which to
establish the probability level at which this feature can be considered significant. Such
statistical tests are available for several spectral methods, but not for all methods.

There are two main methods of PSD estimation: non-parametric and parametric
methods.

Loosely speaking, non-parametric methods are used when little is known about the
mechanism that generates the data. Non-parametric methods of spectral estimation
are the subject of the present chapter, which also deals briefly with estimating the
cross spectrum of two random signals.

Parametric methods are based on data stochastic modeling, and thus assume that
some description of the data generation mechanism can be given. They are especially
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useful when high resolution is needed. They typically have greater computational
complexity than non-parametric methods. Parametric methods are the subject of
Chap. 11.

The search for almost-periodic phenomena in a data record can also be performed
by another non-parametric approach, namely singular spectrum analysis (SSA),
which however is not, strictly speaking, a method for estimating the power spec-
trum: it is aimed at representing the signal as a linear combination of elementary
variability modes that are not necessarily harmonic components, but can exhibit
amplitude and frequency modulations in time, and are data-adaptive, i.e., modeled
on the data. SSA is presented in Chap. 12.

The field of PSD estimation methods should be distinguished from the above-
mentioned field of frequency-estimation methods for harmonic processes, which
assume that a signal is composed of a limited—usually small—number of generating
phase-coherent sinusoidal or complex exponential components plus noise, and seek
to find the location and intensity of the line spectral features. While in the former
no assumption is made about the number of cyclic components in the signal and the
aim is to estimate the whole generating spectrum, in the latter, sometimes referred to
as subspace methods (Marple 1987; Stoica and Moses 2005; Schmidt 1986; Stoica
and Moses 2005), the sequence is decomposed into a signal subspace—here “signal”
indicates the harmonic content—and a noise subspace. The formalism of subspace
methods involves linear algebra. For the basic notions of vector and matrix analysis
needed to understand the meaning of the technical terms used in this subsection, the
reader is referred to Hayes (1996), Chap. 2, pp. 20–48, where a very good summary
is provided.

Exploiting orthogonality between the eigenvectors of the two subspaces allows
for a pseudo-spectrum to be formed, where large peaks ascribable to harmonic com-
ponents can appear. These methods work very well even is the useful signal is sub-
merged in a large amount of noise, but are computationally very expensive. They
can be grouped into two categories: noise subspace methods and signal subspace
methods. Both categories can be utilized in one of two ways: eigenvalue decompo-
sition of a matrix properly formed using AC samples—the AC matrix—or singular
value decomposition of a matrix formed using data samples—the data matrix (see
Chap. 12 for the precise meaning of these expressions).

Noise subspace methods attempt to solve for one or more of the noise subspace
eigenvectors. Then, the orthogonality between the noise subspace and the signal sub-
space produces zeros in the denominator of the resulting spectral estimates, resulting
in large values or spikes at the true frequencies of the signal components. The number
of discrete sinusoids must be determined/estimated or known ahead of time.

Signal subspace methods attempt to discard the noise subspace prior to spectral
estimation, improving the signal-to-noise ratio (SNR). A reduced-rank AC matrix is
formed with only the eigenvectors that have been recognized to belong to the signal
subspace, and then the reduced-rank matrix is used. Subspace methods include, for
instance, MUSIC (Multiple Signal Classification) and EIG (Eigenvector Method). A
detailed description of these methods is beyond the scope of this book.

http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_12
http://dx.doi.org/10.1007/978-3-319-25468-5_12
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Finally, we may mention that even an evolutionary spectral method like the Contin-
uous Wavelet Transform (CWT), described in Chap. 13, can yield an average estimate
of the power spectrum of a non-stationary signal, namely the global wavelet spectrum
(GWS). In the case of effective stationarity, the GWS can simply be considered as a
power spectrum estimation method.

Before concluding, let us stress once again some fundamental points. First, the
convenience of adopting one particular spectral method or another depends on

• the features of the sequence: whether it is short, long, noisy, noise-like or of the
kind “noise plus signal”, etc.

• what the analysis is expected to detect: do we expect individual dominant periodic
or quasi-periodic features? Are we interested in the overall spectral behavior of a
noise-like signal? Etc.

• sometimes, considerations based on a priori information or hypotheses concerning
the system from which the signal derives.

Second, it is recommended to use, when possible, several spectral methods to analyze
a data record, and then compare the results.

Last, but not least, let us underline it is highly advisable to reduce the signal to
zero mean before applying any spectral method, in order to avoid the presence of
possible high power at zero frequency in the true spectrum, which in the estimated
spectrum would contaminate with its leakage a consistent range of frequencies. In
fact, leakage and resolution loss due to windowing are present in power spectrum
estimation theory in exactly the same terms as we described them for deterministic
signals (Sect. 5.2.1). If the mean is not removed, autocorrelation and autocovariance
do not coincide and the power spectrum has an impulse at zero frequency, since
zero frequency means the constant component of the signal. If the mean value of the
data is relatively high, the low-frequency, low-amplitude spectral components will
be obscured by the leakage due to this impulse at zero frequency. Even if the sample
mean is only an estimate of the true mean of the process, subtracting it from the data
before spectral analysis improves the power spectrum estimate at low frequencies.

10.3 Periodogram

The periodogram represents the simplest and most classical approach to spectral
estimation, based on the DTFT and DFT. The estimate of the power spectrum must
be performed on the basis of a finite-length segment of a sample sequence. The finite
length of the available data record affects the quality of the estimate. When station-
arity is assumed, as in the present case, the longer the record, the better the estimate
that can be extracted from the record itself. However, if the statistical properties of
the signal are actually non-stationary at some time scale, we must be careful to select
a record length that does not violate the stationarity hypothesis.

The finite record length causes a distortion of the estimated spectrum with respect
to the “true” one: this issue, involving leakage and resolution loss due to windowing,

http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_5
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appears in the theory of statistical spectral analysis exactly in the same terms as
in the case of deterministic signals (Chap. 5). Since the record length is limited by
the rapidity of the variations in the signal’s statistical properties, the rule will be to
choose the shortest record that still allows for resolving spectral features at closely
spaced frequencies. At the same time, the use of the DFT in place of the DTFT,
and of the FFT as a practical tool, will imply the same issues related to frequency
sampling that we discussed in the deterministic case.

The function we must estimate is the theoretical power spectrum; we start from
the first definition we gave in the previous chapter for Pxx(ω),

Pxx(ω) =
+∞∑

l=−∞
γxx[l]e−jωl,

such that
1

2π

∫ π

−π

Pxx(ω)dω = σ 2
x .

In the previous chapter we introduced two plausible estimators for the AC sequence
γxx[l], but unfortunately the Fourier transforms of such estimates do not turn out to be
good estimates of the power spectrum. In fact, they are found to be non-consistent: the
variance of the spectral estimate does not tend to zero when the number of available
signal samples tends to infinity. However, we will see that a good spectral estimate
can be obtained by properly smoothing the Fourier transform of the AC estimate.

Let us take cxx[l] as the AC estimate. We will compute its samples for any possible
lag value, from −(N − 1) to N − 1, obtaining

cxx[l] = 1

N

N−1∑

n=|l|
x[n]x[n − |l|], for |l| ≤ N − 1.

Under the hypothesis that x[n]x[n − l] belongs to a Gaussian process, this is the
maximum likelihood estimate for γxx[l]. Applying the DTFT definition equation to
cxx[l] we get the correlogram, also referred to as the Blackman-Tukey periodogram
(Blackman and Tukey 1958):

IN (ω) =
N−1∑

l=−(N−1)

cxx[l]e−jωl.

Note that IN (ω) certainly exists and is a real quantity, because it is the DTFT of a
finite-length non-causal sequence. The correlogram is indicated as IN (ω) due to its
reality.

Substituting the expression of cxx[l] in IN (ω), an equivalent expression for the
periodogram is found (Stoica and Moses 2005) that directly descends from the second
definition of the theoretical power spectrum given in the previous chapter:

http://dx.doi.org/10.1007/978-3-319-25468-5_5
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IN (ω) = 1

N

∣∣X(ejω)
∣∣2 ,

which is known as the Schuster’s periodogram, or simply the periodogram (Schuster
1898). Again, X(ejω) certainly exists, being the DTFT of the finite-length causal
record x[n], N = [0, N − 1]. The X(ejω) that appears here must not be mistaken with
the DTFT of the infinitely-long random power signal from which the record derives—
a DTFT that does not exist. The above equality is easily proved considering that cxx[l]
is 1/N times the convolution of x[n] with the folded version of x[n]. Taking the Fourier
transform and using the convolution theorem, we get IN (ω) = [X(ejω)X∗(ejω)]/N =∣∣X(ejω)

∣∣2 /N , q.e.d.
From Schuster’s expression of the periodogram we can see that IN (ω)

• is a non-negative function of ω,
• can be computed directly from the data x[n],
• is the square modulus of the DTFT of the data sequence, divided by the length of

the sequence.

This connection between the periodogram and the DTFT of the data sequence is the
central argument in favor of the use of cxx[l], in terms of computational convenience.

If, instead, we take c′
xx[l] as the AC estimate, and compute its samples for all

possible lag values from −(N − 1) a N − 1,

c′
xx[l] = 1

N − |l|
N−1∑

n=|l|
x[n]x[n − |l|], for |l| ≤ N − 1,

we obtain a different estimate of the correlogram that we will denote as PN (ω):

PN (ω) =
N−1∑

l=−(N−1)

c′
xx[l]e−jωl.

In practice, since both AC estimated sequences have with finite length, the transforms
we can compute will not be DTFTs, but sequences of DTFT values at discrete fre-
quencies, i.e., DFTs, and we will get samples of the spectral estimate, IN [k] = IN (ωk),
or PN [k] = PN (ωk). However, in the following discussion we will indicate the spec-
tral estimate as a continuous function of ω, i.e., as a DTFT. This is common practice
and is convenient.

Another remark we must make is that actually, when we compute the DFT of the
AC sequence via FFT, we implicitly treat it as a causal sequence; as a consequence,
the FFT output will be complex, and in order to get the spectral samples we will have
to take the modulus of the FFT output.

We can thus distinguish two Fourier methods to estimate the power spectrum of
a stationary and ergodic random signal from its N samples x[n]:
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• the direct method that implies computing the transform of the data record, and
• the indirect method that requires two separate steps: first estimating the AC

sequence, and then computing its transform.

Two of the classical spectral methods we will discuss (Bartlett’s and Welch’s meth-
ods) are direct methods, while a third method, named after Blackman and Tukey, is
built on AC estimation.

Let us now examine the statistical properties of the periodogram estimator, in its
two versions IN (ω) and PN (ω).

10.3.1 Bias

The expected value of the periodogram IN (ω) is

E[IN (ω)] =
N−1∑

l=−(N−1)

E[cxx[l]]e−jωl =
N−1∑

l=−(N−1)

N − |l|
N

γxx[l]e−jωl,

which is different from Γxx(ejω) = Pxx(ω) for two reasons: the presence of the factor
(N − |l|)/N and, more importantly, the finite summation limits. We deduce that IN (ω)

is a biased estimate of Γxx(ejω) = Pxx(ω). However, this estimate is asymptotically
unbiased because

lim
N→∞ E[IN (ω)] = Pxx(ω).

The expected value of the periodogram PN (ω) is, instead,

E[PN (ω)] =
N−1∑

l=−(N−1)

E[c′
xx[l]]e−jωl =

N−1∑

l=−(N−1)

γxx[l]e−jωl.

In terms of bias, E[PN (ω)] appears “better” than E[IN (ω)] but, due to the finite
summation limits, PN (ω) is still a biased estimate of Γxx(ejω) = Pxx(ω), in spite of
the fact that c′

xx[l] is an unbiased estimate of γxx[l]. Asymptotically, the bias vanishes.
The expected values of IN (ω) and PN (ω) can be interpreted as Fourier transforms

of the theoretical, infinitely-long AC sequence γxx[l], windowed by non-causal win-
dows including 2N − 1 samples (Marple 1987). In other words, the finite-length AC
sequence that we can compute when N data samples are available can be viewed as
the result of windowing γxx[l] with a non-causal window of finite length 2N − 1, i.e.,
as the multiplication of γxx[l] by the window:
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• for the periodogram IN (ω),

E[IN (ω)] =
N−1∑

l=−(N−1)

N − |l|
N

γxx[l]e−jωl =
∞∑

l=−∞
{wB[l]γxx[l]} e−jωl,

where wB[l] indicates the triangular or Bartlett window,1

wB[l] =
{

N−|l|
N |l| ≤ N − 1,

0 elsewhere,

shown in Fig. 10.1a for 2N − 1 = 49;
• for the periodogram PN (ω),

E[PN (ω)] =
N−1∑

l=−(N−1)

γxx[l]e−jωl =
∞∑

l=−(−∞)

{wR[l]γxx[l]} e−jωl,

where wR[l] indicates the rectangular window,

wR[l] =
{

1 |l| ≤ N − 1,

0 elsewhere,

shown in Fig. 10.1b for 2N − 1 = 49.

These expectations represent DTFTs of sequences that are non-zero only over a finite
number 2N − 1 of samples, i.e., the product sequences wB[l]γxx[l] and wR[l]γxx[l].
These products correspond to continuous periodic convolutions in the frequency
domain:

E[IN (ω)] = 1

2π

∫ +π

−π

WB
{
ej(ω−θ)

}
Γxx(e

jθ )dθ =

= 1

2π

∫ +π

−π

WB
{
ej(ω−θ)

}
Pxx(θ)dθ,

E[PN (ω)] = 1

2π

∫ +π

−π

WR
{
ej(ω−θ)

}
Pxx(θ)dθ,

1In this frame we use the two terms indifferently, even if the triangular window and the Bartlett
window are actually two different sequences: the former has no zeros at its edges, while the latter
includes two zero samples at the beginning and end. In the present case, there must be no zeros at
the edges; therefore in principle we should call this a “triangular window”.



412 10 Non-Parametric Spectral Methods

−24 −16 −8 0 8 16 24
0

0.2

0.4

0.6

0.8

1

(a)

−24 −16 −8 0 8 16 24
0

0.2

0.4

0.6

0.8

1

(b)

−1 −0.5 0 0.5 1

0

5

10

15

20

25

(c)

−1 −0.5 0 0.5 1
−10

0

10

20

30

40

50

(d)

Fig. 10.1 a Non-causal Bartlett (triangular) window and b non-causal rectangular window, with
lengths of 2N − 1 = 49 samples; c–d corresponding Fourier transforms, known as spectral windows
in the frame of power-spectrum estimation theory

where the non-causal-window transforms, also known as spectral windows, are real
and given by

WB(ejω) =
N−1∑

l=−(N−1)

N − |l|
N

e−jωl = 1

N

[
sin
(
N ω

2

)

sin ω
2

]2

= ND2
N (ω),

WR(ejω) =
N−1∑

l=−(N−1)

e−jωl = sin
[
(2N − 1)ω

2

]

sin ω
2

= (2N − 1)D2N−1(ω).

WB(ejω) is also known as the Fejér kernel; WR(ejω) is also known as the Dirichlet
kernel. The expressions for the Fejér and Dirichlet kernels can be derived as follows:

WB(ejω) =
N−1∑

l=−(N−1)

N − |l|
N

e−jωl = 1

N

N−1∑

m=0

N−1∑

i=0

e−jω(m−i) = 1

N

∣∣∣∣∣

N−1∑

m=0

ejωm

∣∣∣∣∣

2

=

= 1

N

∣∣∣∣
ejωN − 1

ejω − 1

∣∣∣∣
2

= 1

N

∣∣∣∣
ejN ω

2 − e−jN ω
2

ejω/2 − e−jω/2

∣∣∣∣
2

= 1

N

[
sin(N ω

2 )

sin ω
2

]2

=ND2
N (ω);
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WR(ejω) =
N−1∑

l=−(N−1)

e−jωl = 2Re

[
ejωN − 1

ejω − 1

]
− 1 =

=
2 cos

[
(N−1)ω

2

]
sin
[

Nω
2

]

sin ω
2 − 1

= sin(ω 2N−1
2 )

sin ω
2

(2N − 1)D2N−1(ω).

Figure 10.1c, d illustrate the shape of the functions WB(ejω) and WR(ejω). To
emphasize the dependence on the length of the estimated AC sequence, hereafter we
will indicate them as WB,2N−1(ejω) and WR,2N−1(ejω), respectively.

It is clear that since N is finite, both IN (ω) and PN (ω) are biased, and provide
a distorted version of the true spectrum of the underlying infinite-length random
signal. Each spectral estimate at frequency ω also contains the contributions of nearby
frequencies, weighted according to the shape of the corresponding spectral window.
In particular, in the case of PN (ω) the spectral window also assumes negative values
(Fig. 10.1d), since the Dirichlet function with odd order does so (Sect. 3.4.2); this
may lead to negative values of the spectral estimate.

We now drop PN (ω) as a spectral estimator and continue our discussion consid-
ering IN (ω) only. From now on, by “periodogram” we mean IN (ω).

The presence of sidelobes in WB,2N−1(ejω) can cause diffusion towards a given
frequency θ = ω, of power belonging to frequencies that can be quite far from ω.
This power diffusion in the frequency domain is the well-known leakage. Moreover,
the non-zero width of the main lobe sets an upper limit to spectral resolution. For
example, if the sequence x[n] contains a sinusoidal component at frequency ω0,
in the true spectrum we would see a spectral line at ω = ω0, while observing the
periodogram IN (ω) we will see a copy of WB,2N−1(ejω) centered at ω0. If we need to
detect two spectral components with frequencies close to one another, and with equal
amplitudes, the widening of the respective peaks—that would ideally be impulsive—
can lead to the impossibility of resolving them as their frequency distance decreases.
We thus have resolution loss due to the finite signal observation time. The problem
worsens if the two sinusoids that are close to each other have different amplitudes: in
such cases the sidelobes related to the strongest component can completely submerge
the peak of the weakest component. Leakage and can be mitigated only reducing the
sidelobes, while keeping the main lobe as narrow as possible, in order to preserve
resolution. Unfortunately, the use of more gradual windows cannot give both results
at the same time: it can reduce the sidelobes but only at the expense of a widening
of the main lobe. All other conditions being equal, we can reduce the main lobe
width only increasing N , but this cannot be done in all cases. In conclusion, this is a
disadvantage inherent in Fourier spectral techniques: the finite duration of x[n] sets
a limit to the quality of the spectral estimates we can obtain from the available data
samples.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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10.3.2 Variance

We will now examine the variance of the periodogram and in particular its dependence
on the number N of available signal samples. An approximate calculation (Jenkins
and Watts 1968) of this variance is based on the hypothesis that the process is Gaussian
and white, at least locally. Recall that while a flat spectrum belongs to white noise,
spectra with smooth behavior, slowly varying with frequency and with no peaks,
represent colored noise. Hereinafter, we will encounter several examples of colored
noise. Requiring a signal to be locally white means requiring it to be colored noise for
which PSD varies with frequency arbitrarily but very slowly, so that we can consider
it nearly constant over the bandwidth of each spectral estimate.

This approximate calculation leads to an expression for the covariance between
two periodogram values IN (ω1) and IN (ω2) at two frequencies ω1 and ω2, which we
will indicate by cIN (ω)(ω1, ω2):

cIN (ω)(ω1, ω2) ≈ Pxx(ω1)Pxx(ω2)

⎧
⎨

⎩

[
sin
(
N ω1−ω2

2

)

N sin
(

ω1−ω2
2

)
]2

+
[

sin
(
N ω1+ω2

2

)

N sin
(

ω1+ω2
2

)
]2
⎫
⎬

⎭ .

If we evaluate this expression at discrete ω values equispaced by 2π/N , i.e., at
those frequencies ωk = 2πk/N that form the set of discrete frequencies at which we
sample the DTFT of our signal, we find that this covariance vanishes: the values of
IN (ωk) are uncorrelated. As N increases, such frequencies get closer and closer to
one another, and the fact that the estimated PSD values at closely spaced frequencies
are uncorrelated suggests a “wild” variability of the periodogram.

The periodogram variance can then be found setting ω1 = ω2 = ω in the covari-
ance expression:

σ 2
IN (ω)

∼= P2
xx(ω)

{
1 +

[
sin(Nω)

N sin ω

]2
}

.

This variance does not go to zero for N → ∞ and is of the order of the square of the
PSD we want to estimate (Marple 1987):

σ 2
IN (ω) ≈ P2

xx(ω).

Therefore, the periodogram is not a consistent estimator of the power spectrum,
and we can expect it to exhibit remarkable fluctuations around the true spectrum.
We can also say that the periodogram is not a stable spectral estimate: stability is
the degree to which irrelevant spectral details are smoothed out by an estimator,
so that the estimates drawn from different segments of a typical sample sequence
would be in agreement. Low stability is thus synonymous with large variance of the
spectral estimate. These results on periodogram bias, variance and inconsistency are
illustrated by the examples given below.
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10.3.3 Examples

Periodogram inconsistency: Examples with white noise

Let us consider Gaussian white noise e[n] with variance σ 2
e , for which the true spec-

trum is constant and equal to variance. From now on, we assume that all white noise
processes mentioned in the text of this chapter are Gaussian. We build several white
noise sequences with different numbers N of samples and compute the periodogram
of each sequence. Figure 10.2 shows three such cases, with N = 14, N = 51 and
N = 135. As N increases, the periodograms (black curves) exhibit increasing oscil-
lations, and vary more and more rapidly with frequency. The horizontal lines indicate
the variance, and the fluctuations with respect to this theoretical PSD value do not
decrease in amplitude as the amount of data increases. In fact, the variance of the
periodogram in this case is constant too: it does not depend on N and is of the order
of the square of Pxx(ω) = σ 2

e .
This behavior can be understood thinking that IN (ω) is the transform of cxx[l], and

when |l| → N the AC estimate cxx[l] is inaccurate and presents large variability. This
variability at large lags manifests itself in IN (ω) as fluctuations at all frequencies, so
that for large values of N , IN (ω) varies rapidly with ω. To be more clear, we can say
that as the amount of available data increases, the number of IN (ω) values that are
calculated also increases, and therefore we do not use more data to estimate a single
PSD value: from a statistical point of view there is no improvement.
In order to better appreciate how the periodogram variance does not decrease with
increasing N , we can examine, instead of a single realization of a white noise process,

Fig. 10.2 a–c Periodograms
IN (ω) (black curves) of three
sequences of Gaussian white
noise with the same variance,
including N = 14, 51 and
135 samples, respectively.
The horizontal lines indicate
the theoretical PSD value,
equal to data variance. A
zero padding has been
performed with
NFFT = 8192; the ordinate
axis is linear
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a number of realizations, and then average over realizations. We generate, for exam-
ple, 50 realizations of white noise with unit variance and N samples. We compute
the periodogram of each sequence and then average over the 50 periodograms thus
obtained, in order to get a quantity that approximates the expected value of the peri-
odogram. Figure 10.3 shows the result of this simulation: in the panels of Fig. 10.3a
we can see, for three different values of N , the 50 periodograms of the individual real-
izations, superimposed on one another; the panels of Fig. 10.3b show the ensemble
average over the realizations. The plots are in dB and a consistent zero padding has
been done. Note that hereafter, many figures will be presented having the same struc-
ture, and since this is easily recognizable, this description will not be repeated, either
in the text or in the captions. From top to bottom, the value of N in Fig. 10.3 varies
from 64 to 256 and to 1024. We can observe once again that though the expected
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Fig. 10.3 Examples of spectral estimates obtained via periodograms. The analyzed sequences are
50 realizations, with N samples each, of a Gaussian white noise process with unit variance; from
top to bottom, N = 64, 256, 1024. Zero padding with NFFT = 8192. a The 50 periodograms of the
individual realizations with a given value of N , superimposed on one another; b the corresponding
ensemble-average periodograms
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value, approximated by the averages over 50 realizations, correctly appears close to
1 (0 dB), the spectral variance does not decrease with increasing N .

Periodogram bias: examples with one sinusoid in noise

On the basis of the results of Sect. 9.7 we can state that the theoretical power spectrum
of a sample sequence drawn from a random-phase sinusoidal process with frequency
ω0 and amplitude A and with white noise added,

x∞[n] = A sin (nω0 + ϑ) + e[n]

where ϑ is a uniformly distributed random variable between 0 and 2π and e[n] is
white noise with variance σ 2

e , is

Pxx(ω) = πA2

2
[δ(ω − ω0) + δ(ω + ω0)] + σ 2

e ,

and that the theoretical power spectrum of a sample sequence drawn from a random-
phase complex exponential process with frequency ω0 and amplitude A/2 and with
white noise added,

x∞[n] = A

2
ej(nω0+ϑ) + e[n],

is

Pxx(ω) = 2π

(
A

2

)2

δ(ω − ω0) + σe2 = πA2

2
δ(ω − ω0) + σe2 .

Note that on the positive frequency half-axis, the theoretical spectrum of the sinusoid
with amplitude A and of the complex exponential with amplitude A/2 are identical.
This kind of synthetic signal can be considered as a random signal, due to the presence
of white noise and of the random initial phase, and as such can be used to test
algorithms of statistical spectral estimation.
In reality we only can process a segment of x∞[n], i.e., x[n], with n = [0, N − 1].
The operation that from x∞[n] leads to x[n] is a windowing, i.e., a product of x∞[n]
with a causal rectangular window w[n] of length N . Focusing on the sinusoidal signal
with added noise, the windowed signal is

x[n] = x∞[n]w[n] = A sin (nω0 + ϑ) w[n] + e[n]w[n]

and the expected value of the periodogram is the convolution integral of the “true
spectrum” Pxx(ω) with the spectral window (see previous section):

E[IN (ω)] = 1

2π

∫ +π

−π

WB,2N−1
[
ej(ω−θ)

]
Pxx(θ)dθ =

= σ 2
e + A2

4

{
WB,2N−1

[
ej(ω−ω0)

]+ WB,2N−1
[
ej(ω+ω0)

]}
,

http://dx.doi.org/10.1007/978-3-319-25468-5_9
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or

E[IN (ω)] = N

2π

∫ +π

−π

D2
N (ω − θ)Pxx(θ)dθ =

= σ 2
e + N

A2

4

{
D2

N (ω − ω0) + D2
N (ω + ω0)

}
.

How come we started multiplying x∞[n] by a causal rectangular window and ended
up with a convolution integral of Pxx(ω) with the Fejér kernel, i.e., the transform of
a Bartlett (triangular) non-causal window of length 2N − 1? The reason is that when
we use the AC sequence to estimate the power spectrum (Blackman-Tukey definition
of periodogram), we apply a 2N − 1-long triangular window to the AC sequence; but
the 2N − 1-long triangular window can be seen, apart from possible normalization
of its samples, as the linear convolution of two N-long rectangular windows (see
the example of linear convolution between two rectangular sequences in Sect. 3.5.4).
The Fourier transform of the window applied to the AC sequence is the square of the
transform of the N-long rectangular window. To give a formal proof of the expected
value of the periodogram reported above starting from x[n] = x∞[n]w[n], we could
work on the Schuster’s definition of periodogram.
The theoretical spectrum and the expected value of the periodogram for the present
example, with N = 64 and ω0 = 0.4π , are shown in Fig. 10.4a and b, respectively.
Thanks to the symmetry of the power spectrum for real data, it is sufficient to plot the
spectrum on the positive ω half-axis. Let us underline that this plot also represents
the spectral shape of a random-phase complex exponential signal with amplitude
A/2.

Fig. 10.4 a Theoretical
power spectrum of a sinusoid
with amplitude A immersed
in white noise with variance
σ 2

e , and b expected value of
the periodogram of N = 64
samples of the same signal,
as it appears when
logarithmic ordinates are
used (10 log10 {E [IN (ω]}).
The sinusoid’s frequency in
this example is ω0 = 0.4π

(a)

(b)

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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Figure 10.4 shows that where in theory we should see a spectral line, we actually see
a copy of the spectral window, scaled by a factor A2/4. In other words, the sinusoid
appears as a replica, centered at ω0 and scaled by a factor NA2/4, of the square of
the Dirichlet function DN (ω). This is bias. Since DN (ω) = 1 at ω = 0 (Fig. 3.13),
the height of the spectral peak is expected to be N(A2/4) + σ 2

e . Also the sidelobes
of the spectral window will appear scaled by a factor A2/4 and lifted by σ 2

e . The
frequencies of the spectral maxima and zeros will be the same that characterize
the function WB,2N−1(ejω); the width of the main peak at its base will be equal
to the mainlobe width of the Bartlett window transform, i.e., 	 8π/(2N − 1) 	
4π/N . In a similar way, we can deal with the case of a signal containing several
sinusoidal components, each with different amplitude, frequency and initial phase,
thus transposing to the periodogram and to an arbitrary finite number of sinusoids
what we said about the amplitude spectrum of a deterministic signal containing two
sinusoids (see Sect. 5.2).
In Fig. 10.4 we can observe the two effects we already described in the deterministic
case:

• the smoothing produced by WB,2N−1(ejω) that causes the sinusoid’s power to spread
over a frequency band whose width is approximately equal to 4π/N ;

• the leakage due to sidelobes that generates spurious secondary peaks at frequencies
ωk ≈ ω0 ± (2π/N)k. If the signal contained more than one sinusoidal component,
the leakage due to the sidelobes of a powerful component would be able to mask
weak components possibly present nearby the dominant one.

Figure 10.5 shows what we obtain by calculating the periodogram of 50 realizations
of this process with σ 2

e = 1 and taking the ensemble average. The parameter values
are A = 5, ω0 = 0.4π and N variable from 40 to 512, from top to bottom. Though
all the periodograms have a peak near 0.4π , a remarkable periodogram variability
is observed. The ensemble average approximates the expected periodogram. We can
see that as the amount of data increases the sinusoid’s power is spread over a narrower
and narrower frequency band and the peak rises. The expected peak heights in each
panel are, from top to bottom, 10 log1 0(40 × 25/4) + 1 = 25, 27, 33 and 36 for
σ 2

e = 1 and N = 40, 64, 256 and 512, respectively (see the gray horizontal lines in
the right-hand panels).

Signal-to-noise Ratio

We now examine, using Schuster’s definition of periodogram, the influence that the
noise has on the peak that represents the sinusoid/complex exponential. In order to
approach this issue from a more general point of view, we apply to the signal a real,
non-negative and causal window w[n] that is not necessarily rectangular—a generic
taper that is not identically zero only in 0 ≤ n ≤ N − 1. This is aimed at obtaining
a result not strictly limited to the periodogram case, but valid also for the modified
periodogram that will be introduced in Sect. 10.5. To make calculations easier, it is
convenient to restrict our attention to the positive ω half axis and to a single complex
exponential with positive frequency ω0 and amplitude A/2, superimposed to white

http://dx.doi.org/10.1007/978-3-319-25468-5_3
http://dx.doi.org/10.1007/978-3-319-25468-5_5
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Fig. 10.5 Examples of spectral estimates obtained via periodograms. The analyzed sequences are
50 realizations, with N samples each, of a random-phase sinusoidal signal with amplitude A = 5
and frequency ω0 = 0.4π , immersed in Gaussian white noise with unit variance. From top to
bottom: N = 40, 64, 256 and 512. Zero padding with NFFT = 8192. The gray horizontal lines in
the right-hand panels represent expected peak heights (see text). a 50 Realizations. b Ensemble
average

noise e[n] with variance σ 2
e . We also neglect the random phase for simplicity. The

windowed signal is

x[n] = x∞[n]w[n] = A

2
ejω0nw[n]

The spectral peak falls at ω0; at this precise frequency we can write the transform of
the windowed signal as

X(ejω0) = A

2

N−1∑

n=0

ejω0ne−jω0nw[n] +
N−1∑

n=0

e[n]w[n]e−jω0n =

= A

2

N−1∑

n=0

w[n] +
N−1∑

n=0

e[n]w[n]e−jω0n.
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The first right-hand-side term in this expression is real and we denote it as u; the
second is complex and we write it as a + jb: X(ejω0) = u + a + jb. The corresponding
periodogram value according to Schuster’s definition is

IN (ω0) = 1

N

∣∣X(ejω0)
∣∣2 = 1

N
[(u + a)2 + b2] =

= 1

N
[u2 + a2 + 2ua + b2] = 1

N
[u2 + 2ua + (a2 + b2)] =

= 1

N
[u2 + 2ua + |a + jb|2] = 1

N
[u2 + 2ua + (a + jb)(a − jb)].

This gives

IN (ω0) = A2

4N

(
N−1∑

n=0

w[n]
)2

+

+ A

N

(
N−1∑

n=0

w[n]
)

Re

(
N−1∑

n=0

e[n]w[n]e−jω0n

)
+

+ 1

N

N−1∑

n=0

N−1∑

m=0

e[n]w[m]e[n]w[m]e−jω0(n−m).

IN (ω0) is a random variable for which we can calculate the expected value:

E[IN (ω0)] = E

[
1

N

∣∣X(ejω0)
∣∣2
]

=

= A2

4N

(
N−1∑

n=0

w[n]
)2

+

+ A

N

(
N−1∑

n=0

w[n]
)

Re

(
N−1∑

n=0

w[n]E {e[n]} e−jω0n

)
+

+ 1

N

N−1∑

n=0

N−1∑

m=0

w[n]w[m]E {e[n]e[m]} e−jω0(n−m).

The expected value of the noise is zero, hence the second addend vanishes; e[n] and
e[m] are uncorrelated for n 
= m, while for n = m the term E {e[n]e[m]} yields σ 2

e ,
while the exponential term e−jω0(n−m) reduces to 1. Therefore,

E[IN (ω0)] = 1

N

⎡

⎣A2

4

(
N−1∑

n=0

w[n]
)2

+ σ 2
e

(
N−1∑

n=0

w2[n]
)⎤

⎦ ,
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in which the first term is relative to the complex exponential with amplitude A/2 and
the second represents the noise contribution. The ratio of the two terms is called the
output signal-to-noise ratio or the output SNR:

SNRo = A2

4σ 2
e

(∑N−1
n=0 w[n]

)2

∑N−1
n=0 w2[n] .

Since the input signal-to-noise ratio is defined as

SNRi = A2

4σ 2
e

,

we finally have

SNRo = SNRi

(∑N−1
n=0 w[n]

)2

∑N−1
n=0 w2[n] ,

where the fraction on the right-hand side is a factor that depends on the type and
length of the taper applied to x∞[n]. In the case of the periodogram, the taper is
a rectangular window, for which this ratio equals N2/N = N . For non-rectangular
windows, which are used in the so-called modified periodogram, the dependence of
this factor on N is nearly linear. It is thus common practice to introduce a quantity
called processing gain of the window,

PG = (
∑N−1

n=0 w[n])2

N
∑N−1

n=0 w2[n] ,

that turns out to be dependent on the taper shape but practically independent of N .
For the rectangular window, PG = 1. We can thus finally write2

SNRo = SNRi × N × PG.

The practice shows that a periodic signal can be detected clearly, and its frequency
can be estimated accurately, if SNRo ≥ 25, i.e., if

SNRo = SNRi × N × PG ≥ 25.

2Note that the terms “input” and “output” here refer to a power spectrum estimation algorithm: a
signal having a given SNRi enters the algorithm; in the spectral estimate, the signal-to-noise ratio is
modified by a factor depending on the shape and length of the taper and is transformed into SNRo.
Looking at the latter, we can evaluate the capability of the estimator to detect the imprint of the
sinusoid/complex exponential buried in noise.
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Therefore for the periodogram, for which PG = 1, we must have SNRi ≥ 25/N for
the sinusoidal signal not to be submerged by the noise. From now on, we will simply
write SNR to indicate SNRo, unless otherwise specified.

As an example of the effect of varying SNR, in Fig. 10.6 the periodogram of a
signal with N = 64 samples is shown. The signal contains a sinusoid with A = 5
and ω0 = 0.4π and white noise with increasing variance: from top to bottom we
set σe = 1, 10 and 100. While the parameters of the sinusoid, and its amplitude
in particular, remain fixed, as the noise variance increases the spectral background
rises, until it completely submerges the peak: the SNR is no longer sufficient to ensure
the peak detection. This can be understood observing that SNRi in the three cases
assumes the values 6.25, 0.0625 e 0.000625, and that consequently with PG = 1 we
have SNR = 400, 4.0 and 0.04 respectively, so that only the first value exceeds the
threshold of 25.
If in all three cases we get the SNR to exceed the threshold, the sinusoid remains
visible. For example, in Fig. 10.7 everything is as in the previous figure, except the
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Fig. 10.6 Examples of spectral estimates obtained via periodograms. The analyzed sequences are 50
realizations, with N = 64 samples each, of a process consisting in a sinusoid with amplitude A = 5
and frequency ω0 = 0.4π , immersed in Gaussian white noise with standard deviation increasing
from top to bottom: σe = 1, 10 and 100 respectively. Zero padding with NFFT = 8192. The gray
and black horizontal lines indicate the mean level of the noise background, σ 2

e , and the expected
height of the peak, N(A2/4) + σ 2

e , respectively. a 50 Realizations. b Ensemble average
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Fig. 10.7 Examples of spectral estimates obtained via periodograms. The analyzed sequences are
50 realizations, with N = 64 samples each, of a process consisting in a sinusoid with frequency
ω0 = 0.4π and amplitude increasing from top to bottom (A = 5, 50 and 500 respectively), immersed
in Gaussian white noise with standard deviation increasing from top to bottom (σe = 1, 10 and 100
respectively). Zero padding with NFFT = 8192. The gray and black horizontal lines indicate the
mean level of the noise background, σ 2

e , and the expected height of the peak, N(A2/4) + σ 2
e ,

respectively. a 50 Realizations. b Ensemble average

amplitude of the sinusoid that increases from top to bottom from 5 to 50 and then
to 500, so that with σe = 1, 10 and 100 respectively, SNRi = 6.25 and SNR = 400
� 25 in all three cases. The contemporary increase of A and σe maintains the SNR
constant to a value which is high enough to ensure peak detection.

Resolution of the Periodogram: Examples with Two Sinusoids in Noise

The smoothing introduced by the Bartlett window limits the ability of the peri-
odogram to resolve close narrowband components. To study this effect we consider
two sinusoids in white noise,

x∞[n] = A0 sin (ω0n + ϑ0) + A1 sin (ω1n + ϑ1) + e[n],

where ϑ0 and ϑ1 are uncorrelated random variables uniformly distributed between
0 and 2π , and e[n] is white noise with variance σ 2

e . We then consider the finite-length
signal x[n] extracted from x∞[n] by windowing. The theoretical power spectrum of
the signal is
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Pxx(ω) = σ 2
e + πA2

0

2
[δ(ω − ω0) + δ(ω + ω0)] + πA2

1

2
[δ(ω − ω1) + δ(ω + ω1)] ,

and the expected value of the periodogram is

E[IN (ω)] = 1

2π

∫ +π

−π

WB
[
ej(ω−θ)

]
Pxx(θ)dθ =

= σ 2
e + A2

0

4

{
WB

[
ej(ω−ω0)

]+ WB
[
ej(ω+ω0)

]}+

+A2
1

4

{
WB

[
ej(ω−ω1)

]+ WB
[
ej(ω+ω1)

]}
.

For this signal, the theoretical spectrum and the expected value of the periodogram
are shown Fig. 10.8 for N = 64, ω0 = 0.4π , ω1 = 0.45π and A0 = A1 = A.
Since the main lobe width of the spectral window depends only on N , for a given
value of N a limit exists for the closeness of the frequencies of two sinusoids—or the
central frequencies of two narrowband processes—beyond which the two features
are no longer resolved. A way to quantify resolution is to define a 
ω equal to the
spectral main lobe width, at its base, i.e., 4π/N , or at half height, i.e., about 6 dB
below the level of the maximum, a case in which we find 
ω = 0.89 × 2π/N . This
value can be assumed as a measure of the periodogram’s resolution, even if 
ω

actually measures the reciprocal of the resolution, meaning that the smaller 
ω, the
greater the resolution. Even if looking at 
ω represents an approximate and arbitrary
rule to quantify resolution, in practice it is difficult to resolve spectral features that

Fig. 10.8 a Theoretical
power spectrum of two
sinusoids with equal
amplitude A immersed in
white noise with variance
σ 2

e , and b expected value of
the periodogram of N = 64
samples of the same signal,
as it appears when
logarithmic ordinates are
used. The value shown for
the peaks’ heights in
E[IN (ω)] is approximate
because it does not take into
account the superposition of
the two spectral curves
related to the single
sinusoids. The frequencies
ω0 and ω1 in this example
are 0.4 e 0.45π respectively

(a)

(b)
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are finer than this. The rule also serves to understand how many data samples are
needed to achieve some desired resolution.
Figure 10.9 shows the periodograms of 50 realizations of a process of this kind and
their ensemble average, which approximates the expected value. In this example,
the following parameters have been adopted: 
ω = 0.05π , A0 = A1 = A = 5 and
σ 2

e = 1. Applying the rule for resolution, with 
ω = 0.05π we expect, using the less
restrictive half-height main lobe width, to be able to resolve the sinusoids with at
least N 	 (0.89 × 2)/0.05 	 36 samples. With N = 40 (upper panels of Fig. 10.9)
we actually are on the very margin of detectability for the sinusoids as separate
entities. With N = 64 (second row of panels) the two sinusoids are already resolved,
and are better and better resolved as N further increases in the lower panels.
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Fig. 10.9 Examples of spectral estimates obtained via periodograms. The analyzed sequences are
50 realizations, with N samples each, of a process containing two sinusoids with equal amplitudes
A = 5 and frequencies separated by 0.05π , immersed in Gaussian white noise with unit variance.
From top to bottom: N = 40, 64, 256 and 512. Zero padding with NFFT = 8192. a 50 Realizations.
b Ensemble average
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Remarks

The problems of leakage and frequency resolution we described above, as well as the
great variability of the spectral estimates via periodogram, provide the motivation
for the spectral methods described in the next sections. Such methods do not make
any assumptions concerning the examined process and are therefore referred to as
non-parametric spectral methods, in order to distinguish them from other methods
that will be introduced in the next chapter and that assume that the signal can be
represented approximately by a mathematical model having parameters (parametric
methods).
Non-parametric methods aim at obtaining a consistent estimate of the power spectrum
through some smoothing of the periodogram. They allow for a reduction of the
estimate’s variance, but at the cost of some loss of resolution.

10.3.4 Variance Reduction by Band- and
Ensemble-Averaging

An immediate and widely used method to reduce the variance of the periodogram
consists of performing a running average (moving average) of an odd number L
of IN [k] samples. The choice of an odd number allows for assigning the resulting
average to one of the original frequencies ωk . Usually, L values of 3–5 are employed,
but if we want to smooth out the periodogram more drastically we can increase L.
This procedure is called band averaging, since, as shown in Fig. 10.10 in the case of
L = 3, it means uniting L frequency bins, thus averaging over a frequency band of
width equal to L times the original bin width.

The running average corresponds to applying to the sequence IN [k] a rectangular
FIR filter with length L; the samples of the impulse response are all equal to 1/L.

Fig. 10.10 Performing a
band averaging of the
periodogram by a running
average over L = 3 spectral
samples means uniting L
frequency bins, thus
averaging over a frequency
band of width equal to L
times the original bin width
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Since the frequency response of such a filter only meets very poor specifications, band
averaging must be considered as a naive way to reduce the periodogram variance. As
an alternative, which however is only slightly better, some authors have suggested to
use a filter with a tapered shape of h[n], like, for instance, a Daniell’s filter (Daniell
1946) with length L:

hD[n]

⎧
⎪⎨

⎪⎩

1
2(L−1)

for n = 0 and n = L − 1,

1
L−1 otherwise.

The shape of Daniell’s filter for L = 5 is shown in Fig. 10.11a, while Fig. 10.11b
shows the corresponding rectangular running-average filter.

A more sophisticated approach is referred to as ensemble averaging (see Kay
1988). If we had K sequences, each drawn from a different realization of a random
process, we could calculate the periodogram of each sequence and then take the
ensemble average. The expected PSD value at any given frequency would be the
same expected for an individual periodogram but the variance would be reduced by a
factor K , since we would average over independent estimates. This approach can be
adopted even if we have only one sequence: we can generate a pseudo-ensemble by
dividing the sequence into a number of equal-length subsequences and then proceed
as described above. Of course, in doing so we rely on the hypothesis of stationarity
of the process.

This is the rationale behind the methods of Bartlett and Welch. The latter also
considers the possibility of applying tapered windows to the signal, i.e., to average
a number of modified periodograms (Sect. 10.5) rather than ordinary periodograms.
We will see that these methods reduce the variance of the spectral estimate but also
cause resolution loss.

Fig. 10.11 a Daniell filter
and b running-average filter
used for the band averaging
of the perodogram, in a case
of length L = 5
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10.4 Bartlett’s Method

In Bartlett’s method (Bartlett 1948), the data sequence x[n], with n = [0, N − 1],
is divided into K adjacent and non-overlapping segments containing M samples
each: N = KM. We can denote these subsequences by x(i)[n] = x[n + (i − 1)M],
where 0 ≤ n ≤ M − 1 and 1 ≤ i ≤ K . The periodograms of the subsequences are
then computed:

I (i)
M (ω) = 1

M

∣∣∣∣∣

M−1∑

n=0

x(i)[n]e−jωn

∣∣∣∣∣

2

,

in which M in the denominator represents the length of each subsequence. Note
that when the periodogram is computed at discrete frequencies, the decrease of the
data length from N to M causes each periodogram to lose some low-frequency
information. In fact, the distance between adjacent frequencies ωk is now 2π/M >

2π/N and this is also the value of the first non-zero discrete frequency for which we
a get a spectral estimate.

If γxx[l] is “small” for |l| > M, i.e., if AC decreases rapidly enough with increasing
lag, it is reasonable to assume that the periodograms I (i)

M (ω) are independent on one
another. We can then take as the Bartlett spectral estimate the sample mean of these
K independent observations of IM(ω), i.e., the non-negative function of frequency

Bxx(ω) = 1

K

K∑

i=1

I (i)
M (ω).

The expected value of Bxx(ω) is

E[Bxx(ω)] = 1

K

K∑

i=1

E[I (i)
M (ω)],

but since the various E[I (i)
M (ω)] are all equal, we get

E[Bxx(ω)] = E[I (i)
M (ω)] = 1

2π

∫ +π

−π

WB,2M−1
{
ej(ω−θ)

}
Pxx(θ)dθ

where the transform of the Bartlett window of length 2M − 1 appears, corresponding
to periodograms calculated over M = N/K samples:

WB,2M−1
(
ejω
) = 1

M

[
sin(M ω

2 )

sin ω
2

]2

.

Therefore, the expected value of the Bartlett spectral estimate is given by the convolu-
tion integral of the true spectrum with a spectral window WB,2M−1(ejω), and therefore
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Bxx(ω) is a biased estimate. Bartlett’s estimate is actually more biased than IN (ω),
because with M < N the spectral window has a wider main lobe with respect to the
spectral window WB,2N−1(ejω) appearing in IN (ω). As a consequence, resolution is
smaller. Sidelobes are also responsible for leakage issues.

As the sample mean of K independent observations of IN (ω), Bxx(ω) has a variance
equal to the variance of the individual I (i)

M (ω), divided by their number K :

σ 2
Bxx(ω) = 1

K
σ 2

IM (ω) = 1

K
P2

xx(ω)

{
1 +

[
sin(Mω)

M sin ω

]2
}

≈ 1

K
P2

xx(ω).

We thus see that σ 2
Bxx(ω) → 0 for K → ∞, that is, for N → ∞: by introducing Bxx(ω)

we obtained, as desired, a consistent estimate of Pxx(ω).
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Fig. 10.12 Examples of Bartlett spectral estimates for a Gaussian white noise process with unit
variance (50 realizations with N = 512 samples each). From top to bottom the following cases are
considered: M = 512, K = 1 (periodogram); M = 128, K = 4; M = 32, K = 16. a 50 Realizations.
b Ensemble average
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To illustrate the properties of Bartlett’s method we can consider 50 realizations of a
white noise process with unit variance and take N = 512 samples of each realization.
We then compute a Bartlett spectral estimate choosing different values for M and
K . In Fig. 10.12, from top to bottom, the values of M and K are: M = 512, K = 1
(periodogram); M = 128, K = 4; M = 32, K = 16. We can observe that the variance
of the spectral estimate decreases as K increases.

In summary, for a given value of N the variance of Bxx(ω)decreases with increasing
K but at the same time the bias increases, so that resolution worsens. In applications
we will have to choose a value of K representing the proper compromise between
low variance and high resolution. If we expect narrowband features close to one
another in the spectrum and resolution is an issue, we will choose a relatively small
K and therefore a relatively large M; if we are interested in a smooth spectral estimate
and do not need high resolution we will privilege low variance and choose a higher
value of K . On the other hand, if we were able to chose an arbitrarily large N—
compatibly with the stationarity of the process—after choosing M according to the
desired resolution we could deduce from the expression of σ 2

Bxx(ω) the value of K and
hence of N that would lead to an acceptable value of the variance.

10.5 Modified Periodogram

The modified periodogram is a variation of the periodogram which tends to reducing
leakage by lowering the sidelobes of the spectral window that appears in E[IN (ω)].
It is not aimed at reducing the variance of the periodogram.

When computing the periodogram we implicitly apply a Bartlett window to γxx[l],
and this corresponds to applying a rectangular window to the random signal. If we
apply a more gradual window to the data, the window applied to γxx[l] becomes more
tapered than the Bartlett one and has lower sidelobes (see Fig. 5.5).

We may wonder why a more tapered window has lower sidelobes. Let us consider
a window exhibiting a rapid transition between two amplitude levels: the most rapid
transition is that of the rectangular window that passes from 0 to 1 in just one unit
of discrete time. This transition actually is an impulse that in the frequency domain
has infinite bandwith, meaning that we need all possible frequencies to represent it.
If the transition is less rapid, in the frequency domain it can be described by less
high-fequency components and this is reflected into a lowering of sidelobes.

The modified periodogram is employed in the Welch method for the reduction of
periodogram’s variance, in which the data sequence is divided into subsequences of
length M < N and the modified periodograms of all of them are averaged to reduce
variance. Taking into consideration the use of tapered windows, in Welch’s method
the subsequences are allowed to partially overlap.

http://dx.doi.org/10.1007/978-3-319-25468-5_5
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Multiplying the sequence samples by a tapered window affects the signal’s average
power, because the samples falling at the edges of each subsequence are attenuated.
In order to compensate for this effect, in the definition of the modified periodogram
a normalization factor is inserted, such that the choice of a particular window does
not affect the PSD estimates. Thus, the definition of modified periodogram is

JN (ω) = 1

NU

∣∣∣∣∣

N−1∑

n=0

w[n]x[n]e−jωn

∣∣∣∣∣

2

,

where the normalization factor U is chosen as U = (1/N)
∑N−1

n=0 w[n]2, representing
the average power of the window.

The expected value of the modified periodogram is

E[JN (ω)] = 1

2πNU

∫ +π

−π

∣∣W
[
ej(ω−θ)

]∣∣2 Pxx(θ)dθ,

where 1/(NU)
∣∣W (ejω)

∣∣2 is the spectral window.
What is the rationale behind the choice of U? We want to choose the factor

1/(NU) in such a way that E[JN (ω)] → Pxx(ω) as, for increasing N , the bandwidth
of the spectral window becomes narrower and narrower.3 For this purpose, recalling
Parseval’s theorem we impose the condition

1

2πNU

∫ +π

−π

∣∣∣W
(

ejω
)∣∣∣

2
dω = 1

2πNU

∫ +π

−π

∣∣∣∣∣

N−1∑

n=0

w[n]e−jωn

∣∣∣∣∣

2

dω = 1

NU

N−1∑

n=0

w[n]2 = 1

which actually requires

U = 1

N

N−1∑

n=0

w[n]2 =
{

1 for a rectangular window,

0 < U < 1 for tapered windows normalized so that max(w[n]) = 1.

Note that if the window is rectangular, U = 1 and the modified periodogram becomes
an ordinary periodogram.

The fact that U in the denominator of JN (ω) is required to be less than 1 in the case
of tapered windows is easily understood if we think that when we multiply a sequence
by a gradual window, the samples near the edges are attenuated. An alternative to
choosing U in the way described above could be to absorb the normalization in the
samples of the tapered window in such a way as to get U = 1 in all cases. Of course
max(w[n]) would no longer be 1. In summary, since only the application of a window
with unit average power does not alter the average power of the signal, we can define
the window in such a way to get unit average power whatever the window shape, or

3For N → ∞ the spectral window would become a periodic impulse train, i.e., a train of Dirac δ,
but for a finite N the bias can vanish only asymptotically.
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use a window with max(w[n]) = 1 and average power possibly different from 1, and
then properly correct the spectral estimate.

Since the modified periodogram is simply a periodogram of a windowed sequence,
its variance is approximately the same as for the periodogram. Therefore the modified
periodogram is not a consistent estimate of the power spectrum and the use of a
gradual window does not offer any advantage in terms of variance reduction. The
gradual window however ensures the possibility of a trade-off between resolution
(mainlobe width of the spectral window) and leakage (height of sidelobes). For
instance, if we define resolution through the bandwidth of the spectral window at
3 dB, using a Hamming window in place of the rectangular one for the purpose of
reducing sidelobes, we must also accept a decrease of resolution4 of about 50 %.

Let us see an example of modified periodogram. We take a signal with two sinu-
soids in a small amount of white noise,

x[n] = A0 sin (ω0n + ϑ0) + A1 sin (ω1n + ϑ1) + e[n]

with A0 = 0.1, A1 = 1, ω0 = 0.225π , ω1 = 0.3π and random initial phases;
σ 2

e = 2.5 · 10−3; N = 128 samples. We take 50 realizations of this process and
investigate if this spectral tool offers advantages for the detection of a sinusoid which
is much weaker than the other. In this example, the SNR is good for both compo-
nents, and their frequency separation would be sufficient to resolve them if they had
comparable amplitudes. As we can see in Fig. 10.13, if we choose a rectangular win-
dow (upper panels; simple periodograms), the smaller sinusoid is however masked
by the dominant one and is almost invisible. If instead we estimate the spectrum by a
modified periodogram with Hamming window (lower panels), the weaker sinusoid
is clearly visible, because the sidelobes of the spectral window are much lower.

As explained above, by the modified periodogram we reduce leakage but from
the point of view of resolution, the widening of the main lobe of the spectral win-
dow worsens the situation. Moreover, the same widening/lowering also implies a
lesser detectability of a single sinusoid in noise, all other conditions being equal,
as whitnessed by the fact that all non-rectangular windows have a processing gain
PG < 1:

• PG = 0.75 for the Bartlett window,
• PG = 0.67 for the Hanning window,
• PG = 0.73 for the Hamming window,
• PG = 0.58 for the Blackman window.

4Note that this choice for defining resolution is coherent with what we stated about the periodogram:
there we talked about the possibility of defining resolution through the bandwith of the spectral
window WB,2N−1 at 6 dB, but since wB,2N−1[n] = (1/N)wR,N [n] ∗ wR,N [n], so that WB,2N−1(ejω) ∝∣∣WR(ejω)B,N

∣∣2, this is equivalent to using for the periodogram the bandwidth at 3 dB for WR(ejω).
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Fig. 10.13 Periodogram (upper panels) and modified periodogram with Hamming window (lower
panels) for N = 128 samples of a signal containing two sinusoids immersed in Gaussian white noise.
The signal’s parameters are such that SNR is good for both sinusoids and their frequency distance is
large enough to ensure that we could see them resolved if their amplitudes were comparable. In this
case, however, one sinusoid has an amplitude 10 times smaller than the other. When the spectrum is
estimated via periodogram, the smaller sinusoid is masked by the sidelobes of the spectral window
centered at the frequency of the larger-amplitude component. Using a modified periodogram, the
picture is definitely more clear. a 50 Realizations. b Ensemble average

10.6 Welch’s Method

Welch’s method method (Welch 1967), also known as Welch’s overlapped segment
averaging (WOSA) method, consists in taking the average of modified periodograms.
It associates the Bartlett’s idea of averaging periodograms of subsequences in order
to reduce the variance of the spectral estimate with the idea of applying to the data a
tapered window, in order to reduce leakage. It is the most widely used method among
classical ones.

The sequence of N samples is subdivided into K subsequences of M samples
each, and a real window w[n] is applied directly to each subsequence x(i)[n] before
calculating the periodograms. Welch’s method thus performs the direct calculation
of the PSD estimate, which is defined as the average of the modified periodograms:

BW
xx (ω) = 1

K

K∑

i=1

J(i)
M (ω),
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with each modified periodogram being defined as

J(i)
M (ω) = 1

MU

∣∣∣∣∣

M−1∑

n=0

w[n]x(i)[n]e−jωn

∣∣∣∣∣

2

,

with a normalization factor

U = 1

M

M−1∑

n=0

w[n]2

that serves to have asymptotically unbiased estimates.
We may note that each modified periodogram could also be written as a modified

correlogram:

J(i)
M (ω) = 1

U

∣∣∣∣∣∣

M−1∑

l=−(M−1)

c(i)
vv[l]e−jωl

∣∣∣∣∣∣

2

,

where c(i)
vv[l] is the AC of the windowed subsequence v(i)[n] = w[n]x(i)[n].

The expected value of the Welch spectral estimate is given by the convolution
integral of the true spectrum with the spectral window

W (ejω) = 1

MU

∣∣∣∣∣

M−1∑

n=0

w[n]e−jωn

∣∣∣∣∣

2

,

that is,

E[BW
xx (ω)] = E[J(i)

M (ω)] = 1

2π

∫ +π

−π

W
[
ej(ω−θ)

]
Pxx(θ)dθ =

= 1

2πMU

∫ +π

−π

∣∣∣∣∣

M−1∑

n=0

w[n]e−j(ω−θ)n

∣∣∣∣∣

2

Pxx(θ)dθ.

Therefore as in the time domain we apply some causal and non necessarily symmetric
window w[n] to the data sequence, in the frequency domain a spectral window W (ejω)

appears, which is proportional to the square modulus of the transform of w[n]. This
could be demonstrated as we did for the periodogram, i.e., working on the Blackman-
Tukey definition of modified correlogram.

These properties lead to the following consequences:

• with any type of time window, the spectral window is always non-negative, and
therefore also the Welch estimate BW

xx (ω) is always non-negative, being Pxx(ω)

itself a non-negative quantity. With other estimators, negative spectral estimates
can occur at some frequencies. These values are meaningless and in the practice
they are set to zero. This cannot happen with the Welch estimator;
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• the Welch estimate is biased, but asymptotically unbiased;
• it is smoother than the periodogram, because the true spectrum is convolved in

the frequency domain with a spectral window which has a wider main lobe with
respect to the spectral window appearing in the periodogram. Indeed, in this case
N is substituted by M < N .

The variance of the Welch estimator, in the hypothesis that the subsequences do
not overlap, can be shown to be

σ 2
BW

xx (ω)
∼= 1

K
P2

xx(ω),

hence the variance decreases with increasing K and goes to zero as K → ∞, meaning
N → ∞: so we have a consistent estimator.

In Welch’s method, however, a partial overlap of the subsequences is also possible;
indeed, some overlap is nearly always adopted. The subsequences are then written as
x(i)[n] = x[n + iD] with n = [0, M − 1] and i = [0, K − 1], where iD is the discrete
time at which the ith subsequence starts. The overlap of adjacent subsequences
covers M − D samples, so that N = M + D(K − 1). For example, if D = M the
segments do not overlap and K is the same as in Bartlett’s method, K = N/M; if
D = M/2 there is a 50 % overlap and K = 2(N/M) − 1 ≡ KW elch

∼= 2KBartlett , M
being equal (with obvious notation). In this way the same resolution as Bartlett’s
method is maintained, in the sense that M is the same, but the number of periodograms
over which we average the spectral estimate is doubled, so that variance reduction
improves. Note also that with the same 50 % overlap we could form K = (N/M) − 1
subsequences with length 2M, so that KW elch

∼= KBartlett but with doubled length
segments: resolution would improve due to the doubling of M, while the variance
reduction would be the same as in Bartlett’s method. The choice of parameters in the
Welch method thus offers the possibility of easily handling the resolution-versus-
variance trade-off, since we can choose to increase either the number or the length
of the data segments.

A general expression for the variance of Welch’s estimator in the general case of
a varying amount of overlap between segments in association with different tapers
is difficult to give, even assuming that this estimator is approximately unbiased to
simplify the problem. Indeed, this variance depends on both the window and the
amount of overlap, which for a given N determine M and K . For an approximate
expression see, e.g., Percival and Walden (1993). In general, we could think that
an amount of overlap greater than 50 %, with a given N , would result in a more
substantial reduction of variance, since we would get a larger K and would average
over more periodograms. However, in most cases it would no longer be possible
to consider the individual periodograms as independent spectral estimates, not even
approximately: so this is not a good argument, and actually 50 % is the percentage
of overlap normally used in association with moderate tapers, such as the Bartlett or
the Hanning window. For stronger tapers, an overlap percentage greater than 50 %
may be advisable to get the best results in terms of variance reduction (Percival and
Walden 1993). As an example, here we report an approximate expression for the
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variance of the Welch estimator, valid for 50 % overlap and the use of a Bartlett
window:

σ 2
BW

xx (ω)
∼= 9

8K
P2

xx(ω),

which means that K being equal, the variance of the Welch estimator with a Bartlett
window is comparable to that of the Bartlett estimator, in fact slightly higher, by a
factor 9/8. However, with a fixed number N of data and a fixed value of M, i.e., with
a given resolution, a 50 % overlap in the Welch method produces two times as many
segments over which we can average, i.e., it yields KW elch

∼= 2KBartlett = 2N/M,
and therefore halves the variance with respect to Bartlett’s method. Expressing the
variance in terms of N and M, rather than in terms of K , for the Bartlett window and
50 % overlap we have

σ 2
BW

xx (ω)
∼= 9

16

M

N
P2

xx(ω),

and since σ 2
Bxx(ω) ≈ (M/N)P2

xx(ω) for a given resolution (fixed M), we get

σ 2
BW

xx (ω)
∼= 9

16
σ 2

Bxx(ω).

The behavior of the Welch estimator with respect to those of the periodogram and
of the Bartlett estimator is illustrated in the examples of Fig. 10.14. We consider 50
realizations of a signal containing two sinusoids with equal amplitudes and differ-
ent frequencies, immersed in white noise with unit variance. We set A0 = A1 = 5,
ω0 = 0.4π , ω1 = 0.45π , with N = 512 samples. In Fig. 10.14, the two top panels
show a Bartlett spectral estimate with K = 1, that is, a periodogram. We can observe
the great variance of the estimate—the part of the spectrum that does not contain any
peak should be a flat line—and the finite width of the peaks that causes resolution to
be limited, though more than sufficient in this particular case.

To the same 50 realizations we also apply Bartlett’s method with K > 1, choosing
first K = N/M = 4 (that leads, with N = 512, to M = 128; second row of panels
from top), and then K = 8 (that leads to M = 64; third row). We see that the variance
of the estimate decreases with increasing K , while resolution worsens. At last, to
the same 50 sequences with N = 512 we apply Welch’s method adopting a Hanning
window, M = 128 and a 50 % overlap, so that K = 7 (bottom panels). If we compare
the bottom panels with those of the third row, we see that K being nearly equal (K = 8
in the third row, K = 7 in the bottom row), the variance is approximately the same,
as expected. Moreover, though the main spectral lobe width of the Hanning window
used for the Welch estimate is larger than the main spectral lobe of the rectangular
window used for the Bartlett estimate, the resolution we get by Welch’s method is
similar to the one we get by Bartlett’s method, or even better. This is due to the
fact that the 50 % overlap in Welch’s method allows for having M = 128, while in
Bartlett’s method we had M = 64. But basically, what do we gain applying Welch’s
method instead of Bartlett’s method in this case? We obtain a leakage reduction,
because by abandoning the rectangular window we gain a reduction in height of the
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Hanning, M = 128, K = 7

Fig. 10.14 Examples of spectral estimates obtained via periodograms, Bartlett’s and Welch’s meth-
ods. The data are 50 realizations, with N = 512 samples each, of a process containing two sinu-
soids (A0 = A1 = 5; ω0 = 0.4π , ω1 = 0.45π ) in unit-variance Gaussian white noise. From top to
bottom: periodogram; Bartlett’s method with M = 128 and K = 4; Bartlett’s method with M = 64
and K = 8; Welch’s method with M = 128, a Hanning window and 50 % overlap, resulting in
K = 7. a 50 Realizations. b Ensemble average

spectral window’s sidelobes. This is demonstrated by the comparison between the
third and fourth panels from top in Fig. 10.14b: observe how flat is the peak-free part
of the spectrum in the Welch’s estimate with a Hanning window.

10.7 Blackman-Tukey Method

The spectral methods presented above are direct methods based on the DTFT of the
sequence. The Blackman-Tukey method (Blackman and Tukey 1958) works on the
estimated AC sequence instead. It is particularly useful for short sequences, in that it
does not operate any subdivision of the record in smaller segments, but only smooths
the periodogram by convolving it with a proper spectral window W (ejω) which is
a real and even function of ω. With respect to the periodogram, this method can
provide a significant variance reduction, i.e., an increase of stability, at the cost of a
remarkable resolution loss.
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The Blackman-Tukey (BT hereafter) spectral estimate is defined as

Sxx(ω) = 1

2π

∫ +π

−π

IN (θ)W
{
ej(ω−θ)

}
dθ,

where IN (θ) is the BT periodogram (correlogram), i.e., the transform of cxx[l], and
W (ejω) is a real spectral window and an even function of ω. Sxx(ω) can therefore be
interpreted as the Fourier transform of the product of cxx[l] with the inverse transform
of W (ejω), that is,

w[l] = 1

2π

∫ +π

−π

W (ejω)ejωldω,

representing a real, non-causal tapered window with even symmetry around the time
origin. This symmetry is in fact required to ensure the spectral window W (ejω) to
be a real even function of ω; moreover, it would make no sense to apply a non-
symmetrical window to a symmetrical AC sequence. Let us assume that the time
window w[l] has a length 2M − 1, with samples going from discrete time −(M − 1)

to M − 1, and is identically zero elsewhere. We thus can write

Sxx(ω) =
M−1∑

l=−(M−1)

cxx[l]w[l]e−jωl.

This definition highlights how the BT estimate is nothing but a modified correlogram.
Therefore the approach also has to do with leakage reduction. The window is applied
to cxx[l] and not directly to the data; cxx[l] exists for all lags |l| < N , but we cut out a
shorter segment, of length 2M + 1, symmetrical with respect to l = 0 in agreement
with the symmetry properties of cxx[l], and properly tapered at the edges. This serves
to reduce the statistical weight of the estimates cxx[l] at large lags, which are the least
accurate and most variable ones and negatively affect the variance of the spectral
estimate.

Sxx(ω) is then required to be non-negative, as Pxx(ω). A sufficient condition for
this—even if not necessary—is that W (ejω) ≥ 0 over the whole interval (−π, π ],
since the periodogram is itself a non-negative estimate of the power spectrum. This
is true for the Bartlett window but is not true, for instance, for the Hanning and
Hamming windows.5 Thus these windows, even if able to provide a better behavior
of sidelobes, may lead to negative spectral estimates at some frequencies, which are
corrected setting them to zero.

The expected value of the modified correlogram is

E[Sxx(ω)] = 1

2π

∫ +π

−π

E[IN (ω)]W {
ej(ω−θ)

}
dθ.

5Recall that here we are speaking of non-causal windows, having a real transform. Note that Fig. 5.5
shows transform squared magnitudes and therefore does not allow to verify the above statement.

http://dx.doi.org/10.1007/978-3-319-25468-5_5
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We may recall that

E[IN (ω)] = 1

2π

∫ +π

−π

Pxx(ω)WB,2N−1
{
ej(ω−θ)

}
dθ,

so we have a convolution in the frequency domain between W (ejω), WB,2N−1(ejω)

and Pxx(ω). In the time domain this corresponds to

E[Sxx(ω)] =
M−1∑

l=−(M−1)

{γxx[l]w[l]wB[l]} e−jωl,

where γxx[l] is the theoretical AC sequence and

• wB[l] = (N − |l|) /N with |l| < N is a causal, 2N − 1-samples long Bartlett
window

• w[l] is a non-causal taper, symmetrical around l = 0 and 2M − 1-samples long.

We assumed M ≤ N . If N , which is

• the length of the data record, and
• the half-length of γxx[l] and wB[l],
is large with respect to M, which is the half-length of the window w[l] applied to
the AC sequence, then WB,2N−1(ejω) is narrowband with respect to W (ejω). Since
a convolution with a narrowband spectral window does not greatly alter a given
function of frequency,6 we can write

E[Sxx(ω)] ∼= 1

2π

∫ +π

−π

Pxx(ω)W
{
ej(ω−θ)

}
dθ,

since with respect to the smoothing operated by W (ejω), E[IN (ω)] ≈ Pxx(ω): the
expected value of the BT estimate is similar to the convolution of the true spectrum
with W (ejω). Thus choosing a short AC window w[l], by setting M � N , implies
adopting a spectral window W (ejω) which is definitely wideband with respect to the
bandwidth of the intrinsic spectral window WB,2N−1(ejω), and as a consequence, the
BT estimate becomes very smooth and stable, but its resolution becomes very poor
with respect to the periodogram.

The variance of Sxx(ω) is found to be (Kay 1988)

σ 2
Sxx(ω)

∼= 1

2πN

∫ +π

−π

P2
xx(ω)W 2

{
ej(ω−θ)

}
dθ,

and therefore it is essential to study the influence of the shape and length of the
window w[l] on the variance of the BT estimate. If M is simultaneously

6The convolution with a Dirac δ would leave the function unaltered.
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• much smaller than N , so that W (ejω) is wideband with respect to WB,2N−1(ejω),
• large enough to ensure that at the same time W (ejω) is narrowband with respect to

the typical variations of Pxx(ω), so that a proper frequency resolution is guaranteed,

then we can write, for frequencies not near 0 or ±π (see Kay 1988),

σ 2
Sxx(ω) 	 1

2πN
P2

xx(ω)

∫ +π

−π

W 2(ejω)dω.

We can now study the asymptotic behavior of the BT spectral estimate. We know
that IN (ω) is asymptotically unbiased. How does E[Sxx(ω)] behave for N → ∞?

If N is large we can choose a large M and make W (ejω) narrowband with respect
to the variations of Pxx(ω), hence

E[Sxx(ω)] ∼ Pxx(ω)
1

2π

∫ +π

−π

W (ejω)dω.

To have an asymptotically unbiased estimate we must thus impose the condition

w[0] = 1

2π

∫ +π

−π

W (ejω)dω = 1,

i.e., we must properly normalize the window samples. On the other hand, σ 2
Sxx(ω) goes

to zero for N → ∞, hence the BT spectral estimate is consistent.
The improvements with respect to the periodogram that are achieved using tapered

windows in the BT method can be quantified comparing the expressions of E[Sxx(ω)]
and σ 2

Sxx(ω) with the corresponding expressions for the periodogram, which is also a
non-modified correlogram. For large values of N the variance of the periodogram
can be approximated as

σ 2
IN (ω)) =

⎧
⎪⎨

⎪⎩

Pxx(0) · (1 + 1) = 2Pxx(0) for ω = 0,

Pxx(π) · (1 + 1) = 2Pxx(π) for ω = π,

P2
xx(ω) · (1 + 0) = P2

xx(ω) elsewhere,

where the second term in parentheses—1 or 0—derives from {sin(Nω)/ [N sin ω]}2

in the expression of the periodogram variance (Sect. 10.3.2). Therefore in the open
interval 0 < ω < π the variance reduction achieved by the BT method with respect
to the periodogram is

R = σ 2
Sxx(ω)

σ 2
IN (ω)

= 1

2πN

∫ +π

−π

W (ejω)2dω = 1

N

M−1∑

l=−(M−1)

w[l]2.
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Table 10.1 Properties of some non-causal windows used to truncate the estimated AC sequence
in the Blackman-Tukey method; see text for the meaning of the symbols

Window Expression L R

Rectangular wR[l] = 1 for |l| < M 2π
M 2 M

N

wR[l] = 0 elsewhere

Bartlett wB[l] = 1 − |l|/M for |l| < M 8π
2M−1 ≈ 4π

M
2M
3N 	 0.67 M

N

wB[l] = 0 elsewhere

Raised cosine wH [l] = α + β cos π l
M−1 for |l| < M 4π

M 2(α2 + β2

2 ) M
N

wH [l] = 0 elsewhere

Hanning α = β = 0.5 0.75 M
N

Hamming α = 0.54, β = 0.46 0.80 M
N

To derive this equation, Parseval’s theorem was used, according to which

1

2π

∫ +π

−π

W (ejω)2dω =
M−1∑

l=−(M−1)

w[l]2.

Since we desire a variance reduction in comparison with the periodogram, we must
choose M and the window shape in such a way to have R < 1. At the same time we
will also have to consider the resolution loss connected to the tapered window we
intend to adopt. The latter factor can be quantified by the half-width L of the main
lobe of W (ejω), measured at the base of the lobe, or at some other specified height.
Table 10.1 illustrates these properties of the windows that are normally used in the
BT method—those applied in addition to the implicit window wB[l]. The values of
L and R shown in Table 10.1 are approximate and valid for 1 � M � N . Obviously,
the smallest possible values of L and R are sought. The last column in Table 10.1
clearly reveals that for a fixed N the variance reduction is essentially related to the
choice of M, i.e., to the truncation of the AC sequence.

From Table 10.1 we see, for instance, that with M/N = 1/20 the Bartlett window
provides R = 1/30, i.e., the variance is 30 times smaller than that of the periodogram.
In practice, Kay (1988) recommends to choose

N

10
< M <

N

5
,

i.e., windows should be no more than one-tenth to one-fifth the total number of data
points, in order to obtain the desired estimate-variance reduction, and not too much
smaller, in order to retain the ability to resolve peaks at neighboring frequencies and to
obtain the desired leakage reduction. More precisely, Chatfield (1975) recommends
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• for 100 < N < 200, M = N/6;
• for 1000 < N < 2000, M = N/10;
• for larger values of N , more restrictive choices.

In applications, it is advisable to try more than one value of M and compare the
results: for example, if the suggested value is N/10, we may want to try N/5, N/10,
N/15. As for the window shape, the most widely used windows are probably the
Bartlett window and the so-called raised cosine windows (Table 10.1: Hanning and
Hamming).

In summary, under the hypothesis that the length of the window applied to the AC
sequence is such that the spectral window W (ejω) can be considered both narrowband
with respect to the typical variations of the spectrum that must be estimated, and
wideband with respect to WB,2N−1(ejω), the following equations hold:

E[Sxx(ω)] ∼ Pxx(ω)
1

2π

∫ +π

−π

W (ejω)dω,

σ 2
Sxx(ω) 	 1

2πN
P2

xx(ω)

∫ +π

−π

W (ejω)2dω ∼= 1

N
P2

xx(ω)

M−1∑

l=−(M−1)

w[l]2.

This means that a large M implies a good frequency resolution and a limited smooth-
ing of the true spectrum, but also a large variance of the spectral estimate. We must
not forget that a large M is possible only if N is large, so that we can accurately
compute the AC estimates for lags l = [−(M − 1), M − 1]. On the contrary, a small
M lowers the variance but smooths the spectrum so much that resolution is severely
limited. These properties are reflected in the dependence of σ 2

Sxx(ω) on N and M: the
variance decreases with increasing N but for fixed N is found to be directly propor-
tional to M. The search for a proper compromise between small variance, i.e., small
spectrum-estimation error, and satisfactory resolution thus turns into the search for
the most appropriate M value.

The behavior of the BT estimator is illustrated in Fig. 10.15. All the panels refer
to 50 realizations of the same process analyzed in Fig. 10.14. Two different windows
are considered, Bartlett and Hamming, and M assumes different values: with a con-
stant number of signal samples (N = 512), the values M = N/6, M = N/8, and
M = N/10 are considered. For a given window type, variance decreases as M
decreases (R ∝ M; this effect is hardly visible in the dB plots of Fig. 10.15). For
a given value of M, the Bartlett window produces a greater variance reduction than
the Hamming window. Resolution is nearly the same for both windows and increases
with M. In any case: the BT estimate is always a quite smooth and low-resolution
estimate. An example of application of the BT spectral method to a real-world signal
can be found in Sect. 12.3.

http://dx.doi.org/10.1007/978-3-319-25468-5_12
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Fig. 10.15 Examples of spectral estimates obtained applying the Blackman-Tukey method. The
analyzed series are the same of Fig. 10.14, with N = 512. Bartlett and Hamming windows are used,
with different values of M. a 50 Realizations. b Ensemble average

10.8 Statistical Significance of Spectral Peaks

We will now see how confidence intervals can be established for the power spectrum
estimate of a data record and how the statistical significance of spectral peaks possibly
detected in the spectrum can be evaluated. We will focus on the case of estimates via
the periodogram.

Let us take a sequence x[n] and suppose that each random variable xn, of which
x[n] at time n is a sample, has a Gaussian distribution. Then, Re {X[k]} and Im {X[k]}
are also Gaussian. Hence both |X[k]|2 and the periodogram estimate IN [k] obtained
via FFT are expected to approximately follow a χ2 distribution with ν = 2 degrees
of freedom (DOF). In fact, the χ2 distribution is typical of the sum of squares of a
number of independent Gaussian variables, and each square provides a DOF.
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Fig. 10.16 χ2 distribution
for some values of the
number ν of degrees of
freedom (DOF)
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Defining clearly what the expression “degrees of freedom” means in a general
statistical sense is definitely beyond the scope of this book. The reader is referred to
Stuart (2010) for this and other statistical topics. In the present frame, we can see
the DOF as the number of Gaussian variables that contribute to forming the variable
|X[k]|2 the distribution of which we are interested in. Here |X[k]|2 is determined
by the real and imaginary parts of X[k], so we have ν = 2 DOF.7 This is why the
periodogram has such a large variance: two degrees of freedom are not enough for
the periodogram to behave properly from a statistical point of view. The various
expedients adopted to reduce the periodogram’s variance and hence improve the
stability of the estimate are nothing but methods to increase the number of DOF of
the related χ2 distribution.

Figure 10.16 shows the shape of the χ2 distribution for some values of ν. The
distribution is asymmetric and is defined uniquely by the value of ν. Among the
properties of the variables distributed as χ2 we may mention the addition theorem,
according to which the sum of a number of independent variables distributed as χ2

is χ2-distributed with a number of DOF equal to the sum of the individual ν values.
The functional form of this distribution is

f
(
χ2) =

(
χ2
) ν

2 −1
e− χ2

2

2
ν
2 Γ
(

ν
2

)

7It may be more intuitive to refer to the discrete trigonometric expansion of a signal (Sect. 3.7): the
two Gaussian variables in this case are the expansion coefficients ak and bk ; the former is related to a
cosine of ωkn and the latter to a sine, and sine and cosine are mutually in phase quadrature. Therefore
a2

k + b2
k = |X[k]|2 has a χ2 distribution with ν = 2. Note that this conclusion is independent of the

sequence length, because the sinusoidal sequences used as the expansion basis are infinitely long.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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Fig. 10.17 χ2 distribution for ν = 2. The gray-shaded areas are of interest for the statistical test
concerning the periodogram (see text). They give a 10 % total probability for χ2 to be external to
the interval 0.103–5.992

where

Γ (α) =
∫ ∞

0
xα−1e−xdx.

As ν increases, the distribution progressively becomes wider and lower. Figure 10.17
shows the χ2 distribution for ν = 2 and illustrates the conditions in which statistical
tests for power spectrum values are performed.

Let us start with the issue of establishing confidence intervals for PSD values.
First, a probability level must be selected for the test. Since in this case we are
interested in both tails of the distribution, we indicate the probability level through
its half value: we write, for instance, p/2 = 0.05. Since χ2

1−p/2,ν = χ2
0.95,2 = 5.99

is the value of χ2 that has 95 % of probability of not being exceeded and χ2
p/2,ν =

χ2
0.05,2 = 0.103 is the value of χ2 that has 95 % of probability of being exceeded, the

gray-shaded areas in Fig. 10.17 give a total probability of p = 0.1 = 10 % for χ2 to
be external to the interval 0.103–5.99, while 1 − p = 0.9 = 90 % is the probability
of χ2 being comprised inside the same interval. We will say that χ2 falls inside the
interval χ2

p/2,2—χ2
1−p/2,2 at the confidence level (c.l.) of 100 (1 − p)%, while 100 p %

is referred to as the significance level of the test.
In the case of the power spectrum, the variable which is distributed as χ2 is

precisely νIN [k]/Pxx(ωk), i.e., ν times the ratio between the estimate and the true
value. Therefore we can state that with ν = 2

• at the significance level of 100 p %
• at the confidence level (c.l.) of 100 (1 − p)%

the confidence interval for the kth true PSD value at frequency ωk is

2IN [k]
χ2

1−p/2,2

≤ Pxx(ωk) ≤ 2IN [k]
χ2

p/2,2

,
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with χ2
p/2,2 < χ2

1−p/2,2. For example, with p = 0.90 as in Fig. 10.17 we have

2

5.992
IN [k] ≤ Pxx(ωk) ≤ 2

0.103
IN [k],

that is,
0.33 IN [k] ≤ Pxx(ωk) ≤ 1.94 IN [k].

The lower bound has 95 % probability of being exceeded and thus the true value of
IN [k] has only 5 % probability of being smaller than this lower bound. The upper
bound has 95 % probability of not being exceeded and thus the true value has only
5 % probability of being larger than this upper bound. The bounds are computed for
each k, i.e., at each frequency ωk .

Let us now turn to the evaluation of the statistical significance of a spectral peak
detected in the power spectrum. Here the question is: does this PSD value likely
represent a real spectral feature related to some periodic or quasi-periodic process,
or is it compatible with the hypothesis of a simple noise spike? To answer this question
we need

• the estimated PSD sample IN [k] to be tested
• a continuous background spectrum—a noise background spectrum—against which

the PSD estimate will be tested. This noise spectrum is the null hypothesis for the
test.

For instance, let us assume as the null hypothesis that the process is white noise,
and therefore has a true flat spectrum equal to σ 2

x . The test consists in checking if at
a given probability level, the detected peak is compatible with this assumption. We
admit that IN [k] can fluctuate around its true value σ 2

x , because of its random nature,
and we look for the maximum value that IN [k] can attain while fluctuating. In this
case we are interested only in the distribution’s upper tail, so we write

2IN [k]
χ2

1−p,2

≤ Pxx(ωk) = σ 2
x .

We do not know the true variance of the process, but we can approximate it by the
variance estimated from the available data record. Then the maximum value Isignif

that can be attained by the spectral estimate is

Isignif = σ 2
x χ2

1−p,2

2
.

With p = 0.05 and χ2
1−p,2 = 5.992 we have Isignif ≈ 3 σ 2

x . Under the null hypothesis
of white noise the significance level Isignif for the power spectral estimate is indepen-
dent of frequency. It is also referred to as the p %-c.l. spectrum (here, the 95 %-c.l.
spectrum).

The choice of the background spectrum is not trivial. In many fields—for instance
in geophysics (Allen and Smith 1996) and other sectors of physics, but also in
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Fig. 10.18 An example of power spectrum, estimated via periodogram, of a sequence of physical
measurements that exhibits decreasing power with increasing frequency. Data is atmospheric pres-
sure micro-fluctuations in Pascal (Pa), measured using a microbarometer in an experiment aimed
at detecting the influence of atmospheric gravity waves on visibility during fog episodes in the Po
Valley, Northern Italy

economics (see, e.g., Hess and Iwata 1997; McConnell and Perez-Quiros 1989;
Sella et al. 2013), in medicine and biology (see, e.g., Meltzer et al. 2008), etc.—the
spectra of measured variables exhibit a general behavior with decreasing power for
increasing frequency, rather than being nearly constant. As an example, Fig. 10.18
shows the periodogram of a record of N = 25,921 data of atmospheric pressure
micro-fluctuations in Pascal (Pa), measured using a microbarometer in an experi-
ment aimed at detecting the influence of atmospheric gravity waves on visibility
during fog episodes in the Po Valley, Northern Italy (Richiardone et al. 1995). In
such cases, the most representative background is not white noise but red noise,
a process that will be discussed in the next chapter and that is characterized by a
smooth spectrum with power declining as frequency increases. As we will see in the
next chapter, the theoretical power spectrum of a red noise process is given by

Prr[k] = σ 2
x (1 − α2)

1 + α2 − 2α cos(2πk/N)

with α = ρ[1], where ρ[1] indicates the AC coefficient (normalized autocovariance)
of the process at lag l = 1.

As a null hypothesis, we can thus assume that the process is red noise with a
parameter α estimated from the data. Alternatively, some authors have suggested to
use as the background spectrum a strongly smoothed version of the periodogram itself
or of some another spectral estimate, in order to eliminate the peaks and preserve
only the general spectral behavior. This could be a better assumption than a pre-
imposed functional form (Mann and Lees 1996). Anyway, the background spectrum
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Fig. 10.19 Periodogram of a
series of physical
measurements, with
significance levels computed
assuming a background of
white or red noise (95 % c.l.).
The gray dotted and dashed
horizontal lines represent the
white noise background and
the related significance level,
respectively. The black
dotted and dashed smooth
curves represent the red
noise background and the
related significance level,
respectively
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will now be a function of frequency and will replace σ 2
x in the formula we gave for

the white-noise case: we will write

Isignif [k] = Prr[k] χ2
1−p,2

2
.

Figure 10.19 shows, as an example, the power spectrum of a physical signal8—a
climatological temperature record with Ts = 0.25 y (one season), with the related
significance levels evaluated assuming white or red noise as the null hypothesis. The
typical decrease of power with increasing frequency is clearly visible in Fig. 10.19
in the region above 0.1 y−1, i.e., for periods smaller than 10 years, a region that
in climatology is called “interannual”. The black dotted curve shows the red-noise
background spectrum. It can be seen that this type of background follows the general
spectral behavior of this data much better than white noise (gray dotted line). It thus
allows evaluating peak significance in a more adequate way. The black dashed curve
represents the significance level against red noise at the 95 % c.l. The spectral peaks

8The data is seasonal climatic anomalies of sea surface temperature (SST) in ◦C, spatially averaged
over the so-called NINO3 region of the Pacific Ocean. This region is comprised between latitudes
of 50◦ South and 50◦ North and between longitudes of 90◦ West and 150◦ West, and is particularly
representative for the study of climatic variability at interannual time scale, and more precisely for
the study of the El Niño—La Niña phenomena. The data used here spans the years 1871–2012
and were drawn from monthly NINO3 data available at http://www.esrl.noaa.gov/psd/gcos_wgsp/
Timeseries/Data/nino3.long.data.

The term “climatic anomalies” means that the data has been centered by subtracting from each
seasonal sample the mean value of the corresponding season, computed over the whole record;
for instance: spring of 1900 minus average over all springs. This makes the data free from the
annual temperature cycle, the dominant presence of which in the spectrum would obscure weaker
cyclicities.

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino3.long.data
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino3.long.data
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that exceed this curve are to be considered as significant at the 5 % significance level
against red noise. Note that this conclusion must be interpreted in a statistical sense:
the fact that an individual peak exceeds the significance level does not mean that it
certainly is not due to a red noise process, but only that it has a small likelihood of
being generated by a red noise process.

10.9 MultiTaper Method

The multitaper method (MTM) (Thomson 1982, 1990a, b) is interesting because
of its remarkable performance in terms of resolution and variance of the spectral
estimate. However, the related classical statistical tests assume that the spectrum
of the analyzed series is the superposition of a continuous component—possibly
colored, i.e., varying arbitrarily with frequency but in a smooth way—and one or
more spectral lines. As explained below, this is a restrictive assumption that can lead
to misleading test results.

In order to lower the variance of the estimate, independent periodogram estimates
are averaged that are not obtained segmenting the record but applying to it a number
of tapers that are orthogonal to one another by construction. These tapers are an
optimal set of K eigentapers wk[n], k = [1, K], designed to minimize leakage. More
precisely, these tapers are the solution of the variational problem of minimization
of leakage outgoing from an adimensional frequency band of properly chosen half-
width 
ν, centered on ν. Such a set is collectively referred to as Slepian tapers
(Slepian 2005) or prolate spheroidal sequences. The minimization problem is a
suitable Rayleigh-Ritz minimization problem that leads to an eigenvalue problem.9

The reader who is not acquainted with these terms and with the basic elements of
linear algebra may want to simply consult a concise summary like the one appearing
in Hayes (1996), or resort to a book presenting linear algebra from first principles,
such as MacLane and Birkhoff (1999). Also Trefethen and Bau (1997) is a useful
reference.

The Slepian tapers satisfy the following orthogonality constraint:

N−1∑

n=0

wj[n]wk[n] = δjk,

9The Rayleigh-Ritz method is a classical variational method for finding approximate solutions of
differential equations, whose exact solutions are hard to find. The method was first used by Lord
Rayleigh in 1870 to solve the vibration problem of organ pipes closed on one end and open at
the other. However, the approach did not receive much recognition by the scientific community.
Nearly 40 years later, due to the publication of two papers by Ritz, the method came to be called
the Ritz method. To recognize the contributions of both authors, the theory was later renamed the
Rayleigh-Ritz method.
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where N , the length of each Slepian taper, is equal to the number of data samples.
The optimal number K of tapers is determined by choosing the half-bandwidth 
ν.
The tapers are built from the first to the K th one, imposing the conditions that each
new kth taper

• is orthogonal to the previous one(s),
• maximizes the concentration ratio

λk =
∫ +
ν

−
ν

∣∣Wk(ej2πν)
∣∣2 dν

∫ + 1
2

− 1
2

∣∣Wk(ej2πν)
∣∣2 dν

of the spectral window Wk(ej2πν) ≡ Wk(ejω) in the band of half-width 
ν centered
on ν. This means minimizing the outgoing leakage from the same band. The
concentration ratios λk are the eigenvalues of the variational problem.


ν is expressed as a proper multiple of the distance between adjacent frequencies
in the DFT of a sequence of length N . This distance, sometimes called the Rayleigh
frequency, in terms of ν is 1/N , and therefore


ν = p

N
.

The smaller 
ν, the smaller the admitted leakage.
Given a value of N , first the value of p is fixed, so that the value of 
ν is also

fixed. Then the members of the set of tapers, wk[n], are generated iteratively. The first
taper is the window with length N that ensures the greatest spectral concentration
in a band of half-width 
ν around ν; the second taper is the window with length
N that is orthogonal to the first taper and ensures the greatest spectral concentration
in a band of half-width 
ν around ν; the third taper is the window with length N
that is orthogonal to both the first two tapers and guarantees the greatest spectral
concentration, and so on.

The parameter p is called the time-bandwidth parameter or time-frequency
product:

p = N
ν = N
ω

2π
= NTs
f = Td
f ,

where Td = NTs is the duration of the data record and Ts is its sampling interval.

ω, 
ν and 
f measure, in terms of different frequency variables, the resolution
of the method, in the sense that a spectral peak that would ideally be impulsive—a
spectral line—will be detected in the MTM spectrum plotted as a function of f as a
bump with width 2
f = 2
ν/Ts = 
ω/(πTs).

Only the first 2p − 1 tapers turn out to be useful for minimizing leakage, and
therefore the total number of tapers is constrained by

K = 2p − 1.
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Fig. 10.20 The sets of
Slepian tapers useful for
MTM spectral estimation, for
p = 2, 2.5, 3, 3.5 and 4 (from
top to bottom) and N = 512 −0.05
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In Fig. 10.20, the sets of Slepian tapers useful for MTM spectral estimation are
shown, for the most common values of p and for N = 512. For a given value of p,
the (k + 1)th taper shows one more crossing of the zero line with respect to the kth
taper.

The MTM spectral estimate is built considering the individual DTFTs of the K
tapered signals, i.e., of the K sequences obtained multiplying the data by each Slepian
taper:

Xk(e
jω) =

N−1∑

n=0

wk[n]x[n]e−jωn, k = [1, K].

The MTM spectral estimator is defined as a weighted average of the corresponding
periodograms, which are referred to as eigenspectra.

According to the definition of periodogram, we should take the square modulus
of these DTFTs, divided by N . However, the factor 1/N in the MTM disappears,
because a factor 1/

√
N is absorbed in the definition of the tapers wk[n]. The individual

eigenspectra are thus defined as
∣∣Xk(ejω)

∣∣2. Then they are linearly combined with
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weights λk , to form the raw MTM spectrum

SMT (ω) =
∑K

k=1 λk

∣∣Xk(ejω)
∣∣2

∑K
k=1 λk

.

In this way the sidelobes, and consequently the outgoing leakage from the spectral
band of width 2
ν centered on some frequency ν, are minimized, and, assuming that
the various spectral windows are narrowband with respect to the typical variations
of the series’ power spectrum, a sufficient resolution is ensured.

A further leakage reduction is possible by defining the adaptive spectrum, which
is a nonlinear superposition of eigenspectra:

SMT
a (ω) =

∑K
k=1 b2

k(ω)λk

∣∣Xk(ejω)
∣∣2

∑K
k=1 b2

k(ω)λk

.

Here bk(ω) is a weight function that further protects the spectral estimate from
broadband leakage.

The MTM provides a better resolution and a lower estimate variance with respect
to those that can be achieved by the methods studied up to now, and even by the
parametric methods that will be studied in the next chapter. The desired trade-off
between resolution and stability is achieved by properly choosing the number of
tapers, i.e., the value of p: as p and K increase, variance decreases because more
periodograms are averaged, but leakage and resolution worsen because 
ν increases.
For data records with length of the order of hundreds, typical values of p go from
2 to 4—for instance, 2, 5/2, 3, 7/2, 4; for p > 4 numerical instabilities can occur.
Longer series can “stand” higher values of p, though maintaining an acceptable
resolution, i.e., a reasonably narrow 
ν. In Fig. 10.21, the adaptive MTM spectrum
of 50 realizations of the same process with two sinusoids in noise considered in
Fig. 10.14 is shown, for N = 512. The values of p range from 2 to 4. It may be
clearly seen that resolution and variance decrease with increasing p.

The K periodograms that re combined in the MTM estimate are uncorrelated, so
that the raw estimate follows approximately a χ2 distribution with 2K DOF. The
adaptive spectrum has an effective number of DOF that usually is not much different
from the nominal value 2K given for the raw spectrum. For the MTM spectrum,
dedicated statistical tests are available. The F-test by Fisher-Snedecor (see Stuart
2010) for spectral lines serves to test the significance of isolated spectral peaks
detected at some frequency. It determines the probability of the estimated PSD being
ascribable to an isolated harmonic component with the same frequency. The test
does not depend on the effective PSD value and therefore allows detecting sinusoidal
components with low amplitudes, or to reject large-amplitude peaks that fail the test.
This test is, however, criticized by the following argument.

The F-test is based on the assumption that the signal is a sum of sinusoids and
white noise. In practice, it is sufficient that the spectrum of the noise component in
the signal be locally white: we must be in a position to assume that the K eigenspectra
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Fig. 10.21 Examples of adaptive MTM spectral estimates for the same series analyzed in Fig. 10.14
(N = 512). The value of the time-bandwidth parameter varies: from top to bottom, p = 2, 3 and 4.
a 50 Realizations. b Ensemble average

are distributed in each frequency bin as they would be for white noise. Nevertheless,
this signal’s model is quite restrictive: sinusoids are harmonic signals with coherent
phase, while quasi-periodic narrowband components that are not strictly harmonic
are widely diffuse in time series. The test is no longer meaningful in such cases,
because it actually performs what is known as harmonic analysis—it examines the
amplitudes of the sinusoids found by the MTM estimator. If in reality the signal is
colored noise, so that its spectrum has a structure as a function of frequency instead
of being flat or nearly flat, this colored-noise structure can be artificially resolved
into spurious lines, associated with arbitrary frequencies, which can pass the test
(Vautard et al. 1992).

Since, presumably, most narrowband variability is not associated with strictly
harmonic, purely periodic behaviour, Mann and Lees (1996) proposed to combine
conventional harmonic analysis, which moreover works well just in the case of
low SNR (MacDonald 1989), with additional criteria allowing for the detection of
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significant narrowband quasi-oscillatory components as well. Thus, the procedure of
Mann and Lees (1996) bears to distinguish among harmonic, anharmonic, and back-
ground noise components. This method tests all the detected peaks against a red noise
background null-hypothesis. The variance and lag-1 AC of the red noise process are
directly estimated from the data and used to produce a red-noise “empirical” spec-
trum. The spectral background is robustly estimated by minimizing the misfit between
the red noise empirical spectrum and a smoothed version of the adaptively-weighted
MTM spectrum, which in this way becomes insensitive to outliers. The smoothing is
achieved by applying a median smoothing filter10 to the adaptively-weighted MTM
spectrum. Then, by a χ2 test the significance levels against the estimated red-noise
background spectrum are determined at some chosen confidence levels; finally, a
reshaped spectrum is generated, which isolates narrowband, possibly intermittent,
amplitude- and-phase-modulated oscillations from harmonic phase-coherent sinu-
soids.

An example of MTM applied to a real-world signal, with visualization of the
reshaped spectrum, is provided in Sect. 12.3.

10.10 Estimation of the Cross-Power Spectrum of Two
Random Signals

The theoretical cross-power spectrum, or simply cross-spectrum, of two real WSS
random variables xn and yn,

Pxy(e
jω) =

+∞∑

l=−∞
ρxy[l]e−jωl,

must be estimated using a finite number of samples of the two signals, i.e., two
sequences x[n] and y[n] that we will assume to have a common length N . The cross-
covariance γxy[l] is firt estimated as explained in Sect. 9.10.4. Then standardization is
applied to cross-covariance, and an estimate ρ̂xy[l] of ρxy[l] is obtained. The estimate
of the cross-spectrum Pxy(ejω) is finally defined in the form of a cross-correlogram
(also referred to as cross-periodogram):

Cxy(e
jω) =

N−1∑

l=−(N−1)

ρ̂xy[l]e−jωl,

10The median is the numerical value separating the higher half of a data sample, a population, or
a probability distribution, from the lower half. The median smoothing filter computes the median
of PSD values falling inside a small frequency bin centered on a given frequency and assigns the
result to this central frequency.

http://dx.doi.org/10.1007/978-3-319-25468-5_12
http://dx.doi.org/10.1007/978-3-319-25468-5_9
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that is complex and has no particular symmetry properties. Its expected value is

E[Cxy(e
jω)] =

N−1∑

l=−(N−1)

N − |l|
N

ρxy[l]e−jωl,

hence Cxy(ejω) is a biased, but asymptotically unbiased estimate. However it turns
out that the variance of the estimate, σ 2

Cxy
, does not go to zero for N → ∞. In order

to stabilize the estimate, tapers can be applied: the modified cross-correlogram (also,
modified cross-periodogram) is

Sxy(e
jω) =

N−1∑

l=−(N−1)

ρ̂xy[l]w[l]e−jωl,

where w[l] indicates a non-causal taper. Under similar assumptions to those made
for the BT estimate Sxx(ω), it can be shown that the expected value of Sxy(ejω) is
approximately

E[Sxy] ∼= 1

2π

∫ +π

−π

Pxy(e
jθ )W

[
ej(ω−θ)

]
dθ

and that its variance σSxy decreases with increasing N and with a decreasing length
of the window w[l] applied to ρ̂xy[l]. Pseudo-ensemble averaging of (modified)
cross-periodograms is often applied to get a Welch cross-spectral estimate BW

xy (ω).
Magnitude- and phase-spectrum estimates can then be derived, as well as estimates
of the magnitude squared coherence (MSC). Recall that phase estimates in cross-
spectrum analysis are only useful at those frequencies at which significant coherence
exists. MSC is estimated as

ˆMSCxy(ω) =
∣∣BW

xy (ω)
∣∣2

BW
xx (ω)BW

yy (ω)
,

and assumes values between 0 and 1. The resolution-versus-variance trade-off is
similar to that discussed for the estimate of the power spectrum of a single random
process.

Let us see an example of how to use the cross-spectrum to obtain the phase
difference between sinusoidal components in two series, x[n] and y[n]. The individ-
ual series consist of two sine waves, with frequencies ω0 = 0.2π and ω1 = 0.4π ,
immersed in white noise e[n] with variance σ 2

e = 0.25. The sine waves in the
x-series both have unit amplitudes. The ω0 sine wave in the y-series has amplitude
of 0.5 and the ω1 sine wave in the same series has amplitude of 0.35. The individual
sine waves in the y-series are out-of-phase with respect to the corresponding ones
contained in the x-series, by different amounts at ω0 and ω1. Precisely, with obvious
notation we set
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x[n] = Ax,0 sin(ω0n) + Ax,1 sin(ω1n) + e[n],
y[n] = Ay,0 sin(ω0n − π

4
) + Ay,1 sin(ω1n − π

2
) + e[n].

For each series, N = 1000 samples are generated, and Welch’s method of cross-
spectral estimation is applied, with a Hamming window of length M = 100 and
overlap of 80 %. Figures 10.22 and 10.23 respectively show the magnitude squared
coherence and the phase spectrum—here indicated byΘxy(ω)—estimated in this way.
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Fig. 10.22 Estimated magnitude squared coherence (MSC) between two 1000-sample-long
sequences. Each sequence contains two sinusoids in Gaussian white noise; the sine waves in the
second series are phase-lagged with respect to those in the first series (see text for details). The
dotted lines mark the true frequencies of the sinusoids. The estimate has been obtained using Welch’s
method with a Hamming window of length M = 100 and overlap of 80 %

Fig. 10.23 Estimated phase
spectrum Θxy(ω) for the two
sequences analyzed in
Fig. 10.22. The dotted lines
and the black dots mark the
true values of phase lag in
the data
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The magnitude squared coherence is greater than 0.8 at ω0 = 0.2π and ω1 = 0.4π .
The phase spectrum provides, at the corresponding frequencies, the phase differences
estimated from the cross spectrum, which are close to the true values indicated by
black dots: indeed, since the ω0-sinusoid in y[n] lags the ω1-sinusoid in x[n] by a
delay π/4, the phase-spectrum estimate at ω0 is close to −π/4, and so on (compare
with what was explained about the correlation of deterministic signals in Sect. 5.6).

Unfortunately, in real-world applications the interpretation of cross-spectral
behaviors is often more troublesome than in this simple example.

10.11 Use of the FFT in Power Spectrum Estimation

In the methods based on Schuster’s definition of periodogram—periodogram and
modified periodogram, Bartlett’s and Welch’s methods—FFT is an efficient tool to
calculate spectral estimates over the discrete set of frequencies

ωk = 2πk

NFFT
, νk = k

NFFT
, fk = k

NFFT Ts
,

where k = [0, NFFT − 1], Ts is the sampling interval of the sequence, and NFFT is
the number of spectral estimates. Note that in case of zero-padding, NFFT is different
from the number N of data.

To obtain the periodogram, we will select a proper value of NFFT , choosing an
integer power of 2 greater than or equal to N . Then we will compute the DFT of
the signal via FFT. Table 10.2 gives the precise correspondence between harmonic
number k and analog frequency f . This is useful in real-world applications: we
perform the analysis in the domain of adimensional frequencies, but when we come
to plotting and interpreting our results, we may prefer to go back to the real world,
i.e., to dimensional analog frequencies. Note that the DFT values at ±fNy are real
and equal:

X

[
NFFT

2

]
= X∗

[
NFFT − NFFT

2

]
= X∗

[
NFFT

2

]
.

Table 10.2 Correspondence between harmonic number k and analog frequency f in spectral esti-
mation via FFT

f k

0 0

0 < f < fNy 1 ≤ k ≤ NFFT
2 − 1

fNy < f < 2fNy or −fNy < f < 0 NFFT
2 + 1 ≤ k ≤ NFFT − 1

±fNy
NFFT

2

http://dx.doi.org/10.1007/978-3-319-25468-5_5
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Fig. 10.24 Correspondence
between harmonic number k
and analog frequency f in
spectral estimation via FFT,
in the equivalent intervals
[0, 2fNy) and [−fNy, fNy): an
example with NFFT = 8

Figure 10.24 shows graphically the same correspondence between harmonic number
and values of f in the equivalent intervals [0, 2fNy) and [−fNy, fNy). Observe that since
the DFT values at ±fNy are equal, we might equivalently write (−fNy, fNy].

This figure is very similar to Fig. 4.17, with the only difference that the more gen-
eral quantity NFFT is used in place of N , to account for possible zero-padding. Once
X[k], k = [0, NFFT − 1], has been calculated, the discrete values of the periodogram
are computed as

IN (ω)|ω=ωk = 1

N
|X[k]|2 = IN [k],

where the length N of the sequence appears. Is it important to keep in mind that in
general N 
= NFFT .

For real data, |X[k]| = |X∗[NFFT − k]|. For this reason, the spectral content per-
taining to the interval (fNy, 2fNy) is sometimes reflected into the interval [0, fNy].
In addition to the previous definition of IN (ω), which is referred to as a two-sided
spectrum, a one-sided spectrum I ′

N [k] is then introduced:

I ′
N [k] =

{
IN [k] for k = 0 and k = NFFT

2 ,

2IN [k] for k = [1, NFFT
2 − 1],

that is,

I ′
N [k] =

{
1
N |X[k]|2 for k = 0 and k = NFFT

2 ,
1
N

{|X[k]|2 + |X[NFFT − k]|2} = 2
NFFT

|X[k]|2 for k = [1, NFFT
2 − 1].

For constructing a modified periodogram we will specify the desired window and
multiply the sequence by the window before proceeding as described above. For
applying Bartlett’s and Welch’s methods via FFT we can proceed as follows:

http://dx.doi.org/10.1007/978-3-319-25468-5_4
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• we choose a value for M and a value for the amount of overlapping. This determines
K too;

• we specify the window w[n], n = [0, M − 1]. A rectangular window coupled with
no overlapping leads to Bartlett’s method, while any other choice leads to Welch’s
method;

• we build the subsequences x(i)[n] and multiply them by w[n];
• we calculate the periodograms J(i)

M (ω) over a discrete set of frequencies via FFT;
• we finally average over the K periodograms thus obtained.

As for the correlogram, after computing the biased AC estimate cxx[l], we will
simply take its FFT. However, in this way we treat the sequence cxx[l] as a causal
sequence. As a consequence, the transform is complex and we must take its modulus
to obtain the correlogram. In a similar way we can compute BT power spectrum
estimates, except that we will apply a (causal) tapered window to cxx[l] before taking
the FFT.

10.12 Power Spectrum Normalization

A potential source of confusion in spectral analysis is the fact that in literature, the
power spectrum is normalized in several different ways. We will now review the
most common normalization schemes.

Let us start by using the harmonic number k or the adimensional frequency ν as
the frequency variable. According to Parseval’s theorem for the DFT, we can write,
for real data and for an FFT over N samples (no zero-padding),

N−1∑

n=0

|x[n]|2 = 1

N

N−1∑

k=0

|X[k]|2.

In case of zero-padding, the DFT is computed over NFFT ≥ N points and we must
write instead

N−1∑

n=0

|x[n]|2 = 1

NFFT

NFFT −1∑

k=0

|X[k]|2.

On the other hand,

IN [k] = |X[k]|2
N

for k = [0, NFFT − 1],

hence
1

NFFT

NFFT −1∑

k=0

IN [k] = 1

NFFT N

NFFT −1∑

k=0

|X[k]|2 = 1

N

N−1∑

n=0

|x[n]|2,
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that clarifies how

• for NFFT = N the sum of all spectral estimates is equal to the sum of squares of
the data;

• in general, the sum of all spectral estimates, divided by their number NFFT , is
equal to the data variance. Thus the mean spectral level is equal to the average
power of the sequence, (1/N)

∑N−1
n=0 |x[n]|2, that for centered data is nothing but

the variance.

But since the distance between discrete normalized frequencies is


ν = 1

NFFT
,

what we called the mean spectral level (average power, variance) also appears as the
area subtended by the spectral curve, obtained multiplying the sum of the spectral
estimates by the constant bin width 1/NFFT (or multiplying each spectral estimate
by 1/NFFT and then summing up).

If we were to use the one-sided spectrum I ′
N [k], we would have instead

1

NFFT

NFFT /2∑

k=0

I ′
N [k] = 1

N

N−1∑

n=0

|x[n]|2 =

= 1

NFFT

(
IN [0] + IN

[
NFFT

2

]
+ 2

NFFT /2−1∑

k=1

IN [k]
)

.

So far we referred to a power spectrum that we want to plot as a function of k
or ν. However, we may want to plot the spectrum as a function of ω; most often, in
the case of a real-world discrete-time signal obtained by sampling an analog signal
with time step Ts, we may prefer to use analog frequency f . Since ν = k/N = fTs,
spectral normalizations are then used that take into account the fact that

σ 2
x = 1

2π

∫ +π

−π

Pxx(ω)dω = 1

2π

∫ +0.5

−0.5
Pxx(ν)2πdν =

∫ +0.5

−0.5
Pxx(ν)dν =

=
∫ +fNy

−fNy

Pxx(f )Tsdf = 1

fs

∫ +fNy

−fNy

Pxx(f )df .

Now, the IN [k] sequence the we get from FFT could also be indicated as IN [νk], and
is an estimate of Pxx(ν). Therefore, in principle we should adhere to the following
normalization rules:

• in spectral plots with ω on the abscissa, on the ordinate we should plot IN [k]/ (2π),
so that the sum of spectral values multiplied by the bin amplitude 
ω = 2π/NFFT

gives the data variance;



462 10 Non-Parametric Spectral Methods

• in spectral plots with f on the abscissa, on the ordinate we should plot IN [k]Ts =
IN [k]/fs, so that the sum of spectral values multiplied by the bin amplitude 
f =
1/ (NFFT Ts) gives the data variance.

Furthermore, in some applications in which spectra of different sequences having
different variances must be compared, it may be useful to standardize the spectrum,
dividing it by the data variance σ 2

x , so that

• the area subtended to the spectral curve is equal to 1,
• white noise with the same variance of the data would appear—in theory—as a

horizontal line at an ordinate of 1.

We are now in a position to conclude specifying the proper measurement units
that should appear in a spectral plot. If we call u the measurement unit of the data
x[n], the unit for variance and power is u2. The power spectrum is a distribution of
power over frequency, so

• IN [k] and IN (νk) plots with k or ν on the abscissa, respectively, should report u2

as the ordinate unit, since frequency is a bare number in this case; to be precise,
in the case of ν, which strictly speaking is expressed in cycles/sample, we should
write u2/(cycles/sample), but this pedantry is normally neglected;

• IN (ωk)/ (2π) plots with ω on the abscissa should report u2/(rad/sample) as the
ordinate unit;

• IN (fk)Ts = IN (fk)/fs plots with f on the abscissa, and with frequencies typically
expressed in Hz, should report u2/Hz as the ordinate unit. Note that the factor 1/fs =
Ts serves to bring the spectrum back to its continuous-time-domain definition,
which differs from the present discrete-time-domain definition by a factor of Ts

(Sect. 3.5).

If a logarithmic scale is used for the ordinate axis in place of the linear scale, then a
plot of 10 log10 [IN (νk)] should report dB as the ordinate unit.

In the case of 10 log10 [IN (ωk)/ (2π)] plotted versus ω, it is common practice
to write dB/(radians/sample); in the case of 10 log10

[
IN (fk)/fs

]
versus f it is usual

practice to write dB/Hz, even if this is just a way to loosely refer to the fact that
the spectrum IN [k] was normalized dividing it by the sampling frequency before
computing the logarithm.

Finally, a warning: this is what would be conceptually correct. However, for
simplicity and internal coherence, all the spectra appearing in this book are always
given in terms of IN (ν) = |X[k]|2 /N , independently of the frequency variable used
in abscissa. This may be conceptually incorrect, but it is certainly less confusing for
the beginner.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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Chapter 11
Parametric Spectral Methods

11.1 Chapter Summary

Non-parametric spectral analysis, with its various facets presented in Chap. 10, has
both advantages and shortcomings: it is easy to apply and its statistical properties
have been studied in depth; on the other hand, the power spectra estimated with non-
parametric methods have problems of leakage, and often present insufficient reso-
lution and poor stability. The principal difference between non-parametric methods
and those presented in this chapter is that in the former, no assumptions are made on
the signal, except for it being WSS and ergodic. Parametric spectral methods assume
that the signal satisfies a generating model with known functional form, and then
estimate the model’s parameters. The signal’s spectral estimate is derived from the
estimated model. In those cases where the assumed model is a close approximation
to the reality, it is no wonder that parametric methods provide more accurate spec-
tral estimates than non-parametric techniques. We will, however, see that in practice
parametric methods can be applied without worrying about the true nature of the
signal.

Since parametric methods are based on mathematical modeling of persistence,
i.e., autocorrelation/autocovariance (AC) in a time series, we will start by briefly
presenting the related basic concepts. The models discussed hereafter are known as
stochastic models and were originally introduced for the prediction of time-series
values ahead into the future. Stochastic modeling means looking at the signal as the
hypothetical output of some LTI system, the input of which is white noise.

First, an appropriate class of stochastic models must be selected for the task of
spectral analysis. We will focus on autoregressive (AR) models, which are preferred
with respect to other model types, such as moving-average (MA) models and the
more general autoregressive moving-average (ARMA) models, for reasons that will
be explained. An AR model can represent both broadband and narrowband processes,
according to the number and values of its parameters, and can therefore fit a wide
class of random processes.
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AR models can have different orders—i.e., a different number of parameters—and
the next step is to choose the order which is best suited for modeling a given signal.
Many methods for order estimation are available in literature, but all are subject
to limitations, and above all, they were devised for stochastic modeling aimed at
forecasting. In spectral analysis, the order choice is more often based on trial and error,
under only very general constraints, such as the fact that the order must not exceed
a certain fraction of the number of available data samples. In practice, parametric
spectral estimation methods are normally applied to a given data sequence without
any prior investigations about the best model order, pragmatically trying different
orders and comparing the resulting spectra among them and with estimates obtained
by other spectral methods. Nevertheless, we will briefly present the most widely used
criteria for model selection, which can be used as indicators in spectral analysis.

The determination of the model parameters then follows. We will examine five
different approaches to parameter estimation: the Yule-Walker or autocorrelation
method, the covariance and modified covariance methods, Burg’s method, and the
maximum entropy method (MEM), which is equivalent to the Yule-Walker method
but stems from general philosophical considerations in the frame of information
theory. We do not include detailed mathematical descriptions of these estimators and
do not discuss their statistical properties, since these topics are beyond the scope of
an introductory book like the present one.

In stochastic modeling for forecasting purposes, after the order has been chosen
and the AR model has been fitted to the data, the model should be tested to check if
it satisfies a number of reasonable requirements. In parametric spectral analysis, the
pragmatic approach to order selection mentioned above leads to neglecting this diag-
nostic step in most cases; we will, nonetheless, mention what requirements should
be met in principle, and how a model can be tested statistically in this sense.

An AR model of given order and with given parameters is characterized by a
precise functional form of the power spectrum, namely, a rational form. Hence, once
the modeling procedure is completed, the power spectrum of the signal is estimated
by simply incorporating the estimated parameters into this functional form.

Let us observe that when we model a measured WSS random signal for spectral
estimation purposes, we do not expect the signal to be exactly that AR signal (process)
having the order we selected and the parameter values we determined. If this were
true, then we would obtain the true spectrum of the analyzed process. Instead, we
aim at an approximate description of our signal, able to provide a good estimate of
its power spectrum. Several examples of stochastic models and of their properties,
as well as examples of parametric spectral estimates for different kinds of signals,
will be given. Comparison with estimates obtained via non-parametric methods will
help in highlighting the possibilities offered by parametric methods.

Finally, a warning: this chapter makes use of some basic linear algebra: vectors
and matrices and their manipulation, sets of linear equations, special matrix forms,
diagonalization of matrices (eigenvalue decomposition), etc. This is because in many
of the mathematical developments that will be encountered, it is convenient to use
vector and matrix notation, which simplifies equations and makes it easier to under-
stand how they are solved. The reader who has not mastered the basic tools of vector



11.1 Chapter Summary 467

and matrix analysis might find it useful to read the very good summary provided by
Hayes (1996), Chap. 2, pp. 20–48, or resort to a book presenting linear algebra from
first principles, such as Mac Lane and Birkhoff (1999). As for notation, we will use
boldface letters such as M and v to indicate matrices and vectors. Superscript T, as
in MT , denotes the transpose of a matrix.

11.2 Signals with Rational Spectra

Rational spectra form a dense set in the class of continuous spectra, but can also
represent data records containing sinusoids buried in white noise.

A rational spectrum is a rational function of ejω, i.e., the ratio of two polynomials
in ejω (Stoica and Moses 2005):

Pxx (e
jω) ≡ Pxx (ω) =

∑q
k=−q γ1[k]e−jωk

∑p
k=−p γ2[k]e−jωk

,

where γ1[k] and γ2[k] are two sequences having the even symmetry which charac-
terizes the AC sequence of a real signal, and q and p represent some summation
limits. The rational spectral form stems from an extremely general signal decompo-
sition theorem (Wold 1938), known as the Wold’s decomposition theorem or Wold’s
representation theorem, according to which every WSS causal signal, which we will
assume to have zero mean, can be written, under some regularity conditions, as the
sum of two components, one deterministic and one stochastic. Formally,

x[n] =
∞∑

i=0

hiζ [n − i] + η[n],

where hi represents a possibly infinite-length sequence of weights or coefficients that
we will assume to be absolutely summable, ζ [n] is a series of uncorrelated variables
known as innovations (like white noise e[n] with finite variance, which is a WSS
process), and η[n] is a deterministic signal, i.e., a signal which is exactly predictable
from its past, such as a discrete-time periodic sinusoid, or even a constant, like the
signal’s mean value.

Now, let us consider a purely random zero-mean WSS signal, from which the
deterministic component, if any, has already been subtracted. Let us take white noise
e[n] as the uncorrelated variables. Then we can write Wold’s decomposition in the
form

x[n] =
∞∑

i=0

hi e[n − i],

which is the linear convolution between the series of coefficients hi and the white
noise sequence. The coefficients hi can now be seen as the samples h[i] of the impulse
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response of a real and causal LTI filter that is required to be stable. In general, it will
be an IIR filter. We further require the filter to have a rational transfer function:

H(z) = B(z)

A(z)
,

with

A(z) = 1 + a1z−1 + · · · + apz−p,

B(z) = 1 + b1z−1 + · · · + bq z−q .

This is not too restrictive, because even if it were not so, the theory of rational approx-
imation of functions (see, e.g., Powell 1981) states that we can always approximate
a continuous function as the transfer function as closely as we want, under relatively
large convergence constraints, by a rational function with sufficiently high numerator
and the denominator degrees. For stability, the poles of the transfer function must be
inside the unit circle.

So, Wold’s theorem allows us to represent a WSS random causal signal as the
output of an RCSR LTI system that receives WSS white noise as input.1 The samples
e[n] are independent white-noise shocks, so the AC of the input e[n] is γee[l] =
σ 2

e δ[l], and its power spectrum is constant and equal to σ 2
e . Since the filter transfer

function is rational, the output signal spectrum will also be so. We thus see that Wold’s
decomposition, under the assumption of the RCSR nature of the filter, leads to rational
spectra. We will later explain that these rational spectra correspond to modeling the
signal using the most general stochastic model, indicated as ARMA(p, q). This
supports the common practical approach, which is to approximate the spectrum of
WSS random signals by the spectrum of signals generated by stochastic models.

Before proceeding, let us summarize our considerations:

• the spectra of a very wide class of causal WSS random signals can be approximated
by rational functions;

• this corresponds to seeing the signal as the result of filtering white noise with an
LTI RCSR filter with proper order and coefficients;

• this also means viewing the generation of the measured series as a stochastic
process, which can be modeled by a general ARMA(p, q) model. The spectrum of
the signal is then a rational function of frequency containing the model parameters,
so that fitting a model to our data naturally leads to parametric spectral estimation.

Since the power spectrum of a signal is always real and non-negative, the general
form of a rational spectrum can be expressed in the parametrized form (see, e.g.,
Stoica and Moses 2005)

Pxx (ω) = σ 2
e

∣∣B(ejω)
∣∣2

∣∣A(ejω)
∣∣2

= σ 2
e

∣∣H(ejω)
∣∣2 ,

1Since the input is stationary and the filter is stable, the output is also certainly stationary.
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where

A(ejω) = 1 + a1e−jω + · · · + ape−jωp,

B(ejω) = 1 + b1e−jω + · · · + bqe−jωq

are the polynomial numerator and denominator of the filter’s frequency response,

H(ejω) = B(ejω)

A(ejω)
.

This result is referred to as the spectral factorization theorem (see, e.g., Stoica and
Moses 2005; Kay 1988). In order to prove this result, we can pass to the z-transform
domain and use the formulas derived in Sect. 9.9. We consider the case of white
noise e[n], with variance σ 2

e and power spectrum Pee(ω) = σ 2
e , being filtered by the

filter with transfer function H(z) = B(z)
A(z) , thus producing an output x[n]. We find

indicating the spectrum in the z-plane by Pxx (z),

Pxx (z) = Pee(z)H(z)H∗(1/z∗) = Pee(z)
B(z)B∗ (1/z∗)
A(z)A∗ (1/z∗)

.

Substituting z = ejω we get

Pxx (ω) = σ 2
e

B
(
ejω
)

B∗ (ejω
)

A
(
ejω
)

A∗ (ejω
) = σ 2

e

∣∣B(ejω)
∣∣2

∣∣A(ejω)
∣∣2

,

q.e.d.
The poles of Pxx (z) are determined by the poles of the filter’s transfer func-

tion. The transfer function H(z) has p poles that occur in complex-conjugate pairs
because the coefficients are real (Sect. 3.2.2). Now, if zi is a pole of H(z) and
Pxx (z), then 1/z∗

i is a pole of H∗(1/z∗), i.e., another pole of Pxx (z). Therefore
Pxx (z) has 2p poles that appear in symmetrical (reciprocal complex-conjugate)
positions in the z-plane. If zi = rej±θ is a pair of poles of H(z) and Pxx (z), then
1/z∗

i = (1/r)ej±θ also represents a pair of poles of Pxx (z). For example, if p = 4
the poles of H(z) are2 zi = {

re±jθ , r ′e±jθ ′}
, with i = [1, 4]; the poles of Pxx (z)

are zl = {
re±jθ , r ′e±jθ ′

, (1/r)e±jθ , (1/r ′)e±jθ ′}
, with l = [1, 8]. In Pxx (ω) these

poles will produce peaks at ω = {±θ, ±θ ′}, and focusing on the positive frequency
half-axis we will see two peaks at ω = θ and θ ′.

