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Supervisor’s Foreword

The focus of this thesis is the control of synchronization patterns in delay-coupled
complex networks. Synchronization is a ubiquitous phenomenon observed in dif-
ferent contexts in physics, chemistry, biology, medicine, and engineering. Chaos
synchronization of coupled lasers, for instance, may lead to new secure commu-
nication schemes. Synchronization in power grids is necessary for a stable and
robust operation, and failure may result in cascading power breakdown. Opinion
formation in social networks or the stock prices in economic systems provide
further examples. Fireflies synchronize their flashing light patterns as part of their
mating display. Cardiac pacemaker cells fire synchronously in a regular heartbeat.
The synchronization of neurons is believed to play a crucial role in the brain under
normal conditions, for instance in the context of cognition and learning, and under
pathological conditions such as Parkinson’s disease and epilepsy.

Time delay effects, on the other hand, are a key issue in realistic networks. For
example, the finite signal propagation time between coupled neurons significantly
influences the dynamics. Time delay can either induce instabilities, bifurcations,
and multistability, or, on the contrary, stabilize unstable states and suppress chaos.
Therefore it is of great interest to study the effect of delayed coupling in complex
networks. Apart from completely synchronized states, more general synchroniza-
tion patterns like cluster and group synchronization, where the network consists of
several groups of nodes which are in zero-lag synchrony within each group but not
between different groups, have recently become the focus of research.

This thesis aims for a fundamental understanding of synchronization, its inter-
play with the topology of complex networks, and its control. Simple paradigmatic
models are used to illustrate excitable and oscillatory dynamics of the network
elements: a generic model for a global saddle-node infinite period (SNIPER)
bifurcation (type-I excitability), the FitzHugh–Nagumo neuronal model (type-II
excitability), and the Stuart-Landau model (normal form of a Hopf bifurcation). In
the first part of the thesis, the stability of synchronization patterns is studied.
Besides zero-lag synchrony, also group and cluster states are considered. Moreover,
the theory is extended to non-smooth systems which are commonly used in

v



neuroscience (integrate-and-fire neurons) which further widens its applicability.
After a brief review of the basic notions of complex dynamical networks, the master
stability formalism is introduced and applied to excitable dynamics of type I and II
with excitatory and inhibitory couplings in regular and small-world topologies, and
extended to group and cluster synchronization. Multiple synchronization and
desynchronization scenarios are of considerable interest in neural applications,
where the delicate balance of excitatory and inhibitory interactions plays a role.
Heterogeneous delay times lead to interesting patterns of partial synchronization
and partial amplitude death.

In the second part, adaptive control methods are developed, which allow for
controlling synchronization in scenarios where parameters drift or are unknown.
These methods are, therefore, of particular interest for experimental setups or
technological applications. As shown in the thesis, these methods are robust
towards noise, different initial conditions, and drifting parameters which ensure
their applicability. Adaptive control of the coupling phase using the speed-gradient
method is shown to stabilize a desired cluster state. Of particular interest is the
adaptive control of the network topology which allows one to stabilize various
states of cluster synchronization and impose the frequency, even if only a subset of
all network links is adapted. This amounts to engineering the network topology for
desired dynamics.

This thesis gives a broad and comprehensive treatment of synchronization and
its control in complex time-delayed networks. It introduces, studies, and compares
several adaptive control methods to stabilize cluster synchronization. It breaks new
grounds by going beyond the pure description of networks, developing the delib-
erate design of network dynamics, and pointing out applications to the control of
synchronization in neural networks by means of several detailed examples.

Berlin Prof. Eckehard Schöll
June 2015
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Abstract

In this thesis, I consider the control of synchronization in delay-coupled complex
networks. As one main focus, several applications to neural networks will be dis-
cussed. In the first part, I focus on the stability of synchronization in complex
networks meaning that the control is realized by considering the stability of syn-
chrony in dependence on the parameters. In the second part, adaptive control of
synchronization is studied. To this end, adaptive control algorithms are developed
that tune the system parameters such that the desired control goal is reached.

Besides zero-lag synchrony—a state where all nodes follow the same dynamics
without a phase lag—groups and cluster states are considered, i.e., states where the
network consists of several groups where the nodes within one group are in zero-lag
synchrony and, in the case of cluster synchrony, with a constant phase lag between
the clusters.

The stability of synchronization can be accessed via the master stability function.
This convenient tool allows for treating the node dynamics and the network
topology in two separate steps, and, thus, allows for a quite general treatment of
different network topologies. In this thesis, I will discuss the generalization of the
master stability function to group and cluster states and to non-smooth systems.

The master stability function can be used to investigate synchrony in neural
networks. Neurons are excitable systems where type-I and type-II excitability can
be distinguished. Here, the stability of synchrony for both types in complex net-
works with excitatory and inhibitory links is investigated on two generic models,
namely the normal form of the saddle-node infinite period bifurcation and the
FitzHugh–Nagumo system. Furthermore, synchronization in systems with hetero-
geneous delays or node parameters is studied.

In situations where parameters are unknown or drift, adaptive control methods
are useful since they allow for an automatically realized adaption of the control
parameters. A convenient adaptive method is the speed-gradient method that
minimizes a predefined goal function. I first apply this method in the control of an
unstable focus and an unstable periodic orbit embedded in the Rössler attractor.
Furthermore, I show that cluster states in networks of delayed coupled
Stuart-Landau oscillators can be controlled by adaptively tuning the phase of the
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complex coupling strength or by adapting the topology. The first method is
particularly simple because only one parameter has to be adapted, while the second
method is more reliable in the sense that its success is widely independent of the
choice of the control parameters and the initial conditions.
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Chapter 1
Introduction

1.1 Networks, an Interdisciplinary Tool

The earliest example of network science is the Königsberg problem stated and solved
by the mathematician Leonhard Euler (1741). He asked whether it is possible to find
a path that crosses each of the seven bridges of Königsberg once and only once.
By describing the islands as nodes and the bridges as links connecting the nodes
he found an abstract representation of the problem and laid the foundation of graph
theory, the mathematical theory describing the structure of networks. He showed
that it is not possible to find such a path since all four of the land masses considered
in the problem are touched by an odd number of bridges. However, for a path that
visits each bridge exactly once it is necessary that each land mass (except the first
and the last one) will have an even number of bridges. In modern graph theory, this
corresponds to the condition that each but two nodes have an even degree and is one
of the first examples how network quantities can be used to characterize a network
in a meaningful way.

Since the time of Euler and particularly since the 1950s network science has
developed into a vivid and interdisciplinary field. Today, networks play a promi-
nent role in the research of very different fields, ranging from social science, eco-
nomics, and psychology to biology, physics, and mathematics (Boccaletti et al. 2006;
Albert and Barabasi 2002; Newman 2003, 2010; Newman et al. 2006), as they are
a straight-forward concept to describe the interactions of many systems or agents.
Several network models have been developed which share statistical properties with
real-world network. In particular, random or Erdős-Rényi networks, small-world
networks, scale-free networks and hierarchical networks have been in the focus of
network science.

In a random network all nodes are linked with the same probability such that no
correlations between the links arise (Rapoport 1957; Solomonoff and Rapoport 1951;
Erdős and Rényi 1959, 1960). In contrast, a small-world network is characterized by
a high clustering coefficient meaning that two nodes linked to the same node are much
more likely to be connected to each other than two randomly chosen nodes. They
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are constructed from a regular network with some additional long-range connections
interposed (Watts and Strogatz 1998; Monasson 1999; Newman and Watts 1999).
The small-world characteristics have been encountered, among others, in metabolic
networks (Jeong et al. 2000), the co-authorship of mathematicians (Barahona and
Pecora 2002), the World Wide Web (Adamic 1999), and food webs (Montoya and
Solé 2002). In the brain, small-world properties have been found on the level of
cortical networks (Sporns et al. 2000; Sporns and Zwi 2004; Hilgetag et al. 2000;
Sporns and Zwi 2004), in brain functional networks (Bassett et al. 2006), on the neural
network level in the reticular formation of the brainstem (Humphries et al. 2006),
as well as in in-vitro neural networks (Shefi et al. 2002). Scale-free networks are
characterized by the occurrence of hubs, meaning that a few nodes in the networks
are connected by a large number of links, whereas most nodes have only a few
links attached to them (de Solla Price 1965; Barabasi and Albert 1999). Examples
of scale-free networks include the World Wide Web (Albert and Barabasi 2002),
citation networks (de Solla Price 1965), the Internet at the level of autonomous
systems (Chen et al. 2002), and the interaction network of proteins (Jeong et al.
2001). Hierarchical networks are a special type of scale free networks which are
organized in a hierarchical manner into increasingly larger groups and display a high
degree of clustering (Ravasz and Barabasi 2003).

Recently, networks of networks, sometimes called multilayer networks, have
gained a lot of attention (Gao et al. 2014; Boccaletti et al. 2014; Kivelä et al. 2014;
Rheinwalt et al. 2014; Wiedermann et al. 2014). They take into account that almost
all real-world networks are interdependent on each other. Consider, for example,
different transportation networks like flight networks, railway networks or road net-
works which have to interact to properly fulfill their function. Another example of
highly dependent networks are biological networks like gene regulation networks,
metabolic networks, and protein interaction networks. Networks of networks are
highly vulnerable to node failure: The failure of a few nodes in one network can lead
to a cascade of failures of dependent nodes in all networks (Buldyrev et al. 2010;
Parshani et al. 2010). A prominent example for such a cascade is the electrical black-
out which hit Italy on 28 September 2003: A shutdown of power stations caused the
failure of nodes in the Internet communication network which, in turn, triggered the
collapse of further power stations (Buldyrev et al. 2010; Rosato et al. 2008). Multi-
plex networks are a special type of multilayer networks: Here, all layers consist of
the same set of nodes and each node in a layer can only be connected to its coun-
terpart nodes in the other layers (Boccaletti et al. 2014). The connections between
the different layers represent different types of interactions between the nodes. Most
prominently, social networks are depicted as multiplex networks. The nodes are the
individuals, while the connections between the layers represent the different types
of social relations possible between two individuals. Multipartite networks can be
considered as another subtype of multilayer networks. A k-partite network consists
of k disjoint subsets of nodes with links between nodes of different subsets but no
links between the nodes of one subset (Kivelä et al. 2014).



1.2 Dynamics on Networks 3
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In the last two decades dynamics on network received a growing amount of
interest (Dhamala et al. 2004; Zigzag et al. 2009; Choe et al. 2010; Chavez et al.
2005; Sorrentino and Ott 2007; Albert et al. 2000; Kinzel et al. 2009; Lehnert et al.
2011a; Keane et al. 2012). One of the central topics of dynamics on networks is
synchronization (Strogatz and Stewart 1993; Rosenblum et al. 1996; Pikovsky et al.
2001; Pecora and Carroll 1998; Mosekilde et al. 2002; Wang and Chen 2002; Arenas
et al. 2006, 2008; Balanov et al. 2009; Omelchenko et al. 2010; Dahms 2011; Schöll
2013). Synchronization is observed in very different contexts (Arenas et al. 2008).
Biological examples include genetic oscillators (García-Ojalvo et al. 2004), circa-
dian rhythms (Pikovsky et al. 2001; Fukuda et al. 2007), and population dynamics
(Blasius et al. 1999). In computer sciences, synchronization has been used for data
mining in a large-scale database (Miyano and Tsutsui 2007). In automata theory
and distributed computation, consensus, i.e., the ability of an ensemble of dynamic
agents to reach a unique and common value, plays a major role (Olfati-Saber and
Murray 2004). Other engineering applications where synchronization or desynchro-
nization are of importance include wireless communication networks (Degesys et al.
2007; Diaz-Guilera et al. 2009) and power grid networks (Witthaut and Timme 2012;
Rohden et al. 2012). Furthermore, synchronization is of interest in social sciences
when it comes to opinion formation (Pluchino et al. 2005), and in the finance sector
when considering the time series of stock prices (Mantegna 1999).

Most prominently synchronization takes place in the brain where it is associated
with several cognitive capacities (Fries 2005; Uhlhaas et al. 2009). One of these is
the processing of visual input in perception (Singer 1999; Engel et al. 2001; Singer
2007). According to the binding hypothesis neural synchrony is exploited to link the
different features like shape, color, depth and motion of an object to form a single
representation of this object. Other studies indicate that synchrony of neurons plays
a role in the anticipation of an event and allows for focusing attention on this event
(Murthy and Fetz 1996; Roelfsema et al. 1997). Giving the high importance of syn-
chrony for normal functioning of the brain, it is of no surprise that several pathological
brain states can be linked to abnormal synchrony. Diseases where alteration from the
oscillation patterns of a healthy brain are potentially involved include Parkinson’s
Disease, Epilepsy, Alzheimer’s Disease, Schizophrenia, and autism disorders (Poeck
and Hacke 2001; Uhlhaas et al. 2009).

This abundance of synchronization phenomena in nature and technological appli-
cations has motivated researchers to seek a fundamental understanding of synchro-
nization and, in particular, of the interplay between synchrony and network topology
(Pecora and Carroll 1998; Belykh et al. 2005; Arenas et al. 2006; Gutiérrez et al.
2011; Sorrentino and Ott 2007; D’Huys et al. 2013; Flunkert et al. 2010; Pecora et al.
2014). Maybe the most profound step in this direction has been taken by Pecora and
Carroll (1998) in developing the master stability function (MSF), a convenient tool
to calculate the stability of synchronization in complex networks. The MSF allows
for considering the local dynamics of the nodes and the network topology separately.
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The power of the MSF is that not single network realizations have to be considered
but that whole classes of network topologies can be studied by investigating their
eigenvalue spectrum. On several occasions the master stability function has been
used to study synchrony in neural networks (Dhamala et al. 2004; Rossoni et al.
2005; Belzig 2005; Lehnert et al. 2011a; Keane et al. 2012). Frequently, models
employed in neuroscience are of integrate-and-fire type meaning that the membrane
voltage is set back to a resting potential after reaching a threshold. This gives rise to
a discontinuity in the time series. In Ladenbauer et al. (2013), we derived an MSF
for these non-smooth systems.

Besides zero-lag synchronization, a state where all nodes undergo the same
dynamics without a phase shift, group and cluster synchronization have received
growing interest both in theory (Sorrentino and Ott 2007; Kestler et al. 2007, 2008;
Dahms et al. 2012; Kanter et al. 2011a, b; Golubitsky and Stewart 2002; Lücken
and Yanchuk 2012; Sorrentino 2014; Pecora et al. 2014; Poel et al. 2015) and in
experiments (Illing et al. 2011; Aviad et al. 2012; Blaha et al. 2013; Williams et al.
2012, 2013; Rosin 2015). In the case of group synchrony, the network consists of
several groups where the nodes within one group are in zero-lag synchrony (Dahms
2011; Dahms et al. 2012). Between the groups no synchrony exists, or in the case of
clusters states, synchrony with a constant phase shift is observed. Group and cluster
synchronization occurs, among others, in dynamics of nephrons (Mosekilde et al.
2002), central pattern generation in animal locomotion (Ijspeert 2008), or popula-
tion dynamics (Blasius et al. 1999). As in the case of zero-lag synchrony, group and
cluster synchronization can be treated within the framework of the MSF: Sorrentino
and Ott (2007) extended the MSF to two groups, while we gave generalization to an
arbitrary number of groups in Lehnert (2010), Dahms (2011), Dahms et al. (2012). In
Pecora et al. (2014), a very general answer to the question which kinds of topologies
exhibit states of group synchrony and a discussion of the stability of these states via a
MSF is given. In Ladenbauer et al. (2013), group synchrony in non-smooth systems
was considered.

In neural networks, inhibitory processes play a key role (Okun and Lampl 2009;
Belykh and Shilnikov 2008; Vogels and Abbott 2009; Henderson and Robinson
2011; Deco et al. 2014). Without inhibitory neurons counteracting the excitatory
ones, encoding and processing of information would be infeasible since excitation
would always create more excitation (Okun and Lampl 2009; Jonas and Buzsáki
2007). In the sensory system, for example, lateral inhibition confines the activity of a
neural group by suppressing the activity of neighboring neurons which are less active.
In this way, the contrast of a stimulus is enhanced (Kandel et al. 1996). In epilepsy, a
lack of inhibition, for example, caused by an attenuation of the chief inhibitory neu-
rotransmitter gamma-Aminobutyric acid, leads to pathological synchronized activity
of neurons, which normally act asynchronously (Poeck and Hacke 2001).

Within the framework of the MSF, two possibilities exist to take inhibitory
processes into account: (i) A simple approach is to consider negative weights
in the coupling matrix of the network, while (ii) the MSF for group synchrony
allows for applying a more sophisticated approach where groups of excitatory and
inhibitory neurons are considered. In Lehnert et al. (2011a), Keane et al. (2012),
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and Schöll et al. (2014), we used the first approach to study synchronization-
desynchronization transitions in neural networks with inhibition. The second approach
was applied in Ladenbauer et al. (2013) when considering group synchrony in net-
works of adaptive integrate-and-fire models.

The MSF is only applicable to networks of identical nodes and only if the delay
between all node pairs is identical, where the delay can be one discrete delay time
(Dhamala et al. 2004; Lehnert et al. 2011a; Dahms 2011; Keane et al. 2012; Schöll
2013) or a delay kernel (Kyrychko et al. 2014; Wille et al. 2014). Only in the case
of commuting coupling matrices two or several discrete delay times can be taken
into account (Dahms 2011; Dahms et al. 2012). However, real-world networks are
often poorly described by commuting coupling matrices, discrete delay times, and
identical nodes, but will always be characterized by a certain degree of heterogeneity
in the network structure as well as in the parameters. Therefore, the question arises
how well the MSF predicts the stability of synchrony in situations characterized by
the presence of heterogeneities.

We, therefore, extended the previous works (Lehnert et al. 2011a; Keane et al.
2012; Schöll et al. 2014) on synchronization in delay-coupled neural networks to
networks with heterogeneous delays (Cakan et al. 2014). It shows that the MSF
predicts well the behavior of the network if the heterogeneities are sufficiently small
but that for larger heterogeneities other effects like partial or global amplitude death
can—depending on the topology—take place. In Blaha et al. (2013), synchronization
in chemical oscillators was studied where the nodes were slightly non-identical. It
turns out that the oscillators synchronize despite the heterogeneity as predicted by
the theory of Choe et al. (2010). In the case that the applied voltage is high such that
the oscillations of relaxational type the behavior is well predicted if the theory (Choe
et al. 2010) is extended to non-sinusoidal functions.

1.3 Adaptive Control of Uncoupled Systems and Networks

The MSF is a convenient tool to determine the stability of synchrony in complex net-
works. In this way it allows for finding parameters which yield a desired behavior—
synchronization, desynchronization, or states of group synchrony. However, in real-
world applications parameters are often unknown or drift in time. In systems with
adaptive control, the control law is chosen such that it automatically finds appropri-
ate control parameters and adapts them to a changing environment. A well known
adaptive control is the speed-gradient (SG) method that minimizes a predefined
goal function by changing one or several accessible system parameters appropriately
(Fradkov 1979; Fradkov and Pogromsky 1998; Fradkov 2005, 2007). In Lehnert
et al. (2011b), we showed that the SG method can be used for the adaptive control of
unstable fixed points and unstable periodic orbits and demonstrated that it is in fact
able to cope with drifting system parameters. Furthermore, the SG method has been
applied to control cluster states in network motifs (Selivanov et al. 2012; Schöll et al.
2012a, b) and in larger networks (Lehnert et al. 2014).
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The control of larger networks considered in Lehnert et al. (2014) is realized by
the adaptation of the network topology. In adaptive networks, the network topology
changes according to the dynamical state of the nodes, while, in turn, the state of
the nodes is influenced by the topology. The brain is a good example of an adaptive
network: The neural dynamics is strongly influenced by the topology, while neural
connectivity depends on the spiking behavior of the neurons via synaptic plasticity
or via the emergence of new connections. Further examples of adaptive networks
are swarm networks, communication networks, the network of blood vessels, social
network, food webs, and chemical networks; see Gross and Blasius (2008) and ref-
erences therein. In Lehnert et al. (2014), the dynamics of the topology is designed
such that the control goal, in this case a certain cluster state, is reached.

1.4 The Influence of Delay on the Dynamics of Networks

Throughout this thesis I will consider delayed coupled networks. Delay is a ubiqui-
tous phenomenon in nature and technology and arises whenever time in the propa-
gation or the processing of a signal is needed (Just et al. 2010; Flunkert et al. 2013a).
For example, in laser networks the finite speed of light gives rise to a propagation
delay (Lüdge 2012; Otto 2013; Soriano et al. 2013). Time delay in neural networks
emanates from the finite speed of the transmission of an action potential between
two neurons where the propagation velocity of an action potential varies between
1 to 100 mm/ms depending on the diameter of the axon and whether the fibers are
myelinated or not (Koch 1999). The influence of delay on the dynamics on networks
has been investigated by several authors (Kinzel and Kanter 2008; Kestler et al. 2008;
Kinzel et al. 2009; Englert et al. 2010; Zigzag et al. 2010; Flunkert et al. 2010; Rosin
et al. 2010; Englert et al. 2011; Kanter et al. 2011b; Heiligenthal et al. 2011; Flunkert
et al. 2013b; Dahms 2011; Popovych et al. 2011; Lücken et al. 2013; Kinzel 2013;
D’Huys et al. 2013; Kantner and Yanchuk 2013; D’Huys et al. 2014).

Depending on the context, delay can play a constructive or a destructive role.
For example, time-delayed feedback control (TDFC) is a well established control
method to control unstable periodic orbits embedded in chaotic attractors as well
as unstable fixed points (Pyragas 1992; Ahlborn and Parlitz 2004; Rosenblum and
Pikovsky 2004; Hövel and Schöll 2005; Schöll and Schuster 2008; Grebogi 2010).
The advantage of TDFC is that it does not rely on a reference system or on an a
priori knowledge of the system itself. Furthermore, it is noninvasive for appropriate
values of the delay time, meaning that the orbit or the fixed point is not changed by
the control. However, the success of the TDFC depends on the choice of appropriate
control parameters (Just et al. 1997; Hövel and Schöll 2005; Dahms et al. 2007). In
Lehnert et al. (2011b), an adaptive form of TDFC was derived which finds the correct
parameter, in this case the coupling strength, in a self-organized way. In Lehnert et al.
(2014), we show that the delay is a crucial parameter shaping the topology of network,
which in turn, enables the control of the network.
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1.5 Model Systems

In this thesis, I mainly consider generic models. As a model for oscillatory systems
close to the Hopf bifurcation, I consider the Stuart-Landau oscillator (Kuramoto
1984). Neural models or, more general, excitable models can be classified accord-
ing to their underlying bifurcation: Type-I excitability occurs in systems close to a
saddle-node infinite period (SNIPER) bifurcation, while type-II arises around a Hopf
bifurcation. As a model for type-I, I use the normal form of the SNIPER bifurcation
(Hu et al. 1993; Hizanidis et al. 2008); as an example for type-II, I investigate the
FitzHugh-Nagumo system (FitzHugh 1961; Nagumo et al. 1962).

1.6 Outline

This thesis consists of two main parts: In the first part, I consider the stability of zero-
lag, group, and cluster synchrony in complex networks. The second part explores
adaptive control methods with the focus on the control of synchronization patterns
in networks.

Before the beginning of part I, Chap. 2 gives an introduction to complex net-
works. The most important quantities used to characterized the topology of complex
networks are introduced. Furthermore, frequently used network models, namely reg-
ular, random, small-world, and scale-free networks are explained. The mathematical
description of dynamical networks is discussed.

Part I begins with Chap. 3, where an introduction to synchronization and its quan-
tification is given. In particular, a recapitulation of the MSF for zero-lag synchro-
nization is presented.

In Chap. 4, the MSF is applied to networks with excitatory and inhibitory links.
Thereby, the two types of excitability are treated separately. It is shown that inhibition
in networks of type-II excitability always induces a transition from synchronization
to desynchronization, while in networks of type-I excitable elements, depending on
the parameters, several transitions between synchronization and desynchronization
may take place.

In Chap. 5, the MSF for group and cluster synchrony is developed and applied to
networks of SNIPER and FitzHugh-Nagumo systems. It is shown that the MSF as
well as the topologies for which group synchrony can be observed are characterized
by a discrete rotational symmetry. It is discussed how the restrictions interposed in
the derivation of the MSF can be lifted in the case of commuting coupling matrices.
Furthermore, a recapitulation of the theory of Choe et al. (2010) on cluster of Stuart-
Landau oscillator is given which serves as a basis for later chapters. The last section
of Chap. 5 generalized the MSF for zero-lag as well as for group synchrony to non-
smooth systems.

Part I ends with Chap. 6 where the application of parts of the theory devel-
oped in the previous chapters is investigated in situations where delay or parameter

http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_4
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_6
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heterogeneities play a role. In the first section, uni- and bimodal delay distributions in
networks of FitzHugh-Nagumo systems are investigated. The second section treats
cluster synchronization in networks of chemical oscillators which are slightly non-
identical. Depending on the applied voltage, smooth and relaxational oscillations can
be observed where in the second case an extension of the theory is necessary.

Part II starts in Chap. 7 with an introduction to adaptive control concepts with a
focus on the SG method. In Chap. 8 an adaptive version of TDFC is developed and
applied to an unstable focus and an unstable periodic orbit of the Rössler system.
The robustness of the method towards noise, different initial conditions, and drifting
parameters is discussed.

In Chap. 9 cluster states in small networks of delay-coupled Stuart-Landau oscil-
lators are controlled adaptively by tuning the phase of the complex coupling strength.
To find the adaptive controller, we employ the SG method with an appropriate goal
function which is zero in the case of successful control. Advantages and disadvan-
tages of the suggested method are discussed.

In Chap. 10, the control of cluster states in large networks of delay-coupled Stuart-
Landau oscillators is realized via the adaptation of the topology. The topology after
control is modulated by the delay time which is discussed with the help of a row-wise
discrete Fourier transformation. Furthermore, it shown that the control will also be
feasible if only a subset of links is adapted.

The thesis concludes with Chap. 11 where the obtained results are summarized
and discussed. Furthermore, an outlook on possible continuations of this work is
given.
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Chapter 2
Complex Dynamical Networks

The term complex networks refers to graphs with non-trivial topological features.1

This chapter gives a recapitulation on the theory of complex networks, discusses
the quantities used to describe networks, and introduces the most important network
models namely random (Solomonoff and Rapoport 1951; Rapoport 1957; Erdős and
Rényi 1959, 1960), small-world (Watts and Strogatz 1998; Monasson 1999), and
scale-free networks (Barabasi and Bonabeau 2003). For reviews and textbooks on
complex networks see Boccaletti et al. (2006b), Albert and Barabasi (2002), Newman
(2003), Newman et al. (2006), Newman (2010), Barabasi (2012), Boccaletti et al.
(2014), Kivelä et al. (2014).

A prominent and on the first view surprising feature of most real-world networks
is that they are characterized by a small shortest path length which means that it
takes only a few steps to get from any node of the network to any other node.
This is known as the small-world phenomenon and has been found in such different
networks as networks of film actors, brain networks, and the power grid (Watts and
Strogatz 1998). As also discussed in Chap. 1, further examples include the metabolic
network (Jeong et al. 2000), the co-authorship of mathematicians (Barahona and
Pecora 2002), the World Wide Web (Adamic 1999), food webs (Montoya and Solé
2002), and the co-occurrence of words (two words are considered as linked if they
are neighbors in a sentence) (Ferrer i Cancho and Solé 2001).

The small-world characteristic is well reflected in an Erdős-Rényi random net-
work, which was the first network model studied in detail and which allows, in many
respects, for an analytic treatment. Unfortunately, the model lacks many other fea-
tures found in real networks. Most prominently, no well connected neighborhoods
exist, or, in other words, random networks have a small clustering coefficient, while
most real-world networks are characterized by a high clustering coefficient. With
the small-world network, Watts and Strogatz (1998) presented a model which shows

1We use the terms graph and network synonymously.
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16 2 Complex Dynamical Networks

both characteristics; it has a small shortest path lengths, and at the same time a high
clustering coefficient.

The chapter is structured as follows: In the first section, I discuss the mathematical
descriptions of networks in terms of the adjacency matrix and the coupling matrix.
Section 2.2 introduces the different network quantities used to measure network fea-
tures. An overview of the different network types is given in Sect. 2.3. In Sect. 2.4
dynamics on networks are discussed. The chapter is summarized in Sect. 2.4.

2.1 Mathematical Description: From Nodes and Links
to the Coupling Matrix

A network consists of N nodes and L links connecting these nodes. We distinguish
directed and undirected networks. In a directed network, a link has a direction, i.e., it
points from node i to node j, while in an undirected network the coupling is always
bidirectional, meaning that for each link from node i to node j another link with the
same strength exists which points from node j to node i. Synonyms for node and
link are vertex and edge, respectively.

A network can be represented by its N × N adjacency matrix A which is defined
as

Ai j =
{

1, if there is a link from node j to node i,

0, otherwise.
(2.1)

The adjacency matrix is very useful for quantifying networks properties. Most of the
network quantities discussed in the next section make use of the adjacency matrix.

The adjacency matrix is a good description for unweighted networks or for prob-
lems where weights are negligible. However, real-world networks often have links
with different strengths. For example, consider traffic networks, where different roads
are used with very different frequencies, or the brain, where neurons are connected
via synapses which vary in strength. The different weights are particularly important
when it comes to dynamics on networks, the focus of this thesis. In Chap. 10, we will
see that changing the weights in a network has a dramatic effect on the dynamics
even if the adjacency matrix is kept constant.

In contrast to the adjacency matrix, the coupling matrix takes the different link
weights into account: The element Gi j of the coupling matrix G describes a link
from node j to node i with weight Gi j. Note that the entries of G can be positive and
negative. In the context of the brain, this corresponds to excitatory and inhibitory
coupling, respectively. The adjacency matrix A can be obtained from G by element-
wise use of the Heaviside-function �:

Ai j = �(|Gi j |), (2.2)

where �(x) = 1 if x > 0, and �(x) = 0 if x ≤ 0.

http://dx.doi.org/10.1007/978-3-319-25115-8_10
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Obviously, adjacency and coupling matrix are symmetric for undirected networks
and unsymmetric for directed networks.

2.2 Network Quantities

Different aspect of networks can be characterized by a variety of different network
quantities (Boccaletti et al. 2006b; Albert and Barabasi 2002; Newman 2003; New-
man et al. 2006; Newman 2010). Here, I briefly introduce the most important quan-
tities and terms to describe a network of N nodes. In parts, the presentation follows
Lehnert (2010).

Node degree: The degree D j of node j is defined as the number of
links attached to this node. The mean degree 〈D〉 is given
as the average over all nodes, i.e., 〈D〉 = ∑

j D j/N . In
weighted networks, in- and out-degree are distinguished,
where the in-degree counts the number of incoming links
and the out-degree the number of outgoing ones.

Degree distribution: The degree distribution P(D) is the probability that a
randomly chosen node has D links. Its first moment is
the mean degree 〈D〉.

Assortativity: The term assortativity describes the tendency of nodes
to connect more often to nodes which are in some way
similar than to other nodes. Most often the term is used
in the context of degree and is then understood synony-
mously to degree correlation. The assortativity regarding
the degree can be quantified by calculating the average
degree of the nearest neighbors of nodes with degree D ,
denoted as Dnn(D):

Dnn(D) =
∑
D ′

D ′ P(D ′|D), (2.3)

where P(D ′|D) is the conditional probability that a node
of degreeD is linked to a node with degreeD ′. IfDnn(D)

increases with D the network is assortative, otherwise
we will call it disassortative. In the case that Dnn(D) is
independent of D no degree correlations exist.

Community structure: A community is a subgraph whose nodes are more tightly
connected to each other than to the rest of the network.
Social networks often exhibit a community structure. A
variety of different approaches have been developed to
define and detect communities; for a review see Fortunato
(2010).
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Component: A network is considered as connected if a path exists
between every node pair i and j. Otherwise it will be
referred to as disconnected. A disconnected network is
composed of several components where the components
are the largest possible, connected subgraphs. A con-
nected network consists of one single component com-
prising all nodes. In this thesis, I will only consider con-
nected networks.
In Erdős-Rényi random networks, a critical connection
probability qc = 1/N exists above which a giant com-
ponent emerges, meaning that almost all nodes are con-
nected within one component and only a few are part of
other components. For details see Sect. 2.3.2.

Shortest path length: L is the shortest distance between two nodes, averaged
over all nodes:

L = 1

N 2

∑
i, j

gi j . (2.4)

gi j is the shortest distance (or geodesic distance) between
node i and node j, defined as the minimal number of links
one has to traverse to get from node i to node j.
Note that definition (2.4) includes the diagonal terms gii .
In a bidirectional network without self-coupling, gii is
equal to 2: One step is needed to reach a nearest neigh-
bor, the second one to get back to the original node. Thus,
including the diagonal terms in the definition (2.4) con-
tributes a constant term of 2/N in networks without self-
coupling. With self-coupling, gii = 1 since a link exists
which starts and ends at the i th node. As a consequence,
the shortest path length is reduced in networks including
self-coupling compared to ones without self-coupling.
Disconnected networks call for another definition since
gi j is infinite if node i and j are not in the same com-
ponent. A definition using the reciprocal values of the
geodesic distances reads

L −1 = 1

N 2

∑
i, j

g−1
i j . (2.5)

Clustering coefficient: In real-world networks, two nodes connected to the same
node are often more likely to be linked than two arbitrary
nodes. As an example, consider a social network. Friends
of a given person are much more likely to be mutual
friends than two randomly picked people. The clustering
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coefficient C allows for quantifying this phenomenon.
A high clustering coefficient means that with a higher
probability a link exists between nodes that are adjacent
to the same nodes than between two randomly picked
nodes.
Formally, C is defined as follows: Let �i denote the num-
ber of links between the neighbors of the i th node. Then
the clustering coefficient of the i th node is defined as

Ci = 2�i

Di (Di − 1)
, (2.6)

where Di is the degree of the i th node, i.e., the number
of neighbors node i has. Thus, the clustering coefficient
is defined as the ratio between the actual existing links �i

and the maximum possible number of linksDi (Di − 1)/2
between the neighbors of the i th node. The clustering
coefficient of the network is obtained by averaging over
all nodes:

C = 1

N

∑
i

Ci . (2.7)

Betweenness: The betweenness measures the number of shortest paths
going through a given node. Thus, the betweenness is
helpful for quantifying how important a node is for the
communication in a social network or transport in a rail-
way network, for example.
The betweenness of the i th node is defined as

Bi =
∑
k, j

n jk(i)

n jk
, (2.8)

where n jk is the number of all shortest paths g jk between
the j th and the kth node, and n jk(i) is the number of these
shortest paths which pass through the i th node.

Closeness: The closeness μi of node i is the inverse of the average
distance of the i th node from all other nodes:

μi = N∑
j gi j

, (2.9)

where gi j is the shortest distance between node i and j.
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Spectral density: The spectral density of the adjacency matrix A or the
coupling matrix G of dimension N is given by

ρ(ν) = 1

N

N−1∑
j=0

δ(ν − ν j ) (2.10)

where ν j , j = 0, . . . , N − 1, are the eigenvalues of A or G, respectively. In the limit
of N → ∞, ρ(ν) becomes a continuous function.

2.3 Network Topologies

At first glance, real-world networks often appear to be completely in random struc-
ture. However, most are characterized by distinct topological features e.g., they might
have a particularly high clustering coefficient, a small shortest path-length, or might
be characterized by the existence of a few hubs, e.g., nodes of a particularly high
degree. Several models including random, small-world, and scale-free networks have
been developed which reflect these topological features. Furthermore, ideal network
structures which allow for calculating the eigenvalue spectrum analytically have been
considered. In Chap. 3, the importance of the eigenvalue spectrum for the synchro-
nizability of a network will be discussed. The current section introduces different
topologies, their constructing methods and discusses their eigenvalue spectrum.

2.3.1 Regular Networks with Circulant Matrices

An N × N circulant matrix C is given by the condition Ci j = c( j−i+N ) mod N, i,
j = 0, . . . , N − 1. Thus, C can be written as

C =

⎛
⎜⎜⎜⎜⎜⎝

c0 c1 c2 · · · cN−1

cN−1 c0 c1 · · · cN−2
...

...
...

. . .
...

c2 c3 c4 · · · c1

c1 c2 c3 · · · c0

⎞
⎟⎟⎟⎟⎟⎠ . (2.11)

Circulant matrices are of particular interest as their eigenvalues and eigenvectors are
analytically accessible. The eigenvectors are given by Gray (2005)

e j = 1√
N

(1, ω j , ω2
j , . . . , ωn−1

j )T , j = 0, . . . , N − 1, (2.12)

http://dx.doi.org/10.1007/978-3-319-25115-8_3
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where ω j = exp
(

2π i j
N

)
is the N th roots of unity. The corresponding eigenvalues can

be calculated as

ν j =
N−1∑
k=0

ckω
k
j . (2.13)

A subclass of networks with circulant matrices are regular ring networks. In a regular
ring network, each node is with equal strength connected to its k nearest neighbors
to the right and to the left. Thus, the normalized coupling matrix is given by

Ci j = 1

2k

{
1, if |(i − j + N ) mod N | ≤ k and i 	= j,

0, otherwise.
(2.14)

With Eq. (2.13), the eigenvalues can be calculated as

ν j = 1

k

k∑
l=1

cos

(
2π jl

N

)
. (2.15)

Figure 2.1a shows a regular ring network with k = 2, i.e., nearest and next-nearest
neighbors are linked. (Panel (b) and (c) will be explained in Sects. 2.3.3 and 2.3.2,
respectively.) Regular ring are of particular interest as they exhibit chimera states
under certain conditions (Kuramoto and Battogtokh 2002; Abrams and Strogatz
2004; Sethia et al. 2008; Wolfrum and Omel’chenko 2011; Wolfrum et al. 2011;
Omelchenko et al. 2011, 2012; Hagerstrom et al. 2012; Omelchenko et al. 2013;
Vüllings et al. 2014; Zakharova et al. 2014; Omelchenko et al. 2015). In a chimera
state, the nodes in the network separate into two groups with distinctly different
behavior, e.g., spatially coherent and incoherent behavior or coherent and incoherent
oscillations.