2We do not need to worry about B(z) and its degree, because the numerator of H(z), representing
the polynomial transfer function of an FIR filter, contributes only zeros outside the origin of the
z-plane; it has poles in the origin. On the other hand, 1/A(z) is an IIR rational transfer function
that contributes poles outside the origin and zeros in the origin. In summary, outside the origin the
poles of H(z) are exclusively due to the zeros of A(z).

http://dx.doi.org/10.1007/978-3-319-25468-5_9
http://dx.doi.org/10.1007/978-3-319-25468-5_3
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By assumption, Pxx (ω) is continuous, hence it is finite for all ω values; as a result,
A(z) must have all its zeros strictly inside the unit circle. The corresponding model
is then said to be stable, and corresponds to a stable IIR filter. If we further assume,
for simplicity, that Pxx (ω) does not exactly vanish at any ω, then we can choose the
polynomial B(z) so that all zeros lie inside the unit circle. The corresponding model
is then said to be minimum phase; the corresponding filter is minimum-phase,3 and
has a stable inverse.

In summary, an arbitrary rational spectrum can be associated with a WSS causal
random signal obtained filtering white noise with variance σ 2

e through an LTI RCSR
filter with transfer function H(z) = B(z)/A(z) and frequency response H(ejω) =
B(ejω)/A(ejω). Such a filtering can be written in the time domain as an LCCDE:

x[n] = −
p∑

i=1

ai x[n − i] +
q∑

i=0

bi e[n − i],

and it is assumed that b0 = 1. Note that implicitly we also set a0 = 1. Hence the
parametrized model of Pxx (ω) turns out to be a model of the signal itself. The spectral
estimation problem can be turned into to a problem of signal modeling, where the
model involved is a general ARMA(p, q) model (presented in the next section). The
signal’s stochastic model includes the filter coefficients, along with a description of
the input signal, which is a random signal usually taken to be zero-mean white noise,
hence completely described by its variance σ 2

e .
The spectral factorization problem associated with a rational spectrum actually

has multiple solutions, with the stable and minimum phase ARMA(p, q) model type
being only one of them. We will, however, focus on this kind of solution, since
when the final goal is the estimation of the power spectrum, focusing on stable and
minimum phase ARMA(p, q) models is not restrictive and is convenient.

11.3 Stochastic Models and Processes

A stochastic model with given order and parameters represents a stochastic, i.e.,
random process, able to generate a random signal characterized by well-defined
spectral properties. Note that though conceptually the stochastic process and the

3A system with rational transfer function is minimum-phase if not only all its poles, but also all
its zeros are inside the unit circle, so that both the system and its inverse are causal and stable. A
minimum-phase system is called this way because it has an additional useful property: the natural
logarithm of the magnitude of the frequency response is related to the phase angle of the frequency
response by the Hilbert transform. This implies that for all causal and stable systems that have the
same magnitude response, the minimum phase system has its impulse-response energy concentrated
near the start of h[n], i.e., it minimizes the delay of the energy in the impulse response. As a result,
for all causal and stable systems that have the same magnitude response, the minimum phase system
has the minimum group delay.
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stochastic model are two distinct entities, in the sense that the model represents
the process in an exact or approximated way, the two expressions are often used
interchangeably.

Stochastic models/processes play a fundamental role in mathematical modeling
of phenomena in many fields of science, engineering, and economics. In particular,
the ARMA modeling approach is widely used. ARMA modeling was described in
the 1951 thesis of Whittle (1951), and was later popularized by Box and Jenkins in
1970 (see Box et al. 2008). The ARMA model was created as a tool for

• detecting, from a finite-length data record, the characteristics of the underlying
random process and thus understanding its nature by revealing something about
the mechanism that builds persistence into the series;

• forecasting future values of the series on the basis of past values;
• if desired, removing from the signal the imprint of some known process, so as to

get a more random residual signal to which statistical methods, such as methods
of spectral estimation, can be applied more pertinently (pre-whitening);

• finally, and more interestingly for our purposes, getting a kind of spectral estimate
derived directly from the stochastic model that best fits the signal, etc.

These goals are tackled exploiting and modeling the persistence exhibited by the
series. Autocorrelated process have memory, that can be long- or short-term, depend-
ing on the rate at which absolute AC decreases as the lag between pairs of signal
samples increases, i.e., depending on the persistence of the AC.4

Historically, the first stochastic model dates back to the work of Yule (1927).
Studying the motion of a pendulum in a viscous medium, with friction proportional
to velocity, Yule observed that the amplitude s[n] of the oscillation could be expressed
as a homogeneous difference equation:

s[n] + a1s[n − 1] + a2s[n − 2] = 0, n = 0, 1, 2 . . .

the solution of which is a damped harmonic motion. However, the measured values
of s[n] are affected by errors. Yule then proposed to drop the usual interpretation of
these measured values as the superposition of hypothetical “true” values and random
errors, and to describe the pendulum’s motion by a non-homogeneous difference
equation, in which white noise appears as an external driving function determining
the pendulum’s behavior:

s[n] + a1s[n − 1] + a2s[n − 2] = e[n], n = 0, 1, 2 . . . ,

an equation in which p = 2 delayed signal samples appear. The parameter p is the
equation order.

4When the AC absolute values take much longer to decay than the rate associated with the ARMA
class of processes discussed in this chapter, the process is often referred to as having long-term
memory or long-range persistence. Therefore the memory associated with ARMA processes is
usually classified as short-term memory.
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In the language of digital signal processing, Yule’s model is the LCCDE of an
LTI RCSR filter that transforms the white noise signal e[n] into the observed signal
s[n]. The filter must be causal and stable. The LCCDE of Yule’s system has M = 0
and N = 2 (see Chap. 3); the filter’s frequency response is

H(ejω) = 1

A(e jω)
,

with

A(ejω) = 1 + a1e−jω + a2e−j2ω = 1 +
p∑

k=1

ake−jωk, with p = N = 2.

This is an IIR system corresponding to an all-pole model, i.e., a model with poles
only.5 The order p = 2 implies the existence of two unknown coefficients a1 and a2

that can be determined from the measured values of s[n]. Since the LCCDE is given in
recursive form, and the filter output s[n] “regresses” onto its own past values, Yule’s
model is called autoregressive and is the prototype of a class of models, referred to
as AR(p) models. Their general expression is, for any integer p,

x[n] = −
p∑

i=1

ai x[n − i] + e[n], n = 0, 1, 2 . . .

Later on, different types of models were introduced: the moving average or MA(q)
model and the more general autoregressive moving-average or ARMA(p, q) model,
also known as the Box-Jenkins model (Box et al. 2008). We may also mention that a
number of variations of these models exist: for example, an MA model can be seen
as the derivative with respect to time of an integrated moving average model or IMA
model. A model having an AR component and an IMA component is an autoregres-
sive integrated-moving-average model, or ARIMA model, which is another kind of
Box-Jenkins model, etc. However, since we are only interested in stochastic models
for spectral estimation purposes, we will neglect these variations.

11.3.1 Autoregressive-Moving Average (ARMA) Model

The autoregressive moving-average model ARMA(p, q) or Box-Jenkins model (Box
et al. 2008) corresponds to filtering white noise by the most general LTI RCSR system
with transfer function having zeros and poles, and with a frequency response given by

5This expression is common in stochastic model literature, but does not mean that the IIR filter
has no zeros. Actually, as we learned in Sect. 3.2.8 (Table 3.1), a rational transfer function with
numerator degree M = 0 and denominator degree N = p has p poles and no zeros at finite values
of z outside the origin of the z-plane, and p zeros in the origin.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
http://dx.doi.org/10.1007/978-3-319-25468-5_3
http://dx.doi.org/10.1007/978-3-319-25468-5_3
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H(ejω) = B(ejω)

A(ejω)
,

where the numerator polynomial has order q and the denominator polynomial has
order p:

A(ejω) =
p∑

i=0

ai e
−jωi = 1 +

p∑

i=1

ai e
−jωi ,

B(ejω) =
q∑

i=0

bi e
−jωi = 1 +

q∑

i=1

bi e
−jωi ,

whith both a0 and b0 normalized to 1. Let us stress that the transfer function of an
ARMA(p, q) model must have all its poles inside the unit circle for the stability of
the filter, and all its zeros inside the unit circle for the existence of a stable inverse
filter.

The expression of the ARMA(p, q) model for a zero-mean, causal WSS random
signal,

x[n] = −
p∑

i=1

ai x[n − i] +
q∑

i=0

bi e[n − i], n = 0, 1, 2 . . .

corresponds to a precise functional form of the power spectrum of the output WSS
signal x[n]. In fact, if we take the z-transform of the previous equation we have

A(z)X (z) = B(z)E(z) � A(ejω)X (ejω) = B(ejω)E(ejω),

that leads to the z-plane power spectrum that we already saw in Sect. 11.2,

Pxx (z) = Pee(z)
B(z)B∗ (1/z∗)
A(z)A∗ (1/z∗)

� σ 2
e

∣∣B(ejω)
∣∣2

∣∣A(ejω)
∣∣2

.

This is in agreement with Schuster’s definition of periodogram: since
∣∣E(ejω)

∣∣2 /N =
σ 2

e , we have

Pxx (ω) =
∣∣X (ejω)

∣∣2

N
=
∣∣B(ejω)

∣∣2 ∣∣E(ejω)
∣∣2

N
∣∣A(ejω)

∣∣2
= σ 2

e

∣∣B(ejω)
∣∣2

∣∣A(ejω)
∣∣2

.

We will now derive the theoretical AC sequence of an ARMA(p, q) signal. Since
the output and the input are related by the ARMA model’s LCCDE, we can find the
AC sequence γxx [l] by multiplying both sides of the LCCDE by x[n − l] and taking
the ensemble average. From now on, for brevity we will indicate γxx [l] simply by
γ [l]. In the same way, the normalized AC will be indicated simply by ρ[l]. Thus we
have
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γ [l] +
p∑

i=1

aiγ [l − i] =
q∑

i=0

bi E {e[n − i]x[n − l]} .

It can be shown that x[n] and e[n] are jointly WSS, so that, indicating by γex [l] the
cross-covariance between the filter’s input and output, we have

E {e[n − i]x[n − l]} = E {e[n]x[n − (l − i)]} = γex [l − i].

We can thus write

γ [l] +
p∑

i=1

aiγ [l − i] =
q∑

i=0

biγex [l − i].

The cross-covariance γex [l] can be expressed in terms of γ [l] and of the impulse
response h[n] of the ARMA IIR filter, which, being the inverse Fourier transform of
the frequency response, is in general a nonlinear function of the coefficients ai and
bi . In fact, in the time domain the filter output can be written as a linear convolution:

x[n] = e[n] 
 h[n] =
+∞∑

m=−∞
e[m]h[n − m],

with h[n] = IDFT
{

H(ejω)
}
. Hence we can write

γex [l − i] = E {e[n − i]x[n − l]} = E

{ +∞∑

m=−∞
e[n − i]e[m]h[n − l − m]

}
=

=
+∞∑

m=−∞

(
E {e[n − i]e[m]} )h[n − l − m] = σ 2

e h[i − l].

The last equality follows from the fact that E {e[n − i]e[m]} = σ 2
e δ[n − i − m],

because e[n] is white noise; so, in the summation only the term with n − m = i
survives.6 We then have

γ [l] +
p∑

i=1

aiγ [l − i] = σ 2
e

q∑

i=0

bi h[i − l].

6The expression for γex [l] can also be directly derived from the formula for the input-output cross-
covariance of an LTI system, reported in Sect. 9.9:

γex [l] =
+∞∑

k=−∞
h[k]γee[l + k] = σ 2

e

+∞∑

k=−∞
h[k]δ[l + k] = σ 2

e h[−l] � γex [l − i] = σ 2
e h[i − l].

http://dx.doi.org/10.1007/978-3-319-25468-5_9
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The sum on the right-hand side of this equation, which we denote by c[l], can be
written as

c[l] =
q∑

i=0

bi h[i − l] =
{∑q−l

i=0 bi+l h[i] for l ≤ q,

0 for l > q.

Here we changed i − l into i and took into account that the filter is causal, hence
h[i] = 0 for i < 0. In conclusion, for l ≥ 0 we get the set of equations

γ [l] +
p∑

i=1

aiγ [l − i] =
{

σ 2
e c[l] for 0 ≤ l ≤ q,

0 for l > q,

which are called the Yule-Walker equations (Yule 1927; Walker 1931) for the
ARMA(p, q) process (YW equations hereafter).7 They define a recursion for the
AC sequence in terms of the filter coefficients.

If we have a finite set of estimated samples of γ [l], as happens when we are
dealing with a finite-length section of a sample sequence, and if we know the filter’s
coefficients, we can use the YW equations to extrapolate the AC sequence. Con-
versely, YW equations can be used to estimate the filter coefficients from a known
γ [l]. However, due to the product bi+l h[i] appearing in the expression of c[l], the
YW equations for the general ARMA model are nonlinear, and solving them is, in
general, a difficult task.

11.3.2 Autoregressive (AR) Model

This special type of ARMA(p, q) process results when q = 0. In this case x[n] is
generated filtering white noise with an all-pole filter with transfer function

H(z) = 1

1 +∑p
i=1 ai z−i

= 1

A(z)
;

the frequency response is

H(ejω) = 1

1 +∑p
i=1 ai e−jωi

= 1

A(ejω)
.

The power spectrum of the signal is then

Pxx (ω) = σ 2
e

1
∣∣A(ejω)

∣∣2
,

7These equations have been named variously in the literature, and are also referred to as normal
equations, or Wiener-Hopf equations.
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or, in terms of the z-transfom,

Pxx (z) = Pee(z)
1

A(z)A∗ (1/z∗)
.

The general AR(p) model of a zero-mean, causal WSS random process x[n] can
be written as

x[n] = −
p∑

i=1

ai x[n − i] + e[n] =
p∑

i=1

αi x[n − i] + e[n],

where the coefficients αi are obviously related to the ai by a simple sign reversal,

αi = −ai .

The YW equations for an AR(p) process may be derived from those of the
ARMA(p, q) general case by setting q = 0: the sequence c[l] reduces to a single
sample c[0] = b0h[0], i.e., c[0] = h[0] since b0 = 1, and we get

γ [l] +
p∑

i=1

aiγ [l − i] = σ 2
e h[0]δ[l].

Due to the initial value theorem for causal impulse responses we have

h[0] = lim
z→∞ H(z) = 1,

hence

γ [l] +
p∑

i=1

aiγ [l − i] = σ 2
e δ[l] for l ≥ 0.

If we write these equations in matrix form for l = 1, . . . p, after using the symmetry
property of the AC sequence, i.e., γ [l] = γ [−l], we obtain

⎡

⎢⎢⎢⎢⎢⎣

γ [0] γ [1] γ [2] · · · γ [p − 1]
γ [1] γ [0] γ [1] · · · γ [p − 2]
γ [2] γ [1] γ [0] · · · γ [p − 3]

...
...

...
...

...

γ [p − 1] γ [p − 2] γ [p − 3] · · · γ [0]

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

a1

a2

a3
...

ap

⎤

⎥⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎢⎢⎣

γ [1]
γ [2]
γ [3]

...

γ [p]

⎤

⎥⎥⎥⎥⎥⎦

where the matrix on the left, which will be indicated by Γ p, has p rows and p
columns. If moreover we define the two column vectors

ap = [
a1 a2 a3 . . . ap

]T
,

γ p = [
γ [1] γ [2] γ [3] . . . γ [p]]T

,
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we can write synthetically the YW equations as

Γ pap + γ p = 0.

Note that given all the AC samples that are needed, the YW equations determine
a unique set of coefficients ai , as long as the p × p matrix Γ p is positive-definite,
hence non-singular.8 If the autocorrelation matrix is singular, then the corresponding
random variables x[n] are linearly dependent. This means that if we measure a
set of N successive samples of x[n], then all the future samples can be computed
recursively; the process is fully predictable. It is the exact opposite of a white noise
process, which has no correlation between any pair of samples. In the frequency
domain, for a white noise process the power spectrum is constant, whereas for a
fully predictable process, the power spectrum can only have lines—it cannot have
any continuous component. Without entering into these details, from now on we
will simply assume non-singularity of the AC matrix. This is not too restrictive,
since in case of singularity, we can think of progressively eliminating the linear
dependence among random variables until we finally arrive at a smaller set of random
variables, which do not have linear dependence. The correlation matrix of these
random variables is then non-singular, and we can solve a smaller set of normal
equations in a unique manner. Note also that the matrix Γ p is Toeplitz.9 This is a
consequence of the WSS property of the signal; indeed, it can be shown that any
positive definite Toeplitz matrix is the autocorrelation matrix of some WSS process.
For a more detailed mathematical description of the properties of the AC matrix in
the frame of stochastic modeling see, e.g., Vaidyanathan (2008).

Returning to the YW equations, and considering also l = 0, we can augment the
σ 2

e information to the YW equations. This is obtained by simply moving the right-
hand side term of the YW equations to the left and adding an extra row at the top of
the matrix Γ p. As a result, we get the augmented Yule-Walker equations in matrix
form:

⎡

⎢⎢⎢⎢⎢⎣

γ [0] γ [1] γ [2] · · · γ [p − 1] γ [p]
γ [1] γ [0] γ [1] · · · γ [p − 2] γ [p − 1]
γ [2] γ [1] γ [0] · · · γ [p − 3] γ [p − 2]

...
...

...
...

...
...

γ [p] γ [p − 1] γ [p − 2] · · · γ [1] γ [0]

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
a1

a2

a3
...

ap

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
e

0
0
0
...

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

8In linear algebra, a square (n × n) symmetric real matrix M is said to be positive definite if the
quadratic form vT Mv is positive for every non-zero column vector v of n real numbers. The symbol
vT denotes the transpose of v, i.e., the corresponding row vector.
9In linear algebra, a Toeplitz matrix (named after Otto Toeplitz), or diagonal-constant matrix, is a
matrix in which each descending diagonal from left to right is constant, i.e., all the elements on any
line parallel to the main diagonal are identical.
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where this time the matrix on the left has p + 1 rows and columns. Synthetically,
these augmented equations can be written as

Γ p+1

[
1

ap

]
=
[
σ 2

e,p

0.

]

where we used the column vectors of zeros

0 = [0 0 0 . . . 0]T

having p elements. To stress the dependence on p, here we wrote σ 2
e,p for the white-

noise variance resulting from modeling at the order p.
We might use the YW equations to generate the AC sequence from a given set of

model parameters. On the other hand, if AC estimates are known from lag 0 to lag p,
i.e., if the first p + 1 samples of the theoretical AC sequence have been estimated,
we can exploit the YW equations to derive estimates of the model parameters. The
YW equations are linear in the coefficients ai , so it is a simple matter to find the
coefficients:

ap = −Γ −1
p γ p.

Later we will find σ 2
e,p from the first row of the augmented equations:

σ 2
e,p = γ [0] +

p∑

i=1

aiγ [i].

This approach to modeling is referred to as the YW method.
Let us stress that in most applications, the theoretical AC sequence γ [l] is

unknown, and must be estimated from a sample realization of the process. The best
way to do so is taking the biased AC estimate, cxx [l]. Then we can derive estimates
of the model coefficients. Indeed, it can be assumed (Stoica and Moses 2005) that
the YW system has a unique solution, not only when the theoretical AC elements are
used, but also when we substitute them with their biased estimates. The estimated
quantities should be clearly distinguished from theoretical ones using the symbols
γ̂ [i], âi , and σ̂e. In the following discussion, however, we will let the context clarify
whether we refer to true values or to estimates, and will use these symbols as seldom
as possible, to avoid weighing down the notation.

The set of YW equations for l > 0, which is a system of linear difference equations
with order p:

γ [l] = −
p∑

i=1

aiγ [l − i],
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is often written in terms of the AC coefficient (normalized covariance):

ρ[l] = −
p∑

i=1

aiρ[l − i]).

If the filter is known, the system can be solved for ρ[l] (or γ [l]) using the roots of
the associated characteristic polynomial. In this way we can gain insight into the
behavior of ρ[l] versus l in the AR(p) model.

Let us take, for example, an AR(2) model. A general solution for ρ[l] in the YW
set of equations can then be obtained using the roots z1 and z2 of the associated
characteristic polynomial, i.e., in terms of the solutions z1,2 of the equation

z2 + a1z + a2 = 0.

The filter’s transfer function is

H(z) = 1

1 + a1z−1 + a2z−2
= 1

z−2
(
z2 + a1z + a2

) = z2

z2 + a1z + a2
;

the term z2 in the numerator gives two zeros of H(z) at z = 0, while the term
z2 + a1z + a2 in the denominator gives two poles of H(z), the positions of which
are given by the roots of z2 + a1z + a2 = 0. If such roots, which are

z1,2 =
−a1 ±

√
a2

1 − 4a2

2
,

satisfy the condition |z1,2| < 1, then the all-pole filter is stable and the AR(2) process
is stationary, i.e., it has constant (zero) mean, constant variance and autocovariance
depending only on lag.10

The general solution for ρ[l] can behave in different ways. Three cases are
possible:

10If the roots lie on the unit circle, the AR process will only be stationary in case of noise being
identical to zero. In that case a harmonic process will result, consisting of a sum of cosine functions.
We might wonder what will happen if the AR process has poles very close to the unit circle. As
poles on the unit circle represent a harmonic process, an AR process with poles near the unit circle
can be expected to demonstrate some kind of pseudo-periodic behavior (Priestley 1994). In this
case the AC can be described as a sum of weakly damped sinusoids. Furthermore, the AR process
may exhibit a kind of almost-non-stationary behavior, because the transfer function will be close
to instability in the filtering sense. The pole locations will also affect the reliability of the various
parameter estimation techniques. It was claimed by Priestley (1994) that YW equations may lead
to poor parameter estimates, even for moderately large data samples, if the AR operator has a pole
near the unit circle.
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1. if z1 and z2 are real and distinct roots, then

ρ[l] = c1zl
1 + c2zl

2 for l = 0, 1, 2, . . .

where c1 and c2 are constants that can, for instance, be obtained from ρ[0] and
ρ[1]. Moreover, since stationarity requires |z1|, |z2| < 1, in this case the sequence
of AC coefficients is a mixture of two terms decaying exponentially with increas-
ing lag;

2. if z1 and z2 are complex-conjugate roots of the form r ± js, then we have

ρ[l] = Rl [c1 cos(λl) + c2 sin(λl)] for l = 0, 1, 2, . . . ,

where R = |zi | = √
r2 + s2 and λ is determined by cos λ = r/R, sin λ = s/R.

Therefore we have r ± js = R (cos λ ± j sin λ). Again, c1 and c2 are constants.
In this case the AC coefficient sequence has the form of a damped sinusoid with
damping factor R and angular frequency λ;

3. if there are two coincident real roots, setting z0 = z1 = z2 we have

ρ[l) = (c1 + c2l) zl
0 for l = 0, 1, 2, . . . ,

where c1 and c2 are constants. In this case the AC coefficient sequence has an
exponentially decaying form.

For any order, if all roots are real and distinct, then

ρ[l] = c1zl
1 + c2zl

2 + · · · + cpzl
p for l = 1, 2, . . . ,

where c1, c2, . . . cp are constants. We thus understand that the AC of a stationary
AR(p) process can be a mixture of exponential-decay terms and damped sinusoidal
terms, depending on the values of the roots.

We may observe that the AR(1) process has a2 = 0, and therefore the characteristic
equation is z + a1 = 0; therefore there is only one root, z1 = −a1. The sequence ρ[l]
decays as zl

1 for increasing lag.

11.3.3 Moving Average (MA) Model

Another special case of the ARMA(p, q) process arises when p = 0. In this case,
the signal is generated by filtering white noise with a filter with transfer function

H(z) = B(z) = 1 +
q∑

i=1

bi z
−1
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and frequency response

H(ejω) = B(ejω) = 1 +
q∑

i=1

bi e
−jωi .

This system is an FIR system or an all-zero model.11 Hence an MA(q) model is
always stable. The power spectrum is

Pxx (ω) = σ 2
e

∣∣B(ejω
∣∣2 ,

or, in terms of the z-transform,

Pxx (z) = Pee(z)B(z)B∗(1/z∗).

The MA(q) model,

x[n] =
q∑

i=0

bi e[n − i],

expresses the signal x[n] as a linear superposition of delayed white-noise shocks
e[n − i], each weighted according to the value of the coefficient bi .

Why is this model called “moving average”? The name “moving average” is
somewhat misleading, because the weights in the sum on left-hand side of the pre-
vious equation need not total unity, nor be positive. However, each value of x[n]
can be thought of as a weighted moving average of past random shocks; the MA
nomenclature is in common use, and therefore we employ it.

The YW equations for an MA(q) process may be found from the AC of the ARMA
model by setting p = 0, a0 = 1, ai = 0 for i > 0, and h[n] = bn . For non-negative
values of l not exceeding q we therefore have

c[l] =
q−l∑

i=0

bi+lbi ,

hence

γ [l] =
{

σ 2
e

∑q−|l|
i=0 bi+|l|bi for |l| ≤ q,

0 for |l| > q,

where this time we have used the absolute value on l so that the expression for γ [l] is
valid for lags of both signs, provided that |l| ≤ q. For |l| > q the AC γ [l] vanishes.

11This does not mean that the FIR filter has no poles. Actually (see Table 3.1), a rational transfer
function with numerator degree M = q and denominator degree N = 0 has p zeros and no poles
at finite values of z outside the origin of the z-plane, and p poles in the origin.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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The AC sequence of an MA(q) process is thus equal to zero for all values of l that lie
outside the interval [−q, q], i.e., AC “cuts off” after lag q. We thus see that variance
is a constant:

σ 2
x = γ [0] = (

1 + b2
1 + b2

2 + · · · b2
q

)
σ 2

e .

This is a zero-mean process which is always stationary, independently of the weights.
In fact, the mean is zero as for e[n], the variance is constant and the AC is a function
of lag only.

For the MA(q) model, the AC sequence γ [l] depends nonlinearly on the MA para-
meters bi . How does this affect the opportunity of using MA modeling for parametric
spectral estimation?

One method to estimate an MA(q) spectrum consists of two steps:

• estimating the q parameters bi and σ 2
e , and

• inserting the estimated parameters in the formula for the spectrum of the MA(q)
process.

The difficulty with this approach lies in the first step, which is a nonlinear estimation
problem. Therefore, unlike the case of an AR(p) process, estimating the coefficients
of an MA process and using them to construct a spectral estimate is a nontrivial
problem. AR modeling thus appears easier to tackle than the general ARMA case or
the MA case.

Another method to estimate an MA spectrum is based on the re-parametrization of
the MA(q) spectrum in terms of the AC sequence. We know that in the MA case γ [l]
vanishes for lags external to the interval [−q, q]. Owing to this simple observation,
the definition of the spectrum as a function of AC turns into a finite-dimensional
spectral model:

Pxx (ω) =
q∑

l=−q

γ [l]e−jωl

Hence a simple estimator of the MA(q) spectrum is obtained by inserting a proper
estimate of the AC sequence into this formula. If the biased estimate cxx [l] is used,
then the MA spectral estimator is the correlogram, computed using a window of
length 2q + 1. This is not unexpected: the correlogram with a rectangular window
of length 2q + 1 implicitly assumes that the AC samples at lags outside the win-
dow interval are equal to zero; this is precisely the effective behavior of the MA(q)
model. Thus the spectral estimate of the spectrum of the MA(q) signal will be unbi-
ased. A disadvantage of this approach to MA(q) spectral estimation is that owing to
the (implicit) use of a rectangular window in the formula for Pxx (ω), the estimate
we obtain is not necessarily positive at all frequencies. Indeed, it is often noted in
applications that this approach to the MA(q) spectrum produces negative estimates.
In order to cure this deficiency, we might use another window ensuring only positive
spectral estimates; however, the corrected estimator would no longer be an unbiased
estimator of the spectrum of an MA(q) signal.
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11.3.4 How the AR and MA Modeling Approaches
Are Theoretically Related

MA and AR processes are close relatives. Indeed, starting from Wold’s decomposi-
tion theorem (Sect. 11.2), it can be shown that the theorem’s expression represents an
infinite-order MA process from which both finite-order MA and AR processes can be
derived (Montgomery et al. 2008). In other words, any stationary random signal can
be expressed as an infinite weighted sum of past and present white-noise shocks. The
MA(∞) process, containing an infinite number of weights, is theoretically important
for its generality but it is useful practically only in the following special cases:

• finite-order MA(q) processes, in which only a finite number q of weights are
different from zero;

• finite-order AR(p) processes that derive from those infinite-order MA processes
the weights of which are not independent of each other and can therefore be
generated using a finite number p of parameters;

• processes that are a mixture of a finite-order MA process and a finite-order AR
process, i.e., ARMA(p, q) processes, which provide a parsimonious description of
a WSS stochastic process, due to the combination of AR and MA characteristics.
In fact, Wold’s decomposition can be shown to summarize in itself, i.e., in the
MA(∞) process, the most general ARMA(p, q) process.

For an MA(∞) process, at each instant, among the infinite past noise shocks, only a
finite number will contribute significantly to the present value of the process x[n], and
the time window that frames these contributing shocks progressively will advance in
time, making the older shocks obsolete for the purpose of determining x[n]. Some
processes can intrinsically have this dynamic with a reasonably small finite number
of contributing past shocks. For other processes, the influence of past shocks can
persist for so long that the estimate of a very high number of coefficients—a number
tending to infinity—may be necessary: too many coefficients will certainly be needed
with respect to the amount of the data that is available for their estimation. A solution
to this problem is offered by AR(p) processes that can be derived assuming that the
infinite coefficients bi of the MA(∞) process are not independent of one another,
but rather depend on i according to some mathematical formula and are therefore
representable on the basis of a finite number of parameters. It is reasonably assumed
that, though the MA model order is infinite, the contributions of the more remote
shocks are smaller than those provided by more recent ones. Since the shocks are
independent random variables with equal probability distributions, it can simply be
assumed that the infinite coefficients progressively decrease as their index increases,
reflecting the gradually smaller influence of remote shocks as we go back into the past.
This leads from the MA(∞) process to finite-order AR processes. Conversely, using
the partial AC sequence (PAC) that will be defined in Sect. 11.6.1, it can be shown
that an MA(q) process satisfying some conditions allows for a representation in terms
of an absolutely summable AR(∞) process; being more general, in the frame of the
Wiener-Kolmogorov theory of extrapolation and interpolation of random sequences
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and processes (Yaglom 2004), a theorem exists (Kolmogorov 1941), which states
that any WSS random process can be modeled as an AR(∞) process. Since we are
only interested in stochastic models for the purpose of spectral estimation, we will
not discuss these topics.

11.3.5 First-Order AR and MA Models: White, Red
and Blue Noise

We will now give some more details on first-order AR and MA processes. This offers
the opportunity to introduce types of noise different from the white one, namely red
and blue noises, which are produced by AR(1) and MA(1) processes.

Let us compare the AC and the power spectrum of the AR(1) and MA(1) processes
with those of white noise.

1. White noise:
a stationary random process represented by the model

x[n] = e[n]

with

• E {e[n]} = 0,
• E

{
e[n]2

} = σ 2
e = constant,

• E {e[n]e[k]} = 0 for k 
= n.

2. AR(1) process:
a random process represented by the model

x[n] = −a1x[n − 1] + e[n] = αx[n − 1] + e[n],

where we wrote α = α1 = −a1. This process is stationary if |α| < 1; for |α| ≥ 1
the process has statistical averages that increase or decrease in time, according to
α being positive or negative, and therefore is not stationary. This non-stationarity
is due to the instability of the corresponding all-pole filter and is illustrated in
Fig. 11.1, in which the considered values of α are shown in each panel. We see
that for α = −1.5, for example, the signal values rapidly fall toward −∞; for
α = +1 the mean value is constant but the variance increases with n and tends
to infinity; the same happens, a fortiori, in the case of α = 1.5, with very large
oscillations.
Figure 11.2 shows examples of six stationary signals generated by AR(1) pro-
cesses. Each of them was obtained by filtering white noise with σ 2

e = 1 by an
AR(1) filters with the value of α shown in the corresponding panel. N = 1024
samples of 50 realizations of each of the six processes were generated for later use,
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Fig. 11.1 Examples of non-stationary AR(1) processes (|α| ≥ 1)

but to avoid cluttering, Fig. 11.2 shows only 100 samples of a single realization
of each of the six processes. The mean and the variance of these processes visibly
remain stable.
For the AR(1) process,

• E {x[n]} = 0,
• E

{
x[n]2

} = σ 2
x = σ 2

e /
(
1 − α2

)
,

• E {x[n]x[n − l]} = γ [l] = σ 2
x αl = σ 2

e αl/
(
1 − α2

)
.

Hence the AC coefficient sequence is

ρ[l] = γ [l]
σ 2

x

= αl = (ρ[1])l .
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Fig. 11.2 Examples of AR(1) stationary signals with various values of α, with |α| < 1

These equations, which highlight that actually the model is reasonable only for
|α| < 1, are easily derived.12

12The equation σ 2
x = σ 2

e /
(
1 − α2

)
can be obtained as follows:

E
{

x[n]2
}

= E
{
(αx[n − 1] + e[n])2

}
=

= α2E
{

x[n − 1]2
}

+ 2αE {x[n − 1]e[n]} + E
{

e[n]2
}

= α2E
{

x[n − 1]2
}

+ σ 2
e ,

because the white-noise input and the output signal are uncorrelated.
If we substitute the model expression into the last equation, i.e., if we use x[n − 1] = αx[n −

2] + e[n − 1], and then iterate, we get

E
{

x[n]2
}

= σ 2
e + α2σ 2

e + α4σ 2
e + · · · + α2l E

{
x[n − l]2

}

that for increasing l becomes, for a centered x[n] for which E
{

x[n]2
} = σ 2

x ,

σ 2
x = σ 2

e (1 + α2 + α4 + · · · ) = σ 2
e

1 − α2 .

In a similar way, the formula for the AC at lag l could be derived. We can also derive these
formulas directly from YW equations:

γ [l] + a1γ [−1] = σ 2
e δ[l]
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The AC sequence of an AR(1) process does not go to zero for |l| > 0: the process
has memory. However, since |ρ[1]| ≤ 1, the AC absolute values decrease for
increasing l and asymptotically go to zero. This can be seen in Fig. 11.3a–f, where
the AC coefficient series, estimated for 50 realizations of each of the processes
illustrated in Fig. 11.2a–f, respectively, and then averaged over realizations (black
dots) is compared with the expected one, calculated as ρ[l] = αl = (ρ[1])l

(gray lines). The AC sequences for the six AR(1) processes show exponen-
tially decreasing absolute values. They are always non-negative for positive α,
while they oscillate in sign for negative α. This can be understood observing, for
example, the two realizations with α = 0.8 and α = −0.8 (Fig. 11.3a, d, respec-
tively). For α = 0.8, we can observe short intervals in which the signal values
tend to move upwards or downwards. Positive values of ρ[l] can therefore be
expected. On the contrary, the AR(1) signal having α = −0.8 “jumps up and
down nervously”, and negative values of ρ[l] appear.
AR(1) processes are aperiodic, and have a smooth spectrum given by

Pxx (ω) = 1

N

∣∣X (ejω)
∣∣2 = 1

N

∣∣E
(
ejω
)∣∣2

∣∣1 + a1e−jω
∣∣2

,

where E
(
ejω
)

is the DTFT of e[n]. As derived by Bartlett (1955), this expression
can be rewritten as

(Footnote 12 continued)
provides

γ [0] + a1γ [l − 1] = σ 2
e = γ [0] + a1γ [1]

and since γ [0] = σ 2
x ,

σ 2
x = σ 2

e − a1γ [1] = σ 2
e + αγ [1].

Also,

γ [1] + a1γ [0] = 0, γ [1] = −a1σ
2
x = ασ 2

x ,

hence

a1 = −γ [1]
γ [0] = −ρ[1], α = ρ[1].

Proceeding further, we have

γ [2] + a1γ [1] = 0, γ [2] = −a1γ [1] = αγ [1] = α2σ 2
x ,

and by iterating, we deduce that in general

γ [l] = αlσ 2
x = ρ[1]lσ 2

x , ρ[l] = (ρ[1])l = αl .

Moreover we can write

σ 2
x = σ 2

e + αγ [1] = σ 2
e + α2σ 2

x , σ 2
x = σ 2

e

1 − α2 ,

and finally

γ [l] = αlσ 2
x = σ 2

e αl

1 − α2 .
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Fig. 11.3 a–f AC coefficient sequences of the AR(1) processes with different values of the parame-
ter α illustrated in Fig. 11.2a–f, respectively. The coefficients (black dots) are calculated averaging
over 50 realization of each process, each realization being N = 1024-samples long. The gray lines
represent the corresponding theoretical values

Pxx (ω) = σ 2
e

1 + ρ2[1] − 2ρ[1] cos ω
.

In many applications it is convenient to replace the numerator σ 2
e , the knowledge

of which implies that the AR(1) model that best fits the data has been found, by
its expression as a function of σ 2

x that can be directly estimated from the data
record. Therefore we will write σ 2

e = σ 2
x

{
1 − ρ2[1]}, and

Pxx (ω) = σ 2
x

{
1 − ρ2[1]}

1 + ρ2[1] − 2ρ[1] cos ω
.

Figure 11.4a–f shows the pole-zero plots of the six AR(1) transfer functions
involved in this example. As required for filter stability, and therefore for the
stationarity of the processes, in all cases we find one pole inside the unit circle.
This pole is real and has abscissa equal to α = −a1; in polar form, its magnitude
is r = |α| and its frequency is 0 for positive values of α, π for negative values
of α.
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Fig. 11.4 a–f Pole-zero plots of the transfer functions of each of the six AR(1) filters generating
the signals that appear in Fig. 11.2a–f, respectively. Zeros are represented by circles and poles by
crosses

Figure 11.5a–f shows the power spectrum estimated averaging over 50 realizations
of each of the processes appearing in Fig. 11.2a–f, respectively. Each estimate
(black curve) is compared with the theoretical expectation (gray curve). These
plots show that according to the sign of α, low or high frequencies are dominant
in the power spectrum, i.e., the spectrum peaks at zero frequency, or at ω = π .
Thus, the AR(1) filter can act on white noise as a lowpass or a highpass filter. In
conclusion,

• if α > 0, then the spectrum has dominant low frequency components, and the
process is referred to as red noise, in analogy with red light;

• if α < 0, then the spectrum has dominant high frequency components, and
the process is referred to as blue noise, in analogy with blue light;

• if α = 0 the process is white noise, because as in white light, all frequencies
are equally represented.13

3. MA(1) process:
its model is

x[n] = e[n] + αe[n − 1],

were we set α = b1. The process represented by this model is stationary for any
value of α, since the corresponding FIR filter is always stable. Figure 11.6a–f

13Recall that, in general, the noise that is not white is termed “colored noise” and has a smooth
spectrum with more power at some frequencies with respect to others, in analogy to colored light.
A typical colored noise spectrum does not contain narrowband features associated with periodic or
quasi-periodic signal components (Sect. 10.2).

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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Fig. 11.5 a–f Power spectra of the AR(1) processes with different values of the parameter α

illustrated in Fig. 11.2a–f, respectively. These spectra have been calculated via periodograms on
50 realizations of each process (each realization being N = 1024-samples long) and then averaged
over realizations. The average is represented by the black curve in each panel; the gray curve shows
the theoretical spectrum
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Fig. 11.6 Examples of MA(1) signals with various values of α
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shows, for different values of α, examples of signals generated by an MA(1)
process. Unit variance was assumed for the white-noise input to each MA(1)
filter.
For a centered MA(1) process,

• E {x[n]} = 0,
• E

{
x[n]2

} = σ 2
x = σ 2

e (1 + α2),
• E {x[n]x[n − l]} = γ [l] =

– for l = 0, σ 2
e (1 + α2);

– for l = ±1, ασ 2
e ;

– for different values of l, γ [l] is identically zero.14

Hence the AC coefficient sequence is

ρ[l] = γ [l]
σ 2

x

= γ [l]
σ 2

e

(
1 + α2

) =

⎧
⎪⎨

⎪⎩

ρ[0] = 1,

ρ[±1] = α
1+α2 ,

ρ[l] = 0 for |l| > 1.

The expressions given above clarify that no stationarity constraint actually exists
on the value of α: none of the averages of the MA(1) process goes to infinity for
some particular value of α. A visual inspection of the plots in Fig. 11.6a–f shows
that the mean and the variance remain stable, as expected.
Figure 11.7a–f compares the AC coefficient series (black dots), estimated by aver-
aging over 50 realizations of the signals illustrated respectively in Fig. 11.6a–f
(each realization being 1024-samples long), with the corresponding theoretical
behavior (gray lines). Unlike the AR(1) process, the MA(1) process has an AC
sequence that goes identically to zero very rapidly. The estimated ρ[l] has absolute
value greater than zero at l = 0 and l = 1. Note that the AC coefficient at lag 1 is
positive for α > 0 and negative for α < 0. Actually, if we observe, for example,
the case with α = 0.8 in Fig. 11.6a we see sections of the signal in which the
values of subsequent samples tend to follow each other for short time intervals, a
behavior that suggests some positive AC, even if these sections are shorter than

14The calculation of the AC is straightforward:

E {x[n]x[n + l]} = E {(e[n] + αe[n − 1]) (e[n + l] + αe[n + l − 1])} =
= E {e[n]e[n + l]}

+ αE {e[n − 1]e[n + l]} + αE {e[n]e[n + l − 1]} + α2E {e[n − 1]e[n + l − 1]} .

The right-hand terms are all zero, except when the indexes of the noise samples involved are equal.
Independently of the index, each term of the kind E

{(
e2[n + l])} is equal to σ 2

e , so we can write
· for l = 0, E

{
x[n]2

} = σ 2
e (1 + α2),

· for l = 1, E {x[n]x[n + 1]} = ασ 2
e ,

· for l = −1, E {x[n]x[n − 1]} = ασ 2
e ,

while for different values of l we find zero.
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Fig. 11.7 a–f AC coefficient sequences of the MA(1) processes with different values of the parame-
ter α illustrated in Fig. 11.6a–f, respectively. The coefficients (black dots) are calculated averaging
over 50 realization of each process, each realization being N = 1024-samples long. The empty lines
represent the corresponding theoretical values

those observed in the AR(1) signal of Fig. 11.2a. In the case with α = −0.8 in
Fig. 11.6d the signal tends to oscillate more rapidly, a behavior that suggests some
negative AC.
Figure 11.8 shows the zero-pole plots of the MA(1) filters involved in the present
example. Note that all poles are in the origin of the z-plane, and the zeros are real
and equal to −α. For the power spectrum we have

Pxx (ω) = σ 2
e (1 + α2 + 2α cos ω).

This formula can be found in the same manner as the formula for the power
spectrum of the AR(1) process, but also directly through the transform of the AC
sequence that is particularly simple in this case:

Pxx (ω) =
1∑

l=−1

σ 2
e (1 + α2)ρ[l]e− jωl =

= σ 2
e (1 + α2)

[
1 + α

1 + α2

(
e− jω + e jω

)] = σ 2
e (1 + α2 + 2α cos ω).
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Fig. 11.8 a–f Pole-zero plots of the transfer functions of each of the six MA(1) filters generating
the signals that appear in Fig. 11.6a–f, respectively. Zeros are represented by circles and poles by
crosses

Figure 11.9a–f shows the power spectra estimated from 50 realizations of the
signals presented respectively in Fig. 11.6a–f and then averaged (black curves),
in comparison with the theoretical spectra (gray curves).

Inspection of these figures tells us that

• if α > 0, then the MA(1) process represents red noise;
• if α < 0, then the MA(1) process represents blue noise;
• if α = 0, then the MA(1) process represents white noise.

However, in our discussion, AR(1) noise is more important than MA(1) red noise,
since it typically arises in many stochastic natural processes, in geophysics (Allen
and Smith 1996) and other fields in physics, but also in economics (see, e.g., Sella
et al. 2013; McConnel and Perez-Quiros 2000; Hess et al. 1997), in medicine and
biology (see, e.g., Meltzer et al. 2008), etc. Thus, AR(1) red noise is often assumed as a
background spectrum, a null-hypothesis against which spectral peaks are statistically
tested to ascertain their significance. We already did this in Sect. 10.8 and will do
it again in the following chapters. From now on, when we speak about red noise
without specifying anything more, we mean AR(1) red noise.

http://dx.doi.org/10.1007/978-3-319-25468-5_10


494 11 Parametric Spectral Methods

0 0.2 0.4 0.6 0.8 1
0

5

10

15
P

x
x
(ω

)

ω/π

α = 2.4

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

P
x
x
(ω

)

ω/π

α = 1.6

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

P
x
x
(ω

)

ω/π

α = 0.8

0 0.2 0.4 0.6 0.8 1
0

5

10

15

P
x
x
(ω

)

ω/π

α = -2.4

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

P
x
x
(ω

)

ω/π

α = -1.6

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

P
x
x
(ω

)
ω/π

α = -0.8

(a) (b) (c)

(d) (e) (f)

Fig. 11.9 a–f Power spectra of the MA(1) processes with different values of the parameter α

illustrated in Fig. 11.6a–f, respectively. These spectra have been calculated via periodograms on
50 realizations of each process (each realization being N = 1024-samples long) and then averaged
over realizations. The average is represented by the black curve in each panel; the gray curve shows
the theoretical spectrum

11.3.6 Higher-Order AR Models

Here we provide a few graphical examples of AR processes with p > 1. This will
offer us the possibility of observing some features that are interesting in view of the
use of these model for spectral estimation. In Fig. 11.10, 11.11, 11.12 and 11.13 we
see, respectively:

• examples of sequences representing a single realization of two AR(2) processes
with different parameter values (Fig. 11.10a, b);

• the corresponding AC coefficients (averages over 50 realizations of each process;
Fig. 11.11a, b);

• the corresponding poles and zeros of the AR(2) transfer function (Fig. 11.12a, b);
• the corresponding power spectra (averages over 50 realizations of each process),

in comparison with their theoretical behavior (Fig. 11.13a, b);
• examples of sequences representing a single realization of two AR(4) processes

with different parameter values (Fig. 11.10c, d);
• the corresponding AC coefficients (averages over 50 realizations of each process;

Fig. 11.11c, d);
• the corresponding poles and zeros of the AR(4) transfer function (Fig. 11.12c, d);



11.3 Stochastic Models and Processes 495

400 450 500 550 600 650

−3

−2

−1

0

1

2

3
x
[n
]

n

α1 = 0.9 α2 = -0.4

400 450 500 550 600 650

−6

−4

−2

0

2

4

6

x
[n
]

n

α1 = -0.5 α2 = -0.9

400 450 500 550 600 650

−6

−4

−2

0

2

4

x
[n
]

n

α1 = 1.352 α2 = -1.338
α3 = 0.662 α4 = -0.24

400 450 500 550 600 650
−80

−60

−40

−20

0

20

40

60

x
[ n
]

n

α1 = 2.76 α2 = -3.809
α3 = 2.654 α4 = -0.924

(a) (b)

(c) (d)

Fig. 11.10 Examples of a, b AR(2) signals with different values of the model parameters, and c,
d AR(4) signals with different values of the model parameters

• the corresponding power spectra (averages over 50 realizations of each process)
compared with their theoretical behavior (Fig. 11.13a, b).

All these signals were generated filtering white noise with unit variance and include
N = 1024 samples.

1. AR(2) processes
For the process of Fig. 11.10a, α1 = 0.9 and α2 = 0.4, i.e., a1 = −0.9 and
a2 = 0.4. Thus a2

1 − 4a2 is positive and the roots of the characteristic polyno-
mial are real and distinct. The AC sequence (Fig. 11.11a) is a mixture of two
exponential decays. For the process of Fig. 11.10b, α1 = −0.5 and α2 = −0.9,
i.e., a1 = 0.5 and a2 = 0.9. Thus a2

1 − 4a2 is negative and the roots of the charac-
teristic polynomial are a complex-conjugate pair. The AC sequence behaves like
a damped sinusoid (Fig. 11.11b).
Let us now look at the zero-pole plots (Fig. 11.12a, b). We can see that as
required for stationarity, for both AR(2) models the poles lie within the unit
circle. In Fig. 11.12a they fall at the complex-plane points 0.4500 ± j0.4444,
i.e., 0.6325e±j0.2480π. In the spectrum, we thus expect a peak at ω = 0.2480π on
the positive half-axis. In Fig. 11.12b the poles fall at the complex-plane points
−0.2500 ± j0.9152, i.e., 0.9487e±j0.5849π. In the spectrum, we thus expect a peak
at ω = 0.5849π on the positive half-axis. This is verified in Fig. 11.13a and b,
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Fig. 11.11 a, b AC coefficient sequences of the AR(2) processes illustrated in Fig. 11.10a, b,
respectively. c, d AC coefficient sequences of the AR(4) processes illustrated in Fig. 11.10c, d,
respectively. The coefficients are calculated averaging over 50 realization of each process, each
realization being N = 1024-samples long

in which the vertical dotted lines identify the frequency at which the peaks are
expected to fall for the particular AR(2) processes considered, on the basis of the
transfer-function’s poles.

2. AR(4) processes

For the process of Fig. 11.10c, the model’s parameters are such that the AC
sequence (Fig. 11.11c) is a mixture of two exponential decays. For the process of
Fig. 11.10d, the AC sequence behaves like a damped sinusoid (Fig. 11.11d).
The poles of both AR(4) models (Fig. 11.12c, d) lie within the unit circle. In
Fig. 11.12c they fall at the complex-plane points 0.1809 ± j0.7593 and 0.4951 ±
j0.4953. In polar form, the poles are 0.6995e±j0.4168π and 0.7003e±j0.2500π . In
the spectrum, on the positive frequency half-axis we thus expect two peaks at
ω = 0.4168π and ω = 0.2500π . In Fig. 11.12d they fall at 0.6231 ± j0.7593
and 0.7569 ± j0.6204. In polar form, the poles are 0.9822e±j0.2813π and
0.9787e±j0.2185π. In the spectrum, on the positive frequency half-axis we thus
expect two peaks at ω = 0.2813π and ω = 0.2185π . This is verified in
Fig. 11.13c, d, in which the vertical dotted lines identify the frequency at which
the peaks are expected to fall.
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Fig. 11.12 a, b Pole-zero plots of the transfer functions of each of the two AR(2) filters generating
the signals that appear in Fig. 11.10a, b, respectively. c, d Pole-zero plots of the transfer functions
of each of the two AR(2) filters generating the signals that appear in Fig. 11.10c, d, respectively.
Zeros are represented by circles and poles by crosses

From Fig. 11.13 we note that the AR power spectrum with order greater than one can
exhibit localized and acute peaks. AR spectra can represent both broadband and nar-
rowband features. Indeed, an AR(p) model can represent a wide class of processes,
including broadband and narrowband processes, depending on its parameters and on
the consequent position of its poles. More precisely, the bandwidth and the peaked-
ness of the spectrum of an AR(p) process depends on the magnitude r of its poles, as
can be seen comparing Fig. 11.13a, for which r = 0.6325, with Fig. 11.13b, for which
r = 0.9487. A similar argument holds for Fig. 11.13c, for which the pole magnitudes
are about 0.70, in comparison with Fig. 11.13d, for which the pole magnitudes are
about 0.98: the closer a pole is to the unit circle, the narrower the corresponding
spectral peak.

To further illustrate this important point, Fig. 11.14 shows the spectra of several
AR(2) processes. The transfer function of each process has a pair of poles at fre-
quencies ±0.4π , but with different magnitudes in the range 0.07–0.97 (light to dark
curves). We can see that as the poles radii increase towards 1, so that the poles tend to
reach the unit circle in the z-plane, the processes gradually pass from being wideband
to being narrowband. We can conclude that:

• white noise, a sequence of random uncorrelated variables with zero mean and finite
constant variance, has a flat spectrum, so that each frequency equally contributes
to the signal variance;
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Fig. 11.13 a, b Power spectra of the AR(2) processes illustrated in Fig. 11.10a, b, respectively.
These spectra have been calculated via periodograms on 50 realizations of each process (each
realization being N = 1024-samples long) and then averaged over realizations. The average is
represented by the black curve in each panel; the gray curve shows the theoretical spectrum. The
vertical dotted lines indicate the frequency at which the peak is expected to fall for the particular
AR(2) processes being considered, on the basis of the absolute value of the phase angle of its poles.
c, d Power spectra of the AR(4) processes illustrated in Fig. 11.10c, d, respectively. The vertical
dotted lines indicate the frequency at which the peaks are expected to fall for the particular AR(4)
processes being considered, on the basis of the two different absolute values assumed by the pole’s
phase angles

Fig. 11.14 Power spectra of
several AR(2) processes with
different parameters, chosen
in such a way that the
magnitudes of the transfer
function’s poles increase
linearly from 0.07 (light gray
curve) to 0.97 (black curve).
All processes share the same
pole frequencies ±0.4π
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• autocorrelated processes have either colored noise spectra, or spectra that are
narrowband to a greater or lesser extent. They can be obtained filtering white
noise with a filter with proper coefficients. For example, an AR(1) filter has three
coefficients: b0 = 1, a0 = 1 and a1 = −ρ[1] = −α, and is the filter that takes a
white noise realization as input and transforms it into a realization of an AR(1)
process.

11.4 The AR Approach to Spectral Estimation

Rational spectral estimates can be obtained using ARMA(p, q) models, as well as
simpler AR(p) models, while the MA(q) approach is related to the non-parametric
approach to spectral estimation.

The main difference between all-pole AR(p) and all-zero MA(q) models lies in the
fact that the AC sequence of an AR(p) signal decays towards zero only asymptotically
for increasing lag, and therefore to compute its DTFT and obtain the power spectrum
via correlogram we must truncate the AC sequence. This implies estimation errors.
The AC sequence of an MA(q) signal instead has finite length 2q + 1, and therefore
if the available data segment is long enough, we can estimate all the non-zero AC
values and use them to estimate the power spectrum via correlogram. We can thus
conclude that in principle

• only processes that are truly MA(q) are suitable for spectral estimation via non-
parametric methods;

• AR(p) and/or ARMA(p, q) processes naturally require a parametric approach to
spectral estimation.

The model most frequently assumed for this purpose is the all-pole model AR(p),
for a number of reasons, the main of which are:

• the methods for estimating the parameters of an AR(p) model require the solution
of a set of linear equations. Efficient algorithms exist for this task, like the Levinson-
Durbin algorithm (Sect. 11.6.3). On the contrary, ARMA methods are rarely used,
as they generally result in a set of equations which are nonlinear with respect to
the MA parameters;

• any continuous spectrum can be approximated arbitrarily well by an AR(p) model,
provided that p is properly chosen: the class of AR processes is rich and flex-
ible enough to represent a wide collection of signal types. In particular, any
ARMA(p, q) signal can be approximated satisfactorily by an AR(p) model with
sufficiently high order, so that if enough data is available for estimating many para-
meters, assuming an AR model when a more general ARMA model would be more
appropriate is not a severe problem. Therefore we can safely apply AR parametric
methods without worrying about the true stochastic nature of the process;

• when high resolution is needed, AR estimators, which correspond to all-pole filters,
represent a good choice, in that they are able to reflect spectral behaviors with acute
and localized peaks, due to the functional form of their power spectrum.
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11.5 AR Modeling and Linear Prediction

We now restrict our attention to AR modeling and show that it can also be interpreted
as a strategy for linear prediction.

Let us imagine we want to predict the value that the WSS random signal x[n] will
assume at the time n, on the basis of p past values, from x[n − p] to x[n − 1], and
that we want to apply a linear forecasting strategy at some order p:

x̂[n] = −
p∑

i=1

ai x[n − i],

where x̂[n] is the predicted signal sample. The forward prediction error, i.e. the error
in predicting a signal value from p past values, is

ε f [n] = x[n] − x̂[n],

where x[n] is the measured value at time n. Note that ε f [n] is itself a WSS random
signal. If this random error is white noise,

ε f [n] = e[n],

then the forecast process is an AR(p) process, satisfying

x[n] = −
p∑

i=1

ai x[n − i] + e[n] =
p∑

i=1

αi x[n − i] + e[n] = x̂[n] + e[n].

Therefore the sequence e[n], extracted from a white-noise process with variance
unknown a priori, in this approach represents a modeling error, a residual, i.e., the
difference between the signal and the modeled persistence −∑p

i=1 ai x[n − i] =∑p
i=1 αi x[n − i]. Note that if the error is white, or nearly white in practical cases,

the spectral information on x[n] will be mostly contained in the coefficient ai . The
model is an approximate but close representation of the WSS process x[n], which
assumes that the residuals become white or nearly white for reasonably large orders.

In this frame, the corresponding polynomial A(z) is often referred to as the transfer
function of the forward prediction error filter, which is the reciprocal of the transfer
function of the model filter. From previous discussions we know that the forward
prediction error filter is stable: it is the FIR filter that responds to the signal x[n]
giving in output the forward prediction error, i.e., the filter that transforms the signal
into white noise. The white noise samples are referred to as innovations.

It can be shown that if we require to minimize the expected value of the forward
prediction error variance

σ 2
f = E

{
ε2

f [n]} = E
{
e2[n]} = σ 2

e ,
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then we find that the minimization is produced by the same coefficients that are
solutions to the YW equations (Stoica and Moses 2005). In other words, the YW
equations can be interpreted as the equations that must be satisfied when the optimum
linear predictor in the forward-prediction-error least-squares sense is sought. Since
σ 2

e = E
{
e2[n])}, this predictor is called the minimum mean square error predictor

or MMSE predictor. Note that the mean square value, i.e., variance of x[n] equals
the mean square value of the prediction plus and the prediction square error:

σ 2
x = E

{
x̂2[n]}+ σ 2

e .

In the frame of different stochastic modeling algorithms, it is also useful to define a
backward prediction error as the error that occurs when predicting past signal values,
i.e., predicting the sample x[n − p − 1] from its future values x[n − p], x[n − p +
1], . . . x[n − 1]:

x̂b[n − p − 1] = −
p∑

k=1

a′
k x[n − k].

The backward prediction error is

εb[n] = x[n − p − 1] − x̂b[n − p − 1].

Both forward and backward predictions use the same samples x[n − p], x[n − p +
1], . . . x[n − 1], and in both cases the error is assigned to time n. The backward
predictor filter weights are assumed to be different from the forward case, but then it
can be shown that they actually are simply an order-reversed version of the forward-
case weights:

a′[i] = a[p + 1 − i] for 1 ≤ i ≤ p.

The FIR filter with these coefficients is known as the backward prediction error
filter, and its response to the input signal x[n] is the backward prediction error.
The mean square values of the forward and backward prediction errors are identical
(Vaidyanathan 2008).

An estimated AR linear predictor of the same order p can subsequently be written,
in which âi are the AR-parameter estimates and ê[n] are the estimated innovations,
obtained solving the YW equations in which the theoretical AC of the signal is sub-
stituted with its biased estimate. Here we must clearly distinguish the theoretical AR
predictor from the corresponding estimated one: we are now talking about predicting
a signal by AR-model-parameter estimation, even if for simplicity we omit the “hat”
symbols.

A final remark: the MMSE predictor is defined for any WSS discrete-time signal,
independently of the process being truly AR, or not, and the corresponding coeffi-
cients are always obtained solving the YW equations. But when the considered signal
is a true AR(p) signal, then—and only then—the prediction error is white noise.
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11.6 AR Modeling Procedure

The AR modeling problem for a discrete-time random WSS signal is the following:
given a finite-length part of a sample sequence (x[n], n = [0, N − 1]), the set of
coefficients of the difference equation that describes the signal, i.e. the set of model
parameters, must be found under the constraints of stability and minimum phase on
the model filter, and in the hypothesis that the input e[n] is a white-noise sequence.

Let us stress once again that when model properties are to be derived, it is assumed
that the model holds exactly for the signal to which the model is applied. On the
other hand, when the model is applied to a measured random signal, normally the
signal is not supposed to necessarily obey the model exactly. The modeling is aimed
at providing an approximate description of the signal, i.e., a fit to the signal. The
quality of the fit can then be measured according to several criteria, also called error
measures.

The steps for stochastic AR modeling are the following:

• finding the proper model order;
• estimating the parameters of the model having the chosen order, which provide

the “best” approximation to the given signal;
• testing the model.

There are many ways to define what is meant by the “best” approximation to a signal,
and, depending upon the definition that is used, there will be different solutions to the
modeling problem, along with different techniques for finding the model parameters
(Sect. 11.6.3).

As explained above, in practice a signal x[n] that is not truly AR can nevertheless
be modeled by an AR process. The fact that x[n] is not really AR means that e[n]
(the forward prediction error in the frame of linear prediction) never gets white, but
its power spectrum often gets flatter and flatter as the order increases. In this case,
the model is the AR(p) approximation to x[n], in the sense that the first p + 1 AC
samples for the two processes (the model and the measured signal) are equal to each
other. So, as the approximation order increases, more and more values of AC are
matched to one another. If the measured random process is a true AR process of
some order, then the model at that order will represent it exactly, and the theoretical
AC sequence for the random process x[n] and for the model will be exactly equal at
all lags l.

11.6.1 Model Order Selection

In modeling and forecasting AR applications, the order is often selected using an
iterative procedure that tests the performances of all fitted models from p = 1 up,
judging for each order the quality of fit according to some criterion and using this
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judgment to stop the procedure at the order that minimizes the error measure corre-
sponding to that criterion. Usually the fitting process is guided by the principle of
parsimony, by which the best model is the simplest possible model—the model with
the fewest parameters—that adequately describes the data.

A number of different model-order estimation techniques have been proposed in
literature. All of them are somewhat limited in terms of their robustness and accuracy.
Selecting the AR model order is equivalent to model identification, a more general
term that is used when ARMA models are a priori considered, and not just AR models
as in the present case.

AR model identification can not only be done by automated iterative procedures,
i.e., by fitting many models of increasing orders and using a goodness-of-fit statistic
to select the best one, but also by a classical method that consists in looking at plots
of partial autocorrelation (PAC; the definition is given below).

Since from now on we will be dealing with predictors at different orders, we need
to systematically adopt a slightly heavier notation than before: we will use additional
subscripts to indicate the order of the model to which a given variable refers.

Identification by visual inspection of partial autocorrelation (PAC)
The classical method of model identification described by Box et al. (2008) for
the general ARMA case consists of judging the appropriate model structure and
orders from the appearance of the plotted AC and PAC. In the AR case, however,
the AC can be a mixture of exponential-decay terms and damped sinusoidal terms.
It does not go to zero beyond any finite lag and therefore provides no clue about
the appropriate model order. To actually identify the latter, we need a diagram
which will have a more distinctive shape when the series is actually AR(p) with
some value of p. The PAC plot is such a diagram.
To define PAC, suppose we fit an AR(l) model to our data:

x[n] = −
l∑

i=1

ai x[n − i] + e[n] =
l∑

i=1

αi x[n − i] + e[n].

The coefficient αl is the estimate of the coefficient of x[n − l)]. Rewriting the
model as

x[n] −
l−1∑

i=1

αi x[n − i] = αl x[n − l] + e[n],

we see αl as a plausible estimate of the correlation between x[n − l] and that part of
x[n] which cannot be forecast from x[n − 1], . . . x[n − (l − 1)]. The coefficient
αl is called the partial autocorrelation (PAC) between x[n] and x[n − l], i.e., the
PAC at lag l. It represents the estimated correlation between x[n] and x[n − l] after
the effects of all intermediate x-samples on this correlation have been removed.
If the series is actually AR(p), then the (theoretical) PAC will be zero for l > p.
Thus, we can use the PAC plot to identify the order of the AR model. If the PAC
cuts off for lag greater than p, then the appropriate model order is p.
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In other words, given a time series x[n], the PAC at lag l is the AC between x[n]
and x[n − l] that is not accounted for by lags 1 to l − 1, inclusive. The PAC at
lags l = 1, 2, . . . is estimated by fitting a succession of AR models with increasing
orders, and retaining the last coefficient of each model. By inspection of the PAC
plot and statistical testing of the PAC values we can determine how many AR
terms we need to use—what AR order we should choose—to explain the AC
pattern in a time series. If the PAC turns out to be significant at lag p and not
significant at any higher lags, then this suggests we should fit an AR model of
order p to our data.
In practice we will look for the point on the plot where the PAC values for all
higher lags are nearly zero. Placing on the plot an indication of the uncertainty
of the estimated PAC is helpful for this purpose. This uncertainty is usually eval-
uated as follows: under the hypothesis that the series is a true AR(p) process,
the true PAC coefficients at l > p are expected to be zero-mean, independently
distributed Gaussian variables. The estimated PAC coefficients are then assumed
to be approximately distributed in the same way. In this instance, the standard
error of the estimated PAC coefficients of a fitted series with N observations is
approximately 1/

√
N for l > p. Then, assuming that the true value of the PAC at

lag l is zero (null hypothesis), we can establish approximate confidence intervals
for the estimated PAC samples. These approximate upper and lower bounds are
useful if the record length is not too short (say N > 30).
The identification of the proper AR model order from these plots is not easy and
requires a lot of experience.

Automated identification by goodness-of-fit criteria
A different way of identifying ARMA models is by trial and error and goodness-
of-fit evaluation. In this approach, a suite of candidate models are estimated, and
goodness-of-fit statistics are computed that penalize appropriately for excessive
model complexity.
Goodness-of-fit statistical measures are functions of the residual (unmodeled)
variance and of the number of estimated parameters. The rationale behind this
approach is the fact that, in general, the fit improves with model complexity, as
the residual variance decreases, but including enough parameters we can force
a model to nearly perfectly fit any data set. This perfect fit would likely be an
overfitting to insignificant, minute details of the particular sequence considered,
rather than a valid approximation of the underlying random process: it would be
an artificial improvement due to increasing model complexity. Overfitting can be
understood remembering that with a fixed number of data samples, the larger the
number of estimated parameters, the larger the estimation errors.15

15In statistics and machine learning, overfitting occurs when a statistical model ends up describing
random errors or noise instead of the underlying relation. Overfitting generally occurs when a model
is excessively complex, such as having too many parameters relative to the number of observations.
A model that has been overfit will generally have poor predictive performance, as it can exag-
gerate minor fluctuations in the data. In other words, in case of overfitting, the estimator is too flexible
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Focusing on AR modeling, we mention the Akaike’s Final Prediction Error (FPE)
and the Information Theoretic Criterion (AIC) as two closely related alternative
statistical goodness-of-fit measures.
FPE (Akaike 1970) is given by

FPE[p] = N + p + 1

N − p − 1
σ 2

e,p

where σ 2
e,p is the variance of model residuals at order p, N is the length of the

time series, and p is the number of estimated coefficients. So FPE is a “corrected”
version of σ 2

e,p. FPE is computed for various candidate models, and the model
with the lowest FPE is selected as the best-fit model.16 The estimated σ 2

e,p is
guaranteed to decrease or stay the same as the model order increases for all
the AR parameter estimation methods commonly used. Hence we cannot simply
monitor the decrease in error power σ 2

e,p as a means of determining the model
order, but we must also take into account the increase in estimation errors that
occurs when the amount of data is fixed and we estimate an increasing number of
AR parameters. FPE and the following AIC criteria adhere to this philosophy. We
can see from the FPE formula that the factor (N + p + 1)/(N − p − 1) is a sort
of penalty that increases with increasing order, thus accounting for the growing
inaccuracies in the coefficient estimates.
AIC (Akaike 1974) is another widely used goodness-of-fit measure, which is based
on information-theory entropy and offers a relative estimate of the information
lost when a given AR model is used to represent the process that generates the data.
AIC quantifies the compromise between model accuracy and complexity—more
precisely, the compromise between model bias and variance—and is defined as

AIC[p] = N log(σ 2
e,p) + 2p,

where 2p represents and additive penalty term for increasing order, i.e., for any
extra coefficients that do not significantly reduce the modeling error. As with
FPE, the best-fit model has the minimum value of AIC. From the spectral per-
spective, it is interesting to mention that AIC is an estimate of a properly-defined
distance between a modeled spectral density and the true spectral density of the
data record (Percival and Walden 1993). It has, however, been shown that it tends
to overestimate the true model order as N increases (see, e.g., Rissanen 1983).

(Footnote 15 continued)
and captures illusory trends in the data. These illusory trends are often the result of the noise in
the observations. The contrary phenomenon, underfitting, occurs when an estimator is not flexible
enough to capture the underlying trends in the observed data, usually because of an insufficient
number of parameters.
16Recall that we are dealing with centered data, which in practice means that the sample mean has
been subtracted from each data sample. If the process true mean value were known, we should write
FPE[p] = [(N + p)/(N − p)]σ 2

e,p .
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The performances of FPE and AIC criteria are similar for large data records—
they are actually functionally related to each other, as explained, for example, in
Percival and Walden (1993)—but for short data records, the use of the AIC is
recommended (see Ulrych and Ooe 1979). Neither FPE nor AIC directly address
the question of the model residuals being without AC, as they ideally should be
if the chosen model is able to remove all the persistence in the series. A strategy
for model identification by the FPE or AIC criteria is to find the model that
approximately minimizes FPE or AIC, and then apply diagnostic checking (see
the next subsection) to verify if the model does a good job at producing random
residuals.
A measure similar to AIC is the minimum description length (MDL) criterion,
proposed by Rissanen (1978), in which the penalty term 2p is substituted by
(log N )p, which increases with N , in order to reduce the tendency to overestima-
tion:

MDL[p] = N log(σ 2
e,p) + (log N ) p.

Many other criteria are available, such as the criterion autoregressive transfer
function (CAT) proposed by Parzen (1976). Few guidelines as to their use in
practical applications—and in particular in spectral analysis applications—are
however provided in literature.

11.6.2 Model Testing

This step is also called diagnostic checking, or verification (Anderson 1976). Two
important elements of checking are to ensure that the residuals of the model are
random, and that the estimated parameters are statistically significant. In other words,
we must ask ourselves the following questions.

Does the model produce random residuals?
Can the residuals be classified as white noise? The model should effectively
describe the AC persistence in the examined WSS process. If it is so, then the
residuals should be random, i.e., uncorrelated, and the AC function of residuals
should be zero at all lags except lag zero. Of course, the AC estimated from a
finite-length data record will not be exactly zero, but should fluctuate near zero.
The AC of the residuals can be examined in two ways. First, the AC can be scanned
to see if any individual coefficients fall outside some specified confidence interval
around zero, exactly as explained about the PAC in the previous subsection. For the
true residuals, which are unknown, the AC at lag l is normally distributed with zero
mean and standard deviation 1/

√
N . An approximate confidence interval for the

AC of residuals at lag k can thus be found by referring to a normal distribution.17

17For example, the 0.975 probability point of the standard normal distribution is 1.96. This means
that for a normally-distributed variable, 95 % of the data lies within 1.96 ≈ 2 standard deviations
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A subtle point that should be mentioned is that the AC of the estimated residuals of
a fitted AR model has somewhat different properties than that of the true residuals.
As a result, the above approximation of standard deviation (1/

√
N ) overestimates

the width of the confidence interval at small lags when applied to the AC of the
residuals of a fitted model (Chatfield 2004). There is, consequently, some bias
towards concluding that the model has effectively removed persistence. At large
lags, however, the approximation is close.
A different approach to evaluating the randomness of the residuals is to look at their
AC sequence—being γ̂ee[k]—as a whole, rather than at the individual samples
separately (Chatfield 2004). The related test is called the portmanteau lack-of-fit
test, or Q-test, or Box-Pierce test (Box et al. 2008), and the test statistic is

Q = N
K∑

k=1

γ̂ee[k]2.

The null hypothesis is that all the true ACs of residuals for lags 1 to K are zero,
where the choice of K is up to the user. The Q statistic follows a χ2 distribution
with K − p DOF18: if the computed Q does not exceed the value assumed by χ2

for some chosen probability level, the null hypothesis that the residuals represent
a white noise series is accepted at that level.

The estimated parameters are significantly different from zero?
Besides the randomness of the residuals, we are concerned with the statisti-
cal significance of the model coefficients. The estimated coefficients should be
“significantly” different from zero. If not, the model should probably be sim-
plified by reducing the model order. For example, an AR(2) model for which
the second-order coefficient is not significantly different from zero might be dis-
carded in favor of an AR(1) model. But what does “significantly” mean here?
Significance of the AR (or ARMA) coefficients can be evaluated by comparing
estimated parameters with their standard deviations. For an AR(1) model, the esti-
mated first-order AR coefficient, â1, is normally distributed with variance equal to
var(â1) = (1 − â2

1)/N . The approximate 95 % confidence interval for â1 is there-
fore two standard deviations around â1, and so on.

(Footnote 17 continued)
of the mean. The 95 % confidence interval for the AC at lag l is therefore ±1.96/

√
N . For the 99 %

confidence interval, the 0.995 probability point of the normal distribution is 2.57, so, 99.5 % of the
data lies within 2.57 ≈ 3 standard deviations of the mean. The 99 % confidence interval for the AC
is thus ±2.57/

√
N . A value outside this confidence interval is evidence that the model residuals are

not random at the chosen probability level. If a residual-AC plot for a given series shows that none
of the AC samples of the chosen model residuals fall outside the 99 % confidence interval around
zero, then the modeling explains the persistence and yields random residuals at that confidence
level.
18The DOF would be K − p − q in the ARMA case.
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Does the model explain a remarkable part of the signal’s variance?
For long time series (e.g., many hundreds of observations), AR modeling may
yield a model with estimated parameters that are significantly different from zero
in the statistical sense, but very small. The persistence described by such a model
might actually account for a tiny percentage of the variance of the original time
series. A measure of the practical significance of the AR model we have found
is then the percentage of the series’ variance that is removed by fitting the model
itself to the series, i.e., the percentage of original variance explained by the model.
If the variance of the model residuals is much smaller than the variance of the
original series, then the AR model accounts for a large fraction of the original
variance, and a large part of the variance of the series is due to persistence. On the
contrary, if the variance of the residuals is almost as large as the original variance,
then little variance has been removed by AR modeling, and the variance due to
persistence is small. A simple measure of the fraction of variance that can be
attributed to the signal persistence modeled by an AR(p) model is

R2
p = 1 − σ 2

e,p

σ 2
x

.

If R2
p is large, then a large part of the signal variance has been explained by the

model; if it is small, then very little of the signal’s variability has been modeled
(and very likely there was little to model at all); the rest is seen as noise. Whether
any found value of R2

p is practically significant is a matter of subjective judgment
and depends on the application. For example, in a noisy time series of paleocli-
matological data, 40 % would likely be considered practically significant, while
1 % might well be dismissed as practically insignificant; with different series and
in other fields, even a value as high as 70 % might be considered as unsatisfactory.

11.6.3 AR Parameter Estimation

We will now discuss different methods for estimating the AR parameters.

11.6.3.1 Yule-Walker or Autocorrelation Method

In this method, the AR coefficients are obtained by solving the YW equations. We
already said (Sect. 11.3.2) that if the AC values were known from lag zero up to lag
p, we could solve the YW equations for the coefficients, ap = −Γ −1

p γ p, and then
obtain σ 2

e from the first row of the augmented YW equations. The YW method, also
called AC method, is based directly on this approach.

Given N data, we assume that x[n] is zero outside the range n = [0, N − 1], and
write the data in matrix form. Each matrix column contains the data sequence lagged
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by l of time steps, from 0 to a maximum lag p. Just to make an example, if N = 5
and we take p = N − 3 = 2, the data matrix X is an (N + p) × (p + 1) = 7 × 3
rectangular matrix:

X =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

x[0] 0 0
x[1] x[0] 0
x[2] x[1] x[0]
x[3] x[2] x[1]
x[4] x[3] x[2]

0 x[4] x[3]
0 0 x[4]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The estimate of the AC matrix, which is a square matrix Γ̂ with p + 1 rows and
columns, can then be obtained from the equation

Γ̂ = 1

N
XT X.

The elements of Γ̂ are indicated as γ̂ (i, k), where i is row number and k is column
number: so, γ̂ (i, k) = γ̂ (i, i + l). Note that the number of samples of x[n] used in
the estimate of the elements γ̂ (i, i + l) of Γ̂ decreases as l increases. In our example,
while γ̂ (1, 1) corresponding to lag 0 contains 5 product terms, γ̂ (1, 3) belonging to lag
2 contains only 3 product terms: x[2]x[0] + x[3]x[1] + x[4]x[2]. So, the estimates
are of good quality only if l is small compared with the number of available data
samples N .

The formula for Γ̂ corresponds to using for AC the biased estimator cxx [l]. These
estimates are inserted, in place of the true ones, into the YW equations, and these are
solved for the coefficients and the noise variance, as explained above in the known-
AC case. The use of biased AC estimates ensures the existence of a solution, since
the AC matrix is guaranteed to be positive-definite, hence non-singular. The filter
poles will lie inside the unit circle, i.e., the method will always produce stable filters.

In summary, the YW method is based on the YW equations, with the true AC ele-
ments replaced by their biased estimates. This guarantees the existence of a solution,
with model coefficients corresponding to an estimated Â p(z) which is stable for any
p in the range 1 ≤ p ≤ N − 1. From the perspective of linear prediction, the Yule
Walker method minimizes the forward prediction error in the least squares sense,
based on all available observations. Since the AC matrix is a Toeplitz matrix, the
so-called Levinson-Durbin recursion introduced below can be applied to solve the
equations for the model coefficients, thus speeding up calculations.

11.6.3.2 Levinson-Durbin Recursion

The numerical solution of a set of p linear equations in p unknowns requires ≈p3

floating point operations (flops). In modeling applications, where a priori information
about the best order p is usually lacking, AR models with different orders have to be
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calculated and tested, hence the YW system of equations has to be solved for p = 1
up to some specified maximum order pmax . By using a general solving method, this
task requires a number of flops of the order of

∑pmax
p=1 p3 ≈ p4

max/4 flops. This may
be a remarkable computational burden if the maximum order is large: this is, for
example, the case in applications dealing with narrowband signals, where values
of 50 or even 100 for pmax are not uncommon.19 In such applications, it may be
important to reduce the number of flops required to determine the model parameters,
i.e., the coefficients and σ 2

e .
A method that is widely used to solve YW equations in a fast way and reduce

the number of flops is the Levinson-Durbin (LD) algorithm (Levinson 1947) that
exploits the special algebraic structure of the matrix Γ p+1 in the augmented YW
system of equations. This matrix is highly structured: it is a real symmetric matrix20

and is also a Toeplitz matrix. This allows for reducing the number of flops for a
given p to about p2. Thus, the number of flops required by the LD algorithm is about
p times smaller than that required by a general linear equation solver to determine
the parameters of a fixed order model—an efficiency improvement that is already
remarkable—and about p2

max times smaller than that required by a general linear
equation solver to determine the parameters of all models from p = 1 to pmax . The
only requirement in the LD algorithm is that the matrix be positive definite, and as
we saw, this condition is satisfied not only when true AC values are used, but also
when they are replaced by their biased estimates.

The basic idea of the LD algorithm (see, for instance, Vaidyanathan 2008; Stoica
and Moses 2005) is to solve the matrix equation

Γ p+1

[
1

ap

]
=
[
σ 2

e,p

0

]

—which is unique for any p—recursively in p, starting from the solution for p = 1,
which is easily determined, and increasing at each iteration the order by one. The LD
algorithm is in fact based on the observation that if the solution to the YW equations
is known for some order p, then the solution for order p + 1 can be obtained by a
simple updating process. In this way, we obtain not only the solution to the problem
of the selected order, but also those for all the lower orders. To demonstrate the
mechanism, let us consider a case in which the chosen order is p = 3, so that we
have four coefficients. The augmented YW equations become a set of four equations:
in matrix form,

19Narrowband processes have AC values slowly decreasing with increasing lag, which produce
large values of pmax in the AR-spectrum estimation procedure. Broadband processes have ACs
decreasing faster with lag. For an example of this behavior, compare Fig. 11.11a, which is relative
to a broadband AR(2) process (as shown in Fig. 11.13a), with Fig. 11.11a, which is relative to a
broadband AR(2) process (as shown in Fig. 11.13b).
20This matrix would be Hermitian in the case of complex signals.
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⎡

⎢⎢⎣

γ [0] γ [1] γ [2] γ [3]
γ [1] γ [0] γ [1] γ [2]
γ [2] γ [1] γ [0] γ [1]
γ [3] γ [2] γ [1] γ [0]

⎤

⎥⎥⎦

⎡

⎢⎢⎣

1
a3,1

a3,2

a3,3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

σ 2
e,3
0
0
0

⎤

⎥⎥⎦ . (A)

Let us denote the AC matrix in Eq. (A) by Γ 4, since it has p + 1 = 4 rows and
columns. We will now show how we can pass from the third-order to the fourth-
order case. For this, note that we can append a fifth equation to the above set of four
and write

Γ 5 =

⎡

⎢⎢⎢⎢⎣

γ [0] γ [1] γ [2] γ [3] γ [4]
γ [1] γ [0] γ [1] γ [2] γ [3]
γ [2] γ [1] γ [0] γ [1] γ [2]
γ [3] γ [2] γ [1] γ [0] γ [1]
γ [4] γ [3] γ [2] γ [1] γ [0]

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1
a3,1

a3,2

a3,3

0

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

σ 2
e,3
0
0
0
μ3

⎤

⎥⎥⎥⎥⎦
(B)

where
μ3 = γ [4] + a3,1γ [3] + a3,2γ [2] + a3,3γ [1].

The matrix Γ 5 is symmetric and Toeplitz. It can be verified that its elements
γ (i, k) satisfy

γ (4 − i, 4 − k) = γ (i, k), for 0 ≤ i, k ≤ 4.

This means that if we take the matrix, reverse the order of all rows, and then reverse
the order of all columns, the result is the same matrix. As a consequence, we can
also write

⎡

⎢⎢⎢⎢⎣

γ [0] γ [1] γ [2] γ [3] γ [4]
γ [1] γ [0] γ [1] γ [2] γ [3]
γ [2] γ [1] γ [0] γ [1] γ [2]
γ [3] γ [2] γ [1] γ [0] γ [1]
γ [4] γ [3] γ [2] γ [1] γ [0]

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

0
a3,3

a3,2

a3,1

1

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

μ3

0
0
0

σ 2
e,3

⎤

⎥⎥⎥⎥⎦
. (C)

If we are able to find a linear combination of Eqs. (A) and (C) such that the last
element of the right-hand side vector in Eq. (B) becomes zero, we obtain the equa-
tions governing the fourth-order process. To this purpose we perform the following
operation: Eq. (A) + k4 × Eq. (C), where k4 is a constant that we define as

k4 = − μ3

σ 2
e,3

.

After some algebra we get
⎡

⎢⎢⎢⎢⎣

γ [0] γ [1] γ [2] γ [3] γ [4]
γ [1] γ [0] γ [1] γ [2] γ [3]
γ [2] γ [1] γ [0] γ [1] γ [2]
γ [3] γ [2] γ [1] γ [0] γ [1]
γ [4] γ [3] γ [2] γ [1] γ [0]

⎤

⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

1
a4,1

a4,2

a4,3

a4,4

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

u
0
0
0
0

⎤

⎥⎥⎥⎥⎦
(D)
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where u indicates an unknown quantity and where we set

a4,1 = a3,1 + k4a3,3,

a4,2 = a3,2 + k4a3,2,

a4,3 = a3,3 + k4a3,1,

a4,4 = k4.

By comparison with Eq. (A), we conclude that the element denoted by u on the
right-hand side of Eq. (D) is σ 2

e,4, which is related to σ 2
e,3 by

σ 2
e,4 = σ 2

e,3 + k4μ3 = σ 2
e,3 − k2

4σ
2
e,3 = (

1 − k2
4

)
σ 2

e,3.

If we know the coefficients a3,i and the mean square error for the third-order model,
from the above equations we can find the corresponding quantities for the fourth-
order model.

The recursion demonstrated above for the third-order case can be easily general-
ized into arbitrary orders. Adopting the notational convention that given a column
vector v = [v1 . . . vn]T we set ṽ = [vn . . . v1]T , from

Γ p+1

[
1

ap

]
=
[
σ 2

e,p

0

]

it can be easily shown that we can pass to

Γ p+2

[
1

ap+1

]
=
[
σ 2

e,p+1

0

]

by the recursive-in-order equations

ap+1 =
[

ap

0

]
+ kp+1

[
ãp

1

]

and
σ 2

e,p+1 = (
1 − k2

p+1

)
σ 2

e,p.

These recursive-in-p equations are initialized and then used for growing order values.
In summary, the LD algorithm comprises of the following two steps:

1. initialization:

a1 = −γ [1]
γ [0] = k1,

σ 2
e,1 = (

1 − a2
1

)
γ [0];
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2. for p = 1, . . . pmax − 1, compute

kp+1 = −γ [p + 1] + γ̃ [p]ãp

σ 2
e,p

,

σ 2
e,p+1 = σ 2

e,p

(
1 − k2

p+1

)
,

ap+1 =
[

ap

0

]
+ kp+1

[
ãp

1

]
.

The coefficients kp+1 are known as reflection coefficients. They can never exceed 1;
unity is actually an upper bound for which σ 2

e,p+1 = 0. Now, suppose we compute
models of increasing orders using the LD recursion. We know that the error variance
decreases with order. Assume that after the order has reached some value p, the
error variance does not decrease any further. This represents a stalling condition:
increasing the number of included past samples does not help to increase the model
accuracy. Whenever such a stalling occurs, it turns out that the error noise is white,
and x[n] is the output of an all-pole filter with white-noise input, i.e., x[n] is truly
AR(p). Since, in general, increasing the order and its complexity implies a greater
ability to model the signal and a decrease of the error variance, for a true AR(p)
the LD algorithm would stop spontaneously after p steps, because for larger orders
the error variance and the model coefficients would no longer change. If instead the
signal is not a true AR process, the algorithm does not reach a point in which to stop
naturally. In the limit case in which at some order the error vanishes and the signal
turns out to be exactly predictable on the basis of a finite number of past values,
the signal can be classified as deterministic; but most real-world signals are never
exactly predictable, independently of the predictor order.

11.6.3.3 Covariance and Modified Covariance Methods

Another approach to the estimation of AR parameters is the covariance method, also
called least squares (LS) method (see Stoica and Moses 2005). In this case, the data
matrix X is formed differently: in the example with N = 5 and maximum lag p = 2
it is defined as

X =
⎡

⎣
x[2] x[1] x[0]
x[3] x[2] x[1]
x[4] x[3] x[2]

⎤

⎦

and contains no zeros. In this case the AC estimate in matrix form is defined as

Γ̂ = 1

N − p
XT X.
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Its element γ̂ (i, j) related to lag l = k − i coincides with c′
xx [l]. In the covariance

method, each AC sample estimate is an average of N − p product terms, unlike the
autocorrelation method, where the number of data samples used in the estimate of
an individual AC sample decreases as the lag increases. Thus the AC estimates, in
general, tend to be better than in the autocorrelation method, but the matrix Γ̂ in
this case is not necessarily Toeplitz, and the LD recursion cannot be applied for
solving the YW equations (although similar fast algorithms for this method have
been developed). Another problem with non-Toeplitz AC matrices is that the AR
filter is not guaranteed to have all its poles inside the unit circle. However, instability
only appears infrequently and when it occurs, there are simple means to stabilize
the model, for instance reflecting the instability-generating poles inside the unit
circle. Therefore, possible instability does not represent a serious drawback of the
covariance method. From the perspective of linear prediction, the covariance method
is also based on the minimization of the forward prediction error in the least squares
sense. What then, is the difference between YW and covariance methods?

They represent two distinct finite-sample approximate solutions of the minimiza-
tion problem for E

{
e2[n]} = σ 2

e . Given a finite set of measurements, we can look
at YW and covariance methods in parallel, observing that the minimization of σ 2

e is
expressed in both cases through a finite-sample cost function of the AR coefficients
that assumes all non-observed signal samples to be zero:

f (a p) =
N2∑

n=N1

e2[n] =
N 2∑

n=N1

(
x[n] −

p∑

i=1

ai x[n − i]
)2

.

The vector a p that minimizes the cost function depends on the choice of the sum-
mation limits N1 and N2:

• setting N1 = 0 and N2 = N + p − 1 leads to the YW method, which uses the
biased estimator cxx [l] for the AC;

• setting N1 = p and N2 = N − 1 corresponds to eliminating all the arbitrary zero
values of the signal in the pertinent equations and thus to adopting the biased
estimator c′

xx [l] for the AC; this choice leads to the covariance method.

As N increases while p remains fixed, the difference between the covariance esti-
mates used by the two methods diminishes; consequently, for long records the two
methods nearly coincide with one another. Moreover, while the YW-estimated AR
model is guaranteed to be stable, the covariance method may lead to unstable mod-
els. When applying this method it is advisable to select orders not exceeding N/2 to
avoid numerical issues, such as singularity of the estimated AC matrix.

The modified covariance method is similar to the covariance method. However,
instead of finding the AR model that minimizes the sum of squares of the forward
prediction error, the modified covariance method minimizes the sum of the squares of
the forward and backward prediction errors. As with the covariance method, the AC
matrix involved is not Toeplitz, so the LD recursion cannot be applied. A stable IIR
filter is not guaranteed. To avoid singularity of the estimated AC matrix in numerical
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computations it advisable to choose orders not exceeding 2N/3. This method is more
computationally demanding than the other two methods.

11.6.3.4 Burg’s Method

In the early 1960s, geophysicist John P. Burg developed a method for spectral esti-
mation based on AR modeling that he named the “maximum entropy method” or
MEM (see Sect. 11.9). As a part of this method, Burg developed an approach to the
estimation of the AR model parameters directly from the data, without the interme-
diate step of computing an AC matrix and solving the YW equations. Burg’s method
(Burg 1967, 1968) relies on the LD algorithm and is a recursive procedure where, at
each step of the recursion, a single reflection coefficient—relating the AR-parameter
estimates for a given order to those for the immediately higher order—is estimated.
This reflection coefficient is chosen in such a way as to minimize the sum of the
squared forward and backward prediction errors: since they are statistically identi-
cal, according to Burg (1967, 1968) there is no reason to favor one over the other
in fitting the model, so that both should be included in the minimization criterion.
In this sense, Burg’s method thus resembles the modified covariance method, but it
only minimizes the sum of squares of forward and backward prediction error with
respect to a single reflection coefficient (see Kay and Marple 1981), while the modi-
fied covariance method minimizes it with respect to all of the model coefficients. The
models found by this method are always stable. Describing in detail the development
of this method would require introducing the so-called “lattice representation” for
the prediction error filter, a topic that is beyond the scope of the book.

11.7 AR Spectral Estimation

We saw that the AR(p) approximation to a signal x[n] is such that its AC sam-
ples match those of the original process x[n] for the first p + 1 values of lag. As
p increases, we therefore expect the power spectrum of the AR approximation to
resemble the power spectrum of the signal more and more. The spectrum of the AR
approximation, being P AR

xx (ω), is called an AR-model-based estimate of Pxx (ω). In
essence, P AR

xx (ω) is obtained by extrapolating the finite AC segment we can compute
from the data to larger lags, using an AR(p) model, and is nothing but the Fourier
transform of the extrapolated AC.

We know that the AR(p) model approximates the power spectrum Pxx (ω) with
the all-pole power spectrum

P AR
xx (ω) = 1

N

∣∣E(ejω)
∣∣2

|A(ejω)|2
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If Pxx (ω) has sharp peaks, then A(z) must have zeros (poles of P AR
xx (z)) close to the

unit circle to reproduce these peaks. If, on the other hand, Pxx (ω) has zeros or sharp
dips, then P AR

xx (ω) cannot approximate them very well, because A(z) cannot have
poles on the unit circle. Thus, the AR model can be used to obtain a good match of
the power spectrum Pxx (ω) near its peaks, but not near its valleys.

The selection of the order p, which is an issue of primary importance in stochastic
modeling, is somewhat less central to the problem of practical AR spectral estimation,
where the best model order is chosen in an empirical way. Starting from an a priori
reasonable minimum value of p—the order should never be smaller than twice the
number of cyclical or pseudo-cyclical components that are supposed to exist in
the analyzed process—some higher values are also considered, up to a reasonable
maximum comprised, as a rule of thumb, between N/3 and N/2 (Ulrych and Bishop
1975; Ulrych and Clayton 1976). The AR spectra of different orders thus obtained
are compared among them and with the spectra obtained for the same record using
different methods. Since the model order is also the number of poles of the filter’s
transfer function, low orders will produce smooth spectra with few peaks, while
high orders will produce a number of peaks and a very detailed spectral behavior,
regardless of the real spectral content of the time series (Ulrych and Bishop 1975).
In the second case, many peaks can be spurious—i.e., not corresponding to actual
features present in the data—but other peaks can reflect components actually present
in the data record. Comparison is, as usual, the key to understanding the robustness of
the results obtained by spectral estimation: which peaks are also present, for example,
in an MTM spectrum of the same data? Which peaks survive a reduction of the order?

Note that the issue of AR model-order selection is analogous to the issue of
window-width selection in classical spectral estimation. It represents a trade-off
between high frequency resolution (high p) and low variance (low p). If the order is
too low, the estimate will be too smooth and some real peaks will possibly be missed;
if it is too large, spurious peaks and statistical instability will result. The appearance
of spurious peaks is due to estimation errors, leading to non-zero AR coefficient
estimates even though the true model order may be much lower than the selected p.

Why are FPE, AIC and other similar criteria not routinely applied for order selec-
tion in parametric spectral analysis? The main reason is that any order selection
method should be appropriate for what we intend to do with the fitted AR model.
When we are interested in fitting AR models for spectral analysis, we must take
into account that most of the commonly used order-selection criteria are instead
geared toward selecting AR models that perform well for one-step-ahead predictions.
These criteria are thus not completely appropriate for parametric spectral analysis.
We would actually need an assessment of the spectral estimation performance of the
various AR estimators, in the case in which the model order must also be estimated, in
addition to the AR parameters. Moreover, there are some subtle interactions between
the various order selection criteria and the different AR parameter estimators. For
example, the FPE criterion was originally derived based on the statistical proper-
ties of forward least-squares estimators; Ulrych and Bishop (1975) found that, when
used in conjunction with Burg’s algorithm, this criterion tends to pick out spuriously
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high-order models. Nevertheless, FPE, AIC and similar tools may serve as model-
order indicators in spectral applications.

Each of the parameter estimation methods discussed above corresponds to a dif-
ferent method of parametric spectral estimation, and gives it its name. Once the
estimated parameters of the model having the chosen order have been found by any
of the above mentioned methods, these parameters are inserted into the AR spectral
formula, to get the desired estimate of the signal’s PSD:

P̂AR
xx (ω) = σ̂ 2

e∣∣∣ Â(ejω)

∣∣∣
2 ,

where the “hats” represent estimates.
Although parametric AR methods can provide improved resolution with respect

to classical methods, it is important to realize that, unless the chosen model is at least
approximately appropriate for the process being analyzed, inaccurate results may be
obtained. A typical case is a true MA(q) process, for which the spectral estimate
obtained by the AR approach can be misleading.

Consider the two spectral estimates shown in Fig. 11.15a that have been obtained
for N = 64 samples of a process consisting of two sinusoids in unit variance white
noise,

x[n] = A1 sin(ω1n + ϑ1) + A2 sin(ω2n + ϑ2) + e[n],

0 0.2 0.4 0.6 0.8 1

−5

0

5

10

15

20

25

ω/π

P
x
x
(ω

)
(d
B
)

0 0.2 0.4 0.6 0.8 1
0

2.5

5

7.5

10

12.5

15

17.5

ω/π

P
x
x
(ω

)
(d
B
)

(a) (b)

Fig. 11.15 Illustration of how an inappropriate model may lead to an inaccurate spectral estimate.
Using a parametric spectrum estimator that assumes an all-pole model for the process (the YW
method; black curves) and the Blackman-Tukey non-parametric method (with M = N/10 and a
Blackman window; gray curves), the spectral estimates are shown for a two sinusoids in noise (with
p = 8 in the YW method) and b a true second-order MA process (with p = 5 in the YW method).
N = 64 samples of each signal have been used. In panel (b), the dashed curve depicts the true
power spectrum of the MA(2) process
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with A1 = A2 = 5, ω1 = 0.45π , and ω2 = 0.55π , and with ϑ1 and ϑ2 representing
two random initial phases, uniformly distributed between 0 and 2π . The spectrum
drawn as a black curve was computed using a method that assumes an all-pole
model (the YW method with p = 8), whereas the one shown by the gray curve was
computed using the Blackman-Tukey method with a maximum lag of N/10 and
a Blackman window. Clearly, the estimate produced by the model-based approach
provides much better resolution than the Blackman-Tukey method.

On the other hand, consider the MA(2) process having b0 = 1, b1 = 0, b2 = −1,
σ 2

e = 1, i.e.,
x[n] = e[n] − e[n − 2].

Figure 11.15b shows the spectral estimates that are produced by the same two
approaches (the AR spectrum in this case was estimated by the YW method adopting
p = 5; see the black curve). For this true MA(2) process, the model-based approach
inaccurately represents the underlying true spectrum (dashed curve), and indicates
two non-existent narrowband components. The Blackman-Tukey method, which
makes no assumptions about the process, produces a more reasonable estimate (gray
curve) of the true spectrum.

Pxx (ω) = σ 2
e

∣∣1 − e−j2ω
∣∣2 = 2σ 2

e [1 − cos(2ω)].

The utility of AR methods is, moreover, severely limited by the dependence of
these methods on the SNR, since when SNR is low (i.e., high noise level), the signal
is no longer properly modeled by an AR process, but rather by an ARMA process.
We will come back to this issue in the following discussion.

The four AR spectral estimation techniques considered up to now behave some-
what differently in different contexts.

Yule-Walker Method
Because the YW method effectively extrapolates the data record with zeros, it
generally produces a lower resolution estimate than the approaches that do not
do so, such as the covariance method and Burg’s method. Consequently, for short
data records the YW method is not generally used, while it is recommended
for medium-to-high record lengths. The power spectrum estimate provided by
the YW method is equivalent (Ulrych and Bishop 1975) to that derived from a
“philosophically new” spectral analysis, introduced by Burg (1967) on the basis
of general variational principles and in particular of the formalism of maximum
entropy (MEM method; Sect. 11.9).
When analyzing processes consisting of sinusoids in noise, bias on the determi-
nation of the sinusoids’ frequencies can occur. Frequency bias means that if we
analyze synthetic data containing one or more sinusoids in noise, one or more
spectral peaks will fall at frequencies that do not exactly coincide with the fre-
quencies adopted to construct the synthetic data, but are somewhat shifted with
respect to their true positions. The method is also subject to spectral line splitting.
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Line splitting is the occurrence of two or more peaks in the estimated spectrum,
where only one peak should be present.

Covariance Method
The covariance method has been found to be more accurate than the YW method,
in the sense that the estimated parameters of the former are on the average closer to
the true ones than those of the latter (Marple 1987; Kay 1988). It also can produce
higher resolution spectra. This behavior can be explained heuristically observing
that the arbitrary zero signal values outside the available measurement interval
that are included in the YW-method calculations result in bias in the estimates of
the AR parameters. When N is not much greater than the order p, this bias can
be significant.
Also with the covariance method, in the case of sinusoids in noise, frequency bias
can occur. The peak locations tend to be slightly dependent on the initial phases
of the sinusoids. Spectral line splitting may be present.

Modified Covariance Method
The modified covariance method appears to give statistically stable spectral esti-
mates with high resolution, even for short data records.
Furthermore, in the spectral analysis of sinusoids in noise, although also the mod-
ified covariance method is affected by a shifting of the peaks from their true
locations due to the noise, this shifting appears to be less pronounced than with
other AR estimation techniques. In addition, the peak locations tend to be less sen-
sitive to the initial phases of the sinusoids. Finally, unlike the previous methods, it
appears that the modified covariance method is not subject to spectral line splitting.

Burg’s method
The primary advantage of Burg’s method consists of the high resolution provided
for short data records, for which Burg’s algorithm produces better estimates than
the YW method. The accuracy of Burg’s method is lower for long data records.
In spectral analysis of sinusoids in noise, Burg’s method is able to resolve closely
spaced sinusoids when the SNR is not too low. It can, however, be affected by
line splitting and frequency bias, with spectral peak locations highly dependent
on the initial phase of noisy sinusoidal signals (see, e.g., Chap. 10 in Percival and
Walden 1993). An application of the Burg spectral method to a real-world signal
will be provided in Sect. 12.3.

A few examples of spectral line splitting and frequency bias for sinusoid in noise
can be useful at this point. We will use Burg’s method for illustration, since it is
particularly prone to these unfavorable effects.

Incidentally, we point out that line splitting can occur even with true AR processes,
when p is too large with respect to the available amount of data. To illustrate the phe-
nomenon we report an example proposed by Hayes (1996). We consider (Fig. 11.16)
N = 64 samples of the AR(2) signal x[n] = 0.9 x[n − 2] + e[n], with noise unit
variance, and estimate the power spectrum by Burg’s method with p = 4 and p = 12.

http://dx.doi.org/10.1007/978-3-319-25468-5_12
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Fig. 11.16 Spectral line
splitting in the case of a true
AR(2) process analyzed by
Burg’s method adopting
p = 4 (gray curve), and
overmodeling by using
p = 12 (black curve). The
vertical dotted line identifies
the single frequency that
characterizes this AR(2)
process, which is given by
the absolute value of the
phase angle of the model’s
poles
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The true spectrum has a single spectral peak at ω = π/2 (vertical dotted line in
Fig. 11.16), and with p = 4 this peak is fairly well detected (gray curve). However,
when overmodeling using p = 12, this peak is split into two peaks (black curve).
The phenomenon will not always be observed: whether or not line splitting occurs
depends on the specific white noise realization that is filtered to produce x[n].

Returning to the case of sinusoids in noise, the drawbacks of the Burg algorithm for
AR power-spectrum estimation have been studied in depth using this kind of synthetic
data. They were reported by Chen and Stegen (1974), who studied frequency bias
in particular. Fougère et al. (1976) and Fougère (1977) documented line splitting in
detail and saw that the worst case of line splitting occurs when the amount of data
is such that an odd number of quarter sinusoid’s cycles is contained in the record
length, in association to an initial phase of π/4. Other authors (de Waele and Broersen
2003) documented how an excessive model order may lead to line splitting and/or
spurious spectral peaks. Actually, the phenomena of frequency bias and line splitting
are influenced by many factors, including data length, SNR, model order, accuracy
of parameter estimates and initial phase of the sinusoids in the data. Let us consider
a couple of examples.

Spectral line splitting
Here we take N = 48 data samples generated by a sinusoid with amplitude
A = 1, initial phase of π/4 and frequency ω0 = 0.4π , and include white noise
adopting two dramatically different SNRs, namely 5 and 50, corresponding to
σe = 0.3976 and σe = 0.0022, respectively. We select the relatively high order
p = 12. Figure 11.17 illustrates the results of the simulation. The line splitting
is clearly evident in the expanded view of Fig. 11.17b. Spectral line splitting is
most likely to occur when the SNR and the model order are both high. Moreover,
in agreement with what was suggested by Fougère et al. (1976), splitting here
occurs for an initial phase of the sinusoid equal to π/4. Line splitting in this case
is favored also by the fact that the number of AR estimated parameters is a large
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Fig. 11.17 Spectral line
splitting in the case of a
sinusoid in noise (N = 48
samples) analyzed by Burg’s
method with p = 12. Black
curve: SNR=5; gray curve:
SNR=50. The vertical dotted
line identifies the true
sinusoid’s frequency. a The
whole spectrum; b the
spectrum in the vicinity of
the true frequency
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percentage of the number of data samples used for the estimation. It is also evi-
dent in Fig. 11.17b that neither of the two spectral peaks coincides with the true
frequency, and this is frequency bias. Spurious frequency components appearing
in the whole spectrum shown in Fig. 11.17a are due to some overmodeling.

Frequency bias and resolution
We now consider N = 48 samples of a signal containing two sinusoids in noise.
The amplitudes are A1 = A2 = 1, the frequencies are 0.4π and 0.41π , the initial
phases are chosen at random between 0 and 2π , the SNR is kept fixed at 30 and
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Fig. 11.18 Frequency bias in the case of two sinusoids in noise (N = 48 samples) analyzed by
Burg’s method, adopting p values of 6 (light gray curve), 8 (gray curve), and 12 (black curve). The
vertical dotted lines identify the true sinusoids’ frequencies. a The whole spectrum; b the spectrum
in the vicinity of the true frequencies
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Fig. 11.19 Example of frequency bias produced by Burg’s method. For two sinusoids with different
amplitudes in noise, two different pairs of initial phases have been chosen at random to generate
two different realizations of the process (N = 1024). Burg spectral estimates with p = 14 (light
gray solid and dashed curves) and p = 20 (dark gray solid and dashed curves) are produced for
both realizations, as well as a Welch estimate with Hamming window (length M = 256) and 50 %
overlapping (black solid and dashed curves). a The spectrum in the vicinity of the sinusoids’ true
frequencies (see vertical dotted lines); b the spectrum in the vicinity of the highest frequency

the order p is varied from 6 to 12 (Fig. 11.18). The larger the model order, the
higher the resolution obtained. Frequency bias is observed.
We finally present in Fig. 11.19 an example with two sinusoids in noise, with a
substantially larger record length, N = 1024. This time the sinusoids have dif-
ferent amplitudes, A1 = 1 and A2 = 2, and their frequencies are ω1 = 0.4π and
ω2 = 0.42π . The white noise has standard deviation equal to 0.1. Two different
pairs of initial phases are chosen at random between 0 and 2π to generate two
different realizations of the process. We apply Burg’s method to both sequences,
with p = 14 (light gray solid and dashed curves) and p = 20 (dark gray solid and
dashed curves), and compare the AR spectral estimates for each sequence with a
Welch estimate computed adopting a 256-samples-long Hamming window, with
overlapping of 128 samples (black solid and dashed curves). Vertical dotted lines
indicate true frequencies. Figure 11.19a shows the region of the spectral peaks.
In Fig. 11.19b, which provides an expanded view of the highest-frequency peak,
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we can see that with both realizations, in Burg’s estimates the highest-frequency
sinusoid appears shifted with respect to its true value, in a way that changes with
changing initial phase.

11.8 Examples of AR Spectral Estimates

A complete set of examples illustrating the properties of the four AR spectrum
estimation techniques presented above, for different types of random processes and
in comparison with non-parametric spectral methods, would be too long to provide
in an introductory book like the present one. Nevertheless, we will try to compare the
effectiveness of each approach in estimating the spectra of narrowband and broadband
AR processes, though we will not investigate the effects of different AR orders and
different record lengths. We will also examine the performances of these techniques
when applied to other types of processes, like sinusoids in noise, with varying values
of N . More precisely, we will consider

• two medium-length data records, both derived from a low-order AR(4) process
but with coefficients chosen in such a way to represent the contrasting possibilities
of a broadband process in the first case, and of a narrowband process in the second
case;

• one record with sinusoids in Gaussian white noise, with a varying number N of
samples.

11.8.1 Broadband and Narrowband AR Processes

We take white noise with unit variance and filter it using the two AR(4) all-pole filters
that we already used for Fig. 11.10c, d. We thus generate an AR(4) broadband signal
and an AR(4) narrowband signal. We generate 50 realizations of each process, but
this time we select a shorter length for each realization (N = 256). Each realization is
then analyzed using the YW method, the covariance method, the modified covariance
method and Burg’s method, with p = 4 in all cases. The resulting spectral estimates
are shown in Figs. 11.20 and 11.21:

• Figure 11.20a is a Burg spectral estimate of the broadband AR(4) process,
• Figure 11.20b is a Burg spectral estimate of the narrowband AR(4) process,
• Figure 11.20c is a YW spectral estimate of the broadband AR(4) process,
• Figure 11.20d is a YW spectral estimate of the narrowband AR(4) process,
• Figure 11.21a is a covariance spectral estimate of the broadband AR(4) process,
• Figure 11.21b is a covariance spectral estimate of the narrowband AR(4) process,
• Figure 11.21c is a modified covariance spectral estimate of the broadband AR(4)

process,
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Fig. 11.20 a Burg spectral estimates for 50 realizations of a broadband AR(4) process. b Burg
spectral estimates for 50 realizations of a narrowband AR(4) process. c Yule-Walker spectral esti-
mates for 50 realizations of the same broadband AR(4) process of panel a. d Yule-Walker spectral
estimates for 50 realizations of the same narrowband AR(4) process. Black lines in each panel show
the spectra of 50 individual realizations in an overlaid fashion, dashed gray curves show the spectral
estimate averaged over realizations, and solid gray curves depict the true spectrum. In all cases,
N = 256 and p = 4

• Figure 11.21d is a modified covariance spectral estimate of the narrowband AR(4)
process.

Black lines in each panel show the spectra of 50 individual realizations in an overlaid
fashion, to indicate the variability of a given type of spectral estimate, dashed gray
curves show the spectral estimate averaged over realizations, and solid gray curves
depict the true spectrum. Observe how stable these estimates are if compared to the
periodogram (observe Fig. 11.13c). All the estimators except the YW method are
unbiased, so that the ensemble-average spectra (dashed gray curves) are indistin-
guishable from true spectra solid gray curves, and have comparable variances. The
YW method shows a large bias in Fig. 11.20b, being unable to resolve the spectral
peaks, and also exhibits a larger variance than the other parametric methods.
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Fig. 11.21 a Covariance spectral estimates for 50 realizations of a broadband AR(4) process.
b Covariance spectral estimates for 50 realizations of a narrowband AR(4) process. c Modified
covariance spectral estimates for 50 realizations of the same broadband AR(4) process of panel a.
d Modified covariance spectral estimates for 50 realizations of the same narrowband AR(4) process
of panel b. Black lines in each panel show the spectra of 50 individual realizations in an overlaid
fashion, dashed gray curves show the spectral estimate averaged over realizations, and solid gray
curves depict the true spectrum. In all cases, N = 256 and p = 4

11.8.2 Sinusoids in Noise

We consider the process with two sinusoids in Gaussian white noise that we already
used for some previous examples (see Fig. 10.9). In Figs. 11.22, 11.23 and 11.24, the
parametric estimates of the power spectrum of such a signal (N = 512, A0 = A1 = 5,
ω0 = 0.4 π , ω1 = 0.45 π ; unit noise variance) are shown. Figure 11.22 is relative to
the YW method, while Fig. 11.23 is relative to Burg’s method; the order of the model
varies from 8 to 64 and the record length is N = 512 in all cases. Figure 11.24 is still
relative to Burg’s method, but here the order is always p = 18, while the record length
progressively decreases from 512 to 40 samples. Figures 11.22 and 11.23 show that
as the model order increases, the peaks corresponding to the sinusoids become higher
and narrower with both the YW and Burg methods, so that resolution improves. In
Sect. 10.3.3 we verified that for the same random process considered here, with a very
small record length (N = 40), the periodogram’s resolution is insufficient (Fig. 10.9).
The lowest panels of Fig. 11.24 show that at a reasonable order, even with this very
short record, Burg’s method provides an acceptable resolution. In conclusion, AR

http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
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Fig. 11.22 Power spectrum estimates obtained via the YW method for two sinusoids in white
noise. The model order varies from 8 to 64; the record length is 512

methods can help with resolution, especially for shorts records: for example, they can
deal with sequences of 40–200 samples, for which Fourier methods would perform
poorly. However, if the process is not authentically AR, keeping the order low we will
overly smooth the spectrum, while increasing it we will probably generate spurious
peaks.

11.9 Maximum Entropy Method (MEM)

As we mentioned in Sect. 11.7, the YW method is closely related to a different
philosophical approach to the spectral estimation problem: the maximum entropy
method (MEM).

One of the limitations with the classical approach to power spectrum estimation
is that, for a data record of length N , the AC sequence can only be estimated for
lags |l| < N . Consequently, the AC is set to zero for |l| ≥ N . Since many signals of
interest actually have ACs that are non-zero for |l| ≥ N , this assumption may severely
limit the resolution and the accuracy of the spectral estimate. This is particularly true
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Fig. 11.23 Power spectrum estimates obtained via Burg’s method for two sinusoids in white noise.
The model order varies from 8 to 64; the record length is 512

in the case of narrowband processes that have ACs decaying slowly with increasing
lag. As an example of this behavior, see Fig. 11.11b, d, representing the AC sequences
of an AR(2) narrowband process and of an AR(4) narroband process, respectively.
Observe these AC sequences in comparison with those illustrated in Fig. 11.11a, c,
which represent broadband processes.

The question thus arises as to whether a better extrapolation of the AC sequence
may be devised that can improve spectral estimation. This is nothing but the issue
already discussed in connection to AR spectral estimation, but the MEM was devel-
oped focusing on this issue. The principle on which the MEM relies states that any
method aimed at estimating the power spectrum of a process starting from a record
of finite length N should do so in such a way that the estimate be consistent with the
measured samples, but neutral about the part of the signal that has not been measured,
on which no assumptions should be made.

Suppose we are given the AC of a WSS process for lags up to a certain lag p. The
values of γxx [l] ≡ γ [l], for |l| ≤ p, have been accurately estimated or determined
in some way—they are known. We wish to extrapolate for |l| > p. First of all,
the extrapolation must lead to a valid power spectrum. If we write (neglecting the
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Fig. 11.24 Power spectrum estimates obtained via the Burg’s method for two sinusoids in white
noise. The model order is 18; the record length varies from 512 to 40 samples

estimation hat symbols on both the spectrum and the AC)

Pxx (ω) =
+p∑

l=−p

γ [l]e−jlω +
∑

|l|>p

ψ[l]e−jlω,

where ψ[l] are the extrapolated AC values, then Pxx (ω) should be real-valued and
non-negative at all frequencies. But this is not sufficient to guarantee a unique extrap-
olation: additional constraints must be imposed.

Burg’s approach was to try to estimate the spectrum of the process generating
the observed AC samples γ [l] without making any a priori assumptions about the
unknown AC values for lags p + 1 and beyond. He began by noting that there are
an infinite number of power spectra which can be inversely Fourier-transformed to
yield AC samples identical to the given set of γ [l] samples over the range of lags
for which the data is available. Beyond that range, of course, all these AC sequences
will differ. The problem then becomes: which one of this infinite set of power spectra
should we select? To answer this question, Burg used the criterion of information
entropy as defined for power spectra by Shannon’s information theory (Shannon
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and Weaver 1959). For a Gaussian random process x[n] with true power spectrum
Pxx (ω), the information entropy Hx is defined to within a scale factor by (Shannon
1948; Shannon and Weaver 1959; Cover and Thomas 1991)

Hx = 1

2π

∫ π

−π

log Pxx (ω)dω.

Let us assume that all the power spectra under consideration are constrained to have
the same average power

σ 2
x = P0 = 1

2π

∫ π

−π

Pxx (ω)dω.

Then if Pxx (ω) = P0, the spectrum Pxx (ω) is flat, i.e., it is a white-noise power
spectrum, and the entropy assumes a value that we will indicate as H w

x ,

H w
x = log (P0) .

It is relatively straightforward to convince ourselves that any non-white spectrum
will have smaller entropy than a white spectrum having the same average power. We
can start by noting that any possible candidate power spectrum must have a mean
value of P0. Then Pxx (ω) can be expressed in the form

Pxx (ω) = P0
[
1 + P ′

xx (ω)
]
,

where the average of P ′
xx (ω) must be zero. In this way we have

Hx = H w
x + 1

2π

∫ π

−π

log
[
1 + P ′

xx (ω)
]

dω.

For the sake of simplicity we assume that the magnitude of P ′
xx (ω) is always much

less than one, so that we can expand the log term as

log
[
1 + P ′

xx (ω)
] = P ′

xx (ω) − 1

2

[
P ′

xx (ω)
]2 + · · · .

Then we can write

Hx − H w
x = 1

2π

∫ π

−π

{
P ′

xx (ω) − 1

2

[
P ′

xx (ω)
]2 + · · ·

}
dω �

� − 1

4π

∫ π

−π

[
P ′

xx (ω)
]2

< 0,
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since the integral of P ′
xx (ω) is zero. Thus we see thatHx < H w

x : for a given σ 2
x = P0,

a white noise signal has maximum entropy. Although we have only proven this result
under the assumption

∣∣P ′
xx (ω)

∣∣  1, it is true in general.
This is the criterion that Burg used to select one of the infinite possible power

spectra: in the absence of any further information about the process generating the
data, a reasonable choice for the power spectrum would be the one which both
satisfied the constraints imposed by the given AC samples and at the same time
had the maximum entropy. White noise has the greatest possible entropy; it is the
most random process and its AC vanishes for all non-zero lags. By inference, we
can deduce that choosing a power spectrum which is constrained by the known AC
samples and yet has the maximum possible entropy, we will choose the spectrum
that corresponds to the most random possible process consistent with the observed
data, i.e., the process characterized by the fewest assumptions.

Finding the MEM spectral estimator means devising a maximum entropy extrapo-
lation for the AC sequence. For the Wiener-Khinchin theorem, the maximum entropy
process and the observed process will share the same spectrum, since they share the
same AC sequence.

It can be shown that for a Gaussian random process x[n] with given AC samples
γ [l], |l| ≤ p, the MEM power spectrum is the spectrum of an AR(p) process. Indeed,
the latter maximizes Hx , subject to the constraint that the inverse Fourier transform
of Pxx (ω) equals the given set of AC samples,

γ [l] = 1

2π

∫ π

−π

Pxx (ω)ejlωdω, |l| ≤ p.

In order to prove this, we must actually construct the MEM estimator, and in order
to do so, we need to find the values ψ[l] of extrapolated AC that maximize the entropy.
One way to find the MEM estimator subject to fixed values of AC for |l| ≤ p is by
use of the so-called Lagrange multipliers (see, e.g., Arfken 1985). We can instead
find it by setting the derivative of the entropy with respect to each extrapolated value
equal to zero (Robinson 1982):

∂Hx

∂ψ[l] = ∂

∂ψ[l]
1

2π

∫ π

−π

log Pxx (ω)dω = 1

2π

∫ π

−π

e−jlω

Pxx (ω)
dω = 0

for |l| > p. The last equality derives from the fact that from the definition of Pxx (ω)

as the DTFT of the known and extrapolated parts of the AC sequence, we can write

∂

∂ψ[l] {log Pxx (ω)} = e−jlω

Pxx (ω)
≡ e−jlω Qxx (ω),

where we defined Qxx (ω) as the reciprocal of the spectrum we are looking for, i.e.,
Qxx (ω) = 1/Pxx (ω). Qxx (ω) is certainly non-negative, and we assume that it is
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bounded and integrable, i.e., that it is a well-behaved power spectrum in its own
right. In this way we can write the condition for entropy maximization as

1

2π

∫ π

−π

Qxx (ω)e−jlωdω = 0, |l| > p.

Being a well-behaved power spectrum, Qxx (ω) can be associated with a real and
even AC sequence q[l], so that the following equations hold:

q[l] = 1

2π

∫ π

−π

Qxx (ω)ejlωdω for − ∞ < l < ∞,

Qxx (ω) =
∞∑

l=−∞
q[l]e−jlω.

Comparing the second equation with the maximum-entropy constraint we see that in
order to satisfy the latter, q[l] must vanish for |l| > p. This means that we can write

Qxx (ω) =
p∑

l=−p

q[l]e−jlω

and form the MEM estimator as

PMEM
xx (ω) = 1∑p

l=−p q[l]e−jlω
.

Passing to the z-transform, with

PMEM
xx (ω) ≡ PMEM

xx

(
ejω
) = PMEM

xx (z)
∣∣
z=ejω ,

we can write

PMEM
xx (z) = 1∑p

l=−p q[l]z−l
= 1

Q(z)
,

so that the poles of Q(z) are the zeros of PMEM
xx (z) and vice-versa. But since q[l] is

a real and even sequence, its z-transform has the following property (Sect. 9.9):

Q(z) = Q∗(z∗) = Q(1/z) = Q∗(1/z∗).

This implies the possibility of factorizing Q(z), up to a non-negative constant, as
A(z)A(1/z), with

A(z) = 1 + a1z−1 + a2z−2 + · · · + apz−p

http://dx.doi.org/10.1007/978-3-319-25468-5_9
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being stable and minimum-phase, and with a0 normalized to 1 (Robinson 1980). So
we can write

Q(z) = 1

σ 2
A(z)A(1/z),

where σ 2 is a non-negative constant. Therefore

PMEM
xx (z) = σ 2

A(z)A(1/z)
= σ 2

A(z)A∗(1/z∗)
.

The corresponding power spectrum on the unit circle is

PMEM
xx (ω) = σ 2

∣∣A
(
ejω
)∣∣2

= σ 2

∣∣1 +∑p
l=1 ale−jlω

∣∣2

and therefore is a well-behaved, real and non-negative AR(p) spectrum.
Having determined the form of the MEM spectrum, all that remains is to find

the parameters appearing in this formula, including σ . Due to the constraints we
set on Pxx (ω), these coefficients must be chosen in such a way that the IDFT of
the estimated PMEM

xx (ω) produces an AC sequence that matches the given γ [l] for
|l| ≤ p. If the parameters are the solution of the augmented YW equations, with
σ 2 = σ 2

e , then the AC-matching constraint will be satisfied.
In summary, we will compute the MEM spectrum as follows: we will

• solve the augmented YW equations and find the ai and σ 2
e ;

• incorporate the estimated parameters in PMEM
xx (ω).

Note that choosing this MEM estimator, then γ [l] for any l satisfies the YW equations

γ [l] = −
p∑

i=1

aiγ [l − i] for l > 0,

and thus actually the AC is extrapolated according to this recursion. The MEM is
thus equivalent to the YW method. The only difference between the two methods
lies in the assumptions that are made about the process, since here it is assumed that
the process is Gaussian, while with the YW method it is assumed that x[n] is an AR
process. The MEM thus boils down to looking for an AR process that “mimics” the
original time series. This is why it is classified as a parametric method (see, e.g., Ghil
and Taricco 1997).

The properties of the MEM have been studied extensively and, as a spectrum
analysis tool, the MEM is subject to different interpretations. In the absence of any
information or constraints on the process, and given a finite set of AC values, taking
the Fourier transform of the AC sequence formed from the available data values, along
with an extrapolation that imposes the least assumptions on what is not observed,
appears very reasonable. On the other hand, it may be argued that MEM imposes
an all-pole model on the data, and unless the process is known to be consistent
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with this model, then the estimated spectrum may be inaccurate. This, of course, is a
criticism that applies to any AR estimate. Whether or not the MEM estimate—or any
other AR estimate—is “better” than an estimate obtained from classical approaches
depends critically on what type of process is being analyzed and how closely it may
be modeled as an AR process.