(a) (b) (c)

Fig. 2.1 Rewiring procedure in the Watts-Strogatz model. a p = 0 (regular network). b p = 0.08
(small-world network). c p = 1 (random network). Parameters: N = 20, k = 2. Figure modified
from Lehnert (2010) (color figure online)
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The unidirectional ring network is another special case of a circulant matrix net-
work. It is given by the coupling matrix

C =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠ , (2.16)

and its eigenvalues read

ν j = e
2π i
N j , j = 0, . . . , N − 1. (2.17)

Another important example of a circulant matrix network is the all-to-all topology,
i.e., a network where each node is connected to all other nodes. If we normalize each
row to one, i.e.,

∑
j Ci j = 1, j = 0, . . . , N − 1, C is described by Ci j = 1/(N − 1)

for i 	= j assuming that we exclude self-coupling. A normalization to one is use-
ful when considering dynamics on networks, as will be discussed in Sect. 3.1. The
eigenvalues are given by

ν j =
{

0, if j = 0,
−1

N−1 , if j > 0.
(2.18)

2.3.2 Erdős-Rényi Random Networks

Random networks have been among the first to be studied in network science. They
were independently proposed by Rapoport (1957), Solomonoff and Rapoport (1951),
and most prominently by Erdős and Rényi (1959, 1960). Two different possibilities
to construct a random network exist:

• In a directed (undirected) graph, N 2 (N (N − 1)/2) links can exist. In the first
model, L(N ) links are randomly distributed on these possible positions (Erdős
and Rényi 1959).

• In the second model, each of the possible position is occupied with the probability
q. The expectation value of the number of links is then q N 2 (directed network) or
q N (N − 1)/2 (undirected network) (Erdős and Rényi 1960).

Obviously, in the limit of large N and L , both construction methods coincide.
In the following discussion, a directed, unweighted network is assumed. For such

a network, Erdős and Rényi (1959, 1960) showed that a critical probability qc = 1/N
exists separating the following regimes:

http://dx.doi.org/10.1007/978-3-319-25115-8_3
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q < qc: For N → ∞, with probability one the graph has no component larger than
O(ln N ), where O denotes “of the order of”.

q = qc: The largest component has the size O(N 2/3).
q > qc: A giant component of size O(N ) arises and no other component greater

than O(ln N ) exists.

For q > qc and large N , the spectral density ρ(ν) of an undirected graph converges
to

ρ(ν) =
{√

4Nq(1−q)−ν2

2π Nq(1−q)
, if |ν| < 2

√
Nq(q − 1),

0, otherwise.
(2.19)

Equation (2.19) is know as Wigner’s law or semicircle law (Wigner 1958). The largest
eigenvalue ν0 is separated from the bulk and increases with the network size as pN.

At the beginning of this chapter, I have discussed the small-world phenomenon,
i.e., the fact that many real-world networks are characterized by a small shortest
path length. More formally, we speak of the small-world effect if the shortest path
length of a network grows slower than log(N ), i.e., L (N ) ≤ α log(N ) with α ∈ R.
The shortest path length of a random network is given by L = log N/ logD where
D = L(N )/N = q N is the mean degree (Newman 2003). Obviously, this fulfills the
criteria of the small-world effect if we increase the network size while keeping the
average degree fixed. However, in most other aspects the random network is a poor
model for real-world networks. Its clustering coefficient is given by C = q which
tends to 1/N if we let N go to infinity for constantD , while real-world network often
exhibit high clustering coefficients. Furthermore, in contrast to real-world networks,
the random network has a Poissonian degree distribution but no community structure,
and no assortativity (Newman 2003).

2.3.3 Small-World Networks

The shortcoming of the random network to reflect real-world network properties
motivated Watts and Strogatz (1998) to their seminal work on small-world networks.
The small-world network is characterized by both, a small shortest path length and
a high clustering coefficient.

The Watt-Strogatz model relies on a one-dimensional interpolation between a
regular network and a random network as it is depicted in Fig. 2.1. This interpolation
involves the following steps (for details see Watts and Strogatz 1998):

1. Start with a regular network of N nodes where every node is linked to its 2k
neighbors (see Sect. 2.3.1 and Fig. 2.1a). Watts and Strogatz required N � k �
ln(N ) � 1 ensuring that the regular ring is sparse but remains connected during
the following procedure.

2. Then, rewire one end of each link with probability p to a new node, where
duplicated links are forbidden; see Fig. 2.1b.
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Fig. 2.2 Small-world
network. Shortest path length
L /L (p = 0) (light blue
circles) and clustering
coefficient C /C (p = 0)

(dark red squares) versus
rewiring probability p.
Parameters: N = 100, k = 4.
Number of realizations: 70.
(Reproduction of Fig. 2
in Watts and Strogatz(1998))
(color figure online) 0.2
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In the limiting cases of p = 0 and p = 1, this procedure recovers the regular ring and
the random network, respectively; for a schematic view see Fig. 2.1a, c, respectively.

More interesting is the case of intermediate p. In this regime, which is also called
small-world regime, the regular ring is still undamaged in large parts, while a few
long-range connections exist; see Fig. 2.1b. Watts and Strogatz (1998) showed that
this configuration yields a high clustering coefficient and a small shortest path length.
Figure 2.2 shows the normalized shortest path length L /L (p = 0) (blue symbols)
and the normalized clustering coefficient C /C (p = 0) (red symbols) as a function
of the rewiring probability p. The small-world regimes, where L is small and C is
large, is approximately located between p = 0.001 and p = 0.01.

2.3.4 Scale-Free Networks

In a scale-free network, the degree distribution P(D) follows a power law, P(D) ∼
D−β , β > 0, for large D , where D is the degree of a given node. This implies the
existence of hubs: Nodes that have a very large number of links attached to them,
while the majority of nodes have only a few links. These hubs are of great importance
for the behavior of the whole network. For example, a scale-free network is very
sensitive to the failure of a hub.

Famous examples of scale-free networks include the World Wide Web (Albert
and Barabasi 2002), citation networks (de Solla Price 1965), the collaboration
of mathematicians (Grossman and Ion 1995), the Internet at the level of
autonomous systems (Chen et al. 2002), and the interaction network of proteins
(Jeong et al. 2001).
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2.4 Dynamics on Networks

So far I considered the structure of networks, i.e., how the nodes in a network are
connected via links. In many applications, the structure is not sufficient to describe
the complexity of the system but it has to be taken into account that the nodes
are dynamical systems interacting through links. This approach has been used in
very different fields. For example, a node can represent a laser which interacts via
its light output with other lasers (Dahms 2011; Flunkert 2011). In epidemiology,
SIR models are used to describe the spread of diseases: The nodes are individuals
which can be susceptible (S), infected (I), or recovered (R). The links correspond to
contacts between the individuals (Anderson and May 1992; Hethcote 2000; Belik
et al. 2011; Lentz et al. 2012). Neural networks gained a lot of attention in the last
decades. Here, the node dynamics are described by neural models and the links
represents the interaction of the neurons via action potentials; see Ernst et al. (1998),
Dayan and Abbott (2005), Timme et al. (2006), Jahnke et al. (2008), Vogels and
Abbott (2009), Hövel (2010), Vogels et al. (2011), Popovych et al. (2011), (2013) and
many more. Furthermore, many authors investigated the interplay between dynamical
nodes and networks structure on a fundamental level in particular with a focus on
synchronization (Pecora and Carroll 1998; Chavez et al. 2006; Arenas et al. 2006;
Boccaletti et al. 2006a; Hunt et al. 2010; Flunkert et al. 2010; Sorrentino 2014;
Geffert 2015).

For all examples mentioned above, the dynamics on a network can be described
as a set of coupled differential equations, i = 0, . . . , N − 1,

ẋi = fi [xi (t)] + σ

N−1∑
j=0

Gi j hij(xi , x j ), (2.20)

where xi ∈ Cd is the state of the i th node and fi the local dynamics which describes
the uncoupled node. σ = K exp(iβ), K , β ∈ R, is the complex coupling strength.
The function hi j models the coupling between node i and node j . G is the coupling
matrix as introduced in Sect. 2.3. For simplicity, we assumed that the states of all
nodes are of dimension d. From Sect. 3.1 it will be clear that this is one of several
necessary conditions for the existence of a zero-lag synchrony solution. However,
group synchrony can exist in networks where the nodes are not of the same dimension
as will be discussed in Chap. 5.

Often and throughout this thesis it is assumed that the coupling is linear and
diffusive. In this case, Eq. (2.20) reads

ẋi = fi [xi (t)] + σ

N−1∑
j=0

Gi j Hi j (x j − xi ) (2.21)

where Hi j is a d × d matrix called the coupling scheme.

http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_5
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2.4.1 Delayed Coupling

As discussed in Chap. 1, delay is a ubiquitous phenomenon in real-world systems.
Two types of delay can be distinguished: Propagation and processing delays. Here
we consider the first type, i.e., a time delay which arises due to the finite propagation
speed between node i and j . Including this delay, Eq. (2.21) becomes

ẋi = fi [xi (t)] + σ

N−1∑
j=0

Gi j Hi j
[
x j (t − τi j ) − xi (t)

]
, i = 0, . . . , N − 1.

(2.22)
Equation (2.21) is a delay differential equation (DDE). DDEs are mathematically
challenging since their phase spaces are infinite. In order to find a solution of
Eq. (2.22) for t > 0 the value of X ≡ (x0, . . . , xN−1) has to be known on the inter-
val [−τmax, 0] where τmax is the maximum time delay, i.e., τmax = max

i j
τi j . In other

words, we have to specify the initial value or history function

X(s) = 
(s), s ∈ [−τmax, 0]. (2.23)

This is in contrast to ordinary differential equation where defining X(0) is sufficient.
Only in rare cases, DDEs are analytically solvable by employing the methods of

steps in which case the DDE is integrated stepwise over an interval of length τmax,
i.e., for step j over the interval [ jτmax, ( j + 1)τmax], where j = 0, . . . (Fridman
2014). Linear DDEs can be solved semi-analytically by considering the roots of
their characteristic equation (see Appendix A). However, in most cases DDEs have
to be solved numerically. Details can be found in Farmer (1982). For reviews on time
delayed systems see Erneux (2009), Atay (2010), Fridman (2014).

2.5 Summary

This chapter has given an introduction to networks. I have discussed the mathematical
representation of networks and different network quantities. Network types and their
eigenvalue spectra have been addressed. The development of these network types
has been driven by the observations that many real networks from very different
areas exhibit similar characteristics. In particular, they often have a high clustering
coefficient and a small shortest path length. These features are very well reflected
by the small-world model by Watts and Strogatz (1998). This model uses a rewiring
procedure to interpolate between a regular network and random graph. For interme-
diate rewiring rates—he small world regime—he model displays a high clustering
coefficient and a small shortest paths length.

Besides describing the topology of real-world networks, networks can be used
to model the dynamics and interactions of many systems or agents. In this case, the
network is represented by a set of coupled ordinary differential equations or, if delay

http://dx.doi.org/10.1007/978-3-319-25115-8_1
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in the coupling is considered, by a set of delay differential equations. The aim of this
thesis is to explore the interplay between the topology of networks and the dynamics
on the network. Furthermore, in Chap. 9 it will be shown how the topology can be
changed in targeted manner to control the dynamics on the network. A particularly
interesting dynamical state on a network is when all nodes follow the same dynamics
or, in other word, are synchronized. In the next chapter, this state will be discussed
in detail.
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Part I
Stability of Synchronization



Chapter 3
Synchronization in Complex Networks

In the previous chapter, complex dynamical networks have been introduced. One
particularly interesting dynamical state on a network is synchronization because
synchrony phenomena are ubiquitous in nature and engineering, as discussed in
detail in Chap. 1. The stability analysis of synchrony in a complex network is a
challenging problem due to the high dimensionality of the equations. The master
stability function (MSF) is a convenient tool to address this problem as it allows
for decomposing the high dimensional problem to N problems of lower dimensions
where N is the number of nodes in the network (Pecora and Carroll 1998; Pecora
1998; Fink et al. 2000). For an introduction to the theory of synchronization see
(Pikovsky et al. 2003; Strogatz 2003; Pikovsky and Rosenblum 2007; Arenas et al.
2008).

The aim of this chapter is to discuss synchronization and, in particular, the MSF
and its role in determining the stability of synchrony. In Sect. 3.1, I will introduce
the notion of synchronization and explain the conditions imposed on a network such
that a synchronized solution exists. Section 3.2 is a recapitulation of the MSF as
suggested by Pecora and Carroll (1998). In Sect. 3.3, the Kuramoto order parameter
is investigated as a convenient tool to evaluate the quality of synchronization. The
chapter is summarized in Sect. 3.4.

Note that I only study zero-lag synchronization in this chapter; group and cluster
synchrony are the topics of Chap. 5. I will consider the case of delay-coupled networks
since they are in the focus of this thesis. The simplification to networks without delay
as, for example, originally considered by Pecora and Carroll, is straightforward when
setting the delay time equal to zero.
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3.1 Synchronization

In the following, I discuss which conditions the dynamical equation of a network
and the topology have to fulfill such that a synchronized solution exists. Recall
the dynamical equation of a network of N nodes with time-delayed coupling (see
Eq. (2.22)):

ẋi = fi [xi (t)] + σ

N−1∑
j=0

Gi j Hi j
[
x j (t − τi j ) − xi (t)

]
, i = 0, . . . , N − 1, (3.1)

where xi ∈ Cd is the state of node i and fi its local dynamics. σ = K exp(ıβ),
K , β ∈ R, is the complex coupling strength, G is the coupling matrix, τi j and Hi j

are the time delay and the coupling scheme between nodes j and i , respectively.
In the case of zero-lag synchronization (also called isochronous or inphase syn-

chrony) all nodes follow the same trajectory without a time shift

x0(t) = · · · = xN−1(t) ≡ xs(t). (3.2)

Equation (3.2) consists of d(N − 1) constraints and, thus, defines a d-dimensional
hyperplane in the d N -dimensional phase space of Eq. (3.1). In the following, I syn-
onymously refer to this hyperplane as synchronization manifold or synchronized
solution. Inserting condition (3.2) into Eq. (3.1) yields

ẋs = fi [xs(t)] + σ

N−1∑
j=0

Gi j Hi j
[
xs(t − τi j ) − xs(t)

]
, i = 0, . . . , N − 1. (3.3)

A necessary condition for the existence of a synchronous solution is that the input
to all nodes is identical in the synchronous case. For Eq. (3.3), this means that the
right hand side has to be independent of i . Obviously, this is only fulfilled if fi ≡ f ,
Hi j ≡ H, τi j ≡ τ , and

∑N−1
j=0 Gi j = gi ≡ g for all i, j = 0, . . . , N − 1, where g is

the row sum of G.
Substituting this into Eq. (3.1) yields

ẋi = f[x(t)] + σ

N−1∑
j=0

Gi j H
[
x j (t − τ) − xi (t)

]
, i = 0, . . . , N − 1, (3.4)

the form of the network I will consider in most parts of this thesis. Equation (3.3)
describing the evolution of the synchronous state reads

ẋs = f[xs(t)] + gσH [xs(t − τ) − xs(t)] . (3.5)

http://dx.doi.org/10.1007/978-3-319-25115-8_2
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Obviously, each row sum g �= 0 can be rescaled by the absolute value K of the
coupling strength σ = K exp(iβ). Thus, without loss of generality we can assume
g = 1. We conclude that a synchronous solution of Eq. (3.3) only exists if

1. All nodes follow the same dynamics if uncoupled (fi ≡ f).
2. The coupling between all node pairs has to be identical (Hi j ≡ H).
3. All propagation delays between nodes have to be the same (τi j ≡ τ ).
4. The row sum of the coupling matrix G is equal for all rows (

∑N−1
j=0 Gi j = gi ≡ g).

In the following, I refer to condition (iv) as the equal-row-sum condition or, in the
case g = 1, as the unity-row-sum condition. Only in Sect. 5.3 are networks with
g �= 1 considered as the case g = 0 is investigated.

3.2 Master Stability Function

In the previous Section, the prerequisites for the existence of a synchronous solution
were discussed. In the following the stability of this solution is investigated with the
help of the MSF as introduced by Pecora and Carroll (1998).

Stability of synchronization can be evaluated in a straightforward manner, through
a linearization of the network dynamics at the synchronous state. From the resulting
variational equation, the stability can then be determined by, for example, calculat-
ing the largest Lyapunov exponent �. The idea of the MSF is to calculate � not
directly from the variational equation for a given network topology, but to perform a
diagonalization of the variational equation, afterwards calculating � as a function of
the generalized complex eigenvalues ν of the coupling matrix. Thus, the MSF allows
for separating the effects of the local dynamics from the effects of the topology. The
clear advantage is that �(ν) has to be computed only once and can then be used to
check the stability of any given coupling matrix. This is not only an advantage in
terms of numerical costs but allows for drawing general conclusions by systemati-
cally analyzing eigenspectra of networks. For example, in Chap. 4 the eigenspectra of
small-world and random networks with inhibitory links will be investigated with the
help of the MSF. An introduction to the eigenspectra of the most important network
models was given in Chap. 2.

3.2.1 Derivation of the Master Stability Function

In the following, the MSF is derived for a delay-coupled network (Dhamala et al.
2004; Choe et al. 2010; Dahms 2011; Kinzel et al. 2009; Heiligenthal et al. 2011;
Kinzel 2013; D’Huys et al. 2013). If the delay time is set to zero, the results of
(Pecora and Carroll 1998) for a network without delayed coupling are recovered.

http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_4
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Equation (3.1) can be written in a compact way by defining X ≡ [x0, x1, . . . ,

xN−1] and f̂(X) ≡ [f(x0), f(x1), . . . , f(xN−1)]:

Ẋ(t) = f̂[X(t)] − σ1N ⊗ HX(t) + σ [G ⊗ H]X(t − τ), (3.6)

where ⊗ denotes the Kronecker product. The properties of the Kronecker product
needed in this chapter are described in Appendix B.

A linearization of Eq. (3.6) at the synchronous solution, given by Eq. (3.5), yields
the variational equation

δẊ(t) = Df̂ |xs (t)δX(t) − σ1N ⊗ HδX(t) + σ(G ⊗ H)δX(t − τ), (3.7)

where Df̂ |xs (t) is the Jacobian of f̂ which has to be evaluated at the synchronization
manifold xs . The evolution of xs is given by Eq. (3.5). Equation (3.7) describes the
time evolution of an initially small perturbation from the synchronous state: δX(t) ≡
X(t) − Xs(t), where Xs(t) = [xs, xs, . . . , xs]. The first term in Eq. (3.7) has a block
form since the local dynamics of each node only depends on its own state. Thus,
the term can be rewritten as Df̂|xs (t) = 1N ⊗ Df |xs (t) where Df |xs (t) is the Jacobian
of f . The block form of this term is not affected if we now diagonalize G. The
aim of this block diagonalization is to separate the directions transversal to the
synchronization manifold from the directions within this manifold. In the following,
the diagonalization, which is the key step of the derivation in the MSF, is explained.

Let S be the matrix diagonalizing G, i.e., DG = SGS−1, where DG is the diagonal
form of G. We block diagonalize Eq. (3.7) by multiplying it with S ⊗ 1d from the
left, where 1d is the d- dimensional unity matrix:

(S ⊗ 1m)δẊ(t) = (S ⊗ 1m)[1N ⊗ (Df|xs (t) − σH)]δX(t) + σ(S ⊗ 1m)(G ⊗ H)δX(t − τ).

(3.8)

Using the rules for matrix multiplication (see Appendix B), Eq. (3.8) is rewritten as

(S ⊗ 1m)δẊ(t) = 1N ⊗ (Df|xs (t) − σH)(S ⊗ 1m)δX(t) + σ(SG) ⊗ (1mH)δX(t − τ). (3.9)

Diagonalizing G and using fact that 1m commutes with all other matrices yields

(S ⊗ 1m)δẊ(t) = 1N ⊗ (Df|xs (t) − σH)(S ⊗ 1m)δX(t) + σ(DGS) ⊗ (H1m)δX(t − τ).

(3.10)

We rearrange the second term on the right hand side according to the rules for the
Kronecker product given in Appendix B:

(S ⊗ 1m)δẊ(t) = 1N ⊗ (Df|xs (t) − σH)(S ⊗ 1m)δX(t) + σ(DG ⊗ H)(S ⊗ 1m)δX(t − τ).

(3.11)
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By introducing δX̃ = (S ⊗ 1m)δX, Eq. (3.11) can be rewritten as

δ
˙̃X(t) = 1N ⊗ (Df |xs (t) − σH)δX̃(t) + σ(DG ⊗ H)(S ⊗ 1m)δX̃(t − τ). (3.12)

Now, both terms on the right hand side have a block structure:

δ
˙̃X(t) =

⎛
⎜⎜⎜⎝

Df − σH 0 · · · 0
0 Df − σH · · · 0
...

...
. . .

...

0 0 · · · Df − σH

⎞
⎟⎟⎟⎠ δX̃(t)

+ σ

⎛
⎜⎜⎜⎝

ν0H 0 · · · 0
0 ν1H · · · 0
...

...
. . .

...

0 0 · · · νN−1H

⎞
⎟⎟⎟⎠ δX̃(t − τ), (3.13)

where {vi }i=0,...,N−1 are the eigenvalues of G. Equation (3.13) is equivalent to N
blocks of the form

δ ˙̃xi (t) = (Df |xs (t) − σH)δx̃i (t) + σνiδx̃i (t − τ), i = 0, . . . , N − 1. (3.14)

where {δx̃i }i=0,...,N−1 represents the m-dimensional perturbations from the synchro-
nous state in the eigensystem of G. From Eq. (3.14) the stability of synchronization
in a network can be evaluated by calculating the Lyapunov exponent �(νi ) for each
value of νi , i = 0, . . . , N − 1. ν0 is called the longitudinal eigenvalue and will be
discussed in Sect. 3.2.3. νi , i = 1, . . . , N − 1, are the transversal eigenvalues, the
corresponding Lyapunov exponents determine the stability of synchronization. If
the largest of these N − 1 Lyapunov exponents �(νi ) is negative synchronization,
in the network will be stable. Otherwise it will be unstable.

Alternatively to computing the Lyapunov exponents for each specific network
topology, Pecora and Carroll suggested to compute � as function of the generalized
eigenvalues ν and then evaluate �(Re ν, Im ν) at the N values of νi . The advantage
is, as discussed above, that �(Re ν, Im ν) has to be calculated only one time and can
then be used to study the stability of any given network. The generalized form of
Eq. (3.14) with the ν instead of νi , i = 0, . . . , N − 1, is called the master stability
equation (MSE) and reads

δ ˙̃x(t) = (Df |xs (t) − σH)δx̃(t) + σνδx̃(t − τ), (3.15)

The largest Lyapunov exponent �(ν) as a function of the generalized eigenvalue ν

constitutes the MSF.
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3.2.2 The Longitudinal Eigenvalue

As discussed above a necessary condition for the existence of a synchronous solution
is that the row sum of the coupling matrix is equal to 1 (unity-row-sum condition). If
this condition is fulfilled, one eigenvalue equal to 1 exists which is the eigenvalue ν0

to the eigenvector v0 = (1, 1, . . . , 1), which can easily seen by multiplying G by v0:

Gv0 =
⎛
⎝∑

j

G0 j , . . . ,
∑

j

G N−1, j

⎞
⎠

T

= (1, . . . , 1)T = ν0v0, (3.16)

where we made use of unity-row-sum condition, i.e.,
∑

j Gi j = 1, i = 0, . . . , N − 1,
in the second step.

The eigenvalue ν0 is called the longitudinal eigenvalue as it describes perturbation
longitudinal to the synchronization manifold because for ν0 = 1, the master stability
equation (3.15) coincides with the variational equation of the synchronous dynamics
given in Eq. (3.2). The other eigenvalues are referred to as transversal eigenvalues
since they described perturbations transversal to the synchronization manifold.

The longitudinal Lyapunov exponent�(ν0), i.e., the Lyapunov exponent evaluated
at the longitudinal eigenvalue, describes the dynamics within the synchronization
manifold. If its value is negative, the synchronous dynamics is given by a fixed point.
�(ν0) = 0 indicates that the synchronization manifold is a limit cycle and is the
Lyapunov exponent which corresponds to the Goldstone mode of this limit cycle.
A positive longitudinal Lyapunov exponent means that the synchronous dynamics
is chaotic. Table 3.1 summarizes the possible dynamics within the synchronization
manifold. Note that this only applies when calculating the MSF numerically. If an
analytic calculation of the MSF is possible, �(ν0) > 0 can also be observed for
fixed points or limit cycles, namely, in the case that the synchronous dynamics is an
unstable solution of Eq. (3.5).

3.2.3 Symmetry of the MSF for Zero-Lag Synchrony

If we consider real-valued node dynamics and a real-valued coupling strength,
the MSF for zero-lag synchrony is symmetric with respect to the Re ν-axis, i.e.,

Table 3.1 Dynamics within
the synchronization manifold
as determined by the
longitudinal Lyapunov
exponent �(ν0) when
numerically calculating the
MSF

Longitudinal Lyapunov
exponent �(ν0)

Type of synchronous
dynamics

�(ν0) < 0 Fixed point

�(ν0) = 0 Limit cycle

�(ν0) > 0 Chaotic
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Fig. 3.1 Master stability
function (MSF) for the
saddle-node infinite period
(SNIPER) bifurcation model
as given by Eqs. (4.5)–(4.7).
τ = 6.5, σ = 0.35,
b = 0.95. Figure modified
from Keane et al. (2012)
(color figure online)
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�(ν) = �(ν∗), where ∗ denotes the complex conjugate of a variable. This can be
shown by applying the transformation ν → ν∗ to Eq. (3.15) which yields

δ ˙̃x(t) = (Df |xs (t) − K H)δx̃(t) + Kν∗δx̃(t − τ), (3.17)

where σ = K because we required σ to be real. Furthermore, we assume that
Df |xs (t), H ∈ R. This is the case for all models considered in this thesis but the Stuart-
Landau oscillator. Note that nevertheless δx ∈ C because ν is a complex parameter.
Then, the complex conjugate of Eq. (3.17) reads

δ ˙̃x∗
(t) = (Df |xs (t) − K H)δx̃∗(t) + Kνδx̃∗(t − τ). (3.18)

If we now apply the transformation δx̃∗ → δx̃, we recover Eq. (3.15). Conse-
quently, if Eq. (3.15) has a solution δx̃(t), Eq. (3.17) has a solution δx̃∗(t). Since
|δx̃(t)| = |δx̃∗(t)| the corresponding Lyapunov exponents have to be equal, i.e.,
�(ν) = �(ν∗). As an example consider the MSF for the saddle-node infinite period
(SNIPER) bifurcation model shown in Fig. 3.1. The SNIPER model and its MSF will
be introduced in detail in Chap. 4; here it serves as an illustration of the symmetry
of the MSF with respect to the Re ν-axis.

3.3 Quantifying Synchronization

In networks with heterogeneities in the nodes or in the delays, a perfectly synchro-
nized solution does not exist because the conditions for synchrony discussed in
Sect. 3.1 are not fulfilled. However, states close to synchrony may exist. To measure
the degree of synchronization of these states in oscillatory systems, the Kuramoto
order parameter can be used (Kuramoto 1984):

R = 1

Ns

∣∣∣∣∣∣
Ns−1∑
j=0

eıϕ j

∣∣∣∣∣∣ . (3.19)

http://dx.doi.org/10.1007/978-3-319-25115-8_4
http://dx.doi.org/10.1007/978-3-319-25115-8_4
http://dx.doi.org/10.1007/978-3-319-25115-8_4
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ϕ j is the phase of the j th oscillator and can be defined as

ϕ j = 2π
t − tn

tn − tn−1
, (3.20)

where tn is the time of the previous spike of the j th neurons (Rosenblum et al.
2001). For R = 1, perfect phase synchronization is reached; if R ≈ 0, the network is
desynchronized. Ns in Eq. (3.19) is the number of spiking nodes. In other words, we
do not include non-spiking nodes when calculating the Kuramoto order parameter.
This will become important in Chap. 6.1 where networks with heterogenous coupling
delays are studied. It will be shown that partial or global amplitude death is induced
when the heterogeneities become too large. A generalization of the Kuramoto order
parameter to cluster states is discussed in Chap. 9.

3.4 Summary

In this chapter, an introduction to the topic of synchronization in complex networks
has been given and the conditions for the existence of a synchronous solution have
been discussed in detail. The stability of the synchronous solution can be accessed
via the master stability function (MSF). The MSF allows for separating the directions
transversal to the synchronization manifold from the ones longitudinal to it. Then,
the stability of a network can be determined by considering the Lyapunov exponents
associated with the transversal directions. If these exponents are all negative, the
synchronization is stable; otherwise it is unstable.

Furthermore, in this chapter I have introduced the Kuramoto order parameter as a
convenient measure of the degree of synchrony. This will be of particular interest in
Chap. 6, where heterogenous delay distributions will be considered which can result
in nearly synchronized states. These states will be characterized with the help of the
Kuramoto order parameter.
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Chapter 4
Control of Synchronization Transitions
by Balancing Excitatory and Inhibitory
Coupling

Determining the stability of synchronization in large and complex networks is very
challenging due to the high dimensionality of the problem. In the previous chapter,
I have given an introduction to the master stability function (MSF) which allows for
decoupling of the topology and the local dynamics. In this way the originally very
high-dimensional problem is reduced to (i) solving the problem for one node with
a rescaled coupling strength and (ii) determining the eigenvalues of the network’s
coupling matrix.

In this chapter, I want to discuss the application of the master stability function
to neural networks. Neurons are well described by excitable systems, where type-I
and type-II excitability can be distinguished (Hodgkin 1948; Rinzel and Ermentrout
1989; Izhikevich 2000; Lindner et al. 2004). However, excitability is not limited
to neural systems but was also observed in a wide range of natural and engineer-
ing systems including the cardiovascular systems (Yang and Wang 2008), chemical
systems like the Belousov–Zhabotinskii reaction (Mikhailov et al. 1994), optoelec-
tronical oscillators (Rosin et al. 2011), Boolean networks realized by logic gates
(Rosin et al. 2012), laser systems (Wünsche et al. 2001; Goulding et al. 2007; Bar-
bay et al. 2011), and glacial ocean oscillations (Ganopolski and Rahmstorf 2002).
For a review on neural excitability see Izhikevich (2000).

The aim of this chapter is to study the type-I and type-II excitability on two
generic models, the saddle-node infinite period (SNIPER) bifurcation model, also
known as the SNIC (saddle-node bifurcation on invariant cycle) model (Hu et al.
1993; Hizanidis et al. 2008), and the FitzHugh–Nagumo model (FitzHugh 1961;
Nagumo et al. 1962). In Sect. 4.1, I explain the notion of excitability and the differ-
ences between the two types. Furthermore, the models are introduced and the MSF
for both models is presented. In Sect. 4.2, the eigenvalues of small-world networks
with excitatory and inhibitory coupling are calculated and compared with the MSFs.
This comparison shows that inhibition, depending on the type of excitability and
the delay time, introduces one or multiple transitions between synchronization and
desynchronization.

© Springer International Publishing Switzerland 2016
J. Lehnert, Controlling Synchronization Patterns in Complex Networks,
Springer Theses, DOI 10.1007/978-3-319-25115-8_4
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4.1 Stability of Excitable Systems

In this section, the notion of excitability is discussed. Furthermore, the two different
types of excitability are introduced and the MSFs calculated for the example models,
the SNIPER model and the FitzHugh–Nagumo model, are presented and discussed.

4.1.1 Excitability

An excitable system is a system with a stable fixed point which responds to per-
turbations as follows: Small (subthreshold) perturbations decay rapidly, while large
(superthreshold) perturbations trigger a strongly non-linear response such that the
system undergoes a large excursion in the phase space before returning to the fixed
point. In the case of a neural system this perturbation mimics an action potential.
During the time that the system needs to return to the fixed point, no new spike can
be released (or only under very large perturbations); this time is called the refractory
period and is typical for neural systems (Izhikevich 2000; Dayan and Abbott 2005).

Excitable behavior is characteristic for systems close to a bifurcation to the oscil-
latory regime. Often the phase space changes only locally when the bifurcation
parameter changes such that the system undergoes a bifurcation from the oscillatory
regime to the regime with the stable fixed point, i.e., the excitable regime. A remnant
of the limit cycle sometimes called “ghost” remains which the system follows after
superthreshold bifurcations causing the excursion in the phase space. The two types
of excitability are classified according to the type of bifurcation. For an introduc-
tion to the theory of bifurcations see Guckenheimer and Holme (1983), Ott (1993),
Strogatz (1994), Argyris et al. (2015).

4.1.2 Type-I Excitability

Type-I excitability arises close to a saddle-node infinite period (SNIPER) bifurcation,
also known as the SNIC bifurcation (saddle-node bifurcation on invariant cycle). At
the bifurcation point, this bifurcation and, thus, type-I excitability in general are char-
acterized by the emergence of a limit cycle with infinite period, i.e., zero frequency,
but non vanishing amplitude. Examples of models showing type-I excitability are
the Ermentrout–Kopell canonical model also known as theta model (Ermentrout and
Kopell 1986), the Connor model for crab leg axons (Connor et al. 1977), for certain
parameters the Morris–Lecar model (Morris and Lecar 1981), the Wang–Buzsaki
model for inhibitory interneurons (Wang and Buzsáki 1996), and the Hindmarsh–
Rose model (Hindmarsh and Rose 1982, 1984). Near the bifurcation point, all these
models can be described by the dynamics of a SNIPER normal form.



4.1 Stability of Excitable Systems 45

Hence, this normal form of the SNIPER bifurcation will be investigated (Hu
et al. 1993; Hizanidis et al. 2008), mathematically represented by two first-order
differential equations:

f(x) =
(

ẋ
ẏ

)
=

(
x(1 − x2 − y2) + y(x − b)

y(1 − x2 − y2) − x(x − b)

)
, (4.1)

where b ∈ R is the bifurcation parameter.
In polar coordinates (x = r cos ϕ, y = r sin ϕ), Eq. (4.1) reads

ṙ = r
(

1 − r2
)
, (4.2)

ϕ̇ = b − r cos ϕ. (4.3)

At b = 1, the SNIPER bifurcation takes place. Figure 4.1 shows the phase portraits
and typical trajectories of the uncoupled system: (a) below the SNIPER bifurcation,
i.e., b = 0.95, (b) at the bifurcation, i.e., b = 1, and (c) above the bifurcation, i.e.,
b = 1.05. For b < 1, three fixed points exist: an unstable focus (F) at (0, 0), a stable
node (N) at (b,−√

1 − b2), and a saddle (S) at (b,
√

1 − b2). In this regime, no
stable limit cycle exists but the trajectories approach the stable node (or the saddle, if

-1 1

-1

0

1

-1

y
(t

)

x (t ) -1 1x (t ) -1 1x (t )

-0.5

0

0.5

1

0 10 20 30 40 50

x
(t

),
y

(t
)

t

S

F

N

(a)

S F

(b)

F

(c)

(d)

Fig. 4.1 SNIPER model. Phase portraits and typical trajectories of the uncoupled system (4.1): a
below the SNIPER bifurcation, b = 0.95; b at the bifurcation, b = 1; and c above the bifurcation,
b = 1.05. Labels: F: unstable focus; S: Saddle; N: stable node. d Time series of the coupled system
(4.4) with τ = 8, σ = 0.4, and b = 0.95. The solid blue line shows x(t), the dashed green line
depicts y(t) (color figure online)
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the initial conditions are chosen directly on its stable manifold which is, however, of
measure zero). At b = 1, the saddle and the node collide and annihilate. At this point
a limit cycle with infinite period is born, which is, as discussed above, characteristic
for this type of bifurcation. b > 1 corresponds to the oscillatory regime, where the
period T of the limit cycle takes a finite value. Close to the bifurcation, T follows a
characteristic scaling law: T ∝ (b − 1)−1/2 (Hizanidis et al. 2008).

b < 1 corresponds to the excitable regime. Without perturbations the system
remains in the stable node. Under small perturbations it immediately returns to the
node. However, if a perturbation is large enough to push the system beyond the saddle
it has to follow the remnant of the limit cycle before returning to the fixed point and
a spiking behavior can be observed.

4.1.3 Type-I Excitability: The Master Stability Function

Oscillations in the excitable regime cannot only be introduced by perturbations but
also by time-delayed coupling. In Keane et al. (2012), a system of N nodes (labeled
i = 0, ..., N − 1) was considered

ẋi = f(xi ) + K
N−1∑
j=0

Gi j H(x j (t − τ) − xi (t)), (4.4)

where f(xi ) is the local dynamics of each element xi = (xi , yi ) as described by
Eq. (4.1). G is the coupling matrix (see Sect. 2.1), and H is the coupling scheme
determining which variables couple. H is taken to be the 2 × 2 identity matrix; this
means that the x variable of node j at time t − τ is coupled to the x variable of
node i at time t and analogously for the y variable but that there is no cross-coupling
between the x and y variables. The coupling parameters, which are identical for all
connections, are the real-valued coupling strength K and the delay time τ .
According to Eq. (3.15), the master stability equation (MSE) reads

δẋ(t) = (Df |xs(t) − K H)δx(t) + Kνδx(t − τ), (4.5)

where the synchronized dynamics xs(t) is given by (see also Eq. (3.2))

ẋs = f[xs(t)] + K H [xs(t − τ) − xs(t)] , (4.6)

and the Jacobian matrix of the local dynamics reads

Df |xs(t) =
(

1 − 3x2 − y(y − 1) x − 2xy − b
−2x(y + 1) + b 1 − x2 − 3y2

)
. (4.7)

http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_3


4.1 Stability of Excitable Systems 47

-1 0 1
Re ν

-1

0

1

Im
ν

(a)

-1 0 1
Re ν

(b)

-1 0 1
Re ν

(c)

-1 0 1
Re ν

-0.1

-0.05

0

0.05

0.1

Λ

(d)

Fig. 4.2 Master stability function (MSF) for the SNIPER model. Largest Lyapunov exponent �

for different delay times: a τ = 6, b τ = 6.5, c τ = 7, and d τ = 10. ν is the eigenvalue of the
coupling matrix, and � is the largest Lyapunov exponent. Other parameters: K = 0.35, b = 0.95.
Figure reproduced from Keane et al. (2012) (color figure online)

Recall that ν is the continuous form of the eigenvalues of G and is in general a
complex number.