The MEM is very efficient in detecting spectral lines and narrowband features
of a WSS time series. The art of using MEM, as in any AR method, resides in
a reasonable choice for the model order (see, for instance, Ghil and Taricco 1997).
The behavior of the spectral estimate depends on this choice: as we already remarked
in previous sections, the number of poles (and consequently the number of spectral
maxima) depends on the order, so that, for a given time series, the number of peaks
will increase with order. Therefore, a trade-off between a good resolution (high
order) and few spurious peaks (low order) has to be found for the MEM too. These
weaknesses can be remedied partly by

• determining which peaks survive reductions in the order,
• comparing MEM spectra to those produced by the BT method and the MTM,

which generally should not share spurious peaks with MEM, and
• using SSA (Chap. 12) to pre-filter the series and thus decompose the original

sequence into several components, each of which contains only a few harmonics
and is substantially noise-free, so that small order values can be chosen (Penland
et al. 1991). Many simulations have actually shown that the resolution of the
MEM estimator decreases as SNR decreases (Lacoss 1971; Marple 1977). SNR
enhancement using a data-adaptive filter based on SSA improves the resolution of
low-order MEM estimates. Of course, the same considerations apply to the other
AR spectral estimation methods.
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Chapter 12
Singular Spectrum Analysis (SSA)

12.1 Chapter Summary

This chapter is devoted to an approach of extracting periodic or quasi-periodic
components from a random signal. Singular spectrum analysis (SSA) is not a con-
ventional spectral analysis method: it is a technique aimed at representing the signal
as a linear combination of elementary variability modes that are not necessarily har-
monic components, but, more in general, are data-adaptive functions of time. Thus
SSA does not provide an estimate of the power spectrum, but rather is a powerful de-
noising filter, able to separate autocoherent features—e.g., anharmonic oscillations,
quasi-periodic phenomena—from random features. It is also an ally of conventional
spectral analysis, because the individual modes extracted via SSA are very “clean”
signals for which high-resolution, stable spectra can be obtained that are much more
easily interpretable than those that could be estimated analyzing the original series.
Finally, SSA is also a very efficient gap filling method, i.e., a method to fill gaps in
data records, which is soundly based from a theoretical point of view.

SSA is a non-parametric method: it does not make any assumption about the
generation of the observed signal. It does not require particular properties of station-
arity or ergodicity. After a brief theoretical introduction, we will focus on real-world
application examples illustrating the possibilities offered by SSA.

12.2 Elements of SSA Theory

Singular spectrum analysis (SSA) (Vautard and Ghil 1989)—see also Ghil and
Taricco (1997), Ghil et al. (2002) and references therein—allows for a systematic
description, quantification, and extraction of long-, medium- and short-term compo-
nents of time series. It is not, in a strict sense, a simple spectral method, since it is
aimed at representing the signal as a linear superposition of elementary variability
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modes that are not necessarily harmonic components. More in general, these modes
are data-adaptive functions of time. SSA does not provide an estimate of the power
spectrum but rather is a powerful de-noising filter, able to separate autocoherent fea-
tures, such as anharmonic oscillations and quasi-periodic phenomena, from random
features. Spectral analysis of the individual modes extracted via SSA can thus be
performed by the Maximum Entropy Method (MEM) or via Burg’s method adopting
low orders (see Sects. 11.9 and 11.7), and leads to high-resolution spectra that are
stable, simply structured and therefore much more easily interpretable than those that
could be estimated analyzing the original series. Finally, SSA is also a very efficient
gap filling method (Kondrashov and Ghil 2006), i.e., a method to fill gaps in data
records, which is soundly based from a theoretical point of view.

SSA is a non-parametric method: it does not make any assumption about the gen-
eration of the observed signal. It does not require particular properties of stationarity
or ergodicity (Ghil et al. 2002). To apply SSA and other methods, such as the BT
method and the MTM, a freeware Toolkit has been created (Vautard et al. 1992;
Dettinger et al. 1995; Allen and Smith 1996; Allen and Robertson 1996; Mann and
Lees 1996; Ghil et al. 2002), which can be downloaded from http://www.atmos.ucla.
edu/tcd/ssa/ and can be installed in many Unix-based systems, such as Mac OS X
and Linux environments. The webpage also offers a User’s Guide, and an interesting
review paper (Ghil et al. 2002).

From the mathematical point of view, SSA stems from two classical methodolo-
gies: the Karhunen-Loéve spectral decomposition of time series and random fields
(Karhunen 1946, 1947; Loéve 1978) and the MañéTakens embedding theorem (Mañé
1981; Takens 1981), thus by combining elements of different fields such as, statistics
and probability theory, dynamical systems and signal processing. SSA is structured
in the following way:

• after centering the data series (length N), the square and real (M × M) lag-
covariance matrix R is built for some choice of M < N :

R = {rlm} l = [1, M], [m = 1, M],

in which each matrix element represents the correlation between the original series
lagged by l − 1 time steps and the original series lagged by m − 1 time steps, so
that the first column of R is the AC sequence of the original sequence (l − 1 = 0;
m − 1 = 0). It must be noted that here l is a position index and not a lag; the
corresponding lag in number of samples is l − 1. The same is true for m. The
matrix is real, square and symmetrical.
There are actually distinct methods to define R. In one method, by Broomhead and
King (1986a), a window of length M is moved along the time series, producing a
set of N ′ = N − M + 1 sequences (vectors). This set is used to obtain the N ′ × M
trajectory matrix D, where the ith row is the ith view of the time series through
the window. In this approach, the lag-covariance matrix is defined as

R = 1

N
DDT .

http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://www.atmos.ucla.edu/tcd/ssa/
http://www.atmos.ucla.edu/tcd/ssa/
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Hereafter we will refer to this method as the BK method. In a second method,
proposed by Vautard and Ghil (1989), R is estimated directly from the data as a
Toeplitz matrix1; this method will be referred to as the VG method;

• diagonalizing the matrix R, its M real and non-negative eigenvalues and its M
mutually orthogonal eigenvectors are computed. The linear algebra procedure
employed to diagonalize the matrix is called singular value decomposition (SVD).2

The reader who is not acquainted with basic elements of linear algebra is invited to
consult, as a first approach to this topic, the summary appearing in Hayes (1996),
or refer to MacLane and Birkhoff (1999) or similar books presenting linear algebra
from its basic principles.
The eigenvectors are called empirical orthogonal functions or EOFs. Each eigen-
value λi, with i = [1, M], characterizes a different elementary variability mode in

1Recall that in linear algebra, a Toeplitz matrix is a matrix in which each descending diagonal from
left to right is constant, i.e., all elements in a diagonal are equal.
2We must underline that SVD is different from the so-called eigen-decomposition used to per-
form diagonalization of a square matrix. Focussing on real matrices, matrix diagonalization is
the process of taking a square matrix and converting it into a special type of matrix—a so-called
diagonal matrix—that shares the same fundamental properties of the underlying matrix. Matrix
diagonalization is equivalent to transforming the underlying system of equations into a special set
of coordinate axes in which the matrix takes this diagonal form. Diagonalizing a matrix is also
equivalent to finding the matrix’s eigenvalues, which turn out to be precisely the entries of the
diagonalized matrix. Similarly, the eigenvectors make up the new set of axes corresponding to the
diagonal matrix. The relationship between a diagonalized matrix, eigenvalues, and eigenvectors
follows from an equation according to which a square matrix R can be decomposed into the form
R = AΛA−1, where A is a matrix composed of the eigenvectors of R arranged by columns, Λ is
the diagonal matrix constructed from the corresponding eigenvalues, and A−1 is the matrix inverse
of A. It is obvious that if a square matrix R has a matrix of eigenvectors A that is not invertible,
then R does not have an eigen-decomposition. However, in the case of the lag-covariance matrix,
the eigenvectors are orthogonal to one another. The matrix A having the eigenvectors of R as its
columns is thus an orthogonal matrix, so that its inverse is equal to its transpose: A−1 = AT . Then
R can be written using a so-called SVD of the form R = AΛAT .

More generally, in linear algebra the SVD is a factorization of a real or complex matrix, which
is not necessarily square—it can also be rectangular. Even if linear algebra is beyond the scope of
the book, we may mention that some key differences between SVD and eigen-decomposition are
the following:

– the vectors forming the columns of the eigen-decomposition matrix A are not necessarily orthog-
onal. On the other hand, the vectors that in the SVD factorization play a similar role are ortho-
normal; therefore the corresponding matrices—two different matrices—involved in SVD are
orthogonal;

– these matrices involved in SVD are not necessarily the inverse of one another. They are usually
not related to each other at all. In the eigen-decomposition, the matrices involved are inverses of
each other, i.e., they are A and A−1;

– in the SVD, the entries in the diagonal matrix Λ are all real and non-negative. In the eigen-
decomposition, the entries of the corresponding matrix can be any complex number—negative,
positive, imaginary, whatever;

– the SVD always exists for any sort of rectangular or square matrix, whereas the eigen-
decomposition only exists for square matrices, and even among square matrices sometimes
it doesn’t exist.
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the signal; the set of the λi is referred to as the eigenvalue spectrum, or the eigen-
spectrum, and contains information about the contribution given by the individual
ith mode to the total signal’s variance: more precisely, the total variance σ2

x of the
series is equal to (1/M)

∑M
i=1 λi, and each mode explains a percentage of the total

variance given by
pcti = 100

λi

Mσ2
x

= 100
λi∑M
i=1 λi

.

The square roots
√

λi of the eigenvalues are referred to as singular values and the
set they form is the singular spectrum; hence the name of the SSA method;

• the eigenvalues and the eigenvectors (EOFs) are then ordered by decreasing eigen-
value importance. Plotting the eigenvalues, thus arranged in decreasing order, ver-
sus their order number—the number that identifies the mode, i.e., versus their
rank—a SSA spectrum is obtained, in which often an initial steep descent appears,
representing the signal content, followed by a more or less flat plateau, represent-
ing the noise in the record (Vautard and Ghil 1989). Error bars are displayed in this
plot, showing an ad-hoc range of estimation errors for eigenvalues. These error
bars are based on the estimated decorrelation time of the time series, according to:

�λi =
(

2kL

N

)1/2

,

where L is a typical decorrelation time for the time series, and k is a user-supplied
decorrelation weight between 1 and 2 (typically, 1.5). The decorrelation length L is
normally estimated to be the inverse of the logarithm of the lag-one autocorrelation
coefficient of the time series.
As for the use of the VG or the BK method for creating the lag-covariance matrix, in
practice, the VG method may suffer from numerical instabilities (yielding negative
eigenvalues) when pure oscillations are analyzed. The BK method is somewhat
less prone than the VG method to problems with highly non-stationary time series
(Allen et al. 1992), although the VG method seems untroubled by all but the most
extreme non-stationarities. The VG method also imposes symmetries on the EOF
shapes, whereas the BK method does not. However, the VG method appears to
yield more stable results under the influence of minor perturbations of the time
series (Allen and Smith 1996).
In order to correctly separate signal from noise, visual inspection of the eigen-
spectrum must be supported by application of proper significance tests, which will
soon be described. The first eigenvalues—i.e., the dominant ones—usually come
in pairs with nearly equal values, with error bars having a common range. The cor-
responding eigenvectors are in phase quadrature. Vautard and Ghil (1989) found
that, provided the significance tests mentioned above give positive results, these
pairs of modes can be interpreted as the nonlinear counterpart of a sine/cosine
couple in linear Fourier analysis and therefore represent an oscillation mode, gen-
erally non-sinusoidal, detected in the signal. Thus a non-sinusoidal waveform, like
a square wave or a sawtooth wave, can be represented by a single pair of modes
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that capture its periodicity, instead of the many harmonics that would be necessary
in linear Fourier analysis that uses base functions of fixed form.
The trend, i.e., the long-term series behavior, may be represented by a single mode.
More precisely, the trend is usually captured by either 1 or 2 components. If the
trend-related EOFs are a pair, then normally one presents a zero-crossing, while
the other one does not. If the trend is very strong, it can be analyzed and possibly
removed by directly inspecting the shapes of the EOFs. When the trend is not
very pronounced, a de-trending test supplied by the SSA-MTM toolkit may give
a guidance in trend recognition. This test is based on Kendall’s τ nonparametric
method for trend detection (Freas and Sieurin 1977; Hirsch and Slack 1984; Hirsch
et al. 1982):

• once the visual inspection of the eigenspectrum and the statistical significance tests
have detected which eigenvalues represent the useful signal and which represent
undesired noise, a selection of modes can be performed, discarding the noise-
related modes. In this way the background noise in the signal is eliminated, and
the most significant variability modes are retained;

• the time behavior of each selected mode or pair of modes can be reconstructed,
and its spectrum analyzed adopting low-order MEM estimators, thus obtaining
stable spectra less prone to exhibiting spurious peaks with respect to the direct
analysis of the original series (see Sect. 11.9). Such reconstructed components or
RCs allow us to compare the time behavior of the significant modes with that of
possible external forcings acting on the system that generated the signal. Summing
all the significant RCs, a de-noised version of the signal can be obtained.

SSA is particularly useful in case of short and noisy records; it is computationally
efficient and converges rapidly, meaning that few modes can represent the significant
variability contained in a data record.

The parameter that must be fixed in SSA is M, the window length, a.k.a. the embed-
ding dimension. The choice of M is based on a trade-off between two considerations:
quantity of information extracted versus the degree of statistical confidence in that
information (Ghil et al. 2002). By and large, it is advisable to choose M < N/5,
where N is the number of available data samples. Moreover M should be greater
than the number of sequence samples contained in one period of the oscillations
that must be detected: in fact, SSA is typically efficient in detecting cyclicities with
periods in the range between M/5 and M (Vautard et al. 1992). M should also be
smaller than the number of data samples contained in the typical duration of the
intervals in which a possibly intermittent oscillation remains active. Let us make an
example: if we want to analyze data with a sampling interval of 1 year and want to
study oscillations up to 500 years of period in a 2500 year long record (N = 2500),
and if we moreover know that typically these oscillations appear intermittently and
remain active each time for durations of the order of 1000 years, then M = 500 is a
reasonable choice. However, it is better to try different values of M, and the robust-
ness of the SSA results to changes of the window length is an important test of their
validity.

http://dx.doi.org/10.1007/978-3-319-25468-5_11
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We still must understand how the significant modes are selected: how is the sig-
nificance of each dominant mode tested? To this purpose, no hypotheses about the
probability distribution of the data are made—for example, they are not assumed
to be Gaussian—and therefore no conventional statistical tests can be performed.
The significance of the modes is established or rejected on the basis of Monte Carlo
simulations, according to a method called MC-SSA, introduced by Allen (1992),
Allen and Smith (1996). For the test, a null hypothesis of background AR(1) red
noise is adopted, with parameter α = ρ[1] and variance σ2

e estimated from the sig-
nal by maximum likelihood criteria. A high number of realizations of this red-noise
process is then generated. This data is called surrogate data and typically consists
of a few thousands of sequences. For each realization, the lag-covariance matrix CR

is computed and projected onto the basis formed by the eigenvectors of the matrix
R derived from the original data. In the case of R, this projection leads to a diagonal
matrix Λ = ATRA, where A is the matrix having the EOFs as its columns, AT is the
corresponding transposed matrix and Λ has the eigenvalues λi on its main diagonal,
while the remaining matrix elements are zero.

In the case of CR, which is derived from surrogate data, since ΛR = ATCRA
is not the SVD of CR, the matrix ΛR is not necessarily diagonal, but its greater or
lesser distance from diagonality allows quantifying the similarity of a given surrogate
series with the original one. Over the whole collection of surrogate data, the similarity
between red noise and the original series can be quantified examining the statistical
distribution of the elements of ΛR. In this way, confidence intervals are obtained
at a fixed probabilistic level, outside which a modal contribution to x[n], i.e., a RC
reconstructed using one mode or a pair of modes, can be considered significantly
different from red noise. The test is bilateral, so that a pair of confidence levels
must be specified. For example, setting 0.05 and 0.95 we would plot noise error bars
spanning the 5th to 95th percentiles of the noise distribution, and would have a 90 %
confidence level (c.l.); setting 0.01 and 0.99 we would plot noise error bars spanning
the 1th to 99th percentiles, and would have a 98 % c.l.; setting 0.005 and 0.995
we would plot noise error bars spanning the 0.5th to 99.5th percentiles of the noise
distribution, and would have a 99 % c.l. The default in the SSA-Toolkit is 95 %, from
2.5th to 97.5th percentiles.

Let us stress that comparing M data eigenvalues with M confidence intervals
computed from the surrogate ensemble, we expect, e.g., M/10 to lie above the 90th
percentile even if the null hypothesis is true. Thus a small number of excursions
above a relatively low percentile should be interpreted with caution. Allen and Smith
(1996) discuss this problem in detail, and propose a number of possible solutions.

The MC-SSA algorithm described above can be adapted to eliminate known
periodic components and test the residual against noise. This adaptation provides
sharper insight into the dynamics captured by the data, since known periodicities (like
orbital forcing on the Quaternary time scale or seasonal forcing on the intraseasonal-
to-interannual one, in climate studies and other fields) often generate much of the
variance at the lower frequencies manifest in a time series and alter the rest of
the spectrum. Allen and Smith (1996) describe this refinement of MC-SSA, which
consists in restricting the projections to the EOFs that do not account for known



12.2 Elements of SSA Theory 543

periodic behavior. This refinement is implemented in the SSA-MTM toolkit, where
it is referred to as the hybrid basis.

This procedure can be also used to repeat the MC-SSA test after recognizing
some serie’s components as significant in a first run of MC-SSA with pure red-
noise null-hypotheis: the significant RCs recognized in the first MC-SSA run can be
subsequently included in the null hypothesis and the remaining series can be tested
again. This should not be done too many times, because each time the MC-SSA test
becomes more and more “liberal”.

It must be finally mentioned that another version of SSA exists: the so-called
“Caterpillar” methodology that was developed in the former Soviet Union, indepen-
dently of the mainstream SSA work in the West. This methodology became known
in the rest of the world more recently (e.g., Golyandina et al. 2001; Golyandina and
Zhigljavsky 2013; Zhigljavsky 2010). Caterpillar-SSA emphasizes the concept of
separability, a concept that leads, for example, to specific recommendations con-
cerning the choice of SSA parameters. Several practical aspects of SSA and its
application to time series are covered in Golyandina et al. (2001) and Golyandina
and Zhigljavsky (2013).

Another information that can be useful is that in addition to the freeware SSA-
MTM Toolkit, a software named Kspectra exists (http://www.spectraworks.com/
web/products.html), working on Mac OS X, that offers some possibilities which
are not present in the open-source version. One outstanding feature of this software
is the possibility of an interesting approach to time-series forecasting. A combined
SSA-AR method is applied, as introduced by Keppenne et al. (1992, 1993) and
further described in Ghil et al. (2002). The basic idea is that the RCs in SSA are
data-adaptively filtered signals, each of which is dominated by a narrow spectral
peak (Penland et al. 1991). Such narrowband signals allow much more accurate
predictions than broadband ones. Thus, the individual significant components of a
series are predicted separately, and the final prediction results from the sum of the
single predictions. This allows for prediction of the SSA-denoised signal, in order to
forecast its significant dominant oscillatory modes while reducing noise disturbing
effects. The SSA-AR method turns out to be most reliable and robust when the order
MAR of the autoregressive model fitted to the data is similar to the SSA embedding
dimension M. This result follows from the way the SSA lag-covariance matrix and the
AR coefficients are computed in the combined SSA-AR algorithm. For an example
of application of this method, see Alessio et al. (2012).

12.3 SSA Application Examples

SSA has been applied extensively in geophysics, especially for the study of climate
variability (see, e.g., Feliks et al. 2013; Keppenne et al. 1992, 1993; Kondrashov
et al. 2005; Robertson and Mechoso 2000; Taricco et al. 2009), as well as to other
areas in the physical sciences such as astrophysics (Greco et al. 2011), in life and
biomedical sciences (for instance, Brawanski et al. 2002; Colebrook 1978; Grigorov

http://www.spectraworks.com/web/products.html
http://www.spectraworks.com/web/products.html
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2006; Mineva et al. 1996; Rodó et al. 2002), and in socio-economic sciences (e.g., de
Carvalho et al. 2012; Hassani and Thomakos 2010; Hassani et al. 2011; Sella 2008;
Sella and Marchionatti 2012; Sella et al. 2013; Thomakos et al. 2002).

We will now present four examples of SSA application, two concerning clima-
tology, one concerning astrophysics, and one regarding economics, to illustrate the
power and the capabilities of the method.

12.3.1 A Paleoclimatological Application

Climatological applications of SSA include the analysis of paleoclimatic time series,
i.e., records useful for the study of past climate variability. As an example, here we
report the SSA analysis (Taricco et al. 2009) of a high-resolution (Ts = 3.87 y) record
of the Oxygen isotope composition δ18O of planktonic foraminifera shells, aimed at
investigating climatic variability on decadal to millennial time scales. The record,
covering the last two millennia (200 BC–1979 AD), was measured in a shallow-
water sediment core extracted from the Gallipoli Terrace in the Gulf of Taranto, Italy
(Ionian Sea, Central Mediterranean).

Planktonic foraminifera are unicellular organisms living in sea water and possess-
ing a calcareous shell, i.e., a shell made of calcite (CaCO3). In particular, the study
by Taricco et al. (2009) was performed on the shells of Globigerinoides ruber, an
organism dwelling in surface waters. When these organisms die, they settle onto the
sea bottom. Drilling sediment cores, accurately dating each mud layer, and extracting
fossil shell samples from each layer allows for measuring the abundance of stable
isotopes of Oxygen and Carbon in the calcite of which the shells are made. This
provides time series embedding information on the sea and climate conditions at the
time when the foraminifera lived and their shells were built.

The stable isotopes of Oxygen used in paleo-oceanographic studies are 16O and
18O, comprising 99.63 and 0.1995 % of the Oxygen on Earth, respectively. The
relative calcite-18O abundance with respect to 16O established during the shells for-
mation is influenced by environmental factors like temperature and seawater Oxygen
isotopic composition (Shackleton and Kennett 1975). Note that the isotopic compo-
sition of sea water is not considerably affected by temperature changes, since the
quantity of water is very large compared to the amount of CaCO3 equilibrated with
it. Thus, the δ18O of a foraminiferal calcite sample, defined with respect to a proper
standard3 as

δ18O =
(

18O/16O
)

calcite sample − (
18O/16O

)
standard(

18O/16O
)

standard

× 1000,

3The reference standard for the Oxygen isotopic composition in carbonates is the PDB standard,
which is based on the CO2 produced from Cretaceous belemnites of Pee Dee formation in South
Carolina (Faure, G: Principles of isotope geology, Second Edition, John Wiley and Sons (1986)).
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is a proxy, i.e., an indicator, of temperature and seawater Oxygen isotopic composition
and allows for the study of past climatic variations. The units of δ18O are per thousand
(permil) relative to the standard; for example, δ18O = 1 permil means that the sample
has a 18O/16O ratio 0.1 % greater than the standard.

One critical factor determining the reliability of climatic reconstructions based
on proxy records is the accuracy of the absolute dating of each sample. In the case
of the cores from the Gallipoli Terrace, high accuracy of the dating is made possible
by the closeness of the drilling site to the volcanic Campanian area, a region that is
unique in the world by its detailed historical documentation of volcanic eruptions
over the last two millennia. The markers of these eruptions were identified along
the core as peaks of the number density of clinopyroxene crystals, carried by the
prevailing westerly winds from their source into the Ionian Sea and deposited there
as part of the marine sediments. This dating method is known as tephroanalysis. The
time-depth relation for the cores retrieved from the Gallipoli Terrace by the authors
of this paper, obtained by tephroanalysis, confirmed, improved and extended to the
deeper part of each core the dating obtained in the upper 20 cm by the 210Pb method
(see, for example, Bonino et al. 1993). This relation turned out to be highly linear,
demonstrating that the sedimentation rate at the site remained constant, to a very
good approximation, over the last two millennia.

SSA, performed adopting the VG method for constructing the lag-covariance
matrix, allowed for detecting in this climatic record, comprising N = 560 samples,
highly significant oscillatory components with periods of roughly 600, 350, 200,
125 and 11 years (given by RCs 2–3, 4–5, 6–7–8, 9–10, and 11–12, respectively),
together with a highly significant long-term trend (represented by RC 1). The authors
chose an SSA-window length of M = 150 samples, corresponding to about 580 years,
in order to be able to detect climatic oscillations with periods as long as 500–600 y,
while maintaining sufficient statistical significance; they however obtained coherent
results for a fairly wide range of M values, from 120 to 200 points. Taricco et al.
(2009) also applied the Continuous Wavelet Transform (CWT; Chap. 13) to the
same data. Comparison with other climatic records allowed for identifying the long-
term trend and the 200 year oscillation as temperature-driven components, having a
dominant role in describing temperature variations over the last two millennia in the
Central-Mediterranean area.

We show in detail the results of this analysis, as a good example of how SSA
works. The data was kindly provided by C. Taricco. Figure 12.1 shows the raw data
and two reconstructed versions of the record: in Fig. 12.1a we can see the SSA
reconstruction obtained using all significant components detected by MC-SSA (RCs
1–12); in Fig. 12.1b we can see the SSA reconstruction on centennial–millennial
scales (RCs 1–10), compared with the reconstruction obtained by CWT on the basis
of significant contributions in the same range of periods (see Chap. 13). Indeed,
CWT did not detect the 11 year oscillation as significant, due to the poor frequency
resolution that characterizes CWT at high frequency. Figure 12.1 highlights the
capabilities of SSA of extracting significant oscillatory modes from short, noisy
series. Figure 12.1b also proves that SSA and CWT can depict long-term behaviors
that are in very good agreement. Figure 12.2 shows the eigenspectrum, while Fig. 12.3

http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_13
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Fig. 12.1 Time series of the Oxygen isotope ratio δ18O measured by Taricco et al. (2009) in
foraminifera shells extracted from the sediments of a Mediterranean Sea core. Isotopic ratios are
plotted “upside down”, to agree in tendency with environmental temperature. Raw data is shown
in gray solid in both panels. a Signal reconstruction by SSA, using RCs 1–12 black solid curve;
b signal reconstruction by Inverse-CWT, based on the significant periods higher than 100 y (black
dashed curve), and SSA long-term reconstruction, using RCs 1–10 (black solid curve). Window
size: M = 150. See text for details

gives the same spectrum in terms of percentage of variance explained by each mode
(black dots), and in terms of cumulative percentage of variance (empty circles).
The horizontal dashed line separates the region of the plot showing percentages
of explained variance from the region showing cumulative percentages of variance.
The inset of Fig. 12.2 shows how the first 12 modes, recognized as significant in a
subsequent MC-SSA test at the 99 % c.l., are grouped together. The inset of Fig. 12.3
shows the percentages of variance explained by each group, i.e., by mode n.1, by
the pairs 2–3 and 4–5, by the triplet 6–7–8 and by the pairs 9–10 and 11–12. The
first mode in the SSA spectrum represents the long-term trend (RC 1). The other
dominant modes, grouped as RCs 2–3, RCs 4–5, RCs 6–7–8, RCs 9–10, and RCs
11–12 (see the inset of Fig. 12.2), are interpreted as oscillatory modes (Ghil et al.
2002), since

• the two members of a pair are associated with very similar eigenvalues (note that
the corresponding error bars in Fig. 12.2 overlap)—i.e., they explain more or less
the same variance in the series;
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Fig. 12.2 SSA spectrum of the δ18O record: eigenvalues are plotted versus mode number (rank).
Error bars are displayed, showing an ad hoc range of estimation errors for eigenvalues. Inset
grouping of the first 12 modes, which in a subsequent MC-SSA test are recognized as significant
at the 99 % c.l. (see text). Window size: M = 150
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Fig. 12.3 SSA spectrum of the δ18O record in terms of percentage of variance explained by
each mode, and in terms of cumulative percentage of variance (black diamonds and empty circles,
respectively). The horizontal dashed line separates the region of the plot showing percentages of
explained variance from the region showing cumulative percentages of variance. Inset percentages
of variance separately explained by mode n.1, by the pairs 2–3 and 4–5, by the triplet 6–7–8 and
by the pairs 9–10 and 11–12 (see text). Window size: M = 150

• their EOFs (not shown) are nearly in phase quadrature and are approximately
associated with the same characteristic frequency.

The corresponding percentages of explained variance are 14.1, 6.7, 4.8, 2.4, and
2.3 % respectively; the trend captures 14.5 % of total variance. Together, modes
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1–12 explain a total of 44.8 % of the series’ variance. The triplet RCs 6–7–8 deserves
some explanation, which will be given below.

The significance of these modes was then statistically tested by MC-SSA, using
10,000 surrogate series derived from an AR(1) process with the same variance and
the same lag-1 standardized autocovariance of the data. Figure 12.4 shows the result
of a Monte-Carlo SSA test performed against this red noise null-hypothesis, with
99 % error bars.

Note that plotting the eigenvalues against their rank (see Fig. 12.2), as originally
proposed by Vautard and Ghil (1989), is useful in distinguishing between signal and
noise. In identifying and statistically testing for oscillatory modes, it is more infor-
mative to plot the eigenvalues versus the associated frequency of the corresponding
eigenvectors (see Allen and Smith 1996), as in Fig. 12.4. The components that appear
to fall outside the error bars—the single eigenvalue n. 1 representing the trend and the
pairs n. 2–3 and 11–12 representing oscillations of 600 and 11 years, respectively—
are distinguished from red noise at the 99 % c.l. Including these components in
the null-hypothesis, the Monte-Carlo test was repeated. Other components turned
out to exceed the error bar limits in this second MC-SSA test, namely, eigenvalues
n. 4–5, 6–7–8, and 9–10; they were thus included in a new null-hypothesis [EOFs
1–12+AR(1)] and MC-SSA was run again. This time the test gave the result shown in
Fig. 12.5: no other components exceed the error bar limits. In the main figure panel,
the squares indicate the eigenvalues of the δ18O record’s lag-covariance matrix in the
hybrid basis; the empty ones represent the eigenvalues that correspond to the EOFs
included in the null hypothesis. In the inset of Fig. 12.5, the individual spectra of the
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Fig. 12.4 Results of the Monte-Carlo SSA test for the δ18O record, performed adopting AR(1)
as the null-hypothesis, with error bars representing the interval between the 0.05th and 99.5th
percentiles. Eigenvalues that lie outside this range are significantly different at the 99 % c.l. from
those generated by a red-noise process against which they are tested by using 10,000 surrogate
series. They are: the single eigenvalue n. 1 representing the trend and the pairs n. 2–3 and 11–12
representing oscillations of 600 and 11 years, respectively. Window size: M = 150
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Fig. 12.5 Spectral properties of the δ18O time series. The main panel shows the Monte-Carlo SSA
test using the EOFs 1–12+AR(1) null-hypothesis, with 99 % error bars. The squares indicate the
eigenvalues of the δ18O record’s lag-covariance matrix in the hybrid basis; the empty ones represent
the eigenvalues that correspond to the EOFs included in the null hypothesis. Inset individual spectra
of the RCs, obtained by Burg’s method (Sect. 11.7) with the relatively low order N/28 = 20. Window
size: M = 150

significant oscillations are also shown. These spectral estimates were obtained by
Burg’s method (Sect. 11.7) with an order of 20, which is relatively low compared with
the number of available samples (p ∼ N/30). The dominant periods of the detected
oscillations are: ∼600 y (RCs 2–3), ∼350 y (RCs 4–5), ∼200 y (RCs 6–7–8), ∼125
y (RCs 9–10) and ∼11 y (RCs 11–12).

In Fig. 12.6 we can see the reconstructed significant components in the centen-
nial and multicentennial range. They appear as amplitude- and frequency-modulated
oscillations, practically noise-free. Figure 12.7a shows the reconstructed 11 year
component (RCs 11–12) obtained from the analysis with M = 150. In spite of the
closeness to the Nyquist period (7.74 years), this high-frequency component appears
very well identified. It is clean and has appreciable amplitude over the whole record
duration. It must be noted, in relation to this high-frequency component, that the
experimental procedure used to obtain the δ18O series rules out the issue of frequency

http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_11
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Fig. 12.6 Significant SSA centennial and multicentennial reconstructed components of the δ18O
record: a RC 1 (trend), b RCs 2–3 (∼600 y), c RCs 4–5 (∼400 y), d RCs 6–8 (∼200 y), and e RCs
9–10 (∼125 y). Window size: M = 150
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Fig. 12.7 Reconstructed 11 year component of the δ18O record: a reconstructed RCs 11–12 from
the analysis with a window of M = 150 samples; b reconstructed RCs 5–6 from the analysis with a
window of M = 50 samples



12.3 SSA Application Examples 551

aliasing related to the sampling process. Indeed, discretization of the underlying ana-
log signal here is not due to a punctual sampling, but it derives from measurements in
consecutive sediment slices, performed after mixing the material contained in each
slice. This mixing cancels out any possible contribution by frequencies higher than
the Nyquist frequency, thus acting as an anti-aliasing lowpass filter.

About the triplet formed by EOFs 6–7–8, Fig. 12.8 shows the individual recon-
structed components and their sum.

Normally, we would look for EOF pairs, not triplets. This is a case of degeneracy
and mode mixing. Note in Fig. 12.2 how the corresponding three eigenvalues are
nearly equal: they form an almost completely degenerate triplet. A similar case was
reported by Allen and Smith (1997) in the SSA of the 1901–1990 global Earth’s
temperature record. These authors observed that high-variance components of the
colored noise that contaminates the signal in a climatic series can confuse the sin-
gular value decomposition. They suggested that when the noise properties can be
estimated reliably from the available data, the application of a pre-whitening opera-
tor could significantly enhance the signal separation capabilities of SSA (Allen and
Smith 1997; Ghil et al. 2002), thus solving this issue. To this aim, Allen and Smith
(1997) proposed to pre-process the time series itself or, equivalently but often more
efficiently, the lag-covariance matrix, such that the colored noise becomes uncorre-
lated, i.e., white, in this new representation. SSA could then be performed on the
transformed data or covariance matrix and the results transformed back to the origi-
nal representation for inspection. In Taricco et al. (2009), no such pre-processing was

Fig. 12.8 The triplet formed
by RCs 6–7–8 in the SSA
of the δ18O record:
a–c individual RCs and
d their sum. See text for
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Fig. 12.9 Spectra of the significant RCs detected by SSA in the δ18O record, in different shades of
gray according to the order chosen for parametric spectral estimation via Burg’s method (Sect. 11.7).
The order-20 estimate, already reported in the inset of Fig. 12.5, is represented as a dotted line.
Panels a–f represent the long-term trend and oscillations of about 600, 350, 200, 125 and 11 years,
respectively

applied to the record. Measurements like the one considered here are the outcome
of long and meticulous experimental work, and the authors preferred not to alter the
data—and its content of information about the physics of the natural process under
study—by any numerical transformation before analysis.

For better insight, let us study in detail the spectral content of the detected signifi-
cant RCs. Figure 12.9 shows these spectra. Burg’s method (Sect. 11.7) was used, with
orders varying from 20 (the order chosen for the inset of Fig. 12.5) to N/5 = 112,
N/4 = 140, and N/3 =186, the last one representing a quite high fraction of N with
respect to the orders normally adopted in Burg’s method. We can see that

• the trend is a millennial-scale broadband process;
• RCs 2–3, 4–5, 9–10 and 11–12 represent oscillatory processes which are much

narrower in band, peaking at the approximate period values given above;
• the triplet of RCs 6–7–8 exhibits a complex structure when the order of the AR

model is increased with respect to the former value of 20.

http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_11
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Figure 12.10 shows the spectra of individual components forming the triplet.
RC 6 is a process peaking at ∼220 years of period; RC 7 contains power at ∼170
and ∼220 years; RC 8 is a quite narrowband process peaking at ∼170 years; the
sum of these three modes thus contains both contributions, at 170 and 220 years,
approximately. It is clear that modes are scrambled due to degeneracy. From the
point of view of the underlying physics, however, it makes no sense to distinguish
between a cycle with a period of 170 years and one with a period of 220 years in
this climatic record. For this reason, the three components were collected together
into the modulated oscillation shown in Figs. 12.6 and 12.8d that, when analyzed by
low-order Burg’s method, indicates a period of about 200 years (see the dotted lines
in Figs. 12.9d and 12.10d and the inset of Fig. 12.5).

Another point that must be made clear is that even when in essence the results of
an SSA are robust to M changes, of course the significant components are distributed
differently for different values of M: for example, if we increase M we can get a trend
formed by two modes. Moreover, when we perform SSA we choose one value of M,
but when oscillations of periods which differ in their order of magnitude are present
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Fig. 12.10 The triplet formed by RCs 6–7–8: spectra of a–c the individual RCs and d their sum,
in different shades of gray according to the order chosen for parametric spectral estimation via
Burg’s method (Sect. 11.7). The order-20 estimate, used for the triplet in the inset of Fig. 12.5, is
represented as a dotted line

http://dx.doi.org/10.1007/978-3-319-25468-5_11
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in the record, the choice of M that has been made in order to be able to detect the
longer oscillations may not be optimal for detecting the shorter ones. In the present
case, the window of about 600 years selected to detect multicentennial oscillations
may not be the best for the 11 year oscillation, which would be better studied using
a much narrower window, e.g., 150–200 y. But with this shorter window, we would
see the longer multicentennial components merge with the trend. The reconstruction
of the 11 year oscillation with a window of M = 50 (about 200 years) is shown in
Fig. 12.7b. In this case the oscillation is carried by RCs 5–6, since all centennial
and multicentennial components are contained in the first four modes when this
shorter window is employed. The two reconstructions obtained with different values
of M (Fig. 12.7a for M = 150 and b for M = 50) show an overall agreement, but
the oscillation seen through the shorter window exhibits more detailed amplitude
modulation.

Other advanced spectral methods were applied to this series by Taricco et al.
(2009). As an example, Fig. 12.11 shows the results obtained applying MTM to the
δ18O series. The time-bandwidth parameter p was set to 3 (the time-bandwidth para-
meter is indicated as npi in the figure), so that the number of tapers is K = 2p − 1 = 5
(indicated as ntpr in the figure). The spectral resolution is �f = p/NTs = 0.0014

Fig. 12.11 Reshaped MTM spectrum of the δ18O time series, with estimated contributions of har-
monic signals removed. The estimated harmonic component is displayed by a curve that rises above
the reshaped spectrum, to indicate the portion of the spectrum above the continuous background
which is associated with a harmonic signal. The harmonic 11 year component (0.088 cycles/year) is
shown as a narrow spike of breadth equal to the spectral estimation bandwidth (0.0014 cycles/year).
Significance curves are also shown, for the confidence levels of 90, 95 and 99 %
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cycles/year. Note that �f depends directly on p and inversely on the record length
NTs, so that for a fixed record length, the lower p, the sharper the resolution, corre-
sponding to a smaller �f . Longer records can thus be analyzed using higher values
of p and K , with the latter providing more substantial variance reduction without
resolution degradation, with respect to shorter records. Figure 12.11 was produced
directly by the MTM–SSA toolkit and shows the estimated continuous MTM spec-
trum or reshaped spectrum, i.e., the spectrum with estimated contributions of har-
monic signals removed, if any. Any estimated harmonic component of the spectrum
is displayed by the toolkit as a curve that rises above the reshaped spectrum, to
indicate the portion of the spectrum above the continuous background that is asso-
ciated with a harmonic signal. The latter component is shown as a narrow spike
of breadth equal to the spectral estimation bandwidth. Significance curves are also
shown, for the confidence levels of 90, 95 and 99 %. It may be seen that in this case,
the 11 year component is detected as a harmonic process with frequency of about
0.088 cycles/year.

The study of Taricco et al. (2009) has recently been extended to cover 707 BC–
1979 AD (Taricco et al. 2015).

12.3.2 A Gap-Filling Application

The capabilities of SSA can also be exploited to fill gaps in data records (Kondrashov
and Ghil 2006).

The majority of data sets that are obtained from observations and measurements
of natural systems, rather than in the laboratory, are often full of gaps, due to the
conditions under which the measurements are made. Missing data gives rise to various
problems, for example in spectral estimation, and a reliable gap-filling technique is
highly needed.

Gap-filling methods proposed in literature are numerous. They can be model-
based, i.e., using parameter-dependent models, or relying on the data alone and being
nonparametric. SSA and its multivariate counterpart, known as M-SSA, provide a
nonparametric approach to gap filling that is particularly useful for data sets that
exhibit relatively long, continuous gaps.

A modified, iterative SSA algorithm can self-consistently fill missing points, using
the leading oscillatory modes of the time series. This iterative form of SSA can be
used to deal with datasets with uneven sampling or missing observations. Gaps
are filled-in by utilizing temporal and possibly spatial correlations in the dataset.
This gap-filling feature is available in the SSA-MTM Toolkit for univariate and
multivariate data. For this task, the window size must be large enough to cover the
longest temporal correlations; for a guidance, it can be the largest period deemed
to be contained in the examined record(s). The number of SSA components that
must be used depends on the dataset, and in particular on the amount of noise that
is present. The main idea is to discard higher-ranked components corresponding to
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noise, and use only “smooth” components, representing true “signal” components.
The SSA-based gap-filling method in essence is the following:

• estimates of missing data points are iteratively produced, which are then used to
compute a self-consistent lag-covariance matrix, its EOFs and principal compo-
nents (Ghil et al. 2002);

• cross-validation is used to optimize the window width and the number of dominant
SSA modes to be used to fill the gaps.

For a univariate record, the original data is first centered by subtracting the unbi-
ased estimate of the mean. The missing-data values are set to zero. An inner-loop
iteration is started, which computes the leading EOF of the centered, zero-padded
record (EOF 1). Then the SSA algorithm is performed again on a new time series,
in which the RC 1 corresponding to EOF 1 is used to substitute non-zero values in
place of the missing points. The record’s mean is computed again, as well as the
covariance matrix and the EOFs. The reconstruction of the missing data is repeated
with a new estimate of RC 1 and tested against the previous one, until a convergence
test has been satisfied, i.e., a pre-fixed tolerance is met. Next, an outer-loop begins,
in which a second EOF is added for reconstruction (EOF 2). The outer loop starts
from the solution with data filled in by RC 1, and the inner iteration is repeated with
these two modes until convergence is achieved.

For many climatic and geophysical records, a few leading EOFs correspond to
the record’s dominant oscillatory modes, while the rest is noise (Ghil et al. 2002);
therefore only a few EOFs are expected to be necessary for a good reconstruction. The
optimum number of EOFs and the optimum window width to fill the gaps of a given
series are found from a set of cross-validation experiments: for each such experiment,
a fixed fraction of available data (e.g., 5 %) is left out, and the root-mean-square error
in reconstruction is computed as a function of the number of retained EOFs and of
the SSA-window size. The absolute minimum of the error function, averaged over
all experiments, corresponds to the required optimum parameters, and provides an
estimate of the actual error in the reconstructed data set. Considering the window
length as fixed, this means computing the estimation error for each EOF being added
to the reconstruction; in practice, for a given value of M this error starts to increase
once noise-related EOFs are added. The optimal parameters of the procedure depend
on number and distribution in time of the missing data, as well as on the variance
distribution between oscillatory modes and noise; once they have been estimated,
to obtain the actual reconstruction, the inner and outer-loop iterations are repeated,
using the optimal parameters found by cross-validation, but with all the available
points now being included in the process.

This procedure for a univariate record uses only temporal correlations in the data
to fill in the missing points. For a multivariate record, the same methodology can be
applied using multi-channel singular spectrum analysis (M-SSA).

M-SSA is a natural extension of SSA to a set of vectors or maps, such as, for
instance, time-varying temperature or pressure given on a grid of points over the
globe. This set is still called a “time series”, in a generalized sense. The trajectory
matrix of multi-channel time series consists of stacked trajectory matrices of separate
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times series; the size of different univariate series does not have to be the same. The
rest of the algorithm is the same as in the univariate case. The use of M-SSA for
such multivariate time series was proposed theoretically, in the context of nonlin-
ear dynamics, by Broomhead and King (1986b) (see also Ghil et al. 2002). M-SSA
has many applications, including forecasting (Golyandina and Stepanov 2005). It is
especially popular in analyzing and forecasting economic and financial time series
with short and long series length (Hassani et al. 2013; Hassani and Mahmoudvand
2013; Patterson et al. 2011). Advanced Monte-Carlo significance tests can be per-
formed in M-SSA, which are based on the so-called varimax rotation. The classical
varimax rotation is a statistical technique suggested to facilitate the interpretation
of the results of principal component analysis (Kaiser 1958). In M-SSA, in order to
reduce mode-mixture effects and to improve the physical interpretation, Groth and
Ghil (2011) proposed a varimax rotation of the spatio-temporal EOFs (ST-EOFs)
obtained from the M-SSA; however, to avoid a loss of spectral properties (Plaut and
Vautard 1994), they suggested a slight modification of the common varimax rota-
tion that takes the spatio-temporal structure of ST-EOFs into account. Time-series
forecasting according to the SSA-AR approach is possible also in this multivariate
setting (this possibility is offered by KSpectra).

In gap-filling applications, M-SSA can be used to take advantage of both spatial
and temporal correlations in a data set, to fill-in gaps in time series. This provides
a substantial improvement in cases in which data points are often missing in one
time series, but not in the other. Using this gap-filling tool (available in the Kspectra
software), Kondrashov et al. (2005) and Kondrashov and Ghil (2006) were able to
analyze the historical records of the low- and high-water levels of the Nile River,
which are among the longest climatic records having near-annual resolution.

The two time series of the Nile flood levels (Popper 1951) represent a human
historical record of climate variability for more than 1000 years, which reflects water
intake from the Blue and the White Nile in Ethiopia and equatorial Africa. Pharaonic
and medieval Egypt depended solely on winter agriculture and hence on the summer
floods. Between July and November, the reaches of the Nile running through Egypt
would burst their banks and cover the adjacent flood plain. When the waters receded,
they left behind a rich alluvial deposit of exceptionally fertile black silt over the
croplands.

The rise of the waters of the Nile was measured regularly from the earliest times.
Nilometers, i.e., structures for measuring the Nile River’s clarity and water level
during the flood season, were built along the river. These structures served to predict
how satisfactory the flood would be. If the flood was scarce, there would be famine;
if it was too abundant, it would be destructive. There was a specific mark that indi-
cated how high the flood should be if the fields were to get good soil. A nilometer
(Fig. 12.12), housed in an elaborate and ornate stone structure, can still be seen on
the southern tip of Rodah (or Rhoda, or Rawdah) Island in central Cairo. While this
structure dates only as far back as AD 861, when the Abbasid caliph al-Mutawakkil
ordered its construction, it was built on a site occupied by an earlier nilometer.

Several authors compiled the annual maxima and minima of the water level
recorded at nilometers in the Cairo area, in particular at Rodah Island, from A.D.
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Fig. 12.12 The nilometer on Rodah Island, Cairo, Egypt

622 to 1922. The most complete records for the time since the Arab invasion in A.D.
622 (Ghaleb 1951; Hurst 1952; Toussoun 1925) were corrected by Popper (1951) to
account for changes in the unit of length used (the cubit), for the rise of the bed of
the Nile through siltation,4 and for the differences in lunar and solar calendars. They
were subsequently further revised and edited by T. De Putter and D. Percival (see De
Putter et al. 1998; Whitcher et al. 2002). Climate researchers extensively studied the
resulting multicentury, annually resolved records and demonstrated the significant
association between the rainfall in the catchment area of the Nile tributaries, the
Indian monsoon, and ENSO (Quinn 1992; Walker 1910).

These records, however, had missing data. The work by Kondrashov et al. (2005)
provided instead a complete 1300 year record of Nile River floods (A.D. 622-1922)
with annual resolution, of remarkable climatic interest.

The original gappy records, largely based on the above-mentioned compilations
of Toussoun (1925), Ghaleb (1951) and Popper (1951), revised and edited by De
Putter et al. (1998) and Whitcher et al. (2002), had few gaps in their first part (A.D.
622–1470), where a few missing data points were just linearly interpolated, and larger
gaps later (A.D. 1471–1922). The large gaps were caused by social and economic
upheavals during the Ottoman rule. The low- and high-water records were found to
be strongly correlated in the low-frequency range (periods of 50 years and longer).

4Siltation, in general, is the pollution of water by fine particulate terrestrial clastic material, with a
particle size dominated by silt or clay. Here it refers to the increased accumulation of fine sediments
on the river bottom.
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Kondrashov et al. (2005) used both iterative SSA and M-SSA on these records,
in order to exploit both temporal and spatial correlations in the data set to fill the
gaps in either record. Given the fact that high- and low-water levels were not always
missing the same year, the M-SSA of both records finally turned out to be the best
approach. Kondrashov et al. (2005) found that using the nine leading EOFs of the
two-channel SSA and a window width M = 100 years minimizes the estimation
error of 50 independent cross-validation experiments; these nine EOFs capture a
slight nonlinear, data-adaptive upward trend, possibly due to siltation (Popper 1951),
accompanied by a very low-frequency oscillation with a 256 year period, and a 64 year
mode. Independent information on the signal-to-noise separation was obtained (see
Kondrashov and Ghil 2006) by inspecting the slope break in the plot of the M-SSA
spectrum of the filled Nile River records with M = 100 years, showing the passage
from modes representing the signal to modes representing mainly the noise. This plot
(not shown) indicated a clear separation between the first nine “signal” EOFs that
were used in the reconstruction and the remaining modes, representing the discarded
“noise”.

The extended low- and high-water records, with the gaps filled in, are reported in
Fig. 12.13. Digital Nile River gauge data for drawing this figure were kindly provided
by D. Kondrashov, based on the gap filling of Kondrashov et al. (2005). Figure 12.13a
shows the original gappy data; Fig. 12.13b shows data with gaps filled in by M-SSA
using M = 100 years and two channels (low- and high-water). The time series have
been centered on the relevant mean, and the amplitudes have been normalized by the
standard deviation of the original time series (excluding missing data points).

Analyzing the full extent of the available water-level records, with the missing
points filled in, Kondrashov and Ghil (2006) were able to perform an accurate spec-
tral analysis, in which SSA and MTM were applied to identify inter-annual and
inter-decadal periodicities, and Monte Carlo significance tests were conducted with
improved reliability with respect to the shorter original records. The gap-filling more-
over allowed for the study of the evolution of the Nile-river oscillatory modes over
the entire 13 centuries covered by the measurements. It must be mentioned that
Kondrashov and Ghil (2006) examined not only the high- and low-water records, but
also the difference between them, and concluded that the time series of the annual
difference between the maxima and minima better represents the Nile floods than
the high-level time series alone.

Data sets with red-noise-like spectra, where noisy modes contribute significantly
to, or even dominate, the spectrum’s low frequencies, present special challenges in
SSA. In such cases, it may be beneficial to skip the noisy modes associated with
low frequencies and large amplitudes, and study only oscillatory modes in a higher-
frequency band. According to this idea, Kondrashov and Ghil (2006) first removed the
lowest-frequency component (i.e., the trend and the associated 256 year oscillation)
from the gap-filled data. This combination is captured in both the original, short
(A.D. 622–1470) records and the long (A.D. 622–1922) records by the two leading
eigenmodes of the SSA analysis with a 100 year window. Next, they applied Monte
Carlo SSA with a c.l. of 95 % and a window of M = 75 years to the detrended time
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Fig. 12.13 Extended records (A.D. 622-1922) of low-water (solid black curve) and high-water
(solid gray curve) levels of the Nile. a Original data with gaps and b data with gaps filled in by
M-SSA. The time series have been centered on the relevant mean, and the amplitudes have been
normalized by the standard deviation of the original time series, excluding missing data points

series. Their analysis revealed several statistically significant features of the records,
including:

• quasi-quadriennial and quasi-biennial modes that support the long-established con-
nection between the Nile River discharge and the ENSO phenomenon in the Indo-
Pacific Ocean,

• longer periods that might be of astronomical origin, and
• a 7 year periodicity possibly due to North Atlantic influences over North Africa

and the Middle East, persistent over the last millennium-and-a-half, which may
extend all the way into the Nile River’s source area. This suggested a previously
undocumented source of interannual climatic variability for tropical East Africa,
namely changes in the North Atlantic Ocean circulation.

The authors remarked how it would be tempting to identify the 7 year peak in the
Nile River records with the cycle of lean and fat years mentioned in Joseph’s biblical
story. The story, though, may refer just to a near-regularity of several years, rather
than to an exact periodicity.
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We may also mention that Kondrashov et al. (2010) and Kondrashov et al. (2014)
applied the same SSA-based gap-filling methodology to time series of solar wind
parameters.

12.3.3 An Application in Astrophysics

A study by Greco et al. (2011) provides an example of SSA of a series of astro-
physical interest. These authors studied γ-ray bursts (GRBs), which are the most
instantaneously powerful cosmic explosions known in the universe since the Big
Bang. They are identified as brief, intense, and completely unpredictable flashes of
high energy γ-rays in the sky, occurring approximately once per day. They come
from all different directions of the sky and last from a few milliseconds to a few
hundred seconds.

The prompt γ-ray emissions from GRBs exhibit a vast range of extremely complex
temporal behaviors, with a typical variability time-scale of the order of the millisec-
ond (i.e., a time scale considerably shorter than the typical overall duration of the
burst) and related flux variations of up to 100 %. The analysis of such variability is
ultimately aimed at getting clues about the physical mechanisms driving the internal
engine of GRBs, which remains hidden from direct observation.

Greco et al. (2011) collected high-quality GRB records including more than 3000
samples each, with a homogeneous sampling time of 64 ms and an SNR level above
50. The list of prompt γ-ray emission candidates was taken from the daily updated
compilation provided by the NASA Swift team.5 In the time interval from January
2005 to September 2010, Greco et al. (2011) identified two events matching their
selection criteria, namely GRB 050117 and GRB 100814. One of the approaches
used by the authors to analyze these records was SSA, with the aim of investigating
the apparent randomness of the GRB series. SSA is particularly indicated in this
case, since it allows to separate signal from noise even when SNR varies during the
series’ duration—a typical feature of GRBs’ prompt emissions.

The shape of the SSA spectrum was examined in search of possible evidence of
deterministic activity in the prompt emission from GRBs. The authors focused on the
selection of low-frequency SSA components, representing nonlinear slow trends. The
Kendall’s τ nonparametric test for trend detection (Freas and Sieurin 1977; Hirsch
and Slack 1984; Hirsch et al. 1982) was also applied in order to reliably identify
those components that are significantly non-stationary over the length of the time
series, at the 99 % c.l. This is illustrated in Fig. 12.14. This figure and the next two
concern the event GRB 050117; the analysis of GRB 100814 event gave very similar

5Swift is a NASA mission with international participation. Within seconds of detecting a burst,
Swift relays its location to ground stations, allowing both ground-based and space-based telescopes
around the world the opportunity to observe the burst’s afterglow. Swift is part of NASA’s medium
explorer (MIDEX) program and was launched into a low-Earth orbit on a Delta 7320 rocket on
November 20, 2004.
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Fig. 12.14 SSA spectrum of prompt emission from GRB 050117. The three modes circled in gray
were found to be significantly non-stationary over the length of the time series at the 99 % c.l.,
according to Kendall’s τ trend test

results. The data for this figure and the following two figures was kindly provided
by G. Greco.

The prompt light curve (Fig. 12.15a, gray curve) was subsequently detrended
subtracting from it the reconstructed low-frequency oscillation (Fig. 12.15a, black
curve). The detrended prompt light curve (Fig. 12.15b, gray curve) was then analyzed
again by SSA. A Monte Carlo SSA test against an AR(1) null-hypothesis was run
using 10,000 surrogate realizations of the record and a c.l. of 99.8 %. The first
dominant eigenvalues were found to lie outside the intervals that define a purely
stochastic behavior: deterministic oscillations with lower variance were thus found
to be superimposed to the trend. Figure 12.16 shows the results of the Monte Carlo
test. The corresponding significant oscillation reconstructed by SSA is shown in
Fig. 12.15b as a black curve. This oscillation represents an SSA-de-trended and
de-noised version of the GRB 050117 time series. A deterministic signal clearly
emerges, which is active during the whole record, out of a remarkable amount of
noise. A detailed analysis of the background regions pre- and post-GRB explosion
(not shown) confirmed the meaningfulness of these results: indeed, the background
was found to have a red-noise behavior, with no exceptions. Thanks to the capabilities
of SSA, with this analysis Greco et al. (2011) were able to demonstrate that the
temporal variability of GRBs does not follow a pure random behavior, as previously
assumed.

12.3.4 An Application in Economics

As an example of SSA application in quantitative economics, here we briefly describe
the paper by Sella et al. (2013), who analyzed macroeconomic fluctuations in three
European countries. These authors explored five fundamental indicators of the real
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Fig. 12.15 SSA
Reconstruction of significant
oscillations (black curves) in
the a original and
b detrended GRB 050117
series (gray curves). The
SSA-detrended series in
panel b revealed a
deterministic signal, clearly
emerging from noise
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aggregate economy—namely gross domestic product (GDP) at market prices, final
consumption expenditure, gross fixed investments, exports and imports of goods and
services—in a univariate as well as multivariate setting. Here we will focus on the
univariate SSA of the individual series of macroeconomic indicators analyzed by
Sella et al. (2013).

Although it is widely acknowledged that business cycles are multi-country phe-
nomena, showing common characteristics across countries, there is still no accor-
dance about the characterization of co-movements, the existence of supranational
(e.g., European) cycles, and the determinants of economic synchronization. On the
other hand, business cycle synchronization is of great interest in macroeconomics,
e.g., for the study of systems like the Euro area: one reason, for instance, is that if
several countries delegate on some supranational institution the power to perform
a common monetary (and/or fiscal) policy, then they lose this policy stabilization
instrument. If countries have asymmetric business cycles, then applying the same
decision to every country will not be optimal. Business cycle synchronization is a
necessary condition for any monetary union: a country with an asynchronous busi-
ness cycle will face several difficulties in a monetary union, because of the “wrong”
stabilization policies.
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Fig. 12.16 Monte Carlo SSA spectrum of prompt emission from GRB 050117 from which the low-
frequency trend has been subtracted. The error bars represent the interval between the 0.01th and
99.9th percentiles: eigenvalues that lie outside this range are significantly different at the 99.8 % c.l.
from those generated by a red-noise process against which they are tested by using 10,000 surrogate
series

Sella et al. (2013) undertook a quantitative inquiry about economic cycles and
synchronization by spectral analysis of quarterly macroeconomic indicators from
Italy (henceforth IT), the United Kingdom (UK), and The Netherlands (NL), in
the attempt to shed light on supranational synchronization of business cycles. The
three countries were selected because they are European economies with different
magnitudes and socioeconomic characteristics. All series were expressed in constant
euros (base year 2000). They cover different time spans: 54 years for UK (from the
first quarter of 1955 to the third quarter of 2008; N = 216), 32 years for NL (from
the first quarter of 1977 to the third quarter of 2008; N = 128), and 28 years for IT
(from the first quarter of 1981 to the third quarter of 2008; N = 112).

For non-economists, we must first explain that data of this kind is always pre-
processed before analysis (see also the appendix of Chap. 9). Pre-processing includes
removing seasonality (for example, because of Christmas holidays, in January pro-
duction always drops a lot), correcting by working days, and removing the typical
upward long-term trend. In Sella et al. (2013) this was done applying a Hodrick-
Prescott (HP) filter.

http://dx.doi.org/10.1007/978-3-319-25468-5_9
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In the decomposition of a time series like those of the macroeconomic indicators
considered here, one can usually identify, apart from random disturbances, a trend
component, one or more cyclical components, and the seasonal component. The HP
filter is a mathematical tool (Hodrick and Prescott 1997) that usually takes as an input
a data record from which seasonality has already been removed, and decomposes
it into the two remaining components—trend and cyclicities. The adjustment of
the sensitivity of the trend to short-term fluctuations is achieved by modifying a
parameter, usually indicated as λ. The filter was popularized in the field of economics
in the 1990 s by economists Robert J. Hodrick and Nobel Memorial Prize winner
Edward C. Prescott. However, it was first proposed much earlier by Whittaker (1923).

As an example, Fig. 12.17a shows the raw GDP series for the three countries
(solid lines) and the corresponding trends (dotted lines), obtained by applying an
HP filter with the recommended smoothing parameter for quarterly time series, i.e.,
λ = 1600. The data for these graphs was kindly provided by L. Sella and G. Vivaldo.
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Fig. 12.17 a Raw time series of GDP for the UK, Italy, and The Netherlands (solid lines, with data
expressed in constant euros with base year 2000), and Hodrick-Prescott trends (dotted lines). b HP
Residuals (see text). An underlying cyclical structure is quite evident, which is the subject of the
analysis by Sella et al. (2013). c–d Blackman-Tukey power spectra for the raw UK GDP series and
for the corresponding HP residuals, respectively. Both estimates were obtained using a Hanning
window with length M = 100
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The raw data is an elaboration of EUROSTAT data. The subsequent analysis was
performed on the so-called HP residuals, meaning that the trend was extracted from
each raw time series and then subtracted from the latter; for normalization purposes,
the corresponding residuals were divided by the trend, and finally the relative resid-
uals were standardized to the same variance. GDP residuals for the three countries
are shown in Fig. 12.17b.

The same pre-processing was applied to all macroeconomic indicators from the
three countries. The pre-processing guarantees reliable estimates of the underlying
periodicities and ensures that the results of the analysis are not distorted by the differ-
ent magnitudes of the trends in the individual series. Figure 12.17c–d illustrates the
issue in the case of the UK quarterly GDP series. The pervasive trends that character-
ize economic variables determine the shape of their estimated power spectra. In fact,
they typically show a large bump in the lowest frequency band, the power of which
is scattered into the neighboring frequency bands due to leakage (see Fig. 12.17c,
illustrating this fact for the raw UK GDP). Conversely, the estimated spectrum of
the HP residuals (Fig. 12.17d) shows three main peaks, respectively associated with
periodicities of about 9, 5, and 3 years. This suggests the presence in the series of
oscillatory components with periods smaller than a decade, the robustness of which
remains to be confirmed by further spectral analysis and statistical tests.

Given that economic time series are rather short, highly volatile, and mostly
non-stationary, classical spectral estimation methods are limited in their ability to
describe the underlying dynamical behavior; SSA can overcome these limitations.
Sella et al. (2013) thus performed SSA on the individual series of HP residuals from
the three countries, and evaluated the significance of the detected modes by MC-
SSA, using ensembles of 1000 proper red noise realizations. We report the results
concerning the HP residuals of the UK GDP series. The Monte Carlo spectrum
of the transformed residual series (not shown), obtained adopting a window width
M = 50, led the authors to single out two pairs of eigenvectors that are significant at
the 95 % c.l., namely EOFs 1–2 and 3–4. The two members of a pair are associated
with nearly equal eigenvalues—i.e., they explain more or less the same variance in
the series—and moreover they are nearly in phase quadrature and associated with
the same characteristic frequency; this suggests that they represent oscillatory pairs
(Ghil et al. 2002).

The detected oscillatory behaviors have periods of about 5 years (EOFs 1–2)
and 9 years (EOFs 3–4). The oscillatory pattern of 5 years explains 39 % of the
series total variance, while the 9 year oscillation captures 23 % of the total variance.
Hence, almost two-thirds of the variance is associated with the first four SSA modes.
A possible 3 year oscillation, suggested by the PSD estimate of Fig. 12.17d, can be
identified with the EOF-pair 7–8, but it cannot be distinguished from a red noise
process at the 95 % c.l.
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Extending the same univariate exercise to all time series, similar oscillatory pat-
terns were recurrently detected by Sella et al. (2013). The results of the complete
study suggested quite homogeneous cyclical behavior among the indicators of IT,
UK and NL. In spite of the different time spans covered and the peculiarities of each
national economy, three similar business fluctuations emerged:

• an oscillation of about 9 years, which is statistically significant at the 95 % level
only in some of the time series in the sets;

• a fluctuation of about 5 years, significantly isolated in nearly all series;
• a shorter oscillation of about 3 years, which generally explains a low percentage

of the variance and often falls in the noisy floor of the spectrum; it is especially
noticeable in IT and NL.

These similar patterns are evidence of common features in the dynamics of the
economies of the three countries.

As we saw in previous examples, all significant time-domain patterns can be recon-
structed by SSA, to inspect both amplitude and phase modulations. In Fig. 12.18, the
reconstructions of the 5 year oscillations detected in the pre-processed GDPs of the
three countries are plotted as solid curves (the dashed curves represent pre-pocessed
data). This fluctuation is shared by all countries, and is dominant the UK series
(Fig. 12.18a). Again, the data for these graphs is courtesy of L. Sella and G. Vivaldo.
Characteristic features of the system’s dynamic can be recognized observing the
reconstructed series: for example, in Fig. 12.18a the reconstruction for UK shows an
increase in amplitude (i.e., in the variance of the pattern) in correspondence with the
huge energetic shocks of 1973 and 1979. This ∼5 year oscillation that for UK is a
dominant feature was found to agree in character with the ∼5 year oscillatory mode
detected in the U.S. economy by Groth et al. (2012): the close connection of the

Fig. 12.18 SSA-
reconstructed 5-year
oscillations in pre-processed
GDPs (solid curves),
superimposed to
pre-processed data (dashed
curves). The pattern is
represented by the first two
eigenmodes in each series,
explaining a the 39 % of the
total variance for the UK, b
the 44 % for the Netherlands,
and c the 40 % for Italy.
Window width is
M = 50, 45, and 34,
respectively
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U.K. and the U.S. economy was thus supported. Finally, Sella et al. (2013) observed
that their results support the predictions made by Hallegatte et al. (2008), using a
simple non-equilibrium dynamic model named NEDyM: namely the presence of an
endogenous business cycle with a period of roughly 5–6 years. The model’s 5–6 year
periodicity is shared by all the indicators examined in this study, and is consistent
with the mean business-cycle period found not only by Sella et al. (2013) but also
by other authors: see, e.g., the CWT analysis by Aguiar-Conraria and Soares (2011)
reported in Sect. 13.6.

This example was meant to illustrate the capability of SSA to automatically iden-
tify oscillations in noisy series and to capture the statistically significant dynamical
behavior by using just a few components. This parsimonious description of the time
series by SSA substantially simplifies the comparison of multiple indicators.
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Chapter 13
Non-stationary Spectral Analysis

13.1 Chapter Summary

Any time we analyze the spectral content of a signal, we must ask ourselves if
assuming stationarity is correct, or at least satisfactory. Very often we may be inter-
ested in investigating if, how and to what extent the spectral features of the signal,
i.e., its composition in terms of single oscillatory contributions of different ampli-
tude and frequency, vary in time, particularly during the time span over which the
segment of a sample sequence we are considering was measured. The techniques of
evolutionary spectral analysis address this need.

The traditional approach to this problem, introduced by Gabor (1946), is known
as the short-time Fourier transform (STFT) and consists of dividing the signal into
segments short enough as to be able to assume that within each segment, spectral
characteristics do not vary significantly. Each segment is then analyzed separately.
A more modern approach is provided by the continuous wavelet transform (CWT),
in which the signal in its entirety is not compared with infinitely-long sinusoids, but
with waveforms that are concentrated in time. In the next section we will briefly
describe the STFT approach, while in the rest of the chapter we will exhaustively
discuss CWT as a tool for spectral analysis of non-stationary random signals.

First, we will introduce the concept of scale, which in this method replaces the
concept of period (inverse of a frequency). Using the language of continuous time-
signals that allows us to avoid some mathematical difficulties, we will describe what a
wavelet is, and how a signal can be analyzed in time and scale via wavelet transform,
also investigating the resolution properties of this technique in both domains. We
will then establish a relation between scale and frequency, so as to be able to give
a spectral description of the signal in “usual” terms. We will also write the inverse
continuous wavelet transform (ICWT), and discuss the conditions under which it
exists; real and complex wavelets suited for CWT/ICWT will be introduced, and
their characteristics described.
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The language of continuous time is useful theoretically, but for practical appli-
cation the CWT must be made discrete in time and scale. We will discuss what
discretization scheme can be adopted.

An average power spectrum estimate, the global power spectrum (GWS), can be
derived from the CWT by averaging over time. Moreover, guidelines for performing
significance tests for the spectral features detected by the CWT and GWS will be
given. Finally, we will present some extensions of wavelet analysis, like wavelet
filtering and cross-wavelet spectral analysis. During all the discussion, we will con-
stantly compare the CWT with the STFT. Some real-world applications of the CWT
technique conclude the chapter.

13.2 Short-Time Fourier Transform (STFT)

The short-time Fourier transform (STFT) is a classical evolutionary spectral tool
also known as short-time spectral analysis, time-dependent spectral analysis, and
windowed Fourier transform. It employs a rectangular or tapered window with length
smaller than the signal length. The window, starting from the time origin, frames a part
of the signal, with length equal to the window width. The spectrum of this segment
is estimated by some spectral method. Then the window moves by a certain number
of samples in the direction of increasing discrete time; the spectrum of the framed
data is estimated, and so on. For the stationarity assumption to hold, the typical time
scale of the variations in spectral characteristics that the signal undergoes must be
longer than the length of the window applied to the data in order to obtain the various
segments that are analyzed.

This procedure provides a set of spectra, each being relative to a given time-
location k of the moving window: Pxx (ω, k). This set of spectra is then displayed
in two-dimensional plots having time on the abscissa and frequency on the ordinate,
and representing spectral values as contour lines. This representation is referred to as
a spectrogram. Sometimes, a three-dimensional plot may be preferred. Note that if
the window displacement is equal to the window width, then adjacent spectra will be
independent of one another. If the displacement of the window is smaller, adjacent
spectra will not be independent, but at the same time, spectral features will vary
more continuously and smoothly from one spectrum to the following one. The faster
the variations of the spectral characteristics of the signal, the shorter the window
will have to be, and this will generally imply reduced frequency resolution. On the
other hand, as the window width decreases, there will be an increase in the ability to
resolve in time the changes of spectral behavior, and changes on shorter time scales
will become visible. Thus the choice of the window width ultimately represents a
compromise between frequency resolution and time resolution.

The estimate of the power spectrum of each segment can, in principle, be obtained
by any method. If we choose a non-parametric method, the window shape—that does
not need to be rectangular—is also important: the window transform should ideally
have a narrow main lobe with respect to the typical frequency variations of the
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typical data-segment’s spectrum. Recall that the ability to resolve two closely-spaced
frequency components depends on the main lobe width of the window transform,
while the amount of leakage of a given component in the neighborhood of other
components depends on the relative height of the sidelobes.

In summary, the relevant parameters in SFTF are:

• the window shape; Gabor (1946) proposed a Gaussian window (see Fig. 5.7f);
• the window width in number of samples (M);
• the window displacement in number of samples (Ms);
• the number of frequency samples for each DFT (NF FT ).

Obviously, we must have NF FT ≥ M ≥ Ms . If a tapered window is used, more
external samples of a data segment have a smaller statistical weight than samples
located near the center. In this case, a certain overlapping of the segments is advisable
(Ms < M).

If we apply the STFT to a signal that is actually made of sinusoidal components
with constant frequency and amplitude, we might be tempted to expect an evolution-
ary spectrum exactly constant with time. But this would only be true for a periodic
signal with period Np, for which M and Ms were chosen as integer multiples of Np.
In fact, in this case a segment would include exactly an integer number of periods Np,
and also the window would move by an integer number of periods. In general, even
if the signal is exactly periodic, the variable phase relations that result as different
segments of the waveform enter the window span produce variations in the transform
from one window position to the other. However, for stationary signals the transform
amplitude varies only a little from one segment to the other, since the main part of
the transform’s temporal variability concerns the phase, which does not influence the
power spectrum.

We may finally note that AR parametric methods are also indicated for the STFT,
especially if the segments are short (M ≈ 60 ÷ 200 samples). In this case, the win-
dow is always rectangular. More details on the STFT, including its formal definition,
are given in the following sections, in that they are useful for comparison with some
facets of CWT analysis.

As a simple STFT application, we can consider spectral analysis of some music
signals. Time-frequency tools like the STFT representation are often used in the
analysis of audio signals. Here we take a look to a very simple case: a single musical
note produced by different instruments playing one at a time.

Signal processing techniques are widely applied to music signals. Even neglecting
the field of electronic music synthesis, and limiting the attention to the analysis
of existing music signals, the vastness of the field is enormous. The information
that can be extracted is important for many applications and modeling activities, an
example of which—illustrating the complexity of the tasks that may be involved—is
the inverse problem of recovering a score-level description, given only the audio.
Many techniques in this area were initially borrowed from speech signal processing,
another extremely variegated, large and mature field, but the unique properties and
stringent demands of music signals often led to independent solutions. Music signals
possess specific acoustic and structural characteristics that distinguish them from

http://dx.doi.org/10.1007/978-3-319-25468-5_5
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spoken language or other non-musical audio signals. Signal analysis techniques were
designed to specifically address musical dimensions such as pitch, melody, rhythm,
and timbre (see Müller et al. 2011).

Pitch is a ubiquitous feature of music: individual notes with distinct pitches are
sound oscillations with well-defined fundamental periods. Sequences of pitches cre-
ate melodies—the “tune” of a piece of music. Most musical instruments—including
string-based instruments such as guitars, violins, and pianos, as well as instruments
based on vibrating air columns such as flutes, clarinets, horns and trumpets—are
explicitly constructed to allow performers to produce sounds with easily controlled,
locally stable fundamental periods. Such a signal is well described as a harmonic
series of sinusoids at multiples of a fundamental frequency, and results in the per-
ception of a musical note in the mind of the listener. With the exception of unpitched
instruments like drums, and a few inharmonic instruments such as bells, the period-
icity of individual musical notes is rarely ambiguous, and thus equating the perceived
pitch with fundamental frequency is common.

Music exists for the pleasure of human listeners, and thus its features reflect
specific aspects of human auditory perception. In particular, humans perceive two
signals whose fundamental frequencies fall in a ratio 2:1 (an octave) as highly sim-
ilar; this fact is sometimes known as “octave equivalence”. A sequence of notes—a
melody—performed at pitches exactly one octave displaced from an original will
be perceived as largely musically equivalent. We note that the sinusoidal harmonics
of a fundamental at frequency f0, falling at frequencies 2 f0, 3 f0, 4 f0, etc., are a
proper superset of the harmonics of a note with fundamental frequency 2 f0 (i.e. 4 f0,
6 f0, 8 f0), and this is presumably the basis of the perceived similarity. Other pairs
of notes with frequencies in simple ratios, such as f0 and 3 f0/2, will also share
many harmonics, and are also perceived as similar, although not as close as in the
octave-equivalence case.

Even if different cultures have developed different musical conventions, a common
feature is the musical scale, a set of discrete pitches that repeats every octave, from
which melodies are constructed. For example, contemporary western music is based
on the equal tempered scale, which, by a happy mathematical coincidence, allows
the octave to be divided into twelve equal steps on a logarithmic axis, while still
(almost) preserving intervals corresponding to the most pleasant note combinations.
The equal division makes each frequency larger than its predecessor, an interval
known as a semitone. The coincidence is that it is even possible to divide the octave
uniformly into such a small number of steps, and still have these steps give close,
if not exact, matches to the simple integer ratios that result in consonant harmonies,
e.g.,

(
21/12

)7 = 1.498 ≈ 3/2, and
(
21/12

)5 = 1.335 ≈ 4/3.
The western major scale spans the octave using seven of the twelve steps—the

“white notes” on a piano, denoted by C or do, D or re, E or mi, F or fa, G or
sol, A or la, and B or si. The spacing between successive notes is two semitones,
except for E/F and B/C, which are only one semitone apart. The “black notes”
in between are named in reference to the note immediately below (e.g., A�), or
above (B�), depending on musicological conventions. The octave degree denoted by
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these symbols is sometimes known as the pitch’s chroma, and a particular pitch can
be specified by the concatenation of a chroma and an octave number, where each
numbered octave spans C to B. The lowest note on a piano is A0 (27.5 Hz), the
highest note is C8 (4186 Hz), and middle C is C4 (262 Hz). Different instruments,
of course, span different ranges of frequencies.

Different instruments playing the same note have different timbres. Timbre is
defined as the attribute of auditory sensation in terms of which a listener can judge
two sounds similarly presented and having the same loudness and pitch as dissimilar.
The concept is closely related to sound source recognition: for example, the sounds
of the violin and the flute may be identical in their pitch and loudness, but are still
easily distinguished. Timbre may be examined in the time domain, looking at the
difference between typical waveforms—for example, the waveforms of a flute and
a guitar both playing a certain note—and in the frequency domain, looking at the
different spectral content of the two sounds. Another feature that distinguishes one
instrument from the other is the envelope of the sound amplitude, i.e., the different
sound length, the time delay from the onset to the maximum amplitude, and the
sound decay in time. For example, a guitar that produces a sound when a string is
strummed or plucked produces a sound with a very different envelope with respect to
a wind instrument like a flute, or a string instrument in which the sound is produced
using a bow, as a cello or a violin.

To illustrate these concepts, Figs. 13.1 and 13.2 show the envelopes and the
typical waveforms of an A (la) played on a cello, a flute, a French horn and a
classical guitar, respectively. These records were downloaded from ftp://ftp.wiley.
com/public/college/math/matlab/bporat. They were made available by B. Porat, who
analyzed them in his book (Porat 1996).
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Fig. 13.1 Envelopes of an A note played on a a cello, b a flute, c a French horn, and d a classical
guitar. The dark-gray-shaded rectangles mark sub-intervals of about 186 milliseconds (ms) each,
including N = 8192 samples, that are analyzed in Figs. 13.3 and 13.4

ftp://ftp.wiley.com/public/college/math/matlab/bporat
ftp://ftp.wiley.com/public/college/math/matlab/bporat
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Fig. 13.2 Waveforms of an A note played on a a cello, b a flute, c a French horn, and d a classical
guitar
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Fig. 13.3 Power spectra of an A note played on a a cello, b a flute, c a French horn, and d a classical
guitar. Spectra were estimated via periodograms, and are plotted in dB

Both envelopes and typical waveforms are plotted as analog signals versus time
in milliseconds. The envelope is characteristic of the type of instrument, of the
individual instrument, of the note and of the way the note is played, exactly as the
harmonic structure. One obvious difference between bow instruments such as the
violin and cello, or wind instruments such as the flute and horn, and plucked string
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Fig. 13.4 Low-frequency part of the power spectra of an A note (Fig. 13.3) played on a a cello,
b a flute, c a French horn, and d a classical guitar. Spectra were estimated via periodograms and are
plotted on a linear scale

instruments like the guitar, or keyboard instruments like the piano, lies in the time
for which the note can be sustained. So in Fig. 13.1 the cello has a gradual rise of the
amplitude, followed by a gradual decay. The flute has a characteristic low-amplitude
modulation. The French horn has a nearly constant amplitude during the whole
note duration. The sound of the guitar rises steeply when the string is plucked, and
decays steeply after the string is released. The sounds analyzed here were recorded at
44.1 kHz for about one second.1 In Fig. 13.1, the dark-gray-shaded rectangles mark
sub-intervals of about 186 milliseconds each, including N = 8192 samples, that are
analyzed via periodograms (see Figs. 13.3 and 13.4, showing each spectrum on a dB
scale and the low-frequency region of each spectrum on a linear scale, respectively).
Each instrument shows the harmonic series at integer multiples of the fundamental,
but the energy of the note is distributed differently over the harmonics in the four
cases. The cello (Figs. 13.3a and 13.4a) exhibits a very regular series of harmonics,
with amplitude decreasing in an exponential way with increasing frequency. The
pitch is at 220 Hz. The flute (Figs. 13.3b and 13.4b) exhibits two dominant peaks, at
880 and 2 × 880 = 1760 Hz. The French horn is also pitched at 880 Hz, and exhibits,
in addition to the 440 Hz fundamental component, higher harmonics (Figs. 13.3c
and 13.4c). The guitar (Figs. 13.3d and 13.4d) is pitched at 440 Hz, with a couple of
small higher harmonics.

1When it is necessary to capture audio covering the entire 20–20,000 Hz range of human hearing,
such as when recording music or many types of acoustic events, audio waveforms are typically
sampled at 44.1 (Compact Disks), 48, 88.2, or 96 kHz.
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Fig. 13.5 Spectrograms of an A note played on a a cello, b a flute, c a French horn, and d a classical
guitar, as squared magnitudes of the corresponding windowed transforms in dB

What this picture cannot reveal is the possible presence of amplitude and frequency
modulations: it does not offer an evolutionary view of the spectral behavior. At
this point, the spectrograms of the four signals (Fig. 13.5) can step in, providing
the desired insight into evolutive features of the signals. These spectrograms were
obtained adopting a 1024-point Gaussian window and 50 % overlap. We simply plot
the squared magnitude of the windowed Fourier transform in dB. The grayscale map
has been reversed with respect to the normal convention, which represents maxima
with light gray or white and minima with dark gray or black. With this reversal, any
regularity or irregularity in the position of maxima in the time-frequency plane is more
clearly visible. The cello’s spectrogram (Fig. 13.5a) shows that for each harmonic,
frequency oscillates regularly in time, so that we see a wavy pattern, especially on
higher harmonics. This slight frequency modulation is typical of the cello and other
string instruments like the violin. Vertical stripes, like those visible in the spectrogram
of the flute (Fig. 13.5b) in the low-frequency frequency band ( f < 400 Hz), indicate
amplitude modulation, which we already detected observing Fig. 13.1b. In the guitar’s
spectrogram (Fig. 13.5d), the rapid amplitude decay with time observed in Fig. 13.1d
is evident; the spectrogram also reveals that high-frequency components decay faster
than low-frequency ones. This can be understood thinking of the mechanics of the
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decay. The vibration of the guitar’s string is a standing wave with two nodes at the
ends: the elements of the string located outside the nodes move transversely to the
line connecting the nodes. If we call x a longitudinal coordinate (distance from one
end node) and y a transverse coordinate, the oscillation with a certain wavelength λ

can be written as y(x, t) ∝ sin(2πx/λ) cos(2π f t). The fundamental wavelength for
these standing waves, λ = λ0, is twice the length of the string. The velocity dy/dt is
thus ∝ f sin(2π f t) and therefore grows with frequency. Damping of the vibration
is mainly due to air friction; air is a viscous medium, and the friction on an object
moving in a viscous medium is proportional to the speed of the object (Stokes’
law, 1851). In conclusion, this simple explanation of the phenomenon leads us to
understand that higher harmonics correspond to higher values of transverse velocity
and therefore to greater friction and faster damping.

13.3 Wavelet Transform

Wavelets constitute an alternative approach with respect to traditional signal process-
ing methods. They are waveforms concentrated in time, or even with compact tempo-
ral support, i.e., localized in the time domain, and concentrated in frequency, which
means they are characterized by a passband spectrum and are therefore localized
also in the frequency domain.2 They are, in essence, localized waves: instead of
oscillating forever, they start, attain a maximum amplitude and then drop to zero.

When we use wavelets to analyze the spectral content of a signal, we get a map
in the time-scale plane. The concept of scale replaces, in wavelet spectral analysis,
the concept of frequency: it is a typical duration and for many wavelets is related to
the inverse of a frequency, i.e., to a period. The map in the time-scale plane allows us to
study

2A wavelet is, in general, a finite-energy, zero-mean waveform that in the wavelet transform is
stretched or compressed in an auto-similar way, exactly like the Gaussian function in Fig. 4.14 (which
has an unbounded time support) and the boxy function of Fig. 4.15 (which has a compact temporal
support). For example, we will introduce, on one hand, the historical real Haar wavelet, a waveform
with compact time support, and the analytic Morlet wavelet (shown in its real and imaginary parts in
Fig. 13.15) that, being a complex exponential oscillation modulated by a Gaussian envelope, never
vanishes identically at finite time values, and therefore has an unbounded time support. However,
in numerical applications using finite-precision arithmetic, the distinction among the two cases can
be considered to some extent as a mathematical nuance. E.g., a Gaussian function that we compute
numerically over an extended range of values of the independent variable will end up, as we go farther
and farther from its center, assuming such a small value to be practically indistinguishable from zero.
For instance, the minimum positive number representable in double precision is 2.22507e−308 and
the maximum is 1.79769e+308; positive numbers that are smaller than 2.22507e−308 are treated
as zero and positive numbers greater than 1.79769e+308 are treated as +∞. For this very practical
reason, talking about wavelets we will often neglect the conceptual difference between compact
support and concentration, and will loosely use expressions like “waveform localized in time”, etc.
In a similar way, in the frequency domain we will speak about the spectra of the wavelet functions
using terms like “passband spectrum, waveform localized in the frequency domain”, and so on.

http://dx.doi.org/10.1007/978-3-319-25468-5_4
http://dx.doi.org/10.1007/978-3-319-25468-5_4
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Fig. 13.6 How the CWT is computed: a signal is compared with a wavelet at a given scale s.
The wavelet is shifted along the signal (translation or delay τ ) and for each wavelet position the
cross-correlation between the wavelet and the signal is computed, quantifying the similarity of
the two waveforms. Then, using a scaling operation, the wavelet is stretched (or compressed).
The wavelet at the new scale is again shifted along the signal, and new correlation values are
computed. A correlation matrix as a function of τ and s is thus obtained

non-stationary features of the signal, such as changes in periodicity, as well as isolated
events, trends, intermittency, etc.

The analysis is performed starting from a prototype, called mother wavelet, that is
then scaled (dilated or shrunk) in such a way that the wavelet shape remains unaltered,
while the duration—more precisely, the scale—changes. Each scaling operation pro-
vides a daughter wavelet at some scale s. This scaled wavelet is translated along the
entire signal’s length, and cross-correlated (hereafter, simply correlated) with the
signal at each temporal position τ . Then another scaling takes place, followed by
a new set of shifts and correlations. This procedure is qualitatively illustrated in
Fig. 13.6. The result is a matrix of correlation values that describe the similarity be-
tween the signal and the daughter wavelet, at all considered scales and around each
temporal location. Choosing the mother wavelet properly, an evolutionary spectral
representation of the signal can be obtained that has several advantages with respect
to STFT.

13.3.1 Analysis in Time and Scale

In wavelet theory it is convenient use the formalism of continuous-time signals.
In addition to time t , we use also the time translation or delay τ that indicates a
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delay with respect to the origin of the time axis, and the scale s, which is related to
the duration of the daughter wavelet. However, the analysis will ultimately concern
sampled signals with sampling step Ts ; so it is reasonable to formulate the theory
independently of Ts , using a continuous adimensional time θ , an adimensional delay
b and an adimensional scale or scale factor3 a, such that

θ = t

Ts
, b = τ

Ts
, and a = s

Ts
.

In other words, thinking that we will eventually analyze sampled signals, we directly
use the sampling step to normalize the continuous temporal quantities of interest.

The theory thus deals with an analog signal x(θ) that is analyzed in time (delay)
b and scale a through the continuous wavelet transform (CWT). Let us stress the
fact that a and b are continuous variables, like θ . In Fig. 13.6 we now must imagine
infinitesimal variations of a and b, leading to a continuous correlation function de-
pending on time delay and scale. This function of two independent variables is the
CWT. Note that for the purpose of spectral analysis, scale will have to be translated
into frequency. We will discuss this issue later; for the moment, it is sufficient to think
of frequency as a variable inversely proportional to the scale. Only later, the CWT
is adapted to discrete-time signals x[n], choosing also a discrete set of values for a
and b. The rationale behind this approach is that in the continuous-time domain all
is simpler: concepts like wavelet dilation, or other concepts that will be introduced
later—for example the concept of “regularity”—are not defined in the discrete-time
domain. The continuous-time theory must thus be seen as a useful asymptotic theory
with respect to the practical discrete-time case.4

The domain of wavelet techniques and related applications is quite wide. Here
we focus on the discretized CWT, since it provides a tool for evolutionary spectral
analysis of random signals. The elementary functions used for wavelet analysis are
not fixed like the sines and cosines of Fourier analysis, but are functions for which a
remarkable freedom of choice exists, which can accommodate for different types of
signals and different analysis goals. This gives the technique a great versatility. How-
ever, the signal representation that is obtained by the discretization scheme usually
adopted for CWT is largely redundant, meaning that the transform contains more
information than would be strictly necessary to reconstruct the signal by inverting the
transform. This redundance, which sometimes is also referred to as oversampling, is
advantageous for spectral analysis because it makes the analysis more robust—less
sensitive to outliers in the data or to small deviations from basic assumptions.

Redundance becomes undesirable when the signal must be represented economi-
cally, i.e., retaining the minimum information required for signal reconstruction. This
need occurs, for example, in compression and de-noising applications. In wavelet

3In the following discussion, for brevity we will often write simply “scale” instead of “scale factor”,
provided the context does not allow any ambiguity.
4The signals analyzed by CWT may be mono- or bi-dimensional, possibly with space (instead of
time) as the independent variable, as in the case of image processing; in principle, the signals can
even be multi-dimensional. In this book we will only deal with wavelet analysis of a time series.
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theory, the issues related to a critical sampling of the transform in time and scale are
thus examined, as well as the characteristics that are consequently required from the
set of functions to be used to represent a signal through its wavelet transform. This
leads to the discrete wavelet transform (DWT). The DWT is presented in Chap. 14.

The wavelet transform, in its various shades (including the DWT), has been applied
in numerous fields, such as

• astronomy,
• climatology, atmospheric physics, environmental physics, oceanography,
• seismology,
• oil and mining exploration,
• turbulence theory,
• signal and image processing,
• study and reproduction of human vision,
• neurosciences in general,
• medical sciences, e.g., cardiology,
• music,
• production of cartoons,
• optics,
• study of fractals and various branches of mathematics,
• economical and social sciences,
• data compression,
• signal de-noising, etc.

13.3.2 Multi-resolution Property of the Wavelet Transform

CWT allows for localization in time of the spectral components in a signal and is an
alternative to STFT that avoids a serious drawback of the latter. The point is that in
the STFT the window width is constant and therefore if the data contains a certain
oscillation,

• at low frequency, so few periods of the oscillation are contained within the window,
that frequency cannot be determined accurately;

• at high frequency, so many periods of the oscillation can be seen through the win-
dow, that if the oscillation is transient, its precise localization in time is impossible.

On the contrary, in CWT the width of the “window”, which later will be identified
as the scaled wavelet, varies for each spectral component, since frequency is related
to scale and scale determines the temporal support of the wavelet; this allows

• determining accurately the scale (hence the frequency) of large-scale (low-
frequency) oscillatory components;

• localizing accurately in time rapidly transient events that, as such, are composed
of high-frequency oscillations.

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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This is a reasonable approach when, as normally occurs, the signal presents high
frequency components over short time intervals and low-frequency components that
persist for long times. Introducing an analogy related to space rather than to time, it
can be said that the CWT allows for “seeing the forest and the (individual) trees”,
i.e.,

• the repetitive, unlocalized background pattern (the forest), and
• the isolated characteristics at a small scale (the trees).

We may prefer a time-related analogy: we could think of an engine that, on the
background of a regular humming, emits time-localized different noises because it
speeds up, then decelerates, then misfires, etc. This facet of the CWT is described as
multiresolution analysis (MRA). Actually, MRA is a property of all wavelet-based
techniques, and not of the CWT only. The term MRA expresses the fact that resolution
in time and in frequency, meaning the ability to distinguish closely spaced features
in any domain, varies with frequency. Resolution is closely related to localization
in time and frequency of any particular event in the signal. We will further discuss
MRA after formally defining the CWT.

13.4 Continuous Wavelet Transform (CWT)

The CWT is defined in relation to a non-stationary analog signal x(θ) having finite
energy, i.e., such that

E =
∫ +∞

−∞
|x(θ)|2dθ < ∞.

In all cases of interest in this book, x(θ) is a random real signal, and mathematically
we can express the fact that its energy is finite by saying that x(θ) belongs to the set
L2(R) of square-integrable functions (see the appendix to Chap. 3).

The signal is formally of infinite length, as the bounds of the definition integral
indicate. Yet, its energy is assumed to be finite. This means that we suppose the
signal’s fluctuations decay after some finite distance from the time origin in either
direction. We will consider centered signals with zero mean, so we can also state that
signal variations about its (zero) mean are active only over a certain time interval. On
the other hand, we will always be measuring the signal for a finite amount of time,
and since we ignore how the signal behaves outside the measuring interval, we can
assume that the signal is actually zero outside that interval.

The choice of assuming finite energy for the signal conceptually differentiates
this analysis method from those previously discussed. In fact, while in discrete-time
random-signal spectral analysis based on the DTFT, employing infinitely persistent
waveforms (sines and cosines), we consider an infinitely persistent stationary process
with finite average power, here we start with the intention of representing finite-
energy signals using finite-energy, time-concentrated waveforms (wavelets). We thus
get a distribution of the signal energy in time and scale (frequency). As we will see,

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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we will nonetheless also derive from CWT analysis an average estimate of the power
spectrum of the signal, the so-called global wavelet spectrum (GWS). This global
spectrum is obtained by integrating the energy distribution with respect to time delay
b—which transforms it into an energy distribution versus scale or frequency—and
then dividing the result by the record length—which transforms energy into average
power. If x(θ) is actually stationary, then the theoretical notion of GWS coincides
with the notion of power spectrum we are already familiar with, so that we are allowed
to compare the GWS computed from a finite-length sequence with the estimates
obtained by Fourier or parametric methods. If it is not so, the GWS describes what
on average the power spectrum of the sequence looks like over the observation time
interval.

Assuming finite energy for the signal is, in a sense, a way to construct a theory
which, unlike Fourier analysis that is based on infinite-length periodic functions, is
closer to real-world signals. These assumptions of finite or infinite energy are, after
all, theoretical nuances that though conceptually important, in applications eventually
boil down to the same numbers, because we will always deal with finite-length data
records anyway.

The CWT is a linear operation defined as

W ψ
x (a, b) =

∫ +∞

−∞
x(θ)

1√
a

ψ∗
0

(
θ − b

a

)
dθ,

a formula that expresses the analysis relation of the CWT.
W ψ

x (a, b) indicates the CWT of x(θ), performed using the wavelet ψ(θ), as a
function of scale factor a ∈ R

+ − {0} and of adimensional time (shift, delay) b with
respect to signal origin. The symbol ψ0(θ) indicates the prototype or mother wavelet,
which can be real or complex, and is a localized-in-time oscillatory function with zero
mean. It is a wave-like function with an amplitude that starts from zero, increases,
and then decreases back to zero. The expression

(
1/

√
a
)
ψ0 (θ − b/a) represents

the daughter wavelet at scale a, i.e., the scaled prototype, normalized to energy
independent of scale through the factor 1/

√
a, and shifted in time by b time steps

with respect to the origin. If we set

ψ(θ) = 1√
a

ψ0(θ),

the daughter wavelet ψa(θ) at scale a can be written as

ψa(θ) = ψ

(
θ

a

)
= 1√

a
ψ0

(
θ

a

)
.

Furthermore, it is normal practice to introduce the adimensional variable

η = θ

a
,
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so that we can write

ψa(θ) = ψ(η) = 1√
a

ψ0(η).

For a = 1, we get η = θ and ψa(θ) = ψ(θ) = ψ0(θ). We then consider all possible
shifts of the daughter wavelet ψa(θ), by writing

ψa,b(θ) = ψa(θ − b) = ψ

(
θ − b

a

)
= 1√

a
ψ0

(
θ − b

a

)
.

As we stated above, the factor 1/
√

a in the definition of the daughter wavelet
implies that all daughter wavelets have the same norm in L2(R), i.e., the same energy
independently of a. The norm of the mother wavelet is usually set to 1,

‖ψ0(θ)‖ = √
E {ψ0(θ)} =

√∫ +∞

−∞
|ψ0(θ)|2 dθ = 1,

so that

∥∥∥∥ψ

(
θ

a

)∥∥∥∥ =
√

E

{
ψ

(
θ

a

)}
=

√∫ +∞

−∞

∣∣∣∣ψ
(

θ

a

)∣∣∣∣
2

dθ =

=
√∫ +∞

−∞

∣∣∣∣
1√
a

ψ0

(
θ

a

)∣∣∣∣
2

dθ =
√∫ +∞

−∞

∣∣∣∣ψ0

(
θ

a

)∣∣∣∣
2

d

(
θ

a

)
=

=
√∫ +∞

−∞
|ψ0(θ)|2 dθ = ‖ψ0(θ)‖ = 1.

The scaling that from ψ(θ) leads to ψ (θ/a) implies (see Fig. 13.7):

• for a < 1, a compression of the original waveform,
• for a > 1, a dilation of the original waveform.

Using the notation introduced above, the CWT definition equation can also be
written as

W ψ
x (a, b) =

∫ +∞

−∞
x(θ)

1√
a

ψ∗
0

(
θ − b

a

)
dθ =

∫ +∞

−∞
x(θ)ψ∗

(
θ − b

a

)
dθ =

=
∫ +∞

−∞
x(θ)ψ∗

a (θ − b)dθ =
∫ +∞

−∞
x(θ)ψ∗

a,b(θ)dθ.

W ψ
x (a, b) expresses the correlation—that in general will be a complex cross-

correlation, as the wavelet is complex in general—between x(θ) and ψa(θ) =
ψ (θ/a) in the neighborhood of θ = b. It measures the similarity between the scaled
wavelet and the signal in that neighborhood.
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Fig. 13.7 An example of
scaling: a generic waveform
at scale a = 1,
b the same waveform at scale
a = 2, i.e., stretched, and
c the same waveform at scale
a = 1/2, i.e., compressed
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In the wavelet transform, the daughter wavelet plays the role of the transforming
function, but also the role of a window. This window gets wider or narrower as a
varies, so that the number of oscillations that a wave packet-like wavelet presents
does not change, as illustrated in Fig. 13.8. All daughter wavelets have the same
shape as the prototype; they are simply stretched or compressed. This means that
by varying the scale, we change the frequency of the signal’s oscillations which the
wavelet resembles, but it also means that the wavelet, i.e., the window, “frames” the
same number of periods of the signal’s oscillation, whatever the scale (frequency) of
the oscillation. This is in contrast with the behavior of the window in the STFT: as
shown in Fig. 13.9, in the STFT the window frames many oscillation periods when
the signal varies with high frequency, and few periods when the signal varies with
low frequency.

Fig. 13.8 A wavepacket-
like wavelet is shown at three
different scales: as the
duration of the wavelet
increases, the number of
oscillations in the packet
remains constant
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Fig. 13.9 The behavior of
the window in the STFT:
signal oscillations of high
and low frequency are
framed by a window with
constant width, so that as
frequency decreases, a
smaller and smaller number
of oscillation periods are
framed by the window

Note that in the CWT, the notion of scale is the same we use for maps:

• large scale means few details, global information about the whole signal, overall
approximation, overview;

• small scale means many details over short signal segments.

Observing that by the substitution θ = aθ ′ we get

W ψ
x (a, b) = 1√

a

∫ +∞

−∞
x(θ)ψ∗

0

(
θ − b

a

)
dθ = √

a
∫ +∞

−∞
x(aθ ′)ψ∗

0

(
θ ′ − b

a

)
dθ ′,

we can not only state that as a increases, a more and more stretched version of the
wavelet is compared with the signal, but also that as a increases, a more and more
compressed version of the signal is compared with a merely shifted mother wavelet.
This is analogous to looking at a set of smaller-and-smaller-scale maps from the
same distance.

13.4.1 Resolution and Coverage of the Time-Frequency Plane

We will now discuss resolution and localization in time and scale (frequency) in
the CWT and compare them with resolution and localization in time and frequency
provided by the STFT.

In order to be able to formally compare the STFT and CWT, we write the STFT
in analog version5 as

Sx (ω, b) =
∫ +∞

−∞
x(θ)g(θ − b)e−jωθ dθ =

∫ +∞

−∞
x(θ)g∗

c (θ, b, ω)dθ,

5Of course, in digital applications x(θ) will become a sampled signal x[n] and the continuous
variables ω and b will be made discrete.
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where g(θ) is a real window that in the original STFT (Gabor 1946) is Gaussian,
symmetric and non-causal,

g(θ) = g(0)e− θ2

2σ2 , with g(0) = 1 and θ ∈ (−∞,+∞).

The parameter σ regulates the width of the Gaussian bell. The complex window
gc(θ, b, ω) appearing in the formula for Sx (ω, b) is both shifted in time and modu-
lated in frequency,

gc(θ, b, ω) = g(θ − b)e+jωθ ,

g∗
c (θ, b, ω) = g(θ − b)e−jωθ ,

and is introduced so as to make the definition of Sx (ω, b) formally similar to that
of W ψ

x (a, b) and to allow for identifying the window function that in the STFT
corresponds to the daughter wavelet used for the CWT.

Let us recall that in continuous-time Fourier analysis, an impulse in the time
domain has a transform containing contributions from all frequencies, with phase
features that give, in the reconstruction of the signal via inverse transform, cancella-
tion everywhere, except in the neighborhood of the instant θ0 at which the impulsive
event occurs: a total lack of frequency localization corresponds to a perfect time local-
ization. On the other hand, a spectral line corresponds to an infinitely long sinusoid:
a total lack of temporal localization corresponds to a perfect frequency localization.

When we perform an STFT using a Gaussian real window g(θ), time resolu-
tion depends on the window width �θ , which is dictated by the parameter σ , while
frequency resolution depends on the bandwidth �ω of the window’s transform6

G(ω). The smaller �θ , the greater the time localization, and two rapidly transient
events can be distinguished if they are separated in time by more than �θ . Time reso-
lution is thus inversely dependent on �θ . Similar reasoning applies in the frequency
domain: both �θ and �ω and the corresponding resolutions depend neither on b,
nor on ω. We can illustrate this subdivision of the time-frequency plane graphically
by arbitrarily discretizing b and ω: the sampling structure inherent in the STFT thus
emerges as one being represented by uniform rectangular “tiles”, called Heisenberg
boxes, or time-frequency atoms, or resolution cells (Fig. 13.10). Note that the precise
definition of �θ and �ω for a Gaussian g(θ) is a matter of convention. Usually a
mean-square definition is adopted (see Sect. 4.5):

�θ =
√√√√

∫ +∞
−∞ θ2 |g(θ)|2 dθ
∫ +∞
−∞ |g(θ)|2 dθ

, �ω =
√√√√

∫ +∞
−∞ ω2 |G(ω)|2 dω
∫ +∞
−∞ |G(ω)|2 dω

.

6Here we indicate angular frequencies by ω, even if we are formally working in the continuous-
time domain: this is justified because we are using an adimensional continuous time and therefore
angular frequency is adimensional as well. However, as long as we do not apply some discretization
scheme, ω is not constrained by the inequality −π ≤ ω < π .

http://dx.doi.org/10.1007/978-3-319-25468-5_4
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Fig. 13.10 Coverage of the time-frequency plane in the STFT: resolution in time and resolution
in frequency are the same at any point and have been represented by uniform rectangular tiles. For
clarity, tiles located at different discrete times are drawn juxtaposed, even if in reality they could
partially overlap or be separated by empty spaces, according to the spacing adopted for delay values
(centers of the horizontal tile sides). Also along the frequency axis the tiles are juxtaposed, but could
as well overlap or be separated, according to the difference between frequency values (centers of
the vertical tile sides), which in the absence of zero-padding is inversely dependent on the number
N of signal samples

These two quantities are inversely related due to the uncertainty principle.
The STFT can also be interpreted as the output of a bank of analog filters applied

to x(θ): its definition is actually a convolution integral of the signal with a complex,
analog, frequency-dependent bandpass filter7 with impulse response

hω(θ) = g∗
c (−θ, b = 0, ω) = g(−θ)e−jωθ = g(θ)e−jωθ ,

where the last equality follows from the even symmetry of the Gaussian function.
As ω varies, the various filters of the bank are subsequently applied to the signal.
The frequency response of each filter is a Gaussian function peaking at some ω = ωc

(Fig. 13.11). This can be seen taking the Fourier transform of hω(θ) for ω = ωc:
since

g(θ) = e− θ2

2σ2 ⇐⇒ F {g(θ)} ≡ G(ω) = √
2πσe− σ2

2 ω2
, (13.1)

7A complex system is defined as a system with complex-valued impulse response. In the frequency
domain, real-valued signals/systems always have even-symmetric amplitude-spectrum/response
and odd-symmetric phase-spectrum/response with respect to the zero frequency. Complex sig-
nals/systems do not need to have any spectral symmetry properties in general: e.g., the spectral
support (region of non-zero amplitude spectrum) can basically be anything. This book focuses on
real signals/systems, and for further discussion on the STFT and CWT we need no more information
about complex filters. Note also that the analog filter bank related to the STFT will be a digital filter
bank in sampled-signal applications.
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we have
hω(θ)|ω=ωc

⇐⇒ F
{
g(θ)e−jωcθ

} = √
2πσe− σ2

2 (ω−ωc)
2
. (13.2)

From this expression of the frequency response we also see that, as already stated,
�ω of the filters applied in the STFT remains the same at all frequencies. We can
observe the covering of the signal spectrum by the frequency responses of the filters
of the bank (Fig. 13.12). This coverage in the STFT is uniform along the ω-axis,
so that we can classify the filter bank as a constant-bandwidth filter bank. The
CWT can also be interpreted as the application of a filter bank, which is analog
in theory and becomes digital after discretization. The analysis takes place in the
time-scale plane, but scale can be translated into frequency, provided that the mother
wavelet allows for establishing a proper scale-frequency relation. We can thus talk
about coverage of the time-frequency plane also for the CWT. Again, the filters of
the bank are complex bandpass filters, but here the bandwidth �ω varies with ω,
so that the time-frequency plane is covered by non-uniform rectangular tiles: their
shape, i.e., aspect ratio, varies while the area remains constant, due to the uncertainty
principle. Multiresolution means exactly this: the wavelets used in CWT are subject
to the uncertainty principle, so that given a signal with some event in it, one cannot
assign simultaneously an exact time and an exact scale (frequency) to that event. The
product of the uncertainties on time and scale (frequency) has a lower bound. Thus,
such an event marks an entire region in the time-scale plane, instead of just one point.
Figure 13.13 shows the CWT coverage of the time-frequency plane by variable tiles.

The definition of the CWT actually appears as the application of a filter bank to
the signal x(θ) if we observe that

W ψ
x (a, b) =

∫ +∞

−∞
x(θ)

1√
a

ψ∗
0

(
θ − b

a

)
dθ =

∫ +∞

−∞
x(θ)ψ∗

(
θ − b

a

)
dθ

is the convolution integral of x(θ) with
(
1/

√
a
)
ψ∗

0 (−θ/a) = ψ∗ (−θ/a). Thus, the
CWT can be viewed as the result of the application to x(θ) of a bank of complex,
analog, scale-dependent bandpass filters with impulse response

ha(θ) = 1√
a

ψ∗
0

(
−θ

a

)
= ψ∗

(
−θ

a

)
,

and with frequency response

Ψ ∗(aω) = √
aΨ ∗

0 (aω).

The last statement can be understood as follows. Starting from the Fourier transform

F
{
ψ0

(
θ

a

)}
= aΨ0 (aω) ,
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Fig. 13.11 a The real
Gaussian window g(θ) used
in the STFT, b its Fourier
transform, and c the Fourier
transform shifted in
frequency by ωc, as a
consequence of the
modulation applied to g(θ).
Both transforms are real.
Considering ωc as a variable
rather than a single value of
peak frequency, panel c
represents the frequency
response of the filter bank
used in STFT, with each
filter associated with a
particular ωc value
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Fig. 13.12 Coverage of the
frequency axis in the STFT:
constant-bandwidth filter
bank. For this sketch, the
center frequency of the
frequency response of the
filter bank has been
arbitrarily discretized, so that
it increases linearly
according to integer
multiples k of the lowest
peak-frequency considered,
which here is simply
indicated as ωc
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Fig. 13.13 Coverage of the time-frequency plane in the CWT: resolution in time and resolution
in frequency vary with frequency and have been represented by juxtaposed rectangular tiles with
variable aspect ratio and constant area

we get

F
{
ψ

(
θ

a

)}
= F

{
1√
a

ψ0

(
θ

a

)}
= √

aΨ0 (aω) = Ψ (aω) .

But due to the time-reversal and complex-conjugation properties of the continuous-
time Fourier transform,

F
{
ψ

(
−θ

a

)}
= Ψ ∗(−aω),

F
{
ψ∗

(
θ

a

)}
= Ψ ∗(−aω),

hence

F {ha(θ)} = F

{
ψ∗

(
−θ

a

)}
= Ψ ∗(aω) = √

aΨ ∗
0 (aω).

As a varies, both the peak frequency and the bandwidth �ω are multiplied by a, so
that their ratio Q = �ω/ωc (fidelity factor) remains constant. Therefore the coverage
of the frequency axis obtained by the CWT appears as in Fig. 13.14. This filter bank
associated with the CWT is a constant relative-bandwidth filter bank, also referred
to as a constant-Q filter bank, and the coverage of the ω-axis is logarithmic rather
than linear.

We can summarize these results—the essence of MRA—as follows:

• at small scale a—high frequency ω, a short wavelet corresponds to a broadband
filter that provides
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Fig. 13.14 Coverage of the
frequency axis in the CWT:
constant-relative-bandwidth
filter bank. The analytic
Morlet wavelet with ω0 = 6
(see Sect. 13.4.4) was used
to draw this plot. For this
sketch, the center frequency
of the frequency response of
the filter bank has been
arbitrarily discretized, so
that, starting from the ωc of
the filter associated with the
mother wavelet, it increases
according to multiples of ωc
that are integer powers of 2 1 2 4 8 16 32

ω/ωc

F
{ψ

(−
θ/

a
)}

– low frequency resolution,
– high temporal resolution;

• at large scale a—low frequency ω, a long wavelet corresponds to a narrowband
filter that provides

– high frequency resolution,
– low temporal resolution.

In principle, two impulsive events separated by an arbitrarily small time interval can
always be resolved in CWT, provided we choose a sufficiently small scale. Similarly,
two oscillatory persistent patterns with frequencies arbitrarily close to one another
can always be resolved, provided we choose a sufficiently large scale. In practice,
with sampled signals and with the CWT discretization scheme normally adopted,
the minimum and maximum scales are constrained in some way, as we will see later.
Considering that

• for the uncertainty principle we have �θ�ω = constant, while
• for MRA we have �ω/ωc = constant′, which for brevity we will write as �ω/ω =

constant′

we see that

�θ = const.

�ω
= const.

const.′ω
= const.′′

ω
:

• temporal resolution, which is inversely related to �θ , is inversely proportional to
a and directly proportional to ω (assuming ω ∝ 1/a);

• frequency resolution, which is inversely related to �ω, is inversely proportional
to ω and directly proportional to a.

Up to now we reasoned assuming ω ∝ 1/a. This assumption is meaningful if, and
only if, the wavelet in use allows us to establish a precise relation between scale and
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frequency (see Sect. 13.4.9), and this is only true for some kinds of wavelets. For
the purpose of evolutionary spectral analysis, complex analytic wavelets are often
employed: for example, the analytic Morlet wavelet and the analytic Paul wavelet.
For these wavelets, used exclusively for CWT, the scale-frequency relation is well-
defined. On the other hand, to detect abrupt transitions in the signal features, spikes
and discontinuities by CWT, real wavelets are often employed, such as real DOG
wavelets. All these wavelets used for CWT are called continuous wavelets. For some
real continuous wavelets, as well as for the majority of discrete wavelets used in
DWT—many of which are even devoid of an explicit analytical expression—the
scale-frequency relation becomes meaningless, since in the wavelet shape there is
nothing similar to a sinusoidal oscillation. This is the reason why they cannot be used
for spectral analysis.

13.4.2 The CWT in the Frequency Domain

A convolution integral corresponds to a product in the Fourier transform domain,
so we can compute CWT taking the inverse transform of the product of the Fourier
transforms of x(θ) and ψ∗ (−θ/a):

W ψ
x (a, b) =

∫ +∞

−∞
x(θ)ψ∗

(
θ − b

a

)
dθ = 1

2π

∫ +∞

−∞
X (ω)Ψ ∗(aω)ejbωdω.

This formula is useful for the computation of the CWT in applications. Note that

since we assumed
√∫ +∞

−∞ |ψ (θ/a)|2 dθ = 1, for Parseval’s theorem in the analog
domain we have

1

2π

∫ +∞

−∞
|Ψ (aω)|2 dω = 1.

This equation assigns unitary energy to wavelets of any scale in the frequency do-
main too.

13.4.3 Admissibility and Other Constraints on Wavelets

In order to be suitable to be used as a continuous mother wavelet, the function ψ0(θ)

must satisfy some conditions.

• It must have finite energy.
• It must have zero mean: ∫ +∞

−∞
ψ0(θ)dθ = 0,



13.4 Continuous Wavelet Transform (CWT) 597

and therefore it must be a function that oscillates around zero. This condition is
known as the admissibility condition. Zero mean implies that Ψ0(0) must vanish,
i.e., that the wavelet must have a bandpass spectrum. As we shall see in Sect. 13.4.5,
this condition ensures the existence of an inverse CWT, which in turn guarantees
the possibility of reconstructing the signal from its CWT elements.

• It must be non-causal and centered on θ = 0.
• It must satisfy some regularity conditions. Regularity is quite a complex concept:

we will try to explain it in simple terms using the concept of vanishing moments
in discrete wavelet systems in the next chapter, in the more general frame of the
DWT. For the moment, we just define the wavelet moments, indicated with m1[k],
as

m1[k] =
∫ +∞

−∞
ψ0(θ)θ kdθ,

where k is the moment order, and make a few remarks.

We already know that admissibility requires at least the 0th order moment to vanish,
but it may be convenient in some wavelet applications to require that all the first
low-order moments vanish up to a certain order k = km . The number of vanishing
moments is related to

– the smoothness of the wavelet function, since generally we can use differen-
tiability to measure smoothness, and if a wavelet function is (km + 1)-times
differentiable, then the first km wavelet moments vanish (Daubechies 1992);

– the elimination from the analysis of the most regular (polynomial) part of the
signal (e.g., the long-term trend), thus allowing us to study other, more abrupt
types of fluctuations in the signal and possible singularities in some high-order
derivatives. In this case, the CWT values will be very small in the regions of the
time-scale plane where the function is smooth to a certain degree dictated by
the number of vanishing moments, and the wavelet transform will only react to
higher-order variations of the signal (Farge 1992). The admissibility condition
simply implies the removal of the signal mean value. In practice, the signal is
usually centered before applying the CWT;

– the speed of convergence to zero of the CWT with decreasing scale/increasing
frequency: if moments vanish up to the km th one, even approximately, then
the larger the km , the faster the speed with which W ψ

x (a, b) of a smooth signal
x(θ) decreases with decreasing scale/increasing frequency (see, e.g., Poularikas
2000);

– the locality (concentration) of the wavelet in the time and frequency domains
that in turn are related to the extent to which the CWT acts as a local operator
in both domains and therefore to resolution in time and frequency.

It must be observed, however, that the wavelets described in this Chapter, like the
analytic Morlet and Paul wavelets, as well as the real DOG—that are used for
CWT only—satisfy only minimal properties, such as the admissibility condition.
The topic of vanishing moments is much more important for those wavelets that
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are typically used for DWT (even if they can also be adopted for CWT), like
orthogonal wavelet families (Daubechies, symlets, coiflets etc.; see Sect. 14.10).

13.4.4 The CWT with Analytic Wavelets

Wavelets employed in the CWT may be analytic or real. For the purpose of evolu-
tionary spectral analysis, it is often advisable to choose an analytic wavelet.

When a real mother wavelet is adopted, its Fourier transform has even symmetry
around ω = 0. As a consequence, the frequency response of that wavelet filter that
is hypothetically centered at ω = 0 also has even symmetry. Thus the filter pass-
band includes both positive and negative frequencies, but the information relative to
frequencies ω < 0 is redundant, and can be univocally deduced from the part per-
taining to ω ≥ 0. This would not be true with general complex mother wavelets, for
which the Fourier transform has no particular symmetry properties. Complex ana-
lytic mother wavelets avoid this issue, since they have a frequency response which
is non-identically-zero only over ω ≥ 0. These wavelets have a purely real Fourier
transform. The signals with a spectrum covering only ω ≥ 0 were introduced by Ga-
bor in its fundamental paper on telecommunication theory (Gabor 1946). He called
them analytic signals. From the symmetry properties of the Fourier transform of an
analog complex signal, it can be shown that for the Fourier transform of a mother
wavelet to be real and to vanish at negative frequencies, the real and imaginary part of
the complex mother wavelet must be closely related: more precisely, the imaginary
part must be obtained taking the real part and shifting all its frequency components
by π/2. This operation is called the Hilbert transform (see also Sect. 7.3.2).

We will see later that in the CWT we perform time-frequency analysis looking
at the (squared) modulus of the wavelet transform. When we use a real wavelet,
this modulus presents the same oscillations as the analyzing wavelet, and it may be
difficult to sort out features belonging to the signal or to the wavelet. In the case of
analytic wavelets, the quadrature between the real and imaginary parts of the wavelet
transform—which is a direct consequence of the phase quadrature between the real
and imaginary parts of the wavelet—eliminates these spurious oscillations.8

As an example of analytic wavelet, we consider the analytic Morlet wavelet:

ψ0(η) = 1
4
√

π
ejω0ηe− η2

2 ,

for which the daughter wavelets are

ψ(η) = 1
4
√

π

1√
a

ejω0ηe− η2

2 ,

8Complex wavelets also provide phase information concerning the signal’s elementary components,
even is this information is not often easy to interpret. For this reason, we will not discuss CWT
phase plots.

http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_7
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where ω0 is the parameter of the analytic Morlet wavelet. This wavelet does not
respect the admissibility condition in a strict sense, but for ω0 > 5 its mean value
vanishes up to computers’ round-off errors. It is usual practice to take ω0 = 6.

This is the wavelet which is more similar to a wave packet: it is a complex expo-
nential function modulated by a Gaussian bell with σ = 1. The real and imaginary
parts of the analytic Morlet wavelet with ω0 = 6 are shown in the upper panel of
Fig. 13.15a. It can be seen that ω0 also approximately represents the number of
oscillations contained inside the wave packet.

The Fourier transform of the analytic Morlet wavelet, shown in the upper panel
of Fig. 13.15b, has the expression

Ψ (aω) = √
2 4√π

√
ae− (aω−ω0)2

2 U (ω),
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Fig. 13.15 Four different wavelets used for CWT analysis. These are daughter wavelets presented
at scale a = 10. The plots in column a show the real part (solid curves) and the imaginary part,
if present, (dashed curves) of the wavelets in the time domain, while the plots in column b show
the same wavelets in the frequency domain. From the upper to the lower panel we see two analytic
wavelets (the analytic Morlet wavelet with parameter ω0 = 6 and the analytic Paul wavelet with
parameter m = 4) and two real wavelets (the DOG wavelet with m = 2, also known as Mexican
hat wavelet, and the DOG wavelet with m = 6)
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where U (ω) indicates the analog unit step, U (ω) = 0 for ω < 0 and U (ω) = 1 for
ω ≥ 0. Thus the wavelet spectrum is real and vanishes at negative frequencies. The
shape of Ψ (aω) is that of the spectrum of the Gaussian envelope, but its content is
shifted to the neighborhood of aω = ω0: the maximum of the spectral bell falls at
aω/2π = ω0/2π = 0.955 ≈ 1. So, the daughter wavelet at scale a is a filter with
frequency response centered on ω ≈ 2π/a. As can be approximately evaluated by
visual inspection of the upper panel in Fig. 13.15b, the bandwidth is �ω ≈ 2π/a,
even if the precise value of the bandwidth depends on the definition we adopt for it.
Therefore at all scales we can verify that the property of constant relative-bandwidth
filter banks holds, the constant being nearly 1 in this case:

�ω

ω
= constant ≈ 1.

As scale increases, the filter becomes longer, centered on a lower frequency and more
narrowband. This, of course, happens when we progressively stretch the wavelet,
having assumed a ≥ 1. If, on the contrary, we decided to take the mother wavelet and
progressively compress it, the scale would progressively decrease and the filter would
become shorter, centered on a higher frequency and wider-band at each scaling step.
In the case of a CWT performed in the frequency domain as the inverse transform of
the product between the Fourier transforms of x(θ) and ψ∗ (−θ/a)—a procedure that
computationally is quite convenient—normally the wavelet is progressively dilated
(a ≥ 1); in the following discussion we will assume that this is the case.

We can represent graphically the MRA performed by the analytic Morlet wavelet
using Heisenberg boxes. In Fig. 13.16, �θ is the duration—for example the mean-
square duration—of the mother wavelet, and �ω is the corresponding bandwidth.

Among the analytic wavelets often used for the CWT we may also mention the
analytic Paul wavelet, for which the parameter is the order m:

ψ0(η) = 2m jmm!√
π(2m)! (1 − jη)−m−1 ,

ψ(η) = 1√
a

ψ0(η).

This wavelet is visible, in the case of m = 4, in Fig. 13.15a (second panel from top).
Its real Fourier transform (Fig. 13.15b, second panel from top) has the expression

Ψ (aω) = 2m√
a√

m(2m − 1)!U (ω)e−aω.

With respect to the analytic Morlet wavelet, the analytic Paul wavelet is more con-
centrated in time and less concentrated in frequency, scale being equal.

Other analytic wavelets sometimes used for the CWT are analytic Shannon
wavelets, analytic derivatives of Gaussian (DOG) wavelets and frequency B-spline
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Fig. 13.16 Time-frequency-plane representation of the MRA performed by CWT using the an-
alytic Morlet wavelet with parameter ω0 = 6: �θ is the duration—for example the mean-square
duration—of the mother wavelet, and �ω is the corresponding bandwidth; the curves on the hor-
izontal axis represent the shape of the daughter wavelet at two different scales a1 and a2, with
a1 < a2; the two daughter wavelets are plotted as if they were applied to a hypothetical signal (not
shown) at two different time shifts b1 and b2, with b1 < b2; the curves on the vertical axis represent
the shape of the wavelet spectrum; the rectangular Heisenberg boxes, shaded in gray, change their
shape as scale varies

(fbsp) wavelets (see, e.g., Mallat 1999; see also the appendix of Chap. 14). The
Shannon wavelet (Sinc wavelet) is actually a particular case of fbsp wavelet.

We finally mention that the analytic Morlet wavelet can written with an additional
parameter that defines the width of the Gaussian bell and allows for regulating the
mother wavelet width in time and frequency (see the appendix in Chap. 14). For
example, this additional parameter allows us to choose, at any scale, a better time
resolution with respect to that obtainable with a unit parameter; of course this occurs
at the expense of a poorer frequency resolution. This is the case, for example, in
matlab.

13.4.5 Inverse CWT

The CWT performed using an analytic admissible wavelet is complete, meaning that
any signal in L2(R) can be represented as a linear combination of scaled/translated
wavelets, and preserves the energy of a zero-mean signal. It is then possible to write
the inverse CWT (ICWT; synthesis relation or reconstruction formula of the CWT)

http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_14
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for a real centered signal as

x(θ) = 2

cψ

Re

[∫ +∞

0

∫ +∞

−∞
W ψ

x (a, b)ψa,b(θ)
dadb

a2

]
.

The expression dadb/a2 is equivalent to dωdb, because if frequency ω is inversely
proportional to scale, then dω ∝ dadb/a2. The admissibility constant cψ is a finite
numerical constant given by

cψ =
∫ +∞

−∞
|Ψ0(ω)|2

ω
dω.

This equation clarifies that in order to be able to write an inverse CWT, we must
actually impose the condition Ψ0(0) = 0. This requires zero mean value for the
mother wavelet. The factor of 2 appearing in the reconstruction formula is sometimes
absorbed in the definition of cψ .