In Keane et al. (2012), the MSF was calculated for different delay times. Figure 4.2
shows the results for (a) τ = 6, (b) τ = 6.5, (c) τ = 7, and (d) τ = 10. Obviously,
the stable region of the MSF coincides with the unit circle for large delay as can be
seen in panel (d). Such behavior is typical for oscillatory systems and large delays. In
the limit of infinite delay, this has been proven (Flunkert et al. 2010). With decreasing
delay, the cycle is deformed and finally splits into two separate islands.

Figure 4.3 further explores the influence of the delay time on the stability region. It
shows the largest Lyapunov exponent as a function of the real part Reν of the eigen-
values and the delay τ for vanishing imaginary part (Imν = 0), and fixed coupling
strengths of (a) K = 0.25, (b) K = 0.3, and (c) K = 0.35. In all three panels, at least
three different regions can be identified: For large τ , the stability region coincides
with the interval Reν ∈ [−1, 1] (as expected from the results of Flunkert et al. 2010),
for intermediate τ the stability region becomes smaller or larger than this interval
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Fig. 4.3 Master stability function (MSF) � for a fixed coupling strength of a K = 0.25, b K = 0.3
and c K = 0.35 in the plane of the real part Re ν (Im ν = 0) and the delay time τ . The horizontal
(red) lines show the position of the critical delay time τc. b = 0.95. Figure reproduced from Keane
et al. (2012) (color figure online)
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but remains connected, while it splits into two or more disconnected islands below a
critical delay time τc. In panel (a) and (c), a fourth regime, where � < 0 for all values
of Reν and fixed τ , is visible for very small delays. In this regime the synchronous
dynamics corresponds to fixed point dynamics which, however, is not the focus of
this study.

Figures 4.2 and 4.3 demonstrate that the delay time is a crucial parameter for the
synchronization properties of the SNIPER model. The substantially different forms
of the MSF for large and small delay will result in very different synchronization-
desynchronization behavior as will be discussed in Sect. 4.2.

4.1.4 Type-II Excitability

Type-II excitability arises near a Hopf-bifurcation. Close to the bifurcation the
amplitude is arbitrarily low but the frequency is finite. Examples of type-II excitability
include the FitzHugh–Nagumo system (FitzHugh 1961; Nagumo et al. 1962),
Hodgkin–Huxley model (Hodgkin 1948; Hodgkin and Huxley 1952), and for certain
parameters the Morris–Lecar model (Morris and Lecar 1981).

Here, the focus is on the FitzHugh–Nagumo system. The equation for a single
system without coupling reads

εu̇ = u − u3

3
− v,

v̇ = u + a, (4.8)

where u is called the activator, and v the inhibitor. a is a threshold parameter whose
role will be discussed below. ε � 1 is a time-scale parameter; in this thesis ε = 0.01.
Consequently, u is a fast variable, while v is slow. The interplay between a fast and
a slow variable enables the emergence of a spike. Though the FitzHugh–Nagumo
is not a biological model in the sense that it allows for a quantitative description
of neural processes, it qualitatively reproduces the spiking behavior of a neuron. u
resembles the voltage rise at a neuron, while v summarizes all inhibitory processes
taking place during the course of an action potential.

The system has a fixed point at (u∗, v∗) = (−a,−a + a3/3), which is stable for
a > 1 and unstable for a < 1. At a = 1, the supercritical Hopf bifurcation takes
place. Thus, a is the bifurcation parameter determining whether the system is
excitable (a > 1) or exhibits self-sustained periodic firing (a < 1). Figure 4.4 shows
(a) the phase space, and (b) the time series of a FitzHugh–Nagumo system in the
excitable regime after a perturbation sufficiently large to perturb the system from its
stable fixed point A. After a large excursion in phase space corresponding to a spike,
the system slowly returns to the fixed point (trajectory from D to A). This part of
the trajectory resembles the refractory period found in neural systems. For a detailed
discussion see Lehnert (2010, Chap. 2).
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Fig. 4.4 Dynamics of a FitzHugh–Nagumo system in the excitable regime after being sufficiently
perturbed from the stable fixed point A. a Phase space of the FitzHugh–Nagumo system. Solid
green line: trajectory, dashed red lines: nullclines. b Time series of a spike. Solid blue line: activator
u, dashed pink line: inhibitor v. A, B, C, D mark corresponding points in panels (a) and (b). Red
arrows: Schematic depiction of the phase portrait close to the cubic nullcline. Parameters: a = 1.05,
ε = 0.01. Figure reproduced from Schöll et al. (2009) (color figure online)

4.1.5 Type-II Excitability: The Master Stability Function

As done in Sect. 4.1.3 for the SNIPER model, this section discusses the MSF of the
FitzHugh–Nagumo model. The same form of delayed coupling is used. Thus the
network of N nodes is described by

ẋi = f(xi ) + K
N−1∑
j=0

Gi j H(x j (t − τ) − xi (t)), (4.9)

where xi = (ui , vi ), and the local dynamics f(xi ) is given by Eq. (4.8). The coupling
scheme H reads

H =
(

1/ε 0
0 0

)
. (4.10)

Meaning that the delayed u variable of node j is coupled into the u variable of node
i .

Straightforwardly, the MSE is given by Eq. (4.5) with the synchronized dynamics
described by Eq. (4.6), and f given by Eq. (4.8). The Jacobian matrix Df evaluated
at the synchronization manifold xs = (us, vs) reads

Df |xs(t) =
(

(1 − u2
s )/ε −1/ε

1 0

)
. (4.11)

In Lehnert (2010), Lehnert et al. (2011), it was shown that the MSF for all values
of K and τ shows qualitatively the same behavior. In particular, the stable region is
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Fig. 4.5 MSF for the
FitzHugh–Nagumo system
as given by Eq. (3.15) with
Eqs. (3.2) and (4.11).
K = 0.3 and τ = 1. Figure
modified from Lehnert et al.
(2011) (color figure online)
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in very good approximation given by the unit cycle. The only prerequisite is that K
and τ have to be sufficiently large to induce oscillations as a synchronous solution.
Exemplarily, Fig. 4.5 shows the MSF for the FitzHugh–Nagumo model for K = 0.3
and τ = 1.

The period T of the synchronous oscillations is given by T = τ + δ with δ � τ

accounting for a short activation time (Schöll et al. 2009; Dahlem et al. 2009). Thus,
the delay time is of the same order as the period. Though Flunkert et al. (2010)
predicted that the stable region coincides with the unit circle only in the limit of
infinite delay, practically their results often hold in good approximation if the delay
is of the same order of magnitude as the characteristic time scale of the underlying
system. Thus, the exceptional independence of the stable region from the coupling
parameter K and τ in the FitzHugh–Nagumo system might be explainable by the
delay time setting a period which is of the same order of magnitude as the delay.

4.2 Synchronization-Desynchronization Transitions

This section discusses the stability of synchronization in networks with a mix of
inhibitory and excitatory links, in particular, small-world and random networks are
discussed. An introduction to the network model is given in Sect. 4.2.1. The previous
section suggested that—depending on the model and the delay time—two different
classes of MSFs arise when evaluating the synchronization properties of networks:

A For the FitzHugh–Nagumo system, i.e., type-II excitability, and, for large delay,
for the SNIPER model, i.e., type-I excitability, the stable region of the MSF
coincides with the unit circle. The impact on the synchronization properties is
discussed in Sect. 4.2.2.

B A much more complicated situation arises for the SNIPER model for intermediate
to small delay times. Here, the stable region might be a deformed cycle but can
also consist of several disconnected islands. A rigorous study for all values of
delay times and coupling strengths is therefore impossible. However, studying
a few example values already gives valuable insight into the possible scenarios.
This is done in Sect. 4.2.3.

http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_3
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4.2.1 Network Models

The network models that is investigated in the following consist of inhibitory and
excitatory links. From a biological point of view this is debatable as it is known that
a neuron releases, with rare exceptions, the same set of neurotransmitters at all of its
synapses meaning that it either acts excitatorily or inhibitorily (Dale 1935; Eccles
1976) but not both at the same time. Thus, a model with excitatory or inhibitory
nodes instead of links would be more accurate. However, it has been shown that
the results are qualitatively similar if using excitatory or inhibitory links instead of
nodes (Schwarze 2014), though for small delays differences are observable as will
be discussed later.
We construct the small-world network of N nodes as follows:

1. We begin with a regular ring network of bidirectional, excitatory links, where
each node is connected with equal strength to its k nearest neighbors to the left
and to the right. This results in k N excitatory links in the network.

2. For each of those k N excitatory links, we add with probability p a bidirectional,
inhibitory link connecting two randomly chosen nodes.

The construction of the random network of N nodes involves the following steps:

1. A random network of k N bidirectional, excitatory links of equal strength is con-
structed as described in Sect. 2.3.2.

2. As in the case of the small-world network discussed above, a bidirectional,
inhibitory link is added with probability p for every existing excitatory link.
Starting and ending node are chosen randomly.

Note that for both models all links are chosen to be bidirectional. A schematic diagram
of (a) the small-world network, and (b) the random network is shown in Fig. 4.6. Note
that in both model p denotes the average ratio between excitatory and inhibitory links
since the number of excitatory links E is given by k N , and the expectation value 〈I 〉
of inhibitory links by pk N .

(a) (b)

Fig. 4.6 Schematic view of networks consisting of excitatory (dark gray arrows) and inhibitory
links (light blue arrows). a Small-world type: Regular ring structure of excitatory coupling and
additional randomly added long-range inhibitory links. b Random excitatory network with addi-
tional inhibitory links. Parameters: N = 20, k = 2, p = 0.1. Number of excitatory links E = 40,
number of inhibitory links I = 4. Modified from Lehnert et al. (2011) (color figure online)

http://dx.doi.org/10.1007/978-3-319-25115-8_2
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This construction of the networks creates a coupling matrix G (see Sect. 2.1) with
the entries 1 (excitatory links) and −1 (inhibitory links). A normalization follows
this construction to ensure unity row sum (see Sect. 3.1). To this end, the j th row,
j = 0, . . . , N − 1, is divided by the absolute value of its row sum |g j = ∑

i G ji |
unless this sum is zero. Afterwards, we proceed as follows: If g j < 0, we add a
self feedback strength of 2, i.e., G j j = 2. If g j = 0, a self-feedback of strength 1 is
introduced, i.e., G j j = 1. We divide by |g j | and not by g j because we want to avoid
that in the case of a negative row sum all entries of the corresponding row flip their
sign and, thus, excitatory links become inhibitory ones and vice versa.

4.2.2 Type-II Excitability for Arbitrary Delays and Type-I
Excitability for Large Delay Times

The evaluation of the stability of type-II (FitzHugh–Nagumo system) and of type-I
(SNIPER model) excitable systems for large delay times is straightforward since it is
sufficient to check if the eigenvalue spectrum of a given network is contained by the
unit circle. Recall that in theses cases the unit circle coincides with the stable region
of the MSF (see Sect. 4.1). In Lehnert (2010), Lehnert et al. (2011), it was shown
that for excitatory coupling matrices, i.e., all entries are positive or zero, with a unity
row sum the eigenvalues are always inside the unit circle and, thus, synchronization
in these networks will always be stable. In conclusion, inhibition is necessary for a
desynchronization process.

Since inhibition is added in a random manner in the networks discussed here
(see Sect. 4.2.1), it is useful to consider the fraction f of synchronized networks for
each parameter set instead of considering single realizations. Figure 4.7 depicts f (p)

versus the probability p of additional inhibitory links for different coupling ranges k.
Obviously, a steep transition between synchronization and desynchronization takes
place as p approaches a critical value pc. In the following, we define pc as the value
where half of the realizations are desynchronized, i.e., f (pc) = 0.5.

0

0.5

1

0 0.1 0.2 0.3

f

p

k

k=6 k=12 k=18 k=24 k=30

Fig. 4.7 Fraction f (p) of synchronized networks f versus the probability of additional inhibitory
links p for MSFs where the stable region is the unit cycle. N = 100. k varies from 6 to 30. Thin
black curve: Example fit of f (p) according to Eq. (4.12) (pc = 0.20387, ks = 186) for k = 24. 500
realizations for each value of k. Figure modified from Lehnert et al. (2011) (color figure online)

http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_3
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Fig. 4.8 Critical value pc for different network sizes, a in dependence on k/N , b in dependence
on k: small-world networks with N = 60 (blue circles), N = 100 (purple squares), and N = 500
(turquoise triangles). Random networks with N = 60 (red crosses), N = 100 (orange circles), and
N = 500 (yellow squares). c pc versus N for k = 10 for a small-world network (red filled circles)
and a random network (red empty squares); number of inhibitory links 〈Ic〉 versus N for constant k
for a small-world (blue empty circles) and a random (blue filled squares) network. 500 realizations
for each data point. Figure modified from Lehnert et al. (2011) (color figure online)

The critical value pc and the steepness ks of the transition can be fitted with a
sigmoidal function

f (p) = 1/[e−ks (p−pc) + 1]. (4.12)

Figure 4.8a depicts the critical probability pc in dependence on k/N for different net-
work sizes. It can be seen that for small-world networks (blue, purple , and turquoise
symbols), pc follows a linear relation pc(k/N ) = 1.16k/N − 0.07 independently of
the network size N . In contrast, the curves of the random network (yellow, orange,
and red symbols) show a slight curvature and no data collapse for this depiction.
Figure 4.8b is identical to Fig. 4.8a but with k instead of k/N on the x-axis. Here, it
can be seen that the critical probability pc in the random networks is a function of
log k.

A distinctly different behavior of small-world and random networks can be
observed when considering pc in dependence on the network size N as done in
Fig. 4.8c for constant k = 10: Red squares denote the random network, while red
circles stand for the small-world network. For random networks, pc is independent
of N for sufficiently large N , while for small-world networks it approaches zero.
Recall that pc is the mean value of the ratio of inhibitory to excitatory links. In
conclusion, in small-world networks with increasing network size N but same local
structure (constant k) an infinitesimally small ratio of inhibition to excitation is suf-
ficient to desynchronize the network, while in a random network even for very large
networks only a non-vanishing ratio impairs synchronization.

This effect is also reflected by the number of inhibitory links needed to desyn-
chronize the network. The average number of inhibitory links can be calculated as
〈I 〉 = pk N . Figure 4.8c shows the critical 〈Ic〉 = pc N K to desynchronize the net-
work for a small-world (blue circles) and a random (blue squares) network. For
the small-world network, 〈Ic〉 scales as 〈I 〉 = 1.16k2 − 0.07k N for small N and
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approaches zero for large N , while for the random network 〈I 〉 is proportional to N ,
i.e., an increasing number of inhibitory links is needed to achieve desynchronization.
The behavior can be intuitively understood: In a small-world network each inhibitory
link acts as short cut significantly decreasing the shortest path length compared to
the underlying regular ring. Thus, perturbations travel often along the inhibitory link
where they might be reinforced. In contrast, the shortest path length in a random
network is low from the beginning. Thus, the impact of a inhibitory link is much
weaker, as the information coming from this link can be balanced by the information
coming from other short paths consisting of excitatory links.

4.2.3 Type-I Excitability for Small Delay Times

In the previous subsection, I have discussed the impact of inhibitory links on net-
works for cases where the stable region coincides with the unit circle. As pointed out
in Sect. 4.1.3, the situation is much more complicated for the SNIPER model with
small delay time as the stable region of the MSF can take on very different shapes
and might even split into several disconnected islands depending on the choice of
the coupling parameter. Consequently, a study of the transition behavior can only be
done for example values. In Keane et al. (2012), the case K = 0.3 and τ = 6.5 was
investigated because here the stable region has two separated islands (see Fig. 4.3b),
a form allowing for particular interesting synchronization-desynchronization transi-
tions as eigenvalues may wander in and out of the stable region while increasing the
probability p of inhibitory links.

Figure 4.9 shows three different transition scenarios for the small-world network:
In panel (a), (b), and (c) the fraction f of synchronized networks is shown for different
coupling ranges of (a) k = 20, (b) k = 40, and (c) k = 50 is shown. Panels (d), (e),
and (f) show the stable region and eigenvalue spectrum for the scenarios in panels
(a), (b), and (c), respectively. Clearly, much more complicated transitions than the
ones discussed in the previous subsection are possible including scenarios where
multiple transitions between synchronization and desynchronization take place (see
panels (b) and (c)).

For random networks, the situation is different. Here, at most one transition can be
found, similar to the transitions depicted in Fig. 4.7. Furthermore, parameter values
of k and N exist where the network is already desynchronized for p = 0 and no
transition to synchronization takes place with growing p.

This difference between small-world and random networks can be explained by
considering the histograms of the eigenvalue spectra of (a) the small-world and (b)
the random network as done in Fig. 4.10. The histograms are normalized such that
they coincide in the limit of large N with the eigenvalue distribution. Clearly, the
eigenvalue spectrum of the small-world network is characterized by several peaks.
Appropriate choice of parameters allows for shifting these peaks into the stable region
(turquoise shaded). The network parameter, k, N , p, are such that they correspond to
the peak of f seen in Fig. 4.9a (red line there). Thus, almost all eigenvalues lay inside
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online)
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Fig. 4.10 Normalized histograms (depicted in dark blue) of eigenvalue spectra for 1000 realizations
of a a small-world network and b a random network with the same number of nodes, N = 200; the
same number of excitatory links, k = 20; and the same probability of inhibitory links, p = 0.23.
Light turquoise shading: Stable region of the MSF for K = 0.3 and τ = 6.5. Solid green lines in (a):
Position of eigenvalues of a small-world network for p = 0 according to Eq. (2.15). Intermediate
green histogram in (b): histogram of eigenvalue spectra for 1000 realizations of a random network
for p = 0. Dashed pink line in (b): eigenvalue distribution ρ(ν) according to Eq. (4.14). Number
of bins is 1000. Figure reproduced and extended from Keane et al. (2012) (color figure online)

http://dx.doi.org/10.1007/978-3-319-25115-8_2
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the stable region. In contrast, the eigenvalues of the random network form a bulk,
from which only the longitudinal eigenvalue ν = 1 is separated. Increasing p only
enlarges the width of the bulk so that at the critical value pc, the eigenvalues enter the
unstable region and desynchronization takes places. However, no resynchronization
is possible since no peaks exist which could be shifted until they fit the stable regions.

The qualitatively very different eigenspectra of random and small-world network
can be understood if considering the networks as perturbation from the networks
without inhibition, i.e., p = 0. In the case of the small-world network the network
without inhibition is a regular ring network with k nearest neighbors which eigen-
values are given by

ν j = 1

k

k∑
l=1

cos

(
2π jl

N

)
(4.13)

(see also Eq. (2.15)). These eigenvalues are depicted as green, vertical lines in
Fig. 4.10.

As discussed in Sect. 2.3.2 the eigenvalues of an undirected random network are
given by Wigner’s law or semicircle law (Wigner 1958). However, here we have
to take the normalization of the coupling matrix into account. Thus, we have to
multiply the eigenvalue ν in the original formula, see Eq. (2.19), by the average row
sum q(N − 1) to get the correct form of the new distribution. Recall that q is the
probability that an excitatory link exists between two randomly chosen links. Thus in
the limit of large N , q = 2k/(N − 1) holds, since the excitatory part of the random
network consists of 2k links. Furthermore, we have to divide ρ(ν) by the factor√

q(N − 1) to keep the correct normalization of ρ(ν). Then the eigenspectrum is
described by

ρ(ν) =
⎧⎨
⎩

√
4Nq(1−q)−[νq(N−1)]2

2π Nq(1−q)
√

q(N−1)
, if |ν| < 2

√
Nq(q−1)
q(N−1)

,

0, otherwise.
(4.14)

In Fig. 4.10b the eigenvalue spectrum of random network without inhibition is
depicted as a green histogram; the pink line marks semicircle law ρ(ν) as given
by Eq. (4.14). Obviously, the eigenspectra of the small-world and the random net-
works for p > 0 qualitatively resemble the ones for p = 0 but are blurred around
their original position and stretched along the x-axis. For a very detailed and com-
prehensive study of the eigenvalue spectra of small-world networks and random
networks on the network parameters see Schwarze (2014). In particular, Schwarze
studies the influence of inhibition on the eigenspectra.

Note that the results presented in Figs. 4.9 and 4.10 slightly differ from the ones
presented in Keane et al. (2012). This is because Keane et al. used a different normal-
ization procedure: They divided each row by the row sum g j instead of its absolute

http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_2
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value |g j |. Realizations with zero row sum were discarded. For reasons of consis-
tency, I use here the normalization explained in Sect. 4.2.1 which was also used in
Lehnert et al. (2011). Qualitatively the results of both normalization methods agree.

4.3 Conclusion

In this chapter, the stability of synchronization in excitable system has been
studied. According to the underlying bifurcation, two types of excitability can be
distinguished: Type-I excitability is observed close to a saddle-node infinite period
(SNIPER) bifurcation, while type-II excitability is induced by a supercritical Hopf
bifurcation. Here two generic models have been considered: The normal form of the
SNIPER bifurcation for type-I excitability and the FitzHugh–Nagumo system for
type-II excitability. These models have been used as local dynamics in a delayed
coupled network, where the coupling parameter have been chosen such that they
induce oscillations in the synchronous manifold though the uncoupled systems are
excitable.

The stability of synchronization can be evaluated with the help of the master
stability function (MSF). Qualitatively, we have found two different classes of the
MSF: (A) MSFs where the stable region is given by the unit circle, and (B) MSFs
where the stable region has a much more complicated form and might even split into
several disconnected islands.

MSFs of class (A) have been found for the SNIPER model for large delays which
is congruent with the result of Flunkert et al. (2010) who proofed that in the limit
of infinite delay times the stable region of the MSF coincides with the unit circle if
the synchronous dynamics is oscillatory. Surprisingly, the MSF for the FitzHugh–
Nagumo is of the same class, fairly independently of the coupling parameters K and
τ as long as they a large enough to induce oscillations. The most probable explanation
for this behavior is that the delay might always be considered to be “large” because
the delay time sets the oscillation period of the coupled FitzHugh–Nagumo system
(Schöll et al. 2009; Dahlem et al. 2009). Consequently, delay and period are always
of the same order of magnitude and the results of Flunkert et al. might already be
applicable. For small delays, the SNIPER model shows the more complicated MSFs
of class (B).

Based on the MSF, synchronization in small-world and random networks with
inhibition has been investigated. For MSFs of class (A), i.e., the stable region is a unit
circle, one transition from synchronization to desynchronization has been found when
the probability of additional inhibitory links reaches a critical value. The behavior
of small-world and random networks is distinctly different in the limit of large N .
In particular, an infinitesimally small ratio of inhibition is sufficient to destabilize
synchronization in a large small-world network, while in a random network always
a non-vanishing ratio is needed to induce desynchronization. The MSF of class (B)
allows for multiple transitions from synchronization to desynchronization and vice
versa in the small-world network depending on the coupling parameters. In random
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networks, at most one transition can take place for the same MSF. These differences
are explained by the different eigenspectra of the networks.

The here presented network models consist of excitatory and inhibitory links.
Biologically more plausibility could be reached by using excitatory and inhibitory
nodes rather than excitatory and inhibitory links, i.e., by constructing the network
such that the links outgoing from the same node are always of the same kind. This was
studied in Schwarze (2014). Schwarze found that the transitions for MSFs of class
(A) are qualitatively very similar to the network model presented here. However, in
the case that the MSF is of class (B), Schwarze did not observed multiple transitions
but transitions that are similar to the ones observed for class (A) or transitions from
desynchronization to a regime where roughly 20 % of the realizations synchronize.

An interesting question is how generic the results obtained in this chapter are for
the two types of excitability, in particular, as the dynamics of the FitzHugh–Nagumo
system in the excitable regime are not only influenced by the nearby Hopf bifurcation
but in addition a canard explosion is observed (Benoit et al. 1981). Sonnenschein
(2013) investigated synchronization-desynchronization transitions in the Morris–
Lecar model which shows type-I or type-II excitability depending on the parameter
set. For τ in the order of the system’s oscillation, he observed MSFs of class (A)
as anticipated from the results of Flunkert et al. (2010) and the discussion in this
chapter. However, as τ decreases qualitatively very different MSFs can be observed
for the type-I and the type-II regime. These MSFs include situations similar to two
separated islands as shown in Fig. 4.2b but also cases where no stable region exists
along the x axis, and, thus, most network not constructed with the explicit goal to fit
these stable regions will desynchronize.

In conclusion, the synchronization-desynchronization transitions observed for the
MSFs of class (A) seem to be generic for models where the delay time is of the same
order of magnitude as the system’s oscillation. Furthermore, they seem to be robust
towards changes in the construction procedure of the networks. However, as soon
as the delay becomes small no general conclusion is possible but the considered
model, the coupling parameters, and the details of the network construction have to
be taken into consideration. Therefore, the results obtained in Keane et al. (2012) and
discussed in Sect. 4.2.3 can only be seen as exemplary findings showing the variety
of different transitions which might exist.

This variety of possible synchronization-desynchronization transitions is fur-
ther increased when considering distributed delays: Wille et al. (2014) investi-
gated the combined effects of distributed delay and the balance between excita-
tory and inhibitory nodes on networks of coupled Stuart–Landau oscillators (for a
description of the Stuart–Landau oscillator see Sect. 5.2). They found that both the
delay distribution width as well as the inhibition ratio can induce synchronization-
desynchronization transitions. For small delay distribution widths, strong inhibition
causes desynchronization. Furthermore, Wille et al. showed that distributed delay
tends to enhance the possibility of stable synchronization for increasing inhibition
ratios.

http://dx.doi.org/10.1007/978-3-319-25115-8_5
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Chapter 5
Cluster and Group Synchrony:
The Theory

In Chaps. 3 and 4, I discussed the stability of zero-lag synchronization which was
the main focus of research concerning the dynamics on networks for a long time.
Recently, more complex synchronization patterns, including cluster and group syn-
chronization, have received growing interest both in theory (Sorrentino andOtt 2007;
Kestler et al. 2007; Ashwin et al. 2007; Kestler et al. 2008; Kori and Kuramoto
2001; Lücken and Yanchuk 2012; Dahms et al. 2012; Kanter et al. 2011b, a; Gol-
ubitsky and Stewart 2002; Sorrentino 2014; Pecora et al. 2014; Poel et al. 2015)
and in experiments (Illing et al. 2011; Aviad et al. 2012; Blaha et al. 2013; Rosin
et al. 2013; Williams et al. 2012, 2013a, b; Rosin 2015). These scenarios appear in
many biological systems, examples include dynamics of nephrons (Mosekilde et al.
2002), central pattern generation in animal locomotion (Ijspeert 2008), or population
dynamics (Blasius et al. 1999).

We define group and cluster synchronization as follows (Dahms et al. 2012):

Cluster synchronization: In an M-cluster state, the compound system evolves in
M clusters with zero-lag synchrony between the nodes of one cluster and—in the
case of an oscillatory system—with a constant phase lag between the clusters.
The local dynamics of each cluster is given by the same sets of equations.

Group synchronization: Group synchronization refers to the case where each
group potentially exhibits different local dynamics. Thus, group synchronization
can be considered as a generalization of cluster synchronization.

For simplicity, I use in the following the term group synchrony to refer to group and
cluster synchrony if it is not necessary to distinguish between the two.

The aim of this Chapter is to discuss group synchronization in complex networks.
For zero-lag synchronization, the MSF has proven to be a valuable tool to evalu-
ate the stability of the synchronization manifold (cf. Chaps. 3 and 4). Section5.1
extends the MSF for group synchronization: Firstly, it is discussed which network
topologies allow for group synchrony before the generalized MSF is derived. The
eigenvalue spectra of networks capable to exhibit group synchrony as well as the
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MSF for this type of dynamics show a discrete rotational symmetry which is the
subject of Sects. 5.1.3 and 5.1.4. Section5.2 is a recapitulation of the analytic results
on cluster synchrony in coupled Stuart-Landau Oscillators obtained in Choe et al.
(2010). A further extension of the MSF for non-smooth systems including group
synchronization in such systems is given in Sect. 5.3. There, the applicability of
the MSF is demonstrated on the example of adaptive exponential integrate-and-fire
neurons.

5.1 Master Stability Function for Group
and Cluster Synchronization

Sorrentino and Ott (2007) suggested an MSF for group synchronization of two
groups. A generalization to an arbitrary number of groups was developed in Lehnert
(2010), Dahms (2011), Dahms et al. (2012) and is discussed in this Section.

5.1.1 Restrictions on the Topology

In contrast to zero-lag synchronization which is a solution of a dynamical system of
the form (3.4) for all coupling matrices G if the constant row sum conditions holds
(see Sect. 3.1), group synchronization imposes certain requirements on the network
topology. Several approaches have been developed to determine whether a network
topology allows for a group synchrony solution. Kanter et al. (2011a, b) suggested
the Greatest-common-divisor (GCD) criteria. However, this criteria is only applica-
ble to networks consisting of one or several loops. A very comprehensive answer
to the question which networks might exhibit group synchrony is given by Pecora
et al. (2014). Their method is based on groups theory and investigates the symmetries
of the network. The advantage is that it can be applied to any network topology to
calculate the number of groups which can range from 1 (zero-lag synchrony) to N
(a splay state). The disadvantage is that it involves advanced group theoretical meth-
ods and is therefore not easy to handle. Furthermore, it requires the couplingmatrix to
be unweighted, i.e., to consist of 1’s and 0’s only, where a generalization to weighted
matrices might be possible.

Here, we require that each of the M groups couples to only one other group. This
means that the network is a unidirectional ring seen from the level of groups. In this
Chapter, we refer to a network fulfilling this criteria as an M-partite graph. Note
that this definition of an M-partite graph is more strict than the more commonly
used definition which only requires that the nodes of the same group do not couple
(Kivelä et al. 2014). In the case of a bipartite network, both definitions coincide.

http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_3
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A coupling matrix G allowing for synchronization in an M-group state has then the
following block form

G =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 A(0)

A(1) 0 · · · · · · 0
0 A(2) 0 · · · 0

0
. . .

. . .
. . . 0

0 · · · 0 A(M−1) 0

⎞
⎟⎟⎟⎟⎟⎠

, (5.1)

where the Nk × Nk−1 matrixA(k) describes howgroup k − 1 couples to group k. Here
and in the following, all indices referring to the groups are taken modulus M . Nk is
the number of nodes in group k; note that we do not require equally sized groups. In
Eq. (5.1) it is assumed that the nodes are ordered according to their group: The first N0

nodes belong to cluster 0, the following N1 nodes to cluster 1 and so on. For notational
convenience, it is in the following assumed that N0 ≤ N j ( j = 2, . . . , M), which can
always be achieved by an index permutation. Note that—after a renumbering of the
nodes—a coupling matrix of form (5.1) includes the loop networks suggested by
Kanter et al. (2011a, b).

5.1.2 Derivation of the MSF for Group Synchrony

In Dahms (2011), Dahms et al. (2012), we derived an MSF to evaluate the stability
of synchronization in M groups was derived which is discussed in this Subsection.

If the overall coupling matrix is of the form (5.1), the dynamics of the i th node
in the kth group are described by

ẋ(k)
i = f (k)(x(k)

i ) + σ (k)

Nk−1−1∑
j=0

A(k)
i j H(k)

[
x(k−1)

j (t − τ (k)) − x(k)
i (t)

]
, (5.2)

for i = 0, . . . , Nk − 1, k = 0, . . . , M − 1. f (k) is the local dynamics for all nodes
in group k and of dimension dk . Note that group synchrony does not require that
all groups follow the same local dynamics. For example, groups of inhibitory and
excitatory neurons are considered in Sect. 5.3 where each group is governed by
different local dynamics. In contrast, cluster synchrony takes place only in networks
where that the local dynamics are identical for all groups, i.e., f (0), . . . , f (M−1) ≡ f .
H(k) is a dk × dk−1 matrix describing the coupling scheme from group k − 1 to group
k. σ (k) describes the overall strength of the coupling from group k − 1 to group k.
Analogously, τ (k) is the time delay between group k − 1 and group k. Thus, the
coupling described by Eq. (5.2) allows for different coupling strengths and delay
times between the groups.
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Group synchrony requires that the input to each node is equal to one in the group
synchronized case. This is equivalent to a unity-row sum condition for each matrix
A(k), i.e.,

∑
j A(k)

i j = 1 for i = 0, . . . , N − 1 and k = 0, . . . , M − 1. Constant row
sums not equal to one can be rescaled with the respective coupling strengths: Assume
that the matrix A(k) has a row sum equal to a(k) �= 1. If we rescale both, A(k) and σ k ,
asA(k) → A(k)/a(k) and σ (k) → a(k)σ (k), we obtain a unity rowwithout changing the
effective overall coupling strength. Thus, we can assume without loss of generality
that the row sum is one.

Note that in Dahms et al. (2012) a non-diffusive coupling of the form
∑

j A(k)
i j H(k)

x(k−1)
j (t − τ (k)) was used which is, for example, applicable to lasers (Lang and

Kobayashi 1980) or optoelectronic oscillators (Illing et al. 2011). Since the focus
of this thesis are neural systems, we here use diffusive-like coupling term of the form

∑
j

A(k)
i j H(k)[x(k−1)

j (t − τ (k)) − x(k)
i (t)]. (5.3)

Introducing
F(k) = f (k)(x(k)

i ) − σ (k)H(k)x(k)
i , (5.4)

system (5.2) is transformed to

ẋ(k)
i = F(k)(x(k)

i ) + σ (k)

Nk−1−1∑
j=0

A(k)
i j H(k)x(k−1)

j (t − τ (k)). (5.5)

which is equivalent to the system considered in Dahms et al. (2012). Thus, from a
mathematical point of view no difference between the two types of coupling exist.

Substituting x(k)
i = x(k)

j ≡ x(k)
s into Eq. (5.2), for i, j = 0, . . . , Nk − 1 and k =

0, . . . , M − 1, yields the differential equation describing the dynamics in the group
synchronized state

ẋ(k)
s = F(k)(x(k)

s ) + σ (k)H(k)x(k−1)
s (t − τ (k)), (5.6)

which corresponds to a network of k nodes coupled in a unidirectional ring. Note
that even if F(k), H(k), σ (k), and τ (k) are identical for all groups, i.e., independent
of k, the different groups do not necessarily follow the same dynamics but different
initial conditions may yield different dynamics in the group synchrony state.

Figure5.1a is a schematic diagram of two groups each consisting of two nodes
couppled according to Eq. (5.2). The multipartite structure of the network is clearly
visible since no coupling between the nodes of one group exists. Panel (b) shows
the corresping synchronization manifold. In the synchronization manifold, the mul-
tipartite coupling translates to a coupling in a unidirectional ring. In the case of two
groups, the synchronization manifold is a motif of two nodes coupled to each other
but without self-feedback.
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(a) (b)

x(1)0

x(1)s

intergroup coupling

A(0)

A(1)

x(1)1

x(0)1

x(0)0

x(0)s

σ (1) ,τ (1) ,

σ (0) ,τ (0) ,

H(1)

H(0)

Fig. 5.1 a Schematic diagram of two groups visualizing parameters and dynamical variables as in
Eq. (5.2) for multipartite topologies. b The corresponding synchronization manifold according to
Eq. (5.6). Figure modified from Dahms et al. (2012) (color figure online)

Linearizing system (5.5) at the synchronized dynamics given by Eq. (5.6) yields
the variational equation

δẋ(k)
i = DF(k)(x(k)

s )δx(k)
i + σ (k)

Nk−1−1∑
j=0

A(k)
i j H(k)δx(k−1)

j (t − τ (k)), (5.7)

or in block form

δẋ(k) = 1Nk ⊗ DF(k)(x(k)
s )δx(k) + σ (k)A(k) ⊗ H(k)δx(k−1)(t − τ (k)). (5.8)

Here, 1Nk is a unity matrix of dimension Nk .
In the following, we conduct a basis transformation such that Eq. (5.8) decouples

to a form which can be considered as an MSF. The derivation of the MSF discussed
here differs from the one presented in Sorrentino and Ott (2007), Dahms (2011),
Dahms et al. (2012). The aim is to find a derivation which is easier accessible by
using standard linear algebra techniques.

We introduce the following basis transformation for each group:

δx̄(k) = (C(k))−1 ⊗ 1dk δx(k), (5.9)

where C(k) is a time independent Nk × Nk matrix. 1dk is a unity matrix of dimension
dk with dk being the dimension of the nodes in group k.

We choose C(k) such that

A(k)C(k−1) = C(k)D(k), (5.10)

where D(k) is an Nk × Nk−1 matrix with D(k)
i j = νiδi j , νi ∈ C, i, j = 0, . . . , N0 − 1,

and zeros otherwise. We will see that νi can be identified with the non-zero eigen-
values of G.
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Multiplying Eq. (5.8) from the left with (C(k))−1 ⊗ 1dk yields

δ ˙̄x(k) = 1Nk ⊗ DF(k)(x(k)
s )δx̄(k)

+ σ (k)
[
(C(k))−1 ⊗ 1dk

] [
A(k)C(k−1)(C(k−1))−1 ⊗ H(k)

]
δx(k−1)(t − τ (k)).

(5.11)

where we introduced a “one”: C(k−1)(C(k−1))−1 = 1Nk−1 . The first term on the right-
hand side of Eq. (5.11) was rearranged according to the rules for multiplication with
the Kronecker product (see Eq. (B.1) in Appendix B).

Using Eq. (5.10) yields

δ ˙̄x(k) = 1Nk ⊗ DF(k)(x(k)
s )δx̄(k)

+ σ (k)
[
(C(k))−1 ⊗ 1dk

] [
C(k)D(k)(C(k−1))−1 ⊗ H(k)

]
δx(k−1)(t − τ (k)).

(5.12)

Again applying rule (B.1), it follows

δ ˙̄x(k) = 1Nk ⊗ DF(k)(x(k)
s )δx̄(k)

+ σ (k)
[
D(k)(C(k−1))−1] ⊗ [

H(k)1dk−1

]
δx(k−1)(t − τ (k)), (5.13)

making use of C(k)(C(k))−1 = 1Nk and 1dk H(k) = H(k)1dk−1 .
Finally, we derive

δ ˙̄x(k) = 1Nk ⊗ DF(k)(x(k)
s )δx̄(k) + σ (k)D(k) ⊗ H(k)δx̄(k−1)(t − τ (k)), (5.14)

where we used Eq. (B.1) another time.
Thus, we have N0 blocks—each consisting of M coupled equations—of the form

δ ˙̃x(k)
i = DF(k)(x(k)

s )δx̃(k) + νiσ
(k)H(k)δx̃(k−1)

i (t − τ (k)), k = 0, . . . , M − 1.
(5.15)

Furthermore, we obtain n0 = ∑
k |Nk − Nk−1| equations of the form

δ ˙̃x(k)
i = DF(k)(x(k)

s )δx̃(k). (5.16)

In conclusion, Eqs. (5.15) and (5.16) qualify as a master stability equation (MSE)
for group synchrony. Here, the νi are chosen from the set of non-zero eigenvalues of
the block matrix
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G =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 A(0)

A(1) 0 · · · · · · 0
0 A(2) 0 · · · 0

0
. . .

. . .
. . . 0

0 · · · 0 A(M−1) 0

⎞
⎟⎟⎟⎟⎟⎠

, (5.17)

because Eq. (5.10) is equivalent to the eigenvalue problem Gvi = νi vi , i = 0, . . . ,
N0 − 1, where the eigenvector vi is given by

vi =
⎛
⎜⎝

c(0)
i
...

c(M−1)
i

⎞
⎟⎠ , (5.18)

and c(k)
i is the i th column of the matrix C(k). This can be seen by multiplying G with

the N × Nmax matrix C given by

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(0) 0N0,Nmax −N0

C(1) 0N1,Nmax −N1

...
...

C(kmax )

...
...

C(M−1) 0NM−1,Nmax −NM−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.19)

where N is the total number of all nodes in the network, i.e., N = ∑
k Nk , and

Nmax the number of nodes in the largest group, which is here labelled as kmax , i.e.,
Nmax = maxk Nk . 0Nk ,Nmax −Nk is a Nk × (Nmax − Nk) matrix of zeros which makes
up for the matrices C(k) having different numbers of columns. The multiplication
yields

GC =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 A(0)

A(1) 0 · · · · · · 0
0 A(2) 0 · · · 0

w0
. . .

. . .
. . . 0

0 · · · 0 A(M−1) 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(0) 0N0,Nmax −N0

C(1) 0N1,Nmax −N1

.

.

.
.
.
.

C(kmax )

.

.

.
.
.
.

C(M−1) 0NM−1,Nmax −NM−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

A(0)C(M−1) 0N0,Nmax −NM−1

A(1)C(0) 0N1,Nmax −N0

.

.

.
.
.
.

A(M−1)C(M−2) 0N2,Nmax −NM−2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

C(0)D(0) 0N0,Nmax −NM−1

C(1)D(1) 0N1,Nmax −N0

.

.

.
.
.
.

C(M−1)D(M−1) 0NM−1,Nmax −NM−2

⎞
⎟⎟⎟⎠ , (5.20)
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where we used Eq. (5.10) in the last step. Finally, performing the multiplication
C(k)D(k), we obtain

GC = (
ν0v0 . . . νN0vN0 0N ,Nmax −N0

)
, (5.21)

meaning that ν0, . . . , νN0 are the non-trivial eigenvalues of G.
The largest Lyapunov exponent � calculated from Eq. (5.15) as a function of the

parameter ν ∈ C is called the MSF. It determines the stability of group synchroniza-
tion if evaluated at the eigenvalues of the coupling matrix G.

Looking at Eq. (5.15) it seems that we recovered only N0 of the possible
∑

k Nk

eigenvalues. However, in Sects. 5.1.3 and 5.1.4, it will be shown that—due to a
discrete rotational symmetry of the eigenvalue spectrum as well as of the MSF—
these N0 eigenvalues and the eigenvalue 0,which has a degeneracy ofn0, are sufficient
to determine the stability of group synchrony in a network. The perturbations in the
direction of the eigenvalue 0 are described by Eq. (5.16).

5.1.3 Symmetry of the Master Stability Function

In Lehnert (2010), Dahms et al. (2012), we have shown that theMSF is invariant with
respect to the transformation ν → exp(−2π i/M)ν. In Eq. (5.15) this tranformation
yields

δ ˙̃x(k) = DF(k)(x(k)
s )δx̃(k) + νσ (k)H(k)e

−2π i
M δx̃(k−1)(t − τ (k))

⇔ e
2kπ i

M δ ˙̃x(k) = DF(k)(x(k)
s )e

2kπ i
M δx̃(k) + νσ (k)H(k)e

2(k−1)π i
M δx̃(k−1)(t − τ (k)).

Applying the transformation δx̃(k) → exp(−2kπ i/M)δx̃(k) recovers the original
Eq. (5.15) and leaves the Lyapunov spectrum unchanged. Consequently, the MSE is
invariant with respect to rotations ν → exp(−2π i/M)ν meaning that it belongs to
the symmetry group DM , i.e., the dihedral group of order 2M .

As an example Fig. 5.2 shows theMSF for group synchrony for the SNIPERmodel
in the oscillatory regime (for details on the model see Sect. 4.1.2) for M = 1, 2, 3, 4
in panels (a), (b), (c), and (d), respectively, for a delay time τ (k) ≡ τ = 3.5. Clearly,
the discrete rotational invariance shows. Panels (e), (f), (g), and (h) show the to
(a), (b), (c), and (d), respectively, corresponding MSF but for a larger delay time
of τ (k) ≡ τ = 60. In this case, the stable region coincides with the unit circle as
expected for oscillatory systems in the limit of large delay and predicted by Flunkert
et al. (2010).

http://dx.doi.org/10.1007/978-3-319-25115-8_4
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Fig. 5.2 Master stability function (MSF) for group synchrony according to Eq. (5.15) for the
SNIPER model (see Sect. 4.1.2, Eq. (4.4)) in the oscillatory regime for M = 1, 2, 3, 4 in panels (a)
and (e), (b) and (f), (c) and (g), and (d) and (h), respectively. Black circles mark the longitudinal
eigenvalues.Top: τ (k) ≡ τ = 3.4, bottom τ (k) ≡ τ = 60.Other parameters: σ (k) ≡ σ = 0.1, b(k) ≡
b = 1.05, where b(k) is the bifurcation parameter of the SNIPER model for the kth group (color
figure online)

5.1.4 Spectrum of the Coupling Matrix

Not only the MSF but also the spectrum of the coupling matrix are characterized
by this discrete rotational symmetry. In the following, we investigate the eigenvalue
spectrum of the coupling matrix

G =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · · · · 0 A(0)

A(1) 0 · · · · · · 0
0 A(2) 0 · · · 0

0
. . .

. . .
. . . 0

0 · · · 0 A(M−1) 0

⎞
⎟⎟⎟⎟⎟⎠

. (5.22)

In the case that all A(k) have maximum rank min(Nk, Nk−1), there are exactly

n0,max =
∑

k

|Nk − Nk−1| (5.23)

eigenvalues of G equal to zero. In general, the exact number of zeros is given by

n0 =
∑

k

(
max(Nk, Nk−1) − rankA(k)

)
, (5.24)

http://dx.doi.org/10.1007/978-3-319-25115-8_4
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which may be larger than n0,max due to the particular structure of the matrices A(k),
which may have non-maximum rank themselves.

To derive the spectrum of GM , we consider the matrix GM , which is of block
diagonal structure

GM =

⎛
⎜⎜⎜⎜⎜⎝

A(0)A(M)A(M−1) · · · A(1) 0 · · · 0

0 A(1)A(0)A(M)A(M−1) · · · A(2)
. . . 0

0
. . .

. . . 0
0 · · · 0 A(M)A(M−1) · · · A(0)

⎞
⎟⎟⎟⎟⎟⎠

.

(5.25)

Each block on the diagonal is a cyclic permutation of the first block.
Recall that we assumed that N0 ≤ Nk (k = 1, . . . , M − 1), i.e., the zeroth group

consists of the least nodes. Furthermore, we assume that each A(k) has maxi-
mum rank min(Nk, Nk−1). The latter assumption simplifies the argument regard-
ing the zero eigenvalues but the final result is valid for arbitrary ranks of the
block matrices. Given the above assumptions, of the blocks in GM , the first block
(GM)00 = A(0)A(M)A(M−1) · · · A(1) has lowest rank, since it is an N0 × N0 matrix.

The non-zero eigenvalues of a matrix product are invariant against cyclic permu-
tations of the factors. Their number (including degeneracy) equals the rank of the
product with lowest rank, i.e., (GM)00 in our case. This can be easily seen by the
following argument: Assume that λ �= 0 is an eigenvalue of the first block to the
eigenvector v, i.e.,

A(0)A(M)A(M−1) · · · A(2)A(1)v = λv. (5.26)

Multiplying A(1) from the left yields

A(1)A(0)A(M)A(M−1) · · · A(2)(A(1)v) = λ(A(1)v). (5.27)

meaning that λ is also an eigenvalue of the second block to the eigenvector A(1)v.
A(1)v cannot be equal to the zero vector because this would imply, according to
Eq. (5.26), λ = 0 which contradicts the assumption λ �= 0. In the same way it can
successively be shown that λ is an eigenvalue of all non-zero blocks of GM . As a
consequence, the non-zero eigenvalues of GM are given by the non-zero eigenvalues
{λ0, . . . , λN0−1} of (GM)00. As there are M blocks yielding exactly these eigenvalues,
each of them is M-fold degenerated. In particular, since the row sum of GM is unity,
there is an M-fold unity eigenvalue.

The non-zero eigenvalues of G are then given by the M-th roots of the non-zero
eigenvalues of GM , and the spectrum of G reads

{ν j } j=0,...,N−1 = {0, . . . , 0︸ ︷︷ ︸
n0

} ∪
M−1⋃
k=0

{ M
√|λ1|e[arg(λ1)+2πk]i/M , . . . (5.28)

M
√|λM−1]|e[arg(λM )+2πk]i/M},
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where N = ∑
k Nk , i.e., N is the total number of nodes in the network. In partic-

ular, the eigenvalue λ = 1 of GM corresponds to the M longitudinal eigenvalues
νk = exp(2π ik/M) of G, which are related to directions longitudinal to the group
synchronization manifold. Their existence can already be seen solely by looking at
G itself. Due to the unity-row-sum condition (see Sect. 3.1) M eigenvectors

vk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...

1

⎫⎪⎬
⎪⎭

N0

exp(−2π ik/M)
...

exp(−2π ik/M)

⎫⎪⎬
⎪⎭

N1

...

exp(−2π(M − 1)ik/M)
...

exp(−2π(M − 1)ik/M)

⎫⎪⎬
⎪⎭

NM−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.29)

exist which are the eigenvectors to the longitudinal eigenvalue νk = exp(2π ik/M).
These eigenvalues do not depend on the particular choice the blocks A(k).

In summary, both the MSF and the spectrum of G are invariant with respect to
rotations ν → exp(2π i/M)ν. Thus, the evaluation of the MSF can be restricted to
the eigenvalues

{ M
√|λ1| exp[i arg(λ1)/M], . . . , M

√|λM | exp[i arg(λM)/M], 0},

which all lie inside the angular sector arg(ν) ∈ [0, 2π/M).

5.1.5 Beyond Multipartite Topologies

So far we considered multipartite topologies meaning that the nodes of one group
couple only to nodes of one other group. This corresponds to a unidirectional topol-
ogy on the level of groups and, therefore, decouples with the help of the MSF
to a network motif of M nodes coupled in a unidirectional ring. The limitation
of multipartite networks can be overcome with the help of commuting matrices
(Dahms et al. 2012). In the following, we derive an MSF for group synchrony with
two commuting coupling matrices. The restriction to two coupling matrices is for
notational convenience, the generalization to multiple matrices is straightforward if
those matrices commute.

http://dx.doi.org/10.1007/978-3-319-25115-8_3
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Introducing the second couplingmatrix Eq. (5.2) is generalized, and the dynamics
of M groups is given by

ẋ(k)
i = F(k)[x(k)

i (t)] + σ
(k)
A

Nk−1−1∑
j=0

A(k)
i j H(k)x(k−1)

j (t − τ
(k)
A )

+ σ
(k)
B

Nnk −1∑
j=0

B(k)
i j H(k)x(nk )

j (t − τ
(k)
B ), (5.30)

where the matrix A(k) describes the coupling from the (k − 1)th to the kth group
as before and B(k) describes the coupling from the nk th to the kth group. That is,
the kth group now receives input from two groups, k − 1 and nk . The row sums
of all matrices A(k) and B(k) must be unity. Any constant non-zero row sum can
be rescaled by means of the coupling strengths. For simplicity, it is assumed that
coupling schemes are identical for both coupling terms.

From Eq. (5.30) with the condition x(k)
0 = x(k)

1 = . . . = x(k)
Nk−1 ≡ x(k)

s , k = 0,
. . . , M − 1, the synchronization manifold is obtained as

ẋ(k)
s = F(k)[x(k)

s (t)] + σ
(k)
A H(k)x(k−1)

s (t − τ
(k)
A ) + σ

(k)
B H(k)x(nk )

s (t − τ
(k)
B ) (5.31)

for k = 0, . . . , M − 1. Note that the sum of σ
(k)
A and σ

(k)
B must yield the overall

coupling strength σ (k) used before in order to get the same dynamical regime in the
synchronization manifold as in the case of one coupling matrix, see Eq. (5.6), i.e.,
σ

(k)
A + σ

(k)
B = σ (k).

Figure5.3a shows schematically the coupling parameters and matrices that are
present in Eq. (5.30). In the case of two groups shown here, B(0) and B(1) represent

(b)

intergroup coupling

A(0)

A(1)
x(0)s

(a)

x(1)s

intragroup coupling
B(0)

x(1)0

σ (1)
B ,τ (1)

B , H(1)

B(1)

σ (0)
B ,τ (0)

B , H(0)

σ (1)
B ,τ (1)

B , H(1)

σ (1)
A ,τ (1)

A , H(1)

σ (0)
B ,τ (0)

B , H(0)

x(0)0
x(1)1

x(0)1

σ (0)
B ,τ (0)

B , H(0)

σ (0)
A

H(0)

τ (0)
A

σ (1)
A ,τ (1)

A , H(1)

Fig. 5.3 a Schematic diagram of two groups visualizing parameters and dynamical variables as in
Eq. (5.30) for multiple commuting coupling matrices. Solid arrows denote coupling between the
groups; dashed arrows correspond to coupling of nodes in the same group. b The corresponding
synchronization manifold according to Eq. (5.31). Figure modified from Dahms et al. (2012).
Copyright (2012) by The American Physical Society (APS) (color figure online)
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the coupling within the groups, depicted by dashed arrows. Panel (b) is a schematic
diagram of the synchronization manifold given by Eq. (5.31). In the synchronization
manifold, the coupling within a group translates into a self-feedback loop, which is
depicted by dashed arrows.

Let GA be the matrix containing the blocks A(k) at positions (k, k − 1) and GB
the matrix containing the blocks B(k) at positions (k, nk) where n0, . . . , nM−1 is an
arbitrary permutation of the integers 0, . . . , M − 1. If GA and GB commute, i.e.,
[GA, GB] = 0, they have a common set of eigenvectors and, thus, can be block
diagonalized simultaneously, i.e., by the same transformation. By this block diago-
nalization an MSE is obtained:

δ ˙̄x(k) = DF(k)(x(k)
s )δx̄(k)(t) + σ

(k)
A νAH(k)δx̄(k−1)(t − τ

(k)
A ) + σ

(k)
B νBH(k)δx̄(nk )(t − τ

(k)
B )

(5.32)

for k = 0, . . . , M − 1, where νA and νB are chosen from the eigenvalue spectrum
of the matrices GA and GB , respectively. Thus, the MSF is now calculated in the
four-dimensional space spanned by Re νA, Im νA, Re νB , and Im νB . νA and νB are
the eigenvalues to the same, common eigenvector of GA and GB . Thus, in order to
evaluate the stability of synchrony in a given network, the eigenvalues of thematrices
GA and GB representing this network have to be evaluated in pairs corresponding to
one of the common eigenvectors of GA and GB .

Example: Neural Networks

As discussed before, the MSF approach has successfully been applied to study
synchronization in neural networks independently of a specific network topology
(Dhamala et al. 2004; Jirsa 2008; Lehnert et al. 2011). The MSF for group syn-
chrony and, in particular, the framework of commuting matrices can be used to
describe more complex synchronization patterns in neural networks like the coex-
istence of oscillations with different frequencies (Bazhenov and Timofeev 2006).
In addition, it allows for taking into account biological details, which have to be
neglected when using the standard MSF. For example, the brain is organized in dif-
ferent brain areas leading to different delay times between neurons of different areas
and neuronswithin the same area, which can bemodeled by two commuting coupling
matrices. Furthermore, different types of neurons exist, corresponding to different
local dynamics which is, as discussed above, easily treated with the MSF for group
synchrony.

Here we discuss the stability of group synchrony in a network of FitzHugh-
Nagumo systems (for details on themodel seeSect. 4.1.4). For simplicity,we consider
two groups and assume that the local dynamics of all nodes are identical. However,
we choose different delay times for the inter- and the intra- group coupling to mimic
two groups from different brain areas. The inter-group coupling is given by

GA =
(

0 A(0)

A(1) 0

)
, (5.33)

http://dx.doi.org/10.1007/978-3-319-25115-8_4
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where the matrices A(1) and A(2) describe the coupling from the second to the first
group and vice versa, respectively; see also Sorrentino and Ott (2007). The second
coupling matrix reads

GB =
(

B(0) 0
0 B(1)

)
, (5.34)

i.e., n0 = 0 and n1 = 1 in Eq. (5.30), meaning that B(k) accounts for the coupling
between the nodes inside the kth group.

Using the forms (5.33) and (5.34), the commutation relation [GA, GB] = 0 is
equivalent to {

A(0)B(1) = B(0)A(0)

A(1)B(0) = B(0)A(1); (5.35)

see also Dahms (2011).
These conditions are fulfilled for certain classes of matrices only.
The local dynamics of the i th node in the kth cluster are given by

F(x(k)
i ) =

(
1
ε
(u(k)

i − 1
3u(k)

i

3 − v(k)
i )

u(k)
i + a

)
+ (σ

(k)
A + σ

(k)
B )Hx(k)

i , (5.36)

with x(k)
i = (u(k)

i , v(k)
i ) and k = 0, 1, cf. Eq. (4.8). Recall that u and v denote the acti-

vator and inhibitor variables, respectively. The parameter a determines the threshold
of excitability. As in Chap. 4, we will consider the FitzHugh-Nagumo model in the
excitable regime (a = 1.3) and the time-scale parameter ε is chosen as ε = 0.01.
The synchronized dynamics and the MSE are then given by Eqs. (5.31) and (5.32),
respectively. The coupling scheme is given by

H(0) = H(1) ≡ H =
(
1/ε 0
0 0

)
. (5.37)

The synchronized dynamics given by Eq. (5.31) is equivalent to a system of two cou-
pled nodes with self-feedback. In Schöll et al. (2009), Panchuk et al. (2013) it was
shown that depending on the delay times, the coupling strength, and the strength of
the self-feedback different dynamical scenarios, i.e., in-phase synchronization, anti-
phase synchronization, or bursting can arise. Figure5.4 shows the MSF in panels
(a)–(c) for in-phase synchronization, anti-phase synchronization and for synchro-
nization in two bursting groups, respectively. The right hand panels of Fig. 5.4 depict
the corresponding time series: In panels (d), (f), and (h) for the activator and in pan-
els (e), (g), and (i) for the inhibitor for in-phase, anti-phase, and bursting dynamics,
respectively. Obviously, the different synchronization scenarios yield very differ-
ent MSFs. Thus, some topologies might show stable synchronization for one of the
patterns but not for the others.

http://dx.doi.org/10.1007/978-3-319-25115-8_4
http://dx.doi.org/10.1007/978-3-319-25115-8_4
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Fig. 5.4 a–c Master stability function (MSF) for networks of FitzHugh-Nagumo oscillators gov-
erned by Eq. (5.36) in the (Re νA,Re νB) plane for Im νA = Im νB = 0 and different delay times.
The black dots denote the location of the eigenvalue pairs for the example topology (5.38). d–i Time
series of the dynamics in the first (dashed red) and second (solid blue) group. Parameters (a), (d),
(e) zero-lag synchronization (τ (k)

B = 3), (b), (f), (g): anti-phase synchronization (τ (k)
B = 2), (c), (h),

(i): synchronized bursting (τ (k)
B = 3.2). Other parameters σ

(k)
A = σ

(k)
B = 0.5, τ (k)

A = 3, ε = 0.01,
a = 1.3 (groups k = 0, 1). Figure modified from (Dahms et al. 2012). Copyright (2012) by The
American Physical Society (APS) (color figure online)
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However, for all scenarios the stable region contains the unity square, i.e.,
(Re νA,Re νB) ∈ [−1, 1] × [−1, 1]. With Gershgorin’s circle theorem (Gerschgorin
1931; Earl and Strogatz 2003) it can easily be shown that the eigenvalues of sym-
metric matrices with positive entries and unity-row sum are always contained in the
interval [−1, 1]. Recall that in general (in the sense of not necessarily symmetric
matrices) the eigenvalue of matrices with positive entries and unity-row sum are
contained in the unit circle in the (Re ν, Im ν)-plane (see Sect. 4.1.2). In conse-
quence, synchronization is stable for all three dynamics presented here if GA and
GB have only positive entries, i.e., if the coupling is excitatory. Thus, only the intro-
duction of inhibitory links can lead to desynchronization as it was already discussed
in Sect. 4.2.2 where the case σ

(k)
A = σ

(k)
B = σ and τ

(k)
A = τ

(k)
B = τ was considered;

see also Lehnert et al. (2011).
In the following, we consider a network of two groups with inhibitory links which

will exhibit stable synchronization only in one of the synchronization patterns dis-
cussed above but not in the other ones. We assume that both groups are of equal size:
N0 = N1 ≡ N̄ = 100. The nodes inside a group are assigned to be all-to-all coupled
including self-coupling, i.e.,A(0) = A(1) ≡ Awith Ai j = 1/N̄ , i, j = 0, . . . , N̄ − 1.
For the links between the groups, we choose B(0) = B(1) ≡ B where B is an undi-
rected N̄ × N̄ random matrix with both excitatory (positive entries) and inhibitory
links (negative entries). Then, the coupling matrices read

GA =
(
0 A
A 0

)
, GB =

(
B 0
0 B

)
. (5.38)

In this case, the commuting condition given by (5.35) simplifies to

AB = BA. (5.39)

The matrix B is constructed to have a fixed node degree with 12 excitatory and 9
inhibitory links for each node. Then, A and B and, thus, GA and GB commute. The
black dots in Fig. 5.4 denote the corresponding eigenvalue pairs. In panels (a) and
(b) some eigenvalues are located outside the stable region, while in panel (c) they
are all inside, which means that the zero-lag and anti-phase synchronized solutions
will be unstable in such a network, while synchronization in the bursting state will
be stable.

Symmetry of the MSF for Commuting Coupling Matrices

Asdiscussed inSect. 5.1.3 theMSFof group synchrony is invariant to transformations
of the form ν → exp(2π i/M)ν if only one coupling matrix is used. In the case of
two commuting matrices and an MSE given by Eq. (5.32), this invariance does not
show in general but only in the case of two groups with coupling matrices GA and
GB such that the non-empty blocks are on different positions, meaning that GA is

http://dx.doi.org/10.1007/978-3-319-25115-8_4
http://dx.doi.org/10.1007/978-3-319-25115-8_4
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block antidiagonal matrix, while GB is a block diagonal matrix, as it for example the
case in Eq. (5.38). In this case the invariance is modified to

(νA, νB) → (−νA, νB). (5.40)

This can easily be seen by applying transformation (5.40) to Eq. (5.32) which yields

δ ˙̄x(k) = DF(k)(x(k)
s )δx̄(k)(t) − σ

(k)
A νAH(k)δx̄(k−1)(t − τ

(k)
A ) + σ

(k)
B νBH(k)δx̄(nk )(t − τ

(k)
B ).

(5.41)

If we now multiply this equation by exp(−kπ i) and transform the perturbations
according to δx̃(k) → exp(−kπ i)δx̃(k) we recover the original Eq. (5.43) and, thus,
confirm its invariance with respect to transformation (5.40).

In Fig. 5.4b and c symmetry (5.40) shows clearly. However, in panel (a) the
symmetry appears to be broken. This is because in panel (a) both groups synchro-
nize to x(0)

s = x(1)
s and, thus, strictly speaking not group but zero-lag synchrony is

observed meaning that a transformation of the form δx̃(k) → exp(−kπ i)δx̃(k), i.e.,
δx̃(0) → δx̃(0) and δx̃(1) → δx̃(1), is not valid, since δx̃(0) = δx̃(1). Instead, we find
for the case of zero-lag synchrony an invariance of the form

(νA, νB) → (νA + 
ν, νB − 
ν), (5.42)

with 
ν ∈ C meaning that the Lyapunov exponent � depends only on the sum
νA + νB (see Fig. 5.4a). This follows directly from Eq. (5.32) by substituting
δx̃(k) ≡ δx̃,H(k) ≡ H, σ (k)

A = σ
(k)
B ≡ σ and τ

(k)
A = τ

(k)
B ≡ τ , k = 0, 1, which reduces

Eq. (5.32) to

δ ˙̄x = DF(xs)δx̄(t) + σ(νA + νB)Hδx̄(t − τ), (5.43)

which only depends on the sum νA + νB but not on the individual parameters νA

and νB .

5.2 The Stuart-Landau Oscillator: An Analytically
Tractable Example

In Sect. 5.2, the MSF for group and cluster synchronization has been derived. In
general, theMSE, given byEq. (5.15), has to be solved numerically since the Jacobian
DF(xs) depends on the synchronized state xs and is, thus, in the majority of the
cases time dependent. However, if the Jacobian is time-independent, as it is the case
for Stuart-Landau oscillator, an analytic treatment is possible (Choe et al. 2010;
Dahms 2011; Choe et al. 2011). As this stability analysis is the basis of the further
investigations on the dynamics of coupled Stuart-Landau Oscillators (see Sect. 6.2
and Chaps. 9 and 10), I will give here a short recapitulation on the results obtained
in Choe et al. (2010), Dahms (2011), Choe et al. (2011).

http://dx.doi.org/10.1007/978-3-319-25115-8_6
http://dx.doi.org/10.1007/978-3-319-25115-8_9
http://dx.doi.org/10.1007/978-3-319-25115-8_10
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The dynamics of the Stuart-Landau oscillator is given by

ż = [
λ + iω − (1 + iγ )|z|2] z, (5.44)

with the complex variable z ∈ C. It arises in a center manifold expansion close to a
Hopf bifurcation with λ as the bifurcation parameter. For λ < 0, the system exhibits a
stable focus. At the bifurcation point λ = 0, the focus loses stability, and a stable limit
cycle with radius

√
λ is born. For a bifurcation diagram see Fig. 5.5. The parameters

ω and γ denote the intrinsic rotation frequency while approaching the fixed point at
the origin and the frequency detuning for finite oscillation amplitudes, respectively.
In the following, I will consider γ = 0, in which case the frequency of the focus or
the limit cycle, respectively, is given by ω.

Consider now a system of N delay-coupled Stuart-Landau oscillators z j ,
j = 0, . . . , N − 1:

ż j = [λ + iω − |z j |2]z j + σ

N−1∑
n=0

G jn(t)[zn,τ − z j (t)], (5.45)

where σ = K eiβ is the complex, overall coupling strength, and τ is the delay time.
In the following, I denote delayed variables by an index τ , e.g., zn,τ ≡ zn(t − τ).
The real-valued coupling matrix G = {G jn(t)} j,n=0,...,N−1 determines the topology
of the network.

Equation (5.45) can be rewritten in amplitude and phase variables with r j = |z j |
and ϕ j = arg(z j ):

ṙ j (t) = [
λ − r2j

]
r j + K

N−1∑
n=0

G jn
{
rn,τ cos

[
β + ϕn,τ − ϕ j

] − r j cosβ
}
,

ϕ̇ j (t) = ω + K
N−1∑
n=0

G jn

{
rn,τ

r j
sin

[
β + ϕn,τ − ϕ j

] − sin β

}
. (5.46)

Fig. 5.5 Supercritical Hopf
bifurcation. Radius of
oscillations versus the
bifurcation parameter λ.
Solid and dashed lines mark
stable and unstable states,
respectively (color figure
online)
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In a cluster state, r j and ϕ j follow

r j = r0,m,

ϕ j = �mt + 2πm

N
j, (5.47)

with constant r0,m and �m . m = 0 correspond to zero-lag synchronization, i.e.,
one cluster arises. For m > 0, the number of clusters M can be calculated as
M = lcm(m, N )/m, where lcm stands for the least commonmultiple. Thus, depend-
ing on N and M , several states might exist which are characterized by the same
number of clusters. In the following I will refer to all of these different states by
the collective term M-cluster state if it is not necessary to distinguish between the
different m-states.

Figure5.6 shows a schematic view of all cluster states described by Eq. (5.47)
in a unidirectional ring configuration of four nodes. In panel (a), the nodes are in
zero-lag synchronization. Panels (b) and (d) show two different splay states, i.e.,
M = N = 4, where the phase difference between subsequent nodes in panel (b) is
π/2, i.e., m = 1, and in panel (d) 3π/2, i.e., m = 3. Thus, the latter case can be
considered as a reversed splay state, where the ordering of the nodes is given by their
position in the unidirectional ring. Panel (b) depicts an anti-synchronized state, i.e.,
a 2-cluster state.

Substituting Eqs. (5.47) into (5.46) yields a transcendental equation for the com-
mon radius r0,m and the common frequency �m in an m-state:

r20,m = λ − K cosβ + K
N−1∑
n=0

G jn cos[β − �mτ + 2πm(n − j)/N ],

�m = ω − K sin β + K
N−1∑
n=0

G jn sin[β − �mτ + 2πm(n − j)/N ]. (5.48)
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Fig. 5.6 Schematic view of a zero-lag synchronization (m = 0, M = 1), b the splay state
(m = 1, M = 4), c anti-synchronization (m = 2, M = 2), and d the reversed splay state (m = 3,
M = 4). Each cluster consists of the same number of nodes. For convenience, the common radii
of the different states are depicted as equal; however, according to Eq. (5.48) the common radius
depends on m and thus on the state (color figure online)
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Note that Eq. (5.48) depends on j such that a solution with a common amplitude
and frequency for all j , j = 0, . . . , N − 1, will only be possible under restric-
tions regarding the topology G. Topologies for which such a solution can be found
include circulant matrices, i.e., matrices with the property A j,( j+i) mod N = A0i ,
j, i = 0, . . . , N − 1; see Sect. 2.3.1. In the remaining part of this recapitulation,
the simplest case of a circulant matrix, the unidirectional ring, is investigated, i.e.,
Gi, j = δi+1, j , i, j = 0, . . . , N − 1; see Sect. 2.3.1.

Choe et al. showed that the Floquet exponent � transversal to the synchronous
manifold can be obtained from the transcendental equation

0 = det [J0 − �I2 + K Ql(�)Rm] , (5.49)

where Ql(�) = −1 + e−�τ+2ilπ/N ,
J0 is the Jacobian of the local dynamics given by

J0 =
(−2r20,m 0

0 0

)
, (5.50)

and the matrix Rm reads

Rm =
(
cos�m − sin�m

sin�m cos�m

)
, (5.51)

with the abbreviation �m = β − �mτ + 2πm/N .
Note that the Floquet exponent � is a complex variable in contrast to the real-

valued Lyapunov exponent used in Sect. 5.1 and Chap.4. For the Floquet exponent,
stability is characterized by its real part. Equation (5.49) has to be evaluated for
l = 1, . . . , N − 1. For τ > 0 an infinite number of solutions for the Floquet expo-
nent � arises. From these solutions, the Floquet exponent with the largest real part
determines the stability; if this real part is positive the synchronization is unstable,
while its is stable if all Floquet exponents have negative real parts. l = 0 in Eq. (5.49)
corresponds to the longitudinal eigenvalue; see Sect. 3.2.3.

5.2.1 Phase of the Complex Coupling Strength

Choe et al. (2010) identified the phase β of the complex coupling strength σ =
K exp(iβ) as a crucial parameter in the control of cluster synchronization. They
showed that for

βm ≡ �mτ − 2mπ/N + 2lπ, l = 0,±1,±2, . . . , (5.52)

http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_4
http://dx.doi.org/10.1007/978-3-319-25115-8_3
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the dominant Floquet exponent is given by the transcendental equation

� = K (−1 + e−�τ+2ilπ/N ). (5.53)

Equation (5.53) has only solutions with negative real parts for all values of τ, K > 0.
Consequently, the choice β = βm ensures stability and existence of the m-state for
the whole (K , τ )-plane. However, other stable cluster states may coexist in parts of
the (K , τ )-plane as will be discussed in Sect. 9.4.

5.3 Non-smooth Systems

In Sect. 5.1, I introduced theMSF for cluster and group synchrony in smooth systems.
The MSF for zero-lag as well as for group synchronization can be generalized to
non-smooth systems as we have shown in Ladenbauer et al. (2013). Non-smooth
systems are characterized by a discontinuity in at least of of the variables. They arise
in various applications (Bernardo et al. 2008). Examples include electronic circuits
(di Bernardo et al. 1998; Banarjee and Verghese 2001), hybrid control systems (Ye
et al. 1998; Cassandras et al. 2001), and biological networks (Battogtokh et al. 2006;
Aihara and Suzuki 2010; Izhikevich 2007). In particular, non-smooth systems are
frequently used in neurocscience where neuron models are often of integrate-and-
fire type and synaptic couplings are commonly modeled by non-smooth functions.
In integrate-and-fire models the discontinuity arises when the voltage is set back to
its resting potential after reaching a threshold. This type of models is often employed
in large-scale computational studies of network activity (Izhikevich and Edelman
2008; Vogels and Abbott 2009; Litwin-Kumar and Doiron 2012; Destexhe 2009;
Brunel 2000; Gigante et al. 2007), and forms the hardware elements of neuromorphic
systems designed for spike-based, brain-style computations (Indiveri et al. 2006; Jo
et al. 2010). In this Section, the MSF for non-smooths systems is introduced and
its potential is demonstrated by studying synchrony and group states for recurrent
networks of adaptive integrate-and-fire models. The section is based on Ladenbauer
et al. (2013).

5.3.1 Master Stability Function for Non-smooth Systems

In this Subsection, I introduce the MSF for non-smooth systems. Before considering
the case of group synchrony, the more simple case of zero-lag synchronization is
discussed.

Zero-Lag Synchrony

As discussed above non-smooth systems are characterized by a discontinuity. To
describe this discontinuity mathematically, we define a scalar-valued differentiable

http://dx.doi.org/10.1007/978-3-319-25115-8_9
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function ϕ(xi ) where xi is the state of the i th node. In the following, we assume that
ϕ(xi ) = 0 indicates the occurrence of a discontinuity. Then, a delay-coupled network
of N non-smooth systems of dimension d can be described by two sets of equations,
one for the dynamics of the network elements between the discontinuities,

ẋi = f(xi ) + σ

N−1∑
j=0

Ai j Hx j,τ , if ϕ(xi ) �= 0, (5.54)

and one for the jumps,
x+

i = g(xi ), if ϕ(xi ) = 0, (5.55)

i = 0, . . . , N − 1, xi ∈ R
d and xi,τ ≡ xi (t − τ), where τ is the delay time. We

assume that xi (t) is piecewise continuous and that f , g are differentiable vector
functions. f represents the local dynamics, while g defines the system dynamics
when reaching the threshold. The d × d matrix H is the coupling scheme describing
how node j couples to node i . ϕ is a scalar-valued, differentiable function, where
ϕ(xi ) = 0 indicates the occurrence of a discontinuity, and x+

i (t) ≡ lims↘t xi (s)
denotes a right-sided limit. G denotes the coupling matrix and σ the overall coupling
strength.

As in the derivation of the standard MSF, we assume that G obeys the unity-row-
sum condition, i.e.,

∑
j Gi j = 1 for all i = 0, . . . , N − 1 (see Sect. 3.1). Then, a

zero-lag synchronous state exists and is given by

ẋs = f(xs) + σHxs,τ ≡ F(xs, xs,τ ). (5.56)

We denote the set of times at which xs jumps by {ts}. The abbreviation F(xs, xs,τ ) is
introduced for convenience throughout this section.

From (5.54) a variational equation can be derived

˙δX = [IN ⊗ Df(xs)] δX + σ [G ⊗ H] δXτ , (5.57)

where δX = (x0 − xs, . . . , xN−1 − xs) denotes the deviation from the synchroniza-
tion manifold. ⊗ is the Kronecker product. Equation (5.57) describes the time evo-
lution of the variation if there are no jumps in the synchronous manifold. However,
if a discontinuity in xs or xs,τ occurs an appropriate linearization condition has to be
found. Using first order approximations of the times at which ϕ(xs + δxi ) = 0 and
using Taylor expansions of f(xi ) + ∑N−1

j=0 Gi j Hx j,τ around xs and x+
s , at both ts and

ts + τ , we obtain

δX+ = [IN ⊗ T] δX, if t ∈ {ts},
δX+ = δX + [G ⊗ U] δXτ , if t − τ ∈ {ts}. (5.58)

http://dx.doi.org/10.1007/978-3-319-25115-8_3
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The matrices T and U are given by:

T ≡ Dg(xs) +
(
F(x+

s , xs,τ ) − Dg(xs)F(xs, xs,τ )
)

Dϕ(xs)

Dϕ(xs)F(xs, xs,τ )
,

U ≡
(
F(xs, x+

s,τ ) − F(xs, xs,τ )
)

Dϕ(xs,τ )

Dϕ(xs,τ )F(xs,τ , xs,2τ )
. (5.59)

For the detail of the derivation see the supplements of Ladenbauer et al. (2013).
Block-diagonalization of Eqs. (5.57) and (5.58) then leads to the MSE (Laden-

bauer et al. 2013)

δ̇x = Df(xs)δx + σνHxs,τ δxτ , if t, t − τ /∈ {ts},
δx+ = Tδx, if t ∈ {ts},
δx+ = δx + σνUδxτ , if t − τ ∈ {ts}, (5.60)

where δx represents the d-dimensional perturbation from the synchronization man-
ifold in the eigensystem of G. ν can be considered as a generalized eigenvalue of G.
As in the case of theMSF for zero-lag synchrony (see Sect. 3.2) and the one for group
synchrony (see Sect. 5.1), we hereby separated the perturbations in the longitudinal
direction (ν = 1 or ν = 0 in the case that the row sum of G is one or zero, respec-
tively) from those in the transverse directions (ν �= 1 or ν �= 0, respectively). From
Eq. (5.60) the largest Lyapunov exponent �(ν) can be calculated as a function of ν.