13.4.6 Wavelet-Based Energy and Power Spectra

The total energy contained in the centered signal x(θ) can be reconstructed using the
following equation (Parseval’s theorem for the CWT):

E [x(θ)] =
∫ +∞

−∞
|x(θ)|2 dθ = 2

cψ

∫ +∞

0

∫ +∞

−∞

∣∣W ψ
x (a, b)

∣∣2 dadb

a2
.

Observing the energy reconstruction formula,
∣∣∣W ψ

x (a, b)

∣∣∣
2

appears as an energy

density associated with the adimensional measure
(
2/cψ

)
dadb/a2 ∝ dωdb, i.e., a

wavelet energy density function or wavelet energy spectrum:

Ew(a, b) = ∣∣W ψ
x (a, b)

∣∣2
.

Ew(a, b) represents (Addison 2002) the relative contribution to the signal energy
provided by a specific scale factor a and a specific time shift b. The map of Ew(a, b)

in the (a, b)-plane (or the corresponding three-dimensional surface plotted above the
same plane) is called a scalogram or wavelet spectrogram.9 The scalogram allows
us to study the temporal evolution of the signal’s spectral features, since it highlights
the time position and the scale of dominant energetic features within the signal. We

may note that in practice, all functions which differ from
∣∣∣W ψ

x (a, b)

∣∣∣
2

by a constant

numerical multiplicative factor only are also scalograms, so that we might prefer

9Recall that the term spectrogram indicates instead a STFT plot versus time and frequency.
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to plot the quantity
(
2/cψ

) ∣∣∣W ψ
x (a, b)

∣∣∣
2
, which is associated with the adimensional

measure dadb/a2. However, the plotted quantity is usually
∣∣∣W ψ

x (a, b)

∣∣∣
2
. Its units are

those of the signal’s energy, i.e., the square of the units of data.10

Scalogram maps are normally drawn as contour lines of
∣∣∣W ψ

x (a, b)

∣∣∣
2
, and if colors

are used, warm colors correspond to high energy-density values, while cool colors
correspond to low values. Filled contour lines may be used. Also the use of a gray
scale is common. An example of the appearance of a scalogram drawn by gray-scale
contour lines—over a finite time interval and a finite scale range, of course—is shown
in Fig. 13.17. On the ordinates, scale is reported, or, more often, the corresponding
period is used, computed from the inverse of the frequency deduced from the scale-
frequency relation holding for the specific wavelet in use: P = 1/ f .

An alternative way of plotting the scalogram is to draw a three-dimensional surface
above the time-period-plane, as in Fig. 13.18. This kind of visualization, though
useful for getting a qualitative idea of the scalogram’s behavior, is definitely less
useful than the scalogram map drawn by contour lines, when quantitative inspection
of the resuts of a CWT analysis is needed.

The relative contribution to the total energy contained within the signal at a specific
scale a is given by the scale-dependent energy distribution, obtained integrating
Ew(a, b) with respect to b:

Ew(a) = 2

cψ

∫ +∞

−∞

∣∣W ψ
x (a, b)

∣∣2
db.

Fig. 13.17 An example of a
scalogram plotted by contour
lines in gray scale
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10We should speak about energy per squared unit of time, but time—delay, scale factor—is adi-
mensional here.
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Fig. 13.18 An example of a
scalogram plotted as a
three-dimensional surface
above the time-period-plane
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Peaks in Ew(a) highlight the dominant energetic scales within the signal. The total
energy in the signal can then be written as

E [x(θ)] =
∫ +∞

0
Ew(a)

da

a2
.

We may want to convert the scale-dependent wavelet energy spectrum Ew(a)

into a frequency-dependent wavelet energy spectrum Ew( f ) that can be compared
directly with the Fourier energy spectrum of the (finite-energy) signal. To do this, we
must convert from scale a to frequency—a characteristic frequency of the wavelet at
scale a. We thus need to introduce a scale-frequency relation. As we will discuss in
greater detail later, one of the most commonly used characteristic frequencies used
in practice is the peak frequency of the wavelet’s Fourier transform. We will use this
frequency here. Other choices equally valid in the following discussion can be found
in Sect. 13.4.9. If fc = ωc/2π is the analog peak frequency of the mother wavelet
(a = 1, s = Ts), and if we assume that f ∝ 1/a, we can associate with each scale
s = aTs a Fourier pseudo-frequency

f = fc

s
= fc

Tsa
= ωc

2πs
= 1

2πTs

ωc

a
.

We can now associate the scale-dependent energy distribution Ew(a) with this fre-
quency. By the change of variable f = fc/(Tsa), which implies da/a2 = −Tsd f/ fc,
we can write

Ew( f ) = Ts

fc
Ew(a),

which defines the global wavelet energy spectrum Ew( f ). This allows us to express
the total energy also as
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E [x(θ)] =
∫ +∞

0
Ew( f )d f = 2Ts

cψ fc

∫ +∞

0

∫ +∞

−∞

∣∣W ψ
x ( f, b)

∣∣2
d f db, (13.3)

where we set
∣∣∣W ψ

x ( f, b)

∣∣∣
2 =

∣∣∣W ψ
x (a, b)

∣∣∣
2

for f = fc/ (Tsa). If we furthermore de-

fine the energy density in the time-frequency plane by

Ew( f, b) = 2Ts

cψ fc

∣∣W ψ
x ( f, b)

∣∣2
,

we can finally write

E [x(θ)] =
∫ +∞

0

∫ +∞

−∞
Ew( f, b)d f db.

This concerns the use of frequency as the ordinate in scalogram plots. If we
decided to use period P = 1/ f as the ordinate, we should make another change
of variable, and define new quantities corresponding to those presented above. In

practice, however, for our plots we will always use
∣∣∣W ψ

x (a, b)

∣∣∣
2
, irrespective of what

independent variable we adopt, among scale, frequency and period. We are allowed
to do so, provided we are aware that the contour-line plot (or the three-dimensional
plot) of Ew(a, b) versus a and b, as well as the bi-dimensional representation of
Ew(a) versus a, do not enclose, respectively, volumes and areas proportional to the
energy of the signal, whereas their time-frequency counterparts, Ew( f, b) and Ew( f ),
would do so. However, the peaks in Ew(a, b) and Ew(a) do correspond to the most
energetic parts of the signal, as do the peaks in Ew( f, b) and Ew( f ), and therefore
the two representations both visualize the signal’s energy distribution. Scalograms
are normally plotted with a logarithmic y-axis. Given that in f = fc/(aTs) both
Ts and fc are constant for a given sampled signal and a given mother wavelet, the

plot of
∣∣∣W ψ

x ( f, b)

∣∣∣
2

using a logarithmic frequency axis is simply a shifted, inverted

plot of
∣∣∣W ψ

x (a, b)

∣∣∣
2

using a logarithmic a axis. Similarly, the plot of
∣∣∣W ψ

x (P, b)

∣∣∣
2

using a logarithmic period scale is simply a shifted plot of
∣∣∣W ψ

x (a, b)

∣∣∣
2

using a

logarithmic a axis, and so on. If we orient increasing a scales and periods towards

the bottom of the plot, the plot of
∣∣∣W ψ

x (a, b)

∣∣∣
2

can also be interpreted as a plot of
∣∣∣W ψ

x (P, b)

∣∣∣
2

with decreasing P periods towards the top of the plot, or as a plot of
∣∣∣W ψ

x ( f, b)

∣∣∣
2

with increasing frequencies towards the top of the plot. In literature, all

three representations are commonplace, but in this book we will adopt period P as
the ordinate, with decreasing values of P towards the top of the plot.
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Having clarified these issues, we can drop the related distinctions and focus on

the substance. The values of
∣∣∣W ψ

x (a, b)

∣∣∣
2

at a fixed value b0 of b and with variable

a (or f , or P), which we would encounter by cutting the scalogram plane along a
single vertical line, represent a local wavelet spectrum and are representative of the
spectral content of the non-stationary signal in the neighborhood of b0.

Now, imagine we neglected for a moment the non-stationarity of the random
process from which our signal is drawn, and wanted to derive from CWT analysis an
estimate of its power spectrum. This may seem, at first glance, a contradiction and
a conceptual jump: we want to establish a connection between the spectral theory
of infinite-energy, finite-power random signals and CWT theory, which deals with
zero-power, finite-energy signals. However, in practice experimental signals always
have finite length—assumed to be long enough for the pertinent (stationary) statistics
of the underlying process to settle down sufficiently for analysis. We can thus treat
our finite-length data record exactly as we did in the theory of stationary random
power signals: we consider it as a portion of a typical sample sequence. In the frame
of CWT, the effective finite length of the measured signal is in agreement with the
assumption of finite energy; in the frame of classical spectral analysis of a random
process, energy can be conceptually infinite over the entire time axis, and power can
be finite, allowing us to meaningfully use the notion of power spectrum. After all,
as we already pointed out, in any case we have a finite-length data record, and the
theoretical frame we adopt for its analysis is essentially a matter of convenience. In
conclusion, to get the power spectrum of our record from CWT analysis we just need
to divide the energy spectrum by the duration of the record, so that the area under
the spectral curve we obtain gives the average energy per unit time, i.e., the average
power. At each scale, we will sum up all instantaneous scalogram values, as if we
were cutting the scalogram plane along a horizontal line corresponding to that scale,
and then divide by the record length; we will do this for all scales of interest. We
will thus get the global wavelet spectrum (GWS) that we will be able to compare
with power spectrum estimates of the same record obtained by Fourier or parametric
methods, ignoring non-stationarity and aiming at a spectral estimate averaged over
the record length. GWS is a very smooth spectral estimate, and it has been shown
to be consistent. We will discuss the GWS in greater detail in Sect. 13.5.5, after
adapting the theoretical CWT to real-world sampled signals.

13.4.7 The CWT with Real Wavelets

The real wavelets that are most often used for the CWT are the real DOG, for which
the parameter is the order m of the derivative. The most popular has m = 2 and is
referred to as DOG(m = 2) or Marr wavelet or Mexican hat. The expression of the
real DOG(m) wavelet is
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ψ0(η) = (−1)m+1

√
Γ

(
m + 1

2

)
dm

dηm

(
e− η2

2

)

that for m = 2 reduces to

ψ0(η) = 1)√
Γ (2.5)

(
1 − η2) (

e− η2

2

)
.

The daughter wavelet is, as usual,

ψ(η) = ψ0(η)√
a

.

This wavelet is shown in Fig. 13.15a (third panel from top: m = 2; lowest panel: m
= 6). Its Fourier transform is

Ψ (aω) = − jm√
a√

Γ
(
m + 1

2

) (aω)me− (aω)2

2

that for m = 2 becomes

Ψ (aω) =
√

a√
Γ (2.5)

(aω)2e− (aω)2

2 .

The cases of m = 2 and m = 6 are illustrated in the third and fourth panels from
top in Fig. 13.15b. For even m, the transform is real; however, unlike the Fourier
transforms of analytic wavelets, the transform of the real DOG wavelet is different
from zero also at negative frequencies. This wavelet is sometimes also used in its
“upside down” form. As m increases, the wavelet shrinks in time and widens in
frequency.

An inverse transform can also be written for the CWT with real admissible
wavelets:

x(θ) = 1

cψ

∫ +∞

0

∫ +∞

−∞
W ψ

x (a, b)ψa,b(θ)
dadb

a2
.

The energy reconstruction formula (Parseval’s theorem for the CWT) is then

E =
∫ +∞

−∞
|x(θ)|2 dθ = 1

cψ

∫ +∞

0

∫ +∞

−∞

∣∣W ψ
x (a, b)

∣∣2 dadb

a2
,

where the scalogram was defined as for analytic wavelets, Ew(a, b) =
∣∣∣W ψ

x (a, b)

∣∣∣
2
,

and where

cψ =
∫ +∞

−∞
|Ψ0(ω)|2

ω
dω < ∞.
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The difference between the synthesis formulas for real and analytic wavelets can be
understood as follows:

• a formula identical to the one given for real wavelets reconstructs the analytic
signal xa(θ) associated with x(θ), and built by setting Re [xa(θ)] = x(θ) and
Im [xa(θ)] = x̂(θ), where x̂(θ) indicates the Hilbert transform of x(θ). Thus, as-
suming we used an analytic wavelet,

xa(θ) = 1

cψ

∫ +∞

0

∫ +∞

−∞
W ψ

xa
(a, b)ψa,b(θ)

dadb

a2
;

• it can be shown that the CWT of xa(θ) is, the mother wavelet being equal, twice
the CWT of x(θ):

W ψ
xa

(a, b) = 2W ψ
x (a, b).

Therefore, for an analytic wavelet we have

x(θ) = 2

cψ

Re

[∫ +∞

0

∫ +∞

−∞
W ψ

x (a, b)ψa,b(θ)
dadb

a2

]
,

that leads us back to the reconstruction formula given in Sect. 13.4.5.
Other real wavelets can be used for CWT analysis: the real Morlet wavelet, the

real Meyer wavelet and the compact-support orthogonal wavelets systems used for
the DWT (Daubechies wavelets, symlet, coiflets. See the appendix in Chap. 14 for a
description of these wavelets).

13.4.8 Morlet’s Empirical Reconstruction Formula

We already mentioned that W ψ
x (a, b) contains the information required to recon-

struct x(θ) in a redundant way. This offers, among many advantages, the possibility
of reconstructing the signal using a different synthesis wavelet with respect to the
analysis wavelet. In particular, Morlet found an empirical reconstruction formula in
which the synthesis wavelet is as simple as a Dirac δ (see Farge 1992):

x(θ) = 1

cδ

∫ +∞

0
W ψ

x (a, θ)
da

a3/2
,

with

cδ ∝
∫ +∞

−∞
Ψ0(ω)

|ω| dω.

We may note how using a Dirac δ makes the integral over delay disappear from the
reconstruction formula. This expression is widely used in software implementations.

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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Fig. 13.19 An example of a
sinusoid that captures the
dominant oscillation of a
wavepacket-like wavelet; the
wavelet is DOG(m = 6)
for a = 10

−50 −25 0 25 50
−0.3

0

0.3

θ

ψ
0
(θ

)

DOG (m = 6)

13.4.9 Scale-Frequency Relation

The precise relation between scale and frequency depends on the wavelet shape and
on the conventional criterion adopted to define the relation itself. For the analytic
Morlet wavelet, for example, it is natural to assume as wavelet frequency at a given
scale the reciprocal of the period of the oscillations of the daughter wavelet at the
considered scale, but in other cases the choice is much less obvious.

We already used the Fourier pseudo-frequency at scale s = aTs ,

f = ωc

2πs
,

where ωc is the peak frequency of the modulus of the mother wavelet transform,
i.e., the non-negative angular frequency that corresponds to the maximum of the
transform magnitude. Another possible choice is the passband central frequency,
which would be equally valid.

The basic idea is to associate with the mother wavelet a sinusoidal signal with fre-
quencyωc/(2πTs), able to capture the dominant wavelet oscillation; when laterψ0(θ)

is scaled to ψ(η), the characteristic frequency becomes ωc/(2πaTs) = ωc/(2πs).
This pseudo-frequency is well-defined only at sufficiently large scales, where the
wavelet spectrum is narrowband enough. In Fig. 13.19 an example of this associa-
tion is given for the real wavelet DOG(m = 6).

Alternatively, we can analyze by CWT a sinusoidal signal with angular frequency
ω and compute the scale a at which the maximum absolute value of the CWT is found,
as a function of delay b; we will then average these scale factors over delay. If this can
be done analytically, it leads to a univocal relation between a and ω, i.e., ω = ω(a).
This relation can then be translated into the relation between analog frequency and
scale, f = f (s). More frequently, we will prefer to derive in this way the relation
between adimensional period Pad = 2π/ω and scale factor a, i.e., Pad = Pad(a),
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Table 13.1 Relation between adimensional period Pad and scale factor a for the analytic Morlet
wavelet with parameter ω0, the analytic Paul wavelet with parameter m and the real DOG wavelet
with order m

Analytic Morlet(ω0) Analytic Paul(m) Real DOG(m)

Pad = k0a = 4πa

ω0+
√

ω2
0+2

Pad = k0a = 4πa
2m+1 Pad = k0a = 2πa√

m+ 1
2

ω0 = 6: k0 ≈ 2π
ω0

= 1.033 m = 4: k0 = 1.396 m = 2: k0 = 3.974

m = 6: k0 = 2.465

The proportionality factor between Pad and a is indicated as k0 and is called the Fourier factor.
Numerical values of k0 are given for the analytic Morlet wavelet with parameter ω0 = 6, the analytic
Paul wavelet with parameter m = 4 and the real DOG wavelet with orders m = 2 and 6

and, consequently, the relation between the period P expressed in seconds and the
dimensional scale s. Calling Ts is the sampling interval of the data record in the same
units, Pad = P/Ts . Note that Pad = 1/ν, where ν is adimensional frequency.

This method of defining the relation is particularly useful for continuous wavelets,
for which very often the analytical calculation is possible. If, on the contrary, we
cannot compute the scale-frequency/scale-period relation by analytical means, we
can nevertheless construct a numerical calibration curve, by computing the CWT of
many sinusoidal signals with different frequencies.

In Table 13.1, the function Pad = Pad(a) computed by analytical means for three
popular continuous wavelet types—analytic Morlet, analytic Paul and real DOG—
is given. In all cases, Pad is simply proportional to scale: Pad = k0a, where the
constant k0, called Fourier factor, depends on wavelet type and on the value of its
parameter. The remarkable differences in the scale-period relation from one wavelet
to another bear no particular meaning, and are simply due to the different wavelet
shapes. Note that for the analytic Morlet wavelet, period and scale are essentially
equal. The proportionality between Pad and a justifies our previous reasoning based
on f ∝ 1/a.

13.4.10 Cone of Influence (COI) and Locality of the CWT

The CWT synthesis relation shows that x(θ = θ0) cannot be reconstructed on the
basis of W ψ

x (a, b = θ0) only: the formula contains an integral over time delay b.
It also contains an integral over a, meaning that in principle all variability scales
contribute to x(θ = θ0). Therefore, in order to reconstruct the signal in the neigh-
borhood of θ0 we must take into account all the values of W ψ

x (a, b) that belong
to a certain area in the time-scale plane . In particular, at each scale a we need all
the values of W ψ

x (a, b) included in a certain time interval that is referred to as the
cone of influence (COI). We can look at the cone of influence also in the transform
domain, from the definition of CWT: W ψ

x (a, b = θ0) does not contain only θ = θ0,
but is an integral over time θ . This is related to the temporal locality of the CWT
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that exists—the time interval centered on θ0 within which the values of the signal
significantly influence W ψ

x (a, b = θ0) is limited—but to an extent depending on the
scale. As scale increases, temporal locality diminishes. The COI is important also
for what concerns the edge effects in the CWT of a finite-length data record.

To understand the concept of the COI, it is actually convenient to focus on the
real-world case of a finite-length sampled signal. We will discuss the discretiza-
tion of the CWT in the next section; for the moment let us imagine two sequences,
the data record and a discretized wavelet at some scale a. In the time domain, the
convolution integral that defines the CWT at the scale a becomes a discrete-time
linear convolution. For continuous wavelets, the analytical wavelet expression is
known as a function of time and scale, so that at a given scale we only need to
sample it using the same Ts of the data, over an arbitrary time span. The wavelet
can therefore be expressed as an arbitrarily long sequence. On the contrary, the
signal values are known only as a fixed number N of samples. In the convolu-
tion, the daughter wavelet is shifted along the signal, from b = 0 up to the total
signal length, and at each position b the signal is correlated with the wavelet. If
b occupies a central position with respect to the signal’s time span, we will have
no problems taking a sufficiently long part of the data sequence and computing
all the term-by-term products between the data and the wavelet required to com-
pute linear convolution. But if b is close to the beginning or to the end of the
record, some data will be missing and we will have to “invent” them. This issue
in the CWT is normally solved by zero-padding the signal, so as to extend it. These
added zeros constitute a signal discontinuity that influences the values of the CWT
at the scale a at both edges. Where this influence is present, the CWT values are
reduced with respect to their hypothetical “true” value, i.e., the one we could com-
pute if we had more data—hypothetically, an infinite amount of data. The larger
the scale, the wider the time intervals adjacent to the edges in which the CWT
is disturbed. The width of each time interval is exactly the COI at the considered
scale.11

As we will see when discretizing the CWT, in software implementations it may
be convenient to compute the wavelet transform in the frequency domain, via FFT.
The issue of edge effects then comes into play as in any circular convolution: the
linear convolution of two sequences, computed as the product of two DFTs, can be
free from time-domain aliasing only if we properly augment the two sequences by
zero-padding. For instance, if the data record has N1 samples and the discretized
daughter wavelet at a given scale has N2 samples, we must

• bring both sequences to a length M ≥ N1 + N2 − 1, according to the length N1 +
N2 − 1 of their linear convolution; we may want to set M equal to the nearest
integer power of 2 for FFT efficiency, i.e., M = NFFT = 2ν , where ν is integer;

• compute both DFTs via FFT;
• multiply them sample by sample;

11We may note that if the data were cyclical, as in the case of a meteo-climatic data sequence
measured at fixed latitude and time as a function of longitude, there would be no need to add zeros
and the COI would not exist.
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• perform the inverse FFT of the product, thus getting the discretized CWT at the
considered scale.

So, the issue of COI-related edge effects is evident in both frequency and time
domains.

When the scalogram is plotted in the time-scale or time-period plane, in order
to recall that inside the COI relative to the record edges the scalogram values are
artificially reduced with respect to their true values, it is advisable to draw the COI
curve. We will describe how the equation of this curve can be obtained after discussing
the discretization scheme for the CWT, but we can immediately discuss how the COI
curve looks in the time-period plane—this also explains why we call it a “cone”—
and how it is connected to the locality of CWT analysis, and in particular to locality
in the time domain.

Let us first reconsider Fourier analysis. The Fourier transform at a given frequency
depends on the whole record, and if, for example, this contains a noise spike, all of
the spectrum is affected by this impulsive event. The same is true for the STFT: a
noise spike x(θ) = δ(θ − θ0), occurring at some instant θ0, affects the STFT in the
neighborhood of θ0 at all frequencies, and in the time-frequency plane this impulse
(Fig. 13.20a) appears as a belt of constant width �θ (Fig. 13.20b). In the CWT, the
impulse only affects the points of the time-scale or time-period plane contained inside
the COI, the amplitude of which is proportional to the wavelet support �θi at the scale
a = ai . The wavelet transform W ψ

x (ai , b = θ0) will depend on the values of x(θ)

for θ ∈ θ0 − (�θi ) /2, θ0 + (�θi/) 2. The interval �θi decreases with decreasing ai

(Fig. 13.20c). Therefore the influence of the spike on scalogram values is more and
more local in time as the scale decreases. Globally, the time locality of CWT is
greater when the largest scales are excluded from the analysis; the very existence
of time locality in CWT is due to the use of basis functions with concentrated or
compact time support, as opposed to the infinitely-long sines and cosines employed
in Fourier analysis. Fig. 13.20c also clarifies the use of the word “cone”: speaking
with propriety we should call it a “triangle”.

The precise definition of the COI width is a matter of convention. Usually it is
defined as follows:

• an impulsive disturbance at some θ0 is considered: x(θ) = δ(θ − θ0);
• the wavelet transform W ψ

x (a, b) is computed;

• at some scale a0, the value of
∣∣∣W ψ

x (a0, b)

∣∣∣
2

will descend to 1/e2 times the value

it assumes at θ0 at some time delay ba0 after θ0. Then, ba0 is assumed as the COI
width at the scale a0;

• if
∣∣∣W ψ

x (a0, b)

∣∣∣
2

oscillates and crosses the level
∣∣∣W ψ

x (a0, θ0)

∣∣∣
2
/e2 more than once,

the maximum delay is assumed as ba0 ;
• the procedure is repeated at all scales of interest, so that the relation ba = ba(a) is

found.
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Fig. 13.20 Locality of CWT
in comparison to STFT: a an
impulse, b the region of the
time-frequency plane that is
affected by it in the STFT,
which has equal width �θ at
all frequencies, and c the
region of the time-scale
plane that is affected by the
impulse in the CWT. This
region has a width �θ
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For the analytic Morlet wavelet the result of this procedure is ba = √
2a. In terms

of dimensional quantities we could equivalently write τs = √
2s, where τs is called

e-folding time.
So far, we have focused on time locality, but it is clear that the CWT is local

not only in time but also in scale. The wavelets do not only have a concentraded
or compact time support but also a bandpass spectrum. Even if in the reconstruc-
tion formula an integral over scale appears, which is equivalent to an integral over
frequency, every oscillatory component of the signal at some scale a will contain
significant contributions only from a limited interval of frequencies, centered on the
peak frequency of the frequency response of the wavelet filter at the considered scale.
The bandwidth of the wavelet filter decreases with increasing scale, according to the
MRA property. In Fourier analysis, we have a perfect frequency locality (a sinusoid
has a Dirac-δ spectrum) and a non-existent time locality; in the CWT at each scale
we have a different trade-off between the two characteristics.

13.5 CWT Discretization

Numerical computation of the CWT requires discretizing it in time and scale, so that

• a finite-length sequence x[n] can be analyzed in place of an analog signal x(θ) of
infinite length;

• a discrete set of scale is considered;
• the definition integral is transformed into a finite sum.

Recalling that

W ψ
x (a, b) = 1√

a

∫ +∞

−∞
x(θ)ψ∗

0

(
θ − b

a

)
dθ =

∫ +∞

−∞
x(θ)ψ∗

(
θ − b

a

)
dθ,
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we can choose

• integer values of time, θ = n′, with n′ = [0, N − 1], so that dθ becomes �θ =
�n′ = 1;

• integer delay values, b = n, with n = [0, N − 1], i.e., a maximally dense sampling
for delays. We thus arbitrarily decide to compute the transform for all discrete time
values in the input sequence x[n], and �b = �n = 1;

• a = {
a j

}
, with j = [0, J ], i.e., a discrete set including J + 1 scale factors.

Then we write

W ψ
x (a, n) ≈ 1√

a

N−1∑

n′=0

x[n′]ψ∗
0

[
n′ − n

a

]
,

expressing

• the linear convolution of the input sequence x[n] with ψ∗ (−n/a),
• a filtering of the data with a digital bandpass filter with frequency response Ψ ∗(aω),
• the correlation between the signal and the daughter wavelet at the scale a and at

lag n.

The wavelet normalization in the discretized case is expressed by the equation

N−1∑

n=0

∣∣∣ψ
(n

a

)∣∣∣
2 = 1 = 1

NF FT

NF FT −1∑

k=0

|Ψ (aωk)|2 .

The impulse response of the discrete-time wavelet filter is

ha[m] = ψ∗
[
−m

a

]
= ψ∗ [−kdecm ′] ,

where kdec is a decimation factor inversely proportional to the scale. Note that in order
to have an integer kdec we must necessarily follow the approach in which a ≤ 1 and
the wavelet is progressively contracted, rather than dilated. Therefore if we want to
operate in the time domain we must build the mother wavelet, which will represent
the maximum scale, over a dense set of points, and then decimate it with factors kdec

progressively increasing with decreasing scale. This is, for example, the approach of
the function that implements CWT in the Wavelet Toolbox of the popular MATLAB
software.

It is, however, very convenient to operate in the frequency domain. For the DFT
convolution theorem, the DFT of the discretized CWT is equal to the term-by term
product of the DFT of the data over NF FT points, indicated by X [k], with Ψ ∗(aωk),
with ωk = 2πk/NF FT . The function Ψ ∗(aωk) can be viewed as

• the DFT of the impulse response of the discrete-time wavelet filter computed over
NF FT points,

• the frequency response of the wavelet filter sampled at the discrete frequencies ωk ,
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Fig. 13.21 An example of
how a dyadic set of scales is
built: the dark arrow
represents one octave and the
light arrows indicate voices.
The minimum scale factor
is 2, the total number of
scales is 29, there are 4
voices per octave and the
total number of octaves is 7

• the result of the sampling performed on the continuous-time Fourier transform of
the continuous-time wavelet over the same ωk-set used for X [k]. For this approach
to Ψ ∗(aωk), the analytical expression of Ψ (aω) must be known. This is guaranteed
if the continuous wavelets introduced in Sect. 13.4.1 are used.

Subsequently we can get W ψ
x (a, n) by inverse DFT of X [k]Ψ ∗(aωk). As a last step,

the redundant samples will be eliminated: if the data has N samples and the DFTs have
been computed over NF FT points, the samples of W ψ

x (a, n) with n = [N + 1, NF FT ]
will be discarded.

As for the set of discrete scales, in principle it can be chosen arbitrarily, but usually
a dyadic set of scales is constructed:

a = a02 jδ j , j = [0, J ],

where a0 is the minimum scale factor and δ j is the reciprocal of the number of scales
per octave. An octave is a jump by a factor of 2 in scale factors: for example, from
2 to 4, or from 8 to 16, etc. The parameter δ j is set to a value small enough to have
a smooth discretized CWT. Its optimal value varies according to the bandwidth of
the mother wavelet; for instance, with the analytic Morlet wavelet it is advisable to
set δ j < 0.5, but if the computational burden allows it, often we will choose smaller
values, like δ j = 0.1, or even 0.05. The maximum scale factor is thus amax = a02Jδ j ,
and therefore log2(amax) = log2(a0) + Jδ j . Hence

J = 1

δ j
log2

amax

a0
.

The total number of scales is J + 1, the octaves are Jδ j and the number of jumps
from one scale to the nearest one inside a given octave is 1/δ j : these jumps are called
voices. Figure 13.21 shows an example of a set of dyadic scales.
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Table 13.2 Minimum scale factor a0 for different mother wavelets, in relation to Fourier factor k0
(see Table 13.1)

Analytic Morlet
(ω0 = 6)

Analytic Paul
(m = 4)

Real DOG
(m = 2)

Real DOG
(m = 6)

k0 = 1.033 k0 = 1.396 k0 = 3.974 k0 = 2.465

a0 = 2/1.033 ≈ 21 a0 = 2/1.396 ≈ 21 a0 = 2/3.974 ≈ 2−1 a0 = 2/2.465 ≈ 20

The choice of the minimum and maximum scale can be done on the basis of
several criteria. The simplest one is the following:

• the Nyquist theorem sets fmax = fN y = 1/ (2Ts). For the scale-frequency relation,
fmax corresponds to some smin and therefore to some amin ≡ a0. More precisely,
from fmax = 1/ (2Ts) we deduce Pad

min ≡ Pad
0 = 2 and thus a0 = Pad

0 /k0. The
value of a0 obtained in this way is then rounded up to the nearest higher inte-
ger power of 2. Table 13.2 gives the minimum scale factor for different mother
wavelets.

• In a similar way, we can set fmin = 1/ (N Ts) as in Fourier analysis, where the
Rayleigh frequency � f = 1/(N Ts) sets to this value the frequency that is closest
to the zero frequency. From fmin we can then derive smax and amax.

In this way, for a given wavelet, the minimum scale smin is dictated by Ts , while the
maximum scale smax is determined by both N and Ts , i.e., by the record’s duration. As
a consequence, amin ≡ a0 is constant and amax depends on the number N of available
data points.

This scale discretization scheme is arbitrary and not binding, and implies, in
association with the choice of maximally dense delays, a remarkable redundance of
the wavelet transform. Moreover, the criteria for selecting a0 and amax given above
are simple but can be subject to criticism.

For instance, it may seem more sensible to determine a0 by requiring the wavelet
at scale a0 (i.e., the one having the highest center frequency and the largest band-
width) to be approximately bandlimited to ω = π , in the sense that only a negligible
percentage of the continuous-wavelet energy in the frequency domain should belong
to frequencies ω > π . If we call a∗

0 the value chosen on the basis of this criterion,
and if we set a0 < a∗

0 , scales will exist for which the product X [k]Ψ (aωk) will use
only a part of the bell-shaped curve of Ψ (aωk), because the rest of the bell protrudes
beyond the upper bound π of the frequencies ωk over which X [k] is calculated.

Another criterion, connected to the previous one, could be based on requiring
for the wavelet at scale a0 a duration—quantitatively defined in some way—equal
to at least 2Ts , which is different from requiring that k0 a0 = 2. Considering that
evaluating the minimum scale dictated by these criteria for all the different wavelets
we may want to use is not immediate, and, above all, observing that the precise
choice of a0 is not crucial in applications, we hereafter will adopt the approximate
criterion that leads to Table 13.2.
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Also the maximum scale factor amax can be set on the basis of different criteria:
for instance, we can require the duration of the wavelet not to exceed the record
duration, or maybe two times as much, etc.; we could also require its spectrum to
cover at least two intervals between the discrete frequencies over which the data
spectrum is sampled. The simple criterion based on the Rayleigh frequency gives a
reasonable approximate idea of what amax should be. In applications, we will also be
able to judge the quality our choice looking at the results of the analysis, i.e., looking
at

• the appearance of the discretized scalogram
∣∣∣W ψ

x (a, n)

∣∣∣
2

and of the related COI

plot: if most of the scalogram lies outside the COI relative to record edges, we will
be sure we did not go too high with the maximum scale;

• the appearance of the GWS plot: if the GWS drops off at low frequencies, we will
be confident we did not neglect any long-wave features in the data;

• the comparison between the original data and the data reconstructed by inverse
CWT based on all scales of variability: if the reconstructed signal is similar to the
original one, we will be confident about having included all relevant scales in the
analysis.

13.5.1 Scalogram Plot and Edges-Related COI Curve

Figure 13.22b shows a typical example of a scalogram plot. This is the same scalo-
gram appearing in Fig. 13.17, but this time it is drawn by filled gray-scale contour
lines. The wavelet is the analytic Morlet wavelet with ω0 = 6. The data is the same
SST series used for Fig. 10.19, with Ts = 1/4 year. On the abscissa, t = nTs in years
is reported; the acronym AD stands for Anno Domini and indicates the years of the
Christian Era. On the ordinate, we see the dimensional period P expressed in years.
The P-axis reversed, so that the associated frequency axis would be upright. More-
over, the ordinate is reported on a logarithmic base-2 scale, in agreement with the
dyadic discretization of scale factors. The regions of the plane in which the energy
of the signal concentrates are clearly visible.12 The COI curve related to edge ef-
fects is overlaid to the map (white cup-shaped curve). Significance contour lines for
scalogram values at the 95 % c.l. are also drawn as black curves (see Sect. 13.5.2)

The relation between the COI width and the scale factor, i.e., ba = ba(a), is given
in Table 13.3 for the most commonly adopted continuous wavelets. The relation
is linear. The proportionality coefficient between ba and a, the numerical value of
which is reported in Table 13.3, will hereafter be indicated by kCOI. Now, to draw
the edges-related COI curve in the time-period plane we actually need the equation

PCOI = PCOI(t), with t = nTs,

12The plot should also include a colorbar telling the scalogram value associated with each shade of
gray. Since this is only a qualitative example, the colorbar has been omitted.

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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where PCOI is the ordinate on the white cup-shaped curve that corresponds to the
abscissa t . This equation can be derived as follows.

If Td = (N − 1)Ts is the duration of the data record, then

• for the time interval 0 ≤ t ≤ Td/2 we imagine an impulsive disturbance at t = 0.
Recalling that P = k0s and τs = Tsba = TskCOIa = kCOIs, we observe that im-
posing t = τs we get

P = PCOI = k0sCOI, t = kCOIsCOI.

Then we have

PCOI = k0

kCOI
t,

representing a curve we can draw in the time-period plane. The curve delimits
the COI region related to the impulse at t = 0; this region, enclosed between the
ordinate axis and the curve, would be a triangle if we used a linear P-axis, but
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Fig. 13.22 A typical graph summarizing the results of the CWT analysis of a record: a the series
(the same analyzed in 13.17 and previously used for Fig. 10.19), b its scalogram with special black
contours enclosing significant areas at the 5 % confidence level and with the COI curve (white line),
and c the GWS (solid curve) with its significance curves at the significance levels of 5 and 1 %
(dashed and dashed-dotted curves, respectively). The wavelet is analytic Morlet with ω0 = 6.

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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Table 13.3 Linear relation between scale factor and cone-of-influence (COI) width, ba = ba(a),
for the analytic Morlet wavelet with parameter ω0 = 6, the analytic Paul wavelet with parameter
m = 4, and the real DOG wavelets with orders m = 2 and m = 6

Analytic Morlet(ω0) Analytic Paul(m) Real DOG(m = 2) Real DOG(m = 6)

ba = √
2a ba = 0.7013a ba = 2.1243a ba = 1.5829a

The numerical proportionality factor between ba and a is called kCOI in the text

becomes a curvilinear triangle with concavity facing upwards when we use the
base-2-logarithmic P-axis;

• for the remaining part of the time axis, we will place the disturbance at t = Td and
will obtain in a similar way another COI curve delimiting a curvilinear triangle
that will be a mirror image of the first one.

This is illustrated in Fig. 13.23: in this example, the analytic Morlet wavelet with

ω0 = 6 has been used, for which PCOI = (k0/kCOI) t =
(

1.033/
√

2
)

t = 0.73t .

We can see that the larger the delay τs corresponding to a given PCOI, the more
extended in time the area of the map affected by edge effects. This is the reason why
when kCOI is calculated, if the equation

∣∣W ψ
x (a0, ba0)

∣∣2 = ∣∣W ψ
x (a0, θ0)

∣∣2
/e2

has more than one solution for ba0 , the maximum delay ba0 is conservatively assumed,
which corresponds to the widest COI.

Fig. 13.23 Cone-of-
influence (COI) at the edges
of the time-period plane,
found applying two
impulsive disturbances, one
in the time origin and the
other one at the end of the
data record. A analytic
Morlet wavelet with ω0 = 6
has been used; the record is
composed by N = 1000
samples and the sampling
interval has been assumed to
be 1 year. As a consequence,
times and periods on the axes
are expressed in years too
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13.5.2 Scalogram Significance Levels

In order to evaluate the statistical significance of the spectral features detected in
CWT analysis, a test similar to that used for the periodogram is applied to every local
wavelet spectrum. We may observe that in our discretized CWT, with �b = �n = 1,
every local spectrum represents the frequency distribution of energy per unit time,
and therefore is itself a power spectrum estimate, exactly as a periodogram—it is the
local-in-time power spectrum estimate for our series. The GWS can now simply be
seen as the average of all local-in-time power spectra.

The significance test for each local spectrum is the same we used for the peri-
odogram. This test was devised for WSS random processes; thus, in principle, the
test is not relevant to the case of non-stationary signals. However, it can still provide
useful guidelines in CWT analysis. The background spectrum is assumed to be white
or red noise with variance σ 2

x estimated from the data. Monte Carlo simulations have

shown that for an analytic wavelet,
∣∣∣W ψ

x (a, n)

∣∣∣
2

for a given n = n0 follows a χ2

distribution with ν = 2 DOF. The simulations were performed in this way:

• a high number, e.g., 10,000, of Gaussian red-noise sequences was generated, all
with the same length N = 512;

• the scalogram of each sequence was computed;
• from each scalogram, a “vertical slice”, i.e., a local wavelet spectrum, was taken

far from the edges, at n0 = 256;
• at each scale, the 10,000 spectral samples thus obtained were ordered by increasing

value and plotted as a function of order number, to see the amplitude distribution
of the local spectrum at each scale. In this way, Torrence and Compo (1998) found
a χ2 distribution with ν = 2.

This empirical result is not surprising, if we consider that at any given scale, the
complex values of W ψ

x (a, n) can be viewed as the inverse DFT of the product between
the DFT of the signal and the frequency response of the bandpass wavelet filter at
the given scale. If the signal is Gaussian, the real and imaginary parts of such values

W ψ
x (a, n) are Gaussian too, and the square modulus

∣∣∣W ψ
x (a j , n)

∣∣∣
2

is χ2
2 -distributed.

If a real wavelet were used for the CWT, each point of the time-scale plane would
be associated with only one DOF and the distribution would be χ2

1 .

More precisely, the χ2 distribution is followed by 2
∣∣∣W ψ

x (a j , n)

∣∣∣
2
/Pj , where Pj

is the PSD of an AR(1) process at that ω j which corresponds to the scale factor a j , ac-
cording to the particular scale-frequency relation for the wavelet in use. At each scale

a j and time n we can therefore assume that the significance level for
∣∣∣W ψ

x (a j , n)

∣∣∣
2
,

with red-noise null-hypothesis and for an analytic wavelet—also referred to as the
p %-c.l. scalogram—is

∣∣W ψ
x (a j , n)

∣∣2

signif (a j ) = Pj

χ2
1−p,2

2
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at the p % confidence level (c.l.). In the scalogram map, the areas in which∣∣∣W ψ
x (a j , n)

∣∣∣
2

exceeds the significance level are highlighted by drawing a particu-

lar and clearly visible set of contour lines representing scalogram values equal to the
significance level. These contour lines will enclose significant scalogram areas, as
in Fig. 13.22b, where we can see them as black curves. Here the c.l. is 95 %.

13.5.3 Interpretation of the Scalogram

In evolutionary spectral analysis, maps like the one shown in Fig. 13.22b allow for
observing what band of periods—or frequencies, or scales—is particularly active in
contributing to the signal’s varibility in the neighborhood of every time value, and
allow for deciding if such activity can be considered significant at some confidence
level against a properly chosen null-hypothesis for the noise background.

For example, the scalogram values in Fig. 13.22b are high in the period range
from 2 to 4 years from the beginning of the series to the 1920s and again from 1960
AD to 2000 AD, while the interval 1920–1960 exhibits lower values in this period
range. The Nino3 SST anomalies analyzed in Fig. 13.22b are indicators of interannual
climatic variability in the Pacific Ocean, which is characterized by the El Niño–La
Niña phenomenon (Sect. 10.8). The scalogram allows us to appreciate the temporal
variations of the frequency with which warm events (El Niño) and cold events (La
Niña) occurred in the last one-and-a-half centuries. It is known that between 1875
and 1920 AD many remarkable events took place, while between 1920 and 1960
only a few events were identified; they did not occur in a strictly periodic way, but
typically took place every 2–7 years. The scalogram of Fig. 13.22b tells us exactly
this, and describes the spectral evolution of the phenomenon. From 1875 to 1915
AD, a shift of significant energy density from about 4 years of period to about 2 years
of period is evident; from 1960 to 2000 AD an opposite shift can be observed, from
shorter to larger periods (more precisely, from a dominant period of about 3 years in
1960–1965 to a dominant period of about 5 years from 1980 AD on). Periods up to
about 6–7 years are associated with significant scalogram values in the most recent
decades. Note how localized events in the signal appear as single, narrow scalogram
maxima where time resolution is high, i.e., at small scale/period.

We can also observe that the maximum scale considered for drawing Fig. 13.22b,
which corresponds to a period of about 90 years, has been chosen in a reasonable way:
this record covers 1871–2014 AD, i.e., about 140 years, so that the maximum period
is about 65 % of the record length. The interval of scales for which the scalogram
points lie completely inside the COI is a small fraction of the whole vertical axis.

If we count the number of scalogram points that exceed the significance level
at the 95 % c.l., we find about 5 % of the total. On this basis, the series cannot be
distinguished from noise. However, other scalogram features can inform us about
therandomness of the series. Imagine if we analyzed a pure-noise sequence. What

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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would the scalogram look like? In case of white noise with variance σ 2
x , we might

expect the scalogram to exhibit a constant value everywhere. In reality it would
show a random distribution of maxima and minima around the constant value σ 2

x .
Similarly, the scalogram of a red noise signal would show, on average, a gradual
increase of scalogram values with increasing scale/period and decreasing frequency,
with a random distribution of maxima and minima around this average behavior.
Now imagine we analyzed a generic stationary signal characterized by a true energy
spectrum of some kind. The scalogram would show random fluctuations around this
spectrum. Apart from these fluctuations, the scalogram would appear uniform along
the time axis. All local spectra would be similar to one another, and the global wavelet
spectrum would echo their shape. At last, the scalogram of a non-stationary signal,
like the one shown in Fig. 13.22b, is recognizable from the presence of organized
features in time and scale. The scalogram of a red noise sequence with parameter
equal to the lag-1 autocorrelation of the Nino3 anomaly series would display an
average gradual increase of scalogram values with period, with maxima and minima
randomly distributed around this average trend; in our actual scalogram, on the
contrary, significant regions are clearly organized in time and scale, which indicates
a lesser randomness of the stochastic process underlying the generation of the data
record, with respect to red noise.

Scalograms also allow us to see if passing from one scale to the other, repetitive
patterns appear that might indicate fractality of the process. To see an example of
this behavior, we can consider the von Koch curve (Fig. 13.24a), a mathematical
curve which is one of the earliest fractal curves that has been described in literature
(von Koch 1904). If we analyze this signal by CWT we actually see (Fig. 13.24b) a
regular pattern through scales. The CWT of the von Koch curve has been computed
using a “nearly-symmetric orthogonal wavelet” named coiflet of order 3, a wavelet
that is normally employed for DWT (see Chap. 14) but can be used for CWT too,
and is particularly fit for the task of fractality detection. Figure 13.24b simply shows
the absolute values of the CWT-matrix elements: we do not need to refer to concepts
like energy density and scalogram in this case, since we are just looking for repetitive
patterns. Indeed, it is intuitive that since the CWT is a “resemblance index” between
the signal and the wavelet, if a signal is similar to itself at different scales, then
the resemblance index also will be similar to itself at different scales, and this self-
similarity will generate a characteristic pattern. Note that to make the regular pattern
more visible, in Fig. 13.24b only a part of the time axis is shown: the signal extends
over some 8000 samples, while the CWT magnitude is shown only for time indexes
from 3200 to 4200.

The choice of the mother wavelet is important to put one or another facet of the
data spectral behavior into evidence. We just pointed out this fact in the case of
fractality detection. By and large, we can say that the wavelet should “look like” the
feature of the signal that we want to detect: for example, if a signal contains transient
bursts and we want to detect them, the Mexican hat wavelet can be a good choice.
This may be the case of an ECG signal in which we want to locate the onset and
demise of eachheartbeat, or the case of a seismologic signal in which we want to

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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Fig. 13.24 a The fractal von Koch curve over N = 8192 points, and b an expanded view of the
absolute value of its CWT in the time-scale plane. A coiflet wavelet of order 3 was used (see the
text and Chap. 14)

detect earthquake tremors. For spectral analysis, the best choice is a wave-packet-
like wavelet like the analytic Morlet wavelet, but even in this case we may desire to
privilege time resolution, or frequency resolution. If we want a finer time resolution
at all scales with respect to what we can obtain with the analytic Morlet wavelet,
we may want to use the analytic Paul wavelet that, being narrower in time, can
produce the desired result; or we may want to modify the analytic Morlet wavelet
(see Chap. 16).

In normal applications, the redundancy of the CWT discretizaton scheme is not
too heavy in terms of computational costs, and makes the scalogram maps smoother
and easier to interpret than those that could be obtained with a discretization made
paying attention to “economy”.

13.5.4 Signal Reconstruction from Discretized CWT Samples

The discrete version of Morlet’s reconstruction formula that uses a Dirac δ is

x[n] = δ j

cδψ0(0)

J∑

j=0

Re
{

W ψ
x (a j , n)

}

√
a j

,

http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_16
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where the constant cδ is characteristic of each particular mother wavelet used for
the analysis and can be evaluated in several ways. The simplest one is probably the
following:

• we take any series, even synthetic, i.e., constructed adding noise to sinusoids;
• we fit the value of cδ that optimizes the reconstruction of the signal from its CWT

samples, in the sense of the root mean square error of the reconstruction.

An explicit formula for cδ actually exists (Torrence and Compo 1998), but it may
lead to numerical instabilities.

The discrete version of Parseval’s theorem is

σ 2
x = δ j

Ncδ

N−1∑

n=0

J∑

j=0

∣∣∣W ψ
x (a j , n)

∣∣∣
2

a j
.

Both Morlet’s and Parseval’s formulas are useful to check the accuracy of the numer-
ical calculation of the CWT and find the interval of scales or periods that contains
most of the signal’s energy. They can help with deciding which is the proper value
of the maximum scale. It should, however, be clear that in CWT nothing forces us to
always analyze a signal including all its variability scales. We can arbitrarily decide
which scales are of interest (see also Sect. 13.5.6).

13.5.5 Global Wavelet Spectrum (GWS) and Significance
Levels

The global wavelet spectrum (GWS) is computed as the time average of all local
wavelet spectra:

W
2
(a) = 1

N

N−1∑

n=0

∣∣W ψ
x (a, n)

∣∣2
.

The GWS of the SST record appears in Fig. 13.22c. Significance levels for the GWS
at the 95 and 99 % c.l. are also drawn, which are introduced below. Figure 13.22
is an example of how the final result of the CWT analysis of a data recond can
appear. In a single figure, three plots are drawn: the series (Fig. 13.22a), its scalogram
(Fig. 13.22b) with special contour lines enclosing areas with energy spectral density
that is significant at the some c.l. (here, 95 % c.l.) and with the COI curve, and the
GWS (Fig. 13.22c) with its significance curves at different probability levels (here,
95 % c.l. and 99 % c.l.).

The GWS power spectrum estimate is consistent. It is comparable with the peri-
odogram |X [k]|2 /N and other classical and parametric estimates but is typically very
smooth, even if its smoothness varies with the mother wavelet and is always greater
at small periods. A characteristic of the GWS is in fact the remarkable smoothing
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undergone by possible high-frequency peaks: for example, if we take a signal with
two sinusoids of different frequencies and equal amplitudes, possibly immersed in
noise, in the periodogram we would see two peaks of equal heights, while in the GWS
we will find that the higher-frequency peak is much smaller than the lower-frequency
one (see the example of Fig. 13.25). Therefore, if we expect to detect peaky spectral
features, the GWS is not a good tool to determine their relative heights correctly.
The reason for this bias is the bandwidth of the wavelet filter, which increases with
frequency according to the multiresolution property. It is directly related to the fact
that the GWS has poor frequency resolution at high frequency.

If we smooth the periodogram of a record by a running-average filter, the result
becomes more similar to the GWS, but the amount of smoothing required for simi-
larity increases with increasing frequency. This is illustrated in Fig. 13.26 that shows
the GWS of the same record analyzed in Fig. 13.22b (black curve in all panels) versus
period, superimposed to smoothed versions of the periodogram. The smoothing has
been repeated four times, progressively averaging over an increasing number q of
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Fig. 13.25 Comparison between periodogram and GWS for a synthetic signal with hypothetical
sampling interval of 1 year, composed of a sinusoid with high frequency and a sinusoid of low
frequency, with the same amplitude, immersed in white noise. a The signal; b the periodogram,
showing two peaks of equal height; c the GWS obtained using the analytic Morlet wavelet with
ω0 = 6, which exhibits a remarkable smoothing of the high frequency peak; on the abscissa of both
spectral plots, dimensional period P in years is reported
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spectral values (gray curve in all panels). It may be seen that at high period, GWS is
similar to the periodogram smoothed adopting a value of q as small as 3 (Fig. 13.26a).
At lower period values, GWS is more similar to the periodogram smoothed adopting
larger values of q, i.e., 7 and 19 (Fig. 13.26b and c, respectively). In the lowest period
range, similarity requires a value of q as high as 71.

The bias described above has been discussed by Liu et al. (2007). These authors
suggested that since computing the scalogram implies, at each scale, integrating the
energy of the signal over a time interval, the length of which increases with scale,
a consistent definition of the wavelet spectrum should include dividing each value
by the scale to which the value refers. In essence, according to Liu et al. (2007)
the traditional definition of wavelet spectrum confuses energy with energy inte-
grated with respect to time. If we apply this normalization (the authors speak about
“rectifying the spectrum”), the analysis of a signal containing three sinusoids with
equal unit amplitudes leads to a GWS with peaks of nearly equal height, in contrast
with what happens with the traditional definition of wavelet spectrum (Fig. 13.27).
An analytic Morlet wavelet with ω0 = 6 has been used for this comparison. Fig-
ure 13.27 includes a plot of the synthetic record (a), a plot of the rectification factor
versus period (b), the rectified scalogram (c), and the GWS (d) in its standard (black

1  2  4  8  16 32 64 128
0

1

2

3

4

5
q = 3

Period (y)

(a) (b)

Fourier
GWS

1  2  4  8  16 32 64 128
0

1

2

3

4

5
q = 7

Period (y)

Fourier
GWS

1  2  4  8  16 32 64 128
0

1

2

3

4

5
q = 19

Period (y)

cFourier
GWS

1  2  4  8  16 32 64 128
0

1

2

3

4

5
q = 71

Period (y)

dFourier
GWS

P
ow

er
sp

ec
tr

um
(

C
2 )

P
ow

er
sp

ec
tr

um
(

C
2 )

P
ow

er
sp

ec
tr

um
(

C
2 )

P
ow

er
sp

ec
tr

um
(

C
2 )

Fig. 13.26 GWS (black curves) and periodogram smoothed by a running-average filter over an
increasing number q of values (gray curves) for the same record analyzed in Fig. 13.22. The GWS
was obtained using the analytic Morlet wavelet with ω0 = 6. a q = 3, b q = 7, c q = 19, and d q =
37. See text for details
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Fig. 13.27 CWT analysis of a signal containing three sinusoids with equal unit amplitudes, and
periods of 2, 8, and 64 days; the sampling interval is assumed to be one hour and the record length
is N = 8192. The standard wavelet spectrum, computed using the analytic Morlet wavelet with
ω0 = 6, has been rectified dividing it by a factor proportional to scale. a Time series; b rectification
factor versus period; c rectified scalogram; d the GWS in its standard (black curve) and rectified
(gray curve) versions. In the rectified GWS, the heights of the peaks are similar; only the peak
corresponding to the 64 days sinusoid is slightly lower, because it is reduced with respect to its true
value by the zero-padding edge effects (COI). In the standard GWS, the peaks have very different
heights, so different that on the linear axis adopted to plot the GWS, the peak at 2 days of period is
barely visible

curve) and rectified (gray curve) versions. In order to leave to the discussed effect
all its natural evidence, the GWS is plotted onto a linear axis, rather than onto a
logarithmic one. The rectifying procedure actually leads to the desired result (gray
curve in Fig. 13.27d): the rectified GWS allows for estimating the relative sinusoids’
amplitudes on the basis of peaks’ heights. However, this rectification produces an
unpleasant effect, namely the rectified spectrum of a white noise record would no
longer be flat. For this reason, this correction is seldom applied.

A significance level for the GWS at some p% c.l. can be established. It is also
referred to as the p%-c.l. GWS. The time average contained in the definition of the
GWS makes the number of DOF increase with respect to the minimum value of
2 that characterizes the periodogram and all local wavelet spectra. The amount of
increase in the number of DOF depends on the number of independent estimates∣∣∣W ψ

x (a, n)

∣∣∣
2

that are averaged to produce W
2
(a). These estimates are, however,

correlated among themselves in time and scale, and the correlation in time becomes
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Table 13.4 Values of the decorrelation factor γ needed to calculate the number of DOF to be
attributed to the GWS, in order to determine the corresponding significance level at some given
confidence level

Analytic Morlet(ω0) Analytic Paul(m = 4) Real DOG(m = 2) Real DOG(m = 6)

γ = 2.32 γ = 1.17 γ = 1.43 γ = 1.37

The values of γ are shown for the analytic Morlet wavelet with parameter ω0 = 6, the analytic Paul
wavelet with parameter m = 4 and the real DOG wavelets with orders m = 2 and m = 6

more and more temporally extended as the scale increases. Therefore evaluating the
effective number of DOF to be attributed to the GWS is not trivial, and Monte Carlo
numerical simulations are the best way to tackle this problem (Torrence and Compo
1998). These simulations have suggested that the number of DOF depends on scale
according to the empirical formula

DOFGWS(a) = 2

√

1 +
(

Nav

γ a

)2

, Nav = N − kCOIa

where Nav is a number of averaged estimates that is set equal to N minus a correction
to take into account the fact that the points located inside the COI have a statistical
weight that is about half the statistical weight of the others. The constant γ is a
parameter deduced from the simulations and is known as the decorrelation factor.
Table 13.4 shows the value of γ for the analytic wavelets of Morlet and Paul and for
DOG(2) and DOG(6) real wavelets.

Once the number of DOF has been determined as a function of a, the usual formula
is applied: the significance upper bound for the GWS at the c.l. of p% is a function
of scale given by

GWSsignif(a j ) = Pj

χ2
1−p,DOF(a)

DOF(a)
,

where Pj is again the PSD of an AR(1) process at that ω j which corresponds to the
scale factor a j , according to the particular scale-frequency relation for the considered
wavelet. Through the scale-frequency relation, this upper bound can be translated
into a GWSsignif( f ), or a GWSsignif(P). The plot of this function, for one or more
values of p, is superposed to the GWS curve, so that the peaks detected as significant
at the c.l. of p% can be visually identified (see Fig. 13.22c).

13.5.6 Extensions of Wavelet Analysis

We conclude presenting two developments of the CWT that are very useful in the
analysis of time series.
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Wavelet Filtering

By reconstructing the signal on the basis of a subset of scales only, say
{
a j

}
,

j = [ j1, j2], we can obtain a filtered series containing only the contributions of
frequency components falling inside the passband of the overall wavelet filter. We
can write

x ′[n] = δ j

cδψ0(0)

j2∑

j= j1

Re
{

W ψ
x (a j , n)

}

√
a j

.

The overall filter has a frequency response given by the sum of all Ψ ∗(a jω) for
j = [ j1, j2]. An example of CWT-based signal reconstruction is given in Chap. 16.

Wavelet cross spectrum (WCS)

The evolutionary wavelet cross spectrum (WCS) of two contemporary time
series—being x[n] and y[n]—can be estimated as

W ψ
xy(a, n) = [

W ψ
x (a, n)

]∗
W ψ

y (a, n).

When, as is common practice, complex-valued wavelets are used, the WCS is
complex and bears both magnitude and phase information. A cross-scalogram is

then defined as
∣∣∣W ψ

xy(a, n)

∣∣∣. More often, however, the concept of wavelet coher-

ence is used. The reader may recall that in Chap. 10, when dealing with classical
Fourier-based cross-spectral analysis, we defined the magnitude square coherence
as the square of the cross-spectrum normalized by the individual power spectra.
This gives a quantity between 0 and 1, and measures the cross-correlation be-
tween two time series as a function of frequency. Unfortunately, as noted by Liu
(1994), coherence defined in this way in wavelet analysis would be identically
one at all times and scales. In Fourier analysis, moreover, coherence is normally
estimated smoothing the cross-spectrum and the individual spectra before form-
ing the coherence estimate (e.g., using Welch estimates). In wavelet analysis, it
is not immediately clear what sort of smoothing (presumably in time) should be
done to arrive at a useful measure of coherence. The smoothing would prevent
wavelet coherence to be one everywhere in the time-scale plane, but in a sense
would also seem to defeat the very purpose of wavelet analysis by decreasing
the localization in time (Torrence and Compo 1998). If we denote the smoothing
operator by S , the definition of wavelet coherence adopted in literature is

wavelet coherence =
S

[
W ψ

xy(a, n)
]

√

S

[∣∣∣W ψ
x (a, n)

∣∣∣
2
]√

S

[∣∣∣W ψ
y (a, n)

∣∣∣
2
] .

http://dx.doi.org/10.1007/978-3-319-25468-5_16
http://dx.doi.org/10.1007/978-3-319-25468-5_10
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This is a complex quantity that is then decomposed into a modulus, which we
will indicate as wavelet coherence magnitude, and a phase angle,13 called wavelet
coherence phase. The smoothing operator is often applied in time only, and can be
a simple running mean; for a more detailed discussion see Torrence and Webster
(1999) and Grinsted and Chan (2011).

Also the wavelet cross spectrum is often smoothed before plotting, so that it
becomes

ˆWCS = S
[
W ψ

xy(a, n)
]
.

The WCS or the wavelet coherence of two contemporary time series can reveal
localized similarities in time and scale. In the coherence magnitude map, areas
in the time-period plane where the two time series co-vary with elevated shared
energy can emerge. The phase map visualizes the relative phase behavior of the
two series, i.e., the phase difference between the two signals at the various scales
or periods, and at different time instants. The phase map is meaningful only in
those regions of the time-scale plane in which the values of coherence magnitude
are not negligibly low.
A typical example of application of these concepts may be given using a noisy
sine and a Doppler signal. The first time series is a 4-Hz sine wave with additive
Gaussian noise that is sampled on a grid of 1024 points over the interval [0,1].
The second time series is a Doppler signal with decreasing frequency over time.
Consider (Fig. 13.28) the CWT of the two individual signals computed using the
analytic DOG wavelet of order 2, for integer scales from 1 to 512. The figure
shows the modulus and phase angles of each CWT; the scale axis is upright in
this case.
The analysis of the noisy sine function on the left exhibits the scale associated
with the period, which is equal to 1024/8 = 128. The analysis of the Doppler
signal on the right shows a typical time-scale pattern in which the dominant scale
increases—the dominant frequency decreases—with increasing time. The corre-
sponding smoothed wavelet cross spectrum is shown in Fig. 13.29. Smoothing
was performed in time by a running average over 21 points. After convolution of
the WCS with the running average filter, only the central part of the convolution
was retained over the same time-length of the WCS (see Sect. 16.4.1.1 for the de-
scription of the precise way in which this operation is performed). The magnitude
plot (upper panel of Fig. 13.29b) is the most instructive. It shows the similarity of
the local frequency behavior of the two time series in the time-scale plane. Both
signals have a similar contribution around scale 128 over the time-index interval
[300, 700]. This is consistent with the behavior observed by visual inspection of the
time-domain plot in Fig. 13.29a. Additional interesting information is discernible
in the wavelet coherence plot (Fig. 13.30), in which filled gray-scale contour lines
represent the magnitude and arrows have been drawn to show the phase angle.

13Recall that the phase angle of a complex quantity is always obtained by taking the arc tangent of
the ratio of the imaginary and real parts.

http://dx.doi.org/10.1007/978-3-319-25468-5_16
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Smoothing was again performed in time by a 21-point running average of the
CWS and of the individual scalograms before forming the coherence. The phase
information can be interpreted by locating the regions of the time-scale plane that
highlight possible coherent behaviors. Some transient minor contributions to the
variability of the two coupled time series occur at small scales at the beginning
of the series, where the Doppler signal exhibits rapid oscillations. The behavior
is not coherent and the phase changes very quickly. However, at values of the
time index greater than about 150 and scales greater than about 130, numerous
coherent regions can be easily detected.
For focusing on the phase of wavelet coherence, another representation can be
adopted (Fig. 13.31). The phase information here is coded both by the orientation
of the arrows and by the background color. The background color is associated
with a mapping onto the interval [−π, π ].
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Fig. 13.28 Individual CWTs of a noisy sinusoidal signal and a Doppler signal, obtained using the
analytic DOG wavelet of order 2 at integer scales from 1 to 512. a, b The noisy sinusoid and Doppler
series, respectively; c the modulus and the phase angle of the two wavelet transforms
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Fig. 13.29 Smoothed
wavelet cross spectrum
between a noisy sinusoidal
signal and a Doppler signal,
computed using the analytic
DOG wavelet of order 2 for
integer scales from 1 to 512.
a The noisy sinusoid and
Doppler series superposed to
one another; b the modulus
and the phase angle of the
smoothed wavelet cross
spectrum
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13.6 CWT Application Examples

Real-world applications of the CWT are so numerous in literature that a compre-
hensive set of examples would be hard to give. Here we will show three cases: one
concerning economics and two concerning social and political sciences.

1. Our first example is taken from a paper by Aguiar-Conraria and Soares (2011): a
study of business cycle synchronization across the Euro countries performed by
wavelet analysis. In substance, Aguiar-Conraria and Soares (2011) approached
using CWT an investigation very similar to the one for which Sella et al. (2013)
resorted to SSA (see Sect. 12.3).

http://dx.doi.org/10.1007/978-3-319-25468-5_12
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Fig. 13.30 Wavelet
coherence between a noisy
sinusoidal signal and a
Doppler signal, computed
using the analytic DOG
wavelet of order 2 at integer
scales from 1 to 512. a The
noisy sinusoid and Doppler
series superposed to one
another; b wavelet coherence
plotted using gray-scale
filled contour lines for the
magnitude and arrows for
the phase angle
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Aguiar-Conraria and Soares (2011) analyzed monthly data of the industrial pro-
duction (IP) index for the countries in the EU-15, i.e., the twelve countries that first
joined the Euro—Austria, Belgium, Finland, France, Germany, Greece, Ireland,
Italy, Luxembourg, Netherlands, Portugal and Spain: EU-12 hereafter—and the
three countries that were part of the European Union in 1999, but chose not to join
the monetary union—United Kingdom, Sweden, and Denmark. Here we focus
on the EU-12 results. IP-index wavelet spectra were compared to one another to
investigate the degree of synchronization among countries. Then, cross-wavelet
analysis was used to study in detail whether in some time and frequency intervals
a given country has behaved in synchronism with the other ones.
For non-economists, we must first recall from Sect. 12.3 that data of this kind
is always pre-processed before analysis. Pre-processing includes removing sea-
sonality, and the typical upward long-term trend. In Aguiar-Conraria and Soares
(2011) this is done applying a wavelet bandpass filter to preliminary remove these
confounding variability components. Also, it is common in economics to take the
logarithm of the data (see, for instance, Gujarati and Porter 2009), and this paper
is no exception.14

14Time-series modeling is common practice in economics. Logarithms possess properties that
assist with model-building and with the visual display of models and data in graphs. In essence,

http://dx.doi.org/10.1007/978-3-319-25468-5_12
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Fig. 13.31 Another way of
presenting the phase of
wavelet coherence: here the
coherence is between a noisy
sinusoidal signal and a
Doppler signal and was
computed using the analytic
DOG wavelet of order 2, as
in Fig. 13.30. a The noisy
sinusoid and Doppler series
plotted onto one another;
b phase as coded both by the
orientation of the arrows and
by the background color. The
background color is
associated with a mapping
onto the interval [−π, π ]. In
panel b of Fig. 13.30, phase
was instead shown by arrows
only
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Using the International Financial Statistics database of the International Mone-
tary Fund (IMF), Aguiar-Conraria and Soares (2011) gathered non-seasonally-
adjusted IP data from July 1975 to May 2010. They also derived an Euro-12 IP
index by calculating a weighted average of the industrial productions of the twelve
individual countries in EU-12. As weights, the authors used the GDP of each
country in the year 2000. They removed seasonal effects from the series of the in-
dividual countries and from the series of the Euro-12 IP index, and then estimated
wavelet spectra between 1.5 and 8 year periods, since business-cycle periodicities
are commonly believed to lay in this range. In Fig. 13.32a we can see the Euro-12
IP index series; Fig. 13.32b shows its scalogram. The data and the software for
producing Fig. 13.32 and the subsequent four figures (Figs. 13.33, 13.34, 13.35
and 13.36) were kindly provided by L. Aguiar-Conraria. The wavelet spectra for

(Footnote 14 continued)
log-linearization is a solution to the problem of reducing computational complexity in systems of
numerically specified equations that need to be solved simultaneously. Log-linearization converts
a nonlinear equation into an equation that is linear in terms of the log-deviations of the associated
variables from their steady-state values. For small deviations from the steady state, log-deviations
have a convenient economic interpretation: they are approximately equal to the percentage devia-
tions from the steady state. Log-linearization can greatly simplify the computational burden and,
therefore, help solve a model that may otherwise be intractable.
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Fig. 13.32 a Euro-12
Industrial Production Index,
and b corresponding
scalogram obtained adopting
the analytic Morlet wavelet
with parameter ω0 = 6. The
cone of influence is shown as
a light-gray cup-shaped
curve. The black segments
indicate the position of
scalogram’s maxima
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the individual countries (not shown) revealed the same patterns that are apparent
in the scalogram of the European aggregate (Fig. 13.32b): first, with the exception
of Greece, every country showed a persistent scalogram maximum at a period of
about 6 years. Second, the maximum at a period of about 3 years during the 1990s
that is observed for the Euro-12 aggregate was found to be common to several
countries, although not all of them. Finally, after 2005 volatility increased at all
frequencies and across all countries.
Aguiar-Conraria and Soares (2011) then studied the wavelet coherence between
each country’s IP index and the rest of Europe, and tested the significance of their
results by applying proper statistical tests. They found that one feature which is
shared by the majority of the countries is a high-coherence region during the late
2000s. This is not surprising: the global crisis hit many countries simultaneously
and, as a consequence, they started behaving in a highly-synchronized way. The
analysis, however, revealed that Portugal, Greece, Finland—and to a lesser ex-
tent Ireland too—do not exhibit many regions of high coherence and therefore
can be classified as economies that do not follow closely the Euro-cycle. Con-
versely, the European core was identified as being formed by Germany and France.
Aguiar-Conraria and Soares (2011) found, perhaps surprisingly, that France
shows more regions of high coherence with the whole of Europe than Germany.
Moreover, in the shorter run (1.5–4.5 years of period) both France and Germany are
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Fig. 13.33 a IP-index wavelet coherence, Germany versus France. The cone of influence is shown
as a light-gray cup-shaped curve. The black contours enclose regions of significant coherence at the
95 % c.l. b Phase difference between the two countries, averaged over the range of periods 1.5–4.5 y
(on the left) and 4.5–8 y (on the right). The wavelet is analytic Morlet with ω0 = 6

remarkably in phase with the rest of Europe, but on the longer run (4.5–8 years of
period) it is France, and not Germany, that has been leading the European cycle.
This result is shown in Fig. 13.33, where we see (Fig. 13.33a) the wavelet co-
herence of Germany versus France. In Fig. 13.33b, the phase-difference between
the two countries is shown in the period bands 1.5–4.5 years (on the left) and
4.5–8 years (on the right). A zero phase-difference at the specified period would
indicate that the two time series move together at the corresponding frequency.
A phase-difference between 0 and π/2 means that the Germany leads France; a
phase-difference between −π/2 and zero means that France leads Germany. In
the right-hand panel of Fig. 13.33b we actually observe negative phase-difference
values, indicating a delay in the variations of the German IP index with respect
to France.
Aguiar-Conraria and Soares (2011) thus defined through CWT analysis an Euro-
core and a Euro-periphery in terms of business cycles synchrony. From this study,
Germany and France turned out to form the Euro-core around which the other
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Fig. 13.34 U.S. President Democratic vote share: a time series, b scalogram obtained using the
analytic Morlet wavelet with ω0 = 6. The cone of influence is shown as a white cup-shaped curve.
The black contours enclose regions wich are significant at the 95 % c.l. White segments high-
light the positions of maxima. Democratic House Seat share: c time series, d scalogram obtained
using the same wavelet as in panel c

countries gravitate; all the other Euro-12 countries were found to be synchro-
nized at 95 % c.l., with the exception of Portugal, Greece, Finland and Ireland
that were identified as belonging to the Euro-area periphery, with their cycles out
of synchrony with the rest of the Euro-12 group.

2. The second example is a study by Aguiar-Conraria et al. (2012) in political
sciences.
These authors tackled by CWT the study of two lingering puzzles in the political
science literature: the existence of cycles in election returns in the United States
and in the severity of great-power wars. Wavelet analysis, with its ability to detect
transient, irregular cycles and structural breaks in the periodicity of cycles, is the
ideal tool for these investigations.
About election returns, previous studies have shown that the presidential vote in
the United States can be modeled as an AR(2) process: Norpoth (1995) estimated
the parameters of this AR(2) model fitting the Republican presidential share of
the vote from 1860 to 1992. The AR(2) nature of the U.S. presidential vote results
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in a regular electoral cycle, through which, since 1860, peaks in electoral support
for a particular party tend to occur every five elections. Since presidential elec-
tions take place every four years, this leads to a 20 year cycle in election returns.
The half-cycles of ascendancy of a particular party thus last for about 10 years,
which suggests that after two terms, majorities become less likely to be able to
hold on to power. Norpoth (1995) argued that the two-term limit rule, respected
by all presidents but one and enshrined since 1951 in the 22nd Amendment, has
allowed majority parties to reap the advantages of incumbency after a first term
is completed, while saving minority parties from being forced to challenge an
incumbent president in the subsequent election.
With the help of wavelet and cross-wavelet tools, Aguiar-Conraria et al. (2012)
studied the share of the Democratic vote in presidential elections over 1856–2008
and the Democratic share of the House seats over 1854–2008. Figure 13.34a
displays the series of U.S.-President Democratic vote share. The Fourier power
spectrum of this record (not shown) indicates a dominant 26 year cycle, i.e., a
13 year half-cycle of ascendancy of a particular party. Figure 13.34b, showing the
series’ scalogram, reveals that the statistically significant evidence for that cycle
is limited to 1900–1970. The assumption of time invariance, lying at the heart of
stationary spectral analysis, is thus inappropriate for this record. Before the 1890s,
there is no evidence for any dominant cycle. Between the late 1950s and 1980,
the analysis reveals that the electoral results of a particular party seem to have
improved/worsened following a shorter cycle. After 1980, evidence for cyclicities
is weak. Due to the edge effects inside the cone of influence, scalogram values
may be underestimated at the beginning and the end of the series, before 1875 and
after 1985; nevertheless, the results point to the fact that significant cyclicities are
temporally localized. The scalogram of Fig. 13.34b also suggests the existence
of longer, multidecadal cycles, which are not, however, statistically significant at
the 95 % c.l.—and not even at the 75 % c.l. They would, anyway, be poorly repre-
sented by only 150 years of available data. Figure 13.34c shows the series for the
House of Representatives. While the Fourier power spectrum of this record (not
shown) indicates a dominant 25 year cycle, the scalogram reported in Fig. 13.34d
demonstrates that such a cycle is not dominant throughout the entire series: for
the House of Representatives, evidence for such a 25 year cycle is present from
the beginning of the series in mid-19th century to the 1940s, but disappears after
that decade.
Aguiar-Conraria et al. (2012) also estimated the wavelet coherence and the phase
difference between these two series. Figure 13.35a shows the wavelet coherence of
Presidential Election versus House of Representatives. Two main regions of high
coherence between the two series are detected in Fig. 13.35a: the first one between
the 1890s and 1940 in the 20–30 year period band, and the second one between
the 1960s and 2000 in the 10–16 year period band. However, only the first region
corresponds to a portion of the time-period plane where relevant cycles in indi-
vidual scalograms are present (see Fig. 13.34a, c). Indeed, the region between the
1890s and 1940 in the 20–30 year band in Fig. 13.35a roughly corresponds to the
intersection of the highest-energy density regions in Fig. 13.34a and c. The phase
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information for that time interval and period band (Fig. 13.35b) tells us that the
series were in phase, i.e., their cycles were highly coordinated. Aguiar-Conraria
et al. (2012) remarked that wavelet analysis allowed them to discover that the dy-
namics in the presidential and House elections are less similar than conventional
methods would lead to believe. While the 26 year cycle for presidential elections
started in the late 1890s and lasted until the late 1960s, a cycle of about the same
period characterized the House elections only until the 1940s. Synchrony between
the presidential and House series turned out to be a time-localized phenomenon,
existing only for a 50 year interval between the late nineteenth century and the
mid-twentieth century, with the House of Representatives vote share displaying
an increasing lag since then, with respect to presidential elections (Fig. 13.35).

3. The third example concerns a study on the severity of great-power wars from
1495 to 1975. It is contained in same paper by Aguiar-Conraria et al. (2012).
This analysis was performed on well-established data from literature (Goldstein
1988; Levy 1983). The question of whether wars occur cyclically has intrigued
observers at least since the sixteenth century, but the answer has remained ex-
tremely elusive for modern social scientists. On one hand, variations in data
sources and in the dimensions of the phenomenon of war—outbreak, duration,
and magnitude, or severity—make data analysis difficult. On the other hand, solid
theories that might explain why cyclical rhythms should be expected in wars are
scarce. The data on war severity examined in Aguiar-Conraria et al. (2012) was
taken from Goldstein (1988). They cover 1495–1975 and measure battle fatalities
in great-power wars (GPWAR) in units of thousands, transformed according to
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Fig. 13.35 Presidential Election versus House of Representatives: a wavelet coherence, and b phase
averaged over the 20–30 year period band (dotted line: presidential election; dashed line: House of
Representatives). Also shown is the related phase difference (solid line). The wavelet is analytic
Morlet with ω0 = 6
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Fig. 13.36 a War severity series: GPWAR = battle fatalities from great-power wars, in thousands.
The represented quantity is logged GPWAR + 0.5. b Scalogram obtained using the analytic Morlet
wavelet with ω0 = 6; the black contours identify statistically significant regions at the 90 % c.l.;
c wavelet coherence between war severity and inflation (see text)

x = log10(GPWAR) + 0.5. Note that zeros remain zeros after this transforma-
tion. The series is shown in Fig. 13.36a. Visual inspection of the series reveals
that a structural change occurred around 1815, so that the time series is clearly
non-stationary. The mean and variance of the time series before 1815 are, respec-
tively, 1.45 and 0.72, while after 1815 they become 0.46 and 1.28.
Figure 13.36b shows the scalogram of the war-severity series. The first and most
striking result consists in the detection of a statistically significant cycle of period
around 60 years. Such a cycle is, however, localized in time, rather than prevalent
throughout the entire series: the statistically significant region at the 90 % c.l. for
the 60 year cycle (black contour) extends from the early 1700s to the mid-1800s.
This cycle is replaced in the twentieth century by a shorter cycle, which is sig-
nificant as well, with a period around 30 years. Another transient cycle, although
not as strong, is identified between 1750 and 1800, in the 20 year period band.
Aguiar-Conraria et al. (2012) investigated a hypothesis according to which in-
flation could provide the explanation for these patterns, since a precise rela-
tion between inflation and war would exist (see Goldstein 1988, 2003). Wavelet
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analysis allows testing this hypothesis even in the presence of irregular cycles.
Figure 13.36c shows the wavelet coherence between war severity and British in-
flation. Inflation was computed from the yearly South English Consumer Price
Index (Goldstein 1988)—let us call it p(i) where i is year—as

Inflation[i] = p[i] − p[i − 1]]
mean {p[i − 1], p[i]} .

The two series appear to be significantly coherent after 1875 in the 18–45 year
period band. Before 1875, high coherence is observed at 60–100 year periods be-
tween the mid-18th and the mid-19th centuries, as well as in small regions around
1700 and 1800 in the 45–55 year period band. These, however, are not regions of
high energy density in the war series, as can be seen in Fig. 13.36b. Therefore,
the wavelet coherence results do not support the widespread notion that cycles in
war severity consistently precede cycles in inflation.

The data and software for the plots related to this example are courtesy of
L. Aguiar-Conraria.
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Part IV
Signal Decomposition, De-noising

and Compression



Chapter 14
Discrete Wavelet Transform (DWT)

14.1 Chapter Summary

The wavelet transform can be seen as a wavelet-based expansion (decomposition) of
a finite-energy signal. Orthogonality of the basis set of functions employed for the
expansion is the key point in the discrete wavelet transform (DWT), in that it leads
to economy in the representation of the signal through its DWT coefficients (signal
decomposition), together with the possibility of perfect signal reconstruction. These
are crucial features in many DWT applications, and in order to obtain them, the
choice of the mother wavelet and of the discretization scheme become central issues.
The basis set that can give DWT appealing features is not unique: there are many
different wavelets systems that can be used effectively. The simplest formulation
of the DWT problem includes two types of functions for the basis set: the scaling
function and the wavelet function. We will describe this formulation, examining how
an ideal, infinite-length but finite-energy signal can be decomposed from the point
of view of function spaces, and how this decomposition, leading to a unique set of
DWT coefficients, can be obtained through the application of a filter bank to the
signal. An analysis (decomposition) filter bank is a set of filters, often comprising
two types of filters (a lowpass and a highpass) that iteratively separate the input signal
into disjoint frequency bands. This kind of operation is known as subband coding.
At any time, the original signal can be recombined using a corresponding synthesis
(reconstruction) filter bank.

The description of Mallat’s algorithm, a fast wavelet decomposition and recon-
struction scheme introduced in 1988 by Stéphane Mallat, will subsequently lead
us to the practical implementation of the DWT in the real-world case of a finite-
length, sampled input signal. We will focus on orthonormal (ON; orthogonal and
properly normalized), compact-support wavelet systems for this discussion. Mal-
lat’s algorithm is a tree-shaped structure that starting from the crown—the input
signal—leads us to the DWT coefficients—the roots. It also allows for decomposing
the signal into an approximation, describing its coarse features, and a number of
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details, describing its finer structure, in full agreement with the concept of multires-
olution analysis (MRA). If then we want to re-synthesize the signal from its DWT
coefficients, we just have to climb the tree from the roots to the crown. Under the
assumptions made above, the filters involved in the process are four FIR filters: a
lowpass/highpass pair for decomposition and another pair for reconstruction. The
lowpass/highpass reconstruction filter coincides, to within a time folding, with the
corresponding analysis filter. The properties of the lowpass and highpass decompo-
sition/reconstruction filters are strictly related to those of the scaling and wavelet
function, respectively. Perfect reconstruction (PR) realizable filters are needed for
the filter bank to work properly: these filters must satisfy a number conditions, which
are reflected in constraints on the scaling and wavelet functions.

Nevertheless, even in the presence of these constraints, a number of degrees of
freedom remain available to design different wavelet systems. Scaling and wavelet
functions satisfying the above-mentioned conditions may be extraordinarily irregular,
even fractal in nature. This may be an advantage in analyzing rough or fractal signals,
but it is likely to be a disadvantage for the analysis of most signals. We will thus
investigate the smoothness (differentiability) of the scaling and wavelet functions
through the concept of vanishing moments. The most popular compact-support ON
wavelet systems (Daubechies wavelets, symlets and coiflets) will then be described.
Biorthogonal wavelet systems also exist, which behave as an orthogonal basis, except
for the presence of a dual basis set. In a biorthogonal DWT, the relation between
analysis and synthesis filters is not a simple time-reversal.

Orthogonality (or possibly biorthogonality) is optimal for many applications, but
DWT theory also considers cases in which the basis system dictated by the problem
at hand cannot, or should not, be made orthogonal/biorthogonal. We will briefly
touch upon these more general approaches, in which a generalization of the concept
of basis is introduced that is known as a frame. A frame still allows representing a
signal as a wavelet expansion, but the coefficients are not necessarily unique. In some
cases, the lack of uniqueness can be advantageous because it opens up the possibility
of choosing the coefficients that fit a certain application best, and also makes the
representation of the signal less sensitive to noise.

A real-world example of signal DWT decomposition will be provided. The chapter
ends with an appendix in which the various wavelet systems used for the DWT, or
the CWT, or both transforms, are reviewed.

14.2 Wavelet Expansion Sets: Bases and Frames

DWT is a complex topic related on one side to the mathematical facets of functional
analysis, and on the other side to engineering theories of subband coding and perfect
reconstruction filter banks. We first approach the DWT from the functional analysis
point of view.
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In the appendix to Chap. 3 (Sect. 3.8) we provided a general description of the
way in which a function in L2(R), i.e., a continuous-time energy signal, can be
expanded. We will now focus on wavelet expansions. In the case of wavelets, the
functions forming the expansion set are wavelet functions; actually, in many cases
they are both wavelet and scaling functions, discretized according to a pair of indexes
j and k.

The wavelet expansion of a signal x(θ) can be expressed as

x(θ) =
∑

k

∑

j

α jk f jk(θ),

where both j and k are integer, the
{

f jk(θ)
}

form the expansion set and the
{
α jk
}

form the set of expansion coefficients, which is called the discrete wavelet transform
(DWT) of x(θ) (Daubechies 1992; Meyer 1993; Mallat 1989). The expansion is the
inverse discrete wavelet transform (IDWT). We will assume the functions of the
expansion set to belong to a suitable function space equipped with a finite norm:
for instance,1 L1(R). The set may correspond to an orthogonal basis, a biorthogonal
basis, or a frame.

In the discretized-CWT analysis discussed in the previous chapter, orthogonality
is unnecessary and even undesirable. The continuous wavelets used for the CWT usu-
ally lead, after discretization, to frames that are close to being tight. This is enough for
the purposes for which the CWT is employed: it allows for writing a synthesis relation
(inverse transform) and therefore being able to reconstruct the signal from its CWT
samples; it also means that a generalized Parseval’s theorem holds. This behavior is
referred to as quasi-orthogonality. The conditions for quasi-orthogonality are that
the wavelet ψ(θ) must be concentrated in time and must be an oscillating function
with zero mean and a bandpass spectrum (Chap. 13). Nevertheless, an arbitrary dis-
cretization choice for scale factors, with several voices per octave, and a maximally
dense discretization of time delays lead to a remarkable redundancy in the signal’s
representation: we are very far from that “economy” that a true orthogonal basis can
guarantee. We have to store and process much more than the minimum number of
coefficients that would be strictly necessary for a proper reconstruction.

This economy becomes important in typical DWT-related techniques like signal
compression and de-noising. Orthogonality (possibly biorthogonality) of the basis
is an important point in the DWT. Sampling of the time delay-scale continuum is
normally much sparser than in the CWT, and the sparser the sampling, the more
severe the constraints that must be imposed on the scaling and wavelet functions.
The key questions here are the following: if we discretize in time and scale in a very
“economic” way (critical sampling), can we get a true orthogonal basis? What are
the characteristics that the basis functions must possess to achieve the desired DWT
features, i.e., economy in the signal’s representation coupled with the possibility of
perfect reconstruction of the signal from its DWT coefficients?

1Note that L1(R) is more restrictive than L2(R), because an absolutely integrable function is also
square-integrable, but the converse is not necessarily true.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
http://dx.doi.org/10.1007/978-3-319-25468-5_13
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Actually, the last question must be reformulated. Scaling and wavelet functions
are completely implicit in the DWT: we do not design the functions but two digital
lowpass filters and two digital highpass filters associated to the scaling and wavelet
functions, respectively. These filters dictate the shape of ϕ(θ) and ψ(θ). Iterated
application of a lowpass/highpass pair of filter constitutes a filter bank able to decom-
pose the signal and produce its DWT coefficients. A distinct filter bank allows for
reconstructing the signal. A perfect signal reconstruction cannot be achieved arbi-
trarily choosing ϕ(θ) and ψ(θ), but only starting from the filters and designing them
properly. Given the filters, ϕ(θ)—provided it exists—and ψ(θ) can univocally be
found by numerical procedures. In most cases, the functions ϕ(θ) and ψ(θ) involved
in the DWT do not even possess an explicit functional form: they have no analyt-
ical expression. So, how must we design DWT filters to achieve the desired DWT
features?

The answer to the above questions is that we can get an orthogonal DWT, pro-
vided that we choose filters that satisfy very restrictive conditions. However, even
doing so, some freedom remains: the wavelet expansion set is not unique, and there
are many different scaling/wavelet function sets—often collectively referred to as
wavelet systems—that can be constructed and used, and each of them has its own
features, its advantages and drawbacks in applications.

Both the continuous wavelets used in the CWT and the discrete wavelets used in
the DWT are wavelet systems; however, one important difference between them lies
in the greater or lesser severity of the constraints that are imposed. These constraints
are mild in the CWT, and much more stringent in the DWT. Another difference is
that the discrete wavelets used for the DWT are naturally associated with digital
filter banks, while the continuous wavelets used for the CWT are not. The STFT and
the CWT can be related to filters banks, but these are analog in theory, and become
digital only after discretization, related to sampled-signal applications. The DWT
filter banks stem from theory as digital entities, and this naturally leads to the practical
implementation of the DWT of a sampled signal as the application of digital filter
banks to the signal; this is not the case in the CWT. CWT and DWT are characterized
by this complete difference in the respective implementation schemes. The reader is
referred to Sect. 14.9 and to the appendix of this chapter for the description of the
most popular wavelet systems.

Virtually all wavelet systems and related expansions have the following charac-
teristics:

• a wavelet system is a set of building blocks to construct or represent a signal. It
is a two-dimensional expansion set (usually a basis) for some class of signals; the
wavelet expansion of a signal maps it into a two-dimensional array of coefficients;

• the wavelet expansion gives a time-frequency localization of the signal, and most
of the energy of the signal is well represented by a (more or less) modest number of
expansion coefficients; this feature is referred to as the greater or lesser sparseness
of the wavelet representation;
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• the calculation of the expansion coefficients from the signal can be done efficiently.
In the DWT, the total complexity of the transform is linear with respect to the size
of the data, with a constant term that grows linearly with respect to the length of
the filters used (see, for instance, Misiti et al. 2007). This is really remarkable,
since the DWT complexity is lower than that of the FFT.

Wavelet expansions and transforms have proven to be very effective in analyzing and
processing a very wide class of signals and phenomena. What are the properties that
give this effectiveness? We have already discussed, while describing the CWT, the
very appealing MRA property of wavelet techniques: we can now explicitly extend
our remarks to the DWT expansion, saying that it allows an accurate local descrip-
tion and separation of signal characteristics.2 Two more properties are, however,
particularly important in the DWT:

• wavelet expansions of many signals have coefficients
{
α jk
}

that drop off rapidly
with j and k for a large class of signals. Therefore the signal can be efficiently
represented by a small number of them. This sparseness property is related to the
wavelet system being an unconditional basis (Sect. 3.8), and it is why wavelets are
so effective in signal compression and de-noising (Burrus et al. 1998);

• wavelets are adjustable and adaptable; since there is not just one wavelet system,
they can be designed to fit individual applications.

14.3 Elements of DWT Theory

In the discretized CWT (Chap. 13) we adopted arbitrarily dense dyadic scales. For the
DWT it seems natural to adopt “economic” scaling operations of the type a = a± j

0 ,
with j ∈ Z. Obviously we may write a = a+ j

0 or a = a− j
0 indifferently, covering

anyway the same range of scales. Most often a0 = 2 is chosen, so that we get dyadic
scales with octaves only and no voices.3 The choice a = a− j

0 means scanning scales
from the largest to the smallest, as j increases from −∞ to +∞. This choice is the
standard one in discussing MRA from the point of view of function spaces. Instead,
the choice a = a+ j

0 means scanning scales from the smallest to the largest and

2To be precise, we must remark that while the continuous wavelets involved in the CWT are subject
to the uncertainty principle of Fourier analysis, the discrete wavelet systems involved in the DWT,
often defined through the associated digital filters, do not. However, the DWT does share the MRA
property of all forms of wavelet transform: discrete wavelet bases can be shown to possess the MRA
property by introducing the concept of nested spanned function spaces (Sect. 14.3).
3There is an interesting correspondence between wavelet notation and musical notation. In a musical
score, each note specifies a frequency and a position in time by its vertical and horizontal placements,
respectively, in a way that closely resembles a wavelet signal representation, except that it has
fractional jumps in frequency. An article written in 1994 by G. Strang for a nontechnical audience
(American Scientist, vol. 82, pp. 250–255) clearly explains this similarity.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
http://dx.doi.org/10.1007/978-3-319-25468-5_13
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is the option that we originally selected for the CWT, and also the standard one for
describing how filter banks work (Sect. 14.5). Since we will start our discussion from
function spaces, we now set

a = a− j
0 , j ∈ Z.

As for the discretization in time delay b, the sampling theorem (Sect. 4.2) suggests
broader and broader steps as the scale increases, exactly as we would do passing from
a microscope (tiny steps to observe details of a small object) to a spyglass (large steps
to observe the general features of an extended object). Therefore we set

b = ka = ka− j
0 ,

where k is an integer. We can thus write a generic scaled and shifted discrete
wavelet as

ψ jk(θ) = a j/2
0 ψ

(
θ

a− j
0

− k

)
= a j/2

0 ψ
(

a j
0θ − k

)
=

= a j/2
0 ψ

(
θ − b

a− j
0

)
= a j/2

0 ψ
[
a j

0 (θ − b)
]
,

where ψ(θ) is some prototype wavelet function, θ is continuous adimensional time,
j is the scale index, k is the time-delay index, and the factor a j/2

0 ensures wavelet
energy normalization, i.e., equal energy for wavelets of any scale. To take into account
scaling operations only we would write

ψ j (θ) = a j/2
0 ψ

(
θ

a− j
0

)
= a j/2

0 ψ
(

a j
0θ
)

.

With a sampling scheme of this type, we must find a
{
ψ jk(θ)

}
set ensuring, for a finite

energy signal x(θ), a satisfactory reconstruction from the transform coefficients,
which for the moment we indicate by W jk :

x(θ) =
∑

j

∑

k

W jkψ jk(θ).

This is the general inverse wavelet transform definition, which is valid not only for
the DWT, but also for the discretized CWT, while

{
W jk
}

are the elements of the
wavelet transform matrix. The functions ψ jk(θ) are a finite or infinite set that may
constitute an orthogonal basis, a biorthogonal basis, or a frame.

http://dx.doi.org/10.1007/978-3-319-25468-5_4
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Orthogonality of the basis would require that all (real) ψ jk(θ) satisfy the condition
on inner products4

〈
ψ jk(θ)ψ j ′k ′(θ)

〉 =
∫

ψ jk(θ)ψ j ′k ′(θ)dθ = 0

for j �= j ′ and k �= k ′. The DWT coefficients could then be calculated as inner
products:

W jk = 〈x(θ)ψ jk(θ)
〉
.

Normality would further require that all ψ jk(θ) satisfy the condition on inner products

〈
ψ jk(θ)ψ j ′k ′(θ)

〉 =
∫

ψ jk(θ)ψ j ′k ′(θ)dθ = 1

for j = j ′ and k = k ′. Orthonormality would thus require

〈
ψ jk(θ)ψ j ′k ′(θ)

〉 =
∫

ψ jk(θ)ψ j ′k ′(θ)dθ = δ( j − j ′)δ(k − k ′).

Wavelet theory leads to the following results:

1. if the set of scales is dense, and if the minimum �b is small, the information
in the transform domain is redundant, and the reconstruction takes place under
non-restrictive conditions on the form of the wavelet system; this is the case of
the discretized CWT;

2. if the sampling of scales is sparse and close to, or coincident with, the critical one,
as in the DWT, a true orthogonal basis is obtained only for very special choices of
the wavelet system. Provided that a proper wavelet system is adopted, the critical
sampling scheme corresponds to setting a0 = 2.

The theory of wavelet frames (see, e.g., Mallat 1989) covers these two extreme cases
and all the intermediate situations, allowing us to balance redundancy and restrictions
on the wavelet form, under the constraint that the reconstruction be possible and
therefore x(θ) be adequately represented by the coefficients

{
W jk
}
, i.e., that the

information embedded in them be sufficient to reconstruct x(θ) with good accuracy.
The simplest formulation of the DWT problem includes two types of functions for

the basis set: the scaling function ϕ(θ) and the wavelet function ψ(θ). We will start
by defining the scaling function and later will define the wavelet function in terms
of the former. In the final expansion formula, only integer translations of the scaling
function, indicated by ϕ(θ − k), will come into play, while for the wavelet function

4The signals we are considering are real, and in the DWT they are normally expanded using real
functions. For this reason, from now on we will use the notation which is appropriate for real
functions, thus writing the inner product without any conjugation sign.
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both translation and scaling operations, denoted by ψ [(θ/a) − k], will be used.5 We
will restrict ourselves to the critical sampling scheme (a0 = 2).

Let L2(R) be the ensemble of all signals that can be represented by the considered
expansion, i.e., the span of the expansion set. We then take a scaling set

ϕk(θ) = ϕ(θ − k), k ∈ Z, with ϕ(θ) ∈ L1(R), k = (−∞,+∞),

where ϕ(θ) is some prototype scaling function of which we consider shifts only. We
introduce V0 as the subspace of L2(R) spanned by this scaling set and write

x(θ) =
∑

k

ckϕk(θ) for any x(θ) ∈ V0 = Spank {ϕk(θ)} ,

with ck as expansion coefficients.
At this stage of the discussion it is, however, convenient to include both translations

and scalings of ϕ(θ). Only later will the scalings of ϕ(θ) disappear. We thus generate
the two-dimensional family of scaling functions

ϕ jk(θ) = 2 j/2ϕ
(
2 jθ − k

)
.

Note that pure scalings of ϕ(θ) would be indicated by

ϕ j (θ) = 2 j/2ϕ
(
2 jθ
)
.

The factor 2 j/2 ensures energy normalization for the scaling functions. The members
of this family correspond to subspaces

Vj = Spank

{
ϕ jk(θ)

} = Spank

{
ϕk
(
2 jθ)

)}
,

so we can write, for any specific Vj ,

x(θ) =
∑

k

c jkϕ jk(θ) for any x(θ) ∈ Vj .

Observe that the expansion coefficients c jk now bear two indexes, j and k.
For j > 0, Vj is wider than V0, because a j = 2− j is smaller than the scale factor

20 = 1 corresponding to V0. The function ϕ jk(θ) is narrower in time and translated

5The prototype (unscaled) wavelet function is what we called the “mother wavelet” in the previous
chapter. The prototype scaling function is sometimes referred to as the “father wavelet”. Note that
in order to simplify the notation, here we dropped the subscript adopted in the previous chapter to
indicate the mother wavelet: we wrote ψ(θ) instead of ψ0(θ).
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Fig. 14.1 The subspaces
Vj of L2(R), with j ∈
(−∞,+∞), are nested
spanned spaces

by smaller steps, so that it can represent signals x(θ) exhibiting finer-scale details.6

Thus we have infinite spaces Vj , becoming wider and wider as j increases from −∞
to +∞, while scales 2− j become smaller and smaller; V+∞ is as wide as the whole
L2(R); V−∞ is empty, i.e., V−∞ = ∅. Signals with finer and finer details can be
represented as j increases.

Of course, if a signal with a given degree of detail can be represented in some Vj ,
then all the signals that only exhibit coarser details can also be represented in Vj .
Thus in the DWT the MRA of the space L2(R) relies on the requirement that the Vj

are nested spanned spaces, as illustrated in Fig. 14.1:

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 . . . L2(R),

where the symbol ⊂ means, for example, that V1 is contained in V2: in general,
Vj ⊂ Vj+1 for all integer j , with V−∞ = ∅ and V+∞ = L2(R).

Since the space that contains signals with fine-scale details also contains less
detailed signals, i.e., signals with lower time resolution, if the time support of the
functions of the set is halved, and therefore translations take place at steps of halved
width, the set will become able to represent exactly a wider class of signals than
before, or to represent any signal with better accuracy. In this general discussion,
the expression “support” can be meant in a strict sense, i.e., we can assume the time
support of the functions of the set to be compact, but also in a wider sense, meaning
that most of the energy of the functions is confined in a time interval, outside of
which the variability of the functions drops to zero.

The subspaces Vj must therefore satisfy a natural scaling condition, according
to which if x(θ) ∈ Vj , then x(2θ) ∈ Vj+1. This nesting of spaces is obtained by
requiring that if ϕ(θ) ∈ V0, then ϕ(θ) ∈ V1 be also true, V1 being the space spanned
by ϕ(2θ). Indeed, ϕ(2θ) is a compressed version of ϕ(θ); ϕ(2θ) corresponds to a

6For j < 0, the contrary would be true: only coarser features could be represented, and Vj would
be narrower than V0.
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scale a = 2−1 = 1/2, while ϕ(θ) corresponds to a scale a = 20 = 1. Thus, ϕ(2θ)

has a halved scale with respect to ϕ(θ).
This constraint leads to an equation connecting the unshifted scaling function at

unit scale and the shifted scaling function at the halved scale. In reality, this is a
constraint relating the unshifted scaling function at a given, unspecified scale to the
shifted scaling function at a halved scale7:

ϕ(θ) = 2
∑

k

hs[k]ϕ(2θ − k).

The two scales connected by this link are called twin scales. The equation is referred
to as the twin-scale relation, or the refinement equation, or the dilation equation,
or the recursion equation for the scaling function. This equation states that ϕ(θ)

is obtained by a convolution of ϕ(2θ) with the impulse response hs[n] of a filter
called the scaling filter. Given a scaling function ϕ(θ), hs[n]—provided it exists—is
a unique sequence, and is a series of real or complex numbers; conversely, designing
hs[n] properly we can get—up to normalization—a unique function ϕ(θ) with some
desired properties.

As an example of twin-scale relation, we may consider the Haar scaling function,
which is defined as the real function

ϕ(θ) =
{

1 for 0 < θ < 1,

0 elsewhere.

The recursion equation in this case reduces to ϕ(θ) = ϕ(2θ) + ϕ(2θ − 1), since for
the Haar system,

hs[k] = 1

2
[1 1] , hLR[k] = 1√

2
[1 1] ,

where [1 1] and [1 −1] represent row vectors.
The Haar system is such that integer translates ϕ(θ − k) of the basic scal-

ing function span the space of piecewise-constant functions over integers. This
scaling function satisfies the twin-scale relation, since ϕ(θ) can be built using the
scaling function at halved scale, as qualitatively shown in Fig. 14.2.

At this point in the discussion it is convenient to call upon the set of wavelet
functions ψ jk(θ). Their spans are the differences between contiguous Vj subspaces.
For convenience, we will now assume orthogonality for both scaling and wavelet
sets, though keeping in mind that this requirement is not essential. Let us call W j the
orthogonal complement to Vj in Vj+1: in symbols,

Vj+1 = Vj ⊕ W j ,

7Note that in this equation we should actually write η = θ/a in place of θ , since the larger scale is
unspecified. However, the one presented here is the standard way in which the relation is written in
literature.
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Fig. 14.2 The Haar scaling
function ϕ(θ) can be built
using the Haar scaling
function at halved scale

Fig. 14.3 W j is the
orthogonal complement
to Vj in Vj+1

as shown in Fig. 14.3. All functions ∈ Vj are orthogonal to those ∈ W j , so that

〈
ϕ jk(θ)ψ jl(θ)

〉 =
∫

ϕ jk(θ)ψ jl(θ)dθ = 0

for all the appropriate values of the integers j , k, and l.
Now, what values of j do we need to consider for the expansion of a signal

x(θ) ∈ L2(R)? We will start from a minimum value j = j0, typically j0 = 0,
and then let j increase, so as to begin with the maximum scale of interest and
subsequently descend from large to small scales. In practice the subspace V0 is
chosen in such a way to represent the coarsest features of interest in the signal. All
the features corresponding to scales larger than this upper bound, i.e., to subspaces Vj

with j < 0, are not considered in an explicit way. The nested spanned spaces . . . ⊂
V0 ⊂ V1 ⊂ V2 ⊂ . . . L2(R), with V1 = V0 ⊕ W0, V2 = V1 ⊕ W1 = V0 ⊕ W0 ⊕ W1,
etc., allow us to write, as illustrated in Fig. 14.4,

L2(R) = V0 ⊕ W0 ⊕ W1 ⊕ W2 ⊕ W3 . . . ,
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Fig. 14.4 The relation
among subspaces Vj and W j
in L2(R)

i.e., the part of L2(R) not spanned by the scaling space V0 is spanned by wavelet
spaces W j . Under the orthogonality assumption we have

V0 ⊥ W0 ⊥ W1 ⊥ W2 ⊥ W3 . . . ,

meaning that all the mentioned subspaces are orthogonal to each other.8 Since V0

includes all the wavelet spaces not explicitly considered when stating that L2(R) =
V0 ⊕ W0 ⊕ W1 ⊕ W2 ⊕ W3 . . ., we can also write V0 = W−∞ ⊕ · · · ⊕ W−2 ⊕ W−1.

Now, wavelet functions reside (Fig. 14.4) in the next wider scaling subspace, i.e.,
W0 ⊂ V1. Therefore they can be represented by a weighted sum of shifted versions of
ϕ(2θ). A second recursion equation, the twin-scale relation for the wavelet function,
can thus be written, connecting the unshifted wavelet function at unit scale and the
shifted scaling function at halved scale. Again, this is actually a constraint relating
the unshifted wavelet function at a given, unspecified scale to the shifted scaling
function at a halved scale:

ψ(θ) = 2
∑

k

hw[k]ϕ(2θ − k).

8Note that the choice j0 = 0 is arbitrary, and we might as well decide to chose a smaller starting
scale—a larger degree of detail, e.g. j0 = 10, a = 2−10—and write

L2(R) = V10 ⊕ W10 ⊕ W11 ⊕ W12 . . . ,

or we might prefer a larger starting scale—a smaller degree of detail, e.g. j0 = −5, a = 25—and
write

L2(R) = V−5 ⊕ W−5 ⊕ W−4 ⊕ W−3 . . . .

We could even start from j0 = −∞, i.e., from an infinitely large scale: since V−∞ = 0, we would
then write

L2(R) = · · · ⊕ W−2 ⊕ W−1 ⊕ W0 ⊕ W1 ⊕ W2 ⊕ · · · .

In this way we would eliminate the scaling function and would get an expansion of the signal on
the basis of wavelets solely. In the following discussion we will set j0 = 0, unless explicitly stated
otherwise.
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Fig. 14.5 The Haar wavelet
function ψ(θ) may be built
using the Haar scaling
function at halved scale

This equation states that ψ(θ) is obtained by convolution, using the shifted scaling
function at halved scale and a new filter hw[n], which is called the wavelet filter.
A qualitative example of the twin-scale wavelet relation using the Haar wavelet is
given in Fig. 14.5. The Haar wavelet function is defined as

ψ(θ) =

⎧
⎪⎨

⎪⎩

1 for 0 < θ < 1
2 ,

−1 for 1
2 < θ < 1,

0 elsewhere.

The recursion equation in this case is is ψ(θ) = ϕ(2θ) − ϕ(2θ − 1), since since for
the Haar wavelet,

hw[k] = 1

2
[1 −1] , hLR[k] = 1√

2
[1 −1] .

Note how in DWT theory, continuous-time quantities (functions) and discrete-
time quantities (sequences) are mixed and deeply interconnected: in discrete time,
we have digital filters and their impulse responses, hs[n] and hw[n]; in continuous
time, we have scaling and wavelet functions.

The scaling and wavelet filters introduced above can be shown to be strictly
connected to one another. They are a lowpass and a highpass filter, respectively.9

When the functions of the set are compact-support (in a strict sense, as in the case of
the Haar system), all these filters are LTI stable and causal FIR systems with equal
even lengths, which we will denote by 2M . Moreover, they are half-band filters. If
they were ideal brick-wall filters, their passband would occupy exactly half of the
interval [0, π ]. Realizable, causal FIR filters employed in the computational DWT

9This statement is not in contradiction with what we said in the previous chapter about the frequency
response of the filters associated with complex analytic wavelets. Those wavelets are used for CWT
only and do not have a corresponding scaling function. They actually act as passband filters.
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cannot have a brick-wall shape, but their cutoff is π/2. When the functions of the set
are not compact-support, the filters involved in the DWT may be IIR.

It is important to understand that all the features of ϕ(θ) and ψ(θ) (support,
orthogonality, smoothness etc.) are determined by the filters. The filters come first, in
the sense that they are designed according to some requirement on the wavelet system
to be created. Then the scaling and wavelet functions are obtained using so-called
cascade algorithm, an iterative algorithm proposed by Daubechies and Lagarias
(1991, 1992) (see, e.g., Misiti et al. 2007) that provides excellent approximations of
the implicitly defined functions. The complete set of wavelet functions is

ψ jk(θ) = 2 j/2ψ

(
θ

2− j
− k

)
= 2 j/2ψ(2 jθ − k).

This means taking a prototype wavelet ψ(θ), scaling time by θ → θ/a with a = 2− j ,
and shifting time by k. Keep in mind that in our present approach

• large j means small scale, fine detail, i.e., elevated time resolution of the DWT,
high frequency, and small translation steps;

• small j means large scale, coarse features, i.e., poor time resolution of the DWT,
low frequency, and wide translation steps.

Moreover, recall that the factor 1/
√

a = 2 j/2 is for normalization: when we scale
the wavelet we also multiply it by 2 j/2 to preserve its energy. If the prototype is
normalized to unit energy, wavelets at all scales have unit energy. Under the present
assumption of orthogonality, the system thus becomes ON.

The DWT that we desire must allow for decomposition (analysis) of a signal and
subsequent satisfactory reconstruction (synthesis). Indeed, perfect reconstruction
(PR) is the most crucial property for the DWT. We need an invertible transform;
PR is equivalent to exact invertibility. The “gap” between decomposition and recon-
struction may involve some manipulation of the DWT coefficients, for the purpose of
denoising, compression etc. However, in this chapter we assume that this gap can be
closed, and focus on the conditions under which PR can be achieved in the absence
of any manipulation of the DWT coefficients. The two opposite procedures of analy-
sis and synthesis actually involve, as we will see, not two but four filters. These
four filters are iteratively applied to the signal, thus becoming the essential compo-
nents of two distinct two-band filter banks: the analysis filter bank that operates a
decomposition of x(t), and the synthesis filter banks that performs reconstruction.

PR means that the reconstructed signal must be equal to the original one, except
for a possible time delay connected to the use of causal filters. We will discuss later
how the filters work on the signal and which characteristics they must have in order
to make invertibility possible. For the moment, we just introduce them through their
relation with the scaling and wavelet filters. We will distinguish the four filters by
the subscripts LD, HD, LR, and HR, referring to “Lowpass for Decomposition”,
“Highpass for Decomposition”, “Lowpass for Reconstruction”, and “Highpass for
Reconstruction”, respectively.
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Fig. 14.6 The four PR filters used in the DWT for signal decomposition and reconstruction, in the
case of LTI real and causal FIR filters corresponding to a real, compactly-supported wavelet system
forming an ON basis, chosen in such a way that all filters have the same length. The relation of each
of the four filters with the scaling filter and with the other three filters is shown. The subscripts LD,
HD, LR, and HR refer to “Lowpass for Decomposition”, “Highpass for Decomposition”, “Lowpass
for Reconstruction”, and “Highpass for Reconstruction”, respectively. ON-PR indicates perfect
reconstruction in the selected orthonormal basis (see text)

These filters and their mutual relations are shown in Fig. 14.6. For simplicity, in
Fig. 14.6 these relations are illustrated referring to LTI real, causal PR FIR filters that
correspond to a real, compactly-supported wavelets system forming an ON basis.
The basis chosen in such a way that all filters have the same length. These systems are
commonly adopted for the so-called fast wavelet transform (FWT), a.k.a. Mallat’s
algorithm, presented in Sect. 14.5. They include Daubechies wavelets, symlets and
coiflets (Sect. 14.9). Indeed,

• it can be shown that ϕ jk(θ) and ψ jk(θ) can form an orthogonal basis while having,
at the same time, a compact support, i.e., they can be different from zero over a
bounded and closed interval of the θ axis and be zero elsewhere;

• a property referred to as the compact support property establishes that compact-
support scaling functions correspond to FIR filters. More precisely, a theorem
(Burrus et al. 1998) states that if ϕ(θ) has compact support on an integer interval,
which must have even length 2M (i.e., if ϕ(θ) is compactly supported on 0 ≤ θ ≤
2M−1), and its integer translates ϕ(θ−k) are linearly independent, then hs[n], and
hLR[n] that is nothing but a normalized version of hs[n], also have compact support
over 0 ≤ n ≤ 2M −1. Thus hLR[n] is an FIR filter with length 2M . Orthogonality
can further be required, in the form of additional constraints leading to the same
length 2M for the remaining filters, hHR[n], hLD[n] and hHD[n]. If the translates
ϕ(θ − k) are not independent, or do not satisfy some equivalent restriction, hLR[n]
can be IIR.
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Under the present assumptions

• the scaling filter hs[k] is a lowpass filter with even length 2M ;
• the scaling filter is such that

∑
k hs[k] = 1; this means that its lowpass frequency

response is unit at zero frequency at w = n the frequency response is zero;

• the 
2-norm of the scaling filter is
√∑

k |hs[k]|2 = 1/
√

2;
• the scaling filter is then normalized, for reasons that will soon become clear,

dividing it by its norm, i.e., multiplying it by
√

2;
• the normalized filter is the lowpass hLR[k] involved in the synthesis operation;
• hLR[k] is such that

∑
k hLR[k] = √

2, and this means that its lowpass frequency
response at ω = 0 is not 1, but

√
2 = 1.4142; at ω = π the frequency response is

zero;

• the 
2-norm of hLR[k] is
√∑ |hw[k]|2 = 1;

• the wavelet filter hw[k] (not shown in Fig. 14.6) is a highpass filter with even length
2M ;

• the wavelet filter has
∑

hw[k] = 0, as expected for a highpass filter whose fre-
quency response must vanish at ω = 0; at ω = π the frequency response is 1;

• its 
2-norm is
√∑ |hw[k]|2 = 1/

√
2;

• the wavelet filter is then normalized multiplying it by
√

2, to give a new highpass
filter hHR[k] involved in the synthesis operation;

• hHR[k] is such that its highpass frequency response at ω = π is not 1, but
√

2 =
1.4142; at ω = 0 the frequency response is zero, since

∑
hHR[k] = 0;

• hHR[k] has 
2-norm
√∑

k |hHR[k]|2 = 1. However, we do not need to explicitly
consider the wavelet filter, because

• the reconstruction highpass filter hHR[k] can be directly derived from hLR[k],
exploiting the fact that the two filters are a pair of ON-PR filters (see next section);

• the lowpass/highpass decomposition filters, which we denote by hLD[k] and hHD[k]
respectively, are related to the corresponding reconstruction filters by a folding
operation, i.e., a time reversal. Moreover, the highpass decomposition filter hHD[k]
could be derived directly from hLD[k], because these two filters also are a pair of
ON-PR filters.

PR filters are special realizable filters that ensure invertibility of the DWT when a
signal x(θ) is synthesized from its DWT coefficients. They are such that the magni-
tude frequency response of hHR[n] is a mirror image of that of hLR[n] with respect
to ω = π/2; for the DWT algorithm to work properly, the filters must satisfy precise
constraints, which will be described in Sect. 14.4. The fundamental filter—the one
that is designed first—is hLR[n]; hHR[n] then follows by the ON-PR-filters relation,
which is (see, e.g., Qian 2001; Misiti et al. 2007)

hHR[n] = (−1)nhLR[2M − 1 − n], n = [0, 2M − 1],
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where the (−1)n term (modulation term) provides lowpass-to-highpass conversion.
The inverse relation is

hLR[n] = −(−1)nhHR[2M − 1 − n], n = [0, 2M − 1].

The corresponding decomposition filters are finally obtained by time folding. Note,
however, that folding without delay would lead to anticausal filters; a proper delay
is therefore applied, leading to the relations

hLD[n] = hLR[2M − 1 − n], n = [0, 2M − 1],
hHD[n] = hHR[2M − 1 − n], n = [0, 2M − 1].

The decomposition filters are also related by the ON-PR-filters relation:

hHD[n] = −(−1)nhLD[2M − 1 − n], n = [0, 2M − 1],
hLD[n] = (−1)nhHD[2M − 1 − n], n = [0, 2M − 1].

In summary,

• the lowpass reconstruction filter derives from the scaling filter via normalization;
• the highpass reconstruction filter is obtained from the lowpass reconstruction filter

by modulation and folding;
• the decomposition filters are obtained as folded versions of the corresponding

reconstruction filters.

At this point, it is useful to see a couple of examples of these filters. We select the
Daubechies wavelet system, indicated by the acronym db, and the coiflets, indicated
by coif. These wavelets can have different orders (Sect. 14.9), and we choose an order
of 3 for db and an order of 2 for coif. Figures 14.7 and 14.8 show the impulse responses
of the four filters used for signal decomposition and reconstruction in the two cases.
For db3, M = 6 was chosen, so the plots extend over n = [0, 2M − 1] = [0, 11];
for coif2, M = 12 was selected, so the plots extend over n = [0, 2M − 1] = [0, 23].
Moreover, in the lower panels the magnitude and phase frequency responses of the
filters are shown. Note that

∣∣HLR(ejω)
∣∣ = ∣∣HLD(ejω)

∣∣ ,
∣∣HHR(ejω)

∣∣ = ∣∣HHD(ejω)
∣∣ ,

since a folding operation in the time domain leaves the magnitude frequency response
unchanged, due to the properties of the DTFT. Note also that we are mainly inter-
ested in the passband phase response of each filter. For this reason, passband phase
responses are drawn as black curves, while stopband phase responses are drawn as
gray curves. For both wavelets, the LD filter is identified by solid lines, the HD filter
by dashed lines, the LR filter by dot-dashed lines, and the HR filter by dotted lines.
Observe how the frequency responses of the filters are flat near ω = 0 and ω = π .
This is a typical feature of these filters. More details about them can be found in
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Fig. 14.7 Impulse-response
stem plots of the four filters
used in the DWT for signal
decomposition and
reconstruction, in the case of
the Daubechies wavelet of
order 3. The magnitude and
phase frequency responses
are also shown. Passband
phase responses are drawn as
black curves, while stopband
phase responses are drawn as
gray curves. LD: solid lines;
HD: dashed lines; LR:
dot-dashed lines; HR: dotted
lines
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Strang and Nguyen (1996). Note also that the phase response is nearly linear in the
coif2 case for all the four filters.

Our examples concerned an ON compactly supported wavelet system associated to
equal-length FIR filters. Biorthogonal bases are also used in some DWT applications.
Biorthogonal wavelet systems with compact support correspond to FIR filters and
exact inversion of the transform is possible with them, but the filters involved in
decomposition and reconstruction have different lengths, and the relation between
the impulse responses of lowpass/highpass decomposition and reconstruction filters
is not a simple time reversal.

We will now consider an example of decomposition of the L2(R)-space using the
Haar wavelet, which is nothing but a Daubechies wavelet with order 1. The space
V0 is spanned by ϕ(θ − k) and therefore represents the space of all L2(R) functions
that are constant over intervals of unit length. V1 is spanned by ϕ(2θ − k), V2 is
spanned by ϕ(4θ − k), and so on. In general, Vj is spanned by ϕ(2 jθ − k) and as j
increases, arbitrary signals with shorter and shorter step-function behaviors can be
approximated. Haar demonstrated that when j → ∞, Vj → L2(R). Now, suppose
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Fig. 14.8 Impulse-response
stem plots of the four filters
used in the DWT for signal
decomposition and
reconstruction, in the case of
the Coifman wavelet of
order 2. The magnitude and
phase frequency responses
are also shown. Passband
phase responses are drawn as
black curves, while stopband
phase responses are drawn as
gray curves. LD: solid lines;
HD: dashed lines; LR:
dot-dashed lines; HR: dotted
lines
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that for a particular purpose we need V3 as the widest scaling subspace, i.e., suppose
we are considering a signal x(θ) ∈ V3. Then, there are seven spaces involved in our
decomposition, namely, V0, W0, V1, W1, V2, W2, V3:

V0 = Spank {ϕ(θ − k)} , W0 = Spank {ψ(θ − k)} ;
V1 = V0 ⊕ W0 = Spank {ϕ(2θ − k)} = Spank {ϕ(θ − k)} ⊕ Spank {ψ(θ − k)} ,

W1 = Spank {ψ(2θ − k)} ;
V2 = V1 ⊕ W1 = Spank {ϕ(4θ − k)} = Spank {ϕ(2θ − k)} ⊕ Spank {ψ(2θ − k)} ,

W2 = Spank {ψ(4θ − k)} ;
V3 = V2 ⊕ W2 = Spank {ϕ(8θ − k)} = Spank {4ϕ(θ − k)} ⊕ Spank {ψ(4θ − k)} .

The complete decomposition of V3 using scaling and wavelet Haar functions is shown
in Fig. 14.9, and can be expressed as V3 = V0 ⊕ W0 ⊕ W1 ⊕ W2. Had we desired
to represent a function with finer details, e.g., x(θ) ∈ V4, we would have considered
V4 = V0 ⊕ W0 ⊕ W1 ⊕ W2 ⊕ W3, and so on.
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Fig. 14.9 Complete decomposition of the subspace V3 of L2(R) using scaling and wavelet Haar
functions

In practical cases, we most often do not know a priori the subspace a given func-
tion x(θ) belongs to. Starting from V0, we will then approximate our function by
progressively larger subspaces (V1, V2, V3, . . .) until we attain a good signal repre-
sentation at some j = jmax. For example, in Fig. 14.10a, a synthetic signal x(θ)—a
sinusoid with two discontinuities—is compared with its successive approximations
obtained using the Haar set in the scaling spaces V0–V6. The approximation to x(θ)

in V6 is defined as the signal in the right-hand side of the following equation:

x(θ) ≈
∑

k

c0[k]ϕ0k(θ) +
5∑

j=0

∑

k

d j [k]ψ jk(θ);

similar expressions can be written for approximations in the narrower scaling sub-
spaces, V5–V0. Observe the notation we adopted here for the coefficients. We are using
both scaling and wavelet functions and need to distinguish approximation coefficients
related to the scaling function (a.k.a. scaling coefficients), which we denote by c j [k],
from detail coefficients related to the wavelet function (a.k.a. wavelet coefficients),
which we indicate by d j [k]. This notation stresses the fact that all coefficients involved
in the expansion are treated as sequences, i.e., vectors: one sequence of approxima-
tion coefficients c0[k] and 6 sequences of detail coefficients d j [k], j = [0, 5]. Of
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Fig. 14.10 a Successive approximations of a synthetic signal x(θ) containing a sinusoid with two
discontinuities. The approximations are obtained using the Haar scaling/wavelet set in the scaling
spaces V0–V6. Also shown are b the corresponding details in W0–W6. The level numbering on
the left-hand side of the panels of column a, which holds for column b too, will prove useful in
Sect. 14.5

course, also the approximation coefficients c1[k]–c5[k] exist; we simply do not need
them to form the approximation in V6.

The accuracy of the approximation to x(θ) improves passing from V0 to V6.
The coarsest approximation is in V0, and represents the signal’s mean value. The
difference between one approximation and the following finer one represents a detail
that, being neglected in one approximation, is then included in the subsequent one.
The details of the synthetic signal are shown in Fig. 14.10b: for example, the detail in
W3 is the difference between the approximation in V4 and the approximation in V3.
We can also see that the approximation in V6 does not reproduce the signal x[n] in
a satisfactory way. If this were a real-world application, we would probably want to
increase by 1 the subspaces included in the expansion (provided that this is possible;
see Sect. 14.5). The inaccuracy of the approximation in V6 is witnessed also by the
fact that the detail in W6 does not appear insignificant; it is evidently needed to
reproduce the sharp transition that x(θ) exhibits near time 2. In terms of subspaces,
the decomposition we operated is

V6 = V0 ⊕ W0 ⊕ W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5.
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If instead of stopping the decomposition at some finite jmax we consider all the values
of j up to j = +∞, i.e., all the (finer and finer) time resolutions with which we may
look at the signal, we can write

x(θ) =
∑

k

c0[k]ϕ0k(θ) +
+∞∑

j=0

∑

k

d j [k]ψ jk(θ).

In this equation, the equality sign holds, because all possible details were taken into
account. The first right-hand sum is the approximation in V0, to which all details are
added (second right-hand term with a double sum). Only translations of the scaling
function appear in the expansion: ϕ0k(θ) has k as the only variable subscript. This
equation represents the formal expression for the IDWT of the signal x(θ). The
coefficients c0[k] and d j [k] are the DWT of x(θ).