Cluster and Group Synchrony

As in the case of smooth systems the MSE as given by Eq. (5.60) can be generalized
to group states. Here, we do consider the case of two groups. This case is of particular
interest in the study of neural systems since it allows to distinguish between excitatory
and inhibitory neurons which behave distinctly different (Izhikevich 2003, 2004).
The generalization to more than two groups, for example in order to take several
types of neurons into account, is straightforward.

In the following, quantities which are associated with the excitatory group or
couple into this group are marked by an upper index E , while the quantities of the
inhibitory group and the coupling to this have as an upper index I . We consider an
excitatory group of NE nodes and an inhibitory group of NI elements. The coupling
from the excitatory group to the inhibitory group is given by the NI × NE matrix
A(I ), while the NE × NI matrix A(E ) transmits the coupling from the inhibitory
group to the excitatory one. The connection between the nodes of the same group are
given by the NE × NE matrix B(E ) and the NI × NI matrix B(I ), respectively.

http://dx.doi.org/10.1007/978-3-319-25115-8_3
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The dynamics of the i th node in the kth group is then given by

ẋ(k)
i = f (k)(x(k)

i ) + σ
(k)
A

Nl−1∑
j=0

A(k)
i j H(k)x(l)

j,τ + σ
(k)
B

Nk−1∑
j=0

B(k)
i j H(k)x(k)

j,τ , if ϕ(k)(x(k)
i ) �= 0,

x(k),+
i = g(k)(x(k)

i ), if ϕ(k)(x(k)
i ) = 0,

(5.61)

where i = 0, . . . , Nk − 1, k, l ∈ {E ,I } and k �= l. The coupling strengths of the
intra- and inter-group connections are given by the factors σ k

A, and σ k
B , respectively.

For national convenience, the propagation delay τ to be the same for all couplings.
Figure5.8a shows a schema of the coupling.

In a group synchrony state the nodes in one group follow the same trajectory
x(k)

s ≡ x(k)
i , i = 0, . . . , Nk − 1. However, the dynamics between different groups

may differ, see also Sect. 5.1. The group synchronization manifold is given by

ẋ(k)
s = f (k)(x(k)

s ) + σ
(k)
A H(k)x(l)

s,τ + σ
(k)
B H(k)x(k)

s,τ , if ϕ(k)(x(k)
s ) �= 0,

x(k),+
s = g(k)(x(k)

s ), if ϕ(k)(x(k)
s ) = 0. (5.62)

The variational equations for the perturbations from the synchronous solution, i.e.,
the MSEs, can be derived to (cf. Eq. (5.60) for the homogenous case):

δ̇x
(k) = Df (k)(x(k)

s )δx(k) + σ
(k)
A νAH(k)δx(l)

τ + σ
(k)
B νBH(k)δx(k)

τ , (5.63)

for t, t − τ /∈ {t (k)
s } and t − τ /∈ {t (l)

s }. νA and νB are the common eigenvalues of the
block matrices

GA =
(

0 A(E )

A(I ) 0

)
and GB =

(
B(E ) 0

0 B(I )

)
, (5.64)

respectively (see Sect. 5.1 and Sorrentino and Ott (2007), Dahms (2011), Dahms
et al. (2012)). As before when deriving the MSF for group synchrony of smooth
systems, we hereby assumed that GA and GB commute such that a common set
of eigenvectors exists and the pairs (νA, νB) of eigenvalues are well defined (see
Sect. 5.1.5 and Dahms (2011), Dahms et al. (2012)). GA and GB commute if

A(E )B(I ) = B(E )A(E ),

A(I )B(E ) = B(I )A(I ); (5.65)

see Dahms (2011).
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Equation (5.63) has to be complemented by the linearized transition conditions
(cf. Eq. (5.60) for the case of zero-lag synchrony):

δx(k),+ = T(k)δx(k), if t ∈ {t (k)
s }, (5.66a)

δx(k),+ = δx(k) + σ
(k)
B νBU(k)δx(k)

τ , if t − τ ∈ {t (k)
s }, (5.66b)

δx(l),+ = δx(l) + σ
(l)
A νAU(l)δx(k)

τ if t − τ ∈ {t (k)
s }. (5.66c)

T(k) and U(k) only depend on x(k)
s just before and after the discontinuity and are given

by

T(k) ≡ Dg(k)(x(k)
s ) +

[
F(k)(x(k),+

s , x(k)
s,τ , x(l)

s,τ ) − Dg(k)(x(k)
s )F(k)(x(k)

s , x(k)
s,τ , x(l)

s,τ )
]

Dϕ(k)(x(k)
s )

Dϕ(k)(x(k)
s )F(k)(x(k)

s , x(k)
s,τ , x(l)

s,τ )
,

(5.67)

U(k) ≡
[
F(k)(x(k)

s , x(k)
s,τ+, x(l)

s,τ ) − F(k)(x(k)
s , x(k)

s,τ , x(l)
s,τ )

]
Dϕ(k)(x(k)

s,τ )

Dϕ(k)(x(k)
s,τ )F(k)(x(k)

s,τ , x(k)
s,2τ , x(l)

s,2τ )
, (5.68)

where we have used the definition

F(k)(x(k), x(k)
τ , x(l)

τ ) ≡ f (k)(x(k)) + σ
(k)
A Hx(l)

τ + σ
(k)
B Hx(k)

τ . (5.69)

Note that the transition condition Eqs. (5.66b) and (5.66c) are caused by the delayed
coupling between the elements. Equation (5.66b) corresponds to a jump in the same
group which occurred a delay time τ ago. Furthermore, a jump in group k at time
t − τ will also cause a discontinuity in the coupling of the group l at time t . This is
reflected by Eq. (5.66c).

For details of the derivation see the supplements of Ladenbauer et al. (2013). In
order to assess the stability of a particular group state, the MSF is then evaluated
for the (νA, νB) pairs. The synchronized state as given by Eq. (5.62) is stable if the
largest Lyapunov exponent is negative.

5.3.2 Synchrony in Coupled Threshold Models

To demonstrate the potential of theMSF for non-smooth systems, we study in the fol-
lowing a recurrent network of adaptive exponential integrate-and-fire (aEIF) neurons
(Brette and Gerstner 2005). This neuron model can well reproduce a large variety of
subthreshold dynamics and spike patterns observed in cortical neurons (Touboul and
Brette 2008; Naud et al. 2008; Jolivet et al. 2008). Note that the model employed here
uses dimensionless variables. It is a rescaled version of the original model but with
fewer parameters; see Touboul and Brette (2008). I will first present the results for
zero-lag synchronization in a network of excitatory and inhibitory nodes, where all
nodes are modeledby the same dynamics and with the same parameters. Biologically
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more plausible is it to model the dynamics of the excitatory and inhibitory neurons
with different parameters to take into account that their dynamics differ. The MSF
for group synchrony allows to do this; the result is presented in the second part of
this Subsection.

Zero-Lag Synchrony

The subthreshold dynamics of the i th aEIF neuron follow (i = 0, ..., N − 1):

V̇i = − Vi + exp(Vi ) − wi + I + σ

N−1∑
j=0

Gi j s j (t − τ), if Vi �= Vth, (5.70a)

ẇi =awVi − wi

τw
, if Vi �= Vth, (5.70b)

ṡi = − si

τs
, if Vi �= Vth, . (5.70c)

If the membrane potential Vi reaches the threshold Vth , a spike is released and the
dynamics is given by

V (+)
i =Vr , if Vi = Vth, (5.70d)

w(+)
i =w(−)

i + bw, if Vi = Vth, (5.70e)

s(+)
i =s(−)

i + 1, if Vi = Vth, (5.70f)

where x+
i (t) ≡ lims↘t xi (s) and x−

i (t) ≡ lims↗t xi (s) denote the right-sided and the
left-sided limit, respectively.

The terms in Eq. (5.70a) have the following meaning (from left to right): −Vi

represents a leak current; exp(Vi ) is a fast sodium current at spike initiation; wi is
an adaptation current which reflects slowly varying, activity dependent potassium
currents; the external driving input is given by I ; and si is the strength of an effec-
tive synaptic (output) current caused by the j th neuron. The adaptation current wi

depends on the membrane potential, where aw ≥ 0, and τw is the adaptation time
constant, see Eq. (5.70b). If a neuron is activated, the adaptation current increases,
counteracting this activation. Equation (5.70c) describes the dynamics of the synaptic
current. The activation of a synapse decays exponentially with relaxation time τs .

If the membrane potential Vi reaches the threshold Vth , a spike is triggered and
the potential is set to a lower value Vr ; see Eq. (5.70d). The synaptic output current
si is incremented by one which mimics an outgoing spike. The adaptation current wi

is increased by the value bW implementing the adaptation mechanism. This spike-
based mechanism complements the subthreshold adaption driven by the increasing
potential, see Eq. (5.70b). It has been shown that subthreshold adaptation can induce
synchrony in pairs of symmetrically coupled excitatory neurons (Ermentrout et al.
2001; Ladenbauer et al. 2012) and that the spike-dependent adaptation can cause
networks to split up into phase-locked clusters (Kilpatrick and Ermentrout 2011).
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The framework of the MSF for non-smooth systems allows for studying the two
adaptation mechanism for a wide range of networks.

The coupling parameters in Eq. (5.70) are the coupling strength σ and the delay
time τ . G is the coupling matrix. The row sum g of G is assumed to be constant:
g ≡ ∑N−1

j=0 Gi j , i = 0, . . . , N − 1; see Sect. 3.1. In contrast to the other parts of this
thesis, we do not require that g is equal to one because wewant to investigate the case
of zero-row sum. Recall that any nonzero row sum can be scaled to one by rescaling
of the amplitude of the coupling strength (see Sect. 3.1).

Figure5.7 shows the MSF for the aEIF neurons as given by Eq. (5.70). The
parameters are selected such that the dynamics of the aEIF model closely matches
the regular spiking dynamics of cortical neurons (Naud et al. 2008; Destexhe 2009).
Depending on the amount of inhibition three different cases can be distinguished:
In panels (a) and (d) networks with dominantly excitatory coupling, i.e., g = 1, are
depicted. The MSF for networks with dominantly inhibitory coupling, i.e., g = −1,
is shown in panels (c) and (f). Panels (b) and (e) correspond to a situation with a
balance of excitation and inhibition, i.e., g = 0. The subthreshold adaptation aw is

aw = 3, g = − 1

aw = 0.5, g = − 1aw = 0.5, g = 1

Im
ν

(a)

(d)

aw = 3, g = 1

Im
ν

Re ν Re ν

aw = 3, g = 0

Re ν

(b)

(f)

(c)
aw = 0.5, g = 0

Λ

(e)

Fig. 5.7 Stability of synchrony for a homogenous population of coupled aEIF neurons as given
by Eq. (5.70). The maximum Lyapunov exponent � (color bar) is plotted as a function of the
eigenvalues ν of the coupling matrix G. Panels (a), (b) and (c) show the results for strong adap-
tation aw, and panels (d), (e) and (f) depict the results for weak subthreshold adaptation aw.
The networks are (a) and (d) excitation dominated, (b) and (e) balanced; and (c) and (f) inhibition
dominated regimes. Parameters: λ = 5, τ = 0.3, τw = 10, τs = 0.3, Vth = 5, Vr = −5, bw = 2.5.
The external input I is chosen such that the oscillation period is always equal to 5. Circles indicate
the unit disc in the eigenvalue plane (insets show blow-up). Figure from Ladenbauer et al. (2013).
Copyright (2013) by The American Physical Society (APS) (color figure online)

http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_3
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weak in panels (a), (b), and (c), while the case of strong adaptation is depicted in
panels (d), (e), and (f). The black circle in each panel marks the unit circle. Recall that
the eigenvalues of matrices where all entries are positive or zero, or matrices where
all entries are negative or zero will always be located inside this circle if |g| = 1
holds. This follows from Gershgorin’s circle theorem (Gerschgorin 1931; Earl and
Strogatz 2003). Thus, the MSF inside this circle is of particular interest and is, thus,
highlighted in the insets.

Stable synchronization for networks with eigenvalues lying inside the unit circle
is predicted for excitation-dominated networks of neurons with strong subthreshold
adaptation (panel (d)) and for inhibition dominated networks of neurons with weak
subthreshold adaptation (panel (f)). For the networks with a balance of excitation
and inhibition stabilizing synchrony by increasing or decreasing the adaptation is
infeasible as there are negative and positive values of the largest Lyapunov exponent
inside the unit circle for weak as well as strong adaption. In consequence, most
realistic networks will not exhibit stable synchrony. These results show that neural
adaptation is a key factor in the control of synchrony.

Group Synchrony

In the following, an example of group synchrony in a network of aEIF neurons
is considered, where one group consist of excitatory nodes and the other one of
inhibitory neurons. We choose both groups to be of equal size, i.e., NE = NI ≡ N .
The dynamics of the i th aEIF neuron in kth group is given by (i = 0, ..., N − 1;
k, l ∈ {E ,I }):

V̇ (k)
i = −V (k)

i + exp(V (k)
i ) − w(k)

i + I (k)

+σ
(k)
A

∑N−1
j=0 A(k)

i j s(l)
j (t − τ) + σ

(k)
B

∑N−1
j=0 B(k)

i j s(k)
j (t − τ),

ẇ(k)
i = a(k)

w V (k)
i − w(k)

i

τ
(k)
w

,

ṡ(k)
i = − s(k)

i

τ
(k)
s

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

if V (k)
i �= V (k)

th ,

(5.71a)

V (k,+)
i = V (k)

r ,

w(k,+)
i = w(k,−)

i + b(k)
w ,

s(k,+)
i = s(k,−)

i + 1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
if V (k)

i = V (k)
th , (5.71b)

where Eq. (5.71a) describes the subthreshold dynamics. Recall that V (k)
i is the mem-

brane voltage, w(k)
i the adaptation current, I (k) the external driving current and s(k)

i
the strength of an effective synaptic output current. The strength of the adaptation
and the adaptation time constant are given by a(k)

w ≥ 0 and τ (k)
w , respectively. τ (k)

s
sets the relaxation time of the synapses. Equation (5.71a) describes the spiking event,
where V (k)

r is the resting potential and b(k)
w the increase of the adaptation in the event
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of a spike. The synaptic output strength is incremented by one. For details of the
model see Eq. (5.70) and its description.

We now apply our MSF formalism to the network described in Eq. (5.71), where
the excitatory and the inhibitory subpopulations now have different local dynamics
(see Fig. 5.8a) which is reflected by different parameters in Eq. (5.71). The inhibitory
neurons are modeled such that they mimic the dynamics of the fast spiking inhibitory
interneurons in the neocortex (Destexhe 2009). Their adaptation is weak, while the
adaptation of the excitatory population is strong.

V

bw

Re ν A

R
e

ν B

bw bw

tt t

H
H

σ A

σ B

Re ν A Reν A

B
H

A

B
σ B

H

σ A
A

awaw aw

A B C(b)

(a)

(d)

(c)

Fig. 5.8 Stability of group synchrony in a network of excitatory (E ) and inhibitory (I ) neurons
which differ in their local dynamics. a Scheme of the network according to Eq. (5.71). Solid green
and dashed orange arrows correspond to excitatory (positive sign) and inhibitory coupling (negative
sign), respectively. b Evolution of the membrane voltage V for three different dynamical scenarios
A, B, and C in the left, middle, and right column, respectively. Orange and green lines mark the
voltage V of synchronized excitatory and inhibitory neurons, respectively. The parameter sets for
the scenarios A, B, and C are chosen according to Table5.1. c Master stability function (MSF)
for each of the three scenarios in (b). The maximum Lyapunov exponent is shown as a function
of the real parts of the eigenvalues ν

(k)
A and ν

(k)
B . White rectangles indicate the unit square in

the eigenvalue plane. d Master stability function (MSF) inside the unit square as in (c), but with
a(E )

w = 0.1, 0.2, 0.3, 0.4, 0.5 (top, left to right) and b(E )
w = 0.5, 1, 1.5, 2, 2.5 (bottom, left to right).

Figure from Ladenbauer et al. (2013). Copyright (2013) by The American Physical Society (APS)
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We employ three different parameter sets yielding three different dynamical sce-
narios to which we refer in the following as scenarios A, B, and C. The corre-
sponding parameters are given in Table5.1. In Fig. 5.8b, c in the left and center
column scenarios A and B are shown, respectively, where the parameters are cho-
sen such that they mimic the dynamics of the pyramidal neurons in the neocortex
(Destexhe 2009). Figure5.8b, c depict in the right column the scenario C where
intrinsically bursting neurons are modelled, which, when activated, produce repeated
events of rapid spiking. The bursting is caused by an increased resetmembrane poten-
tial V (E )

r (Naud et al. 2008).
The MSFs for the three different spiking behaviours A, B, and C are shown in

Fig. 5.8c as a function of the real parts of the eigenvalue νA and νB , where the
imaginary part was set to zero, i.e., Im νA = Im νB = 0. The unit square is marked
by a white rectangle. Recall that the eigenvalues of symmetric matrices with unity
row sum and all entries being non-negative are always contained in the unit square.
This follows fromGershgorin’s circle theorem (Gerschgorin 1931; Earl and Strogatz
2003). For the matrices employed here this applies: We chose positive entries for the
matrices and modeled the excitatory and the inhibitory characteristic of the nodes by

Table 5.1 Parameters used for Fig. 5.8b, c

Dynamical scenario

Parameters A B C

Excitatory group (E ) τ 0.1 0.1 0.1

V (E )
r −5 −5 2

I (E ) 3.725 3.725 25

σ
(E )
A −5 −5 −25

σ
(E )
B 5 5 25

a(E )
w 0.5 0.5 0.5

b(E )
w 2.5 2.5 2.5

τ
(E )
w 10 10 10

τ
(E )
s 0.2 0.2 0.2

τ
(E )
th 5 5 5

V (E )
r −5 −5 −5

Inhibitory group (I ) I (I ) 0 1.5 0

σ
(I )
A 5 5 25

σ
(I )
B −5 −5 −25

a(I )
w 0.1 0.1 0.1

b(I )
w 0.25 0.25 0.25

τ
(I )
w 10 10 10

τ
(I )
s 0.5 0.5 0.5

τ
(I )
th 5 5 5
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positive (σI
A , σE

B > 0) and negative (σE
A , σI

B < 0) coupling strengths, respectively.
For all three dynamical scenarios we find that the maximum Lyapunov exponent
� is negative inside the unit square meaning that group synchrony is stable for the
employed parameters sets and all networks fulfilling the commuting criteria (see
Eq. (5.65)).

Figure5.8d shows the effects of increasing subthreshold adaption, i.e., increas-
ing a(E )

w (upper row), and increasing spike-based adaption, i.e., increasing b(E )
w

(lower row), on the MSF in the unit square. Clearly visible is the strong effect of the
adaptation on the stability of synchronization: For weak adaptation the Lyapunov
exponent becomes positive in parts or for the whole unit square, indicating the loss
of stability.

5.4 Conclusion

Besides zero-lag synchrony, cluster and group synchrony are dynamical states which
can be observed in a variety of biological systems ranging from central pattern
generation and animal locomotion to population dynamics. While cluster synchrony
refers to a state where the network splits into several clusters which undergo the same
dynamics but with a constant phase shift, group synchrony describes a state where
the nodes of one group are in zero-lag synchrony but the different groups can have
different dynamics. In this Chapter, I have discussed the stability problem of these
states and have showed that the master stability function (MSF) can be generalized
to treat these states if the topology fulfills a certain restriction. In fact, it is necessary
that the topology on the level of groups is a unidirectional ring meaning that each
group couples only to one other group. The MSF for group synchrony as well as
matrices fulfilling the necessary restriction are characterized by a discrete rotational
symmetry in the eigenvalue plane. This symmetry is demonstrated on the example
of the saddle-node infinite period (SNIPER) bifurcation model which is generic for
type-I excitability as discussed in Chap.4.

The above restriction on the topology can be lifted in the case of commuting
coupling matrices. In the case of two groups, this allows for taking intergroup and
intragroup coupling with different delay times into account. The MSF translates this
network to a motif of two coupled nodes with self-feedback, where the coupling and
the self-feedback are characterized by potentially different delays. Panchuk et al.
(2013) showed that such a motif of two coupled FitzHugh Nagumo systems can
exhibit zero-lag synchrony as well as antisynchronization and bursting. We have
employed the MSF for group synchrony to these different dynamics which yields
their stability in large, complex networks. It emerges that purely excitatorily coupled
networks can exhibit stable synchrony in all three dynamical scenarios while in
networks with excitatory and inhibitory coupling the stability depends on the type
of dynamics.

The MSF—for zero-lag and for group synchrony—can be extended to treat non-
smooth systemswhich is of particular interest for applications in neuroscienceswhere

http://dx.doi.org/10.1007/978-3-319-25115-8_4
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integrate and fire models (IF) play an important role. In these models, the disconti-
nuity arises from the fact that spikes are not explicitly modeled but that the voltage
is set back to a rest state after it reaches a threshold. In the MSF the discontinuity
can be overcome with the help of transition matrices. We have first demonstrated the
method on the example of zero-lag synchrony in a network of adaptive exponential
integrate-and-fire (aEIF) neurons where it has been shown that subthreshold adap-
tation is a crucial parameter in the control of synchrony. Furthermore, the method
has been applied to group synchrony in a network of aEIF neurons where one group
consisted of excitatory neurons and the other one of inhibitory ones. Depending on
the parameters three distinctly different dynamical states including bursting can be
observed. For all scenarios it shows that a decreasing adaptation strength leads to
destabilization of synchrony.
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Chapter 6
Zero-Lag and Cluster Synchrony:
Towards Applications

Chapters 4 and 5 studied zero-lag, cluster and group synchrony with the help of
the master stability function (MSF). Prerequisite for applying the MSF for zero-
lag synchronization is that all nodes are identical and that the coupling delays are
equal; see Sect. 3.1. For group synchrony, it is required that the nodes in one group
are alike and that the delays for links coupling into the same group are the same;
see Sect. 5.1. Depending on the topology a reduction of the delays occurring in a
network is possible but only in rare cases this will reduce the number of delays to
one (Lücken et al. 2013). Two ore more discrete delays in the coupling to one group
can only be considered with the MSF in the framework of commuting matrices; see
Sect. 5.1.5. However, real-world networks are not limited to cases well described by
commuting coupling matrices and discrete delay times but are often characterized by
a complex topology, for example of random or small-world type, and heterogeneous
delays. Furthermore, heterogeneities in the local dynamics of the nodes will always
be present in applications.

The aim of this chapter is to study the application of the theory developed in the
previous chapters to networks characterized by heterogeneities. We investigated the
interplay between delay heterogeneities and topology in Cakan et al. (2014). The
results are discussed and presented in Sect. 6.1. Section 6.2 investigates cluster states
in chemical oscillators which are slightly non-identical. Depending on the applied
voltage smooth or non-smooth oscillations can be observed where the latter made it
necessary to extent the existing theory. Section 6.2 is based on Blaha et al. (2013).

6.1 Heterogenous Delays in Complex Networks

This section investigates synchronization and other space-time patterns in the
presence of heterogeneous delay times in neural networks. It closely follows
Cakan et al. (2014).

© Springer International Publishing Switzerland 2016
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In neural networks the propagation speed and, thus, the time delay between neu-
rons can vary between 1 and 100 mm/ms where the nerve conduction velocity is
determined by the length, the diameter, and the kind of the axons between the neu-
rons (Koch 1999). It is, therefore, of particular interest how robust the results on
synchronization in neural networks obtained with the MSF and discussed in Chap. 4
are towards delay heterogeneities. For heterogeneities in the nodes it is well known
that they hinder or prevent synchronization (Strogatz 2000; Sun et al. 2009). Here,
we will study whether this is also the case if the heterogeneity affects the delay. In
particular, we consider two discrete delay times as well as unimodal and bimodal
delay distributions. In the context of the brain, a bimodal distribution is a good first
approximation if the coupling on two different length scales is considered, i.e., nearby
connections within brain areas associated with short delays, and links between distant
areas characterized by long delays.

6.1.1 Model

As in Chap. 4, we consider networks of FitzHugh-Nagumo systems which are generic
for type-II excitability; see Sect. 4.1.4 and FitzHugh (1961), Nagumo et al. (1962),
Lindner et al. (2004). A network of N coupled FitzHugh-Nagumo systems with
heterogeneous delays is given by

εu̇i = ui − u3
i

3
− vi + K

N−1∑
j=0

Gi j
[
u j (t − τi j ) − ui (t)

]
,

v̇i = ui + a, (6.1)

where ui and vi denote the activator and inhibitor variable of the nodes
i = 0, . . . , N − 1, respectively, and ε is a time-scale separation parameter and typ-
ically small (here we will use ε = 0.01), meaning that ui becomes a fast variable,
while vi changes slowly. Recall that in the uncoupled system (K = 0), a is the thresh-
old parameter: Due to a supercritical Hopf bifurcation the systems is excitable for
a > 1, while for a < 1 it exhibits self-sustained periodic firing. For details on the
model see Sect. 4.1.4. Here, we choose a = 1.3 such that the system operates in the
excitable regime.

G = {Gi j } is the coupling matrix. An invariant synchronization manifold will
only exist if G has a constant row sum; without loss of generality we assume the
row sum to be unity, i.e.,

∑
j Gi j = 1, for all i = 0, . . . , N − 1; see Sect. 3.1. We

construct the matrix G by setting the entry Gi j equal to one if the j th node couples
into the i th node, otherwise the entry is set to zero. In the following, we will construct
regular, small-world, and random networks in this way; see Sect. 2.3. After repeating
this procedure for all entries of Gi j , we normalize each row to unity. The overall real-
valued coupling strength is given by K. Throughout this section, we use bidirectional

http://dx.doi.org/10.1007/978-3-319-25115-8_4
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coupling, which means that signals can always be transmitted in both directions. This
makes G a symmetric matrix (before we normalize each row sum to unity). T = {τi j }
is the delay matrix, i.e., τi j is the time the signal needs to propagate from the j th
node to the i th node.

The fixed point of system (6.1) is given by

ui ≡ u∗ = −a,

vi ≡ v∗ = u∗ − u3∗
3

, i = 0, . . . , N − 1. (6.2)

As discussed in Sect. 4.1.4, the FitzHugh-Nagumo system undergoes a large excur-
sion in the phase space if perturbed sufficiently strong from the fixed point. This
excursion mimics the spike of a neuron. The coherence of spiking—of a single node
or of nodes coupled in a network—can be measured by considering the inter-spike
intervals (ISIs), i.e., the time between two successive spikes (Hövel 2010).

6.1.2 Unimodal Delay Distributions in Complex Networks

The first step in going from one discrete delay time to more realistic models with
heterogeneous delay times is to consider a unimodal distribution. In the following,
we choose the elements of the delay matrix T randomly from a normal distribution
N (τμ, σ 2

τ ) with mean τμ and standard deviation στ .
In this sense, in Chap. 4, system (6.1) had a δ-distribution of the delay times. For

excitatory coupling, i.e., all entries of G are positive, it was shown that synchronized
spiking with an inter-spike interval (ISI) of τμ is always stable independently of
coupling strength and delay time as long as both are large enough to induce any
spiking at all. In this section, we will discuss how robust these results are if we
increase στ . In particular, we will focus on the effect of the underlying topology—
regular, small-world, or random—on the dynamics. These topologies are constructed
as follows: In a regular ring network each node is connected with equal strength to
its k nearest neighbors to the left and to the right, i.e., the node degree is 2k. If
additional excitatory links are added with a probability p to such a regular network,
a small-world network arises (Watts and Strogatz 1998; Monasson 1999; Newman
and Watts 1999). In a random network each node is linked with probability p to
every other node (Rapoport 1957; Solomonoff and Rapoport 1951; Erdős and Rényi
1959, 1960). See Sect. 2.3 for a review of the different network models.

Depending on the distribution width, the topology, and initial conditions there
are essentially three different types of dynamics observable: Highly-synchronous
spiking, spiking, and global amplitude death, from which the two spiking types can
be subdivided into several subclasses.

http://dx.doi.org/10.1007/978-3-319-25115-8_4
http://dx.doi.org/10.1007/978-3-319-25115-8_4
http://dx.doi.org/10.1007/978-3-319-25115-8_2
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Spiking Patterns and Amplitude Death

Highly-synchronous spiking. If the distribution width στ is sufficiently small, stable
synchronization with an ISI of τμ will persist, while the spikes will be broader than
for a delta distribution. The quality of synchronization can be measured using the
Kuramoto order parameter R, see Sect. 3.3. Recall that R = 1 corresponds to a per-
fectly synchronized state, while R ≈ 0 means that a network spikes asynchronously.
We consider a network as highly synchronized if R > 0.99 after all transient effects
have vanished.
Spiking. For intermediate στ , different dynamical subclasses can be observed where
the network still exhibits spikes, but not necessarily in a highly synchronized manner;
we can distinguish approximate synchronization, traveling disruptions, and partial
amplitude death.

The first scenario is that all nodes in the network still synchronize but because of
the non-zero width of the delay distribution the incoming spikes do not arrive exactly
at the same time but with some slight deviations. Thus, R drops below 0.99, i.e., the
network is not any longer highly synchronized. Figure 6.1a shows as an example the
time series of approximate synchronization: The spike times are marked by red dots
in panel (a) and the Kuramoto order parameter R(t) is plotted in panel (b). After some
transient time the spikes synchronize but not perfectly. Thus, R remains below 0.99.

A fairly well synchronized behavior is the most common spiking pattern, but in
regular-ring structures as well as in some small-world realizations a different type of
behavior can be observed as well: In Fig. 6.2a, a disruption travels along many nodes
in a ring network without causing amplitude death in the network. Such traveling
disruptions can arise for fairly high standard deviations, e.g., in Fig. 6.2, στ = 0.2.

Fig. 6.1 a Approximately synchronized spiking pattern (red dots) and b order parameter R (blue
line) versus time for a small-world network with a delay distribution with standard deviation στ =
0.2. Parameters: N = 50, p = 0.51, k = 2, K = 1.0, a = 1.3, ε = 0.01 and τμ = 5. The initial
condition is ui = −a, vi = a − a3/3 for all i = 0, . . . , 49. The history function of all nodes is
the spiking state. Figure from Cakan et al. 2014. With kind permission of The European Physical
Journal (EPJ) (color figure online)

http://dx.doi.org/10.1007/978-3-319-25115-8_3
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Fig. 6.2 Spiking patterns showing traveling disruptions in a regular ring network with N = 50
nodes and στ = 0.2. Red dots indicate spikes. Other parameters as in Fig. 6.1. Figure from Cakan
et al. 2014. With kind permission of The European Physical Journal (EPJ) (color figure online)

However, the probability for this behavior is quite low since amplitude death is much
more common as will be discussed later.

Furthermore, networks can be observed where only a subset of nodes spikes, while
the other nodes undergo partial amplitude death. This is the case if, by chance, in a
fairly isolated subnetwork the deviation of delay times is smaller than the deviation
in the whole network. In large random networks the probability for this is small,
since fairly isolated subnetworks arise rarely as they require some kind of ordered
structure in the network. In the case of small-world networks though, it is more likely
that a subnetwork can maintain stably synchronized spiking while other regions of
the network undergo amplitude death. This scenario is depicted in Fig. 6.3. One can
also observe cases where a part of the network stops spiking temporarily but then gets
excited again and fires synchronously with the rest of the network. This reanimation
is also observable in Fig. 6.3 around node no. 43.
Global amplitude death. If στ becomes too large, amplitude death is induced, i.e., all
nodes remain in the fixed point (u∗, v∗), see Eq. (6.2), and no spikes are released.

Amplitude death is caused by two different factors. First, recall that the nodes
operate in the excitable regime and only spike if perturbed sufficiently strong from
the fixed point. This can be due to the coupling or due to external noise. For the

Fig. 6.3 Spiking pattern showing partial amplitude death in a small-world network (N = 50, p =
0.51) for a delay distribution with standard deviation of στ = 0.12. Red dots mark spikes. Other
parameters as in Fig. 6.1. Figure from Cakan et al. 2014. With kind permission of The European
Physical Journal (EPJ) (color figure online)
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intermediate coupling strength of K = 1 we use, each node needs excitation from
many neighbors at the same time to spike. As στ increases, the probability that enough
spikes from the neighboring neurons arrive sufficiently close in time decreases. Fur-
thermore, the nodes’ neighbors which spike too early or too late and which are
therefore already or still in the fixed point (u∗, v∗) will pull the node back as they
give rise to a negative coupling term of the form u∗ − ui in Eq. (6.1), where we
considered the effect on the i th node.

Secondly, even if a spike can be excited by the arriving spikes, for large στ retarded
spikes are likely to perturb the trajectory of the already spiking node. The result is a
spike with a low amplitude, which will be fed back into the network. If this happens
on a global scale, i.e., if there is no fairly isolated subnetwork which can maintain
the amplitude of the spikes, the spikes will be damped in the course of time and will
eventually lead to global amplitude death.

Both of the mentioned effects can be seen in the trajectory depicted in Fig. 6.4.
The first effect prevents the trajectory to reach the far right nullcline (dashed blue) in
the phase space, which would have been reached in the absence of the negative force
pulling it to the left. The second effect causes the trajectory to wiggle around on its
round trip, instead of allowing a smooth course. This is due to excitations arriving
during the round trip which pull the trajectory back and forth. Both effects lead to a
decreasing amplitude and eventually to amplitude death.

Statistical Analysis

The type of dynamics taking place on a network depends on the topology, the width of
the delay distribution, and on initial conditions. For a systematic study, we calculate
the probabilities ps(στ ) and ph(στ ) that the network shows any kind of spiking
behavior or highly synchronized spiking, respectively, for a given realization of the
delay matrix T with the standard deviation στ and a given realization of the network

Fig. 6.4 a Time series of u
(dark red) and v (light blue),
and b phase space of a single
node undergoing amplitude
death. The node is part of a
small-world network
(N = 50, p = 0.51) with
στ = 0.15. b Trajectory
(dark red dots) and
u-nullcline (dashed blue
line). Other parameters as in
Fig. 6.1. Figure from Cakan
et al. 2014. With kind
permission of The European
Physical Journal (EPJ) (color
figure online)
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στ

(a)

(b)

(c)

Fig. 6.5 Probability of spiking ps (solid lines) and of highly synchronized spiking ph (dotted lines)
versus standard deviation of delay distribution στ for a regular ring networks with k = 2, i.e., each
node is connected to its nearest and next-nearest neigbor to the left and to the right, b small-world
networks with k = 2 and p = 0.51, and c random networks with p = 0.51 and different network
sizes N = 20 (dark blue), N = 50 (intermediate red), N = 100 (light green). Other parameters as
in Fig. 6.1. Figure from Cakan et al. 2014. With kind permission of The European Physical Journal
(EPJ) (color figure online)

topology. Note that ph ≤ ps as the highly synchronized networks are a subset of the
spiking ones. Figure 6.5 shows ph(στ ) (dotted lines) and ps(στ ) (solid lines) for (a)
a regular ring, (b) a small-world network, and (c) a random network, for different
network sizes of N = 20 (blue line), N = 50 (red line), and N = 100 (green line)
nodes.

Figure 6.5 reveals that for each type of topology, a threshold value σ̄τ exists above
which global amplitude death almost certainly sets in, i.e., ps(στ ) ≈ 0 for στ > σ̄τ

(see solid lines in Fig. 6.5). Comparing the different topologies, it is interesting to
note that σ̄τ is smaller, about 0.15 for N = 100, in the case of the small-world
and the random network as compared to the regular network, where σ̄τ is about
0.2. Furthermore, in small-world and random networks σ̄τ is preceded by a steep
sigmoidal transition, while in the case of the regular network the transition is less steep
and characterized by a long tail making it difficult to clearly define σ̄τ . As discussed
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later in detail, the reason for this behavior is that in regular networks often spiking
subnetworks survive, which is very unlikely for small-world and random networks.
Noteworthy is also that in the case of regular networks global amplitude death occurs
later for larger networks, because it is more likely that spiking subnetworks exist in
a large network compared to a small one. In contrast, in small-world and random
networks small networks survive longer.

The topology of the network is even more critical when considering the fraction
of highly synchronized networks, i.e., the curves for ph (dashed lines in Fig. 6.5).
A particularly interesting phenomenon is the non-monotonic behavior of ph in the
regular ring networks (Fig. 6.5a dashed). While the fraction of highly synchronized
networks rapidly drops for small στ , it rises again as the fraction of spiking networks
falls. For large στ , ph and ps converge, i.e., only highly synchronized networks sur-
vive for higher στ . This is certainly not the case for intermediate στ , where most of
the surviving networks are not highly-synchronized. This counterintuitive behavior
of ph can be explained by the fact that for intermediate στ the network splits into
subnetworks as shown in Fig. 6.6: Panel (a) shows the spiking pattern of a regular
ring for intermediate στ = 0.1, i.e., a value for which almost all networks are spik-
ing in a highly asynchronous manner. Panel (b) depicts the corresponding Kuramoto
order parameter R. Panels (c) and (d) show the same as panels (a) and (b) but for a
longer time series up to t = 2000. It can be clearly seen that after some transient time
(t ≈ 500), the network consists of two different subnetworks, at times separated by
a patch of partial amplitude death. We refer to this state as subnetwork synchro-
nization in the sense that the nodes are synchronized in subnetworks which are not
synchronized to each other. Simulations indicate that these subnetworks survive for
infinitely long times and do not synchronize to each other. As a consequence the
two networks have slightly different ISIs resulting in a beating behavior: For a while
the networks are almost synchronized, then their spiking times drift apart leading
to slow oscillations in the Kuramoto order parameter. Thus, most of the times R is
much smaller than 0.99 and thus the network is not classified as highly synchronized.
Because of the slightly different ISIs we do not use the term cluster synchrony here.
Recall that we required that for a cluster state the dynamics in the clusters are the
same but with a constant phase shift between the clusters; see Chap. 5.

If στ is increased above approximately 0.13, the system either exhibits global
amplitude death, or the spiking in only one of the subnetworks dies out. The nodes in
the surviving subnetwork remain highly synchronized, since they all interact and the
distribution width is not yet too large. Thus, almost all networks which do not undergo
global amplitude death are highly synchronized (recall that in the definition of the
Kuramoto order parameter given by Eq. (3.19) only spiking nodes are considered).
For even larger στ , global amplitude death can be observed in almost all network
realizations.

In contrast, in small-world networks a different behavior can be observed: ps and
ph do not coincide for large στ but the spiking networks survive longer than the highly
synchronized networks; see Fig. 6.5b. The reason is that in a small-world network,
subnetworks do not easily arise because the additional long range links connect the
different parts of the network. However, more and more disruptions occur for larger

http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_3
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Fig. 6.6 Spiking patterns showing subnetwork synchronization in a regular ring network with
N = 50 nodes for different στ : a–d στ = 0.1; e, f στ = 0.13. Panel a, c, e Dark red dots indicate
spikes. Panel b, d, f Kuramoto order parameter R. Note that (c), (d) show the same simulation as
(a), (b) for a longer time series. Other parameters as in Fig. 6.1. Figure from Cakan et al. 2014.
With kind permission of The European Physical Journal (EPJ) (color figure online)

στ . They decrease R and are thus responsible for the fact that less highly synchronized
network persist.

Neither traveling disruptions nor partial amplitude death can be observed in a
random network. Therefore, almost all surviving networks are highly synchronized,
as shown in Fig. 6.5c.
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6.1.3 Two Discrete Delay Times

In Schöll et al. (2009), Panchuk et al. (2013) it was shown that already in a simple
motif of two coupled FitzHugh-Nagumo systems with two or three different delay
times, complex dynamics arise. In particular, resonance effects between the different
delay times proved to be crucial. In Sect. 5.1.5, we have employed this motif with two
discrete delay time as the synchronization manifold to calculate whether the same
dynamics also persists in large networks; see Fig. 5.4. Recall that a state of synchrony
of M groups moves on a synchronization manifold which corresponds to a motif of
M nodes. We have found for three exemplarily delay ratios that the dynamics—in
this case zero-lag synchrony, antisynchronization, and bursting—are stable in larger
networks when all links are excitatory.

We now want to extend this study by continuously varying the ratio of the two
delay times where we simulate larger complex networks. We focus on small-world
networks (see Fig. 6.7 for a schematic diagram) and separate the two parts of the net-
work in a meaningful way by choosing τ2 as the delay associated with the underlying
regular network (green arrows), and τ1 as the delay time of the additional random
links (red arrows).

Depending on the ratio between τ1 and τ2, different spiking patterns emerge. We
measure the ISIs (Interspike intervals) in simulations while gradually increasing τ1 for
fixed τ2 = 6 as depicted in Fig. 6.8a. Figure 6.8b shows a mathematical reconstruction
of the results obtained numerically in panel (a) based on the following argument: Any
spike in the network will eventually be fed into the system again with a delay. Starting
from the synchronous manifold, i.e., (u0, v0) = . . . = (uN−1, vN−1) ≡ (us, vs) (see

Fig. 6.7 Example of a
small-world network, where
inner connections (dark red
arrows) have a delay τ1,
while the outer connections
of the underlying regular
ring (light green arrows) are
characterized by a delay τ2.
Figure from Cakan et al.
2014. With kind permission
of The European Physical
Journal (EPJ) (color figure
online)

τ 2

τ 1

http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_5
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Fig. 6.8 Interspike intervals (ISIs) in a small-world network plotted versus the delay τ1 of the
inner connections. a Simulations. b Mathematical reconstruction according to Eq. (6.3). τ2 = 6,
N = 20, k = 2, p = 0.51. Other parameters as in Fig. 6.1. Figure from Cakan et al. 2014. With
kind permission of The European Physical Journal (EPJ) (color figure online)

also Sect. 3.1), spikes will first reappear with a delay of either τ1 or τ2. Those spikes
again will be transmitted to other neurons with one of the two delays meaning that
eventually nearly all possible combinations of forwarding a spike with either delay
τ1 or τ2 will be observable in the network. Thus, we can obtain all possible spiking
times from the expression:

Tlk = lτ1 + kτ2 (6.3)

with l, k ∈ N0.
After sorting all possible Tlk by size, the ISIs are given by the difference between

neighboring elements in the sorted list. Note that for the mathematical reconstruction
in Fig. 6.8b, ISIs < 0.1 were discarded since the spikes have a width of approximately
0.1 if they are close, i.e., if the ISI is small.

Coherent spiking, i.e., spiking with a constant ISI, is observable as a result of
resonance effects: For a case where the ratio of the multiple delay times is given by

nτ1 = mτ2 (6.4)

with m, n ∈ N, coherent spiking with an ISI equal to

τ1

m
= τ2

n
(6.5)

is induced, where we choose the smallest possible m and n, i.e., m and n do not have
common divisors. A similar relation has been obtained in Zigzag et al. (2009) for a
system of chaotic maps with several unequal delays and in Panchuk et al. (2013) for
two coupled FitzHugh-Nagumo systems with unequal coupling and self-feedback

http://dx.doi.org/10.1007/978-3-319-25115-8_3
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delay times. Note that n and m in Eq. (6.4) cannot be chosen arbitrarily large: If τ1/m
or τ2/n is smaller than 0.4, spikes run into each other and coherent spiking is not
possible any longer.

Due to the finite widths of the spikes, they show a locking behavior if the delays
almost fulfill the resonance criterion given by Eq. (6.5). This yields the large locking
tongues seen in Fig. 6.8a close to resonance delay times which are not visible in
Fig. 6.8b. Most clearly the resonance tongue is pronounced for τ1 ≈ 6.0 but can also
be seen for τ1 ≈ 2.0, τ1 ≈ 3.0, τ1 ≈ 8.0, and τ1 ≈ 9.0, for example.

6.1.4 Bimodal Delay Distributions

In this section, we discuss a network characterized by a bimodal delay distribution.
In such a network, the superposition of two normal distributions with two mean delay
times τ (1)

μ and τ (2)
μ and corresponding standard deviations σ (1)

τ and σ (2)
τ determines

the delay between nodes.

6.1.4.1 Peak Distance of the Distribution

To study the effects of different bimodal distributions, we start by changing the
difference τ (1)

μ − τ (2)
μ between the two peaks of the distribution, while keeping the

standard deviations constant: σ (1)
τ = σ (2)

τ = 0.01. The result is shown in Fig. 6.9,
where the ISIs are depicted versus τ (1)

μ − τ (2)
μ .

Figure 6.9 shows that for distributions with small and medium width, i.e., σ (1)
τ =

σ (2)
τ < 0.01, the ISIs follow the condition of Eq. (6.4) discussed for the case of two

discrete delay times if we substitute τ1 and τ2 by the two peak positions, i.e., τ1 = τ (1)
μ

and τ2 = τ (2)
μ . The same pattern also emerges for random networks.

Width of the Distribution

If the width of the two peaks becomes too large, Eqs. (6.4) and (6.5) fail as good
descriptions for the spike times and ISIs. Figure 6.10 depicts the ISIs as function of
the peak widths σ (1)

τ = σ (2)
τ ≡ στ for (a) a small world network with τ (1)

μ = 6 and

Fig. 6.9 Interspike intervals (ISIs) (dark red dots) and delays (light blue line) of a small-world
network. N = 50, σ (1)

τ = σ
(2)
τ = στ = 0.01, p = 0.51. Other parameters as in Fig. 6.1. Figure from

Cakan et al. 2014. With kind permission of The European Physical Journal (EPJ) (color figure online)



6.1 Heterogenous Delays in Complex Networks 107

στ

Fig. 6.10 Interspike intervals (ISIs) (dark red dots) and delay distributions (light blue dots) versus
στ ≡ σ

(1)
τ = σ

(2)
τ for different combinations of mean delay times. a, b: small-world network (k = 2,

p = 0.51), c: regular ring network (k = 2). Mean delay times are τ1 = 6 and τ2 = 8 for (a) and
(c), and τ1 = 5 and τ2 = 10 for (b). N = 50. Other parameters as in Fig. 6.1. Figure from Cakan
et al. 2014. With kind permission of The European Physical Journal (EPJ) (color figure online)

τ (2)
μ = 8, (b) a small world network with τ (1)

μ = 5 and τ (2)
μ = 10, and (c) a regular

ring with τ (1)
μ = 6 and τ (2)

μ = 8. For small στ (στ < 0.05 in panel (a), στ < 0.09 in
panel (b), and στ < 0.03 in panel (c)) the ISIs can be found by evaluating Eq. (6.5):
For the combination τ (1)

μ = 6 and τ (2)
μ = 8, we find coherent spiking with an ISI of 2,

for τ (1)
μ = 5 and τ (2)

μ = 10 the ISI is 5.
As στ increases, the coherent spiking breaks down. Instead, networks can be

observed where different parts of the network spike with different ISIs. This effect
is particularly prominent in the case of a ring network, since in such a network
isolated subnetworks can easily arise, in which the delay distribution allows for per-
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(a) (d)

(b) (e)

(c) (f)

Fig. 6.11 Dynamics for a bimodal delay distribution in a regular ring with k = 2 for different στ :
a–c στ = 0.05; d–f στ = 0.08. a and d: time series of u0 (dark red) and v0 (light blue); b and
e: phase portraits of a single spiking node (u0, v0): trajectory (solid red) and u-nullcline (dashed
blue); c and e: spiking patterns. Mean delay times τ1 = 6, τ2 = 8. Other parameters as in Fig. 6.1.
Figure from Cakan et al. 2014. With kind permission of The European Physical Journal (EPJ) (color
figure online)

sistent spiking. Figure 6.11 shows exemplarily the dynamics in a regular ring network
for intermediate values of the distribution width (στ = 0.05 in panels (a), (b), (c),
στ = 0.08 in panels (d), (e), (f)). Panels (c) and (f) show the spiking patterns; each
dots marks the spiking of a node. For the lower στ value, shown in panel (c), a part of
the network (from about node 30 to node 45) exhibits partial amplitude death, while
the majority of the nodes keeps spiking, though in different subnetworks character-
ized by different ISIs. For the higher value of στ , only a small subset of spiking nodes
persists. The time series of node 0 in panel (a) and its phase portrait in (b) show that
no longer all spikes have the same amplitude, but the amplitudes vary slightly in an
irregular fashion due to the coupling with other nodes with inhomogeneous delay
times. If στ is further increased, global amplitude death sets in.

How robust the network is towards increasing the peak widths, depends on the
topology and the mean delay times. If m and n in Eq. (6.5) are large, coherent spik-
ing is less robust, since the probability that spikes overlap constructively after a
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time nτ (1)
μ = mτ (2)

μ decreases. For example, in the case τ (1)
μ = 6 and τ (2)

μ = 8, n = 3
and m = 2, while τ (1)

μ = 5 and τ (2)
μ = 10 yield the combination n = 2 and m = 1,

explaining why the synchronized spiking collapses in Fig. 6.10a for smaller στ than
in Fig. 6.10b. The size of the interval of στ in which asynchronous spiking takes
place, depends on the topology. In regular rings the interval is considerably larger
(see Fig. 6.10c), because subnetwork synchronization, can occur as already observed
in unimodal delay distributions. This subnetwork synchronization causes ISIs differ-
ent than the ones predicted using Eq. (6.4) while the spiking can still remain regular.
In random networks (not shown here), the interval shrinks to zero as no regularity is
left in the topology.

6.2 Cluster States in Chemical Oscillators

In this section, I will discuss experiments on chemical oscillators, which can, in
certain regimes of operation, be mathematically described by simple models like
Kuramoto phase oscillators or Stuart-Landau oscillators. Choe et al. (2010) derived
stability and existence criteria for cluster states in delay-coupled Stuart-Landau oscil-
lators as has been recapitulated in Sect. 5.2. Their results suggest that such states
might also be observable in coupled chemical oscillators. This section discusses the
application of their theory to cluster states in chemical oscillators and is based on
(Blaha et al. 2013).

In regimes where the oscillators are not well described by the Stuart-Landau
oscillator with a linear coupling but are of relaxational type an extension of this
theory is needed which will be discussed in Sect. 6.2.3.

6.2.1 Experimental Setup

The experiments were carried out by Karen Blaha in the group of John Hudson.
They were performed in an electrochemical cell consisting of four 1 mm diame-
ter nickel working electrodes (99.98 % pure), a Platinum mesh counter electrode,
and Hg/Hg2SO4/K2SO4 (sat) reference electrode, with a 3M H2SO4 electrolyte; see
Fig. 6.12a. The cell is enclosed in a jacketed glass vessel maintained at a tempera-
ture of 11 ◦C. The working electrodes are the network nodes and are coupled in a
unidirectional ring. A resistor, Rp = 650 �, is attached to each of the electrodes.
An ACM Instruments multi-channel potentiostat is used to keep the potentials V0 of
the electrodes such that they undergo transpassive dissolution. The resulting elec-
trodissolution currents are measured at 250 Hz using zero resistance amperemeters
(ZRAs) attached to a real time data acquisition system.

In the transpassive state, Vo is sufficiently high that the nickel ions are capable of
penetrating the oxide layer accumulated at the electrode (Cioffi et al. 2011; Blaha

http://dx.doi.org/10.1007/978-3-319-25115-8_5
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(a)

(b) (c)

Fig. 6.12 Experimental set up and time series of electrochemical oscillations. a Experimental
apparatus with multi-channel addressable feedback, Rp is the channel resistance of 650 �. ZRA:
zero resistance amperemeter. b Electrochemical dissolution time series showing smooth oscillators
at a potential of V0 = 1.105 V. c Time series of relaxation oscillators at V0 = 1.2 V. Figure from
Blaha et al. 2013. Copyright (2013) by The American Physical Society (APS)

2013). The transpassive state follows the passive state where V0 is high enough to
oxidize the electrode but too weak to enable nickel ions to overcome this oxide layer;
thus, in the passive state the current is zero, while it grows approximately linearly
with V0 in the transpassive state if no resistor is attached. The active state precedes
the passive state; here V0 is too low for oxidation. The transpassive state of nickel
electrodissolution is known for its rich nonlinear dynamics (Cioffi et al. 2011). Here,
parameters are chosen such that the attached resistors induce oscillations in I j via a
Hopf bifurcation (Haim et al. 1992).

This Hopf bifurcation occurs at approximately V0 ≈ 1.05 V. Closely above the
Hopf bifurcation the oscillators’ phase dynamics can be modeled as sinusoidal
oscillations (Kiss et al. 2005), even though the time series is not perfectly sinusoidal
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(see Fig. 6.12c). Thus, depending on the choice of applied voltage two different
operating regimes can be distinguished in the uncoupled nodes:

(i) Low voltages induce nearly-harmonic oscillations (for a time series see
Fig. 6.12b), which can be modeled by Stuart-Landau oscillators.

(ii) For high voltages the oscillations exhibit higher harmonics as can be seen in the
time series in Fig. 6.12c and the Stuart-Landau oscillator with linear coupling
fails as a good model.

We will use the terms (i) smooth and (ii) relaxation oscillations to distinguish these
two regimes and will discuss the application of the theory to each oscillation type in
Sects. 6.2.2 and 6.2.3, respectively.

Four oscillators with similar frequencies are selected from an array of 64 oscilla-
tors. Interactions are introduced via the using real-time coupling of the form

Vj (t) = V0 + δVj (t), (6.6)

where δVj are the changes in the circuit potentials of the j th element due to the
feedback. These feedback voltages are given by

δVj (t) = K
N∑

n=1

G jn

[
Vn(t − τ) − Rp În(t − τ)

]
, (6.7)

where Rp = 650 � is the channel resistance, K is the fixed overall coupling gain, and
τ denotes the coupling time delay, which is realized by the real-time data acquisition
system combined with the multi-channel potentiostat. G is the coupling matrix, i.e., in
the following a unidirectional ring, i.e.,Gi j = δ(i+1) mod N , j ; see also Eq. (2.16). This
coupling scheme is implemented via the multi-channel potentiostat (see Fig. 6.12).
În are the normalized currents measured by the ZRAs and calculated as

În(t) = I max
j

〈I max
i 〉i

(I j (t) − 〈I j 〉t ), (6.8)

where I max
j is the amplitude of oscillator j and 〈I max

i 〉i is the mean amplitude of all
oscillators. 〈I j 〉t is the time average of the j th channel (Blaha 2013).

6.2.2 Smooth Oscillations

In this subsection, we discuss to what extent the theory of Choe et al. (2010) (see
Sect. 5.2) can predict the experimental results in the smooth regime.

http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_5
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As a model for the smooth oscillations, we use the Stuart-Landau oscillator with
a real- valued coupling strength. For a unidirectional ring, the equations are given by

ż j = [λ + iω − |z j |2]z j + K z( j+1) mod N ,τ , (6.9)

where z j ∈ C. λ and ω are the bifurcation parameter and the frequency of an uncou-
pled (K = 0) node, respectively; see also Eq. (5.46) and its description. Note that we
here use—in contrast to Choe et al. (2010) and in Sect. 5.2—a non-diffusion like cou-
pling. There, the coupling term reads z j+1(t − τ) − z j instead of just z j+1(t − τ).
Nevertheless, this alters the involved equations only slightly such that we only have
to adapt the analysis of Choe et al. (2010) at a few points. Equation (6.9) can be
rewritten in amplitude and phase variables with r j = |z j | and ϕ j = arg(z j ):

ṙ j (t) = [
λ − r2

j

]
r j + Kr( j+1) mod N ,τ cos

(
ϕ( j+1) mod N ,τ − ϕ j

)
,

ϕ̇ j (t) = ω + K
r( j+1) mod N ,τ

r j
sin

(+ϕ( j+1) mod N ,τ − ϕ j
)
, (6.10)

where i = 0, . . . , N − 1.
We calculate the dynamical variables (amplitudes r j and phases ϕ j ) from the

ZRAs’ experimental measurement of the electrodissolution current of each oscillator;
see Fig. 6.12. From these currents, the phase of each oscillator is found by peak-to-
peak linear interpolation, where the peak is defined as 0 or 2π (Rusin et al. 2010).
From the phases, we can then calculate the average frequencies of the oscillators.
The amplitudes are measured as half of the difference between the peak and trough
value of the electrodissolution current, giving one data point per period.

The parameters λ and ω of the theoretical model can be identified by the dynamics
of a single uncoupled oscillator (see Fig. 6.12b, c): λ = √

r , where r is the amplitude
of the uncoupled oscillations, while ω = 2π/T , where T is the period of its oscilla-
tion. In the experiments, the oscillators have slightly different frequencies; we, thus,
use for ω the average frequency, i.e., ω = 〈ω j 〉.

For the experiment, the four electrodes were held at a voltage of V0 = 1.105 V,
slightly above the Hopf bifurcation. The four oscillators operate at ω0 = 3.424
± 0.063 rad/s,ω1 = 3.393 ± 0.069 rad/s,ω2 = 3.418 ± 0.063 rad/s, andω3 = 3.456
± 0.057 rad/s meaning that the nodes are slightly non-identical. The frequency range
is due to the slow drift of the natural frequencies of the oscillators.

We now want to predict the occurrence of cluster states in dependence upon τ .
The primary states which we discuss in this section are described by

r j = r0,m,

ϕ j = �mt + 2πm

N
j, j = 0, . . . , N − 1. (6.11)

http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_5
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Thus, these states are characterized by equal radii and equal phase differences. This
is in contrast to the secondary states which we will investigate in Sects. 6.2.3 and
6.2.4.

The integer m = 0, . . . , N − 1 labels the specific states: In the case of four nodes,
m = 0 corresponds to zero-lag synchronization, m = 1 is the splay state, m = 2 the
2-cluster state, while m = 3 labels the reverse splay state (see the lower panels
of Fig. 6.14 for a schematic depiction). Applying this notion to Eq. (6.10) yields
the following set of transcendental equations for the collective amplitude r0,m and
frequency �m of the m-state:

r2
0,m = λ + K cos �m, (6.12a)

�m = ω + K sin �m, (6.12b)

where �m = 2πm/N − �mτ .
The Floquet exponents describing the time evolution of a small perturbation from

the synchronized periodic state (6.11) are given by the eigenvalues � of the charac-
teristic equation

det
{
J0,m − �I2 + K

( − 1 + e2ikπ/N−�τ
)
Rm

} = 0, (6.13)

where IN is N × N identity matrix ,

Rm =
(

cos �m − sin �m

sin �m cos �m

)
, (6.14)

and the Jacobian of the local dynamics is given by

J0,m =
(−2r2

0,m 0
0 0

)
. (6.15)

If for all k = 0, . . . , N − 1 all Floquet exponents (except the one relating to the
Goldstone mode) have a negative real part, the cluster state with index m will be
stable.

Figure 6.13 depicts the measured and numerically calculated stable states of the
compound system depending upon the time delay in panels (a) and (b), respectively. In
Fig. 6.13b, the lines are calculated from Eq. (6.12) where we only consider solutions
which are stable according to Eq. (6.13). The points are based on solution continuation
of Eq. (6.10) using DDE- BIFTOOL. In order to resolve the multistability present in
the coupled system we slowly increase the time delay (shown by arrows in Fig. 6.13a)
up to τ = 1.25 × (2π/ω) at which point we perform a down-ramping. During the
up-sweep, τ is increased from 0.80 × (2π/ω) to 1.25 × (2π/ω) in increments of
0.05 × (2π/ω). The system is allowed to reach a stationary state at each value of τ .
The qualitatively different states are marked by the following symbols: red squares
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Fig. 6.13 Collective frequency �m versus the time delay τ for the smooth oscillations. Red squares,
blue triangles, and green circles represent a reverse splay state, an in-phase state, and a splay state,
respectively. a Experimental data, V0 = 1.105 V, K = 0.15. The arrows indicate an increase or
decrease of τ during the measurement. b Solution continuation of Eq. (6.10) usingDDE- BIFTOOL
(symbols) and stable solutions of Eq. (6.12) (lines) where the stability is calculated according to
Eq. (6.13). Parameters: λ = 1.1025, ω = 3.4228, K = 0.3, N = 4. Figure from Blaha et al. 2013.
Copyright (2013) by The American Physical Society (APS) (color figure online)

represent the reverse splay state, blue triangles represent the in-phase state, and green
circles represent the splay state.

We start at τ = 0.8 × (2π/ω) with a reverse splay state, which is characterized
by a phase difference of 3π/2 between two subsequent oscillators. Increasing to
τ = 0.95 × (2π/ω), we obtain in-phase synchronization with ϕ0 = ϕ1 = ϕ2 = ϕ3.
For larger τ values, the system exhibits a splay state.

During the down-sweep, the time delay is decremented by 0.05 × (2π/ω) until
τ = 0.75 × (2π/ω). We observe the same states in the down-sweep as the up-sweep.
If no cluster transition occurs, the change in frequency is continuous (as expected
from Eq. (6.12)), while at a cluster transition it abruptly jumps to a lower value.
The system maintains the splay state until transitioning to the in-phase cluster state
and then the reverse splay state. The transitions are also shown by arrows for the
up- and down-sweep. Note that they occur at different time delays depending upon
the direction of the time delay sweep. The coexistence of several cluster states at
a given value of τ demonstrates hysteresis. In Fig. 6.13a showing the experimental
data, the triangles representing the in-phase cluster state are slightly nonidentical
near τ = 1 × (2π/ω); this is due to drift in the natural frequencies during the course
of the experiment.

Figure 6.14a–d illustrate the qualitative differences between the cluster states
seen in Fig. 6.13. Below the time series, corresponding schematic diagrams are also
depicted. Note that the 2-cluster state (Fig. 6.14b) does not occur in the range of τ

shown in Fig. 6.13.
In conclusion, the cluster states and hysteresis observed in the experiments can

be modeled by the Stuart-Landau oscillator as given in Eq. (6.10). The numerical
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Fig. 6.14 Experimental time series (top) and schematic diagram (bottom) of an a in-phase state,
b a 2-cluster state, c a reverse splay state, and d a splay state as shown in Fig. 6.13a. The schematics
show phase relations between oscillators on the phase ring. Oscillator colors in the schematic
correspond to the colors in the times series: ϕ0 is shown in blue, ϕ1 is black, ϕ2 is red, and ϕ3
is green. Parameters: V0 = 1.105 V, K = 0.15; time delays: a τ = 1.05 × 2π/ω, b 0.5 × 2π/ω,
c 1.2 × 2π/ω, and d 0.8 × 2π/ω with ω = 3.4228 rad/s. Figure from Blaha et al. 2013. Copyright
(2013) by The American Physical Society (APS) (colour figure online)

results, including simulations as well as path continuation using DDE- BIFTOOL
(Engelborghs et al. 2001, 2002), shown in Fig. 6.13b closely match the experimen-
tal results. The only discrepancy seen is that the branches of each cluster state in
the experiments seem to be stable for a shorter range of τ , leading to an earlier
jump to another cluster state. This is probably due to experimental noise and small
heterogeneities in the oscillators’ parameters.
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6.2.3 Relaxation Oscillations

If the voltage is increased to V0 = 1.2 V, the profile of the oscillations deforms from a
smooth to a strongly nonlinear relaxation oscillation. A nonlinear time transformation
can be used to map the relaxation oscillations back to the smooth model such that the
Stuart-Landau model can still be employed for a theoretical description. However,
this nonlinear time transformation will also affect the coupling, which no longer can
be assumed to be smooth. Instead we rewrite Eq. (6.10) in a more general form

ṙ j = (λ − r2
j )r j + Kr j+1(t − τ)Hr (ϕ j+1(t − τ) − ϕ j (t)), (6.16a)

ϕ̇ j = ω + K
r j+1(t − τ)

r j
Hϕ(ϕ j+1(t − τ) − ϕ j (t)), (6.16b)

where Hr and Hϕ are coupling functions, also called interaction functions, which
can be obtained experimentally. For details of the corresponding experiment see
Blaha et al. (2013).

Figure 6.15 shows the experimentally measured interaction functions Hr and Hϕ

for the low voltage V0 = 1.105 V in panels (a) and (c) and for the higher voltage
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Fig. 6.15 Phase interaction function Hϕ in panels (a) and (b) for V0 = 1.105 V and V0 = 1.2 V,
respectively; radial interaction function Hr in panels (c) and (d) for V0 = 1.105 V and V0 = 1.2 V,
respectively. Experimentally obtained data is shown as red dots. A 5-term Fourier fit from evenly
sampled data is shown by the black curve. Figure from Blaha et al. 2013. Copyright (2013) by The
American Physical Society (APS) (color figure online)
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V0 = 1.2 V in panels (b) and (d). The black curve is a 5th-order Fourier fit from
evenly sampled data. For V0 = 1.105 V (panels (a) and (c)), the radial interaction
function remains approximately constant and the phase interaction function exhibits
a sinusoidal shape. Thus, we have Hϕ(
ϕ) = sin(
ϕ) as considered in Eq. (6.10).

At this point, we also see a possible cause for the difference between Fig. 6.13a, b.
The frequencies calculated from Eq. (6.11) rely on the use of an appropriate phase
interaction function. The radial interaction function does not influence the frequen-
cies, but it does influence the stability of the particular state according to Eq. (6.13).
In Eqs. (6.11) and (6.13), we used a cosine for the radial interactions while in the
experiment the radial coupling is approximately constant as just discussed. The lack
of an appropriate radial interaction function might explain the difference between
the stability of the states shown in Fig. 6.13a, b.

For V0 = 1.2 V, both interaction functions have a more complex structure. In order
to take their complex shapes into account in our theory, we approximate Hr and Hϕ

by the Fourier series. Thus, Eq. (6.16a) reads:

ṙ j = (
λ − r2

j

)
r j + K

N−1∑
n=0

a jnrn,τ

{ 5∑
l=0

al,r cos
[
l(ϕn,τ − ϕ j )

]

+ bl,r sin
[
l(ϕn,τ − ϕ j )

] }
, (6.17a)

ϕ̇ j = ω + K
N−1∑
n=0

a jn
rn,τ

rn

{
5∑

l=0

al,ϕ cos
[
l(ϕn,τ ) − ϕ j )

] + bl,ϕ sin
[
l(ϕn,τ − ϕ j )

]}
,

(6.17b)

where the Fourier coefficients al,r , bl,r , al,ϕ , and bl,ϕ are determined by a fit to
the experimentally obtained interaction functions Hr and Hϕ . The coefficients are
given in Table 6.1. They are normalized such that max|Hϕ| = 1. Thus, the coupling
strength K still represents the overall coupling strength. An extension of the theory of
Choe et al. (2010) to system (6.17) will be given in Sect. 6.2.4. In the remaining part
of this section the dependency of the frequency upon the delay time is investigated
experimentally and with the help of DDE- BIFTOOL.

The oscillators for these experiments now have a different mean intrinsic fre-
quency than in Sect. 6.2.2. For the experiment yielding the results seen in Fig. 6.16
the four oscillators operate at ω0 = 2.421 ± 0.068 rad/s, ω1 = 2.445 ± 0.088 rad/s,
ω2 = 2.407 ± 0.069 rad/s, and ω3 = 2.449 ± 0.112 rad/s.

The relaxation oscillators exhibit more complicated cluster and hysteresis behav-
ior as depicted in Fig. 6.16a, b for experimental and numerical data, respectively.
For the latter we use the continuation software DDE- BIFTOOL similar to the case
of smooth oscillators. The lines in Fig. 6.16b will be explained in Sect. 6.2.4. The
states detected with DDE- BIFTOOL agree very well with the experimental results
in Fig. 6.16a, where the black arrow marks the starting configuration. Note that only
stable solutions relevant to the experimental results are shown. For the compari-
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Table 6.1 Fourier
coefficients of the coupling
function used in Eq. (6.17)

Radial interaction function

a1,r = −0.97948, b1,r = −1.82354

a2,r = 0.36110, b2,r = −0.07963

a3,r = 0.29724, b3,r = 0.54854

a4,r = 0.05846, b4,r = 0.09098

a5,r = −0.11558, b5,r = −0.09251

a0,r = 0.45579

Angular interaction function

a1,ϕ = −0.00610, b1,ϕ = 0.31622

a2,ϕ = −0.35811, b2,ϕ = 0.29020

a3,ϕ = −0.25341, b3,ϕ = −0.05585

a4,ϕ = −0.13541, b4,ϕ = 0.00799

a5,ϕ = −0.07183, b5,ϕ = 0.00425

a0,ϕ = 0

(a) (b)

Fig. 6.16 Dynamics in dependence on the time delay τ for the relaxation oscillations. a Experi-
mental data, V0 = 1.2 V, K = 0.10. The starting state is marked by a black arrow. The increasing
and decreasing of τ during the experiment is shown with arrows. b Solutions of Eq. (6.17) using
the continuation tool DDE- BIFTOOL (markers) and stable solutions of Eq. (6.19) (lines) where
the stability is given by Eq. (6.25). In-phase, 2-cluster, compressed splay, reverse splay, compressed
reverse splay and open 2-cluster states are represented by upward-triangles, diamonds, open circles,
squares, open squares and downward-triangles, respectively. The interaction functions Hr and Hϕ

are chosen as in Eq. (6.17) and Table 6.1. Parameters: λ = 2.890, K = 0.189 and ω = 2.430. Figure
from Blaha et al. 2013. Copyright (2013) by The American Physical Society (APS) (color figure
online)

son between Fig. 6.16a, b, it must also be noted that while the natural frequency ω

varies slowly during the experiments due to drift, it is kept constant in the numeri-
cal calculations. A sequence of different cluster states occurs as the time delay τ is
increased or decreased. The primary states discussed earlier in Fig. 6.14, (in-phase,
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2-cluster, reverse splay and splay states) are also present in the case of the relaxational
oscillators. However, in the current regime of operation additional qualitatively dif-
ferent states are possible, which we will refer to as secondary states.

To illustrate the secondary states, Fig. 6.17 shows several experimental time series
and corresponding schematic diagrams. Figure 6.17a depicts a compressed splay
state. As in the splay state, ϕ3 − ϕ2 = ϕ2 − ϕ1 = ϕ1 − ϕ0, but these phase differences
(marked by x in the schematic diagram) are different from a multiple of π/2. Recall
that in the case of the primary states the phase differences between the clusters are
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Fig. 6.17 Experimental time series (top) and schematic diagram (bottom) of secondary states:
a a compressed splay state, b a reverse compressed splay state, c an open 2-cluster state, d a
compressed 2-cluster state. Parameters: V0 = 1.2 V, K = 0.10; time delays: a τ = 1.11 × 2π/ω,
b 0.82 × 2π/ω, c 0.59 × 2π/ω with ω = 2.43 rad/s as in Fig. 6.16 and d 0.68 × 2π/ω with
ω = 2.492 rad/s. Figure from Blaha et al. 2013. Copyright (2013) by The American Physical Society
(APS) (colour figure online)
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equal and given by 2π/M where M is the number of clusters. Thus, in the case of
a normal splay state the phase difference is π/2. Furthermore, there exists a reverse
compressed splay state as shown in Fig. 6.17b. Another secondary state is the open
2-cluster state displayed in Fig. 6.17c. For this state, the phase differences ϕ0 − ϕ2

and ϕ1 − ϕ3 are equal, but the phase differences ϕ3 − ϕ0 and ϕ2 − ϕ1 are non-equal.
Figure 6.17d shows a compressed 2-cluster state, when ϕ0 = ϕ2 and ϕ1 = ϕ3, but the
phase difference between the two clusters is no longer equal to π as it would be the
case in a normal 2-cluster state. This state can be found for the τ range depicted in
Fig. 6.16 but with a different starting configuration (not shown here).

6.2.4 Extended Theory

The experiments shown in the previous section for the relaxation oscillators motivate
an extension of the theory of Choe et al. (2010) which was discussed in Sect. 5.2.
The extended theory includes the interaction functions with a high order of Fourier
coefficients and takes into account the existence of the secondary states. The sec-
ondary states can be obtained from Eq. (6.17) with the Fourier coefficients given in
Table 6.1, if we assume constant but non-equal radii and phase differences:

r j = const. ≡ r0, j ,

ϕ j = �t + 
ϕ j , (6.18)

with 
ϕ j ∈ R. Note that we use here a slightly different notation than in Sects. 5.2
and 6.2.2 by omitting the index m labeling the cluster type in the previous Sect. 5.2.
We do this for reasons of clarity because we now need the additional index j to take
into account that the nodes might have different radii or frequencies.

With the ansatz Eqs. (6.18), (6.16) yields the following conditions for the solutions

0 = (λ − r2
0, j )r0, j + Kr0, j+1c j

r , (6.19a)

� = ω + K
r0, j+1

r0, j
c j
ϕ, (6.19b)

where we used the abbreviation (i = r, ϕ)

c j
i ≡

L∑
l=1

{
al,i cos

[
l(
ϕ j+1 − 
ϕ j − �τ)

] + bl,i sin
[
l(
ϕ j+1 − 
ϕ j − �τ)

]}
. (6.20)

Equation (6.19) is an 8-dimensional (
ϕ0 = 0 without loss of generality) system of
transcendental equations which can be solved numerically. A variational equations

http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_5
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can be derived using the ansatz r j (t) = r0, j [1 + δr j (t)], ϕ j (t) = �t + 
ϕ j . Substi-
tuting this ansatz into Eq. (6.16) yields for the linear order of ξ j ≡ (δr j , δϕ j )

ξ̇ j = J jξ j + R jξ j+1(t − τ), (6.21)

with the matrices

J j =
⎛
⎝ λ − 3r2

0, j −Kr0, j+1d j
r

−K r0, j+1

r2
0, j

cϕ −K r0, j+1

r0, j
d j

ϕ

⎞
⎠ (6.22)

and

R j = K

(
c j

r r0, j+1d j
r

c j
ϕ/r0, j r0, j+1/r0, j d

j
ϕ

)
, (6.23)

using the abbreviation (i = r, ϕ)

d j
i ≡

L∑
l=1

{−al,i sin
[
l(
ϕ j+1 − 
ϕ j − �τ)

] + bl,i cos
[
l(
ϕ j+1 − 
ϕ j − �τ)

]}
.

(6.24)

Because of the unequal phase differences and radii the variational equation cannot be
block-diagonalized (cf. Sects. 3.2 and 5.2) and thus an MSF approach is infeasible.
However, the Floquet exponents � can be obtained from the transcendental equation

∣∣∣∣∣∣∣∣
J0 − �I2 R0e−�τ 0 0

0 J1 − �I2 R1e−�τ 0
0 0 J2 − �I2 R2e−�τ

R3e−�τ 0 0 J3 − �I2

∣∣∣∣∣∣∣∣
= 0. (6.25)

This transcendental equation follows from Eq. (6.21) when applying the approach
to solve linear delay differential equations discussed in the Appendix A. Solutions
of Eq. (6.19) that were found to be stable (� < 0) are plotted as lines in Fig. 6.16b.
As expected the lines perfectly agree with the points obtained by the analysis using
DDE- BIFTOOL. The disadvantage of this analytic method compared to using the
continuation software is that it is difficult to find all solutions of Eq. (6.19); i.e., in
Fig. 6.16b the secondary states were not found analytically but only with the help of
DDE- BIFTOOL. However, the analytic method gives further insight into the system,
making analysis easier.

6.3 Conclusion

In this chapter, I have discussed zero-lag synchronization and cluster synchroniza-
tion in the presence of heterogeneities. In the first section, the heterogeneities have
affected the delay times, while in the second section an experimental setup with

http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_5
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chemical oscillators has been investigated, in which the nodes are slightly non-
identical. Heterogeneities are typical for experimental situations and engineering
applications. Thus, the aim of this chapter has been to test and extend the applica-
bility of the theory developed for identical nodes and delay times in Chaps. 4 and 5
to more realistic situations characterized by a certain degree of heterogeneity.

Section 6.1 has explored heterogeneous delays in a network of delay-coupled
FitzHugh-Nagumo systems with a focus on the interplay between the delay hetero-
geneity and the network topology, where regular, small-world and random networks
have been considered.

First, a Gaussian delay distribution has been investigated. As anticipated, the
dynamics resemble closely the dynamics of a systems with a discrete delay time
if the standard deviation of the delay distribution is sufficiently small. Thus, such
networks can be described in good approximation by a discrete delay time equal to
the mean of the distribution which allows for further analysis, for example, using the
master stability function (MSF). By this means, it has been shown in Chap. 4 that
a network of FitzHugh-Nagumo systems with one discrete coupling delay stably
synchronizes in the presence of excitatory coupling and desynchronizes if a critical
number of inhibitory links is added.