In the present case, in which we assumed an ON basis, the coefficients are given
by the inner products

c0[k] = 〈x(θ), ϕ0k(θ)〉 =
∫

x(θ)ϕ0k(θ)dθ,

d j [k] = 〈x(θ), ψ jk(θ)
〉 =
∫

x(θ)ψ jk(θ)dθ.

The DWT coefficients completely describe the signal and can be used to approximate,
filter, de-noise, compress the signal. Moreover, with an ON basis, Parseval’s theorem
holds, which subdivides the signal’s energy among the DWT coefficients:

E =
∫

|x(θ |2 dθ =
+∞∑

k=−∞
|c0[k]|2 +

+∞∑

j=0

+∞∑

k=−∞

∣∣d j [k]∣∣2 .

This is equivalent to stating that the L2-norm of x(θ) is equal to the 
2-norm of the
DWT coefficients.

In practice, the DWT coefficients must be calculated from a sampled version x[n]
of the signal x(θ), with n = [0, N − 1]. This implies the existence of an upper limit
to resolution: in a sampled signal we cannot see details falling between one sample
and the next one. Now, if the scaling set ϕ j (θ) = 2 j/2ϕ

(
2 jθ
)

is “well chosen”, then
at a sufficiently high value of j—at sufficiently small scale—the scaling function
becomes narrow enough to be approximated by a Dirac δ. At this particular j-value,
the inner product simply samples the signal at all available values of discrete time,
and c j [k] ≈ x[k].

This observation suggests that in order to arrive at a computational implementation
of the DWT decomposition, we will probably have to reverse our perspective and
start from the finest scale. We will first define a j-th level of scaling coefficients
using the samples of the input sequence. These j-th-level coefficients will serve as
inputs to a recursive procedure with which to scan, going backwards with decreasing
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values of j , larger and larger scales. As we will see, this is actually the Mallat
approach to a realizable DWT and IDWT (Sect. 14.5). The procedure uses only the
impulse responses of the four filters introduced above, and the discrete-time signals
representing the approximation and detail coefficients. The underlying functions
ϕ(θ) and ψ(θ) remain completely implicit.

We must now get an idea of how the DWT decomposition can be seen as the
application of a filter bank. For this purpose, we start again from the scaling recursion
equation and assume that we know the impulse response hs[n] of the scaling filter
(in the sense that we assume that the filter has already been designed according to
some specifications). We thus look at ϕ(θ) as the solution of the equation, which will
be unique up to normalization.

From the twin-scale relation for the scaling function, changing θ into 2 jθ − k
(i.e., scaling and shifting the time variable), adopting n as the summation index and
recalling that hs[n] = (1/

√
2)hLR[n], we can build the scaling set

ϕ(2 jθ − k) = √
2
∑

n

hLR[n]ϕ
[
2
(

2 jθ − k
)

− n
]

= √
2
∑

n

hLR[n]ϕ
(

2 j+1θ − m
)

,

with m = 2k + n. We can also write, eliminating the index n by using n = m − 2k,

ϕ(2 jθ − k) = √
2
∑

m

hLR[m − 2k]ϕ (2 j+1θ − m
)
.

Now we consider the expansion of a signal x(θ) belonging to some scaling space,
which we will call Vj+1. We can get the approximation in Vj+1 = Spank

{
ϕ j+1 k(θ)

}

using scaling functions only:

x(θ) =
∑

k

c j+1[k]2 j+1
2 ϕ
(
2 j+1θ − k

)
.

If instead we use scaling functions at the next coarser j-th scale, we need to use
also wavelets functions for the expansion, so as to provide the j-th detail that is not
available if just scaling functions at the j-th scale are employed:

x(θ) =
∑

k

c j [k]2 j
2 ϕ
(
2 jθ − k

)+
∑

k

d j [k]2 j
2 ψ
(
2 jθ − k

)
.

In the case of an orthogonal basis the coefficients are obtained by inner products as

c j [k] = 〈x(θ), ϕ jk(θ)
〉 =
∫

x(θ)2
j
2 ϕ
(
2 jθ − k

)
dθ.

Inserting ϕ
(
2 jθ − k

) = √
2
∑

m hLR[m − 2k]ϕ (2 j+1θ − m
)

in the expression of
c j [k] and considering scaling functions ϕ(θ) ∈ L1(R), so as to be allowed to inter-
change the sum and the integral, we can write
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c j [k] =
∫

x(θ)2
j+1
2

∑

m

hLR[m − 2k]ϕ (2 j+1θ − m
)

dθ

=
∑

m

hLR[m − 2k]
∫

x(θ)2
j+1
2 ϕ
(
2 j+1θ − m

)
dθ.

But the integral is the inner product of x(θ) with the scaling function at the ( j +1)-th
scale, so it equals c j+1[m]. Working on the expression of d j [k] in a similar way we
can obtain the following two equations (see Burrus et al. 1998):

c j [k] =
∑

m

hLR[m − 2k]c j+1[m],

d j [k] =
∑

m

hHR[m − 2k]c j+1[m],

or

c j [k] =
∑

m

hLD[2k − m]c j+1[m],

d j [k] =
∑

m

hHD[2k − m]c j+1[m],

where we have taken into account that the decomposition filters here are folded
versions of the reconstruction filters. Note that for the sake of simplicity we neglected
causality and simply indicated folding of hLR[m − 2k] as hLR[2k − m], etc.

Recalling that sharp time resolution means small scale, so that resolution is ∝ 2 j

and increases with j , these equations tell us that the coefficients at the level of poorer
resolution can be calculated from the coefficients at the next level of higher resolution.
They are recursive relations leading to a branched-tree algorithm, i.e., the filter bank
that implements the DWT.

Better insight into the operations appearing in the above equations can be gained
by explicitly writing down the linear convolution

G j [l] ≡ hLD[l] ∗ c j+1[l] =
∑

m

hLD[l − m]c j+1[m].

If we take only every other sample of G j [l] and set it equal to c j [k], i.e., if we
set c j [k] = G j [l]

∣∣
l=2k , thus operating a downsampling by a factor of 2 of the

result of the convolution, we arrive at the equation for c j [k] written above. Similar
reasoning can explain the equation for d j [k]. We thus understand that in the DWT
decomposition, the two decomposition filters work on the signal by convolution and
subsequent downsampling by a factor of 2. The application of each decomposition
filter is immediately followed by downsampling. If it were not so, we would start with
one input sequence and end up with two (longer) sequences, i.e., with over two times
as many numbers to process. This would not be very practical. Downsampling by 2
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is the solution, but in this way we would halve the energy. Energy must be preserved,
and this is the reason why each impulse response is multiplied by

√
2 with respect

to the original scaling and wavelet filters: in the energy, this gives a factor of 2 that
restores the lost energy. This normalization is reflected in the lowpass and highpass
frequency responses being

√
2 at ω = 0 and π respectively, rather than being 1.

The fact that lower-resolution coefficients can be calculated from the higher-
resolution ones in the way described above allows for a very efficient calculation of
all the coefficients that are needed in any practical application. But once a decom-
position has been carried out, how do we invert the transform? We need similar
formulas to compute higher-resolution coefficients from lower-resolution ones. It
can be shown that

c j+1[k] =
∑

m

c j [m]hLR[k − 2m] +
∑

m

d j [m]hHR[k − 2m].

Let us examine the first sum of the equation written above, for the element k = 0:

∑

m

c j [m]hLR[−2m] = · · ·+ c j [−1]hLR[+2]+ c j [0]hLR[0]+ c j [1]hLR[−2]+ · · · .

If we insert zeros between adjacent samples of c j [m] we obtain

∑

m

c j [m]hLR[−2m] = · · · + c j [−1]hLR[+2] + 0 × hLR[1]

+ c j [0]hLR[0] + 0 × hLR[−1] + c j [1]hLR[−2] + · · · .

If we define

c̃ j [m] = . . . c j [−1], 0, c j [0], 0, c j [−1] . . . , i.e., c̃ j [2m] = c j [m] and c̃ j [2m + 1] = 0,

we get

∑

m

c j [m]hLR[−2m] =
∑

m

c̃ j [2m]hLR[−2m] =
∑

m

c̃ j [m]hLR[−m].

By extension to other values of k we can write the general formula

∑

m

c j [m]hLR[k − 2m] =
∑

m

c̃ j [m]hLR[k − m],

representing the convolution of c̃ j [m] with the filter hLR[m]. The operations needed
in each reconstruction step thus become clear: they are an upsampling by factor of
2 and a subsequent filtering. Of course, to obtain c j+1[m] we must add the output
of the d j [m] branch to the result of these two processing steps performed on c j [m].
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In Sect. 14.5 we will describe in detail how to computationally realize the DWT
decomposition through the efficient application of a filter bank, i.e., by iterating the
single-step operations described above.

14.4 Perfect Reconstruction (PR) Filters

The theoretical DWT is applied to signals that are defined on an infinite length time
interval. The actual, computationally realizable DWT is applied to sampled signals
that are defined on a finite-length time interval. Moreover, while in theory lowpass
and bandpass filters can have ideal top-hat frequency responses, in a computational
environment we must employ realizable filters. Perfect reconstruction, which would
be ensured in the theoretical case, requires some care when realizable filters are
employed to operate on finite-length data sequences. In fact, a real-world DWT
decomposition is always affected by distortions related to filtering and by aliasing
caused by downsampling. These negative effects must be compensated by appro-
priately designed PR synthesis filters. Focusing on PR filters we make sure that the
output of the synthesis bank is equal to the input signal, possibly up to some time
delay; but filters satisfying restrictive conditions are needed to attain this result.

The properties of PR filters described above derive from a number of theorems
that determining the necessary and/or sufficient conditions that the four filters hLR[n],
hHR[n], hLD[n] and hHD[n] must satisfy for the solution ϕ(θ) of the recursion equation
to exist and to possess, together with ψ(θ), some given properties, leading to a
biorthogonal basis, an orthogonal basis, or a tight frame (see the appendix of Chap. 3).
The conditions on PR filters can be expressed in the time domain, i.e., they can be
specified in terms of constraints on the impulse responses of the filters, or in the
frequency domain, which leads to constraints on the frequency responses/transfer
functions. The mathematical properties of PR filters constitute a quite complex topic.
For a rigorous mathematical discussion, the reader is referred to Burrus et al. (1998),
Daubechies (1992). We will only mention a few fundamental results.

1. It can be shown that the filter hLR[n] must satisfy the so-called linear admissibility
condition ∑

n

hLR[n] = √
2.

This is the weakest condition on hLR[n]. No assumption of orthogonality of the
basis functions is made to derive this constraint, nor are any other properties
of ϕ(θ) other than a non-zero integral required. This equation shows that, unlike
LCCDEs, not just any set of filter coefficients will support a solution to the scaling
recursion equation.
The equivalent frequency-domain condition is

HLR(ej0) = √
2,

http://dx.doi.org/10.1007/978-3-319-25468-5_3


14.4 Perfect Reconstruction (PR) Filters 671

i.e., the filter’s frequency response at zero frequency must equal
√

2, and therefore
the filter cannot be highpass or bandpass.

2. It can be shown that if we require orthogonality, the following frequency-domain
orthogonality condition on the lowpass reconstruction filter must hold:

∣∣HLR
(
ejω
)∣∣2 + ∣∣HLR

[
ej(ω+π)

]∣∣2 = 2.

In the time domain the same condition appears as the so-called quadratic admis-
sibility condition, which characterizes PR orthogonal filters:

∑

n

hLR[n]hLR[n − 2k] = δ[k].

Indeed, it can be shown that in order for a solution ϕ(θ) of the scaling recursion
equation to be orthogonal under integer translations, it is necessary that the coeffi-
cients of the recursive equation be orthogonal themselves after downsampling by
a factor of 2. Note that the norm of the impulse response hLR[n] is set to 1 by this
condition, and that this does not depend on any particular normalization of ϕ(θ).
Not only must the sum of hLR[n] be

√
2, but for orthogonality of the solution, the

sum of squares of hLR[n] must be 1, both independent of any normalization on the
scaling function. If ϕ(θ) is normalized by dividing by the square root of its energy,
then integer translates of ϕ(θ) are not only orthogonal, but also orthonormal. The
quadratic admissibility condition also implies

∑

n

hLR[2n] =
∑

n

hLR[2n + 1] = 1/
√

2,

i.e., not only must the sum of hLR[n] equal
√

2, but for orthogonality of the
solution, the individual sums of the even and odd terms in hLR[n] must be 1/

√
2,

independent of any normalization of ϕ(θ).
3. If hLR[n] satisfies the linear and quadratic admissibility conditions, then it is also

true (Burrus et al. 1998) that

∑

n

hHR[n] = HHR(ej0) = 0,

∣∣HHR(ejω)
∣∣ = ∣∣HLR(ej[ω+π])

∣∣ ,
∣∣HLR(ejω)

∣∣2 + ∣∣HHR(ejω)
∣∣2 = 2,

under the condition
∫

ψ(θ)dθ = 0. Note that the second equation implies

∣∣HHR(ejπ )
∣∣ = ∣∣HLR(ej2π )

∣∣ = ∣∣HLR(ej0)
∣∣ = √

2,
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i.e., the highpass frequency response is
√

2 at ω = π .

We will now try to explain the conceptual meaning of the quadratic admissibility
condition for orthogonality. For convenience, we will actually start from a gen-
eral biorthogonal basis set and only later will we impose orthogonality. Figure 14.11
illustrates a two-channel decomposition filter bank followed by a two-channel recon-
struction filter bank. The scheme depicts a single stage of application of the two
filters (lowpass and highpass) in each bank. In the decomposition, the input sig-
nal x[n] is separated in the frequency domain into two subbands: the high-band
(π/2 ≤ |ω| < π ) and the low-band (0 ≤ |ω| < π/2). The corresponding output
signals are g[n] and f [n], respectively. Each band is then downsampled by a factor
of 2; let us call v[n] the resulting signal in the low-band. The vertical dashed line
symbolizes the gap between analysis and synthesis, in which simple transmission,
or manipulation of the signals, can take place. Here we assume simple transmission.
Reconstruction is performed via upsampling by a factor of 2, which generates u[n]
on the low-band channel. Finally, a further filtering in each band, followed by addi-
tion of the corresponding output signals, produces the reconstructed signal x̂[n]. This
structure was introduced in the 1980 s by Stéphane Mallat, who discovered the con-
nection between wavelets and filter banks, and is nothing but a single stage of what
is known as subband coding (Vetterli and Kovac̆ević 1995). The filters of Fig. 14.11
cannot be ideal brick-wall filters. They are realizable filters and their cutoff is not
sharp. Moreover, recall that the input signal is a sampled, finite-length signal.

Perfect reconstruction (PR), apart from a possible time delay, can be achieved
only if no information is lost. In order to understand the related issues, consider that
according to the formulas reported in Sect. 6.9.1, a downsampling by a factor of 2 of
a signal f [n] leads to a signal

Fig. 14.11 Two-band analysis- and synthesis-filter banks in a general biorthogonal DWT. The
scheme depicts a single stage of application of two filters (lowpass and highpass) in each bank.
Decomposition is performed via filtering and subsequent downsampling by a factor of 2 in each
band. The vertical dashed line symbolizes the gap between analysis and synthesis, in which we
assume simple transmission. Reconstruction is performed via upsampling by a factor of 2 and
subsequent filtering in each band

http://dx.doi.org/10.1007/978-3-319-25468-5_6


14.4 Perfect Reconstruction (PR) Filters 673

v[n] = f [2n] n = 0, 1, 2 . . . ,

whose z-transform is

V (z) = 1

2

[
F
(
z1/2
)+ F

(
e jπ z1/2

)] = 1

2

[
F
(
z1/2
)+ F

(−z1/2
)]

.

An upsampling by a factor of 2 of a signal f [n] produces a signal given by

w[2n] = f [n], n = 0, 1, 2 . . . ,

w[2n + 1] = 0, n = 0, 1, 2 . . . ,

whose z-transform is
W (z) = F(z2).

On the unit circle we have

V
(
ejω
) = 1

2

{
F
(
ejω/2

)+ F
[
ej(ω/2+π)

]}

and
W
(
ejω
) = F

(
ej2ω
)
.

The effects of these operations are visible in Fig. 14.12.
Figure 14.12a shows the spectrum F(ejω) of the low-band signal f [n], which is has

band limits of ±π/2, meaning that most of its energy is in |ω| < π/2. The spectrum
has a period of 2π . Due to downsampling, F(ejω) is stretched in frequency by a factor
of 2, so that its bandwidth doubles as F(ejω) becomes F(ejω/2); moreover, a shifted
spectral image F[ej(ω/2+π)] is added to F(ejω/2); the resulting sum is multiplied by 1/2
to give the spectrum V (ejω) of the downsampled signal (Fig. 14.12b). Since adjacent
spectral copies overlay, aliasing occurs, which is represented by gray triangles.

If we applied an upsampling by a factor of 2 to the same signal f [n] whose
spectrum is shown in Fig. 14.12a, thus obtaining an upsampled signal w[n], the
spectrum F

(
e jω
)

would be compressed, and images of the compressed spectrum
would appear, centered on ±π . This is illustrated in Fig. 14.12c, where these images
are represented by dashed lines. This effect is called imaging, and causes the period
of the resulting spectrum W (ejω) to be π rather than 2π .

Note that imaging is the opposite of aliasing. In aliasing, two input frequencies ω

and ω+π give the same output. In imaging, one input frequency ω gives two outputs,
one at frequency ω/2 and another one at ω/2+π . Upsampling causes imaging while
downsampling causes aliasing.

However, the process described above is not what happens in the bank of
Fig. 14.11: in the actual bank we first apply a downsampling by a factor of 2, thus
obtaining v[n], and then immediately upsample v[n] by 2, generating u[n]. The
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(a) (b)

(c) (d)

Fig. 14.12 a The spectrum F(ejω) of a signal f [n] that has most of its energy in the frequency
range |ω| < π/2. The period of the spectrum is 2π . b Aliasing produced by a downsampling of the
signal f [n] by a factor of 2. The downsampled signal is v[n] and its spectrum is V (ejω) (see text).
Aliasing is highlighted by gray triangles. c Imaging produced by upsampling: the spectrum W (ejω)

of a signal w[n] obtained upsampling f [n] by a factor of 2. Dashed lines represent images of the
compressed spectrum (see text). d The combined effects of downsampling and upsampling: the
spectrum U (ejω) of the signal u[n] obtained downsampling f [n] and then immediately upsampling
the result. The spectrum is stretched by downsampling and compressed by upsampling, so that its
shape is as in panel a, but the spectral images generated by upsampling (symbolized by dashed
lines) produce aliasing, indicated by gray triangles

signal u[n] has a spectrum (Fig. 14.12d) that also shows aliasing, since stretching
due to decimation and compression due to upsampling compensate each other, but
the spectral images generated by upsampling are also stretched and overlap. The
corresponding z-transform and DTFT of u[n] are

U (z) = 1

2

[
V (z) + V

(
ejπ z
)] = 1

2
[V (z) + V (−z)] ,

U
(
ejω
) = 1

2

{
V
(
ejω
)+ V

[
ej(ω+π)

]}
.

Downsampling and upsampling are also present along the high-band channel, and
therefore similar considerations hold in that case.

It is worth noting that the operations described above represent what would happen
in a single low-band channel of a hypothetical “two-channel filter bank without
filters”. This strange concept is useful to understand the effects of downsampling and
upsampling, but in reality such a hypothetical bank would produce a very undesirable
result: it would simply eliminate the odd-indexed samples of the original signal, and
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Fig. 14.13 A hypothetical “two-channel filter bank without filters”: in order to retain the odd-
indexed samples of the input signal in the high-band channel and the even-indexed ones in the
low-band channel, we must insert delays in our scheme (see text)

with them, the possibility of reconstructing it later. The scheme can work if we insert
delays by one time step, in the positions indicated in Fig. 14.13. With these delays,
the low-band channel downsamples and upsamples; it produces a signal with all
odd components of x[n] replaced by zeros. This signal is delayed by one time step
before output. The high-band channel delays x[n] at the start, so that downsampling
followed by upsampling removes the even-number components of x[n], which have
already been coded in the low-band channel. The combined output is just a delayed
version of the input signal.

Going back to Fig. 14.11, we now know that there is aliasing in each channel.
There will also be amplitude distortion and possibly phase distortion due to filtering.
Therefore, the synthesis filters must be specially adapted to the analysis filters, in
order to cancel the errors introduced by the analysis bank. The goal of this section is
to discover the conditions for exact signal reconstruction. We need a synthesis bank
which is the inverse of the analysis bank.

We can extend the downsampling and upsampling z-transform expressions written
above to include the filtering operations appearing in Fig. 14.11: with x̂[n] indicating
the output, and recalling that in the z-domain a filtering operation (convolution)
becomes a multiplication, we can write

X̂(z) = 1

2
HLR(z) [HLD(z)X (z) + HLD(−z)X (−z)] +

+1

2
HHR(z) [HHD(z)X (z) + HHD(−z)X (−z)] =

= 1

2
[HLR(z)HLD(z) + HHR(z)HHD(z)] X (z) +

+1

2
[HLR(z)HLD(−z) + HHR(z)HHD(−z)] X (−z),
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where we took into account that F(z) = HLD(z)X (z), etc. For perfect reconstruction,
the output signal must be identical to the original one: x̂[n] = x[n]. Thus we must
require X̂(z) = X (z), and therefore the terms in −z representing aliasing must
disappear from the formula—these are the same terms that on the unit circle would
produce terms in ω + π—while the first addend in the last member of the equation
for X̂(z) must leave X (x) unaltered. Thus, for PR we must impose two conditions
(Vetterli 1986):

HLR(z)HLD(−z) + HHR(z)HHD(−z) = 0 aliasing cancellation,

HLR(z)HLD(z) + HHR(z)HHD(z) = 2 no distortion

(see also Qian 2001; Misiti et al. 2007; Mallat 2008).
Since we desire each individual filter to be causal, should we include an overall

delay i.e., should we write x̂[n] = x[n − l] with some value of l? This would
affect the way in which we write the no-distortion condition. The answer would be
yes if we decided to impose causality at this point of the discussion. However, it
is more convenient to impose causality later, when establishing the conditions for
orthogonality. Thus we leave the no-distorion condition as it is.

Furthermore, we must observe that the scheme in Fig. 14.11 is a theoretical
scheme. In the computational DWT, the situation is more complicated. Figure 14.14
shows an example of the operations actually included in a one-stage DWT decompo-
sition employing causal filters. The number of samples that exist after each operation
is also shown. The example refers to a signal which is N = 256 samples long. We
imagine to decompose the signal at level 1 using a coiflet of order 2 (coif2; see
Sect. 14.9) and to immediately reconstruct it without any intermediate manipulation
of the coefficients. The causal FIR filters associated with coif2 have length 2M = 12.

First, the input sequence is extended before entering the low- and high-branches
(extension is indicated by the symbol E). This is because each filtering in the bank
requires linear convolution between the input or some intermediate signal, which
we will call y[n], and the impulse response of a filter. But linear convolution asks
for y[−1], y[−2], . . . y[−(2M −1)] that do not exist. Signal-extension schemes are
applied on the signal boundaries to solve this issue (see Sect. 14.5.1). The extension
inserts 2M − 1 samples at the beginning and end of the record. Since the signal
is treated like a vector of numbers, without any association with a corresponding
pre-defined vector of discrete times, this produces what can be seen as a delay (a
shift to the right) of 2M − 1 samples. This is symbolized in Fig. 14.14 by the term
z−(2M−1). The sequence’s length becomes NE = N + 2(2M − 1). We assume that
the extension is performed according to half-point symmetry (Sect. 14.5.1): x[−1] =
x(0), x[−2] = x[1], etc.

We now focus on the low-branch, starting with decomposition. The extended
sequence is filtered by the lowpass-decomposition filter via linear convolution. This
produces a sequence with the length of a full convolution, i.e., NLD = NE +2M −1.
It also produces some delay z−l . Then, the initial and final transients (2M −1 samples
each) are eliminated: the resulting “clean convolution” is sometimes referred to as
the valid part of the convolution. This operation is indicated by the symbol V . We are
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Fig. 14.14 Two-band analysis- and synthesis-filter banks in a one-stage DWT decomposition
employing causal filters. The vertical dashed line symbolizes the gap between analysis and syn-
thesis, in which we assume simple transmission. Reconstruction is performed via upsampling by a
factor of 2 and subsequent filtering in each band

now left with NV = NLD − 2(2M − 1) samples, and can look at this shift to the left
of the vector, due to the elimination of its head, as an advance by 2M −1 samples, as
described by the term z2M−1 in the scheme. Downsampling by a factor of 2 follows:
since the first preserved sample is the second one, this gives a shift to the left of 1
sample, i.e., an advance by 1 step (z1 = z). The signal length is essentially halved,
but since we had an odd number of samples, the last sample is discarded. Now we
have a vector of length N↓ = floor(NV /2), where floor means rounding up NV /2 to
the nearest lower integer.

Immediately after downsampling, the signal is upsampled by a factor of 2, insert-
ing a zero between the first and second sample, between the second and third sample,
etc., but not after the last one. A vector with length N↑ = 2N↓ − 1 is obtained. This
vector is filtered by the lowpass-reconstruction filter via linear convolution. The out-
put is a sequence with the length of a full convolution, i.e., NLR = N↑ + 2M − 1.
Filtering also causes some delay z−m . Finally, only the central part of this output
sequence is kept (see the symbol K in the scheme). This is done by discarding
2M − 2 samples on each side, for a total of 2(2M − 2) samples. We end up with NK

samples. The shift to the left by 2M − 2 samples (advance) produces a term z2M−2.
If we progressively substitute NLR in NK , then N↑ in the resulting expression, etc.,

and keep into account that 2N↓ = 2floor (NV /2) = NV − 1, we find NK = N : the
output sequence has the same length as the input sequence. If we add together all the
exponents of the delay terms, we get an overall delay of l +m − (2M −1) time steps.
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Fig. 14.15 Phase and group delays of the four filters related to db3, and the same for coif2. Passband
delays are drawn as black curves, while stopband delays are drawn as gray curves. LD: solid lines;
HD: dashed lines; LR: dot-dashed lines; HR: dotted lines

But for coiflets, l � 4M/3 − 1 and m � 2M/3, i.e., 7 and 4 for coif2, which has
M = 6. This can be seen in Fig. 14.15, were, for db3 and coif2 wavelets, the phase
and group delays are plotted , which are the negative ratio of the phase response of
the filter to ω and the negative first derivative of the phase response with respect to
ω, respectively. Note that in general, phase and group delays are not constant with
PR filters: they vary with frequency. In Fig. 14.15, passband delays are drawn as
black curves, while stopband delays are drawn as gray curves, to highlight that what
matters is the filter’s behavior in the passband. For both wavelets, the LD filter is
identified by solid lines, the HD filter by dashed lines, the LR filter by dot-dashed
lines, and the HR filter by dotted lines.

This means that we can set l + m = 2M − 1, and the overall delay produced by
the bank vanishes. It is clear from the previous discussion that, on the contrary, if
we adopted causal filters in the “theoretical bank” depicted in Fig. 14.11, we should
expect a delay of l +m = 2M −1 samples of the reconstructed signal with respect to
the input one. We should then write the no-distortion condition as HLR(z)HLD(z) +
HHR(z)HHD(z) = 2z−(2M−1). Nevertheless, for the moment we do not make this
correction.
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Now we will examine the no-aliasing and no-distortion constraints to deduce their
consequences. They define biorthogonal filter banks; orthogonality is a special case
of biorthogonality that requires imposing additional constraints. This will be done
later.

1. The no-aliasing constraint can be satisfied by letting

HLR(z) = HHD(−z) and HHR(z) = −HLD(−z).

Recalling the modulation property of the z-transform (Sect. 3.2.5), in the time
domain these equations imply

hLR[n] = (−1)nhHD[n], hHR[n] = −(−1)nhLD[n],

i.e., the reconstruction filters can be obtained from the decomposition filters by
alternating the signs of the elements.

2. To see the consequences of the no-distortion condition, let us rewrite the above
z-domain relations as

HHD(z) = HLR(−z) HHR(z) = −HLD(−z),

and substitute them into the no-distortion relation. This leads to

HLR(z)HLD(z) − HLD(−z)HLR(−z) = PL(z) − PL(−z) = 2,

where we defined PL(z) = HLD(z)HLR(z), which is the product of the transfer
functions of two lowpass filters. It can be shown (see Qian 2001) that the above
equation contrains odd-indexed samples of the corresponding impulse response
pL [n], but leaves the even-indexed samples arbitrary. If we design some PL (z), we
can later factorize it into HLD(z) and HLR(z). Obviously, not only there are many
ways to design PL(z), but also there are many ways to factor it. As a consequence,
the choice of the four filters not unique. Let us stress that the conditions we
imposed do not ensure that the resulting filters form orthogonal filter banks and
that the resulting wavelets are orthogonal wavelets. In general, the bank will be
biorthogonal, and there will be two sets of scaling and wavelet functions.

As the above discussion indicates, there exist many possible designs for biorthog-
onal filter banks, even if we restrict our attention to compactly supported wavelet
systems and consequently to FIR filters. Historically, the first system of biorthog-
onal wavelets, which was made popular by Ingrid Daubechies, is the so-called
Cohen-Daubechies-Feauveau or CDF biorthogonal wavelet system (Daubechies
et al. 1990), a.k.a. B-spline biorthogonal wavelet system, whose construction is
based on B-splines (basis splines).10 B-spline biorthogonal systems have a pair of

10A B-spline is a piecewise polynomial function in one independent variable, exhibiting knots or
break-points. The number of internal knots is equal to the degree of the polynomial if there are no

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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analysis/synthesis wavelet functions and a pair of analysis/synthesis scaling func-
tions. Associated filters have different length, which can also be odd. However, in
computation these filters are padded with zeros, to augment them to equal even
lengths. They have a nice property, namely, filter symmetry: the impulse responses
of the filters are symmetric/antisymmetric around their mid-point. Symmetry can be
an important property for wavelet systems, especially in image-related applications.
As Daubechies explains in Chap. 8 of Daubechies (1992), for some applications sym-
metry does not matter at all, but in image coding, for example, “quantization errors
will often be most prominent around edges in images; it is a property of our visual
system that we are more tolerant of symmetric errors than asymmetric ones. In other
words, less asymmetry would result in greater compressibility [of the image] for
the same perceptual error. Moreover, symmetric filters make it easier to deal with
the boundaries of the image. […omissis…] Symmetric filters are often called linear
phase filters in the subband-coding engineering literature. If a filter is not symmetric,
then its deviations from symmetry is judged by how much its phase deviates from a
linear function.” So, symmetry leads to linear phase.

Given that two constraints on four filters do not determine them in a unique way,
we can narrow the field by imposing additional conditions for orthogonality. We
have already satisfied the no-aliasing condition, so we proceed with the no-distortion
equation. We saw that the time-domain condition for orthogonality is the quadratic
admissibility condition

∑

n

hLR[n]hLR[n − 2k] = δ[k], k = 0, 2M − 1,

representing M bilinear or quadratic equations. It can be verified that the ON causal
filters adopted for Mallat’s algorithm, presented in Sect. 14.3 (see the discussion
concerning Figs. 14.6, 14.7 and 14.8), satisfy this condition. Do they also satisfy
the no-distortion condition in the z-domain? To be more precise, how does the no-
distortion condition in the z-domain look like for these particular filters?

In order to see this, we z-transform three relations given in Sect. 14.3, making use
of the z-transform properties of time reversal, time shift and modulation (Sect. 3.2.5):

knot multiplicities. A B-spline is a continuous function at the knots. For any given set of knots, the
B-spline is unique, hence the name, B being short for Basis.

http://dx.doi.org/10.1007/978-3-319-25468-5_3
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we obtain, with n = [0, 2M − 1],

hHR[n] = (−1)nhLR[2M − 1 − n] ⇐⇒ HHR(z) = (−z)2M−1 HLR(−z−1),

hLD[n] = hLR[2M − 1 − n] ⇐⇒ HLD(z) = z2M−1 HLR(z−1),

hHD[n] = hHR[2M − 1 − n] ⇐⇒ HHD(z) = z2M−1 HHR(z−1).

Substituting these equations into the no-distortion constraint leads to an expression
in terms of HLR(z) alone:

HLR(z)HLD(z) − HLD(−z)HLR(−z) =
HLR(z)z2M−1 HLR(z−1) − (−z)2M−1 HLR(−z−1)HLR(−z) = 2.

But since 2M − 1 is odd, −(−z)2M−1 = z2M−1 and we get the following particular
form of the no-distortion constraint:

[
HLR(z)HLR(z−1) + HLR(−z−1)HLR(−z)

] = 2z−(2M−1).

Note how assuming causality together with orthogonality actually leads to the delay
term z−(2M−1) that we did not insert before in the no-distortion equation. The con-
clusion we can draw is that if the filter HLR(z) is designed in such a way to satisfy

1. one linear equation for admissibility, and
2. M bilinear or quadratic equations for orthogonality (quadratic admissibility),

implying the above condition on HLR(z),

then PR will be ensured with an orthogonal basis corresponding to causal filters.
Passing to frequency responses after dropping the causality-related delay factor to
return to the theoretical setting we have

HLR
(
ejω
)

HLR
(
e−jω

)+ HLR
(
e−jπ e−jω

)
HLR

(
ejπejω

) =
= HLR

(
ejω
)

H∗
LR

(
ejω
)+ HLR

[
e−j(ω+π)

]
HLR

[
ej(ω+π)

] =
= ∣∣HLR

(
ejω
)∣∣2 + H∗

LR

[
ej(ω+π)

]
HLR

[
ej(ω+π)

] =
= ∣∣HLR

(
ejω
)∣∣2 + ∣∣HLR

[
ej(ω+π)

]∣∣2 = 2.

This is exactly the frequency-domain orthogonality condition on the lowpass recon-
struction filter that we reported when talking about the theorems on PR filters at the
beginning of this section.

So, the ON-PR solution is not unique. Indeed, the length of hLR[n] is 2M . After
satisfying M + 1 conditions, the number of degrees of freedom (DOF) in choosing
these 2M coefficients is M−1. This freedom is used in the design of different wavelet
system having some desired features.
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14.5 Mallat’s Algorithm

In the late 1980s, Stéphane Mallat proposed a fast DWT decomposition and recon-
struction algorithm (Mallat 1989) in the form of a two-channel subband coder using
PR filters (see, e.g., Qian 2001; Misiti et al. 2007). This algorithm is sometimes
referred to as the fast wavelet transform (FWT). We will now describe this algo-
rithm, referring to a finite-length sampled input signal of length N . We assume the
basis set to be ON and compactly supported; the filters involved are FIR.

For biorthogonal wavelets, the same algorithm holds, but the decomposition filters
on one hand and the reconstruction filters on the other hand are obtained from two
distinct scaling functions associated with two multiresolution analyses in duality. In
this case, the filters for decomposition and reconstruction are, in general, of different
lengths. By zero-padding, the four filters can be extended in such a way that they
will have the same even length.

14.5.1 Edge Effects and Extension Modes

Each stage of Mallat’s algorithm implies filtering in the time domain via linear con-
volution. When a linear convolution z[n] = ∑

k s[n − k]h[k] is performed on a
finite-length signal s[n], n = [0, N − 1], border distortions arise, since the com-
putation of z[n] will ask, e.g., for s[−1], which does not exist. Signal-extension
schemes are applied on the signal boundaries to solve this issue; their purpose is
actually to define s[−1] and the other samples possibly needed outside the record’s
time support.

Moreover, classically the computational DWT is defined for data records with
length of some integer power of 2, and ways of extending records of other sizes
are needed. However, extension related to convolution is needed at each stage of
the decomposition process. Therefore, by “signal” in this subsection we mean the
original signal itself in the first stage, or the input to any other stage.

Different signal-extension schemes can be adopted to deal with edge effects in
the computational DWT. They are referred to as extension modes, and include:

1. zero-padding: extending the signal by zeros over the time span required by the
convolution, which in turn depends linearly on the length of the filter. In this case
we suppose that the signal is zero everywhere outside of the original support. The
disadvantage of zero-padding is that discontinuities are created at the signal’s
ends;

2. symmetrization: extending the signal by reflection, i.e., by symmetric boundary-
value replication over the span required by the convolution. In other words, signals
are extended outside of their support by repeating near edge values by symme-
try. Symmetrization has the disadvantage of creating discontinuities in the first
derivative at the borders, but this is better than creating jumps in the signal itself;
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3. regular extrapolation: a low degree polynomial extrapolation of the signal outside
the support is performed. A typically case is linear extrapolation. This method
works poorly for noisy signals;

4. periodization: extending the signal by transforming it into its periodic extension
over the time span required by the convolution. Thus, this method consists of
assuming that the signal is periodic. This procedure may include a pre-processing,
consisting of the fact that if the signal’s initial length is odd, then the signal is first
extended by adding an extra-sample equal to the last value on the right; then a
minimal periodic extension is performed on each side. This extension also creates
artificial discontinuities at the edges.

How can we choose the best extension mode for a given application? This is a rather
technical issue about which we cannot enter into details. The rationale behind each
extension scheme is explained in Chap. 8 of Strang and Nguyen (1996). However,
we can observe that the heart of the finite-length problem in the DWT concerns
the downsampling operation by a factor of 2, which can give very different results
depending on the extension choice that is made.

For example, let us focus on symmetrization. There are two symmetric ways to
extend a signal that starts with x[0]: everything depends on the choice of x[−1].
We may take x[−1] = x[1], and then continue by x[−2] = x[2], etc. The center
of symmetry, also called point of symmetry, of this extension is x[0]. When we
do this at both ends, n = 0 and n = N − 1, the period of the resulting signal
is 2N − 2. Neither the sample x[0], nor the sample x[N − 1] are repeated; this
is called whole-point symmetry. The other possibility is to choose x[−1] = x[0],
x[−2] = x[1], etc. The point of symmetry is halfway between two samples, at
n = −0.5. This half-point symmetry produces a signal with period 2N . Which choice
is better depends on the filter being used, namely, on its length and symmetry. In the
DWT cascade, after downsampling we still desire to have a symmetric extension.
Now, suppose we are working with symmetric/antisymmetric filters of even length,
as those associated to B-spline biorthogonal wavelets. An even-length FIR filter can
be symmetric or antisymmetric around a half-integer value of the index. A signal
downsampled by a factor of 2 will still be periodic anyway, but it will be symmetric
only if, in association with an even-length symmetric/antisymmetric FIR filter, we
adopt an analogous extension mode—half-point symmetry, etc. This is just to give
an idea of the complexity of the extension-mode issue.

Conceptually, extension makes it possible to associate a finite-length sequence
with an infinite-length signal, for which the DWT algorithm is theoretically justified
(Misiti et al. 2007). Provided that the assumption on which an extension mode relies
is reasonable, the extended signal should behave as the infinitely-long signal we
consider in theory. Of course, any extension mode is just a way to “invent” data
samples that we do not posses. The properties of

• preservation of the square norm (energy) by decomposition,
• orthogonality,
• perfect reconstruction,
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verified for infinitely long signals, in practice are lost to a lesser or greater extent for a
finite-length sequence. Since perfect invertibility of the transform is the main goal in
DWT, only PR is always strictly preserved in computation. In all the DWT examples
in the present chapter, the extension mode has been set to half-point symmetry.

14.5.2 Signal Decomposition: Subband Coding

To describe Mallat’s algorithm we must adopt a “computational” perspective, as
opposed to the theoretical perspective presented in Sect. 14.3. We thus need to change
our notation.

Talking about scaling and wavelet subspaces we used j0 (typically 0) and jmax to
denote the initial and final subspaces in a decomposition; jmax could go to infinity,
or be finite. In the finite case, the number of j-values involved, called levels of
decomposition from now on, was Nlev = jmax − j0 +1. With j0 = 0, Nlev = jmax +1.

Now we must consider that

• in any computational environment (as opposed to the theoretical one) indexes run
from 1 rather than from zero. It is normal practice to number the decomposition
stages from level 1 to a maximum level of decomposition that we will call J :
j = [1, J ]. For each signal length and each wavelet (type and order), the total
number J of levels cannot exceed some upper bound N max

lev ;
• the Mallat decomposition algorithm includes, in general, several stages, each of

them corresponding to a certain level of decomposition. It is common practice to
number the stages inversely with respect to our previous discussion on scaling and
wavelet subspaces.

In our new level numbering convention, j = 0 does not exist. However, we can imag-
ine to start from a non-existent level 0 in which the hypothetical scaling coefficient
sequence c0[k] is well approximated by the signal x[k]. This level corresponds to the
smallest possible scale, i.e., the highest time resolution, and to the scaling subspace
VJ . The first actual level ( j = 1) corresponds to VJ−1; this level receives the sig-
nal’s samples as the input and produces a pair of coefficient vectors c1[k] and d1[k].
Stopping the procedure at this point would produce what is called a single-level
decomposition of the signal. If we proceed further, then we perform a multi-level
decomposition, in which the recursive relations for the scaling and wavelet coeffi-
cients are exploited to compute all the coarser-resolution (larger scale) scaling and
wavelet coefficients, until a proper maximum level J is attained (coarsest detail,
largest scale considered). Level J corresponds to subspace V0. The approximation
and detail coefficients c j+1[k] and d j+1[k] for some intermediate level j +1 ∈ [1, J ]
are obtained by convolution of the preceding c j [k] with the impulse responses of the
two 2M-samples-long lowpass/highpass decomposition filters, respectively, copu-
pled with downsampling/upsampling operations.

Note that in spite of the adoption of this “computational-style” level numbering,
we will continue to use the symbol j to indicate a generic level, since this notation
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is consolidated in practice. Note also that passing from the “old” j to the “new” one
corresponds to substituting the old j with a new index J − j . As a consequence,
we are also changing the definition of scale: in the computational environment scale
varies with j as 2 j , with the minimum scale being dictated by the fact that the
signal is sampled, and the maximum scale being upperly bounded essentially by the
number of available samples in the data record. This also clarifies why the “old”
j , corresponding to the “new” j = J , can always be assigned a value of 0. We
start from the minimum scale, determined by the signal’s sampling rate, and proceed
towards larger scales by repeated downsamplings. If the sampling of the underlying
analog signal has been correctly performed according to Nyquist’s criterion, then this
minimum scale actually identifies the scaling subspace to which the signal belongs. If
enough signal samples are available, i.e., if N is large, the decomposition can proceed
to V0, which will contain the signal’s mean value; if the amount of data is not large
enough, the decomposition will necessarily stop earlier. In any case, in terms of the
“old” j that serve to number subspaces, a label J will be assigned to the subspace
related to the starting level of minimum scale, and a label 0 will be assigned to the
subspace related to the final level of maximum scale. The level related to V0 will not
necessarily correspond to the signal’s mean level, but will correspond anyway to the
coarsest features of the signal that we are able to study using N samples.

A decomposition up to some level J produces, in the end, one approximation
coefficient vector (cJ [k] in V0) and J detail coefficient vectors d j [k], with j = [1, J ].
The tree-structured subband-coding algorithm includes J stages, or levels. The first
level takes x[n] as the input and outputs c1[k] and d1[k] by filtering and downsampling
(Fig. 14.16). To attain level J , we must go through J − 1 more subsequent stages,
each of them being structured as in Fig. 14.17. In any intermediate stage, a c j [k]
produces a c j+1[k] and a d j+1[k]. Iterating the single-stage processing along the
approximation-coefficient (low-band) branch depicts a tree-shaped structure with
three stages, and so on, until the last stage produces cJ [k] and dJ [k]. The DWT
decomposition thus appears as a tree that we descend from the crown towards the
roots, always following the approximation-coefficients branch (Fig. 14.18). In the
frequency domain, each stage divides the spectrum of the input signal—which can
be x[k], as in Fig. 14.16, or some c j [k], as in Fig. 14.17—into one lowpass and one
highpass half, since the filters are half-band filters. In other words, each stage is a
two-band processor.

Fig. 14.16 Starting stage of
the DWT decomposition of a
finite-length sampled signal
(see text for details). Note
that this scheme depicts a
process progressing from left
to right, as indicated by the
gray arrow
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Fig. 14.17 An intermediate
two-band stage in the
tree-structured DWT
decomposition of a
finite-length sampled signal.
Note that this scheme depicts
a process progressing from
right to left, as shown by the
gray arrow

Fig. 14.18 Subband coding:
scheme for the DWT
decomposition of a
finite-length sampled signal
of length Nequal to an
integer power of 2

The cascade of two-band stages sketched in Fig. 14.18 is the subband coding of
the signal. Note that the cascade is built on the lowpass branch, and that only two
filters are iteratively used. Due to the successive downsamplings by 2, for Mallat’s
algorithm to be efficient the length of the input signal x[k] must be equal to an integer
power of 2, or at least be a multiple of an integer power of 2. If it is not so, the signal
will be extended (Sect. 14.5.1).

Figure 14.19 shows how the coefficients produced by the DWT cascade are stored
in a computer, in a case of decomposition at (maximum) level J = 3: they are con-
catenated into a single vector of coefficients, having c3, d3, d2, and d1 as components,
i.e., groups of values. At the same time, a bookkeeping vector is created, giving the
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Fig. 14.19 The way the
DWT coefficients are stored
in a computer: an example of
decomposition at level J = 3

length of each component. The last element of the bookkeeping vector reports the
length of the signal. We denote by L[i] the elements of the bookkeeping vector, with
i = 1, J +2. The vector concatenating all sequences of DWT coefficients for a given
decomposition is denoted by C[l], l = 1, NDW T , with NDW T = ∑J+1

i=1 L(i). Inside
C[l],
• the part of the vector C[l] containing the approximation coefficients can be indi-

cated as Ca[m], m = [1, Na], with Na = L(1);
• the part of the vector C[l] containing the detail coefficients of all levels can be

indicated as Cd [m], m = [1, Nd ], with Nd =∑J+1
i=2 L(i);

• the part of the vector C[l] containing the detail coefficients of level j can be
indicated as C ( j)

d [m], m = [1, N ( j)
d ], with N ( j)

d ≡ L( j + 1).

An example of a vector C[l] of concatenated coefficients appears in Fig. 14.20.
The coefficients plotted in Fig. 14.20 result from the decomposition that we saw in
Fig. 14.10: the decomposition of a sine function with two discontinuities, performed
using an ON compactly-supported wavelet (the Haar wavelet). It may be useful,
at this point, to go back to that example. We now understand that we pushed the
decomposition up to level J = 7. If we observe the column showing the original
signal and the seven reconstructed approximations (Fig. 14.10a), we can read not
only the names of the scaling subspace which each plotted signal belongs to, but also
the corresponding decomposition-level numbering, according to the convention we
have now adopted for the index j . We can see that the level-1 approximation is in
V6, the level-2 approximation is in V5, . . ., and the level-7 approximation is in V0.

We can now see what the cascade looks like in the frequency domain. The filters
involved in the cascade have constant relative bandwidth, as the MRA property of any
shade of wavelet transform implies. The cascade represents an iterated application
of the same two filters at different scales. We thus see the DWT as the application of
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Fig. 14.20 How the DWT coefficients resulting from the decomposition of a signal are concatenated
into a single vector. The coefficients for this example have been taken from the decomposition at
level J = 7 of the sine function with two discontinuities shown in Fig. 14.10

a constant-Q filter bank, with Q = �ω/ωc (fidelity factor) being equal for all filters
in the bank. In the tree-structured algorithm,

• the first stage divides the spectrum of the original signal x[k] ≡ c0[k] into two
bands of equal width, a lowpass and a highpass band;

• the second stage further divides the lowpass band into two bands of equal width,
a lowpass and a highpass band;

• the third stage further divides the new lowpass band into two bands of equal width,
a lowpass and a highpass band, and so on.

This is illustrated in Fig. 14.21, depicting the progressive (ideal) subdivision of the
input signal bandwidth [0, π ] in the DWT cascade. The half-band lowpass filter asso-
ciated with V0 corresponds to the last scaling coefficient sequence, i.e., the sequence
cJ [k] that will not be filtered/downsampled any further, since j has reached its maxi-
mum value: the coarsest resolution has been attained. The value of J is dictated by the
length N of the record because it is the level at which, after repeated downsampling
operations that progressively reduce the length of the sequences involved, we are left
with only two coefficient samples: one sample in cJ [k] and one sample in dJ [k]. The
maximum possible value of J can thus be estimated as N max

lev = log2 N . Actually, the
maximum decomposition level does not only depend on the signal’s length N , but
also on the wavelet we adopt and on its order. This will be explained in Sect. 14.5.5.
Of course, the cascade can be stopped earlier.11 As for the highpass filter associated
with wavelet coefficients, in this example, the rightmost one is associated with the

11Returning for a moment to Fig. 14.10, at this point we may wonder if we would be in a position
to proceed further to a more accurate level-8 approximation in V−1. The answer is no; in the
example of Fig. 14.10, the signal length is N = 120, and after repeated downsampling operations, the
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Fig. 14.21 The progressive subdivision of the input signal bandwidth [0, π ] in the DWT cascade,
in a case with J = 3. The subspaces of L2(R) associated with each subdivision are also shown

wavelet subspace W2, operating on the interval π/2 – π . The remaining half-band,
i.e., 0 – π/2, is again divided into two parts, the highpass one being associated with
the wavelet subspace W1. In the subsequent stage, the highpass band is related to the
wavelet subspace W0, and the remaining part of the signal’s spectrum is covered by
V0. Thus, this example describes the following decomposition of the signal’s space:
V0 ⊕ W0 ⊕ W1 ⊕ W2.

14.5.3 Signal Reconstruction from DWT Coefficients

In order to re-synthesize the signal from its DWT coefficients, we must climb the tree
from the roots to the crown: we must progressively reconstruct the scaling coefficients
at a finer scale from the scaling and wavelet coefficients at the adjacent coarser scale,
by upsampling by a factor of 2 at each stage and then applying the two reconstruction
filters hLR[k] and hHR[k].

Figure 14.22 illustrates a generic stage of the reconstruction process. Note that this
scheme depicts a process progressing from right to left (see the gray arrow). Iterating
the single-stage reconstruction we get the complete reconstruction tree, which begins
with j = J and stops at j = 1, the level at which the original signal is obtained as
the final output of the PR filter bank.

(Footnote 11 continued)
coarsest-resolution approximation and detail coefficients (c7[k], d7[k]) are made by just one sample
each. The decomposition was pushed up to the maximum possible level. The remaining detail
coefficients up to d1 are progressively longer, since they represent less downsampled signals. Now,
suppose we had N = 240 samples. We would then be able to attain J = 8, and (c7[k], d7[k]) would
have one sample each. However, in Fig. 14.10 we would see level 1 in V7, since J − j = 8−1 = 7,
and so on, up to level 8 in V0: we would always label the last subspace as V0.
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Fig. 14.22 DWT inversion
implies an upsampling by a
factor of 2 of the sequences
c j [k] and d j [k], performed
by inserting a zero between
every pair of values,
followed by a filtering over
two disjoint bands. This
scheme depicts a process
progressing from right to
left, as indicated by the gray
arrow

Fig. 14.23 Reconstruction
at level 1 of a the
approximation signal and b
the detail signal

(a)

(b)

Adopting a similar scheme, we can reconstruct an approximation signal A1[k]
at level 1 from the coefficients c1[k], by using a sequence of zeros as input to the
high-band branch of a single reconstruction stage, as shown in Fig. 14.23a. In the
same way, the scheme of Fig. 14.23b provides a detail signal D1[k] at level 1. Adding
level-1 approximation and detail signals gives back the original signal.12

Extending the reconstruction of approximations and details at all levels, we can
obtain all the N -length signals into which x[n] may be decomposed (Fig. 14.24). We
can re-assemble x[n] in many different ways, depending on the level J at which we

12Note that the coefficient vectors c1[k] and d1[k] cannot be directly combined to reproduce the
signal. The coefficients are produced by downsampling and are only half the length of the original
signal. It is necessary to reconstruct the approximations and details before combining them.
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Fig. 14.24 All the N -length
signals into which a signal
x[n] of length N may be
decomposed

stop. We can write x[n] = A1[n] + D1[n] = A2[n] + D2[n] + D1[n] = A3[n] +
D3[n] + D2[n] + D1[n], etc.; in general,

x[n] = AJ [n] +
J∑

j=1

DJ [n].

Do not miss that reconstructed detail and approximation signals have the same length
and the same sampling interval �n = 1 as the original signal, and must be clearly
distinguished from approximation (scaling) and detail (wavelet) coefficients.

14.5.4 Multiresolution in Subband Coding

In a DWT decomposition, scale, time resolution and frequency resolution of the
signals change at each level. To see how and where this occurs, let us simplify the
picture and reason on the basis of ideal half-band filters. We can refer to Fig. 14.21.

After passing the signal through a half-band lowpass filter, half of the samples can
be eliminated according to Nyquist’s rule, since the signal now has a bandlimit of
π/2 instead of π . Downsampling the signal by a factor of 2 then becomes harmless,
and leaves us with a signal with half the number of samples and a doubled sampling
interval. This means that the scale is doubled. Note that the lowpass filtering removes
the high frequency information, but leaves the scale unchanged; only the downsam-
pling process changes the scale. Time resolution, on the other hand, is related to
the amount of information in the signal, and therefore it is affected by the filtering
operation. Halfband lowpass filtering removes half of the frequencies, which can be
interpreted as losing half of the information. Therefore, time resolution is halved
by the filtering operation. However, the downsampling operation after filtering does
not affect time resolution, since removing half of the spectral components from the
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Fig. 14.25 How scale and
resolution are altered in each
DWT operation during the
decomposition process. Here
y[n] and z[n] symbolize the
input and output sequences
of a generic decomposition
stage

signal makes half the number of samples redundant anyway; half the samples can be
discarded without any loss of information.

What about frequency resolution? The half-band filtering doubles the frequency
resolution, since the frequency band of the signal now spans only half the previous
frequency band, effectively halving the uncertainty on frequency.

In summary, at each level in the decomposition cascade, the lowpass filtering
halves the time resolution and doubles the frequency resolution, but leaves the scale
unchanged. The signal is then subsampled by 2 since half of the number of samples
are redundant, and this doubles the scale because it doubles the sampling interval
and halves the number of samples. These concepts are illustrated in Fig. 14.25.
With reference to Fig. 14.24, we can say that all the approximation and detail signals
into which x[n] may be decomposed share the same sampling interval and therefore
belong to the same scale of x[n], but have different time resolutions, meaning that
they show with different degrees of detail the time behavior of the original signal.
To memorize this fact we can think of a set of pictures of the same object, taken
with progressively smaller resolution: a detail signal corresponds to the difference
between one picture and the next one.

14.5.5 Maximum Decomposition Level

We saw in the previous discussion that DWT decomposition of a signal is limited
to a maximum level, determined by the requirement that at that level, at least one
scaling/wavelet coefficient must be correctly computable. The maximum decompo-
sition level depends on the signal’s length N and on the wavelet system we adopt, as
illustrated by Fig. 14.26, which shows N max

lev for compactly supported ON wavelets:
Daubechies wavelets, symlets and coiflets (Sect. 14.9). It can be seen that the maxi-
mum level for all these wavelets increases linearly with log2 N . At fixed N , the higher
the order of the ON wavelet, the lower the maximum allowed level. This feature is
simply due to the varying length of the filters involved.
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Fig. 14.26 Maximum level of DWT decomposition for Daubechies wavelets, symlets and coiflets
of different orders; their names are abbreviated as db, sym and coif, respectively, with an attached
number that represents the order

14.6 Another Approach to DWT Implementation

The DWT can be implemented using different approaches. The most popular ones
are Mallat’s algorithm described above, and the algorithme á trous.13

The á trous is a non-orthogonal, shift-invariant, dyadic, undecimated, redundant
DWT algorithm introduced by Holschneider et al. (1989) (see also Shensa 1991) that
implements the so-called maximal overlap discrete wavelet transform (MODWT),
also known as the stationary wavelet transform (SWT), the undecimated DWT, and so
on. The MODWT algorithm was designed to overcome the lack of translation invari-
ance that characterizes the DWT, and that is related to the fact that downsampling
is a linear operation, but is not time-invariant. Translation invariance, which may be
desirable in some applications, is achieved by avoiding downsampling: the impulse
responses of the filters at each level of the algorithm are upsampled instead. The
name “algorithme á trous” actually refers to inserting zeros in the impulse responses
for the purpose of upsampling. The choice of the extension mode depends on the
algorithm adopted. For the MODWT, the periodic padding extension mode with

13The word “trous” means “holes” in English.
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pre-processing (Sect. 14.5.1) is usually adopted, and produces the smallest length
wavelet decomposition. MODWT theory is not included in the present book. The
interested reader is referred to Nason and Silverman (1995) and Percival and Walden
(2000).

14.7 A Real-World Example of Signal Decomposition

A DWT conveys, though in a different form, the same information that a CWT pro-
vides. The dominant scales (frequencies) in the original signal will appear as high
amplitudes in the DWT-reconstructed signals (approximations/details) that represent
those particular scales. According to the MRA property, time localization of any fea-
ture in the signal will be possible, with a time resolution that depends on which level
(scale) the feature appears. If the information lies in the small-scale (high frequency)
region, as happens most often with transient events, then the time localization will be
particularly precise, since small scales include more samples. If the main informa-
tion we are looking for lies at low frequencies, the time localization will not be very
precise, since the corresponding reconstructed signals include few samples. DWT, in
effect, offers good time resolution at high frequencies, and good frequency resolution
at low frequencies, exactly as the CWT does.

The example provided here involves a real-world electrical consumption signal,
originally measured and analyzed by Misiti et al. (1994) over 5 weeks, and that we
will analyze over the course of 3 days (namely days 9–11 of the original record). This
signal is particularly interesting because of noise introduced by a defect developed
in the monitoring equipment as the measurements were being made. We will use this
feature to illustrate de-noising in Sect. 15.2. The data consists of measurement of a
complex, highly aggregated plant: the electrical load consumption, sampled minute
by minute. The number of samples is 4320 (4320 min = 72 h = 3 days). This load curve
is the aggregation of hundreds of sensors measurements, generating measurement
errors, and is plotted in Fig. 14.27. Time is in minutes and starts from 0:00 of day 9
of the original record.

Roughly speaking, 50 % of the consumption is accounted for by industry, and
the rest by more than 10 million individual consumers. The component of the load
curve produced by industry has a rather regular profile and exhibits low-frequency
changes. On the other hand, the consumption of individual consumers is highly
irregular, leading to high-frequency components. The fundamental period is a daily
cycle linked to economic rhythms. Daily consumption patterns also change according
to rate changes at different times (e.g., relay-switched water heaters to benefit from
special night rates). A long-term trend is also evident during the examined 3-day
interval, connected to longer time-scale variations. For the observations from minute
2400 to minute 3400, the measurement errors are unusually high, due to sensor
failures. Figure 14.27 highlights in two shades of gray two small time intervals, one
relative to the end of the night (dark gray) and another one relative to midday (light
gray). In the second interval, the signal structure is complex, while in the first one it is

http://dx.doi.org/10.1007/978-3-319-25468-5_15
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Fig. 14.27 A part of the
electrical consumption signal
measured and analyzed by
Misiti et al. (1994). Two
small time intervals, one
relative to the end of the
night (shaded in dark gray)
and another one relative to
midday (shaded in light
gray) are highlighted, since
they are discussed in the text
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much simpler. The midday period has a complicated structure because the intensity
of the electricity consumer activity is high and presents very large changes. At the
end of the night, the activity is low and the signal changes slowly.

We focus on the components of the signal for which the period is less than 30 min.
Therefore we carry out the decomposition up to the level J = 5, because 25 = 32
is very close to 30 units of Ts , i.e., 30 min. The analyzing wavelet used here is the
Daubechies wavelet of order 3. We reconstruct the details and the approximations. Of
course, details are orthogonal with respect to approximations and among themselves.
In order to avoid edge effects we suppress edge values and plot (Fig. 14.28).

Visual inspection of Fig. 14.28 suggests that the approximation A3 might provide
a satisfactory smooth representation of this signal. However, in order to make sure
that we do not need to include more details to correctly represent the signal in all its
facets, let us zoom on the two time intervals highlighted in Fig. 14.27.

First, we zoom in on the neighborhood of the minimum at end of the night (minutes
1551–1750, i.e., from 01:50 to 5:10 of day 10; Fig. 14.29). The shape of the curve
during the end of the night is a slow descent, globally smooth, but locally highly
irregular. One can hardly distinguish two successive local extrema in the vicinity
of time t = 1600 min and t = 1625 min: a tiny local maximum and a small local
minimum, respectively. The approximations A4 and A5 are piecewise linear and
appear to provide a good signal representation, except at these two points. This
means that this portion of the signal is a low-frequency signal corrupted by noises.
The massive and simultaneous changes of personal electrical appliances that would
give the signal a more complex structure are absent. The details D1, D2, and D3

contain local short-period irregularities caused by noises, and the inspection of D2

and D3 allows for detecting the local minimum around t = 1625 min. The details D4

and D5 exhibit the slope changes of the regular part of the signal. In conclusion, none
of the high-level details provide essential information on this portion of the signal:
the two local extrema can be considered as unessential features. We could just retain
approximation A4 or A5 without any further correction. The approximation A3,
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Fig. 14.28 a Approximations and b details from the decomposition of the electrical consumption
signal plotted in Fig. 14.27, performed using the Daubechies wavelet of order 3 up to the level J = 5

selected on the basis of the overall signal behavior (that is less smooth than A4 or
A5) thus appears more than adequate to ensure we do not neglect any signal-related
feature in this night time interval.

Next we focus on the neighborhood of the midday maximum (minutes 3601–3700,
i.e., from 12:00 to 13:40 of day 11; Fig. 14.30), in which the signal has a complex
structure. It shows a peak between ∼12:30 p.m. and 1:00 p.m. (minutes 3631–3660),
preceded and followed by a hollow off-peak, and a second smoother peak around 1:10
p.m. (minutes 3665–3675). The approximation A5, corresponding to the time scale
of 32 min, is a very crude signal approximation, particularly for the central peak: it
exhibits a peak time-lag and an underestimation of the maximum value. So at this
level, the most essential information is missing. We have to look at a lower scale, 4
for instance. Let us examine the corresponding details. The details D1 and D2 have
small values and may be considered as local short-period discrepancies caused by
the high-frequency components of sensor, and state, noises. In this frequency band,
these noises are essentially due to measurement errors and fast variations of the signal
induced by millions of state changes of personal electrical appliances. The detail D3

exhibits high values mainly at times corresponding to the 12:40 p.m. signal maxi-
mum (minute � 3640). But it is the detail D4 which contains the main patterns: three
successive modes (minimum-maximum-minimum) synchronized with the original
signal. It is remarkably close to the shape of the original curve. The amplitude of the
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Fig. 14.29 a Approximations and b details from the decomposition of the electrical consumption
signal performed using the Daubechies wavelet of order 3 up to the level J = 5, in the neighborhood
of the minimum electrical consumption at end of the night

oscillations in this detail is much higher than that of the other details. The detail D5

does not bear much additional information. So the contribution of level 4 is the highest
one, both from the qualitative and the quantitative points of view: it captures the shape
of the curve in the examined period. In conclusion, with respect to the approxima-
tion A4, the detail D4 is the main correction needed. The components with period of
8–16 min, belonging to level 4, contain the crucial dynamics of the analyzed process.
The approximation A3 we selected on the basis of the overall signal behavior should
thus ensure that signal-related features are preserved also in this time interval, char-
acterized by complex signal structure.

This example was meant to show how a DWT decomposition can separate the
variability of the signal belonging to different scales into the corresponding approx-
imation and detail signals.

14.8 Wavelet Packets

Developing the DWT cascade along both lowpass and highpass branches, rather
than on the lowpass branch only, a technique called wavelet packet decomposition
is obtained. This method allows for great freedom in coding the signal. The tree for
wavelet packet decomposition is shown in Fig. 14.31.
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Fig. 14.30 a Approximations and b details from the decomposition of the electrical consumption
signal performed using the Daubechies wavelet of order 3 up to the level J = 5, in the neighborhood
of the midday maximum of electrical consumption

Fig. 14.31 The tree for
wavelet packet decompo-
sition of a signal x[n]
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The complete binary tree is then pruned according to criteria for optimal decom-
position. In order to do so, the information gain related to each tree node, i.e., split
point, is quantified, and a decision is made about proceeding further, or not. In other
words, at each node one can judge if it is worthwhile to go ahead or if it is better
to stop at that node. The analysis performed with wavelet packets corresponds to
virtually arbitrary tilings of the time-scale plane. Wavelet packets are not discussed
in this book.

14.9 Regularity, Moments, and Wavelet System Design

The M + 1 conditions
∑

n hLR[n] = √
2 and

∑
n hLR[n]hLR[n − 2k] = δ[k] ensure

the existence and orthogonality/orthonormality of the scaling and wavelet functions.
After satisfying these constraints, M −1 DOF remain available to design the scaling
filter and determine the 2M samples of the impulse response hLR[n]. How can this
freedom be usefully employed?

These basic conditions do not imply any particular property of smoothness of the
scaling and wavelet functions. Indeed, they may be highly irregular, even fractal in
nature. This may be an advantage if we want to analyze rough or fractal signals, but
it is likely to be a disadvantage for the analysis of most signals we may encounter
in the real world. The M − 1 DOF can thus be exploited to build smooth functions,
if this is advisable for a particular application. This topic in wavelet theory involves
introducing the concepts of regularity and vanishing moments—two expressions that
often recur in discussions about wavelet properties.

The continuous-time k-th moments of ϕ(θ) and ψ(θ) are defined as

m[k] =
∫

θ kϕ(θ)dθ, m1[k] =
∫

θ kψ(θ)dθ,

and the discrete-time k-th moments of hLR[n] and hHR[n] are defined as

μ[k] =
∑

n

nkhLR[n], μ1[k] =
∑

n

nkhHR[n].

Recall that m[0] cannot vanish because ϕ(θ) must have a non-zero integral, an cor-
respondingly, μ[0] cannot vanish because μ[0] = ∑

n hLR[n] = √
2. On the other

hand, m1[0] = 0 because ψ(θ) must have zero-mean, and μ1[0] = 0 because
μ1[0] =∑n hHR[n] = 0.

These moments are not independent: using the basic recursion it can be shown
that
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m[k] = 1
(
2k − 1

)√
2

k∑

l=1

(
k

l

)
μ[l]m[k − l],

m1[k] = 1

2k
√

2

k∑

l=0

(
k

l

)
μ1[l]m[k − l].

In essence,

• the number of vanishing moments of hHR[n] and ψ(θ) is related to the smoothness
of ϕ(θ) and ψ(θ), while

• the number of vanishing moments of hLR[n] and ϕ(θ) is related to the quality of
the approximation of high-resolution scaling coefficients by samples of the signal,
as well as to the symmetry and concentration in time of the scaling and wavelet
functions.

What does smoothness mean here? Is it related to differentiability? What about the
word regularity?

In complex analysis, a regular function (also called holomorphic function) is an
infinitely differentiable function. Wavelet analysis uses function of real variables,
so there is no concept of “regular function” involved in wavelet theory. We are
still interested in the differentiability of the functions, because it is related to their
smoothness. The higher the differentiability, i.e., the existence of derivatives of high
order, the greater the smoothness. This topic is mathematically involute and is beyond
the scope of the book; we can just give some general ideas on the subject.

The smoothness of the scaling function is related to the so-called K-regular unitary
scaling filters (Burrus et al. 1998). First, we define a unitary scaling filter to be an FIR
filter with coefficients hLR[n] from the basic recursion, satisfying the admissibility
condition

∑
n hLR[n] = √

2 and the orthogonality condition
∑

n hLR[n]hLR[n −
2k] = δ[k]. Nothing new up to now, just a new name for hLR[n]. Second, a unitary
scaling filter is said to be K -regular14 if its transfer function HLR(z) has K zeros at
z = ejπ = −1, i.e., if we can write

HLR(z) =
(

1 + z−1

2

)K

Q(z),

where Q(z) is a polynomial assumed to have no poles or zeros at z = ejπ = −1.
The length of the scaling filter is 2M , which means that HLR(z) is a 2M − 1 degree
polynomial. Since the multiple zero at z = ejπ = −1 is order K , the degree of the
polynomial Q(z) is 2M − 1 − K .

Any unitary scaling filter is at least K = 1 regular, since the scaling filter must be
lowpass, hence HLR(ejπ ) = 0. This corresponds to having M − 1 DOF for choosing
the coefficients of hLR[n]. Requiring K > 1 corresponds to having M − K ≥ 0
DOF; therefore K is constrained by 1 ≤ K ≤ M .

14Note that that here we are presenting a definition of regularity of the scaling filter, not of the
scaling function or of the wavelet.
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Requiring some regularity is a way to employ the DOF that remain available in
wavelet design. For example, Daubechies used the DOF to obtain maximum regular-
ity for a given M , or to obtain the minimum M for a given regularity. Other authors
allowed for a smaller regularity and used the resulting extra DOF for other design
purposes.

Regularity is defined in terms of zeros of the transfer function HLR(z), hence
in terms of the frequency response HLR(ejω). Up to normalization, hLR[n] deter-
mines the scaling function. Now, the differentiability of a function is tied to how
fast its Fourier-series coefficients drop off as their index goes to infinity, or how fast
the Fourier-transform magnitude drops off as frequency goes to infinity. Fourier-
transforming the twin-scale scaling relation gives

Φ(ω) = 1√
2

HLR
(
ejω/2

)
Φ
(ω

2

)
,

meaning that when time is rescaled multiplying it by 2, so that scale is halved,
frequency is divided by 2 and thus shifts upwards by an octave. Iterating over scaling
operations, it can be shown (see, e.g., Burrus et al. 1998) that the continuous Fourier
transform of the scaling function is related to the frequency response of the FIR filter
hLR[n] by the infinite product

Φ(ω) = Φ(0)

∞∏

j=1

[
1√
2

HLR
(
ejω/2)

]
.

Since hLR[n] is lowpass, we can expect that if its frequency response has a high order
zero at ω = π , as it happens if its transfer function has a high order zero at z = −1,
Φ(ω) should drop off rapidly and, therefore, ϕ(θ) should be smoother and smoother
as K increases. This turns out to be true.

K -regular scaling filters, which we defined as having K zeros at z = ejπ = −1,
can actually be characterized in several equivalent ways. A variety of equivalent
characteristics for the K -regular scaling filter can be specified, which relate to the
smoothness of scaling and wavelet functions. They also relate to the possibility
of representing and approximating polynomial signals by the considered wavelet
system. Since many signals exhibit polynomial behavior, this feature is important.

A theorem states that a unitary scaling filter is K -regular if and only if the following
equivalent statements are true:

• all moments of the wavelet filter are zero, μ1[k] = 0 for k = [0, K − 1];
• all moments of the wavelet function are zero, m1[k] = 0 for k = [0, K − 1];
• HLR

(
ejω
)

has a zero of order K at ω = π ; this is related not only to the smoothness
of ϕ(θ), but also to the flatness of

∣∣HLR
(
ejω
)∣∣ at ω = π ;

• the k-th derivative of
∣∣HLR

(
ω
2 j

)∣∣2 is zero at ω = 0 for k = [1, 2K − 1]; thus∣∣HLR
(
ejω
)∣∣ is flat at ω = 0;
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• all polynomial sequences up to degree K − 1 can be expressed as a linear combi-
nation of shifted versions of hLR[n];

• all polynomials of degree up to K − 1 can be expressed as a linear combination
of shifted versions of ϕ(θ) at any scale.

The properties of K -regular filters tie the number of vanishing moments of hHR[n]
and ψ(θ) to the smoothness of the scaling function, to the smoothness of HLR

(
ejω
)

at ω = 0 and π , and to the degree of polynomials that can be exactly expressed as
a sum of weighted and shifted scaling functions. Other theorems exist, which relate
vanishing wavelet moments to the smoothness of the wavelet function.

Daubechies (1988) proposed the following design criterion for orthogonal wavelet
systems: given a number of DOF, maximize the number of vanishing wavelet
moments. The primary motivation of the criterion was to obtain smooth wavelets.
Such a criterion was used in the design of several wavelet systems, including orthog-
onal Daubechies wavelet systems (Daubechies 1988), biorthogonal spline wavelet
systems (Cohen et al. 1992; Vetterli and Herley 1992), and biorthogonal quincunx
spline wavelet systems (Cohen and Daubechies 1993; Kovac̆ević and Vetterli 1992).

Orthogonal Daubechies wavelets have compact support and the maximum num-
ber of vanishing moments m1[k], μ1[k]. Their construction procedure is based on
defining the frequency response of the scaling filter, and therefore the correspond-
ing impulse response; the impulse response of the wavelet filter then follows. The
desired regularity K determines, via 1 ≤ K ≤ M , the minimum order 2Mmin − 1
of the scaling filter. For example, if K = 4, 2Mmin − 1 = 8. Therefore for a given
K we do not have only one pair {hLR[n], hHR[n]}, but an infinite number of possible
pairs, from order 2Mmin − 1 up. If all the available M − 1 DOF are used to make the
moments m1[k] and μ1[k] vanish, then K = M , and this is the case of Daubechies
wavelets. The filters hLR[n] and hHR[n] implicitly determine the shape of the scaling
and wavelet functions, which have no explicit expression, and can only be obtained
numerically. An exception is the case with K = 1, 2M = 2, that coincides with the
Haar wavelet.

The Daubechies wavelet system15 is illustrated in Figs. 14.32 and 14.33. The
wavelet order is set equal to the number K of vanishing wavelet moments m1[k],
μ1[k]. Daubechies wavelets are only very approximately symmetric (except for the
Haar wavelet, i.e., the Daubechies wavelet of order 1); the smoothness of the wavelet
increases with order. When the order is small, the wavelet is discontinuous. They
are indicated by dbK , which stands for “Daubechies wavelet of order K ”. Do not
confuse the wavelet “order” with the order of the related scaling filter. The order of
the scaling filter and the wavelet-support width are 2K − 1, so the regularity of the
scaling filter corresponds to half the filters’length. This is the most known discrete
wavelet system: Ingrid Daubechies invented what are called compactly supported
ON wavelets, thus making discrete wavelet analysis practicable.

15Daubechies (1992) defined two classes of wavelets, via criteria that select a particular scaling
filter. One criterion leads to “extremal phase” (minimum phase) Daubechies wavelets, i.e., the ones
illustrated here. Another criterion leads to “least asymmetric” Daubechies wavelets, also called
“symlets”.
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Fig. 14.32 Daubechies a scaling functions and b wavelet functions. The order is equal to number
of vanishing moments K ; here K = 2–5. Smoothness increases with K

Modifications to the Daubechies family give the symlets, shown in Figs. 14.34
and 14.35. Again, the order of a symlet is equal to the number K of vanishing
moments. The order of the scaling filter and the wavelet-support width are 2K − 1,
therefore the regularity of the scaling filter corresponds to half the filters’length. These
wavelets are indicated as symK . These wavelets are approximately symmetric, and
their symmetry increases with order.

Motivated by wavelet-based numerical analysis, Coifman proposed a different
criterion: given a number of DOF, maximize both the number of wavelet and scaling
vanishing moments. Daubechies used such a criterion to construct orthogonal Coiflet
wavelet systems (coiflets) of even orders (Daubechies 1993), while Tian and Wells
(1995) constructed odd-ordered ones (Fig. 14.36). Coifman wavelets are designed
so as to have, in addition to a number of vanishing wavelet moments m1[k], μ1[k],
also a number (not necessarily equal) of vanishing scaling moments m[k], μ[k].
Here we consider the case in which the number of vanishing scaling moments is
K − 1 and the number of vanishing wavelet moments is K , i.e., they are essentially
equal, except for the ϕ-related moments μ[0], m[0] that cannot vanish. Thus the
total number of vanishing moments is 2K − 1. The order of a coiflet is defined as
O = K/2. The length of the four associated filters is 2M = 6O = 3K , so that
M = 3K/2 = 3O . The order of the scaling filter and the wavelet-support width
are 2M − 1 = 6O − 1 = 3K − 1. Coiflets are denoted coifO; thus, coif4 will
have filters with length 24, coif5 will have filters with length 30, etc. These wavelets
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Fig. 14.33 Daubechies a scaling functions and b wavelet functions. The order is equal to number
of vanishing moments K ; here K = 6, 8, 10, and 20. Smoothness increases with K

are more symmetrical than Daubechies wavelets, which can be important in certain
applications, and for them the approximation c0[k] ≈ x[n] is particularly good. We
finally mention that biorthogonal coiflets also exist.

The property of vanishing wavelet moments, related to the smoothness of ϕ(θ

and ψ(θ), makes the DWT of a smooth signal a sparse representation of the signal,
i.e., only a small portion of the expansion coefficients are needed to approximate the
signal accurately. In fact, this is the fundamental reason for the success of wavelet
representations in certain applications where information in the transform domain is
selectively discarded, such as data compression and noise reduction.

Vanishing scaling moments are also important. The first moment of the scaling
function is unity for normalization reasons, but if the next K − 1 scaling moments
vanish, as in coiflets, the starting scaling coefficients can be accurately approximated
by the samples of the signal. The property implies that we can apply Mallat’s algo-
rithm directly on the samples of x(θ) to generate a valid wavelet representation. This
property is extremely important for wavelet-based applications, in which only signal
samples rather than continuous-time functions are available. Generally, in applica-
tions it is not advisable to treat signal samples as the starting scaling coefficients
without proper filtering applied before they enter the filter bank (Strang and Nguyen
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Fig. 14.34 Symlet a scaling functions and b wavelet functions. The order is equal to number of
vanishing moments K ; here K = 2–5. Smoothness increases with K

1996). However, if the above property holds, i.e., if the wavelet system has a suffi-
cient number of vanishing scaling moments, pre-processing becomes unnecessary,
and the combination of Mallat’s algorithm and properties related to vanishing scal-
ing moments yields a valid, purely discrete-domain, and fast method for computing
scaling and wavelet coefficients.

It can also be shown that vanishing scaling moments are related to another inter-
esting feature, namely the fact that PR filters are linear or nearly-linear phase. This
produces a scaling function that is exactly or nearly symmetric.

14.10 Appendix: Wavelet Systems

In this appendix we will review the most popular wavelets systems. The review is
meant as a reference to the reader.

Many wavelet systems have been proposed in literature. Some wavelets can be
used for both continuous and discrete analysis. Others are suitable for CWT only, like
analytic Morlet and Paul wavelets; others are mainly associated with discrete analysis,
such as orthogonal and biorthogonal wavelets. The choice of the wavelet is dictated
by the signal characteristics and by the nature of the application. Understanding
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Fig. 14.35 Symlet a scaling functions and b wavelet functions. The order is equal to number of
vanishing moments K ; here K = 6, 8, 10, and 20. Smoothness increases with K

the properties of the analysis and synthesis basis functions is therefore crucial for
choosing a wavelet system that is optimized for a particular application.

While in the CWT we typically use continuous wavelets that do not posses a scal-
ing function and are not associated to digital filters, so that almost any zero-integral
function can be admissible and appropriate, in the DWT we must restrict ourselves
to discrete wavelets associated with digital filters, which allow for multiresolution
orthogonal or biorthogonal analyses via FWT. In nearly all cases, orthogonal or
biorthogonal wavelets, which have a compact support and allow discrete decom-
positions using the FWT, are defined by their associated filters. These wavelet do
not possess a closed-form expression. Nonetheless, by using an iterative procedure
deduced from the Mallat reconstruction algorithm and known as the cascade algo-
rithm (see Burrus et al. 1998), very good approximations of the implicitly defined
wavelet can be obtained.

Wavelets are grouped in systems, or families. Each family groups similar wavelets
that are characterized by particular values of one or more parameters. Wavelet systems
can be distinguished according to important properties, such as:
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Fig. 14.36 Coifman
a scaling functions and
b wavelet functions of orders
O = 2–5 (see text)
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• the existence of a scaling function;
• the orthogonality or biorthogonality of the analysis stemming from it, together

with the possibility of exact signal reconstruction;
• the support of the wavelet in time and frequency and the rate of decay;
• the smoothness of the wavelet. Smoother wavelets provide sharper frequency res-

olution; moreover, iterative algorithms for wavelet construction converge faster;
• the number of vanishing moments. Wavelets with increasing numbers of vanishing

moments result in sparse representations for a large class of signals, which is
advantageous for applications like signal de-noising and compression;

• the symmetry or antisymmetry of the wavelet, implying that the accompanying
PR filters have linear phase; recall that in discrete wavelet analysis, the analysis
and synthesis filters are of greater interest than the associated scaling and wavelet
functions.

Perfect signal reconstruction (PR) is ensured for orthogonal and biorthogonal
wavelets used in the DWT and related applications. However, all wavelets allow
for reconstructions that are accurate enough for the applications in which they are
employed: for example, a CWT performed with an analytic Morlet wavelet does not
ensure a perfect signal reconstruction in a subsequent inverse CWT, but provides an
approximate reconstruction that is satisfactory for all facets of evolutionary spectral
analysis.
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We will now list the most popular wavelet families, including not only those
employed for the DWT, or that can be used for both the DWT and CWT, but also
those used for CWT only.

14.10.1 Crude Wavelets

A wavelet is said to be crude when it satisfies only the admissibility condition. Crude
wavelets include the real DOG wavelets and the real Morlet wavelet, as well as the
analytic wavelets introduced in Chap. 13. These wavelets are used for CWT only.
Crude wavelets have minimal properties, i.e.:

• the scaling function does not exist; no associated digital filters exist;
• the analysis is not orthogonal;
• the wavelet function is not compactly supported.

Favorable characteristics include the fact that these wavelets have an explicit expres-
sion and are symmetric. The main issues are that exact signal reconstruction is not
ensured, and no fast computational algorithms are available in association with these
wavelets.

1. Real Derivatives of Gaussian (DOG) Wavelets (Daubechies 1992):
this family is built taking the m-th derivative of the Gaussian function. The integer
m is the parameter of this family. Real DOGs can be symmetric (m even) or
antisymmetric (m odd). Symmetric real DOGs can be used for the CWT in the
frequency domain. A famous DOG wavelet is the Mexican Hat real wavelet,
having m = 2.

2. Real Morlet Wavelet (Daubechies 1992):
this wavelet is derived from a function that is proportional to the second derivative
function of the Gaussian probability density function. The real Morlet wavelet is
defined as ψ(θ) = Ce−θ2

cos(5θ). The constant C is used for normalization in
view of reconstruction. This wavelet does not technically satisfy the admissibility
condition. It is symmetrical.

3. Analytic Wavelets: see Sect. 14.10.5

14.10.2 Infinitely Regular Wavelets

This family includes the Meyer wavelets (Abry 1997), which are real and have the
following properties:

• the scaling function exists;
• the analysis is orthogonal;
• the scaling and wavelet functions are indefinitely derivable;
• the scaling and wavelet functions are not compactly supported.

http://dx.doi.org/10.1007/978-3-319-25468-5_13
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The Meyer wavelet and scaling functions are defined in the frequency domain, start-
ing with an auxiliary function; by changing the auxiliary function, a family of dif-
ferent wavelets can be obtained. Meyer wavelets can be used for CWT and also for
DWT, but in this case the corresponding filters are not FIR. Favorable characteristics
include symmetry and infinite regularity. The main issue is that no fast algorithms
are available. The wavelet function does not have compact support, but decreases
to 0 when θ → ∞ faster than any inverse polynomial. This property also holds for
the derivatives; the wavelet is infinitely derivable. A compactly supported variant of
these wavelets exists: the discrete Meyer wavelets, corresponding to FIR filters that
can be used in the DWT.

14.10.3 Orthogonal Compactly Supported Wavelets

This family includes Daubechies wavelets, symlets and coiflets. These wavelets are
real and have the following general properties:

• the scaling function exists;
• the analysis is orthogonal;
• the scaling and wavelet functions are compactly supported;
• the wavelet function has vanishing moments.

They can be used for the DWT via FWT, and also for the CWT. Nice properties of
these wavelets include compact support, vanishing moments, and the fact that the
related filters are FIR. Regularity can be poor, and this is a disadvantage. Specific
properties are:

• for Daubechies wavelets: asymmetry;
• for symlets: near-symmetry;
• for coiflets: near-symmetry; both the scaling and the wavelet functions have van-

ishing moments.

1. Haar wavelet:
this is the simplest wavelet. It is the only real-valued wavelet that is compactly
supported, symmetric and orthogonal. Its symmetry ensures that the wavelet filter
has linear phase characteristics, meaning that when a wavelet filtering operation
is performed on a signal with this wavelet, there will be no phase distortion in
the filtered signal. It is however discontinuous: it looks like a step function. The
scaling function is ϕ(θ) = 1 on [0, 1] and 0 otherwise. The wavelet function is
ψ(θ) = 1 on [0, 0.5], ψ(θ) = 1 on [0.51] and 0 otherwise. The support width is
thus 1; the associated filters have length 2; the number of vanishing moments for
ψ(θ) is 1. The Haar wavelet is the same as the Daubechies wavelet of order 1.

2. Daubechies wavelets (Daubechies 1992):
the appearance of Daubechies compactly-supported orthogonal wavelets made
discrete wavelet analysis practicable. Daubechies wavelets are indicated by dbK ,
where “db” stands for Daubechies and K is the order, a strictly positive integer
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equal to the number of vanishing wavelet moments. Associated filters have length
2M = 2K . The Daubechies wavelets are designed so as to have the highest
number of vanishing wavelet moments for a given support width, which does not
imply the best smoothness for a given support width, and the associated scaling
filters are minimum-phase filters (a.k.a extremal phase filters). For this reason,
Daubechies wavelets are also known as the Daubechies extremal phase wavelets.
They are not symmetric. They are not defined in terms of the scaling and wavelet
functions, but in terms of the associated filters: in fact, these functions cannot
be written down in closed form, and are derived numerically using the cascade
algorithm.

3. Symlets (Daubechies 1992):
the symlets are nearly-symmetrical, compactly supported orthogonal wavelets
with least asymmetry and highest number of vanishing wavelet moments for a
given support width, proposed by Daubechies as modifications to the Daubechies
family. They are more symmetric than the extremal phase wavelets, and are
also known as Daubechies least-asymmetric wavelets. The properties of the two
wavelet families are similar. Symlets are usually indicated as symK , where K
is the order (K = 2, 3, . . .), which is equal to the number of vanishing wavelet
moments. Associated filters are near-linear-phase filters with length 2M = 2K .

4. Coiflets (Daubechies 1992):
also called Coifman wavelets, these wavelets were designed by Daubechies after
suggestion by Ronald R. Coifman, to allow for both the scaling function and the
wavelet function to have a number of vanishing moments. These are compactly
supported orthogonal wavelets with the highest number of vanishing moments for
both ϕ(θ) and ψ(θ) for a given support width. Their name is abbreviated as coifO ,
where O is the order (O = 1, . . . , 5). The order is equal to K/2, where K is the
number of vanishing wavelet moments. The number of vanishing scaling moments
is K −1. The total number of vanishing moments is 2K −1. The length of the four
associated filters is 2M = 6O = 3K , so that M = 3K/2 = 3O . The order of the
scaling filter and the wavelet-support width are 2M − 1 = 6O − 1 = 3K − 1.
These wavelets are more symmetrical than Daubechies wavelets, which can be
important in certain applications, and for them the approximation c0[k] ≈ x[n]
is particularly good.

14.10.4 Biorthogonal Compactly Supported Wavelet Pairs

This family includes B-spline biorthogonal wavelets (Daubechies et al. 1990;
Daubechies 1992; Cohen et al. 1992). These wavelets are real and have the following
properties:

• the scaling function exists;
• the analysis is biorthogonal;
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• the scaling and wavelet functions both for decomposition and reconstruction are
compactly supported;

• the scaling and wavelet functions for decomposition have vanishing moments.

They can be used for both the DWT via FWT, and the CWT. The main disadvantage
lies in that orthogonality is lost. Positive features include:

• the fact that desirable properties for decomposition and reconstruction are split,
allowing flexibility. Biorthogonal wavelets feature a pair of scaling functions and
associated scaling filters, one for analysis and one for synthesis; there is also a pair
of wavelets and associated wavelet filters, one for analysis and one for synthesis.
Synthesis and analysis highpass/lowpass filters therefore are not related by a simple
folding relation, as in the case of orthogonal wavelets;

• symmetry and association with linear-phase FIR filters. Perfect symmetry and PR
are incompatible when the same filters are used for decomposition and recon-
struction, as it happens in orthogonal systems, except for the Haar wavelet. On
the contrary, biorthogonal B-spline wavelets are compactly supported wavelets for
which symmetry and exact reconstruction are possible with FIR filters.

Biorthogonal B-spline wavelets are characterized by two orders, OR and OD,
where “R” stands for reconstruction and “D” for decomposition. Usual values of
the orders are: OR = 1, OD = 1, 3, 5; OR = 2, OD = 2, 4, 6, 8; OR = 3,

OD = 1, 3, 5, 7, 9; OR = 4, OD = 4; OR = 5, OD = 5; OR = 6, OD = 8. Their
name is biorOR.OD. The analysis and synthesis wavelets can have different numbers
of vanishing moments and differenty properties. Associated filters have different
length, which can also be odd: for example, for bior6.8 the lowpass decomposition
and highpass reconstruction filters have length 17, while the highpass decomposi-
tion and lowpass reconstruction filters have length 11. However, in computation these
filters are padded with zeros, to augment them to equal even lengths.

Reverse biorthogonal wavelets also exist, derived from the previous ones.

14.10.5 Analytic Wavelets

This family includes complex DOG wavelets, the complex Morlet wavelet, the
complex Shannon wavelet and complex frequency B-spline wavelets, i.e., complex
wavelets the spectrum of which are splines. These wavelets are used for CWT only,
and exhibit minimal properties:

• the scaling function does not exist;
• the analysis is not orthogonal;
• the wavelet function is not compactly supported.

The main favorable properties are symmetry, and the fact that the wavelets have
explicit expressions. The main disadvantage is that exact reconstruction is not ensured
and fast algorithms are unavailable.
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1. Complex Derivatives of Gaussian (DOG) Wavelets:
this family, used for the CWT, is built starting from the complex Gaussian function

f (θ) = Cme−jθ e−θ2

and then taking the m-th derivative of f (θ). The parameter of this family is m; the
normalization constant Cm is such that the squared norm of the m-th derivative
of f (θ) is 1. Values of m normally considered go from 1 to 8. The symmetry
properties are the same as with real DOGs.

2. Complex Morlet Wavelet (Teolis 1998):
the complex Morlet wavelet is defined, in its more general form, as

ψ(θ) = 1√
πTp

e2 jπ fcθe− θ2

Tp

where Tp is a time parameter regulating the width of the Gaussian bell and fc is
the center frequency of the wavelet’s spectrum.16

3. Complex Shannon Wavelet (Teolis 1998):
the main characteristic of the Shannon wavelet is that its spectrum is constant
over some interval of frequencies excluding the origin and zero elsewhere. The
frequency interval of support is described in terms of a desired center frequency fc

and a desired bandwidth fb, with the condition fc > fb/2. The Shannon wavelet
is thus defined primarily in the frequency domain, and then obtained via inverse
Fourier transform. Its expression is

ψ(θ) = √ fbSinc (fbθ)e2 jπ fcθ .

Because the envelope of the Shannon wavelet is a Sinc function, the time decay
is poor (inversely proportional to time). This wavelet can be obtained from the
complex frequency B-spline wavelets by setting m = 1.

4. Complex Frequency B-Spline Wavelets (Teolis 1998):
as in the Shannon case, the frequency B-spline wavelets are defined directly in
the frequency domain on a compact frequency interval with support described in
terms of a desired center frequency and a desired bandwidth. A complex frequency
B-spline wavelet is defined by

16Note that in the previous chapter we gave a different and less general definition of the complex
Morlet wavelet,

ψ0(θ) = 1
4
√

π
ejω0θ e− θ2

2 ,

that corresponds to fixed values of Tp and fc. More precisely, it corresponds to Tp = 2 and
fc = 2π/ω0. In the standard expression of the Gaussian probability density function, we would
have Tp = 2σ 2, where σ is the standard deviation of the Gaussian distribution. Thus, Tp = 2 means
σ = 1. Note, however, that the constant factor 1/

√
πTp , that for Tp = 2 becomes 1/

√
2π , does

not coincide with the factor 1/4√π .
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ψ(θ) = √ fb

{
Sinc

(
fbθ

m

)}m

e2 jπ fcθ ,

an expression depending on three parameters: m is the integer order-parameter
(m ≥ 1), fb is the bandwidth parameter, and fc is the wavelet center frequency.The
frequency B-spline wavelets are an entire family of wavelets indexed by an integer
order parameter m. These wavelets are a generalization of the Shannon wavelet, in
the sense that the complex frequency B-spline wavelet with m = 1 is the Shannon
wavelet.
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Chapter 15
De-noising and Compression by Wavelets

15.1 Chapter Summary

This chapter offers an introduction to the problem of signal de-noising, a task that can
be effectively accomplished wavelets. A related issue is that of signal compression,
and we will briefly touch upon the main ideas concerning it. Real-world examples
will be provided for both de-noising and compression.

The term “signal de-noising” indicates the recovery of a digital signal that has been
contaminated by additive noise; it is a particularly interesting specialization of a more
general problem known in statistics as function estimation, in which an unknown
function must be recovered from some corrupted version. The noise contaminating
the “true” signal is most often assumed to be Gaussian and white. In theory, the
performance of a de-noising algorithm is measured using the mean square error
(MSE) between the true signal and its reconstructed version. In practice, since the
true signal is unknown, the MSE can only be estimated.

The orthogonal DWT is particularly suited for de-noising, for a number of reasons,
including the fact that the decomposition is additive, and consequently, the analysis
of the noisy signal is equal to the sum of the analyses of the true signal and of the
additive noise. Moreover, if noise is supposed to be white, then the detail coefficients
on all scales are essentially white noises with the same variance. The basic idea in
wavelet-based de-noising consists of thresholding the detail coefficients of the noisy
signal, preserving only those that are larger than the characteristic amplitude of the
noise, which is another parameter that must be estimated. Approximation coefficients
are normally left untouched, since they represent low-frequency terms that usually
contain important components of the signal, and are less affected by noise. The
interest of wavelets, within this framework, stems from their capacity to represent
the true signal using very few significantly non-zero coefficients. Real-world signals
are, in many cases, fairly smooth, except in rare locations like the beginning and
the end of transitory phenomena, or ruptures. This renders the decomposition of the
true signal by wavelets very sparse, so that the signal is very well represented by the
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coefficients of a rather rough approximation, to which some large detail coefficients
are added. The threshold can generally be a function of level and time, but usually
is function of level only, or even a scalar. There are many variants of de-noising
procedures that differ primarily by strategy of thresholding (global, i.e., performed
on all levels at the same time; level by level; local in time; by data blocks, etc.), rule
for thresholding (hard or soft), and threshold selection method (Square2log, SURE,
HeurSURE, Minimax, etc.). An essential ingredient in the recipe for a threshold is
the estimate of the standard deviation of the white noise contaminating the signal.
This estimate can be obtained from the level-1 detail coefficients; in cases in which
the presence of non-white noise is suspected, the noise standard deviation can be
estimated level-by-level.

Signal compression is a process aimed at retaining only the information neces-
sary to reconstruct significant features of the original signal, for reasons of storage
saving. The relation with the de-noising issue is obvious, but in compression the
focus is on the extent to which the number of DWT coefficients to be stored to
make signal reconstruction possible can be reduced with respect to the complete set,
while preserving a substantial amount of the signal’s variability. While in de-noising
we seek the best strategy to extract the true signal, irrespective of how many coeffi-
cients we will have to retain, the threshold and the thresholding method chosen for
compression most often come from external constraints, such as frequency band-
width of interest, available memory, prescribed compression performance, etc. The
compression procedure contains the same steps as de-noising, i.e., computing the
wavelet decomposition and thresholding the detail coefficients. The retained coeffi-
cients and their positions in the original sequence are memorized, so as to be able to
reconstruct the compressed signal. The main differences from the de-noising proce-
dure lie in the choice of the threshold and in the rule adopted for applying it, i.e., for
thresholding the detail coefficients.

In this chapter, wavelet families will be indicated with their abbreviated names
introduced in Sect. 14.10.

15.2 Signal De-noising by DWT

It is well known to any scientist and engineer who work with real-world data that
signals do not exist without noise, which may be negligible (i.e., high SNR) under
certain conditions. However, there are many cases in which the noise corrupts the sig-
nals in a significant manner, and it must be removed from the data before proceeding
with further analysis. The process of noise removal is generally referred to as signal
de-noising. Although the term “signal de-noising” is general, it usually indicates the
recovery of a digital signal that has been contaminated by additive noise. Moreover,
most practical cases are covered by the assumption of additive Gaussian white noise.
We will now describe how de-noising can be tackled by DWT.

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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15.2.1 Theory of De-noising by Wavelets

The model for the estimation of an unknown discrete-time signal corrupted by addi-
tive noise is (see, e.g., Johnstone and Silverman 1997)

x[n] = s[n] + σee[n], N = [0, N − 1].

The e[n] are normally-distributed random variables with zero mean and unit variance;
the factor σe allows for noise with non-unit variance. The goal is to recover the
underlying signal s[n] from the noisy data x[n] with little error, i.e., to suppress e[n]
and to recover the “true signal” s[n].

In theory, the performance of a de-noising algorithm is usually measured using the
mean square error (MSE) between the true signal and its reconstructed version ŝ[n],
or using its square root, indicated by RMSE. On the basis of this simple criterion,
we look for a sequence ŝ[n] (estimated true signal; de-noised signal) minimizing the
MSE,

R(s, ŝ) = 1

N

{
N−1∑

n=0

∣∣s[n] − ŝ[n]∣∣2

}
.

MSE measures the degree of similarity between the de-noised signal and the true
signal. The smaller the MSE, the more faithful is the reconstruction of s[n] provided
by the de-noised signal. R(s, ŝ) can be seen as a form of risk function, meaning
a measure of the “risk” associated with approximating s[n] by ŝ[n]. Note that de-
noising is a particularly interesting specialization of a more general problem known
in statistics as function estimation, in which an unknown function must be recovered
from its corrupted version.

In practice, since the true signal s[n] is unknown, the MSE is impossible to evaluate
directly, and cannot be used as an objective criterion to optimize the parameters of
the de-noising procedure. The risk function itself must be properly estimated, and
several ways to do so have been proposed. The unbiased risk estimator tools, among
which SURE (see next subsection) is a well-known representative, aim at tackling
this issue.

As Misiti et al. (2007) pointed out, two of the greatest successes of wavelets
are signal de-noising and compression, which are often regarded as particularly
difficult tasks. As we will see, the issue of signal compression is conceptually strictly
related to that of de-noising. The de-noising and compression procedures based on
an orthogonal DWT are simple and powerful algorithms that are often easier to fine-
tune than the traditional methods of function estimation. This is mainly due to the
following reasons:

• due to the orthogonality of the transformation, the orthogonal DWT decomposition
of a noisy process is additive, and consequently, the analysis of the noisy signal is
equal to the sum of the analyses of the true signal and of the additive noise;
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• most true signals we may be interested in recovering from their noisy versions
are smooth enough to have very sparse DWT representations, i.e., to be very well
represented using only a few significantly non-zero coefficients: if we were able
to analyze the true signal by an orthogonal DWT, we would find that only a small
fraction of the detail coefficients are non-zero, and the position where they are non-
zero cluster around the discontinuities and abrupt variations of the true signal. We
could thus represent it in a satisfactory manner by the coefficients of a rather
rough approximation, to which some large detail coefficients were added. More
precisely, the energy in the DWT coefficients for most real-world smooth signals
decays in an approximately exponential way toward smaller scales (Cheng 1997);

• a white noise process with given variance yields a set of detail coefficients which
at all scales are white noises with the same variance. If we were able to analyze
the white noise alone, we would find the same white noise at all levels. Thus, in
the DWT of a signal corrupted by additive white noise, the energy of the noise
component spreads equally across the scales. Since the energy of a smooth true
signal lies mainly in the coarsest approximation coefficient vector, the energy of
the additive noise component mainly affects the detail coefficients1;

• provided that we can suitably estimate the noise level,2 i.e., the amount of noise,
represented by its standard deviation, if the irregularities of the signal generate
detail coefficients that are larger than the amplitude scale σe of noise fluctuations,
the de-noising process can focus on selecting and retaining the detail coefficients
related to the signal and discarding the rest; the selection takes place through a
thresholding;

• the DWT analysis is local and, consequently, thresholding leads to a local de-
noising of the signal.

On the basis of these observations, the problem of recovering the unknown signal can
be reformulated as the problem of selecting those few detail coefficients of the noisy
signal that are significantly non-zero, against a Gaussian white noise background.
This approach leads to estimating a threshold below which the detail coefficients of
the noisy signal can be assumed to represent only noise, and can thus be discarded.
The threshold value is determined based on certain statistical assumptions about the
noise and/or the target signal. The procedure is efficient in reducing noise effectively,
while preserving possible sharp features of the underlying true signal.

Wavelet thresholding methods for noise removal were first introduced by Donoho
in 1993 (see Donoho 1993a, b, c; Donoho and Johnstone 1994a, b; Donoho 1995;
Donoho and Johnstone 1995; Johnstone and Silverman 1997; Donoho and Johnstone
1998). These methods do not require any particular assumptions about the nature of

1Note that for Gaussian white noise, an orthogonal DWT will also preserve the Gaussian nature of
the noise: the histogram of the noise in the transform domain will be a symmetric bell-shaped curve
about its mean value, with the same width at half height that the noise amplitude distribution has
in the time domain. In other words, the noise and the details have the same probabilistic properties,
and the details inherit the Gaussian and centered nature of the noise.
2Often σe is referred to as the noise level. When using this term, we should be aware that the word
level here has nothing to do with the word level as it is used in DWT theory, as in the expression
“level of decomposition”.
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the signal, are undisturbed by the presence of discontinuities in the signal, and exploit
the multiresolution properties of the wavelet transform. As a consequence, these
techniques offer more possibilities than any frequency-selective filtering, because
they can remove noise at any frequency. Last but not least, if the presence of non-
white noise is suspected, DWT allows for analyzing the noise level separately at each
wavelet scale, and adapting the de-noising algorithm accordingly.

Starting with a noisy signal, we will first decompose it in an orthogonal (ortho-
normal) wavelet basis using the DWT. We will use a wavelet whose form is similar
to the true signal features we want to detect: the wavelet must be able to capture
the transient spikes of the original signal that we desire to preserve. Then we will
select those detail coefficients that are larger than the characteristic amplitude of the
noise, and discard the others. We will keep the approximation coefficients vector
of a suitably chosen level intact: indeed, the approximation coefficients represent
low-frequency terms that usually contain important components of the signal, and
are less affected by the noise.

The selection will be performed by thresholding the detail coefficients. Actually,
it can be shown (Misiti et al. 2007) that thresholding is the optimal selection strategy.
Each coefficient is compared with a threshold, denoted by λ, in order to decide
whether it constitutes a desirable part of the signal x[n], or not. The threshold can
be global or level-dependent; it may be different in different sections of the signal,
or be independent of time. Thus, the threshold will generally be a function of the
decomposition/resolution level j and of the time index k, i.e., λ = λ(j, k), but usually
it will be a function of j only, i.e., λ = λ(j), or even a scalar. Note that the value of a
threshold is always positive. The threshold value(s) may be estimated according to
different criteria (Sect. 15.2.3).

Also the thresholding rule can vary: it can be hard or soft.

• Hard thresholding is defined, for a generic real sequence y[n] to be thresholded
and for a threshold λ independent of time over the duration of y[n], as

δhard, λ[n] =
{

y[n] if |y[n]| > λ,

0 otherwise,

where δhard,λ[n] indicates the output of the thresholding operation performed on
the sample y[n].

• Soft thresholding shrinks the kept coefficients by setting

δsoft, λ[n] =
{

y[n]− sign(y[n])λ if |y[n]| > λ,

0 otherwise.

The soft thresholding rule can be also written as

δsoft, λ[n] = 1

2
sign (y[n]) (|y[n]| − λ + ||y[n]| − λ|) .
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Fig. 15.1 a The two rules for thresholding a sequence y[n]: hard and soft. This is a case of a
threshold λ independent of time; values of y[n] equal to ±λ are indicated by dashed horizontal
lines. b Thresholds selected, for a series of Gaussian white noise with unit variance, according to
three different criteria (see text): Square2log (dashed vertical line), SURE (solid vertical line), and
Minimax (dotted vertical line)

All else being equal, soft thresholding, also called shrinkage, leads to smoother
true-signal estimators, and is the most common choice in de-noising. Hard thresh-
olding is preferred for compression. Figure 15.1a is an illustration of these two
rules. Note how the hard thresholding sets to zero the values of y[n] that are below
the threshold in absolute value, while the soft one pulls them towards the origin by
an amount equal to the threshold (observe the dashed horizontal lines, representing
y[n] = ±λ).

Once the strategy, the threshold(s), and the thresholding rule have been selected,
only one essential ingredient remains to be found: the noise level. How noisy is
the signal? How does the noice level affect the threshold? After answering these
question, we will be able to actually threshold the detail coefficients; later, using the
thresholded detail coefficients and the untouched approximation coefficients, we can
reconstruct the signal by IDWT. The signal obtained in this manner is the de-noised
signal.

15.2.2 Estimation of Noise Level

The basic signal model assumes we know σe, but in reality the noise standard devi-
ation is unknown a priori and must be estimated. The level-1 detail coefficients
(the finest scale; the least decimated detail coefficients, i.e., the longest sequence
among all the dj[k]) are essentially noise coefficients with variance σ2

e . In most
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cases, only some large level-1 detail coefficients are not ascribable to noise. In fact,
the orthogonality of the DWT has the fundamental statistical consequence we already
mentioned—which is not present in the biorthogonal transform—according to which
the DWT transforms white noise into white noise. Hence, for the additive noise case,
the transformed noise is also a white noise process with variance σ2

e , and once we
can identify the wavelet coefficients that correspond to the noise, estimating their
variance is equivalent to estimating the variance of the actual noise. It is then enough
to use a robust estimator, i.e., an estimator not sensitive to outliers, of the standard
deviation of the level-1 detail coefficients to estimate σe. In the Gaussian-distribution
case, the estimator has the form:

σ̂e = median
{∣∣∣C(1)

d [m]
∣∣∣
}

/0.6745.

Here we exploit the relation between the standard deviation and the median3 for the
Gaussian distribution. Indeed, for L independent Gaussian centered random variables
(x0, . . . xL−1) with a standard deviation σ, the ensemble average of the median of the
variables taken in absolute value is (Staudte and Sheather 1990) E [median(|xi|)] ≈
0.6745 σ for i = [0, L − 1]. Thus the constant 0.6745 makes the estimate of the
standard deviation unbiased for the normal distribution.

If we assume that noise is white, we will thus estimate σe from level-1 detail
coefficients and use it for all levels. However, the assumption of white noise is
sometimes too stringent, and we may need to relax it. If we need to account for
non-white noise, a level-dependent (i.e., frequency dependent) estimation of σ2

e is
necessary. A similar formula will then be used to estimate σe level by level.

15.2.3 Threshold Estimation

Several threshold selection methods have been proposed. Two main families are:
Donoho-Johnstone methods (Square2log, SURE, HeurSURE, and Minimax), and
parametric methods, like Birgé-Massart threshold and Birgé-Massart penalized
threshold. Among the Donoho-Johnstone methods, SURE and HeurSURE typically
serve to obtain level-by level threshold estimates, while Square2log and Minimax
provide global thresholds. The Birgé-Massart threshold is level-dependent; the Birgé-
Massart penalized threshold is global.

We now examine each of these threshold selection approaches. We will list both
approaches normally adopted for de-noising (which are thus associated with the soft-

3The median is the numerical value separating the higher half of a data sample, a population, or a
probability distribution, from the lower half. The median of a finite list of numbers can be found
by arranging all the observations from lowest value to highest value and picking the middle one. If
there is an even number of observations, then there is no single middle value; the median is then
usually defined to be the mean of the two middle values.
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thresholding rule) and approaches usually adopted for compression (which are thus
associated with the hard-thresholding rule).

Threshold estimation and noise-level estimation must be clearly distinguished. It
is simpler, from now on, to refer to the white noise case (we have already discussed
how to deal with non-white noise). It is also convenient, for the moment, to focus
on Donoho-Johnstone methods. We may then think of expressing the (global or
level-dependent) threshold as

λ = σeλ0,

where λ0 is the threshold chosen according to one of the previously mentioned
methods, for a signal model including white noise with σe = 1. λ0 thus appears as a
threshold for unit-variance noise that later is scaled multiplying it by the estimated
noise level for the data we are actually dealing with. Depending on the threshold
estimation method, λ0 can be constant or level-dependent. The approaches to thresh-
old estimation described below serve to define λ0, from which λ is derived using the
other essential ingredient in the recipe, namely the estimate of the noise level σe.

In practice, starting with a given data record, we will decompose it at a suitably
selected level J . Then

• if we are using Square2log or Minimax, we will compute the scalar λ0 and multiply
it by σe to get the scalar λ;

• if we are using SURE or HeurSURE, we will reduce the detail coefficients of the
jth level (j = [1, J]) by a factor equal to the estimated σe, i.e., we will scale them
by the standard deviation of noise, thus turning to the unit-variance noise case.
We will then compute λ0(j). Finally we will form λ(j) = σeλ0(j) for use with the
original, unscaled coefficients.

Let us now examine the most popular threshold selection criteria.

1. Square2log Criterion
The simplest thresholding method is to perform a DWT of the data and then use
a constant threshold, i.e., a single threshold for all the detail coefficients in the
expansion, independently of the level. This criterion is often employed for soft
thresholding in de-noising.
The threshold that is typically used is

λ = σeλ0 = σe

√
2 log NDWT

where NDWT is the size of the DWT coefficient vector C[l] which contains all
approximation and detail coefficients for a decomposition at a given level J . Note
that NDWT is of the order of data size N ; note also that the threshold λ0 depends only
on NDWT . The Square2log criterion is illustrated in Fig. 15.1b (dashed vertical
line), where it has been applied for threshold selection to a sequence x[n] of
Gaussian white noise with unit variance.
The theoretical argument in favor of this expression is the following: as we already
pointed out, if the noise samples e[n] are normally distributed random variables
with zero mean and variance σ2

e , then the detail coefficients on all the scales are
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Gaussian white noises with the same variance. Moreover, in spite of the fact that
the noise values e[n] are not bounded, it can be shown that

lim
N→∞ P

{
max

n=[0,N−1]
|e[n]| > σe

√
2 log N

}
= 0,

where P stands for probability. Observe how the upper noise bound, max |e[n]|,
is just inflated by a multiplicative factor when we pass from the case with σe = 1
to the general case (σe �= 1). For a wide range of N values (say, from 26 to 219),
statistical calculations reveal that only in about one-tenth of the realizations will
pure noise variables exceed the threshold. In the DWT domain, the DWT detail
coefficients will behave in the same way, with the only difference being that they
are precisely NDWT in number. This result ensures that if we choose the threshold
in the DWT domain according to the Square2log criterion, then, in the limit, no
pure-noise detail coefficient will be let through the threshold.

2. Stein’s Unbiased Risk Estimate (SURE) Criterion
This is an unbiased threshold estimator proposed by Stein (1981). It may be
employed for a level-by level threshold estimation, or for a global threshold
estimation. We will describe the first, more general approach. The SURE criterion
constructs a threshold which is meant to be used for soft thresholding in de-noising
applications.4 The related threshold λ(j) can be evaluated as follows.
First, the N (j)

d detail coefficients of level j, with j = [1, J], are divided by σe and
then are squared and arranged in ascending order of squared value. This operation
is indicated by a sort operator:

q2
j [m] = sort

k=
[
1,N (j)

d

]
∣∣∣C(j)

d [k]
∣∣∣
2
, m =

[
1, N (j)

d

]
.

A risk vector for level j is then computed as

rj[m] = N (j)
d − 2m + ∑m

i=1 q2
j [i] + (N (j)

d − m)q2
j [m]

N (j)
d

.

The index m(j)
best is found, corresponding to the smallest element of rj[m], i.e., to

the minimum risk. The threshold is finally defined as

λ(j) = σeλ0(j) = σe

√
q2

j [m(j)
best].

The rationale behind SURE is that the estimation problem for MSE actually leads
to the above-reported threshold as the value of minimum risk. It may be useful to
remark that SURE is not a surrogate for MSE, but minimizing SURE is a surrogate

4For this reason, the corresponding de-noising procedure is referred to as SUREShrink.
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for minimizing MSE. When choosing a statistical estimator, we often want the one
that will minimize MSE, but we cannot compute MSE without knowing the true
signal, or the true characteristics of the noise we are trying to suppress. SURE
gives us an unbiased estimate of what the unknown MSE is. SURE is still an
estimator, so it has a distribution, whereas MSE is a fixed value.
The choice of the threshold in the SURE method being data-adaptive, this algo-
rithm is claimed to be smoothness-adaptive: if the unknown function contains
a jump, the reconstruction (de-noised signal) is essentially supposed to do the
same. If the unknown function has a smooth piece, the reconstruction is essen-
tially expected to be as smooth as the mother wavelet will allow.
If a single SURE threshold for all levels is desired, then the criterion may be
applied to the detail coefficients belonging to level J only.

3. HeurSURE Criterion
According to this criterion, the threshold is selected using a combination of
Square2log and SURE methods. In fact, if the SNR is very small, the SURE
method is found to perform poorly: it turns out to be too conservative, i.e., to give
low thresholds prone to preserving part of the noise. In such cases, the Square2log
method gives a better threshold estimate. However, the Square2log criterion in
this case is used in a level-by level manner. This is obtained by setting

λ
Square2log
0 (j) =

√
2 log N (j)

d .

Subsequently, the detail coefficients are reduced to the unit-variance noise case
(dividing them by σe) and the SURE threshold, which we denote by λSURE

0 (j), is
computed from the modified coefficients. With the same coefficients, the follow-
ing two parameters are formed:

η =
N (j)

d∑

k=1

∣∣∣C(j)
d [k]

∣∣∣
2
, χ =

[
log2 N (j)

d

]3/2

√
N (j)

d

.

Finally the following threshold is defined:

λ(j) =
{

σeλ
Square2log
0 (j) for η < χ,

σe min
[
λ

Square2log
0 (j),λSURE

0 (j)
]

for η ≥ χ.

If a single HeurSURE threshold for all levels is desired, then the criterion will be
applied to the detail coefficients belonging to level J only.
Threshold determination is an important problem. An exceedingly small threshold
may yield a result which may still be noisy, while a threshold that is too large can
cut a significant part of the signal, thus causing loss of important details. Heursure
emphasizes the importance of SNR: when SNR is low and the SURE estimator
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would lead to a noisy result, then the less conservative Square2log algorithm is
used.

4. Minimax Criterion
This method finds a global threshold λ using the so-called minimax principle
that is used in statistics to design estimators. Since the de-noised signal can be
assimilated to the estimator of an unknown sequence contaminated by noise, the
Minimax estimator is the option that realizes the minimum, over a given set of
signals ŝ[n], of the related MSE. The threshold is defined as

λ = σeλ0 =
{

σe
(
0.3936 + 0.1829 log2 NDWT

)
for NDWT > 32,

0 for NDWT ≤ 32.

SURE and Minimax threshold selection rules are particularly conservative (see
Fig. 15.1b, solid and dotted vertical lines, respectively) and are convenient when
small details of the true signal lie in the noise range. Other rules remove the noise
more efficiently.

5. Birgé-Massart Criterion
There are two shades of this parametric method.

• Birgé-Massart Threshold: scarce high, scarce medium, scarce low.
This method is well suited mainly for compression purposes, though it may be
used for de-noising. It is a levelwise threshold estimation method suggested
by Birgé and Massart (1997). The Birgé-Massart threshold is classified as a
parametric method of threshold estimation, because three parameters charac-
terize it: the level of the decomposition J , a positive constant M and a sparsity
parameter α, with 1 < α < 5. The sparsity of the wavelet representation of
the de-noised signal grows with α. The level-dependent threshold prescribed
by this method is such that at level J the approximation is kept, and for any
level j from 1 to J , the nj largest coefficients are kept, with

nj = M

(J + 2 − j)α
.

So the Birgé-Massart threshold leads to selecting the highest coefficients in
absolute value at each level, with the number of retained coefficients growing
with J − j. If Na is the length of vector of the coarsest approximation coeffi-
cients (level J), M is set proportional to Na, and three different choices for the
M are proposed: scarce high, M = Na; scarce medium, M = 1.5 Na; scarce
low, M = 2 Na. As for the sparsity parameter, typically the choice is α = 3
for de-noising, and α = 1.5 for compression.

• Birgé-Massart Penalized Threshold: penalized high, penalized medium, penal-
ized low.
This is a global threshold estimation method, which was suggested by Birgé
and Massart (2001, 2006). It is classified as a parametric method since it
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includes a sparsity parameter α > 1. It is commonly used for de-noising. It
applies a scalar threshold λ defined as the one that minimizes

crit(m) = −
∑

k≤m

v2[k] + 2σ2
e m

(
α + log

Nd

m

)
m = 1, 2, . . . Nd,

where v2[k] are the detail coefficients, arranged in descending order of mag-
nitude and then squared, and Nd is their number. If we call mbest the minimizer
of crit(m), then

λ = σeλ0 = σe

√
v2[mbest].

Three different intervals of α-values are proposed: penalized high, 2.5 ≤ α <

10 (typically, 6.25); penalized medium, 1.5 < α < 2.5 (typically, 2); penal-
ized low, 1 < α < 2 (typically, 1.5).

15.2.4 De-noising Examples

Now we will illustrate the capabilities of the de-noising procedures presented above,
providing a couple of real-world examples.

1. To see a first example of de-noising, we use the same electrical load signal studied
in Sect. 14.7 (Misiti et al. 1994). On the basis of the previous discussion, we
use db3 and decompose at level 3, since we have already seen that the level-3
approximation represents an overall good smoothing of the signal. We will simply
use zero padding to extend the signal (for extension modes see Sect. 14.5). We
do not worry too much about the extension mode, since it is expected to mainly
affect the edges of the de-noised signal.
Figure 15.2a, b show the original signal and the A3 approximation, respectively.
Only the most disturbed part of the signal is shown, to avoid cluttering (minutes
1950–3900). The approximation A3 can be considered as a crude approach to
de-noising. A more rigorous approach is to apply soft thresholding to detail
coefficients, with a global positive threshold that will be chosen, according to
the Square2log criterion, computing the median of the absolute value of the
detail coefficients obtained from a level-1 decomposition with db1 (the simplest
compactly-supported orthonormal wavelet, having the lowest number of vanish-
ing wavelet moments among all dbK), dividing by 0.6745 and multiplying by√

2 log N . The threshold, in this case with N = 4320 data samples, turns out to
be equal to

[√
2 log N

]
median(|d1|)/0.6745 = 4.0917*1.4663/0.6745 = 8.8947

≈ 8.90.
We may wonder if this estimate would change substantially if we employed
another wavelet in place of db1 to estimate the median. Using db3, db4, db8
and db12, for example, we would get thresholds of 7.80, 7.64, 8.09, and 7.85,
respectively. Therefore using an order-1 wavelet provides an upper bound for the

http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_14
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Fig. 15.2 Electrical load
signal studied by Misiti et al.
(1994). a A noisy portion
of the original signal,
b approximation A3 as a
crude form of de-noising,
and c de-noised signal
obtained decomposing at
level 3 by db3 and
soft-thresholding the detailed
coefficients with a global
positive threshold threshold
selected according (see text
for details)
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median and therefore for the threshold, though the use of higher-order wavelets
leads to very similar values.
The result of the de-noising procedure with soft thresholding and noise variance
estimate independent of level (i.e., assumption of additive white noise) is shown in
Fig. 15.2c. The result of Fig. 15.2c is quite good, in spite of the time heterogeneity
of the nature of the noise after and before the beginning of a sensor failure that
occurred around minute 2450. Notice how we have removed the noise without
compromising the sharp detail of the original signal (for instance, observe the
abrupt transition around minute 3450). This would not be the case if we used the
cruder A3 approach (Fig. 15.2b).
Maintaining the white noise assumption, we can repeat the de-noising using dif-
ferent criteria, in order to compare the results. This time we adopt db3 for noise
level estimation, i.e., the same wavelet adopted for signal decomposition, and
apply Square2log, SURE and Minimax criteria. The thresholds thus obtained
are:

• Square2log: 4.0924σe = 7.80,
• SURE: 0.3657σe = 0.697,
• Minimax: 2.6032σe = 4.96.
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Fig. 15.3 Electrical load
signal studied by Misiti et al.
(1994). De-noised signal
obtained decomposing at
level 3 by db3 and
soft-thresholding the detail
coefficients with thresholds
selected according to
different criteria, i.e.,
Square2log, Minimax and
SURE. Only a very restricted
portion of the signal is
shown to avoid cluttering
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Thus, these criteria lead to very different thresholds, with Square2log giving
the highest threshold and SURE giving the lowest. Actually, for different sig-
nals, Square2log always selects the highest thresholds, while SURE is the most
conservative threshold estimator. Of course, a higher threshold means a greater
deviation of the de-noised signal from the original noisy one, as visible in Fig. 15.3,
which for clarity shows only a very restricted portion of the results.