For intermediate standard deviations, states might arise where the network still
fires but with reduced synchronicity meaning that the Kuramoto order parameter
drops below the value of 0.99 which we defined as the threshold for highly syn-
chronized networks. Dynamical scenarios with reduced synchrony include traveling
disruption patterns, subnetwork synchronization, or partial amplitude death. The
existence of these states depends on the topology; they require a certain degree of
regularity found in regular rings and to a lesser extent also in small-world networks.
In contrast, in random networks, i.e., in the absence of any regularity, such dynam-
ics is hardly found. If the width of the delay distribution becomes too large, global
amplitude death is induced.

Global amplitude death has first been observed by Ramirez-Pastor et al. (1998)
in delay-coupled Stuart-Landau oscillators, though the mechanism there is quite dif-
ferent from the one discussed here. Ramirez-Pastor et al. showed that an appropriate
choice of the delay time changes the stability of the fixed point and yields global
amplitude death. In contrast, FitzHugh-Nagumo is an excitable system. Thus, delay
in the coupling is needed to generate self-sustained oscillation with a period close to
the delay time (Panchuk et al. 2013). However, as we show, if the delay distribution
becomes too broad the delay cannot play this constructive role any longer.

The effect of heterogeneities in complex network has been previously studied by
other authors. Atay (2003b) showed that partial amplitude death can be invoked by
node heterogeneities in two coupled weakly nonlinear oscillators. Masoller and Atay
(2011) studied Gaussian and exponentially distributed delays in networks of logistic
maps. They also found synchronous oscillating dynamics for narrow delay distrib-
utions and amplitude death for wider distributions. However, the network topology
plays a different role; for logistic maps, subnetwork synchronization is possible in
random networks, while we see this dynamical behavior only in regular and (rarely)
in small-world networks.

http://dx.doi.org/10.1007/978-3-319-25115-8_4
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_4


6.3 Conclusion 123

Furthermore, two discrete delay times and bimodal delay distributions have been
discussed in Sect. 6.1. In the case of two discrete delay times resonance effects arise,
similar to the effects observed in small network motifs (Schöll et al. 2009; Panchuk
et al. 2013). In resonance, the network spikes coherently with an interspike interval
which is described by a simple linear relation.

Bimodal distributions are characterized by two dominant mean delay times, but
with a distribution of the delays around these two peaks with some widths. They
combine the features of the above discussed case of a distribution centered at a
mean delay and the presence of two discrete delay time and, thus, yield similar or
a combination of the already described effects. If the widths around the two mean
delays are small, the network behaves as in the case of two discrete delay times and
resonance effects play a major role. This is in analogy to the behavior we found
in the case of the Gaussian distribution with narrow width where the dynamics
closely resembled the ones of a network with a discrete delay time. If the widths of
the bimodal distributions increases, we see dynamical scenarios already present in
the case of unimodal distributions with intermediate width. In particular, in regular
networks and small-world networks we see that several subnetworks coexist which
spike with different interspike intervals. For large distribution widths, amplitude
death is the only dynamical state which we have found.

In conclusion, networks with narrow unimodal or bimodal delay distributions can
be well described by discrete delays, but as the width of the distribution increases,
topological features have to be taken into account as they can give rise to more
complex dynamics. In networks with broad distributions, spiking is not possible any
longer and initial excitations die out fast, leading to global amplitude death. This
behavior is similar to the case of only two coupled oscillators with distributed delay
in the coupling, where the regime of amplitude death increases with the width of the
delay kernel (Atay 2003a; Kyrychko et al. 2011, 2013). Large regular networks and to
some extent small-world networks are less prone to undergo global amplitude death,
since they allow more easily for stable subnetwork spiking or travelling disruptions.

Section 6.2 has investigated cluster synchronization in a ring network of chemical
oscillators. Depending upon the applied voltage two different operating regimes
can be distinguished: For low voltages the oscillations are smooth, while for higher
voltages the oscillations are of relaxational type. In the smooth regime, the common
frequency is well described by the theory of Choe et al. (2010). This is despite the fact
that Choe et al. developed their theory for identical nodes, while the oscillators in the
experiment are characterized by slightly different frequencies. For higher voltages
and relaxational dynamics, secondary states which are characterized by non-equal
phase lags between the different clusters are observed. To capture these states we
have extended the theory of Choe et al. by applying a coupling scheme which takes
higher harmonics into account. In this way, we have been able to approximate the
experimental interaction functions and include them into the theoretical model. This
yields numerical and analytical results that agree qualitatively and quantitatively
well with the experimental measurements in a parameter regime where the standard
Stuart-Landau model is no longer an appropriate model.
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In summary, this chapter has investigated zero-lag and cluster synchronization
in the presences heterogeneities in the delay times or nodes as commonly appear-
ing in experimental situations or applications. In both cases, it has showed that
for sufficiently small heterogeneities the dynamics are well predicted by the theory
introduced in Chaps. 4 and 5, which demonstrates the applicability of this theory in
real-world situations. Furthermore, the results of Sect. 6.2.4 show that the theory can
be extended, if necessary, to fit the more complicated situation met in an experiment.
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Adaptive Control of Synchronization



Chapter 7
Adaptive Control

In the first part of thesis, I have discussed the stability of zero-lag and cluster
synchronization in complex networks. The result of this stability analysis can be
used to control the coupled systems by choosing appropriate parameters. In this way,
stabilizing and selecting desired states is possible. However, under certain conditions
this strategy has several drawbacks:

• If there are model uncertainties, i.e., the system’s governing equations are not
fully known, a linear stability analysis is very difficult, if not impossible, so that
appropriate parameters cannot be determined.

• In networks, we often have to deal with a “zoo” of parameters: In addition to
the system and coupling parameters, topological parameters as, for example, the
probability of two nodes being connected in a random network, have a great influ-
ence. Finding a set of appropriate parameters to realize a certain target state is very
challenging under such conditions.

• In large networks, we often have to deal with multistability meaning that even if
we find an appropriate parameter set to stabilize our desired state we still might
end up in another state which is stable for the same parameter set.

• In experiments, parameters often drift, meaning that the parameters have to be
readjusted from time to time.

This leads us to adaptive control which is able to address all these issues and, in
particular, the last one. In an adaptively controlled system, parameters are constantly
tuned in order to reach the desired state. In this way, appropriate parameters can be
found automatically and followed if other parameters not under control drift. Under
certain circumstances, the adaptive control can even work around the multistability
of a system as the tuning of parameters induces additional degrees of freedom, as
will be shown in Chap. 10. By this means the stability of all states might change and
in the best case the multistability can be lifted in favor of the target states. However,
this is not always the case: In Chap. 9, it will be discussed that the adaptive control
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of just one parameter fails in large rings since it cannot deal with the increasing
multistability of such networks.

In this part, I will first discuss the adaptive control of generic uncoupled systems
like the unstable focus (see Chap. 8), before considering ring motifs and larger net-
works; see Chaps. 8 and 9, respectively. To design the adaptive control algorithms, I
use the speed-gradient (SG) method (Fradkov 1979, 2007), for which I will give a
brief recapitulation in the next section.

There are several other approaches to adaptive control of nonlinear systems in
the control literature (Krstic et al. 1995; Fradkov et al. 1999; Astolfi et al. 2008;
Selivanov et al. 2015). For the work presented in the following chapters, we have
chosen the speed-gradient method because it is simple and robust. In particular, in
the form used in this thesis, no knowledge about the system parameters and the local
system is needed. Here, “local system” refers to the system without control in the
case of uncoupled systems discussed in Chap. 8 or to one node without the coupling
term in the case of the networks discussed in Chaps. 9 and 10. Instead, it is sufficient
to know the form of the control or coupling term as will be shown in Sect. 7.1. In
Chaps. 8 and 9 it will be demonstrated that the SG method is able to deal with drifting
parameters, noise, different initial conditions, and heterogeneities of the nodes in a
network.

7.1 Speed-Gradient Method

Here, I review the SG method (Fradkov 1979, 2005, 2007; Fradkov et al. 1999) used
in the control of non-linear systems of the following form:

ż = F(z, u, t). (7.1)

z ∈ C
n is the state vector, u ∈ C

m an input (or control) variable, and F a nonlinear
function. We define a scalar goal function Q(z(t), t) so that

Q(z(t), t)

{= 0, if the goal is reached,
> 0, otherwise.

(7.2)

The speed (or rate) at which Q(z(t), t) is changing along trajectories of Eq. 7.1 is
given by Q̇ = ω(z, u, t) and can be calculated as follows:

ω(z, u, t) = ∂ Q(z, t)

∂t
+ [∇z Q(z, t)]TF(z, u, t). (7.3)

Then, the SG method changes the control vector u in the direction of the negative
gradient of ω(z, u, t) with respect to input variables:

du
dt

= −γ∇uω(z, u, t), (7.4)

where γ = γ T > 0 is a positive definite gain matrix.

http://dx.doi.org/10.1007/978-3-319-25115-8_8
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http://dx.doi.org/10.1007/978-3-319-25115-8_9
http://dx.doi.org/10.1007/978-3-319-25115-8_10
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The idea of this algorithm is the following: The term −∇uω(z, u, t) points to the
direction in which the value of Q̇ decreases with the highest speed. Therefore, if
one forces the control signal to “follow” this direction, the value of Q̇ will decrease
and finally be negative. As soon as Q̇ < 0, the goal function Q will decrease and
eventually tend to zero.

Note that I assumed that Q(z(t), t) is independent of u. The reason is that a goal
function which only relies on the state of the system is straight forward to construct,
while a goal function which also depends on the control variables requires an a priori
knowledge of the values of these variables that lead to successful control. However,
if these values were known, there would be no need to apply an adaptive control
algorithm. The main advantage of the SG method compared to standard gradient
methods is that it can be used for such goal functions because the speed ω(z, u, t)
depends on u even though the goal function Q(z(t), t) does not.

Depending on the control problem, the choice of appropriate values for the entries
of γ might be decisive. If the entries are small, the speed of convergence to the
goal state decreases. On the other hand, if their values become too big, undesirable
oscillations might appear. However, this is only a tendency. In some of the problems
considered in the next chapter, the control is successful for a wide range of values of
the entries of γ .

We now assume that F(z, u, t) in Eq. (7.1) consists of one part that depends on
u and one that does not, i.e., F(z, u, t) = F1(z, t) + F2(z, u, t). This allows us to
rewrite Eq. (7.4) as

du
dt

= −γ∇uω(z, u, t) = −γ∇u
{
[∇z Q(z, t)]T ∇uF2(z, u, t)

}
, (7.5)

meaning that we do not have to know the full system equations but only the part
dependent on u. This is particularly interesting for networks, where we often want
to control the coupling parameters, see Chap. 9, or the topology, see Chap. 10. In
this case it is sufficient to know the coupling term but one does not have know the
local dynamics of the nodes. The same applies to the adaptive form of time delayed
feedback control (TDFC), which is introduced in Chap. 8.

There exist different versions of analytic conditions guaranteeing that the control
goal Q(z(t), t) can be achieved in the system (7.1) with adaptation law (7.4); see
Fradkov (1979), Shiriaev and Fradkov (2000). The main condition is that a constant
value of the parameter u∗ has to exist ensuring attainability of the goal in the system

ż = F(z, u∗, t). (7.6)

Details can be found in the control related literature (Fradkov 1979; Shiriaev and
Fradkov 2000).

http://dx.doi.org/10.1007/978-3-319-25115-8_9
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7.2 Summary

In situations where parameters drift or are unknown, adaptive control methods can be
used to automatically find appropriate parameters. Furthermore, they can be applied
in situations where it is necessary to deal with a variety of different parameters such
that a systematic consideration of the system’s parameter dependency is impossible.
Then, the adaptation can be used to find a parameter set which realizes a desired
control goal.

A particularly simple and easy to apply control method is the speed gradient (SG)
method. To apply the SG method, a goal function is constructed which has a minimum
in the target state. The SG method minimizes the speed at which the goal function
changes along trajectories of the system. If the goal function is appropriately chosen,
its speed will become negative at some point in time, and, thus the goal function
decreases until the goal is reached.
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Chapter 8
Adaptive Time-Delayed Feedback Control

The previous chapter discussed the speed-gradient (SG) method as an easy and
straightforwardly applicable scheme for deriving adaptive controllers. Before apply-
ing the SG method in the control of networks, I discuss in this chapter its appli-
cation to uncoupled systems as a proof of principle of its wide applicability in the
control of systems with time delay and to discuss its strengths and weaknesses. In
particular, I show that the SG method can be used to turn time-delayed feedback
control (TDFC) and extended time-delayed feedback control (ETDFC) into an adap-
tive control scheme by tuning of the coupling strength. This scheme was developed
in Guzenko et al. (2008) and Lehnert et al. (2011).

This chapter is structured as follows: Sect. 8.1 is a recapitulation on standard
TDFC where standard will mean in the following without adaptation of parameters. In
Sects. 8.2 and 8.3 an adaptive controller based on the TDFC is developed and applied
in the stabilization of an unstable fixed point and an unstable periodic orbit embedded
in a chaotic attractor. Furthermore, the influences of noise and parameter drifts are
discussed. Section 8.4 is a conclusion summarizing the results and comparing them
to existing adaptive control schemes.

8.1 Time-Delayed Feedback Control

Since the seminal paper of Ott et al. (1990), chaos control is a central topic in the
theory of non-linear systems. A particular simple but efficient scheme to control
chaos, i.e., to stabilize unstable periodic orbits embedded in a strange attractor, was
suggested by Pyragas (1992), and is known as time-delayed feedback control (TDFC).
This method generates a feedback signal from the difference of the current state of the
system to its counterpart some time units τ in the past. TDFC has also been applied
in the control of unstable steady states (Ahlborn and Parlitz 2004; Rosenblum and
Pikovsky 2004; Hövel and Schöll 2005).
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The TDFC combines several advantages. For appropriate values of τ it is non-
invasive, meaning that the orbit or fixed point under control is stabilized but not
changed. Furthermore, the control scheme does not rely on a reference system or on
an a priori knowledge of the system itself. In its most simple version, it has only a
small number of control parameters, i.e., the feedback gain K and time delay τ . For
reviews on TDFC see Schöll and Schuster (2008), Grebogi (2010).

A generalization of the original Pyragas scheme, suggested by Socolar et al.
(1994), uses multiple time delays. This extended time-delayed feedback control
(ETDFC) introduces a memory parameter R, which serves as a weight of states
further in the past. Dahms et al. (2007) shows that this method is able to control
unstable fixed points for a larger range of parameters compared to the original TDFC
scheme. For reviews on TDFC and ETDFC see Schöll and Schuster (2008), Grebogi
(2010).

The choice of appropriate control parameter is crucial for the success of TDFC as
has been shown in Hövel and Schöll (2005), (Dahms et al., 2007). Adaptive methods
can be used to find these parameters and thus widen the applicability of TDFC which
is the aim of the following sections.

8.2 Stabilization of an Unstable Fixed Point

First, we will consider the stabilization of an unstable focus which is a generic model
as it arises in the linearization of a system with an unstable fixed point close to a
subcritical Hopf bifurcation. The uncontrolled unstable fixed point is given by

ẋ = λ x + ω y, (8.1a)

ẏ = −ω x + λ y, (8.1b)

whereλ andω are positive real numbers.λmay be viewed as the bifurcation parameter
governing the distance from the instability threshold, i.e., from the Hopf bifurcation,
and ω is the intrinsic eigenfrequency of the focus. As Eq. (8.1) is already linear, its
Jacobian A can simply be determined as

A =
(

λ ω

−ω λ

)
. (8.2)

The eigenvalues �0 of A are given by �0 = λ ± iω such that for λ > 0 and ω �= 0
the fixed point is an unstable focus. Applying TDFC in order to stabilize this fixed
point, Eq. (8.1) reads:

ẋ(t) = λ x(t) + ω y(t) − K [x(t) − x(t − τ)],
ẏ(t) = −ω x(t) + λ y(t) − K [y(t) − y(t − τ)], (8.3)



8.2 Stabilization of an Unstable Fixed Point 135

where the feedback gain K and the time delay τ are real numbers. Note that the feed-
back term vanishes if the fixed point (x∗, y∗) is stabilized since x∗(t − τ) = x∗(t)
and y∗(t − τ) = y∗(t) for all t , indicating the noninvasiveness of the TDFC method.

Since the control force applied to the i th component of the system involves only the
same component, this control scheme is called diagonal coupling (Beck et al. 2002)
and is suitable for an analytical treatment. Hövel and Schöll (2005) showed that in
the (K , τ )-plane tongues exist for which the fixed point can be stabilized, i.e., for
a given τ there is a K -interval for which the control is successful. In this interval
the real part Re � of the eigenvalue of the focus with standard TDFC is negative;
in Fig. 8.1 showing Re � as a function of K and τ negative Re � corresponds to
the blue region. In particular, the K -interval for successful control is largest for odd
multiples of half of the intrinsic period T0 ≡ 2π/ω, i.e., τ = (2n + 1)T0/2, n ∈ N,
while for even multipliers, i.e., τ = nT0, n ∈ N, the control fails for all values of K .
In the following, we assume that the value of τ is known and appropriately chosen.
The value of K will initially be zero; the adaptive controller will tune K such that
its final value is in the K -interval of successful control for the given τ value.

To obtain an adaptation algorithm for the feedback gain K according to the stan-
dard procedure of the speed-gradient method, the following the goal function or goal
function is chosen

Q(x, y, t) = 1

2

{
[x(t) − x(t − τ)]2 + [y(t) − y(t − τ)]2

}
. (8.4)

Successful control yields Q(x, y, t) → 0 as t → ∞. The speed-gradient algo-
rithm (7.4) with u = K is given by K̇ = −γ∇K ω(x, y, K , t), where ∇K denotes
∂/∂K and ω(x, y, K , t) = Q̇ is the rate of change of the goal function. For the
above goal function (8.4), we obtain:

Q̇ = [x(t) − x(t − τ)][ẋ(t) − ẋ(t − τ)] + [y(t) − y(t − τ))][ẏ(t) − ẏ(t − τ)].
(8.5)

The time derivatives of x and y are given by Eq. (8.3). Thus, the speed-gradient
method leads to the following equation for the feedback gain:

Fig. 8.1 Real part Re � of
the eigenvalue of the
unstable focus with standard
TDFC vs. K and τ . λ = 0.5,
ω = π . For the original
figure see Hövel (2009)
(color figure online)
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K̇ (t) = γ {[x(t) − x(t − τ)][x(t) − 2x(t − τ) + x(t − 2τ)]
+[y(t) − y(t − τ)][y(t) − 2y(t − τ) + y(t − 2τ)]}. (8.6)

Owing to homogeneity the right hand sides of Eqs. (8.3) and (8.6) and without
loss of generality the adaptation gain γ can be chosen as 1, because Eqs. (8.3) and
(8.6) can be rescaled by the transformation

x(t) −→ x(t)/
√

γ ,

y(t) −→ y(t)/
√

γ . (8.7)

Figure 8.2 depicts the time series of x and K according to Eqs. (8.3) and (8.6) for
different initial conditions x(0) ∈ [0.02, 0.5] in steps of 0.02 from light green to dark
blue and y(0) = 0. In all simulations x(t) = y(t) = 0 for t < 0 and K (t) = 0 for t ≤
2τ . Figure 8.2a shows that the adaptation algorithm works for a large range of initial
conditions. Naturally, for initial conditions close to the fixed point the goal is reached
faster. If the system starts initially too far from the fixed point (x(0) > 0.85, y(0) = 0)
the control fails (curves not shown). Note, however, that the basin of attraction
can be enlarged by increasing γ . In fact, due to the scaling, invariance (8.7), the
maximum value of |x(0)| that still leads to successful control is proportional to

√
γ .
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Fig. 8.2 Adaptive control of the fixed point: a Time series x(t) and b feedback gain K (t) for
different initial conditions: x(0) ∈ [0.02, 0.5] in steps of 0.02 (from light green to dark blue; in
panel (b) from top to bottom), y(0) = 0. Blue shaded region: K -interval of successful control for
TDFC. Parameters: λ = 0.5, ω = π , γ = 1, τ = 1. Figure from Lehnert et al. (2011). Copyright
(2011), American Institute of Physics (AIP) (color figure online)
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The K -interval for which standard TDFC is successful (as discussed above and
analytically calculated in Hövel and Schöll (2005)) is given by the blue shaded area.
As can be seen in Fig. 8.2b, the adaptive algorithm converges to some appropriate
value of K in this interval depending upon the initial conditions.

So far the value of τ optimal for TDFC and linked to the largest K -interval was
studied, i.e., τ = T0/2. However, as Fig. 8.3 demonstrates the adaptive algorithm
works for a range of τ , i.e., for any value of τ within the domain of stability of the
TDFC control (Hövel and Schöll 2005). Black circles depict the transient time tc after
which the control goal is reached in dependence on the time delay τ . We consider the
goal to be reached if the goal function Q becomes sufficiently small. The transient
time is defined by the bound 〈Q〉 ≡ ∫ tc

tc−2τ
Q(t ′)dt ′ < 2τ × 10−10. The dark purple

shaded regions correspond to the analytically obtained τ -intervals of TDFC control
(Hövel and Schöll 2005). Inside these intervals, tc has a finite value confirming that
the adaptive control scheme adjusts the feedback gain K to an appropriate value. For a
comparison with the transient time of TDFC see Hinz et al. (2011) where a power law
scaling tc ∼ (K − Kc)

−1 with respect to the fixed feedback gain K has been found
(here Kc corresponds to the boundaries of stability). The curves corresponding to
non-zero memory parameter R (crosses and squares) will be discussed below where
the speed-gradient method is applied to the ETDFC scheme.

Mathematically speaking, the goal of the control method is to change the sign of
the real part of the eigenvalue, leading to a decay of perturbations from the target
fixed point. For a thorough analysis of the stability of the fixed point, a linear stability
analysis for the system Eqs. (8.3) and (8.6) is performed. This system has the fixed
point (0, 0, K ∗) for any K ∗ = const . Linearization of Eqs. (8.3) and (8.6) around
the fixed point yields

100

1000

10000

0 1 2 3 4 5 6

t c

τ

Fig. 8.3 Transient time tc after which the control goal is reached in dependence on the delay time
τ for TDFC (black circles) and ETDFC with R = 0.35 (blue crosses), and R = 0.95 (red squares).
The dark purple, bright purple, and light red shaded regions denote the possible range of τ for
R = 0, 0.35, and 0.95, respectively. Parameters as in Fig. 8.2. Figure from Lehnert et al. (2011).
Copyright (2011), American Institute of Physics (AIP) (color figure online)
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δ ẋ(t) = λδx(t) + ωδy(t) − K [x(t) − x(t − τ)],
δ ẏ(t) = −ωδx(t) + λδy(t) − K [δy(t) − δy(t − τ)],
δ K̇ (t) = 0. (8.8)

Equation (8.8) is a linear delay differential equation and can be solved by considering
the roots of the corresponding transcendental eigenvalue equation as is discussed
in Appendix A. The transcendental equation is obtained by inserting the ansatz
δx, δy, δK ∝ exp(�t) into Eq. (8.8):

0 = det

⎡
⎣λ − K (1 − e−�τ ) − � ω 0

−ω λ − K (1 − e−�τ ) − � 0
0 0 −�

⎤
⎦ (8.9)

= −�[λ + ıω − K (1 − e−�τ ) − �][λ − ıω − K (1 − e−�τ ) − �], (8.10)

which can be solved numerically. Equation (8.9) equation is equal to the case of TDFC
control with constant feedback gain considered in Hövel and Schöll (2005) except
for the factor �. In other words, the adaptively controlled system has an additional
eigenvalue at � = 0. It results from the translation invariance of the system in the
direction of K on the fixed point line (0, 0, K ). This means that the K values found
in the case of the standard TDFC lead again to a stabilization of the fixed point. The
advantage of an adaptive controller is that an appropriate feedback gain is realized in
an automated way, i.e., without prior knowledge of the domain of stability, as long
as a stability domain exists for this value of τ .

8.2.1 Robustness Towards Noise and Drifting Parameters

As discussed at the beginning of Chap. 7, an additional advantage of an adaptive
control scheme is that it allows one to follow slow changes of the system parameters,
which are usually present in experimental situations. To test the ability of the here
presented adaptive control scheme to cope with such parameter drifts, λ is slowly
varied in the following way: λ(t) = 0.01 + 1.8 sin(0.001t). The result is illustrated
in Fig. 8.4. In Fig. 8.4a the region of stability of the standard TDFC in the (λ, K )-
plane (according to Hövel and Schöll (2005)) is marked by blue shading. We now
slowly increase λ from its initial value 0.01. K follows the change in such a way that
whenever the lower boundary of the stability region is crossed and the fixed point
becomes unstable, the adaptation algorithm adjusts K such that the stable region is
reentered. This creates a step-like trajectory in the (λ, K )-plane, which is depicted
as a red curve with an arrow. Finally, if λ is decreased again, K does not change
because it already has attained a value for which the control works in a broad λ-
interval resulting in a horizontal trajectory in the (λ, K )-plane. Figure 8.4b depicts
the corresponding time series of K (t) as a blue curve, and of the drifting parameter
λ(t) as a red curve, respectively.

http://dx.doi.org/10.1007/978-3-319-25115-8_7
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Fig. 8.4 Adaptive control of the fixed point for slowly drifting system parameter λ. a Adaptive
adjustment of K in the (λ, K )-plane. Blue shaded region: region of stability of the standard TDFC
control. Red line with arrow: adaptation of feedback gain K if λ is slowly changed (λ(t) = 0.01 +
1.8 sin(0.001t)) b Corresponding time series K (t) (blue solid line) and λ(t) (dashed red line). Other
parameters as in Fig. 8.2. Figure from Lehnert et al. (2011). Copyright (2011), American Institute
of Physics (AIP) (color figure online)

To test the robustness of the control algorithm, Gaussian white noise ξi (i = 1, 2)
with zero mean and unity variance (〈ξi (t)〉 = 0, 〈ξi (t)ξ j (t − t ′)〉 = δi jδ(t − t ′)) is
added to the system variables x and y:

ẋ(t) = λx(t) + ωy(t) − K (t)[x(t) − x(t − τ)] + Dξ1(t), (8.11a)

ẏ(t) = −ωx(t) + λy(t) − K (t)[y(t) − y(t − τ)] + Dξ2(t), (8.11b)

where D is the strength of the noise.
In Fig. 8.5a the ensemble average over 200 realizations, i.e., 〈x(t)〉 = 1/200

∑200
i=1

xi (t), for D = 0.1 (intermediate noise) is depicted as a red curve. The blue curve
exemplarily depicts one realization. The corresponding standard deviation σx(t) of
x(t) is shown as a green curve. The control is successful in all realizations: For large t
the mean 〈x(t)〉 approaches the fixed point value at zero; the small fluctuations visible
are due to the finite number of realizations. The standard deviation approaches a value
smaller than the standard deviation of the input noise.

This is further elaborated in Fig. 8.5b, which depicts the standard deviation σx at
t = 100 versus the noise strength D as green crosses. If D becomes too large the
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Fig. 8.5 Robustness to noise. a Solid red curve: ensemble average 〈x(t)〉 of 200 realizations; thin
blue curve: x(t) for one example trial; dashed green curve: corresponding standard deviation σx(t)
of x(t) for a fixed noise intensity D = 0.1. b Dashed green line: standard deviation σx(100) of
〈x(t = 100)〉; dashed dotted blue line: standard deviation of the input noise given by D; solid red
curve: asymptotic value K ∗ of the feedback gain. Parameters: γ = 0.001, x(0) = 0.05, y(0) = 0.
Other parameters as in Fig. 8.2. Figure from Lehnert et al. (2011). Copyright (2011), American
Institute of Physics (AIP) (color figure online)

standard deviation exceeds the one of the input noise indicated by the dashed blue
line. This is the case for D � 0.4. Then the control algorithm will generally fail
(time series not shown here): The oscillations of x(t) become larger with increas-
ing t . Accordingly, the standard deviation σx(t) increases with t indicating that the
dynamics is dominated by noise which forces at least some of the realizations to
diverge. The red curve in Fig. 8.5b depicts the asymptotic value K ∗ of the feedback
gain. For intermediate noise strength, an increased feedback gain K compensates
the influence of noise ensuring that the control is still successful. For too large D,
K increases to a value beyond the domain of stability and stabilization cannot be
achieved. In conclusion, the adaptive algorithm is quite robust to noise (the escape
rate is vanishingly small for D � 0.4) and only fails for large noise (D � 0.4).

Note that the method still works if the control term is added only to the x-
component. Then, using Q(x) = [x(t) − x(t − τ)]2/2 as a goal function leads to
qualitatively very similar results. This observation becomes relevant for experimen-
tal realizations of the time-delayed feedback control when only certain components
of the system under control are accessible for measurements (Flunkert and Schöll
2011).
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8.2.2 Extended Time-Delayed Feedback Control

Next, the ETDFC scheme is considered (Socolar et al. 1994):

Ẋ(t) = A X(t) − F(t), (8.12)

where X = (x, y) and A is given by Eq. (8.2). The ETDFC control force F can be
written as

F(t) = K
∞∑

n=0

Rn [X(t − nτ) − X(t − (n + 1)τ )] (8.13a)

= K

[
X(t) − (1 − R)

∞∑
n=1

Rn−1X(t − nτ)

]
(8.13b)

= K [X(t) − X(t − τ)] + RF(t − τ). (8.13c)

Here, R ∈ (−1, 1) is a memory parameter that takes into account those states that are
delayed by more than one time interval τ . Note that R = 0 recovers the TDFC control
scheme introduced by Pyragas (1992). The first form of the control force, Eq. (8.13a),
indicates the noninvasiveness of the ETDFC method because X∗(t − τ) = X∗(t)
if the fixed point is stabilized. The third form, Eq. (8.13c), is suited best for an
experimental implementation since it involves states further than τ in the past only
recursively.

To apply a speed-gradient adaptation algorithm for the feedback gain K , we follow
the same strategy as before and choose the goal function as Q(x) = [(x(t) − x(t −
τ))2 + (y(t) − y(t − τ))2]/2. Using again K̇ = −γ∇K Q̇, we obtain for a diagonal
control scheme

K̇ (t) = γ {[x(t) − x(t − τ)][(x(t) − 2x(t − τ) + x(t − 2τ)) + RSx (t − τ)]
+[y(t) − y(t − τ)][(y(t) − 2y(t − τ) + y(t − 2τ)) + RSy(t − τ)}

(8.14)

with the abbreviations

Sx (t) =
∞∑

n=0

Rn[x(t − nτ) − 2x(t − (n + 1)τ ) + x(t − (n + 2)τ )]

= [x(t) − 2x(t − τ) + x(t − 2τ)] + RSx (t − τ),

Sy(t) =
∞∑

n=0

Rn[y(t − nτ) − 2y(t − (n + 1)τ ) + y(t − (n + 2)τ )]

= [y(t) − 2y(t − τ) + y(t − 2τ)] + RSy(t − τ). (8.15)
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In Dahms et al. (2007) the domains of stability for which ETDFC works were
obtained analytically. The intervals of τ increase with R and are larger than in the
case of TDFC (R = 0).

Figure 8.3 depicts the transient time tc in dependence on τ for R = 0.35 and
R = 0.95 as blue crosses and red squares, respectively. The red and purple shaded
regions indicate the ranges of stability of τ of the standard ETDFC (Dahms et al.
2007). Close to the optimal values of τ , τ = T0/2(2n + 1), n ∈ N, tc is small, demon-
strating the efficiency of the adaptive algorithm. Towards the boundary of the domain
of stability, tc increases but remains finite. The control algorithm only fails very close
to the border of the intervals of τ . To summarize, the adaptive control algorithm for
ETDFC converges to appropriate values of K and stabilizes the fixed point even for
parameters where standard TDFC fails.

8.3 Stabilization of an Unstable Periodic Orbit
in the Rössler System

In this section, the adaptive TDFC is utilized in the stabilization of an unstable
periodic orbit of the Rössler system which is a paradigmatic model for chaotic sys-
tems. The system exhibits chaotic oscillations born via a cascade of period-doubling
bifurcations and is given by the following equations including the control term:

ẋ(t) = −y(t) − z(t) − K [x(t) − x(t − τ)], (8.16a)

ẏ(t) = x(t) + ay(t), (8.16b)

ż(t) = b + z(t)[x(t) − μ]. (8.16c)

In the following, the parameter values are fixed as a = 0.2, b = 0.2, and μ =
6.5 in the chaotic regime. Unstable periodic orbits with periods T1 ≈ 5.91679
(“period-1 orbit”) and T2 ≈ 11.82814 (“period-2 orbit”) are embedded in the chaotic
attractor. As shown in Balanov et al. (2005) by a bifurcation analysis, application of
TDFC with τ = T1 and 0.24 < K < 2.3 stabilizes the period-1 orbit, and it becomes
the only attractor of the system. In Just et al. (1997) it was predicted analytically by
a linear expansion that control using the standard TDFC can only be realized in a
finite range of the values of K : At the lower control boundary the limit cycle under-
goes a period-doubling bifurcation, and at the upper boundary a Hopf bifurcation
occurs generating a stable or an unstable torus from a limit cycle (Neimark–Sacker
bifurcation). Using the goal function

Q(x) = 1

2
[x(t) − x(t − τ)]2, (8.17)

the speed-gradient adaptation algorithm for K is obtained as in the previous section
(Guzenko et al. 2008):
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Fig. 8.6 Adaptive control of an unstable periodic orbit in the Rössler attractor Eq. (8.16). a Phase
portrait (after a transient time of 150 time units). b Time series of K (t) with adaptive control given
by Eq. (8.18) as dashed blue curve. The red solid curve shows the goal function Q. Parameters:
a = 0.2, b = 0.2, μ = 6.5, γ = 0.1, τ = 5.91679. Figure from Lehnert et al. (2011). Copyright
(2011), American Institute of Physics (AIP) (color figure online)

K̇ (t) = γ [x(t) − x(t − τ)][x(t) − 2x(t − τ) + x(t − 2τ)] (8.18)

with the initial value K (0) = 0. Figure 8.6a depicts the time series of a stabilized
orbit for a time delay τ = T1. Panel (b) shows that the adaptation algorithm converges
to an appropriate value of K and the goal function tends to zero.

Contrary to the previous case, it is not possible to set the adaptation gain γ to 1 by
rescaling the system but the value of γ is crucial for successful control. To explore
the role of γ , the fraction of realizations fc is determined where the control goal is
reached as a function of γ . The initial conditions are Gaussian distributions with the
mean 〈x(0)〉 = 〈y(0)〉 = 〈z(0)〉 = 0, respectively, and the standard deviations are
σx(0) = σy(0) = σz(0) = 1. It is assumed that the control goal is reached at time tc if
the following condition holds: 〈Q〉 ≡ ∫ tc

tc−2τ
Q(t ′)dt ′ < 0.002τ .

Figure 8.7 depicts fc(γ ) (red circles) and tc(γ ) (blue crosses) demonstrating that
the optimal adaptation gain is around γ = 0.26. For γ close to this value, the algo-
rithm converges fast and reliably. Accordingly, the standard deviation of tc is small.

This demonstrates that for appropriate values of γ , the chaotic dynamics can be
controlled.
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8.4 Conclusion

In summary, the SG-method can be used to extent TDFC and ETDFC to an adaptive
controller. We have demonstrated this adaptive TDFC by tuning the feedback gain
in the stabilization of an unstable focus in a generic model and in the control of
an unstable periodic orbit embedded in a chaotic attractor. The method is robust to
different initial conditions and noise. Adaptive method may especially be useful for
systems with unknown or slowly changing parameters where the domains of stability
in parameter space are unknown. As shown by a simulation with a drifting bifurcation
parameter λ, the adaptive TDFC is able to follow such slow parameter drifts.

Given the great interest in TDFC in the last two decades, several other adaptive
methods to tune the delay time (Kittel et al. 1995; Chen and Yu 1999; Herrmann
2001; Pyragas and Pyragas 2011) and/or the coupling strengths (Nakajima et al.
1997; Pyragas and Pyragas 2013; Lin et al. 2010; Selivanov et al. 2015) have been
developed. In Selivanov et al. (2012) we developed an alternative method to adapt the
coupling strength in an unstable focus with TDFC. Compared to method presented
in Sect. 8.2 this method has the advantage that it is globally stable which can be
shown analytically with the help of a Lyapunov–Krasovskii functional. However,
the calculation of the adaptation law requires advanced techniques as the discrete
Lyapunov functional approach (Gu et al. 2003). Furthermore, the system’s governing
equation have to be known.

In summary, the advantage of the scheme presented here is its simplicity. Neither
does it require the knowledge of the system’s governing equation (Pyragas and Pyra-
gas 2013; Selivanov et al. 2015), nor does it involve averaging or integrating over
time series (Chen and Yu 1999; Pyragas and Pyragas 2011).

Note, however, that the adaptive controller presented here finds—dependent on
initial conditions—any appropriate feedback gain but not necessarily the optimal one.
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For an adaptive method optimizing for speed of convergence to the periodic orbit or
fixed point see (Pyragas and Pyragas 2013). Similarly, Bick et al. (2012) suggest a
scheme for tuning control parameters in predictive feedback control (Polyak 2005)
to an optimal value.

We have studied the adaptation of the coupling strength in two other contexts:
In Guzenko et al. (2013a, b), we considered the control of network motifs of delay-
coupled chaotic Rössler systems. We showed that by simultaneously tuning the cou-
pling strength and the self-feedback strength, local stabilization of unstable periodic
orbits embedded in the Rössler attractors and global synchronization of these orbits is
possible at the same time. In Plotnikov et al. (2015), we demonstrated that the adap-
tive control of zero-lag synchronization in networks of coupled FitzHugh–Nagumo
systems with heterogeneous threshold parameters is feasible.
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Chapter 9
Adaptive Control of Cluster States
in Network Motifs

In the previous chapter, I have discussed the adaptive control of uncoupled systems
and have shown that the time-delayed feedback control (TDFC) can be turned into
an adaptive scheme with the help of the speed-gradient (SG) method. The aim of this
chapter is to develop an adaptive controller for network motifs. More specifically,
we want to control cluster synchronization in motifs of delay-coupled Stuart-Landau
oscillators. For this system, Choe et al. (2010) showed that the phaseβ of the complex
coupling strength σ = K exp(iβ) is a crucial parameter when stabilizing cluster
states. For a recapitulation of their results see Sect. 5.2. In Selivanov et al. (2012),
Schöll et al. (2012a, b), we developed an adaptive control of β with the goal to realize
a state with M-clusters separated by a phase lag of 2π/M . This chapter discusses
the results of the method and also its limitations in the case of larger networks. As
before, we apply the SG method (see Sect. 7.1) to construct the adaptive controller.