2. Another good de-noising example is provided by a paper by Castillo et al. (2013).
These authors illustrated the application of the DWT for baseline wandering
elimination and noise suppression in electrocardiographic (ECG) signals.
ECG acquisition from the human skin involves the use of high gain instrumen-
tation amplifiers, and this fact makes the ECG signal prone to be contaminated
by different sources of noise. This effect is particularly important when the target
is the measurement of fetal ECG signals acquired over the mother’s abdomen.
Noise makes visual inspection and ECG-feature extraction difficult.
In general, ECG contaminants can be classified into different categories, including
power line interference, electrode pop or contact noise, patient-electrode motion
artifacts, electromyographic (EMG) noise, and baseline wandering. Among these
noises, the power line interference and the baseline wandering (BW) are the
most significant. The power line interference is a very narrow-band type of noise
centered at 50 or 60 Hz, with a bandwidth of less than 1 Hz.5 BW usually comes
from respiration, at frequencies varying between 0.15 and 0.3 Hz. Other noise
components may be wideband, and usually involve a complex stochastic process,
which also distorts the ECG signal. Usually the ECG signal acquisition analog
hardware can remove the power line interference, but the BW and other wideband
noise components are not easily suppressed by analog circuits. De-noising is

5In software applications, often such narrow-band undesired components are removed by special
filters called notch filters. An example of a notch filter is provided in the next chapter.
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thus better tackled in software by DWT-based processing, and it is decisive for
subsequent parameter extraction in clinic applications.
Castillo et al. (2013) discuss in depth the choice of parameters for this task,
such as wavelet type, decomposition level, threshold selection and thresholding
rule, as well as noise level estimation, through simulations with synthetic ECG
signals and application to real-world data. Here, we focus on the application of
the method to an ECG record taken from the DaISy dataset (DeMoor 2010).
The data, contributed by Lieven De Lathauwer, contain 8 leads of skin potential
recordings of a pregnant woman (Callaerts 1989; De Lathauwer et al. 2000). The
lead recordings, three thoracic and five abdominal, were sampled at 250 Hz and
are 10 s long (2500 samples each). The sequence analyzed here is from lead 4
(abdominal). The db6 wavelet is chosen, because of its similarity to the basic
waveform in an ECG. The extension mode is zero padding.
The processing steps are as follows:

• decomposition up to a high level and visual identification of the approximation
that best captures the BW;

• decomposition at the level of the approximation that captures the BW;
• reconstruction of the signal on the basis of details only, i.e., BW suppression;

this step leads to a BW-corrected signal;
• de-noising of the BW-corrected signal to obtain the BW-corrected and de-

noised signal.
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Fig. 15.4 Approximations to a fetal ECG signals acquired over the mother’s abdomen, obtained
by DWT decomposition at levels 3 to 7 using db6 wavelet
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Fig. 15.5 Details of the fetal ECG signal, obtained by DWT decomposition of the ECG signal at
level 7 using db6 wavelet

We start from the maximum decomposition level (7) advisable on the basis of
signal length and type of wavelet (db6). Figure 15.4 shows the ECG signal and
the approximation sequences for levels from 3 to 7. This figure shows that A6

and A7 are the approximations that best capture the baseline wander. Figure 15.5
shows the details associated with A7.
The most important frequencies in BW are below a certain frequency fc. For
example, fc 	 1 Hz for wandering coming from respiration (0.15–0.3 Hz). Other
wandering components, such as motion of the patient and of the instrument, may
have higher-frequency components. To remove wandering, it would be necessary
to select the decomposition level such that the approximation captures the ECG
components for frequencies lower than this fc. The decomposition level for BW
suppression can be estimated as follows:

JBW = int

(
log2

fNy

fc

)
,

where int means round off to the nearest integer. In our case, fNy = 125 Hz, and
setting fc = 1 Hz (respiration) we obtain JBW = 7. After applying seven low-pass
filters and downsampling processes, the DWT tree leads to an approximation
A7 which actually captures frequencies from 0 Hz to about 1 Hz and is a good
estimation of BW. This confirms the choice made by visual inspection of the
approximations 1–7 in Fig. 15.4. These arguments are illustrated by Figs. 15.6
and 15.7, which show the spectra of the signal and of its various components.



15.2 Signal De-noising by DWT 731

Fig. 15.6 Periodograms of
the original fetal-ECG signal
and of the approximations
obtained by DWT
decomposition at level 7
using db6 wavelet 10

−1
10

0
10

1
10

2
0

5000

10000

15000
EEG

10
−1

10
0

10
1

10
2

0

5000

10000

15000 A1

Po
w

er
 S

pe
ct

ru
m

10
−1

10
0

10
1

10
2

0

5000

10000

15000 A2

10
−1

10
0

10
1

10
2

0

5000

10000

15000

Frequency (Hz)

A3

10
−1

10
0

10
1

10
2

0

5000

10000

15000 A4

10
−1

10
0

10
1

10
2

0

5000

10000

15000 A5

10
−1

10
0

10
1

10
2

0

5000

10000

15000
A6

10
−1

10
0

10
1

10
2

0

5000

10000

15000

Frequency (Hz)

A7

These plots allow us to see how the chosen approximation and the corresponding
details cover the spectrum of the original signal. Observe how considering A6

or A7 as representative of BW actually corresponds to suppressing the signal’s
spectral content above 1 Hz.
The result of the process of BW suppression is illustrated in Fig. 15.8a–c, in
which the original signal, the estimated baseline (ultimately chosen as A7) and
the BW-corrected signal are shown, respectively.
We must now select a decomposition level for the subsequent de-noising of the
BW-corrected signal. De-noising here is supposed to suppress noise-related fea-
tures also at frequencies not covered by the BW suppression. The high-frequency
noise in the original signal is contained mainly in details D3–D1 from the decom-
position at level 7 (see Figs. 15.5 and 15.7; the latter shows how the spectral
content of D3–D1 lies above ∼10 Hz). To avoid eliminating clinically important
components of the signal, such as PQRST6 morphologies, only these details must
be touched by the de-noising process.

6The acronym PQRST indicates the pattern of electrical activity of the heart during one cardiac
cycle, as recorded by electrocardiography. Typically, an ECG exhibits five deflections, arbitrarily
named P to T waves. The Q, R, and S waves occur in rapid succession, do not all appear in all
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Fig. 15.7 Periodograms of
the original fetal-ECG signal
and of the details obtained by
DWT decomposition at level
7 using db6 wavelet
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At this point, we decompose the BW-corrected signal up to level 4, still using
db6. The resulting approximation is shown in Fig. 15.8d; the details are visible
in Fig. 15.8e–h.
The effect of noise is evident in D2 and D1. The details higher than level 2 contain
most of the significant information for diagnostics. These observations suggest
performing de-noising of the BW-corrected signal using db6 and a decomposition
at level 3. A global threshold associated with soft thresholding is applied. The esti-
mate of the noise standard deviation is single-level, based on level 1. Figure 15.9
shows the original ECG signal and the BW-corrected-and-de-noised signal. The
BW-corrected-and-de-noised abdominal ECG signal still exhibits characteristics

(Footnote 6 continued)
leads, and reflect a single event, so that they are usually considered together. A Q wave is any
downward deflection after the P wave. An R wave follows as an upward deflection, and the S wave
is any downward deflection after the R wave. The T wave follows the S wave, and in some cases
an additional U wave follows the T wave. The QRS complex is the name for the combination of
three of the graphical deflections seen on a typical ECG. It is usually the central and most visually
obvious part of the tracing; it corresponds to the depolarization of the right and left ventricles of the
human heart. In adults, it normally lasts 0.06–0.10 s, while in children and during physical activity,
it may be shorter.
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Fig. 15.8 a The original fetal-ECG signal, b the baseline extracted by DWT with db6 as the
approximation at level 7, and c the BW-corrected signal. Subsequent decomposition of the BW-
corrected signal using db6 at level 4: d approximation, e–h details

Fig. 15.9 a Original fetal
ECG signal and b
BW-corrected-and-de-noised
signal
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like the fetal QRS complexes, which are very important for subsequent process-
ing, such as separation of fetal ECG.

Further examples of de-noising are given in Chap. 16 as Matlab exercises. All
these examples illustrate the robustness of the de-noising algorithms by wavelet
thresholding and the capacity of the technique to be adapted to many different con-
texts.

15.3 Signal Compression

Signal compression is a process aimed at retaining only the information necessary to
reconstruct significant features of the original signal, for reasons of storage saving.
The relation with the de-noising issue is obvious, since the significant features we
want to preserve are evidently noise-free, but in compression the focus is on the
extent to which the number of DWT coefficients to be stored can be reduced with
respect to the complete set (compression ratio; compression score), while preserving
a substantial amount of the signal’s energy, i.e., variability. While in de-noising we
seek the best strategy to extract the true signal, irrespective of how many coefficients
we will have to retain, the threshold and the thresholding method chosen for com-
pression most often comes from external constraints, such as frequency bandwidth
of interest, available memory, prescribed compression ratio, etc. This is why a well-
de-noised signal will not be optimally compressed, nor will de-noising be optimal in
the result of a compression, so that fluctuations absent from the original signal may
appear in the compressed signal.

The compression features of a given wavelet basis are primarily linked to the
relative sparseness of the wavelet domain representation of the signal. Compression is
based on the notion that the regular signal component can be accurately approximated
using the following elements: the approximation coefficients at a suitably chosen
level and a small number of detail coefficients. Like de-noising, the compression
procedure contains three steps.

1. Decompose: choose a wavelet and a level of decomposition J . Compute the
wavelet decomposition of the signal at that level.

2. Threshold detail coefficients: for each level j from 1 to J , select a threshold
and apply hard thresholding to the detail coefficients. Memorize the retained
coefficients and their positions in the original sequence.

3. Reconstruct, i.e., compute signal reconstruction using the original approximation
coefficients of level J and the modified detail coefficients of levels from 1 to J ,
inserting zeros in the holes. We shall indicate by xc the compressed reconstructed
signal.

The main differences from the de-noising procedure are found in step 2, i.e., in the
choice of the threshold and in performing hard thresholding rather than shrinkage.

http://dx.doi.org/10.1007/978-3-319-25468-5_16
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There are two compression approaches available. The first consists of taking the
wavelet expansion of the signal and keeping the largest absolute value detail coeffi-
cients. In this case, we may establish a global-threshold value, or start directly from
some desired compression performance, or from some prescribed relative square-
norm recovery performance (see below). Only a single threshold needs to be selected
in this case. The second approach consists of applying suitably determined level-
dependent thresholds.

When compressing using orthogonal (orthonormal) wavelets, the retained energy
in percentage (a.k.a. squared-norm recovery) is defined as

RE = 100 ∗ ‖xc[n]‖2

‖x[n]‖2 .

RE gives the ratio of the �2-squared-norm of the compressed signal to the �2-squared-
norm of the original signal. If this number is close to 100 %, this means that the energy
in the compressed signal is very close to the energy in the uncompressed signal. Note
that RE is also equal to the ratio of the �2-squared-norm of the thresholded wavelet
coefficients to the �2-squared-norm of the original wavelet coefficients.

The compression score CS is defined as

CS = 100 ∗ number of coefficients set to zero

total number of coefficients
.

It gives the ratio of the number of thresholded wavelet coefficients that have been
set to zero to the total number of wavelet coefficients, expressed as a percentage.
If this number is close to 100 %, it means that virtually all the thresholded wavelet
coefficients have been zeroed: the signal is being reconstructed based on a very sparse
set of wavelet coefficients. Note that normally the approximation coefficients are left
untouched: only detail coefficients are processed.

15.3.1 A Compression Example

Compressing applications for sequences are numerous in any field where large
amounts of data are collected and then need to be stored. Let us examine an example
of compression using a global threshold in association with hard thresholding, for a
given and unoptimized wavelet choice, to verify that it can produce a nearly complete
squared-norm recovery.

We use the electrical load signal used in Sects. 14.7 and 15.2 and select a very
noisy part of it, i.e., minutes 2300–3500 (see Fig. 14.27). Decomposing this signal at
level J = 3 with a db3 wavelet we obtain the coefficient vector plotted in Fig. 15.10.
The inset shows the detail coefficients only, on an expanded scale. The length of
the uncompressed signal is 1201 samples; the complete coefficient vector, including
approximation and detail coefficients, is 1215 samples-long. The level-3 approxima-

http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_14
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Fig. 15.10 Coefficients produced by decomposing the electric consumption signal of Fig. 14.27
(minutes 2300–3500) at level 3 with db3 wavelet, versus position k in the wavelet coefficients
vector (see Sect. 14.5.3). The inset shows the detail coefficients only, on an expanded scale. The
gray, dashed and black horizontal lines in the inset mark thresholds of 3.38, 20 and 35, respectively

tion coefficients are the first 154; the level-3 detail coefficients follow, and are 154;
the subsequent level-2 and level-1 detail coefficients are 304 and 603, respectively.
Compression is thus aimed at saving space with respect to about 1200 numbers to
store, while obtaining a reasonably low value of the root-mean-square deviation
(RMSD), defined as

RMSD =
√∑

n

|x[n] − xc[n]|2 =
√∑

k

|Cor[k] − Cco[k]|2.

Here we indicated by Cor[k] and Cco[k] the concatenated detail coefficient vector for
the original and compressed signal, respectively.

How can we find a simple but effective threshold value in this case of compression?
A basic approach often adopted for compression consists of the following steps.

We decompose again the signal at level 1 by db1 and compute the median of the
absolute value of the detail coefficients. If the result is non-zero, we choose this value
as the threshold. If the median vanishes, then we just prepare to “kill” the lowest
coefficients of the previous decomposition at level J , by setting the threshold to 5 %
of the maximum absolute value of these detail coefficients. In the present case, the
resulting threshold is 3.3774 ≈ 3.38; this default value is represented by the gray line
in the inset of Fig. 15.10. We may note that this threshold is quite conservative; many
detail coefficients exceed it, and we may expect to obtain a relatively low CS using
it. A threshold of 20 (about 6 × 3.3774; see the dashed line in the inset of Fig. 15.10)

http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_14
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would, on the other hand, lead to retaining only a few high-valued detail coefficients,
and getting a higher score. A threshold of 35 (over 10 × 3.3774; see the black line
in the inset of Fig. 15.10) would mean killing practically all coefficients, except a
couple of them at level 3. Note that the maximum absolute value found among these
coefficients is 37.34.

Let us try the highest threshold.
The value of CS is 100 {1 − [(154 + 2)/1215]} = 87.16 %, so that only 13.84 % of

the coefficients are retained; RE is 99.96 % and the RMSD is 3.32. In spite the drastic
reduction in the number of coefficients, RE is quite high. We cannot do much more
than that in terms of CS without touching the approximation coefficients: indeed, if
we neglected all detail coefficients, we would get 100 {1 − [154/1215]} = 87.33 %,
the retained coefficients would be 12.68 %, and RE would approximately remain
99.96 %, with a RMSD of 3.41.

Figure 15.11 compares the signal, the approximation A3 that can be considered
as the result of a crude de-noising/compression, and the compressed signal obtained
using the fixed threshold of 35. The inset presents an expanded view of the region
of the maximum, which allows appreciating how the approximation A3 (gray curve)
and the compressed signal (dashed curve) actually differ only in the restricted time
interval in which the signal (black curve) undergoes very sharp changes, with the
compressed signal following the original one more closely than the approximation.
Even the contribution of a couple of coefficients thus turns out to be crucial in
determining the behavior of the compressed signal at “critical” points. This can be
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Fig. 15.11 The original electrical load signal, the approximation A3 as a smooth signal represen-
tation, and the compressed signal obtained using hard thresholding with a fixed threshold of 35,
i.e., killing all detail coefficients but 2. The inset presents an expanded view of the region of the
maximum, in which the original signal undergoes the sharpest changes
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Fig. 15.12 Electric consumption signal of Fig. 14.27 decomposed at level 3 with db3: reconstructed
detail signals a before and b after hard thresholding with a fixed threshold of 35
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Fig. 15.13 Electric consumption signal, compressed adopting three different values of the
threshold: 3.38, 20, and 35 (see text for the rationale behind these choices). The inset presents
an expanded view of the region of the maximum

understood by observing the reconstructed detail signals after thresholding (D′
j), in

comparison with those before thresholding (Dj; Fig. 15.12a and b, respectively). It is
obvious that the two pulses present in D′

3 at minutes ≈ 2860 and 3425, corresponding
to two sharp signal changes, are important in reproducing the shape of the original
signal at these instants.

The lower the threshold, the closer the compressed signal to the original one,
and the more modest the compression performance. This can be seen in Fig. 15.13,

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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Fig. 15.14 a Compression
score (CS) and percentage of
retained coefficients;
b squared-norm recovery
(RE); c root-mean square
deviation (RMSD) of
compressed signal to original
signal for a range of
threshold values from 3.38 to
12× 3.38 ≈ 40. In all panels,
the dashed and solid vertical
lines correspond to two
threshold values (20 and 35)
discussed in the text. Note
that 20 and 35 are about 5.92
and 10.36 times the default
threshold of 3.38,
respectively. In panel a, the
horizontal lines represent the
asymptotic values of CS and
percentage of retained
coefficients. In the other two
panels, the dashed and solid
horizontal lines indicate the
performances for the
thresholds 20 and 35,
respectively
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comparing the compressed signals obtained adopting three different threshold values,
from the conservative value of about 3.38 to 20, and finally to 35. With the threshold
set to 3.38, the original signal (black solid line) and the compressed one (black dashed
line) are almost indistinguishable.

In order to be more quantitative in judging the results of the compression proce-
dure, we can compute CS and percentage of retained coefficients, RE and RMSD
of the compressed signal from the original one for a range of threshold values from
3.38 to 12 × 3.38 ≈ 40, in steps of 0.01. Figure 15.14a–c shows the corresponding
plots. The dashed and solid vertical lines highlight two threshold values (20 and
35) mentioned above. In Fig. 15.14a, CS and percentage of retained coefficients are
shown. The horizontal lines represent the asymptotic values of CS and percentage of
retained coefficients, i.e., the values that would be attained discarding all the detail
coefficients; the values for the thresholds 20 and 35 are indistinguishable from the
asymptotic ones. In Fig. 15.14b, we can see the values of RE. The dashed and solid
horizontal lines respectively indicate RE values for the thresholds of 20 and 35.
Figure 15.14c shows the RMSD of the compressed signal from the original one. The
dashed and solid horizontal lines indicate the RMSD values for the thresholds of 20
and 35, respectively. Observe the rapid variation of all curves for thresholds values
below 4–5 times the default threshold of 3.38, which is quite conservative. Note also
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Fig. 15.15 Coefficients produced by decomposing the electric consumption signal at level 5 with
db3, versus position k in the wavelet coefficients vector (see Sect. 14.5.3). The inset shows the detail
coefficients only, on an expanded scale. The horizontal lines in the inset mark the level-by level
thresholds found with the Birgé-Massart scarce high approach

that for larger threshold values the performances rapidly approach their asymptotic
values.

As a more elaborated approach to compression, we can try the levelwise Birgé-
Massart scarce-high strategy. Figure 15.15 shows the coefficients from the decom-
position of the electrical load signal using db3 at level 5, which gives 42 level-5
approximation coefficients and 42 level-5 detail coefficients, as well as 79, 154, 304
and 603 detail coefficients for levels 4 to 1, respectively. The length of the DWT is
thus 1224. Recall that the signal is 1201-samples long.

Adopting default values for M and α, namely M = Na and α = 1.5, the thresholds
that the method provides level by level are 16.05, 19.94, 19.83, 28.65, and 14.42 for
levels 1 to 5, respectively, and correspond to keeping 15 detail coefficients at level
5, 8 at level 4, 5 at level 3, 4 at level 2 and 3 at level 1, for a total of 35 kept detail
coefficients and 42 kept approximation coefficients out of 1224. The thresholds are
shown by horizontal gray segments in the inset of Fig. 15.15. Figure 15.16 illustrates
the result of the compression. The CS value is very high: 100 {1 − [(42 + 35)/1224]}
= 93.71 % zeroed coefficients (only 6.29 % retained). The RE value is as high as
99.97 %.

Finally, we may mention that for compression some authors prefer to adopt
biorthogonal wavelets rather than orthogonal wavelets. Biorthogonal wavelets can
be very efficient for compression, because the analysis part (decomposition) and the
synthesis part (reconstruction) are treated by two distinct wavelets. Adopting a com-
pactly supported analysis wavelet with many zero moments is convenient because it
makes the representation of the signal as sparse as possible. However, such a wavelet

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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Fig. 15.16 The original signal and the compressed signal obtained using the Birgé-Massart scarce
high strategy. The inset presents an expanded view of the region of the maximum

will be rather asymmetric and irregular, and therefore ill-adapted to reconstruction,
for which it is desirable to use a regular and symmetric wavelet in order to minimize
reconstruction artefacts. The framework of biorthogonal wavelets makes it possible
to meet these two requirements simultaneously.
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Part V
Exercises in Matlab Environment



Chapter 16
Exercises with Matlab

16.1 Chapter Summary

This final chapter presents exercises on most of the techniques discussed in the book,
includingfilter design andfiltering implementation, stationary and evolutionary spec-
tral analysis, etc.

A set of Matlab scripts and functions is provided to perform the various tasks.
They require installation of the Signal Processing, Statistics and Wavelet Toolboxes.

No preliminary tutorial on Matlab is given, since very good books and guides
are available on this topic, including the Matlab User’s Guide and Reference Guide.
Moreover, the programs presented here employ only very simple commands, so that
any user with a basic knowledge of the Matlab language can go through them and
possibly modify them if desired. Every exercise comes with comments on the results
and with the reference to the chapter or section where the considered technique is
explained.

Just a warning: do not forget that in the theory we use indexes starting from 0,
while in Matlab all indexes start from 1. For example, [0, N − 1] here becomes
[1, N ]. As for the names of the variables appearing in each program, they have been
chosen in such a way to be—hopefully—intuitive, in order to avoid the need for
detailing their meaning. We will often use the name of these variables instead of
their mathematical symbols: for example, we will often write T_s in place of Ts .

16.2 Generation of Synthetic Data

To study features and performances of signal processing algorithms, numerical sim-
ulations are often performed on synthetic signals, usually containing an arbitrary
number of sinusoids (Sect. 2.3.2) with given amplitudes and frequencies. If we aim
at simulating random data from real-world measurements, the initial phase of each
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sinusoidal component will be chosen at random in the interval 0–2π , with a uniform
distribution. For the same randomization purpose, we will add Gaussian white noise
(see Sects. 9.7, 11.3.5, etc.) with properly chosen variance to the sinusoids.

Samples of Gaussian white noise can be produced using a generator of pseudo-
random numbers, and modifying its output so as to get a Gaussian amplitude dis-
tribution. Let us suppose we generate a sequence of real numbers according to the
following rules:

• all numbers must be in [0,1];
• no discrimination is allowed in favor or against any number or interval of numbers;
all numbers must have the same probability of being extracted;

• each number must be chosen independently of the others; we are not allowed to
take note of the numbers already generated and change our subsequent choices on
the basis of them.

In thiswaywe generate awhite noise sequencewith a uniform amplitude distribution.
The Gaussian case is different. Imagine an antenna which receives energy from

all sources of radio signals in the Universe and adds all these energies together. The
resulting tension will be random, but not uniform: most of the time the incoming
radio signals will tend to mutually cancel and will produce tensions close to zero;
once in a while, they will interfere constructively and will produce higher tensions.
The amplitude distribution of these tension values will be Gaussian.

In order to generate Gaussian white noise, we will adopt the following rules:

• the numbers must be extracted from a Gaussian population;
• they must be chosen independently of one another.

More details on pseudo-random number generation, in general and in Matlab in
particular, may be found in Moler (2004). Single chapters of the book are also
available for download at www.mathworks.com/moler/.

The exercises of this chapter require several sets of data. In some cases, the data
is the outcome of real-world measurements; in most of the cases, it is synthetic.
Real synthetic sequences are often used to test algorithms in discrete-time signal
processing. When we process a sequence, the sampling interval does not play any
role. However, even in the case of a synthetic series, here we wish to maintain a
mental link to a hypothetical real-world application, about which we suppose that
an analog signal exists, from which our sequence derives by sampling at constant
rate 1/T_s. Therefore we will arbitrarily assign a value of T_s to any synthetic data
sequence we create. Hereafter, this arbitrary value is assumed to be 5s, unless stated
otherwise.

The synthetic sequences we need are often composed by sinusoids and noise. For
example, we will need a sequence with length N, containing Gaussian white noise
with standard deviation sigma_wn, possibly superimposed to Nsin sinusoids with
some amplitudes included in a vector A, and some analog frequencies included in a
vector f_sd.1 Thus we will start with a script devoted to this purpose. The script must

1Note that since we assigned a value of T_s to our synthetic data, we can express frequencies in
analog terms, as we would do in the real world.

http://dx.doi.org/10.1007/978-3-319-25468-5_9
http://dx.doi.org/10.1007/978-3-319-25468-5_11
www.mathworks.com/moler/
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also work for Nsin = 0, i.e., for generating pure noise; if Nsin = 1, A and f_sd will
be scalars. Actually, it is convenient to include the possibility of generating not just
one sequence, but a set of sequences with different lengths, contained in a vector N.

This first script, like many others presented later, prompts the user for input of
parameters. For example, prompt= ‘N[]=’ requires input of one ormore values of N
included in square brackets; prompt= ‘sigma_wn=’ requires input of a single value
for sigma_wn, etc. The commands s = rng and rng(s) that appear at the beginning and
end of the script reported below (data_Nsin_noise_variable_N) respectively serve to
get the random number generator settings at the beginning of the work session and
then, after one or more calls to the Matlab functions rand or randn, to restore the
original generator settings, so that if the script is run a second time, it will produce
exactly the same sequence. This allows for reproducibility of the results. The name
sd, chosen for the output data, is nothing but the acronym of “synthetic data”. Note
that the sequence is centered before output.

1 % data_Nsin_noise_variable_N
2 % Generate synthetic data (Nsin sinusoids in noise)
3 % with variable number N of samples
4
5 s = rng;
6 prompt = 'N[] = ' ;
7 N = input (prompt) ;
8 prompt = 'Nsin (0 i f noise only) = ' ;
9 Nsin = input (prompt) ;
10 prompt = 'T_s (s) = ' ;
11 T_s = input (prompt) ; % s
12 prompt= 'A[] = ' ;
13 i f Nsin>0
14 A = input (prompt) ;
15 prompt = ' f_sd (as omega/ pi ) [] = ' ;
16 w_over_pi_sd = input (prompt) ;
17 f_sd = w_over_pi_sd./(2*T_s) ; % Hz
18 end
19 prompt = ' \sigma_wn = ' ;
20 sigma_wn = input (prompt) ;
21
22 t_sd=NaN(max(N) , length(N) ) ; % ini t ia l i ze time vector
23 sd=zeros(max(N) , length(N) ) ; % inizial ize data vector
24 for m=1:length(N)
25 t_sd(1:N(m) ,m)=0:T_s: (N(m)−1)*T_s; % time vector in s
26 i f Nsin>0 % build sinusoids
27 for i=1:Nsin
28 rndph=rand(1 ,1)*2*pi ;
29 sd(1:N(m) ,m)=sd(1:N(m) ,m)+A( i )*sin (rndph+2*pi*f_sd( i )*t_sd(1:N(m) ,m) ) ;
30 end
31 end % i f Nsin=0 data are zeros
32 sd(1:N(m) ,m)=sd(1:N(m) ,m)+sigma_wn*randn(N(m) ,1) ; % add noise
33 sd(1:N(m) ,m)=sd(1:N(m) ,m)−mean(sd(1:N(m) ,m) ) ; % remove mean
34 end
35 rng(s) ;
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One of the exercises requires a data set including sequences with white noise with
variable standard deviation σe ≡ sigma_wn, superimposed to Nsin sinusoids. The
length N is fixed in this case. The script data_Nsin_noise_variable_sigma_wn given
below generates this data, which is centered before output.

1 % data_Nsin_noise_variable_sigma_wn
2 % Generate synthetic data (Nsin sinusoids in noise) with variable sigma_wn.
3
4 s = rng
5 prompt ='N =';
6 N = input(prompt);
7 prompt ='Nsin (0 if noise only) =';
8 Nsin = input(prompt);
9 prompt ='T_s (s) =';
10 T_s = input(prompt); % s
11 if Nsin>0
12 prompt ='A[] =';
13 A = input(prompt);
14 prompt ='f_sd (as omega/pi)[] =';
15 w_over_pi_sd = input(prompt);
16 f_sd = w_over_pi_sd./(2*T_s); % Hz
17 end
18 prompt ='\sigma_wn[]=';
19 sigma_wn = input(prompt);
20
21 t_sd=(0:T_s:(N−1)*T_s)'; % time vector in s
22 sines=zeros(N,1); % initialize sinusoids vector
23 if Nsin>0 % build sinusoids
24 for i=1:Nsin
25 rndph=rand(1,1)*2*pi;
26 sines=sines+A(i)*sin(rndph+2*pi*f_sd(i)*t_sd);
27 end
28 end % if Nsin=0 sines are zeros
29 for m=1:length(sigma_wn)
30 sd(1:N,m)=sines+sigma_wn(m)*randn(N,1); % add noise
31 sd(1:N,m)=sd(1:N,m)−mean(sd(1:N,m)); % remove mean
32 end
33 rng(s);

16.3 DFT

We start our exercises by computing the DFT of a real sequence (Sect. 3.5). We will
use the function fft of Matlab that implements the FFT (Sect. 3.6), provided that the
specified number NFFT ≡ N_f of transform samples is equal to an integer power of
2. For the choice of N_f, the function nextpow2 may be useful. Given an integer that
in our case is the number N of data samples, the function computes the exponent
of the next higher integer power of two, which can be assumed as the value of N_f.
For instance, if N = 500, then N_f = 512 = 29 is a good choice; of course, 210 or

http://dx.doi.org/10.1007/978-3-319-25468-5_3
http://dx.doi.org/10.1007/978-3-319-25468-5_3
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even more would also be acceptable. Before any DFT computation we will reduce
the input sequence to zero mean. Then, if N_f>N, the sequence must be zero-
padded, and this is done automatically by fft. The output DFT samples correspond
to analog frequencies extending from 0 to the frequency that immediately precedes
the sampling frequency f_s = 1/T_s = 2 f_Ny. Thus discrete frequencies ω are in
[0, 2π). Parseval’s theorem allows for checking the result of the DFT computation.

The steps to be performed are the following:

• generating the zero-mean data vector sd to be transformed;
• computing the energy of sd;
• computing N_f samples the DFT of sd, being SD (as usual, we denote a transform
with the same name as the data, but capitalized). The syntax of the function fft is
SD = fft(sd,N_f);

• taking the modulus of SD: modSD = abs(SD);
• computing the phase angle of SD and unwrapping it, i.e., correcting the phase
angle in radians by adding a multiple of±2π when the absolute jump between two
consecutive phase elements is greater than, or equal to, 2π radians. This eliminates
any spurious discontinuity introduced by the arc tangent used for computing the
phase angle, and provides a smoother phase plot;

• computing the sum of squares, (modSD)2, and checking if it equals the data energy
as expected;

• computing the analog frequencies f corresponding to the SD samples; they cover
[0, 2π);

• plotting the modulus and phase of SD as a function of f. The plot of modSD is
usually linear, or in dB, or even double logarithmic: respectively,

1 plot(f,modSD)

or

1 plot(f,10*log\_10(modSD)

or

1 loglog(f,modSD)

The zero frequency f(1) is included only if the f-axis is linear;
• shifting the zero-frequency component to the center of the DFT vector, as it may
be preferable in some applications. This can be obtained by the command SDshift
= fftshift(SD). The samples of SDshift will correspond to frequencies—being
fnegpos—in [-f_Ny,f_Ny), i.e., [-f_Ny,f_Ny-deltf], where deltf=1/(N_f T_s);

• plotting the modulus of SDshift.

For this exercise,

• generate N = 8192 synthetic data with T_s = 5s, containing three sinusoids with
equal unit amplitudes, random initial phases and discrete angular frequencies
0.15π , 0.35π , and 0.55π , plus white noise with sigma_wn = 1; use the script
data_Nsin_noise_variable_N for this task;
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• compute and plot the DFT with N_f = N, using the script given below. Note
that thanks to the linearity of the DFT, we can extend the signal model (sinu-
soids+noise) from the time domain to the frequency domain.

The script that follows (DFT) does the job.

1 % DFT
2 % Compute via FFT the DFT of a sequence and plot it.
3
4 % Compute data energy
5 E=sum(sd.^2)
6
7 % Compute DFT, modulus and phase angle
8 N_f=N;
9 SD=fft(sd,N_f);
10 modSD=abs(SD);
11 angleSD=angle(SD);
12 uangleSD=unwrap(angleSD);
13
14 % Compute right−hand term
15 % of Parseval's relation
16 E_check=sum(modSD.^2)/N_f
17
18 % Build frequency vector
19 f_Ny=1/(2*T_s);
20 deltaf=1/(N_f*T_s);
21 f=0:deltaf:(2*f_Ny−deltaf);
22
23 % Shift DFT, compute modulus and corresponding frequency vector
24 SDshift=fftshift(SD);
25 modSDshift=abs(SDshift);
26 fnegpos=(−f_Ny:deltaf:f_Ny−deltaf)';
27
28 % Plot results
29 figure(1) % modulus vs. f, linear scale
30 plot(f,modSD)
31 set(gca,'XLim',[0 2*f_Ny])
32 hlabelx=get(gca,'Xlabel');
33 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
34 hlabely=get(gca,'Ylabel');
35 set(hlabely,'String','$|X|$','Interpreter','Latex','FontSize',16)
36
37 figure(2)% modulus in dB versus f
38 plot(f(2:end),10*log10(modSD(2:end)))
39 set(gca,'XLim',[0 2*f_Ny])
40 hlabelx=get(gca,'Xlabel');
41 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
42 hlabely=get(gca,'Ylabel');
43 set(hlabely,'String','$10\log_{10}|X|$','Interpreter','Latex','FontSize',16)
44
45 figure(3) % modulus vs. f, log−log scale
46 loglog(f(2:end),modSD(2:end))
47 set(gca,'XLim',[0 2*f_Ny])
48 hlabelx=get(gca,'Xlabel');
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49 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
50 hlabely=get(gca,'Ylabel');
51 set(hlabely,'String','$|X|$','Interpreter','Latex','FontSize',16)
52
53 figure(4) % phase angle vs. f
54 plot(f,uangleSD/pi)
55 set(gca,'XLim',[0 2*f_Ny])
56 hlabelx=get(gca,'Xlabel');
57 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
58 hlabely=get(gca,'Ylabel');
59 set(hlabely,'String','$\arg(X)$','Interpreter','Latex','FontSize',16)
60
61 figure(5) % shifted modulus vs. related f, linear scale
62 plot(fnegpos,modSDshift)
63 set(gca,'XLim',[−f_Ny f_Ny])
64 hlabelx=get(gca,'Xlabel');
65 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
66 hlabely=get(gca,'Ylabel');
67 set(hlabely,'String','$|X|$','Interpreter','Latex','FontSize',16)

SD is complex and symmetrical, being theDFTof a real sequence. Thus, the useful
information is contained in the SD samples indexed from k = 1 to k = N_f/2+1. At
the zero frequency (k = 1) and at the Nyquist frequency (k = N_f/2+1) the DFT is
real; the sample at k = 1 is equal to the data mean value, and therefore is very small
(ideally, it should be zero). We may observe that

• the dB plot appears rather flat, while the loglog plot does not;
• the loglog plot puts into evidence a base of rapidly varying spectral values that
extends over the whole f-axis and is very evident especially at high frequency.
This base is due to white noise, which has a flat spectrum;

• the peaks corresponding to the sinusoids have a finite width, as expected from
windowing effects (Sect. 5.2.1). Do they fall at the expected analog frequencies? To
compute analog frequencies corresponding to discrete angular frequencies 0.15 π ,
0.35π , and 0.55π , recall that for sd we assumed a sampling interval of 5 s.

16.4 Digital Filters

Here we will experiment with the filtering of discrete-time signals (Chaps. 2 and 6),
with the design of equiripple FIR filters (Chap. 7), and with the classical design
method for IIR filters (Chap.8).

http://dx.doi.org/10.1007/978-3-319-25468-5_5
http://dx.doi.org/10.1007/978-3-319-25468-5_2
http://dx.doi.org/10.1007/978-3-319-25468-5_6
http://dx.doi.org/10.1007/978-3-319-25468-5_7
http://dx.doi.org/10.1007/978-3-319-25468-5_8
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16.4.1 FIR Filters

16.4.1.1 Filtering a Sequence with an FIR Filter

In this exercise we will filter a sequence using a LP FIR-Type I bandpass filter
(Sect. 6.5.2) whose impulse response is known. The impulse response of the filter is
given in Table16.1. Its length is 55 (order 54) and we will assume it resides in a file
named h.dat. Figure16.1 shows the time- and frequency-domain characteristics of
this filter. The passband bounds are 0.2150π and 0.464π .

Filtering canbe implemented in differentways inMatlab.Wewill use the functions
filter, conv, and fftfilt.

• The function filter works with both FIR and IIR filters because it implements
filtering via the difference equation (Sects. 2.4.6 and 6.6). Its syntax is

1 sdf = filter(b,a,sd)

The name sdf assigned to the output refers to “sd, filtered”. When an FIR filter is
used, b = h (the impulse response vector) and a = 1: therefore the command we
need here is sdf = filter(h,1,sd).

• The function conv implements linear convolution (Sect. 2.4.1) and can therefore
be used with FIR filters only. Its syntax is

1 sdf = conv(h,sd)

• The function fftfilt filters data using an efficient FFT-based method called the
overlap-add method (Oppenheim and Schafer 2009). This is a filtering technique
related to convolution performed in the frequency domain (Sect. 3.5.4) and there-
fore only works for FIR filters (see Matlab documentation). Its syntax is

1 sdf = fftfilt (h,sd,N_f)

Table 16.1 Impulse response of a Linear Phase FIR passband filter (see text)

n h[n] n h[n] n h[n] n h[n] n h[n]
1 0.0145 12 −0.0054 23 0.0575 34 0.0459 45 0.0229

2 0.0258 13 −0.0144 24 −0.0664 35 0.0005 46 0.0268

3 −0.0052 14 0.0009 25 −0.2051 36 0.0200 47 0.0030

4 −0.0182 15 −0.0053 26 −0.1319 37 0.0509 48 −0.0086

5 −0.0166 16 −0.0376 27 0.1327 38 0.0187 49 −0.0001

6 0.0018 17 −0.0354 28 0.2843 39 −0.0354 50 0.0018

7 −0.0001 18 0.0187 29 0.1327 40 −0.0376 51 −0.0166

8 −0.0086 19 0.0509 30 −0.1319 41 −0.0053 52 −0.0182

9 0.0030 20 0.0200 31 −0.2051 42 0.0009 53 −0.0052

10 0.0268 21 0.0005 32 −0.0664 43 −0.0144 54 0.0258

11 0.0229 22 0.0459 33 0.0575 44 −0.0054 55 0.0145

http://dx.doi.org/10.1007/978-3-319-25468-5_6
http://dx.doi.org/10.1007/978-3-319-25468-5_2
http://dx.doi.org/10.1007/978-3-319-25468-5_6
http://dx.doi.org/10.1007/978-3-319-25468-5_2
http://dx.doi.org/10.1007/978-3-319-25468-5_3
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(a) (b)

(c) (d)

Fig. 16.1 Characteristics of the filter given in Table16.1: a impulse response, b square modulus
of the frequency response in dB, c frequency-response modulus in normal units, and d unwrapped
phase versus ω/π

Before performing this exercise, it is however instructive to filter, via conv, filter
and fftfilt and using the filter given above, a simple sinusoid with frequency falling
in the filter’s passband. This will offer us the possibility of examining in each case
the head and the tail of the output sequence, to see if transients are present, and
to determine their length. For the preliminary exercise, the script given below (tran-
sients_conv_filter_fftfilt) can be used. First, a synthetic series containing one sinusoid
in white noise must be generated using datasint_Nsin_noise_variable_N. It will con-
tain N = 512 samples, with T _s = 1 s, of a sinusoid (unit amplitude and frequency
0.35π , falling inside the filter’s passband)with a small amount of additivewhite noise
(sigma_wn= 0.2). This data will be filtered by running transients_conv_filter_fftfilt,
using the three functions and the impulse response h.

The function conv accepts in input an additional parameter, indicated as shape,
that can assume three values: ‘full’ (default), ‘valid’ and ‘same’.

• The command

1 shape='full'
2 yf = conv(h,sd,shape)
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returns the full convolution with transients at the beginning and the end of the
filtered sequence, whose size is length(h) + length(sd) − 1 = 566. Both the initial
and final transients are as long as length(h) − 1 = 54, i.e., as the filter’s order.

• The command

1 shape='valid'
2 yv = conv(h,sd,shape)

returns the convolution without transients, whose size is length(h) − length(sd) +
1 = 458.

• The command

1 shape='same'
2 ys = conv(h,sd,shape)

returns the convolution without its most perturbed parts: only the central part of
the convolution, the same size as the data. The length of the output series is thus
512; the parts that are eliminated contain (length(h) − 1)/2 = 27 samples each
(see also Matlab’s documentation).

The script transients_conv_filter_fftfilt illustrates all three possibilities associated
with conv. Make figures full-screen to be able to observe their details. The dotted
and dashed vertical line highlight the time at which each shortened filtered signal
begins and ends.

1 % transients_conv_filter_fftfilt
2
3 % Load filter
4 load h.dat
5 M=length(h)
6 order=M−1
7
8 % Filter with conv
9

10 % Full − convolution
11 shape ='full';
12 yf = conv(sd,h,shape);
13 Nf=length(yf)
14 tf=(−floor((M−1)/2))*T_s:T_s:(N−1+floor((M−1)/2))*T_s;
15 % Valid − convolution
16 shape ='valid';
17 yv = conv(sd,h,shape);
18 Nv=length(yv)
19 tv=(floor((M−1)/2))*T_s:T_s:(N−1−floor((M−1)/2))*T_s;
20 % Same − convolution
21 shape ='same';
22 ys = conv(sd,h,shape);
23 Ns=length(ys)
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24 ts= 0:T_s:(N−1)*T_s;
25 figure(99)
26 subplot(2,1,1)
27 plot(tv,yv,...
28 'Color',[0.4 0.4 0.4 ],'LineStyle','−','LineWidth',10,'Marker','d',
29 'MarkerFaceColor',[0.4 0.4 0.4 ],'MarkerEdgeColor',[0.4 0.4 0.4 ],'

MarkerSize',6)
30 hold on
31 plot(ts,ys,...
32 'Color',[0.75 0.75 0.75],'LineStyle','−','LineWidth',5,'Marker','d','

MarkerFaceColor',[0.75 0.75 0.75],'MarkerEdgeColor',[0.75 0.75
0.75],'MarkerSize',4.5)

33 plot(tf,yf,...
34 'Color',[0 0 0],'LineStyle','−','LineWidth',1,'Marker','d','MarkerFaceColor'

,[0 0 0],'MarkerEdgeColor',[0 0 0],'MarkerSize',2)
35 legend('valid','same','full','Location','NorthWest')
36 plot([tv(1) tv(1)],[−1.1 1.1],'k−−','LineWidth',1.5)
37 plot([ts(1) ts(1)],[−1.1 1.1],'k:','LineWidth',1.5)
38 hold off
39 set(gca,'XLim',[tf(1)−0.36 tf(80)+0.35])
40 set(gca,'XMinorTick','on')
41 set(gca,'YLim',[−1.1 1.1])
42 hlabelx=get(gca,'Xlabel');
43 set(hlabelx,'String','Time (s)','FontName','Times New Roman','Fontsize',14)
44 hlabely=get(gca,'Ylabel');
45 set(hlabely,'String','Output of conv − Head','FontName','Times New

Roman','Fontsize',14)
46 subplot(2,1,2)
47 plot(tv,yv,...
48 'Color',[0.4 0.4 0.4 ],'LineStyle','−','LineWidth',10,'Marker','d',
49 'MarkerFaceColor',[0.4 0.4 0.4 ],'MarkerEdgeColor',[0.4 0.4 0.4 ],'

MarkerSize',6)
50 hold on
51 plot(ts,ys,...
52 'Color',[0.75 0.7 0.7],'LineStyle','−','LineWidth',5,'Marker','d',
53 'MarkerFaceColor',[0.75 0.75 0.75],'MarkerEdgeColor',[0.75 0.75 0.75],'

MarkerSize',4.5)
54 plot(tf,yf,...
55 'Color',[0 0 0],'LineStyle','−','LineWidth',1,'Marker','d','MarkerFaceColor'

,[0 0 0],'MarkerEdgeColor',[0 0 0],'MarkerSize',2)
56 plot([tv(end) tv(end)],[−1.1 1.1],'k−−','LineWidth',1.5)
57 plot([ts(end) ts(end)],[−1.1 1.1],'k:','LineWidth',1.5)
58 hold off
59 set(gca,'XLim',[tf(end−79)−0.36 tf(end)+0.35])
60 set(gca,'XMinorTick','on')
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61 set(gca,'YLim',[−1.1 1.1])
62 hlabelx=get(gca,'Xlabel');
63 set(hlabelx,'String','Time (s)','FontName','Times New Roman','Fontsize',14)
64 hlabely=get(gca,'Ylabel');
65 set(hlabely,'String','Output of conv − Tail','FontName','Times New Roman',

'Fontsize',14)
66
67 % Filter with filter
68 h=h';
69 sd=sd';
70 yfil = filter(h,1,sd);
71 Nfil=length(yfil)
72 tfil = 0:T_s:(Nfil−1)*T_s;
73 yvfil = yfil(M:end);
74 Nvfil=length(yv)
75 tvfil= (M−1)*T_s:T_s:(Nfil−1)*T_s;
76 figure(999)
77 subplot(2,1,1)
78 plot(tvfil,yvfil,...
79 'Color',[0.7 0.7 0.7],'LineStyle','−','LineWidth',3,'Marker','d','

MarkerFaceColor',[0.7 0.7 0.7],'MarkerEdgeColor',[0.7 0.7 0.7],'
MarkerSize',5)

80 hold on
81 plot(tfil ,yfil,...
82 'Color',[0 0 0],'LineStyle','−','LineWidth',1,'Marker','d','MarkerFaceColor'

,[0 0 0],'MarkerEdgeColor',[0 0 0],'MarkerSize',3)
83 legend('no transient','full','Location','NorthWest')
84 plot([tvfil(1) tvfil(1)],[−1.1 1.1],'k−−','LineWidth',1.5)
85 hold off
86 set(gca,'XLim',[tfil(1)−0.36 tfil(80)+0.35])
87 set(gca,'XMinorTick','on')
88 set(gca,'YLim',[−1.1 1.1])
89 hlabelx=get(gca,'Xlabel');
90 set(hlabelx,'String','Time (s)','FontName','Times New Roman','Fontsize',14)
91 hlabely=get(gca,'Ylabel');
92 set(hlabely,'String','Output of filter − Head','FontName','Times New

Roman','Fontsize',14)
93 subplot(2,1,2)
94 plot(tvfil,yvfil,...
95 'Color',[0.7 0.7 0.7],'LineStyle','−','LineWidth',3,'Marker','d','

MarkerFaceColor',[0.7 0.7 0.7],'MarkerEdgeColor',[0.7 0.7 0.7],'
MarkerSize',5)

96 hold on
97 plot(tfil ,yfil,...
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98 'Color',[0 0 0],'LineStyle','−','LineWidth',1,'Marker','d','MarkerFaceColor'
,[0 0 0],'MarkerEdgeColor',[0 0 0],'MarkerSize',2)

99 hold off
100 set(gca,'XLim',[tfil(end−79)−0.36 tfil(end)+0.35])
101 set(gca,'XMinorTick','on')
102 set(gca,'YLim',[−1.1 1.1])
103 hlabelx=get(gca,'Xlabel');
104 set(hlabelx,'String','Time (s)','FontName','Times New Roman','Fontsize',14)
105 hlabely=get(gca,'Ylabel');
106 set(hlabely,'String','Output of filter − Tail','FontName','Times New Roman',

'Fontsize',14)
107
108 % Filter with fftfilt
109 yfft = fftfilt (h,sd);
110 Nfft=length(yfft)
111 tfft= 0:T_s:(Nfft−1)*T_s;
112 yvfft = yfft(M:end);
113 Nvfft=length(yvfft)
114 tvfft= (M−1)*T_s:T_s:(Nfft−1)*T_s;
115 figure(9999)
116 subplot(2,1,1)
117 plot(tvfil,yvfil,...
118 'Color',[0.7 0.7 0.7],'LineStyle','−','LineWidth',3,'Marker','d','

MarkerFaceColor',[0.7 0.7 0.7],'MarkerEdgeColor',[0.7 0.7 0.7],'
MarkerSize',5)

119 hold on
120 plot(tfil ,yfil,...
121 'Color',[0 0 0],'LineStyle','−','LineWidth',1,'Marker','d','MarkerFaceColor'

,[0 0 0],'MarkerEdgeColor',[0 0 0],'MarkerSize',3)
122 legend('no transient','full','Location','NorthWest')
123 plot([tvfil(1) tvfil(1)],[−1.1 1.1],'k−−','LineWidth',1.5)
124 hold off
125 set(gca,'XLim',[tfil(1)−0.36 tfil(80)+0.35])
126 set(gca,'XMinorTick','on')
127 set(gca,'YLim',[−1.1 1.1])
128 hlabelx=get(gca,'Xlabel');
129 set(hlabelx,'String','Time (s)','FontName','Times New Roman','Fontsize',14)
130 hlabely=get(gca,'Ylabel');
131 set(hlabely,'String','Output of fftfilt − Head','FontName','Times New

Roman','Fontsize',14)
132 subplot(2,1,2)
133 plot(tvfil,yvfil,...
134 'Color',[0.7 0.7 0.7],'LineStyle','−','LineWidth',3,'Marker','d',
135 'MarkerFaceColor',[0.7 0.7 0.7],'MarkerEdgeColor',[0.7 0.7 0.7],'

MarkerSize',5)
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136 hold on
137 plot(tfil ,yfil,...
138 'Color',[0 0 0],'LineStyle','−','LineWidth',1,'Marker','d','MarkerFaceColor'

,[0 0 0],'MarkerEdgeColor',[0 0 0],'MarkerSize',2)
139 hold off
140 set(gca,'XLim',[tfil(end−79)−0.36 tfil(end)+0.35])
141 set(gca,'XMinorTick','on')
142 set(gca,'YLim',[−1.1 1.1])
143 hlabelx=get(gca,'Xlabel');
144 set(hlabelx,'String','Time (s)','FontName','Times New Roman','Fontsize',14)
145 hlabely=get(gca,'Ylabel');
146 set(hlabely,'String','Output of fftfilt − Tail','FontName','Times New Roman'

,'Fontsize',14)

We know that an LP-Type I FIR filter applies a delay of half the filter’s order.What
does this mean in practice? Let us see it through an example. Figure16.2 shows a
section of a signal with sampling interval of 1min, exhibiting two evident pulses
(black curve), and its filtered versions with and without the initial transient (dotted
and dashed lines, respectively; fftfilt was used). The filter employed here is anLP-FIR
lowpass filter with a very wide passband, covering 98% of the principal interval. The

Fig. 16.2 A section of a
signal with sampling interval
of 1min, exhibiting two
evident pulses (black curve),
and its filtered versions with
and without the initial
transient (light gray and dark
gray curves, respectively;
fftfilt was used. The filter
employed here is an LP-FIR
lowpass filter with a very
wide passband and order
M − 1 = 54. a Signals
plotted versus the respective
time vectors; b signals
treated as vectors and plotted
versus their respective
indexes

0 50 100 150 200 250 300

100

150

200

250

300

350

400

Time (min)

Si
gn

al
s

Input
Filtered, full
Filtered, transient removed

0 50 100 150 200 250 300

100

150

200

250

300

350

400

Index

Si
gn

al
 v

ec
to

rs

Input
Filtered, full
Filtered, transient removed

(a)

(b)



16.4 Digital Filters 759

filter order is M − 1 = 54. This filter passes nearly all frequencies, and only applies
a delay to the input signal. It thus approximates, though crudely, an ideal delayer.
In Fig. 16.2a, signals are plotted versus the respective time vectors, which begin at
0 s (original signal, black curve), 0 s (full filtered signal, light gray curve), and 54s
(filtered signal with initial transient removed, dark gray curve). This is equivalent
to plotting them versus the same index n. A delay of 27 samples is evident in the
filtered signal with respect to the original one. In Fig. 16.2b, the signals are treated
as vectors and plotted versus their respective indexes. The full filtered vector (light
gray curve) still appears delayed by 27 samples with respect to the original one
(black curve), but the filtered vector with the initial transient-phase removed (dark
gray curve) obviously appears anticipated by 27 samples. This example was meant
to show that we must be careful: we will see the delay only if we plot the original
and the filtered signal versus the same index, or time vector. Removing a transient
does not alter delay if we plot the signal versus the same index or time vector as the
original signal, but turns a delay into an advance if we just use vectors as sequences
of numbers, without remembering that one of them actually had its head cut off, and
therefor begins later in real time.

We can nowproceed to themain filtering exercise.Wewill filter the same data used
for theDFT exercise (three sinusoidswith discrete angular frequencies 0.15π, 0.35π ,
and 0.55π in Gaussian white noise). Thus, retrieve those data, or generate them
again. Which frequencies, among those of the sinusoids contained in sd, fall inside
the filter’s passband?Which frequencies are expected to be attenuated, since they are
external to the filter’s passband? The script reported below (filtering_FIR) compares
the DFT moduli of the original and filtered sequences to check the result of the
filtering operation. The plots are limited to [0, f_Ny]. Run the script once for each
filtering function.

1 % filtering_FIR
2 % Filter data record using FIR − Type I bandpass filter.
3
4 prompt ='Filtering function? (1 = filter, 2 = conv, 3 = fftfilt)';
5 flag = input(prompt);
6
7 load h.dat % impulse response of the filter
8
9 % Compute DFT and modulus
10 N_f=N;
11 SD=fft(sd,N_f);
12 modSD=abs(SD);
13
14 % Compute frequency vector
15 f_Ny=1/(2*T_s);
16 deltf=1/(length(SD)*T_s);
17 f=0:deltf:(2*f_Ny−deltf);
18
19 % Perform filtering with chosen function
20 if flag == 1
21 sdf=filter(h,1,sd);
22 end
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23 if flag == 2
24 sdf=conv(h,sd);
25 end
26 if flag == 3
27 sdf=fftfilt(h,sd,N_f);
28 end
29
30 N_sdf=length(sdf) % length of filtered data
31 sdf=sdf−mean(sdf); % remove mean from filtered data
32
33 % Compute DFT and modulus
34 % Frequency vector is the same as for original data
35 SDF=fft(sdf,N_f);
36 modSDF=abs(SDF);
37
38 % Plot results
39 figure(6)% Filtered sequence − head
40 plot(1:100,sdf(1:100))
41 set(gca,'XLim',[−1 101])
42 hlabelx=get(gca,'Xlabel');
43 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
44 hlabely=get(gca,'Ylabel');
45 set(hlabely,'String','$x_{\mathrm{f}}$','Interpreter','Latex','FontSize',16)
46
47 figure(7)% Filtered sequence − tail
48 plot(N−99:N,sdf(end−99:end))
49 set(gca,'XLim',[N−100 N+1])
50 hlabelx=get(gca,'Xlabel');
51 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
52 hlabely=get(gca,'Ylabel');
53 set(hlabely,'String','$x_{\mathrm{f}}$','Interpreter','Latex','FontSize',16)
54
55 figure(8)% DFT modulus in dB for original and filtered data
56 plot(f(2:N_f/2+1),10*log10(modSD(2:N_f/2+1)))
57 hold on
58 plot(f(2:N_f/2+1),10*log10(modSDF(2:N_f/2+1)),'g')
59 hold off
60 set(gca,'XLim',[0 f_Ny])
61 hlabelx=get(gca,'Xlabel');
62 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
63 hlabely=get(gca,'Ylabel');
64 set(hlabely,'String','$10\log_{10}|X_{\mathrm{f}}|$','Interpreter','Latex','FontSize',16)

The spectral plots show that the only sinusoidal component transmitted through
the filter is the one with discrete angular frequency equal to 0.35π . The other two
components are attenuated, since they fall outside the filter passband.

As for the length of the filtered record and the initial/final transients:

• the function filter computes the output starting from the first time step of the input,
assuming rest initial conditions and stopping at the last data sample. Therefore the
length of sdf is equal to the length of sd (i.e., 8192) and an initial transient is present,
covering the first 54 samples (recall that 54 is the filter order). If we discarded the
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transient (thus keeping8192 − 54 = 8138 samples) and then computed andplotted
again modSDF over 8192 frequency values (using zero padding), we would find
that those initial 54 samples affected by the transient have little or no effect on the
spectrum;

• with conv, the output is longer (8246 samples), and an initial and a final transient
are present. Each transient is 54-samples long. In fact, with 55 impulse response
samples and N = 8192 data, the linear convolution discarding transients contains
8192 − 55 + 1 = 8138 values, while including transients it contains 8192 + 55 −
1 = 8246 values (see, e.g., Sect. 2.4.2). In this case, it can also be verified that the
transients have little or no effect on the spectrum;

• with fftfilt, the length of sdf is equal to the length of sd, i.e., 8192, and an initial
transient is present, which however does not affect the spectrum in a significant
way.

16.4.1.2 Filtering a Sequence with an FIR Filter After Downsampling

Imagine that we want to filter a new sd sequence characterized by a sampling interval
of T_s = 5s, and containing three sinusoids with frequencies 0.2π , 0.4π , and 0.8π ,
corresponding to 2 × 10−3, 4 × 10−3, and 8 × 10−3 Hz, respectively. Imagine thatwe
want to use the same bandpass filter employed above, and that we want to preserve
the frequency component 4 × 10−3 Hz, while attenuating the other components.
Unfortunately, this frequency is excluded from the filter’s passband, which for T_s
= 5s covers 2.15 × 10−2 to 4.64 × 10−2 Hz.

However, if we decimate the data by a factor K = 8, the sampling interval T_s
becomes 40s and the Nyquist frequency becomes 1.25 × 10−2 Hz. The filter’s pass-
band (0.2150π ≤ ω ≤ 0.464π ) now covers the interval of analog frequencies from
2.69 × 10−3 to 5.80 × 10−3 Hz, a range that includes 4 × 10−3 Hz.

The cutoff of the ideal anti-aliasing lowpass filter required before downsampling
would be π/K = π/8 = 0.1250π , but we will actually use a realizable filter with a
non-zero-width transition band, and consequently, we will choose a passband limit
smaller than this theoretical cutoff—let us say 0.1π , so that at 0.1250π the amplitude
response has already attained a sufficiently small value (Sect. 6.9.1). The impulse
response of a lowpass filter with the desired characteristics is given in Table16.2. Its
length is again 55 and the tolerances assumed for its design are δp ≡ deltap = 0.105
and rs ≡ rs = 30 dB. We will assume it resides in a file named haa.dat. Figure16.3
shows the time- and frequency-domain characteristics of this filter. The cutoff is 0.1π
and at 0.125π the attenuation is about 11 dB; it attains 30 dB at 0.14π . Thus, this
filter will efficiently remove all components higher than the Nyquist frequency as it
is after downsampling.

In this exercise we will

• generate N = 8192 synthetic data (sd) with T_s = 5s, containing three sinu-
soids with equal unit amplitudes, random initial phases and discrete angular

http://dx.doi.org/10.1007/978-3-319-25468-5_2
http://dx.doi.org/10.1007/978-3-319-25468-5_6
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Table 16.2 Impulse response of a Linear Phase FIR lowpass anti-aliasing filter designed for a
decimation factor of 8 (see text)

n h[n] n h[n] n h[n] n h[n] n h[n]
1 −0.0107 12 −0.0059 23 0.0604 34 0.0415 45 0.0006

2 0.0092 13 −0.0124 24 0.0784 35 0.0234 46 0.0063

3 0.0095 14 −0.0181 25 0.0943 36 0.0072 47 0.0106

4 0.0111 15 −0.0220 26 0.1068 37 −0.0060 48 0.0134

5 0.0129 16 −0.0233 27 0.1147 38 −0.0156 49 0.0145

6 0.0143 17 −0.0214 28 0.1174 39 −0.0214 50 0.0143

7 0.0145 18 −0.0156 29 0.1147 40 −0.0233 51 0.0129

8 0.0134 19 −0.0060 30 0.1068 41 −0.0220 52 0.0111

9 0.0106 20 0.0072 31 0.0943 42 −0.0181 53 0.0095

10 0.0063 21 0.0234 32 0.0784 43 −0.0124 54 0.0092

11 0.0006 22 0.0415 33 0.0604 44 −0.0059 55 −0.0107

(a) (b)

(c) (d)

Fig. 16.3 Characteristics of the filter given in Table16.2: a impulse response, b square modulus
of the frequency response in dB, c frequency-response modulus in normal units, and d unwrapped
phase versus ω/π



16.4 Digital Filters 763

frequencies 0.2π , 0.4π , and 0.8π , plus white noise with sigma_wn = 1 (use
data_Nsin_noise_variable_N);

• filter sd with the anti-aliasing filter haa, thus obtaining a sequence that we will
name sdfaa;

• decimate sdfaa, taking one sample everyK = 8 samples, thus obtaining a sequence
that we will call sddec;

• filter sddec with the passband filter whose impulse response is h, obtaining a
sequence that we will call sdf;

• compute the modulus of the DFT of sdf and plot it together with the modulus
of the DFT of the original data. For graphical convenience, we will compensate
the factor 1/K on the transform amplitude, introduced by decimation (Sect. 6.9.1).
Pay attention to the fact that the two transforms correspond to different frequency
vectors. This is because theNyquist frequency changeswhendecimation is applied.

In this case we filter twice, and transients that are not eliminated accumulate. If we
repeated the process eliminating all transients, we would however notice that their
effect is visible in the spectrum but does not substantially alter the results.

The script for this exercise (filtering_FIR_with_decimation) is given below. The
user can choose if to use filter, conv or fftfilt.

1 % filtering_FIR_with_decimation
2 % Filter data record after decimating;
3 % use FIR − Type I bandpass filter.
4
5 prompt ='Filtering function? (1 = filter, 2 = conv, 3 = fftfilt)';
6 flag = input(prompt);
7
8 load haa.dat % imp. response of anti−aliasing filter
9 K=8; % decimation factor
10 load h.dat % imp. response of bandpass filter
11
12 % Filter data record
13 % with anti−aliasing lowpass filter
14 % using the chosen function
15 if flag == 1
16 sdfaa=filter(haa,1,sd);
17 end
18 if flag == 2
19 sdfaa=conv(haa,sd);
20 end
21 if flag == 3
22 sdfaa=fftfilt(haa,sd,N_f);
23 end
24 N_sdfaa=length(sdfaa) % length of aa−filtered data
25 sdfaa=sdfaa−mean(sdfaa); % remove mean
26
27 % Compute DFT modulus
28 % for original and aa−filtered data
29 N_f=N;
30 SD=fft(sd,N_f);
31 modSD=abs(SD);

http://dx.doi.org/10.1007/978-3-319-25468-5_6
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32 SDFAA=fft(sdfaa,N_f);
33 modSDFAA=abs(SDFAA);
34
35 % Build corresponding frequency vector
36 f_Ny=1/(2*T_s);
37 deltf=1/(N_f*T_s);
38 f=0:deltf:(2*f_Ny−deltf);
39
40 % Plot DFT modulus in dB for original
41 % and aa−filtered data
42 figure(flag*10)
43 plot(f(2:N_f/2+1),10*log10(modSD(2:N_f/2+1)))
44 hold on
45 plot(f(2:N_f/2+1),10*log10(modSDFAA(2:N_f/2+1)),'g')
46 hold off
47 set(gca,'XLim',[0 f_Ny])
48 hlabelx=get(gca,'Xlabel');
49 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
50 hlabely=get(gca,'Ylabel');
51 set(hlabely,'String','$10\log_{10}|X_{\mathrm{faa}}|$','Interpreter','Latex','FontSize',16)
52
53 % Decimate sequence
54 sddec=sdfaa(1:K:end);
55 N_sddec=length(sddec)
56
57 % Filter decimated data with bandpass filter
58 % using chosen function
59 if flag == 1
60 sdf=filter(h,1,sddec);
61 end
62 if flag == 2
63 sdf=conv(h,sddec);
64 end
65 if flag == 3
66 sdf=fftfilt(h,sddec,N_f);
67 end
68 N_sdf=length(sdf) % length of filtered data
69 sdf=sdf−mean(sdf); % remove mean
70
71 % DFT of filtered data and modulus
72 SDF=fft(sdf,N_f);
73 modSDF=abs(SDF);
74
75 % Build corresponding frequency vector
76 % (Nyquist frequency has changed)
77 f_Ny_dec=1/(2*K*T_s);
78 deltf_dec=1/(N_f*K*T_s);
79 f_dec=0:deltf_dec:(2*f_Ny_dec−deltf_dec);
80
81 % Plot DFT modulus in dB for original and filtered data
82 figure(flag*10+1)
83 plot(f(2:N_f/2+1),10*log10(modSD(2:N_f/2+1)))
84 hold on
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85 plot(f_dec(2:N_f/2+1),10*log10(K*modSDF(2:N_f/2+1)),'g')
86 hold off
87 set(gca,'XLim',[0 f_Ny])
88 hlabelx=get(gca,'Xlabel');
89 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
90 hlabely=get(gca,'Ylabel');
91 set(hlabely,'String','$10\log_{10}|X_{\mathrm{faa}}|$','Interpreter','Latex','FontSize',16)

16.4.1.3 Characteristics of a Digital FIR Filter

We will now study, in the dual domains of time and frequency, the characteristics of
an FIR filter (Sect. 2.4.5; Chap.6). We initially suppose that we know the impulse
response h[n] of the filter, namely the one given in Table16.1 that we have used
so far.

1. Frequency response from impulse response:
we start with a stem plot of h[n]. Then we compute the frequency response in
[0, π) (N_f points) and the corresponding vector of ω-values (the variable ω is
called w in the following script) using the function freqz, whose syntax is

1 [H,w] = freqz(b,a,N_f)

for a general IIR filter in difference-equation form, and

1 [H,w] = freqz(h,1,N_f)

in our FIR case, since the denominator transfer-function coefficients are all zero,
except a0, which is 1 (Chap.2).
We plot the frequency response amplitude in linear and logarithmic units and ver-
ify that it satisfies the following specifications: passband0.2150π ≤ ω ≤ 0.464π ;
transition bandwidth 0.04π ; passband ripple 0.09; stopband attenuation 30.5 dB.
Note that the graph in dB is useful to read the attenuation in the stopband; the
passband ripple and the transition bandwidth are more visible in the linear plot.
Then we plot the unwrapped phase response. We also compute the frequency
response over the interval [0, 2π) (H_whole) and save it for future use in the
binary file H.mat. Note that if we do not change N_f, the number of samples will
be the same as before. The script for this task (freq_resp) is reported below.

1 % freq_resp
2 % Compute frequency response from impulse response
3
4 load h.dat % impulse response
5 n=length(h)−1
6
7 % Compute frequency response in [0,pi) vs. omega
8 N_f=1024
9 [H,w]=freqz(h,1,N_f);

10

http://dx.doi.org/10.1007/978-3-319-25468-5_2
http://dx.doi.org/10.1007/978-3-319-25468-5_6
http://dx.doi.org/10.1007/978-3-319-25468-5_2
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11 % Compute complete H over [0,2 pi)
12 % and save for future use
13 [H_whole,w_whole]=freqz(h,1,N_f,'whole');
14 save H.mat H_whole w_whole N_f
15
16 % Characteristic frequencies
17 % and tolerances of given filter
18 % (guess and then check)
19 deltap=0.09
20 rs=30.5
21 deltas=10^(−rs/20)
22 deltw_over_pi= 0.04
23 w1_over_pi=0.215
24 w2_over_pi=0.464
25
26 figure(40)
27
28 % Plot impulse response
29 subplot(2,2,1)
30
31 stem(h,'MarkerSize',3)
32 set(gca,'XLim',[0 n+1])
33 set(gca,'YLim',[min(h)−0.05 max(h)+0.05])
34 hlabelx=get(gca,'Xlabel');
35 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
36 hlabely=get(gca,'Ylabel');
37 set(hlabely,'String','$h$','Interpreter','Latex','FontSize',16)
38
39 % Plot amplitude of frequency response in dB vs. omega/pi,
40 % with tolerances
41 subplot(2,2,2)
42 plot(w/pi,20*log10((1−deltap)*ones(1,N_f)),'g')
43 hold on
44 plot(w/pi,20*log10((1+deltap)*ones(1,N_f)),'g')
45 plot(w/pi,20*log10(deltas*ones(1,N_f)),'g')
46 plot([w1_over_pi w1_over_pi],[−60 4],'m')
47 plot([w2_over_pi w2_over_pi],[−60 4],'m')
48 plot([w1_over_pi−deltw_over_pi w1_over_pi−deltw_over_pi],[−60 4],'m')
49 plot([w2_over_pi+deltw_over_pi w2_over_pi+deltw_over_pi],[−60 4],'m')
50 plot(w/pi,20*log10(abs(H)))
51 hold off
52 set(gca,'XLim',[0 1])
53 set(gca,'YLim',[−60 4])
54 hlabelx=get(gca,'Xlabel');
55 set(hlabelx,'String','$\omega/\pi$','Interpreter','Latex','FontSize',16)
56 hlabely=get(gca,'Ylabel');
57 set(hlabely,'String','$20\log10|H|$','Interpreter','Latex','FontSize',16)
58
59 % Plot amplitude of frequency response vs. omega/pi,
60 % with tolerances
61 subplot(2,2,3)
62 plot(w/pi,(1+deltap)*ones(1,N_f),'g')
63 hold on
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64 plot(w/pi,(1−deltap)*ones(1,N_f),'g')
65 plot(w/pi,deltas*ones(1,N_f),'g')
66 plot([w1_over_pi w1_over_pi],[0 1.13],'m')
67 plot([w2_over_pi w2_over_pi],[0 1.13],'m')
68 plot([w1_over_pi−deltw_over_pi w1_over_pi−deltw_over_pi],[0 1.13],'m')
69 plot([w2_over_pi+deltw_over_pi w2_over_pi+deltw_over_pi],[0 1.13],'m')
70 plot(w/pi,abs(H))
71 hold off
72 set(gca,'XLim',[0 1])
73 set(gca,'YLim',[0 1.13])
74 hlabelx=get(gca,'Xlabel');
75 set(hlabelx,'String','$\omega/\pi$','Interpreter','Latex','FontSize',16)
76 hlabely=get(gca,'Ylabel');
77 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
78
79 % Plot phase angle of frequency response vs. omega/pi
80 subplot(2,2,4)
81 plot(w/pi,unwrap(angle(H)))
82 set(gca,'XLim',[0 1])
83 set(gca,'YLim',[min(unwrap(angle(H)))−3 max(unwrap(angle(H)))+3])
84 hlabelx=get(gca,'Xlabel');
85 set(hlabelx,'String','$\omega/\pi$','Interpreter','Latex','FontSize',16)
86 hlabely=get(gca,'Ylabel');
87 set(hlabely,'String','$\arg(H)$','Interpreter','Latex','FontSize',16)

2. Impulse Response from Frequency Response:
to deduce the impulse response from the frequency response of a filter, the inverse
fft function (ifft) can be used, but this requires knowing the frequency response
over the frequency interval [0, 2π), i.e., the complete DFT of h[n]. This is why
we saved H_whole in the file H.mat in the previous exercise. Now we will simply
load it and take the inverse transform. We will then compare the stem plots of
the original impulse response and of the one deduced from H_whole. The script
(imp_resp) is given below.

1 % imp_resp
2 % Compute mpulse response from frequency response.
3
4 load H.mat % frequency response
5 load h.dat % impulse response we expect to find
6 M=length(h);
7
8 % Compute impulse response
9 hi=ifft(H_whole,N_f);

10
11 % Get rid of negligible imaginary parts due to numerical errors
12 % and reduce length discarding zeros
13 hi_r=real(hi(1:M));
14
15 % Compare the two impulse responses
16 figure(50)
17 stem(hi_r,'MarkerSize',8,'MarkerFaceColor','w')
18 hold on
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19 stem(h,'MarkerSize',4,'MarkerEdgeColor','g','MarkerFaceColor','g')
20 hold off
21 set(gca,'XLim',[0 M+1])
22 set(gca,'YLim',[−0.25 0.3])
23 hlabelx=get(gca,'Xlabel');
24 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
25 hlabely=get(gca,'Ylabel');
26 set(hlabely,'String','$h$','Interpreter','Latex','FontSize',16)

Note that the impulse response computed from H_whole by ifft (which is called
hi in the script) is N_f = 1024 samples long and is complex, but the imaginary
parts of its elements are negligible, and, moreover, only the first 55 samples of hi
are different from zero within numerical errors. These 55 samples turn out to be,
as expected, identical to the samples of the impulse response given in Table16.1.

16.4.1.4 Design of Equiripple FIR Filters

We will now design Type-I equiripple FIR filters (Chap.7) with different frequency
selectivities, using the Matlab functions firpmord and firpm.

1. Bandpass filter:
reproduce the passband filter used in previous exercises. Therefore, filter specifi-
cations in this case include:

• type of frequency selectivity (bandpass filter with only one passband);
• even order;
• passband bounded by 0.2150π ≤ ω ≤ 0.464π ;
• transition bandwidth equal to 0.04π ;
• linear phase;
• desired passband amplitude response equal to one and maximum ripple deltap

= 0.09;
• minimum stopband attenuation rs = 30.5 dB (desired stopband amplitude
response equal to zero).

The first thing to do is to estimate the minimum filter order required to meet these
specifications (Sect. 7.8). This is possible using the function firpmord, whose
syntax is

1 [n0,f0,a0,whts] = firpmord(f,a,dev,f_s)

In input, the frequencies f that bound the passband and the two stopbands can be
given in different forms, according to the value of f_s that we provide. By default,
the function firpmord assumes f_s = 2, so that the elements of f are expected
to be in terms of ω/π . We will provide frequencies in this form. Note, however,
that since we know the actual T_s of the sequence to which the filter must be
applied, we could also set f_s = 1/T_s and give the elements of f in terms of
analog frequencies. The zero frequency and the Nyquist frequency are omitted
from the vector f, and in this passband case we only need to provide

http://dx.doi.org/10.1007/978-3-319-25468-5_7
http://dx.doi.org/10.1007/978-3-319-25468-5_7
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• the upper limit of the first stopband, i.e., the lower limit of the first transition
band, 0.2150 − 0.04 = 0.1750;

• the upper limit of the first transition band, i.e., the lower passband limit, 0.2150;
• the upper passband limit, i.e., the lower limit of the second transition band,
0.464;

• the upper limit of the second transition band, i.e., the lower limit of the second
stopband, 0.464 + 0.04 = 0.5040.

The corresponding desired amplitudes in vector a must have one element for each
band: a= [0 1 0]. In general, the length of f is always twice the length of a, minus
2. The vector dev contains one ripple tolerance for each band. So we first derive
deltas from rs using the formula

20 log10 δs = −rs, i.e., δs = 10−rs/20,

thus obtaining deltas = 0.0299; then we set dev = [deltas deltap deltas].
In outputweget the variables n0, f0, a0, andwhts, to be used as inputs to theMatlab
function that implements the Parks-McClellan design algorithm (Sect. 7.7), i.e.,
firpm. Sincewe provided the elements of f in terms ofω/π , the output frequencies
will also be in terms of ω/π . Therefore we call them w_over_pi0. For a general
multiband filter, the outputs of firpmord (inputs to firpm) are:

• the minimum filter order n0;
• a frequency vector w_over_pi0 having 0 and 1 at the edges, and including the
bounds of all stopbands and passbands in terms of ω/π . In the present case,
w_over_pi0 = [0 0.1750 0.2150 0.464 0.5040 1];

• a desired amplitude vector a0 with one element for each element of f0: a0 =
[0 0 1 1 0 0];

• a vector whts of weights for the minimization of the maximum error, with one
element for each band. In the present case, the passband weight is set to 1 and
the weights for the stopbands are equal to δp/δs = 3.01. Thus, whts = [3.01
1. 3.01].

Before calling firpm, we will check if n0 is odd, and if it is we will increase it by 1
since we desire a Type-I filter (Sect. 7.4). We will then initialize n as n = n0 − 2
and start a while loop for filter design, which is meant to repeat the design process
until the result is satisfactory. Indeed, since firpmord often underestimates the
minimumorder, it is necessary to test if the designedfiltermeets the specifications,
and in particular if its ripples do not exceed the tolerances.
At the start of the loop, a flag named repeat is introduced and initialized to 1
(meaning “yes”). Inside the loop we first set n = n + 2 and then call firpm as
follows:

1 h_pm = firpm(n,w_over_pi0,a0,whts)

In this way we obtain the impulse response h_pm of the designed filter. Then
we compute the amplitude of the frequency response and check visually if the

http://dx.doi.org/10.1007/978-3-319-25468-5_7
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specifications have been met. We will be prompted to set repeat = 1 (meaning
“no”) if we are not satisfied yet, or repeat = 0 (meaning “yes”) to terminate the
design process. Another issue to keep into account is that for a bandpass filter,
non-equiripple solutions can occur, which satisfy the minimax criterion but are
irregular and always discarded in practice (Sect. 7.11). We will also set repeat =
1 in such cases. In this exercise, in which we have a target filter to reproduce, the
filter check does not only include the amplitude frequency response plot, but also
the comparison between the designed and target impulse responses. The following
script (design_FIR_bandpass) performs the steps described above. The final order
turns out to be 54, as expected. The designed impulse response coincides with
the h[n] of our target filter (Table16.1).

1 % design_FIR_bandpass
2 % Design linear phase FIR − Type I bandpass filter
3 % with rs = 30.5 dB, deltap = 0.09, passband 0.2150 pi −− 0.4640 pi, transition

bandwidth 0.04 pi.
4
5 % Tolerances
6 rs = 30.5
7 deltas = 10^(−rs/20)
8 deltap = 0.09
9 rp = 20*log10((1+deltap)/(1−deltap))

10
11 % Characteristic frequencies, amplitudes and deviations
12 w1_over_pi = 0.2150
13 w2_over_pi = 0.4640
14 deltw_over_pi = 0.04
15 w_over_pi = [w1_over_pi−deltw_over_pi w1_over_pi w2_over_pi w2_over_pi+

deltw_over_pi];
16 a = [0 1 0];
17 dev = [deltas deltap deltas];
18
19 % Estimate minimum filter order n0
20 [n0,w_over_pi0,a0,whts]=firpmord(w_over_pi,a,dev);
21
22 % Check if minimum order is odd
23 % and if it is, increase n0 by 1
24 if mod(n0,2)~=0
25 n0=n0+1;
26 end
27
28 % Initialize order for design process
29 n=n0−2;
30
31 repeat=1;
32
33 % Start loop until satisfaction
34 while repeat==1
35
36 % Design filter
37 n=n+2
38 h_pm=firpm(n,w_over_pi0,a0,whts);

http://dx.doi.org/10.1007/978-3-319-25468-5_7
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39
40 % Compute frequency response and plot it
41 % with specifications to check performances
42 N_f=1024
43 [H,w]=freqz(h_pm,1,N_f);
44
45 figure(60)
46
47 subplot(1,2,1)
48 plot(w/pi,20*log10(abs(H)))
49 hold on
50 plot(w/pi,−rs*ones(1,N_f),'g')
51 hold off
52 set(gca,'XLim',[0 1])
53 set(gca,'XTick',[0:0.25:1])
54 set(gca,'YLim',[−60 5])
55 set(gca,'YTick',[−60:10:0])
56 hlabelx=get(gca,'Xlabel');
57 set(hlabelx,'String','$\omega/\pi$','Interpreter','Latex','FontSize',16)
58 hlabely=get(gca,'Ylabel');
59 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize',16)
60
61 subplot(1,2,2)
62 plot(w/pi,abs(H))
63 hold on
64 plot(w/pi,(1+deltap)*ones(1,N_f),'g')
65 plot(w/pi,(1−deltap)*ones(1,N_f),'g')
66 hold off
67 set(gca,'XLim',[0 1])
68 set(gca,'XTick',[0:0.25:1])
69 set(gca,'YLim',[0 1.15])
70 hlabelx=get(gca,'Xlabel');
71 set(hlabelx,'String','$\omega/\pi$','Interpreter','Latex','FontSize',16)
72 hlabely=get(gca,'Ylabel');
73 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
74
75 % Plot impulse response and compare it with target one
76 load h.dat % Target filter
77
78 figure(61)
79 stem(h_pm,'MarkerSize',8,'MarkerFaceColor','w')
80 hold on
81 stem(h,'MarkerSize',4,'MarkerEdgeColor','g','MarkerFaceColor','g')
82 hold off
83 set(gca,'XLim',[0 n+2])
84 set(gca,'YLim',[−0.25 0.3])
85 hlabelx=get(gca,'Xlabel');
86 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
87 hlabely=get(gca,'Ylabel');
88 set(hlabely,'String','$h$','Interpreter','Latex','FontSize',16)
89 prompt='Is the filter satisfactory? (0 = yes, 1 = no)';
90 repeat = input(prompt);
91 end
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2. Bandstop filter:
design a linear phase FIR—Type I bandstop filter with rs = 30 dB and deltap
= 0.09, suitable to attenuate, in a data sequence with sampling frequency of
150Hz, all components internal to the interval 5–25Hz. Specify transition bands
2.5Hz wide. Express frequencies in Hz in the plots. Note that in this and in the
following FIR design exercises we start from characteristic analog frequencies.
Use the script given below (design_FIR_bandstop).

1 % design_FIR_bandstop
2 % Design linear phase FIR − Type I bandpass filter
3 % with rs = 30 dB and deltap = 0.09, suitable to attenuate 5−25 Hz components
4 % in data with sampling frequency of 150 Hz. Specify transition bands 2.5 Hz wide.
5
6 % Tolerances
7 rs = 30
8 deltas = 10^(−rs/20)
9 deltap = 0.09

10 rp = 20*log10((1+deltap)/(1−deltap))
11
12 % Characteristic frequencies, amplitudes and deviations
13 f_s = 150
14 f_Ny = f_s/2
15
16 fs1 = 5
17 fs2 = 25
18 deltf = 2.5
19 fp1 = fs1−deltf
20 fp2 = fs2+deltf
21 f = [fp1 fs1 fs2 fp2];
22 a = [1 0 1];
23 dev = [deltap deltas deltap];
24
25 % Estimate minimum order
26 [n0,w_over_pi0,a0,whts]=firpmord(f,a,dev,f_s) ;
27
28 % Check if minimum order is odd
29 % and if it is, increase n0 by 1
30 if mod(n0,2)~=0
31 n0=n0+1;
32 end
33
34 % Initialize order for design process
35 n=n0−2;
36
37 repeat=1;
38
39 % Start loop until satisfaction
40 while repeat==1
41
42 % Design filter
43 n=n+2
44 h_pm=firpm(n,w_over_pi0,a0,whts);
45
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46 % Compute frequency response and plot it
47 % with specifications to check performances
48 N_f=1024
49 [H,f]=freqz(h_pm,1,N_f,f_s);
50
51 figure(70)
52
53 subplot(1,2,1)
54 plot(f,20*log10(abs(H)))
55 hold on
56 plot(f,−rs*ones(1,N_f),'g')
57 hold off
58 set(gca,'XLim',[0 f_Ny])
59 set(gca,'YLim',[−60 5])
60 set(gca,'YTick',[−60:10:0])
61 hlabelx=get(gca,'Xlabel');
62 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
63 hlabely=get(gca,'Ylabel');
64 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize',16)
65
66 subplot(1,2,2)
67 plot(f,abs(H))
68 hold on
69 plot(f,(1+deltap)*ones(1,N_f),'g')
70 plot(f,(1−deltap)*ones(1,N_f),'g')
71 hold off
72 set(gca,'XLim',[0 f_Ny])
73 set(gca,'YLim',[0 1.15])
74 hlabelx=get(gca,'Xlabel');
75 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
76 hlabely=get(gca,'Ylabel');
77 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
78
79 prompt='Is the filter satisfactory? (0 = yes, 1 = no)';
80 repeat = input(prompt);
81 end

3. Highpass filter:
design a linear phase FIR—Type I highpass filter with rs = 30 dB and deltap =
0.09, able to attenuate, in a data sequence with sampling frequency of 1 kHz, all
components with frequency smaller than 200Hz. Specify transition bands 0.04π
wide. Express frequencies in Hz in the plots. Use the design_FIR_highpass script
given below.

1 % design_FIR_highpass
2 % Design linear phase FIR − Type I highpass filter
3 % with rs = 30 and deltap = 0.09, suitable to attenuate components with frequency

smaller than 200 Hz
4 % in data with sampling frequency of 1 kHz. Specify transition bands 0.04 pi wide.
5
6 % Tolerances
7 rs = 30
8 deltas = 10^(−rs/20)
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9 deltap = 0.09
10 rp = 20*log10((1+deltap)/(1−deltap))
11
12 % Characteristic frequencies, amplitudes and deviations
13 f_s = 10^3
14 f_Ny = f_s/2
15
16 fs = 200
17 deltw_over_pi = 0.04
18 deltf = deltw_over_pi*f_Ny
19 fp = fs+deltf
20 f = [fs fp];
21 a = [0 1];
22 dev = [deltas deltap];
23
24 % Estimate minimum order
25 [n0,w_over_pi0,a0,whts]=firpmord(f,a,dev,f_s) ;
26
27 % Check if minimum order is odd and if it is, increase n0 by 1
28 if mod(n0,2)~=0
29 n0=n0+1;
30 end
31
32 % Initialize order for design process
33 n=n0−2;
34
35 repeat=1;
36
37 % Start loop until satisfaction
38 while repeat==1
39
40 % Design filter
41 n=n+2
42 h_pm=firpm(n,w_over_pi0,a0,whts);
43
44 % Compute frequency response and plot it
45 % with specifications to check performances
46 N_f=1024
47 [H,f]=freqz(h_pm,1,N_f,f_s);
48
49 figure(80)
50
51 subplot(1,2,1)
52 plot(f,20*log10(abs(H)))
53 hold on
54 plot(f,−rs*ones(1,N_f),'g')
55 hold off
56 set(gca,'XLim',[0 f_Ny])
57 set(gca,'YLim',[−60 5])
58 set(gca,'YTick',[−60:10:0])
59 hlabelx=get(gca,'Xlabel');
60 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
61 hlabely=get(gca,'Ylabel');
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62 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize',16)
63
64 subplot(1,2,2)
65 plot(f,abs(H))
66 hold on
67 plot(f,(1+deltap)*ones(1,N_f),'g')
68 plot(f,(1−deltap)*ones(1,N_f),'g')
69 hold off
70 set(gca,'XLim',[0 f_Ny])
71 set(gca,'YLim',[0 1.15])
72 hlabelx=get(gca,'Xlabel');
73 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
74 hlabely=get(gca,'Ylabel');
75 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
76
77 prompt='Is the filter satisfactory? (0 = yes, 1 = no)';
78 repeat = input(prompt);
79 end

4. Lowpass filter:
design a linear phase FIR—Type I lowpass filter with rs = 50 dB and deltap =
0.06, fit to attenuate, in data with sampling interval of 1min, all components
with period higher than 5min. Specify transition bands 0.04π wide. Express
frequencies in Hz in the plots. Use the design_FIR_lowpass script given below.

1 % design_FIR_lowpass
2 % Design linear phase FIR − Type I lowpass filter
3 % with rs = 50 and deltap = 0.06, suitable to attenuate components with period higher

than 5 min
4 % in data with sampling interval of 1 min. Specify transition bands 0.04 pi wide.
5
6 % Tolerances
7 rs = 50
8 deltas = 10^(−rs/20)
9 deltap = 0.06

10 rp = 20*log10((1+deltap)/(1−deltap))
11
12 % Characteristic frequencies, amplitudes and deviations
13 T_s = 60
14 f_s = 1/T_s
15 f_Ny = f_s/2
16
17 fs = 1/300
18 deltw_over_pi = 0.04
19 deltf = deltw_over_pi/(2*T_s)
20 fp = fs−deltf
21 f = [fp fs];
22 a = [1 0];
23 dev = [deltap deltas];
24
25 % Estimate minimum order
26 [n0,w_over_pi0,a0,whts]=firpmord(f,a,dev,f_s) ;
27
28 % Check if minimum order is odd and if it is, increase n0 by 1
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29 if mod(n0,2)~=0
30 n0=n0+1;
31 end
32
33 % Initialize order for design process
34 n=n0−2;
35
36 repeat=1;
37
38 % Start loop until satisfaction
39 while repeat==1
40
41 % Design filter
42 n=n+2
43 h_pm=firpm(n,w_over_pi0,a0,whts);
44
45 % Compute frequency response and plot it
46 % with specifications to check performances
47 N_f=1024
48 [H,f]=freqz(h_pm,1,N_f,f_s);
49
50 figure(90)
51
52 subplot(1,2,1)
53 plot(f,20*log10(abs(H)))
54 hold on
55 plot(f,−rs*ones(1,N_f),'g')
56 hold off
57 set(gca,'XLim',[0 f_Ny])
58 set(gca,'YLim',[−60 5])
59 set(gca,'YTick',[−60:10:0])
60 hlabelx=get(gca,'Xlabel');
61 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
62 hlabely=get(gca,'Ylabel');
63 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize',16)
64
65 subplot(1,2,2)
66 plot(f,abs(H))
67 hold on
68 plot(f,(1+deltap)*ones(1,N_f),'g')
69 plot(f,(1−deltap)*ones(1,N_f),'g')
70 hold off
71 set(gca,'XLim',[0 f_Ny])
72 set(gca,'YLim',[0 1.15])
73 hlabelx=get(gca,'Xlabel');
74 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
75 hlabely=get(gca,'Ylabel');
76 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
77
78 prompt='Is the filter satisfactory? (0 = yes, 1 = no)';
79 repeat = input(prompt);
80 end
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5. Notch filter:
design a linear phase FIR—Type I narrowband bandstop filter (notch filter) with
rs = 30 and deltap = 0.04, suitable to strongly attenuate, in a data sequence with
1 kHz sampling frequency, the 50Hz component due to power line interference
(Europe). Express frequencies in Hz in the plots. Use the design_FIR_notch script
given below.

1 % design_FIR_notch
2 % Design linear phase FIR − Type I narrowband bandstop filter
3 % (notch filter) with rs = 30 and deltap = 0.09,
4 % to eliminate the 50 Hz component due to power line interference (Europe)
5 % from data with 1 kHz sampling frequency.
6
7 % Tolerances
8 rs = 30
9 deltas = 10^(−rs/20)

10 deltap = 0.04
11 rp = 20*log10((1+deltap)/(1−deltap))
12
13 % Characteristic frequencies, amplitudes and deviations
14 f_s = 10^3
15 f_Ny = f_s/2
16
17 fno = 50
18 ww_over_pi = fno/f_Ny
19 deltw_over_pi = 0.012
20 wp1_over_pi = ww_over_pi−deltw_over_pi
21 wp2_over_pi = ww_over_pi+deltw_over_pi
22 deltw_over_pi = 0.006
23 ws1_over_pi = wp1_over_pi+deltw_over_pi
24 ws2_over_pi = wp2_over_pi−deltw_over_pi
25 w_over_pi = [wp1_over_pi ws1_over_pi ws2_over_pi wp2_over_pi];
26 f = w_over_pi*f_Ny;
27 a=[1 0 1];
28 dev=[deltas deltap deltas];
29
30 % Estimate minimum order
31 [n0,w_over_pi0,a0,whts]=firpmord(f,a,dev,f_s) ;
32
33 % Check if minimum order is odd and if it is, increase n0 by 1
34 if mod(n0,2)~=0
35 n0=n0+1;
36 end
37
38 % Initialize order for design process
39 n=n0−2;
40
41 repeat=1;
42
43 % Start loop until satisfaction
44 while repeat==1
45
46 % Design filter
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47 n=n+2
48 h_pm=firpm(n,w_over_pi0,a0,whts);
49
50 % Compute frequency response and plot it
51 % with specifications to check performances
52 N_f=1024
53 [H,f]=freqz(h_pm,1,N_f,f_s);
54
55 figure(100)
56
57 subplot(1,2,1)
58 plot(f,20*log10(abs(H)))
59 hold on
60 plot(f,−rs*ones(1,N_f),'g')
61 hold off
62 set(gca,'XLim',[0 f_Ny])
63 set(gca,'YLim',[−60 5])
64 set(gca,'YTick',[−60:10:0])
65 hlabelx=get(gca,'Xlabel');
66 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
67 hlabely=get(gca,'Ylabel');
68 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize',16)
69
70 subplot(1,2,2)
71 plot(f,abs(H))
72 hold on
73 plot(f,(1+deltap)*ones(1,N_f),'g')
74 plot(f,(1−deltap)*ones(1,N_f),'g')
75 hold off
76 set(gca,'XLim',[0 f_Ny])
77 set(gca,'YLim',[0 1.15])
78 hlabelx=get(gca,'Xlabel');
79 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
80 hlabely=get(gca,'Ylabel');
81 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
82
83 prompt='Is the filter satisfactory? (0 = yes, 1 = no)';
84 repeat = input(prompt);
85 end

16.4.2 IIR Filters

16.4.2.1 Design of IIR Filters

Wewill now turn to the classical design of IIR filters (Chap. 8). The designs proposed
below can be tackled usingButterworth, Chebyshev I and II, and elliptic filters.When
prompted, input the desired value of the related flag. Repeat for all types of filter.
The Matlab functions involved in these exercises are listed below; their syntax is

http://dx.doi.org/10.1007/978-3-319-25468-5_8
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exemplified assuming that all characteristic frequencies are specified in terms of
ω/π .

• For filter order estimation on the basis of specifications, use

1 [N,wc_over_pi] = buttord(wp_over_pi,ws_over_pi,rp,rs)
2 [N,wc_over_pi] = cheb1ord(wp_over_pi,ws_over_pi,rp,rs)
3 [N,wc_over_pi] = cheb2ord(wp_over_pi,ws_over_pi,rp,rs)
4 [N,wc_over_pi] = ellipord(wp_over_pi,ws_over_pi,rp,rs)

where wc_over_pi represents the cutoff angular frequency divided by π (see
Chap.8).

• For filter design, use

1 [z,p,k] = butter(N,wn_over_pi,filtertype)
2 [z,p,k] = cheby1(N,rp,wp_over_pi,filtertype)
3 [z,p,k] = cheby2(N,rs,ws_over_pi,filtertype)
4 [z,p,k] = ellip(N,rp,rs,wp_over_pi,filtertype)

where filtertype can be ‘low’, ‘high’, ‘bandpass’, or ‘stop’, and the output filter is
given through its zero-pole-gain parameters (z,p,k). Note that also the [b,a] syntax
is possible, e.g.,

1 [b,a] = butter(N,wn_over_pi,'high')

but we will design our IIR filters in terms of zero-pole-parameters, in order to
avoid possible numerical instabilities (see the following discussion). Later we will
use the function sos = zp2sos(z,p,k) (see the Matlab documentation) to convert
the zero-pole-gain filter values into the so-called second-order sections form (sos),
in order to be able to use the function freqz for computing the frequency response.

1. Bandpass filter:
design an IIR bandpass filter with rs = 45dB and rp = 3dB, useful to attenuate,
in data with sampling frequency of 1.5Hz, all components external to the interval
500–560Hz. Specify transition bands 10Hz wide. Express frequencies in Hz
in the plots. Note that in this and in the following IIR design exercises we start
from characteristic analog frequencies. Use the design_IIR_bandpass script given
below.

1 % design_IIR_bandpass
2 % Design IIR bandpass filter with rs = 45 dB and rp = 3 dB
3 % useful to attenuate components external to the interval 500−560 Hz
4 % in data sampled at 1.5 kHz. Specify transition bands 10 Hz wide.
5
6 prompt='Filter type? (1 = Butterworth, 2 = Cheby_I, 3 = Cheby_II, 4 =

ellipt)';
7 fflag = input(prompt);
8
9 selectivity ='bandpass'

10

http://dx.doi.org/10.1007/978-3-319-25468-5_8
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11 % Tolerances
12 rp = 3
13 rs = 45
14 deltap = 1−10^(−rp/20)
15 deltas = 10^(−rs/20)
16
17 % Characteristic frequencies
18 f_s = 1500
19 T_s = 1/f_s
20 f_Ny = f_s/2
21
22 fp1 = 500
23 fp2 = 560
24 deltf = 10
25 fs1 = fp1−deltf
26 fs2 = fp2+deltf
27 wp_over_pi = [fp1 fp2]/f_Ny;
28 ws_over_pi = [fs1 fs2]/f_Ny;
29
30 % Design filter in zero−pole−gain form
31 if fflag==1
32 [n,wn_over_pi] = buttord(wp_over_pi,ws_over_pi,rp,rs);
33 order = n
34 [z,p,k] = butter(n,wn_over_pi,selectivity);
35 end
36 if fflag==2
37 [n,wp_over_pi] = cheb1ord(wp_over_pi,ws_over_pi,rp,rs);
38 order = n
39 [z,p,k] = cheby1(n,rp,wp_over_pi,selectivity);
40 end
41 if fflag==3
42 [n,ws_over_pi] = cheb2ord(wp_over_pi,ws_over_pi,rp,rs)
43 [z,p,k] = cheby2(n,rs,ws_over_pi,selectivity);
44 order = n
45 end
46 if fflag==4
47 [n,wp_over_pi] = ellipord(wp_over_pi,ws_over_pi,rp,rs)
48 [z,p,k] = ellip(n,rp,rs,wp_over_pi,selectivity);
49 order = n
50 end
51
52 % Convert zero−pole−gain filter parameters
53 % to second−order sections form and compute frequency response
54 sos = zp2sos(z,p,k);
55 N_f=1024
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56 [H,f] = freqz(sos,N_f,f_s);
57 % Compute amplitude response
58 ampl=abs(H);
59 % Compute phase response in units of pi
60 phase=unwrap(angle(H))/pi;
61
62 % Plot frequency response
63 figure(100+fflag*10)
64 % Plot of amplitude response and specifications
65 % Linear scale
66 subplot(3,1,1)
67 plot([fs1 fs1],[−0.1 1.1],'m')
68 hold on
69 plot([fp1 fp1],[−0.1 1.1],'m')
70 plot([fs2 fs2],[−0.1 1.1],'m')
71 plot([fp2 fp2],[−0.1 1.1],'m')
72 plot([f(1) f(end)],[1−deltap 1−deltap],'g')
73 plot([f(1) f(end)],[1 1],'k')
74 plot([f(1) f(end)],[deltas deltas],'g')
75 plot(f,ampl,'LineWidth',1.5)
76 hold off
77 set(gca,'XLim',[0 f_Ny])
78 set(gca,'YLim',[−0.1 1.1])
79 set(gca,'YTick',[0:0.2:1])
80 hlabely=get(gca,'Ylabel');
81 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
82
83 % Plot amplitude response and specifications in dB
84 subplot(3,1,2)
85 y1a=−60;
86 y2a=max(20*log10(ampl))+5;
87 plot([fs1 fs1],[y1a y2a],'m')
88 hold on
89 plot([fp1 fp1],[y1a y2a],'m')
90 plot([fs2 fs2],[y1a y2a],'m')
91 plot([fp2 fp2],[y1a y2a],'m')
92 plot([f(1) f(end)],[0 0],'k')
93 plot([f(1) f(end)],[−rp −rp],'g')
94 plot([f(1) f(end)],[−rs −rs],'g')
95 plot(f,20*log10(ampl),'LineWidth',1.5)
96 hold off
97 set(gca,'XLim',[0 f_Ny])
98 set(gca,'YLim',[y1a y2a])
99 hlabely=get(gca,'Ylabel');
100 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize',16)
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101
102 % Plot phase response
103 subplot(3,1,3)
104 y1p=min(phase)−0.5;
105 y2p=max(phase)+0.5;
106 plot([fs1 fs1],[y1p y2p],'m')
107 hold on
108 plot([fp1 fp1],[y1p y2p],'m')
109 plot([fs2 fs2],[y1a y2a],'m')
110 plot([fp2 fp2],[y1a y2a],'m')
111 plot(f,phase,'LineWidth',1.5)
112 hold off
113 set(gca,'XLim',[0 f_Ny])
114 set(gca,'YLim',[y1p y2p])
115 hlabelx=get(gca,'Xlabel');
116 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
117 hlabely=get(gca,'Ylabel');
118 set(hlabely,'String','$\psi/\pi$','Interpreter','Latex','FontSize',16)

2. Bandstop filter:
design an IIR bandstop filter with rs= 30dB and rp= 3dB, useful to attenuate, in
data sampled at 150Hz, all components internal to the interval 5–25Hz. Specify
transition bands 2.5Hz wide. Express frequencies in Hz in the plots. Use the
design_IIR_bandstop script given below.

1 % design_IIR_bandstop
2 % Design IIR bandstop filter with rs = 30 dB and rp = 3 dB
3 % useful to attenuate components internal to the interval 5−25 Hz
4 % in data with f_s = 150 Hz. Specify transition bands 2.5 Hz wide.
5
6 prompt='Filter type? (1 = Butterworth, 2 = Cheby_I, 3 = Cheby_II, 4 =

ellipt)';
7 fflag = input(prompt);
8
9 selectivity ='stop'

10
11 % Tolerances
12 rp = 3
13 rs = 30
14 deltap = 1−10^(−rp/20)
15 deltas = 10^(−rs/20)
16
17 % Characteristic frequencies
18 f_s = 150
19 T_s = 1/f_s
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20 f_Ny = f_s/2
21
22 fp1 = 5
23 fp2 = 25
24 deltf = 2.5
25 fs1 = fp1+deltf
26 fs2 = fp2−deltf
27 wp_over_pi = [fp1 fp2]/f_Ny;
28 ws_over_pi = [fs1 fs2]/f_Ny;
29
30 % Design filter in zero−pole−gain form
31 if fflag==1
32 [n,wn_over_pi] = buttord(wp_over_pi,ws_over_pi,rp,rs);
33 order = n
34 [z,p,k] = butter(n,wn_over_pi,selectivity);
35 end
36 if fflag==2
37 [n,wp_over_pi] = cheb1ord(wp_over_pi,ws_over_pi,rp,rs);
38 order = n
39 [z,p,k] = cheby1(n,rp,wp_over_pi,selectivity);
40 end
41 if fflag==3
42 [n,ws_over_pi] = cheb2ord(wp_over_pi,ws_over_pi,rp,rs)
43 [z,p,k] = cheby2(n,rs,ws_over_pi,selectivity);
44 order = n
45 end
46 if fflag==4
47 [n,wp_over_pi] = ellipord(wp_over_pi,ws_over_pi,rp,rs)
48 [z,p,k] = ellip(n,rp,rs,wp_over_pi,selectivity);
49 order = n
50 end
51
52 % Convert zero−pole−gain filter parameters
53 % to second−order sections form
54 % and compute frequency response
55 sos = zp2sos(z,p,k);
56 N_f=1024
57 [H,f] = freqz(sos,N_f,f_s);
58 % Compute amplitude response
59 ampl=abs(H);
60 % Compute phase response in units of pi
61 phase=unwrap(angle(H))/pi;
62
63 % Plot frequency response
64 figure(200+fflag*10)
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65 % Plot of amplitude response and specifications
66 % Linear scale
67 subplot(3,1,1)
68 plot([fs1 fs1],[−0.1 1.1],'m')
69 hold on
70 plot([fp1 fp1],[−0.1 1.1],'m')
71 plot([fs2 fs2],[−0.1 1.1],'m')
72 plot([fp2 fp2],[−0.1 1.1],'m')
73 plot([f(1) f(end)],[1−deltap 1−deltap],'g')
74 plot([f(1) f(end)],[1 1],'k')
75 plot([f(1) f(end)],[deltas deltas],'g')
76 plot(f,ampl,'LineWidth',1.5)
77 hold off
78 set(gca,'XLim',[0 f_Ny])
79 set(gca,'YLim',[−0.1 1.1])
80 set(gca,'YTick',[0:0.2:1])
81 hlabely=get(gca,'Ylabel');
82 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
83
84 % Plot amplitude response and specifications in dB
85 subplot(3,1,2)
86 y1a=−60;
87 y2a=max(20*log10(ampl))+5;
88 plot([fs1 fs1],[y1a y2a],'m')
89 hold on
90 plot([fp1 fp1],[y1a y2a],'m')
91 plot([fs2 fs2],[y1a y2a],'m')
92 plot([fp2 fp2],[y1a y2a],'m')
93 plot([f(1) f(end)],[0 0],'k')
94 plot([f(1) f(end)],[−rp −rp],'g')
95 plot([f(1) f(end)],[−rs −rs],'g')
96 plot(f,20*log10(ampl),'LineWidth',1.5)
97 hold off
98 set(gca,'XLim',[0 f_Ny])
99 set(gca,'YLim',[y1a y2a])
100 hlabely=get(gca,'Ylabel');
101 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize',16)
102
103 % Plot phase response
104 subplot(3,1,3)
105 y1p=min(phase)−0.5;
106 y2p=max(phase)+0.5;
107 plot([fs1 fs1],[y1p y2p],'m')
108 hold on
109 plot([fp1 fp1],[y1p y2p],'m')
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110 plot([fs2 fs2],[y1a y2a],'m')
111 plot([fp2 fp2],[y1a y2a],'m')
112 plot(f,phase,'LineWidth',1.5)
113 hold off
114 set(gca,'XLim',[0 f_Ny])
115 set(gca,'YLim',[y1p y2p])
116 hlabelx=get(gca,'Xlabel');
117 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
118 hlabely=get(gca,'Ylabel');
119 set(hlabely,'String','$\psi/\pi$','Interpreter','Latex','FontSize',16)

3. Highpass filter:
design an IIR highpass filter with rs = 26dB and rp = 3dB, useful to attenu-
ate, in data with sampling interval of 1year, all components with period higher
than 10years. Specify transition bands 60years wide in terms of period. Express
frequencies in y−1. Use the design_IIR_highpass script given below.

1 % design_IIR_highpass
2 % Design IIR highpass filter with rs = 26 dB and rp = 3 dB
3 % useful to attenuate components with period higher than 10 y
4 % in data with T_s = 1 y. Specify transition bands 60 y wide in terms of period.
5
6 prompt='Input filter type (1 = Butterworth, 2 = Cheby_I, 3 = Cheby_II, 4 = ellipt) =';
7 fflag = input(prompt);
8
9 selectivity ='high'
10
11 % Tolerances
12 rp = 3
13 rs = 26
14 deltap = 1−10^(−rp/20)
15 deltas = 10^(−rs/20)
16
17 % Characteristic frequencies
18 T_s = 1 % years − express frequencies in years^(−1)
19 f_s = 1/T_s
20 f_Ny = f_s/2
21
22 fp = 1/10
23 deltf = 1/60
24 fs = fp−deltf
25 wp_over_pi = fp/f_Ny;
26 ws_over_pi = fs/f_Ny;
27
28 % Design filter in zero−pole−gain form
29 if fflag==1
30 [n,wn_over_pi] = buttord(wp_over_pi,ws_over_pi,rp,rs);
31 order = n
32 [z,p,k] = butter(n,wn_over_pi,selectivity);
33 end
34 if fflag==2
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35 [n,wp_over_pi] = cheb1ord(wp_over_pi,ws_over_pi,rp,rs);
36 order = n
37 [z,p,k] = cheby1(n,rp,wp_over_pi,selectivity);
38 end
39 if fflag==3
40 [n,ws_over_pi] = cheb2ord(wp_over_pi,ws_over_pi,rp,rs)
41 [z,p,k] = cheby2(n,rs,ws_over_pi,selectivity);
42 order = n
43 end
44 if fflag==4
45 [n,wp_over_pi] = ellipord(wp_over_pi,ws_over_pi,rp,rs)
46 [z,p,k] = ellip(n,rp,rs,wp_over_pi,selectivity);
47 order = n
48 end
49
50 % Convert zero−pole−gain filter parameters
51 % to second−order sections form
52 % and compute frequency response
53 sos = zp2sos(z,p,k);
54 N_f=1024
55 [H,f] = freqz(sos,N_f,f_s);
56 % Compute amplitude response
57 ampl=abs(H);
58 % Compute phase response in units of pi
59 phase=unwrap(angle(H))/pi;
60
61 % Plot frequency response
62 figure(300+fflag*10)
63 % Plot of amplitude response and specifications
64 % Linear scale
65 subplot(3,1,1)
66 plot([fs fs],[−0.1 1.1],'m')
67 hold on
68 plot([fp fp],[−0.1 1.1],'m')
69 plot([f(1) f(end)],[1−deltap 1−deltap],'g')
70 plot([f(1) f(end)],[1 1],'k')
71 plot([f(1) f(end)],[deltas deltas],'g')
72 plot(f,ampl,'LineWidth',1.5)
73 hold off
74 set(gca,'XLim',[0 f_Ny])
75 set(gca,'YLim',[−0.1 1.1])
76 set(gca,'YTick',[0:0.2:1])
77 hlabely=get(gca,'Ylabel');
78 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
79
80 % Plot amplitude response and specifications in dB
81 subplot(3,1,2)
82 y1a=−60;
83 y2a=max(20*log10(ampl))+5;
84 plot([fs fs],[y1a y2a],'m')
85 hold on
86 plot([fp fp],[y1a y2a],'m')
87 plot([f(1) f(end)],[0 0],'k')
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88 plot([f(1) f(end)],[−rp −rp],'g')
89 plot([f(1) f(end)],[−rs −rs],'g')
90 plot(f,20*log10(ampl),'LineWidth',1.5)
91 hold off
92 set(gca,'XLim',[0 f_Ny])
93 set(gca,'YLim',[y1a y2a])
94 hlabely=get(gca,'Ylabel');
95 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize',16)
96
97 % Plot phase response
98 subplot(3,1,3)
99 y1p=min(phase)−0.5;

100 y2p=max(phase)+0.5;
101 plot([fs fs],[y1a y2a],'m')
102 hold on
103 plot([fp fp],[y1a y2a],'m')
104 plot(f,phase,'LineWidth',1.5)
105 hold off
106 set(gca,'XLim',[0 f_Ny])
107 set(gca,'YLim',[y1p y2p])
108 hlabelx=get(gca,'Xlabel');
109 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
110 hlabely=get(gca,'Ylabel');
111 set(hlabely,'String','$\psi/\pi$','Interpreter','Latex','FontSize',16)

4. Lowpass filter:
design an IIR lowpass filter with rs = 14dB and rp = 2dB, able to attenuate, in
data sampled at 10Hz, all components higher than 2Hz. Specify transition bands
0.2Hz wide. Express frequencies in Hz in the plots. Use the design_IIR_lowpass
script given below. In the Butterworth case, save the filter in sos form in a binary
file named filter_sos_lp.mat for future use.

1 % design_IIR_lowpass
2 % Design IIR lowpass filter with rs = 14 dB and rp = 2 dB
3 % useful to attenuate components higher than 2 Hz
4 % in data sampled at 10 Hz. Specify transition bands 0.2 Hz wide.
5
6 prompt ='Filter type? (1 = Butterworth, 2 = Cheby_I, 3 = Cheby_II, 4 =

ellipt)';
7 fflag = input(prompt);
8
9 prompt ='Save filter? (1 = yes, 2 = no)';

10 saveflag = input(prompt);
11
12 selectivity ='low'
13
14 % Tolerances
15 rp = 2
16 rs = 14
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17 deltap = 1−10^(−rp/20)
18 deltas = 10^(−rs/20)
19
20 % Characteristic frequencies
21 f_s = 10
22 T_s = 1/f_s
23 f_Ny = f_s/2
24
25 fp = 2
26 deltf = 0.2
27 fs = fp+deltf
28 wp_over_pi = fp/f_Ny;
29 ws_over_pi = fs/f_Ny;
30
31 % Design filter in zero−pole−gain form
32 if fflag==1
33 [n,wn_over_pi] = buttord(wp_over_pi,ws_over_pi,rp,rs);
34 order = n
35 [z,p,k] = butter(n,wn_over_pi,selectivity);
36 end
37 if fflag==2
38 [n,wp_over_pi] = cheb1ord(wp_over_pi,ws_over_pi,rp,rs);
39 order = n
40 [z,p,k] = cheby1(n,rp,wp_over_pi,selectivity);
41 end
42 if fflag==3
43 [n,ws_over_pi] = cheb2ord(wp_over_pi,ws_over_pi,rp,rs)
44 [z,p,k] = cheby2(n,rs,ws_over_pi,selectivity);
45 order = n
46 end
47 if fflag==4
48 [n,wp_over_pi] = ellipord(wp_over_pi,ws_over_pi,rp,rs)
49 [z,p,k] = ellip(n,rp,rs,wp_over_pi,selectivity);
50 order = n
51 end
52
53 % Convert zero−pole−gain filter parameters
54 % to second−order sections form
55 % and compute frequency response
56 sos = zp2sos(z,p,k);
57 N_f=1024
58 [H,f] = freqz(sos,N_f,f_s);
59 % Compute amplitude response
60 ampl=abs(H);
61 % Compute phase response in units of pi
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62 phase=unwrap(angle(H))/pi;
63
64 % Plot frequency response
65 figure(400+fflag*10)
66 % Plot of amplitude response and specifications
67 % Linear scale
68 subplot(3,1,1)
69 plot([fs fs],[−0.1 1.1],'m')
70 hold on
71 plot([fp fp],[−0.1 1.1],'m')
72 plot([f(1) f(end)],[1−deltap 1−deltap],'g')
73 plot([f(1) f(end)],[1 1],'k')
74 plot([f(1) f(end)],[deltas deltas],'g')
75 plot(f,ampl,'LineWidth',1.5)
76 hold off
77 set(gca,'XLim',[0 f_Ny])
78 set(gca,'YLim',[−0.1 1.1])
79 set(gca,'YTick',[0:0.2:1])
80 hlabely=get(gca,'Ylabel');
81 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
82
83 % Plot amplitude response and specifications in dB
84 subplot(3,1,2)
85 y1a=−60;
86 y2a=max(20*log10(ampl))+5;
87 plot([fs fs],[y1a y2a],'m')
88 hold on
89 plot([fp fp],[y1a y2a],'m')
90 plot([f(1) f(end)],[0 0],'k')
91 plot([f(1) f(end)],[−rp −rp],'g')
92 plot([f(1) f(end)],[−rs −rs],'g')
93 plot(f,20*log10(ampl),'LineWidth',1.5)
94 hold off
95 set(gca,'XLim',[0 f_Ny])
96 set(gca,'YLim',[y1a y2a])
97 hlabely=get(gca,'Ylabel');
98 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize',16)
99
100 % Plot phase response
101 subplot(3,1,3)
102 y1p=min(phase)−0.5;
103 y2p=max(phase)+0.5;
104 plot([fs fs],[y1a y2a],'m')
105 hold on
106 plot([fp fp],[y1a y2a],'m')
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107 plot(f,phase,'LineWidth',1.5)
108 hold off
109 set(gca,'XLim',[0 f_Ny])
110 set(gca,'YLim',[y1p y2p])
111 hlabelx=get(gca,'Xlabel');
112 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
113 hlabely=get(gca,'Ylabel');
114 set(hlabely,'String','$\psi/\pi$','Interpreter','Latex','FontSize',16)
115
116 % Save filter if required
117 if saveflag==1
118 save filter_lp_sos.mat sos
119 end

5. Notch filter:
design a narrowband bandstop Butterworth filter (notch filter) with given toler-
ances, namely, rs = 30dB and deltap = 0.04, fit for eliminating, from data with
1kHz sampling frequency, the 50Hz component due to power line interference
(Europe). The script given below (design_IIR_notch) performs this task, and also
compares the result with the corresponding notch filter obtained using another
Matlab function,

1 [b,a] = iirnotch(w0_over_pi,bw_over_pi)

that designs a digital notch filter with the notch located at the ω/π value
specified by w0_over_pi, and with the bandwidth at the −3dB point set to
bw_over_pi (the bandwidth is also in terms of ω/π ). The bandwidth bw_over_pi
is related to w0_over_pi through the so-called Q-factor of the filter: bw_over_pi
= w0_over_pi/Q. In the present case, Q is set to 35. The design procedure on
which the iirnotch function is based can be found in Orfanidis (1996).

1 % design_IIR_notch
2 % Design narrowband bandstop IIR filter (notch filter)
3 % for eliminating the 50 Hz component due to power line interference

(Europe)
4 % from data sampled at 1 kHz.
5
6 selectivity ='stop'
7
8 % Tolerances
9 rp = 3

10 rs = 60
11 deltap = 1−10^(−rp/20)
12 deltas = 10^(−rs/20);
13
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14 % Characteristic frequencies
15 f_s = 1000
16 T_s = 1/f_s
17 f_Ny = f_s/2
18
19 fp1 = 47
20 fp2 = 53
21 deltf = 2.9
22 fs1 = fp1+deltf
23 fs2 = fp2−deltf
24 wp_over_pi = [fp1 fp2]/f_Ny;
25 ws_over_pi = [fs1 fs2]/f_Ny;
26
27 % Design filter in zero−pole−gain form
28 [n,wn_over_pi] = buttord(wp_over_pi,ws_over_pi,rp,rs);
29 order = n
30 [z,p,k] = butter(n,wn_over_pi,selectivity);
31
32 % Convert zero−pole−gain filter parameters
33 % to second−order sections form
34 % and compute frequency response
35 sos = zp2sos(z,p,k);
36 N_f=1024
37 [H,f] = freqz(sos,N_f,f_s);
38 % Compute amplitude response
39 ampl=abs(H);
40 % Compute phase response in units of pi
41 phase=unwrap(angle(H))/pi;
42
43 % Plot frequency response
44 figure(500)
45 % Plot of amplitude response and specifications
46 % Linear scale
47 subplot(3,1,1)
48 plot([f(1) f(end)],[1−deltap 1−deltap],'g')
49 hold on
50 plot([f(1) f(end)],[1 1],'k')
51 plot([f(1) f(end)],[deltas deltas],'g')
52 plot(f,ampl,'LineWidth',1.5)
53 hold off
54 set(gca,'XLim',[0 0.2*f_Ny])
55 set(gca,'YLim',[−0.2 1.1])
56 set(gca,'YTick',[0:0.2:1])
57 hlabely=get(gca,'Ylabel');
58 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
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59
60 % Plot amplitude response and specifications in dB
61 subplot(3,1,2)
62 plot([f(1) f(end)],[0 0],'k')
63 hold on
64 plot([f(1) f(end)],[−rp −rp],'g')
65 plot([f(1) f(end)],[−rs −rs],'g')
66 plot(f,20*log10(ampl),'LineWidth',1.5)
67 hold off
68 set(gca,'XLim',[0 0.2*f_Ny])
69 set(gca,'YLim',[−60 10])
70 hlabely=get(gca,'Ylabel');
71 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize'

,16)
72
73 % Plot phase response
74 subplot(3,1,3)
75 plot(f,phase,'LineWidth',1.5)
76 set(gca,'XLim',[0 0.2*f_Ny])
77 set(gca,'YLim',[−2.2 0.2])
78 hlabelx=get(gca,'Xlabel');
79 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
80 hlabely=get(gca,'Ylabel');
81 set(hlabely,'String','$\psi/\pi$','Interpreter','Latex','FontSize',16)
82
83 % Use iirnotch function
84
85 % Design filter
86 f0=50
87 w0_over_pi=f0/f_Ny
88 Q=35
89 bw_over_pi=w0_over_pi/Q
90 [b,a] = iirnotch(w0_over_pi,bw_over_pi);
91
92 % Compute frequency response
93 [H1,f1] = freqz(b,a,N_f,f_s);
94 % Compute amplitude response
95 ampl1=abs(H1);
96 % Compute phase response in units of pi
97 phase1=unwrap(angle(H1))/pi;
98
99 % Plot frequency response
100 figure(600)
101 % Plot of amplitude response
102 % Linear scale
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103 subplot(3,1,1)
104 plot(f1,ampl1,'LineWidth',1.5)
105 hold off
106 set(gca,'XLim',[0 0.2*f_Ny])
107 set(gca,'YLim',[−0.2 1.1])
108 set(gca,'YTick',[0:0.2:1])
109 hlabely=get(gca,'Ylabel');
110 set(hlabely,'String','$|H|$','Interpreter','Latex','FontSize',16)
111
112 % Plot amplitude response and specifications in dB
113 subplot(3,1,2)
114 plot(f1,20*log10(ampl1),'LineWidth',1.5)
115 hold off
116 set(gca,'XLim',[0 0.2*f_Ny])
117 set(gca,'YLim',[−15 2])
118 hlabely=get(gca,'Ylabel');
119 set(hlabely,'String','$20\log_{10}|H|$','Interpreter','Latex','FontSize'

,16)
120
121 % Plot phase response
122 subplot(3,1,3)
123 plot(f1,phase1,'LineWidth',1.5)
124 set(gca,'XLim',[0 0.2*f_Ny])
125 hlabelx=get(gca,'Xlabel');
126 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
127 hlabely=get(gca,'Ylabel');
128 set(hlabely,'String','$\psi/\pi$','Interpreter','Latex','FontSize',16)

Note that for convenience, only the frequencies 0–100Hz are plotted.
6. Instabilities in the design of IIR filters:

in general, it is advisable to use the [z,p,k] syntax to design IIR filters. If the
filter is designed using the [b,a] syntax, numerical problems can be encountered.
These problems are due to round-off errors, and can occur even at very low orders.
For example, the following code (instability_cheby2) illustrates how an unstable
Chebyshev-II filter can emerge: see the Signal Processing Toolbox User’s Guide
(The MathWorks 2014).

1 % instability_cheby2
2 % Provide an example of unstable Chebyshev−II filter.
3
4 % Specifications
5 rs = 80
6 f_s = 1e4
7 f_Ny = f_s/2
8 fs = [25 290]
9 ws_over_pi = fs/f_Ny

10 n = 6
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11
12 % Transfer function design
13 [b,a] = cheby2(n,rs,ws_over_pi,'bandpass');
14 % This filter is unstable
15
16 % Zero−pole−gain design
17 [z,p,k] = cheby2(n,rs,ws_over_pi,'bandpass');
18 sos = zp2sos(z,p,k);
19
20 % Plot and compare the results
21 figure(700)
22 N_f=2^(13)
23 [H,f] = freqz(sos,N_f);
24 [Hu,fu] = freqz(b,a,N_f);
25 semilogx(f/pi,20*log10(abs(H)))
26 hold on
27 semilogx(fu/pi,20*log10(abs(Hu)),'r')
28 hold off
29 set(gca,'XLim',[10^(−4) 1])
30 set(gca,'XTick',[10^(−4) 10^(−3) 10^(−2) 10^(−1) 10^0])
31 set(gca,'YLim',[−110 10])
32 set(gca,'YTick',[−100:10:0])
33 hlabelx=get(gca,'Xlabel');
34 set(hlabelx,'String','$\omega/\pi$','Interpreter','Latex','FontSize',16)
35 hlabely=get(gca,'Ylabel');
36 set(hlabely,'String','$20\log10|H|$','Interpreter','Latex','FontSize',16)

16.4.2.2 Filtering a Sequence with an IIR Filter

In this exercise we will filter a data record using the IIR Butterworth lowpass filter
generated before and stored in the binary file filter_sos_lp.mat. Recall that the filter
was stored in its second-order sections form (sos). As a consequence, we cannot use
the function filter for implementing the filtering operation: we must use a dedicated
function. This function is sosfilt, which implements second-order (biquadratic) IIR
filtering (see the Matlab documentation): for an input vector sd, the output vector sdf
of filtered data is obtained by

1 sdf = sosfilt(sos,sd)

The data record to be generated for this purpose, using data_Nsin_noise_variable_N
with a scalar N, has T_s = 0.1 s and N = 8192; it includes three sines with ampli-
tudes A = 5, 2.5, 1, and frequencies f_synth = 1.5, 3, and 4.5Hz (0.3π , 0.6π , and
0.9 π , respectively), plus white noise with sigma_wn = 1. For this exercise use the
filtering_IIR script reported below.

1 % filtering_IIR
2 % Filter data record using IIR filter in sos form.
3
4 % Load lowpass Butterworth filter
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5 load filter_lp_sos.mat
6
7 % Compute DFT amplitude for original data
8 N_f=N;
9 SD=fft(sd,N_f);
10 modSD=abs(SD);
11
12 % Build frequency vector
13 f_Ny=1/(2*T_s);
14 deltf=1/(length(SD)*T_s);
15 f=0:deltf:(2*f_Ny−deltf);
16
17 % Filter data sequence
18 sdf = sosfilt(sos,sd);
19 sdf=sdf−mean(sdf);
20 N_sdf=length(sdf) % length of filtered data
21
22 % Compute DFT amplitude for filtered data
23 SDF=fft(sdf,N_f);
24 modSDF=abs(SDF);
25
26 % Plots
27 figure(800)% DFT modulus
28 % for original and filtered data
29 plot(f(2:N_f/2+1),10*log10(modSD(2:N_f/2+1)))
30 hold on
31 plot(f(2:N_f/2+1),10*log10(modSDF(2:N_f/2+1)),'g')
32 hold off
33 set(gca,'XLim',[0 f_Ny])
34 hlabelx=get(gca,'Xlabel');
35 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
36 hlabely=get(gca,'Ylabel');
37 set(hlabely,'String','$10\log_{10}|X_{\mathrm{f}}|$','Interpreter','Latex','FontSize',16)

16.5 Methods of Stationary Spectral Analysis

In this section we will apply the stationary power spectrum estimation methods
studied in Chaps. 10 and 11 and see how they are implemented in MATLAB. The
exercises include the application of

• non-parametric methods (Chap.10):

– simple periodogram (Sect. 10.3) and modified periodogram (Sect. 10.5);
– Bartlett’s method (Sect. 10.4) and Welch’s method (Sect. 10.6);
– Blackman-Tukey (BT) method (Sect. 10.7);
– MTM (Sect. 10.9);

• parametric methods (Chap. 11):

– Burg’s method (Sect. 11.6.3.4),
– Yule-Walker AR method (Sect. 11.6.3.1).

http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_11
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16.5.1 Periodogram

Schuster’s periodogram can be obtained by simply taking the squared modulus of
the DFT of the data sequence and dividing it by the number of spectral samples
(Sect. 10.3).However,Matlab offers a dedicated function: periodogram,which allows
computing both simple and modified periodograms. The syntax of this function for
a centered input sequence x is

1 [PSD,f] = periodogram(x,window,N_f,f_s,range)

where window must have the same length N of the input sequence. Recall that our
sd data have actually been centered. Be careful: if we were analyzing a sequence x
with a mean value different from zero, we should write

1 [PSD,f] = periodogram(x−mean(x),window,N_f,f_s,range)

As for the window, we can choose among a number of different window shapes,
including the following:

• rectangular (indicated as boxcar or rectwin in Matlab),
• Hamming (hamming),
• Hanning (hanning),
• Blackman (blackman), etc.

For calculating the periodogram, the window must be rectangular (default). The
range parameter can be ‘twosided’ or ‘onesided’; for real data the default value is
‘onesided’. We can omit one or more input variables and use default values, but
any unspecified input variable different from range, and falling between two other
variables that are explicitly provided, must be substituted by the empty vector []. For
example, to specify N_f and f_s, we will write

1 [PSD,f] = periodogram(x,[],N_f,f_s)

Note that zero padding is performed automatically if N f > N . In output to peri-
odogram, PSD and f are the power spectral density and the corresponding frequency
vector, respectively.

The nature of the frequency vector f and the spectral normalization varies accord-
ing to the vaue of f_s that we provide in input.

• If we input a value for f_s (any value), MATLAB assumes we want to refer to the
notion of spectrum as defined for a continuous-time signal, and therefore, given an
input sequence x[n] with some sampling frequency, it divides |X [k]|2/N by f_s,
i.e., it multiplies it by T_s. Thus, if the frequency unit is Hz, the unit for PSD is
power/(Hz); power means variance for a zero-mean data record, and its units are
the square of the data units.

• If we wish to use adimensional frequencies ν, we will set f_s = 1. The spectral
plot units are then cycles/sample in abscissa, power/(cycles/sample) in ordinate.

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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• If f_s is not assigned, by default Matlab assumes we want to use adimensional
angular frequencies ω—in other words, by default f_s is set to 2π—and thus
divides |X [k]|2/N by 2π . In this case, the spectral plot units are radians/sample
in abscissa, power/(radians/sample) in ordinate.

For consistency with the convention followed throughout this book, we will set
range = ‘twosided’ and remove the normalizations listed above, so as to always plot
|X [k]|2/N , independently of the frequency variable used in abscissa.

Wewill now perform some tests with the periodogram.Wewill analyze sequences
with T_s = 5s and use N_f = 1024, unless otherwise specified.

1. Using data_Nsin_noise_variable_N, generate a set of white noise sequences with
sigma_wn = 1 and N = 64, 256, and 1024. Compute and plot the power spectra
via periodograms. The related script (Periodogram_variable_N) is given below.

1 % Periodogram_variable_N
2 % Power spectrum estimation via Periodogram
3
4 prompt='N_f =';
5 N_f = input(prompt);
6
7 range='twosided';
8
9 f_s=1/T_s;

10 f_Ny=f_s/2;
11 [Nmax,M]=size(sd);
12
13 figure(1000)
14 for m=1:M
15 N_samples=N(m)
16 variance=var(sd(1:N(m),m)) % data variance
17
18 [PSD,f]=periodogram(sd(1:N(m),m),boxcar(N(m)),N_f,f_s,range);
19 PSD=PSD*f_s; % remove normalization
20 subplot(M,1,m)
21 plot(f(2:N_f/2+1),10*log10(PSD(2:N_f/2+1)))
22 set(gca,'XLim',[0 f_Ny])
23 set(gca,'YLim',[−40 40])
24 set(gca,'YTick',[−40:20:40])
25 ht=text(0.005,25,sprintf('$N$ = %d',N(m)));
26 set(ht, 'Interpreter','Latex','FontSize',12)
27 hold off
28 if m==M
29 hlabelx=get(gca,'Xlabel');
30 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
31 end
32 if m==ceil(M/2)
33 hlabely=get(gca,'Ylabel');
34 set(hlabely,'String','PSD (dB)','Interpreter','Latex','FontSize',16)
35 end
36 ave_power=sum(PSD)/N_f % average power
37 end
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Let us observe the plots and think about the following questions.

• Theoretically, what should the behavior of the power spectrum be, in each
case? How do the estimated spectra deviate from this expected behavior?

• Do the oscillations of the spectrum vary with increasing N? How? Why?
• Does the average value of each spectrum approximately agree with its theoret-
ical constant value? Does the quality of the agreement vary with N?

2. Now add a sinusoid to white noise and compute the periodogram for dif-
ferent values of N. Therefore, using data_Nsin_noise_variable_N generate a
set of sequences with N = 40, 64, 256, and 1024, each containing one sinu-
soid with amplitude A = 5 and frequency 0.4π immersed in white noise with
sigma_wn = 1. Compute the power spectrum of each sequence using Peri-
odogram_variable_N (if you are keeping figure windows open, you may want
to change the figure number in the script). These plots show clearly that the
sinusoid’s peak is initially low and wide, and then, as N increases, progressively
narrows and becomes taller and taller.

3. Using data_Nsin_noise_variable_sigma_wn, generate a set of sequences with
one sinusoid in white noise (the same as above) and N = 64 samples. Consider
values of sigma_wn growing from 1 to 10 and to 100. Compute and plot the power
spectrum using Periodogram_variable_sigma_wn, to examine the influence of the
SNR on the spectrum (Sect. 10.3.3).

1 % Periodogram_variable_sigma_wn
2 % Power spectrum estimation via Periodogram
3
4 prompt='N_f =';
5 N_f = input(prompt);
6
7 range='twosided';
8
9 f_s=1/T_s;

10 f_Ny=f_s/2;
11 [N,M]=size(sd);
12
13 figure(1002)
14 for m=1:M
15 sigma_noise=sigma_wn(m)
16 variance=var(sd(:,m)) % data variance
17 SNR_o= N*A(1)^2/(sigma_wn(m)^2) % output SNR
18 [PSD,f]=periodogram(sd(:,m),boxcar(N),N_f,f_s,range);
19 PSD=PSD*f_s;
20 subplot(M,1,m)
21 plot(f(2:N_f/2+1),10*log10(PSD(2:N_f/2+1)))
22 set(gca,'XLim',[0 f_Ny])
23 set(gca,'YLim',[−22 60])
24 set(gca,'YTick',[−20:20:60])
25 ht=text(0.005,43−10*(m−1),sprintf('Output SNR = %g',SNR_o));
26 set(ht, 'Interpreter','Latex','FontSize',12)
27 hold off
28 if m==M

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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29 hlabelx=get(gca,'Xlabel');
30 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
31 end
32 if m==ceil(M/2)
33 hlabely=get(gca,'Ylabel');
34 set(hlabely,'String','PSD (dB)','Interpreter','Latex','FontSize',16)
35 end
36 ave_power=sum(PSD)/N_f % average power
37 end

When sigma_wn is 1, with as little as 64 data samples the sinusoid’s peak is
clearly visible. As sigma_wn increases, the peak is progressively submerged by
the noise background and ends up disappearing completely. This behavior is due
to the decline of the output SNR, which for a rectangular windowwith processing
gain of 1 must satisfy (Sect. 10.3.3)

SNRo = NA2

4σ 2
wn

= N SNRi > 25.

With A = 5,N = 64 and sigma_wn = 1, 10 and 100, SNRo assumes the values
400, 4 and 0.04, respectively. Thus it initially exceeds the prescribed threshold of
25, but for higher noise variance it becomes insufficient.

4. Now let us study the periodogram’s resolution, considering signals with two
sinusoids in noise. By data_Nsin_noise_variable_N, generate a set of sequences
with two sinusoids of equal amplitudes A = 5 and frequencies 0.4π and 0.45π ,
immersed in white noise with sigma_wn = 1. Use N = 40, 64 and 256. Compute
and plot the power spectrum via periodogram, using Periodogram_variable_N.
With N = 40, we see that resolution is borderline; with N = 64, the resolution is
sufficient; with N = 256, the two sinusoids are well resolved.
In fact, to resolve two close sinusoids in a periodogram, their frequency separation
�ω = (2π/ fs)� f must be larger than the mainlobe width of the spectral window
WB(ejω) centered on each sinusoid’s frequency, which can be defined as the width
at half height: about 2π/N in terms of ω, and fs/N = 1/(N Ts) in analog terms
(Sect. 10.3.3). Therefore, the resolution rule for the periodogram is

�ω >
2π

N
� N >

2π

�ω
,

� f >
fs

N
� N >

fs

� f
,

which provides an approximate lower limit for the number of samples required
for sufficient resolution. In the present exercise, the criterion for resolution is
satisfied, since we have �ω = 0.05π , corresponding to � f = 5 × 10−3 Hz with
T_s = 5s, f_s = 2×10−1 Hz; hence the constraint is N > 40. Of course, at the
same time, the SNRo for each sinusoid to be detected must be sufficiently high.
Since for our data A = 5 and sigma_wn = 1, we have SNRi = 6.25, SNRo = 250.

http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
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In conclusion, we expect, with N = 40 samples, to be barely able to distinguish
the single sinusoids against the noise background and to get a better resolution
with N = 64 samples, as it actually occurs.
Note that we sample the DTFT of the sequence over a set of discrete frequencies
determined by N_f, and the frequency of each sinusoid contained in the data in
general will not coincide with any of them (see Sect. 5.2.2). The corresponding
spectral peak will be close to its theoretical height N A2/4+ sigma_wn2 (see
Fig. 10.8) only if the sinusoid’s frequency is very close to one of the sampling
frequencies, and this is the reason why we perform a substantial zero padding:
we need a dense set of sampling frequencies to ensure that this condition is
(approximately) satisfied.

16.5.2 Modified Periodogram

This example illustrates the fact that the modified periodogram (Sect. 10.5) offers
advantages with respect to the periodogram when the goal is the detection of a weak
sinusoid close to a dominant one. Indeed, with the modified periodogram we obtain
a reduction of the relative height of the sidelobes of the spectral window.

Generate a sequence with two sinusoids in white noise, with amplitudes 0.1 and 1,
and frequencies 0.225π and 0.3π , respectively. Set sigma_wn = 0.05 (low noise
level), N = 128, and N_f = 1024. Compute and plot the power spectrum via peri-
odogram and via modified periodogram. The script (ModPeriodogram) listed below
does exactly this.

1 % ModPeriodogram
2 % Power spectrum estimation via Modified Periodogram
3
4 prompt='N_f =';
5 N_f = input(prompt);
6
7 range='twosided';
8
9 f_s=1/T_s;
10 f_Ny=f_s/2;
11
12 variance=var(sd) % data variance
13
14 figure(1004)
15 for m=1:2 % periodogram or modified periodogram
16 subplot(2,1,m)
17 if m==1
18 [PSD,f]=periodogram(sd,boxcar(N),N_f,f_s,range);
19 ht=text(0.055,10,'Periodogram');
20 set(gca,'Box','on')
21 else
22 [PSD,f]=periodogram(sd,hamming(N),N_f,f_s,range);
23 ht=text(0.055,10,'Modified periodogram');

http://dx.doi.org/10.1007/978-3-319-25468-5_5
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
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24 set(gca,'Box','on')
25 end
26 PSD=PSD*f_s;
27 set(ht, 'Interpreter','Latex','FontSize',12)
28 plot(f(2:N_f/2+1),10*log10(PSD(2:N_f/2+1)))
29 set(gca,'XLim',[0 f_Ny])
30 set(gca,'YLim',[−60 20])
31 set(gca,'YTick',[−60:20:20])
32 if m==2
33 hlabelx=get(gca,'Xlabel');
34 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
35 end
36 hlabely=get(gca,'Ylabel');
37 set(hlabely,'String','PSD (dB)','Interpreter','Latex','FontSize',16)
38 ave_power=sum(PSD)/N_f % average power
39 end

In this exercise, the SNR is good for both sinusoidal components, and their frequency
separation would be sufficient to resolve them if they had comparable amplitudes.
However, with the periodogram, the weaker sinusoid is masked by the dominant
one. With the modified periodogram with Hamming window, the weaker sinusoid is
clearly visible.

16.5.3 Bartlett’s Method and Welch’s Method

Both methods (see Sects. 10.4 and 10.6) are implemented in Matlab by the function
pwelch:

1 [PSD,f] = pwelch(x,window,noverlap,N_f,f_s,range)

in which the meaning of the variables and the PSD normalization scheme are the
same as explained for the periodogram, except that

• window can be a vector of window samples but also an integer, in which case
a Hamming window with length equal to that integer is assumed by default; if
window is omitted or specified as empty, a default Hamming window is used to
obtain 8 sections of x.

• noverlap is the amount of overlapping in number of samples for Welch’s method.
Default is 50% of the window length, and this is the most advisable choice for
a moderate taper, such as the triangular or the Hanning one. If the length of x is
such that it cannot be divided exactly into an integer number of sections with 50%
overlap, x will be truncated accordingly.

We will now consider a few cases.

1. Start with Bartlett’s method (Sect. 10.4). Using data_Nsin_noise_variable_N,
generate a white noise sequence with sigma_wn= 1 and N= 1024. Compute and
plot the Bartlett estimate of the power spectrum, for subsequence lengths of M =

http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
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N = 1024 (periodogram), M = 256, and M = 64. The number of subsequences is
K= 1, 4, and 16, respectively, sinceM=N/K. The script namedBartlett performs
these operations.

1 % Bartlett
2 % Power spectrum estimation via Bartlett method
3
4 prompt='N_f =';
5 N_f = input(prompt);
6
7 range='twosided';
8
9 f_s=1/T_s;

10 f_Ny=f_s/2;
11
12 KB=[1 4 16] % number of subsequences
13 M=N./KB % length of subsequences
14
15 variance=var(sd) % data variance
16
17 figure(1005)
18 for m=1:length(M)
19 [PSD,f]=pwelch(sd,boxcar(M(m)),0,N_f,f_s,range);
20 PSD=PSD*f_s;
21 subplot(3,1,m)
22 plot(f(2:N_f/2+1),10*log10(PSD(2:N_f/2+1)))
23 ht=text(0.005,−24,sprintf('$K$ = %d',KB(m)));
24 set(ht, 'Interpreter','Latex','FontSize',12)
25 ht=text(0.022,−24,sprintf('$M$ = %d',M(m)));
26 set(ht, 'Interpreter','Latex','FontSize',12)
27 set(gca,'XLim',[0 f_Ny])
28 set(gca,'YLim',[−35 15])
29 set(gca,'YTick',[−30:10:10])
30 if m==3
31 hlabelx=get(gca,'Xlabel');
32 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
33 end
34 if m==2
35 hlabely=get(gca,'Ylabel');
36 set(hlabely,'String','PSD (dB)','Interpreter','Latex','FontSize',16)
37 end
38 ave_power=sum(PSD)/N_f % average power
39 end

A gradual reduction of the spectral variance can be observed as K increases.
2. To apply the more general Welch’s method (Sect. 10.6), using data_Nsin_noise_

variable_N generate N = 512 samples of a sequence with two sinusoids in
white noise, with equal amplitudes A = 5, and frequencies 0.4π and 0.45π .
Set sigma_wn = 1. Compute and plot the power spectrum via periodogram, via
Bartlett’s method using K = 4 and 8 (M = 128 and 64), and via Welch’s method,
using a Hanning window of length M = 128 and 50% overlap. Compare the
results. Use the following script (Periodogram_Bartlett_Welch).

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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1 % Periodogram_Bartlett_Welch
2 % Power spectrum estimation via Bartlett and Welch methods and via Periodogram
3
4 prompt='N\_f =';
5 N_f = input(prompt);
6
7 range='twosided';
8
9 f_s=1/T_s;

10 f_Ny=f_s/2;
11 K=[4 8]
12 M=N./K
13
14 variance=var(sd) % data variance
15
16 figure(1006)
17 subplot(4,1,1) % Periodogram
18 [PSD,f]=periodogram(sd,boxcar(N),N_f,f_s,range);
19 PSD=PSD*f_s;
20 plot(f(2:N_f/2+1),10*log10(PSD(2:N_f/2+1)))
21 set(gca,'XLim',[0 f_Ny])
22 set(gca,'YLim',[−35 45])
23 set(gca,'YTick',[−20:20:40])
24 text('String','Periodogram, $M = N = 512$, $K = 1$','Position',[0.02 −22],'Interpreter','

Latex','FontSize',12)
25 ave_power=sum(PSD)/N_f % average power − periodogram
26
27 for ib=1:length(K)
28 subplot(4,1,1+ib) % Bartlett
29 [PSD_B,f]=pwelch(sd,boxcar(M(ib)),0,N_f,f_s,range);
30 PSD_B=PSD_B*f_s;
31 plot(f(2:N_f/2+1),10*log10(PSD_B(2:N_f/2+1)))
32 set(gca,'XLim',[0 f_Ny])
33 set(gca,'YLim',[−35 45])
34 set(gca,'YTick',[−20:20:40])
35 ht1=text(0.02,−22,sprintf('Bartlett, $M$ = %d',M(m)));
36 ht2=text(0.12,−22,sprintf('$K$ = %d',K(m)));
37 set(ht1,'Interpreter','Latex','FontSize',12)
38 set(ht2,'Interpreter','Latex','FontSize',12)
39 if ib==1
40 hlabely=get(gca,'Ylabel');
41 set(hlabely,'String','PSD (dB)','Interpreter','Latex','FontSize',16)
42 end
43 ave_power_B=sum(PSD_B)/N_f % average power − Bartlett
44 end
45
46 subplot(4,1,4) % Welch
47 [PSD_W,f]=pwelch(sd,hanning(M(1)),M(1)/2,N_f,f_s,range);
48 PSD_W=PSD_W*f_s;
49 plot(f(2:N_f/2+1),10*log10(PSD_W(2:N_f/2+1)))
50 set(gca,'XLim',[0 f_Ny])
51 set(gca,'YLim',[−35 43])
52 set(gca,'YTick',[−20:20:40])
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53 text('String','Welch, Hanning, $M = 128$, $K = 7$','Position',[0.02 −22],'Interpreter','
Latex','FontSize',12)

54 hlabelx=get(gca,'Xlabel');
55 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
56 ave_power_BW=sum(PSD_W)/N_f % average power − Welch

This exercise proves that K being nearly equal, the variance is approximately the
same with the Bartlett and Welch methods (see the bottom panels of the figure
that has been created, with K = 8 for Bartlett’s method, and K = 7 for Welch’s
method; compare with Fig. 10.14). Moreover, though the Hanning window has a
spectral mainlobe larger than that of the rectangular window used for the Bartlett
estimate, the resolution that we get by Welch’s method is similar to the one that
we get by Bartlett’s method, or even better, thanks to the 50% overlap present in
the Welch’s method. The overlap allows for M being 128, while in the Bartlett
estimation we hadM = 64. Applying theWelch’s method instead of the Bartlett’s
method we also obtain a leakage reduction, thanks to the reduction of the height
of the spectral window’s sidelobes.

16.5.4 Blackman-Tukey Method

Take the same sequence with two sinusoids in white noise used in the previous
exercise (N = 512). Apply the Blackman-Tukey (BT) method (Sect. 10.7) to this
sequence, using both a Bartlett and a Hamming window. For the value of M, chose
an integer close to N/6, and also try N/8 and N/10; this means using M = 85, 64 and
50, respectively. Use the BlackmanTukey script given below.

1 % BlackmanTukey
2 % Power spectrum estimation via Blackman−Tukey method and Periodogram
3
4 prompt='N_f =';
5 N_f = input(prompt);
6 prompt='maxlag [] =';
7 maxlag = input(prompt);
8
9 flagw = [1 3];
10 %1=bartlett, 3=hamming in function pbt
11 range='twosided';
12
13 f_s=1/T_s;
14 f_Ny=f_s/2;
15
16 variance=var(sd) % data variance
17
18 figure(1007)
19 [PSD,f]=periodogram(sd,boxcar(N),N_f,f_s,range);
20 PSD=PSD*f_s;
21 ave_power=sum(PSD)/N_f % average power − periodogram
22

http://dx.doi.org/10.1007/978-3-319-25468-5_10
http://dx.doi.org/10.1007/978-3-319-25468-5_10
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23 for im=1:length(maxlag)
24 for iw=1:length(flagw)
25 subplot(3,2,2*(im−1)+iw)
26 plot(f(2:N_f/2+1),10*log10(PSD(2:N_f/2+1)),'g')
27 hold on
28 PSD_BT=pbt(sd,maxlag(im),N_f,flagw(iw));
29 plot(f(2:N_f/2+1),10*log10(PSD_BT(2:N_f/2+1)))
30 hold off
31 if flagw(iw)==1
32 ht1=text(0.006,−34,'Bartlett window');
33 elseif flagw(iw)==3
34 ht1=text(0.006,−34,'Hamming window');
35 end
36 set(ht1,'Interpreter','Latex','FontSize',12)
37 ht2=text(0.06,26,sprintf('$M$ = %d',maxlag(im)));
38 set(ht2,'Interpreter','Latex','FontSize',12)
39 set(gca,'XLim',[0 0.1])
40 set(gca,'XTick',[0:0.02:0.1])
41 set(gca,'YLim',[−45 45])
42 set(gca,'YTick',[−40:20:40])
43 if 2*(im−1)+iw >= 5
44 hlabelx=get(gca,'Xlabel');
45 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
46 end
47 if 2*(im−1)+iw == 3
48 hlabely=get(gca,'Ylabel');
49 set(hlabely,'String','PSD (dB)','Interpreter','Latex','FontSize',16)
50 end
51 end
52 ave_power_BT=sum(PSD_BT)/N_f % average power − BT
53 end

This script calls the function pbt, reported next.

1 function PSD = pbt(x,maxlag,N_f,flagw)
2 % Blackman−Tukey spectral estimation for zero−mean sequence
3
4 rxx = xcorr(x,maxlag,'biased');
5 if flagw == 1
6 w = bartlett(2*maxlag+1);
7 elseif flagw == 2
8 w = hanning(2*maxlag+1);
9 elseif flagw == 3
10 w = hamming(2*maxlag+1);
11 elseif flagw == 4
12 w = blackman(2*maxlag+1);
13 end
14 PSD = abs(fft(w.*rxx,N_f));
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This example illustrates that for a given window type, the variance of the spectral
estimate obtained by the BT method decreases with increasing M. For a given value
of M, the Bartlett window allows for a greater variance reduction with respect to
the Hamming window. The BT spectral estimate is quite smooth in any case; its
resolution is nearly the same for both windows, and increases with M, but is always
relatively poor.

16.5.5 MultiTaper Method

In Matlab, the MTM (Sect. 10.9) is implemented by the function pmtm. The com-
mand’s syntax for a centered input x is

1 [PSD,PSDc,f] = pmtm(x,nw,N_f,f_s,method,p,range)

The meaning of most variables is the usual one, but for MTM we have additional
parameters:

• nw is the value of the time-bandwidth parameter,
• method specifies how the individual spectral estimates (modified periodograms)
are combined: the combinationmay be linear or not.More precisely, we can choose
among setting

– method = ‘adapt’ (default), i.e., the nonlinear Thomsom adaptive combination,
– method = ‘unity’, i.e., linear combination with unit weights,
– method= ‘eigen’, i.e., linear combination with weights equal to the eigenvalues
of the variational problem of leakage minimization.

We will hold to the default value;
• p indicates a probability level. If p is specified, pmtm returns the px100%-
confidence-level interval for the PSD estimate at each frequency. The corre-
sponding two vectors are contained in the matrix PSDc, having N_f rows and
two columns; the first column contains the lower confidence bounds, the second
column contains the upper bound.

As an example, take the same sequence with two sinusoids in white noise used in the
previous two exercises (N = 512), compute and plot the power spectrum via MTM,
using nw = 2, 3 and 4. Observe how the variance-versus-resolution tradeoff varies
with nw. Use the following MTM script.

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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1 % MTM
2 % Power spectrum estimation via MultiTaper method
3
4 prompt='N_f =';
5 N_f = input(prompt);
6
7 range='twosided';
8
9 f_s=1/T_s;
10 f_Ny=f_s/2;
11
12 nw=[2 3 4]
13 p=0.95;
14 method='adapt'
15
16 variance=var(sd) % data variance
17
18 figure(1008)
19 for m=1:length(nw)
20 subplot(3,1,m)
21 [PSD,PSDc,f]=pmtm(sd,nw(m),N_f,f_s,method,p,range);
22 PSD=PSD*f_s;
23 PSDc=PSDc*f_s;
24 for k=1:2
25 plot(f(2:N_f/2+1),10*log10(PSDc(2:N_f/2+1,k)),'c')
26 hold on
27 end
28 plot(f(2:N_f/2+1),10*log10(PSD(2:N_f/2+1)))
29 hold off
30 set(gca,'XLim',[0 f_Ny])
31 set(gca,'YLim',[−25 35])
32 set(gca,'YTick',[−20:10:30])
33 ht=text(0.06,20,sprintf('$n_w$ = %d',nw(m)));
34 set(ht, 'Interpreter','Latex','FontSize',12)
35 ht1=text(0.078,20,sprintf('$p$ = %g',p));
36 set(ht1,'Interpreter','Latex','FontSize',12)
37 if m==3
38 hlabelx=get(gca,'Xlabel');
39 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
40 end
41 if m==2
42 hlabely=get(gca,'Ylabel');
43 set(hlabely,'String','PSD (dB)','Interpreter','Latex','FontSize',16)
44 end
45 ave_power=sum(PSD)/N_f % average power
46 end
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16.5.6 Parametric Methods

Wewill examine two parametric methods (Chap. 11) implemented inMatlab: Burg’s
method (Sect. 11.6.3.4), implemented by the function pburg, and the autoregressive
Yule-Walker method (Sect. 11.6.3.1), implemented by the function pyulear. These
functions apply the PSD normalization scheme described for the periodogram and
have similar syntaxes: for example,

1 [PSD,f] = pburg(x,p,N_f,f_s,range)

where, in input, p is the AR-model order and x is a centered data sequence.

1. We will now compute with pburg the power spectrum of those 40 signal samples
for which the periodogram did not allow for resolving the two sinusoids in a
satisfactoryway, in spite of the relatively lownoise level. Thus, retrieve those data,
or generate again N= 40 samples of a sequencewith two sinusoids in white noise,
with equal amplitudes A= 5 and frequencies 0.4π and 0.45π , and with sigma_w
= 1. To estimate the power spectrum, use both Burg and Yule AR methods, with
model orders p= 8, 10, 12 and 16; compute also the periodogram for comparison.
Plot the results. Use the Burg_YuleAR_Periodogram script reported below.

1 % Burg_YuleAR_Periodogram
2 % Power spectrum estimation via Burg or Yule−AR methods and Periodogram
3
4 prompt='N_f =';
5 N_f = input(prompt);
6 prompt='Method? (1 = Burg, 2 = Yule AR)';
7 flagmeth = input(prompt);
8
9 range='twosided';

10
11 f_s=1/T_s;
12 f_Ny=f_s/2;
13
14 variance=var(sd) % data variance
15
16 figure(1009+flagmeth−1)
17 [PSD,f]=periodogram(sd,boxcar(N),N_f,f_s,range);
18 PSD=PSD*f_s;
19 ave_power=sum(PSD)/N_f % average power − periodogram
20
21 p=[8 10 12 16];
22 for m=1:length(p)
23 subplot(4,1,m)
24 if flagmeth==1
25 [PSD_AR,f] = pburg(sd,p(m),N_f,f_s,range);
26 end
27 if flagmeth==2
28 [PSD_AR,f] = pyulear(sd,p(m),N_f,f_s,range);
29 end
30 plot(f(2:N_f/2+1),10*log10(PSD(2:N_f/2+1)),'g')

http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_11
http://dx.doi.org/10.1007/978-3-319-25468-5_11
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31 hold on
32 PSD_AR=PSD_AR*f_s;
33 plot(f(2:N_f/2+1),10*log10(PSD_AR(2:N_f/2+1)))
34 hold off
35 set(gca,'XLim',[0 f_Ny])
36 set(gca,'YLim',[−20 60])
37 set(gca,'YTick',[−20:20:60])
38 ht=text(0.005,42,sprintf('AR model order = %d',p(m)));
39 set(ht, 'Interpreter','Latex','FontSize',12)
40 if m==length(p)
41 hlabelx=get(gca,'Xlabel');
42 set(hlabelx,'String','$f$ (Hz)','Interpreter','Latex','FontSize',16)
43 end
44 if m==3
45 hlabely=get(gca,'Ylabel');
46 set(hlabely,'String','PSD (dB)','Interpreter','Latex','FontSize',16)
47 end
48 ave_power_AR=sum(PSD_AR)/N_f % average power − AR
49 end

This exercise shows that evenwith 40data samples, ifwe choose a sufficiently high
model order we can resolve the two sinusoidal peaks. Note that the maximum
considered order p = 16 is about (2/5) N, so we are within reasonable order
limits. An order value of 18 would also be acceptable.

2. Now, try Yule’s method again, but this time generate N = 2048 samples of a
sequence with two sinusoids in white noise, with equal amplitudes A = 5 and
frequencies 0.4π and 0.45π , setting sigma_wn = 1 and N_f = 2048, to verify
that Yule’s method also works fairly well for longer series.

16.6 Stationary Analysis of Nino3 Historical Series

Here we use, as a case study, the historical time series of the area-averaged sea
surface temperature (SST) from 5◦S–5◦N and 150◦W–90◦W, available for down-
load at http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino3.long.data.
The data is given on a monthly basis in a typical matrix format, in which the
first column represents year A.D., and the other 12 columns represent SST val-
ues in degrees C◦. The series covers January 1870–September 2014 (N = 1737
samples). We will assume that this matrix, given below, resides in a file named
sst_nino3_monthly.dat.

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino3.long.data
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1 1870 24 .23 25 .35 25 .74 26 .99 27 .74 27 .65 27 .40 26 .19 25 .41 25 .30 23 .94 24 .19
2 1871 25 .33 25 .83 26 .65 26 .91 26 .22 25 .93 25 .07 24 .66 24 .59 24 .55 24 .66 24 .52
3 1872 24 .82 25 .61 26 .46 26 .62 26 .27 25 .84 25 .19 24 .17 23 .97 23 .81 24 .01 24 .14
4 1873 24 .63 25 .17 25 .60 26 .62 26 .25 26 .06 25 .12 24 .65 24 .43 23 .97 23 .94 24 .05
5 1874 24 .25 24 .94 25 .63 26 .41 26 .23 25 .67 24 .48 23 .76 23 .76 23 .70 23 .74 24 .03
6 1875 24 .81 25 .85 26 .45 26 .68 26 .02 25 .80 24 .73 24 .24 24 .08 24 .01 24 .06 24 .13
7 1876 24 .33 24 .89 25 .70 25 .99 25 .62 25 .81 25 .16 24 .77 24 .88 25 .16 25 .22 25 .44
8 1877 25 .80 26 .57 27 .32 27 .61 27 .43 26 .96 26 .96 26 .58 26 .97 27 .07 27 .27 27 .71
9 1878 28 .15 28 .84 28 .28 28 .32 27 .72 27 .18 25 .86 24 .90 24 .49 24 .33 24 .05 24 .34

10 1879 25 .02 26 .09 26 .72 26 .91 26 .06 25 .89 24 .97 24 .43 24 .19 24 .07 23 .95 24 .16
11 1880 24 .57 25 .73 26 .43 26 .88 26 .36 25 .80 25 .14 24 .91 25 .15 25 .27 25 .34 25 .20
12 1881 25 .69 26 .30 27 .14 27 .55 26 .97 26 .51 25 .35 24 .68 24 .49 24 .50 24 .37 24 .66
13 1882 24 .97 25 .61 26 .40 27 .33 26 .82 25 .75 24 .66 24 .29 24 .43 24 .30 24 .09 24 .32
14 1883 24 .79 25 .66 26 .57 27 .17 26 .63 26 .37 25 .66 24 .89 24 .66 24 .45 24 .74 24 .80
15 1884 25 .25 26 .12 27 .17 27 .79 27 .35 26 .41 25 .84 25 .28 25 .19 25 .29 25 .46 25 .70
16 1885 25 .82 26 .47 27 .03 27 .32 27 .03 26 .25 25 .30 25 .03 25 .25 25 .30 25 .49 25 .84
17 1886 25 .13 25 .68 26 .39 26 .76 25 .88 25 .17 24 .56 23 .91 23 .84 23 .81 23 .72 23 .70
18 1887 24 .65 25 .08 25 .85 26 .37 26 .11 26 .07 25 .24 24 .27 24 .62 24 .67 24 .87 25 .15
19 1888 25 .68 26 .62 27 .20 27 .59 27 .64 27 .05 26 .19 25 .74 25 .97 26 .43 27 .17 26 .87
20 1889 27 .60 27 .69 27 .84 27 .84 27 .16 26 .46 24 .86 24 .03 24 .01 23 .69 23 .97 24 .10
21 1890 23 .58 24 .66 26 .09 26 .34 26 .00 25 .53 24 .71 23 .93 23 .93 23 .85 23 .97 24 .54
22 1891 25 .16 26 .04 27 .05 27 .65 27 .33 26 .91 25 .89 25 .10 24 .72 24 .72 24 .91 25 .05
23 1892 25 .12 25 .90 26 .45 26 .74 26 .18 25 .77 24 .93 24 .33 23 .85 23 .29 23 .38 23 .74
24 1893 24 .01 24 .90 25 .80 26 .24 25 .89 25 .51 24 .59 24 .03 24 .00 23 .90 24 .06 24 .23
25 1894 24 .72 25 .41 26 .19 26 .68 26 .16 25 .81 24 .99 24 .34 24 .11 24 .21 24 .14 24 .52
26 1895 24 .86 25 .74 26 .53 27 .21 26 .96 26 .31 25 .40 25 .29 25 .37 25 .46 25 .50 25 .69
27 1896 25 .96 26 .52 27 .17 27 .48 27 .12 26 .54 25 .95 26 .03 25 .86 25 .86 26 .55 26 .75
28 1897 27 .03 27 .41 27 .61 27 .26 26 .87 26 .40 25 .55 24 .81 24 .54 24 .45 24 .45 24 .69
29 1898 25 .10 25 .76 26 .29 26 .78 26 .39 25 .94 25 .06 24 .38 24 .60 24 .64 24 .36 24 .37
30 1899 25 .02 25 .76 26 .73 27 .21 27 .11 26 .65 25 .47 25 .89 25 .69 25 .92 26 .22 26 .43
31 1900 26 .98 27 .70 28 .15 28 .07 27 .57 27 .29 26 .30 25 .58 25 .32 25 .07 24 .87 25 .45
32 1901 26 .04 26 .37 26 .86 27 .09 26 .51 25 .99 25 .09 24 .46 24 .46 24 .59 24 .83 25 .07
33 1902 25 .48 26 .27 27 .08 27 .70 27 .29 27 .33 27 .10 26 .28 26 .23 26 .48 26 .60 26 .41
34 1903 26 .67 26 .77 27 .47 27 .37 26 .76 26 .50 25 .11 24 .39 24 .14 24 .25 24 .17 23 .97
35 1904 25 .05 25 .66 26 .16 26 .71 26 .82 26 .69 26 .45 25 .81 25 .07 25 .90 25 .52 25 .90
36 1905 26 .24 26 .82 28 .03 27 .62 28 .29 27 .33 26 .39 26 .23 26 .27 25 .92 26 .08 26 .07
37 1906 26 .50 26 .90 27 .34 27 .74 26 .89 26 .45 24 .72 24 .14 24 .00 24 .13 24 .47 24 .49
38 1907 24 .89 25 .79 26 .55 26 .86 26 .37 26 .13 24 .80 23 .95 24 .99 24 .48 24 .55 24 .93
39 1908 25 .28 26 .45 26 .66 26 .73 26 .26 26 .37 24 .83 24 .53 24 .22 24 .46 24 .16 23 .94
40 1909 25 .40 25 .36 26 .64 26 .62 26 .37 25 .18 24 .55 23 .84 23 .83 23 .62 23 .42 24 .07
41 1910 24 .60 25 .77 26 .32 26 .46 25 .72 25 .62 24 .88 24 .28 23 .89 24 .08 24 .58 24 .52
42 1911 24 .98 25 .60 26 .35 26 .41 25 .75 25 .91 25 .59 25 .23 25 .65 25 .40 25 .91 26 .60
43 1912 27 .19 27 .20 27 .66 28 .00 27 .15 26 .29 25 .26 24 .58 25 .10 24 .77 25 .06 24 .74
44 1913 25 .55 26 .50 26 .99 26 .31 26 .57 26 .30 25 .53 25 .07 25 .01 25 .27 25 .86 26 .10
45 1914 26 .39 27 .02 27 .40 27 .90 26 .82 26 .42 26 .16 25 .98 25 .85 25 .43 25 .45 25 .89
46 1915 26 .38 26 .80 27 .50 28 .03 27 .71 27 .87 25 .70 25 .01 24 .96 24 .89 24 .56 24 .48
47 1916 25 .16 25 .39 26 .27 26 .53 26 .27 25 .64 24 .07 23 .28 23 .41 23 .37 23 .12 23 .42
48 1917 23 .96 24 .75 26 .13 27 .12 26 .92 26 .60 25 .85 25 .31 24 .99 24 .86 24 .52 24 .11
49 1918 24 .54 25 .40 26 .27 27 .09 27 .20 27 .25 26 .15 25 .60 25 .62 26 .04 26 .38 26 .55
50 1919 27 .06 27 .36 27 .70 27 .98 27 .72 27 .13 26 .07 25 .59 25 .43 25 .03 24 .52 25 .33
51 1920 26 .30 26 .97 27 .61 27 .54 27 .09 26 .66 25 .24 24 .98 24 .97 24 .86 24 .82 25 .26
52 1921 25 .86 26 .07 25 .97 26 .83 26 .17 26 .29 25 .34 24 .40 24 .52 24 .91 24 .08 24 .36
53 1922 24 .87 26 .27 26 .98 26 .98 26 .94 25 .82 24 .80 23 .81 24 .14 24 .53 24 .18 24 .41
54 1923 25 .11 25 .61 26 .05 26 .92 26 .80 26 .41 25 .68 25 .07 25 .45 25 .35 25 .48 25 .87
55 1924 25 .55 26 .51 27 .07 27 .13 25 .92 25 .55 24 .55 24 .20 23 .95 24 .52 24 .02 24 .33
56 1925 24 .66 26 .26 26 .98 27 .25 26 .85 26 .79 26 .40 25 .86 25 .73 25 .76 25 .82 26 .65
57 1926 27 .07 27 .43 28 .27 28 .55 27 .88 26 .99 26 .29 25 .09 24 .67 24 .69 24 .69 25 .03
58 1927 25 .63 26 .68 26 .93 27 .15 26 .46 26 .19 25 .13 24 .80 24 .88 25 .06 24 .89 25 .10
59 1928 25 .73 26 .38 26 .91 27 .14 26 .78 25 .92 25 .34 24 .61 24 .69 24 .65 24 .55 24 .94
60 1929 25 .25 26 .26 26 .99 27 .57 27 .05 26 .59 25 .45 25 .05 25 .29 25 .19 25 .09 25 .54
61 1930 25 .56 26 .30 27 .13 27 .78 26 .94 26 .68 26 .36 25 .93 26 .21 26 .31 26 .78 26 .70
62 1931 27 .16 27 .53 28 .27 28 .35 27 .42 26 .59 25 .88 24 .83 24 .40 24 .85 24 .51 24 .75
63 1932 25 .34 26 .33 27 .44 27 .73 27 .51 26 .88 25 .66 25 .17 24 .85 24 .85 24 .74 24 .71
64 1933 25 .30 26 .30 26 .93 27 .44 26 .55 25 .71 24 .89 24 .15 24 .20 23 .96 23 .95 24 .00
65 1934 24 .93 25 .66 26 .44 27 .38 26 .63 26 .27 25 .13 24 .84 24 .76 24 .70 24 .93 24 .71
66 1935 25 .06 25 .70 26 .79 27 .36 26 .68 25 .91 24 .77 25 .00 25 .08 25 .00 25 .27 25 .18
67 1936 26 .14 26 .72 26 .98 27 .62 26 .69 25 .89 25 .28 24 .65 24 .90 25 .36 25 .01 25 .59
68 1937 25 .42 26 .56 26 .88 27 .60 26 .37 26 .05 25 .53 24 .59 25 .18 24 .67 24 .94 25 .20
69 1938 25 .21 26 .36 26 .84 27 .14 26 .70 25 .25 24 .03 23 .96 24 .31 24 .22 24 .11 24 .08
70 1939 24 .89 25 .44 26 .16 27 .16 26 .90 26 .71 25 .72 25 .18 24 .97 24 .70 25 .35 25 .16
71 1940 26 .76 27 .63 28 .20 28 .28 27 .28 26 .87 25 .55 25 .69 25 .01 25 .12 25 .28 26 .26
72 1941 26 .83 27 .63 28 .49 28 .76 28 .26 27 .15 26 .06 25 .69 25 .55 25 .84 26 .12 26 .45
73 1942 26 .09 26 .55 27 .13 27 .53 26 .77 25 .65 24 .57 23 .73 23 .61 23 .42 23 .31 23 .96
74 1943 24 .69 25 .32 26 .03 27 .01 26 .88 26 .48 25 .59 25 .03 24 .53 24 .71 24 .52 24 .67
75 1944 25 .05 26 .47 26 .88 27 .63 27 .04 26 .54 25 .69 24 .99 24 .73 24 .58 24 .34 24 .57
76 1945 25 .10 26 .03 26 .26 26 .88 27 .00 26 .18 25 .20 24 .45 24 .42 24 .32 24 .73 24 .61
77 1946 24 .88 25 .70 26 .50 26 .94 26 .45 26 .01 25 .27 24 .04 24 .61 24 .58 24 .60 24 .95
78 1947 25 .81 26 .19 27 .26 27 .34 26 .63 26 .35 25 .20 24 .48 24 .02 24 .22 24 .46 25 .28
79 1948 25 .46 26 .67 27 .60 27 .52 27 .05 26 .17 25 .23 24 .97 24 .55 24 .16 24 .65 25 .35
80 1949 24 .84 26 .35 26 .59 27 .72 26 .95 25 .61 24 .89 24 .42 23 .97 23 .81 23 .52 23 .81
81 1950 24 .25 24 .75 26 .15 26 .49 25 .74 25 .44 24 .55 24 .49 23 .78 24 .05 23 .53 24 .17
82 1951 24 .86 25 .91 26 .48 27 .48 26 .95 26 .72 26 .72 26 .26 25 .76 25 .95 26 .00 25 .95
83 1952 26 .01 26 .54 27 .22 27 .62 26 .54 25 .72 24 .82 24 .45 24 .27 24 .66 24 .43 24 .45
84 1953 25 .65 26 .59 27 .26 28 .27 27 .43 26 .95 25 .81 25 .04 25 .59 24 .94 25 .10 25 .23
85 1954 25 .43 26 .22 26 .79 26 .31 25 .81 25 .12 24 .23 23 .67 23 .55 23 .65 23 .59 23 .96
86 1955 24 .83 25 .67 26 .22 26 .49 25 .55 25 .04 24 .33 24 .21 23 .46 23 .23 22 .89 23 .50
87 1956 24 .29 25 .42 26 .43 26 .73 26 .40 25 .83 24 .82 24 .33 24 .18 24 .32 23 .93 24 .34
88 1957 24 .71 26 .03 27 .34 27 .82 27 .62 27 .35 26 .77 26 .14 25 .58 25 .76 25 .99 26 .30
89 1958 26 .77 27 .26 27 .67 27 .54 26 .91 26 .49 25 .58 25 .08 24 .69 24 .66 24 .83 25 .06
90 1959 25 .56 26 .32 27 .07 27 .60 26 .92 26 .02 25 .21 24 .50 24 .47 25 .03 24 .73 25 .00
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91 1960 25 .51 25 .98 26 .96 27 .17 26 .89 26 .12 25 .29 25 .03 25 .02 24 .58 24 .23 24 .83
92 1961 25 .24 26 .45 26 .98 27 .78 27 .12 26 .54 24 .91 24 .41 23 .96 24 .00 24 .65 24 .82
93 1962 25 .41 26 .22 26 .52 26 .71 26 .34 25 .90 25 .20 24 .90 24 .35 24 .43 24 .29 24 .36
94 1963 25 .21 25 .98 27 .11 27 .46 27 .13 26 .84 26 .42 25 .90 25 .53 25 .71 25 .64 26 .11
95 1964 26 .02 26 .37 26 .75 26 .45 25 .68 25 .22 24 .94 23 .97 24 .13 24 .01 24 .05 24 .01
96 1965 24 .88 25 .99 26 .94 27 .58 27 .60 27 .16 26 .53 26 .32 26 .15 26 .30 26 .41 26 .45
97 1966 26 .70 26 .86 27 .16 27 .45 26 .46 26 .13 25 .41 24 .50 24 .46 24 .62 24 .27 24 .46
98 1967 25 .09 25 .93 26 .64 26 .78 26 .65 26 .33 25 .17 24 .29 23 .95 23 .96 24 .06 24 .29
99 1968 24 .42 25 .03 25 .92 26 .78 26 .21 26 .36 25 .85 25 .38 25 .19 25 .19 25 .34 25 .70
100 1969 25 .95 26 .67 27 .53 27 .84 27 .72 27 .12 25 .88 25 .60 25 .58 25 .75 25 .83 26 .01
101 1970 26 .24 26 .47 27 .01 27 .24 26 .44 25 .59 23 .91 23 .51 23 .83 24 .05 23 .82 23 .89
102 1971 24 .27 24 .93 25 .94 26 .70 26 .19 25 .64 24 .97 24 .19 24 .14 23 .85 23 .88 24 .00
103 1972 25 .01 26 .03 26 .91 27 .80 27 .55 27 .38 26 .91 27 .02 26 .54 26 .85 27 .12 27 .59
104 1973 27 .20 27 .16 27 .42 27 .15 26 .17 25 .49 24 .33 23 .78 23 .72 23 .58 23 .39 23 .54
105 1974 24 .00 25 .16 26 .17 26 .91 26 .69 26 .23 25 .36 25 .04 24 .67 24 .30 24 .22 24 .40
106 1975 25 .15 25 .85 26 .67 27 .21 26 .14 25 .35 24 .71 24 .37 23 .84 23 .71 23 .75 23 .61
107 1976 23 .93 25 .33 26 .54 27 .24 27 .00 27 .06 26 .44 25 .97 25 .84 26 .02 26 .02 25 .91
108 1977 26 .54 26 .95 27 .51 26 .97 26 .84 26 .61 25 .74 24 .79 24 .90 25 .48 25 .55 25 .67
109 1978 26 .02 26 .57 26 .96 26 .75 26 .26 25 .75 24 .86 24 .28 24 .43 24 .78 24 .95 25 .40
110 1979 25 .50 26 .15 27 .02 27 .71 27 .15 26 .75 25 .55 25 .47 25 .70 25 .50 25 .49 25 .72
111 1980 26 .01 26 .37 26 .98 27 .51 27 .14 26 .80 25 .49 24 .82 24 .86 24 .66 24 .98 25 .35
112 1981 24 .84 25 .69 26 .87 27 .14 26 .85 26 .42 25 .24 24 .68 24 .93 25 .04 24 .88 25 .43
113 1982 25 .78 26 .36 26 .99 27 .68 27 .70 27 .34 26 .21 26 .12 26 .70 27 .27 27 .66 28 .22
114 1983 28 .48 28 .79 29 .12 29 .21 29 .02 28 .19 26 .61 25 .83 25 .08 24 .44 24 .18 24 .52
115 1984 24 .97 25 .91 26 .86 27 .04 26 .30 25 .35 25 .00 24 .50 24 .51 24 .07 23 .99 23 .79
116 1985 24 .58 25 .33 26 .16 26 .50 25 .96 25 .60 24 .69 24 .21 24 .16 24 .09 24 .30 24 .47
117 1986 24 .76 25 .81 26 .64 27 .03 26 .43 26 .18 25 .62 24 .98 25 .22 25 .70 25 .86 25 .89
118 1987 26 .62 27 .32 28 .16 28 .43 28 .13 27 .57 26 .92 26 .43 26 .53 26 .16 26 .13 26 .21
119 1988 26 .10 26 .43 27 .21 26 .73 25 .76 24 .60 23 .81 23 .44 23 .50 23 .06 23 .13 23 .39
120 1989 24 .19 25 .56 26 .06 26 .60 26 .28 26 .03 25 .31 24 .49 24 .58 24 .56 24 .64 24 .78
121 1990 25 .31 26 .49 26 .99 27 .62 27 .30 26 .46 25 .50 25 .00 25 .00 24 .86 24 .85 25 .11
122 1991 25 .76 26 .38 27 .11 27 .38 27 .44 27 .13 26 .33 25 .29 25 .00 25 .57 26 .01 26 .46
123 1992 26 .97 27 .56 28 .30 28 .80 28 .44 26 .90 25 .57 24 .66 24 .54 24 .58 24 .69 24 .89
124 1993 25 .52 26 .59 27 .47 28 .40 28 .12 27 .08 25 .72 25 .01 24 .98 25 .13 25 .08 25 .14
125 1994 25 .54 26 .06 26 .75 27 .05 26 .85 26 .43 25 .21 24 .81 24 .91 25 .55 25 .83 26 .09
126 1995 26 .42 26 .92 27 .17 27 .25 26 .54 26 .22 25 .49 24 .42 24 .20 24 .20 24 .23 24 .41
127 1996 25 .00 25 .82 26 .82 26 .93 26 .53 26 .11 25 .33 24 .72 24 .56 24 .53 24 .49 24 .35
128 1997 24 .88 25 .96 27 .17 27 .76 28 .13 28 .13 27 .85 27 .75 27 .74 28 .04 28 .19 28 .39
129 1998 28 .61 28 .85 29 .14 28 .98 28 .31 26 .54 25 .41 24 .73 24 .44 24 .19 24 .27 24 .15
130 1999 24 .61 25 .58 26 .74 26 .85 26 .48 25 .76 24 .94 24 .26 23 .96 23 .77 23 .55 23 .68
131 2000 23 .87 25 .20 26 .28 27 .18 26 .57 25 .70 25 .00 24 .63 24 .59 24 .45 24 .26 24 .42
132 2001 24 .87 25 .94 27 .01 27 .44 26 .76 26 .21 25 .42 24 .72 24 .22 24 .39 24 .39 24 .51
133 2002 25 .10 26 .15 27 .31 27 .54 27 .22 26 .87 25 .86 25 .34 25 .40 25 .86 26 .21 26 .39
134 2003 26 .30 26 .63 27 .21 27 .05 26 .17 25 .95 25 .60 25 .07 24 .92 25 .31 25 .33 25 .67
135 2004 26 .01 26 .49 27 .05 27 .43 26 .75 26 .26 25 .56 25 .25 25 .23 25 .40 25 .46 25 .69
136 2005 25 .86 26 .24 26 .95 27 .62 27 .31 26 .63 25 .71 25 .09 24 .65 24 .50 24 .05 23 .88
137 2006 24 .68 25 .95 26 .53 27 .22 26 .93 26 .43 25 .58 25 .36 25 .61 25 .78 25 .90 26 .21
138 2007 26 .22 26 .35 26 .75 27 .03 26 .30 25 .94 24 .95 24 .04 23 .60 23 .44 23 .26 23 .48
139 2008 23 .98 25 .10 26 .37 27 .01 26 .87 26 .40 25 .91 25 .54 24 .93 24 .91 24 .83 24 .51
140 2009 24 .96 25 .86 26 .35 27 .40 27 .40 27 .16 26 .47 25 .72 25 .66 25 .71 26 .16 26 .62
141 2010 26 .68 27 .14 27 .72 28 .01 27 .06 25 .92 24 .75 23 .93 23 .56 23 .22 23 .41 23 .60
142 2011 24 .17 25 .51 26 .33 27 .12 26 .84 26 .54 25 .64 24 .60 24 .22 23 .95 23 .93 24 .35
143 2012 24 .85 26 .21 26 .96 27 .47 27 .07 26 .95 26 .42 25 .75 25 .29 24 .97 25 .14 24 .87
144 2013 25 .00 25 .90 27 .14 27 .37 26 .39 25 .74 25 .02 24 .52 24 .68 24 .83 24 .87 25 .13
145 2014 25 .35 25 .74 26 .99 27 .74 27 .65 27 .40 26 .19 25 .41 25 .30 NaN NaN NaN

16.6.1 Preliminary Data Processing

We start pre-processing the Nino3-SST matrix:

• we transform the monthly SST data matrix into a time series, eliminating the
missing data (NaN) in the last year; we plot this monthly time series. A plot of the
series should always be made before analysis, to get a general idea of the series
behavior, of the interval of values involved, as well as to identify visually any
constant drifts or trends, any sharp changes in the mean value and/or variance,
etc. A plot also allows for singling out possible outliers and/or missing data,
which usually are represented by out-of-range values, e.g.,−999 for a variable that
typically assumes values between−1 and1.The record considered here is the result
of previous data processing and therefore does not contain outliers or missing data,
except for the three last months of 2014, which are represented by NaN because
we are working in the Matlab environment, which offers this possibility of dealing
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with what must be considered as “Not-a-Number”. In general, a preliminary plot
is mandatory;

• from the monthly SST data matrix we compute the annual SST cycle (mean SST
vs. calendar month) and plot it;

• we transform the monthly data matrix into a matrix of monthly anomalies, by sub-
tracting from each data sample the average over 1870–2014 of the corresponding
calendar month;

• we transform the monthly anomaly matrix into a time series of monthly anomalies
and plot it;

• since later on we will also need this data on a seasonal basis, we transform the
monthly data matrix into a seasonal data matrix, considering complete years only.
In climatological studies, seasons are usually defined as:

– Spring: March–April–May (MAM),
– Summer: June–July–August (JJA),
– Autumn: September–October–November (SON),
– Winter: December–January–February (DJF). Forming winter data thus involves
averaging samples belonging to two successive years;

• we transform the seasonal data matrix into a time series, eliminating the missing
data (NaN) in the last year; we plot the seasonal time series;

• we compute the annual SST cycle from seasonal data (mean seasonal SST vs.
season);

• we transform the seasonal data matrix into a matrix of seasonal anomalies, by sub-
tracting from each data sample the average over 1870–2014 of the corresponding
season;

• we transform the matrix of seasonal anomalies into a time series, eliminating the
missing data (NaN) in the last year; we plot the seasonal anomaly time series;

• we save all generated time series and the corresponding time vectors for future use.
Be careful: this time the time series are not centered before output. The anomalies
have a very small mean value, but the SSTs have a mean value of the order of
26 ◦C.

These tasks are performed by the following script, which is called preliminary.

1 % preliminary
2 % Preliminary data processing of sst_nino3_monthly data
3
4 load sst_nino3_monthly.dat
5 [Nyears,M1]=size(sst_nino3_monthly)
6 data=sst_nino3_monthly(:,2:13);
7 years=sst_nino3_monthly(:,1);
8 T_s_m=1/12;
9 T_s_s=1/4;

10
11 % Transform monthly data matrix into time series
12 % Eliminate missing data in the last year
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13 k=0;
14 for iy=1:Nyears
15 for im=1:12
16 if isfinite(data(iy,im))
17 k=k+1;
18 sst_nino3_m(k)=data(iy,im);
19 time_m(k)=years(1)+(1/24)+(k−1)*T_s_m;
20 end
21 end
22 end
23 Nmonths=length(sst_nino3_m)
24 min_sst_nino3_m=min(sst_nino3_m)
25 max_sst_nino3_m=max(sst_nino3_m)
26
27 % Plot monthly time series
28 figure(2000)
29 plot(time_m,sst_nino3_m)
30 set(gca,'XLim',[time_m(1) time_m(Nmonths)])
31 set(gca,'YLim',[0.99*min_sst_nino3_m 1.01*max_sst_nino3_m])
32 hlabelx=get(gca,'Xlabel');
33 set(hlabelx,'String','Time AD (years)','Interpreter','Latex','FontSize',16)
34 hlabely=get(gca,'Ylabel');
35 set(hlabely,'String','$T (^{\circ}$C)','Interpreter','Latex','FontSize',16)
36 title ( 'Nino3 SST monthly series')
37
38 % Annual cycle from monthly data
39 dim=1;
40 anncycle_m=sum(data(1:Nyears−1,:),dim)/(Nyears−1);
41 min_anncycle_m=min(anncycle_m)
42 max_anncycle_m=max(anncycle_m)
43
44 % Plot annual cycle
45 figure(2001)
46 tmon=1:12;
47 bar(tmon,anncycle_m)
48 set(gca,'XLim',[0 13])
49 set(gca,'XTick',[1:12])
50 set(gca,'YLim',[0.99*min_anncycle_m 1.01*max_anncycle_m])
51 hlabelx=get(gca,'Xlabel');
52 set(hlabelx,'String','Month','Interpreter','Latex','FontSize',16)
53 hlabely=get(gca,'Ylabel');
54 set(hlabely,'String','$T (^{\circ}$C)','Interpreter','Latex','FontSize',16)
55 title ( 'Nino3 SST monthly series − Annual cycle')
56
57 % Transform monthly data matrix into matrix of monthly anomalies
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58 for iy=1:Nyears
59 for im=1:12
60 if isfinite(data(iy,im))
61 a_sst_nino3_monthly(iy,im)=data(iy,im)−anncycle_m(im);
62 else
63 a_sst_nino3_monthly(iy,im)=NaN;
64 end
65 end
66 end
67
68 % Transform matrix of monthly anomalies into time series
69 % Eliminate missing data in the last year
70 k=0;
71 for iy=1:Nyears
72 for im=1:12
73 if isfinite(a_sst_nino3_monthly(iy,im))
74 k=k+1;
75 a_sst_nino3_m(k)=a_sst_nino3_monthly(iy,im);
76 end
77 end
78 end
79 min_a_sst_nino3_m=min(a_sst_nino3_m)
80 max_a_sst_nino3_m=max(a_sst_nino3_m)
81
82 % Plot monthly anomaly time series
83 figure(2002)
84 plot(time_m,a_sst_nino3_m)
85 set(gca,'XLim',[time_m(1) time_m(Nmonths)])
86 set(gca,'YLim',[0.99*min_a_sst_nino3_m 1.01*max_a_sst_nino3_m])
87 hlabelx=get(gca,'Xlabel');
88 set(hlabelx,'String','Time AD (years)','Interpreter','Latex','FontSize',16)
89 hlabely=get(gca,'Ylabel');
90 set(hlabely,'String','$T (^{\circ}$C)','Interpreter','Latex','FontSize',16)
91 title ( 'Nino3 monthly SST anomaly series')
92
93 % Transform monthly data matrix into seasonal data matrix (complete

years only)
94 i_m_s(1,1:3)=3:5;
95 i_m_s(2,1:3)=6:8;
96 i_m_s(3,1:3)=9:11;
97
98 for iy=1:Nyears−1
99 for is=1:3
100 if sum(isfinite(data(iy,i_m_s(is,:))))==3
101 sst_nino3_seas(iy,is)=mean(data(iy,i_m_s(is,:)));
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102 else
103 sst_nino3_seas(iy,is)=NaN;
104 end
105 end
106 % Winter involves two successive years
107 if sum(isfinite(data(iy,12))+isfinite(data(iy+1,1))+isfinite(data(iy

+1,2)))==3
108 sst_nino3_seas(iy,4)=sum(data(iy,12)+data(iy+1,1)+data(iy

+1,2))/3;
109 else
110 sst_nino3_seas(iy,4)=NaN;
111 end
112 end
113
114 % Transform seasonal data matrix into time series
115 % Eliminate missing data
116 k=0;
117 for iy=1:Nyears−1
118 for is=1:4
119 if isfinite(sst_nino3_seas(iy,is))
120 k=k+1;
121 sst_nino3_s(k)=sst_nino3_seas(iy,is);
122 time_s(k)=years(1)+(1/4+1/24)+(k−1)*T_s_s;
123 end
124 end
125 end
126 Nseas=length(sst_nino3_s)
127 min_sst_nino3_s=min(sst_nino3_s)
128 max_sst_nino3_s=max(sst_nino3_s)
129
130 % Plot seasonal time series
131 figure(2003)
132 plot(time_s,sst_nino3_s)
133 set(gca,'XLim',[time_s(1) time_s(Nseas)])
134 set(gca,'YLim',[0.99*min_sst_nino3_s 1.01*max_sst_nino3_s])
135 hlabelx=get(gca,'Xlabel');
136 set(hlabelx,'String','Time AD (years)','Interpreter','Latex','FontSize',16)
137 hlabely=get(gca,'Ylabel');
138 set(hlabely,'String','$T (^{\circ}$C)','Interpreter','Latex','FontSize',16)
139 title ( 'Nino3 seasonal SST series')
140
141 % Annual cycle from seasonal data
142 dim=1;
143 anncycle_s=sum(sst_nino3_seas(1:Nyears−1,:),dim)/(Nyears−1);
144 min_anncycle_s=min(anncycle_s)
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145 max_anncycle_s=max(anncycle_s)
146
147 % Transform seasonal data matrix into matrix of seasonal anomalies
148 for iy=1:Nyears−1
149 for is=1:4
150 if isfinite(sst_nino3_seas(iy,is))
151 a_sst_nino3_seas(iy,is)=sst_nino3_seas(iy,is)−anncycle_s(is);
152 else
153 a_sst_nino3_seas(iy,is)=NaN;
154 end
155 end
156 end
157
158 % Transform matrix of seasonal anomalies into time series
159 % Eliminate missing data
160 k=0;
161 for iy=1:Nyears−1
162 for is=1:4
163 if isfinite(a_sst_nino3_seas(iy,is))
164 k=k+1;
165 a_sst_nino3_s(k)=a_sst_nino3_seas(iy,is);
166 end
167 end
168 end
169 Nseas_anom=length(a_sst_nino3_s)
170 min_a_sst_nino3_s=min(a_sst_nino3_s)
171 max_a_sst_nino3_s=max(a_sst_nino3_s)
172
173 % Plot seasonal anomaly time series
174 figure(2004)
175 plot(time_s,a_sst_nino3_s)
176 set(gca,'XLim',[time_s(1) time_s(Nseas_anom)])
177 set(gca,'YLim',[0.99*min_a_sst_nino3_s 1.01*max_a_sst_nino3_s])
178 hlabelx=get(gca,'Xlabel');
179 set(hlabelx,'String','Time AD (years)','Interpreter','Latex','FontSize',16)
180 hlabely=get(gca,'Ylabel');
181 set(hlabely,'String','$T (^{\circ}$C)','Interpreter','Latex','FontSize',16)
182 title ( 'Nino3 seasonal SST anomaly series')
183
184 % Compute mean values
185 musm=mean(sst_nino3_m)
186 muam=mean(a_sst_nino3_m)
187 muss=mean(sst_nino3_s)
188 muas=mean(a_sst_nino3_s)
189
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190 % Save time series
191 sst_nino3_m=sst_nino3_m';
192 a_sst_nino3_m=a_sst_nino3_m';
193 sst_nino3_s=sst_nino3_s';
194 a_sst_nino3_s=a_sst_nino3_s';
195 time_m=time_m';
196 time_s=time_s';
197 save sst_nino3_m.dat sst_nino3_m −ascii
198 save a_sst_nino3_m.dat a_sst_nino3_m −ascii
199 save sst_nino3_s.dat sst_nino3_s −ascii
200 save a_sst_nino3_s.dat a_sst_nino3_s −ascii
201 save time_m.dat time_m −ascii
202 save time_s.dat time_s −ascii

16.6.2 Elementary Statistical Analysis

Now we focus on monthly SST data and anomalies, and examine their mean value,
standard deviation, minimum and maximum value, and amplitude distribution.

The samplemean and the standard deviation of the data can be computed using the
functions mean and std, respectively. However, if we desire also confidence intervals
for these parameters, we must use the function normfit:

1 [mu,sigma,muci,sigmaci] = normfit(x,alpha)

This returns the estimates mu and sigma of the parameters of the normal distribution,
given the data in x. Note that in the form reported above, normfit computes mu
using the sample mean and sigma using the square root of the unbiased estimator
of the variance (Sect. 9.10.2). It also returns the related 100(1 − alpha)% confidence
intervals for mu and sigma. The output variables muci and sigmaci contain two
values each, representing the lower and upper confidence bounds for mu and sigma,
respectively. For alpha we must provide a value in the range [0 1], specifying the
width of the confidence interval. By default, alpha is 0.05, which corresponds to 95%
confidence intervals.

Amplitude distributions are plotted as histograms. The Matlab function involved
is hist:

1 [Nx,xout] = hist(x,nbins)

where x is the input sequence of length N, nbins the number of bins, Nx the number
of data values falling in each bin, and xout the output vector of bin centers. The
proper number of bins can be estimated, as a rule of thumb, by the nearest higher
integer to

√
N . It is useful to superimpose to the plot of Nx versus xout a Gaussian

curve with the same mean and standard deviation of the data record. A semilogy plot
helps observing possible deviations from Gaussianity in the tails of the distribution.

http://dx.doi.org/10.1007/978-3-319-25468-5_9
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Next we compute and plot the autocorrelation/autocovariance (Sect. 9.10.3) of
the Nino3 data. The two Matlab functions involved are xcorr for autocorrelation,
and xcov for autocovariance. If the input data is centered, we can use xcorr or
xcov indifferently.2 By default, the output is computed for lags from −(N − 1) to
+(N − 1), with a total of 2N − 1 values; the Nth output sample corresponds to lag
zero. In input to xcorr or xcov, we will provide the data sequence and the value of a
character flag, specifying a scaling option for the autocorrelation or autocovariance:
in fact, in output we can get

• a ‘biased’ estimate (cxx ), or
• an ‘unbiased’ estimate (c′

xx ), or
• an autocorrelation coefficient estimate ‘coeff’ (ρxx ).

We can also specify a desired maximum lag: for example, if we type

1 maxlags = 10
2 [rho,lags] = xcov(sst_nino3_m,maxlags,'coeff')

we will get the sequence of autocorrelation coefficients of monthly SST data over
lags from−10 to+10 (21 samples) and the corresponding lag vector, with lag zero at
the 11th position. The script given below (statistics_m_SST_anom) performs these
tasks. Run it for both monthly SSTs and anomalies.

1 % statistics_m_SST_anom
2 % Load Nino3 montly SST data or anomalies, compute mean value and

standard deviation, plot,
3 % draw histograms to check Gaussianity, compute and plot autocorrelation

coefficient.
4
5 prompt='Data? (1=SST, 2= Anomalies)';
6 flagdat = input(prompt);
7 if flagdat==1
8 load sst_nino3_m.dat;
9 x=sst_nino3_m;

10 else
11 load a_sst_nino3_m.dat;
12 x=a_sst_nino3_m;
13 end
14 load time_m.dat;
15
16 % Series length, sample mean,sample standard deviation, min and max
17 N=length(x)
18 alpha=0.05
19 [mu,sigma,muci,sigmaci] = normfit(x,alpha)
20 mi=min(x)

2Actually these functions also serve to compute the cross-correlation and cross-covariance between
two records.

http://dx.doi.org/10.1007/978-3-319-25468-5_9
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21 ma=max(x)
22
23 % Data plot
24 figure(2100+flagdat−1)
25 plot(time_m,x)
26 hold on
27 plot(time_m,mu+sigma*ones(1,N),'m')
28 plot(time_m,mu+2*sigma*ones(1,N),'g')
29 plot(time_m,mu−sigma*ones(1,N),'m')
30 plot(time_m,mu−2*sigma*ones(1,N),'g')
31 hold off
32 set(gca,'XLim',[time_m(1) time_m(N)])
33 set(gca,'YLim',[floor(min(x)) ceil(max(x))])
34 hlabelx=get(gca,'Xlabel');
35 set(hlabelx,'String','Time AD (years)','Interpreter','Latex','FontSize',16)
36 hlabely=get(gca,'Ylabel');
37 set(hlabely,'String','$T (^{\circ}$C)','Interpreter','Latex','FontSize',16)
38 if flagdat==1
39 title ( 'Nino3 monthly SST series')
40 else
41 title ( 'Nino3 monthly SST anomaly series')
42 end
43
44 % Histogram
45 % xout = centers of bins
46 nbins=ceil(sqrt(N))
47 [Nx,xout]=hist(x,nbins);
48
49 % Related Gaussian curve
50 ampbin=(ma−mi)/nbins
51 limbins=NaN(nbins,2);
52 for k=1:nbins
53 limbins(k,1)=xout(k)−ampbin/2;
54 limbins(k,2)=xout(k)+ampbin/2;
55 end
56 for k=1:nbins
57 area(k)=(limbins(k,2)−limbins(k,1))*Nx(k);
58 end
59 are=sum(area);
60 ny=10^3;
61 y=linspace(limbins(1,1),limbins(nbins,2),ny);
62 ga=are*(1/(sigma*sqrt(2*pi)))*exp(−(y−mu).*(y−mu)/(2*sigma*sigma));
63
64 % Histogram plots
65 %semilogy
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66 figure(2200+flagdat−1)
67 semilogy(xout,Nx,'o','MarkerFaceColor','b','MarkerSize',4);
68 hold on
69 semilogy(y,ga,'g','LineWidth',1.5)
70 semilogy([mu mu],[8*10^(−1) 2*10^2],'r')
71 hwhm=sigma*sqrt(2*log(2));
72 semilogy([mu−hwhm mu+hwhm],[max(ga)/2 max(ga)/2],'r')
73 hold off
74 set(gca,'XLim',[mu−5*sigma mu+5*sigma])
75 if flagdat==1 set(gca,'YLim',[8*10^(−1) 1.2*10^2]);end
76 if flagdat==2 set(gca,'YLim',[8*10^(−1) 2*10^2]);end
77 hlabelx=get(gca,'Xlabel');
78 set(hlabelx,'String','$x$','Interpreter','Latex','FontSize',16)
79 hlabely=get(gca,'Ylabel');
80 set(hlabely,'String','$N$','Interpreter','Latex','FontSize',16)
81 title ( 'Histogram')
82
83 %linear
84 figure(2300+flagdat−1)
85 hist(x,nbins);
86 hold on
87 plot(y,ga,'g', 'LineWidth',1.5)
88 plot([mu mu],[0 145],'r')
89 plot([mu−hwhm mu+hwhm],[max(ga)/2 max(ga)/2],'r')
90 hold off
91 set(gca,'XLim',[mu−5*sigma mu+5*sigma])
92 if flagdat==1 set(gca,'YLim',[0 95]);end
93 if flagdat==2 set(gca,'YLim',[0 145]);end
94 hlabelx=get(gca,'Xlabel');
95 set(hlabelx,'String','$x$','Interpreter','Latex','FontSize',16)
96 hlabely=get(gca,'Ylabel');
97 set(hlabely,'String','$N$','Interpreter','Latex','FontSize',16)
98 title ( 'Histogram')
99
100 % Autocorrelation coefficients
101 maxlag=100;
102 xc=x−mu;
103 [rho,lags]=xcov(xc,maxlag,'coeff');
104 % lags are in units of adimensional discrete−time
105
106 figure(2400+flagdat−1)
107 plot(lags,rho)
108 set(gca,'XLim',[lags(1) lags(end)])
109 hlabelx=get(gca,'Xlabel');
110 set(hlabelx,'String','Lag','Interpreter','Latex','FontSize',16)
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111 hlabely=get(gca,'Ylabel');
112 set(hlabely,'String','$\rho$','Interpreter','Latex','FontSize',16)
113 title ( 'Aurocorrelation coefficients')

Looking at the SST histograms on a linear scale, we can ask ourselves the following
questions: is the amplitude distribution of our data Gaussian? Does it seem to have
a skewness in one direction or the other? Try a change of nbins: how does the
distribution change as we increase/decrease the number of bins? Looking at the
histograms of the anomalies, we can ask ourselves: is the distribution remarkably
different from that of the SSTs? Does it look more Gaussian?

On the basis of these plots, we can conclude that the assumption of Gaussian-
ity is approximately valid for anomalies, though looking at the semilogx anomaly
histogram we observe a tail of high values, which is much less evident for the SSTs.

As explained in Sect. 9.11, pre-whitening, or simply whitening, is a process in
which some dominant signals are removed from a data record, in order to obtain
an amplitude distribution closer to Gaussianity. Climatological variables like our
SSTs contain the annual cycle of the seasons that dominates the power spectrum
and influences the amplitude distribution. By removing it, as we did by passing to
anomalies, we obtain a signal that is more similar to white noise, in the sense that—as
we will soon see—the power spectrum no longer contains the huge peak related to
the seasonal cycle. This is a form of whitening, and allows for a more accurate study
of possible remaining cyclicities in the data.

What is the behavior of the SST’s sequence of autocorrelation coefficients? Does
it exhibit regular or irregular oscillations? Does it rapidly or slowly fall off to zero
with increasing lag? Passing to anomalies, how does the sequence of autocorrelation
coefficients change?Here again,whitening determines a crucial change. SSTs exhibit
a ρxx with marked and persistent oscillations of 12months = 1year of period, which
are typical of periodic signals: the annual cycle dominates the autocorrelation behav-
ior. By removing it, we obtain an autocorrelation coefficient’s sequence that settles
around zero at lags of a few tens of time steps. The SST-anomaly random process
has finite memory. In the next subsection we will assume assume both stationarity
and ergodicity for it (Chap.9).

16.6.3 Stationary Spectral Analysis

We compute and plot the power spectrum of the monthly SST data and anomalies,
including white and red noise background curves and the corresponding signifi-
cance levels at the 95 and 99.9% confidence level (c.l.). The following script (peri-
odogram_m_SST_anom) does the job. Frequencies are expressed in years−1. The
user can decide if data will be standardized before computing the spectrum, or not.
Standardization reduces the data variance to 1 and is sometimes performed for nor-
malization purposes, especially when spectra of different data with dramatically
different variances have to be subsequently compared. The spectrum maintains its

http://dx.doi.org/10.1007/978-3-319-25468-5_9
http://dx.doi.org/10.1007/978-3-319-25468-5_9
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shape, but its absolute value changes. In our case, the choice between standardizing
or not is irrelevant; we can arbitrarily decide to standardize our data. The script peri-
odogram_m_SST_anom given below performs this task. For the significance tests,
two functions are provided: AR1_param that estimates the lag-1 AC of the data, and
redbckg, which using the output of AR1_param computes the red-noise background
power spectrum.

1 % periodogram_m_SST_anom
2 % Load Nino3 montly SST data or anomalies, center them, if desired

standardize them;
3 % compute periodogram as |X|^2/N and plot it versus frequency in years

^(−1) on linear and log−log scales.
4 % Then plot periodogram versus period in years on a reversed log2 scale.
5 % Plot white−noise−background spectrum and corresponding significance
6 % levels at 95 and 99.9 % confidence levels.
7 % Plot red−noise−background spectrum and corresponding significance

levels at 95 and 99.9 % confidence levels.
8
9 prompt='Data? (1 = SST, 2 = Anomalies)';

10 flagdat = input(prompt);
11 prompt='Standardize data? (1 = no, 2 = yes)';
12 flagstand = input(prompt);
13 if flagdat==1
14 load sst_nino3_m.dat;
15 x=sst_nino3_m;
16 else
17 load a_sst_nino3_m.dat;
18 x=a_sst_nino3_m;
19 end
20 load time_m.dat;
21
22 if flagdat==1
23 if flagstand==1
24 tit='Nino3 monthly SST series'
25 else
26 tit='Standardized Nino3 monthly SST series'
27 end
28 else
29 if flagstand==1
30 tit='Nino3 monthly SST anomaly series'
31 else
32 tit='Standardized Nino3 monthly SST anomaly series'
33 end
34 end
35
36 T_s=1/12;



16.6 Stationary Analysis of Nino3 Historical Series 823

37 f_Ny=1/(2*T_s);
38 x=x−mean(x); % center data
39 variance=var(x)
40 if flagstand==2
41 x=x/sqrt(variance);
42 end
43 post_variance=var(x)
44 N=length(x)
45
46 N_f=2048;
47 range='twosided';
48 [power,freq]=periodogram(x,boxcar(N),N_f,1/T_s,range);
49 pow=power(1:N_f/2+1)/T_s;
50 f=freq(1:N_f/2+1);
51 pw=pow(2:end);
52 ff=f(2:end);
53 period=1./ff;
54
55 Pwhite=var(x)*ones(1,length(period));
56 signif_fac=chi2inv(.95,2)/2;
57 signif_fac_1=chi2inv(.999,2)/2;
58
59 Pred=redbckg(x,N_f);
60 Pred=Pred(2:end);
61
62 figure(2500+(flagdat−1)*10+flagstand−1)
63 plot(f,pow)
64 set(gca,'XLim',[0 f_Ny])
65 hlabelx=get(gca,'Xlabel');
66 set(hlabelx,'String','$f$ (y$^{−1}$)','Interpreter','Latex','FontSize',16)
67 hlabely=get(gca,'Ylabel');
68 set(hlabely,'String','PSD ($^{\circ}$C$^2$)','Interpreter','Latex','FontSize'

,16)
69 title ( tit )
70
71 figure(2600+(flagdat−1)*10+flagstand−1)
72 loglog(ff,pw)
73 set(gca,'XLim',[f(2) f_Ny])
74 hlabelx=get(gca,'Xlabel');
75 set(hlabelx,'String','$f$ (y$^{−1}$)','Interpreter','Latex','FontSize',16)
76 hlabely=get(gca,'Ylabel');
77 set(hlabely,'String','PSD ($^{\circ}$C$^2$)','Interpreter','Latex','FontSize'

,16)
78 title ( tit )
79
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80 figure(2700+(flagdat−1)*10+flagstand−1)
81 plot(log2(period),Pwhite*signif_fac_1,'r')
82 hold on
83 plot(log2(period),Pwhite*signif_fac,'g')
84 plot(log2(period),Pwhite,'k')
85 legend('99.9% c.l.','95% c.l.','w.n. background')
86 plot(log2(period),pw,'LineWidth',1.5)
87 hold off
88 Xticks=2.^(fix(log2(min(period))):fix(log2(max(period))));
89 set(gca,'XDir','reverse')
90 set(gca,'Xlim',log2([min(period),max(period)]));
91 set(gca,'XTick',log2(Xticks(:)));
92 set(gca,'XTickLabel',Xticks);
93 set(gca,'Ylim',[0 50]);
94 hlabelx=get(gca,'Xlabel');
95 set(hlabelx,'String','Period (y)','Interpreter','Latex','FontSize',16)
96 hlabely=get(gca,'Ylabel');
97 set(hlabely,'String','PSD ($^{\circ}$C$^2$)','Interpreter','Latex','FontSize'

,16)
98 title ( tit )
99
100 figure(2800+(flagdat−1)*10+flagstand−1)
101 plot(log2(period),Pred*signif_fac_1,'r')
102 hold on
103 plot(log2(period),Pred*signif_fac,'g')
104 plot(log2(period),Pred,'k')
105 legend('99.9% c.l.','95% c.l.','r.n. background')
106 plot(log2(period),pw,'LineWidth',1.5)
107 hold off
108 Xticks=2.^(fix(log2(min(period))):fix(log2(max(period))));
109 set(gca,'XDir','reverse')
110 set(gca,'Xlim',log2([min(period),max(period)]));
111 set(gca,'XTick',log2(Xticks(:)));
112 set(gca,'XTickLabel',Xticks);
113 set(gca,'Ylim',[0 50]);
114 hlabelx=get(gca,'Xlabel');
115 set(hlabelx,'String','Period (y)','Interpreter','Latex','FontSize',16)
116 hlabely=get(gca,'Ylabel');
117 set(hlabely,'String','PSD ($^{\circ}$C$^2$)','Interpreter','Latex','FontSize'

,16)
118 title ( tit )
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The previous script uses the functions AR1_param and redbckg, given below.

1 function [rholag1]=AR1_param(x)
2 % Estimation of lag 1 autocorrelation (rholag1) of data series (x)
3 % for red−noise−background spectrum
4
5 rho=xcov(x,3,'coeff');
6 rho1=rho(3); % lag 1 autocorrelation from xcov
7 rho2=rho(2); % lag 2 autocorrelation from xcov
8
9 % If data are strongly anticorrelated at lag 1 OR 2,
10 % then send a warning message
11 if ((rho1<0 & abs(rho1)>0.1) | (rho2<0 & abs(rho2)>0.1)),
12 error('Data do not resemble white or red noise')
13 % If data are weakly anticorrelated at lag 1 OR 2,
14 % then ASSUME white noise
15 elseif ((rho1<0 & abs(rho1)<=0.1) | (rho2<0 & abs(rho2)<=0.1)),
16 rholag1= 0; % White noise
17 else
18 % If data are uncorrelated or positively correlated at lag 1 AND 2,
19 % then estimate rolag1; if rolag1 turns out to be zero because ro1=ro2=0,
20 % then the noise is actually white
21 rholag1=(rho1+sqrt(rho2))/2;
22 end
23 return

1 function [Pred,omred]=redbckg(x,N_f)
2 % Compute red−noise−background power spectrum (Pred)
3 % with parameter alpha estimated from data series (x)
4 % and corresponding frequencies omega (omred) over N_f points from 0 to pi.
5
6 alpha=AR1_param(x);
7 num=1−(alpha*alpha);
8 k=0:1:N_f/2;
9 omred=2*pi*k/N_f;
10 arg=(2*pi/N_f)*k;
11 den=1+alpha*alpha−2*alpha*cos(arg);
12 p=num./den;
13 s2=var(x);
14 Pred=s2*p';

Starting with the SST data, let us observe the power spectrum plotted on a linear
scale: which is the most prominent peak? Are other peaks observed? Due to the
huge amplitude of the annual cycle in comparison with SST fluctuations of different
origin, the peak at 1 year of period dominates the spectrum and it is difficult to
observe any other peak. The log-log plot evidences another important peak at high
frequency that corresponds to 2 y−1, i.e., to a period of 0.5years, or 6months. This
is a higher harmonic of the annual cycle. The remaining spectral features are still
difficult to observe. The last type of plot produced by periodogram_m_SST_anom,
which reports period instead of frequency in abscissa, on a base-2-logarithmic scale
(reversed, so as to agree in direction with the frequency axis of the previous plots)
reveals a group of peaks that are significant against both white and red noise.
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Now, focus on the last plots that include significance levels:

• does white noise appear a reasonable choice for the background spectrum? Does
red noise appear a better choice?

• which peaks or group of peaks pass the significance test at the 95% c.l. with red
noise background? Which ones pass it at the 99.9% c.l.?

Red noise definitely appears to follow the general spectral shape more closely than
white noise, but in the presence of the annual cycle, only the peaks related to it pass
the test, even at the lowest confidence level considered (95%).

Analyzing the anomalies, the issue of the huge annual peak is solved, and the El
Niño/Southern Oscillation (ENSO) range (2–8 y) turns out to be the most populated
by peaks that pass the red-noise-background test at the 95% c.l., and sometimes
even at the 99.9% c.l.. Based on the content of Sect. 10.8, we can ask ourselves the
following question: if we have a given number ns of spectral samples that exceed
the considered significance level (e.g., the one at the 95% c.l.), does that mean that
all these spectral values are certainly due to some process different from red noise?
The answer is no; our conclusions are to be interpreted in a probabilistic way. Then,
what percentage of the ns “significant” spectral values can be expected to exceed the
significance level accidentally, i.e., by chance?

16.6.4 Checking Stationarity

In the previous subsection we assumed stationarity of the data record. To investigate
about the quality of this assumption for the Nino3-SST-anomaly monthly series,
divide the monthly data sequence of anomalies into three sections. For each section,
center the data and standardize it; compute the periodogram as |X |2/N , and plot it
versus period in years on a reversed log2 scale. Plot also the red noise background
spectrum and the corresponding significance-level curves at the 95 c.l. and 99.9%
confidence levels. Observe the results to decide if stationarity of the process can be
assumed. Use the script reported below.

1 % stationarity
2 % Load Nino3 SST anomaly monthly series, divide it into three sections, compute

Periodogram of each section
3 % and plot it versus period in years on a reversed log2 scale.
4 % Plot red noise background spectrum and corresponding significance levels at 95 and

99.9 % confidence levels.
5
6 load a_sst_nino3_m.dat;
7 Ntot=length(a_sst_nino3_m);
8 load time_m.dat;
9
10 T_s=1/12;
11 f_Ny=1/(2*T_s);

http://dx.doi.org/10.1007/978-3-319-25468-5_10
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12 T_Ny=2*T_s;
13 NN=Ntot/3;
14
15 figure(2900)
16 for i=1:3
17 x=a_sst_nino3_m(1+NN*(i−1):NN*i);
18 x=x−mean(x);
19 N=length(x);
20 N_f=2048;
21 range='twosided';
22 [pow,f]=periodogram(x,boxcar(N),N_f,1/T_s,range);
23 power=pow/T_s;
24 pow=power(2:N_f/2+1);
25 period=1./(f(2:N_f/2+1));
26 signif_fac=chi2inv(.95,2)/2;
27 signif_fac_1=chi2inv(.999,2)/2;
28 [Pred]=redbckg(x,N_f);
29 Pred=Pred(2:end);
30
31 subplot(3,1,i)
32 plot(log2(period),Pred*signif_fac_1,'r')
33 hold on
34 plot(log2(period),Pred*signif_fac,'g')
35 plot(log2(period),Pred,'k')
36 if i==1
37 legend('99.9% c.l.','95% c.l.','r.n. background','Location','NorthWest')
38 end
39 plot(log2(period),pow,'LineWidth',1.5)
40 hold off
41 iniyear=num2str(fix(time_m(1+NN*(i−1))));
42 finyear=num2str(fix(time_m(NN*i)));
43 dash='−';
44 tx=strcat(iniyear,dash,finyear);
45 ht=text(0.2,43,tx);
46 set(ht, 'FontSize',12)
47 Xticks=2.^(fix(log2(min(period))):fix(log2(max(period))));
48 set(gca,'XDir','reverse')
49 set(gca,'Xlim',log2([min(period),max(period)]));
50 set(gca,'XTick',log2(Xticks(:)));
51 set(gca,'XTickLabel',Xticks);
52 set(gca,'Ylim',[0 50]);
53 if i==3
54 hlabelx=get(gca,'Xlabel');
55 set(hlabelx,'String','Period (y)','Interpreter','Latex','FontSize',16)
56 end
57 hlabely=get(gca,'Ylabel');
58 set(hlabely,'String','PSD ($^{\circ}$C$^2$)','Interpreter','Latex','FontSize',16)
59 end

The plots produced by this code clearly tell us that the series is non-stationary. This
naturally leads us towards evolutionary spectral analysis.
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16.7 Evolutionary Spectral Analysis of Nino3 Series via
CWT

We perform evolutionary spectral analysis via CWT (Chap.13) on the Nino3 SST
anomaly seasonal series (N = 576), so as to process a reduced number of samples and
speed up numerical calculations, though preserving a representative record duration
from a climatological point of view. We will standardize our data before analysis.

The CWT script given below calls a few functions that will be described first. Each
of them performs part of the calculations. The CWT is computed in the frequency
domain, as the inverse DFT of the product between the DFT of the data and the
sampled continuous-time Fourier transform of the daughter wavelet at each scale.
The software described and commented here is not only inspired by, but substantially
equal to, the Matlab software made available on the web by Christopher Torrence
and Gilbert P. Compo at http://paos.colorado.edu/research/wavelets/ (see Torrence
and Compo 1998), with only a few changes.

16.7.1 The CWT Using the Complex Morlet Wavelet

The functions providing the building blocks forCWTcomputation arew_parameters,
w_wavfun_fd, w_transform, w_significance, and AR1_param.Wewill now describe
the operations performed by each function (AR1_param has already been described
above).

• w_parameters:
this function provides characteristic parameters of a few complex and real wavelets
employed for the CWT: Morlet, Paul, and real DOGs. The function is called by
w_transform and w_significance, and also by the main CWT script, which will be
called w_nino3. The syntax of w_parameters is

1 [consts] = w_parameters(mother,param)

where in input

– mother is the name of the mother wavelet ψ0(θ) (θ = continuous adimensional
time): ‘Morlet, ‘Paul’, ‘DOG’;

– param is the parameter that defines the mother wavelet: ω0 for the complex
Morlet wavelet (default ω0 = 6), the order m in the remaining cases (default:
m = 4 for Paul, m = 2 for DOG; also the choice m = 6 is available for DOG).

In output, consts is a vector containing the values of several constants, which are
typical of the considered wavelet. We are interested in:

– consts(1) that returns dofmin for significance tests, i.e., the minimum number
of DOF, used for the scalogram test (Sect. 13.5.2): 2 for complex wavelets and
1 for real wavelets;

http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://paos.colorado.edu/research/wavelets/
http://dx.doi.org/10.1007/978-3-319-25468-5_13
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– consts(2) that returns cδ for signal reconstruction (Sect. 13.4.8);
– consts(3) that returns the time decorrelation factor γ , useful for the computation
of the number of DOF in the significance test for the global wavelet spectrum
or GWS (Sect. 13.5.5);

– consts(5) that returns ψ0(0) (value of mother wavelet function at time origin),
a value which is used for the inverse transform;

– consts(6) that returns the Fourier factor k0, thus defining the scale-frequency
relation (Sect. 13.4.9);

– consts(7) that returns kCOI, useful for drawing the COI curve (Sects. 13.4.10
and 13.5.1) on the scalogram plot.

1 function [consts] = w_parameters(mother,param)
2 % Scalar parameters that are characteristic of a wavelet
3 % (Morlet, Paul or DOG)
4 %
5 % Outputs:
6 % consts(1) = dofmin (minimum number of degrees of freedom: 2 for complex wavelets, 1

for real wavelets)
7 % consts(2) = Cdelta (reconstruction constant)
8 % consts(3) = time decorrelation factor
9 % consts(4) = scale decorrelation factor
10 % consts(5) = value of wavelet function at time origin
11 % consts(6) = Fourier factor (ratio between Fourier period and scale)
12 % consts(7) = ratio between e−folding time tau_s and scale
13
14 % Check number of input arguments
15 if (nargin < 2) param=−1; end
16 if(nargin<1)
17 error('Must input a MOTHER')
18 end
19
20 % Default values
21 if (mother == −1), mother ='Morlet'; end
22
23 % Set parameters
24 mother = upper(mother);
25 if (strcmp(mother,'MORLET'))
26 if (param == −1), param = 6.; end
27 om0 = param;
28 consts = [2.,−1,−1,−1,−1,−1,−1];
29 if (om0 == 6)
30 consts(2:5)=[0.771,2.32,0.60,pi^(−1/4)];
31 end
32 if (om0 == 6)
33 consts(6) = (4*pi)/(om0 + sqrt(2 + om0^2));
34 end
35 if (om0 == 6)
36 consts(7) = sqrt(2);
37 end
38 elseif (strcmp(mother,'PAUL'))
39 if (param == −1), param = 4.; end

http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_13
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40 m = param;
41 consts = [2.,−1,−1,−1,−1,−1,−1];
42 if (m == 4)
43 consts(2:5)=[1.080,1.17,1.5,1.079];
44 end
45 if (m == 4)
46 consts(6) = 4*pi/(2*m+1);
47 end
48 if (m == 4)
49 consts(7) = 0.7013;
50 end
51 elseif (strcmp(mother,'DOG'))
52 if (param == −1), param = 2.; end
53 m = param;
54 consts = [1.,−1,−1,−1,−1,−1,−1];
55 if (m==2)
56 consts(2:5) = [3.431,1.43,1.4,0.867];
57 consts(6) = 2*pi*sqrt(2./(2*m+1));
58 consts(7) = 2.124345;
59 end
60 if (m == 6)
61 consts(2:5) = [1.893,1.37,0.97,0.884];
62 consts(6) = 2*pi*sqrt(2./(2*m+1));
63 consts(7) = 1.582865;
64 end
65 else
66 error('Mother must be one of MORLET,PAUL,DOG')
67 end
68 return

• w_wavfun_fd:
this function is “transparent” to the user; it is called by w_transform for each value
aa of the scale factor a. The syntax of w_wavfun_fd is

1 [daughter] = w_wavfun_fd(om,aa,mother,param)

where in input, besides mother and param and the considered scale factor value
(aa), we can see the vector om of the discrete frequencies ωk corresponding to the
samples of the DFT of the data. In output, the function returns the vector of values
of the continuous Fourier transformof the daughterwavelet at the considered scale,
sampled at the frequencies contained in vector om, i.e., at the same frequencies
ωk corresponding to the samples of the DFT of the input sequence.

1 function [daughter] = w_wavfun_fd(om,aa,mother,param)
2 %Wavelet functions Morlet, Paul, or DOG in the frequency domain.
3
4 % Inputs:
5 % om = vector of adimensional angular frequencies
6 % aa = present value of scale factor
7 % Optional inputs: mother, param
8 %
9 % Output:
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10 % daughter = the wavelet in the frequency domain at scale factor aa
11
12 % Check number of input arguments
13 if (nargin < 4), param = −1; end
14 if (nargin < 3), mother= −1; end
15 if (nargin < 2),
16 error('Must input vector of adimensional angular FREQUENCIES and value of

SCALE FACTOR')
17 end
18
19 % Default
20 if (mother==−1), mother='Morlet'; end
21 mother = upper(mother);
22 if (strcmp(mother,'MORLET'))
23 if (param == −1), param = 6.; end
24 om0 = param;
25 expnt = −(aa.*om − om0).^2/2.*(om > 0.);
26 norm = sqrt(aa)*(pi^(−0.25))*sqrt(2*pi);
27 daughter = norm*exp(expnt);
28 daughter = daughter.*(om > 0.);% Heaviside step function
29 elseif (strcmp(mother,'PAUL'))
30 if (param == −1), param = 4.; end
31 m = param;
32 expnt = −(aa.*om).*(om > 0.);
33 norm = sqrt(2*pi*aa)*(2^m/sqrt(m*prod(2:(2*m−1))));
34 daughter = norm*((aa.*om).^m).*exp(expnt);
35 daughter = daughter.*(om > 0.);% Heaviside step function
36 elseif (strcmp(mother,'DOG'))
37 j=sqrt(−1);
38 if (param == −1), param = 2.; end
39 m = param;
40 expnt = −(aa.*om).^2 ./ 2.0;
41 norm = sqrt(2*pi*aa/gamma(m+0.5));
42 daughter = −norm*(j^m)*((aa.*om).^m).*exp(expnt);
43 else
44 error('Mother must be one of MORLET,PAUL,DOG')
45 end
46 return

• w_transform:
this function computes the CWT, by

– applying the necessary zero padding to the data record, in order to avoid time-
domain aliasing;

– computing the DFT of the padded data via FFT;
– building the vector a of scale factors as a = a02 jδ j , with j = [0, J ], on the basis
of the values of a0 ≡ a0, dj ≡ d j and J ≡ J that are set by the user in the main
script w_nino3, which calls w_transform;

– building the vector om of angular frequencies3;

3Angular frequencies here are in (−π, π ]. There is no particular reason for this choice, which is
perfectly equivalent to the usual one [−π, π).
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– initiating a loop over scale factors, in which at each scale
· the function w_wavfun_fd is called to compute the daughter-wavelet Fourier
transform samples over the frequency set ωk ;

· the sampled daughter-wavelet Fourier transform is multiplied by the DFT of
the data sample by sample;

· the inverse DFT of the resulting product is taken, to obtain the CWT samples
at the considered scale; at the end of the loop, the whole CWT matrix (wave)
is ready;

– getting rid of the effects of the padding, by discarding the CWT elements with
time indexes exceeding the original number of data;

– computing the wavelet energy density as the squaremodulus of the wavematrix;
this new matrix is called power; note that this is just a name;

– calling w_parameters to retrieve consts(6) and consts(7);
– computing, from the vector a of scale factors and from consts(6) (Fourier factor),
the vector of adimensional periods (period);

– computing the adimensional cone-of-influence (coi); for this purpose,
· the ratio consts(6)/consts(7) is calculated;
· this ratio is multiplied by the vector of time indexes (i.e., delay indexes). The
resulting vector contains the critical value of period (Pad

COI = (k0/kCOI)n)
corresponding to each adimensional time value; this allows drawing the cup-
shaped curve of the COI in the scalogram plane;

– checking the computed values of wave. An inverse CWT (Sect. 13.4.5) is per-
formed, reconstructing the signal on the basis of all elements of wave. The
reconstruction is plotted onto the original series. If all the time scales at which
the input signal varies are taken into account when the numbers of octaves and
voices are chosen in the main CWT script, the reconstruction performed by
w_transform is expected to be approximately equal to the original series. The
mean square reconstruction error and the variance of the reconstructed series
are also computed; this variance should approximate the variance of the input
record, which after standardization is 1. If the user selected a smaller set of
scales for the analysis, the reconstruction will lack the largest scales (the lowest
frequencies) involved in the signal’s variability. Indeed, the minimum scale is
usually set according to Nyquist’s criterion, on the basis of the scale-frequency
relation that holds for the chosenmother wavelet; therefore reducing the number
of octaves ultimately leads to neglecting the largest scales. The maximum scale,
on the other hand, is constrained by the record length (Sect. 13.5).

The syntax of w_transform is

1 [wave,period,a,coi,power,xcheck] = w_transform(x,dj,a0,J,mother,param)

where x represents the input sequence, and dj (≡δ j ), a0 (≡a0) and J (≡J ) are
the user-provided constants needed to build the vector of scale factors. In ouput,
xcheck is the reconstructed test-series; the meaning of the other output arguments
has already been explained.

http://dx.doi.org/10.1007/978-3-319-25468-5_13
http://dx.doi.org/10.1007/978-3-319-25468-5_13


16.7 Evolutionary Spectral Analysis of Nino3 Series via CWT 833

1 function [wave,period,a,coi,power,xcheck] = w_transform(y,pad,dj,a0,J,
flag_tests,mother,param)

2 % Wavelet transform of vector y in the frequency domain
3
4 % Optional inputs:
5 % pad = flag for zero padding
6 % dj = spacing between discrete scale factors
7 % a0 = minimum scale factor
8 % J = total number of scales −1
9 % flag_tests = flag for performing tests
10 % (reconstruction, Parseval's equation, etc.)
11 % mother = mother wavelet name
12 % param = parameter for mother wavelet
13 % See default values.
14 %
15 % Outputs:
16 % wave = complex arry containing the CWT of y
17 % period = adimensional periods
18 % a = scale factors
19 % coi = adimensional cone−of−influence
20 % power = square modulus of CWT
21
22 % Check number of input arguments
23 if (nargin < 8), param = −1; end
24 if (nargin < 7), mother = −1; end
25 if (nargin < 6), flag_test = 0; end
26 if (nargin < 5), J = −1; end
27 if (nargin < 4), a0 = −1; end
28 if (nargin < 3), dj = −1; end
29 if (nargin < 2), pad = 0; end
30 if (nargin < 1)
31 error('Must input a DATA vector y')
32 end
33 N1 = length(y);% original series
34
35 % Default values
36 if (dj == −1), dj = 1./4.; end
37 if (a0 == −1), a0=2; end
38 if (J == −1), J=fix((log(N1/a0)/log(2))/dj); end
39 if (mother == −1), mother ='MORLET'; end
40
41 % Perform zero−padding if required
42 x(1:N1) = y−mean(y);% redundant if y is already centered
43 if (pad == 1)
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44 base2 = nextpow2(N1);% power of 2 nearest to N1
45 x = [x,zeros(1,2^(base2)−N1)];
46 end
47 N = length(x);% padded series
48
49 % Compute FFT of the padded series
50 X = fft(x);
51
52 % Construct SCALE FACTOR array
53 a = a0*2.^((0:J)*dj);
54
55 % Allocate empty complex WAVE array
56 wave = zeros(J+1,N);
57 wave = complex(wave,wave);
58
59 % Construct vector of adimensional angular frequencies
60 % used in transform
61 om = 1:fix(N/2);
62 om = om.*(2*pi/N);
63 om = [0., om, −om(fix((N−1)/2):−1:1)];
64
65 % Loop through all scale factors and compute transform
66 for jj = 1:J+1
67 [daughter]=w_wavfun_fd(om,a(jj),mother,param);
68 wave(jj,:) = ifft(X.*daughter); % wavelet transform
69 end
70
71 % Get rid of padding
72 wave = wave(:,1:N1);
73
74 % Compute wavelet power
75 power = (abs(wave)).^2 ;
76
77 % Get more parameters for the chosen wavelet
78 [consts]=w_parameters(mother,param);
79
80 % Adimensional periods
81 period = consts(6)*a;
82
83 % Adimensional cone of influence
84 coi=consts(6)/consts(7);
85 coi = coi*[1E−5,1:((N1+1)/2−1),fliplr((1:(N1/2−1))),1E−5];
86
87 % Tests
88 summnd=NaN(J+1,N1);
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89 if(flag_tests==1)
90 % Reconstruction (inverse transform)
91 Cdelta=consts(2);
92 psizerozero=consts(5);
93 coeffi=dj/(Cdelta*psizerozero);
94 for jj=1:J+1
95 summnd(jj,:)=real(wave(jj,:))/sqrt(a(jj));
96 end
97 xcheck=sum(summnd);
98 xcheck=coeffi*xcheck;
99 figure(9999)

100 plot(x(1:N1),'k')
101 hold on
102 plot(xcheck,'r')
103 title ( 'Reconstruction check: data vs. index');
104 legend('Original data','Reconstructed data')
105 hold off
106
107 % Reconstruction error
108 test=xcheck−x(1:N1);
109 test=test.*test;
110 rec_mse=sum(test)/N
111 rec_rmse=sqrt(rec_mse)
112
113 % Variance of reconstructed data
114 test_var=var(xcheck)
115
116 % Parseval's theorem
117 for jj=1:J+1
118 summnd(jj,:)=(abs(wave(jj,:))).^2/a(jj);
119 end
120 summnd1=sum(summnd);
121 parseval=sum(summnd1);
122 parseval=parseval*dj/(N1*Cdelta)
123 end
124 return

• w_significance:
this functions computes the significance levels for the scalogram and GWS. Its
syntax is

1 [signif,P_red] = w_significance(y,a,sigtest,rolag1,conflev,dof,mother,param)

In input,
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– y can be the input series, or directly its variance; if it is a scalar, w_significance
assumes it is a variance; if it is a vector, the corresponding variance is computed;

– a is the vector of scale factors;
– sigtest can be 0, or 1. If sigtest = 0 (default), a regular χ2 test is performed on
scalogram values; if sigtest = 1, a suitable test for the GWS is applied;

– rholag1 is the parameter α of the AR(1) model for the red-noise background;
– conflev is the confidence level for the significance tests (default 95%, assumed
if conflev = −1);

– dof is the number of DOF, depending on the value of sigtest. If sigtest = 0,
then dof is automatically set to consts(1)= dofmin, i.e., 2 for a complex mother
wavelet, and 1 for a real one; if sigtest = 1, then dof must be provided in input.
It must be set to dof = N − consts(7)*a, where N is the number of time steps
averaged together to form an individual GWS sample, and the term consts(7)*a
is an empirical correction related to the zero-padding performed at the edges
of the series. The term subtracted from N is aimed at taking into account the
distortion due to the cone of influence, meaning that the spectral values inside
the coi reduce the number of independent estimates that are averaged together,
in a way that is more and more statistically important as the scale increases.

The output vector, called signif, is the vector of significance level values (one for
each scale). Also the background spectrum P_red can be retrieved, but we will not
use it in the present exercise.

1 function [signif,P_red] = w_significance(y,a,sigtest,rholag1,siglvl,dof,mother,param)
2 % Significance test for wavelet transform
3
4 % Inputs:
5 %
6 % y = the time series, or, the variance of the time series.
7 % (If this is a single number, it is assumed to be the variance)
8 % a = the vector of scale factors.
9 %
10 % Optional inputs: mother,param
11 %
12 % *** Note *** setting any of the following to −1 will cause the default value to be used

.
13 %
14 % sigtest = 0, or 1. If omitted, then assume 0.
15 %
16 % If 0 (default), then just do a regular chi−square test.
17 % If 1, then do a"time−average" test.
18 % In this case, dof should be set to N_a, the number of local wavelet spectra
19 % that were averaged together.
20 % For the GWS, this is N_a=N, where N is the number of points in the input

series,
21 % minus a correction for the effects of the cone of influence
22 %
23 % rholag1 = lag−1 autocorrelation, used for significance levels. Default is 0.0.
24 %
25 % siglvl = confidence level to use for significance test. Default is 0.95.
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26 %
27 % dof = degrees−of−freedom for significance test.
28 % If sigtest=0, then (automatically) dof = 2 (or 1 for mother='DOG')
29 % If sigtest=1, then dof = N_a, the number of time steps averaged together.
30 %
31 % Note: If sigtest=1, then dof can be a vector (same length as a=scale factors),
32 % in which case N_a is assumed to vary with scale.
33 % This allows one to take into account the effect of the cone of influence.
34 % Outputs:
35 %
36 % signif = significance level
37 % P_red = theoretical red−noise spectrum
38
39 % Check number of input arguments
40 if (nargin < 8), param = −1; end
41 if (nargin < 7), mother = −1; end
42 if (nargin < 6), dof = −1; end
43 if (nargin < 5), siglvl = −1; end
44 if (nargin < 4), rholag1 = −1; end
45 if (nargin < 3), sigtest = −1; end
46 if (nargin < 2)
47 error('Must input a DATA vector y, and SCALE FACTOR vector a')
48 end
49
50 % Default values
51 if (sigtest == −1), sigtest = 0; end
52 if (rholag1 == −1), rholag1 = 0.0; end
53 if (siglvl == −1), siglvl = 0.95; end
54 if (mother == −1), mother = 'Morlet'; end
55
56 % Check
57 if dof==−1
58 if sigtest==1
59 error('Must input dof if sigtest is 1')
60 end
61 end
62 N1 = length(y);
63 J = length(a) − 1;
64 dj = log(a(2)/a(1))/log(2.);
65 if (N1 == 1)
66 variance = y;
67 else
68 variance = std(y)^2;
69 end
70
71 % Get appropriate parameters
72 [consts]=w_parameters(mother,param);
73 period = a.*consts(6); % adimensional periods
74 dofmin = consts(1); % degrees of freedom with no smoothing
75 Cdelta = consts(2); % reconstruction factor
76 gamma_fac = consts(3); % time−decorrelation factor
77 dj0 = consts(4); % scale−decorrelation factor
78
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79 % Red noise spectrum and significance levels for scalogram
80 nu = 1 ./ period; % normalized frequency
81 P_red = (1−rholag1^2) ./ (1−2*rholag1*cos(nu*2*pi)+rholag1^2);
82 P_red = variance*P_red; % include time−series variance
83
84 signif=NaN(1,J+1); % initialize signif
85
86 if (sigtest == 0) % no smoothing, dof=dofmin: for scalogram
87 dof = dofmin;
88 chisquare = chi2inv(siglvl,dof)/dof;
89 signif = P_red*chisquare ;
90
91 elseif (sigtest == 1) % time−average significance: for global wavelet spectrum
92 if (length(dof) == 1), dof=zeros(1,J+1)+dof; end
93 truncate = find(dof < 1);
94 dof(truncate) = ones(size(truncate));
95 dof = dofmin*sqrt(1 + (dof/gamma_fac ./ a).^2 );
96 truncate = find(dof < dofmin);
97 dof(truncate) = dofmin*ones(size(truncate));
98 for jj = 1:J+1
99 chisquare = chi2inv(siglvl,dof(jj))/dof(jj);

100 signif(jj) = P_red(jj)*chisquare;
101 end
102
103 else
104 error('sigtest must be either 0, or 1')
105 end
106 return

Now we can put all together in the main script w_nino3, to perform the following
steps.

• Choose a mother wavelet (mother) and its parameter.
• Choose the minimum scale factor, a0. This depends on the wavelet, since it is
chosen according to the scale-frequency relation (see Sect. 13.4.9).

• When requested to state if the data have to be standardized, or not, choose stan-
dardization, for coherence with the previous exercises.

• Set confidence levels for significance tests: a single one for the scalogram (95%),
which is also used for the GWS, and four additional levels for the GWS; for
example, choose 90%, 92%, 98% and 99%;

• Load the data record (a_nino3_SST_s.dat) and the corresponding time values
(time_s.dat) and place them in vectors z and time, respectively.

• Compute the length N of z.
• Compute the mean value, standard deviation and variance of z.
• Center the data by subtracting the mean (even if the mean is already very close to
zero in the present case). Standardize them dividing by their standard deviation.
Place the pre-processeddata in vector x. Thevariance of x in case of standardization
will be 1. This leads to a standardized scalogram.

• Specify the value of the sampling interval for the data record (T_s = 0.25 years).

http://dx.doi.org/10.1007/978-3-319-25468-5_13
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• Set the total number of octaves to be included in the analysis (n_oct = 8 in the
present case) and the inverse of the number of voices per octave (δ j ≡ dj = 0.05).
Compute the corresponding total number of scales, minus 1 (J ≡ J).
The choice of the values n_oct = 8 and dj = 0.05 can be justified as follows.
Since fmin = 1/(N Ts), νmin = 1/N ; then Pad

max = k0amax = 1/νmin = N , hence
amax = N/k0. At the same time, a0 = 2/k0; therefore, the ratio of the maximum
scale factor to the minimum is

amax

a0
= N

2
= 576

2
= 288,

which is comprised between 28 = 256 and 29 = 512. But

amax

a0
= 2Jδ j = 2noct ,

where noct is the number of octaves. Hence,

noct = log2
amax

a0
.

We choose noct = 8. Adopting dj = 0.05 for a smooth scalogram plot, we get

J = 1

δ j

log
(

amax
a0

)

log 2
= 160.

A smaller value of δ j ≡ dj would give the scalogram a finer scale structure, but
would also imply a greater computational burden. We will later check the quality
of these choices observing the results of the reconstruction test and the scalogram
and GWS plots (see Sect. 13.5).

• Compute the CWT of x by calling the function w_transform, thus obtaining as
outputs the matrices wave and power, and the vectors a, period and coi.

• Compute the parameter α ≡ rholag1 of the AR(1) model for the red-noise back-
ground, by calling AR1_param according to the syntax

1 rholag1 = AR1_param(z)

• Compute the significance level for the scalogram (signif), as a function of scale or
period, by calling w_significance. Provide in input

– the variance of the data after standardization, i.e., 1;
– the scale-factor vector a;
– sigtest = 0;
– the parameter rholag1;
– the confidence level, conflev;
– dof = dofmin, or −1 (default);
– mother and param.

http://dx.doi.org/10.1007/978-3-319-25468-5_13
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The output vector (signif) has one element for each scale; to get a quantity that can
be plotted in the time-period plane, expand signif, transforming it into a matrix
(sig) with dimensions (J + 1) × N. Then redefine sig as the ratio between power
and sig, so that in the scalogram contour plot, special contour lines can be drawn
where sig attains 1. The areas included inside these special contour lines have
sig ≥ 1 and thus exhibit significant power.

• Compute the GWS (global_ws) averaging power over time at each scale.
• Compute the significance level for the GWS at the same confidence level chosen
for the scalogram (global_signif), as well as at a set of four different confidence
levels (glob_sign), performing new calls to w_significance.4 At each call, provide
in input

– the variance of the data after standardization, i.e., 1;
– the scale-factor vector a;
– sigtest = 1;
– the parameter rholag1;
– the confidence level conflev;
– dof. This variable must contain the number of independent estimates that were
averaged to obtain the GWS at each scale. So, call w_parameters to get consts
and set dof = N − consts(7)*a. This statement also turns dof into a vector of
length J + 1, which is useful in w_significance, where the dof will be further
processed to produce a variable representing the actual number of DOF for the
GWS test at each scale.

– mother and param.

• Translate, using T_s, the adimensional coi and period vectors into the correspond-
ing values in years.

The main script (w_nino3) is listed below.

1 % w_nino3.m
2 % Perform CWT analysis of Nino3 seasonal SST anomalies
3
4 clear
5
6 % Chose mother wavelet
7 prompt='Mother wavelet? (1 = Morlet, 2 = Paul(m=4), 3 = DOG(m=2), 4=

DOG(m=6))';
8 flagmother = input(prompt);
9

10 if flagmother == 1

4We could decide to always include the c.l. used for the scalogram in this set of four probability
values and avoid the calculation of global_signif. However, we prefer to keep the choice of the
additional c.l. values for the GWS separate from the choice made for the scalogram. At the same
time, it is evident that if we used the 95% for the scalogram, for instance, we must also use it for
the GWS. So, global_signif is directly related to the choice made for the scalogram significance
test, while glob_sign is completely free for what concerns the probability levels.
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11 mother = 'Morlet'
12 param = 6
13 % mother and param are Morlet, 6 by default
14 % in functions called later.
15 % Therefore this statement could be omitted
16 a0 = 2; % minimum scale factor
17 elseif flagmother == 2
18 mother = 'Paul'
19 param = 4
20 a0 = 2;
21 elseif flagmother == 3
22 mother='DOG'
23 param = 2
24 a0 = 1/2;
25 elseif flagmother == 4
26 mother='DOG'
27 param=6
28 a0 = 1;
29 else
30 error('Must input 1, or 2, or 3, or 4')
31 end
32
33 % Decide if data must be standardized
34 prompt='Standardize data? (1 = yes, 0 = no)';
35 istand = input(prompt);
36
37 % Decide if tests in w_transform are of interest
38 prompt='Perform tests in w_transform? (1 = yes, 0 = no)';
39 flag_tests = input(prompt);
40
41 % Confidence levels for tests
42 cl=NaN(1,4);% for the GWS
43 cl(1)=0.90;
44 cl(2)=0.92;
45 cl(3)=0.98;
46 cl(4)=0.99;
47 conflev=−1; % 0.95 for the scalogram and the GWS
48
49 pad = 1; % pad the time series with zeroes
50 % (recommended)
51
52 % Input data
53 z = load('a_sst_nino3_s.dat');
54 time=load('time_s.dat');
55 N=length(z)
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56 T_s = 0.25 ; % sampling interval in years (seasonal data)
57
58 % Octaves, voices & scales
59 n_oct=8; % number of octaves
60 dj = 0.05; % inverse of n. of intervals per octave
61 J = n_oct/dj; % n. of powers−of−two (octaves)
62 % with 1/dj intervals each
63
64 % Computation
65 n_scales=J+1
66
67 glob_sign=NaN(n_scales,4); % initialize glob_sign
68
69 % Compute variance of data
70 variance = var(z)
71
72 % Remove mean − variance remains unchanged
73 mu=mean(z);
74 x = z − mu;
75
76 % If required, standardize data:
77 % variance becomes 1
78 if istand==1
79 x = x/sqrt(variance);
80 end
81
82 % Compute variance again
83 variancex = var(x)
84
85 % Wavelet transform
86 [wave,period,a,coi,power] = w_transform(x,pad,dj,a0,J,flag_tests,mother,

param);
87
88 % Significance levels for scalogram
89 [rholag1] = AR1_param(z) % Compute AR(1) parameter
90 % for red noise background
91 [signif] = w_significance(variancex,a,0,rholag1,conflev,−1,mother,param);
92 % signif is a (J+1)−long vector
93 sig = (signif')*(ones(1,N)); % expand signif −−> (J+1)x(N) array
94 sig = power./ sig; % where ratio > 1, power is significant
95
96 % Global wavelet spectrum & significance levels
97 global_ws=sum(power')/N;
98 [consts]=w_parameters(mother,param);
99 dof = N − consts(7)*a;
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100 % where the last term is an empirical correction
101 % for padding at the edges of the series
102 [global_signif] = w_significance(variancex,a,1,rholag1,conflev,dof,mother,

param);
103 for icl=1:4
104 [glob_sign(:,icl)] = w_significance(variancex,a,1,rholag1,cl(icl),dof,

mother,param);
105 end
106
107 % Turn to dimensional cone−of−influence and period
108 coi=coi*T_s;
109 period=period*T_s;
110
111 % Save results in .mat file
112 if flagmother==1
113 save w_nino3_Morl.mat
114 elseif flagmother==2
115 save w_nino3_Paul.mat
116 elseif flagmother==3
117 save w_nino3_DOG2.mat
118 else
119 save w_nino3_DOG6.mat
120 end

Run the main script, using the Morlet wavelet, choosing to standardize the data and
to perform the reconstruction test in w_transform. The test-reconstruction plot will
appear in a figure numbered 9999. After running the main script, use the following
code (plot_w_nino3) to plot the input series, the scalogramwith its single sigificance
level, and the GWS with its various significance levels. Make figure full-screen to
be able to observe its details.

1 % plot_w_nino3
2 % Plot results of w_nino3
3
4 % Chose mother wavelet
5 prompt= 'Mother wavelet? (1 = Morlet, 2 = Paul(m=4), 3 = DOG(m=2), 4= DOG(m=6))';
6 flagmother = input(prompt);
7
8 % Load computation results from mat file
9 if flagmother==1
10 load w_nino3_Morl.mat
11 elseif flagmother==2
12 load w_nino3_Paul.mat
13 elseif flagmother==3
14 load w_nino3_DOG2.mat
15 else
16 load w_nino3_DOG6.mat
17 end
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18
19 label1y='Anomaly ($^{\circ}$C)';
20 title1='NINO3 SST seasonal anomalies';
21 label2x='Year AD';
22 label2y='Period (y)';
23 title2='Wavelet spectrum';
24 label3x='Power';
25 title3='GWS';
26 xlim = [time(1),time(end)];
27 ylim1= [min(z) max(z)];
28 xti=1880:20:2000;
29 gws_lim1=0.05;
30 gws_lim2=50;
31 xti_gws=[10^(−1) 10^0 10^1 10^2];
32 levels=linspace(log2(min(power(:))),log2(max(power(:))),64);
33
34 figure(3000+flagmother−1)
35 %−−− Plot time series
36 subplot('position',[0.1 0.73 0.62 0.18])
37 plot(time,z)
38 set(gca,'XLim',xlim(:))
39 set(gca,'YLim',ylim1(:))
40 set(gca,'XTick',xti)
41 set(gca,'YTick',[−2:4])
42 hlabely=get(gca,'Ylabel');
43 set(hlabely,'String',label1y,'Interpreter','Latex','FontSize',12)
44 title(title1, 'FontSize',10,'FontWeight','Bold')
45
46 %−−− Contour plot wavelet power spectrum
47 subplot('position',[0.1 0.12 0.62 0.48])
48 pow_lev=2.^levels
49 nlev=length(pow_lev)
50 [c,H]=contourf(time,log2(period),log2(power),levels);
51 colormap(jet)
52 set(H,'LineStyle','none')
53 set(gca,'XLim',xlim(:))
54 set(gca,'XTick',xti)
55 Yticks = 2.^(fix(log2(min(period))):fix(log2(max(period))));
56 set(gca,'YLim',log2([min(period),max(period)]),'YDir','reverse','YTick',log2(Yticks(:)),'

YTickLabel',num2str(Yticks'),'layer','top')
57 hlabelx=get(gca,'Xlabel');
58 set(hlabelx,'String',label2x,'Interpreter','Latex','FontSize',12)
59 hlabely=get(gca,'Ylabel');
60 set(hlabely,'String',label2y,'Interpreter','Latex','FontSize',12)
61 title(title2, 'FontSize',10,'FontWeight','Bold')
62 hold on
63 % significance contour, levels at −99 (fake) and 1 (signif)
64 [c,h] = contour(time,log2(period),sig,[−99,1],'k','LineWidth',1.5);%95%
65 % cone−of−influence, anything "below" is dubious
66 plot(time,log2(coi),'w','LineWidth',1.5)
67 hold off
68
69 %−−− Plot global wavelet spectrum
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70 subplot('position',[0.74 0.12 0.23 0.48])
71 semilogx(global_signif,log2(period),'k','LineWidth',1.5)%95%
72 hold on
73 semilogx(glob_sign(:,1),log2(period),'g','LineWidth',1.5)%90%
74 semilogx(glob_sign(:,2),log2(period),'m','LineWidth',1.5)%95%
75 semilogx(glob_sign(:,3),log2(period),'b','LineWidth',1.5)%98%
76 semilogx(glob_sign(:,4),log2(period),'r','LineWidth',1.5)%99%
77 semilogx(global_ws,log2(period),'k','LineWidth',1.5)
78 hold off
79 Yticks = 2.^(fix(log2(min(period))):fix(log2(max(period))));
80 set(gca,'YLim',log2([min(period),max(period)]),'YDir','reverse','YTick',log2(Yticks(:)),'

YTickLabel','')
81 set(gca,'XLim',[gws_lim1,gws_lim2])
82 set(gca,'XTick',xti_gws)
83 hlabelx=get(gca,'Xlabel');
84 set(hlabelx,'String',label3x,'Interpreter','Latex','FontSize',12)
85 title(title3, 'FontSize',10,'FontWeight','Bold')

The interpretation of these graphs has been given in Sect. 13.5.3.

16.7.2 The CWT with Other Wavelets

We will now repeat the analysis with the other three wavelets (Paul and real DOGs
with orders 2 and 6) to see if changing the mother wavelet modifies the results.

1. Run again the CWT and plotting scripts with the Paul wavelet with parameter
m = 4. This wavelet is narrower in time than the Morlet wavelet, and this pro-
duces a better temporal localization of transient events, at the cost of a poorer
frequency resolution. Anyway, the main features detected in the series by the
previous analysis are visible in this new scalogram. The GWS is much smoother.
On the other hand, the cone of influence is less extended.

2. Run again the CWT and plotting scripts with the DOG wavelet with parameter
m = 2 (MexicanHat wavelet). The fine scale structure observed in this case is due
to the fact that the wavelet is real, and therefore captures positive and negative
variations of the centered input sequence as separate peaks in the scalogram.
The Morlet wavelet, on the contrary, is a complex analytic function containing
six oscillations under the Gaussian dome, and therefore combines negative and
positive local extrema into a single peak, whose width depends on the scale.
If we decided to plot the real and imaginary parts of the Morlet-based CWT
separately, we would obtain a picture very similar to the one obtained using the
Mexican Hat.Moreover, DOG(m = 2) is relatively narrow in time and broadband
in frequencywith respect to theMorletwavelet, and therefore in the corresponding
scalogram the high-power areas are narrow in time and quite elongated in period.
The main features revealed by the previous scalograms remain unaltered, though
the scalogram is overall less easily interpretable than with complex wavelets.

http://dx.doi.org/10.1007/978-3-319-25468-5_13
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3. Run again the CWT and plotting scripts with the DOG wavelet with parameter
m = 6 and observe the changes with respect to the DOG(m = 2) case.

16.7.3 Global Wavelet Spectrum Versus Periodogram

It is interesting to compare the GWS obtained using the Morlet wavelet with the
periodogram. The GWS must be compared with a twosided periodogram of the
same data. This comparison is performed by the script named periodogram_gws. In
this script we take the running average over n_ra samples of the PSD computed via
periodogram for the centered and standardized seasonal anomalies (n_ra = 3, 7, 21,
and 71), and compare these smoothed periodograms with the GWS.

1 % periodogram_gws
2 % Compare GWS with smoothed periodograms obtained by running averages
3 % over different numbers of periodogram samples
4
5 % Chose mother wavelet
6 prompt='Mother wavelet? (1 = Morlet, 2 = Paul(m=4), 3 = DOG(m=2), 4= DOG(m=6))';
7 flagmother = input(prompt);
8
9 % Load computation results from mat file
10 if flagmother==1
11 load w_nino3_Morl.mat
12 elseif flagmother==2
13 load w_nino3_Paul.mat
14 elseif flagmother==3
15 load w_nino3_DOG2.mat
16 else
17 load w_nino3_DOG6.mat
18 end
19
20 load a_sst_nino3_s.dat;
21
22 % Set number of values for periodogram's running average
23 n_ra=[3 7 21 71];
24
25 % Compute periodogram
26 T_s=1/4;
27 f_s=1/T_s;
28 N=length(z);
29 N_f=1024;
30 range='twosided';
31 [PSD,f]=periodogram(x,boxcar(N),N_f,f_s,range);%use same data as CWT, centered only

, or centered and standardized
32 PSD=PSD*f_s; % remove normalization
33 pow=PSD(2:end);% eliminate zero frequency
34 % corresponding to infinite period
35 per=1./f(2:end);
36
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37 % Smooth periodogram with running average filter
38 % over different numbers of points and plot
39 % together with GWS
40 figure(3100)
41 for ia=1:length(n_ra)
42 n_rav=n_ra(ia);
43 % Generate filter weights
44 a = 1;
45 b = ones(n_rav,1)*1/n_rav;
46 % Filter periodogram and corresponding periods
47 per_ra0 = filter(b,a,per);
48 pow_ra0 = filter(b,a,pow);
49 % Discard transients
50 per_ra=per_ra0(n_rav:end);
51 pow_ra=pow_ra0(n_rav:end);
52 % Plot
53 subplot(2,2,ia)
54 plot(log2(per),pow,'g')%periodogram
55 hold on
56 plot(log2(per_ra),pow_ra,'r')%smoothed periodogram
57 text('String','$q=$','Interpreter','Latex','Position',[log2(100) 9],'FontSize',16)
58 n_rav_str=num2str(n_rav);
59 text('String',n_rav_str,'Position',[log2(30) 9],'FontSize',12)
60 plot(log2(period),global_ws)%GWS
61 hold off
62 Xticks=2.^(fix(log2(min(period))):fix(log2(max(period))));
63 set(gca,'XDir','reverse')
64 set(gca,'Xlim',log2([min(period),max(period)]));
65 set(gca,'XTick',log2(Xticks(:)));
66 set(gca,'XTickLabel',Xticks);
67 set(gca,'YLim',[0 10])
68 set(gca,'YTick',[0:2:10]);
69 hlabelx=get(gca,'Xlabel');
70 set(hlabelx,'String','Period (y$^{−1}$)','Interpreter','Latex','FontSize',16)
71 hlabely=get(gca,'Ylabel');
72 set(hlabely,'String','PSD ($^{\circ}$C$^2$)','Interpreter','Latex','FontSize',16)
73 end

Observe how the Fourier spectrum tends to become very similar to the GWS as the
smoothing applied to the periodogram increases. The amount of smoothing required
to obtain this similarity increases with decreasing period (increasing frequency; see
Sect. 13.5.5).

16.7.4 Reconstruction of Significant Oscillations

Our goal here is to reconstruct the significant oscillation detected in the anomaly
series. This oscillation is in the period range that is typical of the ENSOphenomenon.
In order to be able to do so, wemust decide how to select the range of periods involved
in the reconstruction, and we will base our decision on the GWS shape. We plot the

http://dx.doi.org/10.1007/978-3-319-25468-5_13
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GWS with its significance levels and decide to include the complete GWS peaks
found in this range, i.e., periods from 2 to 8years, represented by vertical lines in
the figure produced by the following script, plot_gws_nino3.

1 % plot_gws_nino3.m
2 % Plot GWS from CWT analysis of Nino3 SST anomalies.
3
4 % Chose mother wavelet
5 prompt='Mother wavelet? (1 = Morlet, 2 = Paul(m=4), 3 = DOG(m=2), 4= DOG(m=6))';
6 flagmother = input(prompt);
7
8 % Load computation results from mat file
9 if flagmother==1
10 load w_nino3_Morl.mat
11 elseif flagmother==2
12 load w_nino3_Paul.mat
13 elseif flagmother==3
14 load w_nino3_DOG2.mat
15 else
16 load w_nino3_DOG6.mat
17 end
18
19 pow=global_ws;
20 gsig=global_signif;
21 gsi=glob_sign;
22
23 figure(3200)
24 plot(log2(period),pow,'LineWidth',1.5)
25 hold on
26 plot(log2(period),gsi(:,1),'c')
27 plot(log2(period),gsi(:,2),'g')
28 plot(log2(period),gsi(:,3),'m')
29 plot(log2(period),gsi(:,4),'r')
30 Xticks=2.^(0:3.5);
31 set(gca,'XDir','reverse')
32 set(gca,'XLim',[0 3.5]);
33 set(gca,'XTick',log2(Xticks(:)));
34 set(gca,'XTickLabel',Xticks);
35 set(gca,'YLim',[0 6.5]);
36 hlabelx=get(gca,'Xlabel');
37 set(hlabelx,'String','Period (y)','Interpreter','Latex','FontSize',16)
38 hlabely=get(gca,'Ylabel');
39 set(hlabely,'String','GWS','Interpreter','Latex','FontSize',16)
40 legend('Power','90%','95%','98%','99%')
41 plot(log2(2)*ones(2,1),[0 6.5],'k')
42 plot(log2(8)*ones(2,1),[0 6.5],'k')
43 hold off

Then we reconstruct the oscillation using the script called w_recostr_nino3, in which
we select the contributions of cyclicities with periods in the range 2–8years. For
reconstruction we avoid data standardization.
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1 % w_recostr_nino3
2 % Perform CWT analysis and series reconstruction.
3 % Plot reconstruted series and list included periods and scales.
4
5 % Chose mother wavelet
6 prompt='Mother wavelet? (1 = Morlet, 2 = Paul(m=4), 3 = DOG(m=2), 4= DOG(m=6))';
7 flagmother = input(prompt);
8
9 if flagmother == 1
10 mother = 'Morlet'
11 param = 6
12 a0 = 2;
13 elseif flagmother == 2
14 mother = 'Paul'
15 param = 4
16 a0 = 2;
17 elseif flagmother == 3
18 mother='DOG'
19 param = 2
20 a0 = 1/2;
21 elseif flagmother == 4
22 mother='DOG'
23 param=6
24 a0 = 1;
25 else
26 error('Must input 1, or 2, or 3, or 4')
27 end
28
29 % Choose range of periods on which the reconstruction will be based
30 prompt='Minimum and maximum dimensional period of interest []?';
31 incl_per = input(prompt);
32
33 % Do not standardize data and pad the time series with zeroes
34 istand=0;
35 pad = 1;
36
37 % Load data
38 z = load('a_sst_nino3_s.dat');
39 time=load('time_s.dat');
40 N=length(z)
41 T_s = 0.25 ;% sampling interval
42 incl_adim_per = incl_per/T_s; % adimensional periods
43
44 dj = 0.05; % inverse of n. of intervals per octave
45 J = 8/dj; % n. of powers−of−two (octaves)
46 % with 1/dj intervals each
47 n_scales=J+1
48
49 % Remove mean − variance remains unchanged
50 mu=mean(z);
51 x = z − mu;
52
53 % Wavelet transform and reconstruction
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54 [rec,a,period] = w_transform_rec(x,pad,dj,a0,J,mother,param,incl_adim_per);
55 % adimensional periods
56
57 % Plot reconstruction
58 figure(3300)
59
60 plot(time,z)
61 hold on
62 plot(time,rec+mu,'r')
63 hold off
64 set(gca,'XLim',[time(1) time(end)])
65 set(gca,'YLim',[min(z) max(z)])
66 hlabelx=get(gca,'Xlabel');
67 set(hlabelx,'String','Time AD (y)','Interpreter','Latex','FontSize',16)
68 hlabely=get(gca,'Ylabel');
69 set(hlabely,'String','$T$ anomaly ($^{\circ}$C)','Interpreter','Latex','FontSize',16)
70
71 period=period*T_s ;% dimensional periods
72 included_periods = period(find((period >= incl_per(1)) & (period <= incl_per(2))))

The reconstruction script calls a modified version of w_transform, reported below
(w_transform_rec).

1 function [rec,a,period] = w_transform_rec(y,pad,dj,a0,J,mother,param,incl_adim_per);
2
3 % Wavelet transform of vector y in the frequency domain
4 % and data reconstruction on the basis of scale factors in a given range
5 %
6 % Optional inputs:
7 % pad = flag for zero padding
8 % dj = spacing between discrete scale factors
9 % a0 = minimum scale factor
10 % J = total number of scales −1
11 % mother = mother wavelet name
12 % param = parameter for mother wavelet
13 % See default values.
14 %
15 % Outputs:
16 % wave = complex arry containing the CWT of y
17 % period = adimensional periods
18 % a = scale factors
19 % coi = adimensional cone−of−influence
20 % power = square mod. of CWT
21 % rec = reconstructed series
22
23 % Check number of input arguments
24 if (nargin < 8), ia=[1 J+1]; end
25 if (nargin < 7), param = −1; end
26 if (nargin < 6), mother = −1; end
27 if (nargin < 5), J = −1; end
28 if (nargin < 4), a0 = −1; end
29 if (nargin < 3), dj = −1; end
30 if (nargin < 2), pad = 0; end
31 if (nargin < 1)
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32 error('Must input a data vector y')
33 end
34 N1 = length(y);% original series
35
36 % Default values
37 if (dj == −1), dj = 1./4.; end
38 if (a0 == −1), a0=2; end
39 if (J == −1), J=fix((log(N1/a0)/log(2))/dj); end
40 if (mother == −1), mother = 'Morlet'; end
41
42 % Perform zero−padding if required
43 x(1:N1) = y−mean(y);% redundant if y is already centered
44 if (pad == 1)
45 base2 = nextpow2(N1);% power of 2 nearest to N1
46 x = [x,zeros(1,2^(base2)−N1)];
47 end
48 N = length(x);% padded series
49
50 % Compute FFT of the padded series
51 X = fft(x);
52
53 % Construct scale factor array
54 a = a0*2.^((0:J)*dj);
55
56 % Allocate empty complex wave array
57 wave = zeros(J+1,N);
58 wave = complex(wave,wave);
59
60 % Construct vector of adimensional angular frequencies
61 % used in transform
62 om = 1:fix(N/2);
63 om = om.*(2*pi/N);
64 om = [0., om, −om(fix((N−1)/2):−1:1)];
65
66 % Loop through all scale factors and compute transform
67 for jj = 1:J+1
68 [daughter]=w_wavfun_fd(om,a(jj),mother,param);
69 wave(jj,:) = ifft(X.*daughter); % wavelet transform
70 end
71
72 % Get rid of padding
73 wave = wave(:,1:N1);
74
75 % Get more parameters for the chosen wavelet
76 [consts]=w_parameters(mother,param);
77
78 % Adimensional periods
79 period = consts(6)*a;
80
81 % Find indexes corresponding to adimensional period bounds
82 eps=10^(−1);
83 for jj=1:J+1
84 for i=1:2
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85 if abs(period(jj)−incl_adim_per(i))<eps
86 ia(i)=jj;
87 end
88 end
89 end
90 % Reconstruction (inverse transform)
91 Cdelta=consts(2);
92 psizerozero=consts(5);
93 coeffi=dj/(Cdelta*psizerozero);
94 summnd=NaN(J+1,N1);
95 for jj=ia(1):ia(2)
96 summnd(jj,:)=real(wave(jj,:))/sqrt(a(jj));
97 end
98 rec=nansum(summnd);
99 rec=coeffi*rec';

100 return

In order to show that our results make sense, we compare the reconstructed ENSO
oscillation fromNino3 data with the behavior of theNino3.4 SST index and Southern
Oscillation Index (SOI). The Nino3.4 index is one of several ENSO indicators based
on SSTs.Nino3.4 is the average SST anomaly in the region from5◦N to 5◦S, and from
170◦W to 120◦W. This region has large SST variability on El Niño time scales, and
is close to the region where changes in local SST are important for shifting the large
region of rainfall typically located in the far western Pacific Ocean. Recall that the
region Nino3 is somewhat smaller, being the area averaged SST from 5◦S–5◦N and
150◦W–90◦W. Nino3.4 neglects explicit atmospheric processes; by adding the SOI,
which expresses the pressure difference between Tahiti and Darwin, these processes
are more directly included. El Niño/La Niña events can be identified using those

Fig. 16.4 Comparison between the reconstructed ENSO oscillation, based on CWT analysis of
Nino3 data and inclusion of periods of 2–8years, and the behavior of theNino3.4 SST index coupled
with Southern Oscillation Index(SOI). The months classified as as El Niño/La Niña months because
both the Nino3.4SST and the SOI exceeded the 20th percentile are indicated by squares and circles,
respectively
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months that correspond to both high Nino3.4 valuess and low SOI values, or vice
versa (Smith and Sardeshmukh 2000). The months where both the Nino3.4 index
and the SOI exceeded the 20th percentile (±1.28) are classified as as El Niño/La
Niña months. The list of these months can be dowloaded from http://www.esrl.noaa.
gov/psd/people/cathy.smith/best/table.txt. Figure16.4 shows the satisfactory result
of this comparison.

Finally, we may mention that the CWT can also be implemented using theMatlab
function cwt. This function performs the transform in the time domain via convolu-
tion. The syntax is

1 coefs = cwt(x,a,wname)

where x is the signal vector, the vector a expresses scale factors, and wname is the
wavelet name. The output coefs is an la-by-lx matrix, where la is the length of vec-
tor a and lx is the length of the vector x. The output coefs is a real or complex
matrix, depending on the wavelet type. Available wavelet types have been described
in Chap.14. Alternatively, Matlab also offers a function to compute the CWT in
the frequency domain, cwtft, which uses an FFT algorithm, similarly to our pre-
vious approach. The analytic Morlet wavelet is available as ‘morl’ (default). The
corresponding inverse function icwtft allows signal reconstruction. For the cwtft and
icwtft syntax the reader is referred to the Wavelet Toolbox User’s Guide (The Math-
Works 2014), since notions on structure and cell arrays in Matlab would be needed
to describe it, which are beyond the scope of these exercises.

16.8 DWT

16.8.1 Signal Decomposition

The main Matlab functions for DWT calculation (see Chap. 14 for the theory) are
the following.

• dwtmode:
this function sets the signal extension mode for the DWT. Extension modes repre-
sent different ways of handling the problem of border distortion in signal analysis.

1 st = dwtmode

displays the current mode and returns it in st;

1 dwtmode('mode')

sets the DWT extension mode according to the value of ‘mode’:

– ‘sym’ or ‘symh’: symmetric-padding (half-point symmetry): boundary value
symmetric replication—default mode;

– ‘symw’: symmetric-padding (whole-point symmetry): boundary value symmet-
ric replication;

http://www.esrl.noaa.gov/psd/people/cathy.smith/best/table.txt
http://www.esrl.noaa.gov/psd/people/cathy.smith/best/table.txt
http://dx.doi.org/10.1007/978-3-319-25468-5_14
http://dx.doi.org/10.1007/978-3-319-25468-5_14
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– ‘asym’ or ‘asymh’: antisymmetric-padding (half-point): boundary value anti-
symmetric replication;

– ‘asymw’: antisymmetric-padding (whole-point): boundary value antisymmetric
replication;

– ‘zpd’: zero-padding;
– ‘spd’ or ‘sp1’: smooth-padding of order 1 (first derivative interpolation at the
edges);

– ‘sp0’: smooth-padding of order 0 (constant extension at the edges);
– ‘ppd’: periodic-padding (periodic extension at the edges);
– ‘per’: periodization.

Details on the rationale of the mentioned schemes can be found in Strang and
Nguyen (1996).

• wmaxlev:
this function returns the maximumwavelet-decomposition level for signal x, given
the adopted wavelet (wname). Note that normally, a smaller value is adopted in
applications.

1 lev_max = wmaxlev(x,wname)

• dwt:
this function performs a single-level signal decomposition (Daubechies 1992;Mal-
lat 1989; Meyer 1993). The command

1 [cA,cD] = dwt(x,wname)

computes the approximation coefficients vector cA and detail coefficients vector
cD, obtained by wavelet decomposition. Starting from a signal x, in a single-level
decomposition two sequences of coefficients are computed: approximation coeffi-
cients (cA at level 1), and detail coefficients (cD at level 1). Available orthogonal or
biorthogonal wavelet names, indicated by wname, are Daubechies wavelets (‘db1’
or ‘haar’, ‘db2’, …,‘db10’, …, ‘db45’), coiflets (‘coif1’, …, ‘coif5’), symlets
(‘sym2’, ldots , ‘sym8’, …, ‘sym45’), biorthogonal wavlets (‘bior1.1’, ‘bior1.3’,
‘bior1.5’, ‘bior2.2’, ‘bior2.4’, ‘bior2.6’, ‘bior2.8’, ‘bior3.1’, ‘bior3.3’, ‘bior3.5’,
‘bior3.7’, ‘bior3.9’, ‘bior4.4’, ‘bior5.5’, ‘bior6.8’), etc.

• idwt:
this function performs a single-level signal reconstruction. The command

1 x = idwt(cA,cD,wname)

returns the single-level-reconstructed vector x based on approximation and detail
coefficients vectors cA and cD, and using the wavelet wname.

• wavedec:
this function performs a multi-level wavelet decomposition (Daubechies 1992;
Mallat 1989; Meyer 1993). The function wavedec supports only orthogonal
biorthogonal wavelets. The command

1 [C,L] = wavedec(x,lev,wname)
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returns the wavelet decomposition of the signal x at level lev, using the wavelet
wname. The parameter levmust be a strictly positive integer. The output decompo-
sition structure contains the wavelet decomposition vector C and the bookkeeping
vector L: all the coefficients of a decomposition at level lev (that is, the lev-th
approximation coefficients and lev levels of detail coefficients) are returned con-
catenated into one vector, C, while vector L gives the lengths of each component
(see Sect. 14.5.2). To extract approximation and detail coefficients from C, the
functions appcoef and detcoef are available. To reconstruct approximation and
detail signals on the basis of the signal decomposition, use the function wrcoef.

• waverec:
this function performs a multi-level wavelet reconstruction using a specific
wavelet (wname). The function waverec supports only orthogonal or biorthog-
onal wavelets. The command

1 x = waverec(C,L,wname)

reconstructs the signal x based on the multi-level wavelet decomposition structure
[C,L] and wavelet wname.

• appcoef:
this function extracts the approximation coefficients from a signal decomposition.
The command

1 cA = appcoef(C,L,wname,j)

returns the approximation coefficients at level j using the wavelet decomposition
structure [C,L] provided by wavedec. The value of j must be an integer such that
0 ≤ j ≤ length(L) − 2; the command

1 cA = appcoef(C,L,wname)

extracts the approximation coefficients at the last level, i.e., length(L) − 2.
• detcoef:
this function extracts the detail coefficients of a signal, and works like appcoef.
For instance, the command

1 cD = detcoef(C,L,j)

extracts the detail coefficients at level j from the wavelet decomposition structure
[C,L].

• wrcoef:
this function reconstructs approximations or details, given a wavelet decomposi-
tion structure (C and L) and a specified wavelet.

1 y = wrcoef('type',C,L,wname,j)

Argument ‘type’ determines whether level-j approximation (‘type’= ‘a’) or detail
(‘type’ = ‘d’) signals are reconstructed. When ‘type’ = ‘a’, j can be 0; otherwise,
a strictly positive integer j is required, with j ≤ length(L) − 2. The command

1 y = wrcoef('type',C,L,wname)

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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reconstructs y for the maximum level, lev = length(L) − 2.
• wenergy:
for a wavelet decomposition [C,L] produced by wavedec, the command

1 [Ea,Ed] = wenergy(C,L)

returns Ea, which is the percentage of signal energy corresponding to the approx-
imation, and Ed, which is the vector containing the percentages of energy corre-
sponding to all the details.

• wfilters:
this function gives the impulse responses of the four filters (Sect. 14.3) associated
with the orthogonal or biorthogonal wavelet given in the string wname (Mallat
1989; Daubechies 1992). The command

1 [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname)

gives in output

– Lo_D, the decomposition low-pass filter,
– Hi_D, the decomposition high-pass filter,
– Lo_R, the reconstruction low-pass filter,
– Hi_R, the reconstruction high-pass filter;

the command

1 [F1,F2] = wfilters(wname,'type')

returns

– Lo_D and Hi_D (decomposition filters) if ‘type’ = ‘d’,
– Lo_R and Hi_R (reconstruction filters) if ‘type’ = ‘r’,
– Lo_D and Lo_R (lowpass filters) if ‘type’ = ‘l’,
– Hi_D and Hi_R (highpass filters) if ‘type’ = ‘h’.

• wvarchg:
This function finds variance change points in a signal x, which must be zero-mean
(Lavielle 1999). The command

1 [pts_opt,Kopt,t_est] = wvarchg(x,K,d)

computes the estimated change points of the variance in the signal x. The integer
number K specifies the maximum number of expected change points; default is
6. The integer number d sets the minimum delay in adimensional discrete-time
units between two change points; default is 10. In output, the integer Kopt is the
number of detected change points, with 0 ≤Kopt≤K; the vector pts_opt contains
the discrete times of the detected change points. The variable t_est is such that
for 1 ≤ k ≤ K, t_est(k + 1,1:k) contains the k time values of the variance change
points; therefore

– if Kopt > 0, pts_opt = t_est(Kopt + 1,1:Kopt);
– if Kopt = 0, pts_opt = [] (empty vector).

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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K and d must be integers such that 1 < K � length(x) and 1 ≤ d � length(x).

• wnoise:
this function generates noisy wavelet test data, according to the following syntax:

1 x = wnoise(fun,nu)

The function wnoise returns values of the test signal identified by fun, over 2nu

equally-spaced time points in [0,1]. The six available fun types (see Donoho and
Johnstone 1994a, 1995) are:

– fun = 1 or ‘blocks’,
– fun = 2 or ‘bumps’,
– fun = 3 or ‘heavy sine’,
– fun = 4 or ‘doppler’,
– fun = 5 or ‘quadchirp’,
– fun = 6 or ‘mishmash’.

1 [x,xn] = wnoise(fun,nu,sqrt_snr)

returns a test vector x as above, rescaled such that std(x) = sqrt_snr. The returned
vector xn contains the same test vector corrupted by additive Gaussian white noise
with zero mean and unit variance. Then, xn has a nominal signal-to-noise ratio of
SNR = (sqrt_snr)2. This can be checked centering both signals thus obtaining two
vectors, xc and xnc respectively, and then computing a SNR_check value as

1 SNR_check = sum(xc.^2)./sum((xnc−xc).^2)

This should be equal to the nominal SNR. Note that by varying sqrt_snr we vary
the standard deviation of the reference signal and not the standard deviation of the
noise, which remains 1 in all cases.

1 [x,xn] = wnoise(fun,nu,sqrt_snr,init)

returns the previously mentioned vectors x and xn, but the generator seed for noise
is set to init. This option serves for obtaining reproducible results.
Now we will experiment with these functions.

1. Firstwe learnhow to compute the impulse responses (and the frequency responses)
of the four filters associated with each wavelet. The following script (filter_set)
does this: run it for different orthogonal wavelets to check that in any case the four
filters lengths are all equal, and are always even. Try also biorthogonal wavelets.

1 % filter_set
2 % Compute filter set for given wavelet.
3
4 prompt='wname = (e.g.''db5'')';
5 wname= input(prompt);
6
7 % Compute the impulse responses of the four filters
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8 % associated with the wavelet
9

10 [Lo_D,Hi_D,Lo_R,Hi_R] = wfilters(wname);
11 M2=length(Lo_D);% filter length
12
13 figure(4000)
14 subplot(2,2,1)
15 stem(0:M2−1,Lo_D)
16 set(gca,'XLim',[−1 M2])
17 set(gca,'YLim',[−1 1])
18 hlabelx=get(gca,'Xlabel');
19 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
20 hlabely=get(gca,'Ylabel');
21 set(hlabely,'String','$h_{\mathrm{LD}}$','Interpreter','Latex','FontSize',16)
22 text(1,0.76,wname,'FontSize',12)
23 title( 'Decomposition low−pass filter');
24 subplot(2,2,2)
25 stem(0:M2−1,Hi_D)
26 set(gca,'XLim',[−1 M2])
27 set(gca,'YLim',[−1 1])
28 hlabelx=get(gca,'Xlabel');
29 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
30 hlabely=get(gca,'Ylabel');
31 set(hlabely,'String','$h_{\mathrm{HD}}$','Interpreter','Latex','FontSize',16)
32 title( 'Decomposition high−pass filter');
33 subplot(2,2,3)
34 stem(0:M2−1,Lo_R)
35 set(gca,'XLim',[−1 M2])
36 set(gca,'YLim',[−1 1])
37 hlabelx=get(gca,'Xlabel');
38 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
39 hlabely=get(gca,'Ylabel');
40 set(hlabely,'String','$h_{\mathrm{LR}}$','Interpreter','Latex','FontSize',16)
41 title( 'Reconstruction low−pass filter');
42 subplot(2,2,4)
43 stem(0:M2−1,Hi_R)
44 set(gca,'XLim',[−1 M2])
45 set(gca,'YLim',[−1 1])
46 hlabelx=get(gca,'Xlabel');
47 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
48 hlabely=get(gca,'Ylabel');
49 set(hlabely,'String','$h_{\mathrm{HR}}$','Interpreter','Latex','FontSize',16)
50 title( 'Reconstruction high−pass filter');
51
52 % Compute the frequency responses and plot
53 figure(4001)
54 N_f=1024;
55 [H,w]=freqz(Lo_D,1,N_f);
56 plot(w/pi,20*log10(abs(H)),'LineWidth',4)
57 hold on
58 [H,w]=freqz(Hi_D,1,N_f);
59 plot(w/pi,20*log10(abs(H)),'r','LineWidth',4)
60 [H,w]=freqz(Lo_R,1,N_f);
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61 plot(w/pi,20*log10(abs(H)),'g')
62 [H,w]=freqz(Hi_R,1,N_f);
63 plot(w/pi,20*log10(abs(H)),'k')
64 text(0.45,−20,wname,'FontSize',12)
65 legend('LD','HD','LR','HR','Location','South')
66 hold off
67 set(gca,'YLim',[−60 5])
68 hlabelx=get(gca,'Xlabel');
69 set(hlabelx,'String','$\omega/\pi$','Interpreter','Latex','FontSize',16)
70 hlabely=get(gca,'Ylabel');
71 set(hlabely,'String','$20\log10|H|$','Interpreter','Latex','FontSize',16)

2. Next we try a single-level decomposition of three different signals:

• the first signal is a stationary signal (a noisy sinusoid). We generate it, then
perform a level-1 decomposition using the function dwt and the db8 wavelet
and plot the signal and its DWT coefficients;

• the second signal is a sinusoid with a discontinuity introduced on purpose. It
is a 3-sample discontinuity starting at sample 302. The example illustrates the
possibility of discontinuity detection by DWT: the discontinuity is detected in
the 1st level detail coefficients at sample 151, because of the downsampling
by a factor of 2 associated with each DWT level;

• the third signal is a non-stationary signal: a sinusoid with changing frequency.
The detail coefficients reveal the frequency transitions in the signal;

• the fourth signal ismade of noisy blockswith two noise-variance change points.
It is generated using wnoise with fun = 1 (‘blocks’). A single-level DWT
decomposition followed by the reconstruction of the detail D1 allows us to use
the function wvarchg to estimate with good accuracy the position of the vari-
ance change points. Indeed, the reconstructed detail at level 1 is mainly signal-
free, and captures the features of the noise from a change-points-detection
viewpoint, if the interesting part of the signal has a sparse wavelet represen-
tation. In the test signal, two change points and three intervals with different
variances are present. Since the variances of the noise in these three intervals
are very different among themselves, the optimization program detects easily
the variance structure, and the estimated change points are fairly close to the
true change points. To help wvarchg locating the change points more accu-
rately, we then further replace 2% of the biggest detail values by the mean, in
order to remove almost all of the signal. The estimates of the change points
actually improve.

The script (singlelev_decomp) for this exercise is reported below. Note that we
leave the extension mode to default (‘sym’, i.e., symmetric-padding with half-
point symmetry). We do not worry too much about the extension mode, since
the latter is expected to affect mainly the edges of the processed signal, and also
because in our introductory approach to the DWT we did not discuss extension
modes in depth.
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1 % s i n g l e l e v d e c om p
2 % S ing l e − l e v e l d e c omp o s i t i on s o f f ou r d i f f e r e n t s i g n a l s
3
4 c l e a r
5
6 %1
7 % S i n g l e l e v e l d e c omp o s i t i on
8 % o f a s t a t i o n a r y s i g n a l ( no i s y s i n u s o i d )
9

10 % Genera t e s e quenc e
11 f =100;%Hz
12 T=1/ f ;%s −− 10ms
13 A=4;
14 du r =40;%ms
15 f s =10000;%Hz
16 T s =1/ f s ;%s
17 T sm=T s *1000;%ms
18 N=du r / T sm ;
19 t =0: T s : (N−1)*T s ;%s
20 x=A* s i n (2* p i * f * t ) ;%s i n u s o i d
21 xn=x +0.5* r andn ( s i z e ( x ) ) ; % no i s y s i n u s o i d
22
23 % S i n g l e l e v e l d e c omp o s i t i on w i th Daubech i e s 8 wav e l e t
24 wname= ' db8 ' ;
25 [ cA , cD]= dwt ( xn , wname ) ;
26
27 % P l o t s i g n a l and DWT c o e f f i c i e n t s
28 f i g u r e ( 4100 )
29 s u b p l o t ( 3 , 1 , 1 )
30 p l o t ( t *1000 , xn , ' LineWidth ' , 1 . 5 )% e x p r e s s t im e in ms
31 s e t ( gca , 'XLim ' , [ 0 4 0 ] )
32 s e t ( gca , 'YLim ' , [−7.5 7 . 5 ] )
33 h l a b e l x = g e t ( gca , ' Xlabe l ' ) ;
34 s e t ( h l a b e l x , ' S t r i n g ' , ' $ t $ (ms ) ' , ' I n t e r p r e t e r ' , ' Latex ' , '

Fon tS i z e ' , 1 6 )
35 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
36 s e t ( h l a b e l y , ' S t r i n g ' , ' $x$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
37 t i t l e ( ' Noisy S i nu s o i d ' )
38 s u b p l o t ( 3 , 1 , 2 )
39 p l o t ( cA , ' LineWidth ' , 1 . 5 )
40 s e t ( gca , 'XLim ' , [ 0 207 ] )
41 s e t ( gca , 'YLim ' , [−7.5 7 . 5 ] )
42 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
43 s e t ( h l a b e l y , ' S t r i n g ' , ' $C a$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
44 t i t l e ( ' F i r s t Leve l Approx . Coe f f s . − db8 ' )
45 s u b p l o t ( 3 , 1 , 3 )
46 p l o t ( cD , ' LineWidth ' , 1 . 5 )
47 s e t ( gca , 'XLim ' , [ 0 207 ] )
48 h l a b e l x = g e t ( gca , ' Xlabe l ' ) ;
49 s e t ( h l a b e l x , ' S t r i n g ' , ' $k$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
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50 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
51 s e t ( h l a b e l y , ' S t r i n g ' , ' $C d$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
52 t i t l e ( ' F i r s t Leve l D e t a i l Coe f f s . − db8 ' )
53
54 % 2
55 % S i n g l e l e v e l d e c omp o s i t i on o f a s t a t i o n a r y s i g n a l
56 % ( a s i n u s o i d w i th a d i s c o n t i n u i t y ) :
57 % d i s c o n t i n u i t y d e t e c t i o n
58
59 % Take c l ean s i n u s o i d a l s i g n a l g en e ra t e d above
60 % and i n t r o d u c e a 3−sample d i s c o n t i n u i t y s t a r t i n g a t sample

302
61 x ( 3 02 : 3 05 ) = . 2 5 ;
62
63 % S i n g l e l e v e l d e c omp o s i t i on w i th Daubech i e s 8 wav e l e t
64 wname= ' db8 ' ;
65 [ cA , cD]= dwt ( x , wname ) ;
66
67 % P l o t s i g n a l and DWT c o e f f i c i e n t s .
68 f i g u r e ( 4200 )
69 s u b p l o t ( 3 , 1 , 1 )
70 p l o t ( t *1000 , x , ' LineWidth ' , 1 . 5 )
71 s e t ( gca , 'XLim ' , [ 0 4 0 ] )
72 s e t ( gca , 'YLim ' , [−7.5 7 . 5 ] )
73 h l a b e l x = g e t ( gca , ' Xlabe l ' ) ;
74 s e t ( h l a b e l x , ' S t r i n g ' , ' $ t $ (ms ) ' , ' I n t e r p r e t e r ' , ' Latex ' , '

Fon tS i z e ' , 1 6 )
75 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
76 s e t ( h l a b e l y , ' S t r i n g ' , ' $x$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
77 t i t l e ( ' S i nu s o i d wi th a d i s c o n t i n u i t y ' )
78 s u b p l o t ( 3 , 1 , 2 )
79 p l o t ( cA , ' LineWidth ' , 1 . 5 )
80 s e t ( gca , 'XLim ' , [ 0 207 ] )
81 s e t ( gca , 'YLim ' , [−7.5 7 . 5 ] )
82 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
83 s e t ( h l a b e l y , ' S t r i n g ' , ' $C a$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
84 t i t l e ( ' F i r s t Leve l Approx . Coe f f s . − db8 ' )
85 s u b p l o t ( 3 , 1 , 3 )
86 p l o t ( cD , ' LineWidth ' , 1 . 5 )
87 s e t ( gca , 'XLim ' , [ 0 207 ] )
88 s e t ( gca , 'YLim ' , [−0.4 0 . 2 ] )
89 h l a b e l x = g e t ( gca , ' Xlabe l ' ) ;
90 s e t ( h l a b e l x , ' S t r i n g ' , ' $k$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
91 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
92 s e t ( h l a b e l y , ' S t r i n g ' , ' $C d$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
93 t i t l e ( ' F i r s t Leve l D e t a i l Coe f f s . − db8 ' )
94
95 % 3
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96 % S i n g l e l e v e l Decompos i t i on o f a non−s t a t i o n a r y s i g n a l
97 % ( a s i n u s o i d w i th chang ing f r e qu en c y ) .
98
99 % Genera t e s e quenc e
100 du r =100;%ms
101 f s =2500;%Hz
102 T s =1/ f s ;%s
103 T sm=T s *1000;%ms
104 N=du r / T sm ;
105 %
106 f =50;%Hz
107 T=1/ f ;%s −− 20ms
108 A=0 . 8 ;
109 t =0: T s : (N−1)*T s ;%s
110 x1=A* s i n (2* p i * f * t ) ;% 5 c y c l e s
111 %
112 f =100;%Hz
113 T=1/ f ;%s −− 10ms
114 A=0 . 1 8 ;
115 x2=A* s i n (2* p i * f * t ) ;% 10 c y c l e s
116 %
117 f =200;%Hz
118 T=1/ f ;%s −− 5ms
119 A=1;
120 x3=A* s i n (2* p i * f * t ) ;% 20 c y c l e s
121 %
122 y= c a t ( 2 , x1 , x2 , x3 ) ; % C onca t ena t e th e s i g n a l s
123 % C onca t ena t e th e t im e v e c t o r s
124 t y =[ t t +du r / 1000 t +2* du r / 1 0 0 0 ] ;
125
126 % S i n g l e l e v e l d e c omp o s i t i on w i th Daubech i e s 8 wav e l e t
127 wname= ' db8 ' ;
128 [ cAa , cDa ]= dwt ( y , wname ) ;
129
130 % P l o t s i g n a l and DWT c o e f f i c i e n t s .
131 f i g u r e ( 4300 )
132 s u b p l o t ( 3 , 1 , 1 )
133 p l o t ( t y *1000 , y , ' LineWidth ' , 1 . 5 )
134 s e t ( gca , 'XLim ' , [ 0 300 ] )
135 s e t ( gca , 'YLim ' , [−1.7 1 . 7 ] )
136 h l a b e l x = g e t ( gca , ' Xlabe l ' ) ;
137 s e t ( h l a b e l x , ' S t r i n g ' , ' $ t $ (ms ) ' , ' I n t e r p r e t e r ' , ' Latex ' , '

Fon tS i z e ' , 1 6 )
138 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
139 s e t ( h l a b e l y , ' S t r i n g ' , ' $x$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
140 t i t l e ( ' S i nu s o i d wi th Chang ing Frequency ' )
141 s u b p l o t ( 3 , 1 , 2 )
142 p l o t ( cAa , ' LineWidth ' , 1 . 5 )
143 s e t ( gca , 'XLim ' , [ 0 382 ] )
144 s e t ( gca , 'YLim ' , [−1.7 1 . 7 ] )
145 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
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146 s e t ( h l a b e l y , ' S t r i n g ' , ' $C a$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '
, 1 6 )

147 t i t l e ( ' F i r s t Leve l Approx . Coe f f s . − db8 ' )
148 s u b p l o t ( 3 , 1 , 3 )
149 p l o t ( cDa , ' LineWidth ' , 1 . 5 )
150 s e t ( gca , 'XLim ' , [ 0 382 ] )
151 s e t ( gca , ' XMinorTick ' , ' on ' )
152 s e t ( gca , 'YLim ' , [−0.03 0 . 0 3 ] )
153 h l a b e l x = g e t ( gca , ' Xlabe l ' ) ;
154 s e t ( h l a b e l x , ' S t r i n g ' , ' $k$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
155 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
156 s e t ( h l a b e l y , ' S t r i n g ' , ' $C d$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
157 t i t l e ( ' F i r s t Leve l D e t a i l Coe f f s . − db8 ' )
158
159 % 4
160 % Recover v a r ian c e change p o i n t s from a s i g n a l
161 % ( no i s y b l o c k s w i th two no i s e−v a r ian c e change p o i n t s ) .
162 % by s ing l e − l e v e l DWT d e c omp o s i t i on
163 % and use o f wvarchg on d e t a i l a t l e v e l 1 .
164
165 % Genera t e b l o c k s i g n a l
166 fun= ' b l o ck s '
167 nu =10;%N=2ˆnu
168 x = wnoise ( fun , nu ) ; %Block s i g n a l
169
170 % Make s i g n a l no i sy , w i th no i s e−v a r ian c e change p o i n t s
171 % a t d i s c r e t e t im e s 180 and 600
172 rng d e f a u l t ;
173 bb = 1 .5* r andn ( 1 , l e n g t h ( x ) ) ;
174 cp1 = 180 ; cp2 = 600 ;
175 x = x + [ bb ( 1 : cp1 ) , bb ( cp1 +1: cp2 ) / 4 , bb ( cp2 +1: end ) ] ;
176 N= l e n g t h ( x ) ;
177
178 % S i n g l e l e v e l d e c omp o s i t i on w i th Daubech i e s 3 wav e l e t
179 wname= ' db3 '
180 [ cA , cD]= dwt ( x , wname ) ;
181
182 % R e c o n s t r u c t d e t a i l a t l e v e l 1
183 D1 = idwt ( [ ] , cD , wname ) ;
184
185 % Use th e wvarchg f u n c t i o n t o e s t ima t e th e change p o i n t s
186 % w i th th e f o l l ow i n g pa rame t e r s :
187 % minimum d e lay be tween two change p o i n t s = 10 ( d e f a u l t ,

om i t t e d ) ;
188 % maximum number o f change p o i n t s = 5 ( d e f a u l t i s 6 ) .
189
190 % The i n p u t s i g n a l shou l d be z e r o mean , so c e n t e r D1 .
191 D1 a=D1−mean (D1) ;
192
193 [ p t s o p t , Kopt , t e s t ] = wvarchg ( D1 a , 5 ) ;
194 s t r = s p r i n t f ( ' The e s t im a t e d change p o i n t s a r e %d and %d\n ' ,

p t s o p t )
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195
196 % P l o t s r e s u l t s ( s i g n a l and d e t a i l ) .
197 f i g u r e ( 4400 )
198 s u b p l o t ( 3 , 1 , 1 )
199 p l o t ( [ cp1 cp1 ] , 1 . 0 5 * [ min ( x ) max ( x ) ] , ' r ' , ' LineWidth ' , 1 . 5 )
200 ho ld on
201 p l o t ( [ cp2 cp2 ] , 1 . 0 5 * [ min ( x ) max ( x ) ] , ' r ' , ' LineWidth ' , 1 . 5 )
202 p l o t ( x )
203 ho ld o f f
204 s e t ( gca , 'XLim ' , [ 0 N] )
205 s e t ( gca , ' XMinorTick ' , ' on ' )
206 s e t ( gca , 'YLim ' , 1 . 0 5 * [ min ( x ) max ( x ) ] )
207 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
208 s e t ( h l a b e l y , ' S t r i n g ' , ' $x [ n ]$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
209 t i t l e ( ' Noisy Block S ign a l wi th Noise−Var i ance Change P o i n t s ' )
210 s u b p l o t ( 3 , 1 , 2 )
211 p l o t ( [ cp1 cp1 ] , 1 . 0 5 * [ min (D1) max (D1) ] , ' r ' , ' LineWidth ' , 1 . 5 )
212 ho ld on
213 p l o t ( [ cp2 cp2 ] , 1 . 0 5 * [ min (D1) max (D1) ] , ' r ' , ' LineWidth ' , 1 . 5 )
214 p l o t ( [ p t s o p t ( 1 ) p t s o p t ( 1 ) ] , 1 . 0 5 * [ min (D1) max (D1) ] , ' g−− ' , '

LineWidth ' , 1 . 5 )
215 p l o t ( [ p t s o p t ( 2 ) p t s o p t ( 2 ) ] , 1 . 0 5 * [ min (D1) max (D1) ] , ' g−− ' , '

LineWidth ' , 1 . 5 )
216 p l o t (D1)
217 ho ld o f f
218 s e t ( gca , 'XLim ' , [ 0 N] )
219 s e t ( gca , ' XMinorTick ' , ' on ' )
220 s e t ( gca , 'YLim ' , 1 . 0 5 * [ min (D1) max (D1) ] )
221 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
222 s e t ( h l a b e l y , ' S t r i n g ' , ' $D 1$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
223 t e x t (300 ,−3 ,wname , ' Fon tS i z e ' , 1 2 )
224
225 % To h e l p wvarchg l o c a t i n g th e change p o i n t s more a c cu ra t e l y ,
226 % remove a lmo s t a l l th e s i g n a l by r e p l a c i n g 2% o f b i g g e s t

v a lu e s by th e mean .
227 y = s o r t ( abs (D1) ) ;
228 v2p100 = y ( f i x ( l e n g t h ( y ) *0 . 9 8 ) ) ;
229 ind = f i n d ( abs (D1)>v2p100 ) ; % l o c a t e 2% o f b i g g e s t v a lu e s
230 D1 b=D1 ;
231 D1 b ( i nd ) = mean (D1) ; % r e p l a c e them by th e mean
232 D1 b=D1 b−mean ( D1 b ) ; % remove mean
233
234 % Use aga in th e wvarchg f u n c t i o n t o e s t ima t e th e change p o i n t s
235 [ p t s o p t , Kopt , t e s t ] = wvarchg ( D1 b , 5 ) ;
236 s t r = s p r i n t f ( ' The e s t im a t e d change p o i n t s a r e %d and %d\n ' ,

p t s o p t )
237
238 % P l o t r e s u l t
239 s u b p l o t ( 3 , 1 , 3 )
240 p l o t ( [ cp1 cp1 ] , 1 . 0 5 * [ min ( D1 b ) max ( D1 b ) ] , ' r ' , ' LineWidth ' , 1 . 5 )
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241 ho ld on
242 p l o t ( [ cp2 cp2 ] , 1 . 0 5 * [ min ( D1 b ) max ( D1 b ) ] , ' r ' , ' LineWidth ' , 1 . 5 )
243 p l o t ( [ p t s o p t ( 1 ) p t s o p t ( 1 ) ] , 1 . 0 5 * [ min ( D1 b ) max ( D1 b ) ] , ' g−− ' ,

' LineWidth ' , 1 . 5 )
244 p l o t ( [ p t s o p t ( 2 ) p t s o p t ( 2 ) ] , 1 . 0 5 * [ min ( D1 b ) max ( D1 b ) ] , ' g−− ' ,

' LineWidth ' , 1 . 5 )
245 p l o t ( D1 b )
246 ho ld o f f
247 s e t ( gca , 'XLim ' , [ 0 N] )
248 s e t ( gca , ' XMinorTick ' , ' on ' )
249 s e t ( gca , 'YLim ' , 1 . 0 5 * [ min ( D1 b ) max ( D1 b ) ] )
250 h l a b e l x = g e t ( gca , ' Xlabe l ' ) ;
251 s e t ( h l a b e l x , ' S t r i n g ' , ' $n$ ' , ' I n t e r p r e t e r ' , ' Latex ' , ' Fon tS i z e '

, 1 6 )
252 h l a b e l y = g e t ( gca , ' Ylabe l ' ) ;
253 s e t ( h l a b e l y , ' S t r i n g ' , ' P r o c e s s e d $D 1$ ' , ' I n t e r p r e t e r ' , ' Latex ' , '

Fon tS i z e ' , 1 6 )

3. We now load a test signal included in the Matlab distribution (sumsin.mat), con-
taining three sinusoids with different frequencies—two low-frequency compo-
nents and one high-frequency component. We perform signal decomposition at
level 3 using the db1 wavelet. We plot the original signal and the vector C of the
DWT coefficients (including the coefficients for the approximationat level 3 and
those for the details at levels 1–3) to see how the wavelet decomposition structure
looks like, i.e., how these coefficients are stored in memory. The script for this
exercise (multilev_decomp_coefstruct) is given below.

1 % multilevel_decomp_coefstruct
2 % Check wavelet decomposition structure.
3
4 clear
5
6 % Load signal.
7 load sumsin % test signal with three sinusoids
8 x = sumsin;
9 N=length(x)

10
11 % Perform decomposition at level 3 of s using db1.
12 lev=3
13 wname='db1'
14 [C,L] = wavedec(x,lev,wname);
15 N_DWT=length(C)
16
17 % Plot original signal,
18 % coeffs. for approx. at level 3 and coeffs. for details at levels 1−−3
19 % to observe wavelet decomposition structure
20
21 figure(4500)
22 subplot(2,1,1)
23 plot(x)
24 set(gca,'YLim',[−5 5])
25 set(gca,'YTick',[−4:2:4])
26 hlabelx=get(gca,'Xlabel');
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27 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
28 hlabely=get(gca,'Ylabel');
29 set(hlabely,'String','$x[n]$', 'Interpreter','Latex','FontSize',16)
30 title( 'Original signal − Three Sinusoids')
31 subplot(2,1,2)
32 plot(C)
33 set(gca,'YLim',[−5 5])
34 set(gca,'YTick',[−4:2:4])
35 hlabelx=get(gca,'Xlabel');
36 set(hlabelx,'String','$k$','Interpreter','Latex','FontSize',16)
37 hlabely=get(gca,'Ylabel');
38 set(hlabely,'String','$C[k]$','Interpreter','Latex','FontSize',16)
39 title( 'Wavelet decomposition structure − db1, level 3')

4. Finally, as the last DWT-decomposition example, we perform amulti-level analy-
sis of a noisy sinusoid up to level 4, using the db8 wavelet. We see how to recon-
struct the approximations and the details at various levels. Plotting the signal and
its various approximations we can observe that the level-4 approximation con-
stitutes a sort of crude de-noising of the signal. We then reconstruct the original
signal from the level 4 decomposition, and plot the original and reconstructed
signals together. This test visually proves that a perfect reconstruction has been
achieved, but to quantify the quality of the reconstruction, we also compute the
maximum absolute deviation between the reconstructed and the original vector,
and the root of the sum of squares of deviations (norm of the difference between
the two vectors). We also calculate the percentage of the signal energy carried by
the approximation and by each detail; the sum gives 100%. For this exercise, run
the script (multilev_decomp) reported below.

1 % multilev_decomp
2 % Multi−level wavelet decomposition
3
4 clear
5
6 % Generate signal (noisy sinusoid)
7 f=100;%Hz
8 T=1/f;%s −− 10ms
9 A=4;

10 dur=40;%ms
11 f_s=10000;%Hz
12 T_s=1/f_s;%s
13 T_sm=T_s*1000;%ms
14 N=dur/T_sm
15 t=0:T_s:(N−1)*T_s;%s
16 x=A*sin(2*pi*f*t);
17 xn=x+0.5*randn(size(x));
18
19 % Do a multilevel analysis to level 4 using Daubechies−8 wavelet
20 lev=4
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21 wname='db8'
22 [C,L] = wavedec(xn,lev,wname);
23
24 % Reconstruct the approximations at various levels
25 A1 = wrcoef('a',C,L,wname,1);
26 A2 = wrcoef('a',C,L,wname,2);
27 A3 = wrcoef('a',C,L,wname,3);
28 A4 = wrcoef('a',C,L,wname,4);
29
30 % Reconstruct the details at various levels
31 D1 = wrcoef('d',C,L,wname,1);
32 D2 = wrcoef('d',C,L,wname,2);
33 D3 = wrcoef('d',C,L,wname,3);
34 D4 = wrcoef('d',C,L,wname,4);
35
36 % Plot signal and approximations
37 figure(4600)
38 subplot(5,1,1)
39 plot(t*1000,xn,'LineWidth',1.5)
40 set(gca,'XLim',[0 40])
41 set(gca,'YLim',[−6 6])
42 hlabely=get(gca,'Ylabel');
43 set(hlabely,'String','$x$','Interpreter','Latex','FontSize',16)
44 title ( 'Noisy Sinusoid and Approximations (db8)')
45 subplot(5,1,2)
46 plot(t*1000,A1,'LineWidth',1.5)
47 set(gca,'XLim',[0 40])
48 set(gca,'YLim',[−6 6])
49 hlabely=get(gca,'Ylabel');
50 set(hlabely,'String','$A_1$','Interpreter','Latex','FontSize',16)
51 subplot(5,1,3)
52 plot(t*1000,A2,'LineWidth',1.5)
53 set(gca,'XLim',[0 40])
54 set(gca,'YLim',[−6 6])
55 hlabely=get(gca,'Ylabel');
56 set(hlabely,'String','$A_2$','Interpreter','Latex','FontSize',16)
57 subplot(5,1,4)
58 plot(t*1000,A3,'LineWidth',1.5)
59 set(gca,'XLim',[0 40])
60 set(gca,'YLim',[−6 6])
61 hlabely=get(gca,'Ylabel');
62 set(hlabely,'String','$A_3$','Interpreter','Latex','FontSize',16)
63 subplot(5,1,5)
64 plot(t*1000,A4,'LineWidth',1.5)
65 set(gca,'XLim',[0 40])
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66 set(gca,'YLim',[−6 6])
67 hlabelx=get(gca,'Xlabel');
68 set(hlabelx,'String','$t$ (ms)','Interpreter','Latex','FontSize',16)
69 hlabely=get(gca,'Ylabel');
70 set(hlabely,'String','$A_4$','Interpreter','Latex','FontSize',16)
71
72 % Display the results of the multilevel decomposition at level 4
73 figure(4700)
74 subplot(5,1,1)
75 plot(t*1000,A4,'LineWidth',1.5);
76 set(gca,'XLim',[0 40])
77 set(gca,'YLim',[−6 6])
78 hlabely=get(gca,'Ylabel');
79 set(hlabely,'String','$A_4$','Interpreter','Latex','FontSize',16)
80 title ( 'Decomposition of Noisy Sinusoid at level 4, using db8')
81 subplot(5,1,2)
82 plot(t*1000,D1);
83 set(gca,'XLim',[0 40])
84 hlabely=get(gca,'Ylabel');
85 set(hlabely,'String','$D_1$','Interpreter','Latex','FontSize',16)
86 subplot(5,1,3)
87 plot(t*1000,D2,'LineWidth',1.5);
88 set(gca,'XLim',[0 40])
89 hlabely=get(gca,'Ylabel');
90 set(hlabely,'String','$D_2$', 'Interpreter','Latex','FontSize',16)
91 subplot(5,1,4)
92 plot(t*1000,D3,'LineWidth',1.5);
93 hlabely=get(gca,'Ylabel');
94 set(hlabely,'String','$D_3$','Interpreter','Latex','FontSize',16)
95 subplot(5,1,5)
96 plot(t*1000,D3,'LineWidth',1.5);
97 set(gca,'XLim',[0 40])
98 hlabelx=get(gca,'Xlabel');
99 set(hlabelx,'String','$t$ (ms)','Interpreter','Latex','FontSize',16)
100 hlabely=get(gca,'Ylabel');
101 set(hlabely,'String','$D_4$','Interpreter','Latex','FontSize',16)
102
103 % Reconstruct the original signal from the Level 4 decomposition.
104 A0 = waverec(C,L,wname);
105 N_rec=length(A0)
106
107 % Plot reconstructed signal
108 figure(4800)
109 plot(t*1000,xn,'LineWidth',3)
110 hold on
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111 plot(t*1000,A0,'g','LineWidth',1)
112 hold off
113 set(gca,'XLim',[0 40])
114 hlabelx=get(gca,'Xlabel');
115 set(hlabelx,'String','$t$ (ms)','Interpreter','Latex','FontSize',16)
116 hlabely=get(gca,'Ylabel');
117 set(hlabely,'String','$x$','Interpreter','Latex','FontSize',16)
118 legend('Original','Reconstructed')
119 title ( 'Noisy Sinusoid − Reconstruction from level 4 decomposition using

db8')
120
121 % Check for perfect reconstruction.
122 errs=xn−A0; % deviations
123 nor = norm(errs) % norm of deviations
124 errmax = max(abs(errs)) % maximum absolute devation
125
126 [Ea,Ed] = wenergy(C,L)
127 total_energy=Ea+sum(Ed)

Note how significant de-noising occurs with the level-4 approximation. Using
wavelets to remove noise from a signal requires identifying which component or
components contain the noise, and then reconstructing the signal without those
components. In this example, we note that successive approximations become
less and less noisy as more and more high-frequency information is filtered out
of the signal. The level-4 approximation is quite clean, as can be seen from
the comparison between it and the original signal. Of course, in discarding all
the high-frequency information, we have also lost many of the original signal’s
sharpest features. Optimal de-noising requires a more subtle approach, namely,
thresholding (Chap. 15).

16.8.2 De-noising and Compression

Here we will examine the most important de-noising- and compression-oriented
Matlab functions. For the related theoretical treatment, see Chap. 15. These functions
mainly rely on the use of thresholds of theDonoho-Johstone family. The fundamental
functions are wdencmp and wden:

• wden performs automatic de-noising, and cannot be used for compression;
• wdencmp is both for de-noising and compression.With respect to wden, wdencmp
allows more flexibility, and you can implement your own de-noising or compres-
sion strategy.

http://dx.doi.org/10.1007/978-3-319-25468-5_15
http://dx.doi.org/10.1007/978-3-319-25468-5_15
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Automatic De-noising Using wden

The function wden performs an automatic de-noising process of a signal using
wavelets (Donoho 1993, 1995; Donoho and Johnstone 1994a; Donoho et al. 1995;
Antoniadis and Oppenheim 1995). In input to wden, we can provide the signal, or
directly its decomposition structure obtained by a previous call to wavedec. Thus the
syntax can be

1 [xd,Cxd,Lxd] = wden(x,tptr,sorh,scal,lev,wname)

or

1 [xd,Cxd,Lxd] = wden(C,L,tptr,sorh,scal,lev,wname)

where [C,L] is the wavelet decomposition structure of the signal x obtained using
wavedec up to level lev, in association with the wavelet wname.
The function wden automatically finds the threshold value on the basis of the para-
meters tptr and scal.

• the tptr string contains the threshold selection rule (Donoho-Johstone family):

– ‘rigrsure’ uses the principle of Stein’s Unbiased Risk;
– ‘heursure’ is an heuristic variant of the first option;
– ‘sqtwolog’ uses the so-called universal threshold by Donoho and Johnstone
(Square2log);

– ‘minimaxi’ uses minimax thresholding.

• scal defines the multiplicative threshold rescaling:

– ‘one’ for no rescaling (useful for simulations in which noise has unit variance);
– ‘sln’ for rescaling using a single estimation of the noise level, based on the
first-level coefficients of the decomposition structure [C,L] computed using the
wavelet specified in wname;

– ‘mln’ for rescaling done using a level-dependent estimation of the noise level
(useful for dealing with non-white noise).

To estimate the noise level, wden calls the function wnoisest: the command

1 sigma = wnoisest(C,L,S)

returns robust estimates of the detail coefficients’ standard deviation for the levels
contained in the input vector S. The noise-level estimator given in Sect. 15.2.2 is
indeed a robust estimator of the standard deviation of the level-1 detail coefficients
in the case ofwhite noise, or of the level-1, level-2, level-3 etc. in the case of non-white
noise. Thus, for a single estimation of the noise level the command iswnoisest(C,L,1);
for a level-dependent estimation the command is wnoisest(C,L,S), with S containing
the levels for which the noise level must be estimated, e.g., S = [1 2 3 . . . lev]. The
outputs of wden are the de-noised signal xd and its wavelet decomposition structure
[Cxd,Lxd].

http://dx.doi.org/10.1007/978-3-319-25468-5_15
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De-noising or Compression Using wdencmp with Donoho-Johstone Threshold
Selection Criteria

The function wdencmp must receive in input the pre-fixed values of four parameter,
defining the strategy for DWT-based de-noising or compression of the signal x:

• a scalar opt, declaring if a global threshold is desired, or if a level-dependent
threshold is preferred;

• a scalar threshold thr (one threshold for all levels; global threshold) or vector
threshold thr (level-dependent threshold), according to the value of opt;

• a scalar sorh, declaring if a soft or hard thresholding must be performed;
• a scalar keepapp, stating if the approximation coefficients must be kept untouched.

To define these input parameters, we can use default values, which are provided by
the function ddencmp, or make our own decisions. In the latter case, the selection
of the threshold value(s) is the most crucial. A threshold can be established on the
basis on some criterion, or calculated exploiting some other Matlab function.

• The function ddencmp returns default values for DWT-based de-noising or com-
pression (Donoho 1995; Donoho and Johnstone 1994a, b) of an input signal x. The
syntax is

1 [thr,sorh,keepapp] = ddencmp(in1,in2,x)

In input, in1 is ’den’ for de-noising or ‘cmp’ for compression; in2 is ‘wv’ for
wavelets.5 In output, the threshold thr is always computed as the Square2log (sqt-
wolog) threshold, properly rescaled by the noise-level estimate(s) for the examined
signal; the thresholding rule sorh is ‘s’ (soft) for de-noising and ‘h’ (hard) for com-
pression; keepapp is always 1, i.e., the approximation coefficients are always left
untouched. More precisely, the threshold defaults are the following:

– if in1 = ‘den’ (de-noising),
the nominal unscaled threshold is thr = sqrt(2*log(N_DWT)), where N_DWT
is the length of C. Then the threshold is rescaled according to the value of scal:

1 [C,L] = wavedec(x,1,'db1')
2 cD = C(L(1)+1:end)
3 scalingfact = median(abs(cD))
4 thr = thr* scalingfact /0.6745

Note the use of the db1 wavelet, independently of the wavelet wname that will
be specified for use in wdencmp. The median of the absolute value of level-1
detail coefficients divided by 0.6745 is a robust estimator of the noise level,
and this ensures an estimate which is nor contaminated by DWT end effects,
which are pure artifacts due to computations on the edges, nor by those possibly
signal-related few level-1 detail coefficients that may be present;

5The function can be used also for wavelets packets.
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– if in1 = ‘cmp’ (compression),
the nominal threshold is set to thr = 1. The rescaled threshold is then computed
as follows:

1 [C,L] = wavedec(x,1,'db1')
2 cD = C(L(1)+1:end)
3 medianc_db1 = median(abs(cD))
4 % If medianc_db1=0, simply kill the lowest coefficients
5 if medianc_db1 == 0
6 medianc_db1 = 0.05*max(abs(cd))
7 end
8 thr = thr *medianc_db1

• If we do not use ddencmp, how canwe choose a threshold?We can use the function
thselect:

1 thr = thselect(x,tptr)

returns the x-adapted threshold value using the threshold selection rule defined by
the string tptr. Available options belong to the Donoho-Johnston family, and are
the same described when discussing wden input variables. Dealing with non-white
noise can then be handled by rescaling the output threshold thr by a level-dependent
estimation of the noise level.

The wdencmp function performs wavelet coefficients thresholding for both de-
noising and compression purposes (Donoho 1993, 1995; Donoho and Johnstone
1994a, b; Donoho et al. 1995). Its syntax is

1 [xd,Cxd,Lxd] = wdencmp(opt,x,wname,lev,thr,sorh,keepapp)

for de-noising, and

1 [xc,Cxc,Lxc,perf0,perfl2] = wdencmp(opt,x,wname,lev,thr,sorh,keepapp)

for compression, where

• x is the signal to be de-noised or compressed using the wavelet wname at level
lev;

• opt = ‘gbl’ and thr is a positive real number for a global threshold;
• opt = ‘lvd’ and thr is a vector for a level-dependent threshold; the length of thr
must be equal to lev;

• sorh = ‘s’ (soft) or ‘h’ (hard) (thresholding rule);
• keepapp = 1 to keep approximation coefficients, and keepapp = 0 to allow for
approximation coefficients thresholding (this option is seldom used).

The function returns a de-noised (xd) or compressed (xc) version of the input signal
x and the corresponding wavelet decomposition structure ([Cxd,Lxd] or [Cxc,Lxc],
respectively). Additional output arguments used in compression are perfl2 and perf0:
the �2-norm recovery and the compression score in percentage, respectively.

perfl2 = 100*(vector-norm of Cxc/vector-norm of C)2, where [C,L] denotes the
wavelet decomposition structure of x. If wname is an orthogonal wavelet, perfl2
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reduces to 100*|xc|2/|x|2. Other performance parameters we may want to compute
for each threshold value are

1 retained = 100 − perf0 % Retained coefficients in percentage
2 RMSdev= sqrt(sum((x−xco).^2)/N) % Neglected signal energy
3 RMSdev_check = sqrt(sum((c2−cxc).^2)/N) % Energy in neglected coefficients

The function wdencmp can also be called using directly the wavelet decomposition
structure [C,L] of the signal to be de-noised or compressed, previously computed at
level lev using the wavelet wname: for example,

1 [xc,Cxc,Lxc,perf0,perfl2] = wdencmp('gbl',C,L,wname,lev,thr,sorh,keepapp)

This is useful if we have already decomposed the signal x:

1 [C,L] = wavedec(x,lev,wname)

Inside wdencmp (and wden), the actual thresholding is operated by a function called
wthresh. This function performs soft or hard thresholding. The command

1 y = wthresh(x,sorh,thr)

returns the soft (if sorh = ‘s’) or hard (if sorh = ‘h’) thresholding of the input vector
x using the threshold thr.

De-noising or Compression Using wdencmp with Birgé–Massart Threshold
Selection Criteria

So far, we described approaches to denoising or compression that rely on thresh-
olds belonging to the Donoho-Johnstone family. Other Matlab functions implement
different threshold selection criteria for de-noising or compression. For example,
wdcbm uses the Birgé–Massart threshold, while wbmpen uses the Birgé–Massart
penalized threshold.
After performing awavelet decomposition of the signal x at level lev with the wavelet
wname,

1 [C,L] = wavedec(x,lev,wname)

we can

• use wdcbm for selecting level-dependent thresholds for signal de-noising or com-
pression:

1 [thr,nkeep] = wdcbm(C,L,alpha,M)

Typically, alpha = 1.5 for compression and alpha = 3 for de-noising. A default
value for M is M = L(1), the number of the coarsest approximation coefficients.
Recommended values for M are from L(1) to 2L(1).
The function returns the level-dependent thresholds thr and numbers of coefficients
to be kept, nkeep, for de-noising or compression (Birgé and Massart 1997). The
parameters alpha and M must be greater than 1. In output, thr is a vector of length
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lev; thr(j) contains the threshold for level j, with j = [1,lev]. The other output,
nkeep, is a vector of length lev; nkeep(j) contains the number of coefficients to be
kept at level j;

• use the wbmpen function for selecting a global threshold for signal de-noising (no
compression), which is called Birgé–Massart penalized threshold:

1 thr = wbmpen(C,L,sigma,alpha)

Here thr is obtained by a wavelet coefficients selection rule using the penalization
method provided byBirgé andMassart (1997). The parameter sigma is the standard
deviation of the zero-meanGaussianwhite noise in de-noisingmodel (seewnoisest
for more information); alpha is a tuning parameter for the penalty term included
in the Birgé and Massart (1997) method. It must be a real number greater than
1. The sparsity of the wavelet representation of the de-noised signal grows with
alpha; typically, alpha = 2.

Once the necessary parameters have been determined, wdencmp can be called.
We will now try different shades of de-noising.

1. Firstwe use ddencmp to obtain the default global threshold forwavelet de-noising.
In this way we verify that the threshold is equal to the universal threshold of
Donoho and Johnstone, scaled by a robust estimate of the noise standard deviation.
For this exercise, run the script check_default_glbthresh.

1 % check_default_glbthresh
2 % Use ddencmp to obtain the default global threshold for wavelet denoising.
3 % Demonstrate that the threshold is equal to the universal threshold
4 % of Donoho and Johnstone, scaled by a robust estimate of the variance.
5
6 clear
7
8 % Generate white noise signal
9 % Set the random number generator to the default initial settings
10 % for reproducible results.
11 rng default;
12 x = randn(512,1);
13
14 % Compute default global threshold by ddencmp
15 in1= 'den'
16 in2='wv'
17 [thr,sorh,keepapp] = ddencmp(in1,in2,x)
18
19 % Decompose the signal at level 1 by db1
20 wname='db1'
21 [cA,cD] = dwt(x,wname);
22 NA=length(cA);
23 ND=length(cD);
24 N_DWT=NA+ND
25
26 % Compute noise level
27 noiselev = median(abs(cD))/0.6745;
28
29 % Compute universal threshold of Donoho and Johnstone
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30 uthr = sqrt(2*log(N_DWT));
31 thr_check = uthr*noiselev

2. As a second step, we try the functionwden for automatic de-noising on the “heavy
sine” test signal used by Donoho and Johnstone (1994a). We set the SNR and
the seed for noise generation (so that results are reproducible). These parameters
serve as inputs to the wnoise function that generates the reference signal xref
and a noisy version of it, x, constructed adding Gaussian white noise with unit
variance to xref, with some prescribed SNR. Four de-noising strategies are then
applied to the noisy signal:

a. x is de-noised using soft Square2log thresholding, working on detail coeffi-
cients obtained from the decomposition of x at level 5 by the sym8 wavelet.
No multiplicative threshold rescaling is performed, since in this case we know
a priori that the standard deviation of noise, which is 1;

b. x is de-noised using soft SURE thresholding;
c. x is de-noised using soft heurSURE thresholding;
d. x is de-noised using soft minimax thresholding.

The de-noised signals are plotted and compared with the reference signal and
among themselves.

Automatic de-noising by soft heuristic SURE thresholding is then repeated on
another test signal: a noisy block signal with some prescribed SNR. Since only
a small number of large coefficients characterize the original signal, the method
performs very well. The script for this exercise is automatic_de_noising (see
below).

1 % automatic_de_noising
2 % Try different automatic de−noising procedures
3 % on noisy heavy sine signal by Donoho and Johnstone:
4 % 1) soft Square2log thresholding,
5 % 2) soft SURE thresholding,
6 % 3) soft heuristic SURE thresholding,
7 % 4) soft minimax thresholding.
8
9 % Repeat soft heuristic SURE thresholding

10 % on noisy blocks signal by Donoho and Johnstone.
11
12 clear
13
14 % Set number of samples
15 nu=11%N=2^nu
16
17 % Set signal to noise ratio
18 snr = 9;
19 sqrtsnr=sqrt(snr)
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20
21 % Set rand seed for signal generation
22 init = 2055615866;
23
24 % Generate reference heavy sine signal (xref) and noisy version of it (x)
25 % containing additive Gaussian white noise with std=1
26 fun='heavy sine'
27 [xref,x] = wnoise(fun,nu,sqrtsnr,init);
28 %std(xref) = sqrtsnr
29 N = length(x);
30 time=0:N−1;
31
32 % Test noise std − supposed to be 1
33 noise = x−xref;
34 varnoise = var(noise);
35 stdnoise = sqrt(varnoise)
36
37 % De−noise noisy signal using Square2log thresholding of detail

coefficients
38 % obtained from decomposition of x at level 5 by sym8 wavelet
39 tptr='sqtwolog'
40 sorh='s'
41 scal='one'% noise has sigma=1
42 lev = 5
43 wname = 'sym8'
44 xd = wden(x,tptr,sorh,scal,lev,wname);
45
46 % Plot original and de−noised signals
47 figure(5000)
48 subplot(3,2,1)
49 plot(time,xref)
50 set(gca,'XLim',[−1 N])
51 hlabely=get(gca,'Ylabel');
52 set(hlabely,'String','$x_{\mathrm{ref}}$','Interpreter','Latex','FontSize',16)
53 title ( 'Heavy sine reference signal');
54 subplot(3,2,2)
55 plot(time,x)
56 set(gca,'XLim',[−1 N])
57 hlabely=get(gca,'Ylabel');
58 set(hlabely,'String','$x[n]$','Interpreter','Latex','FontSize',16)
59 title ([ 'Noisy signal − SNR =' num2str(fix(snr))]);
60 subplot(3,2,3)
61 plot(time,xd)
62 set(gca,'XLim',[−1 N])
63 hlabely=get(gca,'Ylabel');
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64 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16)
65 title ( 'De−noised − Square2log − sym8, lev. 5');
66
67 % De−noise noisy signal using soft SURE thresholding of detail

coefficients
68 % obtained from the decomposition of x at level 5 using sym8 wavelet
69 tptr='rigrsure'
70 xd = wden(x,tptr,sorh,scal,lev,wname);
71
72 % Plot de−noised signal
73 subplot(3,2,4)
74 plot(time,xd)
75 set(gca,'XLim',[−1 N])
76 hlabely=get(gca,'Ylabel');
77 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16)
78 title ( 'De−noised − SURE − sym8, lev. 5');
79
80 % De−noise noisy signal
81 % using soft heuristic SURE thresholding on detail coefficients
82 % obtained from the decomposition of x at level 5 using sym8 wavelet
83 tptr='heursure'
84 xd = wden(x,tptr,sorh,scal,lev,wname);
85
86 % Plot de−noised signal
87 subplot(3,2,5)
88 plot(time,xd)
89 set(gca,'XLim',[−1 N])
90 hlabelx=get(gca,'Xlabel');
91 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
92 hlabely=get(gca,'Ylabel');
93 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16)
94 title ( 'De−noised − HeurSURE − sym8, lev. 5');
95
96 % De−noise noisy signal using minimax thresholding of detail coefficients
97 % obtained from the decomposition of x at level 5 using sym8 wavelet.
98 tptr='minimaxi'
99 xd = wden(x,tptr,sorh,scal,lev,wname);
100
101 % Plot de−noised signal
102 subplot(3,2,6)
103 plot(time,xd)
104 set(gca,'XLim',[−1 N])
105 hlabelx=get(gca,'Xlabel');
106 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
107 hlabely=get(gca,'Ylabel');
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108 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16)
109 title ( 'De−noised − Minimax − sym8, lev. 5');
110
111 %
112 % Repeat soft heuristic SURE thresholding on another test signal
113 %
114
115 % Set signal to noise ratio and set rand seed.
116 snr = 16;
117 sqrtsnr = sqrt(snr)
118
119 % Set rand seed for signal generation
120 init = 2055615866;
121
122 % Set number of samples
123 nu=11%N=2^nu
124
125 % Generate reference blocks signal xref and a noisy version of it (x)
126 % adding standard Gaussian white noise with std=1
127 fun='blocks'
128 [xref,x] = wnoise(fun,nu,sqrtsnr,init);
129 N= length(x);
130 time=0:N−1;
131
132 % Test noise std− supposed to be 1
133 noise=x−xref;
134 varnoise=var(noise);
135 stdnoise=sqrt(varnoise)
136
137 % De−noise noisy signal
138 % using soft heuristic SURE thresholding of detail coefficients
139 % obtained from decomposition of x at level 3 using sym8 wavelet
140 tptr='sqtwolog'
141 sorh='s'
142 scal='one'% noise has sigma=1
143 lev = 3
144 wname = 'sym8'
145 xd = wden(x,tptr,sorh,scal,lev,wname);
146
147 % Plot original and de−noised signals
148 figure(5100)
149 subplot(3,1,1)
150 plot(time,xref)
151 set(gca,'XLim',[−1 N])
152 set(gca,'YLim',[−7 17])
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153 hlabely=get(gca,'Ylabel');
154 set(hlabely,'String','$x_{\mathrm{ref}}$','Interpreter','Latex','FontSize',16)
155 title ( 'Blocks reference signal')
156 subplot(3,1,2)
157 plot(time,x)
158 set(gca,'XLim',[−1 N])
159 set(gca,'YLim',[−7 17])
160 hlabely=get(gca,'Ylabel');
161 set(hlabely,'String','$x$','Interpreter','Latex','FontSize',16)
162 title ([ 'Noisy signal − SNR =' num2str(fix(snr))]);
163 subplot(3,1,3)
164 plot(time,xd)
165 set(gca,'YLim',[−7 17])
166 set(gca,'XLim',[−1 N])
167 hlabelx=get(gca,'Xlabel');
168 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
169 hlabely=get(gca,'Ylabel');
170 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16)
171 title ( 'De−noised − heuristic SURE − sym8, lev. 3');

3. Next, we de-noise a noisy bumps signal that is available in theMatlab distribution
as noisbump.mat, using the function wdencmp and adopting a Birgé–Massart
threshold selection approach (wbmpen).We load the signal and perform awavelet
decomposition of the signal at level 5 using sym6. We then estimate the noise
standard deviation from the detail coefficients at level 1 of this decomposition,
using wnoisest, and use wbmpen for selecting a global threshold for de-noising,
with the tuning parameter alpha = 2. Then we apply wdencmp for de-noising the
signal using the above threshold, with soft thresholding and approximation kept.
We plot original and de-noised signals. The script reported below (de_noising)
performs this task.

1 % de_noising
2 % De−noising using wdencmp with Birge−Massart penalized threshold
3
4 clear
5
6 % Load noisy bumps signal.
7 load noisbump;
8 x = noisbump;
9 N=length(x);

10 time=0:N−1;
11
12 % Perform a wavelet decomposition of the signal at level 5 using sym6
13 lev = 5
14 wname = 'sym6'
15 [C,L] = wavedec(x,lev,wname);
16
17 % Estimate the noise standard deviation from the detail coefficients at level 1
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18 sigma = wnoisest(C,L,1)
19
20 % Use wbmpen for selecting global threshold
21 % for signal de−noising, using the tuning parameter
22 alpha = 2;
23 thr = wbmpen(C,L,sigma,alpha)
24
25 % Use wdencmp for de−noising the signal
26 % using the above threshold with soft thresholding and approximation kept
27 o='gbl'
28 sorh='s'
29 keepapp = 1
30 xd = wdencmp(o,C,L,wname,lev,thr,sorh,keepapp);
31
32 % Plot original and de−noised signals
33 figure(5200)
34
35 subplot(2,1,1)
36 plot(time,x)
37 set(gca,'XLim',[−1 N])
38 hlabely=get(gca,'Ylabel');
39 set(hlabely,'String','$x$','Interpreter','Latex','FontSize',16)
40 title( 'Noisy bump signal')
41 subplot(2,1,2)
42 plot(time,xd)
43 set(gca,'XLim',[−1 N])
44 hlabelx=get(gca,'Xlabel');
45 set(hlabelx,'String','$n$','Interpreter','Latex','FontSize',16)
46 hlabely=get(gca,'Ylabel');
47 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16)
48 title( 'De−noised − Birge−Massart penalized threshold − sym6, lev. 5')

4. As the last exercise on de-noising, we tackle the case of a real-world signal, the
same electrical load signal used in Chap. 14 that represents electrical consumption
measured over the course of 3days. This signal is particularly interesting because
of noise introduced when a defect developed in the monitoring equipment as the
measurements were being made. Wavelet analysis effectively removes the noise.
This signal is included in the Matlab distribution as leleccum.mat.
For this example, proceed as follows.

• Load the signal and select a portion for wavelet analysis.
• Perform amulti-level wavelet decomposition of the signal. Use the db1wavelet
and level 3. If we look at the details from the decomposition at level 3 we notice
that noise in this latter part of the signal causes the details show a great activity.
So we can manipulate each of the vectors cD1, cD2, and cD3, setting each
vector’s element to some fraction of the vectors’ peak or average value. Then
we can reconstruct new detail signals D1, D2, and D3 from the thresholded
coefficients.

• To de-noise the signal according to these lines, use the ddencmp function spec-
ifying the global thresholding option ‘gbl’, to calculate default parameters;
then use the wdencmp command to perform the actual de-noising, specifying

http://dx.doi.org/10.1007/978-3-319-25468-5_14
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the results of the previous signal’s decomposition (C and L) and the wavelet
(db1) that was used to perform the decomposition. Display the original and
de-noised signal. Notice the noise has been removed without compromising
the sharp detail of the original signal. This is a strength of wavelet analysis.

• Repeat the de-noising of the same signal segment using the wavelet db3: this
time decompose the signal first at level 2, and then at level 5. Observe the
differences in the result with respect to the previous case.

• In this real-world case, the noise might actually be non-white. To deal with the
composite nature of noise, thresholds must be rescaled by a level-dependent
estimation of the noise level. The idea is to define the rescaled threshold level
by level, thus increasing the capability of the de-noising strategies.6 Try the
method on a highly perturbed part of the electrical signal (samples 2000–
3450). Memorize the first signal value, deb = x(1), and then de-noise x-deb
instead of x, to avoid edge effects. Use wden with the option tptr = ‘sqtwolog’
(scalar universal threshold) and soft thresholding; use again the db3 wavelet
and decompose at level 3. Use a level-dependent estimation of the noise level
by setting scal = ‘mln’ in wden.

Use the script given below (de_noise_leleccum). The result is quite good in spite
of the time heterogeneity of the nature of the noise after and before the beginning
of the sensor failure around time 2450.

1 % de_noise_leleccum.m
2 % Signal de−noising
3
4 clear
5
6 % Load the signal
7 load leleccum;
8 Ntot=length(leleccum)
9 T_s=1%min

10 t = 0:T_s:(Ntot−1)*T_s; % (3 days)
11
12 % Select a part for de−noising
13 indx = 2000:3920;
14 x = leleccum(indx);
15 N=length(x)
16 time=t(indx);
17
18 % Decompose at level 3 by db1
19 lev = 3;

6In the most general case, the threshold or the set of level-dependent thresholds could be made
time-dependent, to handle non-stationary variance noise models. In that case, the signal’s model
would still be x[n] = s[n] + σee[n], but the noise standard deviation σe should be allowed to vary
with time, because there are several different variance values on several time intervals. The values
as well as the intervals could then be found by wvarchg. We will not go deeper into these more
advanced de-noising techniques.
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20 wname = 'db1'
21 [C,L] = wavedec(x,lev,wname);
22
23 % Threshold de−noising
24
25 % Calculate default parameters for de−noising
26 in1='den'
27 in2='wv'
28 [thr,sorh,keepapp] = ddencmp(in1,in2,x)
29
30 % Perform de−noising
31 o='gbl'
32 xd = wdencmp(o,C,L,wname,lev,thr,sorh,keepapp);
33 Nden=length(xd)
34
35 % Display both the original and de−noised signals
36 figure(5300)
37 subplot(4,1,1)
38 plot(time,x)
39 set(gca,'XLim',[time(1) time(end)]);
40 hlabely=get(gca,'Ylabel');
41 set(hlabely,'String','$x$','Interpreter','Latex','FontSize',16)
42 title ( 'Threshold de−noising with default parameters of electrical load

signal')
43
44 subplot(4,1,2)
45 plot(time,xd)
46 set(gca,'XLim',[time(1) time(end)]);
47 hlabely=get(gca,'Ylabel');
48 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16)
49 text(2100,200,'db1, lev=3','FontSize',12)
50
51 % Decompose at level 2 by db3
52 clear C L
53 lev = 2;
54 wname = 'db3';
55 [C,L] = wavedec(x,lev,wname);
56
57 % Calculate default parameters for de−noising
58 in1='den'
59 in2='wv'
60 [thr,sorh,keepapp] = ddencmp(in1,in2,x)
61
62 % Perform de−noising
63 o='gbl'
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64 xd = wdencmp(o,C,L,wname,lev,thr,sorh,keepapp);
65 Nden=length(xd)
66
67 % Plot results
68 subplot(4,1,3)
69 plot(time,xd);
70 set(gca,'XLim',[time(1) time(end)]);
71 hlabely=get(gca,'Ylabel');
72 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16)
73 text(2100,200,'db3, lev=2','FontSize',12)
74
75 % Decompose at level 5 by db3
76 clear C L
77 lev = 5;
78 wname = 'db3';
79 [C,L] = wavedec(x,lev,wname);
80
81 % Calculate default parameters for de−noising
82 in1='den'
83 in2='wv'
84 [thr,sorh,keepapp] = ddencmp(in1,in2,x)
85
86 % Perform de−noising
87 o='gbl'
88 xd = wdencmp(o,C,L,wname,lev,thr,sorh,keepapp);
89 Nden=length(xd)
90
91 % Plot results
92 subplot(4,1,4)
93 plot(time,xd);
94 set(gca,'XLim',[time(1) time(end)]);
95 hlabelx=get(gca,'Xlabel');
96 set(hlabelx,'String','$t$ (min)','Interpreter','Latex','Fontsize',16)
97 hlabely=get(gca,'Ylabel');
98 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16')
99 text(2100,200,'db3, lev=5','FontSize',12)
100
101 % To deal with the composite noise nature,
102 % try a level−dependent noise size estimation
103
104 % Select a highly perturbed part of the signal
105 clear x time
106 indx = 2000:3450;
107 x = leleccum(indx);
108 N=length(x)
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109 time=t(indx);
110
111 % Find first value in order to avoid edge effects
112 deb = x(1);
113
114 % De−noise signal using a level−dependent estimation of noise level
115 % Use db3 at level 3
116 tptr='sqtwolog'
117 sorh='s'
118 scal = 'mln';
119 lev=3;
120 wname='db3';
121 xd = wden(x−deb,tptr,sorh,scal,lev,wname)+deb;
122 Nden=length(xd)
123
124 figure(5400)
125 subplot(2,1,1)
126 plot(time,x)
127 set(gca,'XLim',[time(1) time(end)]);
128 hlabely=get(gca,'Ylabel');
129 set(hlabely,'String','$x$', 'Interpreter','Latex','FontSize',16)
130 title ( 'De−noising of electrical load signal with level−dependent

estimation of noise level ')
131
132 subplot(2,1,2)
133 plot(time,xd)
134 set(gca,'XLim',[time(1) time(end)]);
135 hlabelx=get(gca,'Xlabel');
136 set(hlabelx,'String','$t$ (min)','Interpreter','Latex','Fontsize',16)
137 hlabely=get(gca,'Ylabel');
138 set(hlabely,'String','$x_d$','Interpreter','Latex','FontSize',16)
139 text(2100,100,'db3, lev. 3 − Square2log','FontSize',12)

Finally, we can experiment with compression. Over a selected part of the electrical
load signal, proceed as follows.

• Perform compression by hard thresholding, using wdencmp with a fixed threshold
of 35 (see Sect. 15.3). In this compression, about 83% of the coefficients are set
to zero, but 99% of the energy in the signal is retained. Thus the procedure results
in effective signal compression.

• As a last step, perform a wavelet decomposition at level 5 using db3, and use
wdcbm for selecting level-dependent thresholds according to the Birgé–Massart
scarce-high approach for signal compression, with alpha = 1.5 and M = L(1).
Use wdencmp for compressing the signal using the above thresholds with hard
thresholding. Observe the original and compressed signals and examine the com-

http://dx.doi.org/10.1007/978-3-319-25468-5_15
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pression performances of the adopted procedure. Use the following script (com-
press_leleccum).

1 % compress_leleccum.m
2 % Signal compression
3
4 % 1. Use Donoho approach (ddencmp and wdencmp )
5
6 clear
7
8 % Load signal
9 load leleccum;
10 Ntot=length(leleccum)
11 T_s=1%min
12 t= 0:T_s:(Ntot−1)*T_s; % (3 days)
13
14 % Select a part of load electrical signal
15
16 indx = 2300:3500;
17 x = leleccum(indx);
18 time=t(indx); % time is shorter than t
19 tmin=min(time)
20 tmax=max(time)
21 xmin=min(x)
22 xmax=max(x)
23 N=length(x)
24
25 % Perform wavelet decomposition at level 3 by db3
26 lev=3
27 wname='db3'
28 [C,L] = wavedec(x,lev,wname);
29 N_DWT=length(C)
30 N_DWT_check=sum(L(1:end−1))
31 Nd=sum(L(2:end−1))
32 Na=L(1)
33
34 % Find default parameter values for compression
35 in1='cmp'
36 in2='wv'
37 [thr,sorh,keepapp] = ddencmp(in1,in2,x);
38 thr_default=thr
39
40 % Compress with threshold of 35 (about ten times the default value)
41 thre=35
42 o='gbl'
43 [xc,Cxc,Lxc,perf0,perfl2] = wdencmp(o,C,L,wname,lev,thre,sorh,keepapp);
44 Ncomp=length(xc)
45 perf0_DJ=perf0
46 perfl2_DJ=perfl2
47
48 % Compute more performance parameters for each threshold value
49 retained=100−perf0
50 RMSdev= sqrt(sum((x−xc).^2)/N)
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51
52 % Reconstruct approximation
53 typ='a';
54 A = wrcoef(typ,C,L,wname,lev);
55
56 % Plot results − compare approximation A_3 with compression (threshold=35)
57
58 figure(5500)
59
60 subplot(4,1,1)
61 plot(time,x);
62 set(gca,'XLim',[tmin tmax])
63 hlabely=get(gca,'Ylabel');
64 set(hlabely,'String','$x$','Interpreter','Latex','FontSize',16)
65 title ( 'Compression of electrical load signal according to different criteria')
66
67 subplot(4,1,2)
68 plot(time,A);
69 set(gca,'XLim',[tmin tmax])
70 hlabely=get(gca,'Ylabel');
71 set(hlabely,'String','$A_3$','Interpreter','Latex','FontSize',16)
72 text(2400,200,'db3, lev. 3','FontSize',12)
73
74 subplot(4,1,3)
75 plot(time,xc);
76 set(gca,'XLim',[tmin tmax])
77 hlabely=get(gca,'Ylabel');
78 set(hlabely,'String','$x_c$','Interpreter','Latex','FontSize',16)
79 text(2400,200,'db3, lev. 3, fixed threshold of 35','FontSize',12)
80
81 % 2. Use Birg − Massat approach (wdcbm)
82
83 % Perform decomposition at level 5 using db3.
84 clear C L
85 lev = 5
86 wname = 'db3'
87 [C,L] = wavedec(x,lev,wname);
88
89 % Use wdcbm for selecting level−dependent thresholds
90 % for signal compression using the adviced parameters
91 alpha = 1.5
92 M = L(1)
93 [thr,nkeep] = wdcbm(C,L,alpha,M)
94
95 % Compres the signal using the above thresholds with hard thresholding.
96 o='lvd'
97 sorh='h'
98 [xc,Cxd,Lxd,perf0,perfl2] = wdencmp(o,C,L,wname,lev,thr,sorh);
99 Ncomp=length(xc)

100 perfl0_BM=perf0
101 perfl2_BM=perfl2
102
103 % Plot original and compressed signals
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104 subplot(4,1,4)
105 plot(time,xc)
106 set(gca,'XLim',[tmin tmax])
107 hlabelx=get(gca,'Xlabel');
108 set(hlabelx,'String','$t$ (min)','Interpreter','Latex','Fontsize',16)
109 hlabely=get(gca,'Ylabel');
110 set(hlabely,'String','$x_c$','Interpreter','Latex','FontSize',16)
111 text(2400,200,'db3, lev. 5, Birge−Massart','FontSize',12)
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A
Absolute maximum error, seeAbsolute peak

error
Absolute peak error, 234
Absolutely summable sequence, 43, 78
Adimensional delay, 583
Adimensional frequency, 32
Admissibility condition

continuous wavelets, 597
discrete wavelets, 670

Admissibility constant, 602
Algorithme á trous, 693
Aliasing

frequency domain, 137, 141–144
time domain, 93, 109

All-pole models, 472
All-zero models, 481
Alternation theorem, 236, 247
Amplitude function, see Zero-phase re-

sponse
Amplitude quantization, 3
Amplitude response, 188
Amplitude spectrum, 77
Analog filters, 266, 268–308

Butterworth, 275–281
Chebyshev, 281–296

Type I, 282–287
Type II, 287–296

elliptic, 296–306
Analog prototype filter, 274
Analog signals, 2, 24, 133–149
Analysis relation

CTFT, 122, 266
CWT, 586
DFS, 90
DFT, 96
DTFT, 77–82

DWT, 666
Laplace transform, 267
z-transform, 56

Analytic signals, 598
Analytic wavelets, 596, 598–713

complex derivatives of Gaussian (DOG),
601, 711

complex Morlet, 598, 712
frequency B-spline (fbsp), 601, 712
Morlet, 596
Paul, 596, 600
Shannon, 601, 712

Anti-aliasing filter
analog (before sampling), 141
digital (before downsampling), 212

Approximation bands, 245
Approximation coefficients, 664
Approximation error, 228
Approximations, 664, 666, 667, 687, 690–

692, 694, 695, 697
AR(∞) model, 484
AR(1) model, 484–493
AR(2) model, 479, 494, 495, 523
AR(4) model, 494, 496, 523
Asymptotic attenuation at high frequency,

270
Attenuation, 158, 189
Attenuation band, see Stopband
Attenuation function, 271
Autocorrelation

deterministic energy signals, 172, 174
deterministic power signals, 177
random signals, 374, 377

Autocorrelation coefficient sequence
deterministic energy signals, 176
deterministic power signals, 178
random signals, 378
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Autocovariance
deterministic energy signals, 172, 174
deterministic power signals, 177
random signals, 374, 378

estimation, 395–397
Autoregressive (AR)

modeling procedure, 502–515
models, 472, 475–478

order selection, 502–506, 513, 516
spectral estimation, 499, 515–533

Autoregressive-moving average (ARMA)
models, 338, 472–475

Average power, see Power, 384

B
Background spectrum, 447–450

red noise, 447
white noise, 447

Backward prediction error, 501
filter, 501

Bartlett window, 163, 164, 411
Bartlett’s method, 410, 428–431

bias, 429
frequency resolution, 430
leakage, 430
variance, 430

Basis, 119, 132, 647, 648, 651
biorthogonal, 128, 130, 131, 670

dual basis, 130
complete, 119
orthogonal, 114, 119, 121–122, 127,
129–131, 647, 651, 658, 659, 670, 671,
699, 702

orthonormal (ON), 119, 129, 671, 682,
699

quasi-orthogonal, 647
unconditional, 131, 649

Bias of an estimator, 393
Bilinear transformation, 265, 309–311
Biorthogonal basis, 128, 130, 131, 662
Biorthogonal wavelets, 710

B-spline, 679
Birgé-Massart criterion, 725–726

penalized threshold, 725
threshold, 725

Blackman window, 163, 165
Blackman-Tukey (BT) method, 410, 438–

443
bias, 439
frequency resolution, 440, 442–443
leakage, 439, 442
variance, 440–442

Blackman-Tukey periodogram, see Correlo-
gram

Block diagram (BD), 200
Blue noise, 484, 489, 493
Bounded support, 147–149

in frequency, 147
in time, 147

Bounded-input, bounded-output (BIBO), 37
Box-Jenkins models, see Autoregressive-

moving average (ARMA) models
Box-Pierce test, see Portmanteau lack-of-fit

test
Broadband signals, 497, 523–524
Broomhead-King method, 539
B-spline biorthogonal wavelets, 679
Burg’s method, 515–519
Butterworth filters, 275–281

minimum order, 279

C
Canonic direct form, see Direct form II
Cardinal sine function (Sinc), 79, 139
Carrier wave, 194
Cascade algorithm, 658
Causal

signals, 31, 43
systems, 43

Center of analog signal, 145
Centered signal, 379
Characteristic polynomial, 47
Chebyshev filters, 281–296

Type I, 282–287
minimum order, 286

Type II, 287–296
minimum order, 294

Chebyshev polynomials, 243–244, 271, 272,
283, 289, 290, 292

Ciclicity, 404
Circular convolution, 106–109
Circular folding, 104
Circular shift, 102
Cohen-Daubechies-Feauveau (CDF)

biorthogonal wavelets, see B-spline
biorthogonal wavelets

Coiflets, 703–704, 710
Coifman wavelets, see Coiflets
Colored noise, 405, 414, 499
Compact support, 149, 657, 659
Complete basis, 119
Complete elliptic integral of the first kind,

298
Complex angles, 339
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Complex s-plane, see S-plane
Complex wavelets, see Analytic wavelets
Complex z-plane, see Z-plane
Compression, 717, 720, 722, 725, 734–741

ratio, 734
retained energy, 735
score, 734, 735

Computationally realizable filters, see Real-
izable filters

Concentration of analog signal, 145
Cone of influence (COI), 610, 618
Confidence interval

for an estimator, 393
for power spectrum estimates, 446–447

Confidence level, 393, 446
Consistency of an estimator, 394
Constant relative-bandwidth filter bank, 594,

687
Constant-bandwidth filter bank, 592
Constant-Qfilter bank, seeConstant relative-

bandwidth filter bank
Constrained least-squares (LS) filter design,

234
Continuous amplitude, 3
Continuous periodic convolution, 68, 411
Continuous spectra, 82
Continuous time, 24
Continuous wavelet transform (CWT), 581–

641
analysis relation, 586
discretization, 613–617
multiresolution property, 584–585, 594–
595

scale-frequency relation, 609
synthesis relation, 601, 607

Continuous wavelets, 596, 706
analytic, 598

Continuous-phase representation, 189–196
Continuous-time Fourier transform (CTFT),

97, 122, 266
analysis relation, 122, 266
synthesis relation, 122, 266

Continuous-time signals, 2, 24, 97, 133–149
Convergence

of DTFT
absolute, 78
in the mean-square sense, 78

of z-transform, 56
Convolution integral, 68
Convolution sum, see Linear convolution
Correlogram, 408
Cost function, 514
Covariance method, 513, 519

Criterion autoregressive transfer function
(CAT), 506

Critical sampling, 584, 647
Cross-correlation

deterministic energy signals, 174
deterministic power signals, 177
random signals, 380

Cross-correlation coefficient sequence
deterministic energy signals, 176
deterministic power signals, 178
random signals, 388

Cross-covariance
deterministic energy signals, 174, 175
deterministic power signals, 177
random signals, 380

estimation, 397
Cross-energy spectral density (CESD), see

Cross-energy spectrum
Cross-energy spectrum, 179
Cross-power spectral density (CPSD), see

Cross-spectrum
Cross-power spectrum, see Cross-spectrum
Cross-scalogram, 629
Cross-spectrum, 380, 387–389

estimation, 455–458
Crude wavelets, 708
Cutoff frequency, 274
Cutoff frequency at -3 dB, 270

D
Daniell’s filter, 428
Daubechies wavelets, 702–703, 709
Daughter wavelet, 582
DC mobility, see Zero-frequency mobility
Decimation, see Downsampling
Decomposition level, 684
Decorrelation factor, 628
Degree equation, 272
Degrees of freedom (DOF), 445
Delay, 27, 193, 195, 199, 233, 241, 309, 582,

658, 670, 672
De-noising, 716–734
Derivatives of Gaussian (DOG) wavelets

complex, 601, 712
real, 606–607, 708

Detail coefficients, 664
Details, 665, 666, 690–692, 694, 695, 697
Deterministic signals, 35

spectral analysis, 153–181
Digital filtering implementation, 198–208
Digital filters, 223–262, 264–266, 308–338
Digital signals, 2, 24
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Digital systems, 2
Dilation equation, see Twin-scale relation
Direct form I, 200
Direct form II, 201
Dirichlet function, 95, 419
Dirichlet kernel, 412
Discontinuities of phase response, 189–191
Discrete amplitude, 2, 24
Discrete Fourier series (DFS), 88–93, 95

analysis relation, 90
synthesis relation, 89

Discrete Fourier transform (DFT), 87, 88,
95–109

analysis relation, 96
synthesis relation, 96

Discrete spectra, 82
Discrete time, 24
Discrete trigonometric expansion, 113
Discrete wavelet transform (DWT), 584,

646–693
extension modes, 682–684
filter bank implementation, see Mallat’s
algorithm

frequency resolution, 691–692
maximum decomposition level, 692
multiresolution property, 649
time resolution, 691–692

Discrete wavelets, 596, 706
Discrete-time δ, see Unit impulse
Discrete-time angular frequency, 32
Discrete-time complex exponentials, 31–34
Discrete-timeFourier transform (DTFT), 53,

56, 65, 66, 77–87
analysis relation, 77–82
convergence

absolute, 78
in the mean-square sense, 78

extension to sum of discrete frequency
components, 81

synthesis relation, 82–83
Discrete-time signals, 2, 24, 97
Discrete-time sinusoids, 31–34
Discrete-time systems, 25
Discretization of CWT, 613–617
Discrimination factor, 269
Donoho-Johnstone methods of threshold es-

timation, 721–725
Doubly periodic function, 344
Downsampling, 29, 211–217
Dual frame, 127
Dyadic set of scales, 615

E
E-folding time, 613
Eigenfunctions and eigenvalues of LTI sys-

tems, 51
Eigenspectrum, see Eigenvalue spectrum
Eigenvalue spectrum, 540
Elliptic filters, 296–306

minimum order, 300
Elliptic functions, 345

order, 345
Elliptic integral of the first kind, 342
Elliptic moduli, 298, 342
Elliptic rational function, 271, 296, 357–366
Empirical orthogonal functions (EOFs), 539
Energy, 26
Energy density in the time-frequency plane,

605
Energy signals, 26
Energy spectral density (ESD), see Energy

spectrum
Energy spectrum, 85, 172, 179
Ensemble average, 376–378
Ensemble of realizations, 373
Ensemble of sample sequences, see Ensem-

ble of realizations
Equiripple FIR filter design method, see

Minimax FIR filter design method
Equiripple FIR filters, 244–262
Ergodicity, 381–382
Estimator, 393

asymptotic unbiasedness, 395
bias, 393
consistency, 394
variance, 393

Evolutionary spectral analysis, see Non-
stationary spectral analysis

Expectation, see Expected value
Expected value, 376
Extended complex plane, 57
Extension modes in DWT, 682–684
Extraripple filter, 250

F
Fast Fourier transform (FFT), 110–113
Fast wavelet transform (FWT), see Mallat’s

algorithm
Fejér kernel, 412
Fidelity factor, 594, 688
Filter bank

in CWT, 592
in DWT, 667–689

highpass decomposition filter, 686
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highpass reconstruction filter, 689
lowpass decomposition filter, 686
lowpass reconstruction filter, 689

in STFT, 591, 592
Filter banks, 658
Filter design

analog filters, 266, 268–308
digital filters

FIR, 223–262
IIR, 264–266, 308–338

Filters
analog, 266, 268–308
digital, 186–208, 223–262, 264–266,
308–338
computationally realizable, 79
frequency-selective, 186

Finite difference approximation technique,
309

Finite impulse response (FIR) systems, 44
Fisher-Snedecor test (F-test), 453
Flow graph reversal, see Flow graph trans-

position
Flow graph transposition, 204
Folding, 27
Forecasting, see Linear prediction
Forward prediction error, 500, 509

filter, 500
Forward-reverse filtering, seeZero-phase fil-

tering
Fourier factor, 610
Frame, 125–132

dual, 127
tight, 126, 127, 131

Frequency B-spline (fbsp) wavelets, 601,
712

Frequency bias, 518
Frequency estimation for harmonic signals,

405–406
Frequency resolution

Bartlett’s method, 430
Blackman-Tukey (BT) method, 440,
442–443

CWT, 589–595
DTFT, 156–160
DWT, 691–692
multitaper method (MTM), 451–453
periodogram, 407, 413, 424–426
STFT, 589
Welch’s method, 436

Frequency response
analog filters, 264, 269–275
digital filters, 53, 66, 71, 77, 79–80, 224–
231, 264–266

Frequency-domain representation, 4
Frequency-selective filter prototypes, see

Ideal frequency-selective filters
Frequency-selective filters, 186

ideal, 79–80, 186, 188
realizable, 187–198

Frequency transformations, 315–338
mapping filter, 317

F-test, see Fisher-Snedecor test (F-test)
Function spaces, 115–132
Fundamental frequency, 34
Fundamental interval, see Principal interval
Fundamental rectangle, 346
Fundamental region, 348

G
Gain, 73
Gap filling, 538, 555–561
Gauss transformation, 357
Generalized linear phase (GLP) filters, 196
Gibbs phenomenon, 80
Global wavelet energy spectrum, 604
Global wavelet spectrum (GWS), 407, 586,

606, 624–628
bias, 625–627
frequency resolution, 625
significance level, 627

Global weighting function, 227, 228
Group delay, 194, 195, 197, 237, 313, 678

H
Haar wavelet, 709
Half-band filters, 657
Hamming window, 163, 165
Hanning window, 163, 164
Hann window, see Hanning window
Hard thresholding, 719
Harmonic analysis, 405
Harmonic number, 33
Harmonic signals, 82, 404, 405

frequency estimation methods, 405–406
Harmonically-related sinusoids and com-

plex exponentials, 34
Heisenberg boxes, 590
HeurSURE criterion, 724
Highpass decomposition filter in DWT, 659,

686
Highpass reconstruction filter in DWT, 659,

689
Hilbert spaces, 119
Hilbert transform, 598
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I
Ideal delayer, 193–195
Ideal frequency-selective filters, 79–80, 186,

188
Impulse invariance transformation, 308
Impulse response

analog filters, 263
digital filters, 38, 42–45

FIR, 44
IIR, 44

Impulse-response-truncation design
method, see Windowing FIR filter
design method

Infinite autoregressive (AR) model, 484
Infinite impulse response (IIR) systems, 44
Infinite moving average (MA) model, 483
Information entropy, 528
Initial rest conditions, 48
Innovations, 467, 500
Instantaneous power, 171
Interconnections of LTI systems, 41
Interpolation, see Upsampling
Interpolation formula for z-transform, 94
Inverse continuous wavelet transform

(ICWT), 601, 607
Inverse discrete Fourier series (IDFS), 89
Inverse discrete Fourier transform (IDFT),

96
Inverse discrete wavelet transform (IDWT),

647, 666
Inverse discrete-time Fourier transform

(IDTFT), 82–83
Inverse Laplace transform, 268
Inverse system, 75–76

stability, 76
Inverse z-transform, 64–65
Inversion relation, 298, 358

J
Jacobi elliptic functions, 342–355

cd, 271, 298, 343–344
cn, 342
dn, 342
sn, 303, 342–344

Jointly wide-sense stationarity, 380
Joint probability density function, 375

K
Kaiser window, 168
K-regular unitary scaling filters, 700

L
Lag-covariance matrix, 538
Landen-Gauss transformation, 355–357
Landen transformation, 356
Laplace transform, 266–268

analysis relation, 267
convergence, 267
synthesis relation, 268

Leakage, 159–160, 166, 407, 413
Bartlett’s method, 430
Blackman-Tukey (BT) method, 439, 442
modified periodogram, 431
multitaper method (MTM), 450–453
periodogram, 413, 419
Welch’s method, 434, 437

Least-squares (LS) filter design, 233, 234
Level of decomposition, see Decomposition

level
Levinson-Durbin recursion, 509
Line spectra, see Discrete spectra
Line splitting, 519
Linear admissibility condition, 670
Linear constant-coefficient difference equa-

tion (LCCDE), 45–51
Linear convolution, 38, 106
Linear forecasting, see Linear prediction
Linear fractional transformation, see Bilin-

ear transformation
Linear phase (LP) filters, 193
Linear prediction, 500–501
Linear signal flow graph, see Signal flow

graph (SFG)
Linear time-invariant (LTI) systems, 35–53

eigenfunctions and eigenvalues, 51
Linearly independent random variables, see

Uncorrelated random variables
Locally white noise, 414
Local wavelet spectrum, 606
Lowpass decomposition filter in DWT, 659,

686
Lowpass reconstruction filter in DWT, 659,

689

M
MA(∞) model, 483
MA(1) model, 489–493
Magnitude response, see Amplitude re-

sponse
Magnitude squared coherence (MSC), 388
Mallat’s algorithm, 682–692
Mapping filter for frequency transforma-

tions, 317
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Mappings in the complex domain, 308
Marr wavelet, see Mexican hat wavelet
Mason graph, see Signal flow graph (SFG)
Maximal overlap discrete wavelet transform

(MODWT), 693
Maximum decomposition level, 692
Maximum entropy method (MEM), 518,

526–533
Maximum likelihood estimators, 394
Mean-square convergence of DTFT, 78
Mean square value of a random signal, 377
Mean value of a random signal, 376

estimation, 394
Memory

of random processes, 471
of systems, 35, 49, 51

Mexican hat wavelet, 606
Meyer wavelets, 708
Minimal form of rational transfer function,

73
Minimax criterion, 725
Minimax estimators, 725
Minimax FIR filter designmethod, 233, 234,

244–262
minimum order, 251–253

Minimum description length (MDL) crite-
rion, 506

Minimum mean square error (MMSE) pre-
dictor, 501

Minimum order
Butterworth filter design, 279
Chebyshev filter design

Type I, 286
Type II, 294

elliptic filter design, 300
minimax FIR filter design, 251–253
windowing FIR filter design, 235

Minimum phase system, 470
Modeling error, 500
Modified correlogram, 435, see also

Blackman-Tukey (BT) method
Modified covariance method, 513, 519
Modified periodogram, 422, 428, 431–433

bias, 432
frequency resolution, 433
leakage, 431
variance, 433

Modular equations, 300, 366
Modulated signal, 194
Modulation signal, 194
Moments

of random process, 376
central, 377

of scaling function, 699–705
of wavelet function, 597, 699–705
vanishing moments in discrete wavelet
systems, 699–705

Monte Carlo simulations, 542, 620
Morlet wavelets

complex, 596, 598, 712
real, 608, 708

Morlet’s reconstruction formula, 608
Mother wavelet, 582
Moving average (MA)

models, 472, 480–482
spectral estimation, 482

MPR algorithm, 245, 246, 253–258
Multiband filters, 186
Multilevel decomposition, 684
Multiple exchange algorithm, see Parks-

McClellan algorithm
Multirate signal processing, 210–220
Multiresolution analysis (MRA), 584–585,

594–595, 649
Multitaper method (MTM), 450–455, 555

frequency resolution, 451–453
F-test, 453
leakage, 450–453

N
Narrowband signals, 489, 497, 499, 523–

524, 527
Nested spanned spaces, 653
Noise, 4, 25, 35, 141, 405

blue, 484, 489, 493
colored, 405, 414, 499
locally white, 414
red, 448, 484, 489, 493
white, 379, 385–497

Noise level, 718
estimation, 720–721

Non-stationary spectral analysis, 573–641
Norm, 117
Normal equations, see Yule-Walker (YW)

equations
Normalized analog filter, see Analog proto-

type filter
Normalized frequency

in analog filter design, 271
in digital signal processing, see Adimen-
sional frequency

Notch filter, 728
Nyquist frequency, 137
Nyquist mobility, 317
Nyquist’s criterion, 138
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O
One-sided spectrum, 459
Optimum filters, see Equiripple FIR filters
Order of an LTI system

FIR, 49
IIR, 49

Orthogonal basis, 114, 119, 121–122, 127,
129–131

Orthogonal complement, 654
Orthogonal subspaces, 118
Orthogonal vectors, 118
Overfitting, 504
Overlap-add filtering method, 205

P
Paley-Wiener theorem, 187
Parametric methods of threshold estimation,

721, 725–726
Parks-McClellan algorithm, 245
Parseval’s theorem

CWT, 602
DFT, 105
DTFT, 85
DWT, 666
energy signals, 172
power signals, 173
z-transform, 69

Partial autocorrelation (PAC), 503–504
Passband, 186
Paul wavelet, 596, 600
Perfect reconstruction (PR) filters, 660, 670–

672, 682
Periodic convolution, 91
Periodic extension, 89
Periodic impulse train, 81
Periodic signals, 27, 60
Periodic Sinc function, see Dirichlet func-

tion
Periodogram, 407–428

bias, 410
frequency resolution, 407, 413, 424–426
leakage, 413, 419
variance, 414
variance reduction

band averaging, 427
ensemble averaging, 428

Persistence, 471
Phase delay, 193, 197, 237, 313, 678
Phase distortion, 193
Phase response, 188
Phase-response discontinuities, 189–191
Phase spectrum, 77

Polarization of an estimator, see Bias of an
estimator

Poles of rational z-transforms, 62
Population, 374
Portmanteau lack-of-fit test, 507
Power, 26
Power signals, 27
Power spectral density (PSD), see Power

spectrum
Power spectrum, 85, 173–174, 180–181,

374, 380, 382–387, 391–392
deterministic power signals, 173–174,
180–181

random signals, 374, 382–387, 391–392,
467–470
estimation, 404–407, 455, 458–460,

465–499, 515–533, 624–628
normalization, 460–462

Pre-warping, 312
Prediction, see Linear prediction
Principal interval

analog, 138
digital, 34

Probability density function, 374
Probability distribution function, 375
Processing gain of a window, 422
Prolate spheroidal sequences, see Slepian ta-

pers
Prototype filter, see Analog prototype filter
Prototype wavelet, see Mother wavelet
Pseudo-ciclicity, see Quasi-periodicity

Q
Q-test, see Portmanteau lack-of-fit test
Quadratic admissibility condition, 671
Quarter periods, 346
Quasi-periodicity, 405

R
Radius, see Root mean square (RMS) dura-

tion
Random processes, 372–374
Random signals, 5, 35, 372–401

analog, 372
discrete-time, 372–407

autocorrelation, 377
autocorrelation coefficient sequence,

377
autocovariance, 377
ergodic, 381–382
mean square value, 377
mean value, 376
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mean value estimation, 394
power spectrum, 374, 387, 391, 392,

407, 467–470
power spectrum estimation, 404–

407, 455, 458–460, 465–499, 515–533,
624–628
stationary, 379–380
variance, 377
variance estimation, 394

Random variable, 374–376
Rational Chebyshev function, seeElliptic ra-

tional function
Rational spectra, 467
Rational z-transforms, 62–64

poles, 62
zeros, 62

Realizable filters, 79
Realizable frequency-selective filters, 187–

198
Realizations of a random process, 373
Reconstructed components, 541
Reconstruction filter for analog signal from

samples, 139–141
Rectangular sequence, 95
Rectangular window

analog, 147
discrete-time, 154, 156, 163, 411

Recursion equation for the scaling function,
see Twin-scale relation

Red noise, 448, 484, 489, 493
as background spectrum, 447

Redundancy of signal representation, 127,
131

CWT, 623, 647
DWT, 647
MODWT, 693

Refinement equation, see Twin-scale rela-
tion

Reflection, see Folding
Reflection coefficients, 513
Region of convergence (ROC)

Laplace transform, 267
z-transform, 56

Regularity, 597, 699–705
Resolution cells, see Heisenberg boxes
Resolution loss, see Frequency resolution
Retained energy in signal compression, 735
Riesz basis, 128
Risk function, 717
Root mean square (RMS) bandwidth, 145
Root mean square (RMS) duration, 145
Root mean square (RMS) length, see Root

mean square (RMS) duration

Running average filter, 35–37, 44

S
Sample, 2, 24
Sample mean, 394
Sample sequences, seeRealizations of a ran-

dom process
Sample variance, 395
Sampling, 24
Sampling interval, 2, 24
Sampling period, see Sampling interval
Sampling theorem, 4, 133–139
Sampling time step, see Sampling interval
Scale, 583
Scale factor, 583
Scale-frequency relation, 609
Scaling, 582
Scaling coefficients, see Approximation co-

efficients
Scaling filter, 654, 660
Scaling function, 647, 651–658, 666, 672,

699, 701–702, 705–713
Scalogram, 602–608, 612–619

significance level, 620–621
Schuster’s periodogram, see Periodogram
Selectivity factor, 269
Sequence spaces, 78, 115–132
Sequences, 1, 24
Shannon wavelets, 601, 712
Shift, see Translation
Short-time Fourier transform (STFT), 574–

580, 589–592
Short-time spectral analysis, see Short-time

Fourier transform (STFT)
Signal analysis, 25
Signal approximations in DWT, seeApprox-

imations
Signal details in DWT, see Details
Signal flow graph (SFG), 203
Signal processing, 1, 25
Signal representation, 25
Signal-to-noise ratio (SNR), 422
Signals, 1, 24, 29–35

analog, 24
deterministic, 35, 154–181
digital, 24
discrete-time, 24, 29–35
random, 5, 35, 372–401

Significance level
for GWS, 627
for power spectrum estimates, 446–450
for scalogram values, 620–621
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Single-level decomposition, 684
Singly periodic function, 340
Singular spectrum, 540
Singular spectrum analysis (SSA), 537–568
Singular value decomposition, 539
Singular values, 540
Slepian tapers, 450
Smoothness of a wavelet, 700
Soft thresholding, 719
Spanning set, 120
Sparseness of wavelet-based signal repre-

sentation, 649, 704, 718
Specifications

analog filters, 264, 274
digital filters

FIR, 224–231
IIR, 264

Spectral analysis, 4
deterministic signals, 153–181

energy signals, 178
power signals, 180

random signals, 401, 404–455, 465–533,
624–628

Spectral factorization theorem, 469
Spectral folding, 145
Spectral resolution, see Frequency resolu-

tion
Spectral sampling, 154, 161–163
Spectral window, 412, 413
Spectrogram, 574
S-plane, 267
Square2log, 722
Square2log criterion, 722
Stability

of a spectral estimate, 414
of a system, 37, 43

Stationarization, 400
Stationary random signals, 379–380
Stationary wavelet transform (SWT), see

Maximal overlap discrete wavelet
transform (MODWT)

Statistical signal processing, 5, 376
Statistically independent random variables,

378
Stein’sUnbiasedRiskEstimate (SURE), 723
Stem plot, 26
Stochastic models, 399, 470–499

AR, 472, 475–478
ARMA, 468, 472–475
MA, 472, 480–482

Stochastic processes, see Random processes
Stopband, 186
Subband coding, 13, 672, 686

Subspace spectral methods, 406
Support, 147–149, 581, 653

bounded, 147–149
compact, 149, 581, 657, 659, 682

SUREShrink, 723
Surrogate data, 542
Symlets, 703, 710
Synthesis relation

CTFT, 122, 266
CWT, 601, 607
DFS, 89
DFT, 96
DTFT, 82–83
DWT, 666
Laplace transform, 268
z-transform, 64–65

Synthetic signals, 35
System function, see Transfer function
Systems, 35

linear time-invariant (LTI), 35–53

T
Tapering, see Windowing
Threshold

global, 719, 721, 723–726, 732, 735
level-dependent, 719, 721, 723–725

Threshold estimation, 721–726
Donoho-Johnstone methods, 721–725

HeurSURE, 724
Minimax, 725
Square2log, 722
SURE, 723

parametric methods, 721, 725–726
Birgé-Massart penalized threshold,

725
Birgé-Massart threshold, 725

Thresholding rule, 719
hard, 719
soft, 719

Tight frame, 126
Time averages of an ergodic process, 381
Time-bandwidth parameter, 451
Time-dependent spectral analysis, seeShort-

time Fourier transform (STFT)
Time-domain representation, 4
Time-frequency atoms, see Heisenberg

boxes
Time invariance, 36
Time resolution

CWT, 589–595, 601
DWT, 691–692
STFT, 589
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Time-scale plane, 581
Time-series analysis (TSA), 398
Tolerances

analog and digital-IIR filters, 269
absolute, 269
relative, 269

digital-FIR filters, 224–226
absolute, 225
relative, 225

Train of impulses, 134
Trajectory matrix, 538
Transfer function

analog filters, 266
rational, 268

digital filters, 52, 62, 69–71, 75
rational, 72

Transition band, 187
Translation, 27
Translation invariance, see Time invariance
Transposed-direct form, 205
Transposition theorem, 204
Transverse filter structure, 205
Triangular window, 164, 411
Trigonometric Functions With complex Ar-

gument, 342
Trigonometric functions with complex argu-

ment, 339
Twiddle factors, 111
Twin-scale relation

scaling function, 654
wavelet function, 656

Twin scales, 654
Two-channel subband coder, 682
Two-sided spectrum, 458

U
Uncertainty principle, 145–146
Unconditional basis, 131
Uncorrelated random variables, 378
Undecimated wavelet transform, see Max-

imal overlap discrete wavelet trans-
form (MODWT)

Underfitting, 505
Unitary scaling filter, 700
Unit circle, 52, 65
Unit impulse, 30
Unit sample, see Unit impulse
Unit step, 31
Upsampling, 211, 217

V
Vanishing moments in discrete wavelet sys-

tems, 597, 699–705
Variability modes, 538
Variance

of a random signal, 377
estimation, 394

of an estimator, 393
Vautard-Ghil method, 539
Vector spaces, 114–132

W
Warping of the ω axis, 310
Wavelet basis, see Wavelet systems
Wavelet coefficients, see Detail coefficients
Wavelet coherence, 629
Wavelet cross spectrum (WCS), 629
Wavelet energy density function, see

Wavelet energy spectrum
Wavelet energy spectrum, 602
Wavelet expansion, see Discrete wavelet

transform (DWT)
Wavelet expansion sets, 646
Wavelet families, see Wavelet systems
Wavelet filter, 657, 660
Wavelet frames, 651

tight, 670
Wavelet function, 647, 650–658, 699, 701–

702, 705–713
Wavelet packets, 697
Wavelet shrinkage, 720
Wavelet spectrogram, see Scalogram
Wavelet systems, 648, 702, 705–713

analytic
complex derivatives of Gaussian

(DOG), 601, 712
complex Morlet, 598, 712
frequency B-spline (fbsp), 601, 712
Paul, 600
Shannon, 601, 712

biorthogonal B-spline, 679
coiflets, 703, 710
compactly supported, 659, 681, 682, 687,
692, 702–705, 709–711
biorthogonal, 702, 710
orthogonal, 702, 709–710

Daubechies, 702, 709
design, 681, 699–705
Haar, 654, 709
Meyer, 708
real derivatives ofGaussian (DOG), 606–
607, 708
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real Morlet, 608, 708
symlets, 703, 710

Wavelets, see Wavelet systems
Weak stationarity, see Wide-sense stationar-

ity (WSS)
Weighted error function, 227, 229
Weighting functions, 228
Welch’s method, 410, 428, 434–438

bias, 435
frequency resolution, 436
leakage, 434, 437
variance, 436

White noise, 379, 385–497
as background spectrum, 447

Wide-sense stationarity (WSS), 379
Wiener-Hopf equations, see Yule-Walker

(YW) equations
Wiener-Khinchin theorem

deterministic signals
energy signals, 172, 179
power signals, 174, 180

random signals, 383, 530
WindowedFourier transform, seeShort-time

Fourier transform (STFT)
Windowing, 154, 156–160, 407
Windowing FIR filter design method, 233

minimum order, 235
Windows

analog
rectangular, 147

discrete-time, 154, 163–171, 411

Bartlett, 164, 411
Blackman, 165
Hamming, 165
Hanning, 164
Kaiser, 168–171
rectangular, 154, 156, 163, 411
triangular, 164, 411

Wold’s decomposition theorem, 467
Wrapping of the ω axis, 66

Y
Yule-Walker (YW) equations, 475–478

augmented, 477
Yule-Walker (YW) method, 518

Z
Zero-frequency mobility, 317
Zero padding, 99
Zero-phase filtering, 208
Zero-phase response, 191
Zero-pole-gain form, 73
Zeros of rational z-transforms, 62
Z-plane, 52
Z-transform, 52, 56–75

analysis relation, 56
convergence, 56
interpolation formula, 94
synthesis relation, 64–65
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