9.1 Phase of the Complex Coupling Strength

The complex coupling constant σ that arises from the complex state variables in
networks of Stuart-Landau oscillators consists of an amplitude K and a phase β.
Similar coupling phases arise naturally in systemswith all-optical coupling (Schikora
et al. 2006; Flunkert and Schöll 2007). Furthermore, they can be used to overcome the
odd-number limitation of time-delay feedback control (Fiedler et al. 2007; Schikora
et al. 2011) and to anticipate chaos synchronization (Pyragas and Pyragiene 2008).
In Choe et al. (2010, 2011), Dahms (2011), Choe et al. (2014a), it was shown that
the value of the coupling phase is a crucial control parameter in these systems, and
by adjusting this phase one can deliberately switch between different synchronous
oscillatory states of the network; see Sect. 5.2. In Choe et al. (2012), a rotation of the
feedback term, which is closely related to a non-zero coupling phase, has been used

© Springer International Publishing Switzerland 2016
J. Lehnert, Controlling Synchronization Patterns in Complex Networks,
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to stabilize unstable periodic orbits and steady states in coupled Lorenz systems.
Furthermore, a non-zero coupling phase can be used to obtain noninvasive control
in delayed feedback schemes with arbitrary delays (Choe et al. 2014b).

In order to find an appropriate value of the coupling phase to control cluster states
in the Stuart-Landau oscillators one could solve the transcendental characteristic
equation that involves the system parameters. However, in practice the exact values
of the system parameters are unknown, and analytical conditions can be derived only
for special values of the complex coupling phase. An efficient way to avoid these
limitations and to automatically find appropriate values of the coupling phase is the
use of adaptive control. In the following, we apply the SG to develop such an adaptive
control.

9.2 Goal Function for Cluster Synchronization

The most challenging part in applying the SG method is to find an appropriate goal
function. We suggested an appropriate goal function QM to control an M-cluster
state in Selivanov et al. (2012), Schöll et al. (2012b):

QM = 1 − fM(ϕ) + N 2

2

∑
p|M,1≤p<M

f p(ϕ), (9.1)

where p|M denotes that p is a factor of M . The function

fM(ϕ) = 1

N 2

N−1∑
j=0

eiMϕ j

N−1∑
k=0

e−iMϕk , (9.2)

where ϕ j is the phase of the j th oscillator, j = 0, . . . , N − 1, and ϕ ≡ (ϕ0, . . . ,

ϕN−1), is a generalization of the Kuramoto order parameter (Kuramoto 1984) (see
also Sect. 3.3) and approaches unity for an M-cluster state. Since fM = 1 not only
holds in the desired M-cluster state but also for all divisors p of M , a goal function
of the form QM = 1 − fM(ϕ) would also vanish if the system were in one of the
p-states. Therefore, the term

∑
p|M,1≤p<M f p(ϕ) was added in Eq. (9.1) as a penalty

term. Figure9.1 illustrates the impact of the penalty terms with the simple example
of the goal function for a network with two nodes: For zero-lag synchronization
no penalty term is needed as Q1 exhibits only the desired minimum ϕ0 = ϕ1 (see
panel (a), where the blue line marks the minimum). In contrast, 1 − f2(ϕ), i.e., the
goal function for antisynchronization but without a penalty term, has a minimum for
the antisychronized state |ϕ0 − ϕ1| = π but also for the zero-lag synchronized state
ϕ0 = ϕ1 (see panel (b)). This side minimum can be prevented by adding the penalty
term as shown in panel (c), where Q2 is depicted. The factor 1/N 2 in Eq. (9.2) has

http://dx.doi.org/10.1007/978-3-319-25115-8_3
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(a) (b) (c)

Fig. 9.1 Goal functions for cluster synchronization. a Goal function Q1 for zero-lag synchroniza-
tion. b Goal function 1 − f2(ϕ) for antisynchronization without penalty terms. c Goal function
Q2 for antisynchronization. Solid blue line 0-contour line, i.e., minimum of the depicted function.
N = 2 (color figure online)

been found to be a sensible choice in order to balance the desired minimum of the
goal function (9.1) against its side maxima introduced by the penalty terms.

The advantage of goal function (9.1) is that it does not a priori assign each node
to a cluster but that the ordering of nodes into clusters is a self organized process. As
a result, often nodes cluster together which are already initially close to each other
in phase space leading to a fast convergence of the control process. In Selivanov
et al. (2012) other goal functions were suggested which were also successful in the
stabilization of an M-cluster state. However, due to the just discussed advantage and
the fact that goal function (9.1) is the basis of further work on adaptive control which
I will present in Chap.10, I will focus on this function here.

9.3 Controlling an M-cluster State

In Eq. (5.45) in Sect. 5.2 a network of N delayed Stuart-Landau oscillators was intro-
duced

ż j = [λ j + iω j − |z j |2]z j + K eiβ
N−1∑
n=0

G jn(t)[zn,τ − z j (t)], (9.3)

where z j ∈ C is the state of the j th oscillator. ω j and λ j are the frequency and the
bifurcation parameter of the j th uncoupled node, respectively. In contrast to Sect. 5.2,
we consider here also nonidentical nodes. σ = K eiβ with K , β ∈ R is the complex
overall coupling strength, τ the delay time, and G the N × N coupling matrix (see
Sect. 2.3). Here and in the following, delayed variables are denoted by a lower index
τ , for example, z j (t − τ) ≡ z j,τ .

With r j = |z j | and ϕ j = arg(z j ), Eq. (9.3) can be rewritten in these amplitude and
phase variables

http://dx.doi.org/10.1007/978-3-319-25115-8_10
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_2
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ṙ j (t) = (
λ j − r2j

)
r j + K

N−1∑
n=0

G jn
[
rn,τ cos

(
β + ϕn,τ − ϕ j

) − r j cosβ
]
,

ϕ̇ j (t) = ω j + K
N−1∑
n=0

G jn

[
rn,τ

r j
sin

(
β + ϕn,τ − ϕ j

) − sin β

]
. (9.4)

The SG algorithm in the form of Eq. (7.4) reads (Selivanov et al. 2012)

β̇ = −γ
∑

j

∂ Q

∂ϕ j

∂ϕ̇ j

∂β

= −γ K
N−1∑
j=0

N−1∑
k=0

⎧⎨
⎩

∑
p|M,1≤p<M

p sin[p(ϕk − ϕ j )] − 2M

N 2
sin[M(ϕk − ϕ j )]

⎫⎬
⎭

×
N−1∑
n=0

G jn

[
rn,τ

r j
cos(β + ϕn,τ − ϕ j ) − cos(β)

]
, (9.5)

wherewe usedEq. (9.1) as a goal function and identifiedβ with the control variableu.
As we consider here the one dimensional case of Eq. (7.4) γ > 0 is a constant.

In the following, I will discuss as an example the control of a 3-cluster state.
Recall that an M-cluster state might, depending on M and N , correspond to several
different states with different m where the phase difference between neighboring
nodes is given by 2πm/N and M relates to m according to M = lcm(m, N )/m
(see Sect. 5.2); lcm stands for the least common multiple. Thus, the 3-cluster state
in a network of six nodes corresponds of the states m = 2 and m = 4. The adaptive
controller does not distinguish between the different states with the same M but
different m. So we anticipate that the system goes to either of these states depending
on the initial conditions.

Figure9.2 presents the results of a numerical simulation of system (9.3) with
adaptation law (9.5) for M = 3 and identical nodes. The topology is a unidirectional
ring (Gi, j = δ(i+1) mod N , j where δ is the Kronecker delta, see Sect. 2.3.1) with N =
6 nodes. The model parameters are chosen as in Choe et al. (2010), i.e., ω = 1,
λ = 0.1. In panel (a) it can be seen that the radii r j of all nodes converge after
about 40 time units. Panel (b) shows that the phase differences � j = ϕ j − ϕ j+1

approach 4π/3, which corresponds to a 3-cluster state with m = 2. Panel (c) depicts
the evolution of β. The blue dashed line represents the value of the coupling phase
βm=2 = 
m=2τ − 2π/3, for which stability was shown analytically in Choe et al.
(2010). It can be seen that the adaptively adjusted phase comes close to this value.
In other words, even without knowing the exact values of the system parameters,
the SG algorithm yields an adequate value of β that stabilizes the target state of
synchronization in a 3-cluster state. Panel (d) shows that the goal function (9.1)
indeed approaches zero.

So far we considered identical nodes. However, in experimental situations the
nodes are always at least slightly nonidentical. In the following we want to test the
robustness of our method towards such heterogeneities. For Fig. 9.3 we repeat our

http://dx.doi.org/10.1007/978-3-319-25115-8_7
http://dx.doi.org/10.1007/978-3-319-25115-8_7
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_2
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(a) (c)

(b) (d)

Fig. 9.2 Adaptive control of 3-cluster (m = 2, 4) state in a networkof 6nodes according toEq. (9.5).
aAbsolute values r j = ∣∣z j

∣∣.bPhasedifferences� j = ϕ j+1 − ϕ j ;blue dashed linephasedifference
� j = 4π/3 corresponding to a 3-cluster state with m = 2. c Temporal evolution of β; blue dashed
line β2 with 
2 = 1.03. d Goal function. K = 0.08, τ = 0.52π , N = 6, γ = 1, ωi=0,...,N−1 = 1,
λi=0,...,N−1 = 0.1. Figure reproduced from Selivanov et al. (2012)

(a)

(b)

(c)

(d)

Fig. 9.3 Same as in Fig. 9.2 but for nonidentical oscillators. Parameters λ j andω j are chosen from a
Gaussian distributionwith 1% standard deviation andmean values λ = 0.1 andω = 1, respectively.
Here: ω0 = 1.0192, ω1 = 1.0093, ω2 = 0.9780, ω3 = 0.9982, ω4 = 0.9799, ω5 = 0.9930, λ0 =
0.0988, λ1 = 0.1017, λ2 = 0.1004, λ3 = 0.09914, λ4 = 0.1008, λ5 = 0.1000. Figure reproduced
from Selivanov et al. (2012)

simulation, but chose the parameters λ j andω j from aGaussian distributionwith 1%
standard deviation. Obviously, the control is still successful; though the transient time
until the control goal is reached increases. Due to the heterogeneities of the nodes
small deviations of the phase differences � j = ϕ j − ϕ j+1 from the value 4π/3 and
of the goal function from the value 0, respectively, exist. Perfect synchronization can
only be expected for identical nodes because only in this case the cluster solution
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(a)

(b)

(c)

(d)

Fig. 9.4 Same as in Fig. 9.3 but for 5% standard deviation, i.e., ω0 = 0.9395, ω1 = 0.9288, ω2 =
1.0495, ω3 = 0.9796, ω4 = 1.0160, ω5 = 0.9909, λ0 = 0.0975, λ1 = 0.0956, λ2 = 0.1090, λ3 =
0.1018, λ4 = 0.0936, λ5 = 0.1147. Figure reproduced from Selivanov et al. (2012)

is an invariant manifold of system (9.3). If the heterogeneities are further increased,
i.e., λ j and ω j are drawn from a Gaussian distribution with 5% standard, the control
is still successful, however, the transient time further grows as shown in Fig. 9.4.
As expected, the deviations of � j = ϕ j − ϕ j+1 and Q from the values 4π/3 and 0,
respectively, increase as well but are still small enough to consider the control as
successful.

9.4 Linear Stability Analysis

In this section, a linear stability analysis is performed of system (9.4) with adaptation
law (9.5). The aim of this analysis is to understand the mechanism behind the control
of cluster states. The main question is whether the adaptation law tunes the value
of β to a value for which the system with or without adaption shows stable cluster
synchronization. The other possibility is that introducing the adaptation law changes
the system in such a way that cluster synchronization is now stable for values of β

for which it is unstable in the original system.
We linearize Eq. (9.4) with adaptation law (9.5) at the goal state

r j = r0,m,

ϕ j = 
mt + 2πm

N
j,

β = β∗, (9.6)

where β∗ is some appropriate value of β obtained by adaptation law (9.5).
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In the following, the linear stability analysis conducted by Choe et al. (2010)
is extended by including the additional degree of freedom the system has due
to the adaptation of β. A variational equations can be derived using the ansatz
r j (t) = r0[1 + δr j (t)], ϕ j (t) = 
t + j 2πm

N + δϕ j (t) and β(t) = β∗ + δβ(t). Sub-
stituting this ansatz in Eqs. (9.4) and (9.5) yields for the linear order of δr j and
δϕ j

( ˙δr j˙δϕ j

)
=

(−2r20 0
0 0

) (
δr j

δϕ j

)

− K

(∑
n G jn cos�

j
n −∑

n G jn sin�
j
n∑

n G jn sin�
j
n

∑
n G jn cos�

j
n

) (
δr j

δϕ j

)

+ K
∑

n

G jn

(
cos�

j
n − sin�

j
n

sin�
j
n cos�

j
n

) (
δrn(t − τ)

δϕn(t − τ)

)

+ K

(∑
n G jn(− sin�

j
n + sin β∗)∑

n G jn(cos�
j
n − cosβ∗)

)
δβ, (9.7)

where �
j
n = β∗ − 
τ + (n − j) 2πm

N , while for δ̇β we find

δ̇β = −γ K
N−1∑
j=0

N−1∑
k=0

⎧⎨
⎩

∑
p|M,1≤p<M

p2 cos

[
p(k − j)

2πm

N

]
− 2M2

N 2

⎫⎬
⎭

×
N−1∑
n=0

G jn
[
cos(� j

n) − cos(β∗)
]
(δϕk − δϕ j )

− γ K
N−1∑
j=0

N−1∑
k=0

⎧⎨
⎩

∑
p|M,1≤p<M

p sin

[
p(k − j)

2πm

N

]⎫⎬
⎭

×
N−1∑
n=0

G jn
{[
cos(� j

n) − cos(β∗)
]
(δrn,τ − δr j )

+ sin(� j
n)(δϕn,τ − δϕ j ) + [

sin(� j
n) − sin(β∗)

]
δβ

}
. (9.8)

Making use of
∑

k sin[p(k − j)2πm/N ] = 0 if 2pπm/N /∈ N, we obtain

δ̇β = −γ K
N−1∑
j=0

N−1∑
k=0

⎧⎨
⎩

∑
p|M,1≤p<M

p2 cos

[
p(k − j)

2πm

N

]
− 2M2

N 2

⎫⎬
⎭

×
N−1∑
n=0

G jn
[
cos(� j

n) − cos(β∗)
]
(δϕk − δϕ j ). (9.9)
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In the following, we want to apply the master stability approach to Eq. (9.7) to
separate the transversal from the longitudinal directions.As in the case of the standard
master stability function (MSF), wewrite the variational equations in amore compact
equation and, then, block diagonalize this equation; see Sect. 3.2 for the standardMSF
and Sect. 5.2 for the MSF for cluster states of the Stuart-Landau oscillator. We will
first study a general topology before considering a unidirectional ring. It will turn
out that for unidirectional ring topologies δβ can be treated as a constant. Therefore,
we do not include the variational equation for δβ in our compact equation.

Writing Eq. (9.7) in its compact version yields

ξ̇ j = J0ξ j − K� jξ j + K
∑

n

G jnRnjξ n(t − τ) + K b jδβ, (9.10)

where ξ j = (δr j , δϕ j ). J0 is the Jacobian describing the local dynamics

J0 =
(−2r20 0

0 0

)
. (9.11)

The matrices � and R and the vector b are given by

� j =
(∑

n G jn cos�
j
n −∑

n G jn sin�
j
n∑

n G jn sin�
j
n

∑
n G jn cos�

j
n

)
, (9.12)

Rnj =
(
cos�

j
n − sin�

j
n

sin�
j
n cos�

j
n

)
, (9.13)

and

b j =
(∑

n G jn[− sin�
j
n + sin β∗]∑

n G jn[cos�
j
n − cosβ∗]

)
, (9.14)

respectively.
Let us now assume that the topology is given by a unidirectional ring (Gi j =

δ(i+1) mod N , j , see Sect. 2.3.1). Then, Eq. (9.9) reads

δ̇β = −γ K
N−1∑
j=0

N−1∑
k=0

⎧⎨
⎩

∑
p|M,1≤p<M

p2 cos

[
p(k − j)

2πm

N

]
− 2M2

N 2

⎫⎬
⎭

× [
cos(�m) − cos(β∗)

]
(δϕk − δϕ j )

= 0, (9.15)

http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_2
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with �m = β∗ − 
τ + 2πm/N . For the last step we used
∑

k cos[p(k − j)
2πm/N ] = 0 if 2pπm/N /∈ N and

∑
k, j (δϕk − δϕ j ) = 0. From δ̇β = 0 follows

that δβ can be treated as constant.
Equation (9.10) reads for a unidirectional ring

ξ̇ = 1N ⊗ (J0 − K Rm)ξ + K (G ⊗ Rm)ξ(t − τ) + K e ⊗ bmδβ, (9.16)

where ξ = (ξ 0, . . . , ξ N−1), 1N is the N -dimensional identity matrix and e is an N -
dimensional vector with all entries equal to one, i.e., e = (1, . . . , 1). Rm is obtained
from Rnj by substituting Gi j = δ(i+1) mod N , j

Rm =
(
cos�m − sin�m

sin�m cos�m

)
. (9.17)

Analogously, the vector bm is obtained from b j

bm =
(− sin�m + sin β∗

cos�m − cosβ∗

)
. (9.18)

Equation (9.16) consists of 2N coupled variational equations. In the following, we
want to decouple these equations by block diagonalizing G which corresponds to the
derivation of a master stability equation (MSE); see Pecora and Carroll (1998) and
Sect. 3.2 for the standard procedure of driving a MSE. Let S be the matrix diagonal-
izing G, i.e., DG = SGS−1, where DG is a diagonal matrix with the eigenvalues of G
on its diagonal. In the case considered here of a unidirectional ring S−1 is given by

S−1
jn = exp

(
2π jni

N

)
, j, n = 0, . . . , N − 1, (9.19)

and S by

Sjn = 1

N
exp

(−2π jni

N

)
, j, n = 0, . . . , N − 1; (9.20)

see also Sect. 2.3.1 for the eigenvectors of a unidirectional ring. Note that we did not
normalize the columns of S−1. However, S−1S = 1N holds. This choice of S−1 leads
to a consistency of the longitudinal variational equation derived with the help of the
MSF with the variational equation directly obtained from Eq. (9.6) as will be shown
later.

Equation (9.16) can be block diagonalized with respect to the coupling matrix by
multiplication with the matrix S ⊗ 12 from the left yielding

˙̃
ξ = 1N ⊗ (J0 − K Rm)ξ̃ + K (DG ⊗ Rm)ξ̃(t − τ) + K S ⊗ 12e ⊗ bmδβ, (9.21)

http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_2
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with ξ̃ = S ⊗ 12ξ , where 12 is the 2-dimensional identity matrix. The first terms of
Eq. (9.21) have been rearranged according to the standard procedure of the MSF, for
details see Sect. 3.1. Applying rule (B.1) (see Appendix B) it follows

(S ⊗ 12)(e ⊗ bm) = (Se) ⊗ (12bm) = e1 ⊗ bm, (9.22)

where e1 = (1, 0, . . . , 0). For the last step, we used (Se) j = ∑
n S jn = ∑

n 1/
N exp(−2π jni/N ) = δ j0. Equation (9.21) consists of N decoupled variational equa-
tions of the form

ξ̇ k(t) = (
J0 − K Rm

)
ξ k(t) + KνkRmξ k(t − τ) + δk0K bmδβ, k = 0, . . . , N − 1,

(9.23)

where νk = e2ikπ/N , k = 0, . . . , N − 1, are the eigenvalues of the coupling matrix G
of the unidirectional ring as calculated in Sect. 2.3.1.

For k > 0, Eq. (9.23) is identical to the variational equation of the system without
adaptation as discussed by Choe et al. (2010). For k = 0 an additional term of the
form K bmδβ arises which acts as an inhomogeneity (recall that δ̇β = 0, thus, we
treat δβ as a constant). We substitute the ansatz

δr0 = c,

δϕ0 = δ
t, (9.24)

into Eq. (9.23) with k = 0 and ν0 = 1, where c, δ
 ∈ R are time independent con-
stants. This yields a particular solution of Eq. (9.23) of the form

δr0 = K

2r20,m
[(− sin�m + sin β∗)δβ + τ sin�mδ
],

δϕ0 = δ
t, (9.25)

where the constant δ
 is given by

δ
 = K (cos�m − cosβ∗)
1 + K τ cos�m

δβ. (9.26)

Recall that k = 0 corresponds to the longitudinal eigenvalue and, thus, to perturba-
tions in the synchronization manifold. Here, we find that a perturbation in β causes
a shift of δr0 and δ
 in the common radius r0,m and the common frequency 
m .
This is not surprising as the common radius and the common frequency depend on
β according to Eq. (5.48). Recall that Eq. (5.48) reads for the unidirectional ring

r20,m = λ − K cosβ + K cos�m,


m = ω − K sin β + K sin�m . (9.27)

http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_5
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If we insert the ansatz

r0,m(β) = r0,m(β∗)(1 + δr0),


(β) = 
(β∗) + δ
,

β = β∗ + δβ, (9.28)

into Eq. (9.27) and carry out a Taylor expansion to the first order in δr0, δ
, and δβ,
we recover Eqs. (9.25) and (9.26). Thus, the result obtained in Eq. (9.23) for k = 0
is consistent with previous results.

For k > 0, Eq. (9.23) has a solution of the form ξ k(t) = ξ k(t = 0) exp(�t)where
� is the transversal Floquet exponent which can be obtained from the transcendental
equation

0 = det [M − �I3]. (9.29)

M is defined as

M =
⎛
⎝−2r20 + K Qk cos�m −K Qk sin�m 0

K Qk sin�m K Qk cos�m 0
0 0 0

⎞
⎠ (9.30)

with Qk(�) = −1 + e−�τ+2π ik/N . We obtained Eq. (9.29) by substituting the ansatz
ξ k(t) = ξ k(t = 0) exp(�t) into Eqs. (9.15) and (9.23); see also the standard proce-
dure of solving linear delay differential equation in Appendix A. If follows that � is
given by

0 =
∣∣∣∣∣∣
−2r20 + K Qk(�) cos�m − � −K Qk(�) sin�m

K Qk(�) sin�m K Qk(�) cos�m − �

∣∣∣∣∣∣ (9.31)

or by

� = 0. (9.32)

Condition (9.31) is identical to the condition Choe et al. (2010) found for networks of
Stuart-Landau oscillators without adaptive control. � = 0 corresponds to a shift in
the β. Such a shift exists because Eq. (9.4) with adaption law (9.5) has a solution for
all values of β, i.e., a line of fixed points exists instead of a single fixed point. This is
equivalent to the situation we met in the case of the adaptive control of the coupling
strength of the focus in Chap. 8 (see Eq. (8.9) and its discussion). From � = 0, we
conclude that a change in β does not directly affect the stability of Eq. (9.4) with
adaption law (9.5) but indirectly because Eq. (9.31) depends on β via �m . Thus, the
stabilizing mechanism of our control method is that β is adapted to values where the
system with or without control is stable.

http://dx.doi.org/10.1007/978-3-319-25115-8_8
http://dx.doi.org/10.1007/978-3-319-25115-8_8


158 9 Adaptive Control of Cluster States in Network Motifs

(a) (b) (c) (d)

Fig. 9.5 Stability as a function of coupling strength K and delay τ for a m = 0 (M = 1, zero-
lag synchronization), b m = 1 (M = 4, splay state), c m = 2 (M = 2, antisynchronization), and
d m = 3 (M = 4, splay-states). In the white areas no solution of Eq. (9.27) with r20,m > 0 exists. In
all panels, β∗ = βm=2 according to Eq. (9.33), i.e., the β value which stabilizes the m = 2 state in
the whole (K , τ )-plane. ωi = 1, λi = 0.1, i = 0, . . . , N − 1. Other parameters as in Fig. 9.3 (color
figure online)

In the following, we want to use the stability criterion given by Eq. (9.31) to
discuss under which conditions we expect the adaptive control to work well. Prereq-
uisite for the success of the SG method is that a β∗ exists ensuring Q̇ = w(z0, . . . ,
zN−1, z0,τ , . . . , zN−1,τ , β

∗) < 0. This is the case if β∗ stabilizes only the desired
state. Otherwise, initial conditions close to one of the other stable states will cause
the system to approach this state; the condition Q̇ = w(z0, . . . , zN−1, z0,τ , . . . ,
zN−1,τ , β

∗) < 0 is violated and the control fails. Thus, the question arises whether
a β exists which ensures monostability. Choe et al. (2010) found that Eq. (9.31) has
only negative roots for all values of K and τ if

βm ≡ 
mτ − 2mπ/N + 2lπ, l = 0,±1,±2, . . . , (9.33)

is chosen meaning that in this case solution (9.6) is stable for all values K and τ (see
also Eq. (5.52)).

In the following, we want to discuss whether the choice of βm not only ensures the
existence and stability of the m state but the monostability of this state in which case
we expect the adaptive control to work better than in cases where the system is mul-
tistable. We explore this question in a unidirectional ring of four nodes and with the
control goal to reach antisynchronization, i.e., M = 2. For a ring of 4 nodes this corre-
sponds to m = 2. The stability of the different cluster states is determinded by calcu-
lating the Floquet exponent with the largest real part according to Eq. (9.31) for β∗ =
β2 = 
2τ − π . Figure9.5 shows the result for (a) zero-lag synchronization (M = 1,
m = 0), (b) antisynchronization (M = 2, m = 2), and (d) splay-states (M = 4,
m = 1 and m = 3).1

1Recall that an M-cluster state can correspond to several differentm-states. Furthermore, depending
on the parameters, we can find for eachm-state several different solutions r0,m and
m of Eq. (9.27).
To obtain Fig. 9.5, we chose for each value of K and τ the most stable of these solutions, i.e., the
solution whose largest Re� had the smallest, if possible negative, value compared to all other
solutions.

http://dx.doi.org/10.1007/978-3-319-25115-8_5
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As anticipated, the antisynchronized state is stable in the whole (K , τ )-plane (see
panel (c)). However, for large K and τ , the other stable states coexist. Thus, only
in a part of the (K , τ )-plane we find monostability of the antisynchronized states.
For values of K and τ from the multistable region and initial conditions close to one
of the state with M �= 2, Q̇ = w(z0, . . . , zN−1, z0,τ , . . . , zN−1,τ , β

∗) < 0 will not
be fulfilled and the control fails. Though this is only a local discussion, we already
can conclude that for large K and τ the adaptive control will fail for certain initial
conditions since a value of β ensuring monostability does not exist and, thus, cannot
be found adaptively.

9.5 Performance of the Adaptive Control of the Coupling
Phase

The results of Sect. 9.3 showed that the SG method is able to drive the network
dynamics into the desired cluster or splay state by adaptively adjusting the coupling
phase, where the goal function is chosen according to the corresponding target state.
We have, however, used only exemplary values of the coupling parameters K and τ

so far. Furthermore, the results of the linear stability analysis indicated that problems
for large K and τ might arise.

To systematically study the parameter dependency of our method, we calculate
the fraction fc of successful realizations. We ran simulations with 20 different initial
conditions chosen randomly from the complex interval [−1, 1] × [−i, i] for each
oscillator z j . A realization is considered to be successful if it approaches the goal
state within t < 1000. Figure9.6 shows fc in dependence on the coupling strength
K and the coupling delay τ for the goal of (a) zero-lag synchronization, (b) antisyn-
chronization, and (c) a splay state. We observe that the control is successful in a wide
parameter range. In the case of zero-lag synchronization and for the splay state fc

is close to one for small K and τ , while in the case of antisynchronization fc is for
most values of K and τ smaller than one, indicating that the control of this state is
sensitive to initial conditions. Common to all three states is that for large K and τ ,
fc = 0. The region fc = 0 is separated from the region fc > 0 by a sharp border
which has qualitatively and quantitatively the same form in all three cases.

This border can be explained by considering the transient times. Figure9.6d–f
show the time tc until the control goal is reached for zero-lag synchronization, anti-
synchronization, and a splay state, respectively. Note that only successful realizations
are considered. Obviously, the time tc grows with increasing τ and K until it reaches
the value of 1000 at the border. Thus, the border seems to be determined by the
maximum time we allow for the control.

tc cannot be obtained analytically because we required for a successful realization
that the goal function averaged over 10 unit of time is smaller 3 × 10−5. To estimate
this, an analytic expression for Q(t) and thus of all phases ϕ j , j = 0, . . . , N − 1,
would be needed. However, tc is in very good approximation proportional to
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(a) (b) (c)

(d) (e) (f)

Fig. 9.6 Fraction fc of successfully controlled networks and control time tc as a function of coupling
strength K and delay τ for a, d zero-lag synchronization (M = 1, m = 0); b, e antisynchronization
(M = 2, m = 2); and c, f splay-states (M = 4, m = 1 and m = 3), respectively. White areas in
(d), (e), and (f) correspond to parameter values where no realization was successful within t <

1000. Dark blue lines correspond to contour lines of 1/|Re�| according to Eq. (9.35). N = 4. 20
realizations. Other parameters as in Fig. 9.2

1/|Re�|, an expression which can be obtained analytically. Recall that 1/|Re�|
denotes the time it takes for an initial perturbation to decrease by a factor 1/e and
thus is a characteristic time scale of the system.

To obtain an expression 1/|Re�| we assume that the control works and β

approachesβm (which is not necessary but often the case). Then, the Floquet exponent
with the largest real part is given by

� = K (−1 + e−�τ+2ikπ/N ), (9.34)

where k labels the eigenvalues of the unidirectional ring (see Choe et al. (2010),
Dahms (2011) and Sect. 5.2.1). Solving for � yields

� = −K + 1

τ
W (K τeK τ+2ikπ/N ), (9.35)

with W denoting the Lambert function which is defined as the inverse function
of f (z) = zez for complex variable z (Wright 1949, 1955; Corless et al. 1996;
Asl and Ulsoy 2003; Amann et al. 2007). Equation (9.35) constitutes an analytic

http://dx.doi.org/10.1007/978-3-319-25115-8_5
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expression for �. The dark blue lines in Fig. 9.6 mark the contour lines 1/|Re�| =
−100,−200,−300,−400,−500, from bottom to top. Obviously, they have quali-
tatively the same form as the border between fc > 0 and fc = 0 and predict well
the increase in tc with growing K and τ . Note that the contour lines become closer
to each other as K and τ increase. Thus, tc grows faster than linearly making the
control increasingly time consuming for large K and τ .

9.6 Controlling Several Parameters Simultaneously

The failure of the adaptive control of β for large K and τ raises the question whether
it is possible to control these two parameters in addition to β. In fact, the general
form of the SGmethod as given in Eq. (7.4) allows for controlling several parameters
simultaneously. The control vector u in Eq. (7.4) is then given by u = (β, K , τ ). We
realized such a control in Schöll et al. (2012b); the results will be discussed in this
section. In the following the feedback gain matrix γ is chosen as

γ =
⎛
⎝γβ 0 0

0 γK 0
0 0 γτ

⎞
⎠ (9.36)

with γβ , γK , γτ being positive real constants.
Using the goal function QM of Eq. (9.1) yields for β the adaptive algorithm given

by Eq. (9.5). For K̇ = −γK
∂

∂K Q̇M , we obtain

K̇ = −γK

N−1∑
j=0

N−1∑
k=0

⎧⎨
⎩

∑
p|d,1≤p<d

p sin[p(ϕk − ϕ j )] − 2d

N 2
sin[d(ϕk − ϕ j )]

⎫⎬
⎭

×
N−1∑
n=0

G jn

[
rn,τ

r j
sin(β + ϕn,τ − ϕ j ) − sin(β)

]
, (9.37)

and for τ̇ = −γτ
∂
∂τ

Q̇M

τ̇ = −γτ

N−1∑
j=0

N−1∑
k=0

⎧⎨
⎩

∑
p|d,1≤p<d

p sin[p(ϕk − ϕ j )] − 2d

N 2
sin[d(ϕk − ϕ j )]

⎫⎬
⎭

×
N−1∑
n=0

G jn

[
− ṙn,τ

r j
sin(β + ϕn,τ − ϕ j ) − ϕ̇n,τ

rn,τ

r j
cos(β + ϕn,τ − ϕ j )

]
.

(9.38)

http://dx.doi.org/10.1007/978-3-319-25115-8_7
http://dx.doi.org/10.1007/978-3-319-25115-8_7
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(a) (c)

(b) (d)

Fig. 9.7 Adaptive control of 3-cluster state in a network of 6 nodes by simultaneously tuning
K , β and τ according to Eqs. (9.5), (9.38), and (9.37), respectively. a common radii r j ; b phase
differences� j = ϕ j − ϕ j+1; c temporal evolution of control parameters β (red line), K (blue line),
τ (green line), d goal function. γβ = γK = 10, γτ = 0.05. Other parameters as in Fig. 9.2. Figure
reproduced from Schöll et al. (2012a)

Figure9.7 shows the successful control of a 3-cluster state in a network consisting
of 6 nodes where appropriate values of β, K , and τ are found adaptively. For initial
values, β = 0, K = 3, and τ = 3 were chosen. The adaptation process manages
to decrease the values of K and τ such that the control goal can be reached in a
reasonable time of about 600 units of time, while without adaptation of K and τ the
control time would easily exceed 1000 units of time and the control process would
be considered as unsuccessful.

9.7 Conclusion

The adaptive control of β allows for controlling cluster states in oscillator networks
with time-delayed coupling. The adaptive controller has been developed by means
of the speed-gradient (SG) method where the goal function has been based on the
generalized Kuramoto order parameter. The advantage of this goal function is that
it does not require any a priory ordering of nodes. However, the use of other goal
functions is also possible but requires that the nodes have to be assigned to the
clusters a priori to the control (Selivanov et al. 2012). In the desired state, e.g.,
zero-lag synchronization, splay, or cluster states, the goal function vanishes.

By numerical simulations we have shown that the different cluster states can be
stabilized, and the coupling phase converges to a value that is predicted to enable
stable synchronization in Choe et al. (2010). This also works for slightly nonidentical
oscillators. A linear stability analysis reveals that the stability of the adaptive system
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is equal to the stability of the system without adaptation except that an additional
Floquet exponent� = 0 arises as a result of the shift invariance in the direction of β.
This means that the stabilizing mechanism is such that the control tunes β to a value
where the system is stable with or without adaptive control. Here, this seems trivial.
However, in the next chapter it will be discussed that other mechanisms might also
act in a stabilizing manner in adaptive control problems.

The robustness of the control scheme can be investigated by determining the
success rates of the algorithm in dependence on the coupling parameters, i.e., on the
coupling strength and on the time delay. We have shown that for small K and τ the
control is successful. The success rate, however, is not equal to 100% but lower, in
particular for the antisynchronized state. The reason is that the system is multistable
between different states. This problem is worsened with growing N since the number
of possible states is equal to N and, thus, the multistability is increased in large
networks.

For large K and τ , the time until the control goal is reached grows rapidly. This
time can be estimated analytically by calculating the real part of the largest Floquet
exponent whose inverse modulus is proportional to the control time. If it is required
that the goal is reached in a given time—which will always be the case in practical
applications—the control has to be considered as failing for large K and τ .

The simultaneous control of K , τ , and β allows for controlling the system for
values of K and τ which are initially too large for an acceptable control time. The
control drives K and τ to lower values and decreases the time until the control goal
is reached. However, the control time remains two orders of magnitude higher than
the time scale of the system.

We have to conclude that despite the successful control of, in particular, zero-lag
synchronization and the splay state for small K and τ , the control of β exhibits
two main limitations. First, due the multistability of the systems the control rate can
be much smaller than 100% depending on the parameters and the goal state and,
second, the control time increases rapidly for large K and τ . Consequently, there is
the need for a control method which is more reliable in the sense that it works for
different initial conditions for all clusters states, and which is furthermore fast and
also applicable to large networks. The adaptive control of the topology discussed in
the next chapter fulfills these criteria.
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Chapter 10
Adaptive Topologies

The previous chapter introduced a new method to control cluster synchronization
by adaptively tuning β, the phase of the complex coupling strength σ = K exp(iβ).
Although, this method works well for the control of zero-lag synchronization and
splay states in small network motifs, it is sensitive to initial conditions when it
comes to other cluster states. Furthermore, it is not applicable if the absolute value
of the coupling strength K and the delay time τ become too large since the time
to reach the control goal increases rapidly with these parameters. The aim of this
chapter is to find a control method that overcomes these shortcomings. To this end,
a control algorithm is designed that changes the topology such that a desired cluster
state is reached. Networks which are characterized by an interplay between a chang-
ing topology and the dynamics of the nodes are called adaptive networks. To find
an algorithm to appropriately adapt the topology, the speed-gradient (SG) method
(see Sect. 7.1) is used, which has already proven to be a useful tool for designing
adaptive controller of single, uncoupled systems in Chap. 8 and of coupled systems
in Chap. 9.

To what extent structure determines function, i.e., which topologies allow for
cluster synchronization, is a hot topic of current research (Golubitsky and Stewart
2002; Kanter et al. 2011a, b; Pecora et al. 2014). In this chapter, I will demonstrate
that the control of synchronization via the adaptation of the topology provides an easy
and self-organized way to generate weighted networks that are able to exhibit cluster
synchronization. The topology of these networks will contain some randomness as
each control process is started with random initial conditions. However, on average
the topology is characterized by common features that enable synchronization and
hence yield the desired cluster state. It will be shown that the delay time is a crucial
parameter shaping this topology.

An introduction to adaptive networks is given in Sect. 10.1. Section 10.2 extends
the goal function utilized in the previous chapter in order to fit the new problem, i.e.,
the realization of control of cluster synchronization by adjusting the network topol-
ogy. The adaptive algorithm is introduced and its capability is demonstrated with an
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example in Sect. 10.3, while its performance is evaluated in Sect. 10.4. In Sect. 10.5,
a linear stability analysis is conducted. The topology of the networks after successful
control is studied in Sect. 10.6. Section 10.7 demonstrates how a network can be con-
structed which oscillates with a prescribed frequency. Not all links have to be adapted
for successful control of cluster synchronization but it suffices to target a subset of
links which is discussed in Sect. 10.8. The chapter concludes with Sect. 10.9.

10.1 Adaptive Networks

Previous research in the field of network science focused either on the construction of
topologies (Rapoport 1957; Erdős and Rényi 1959; Watts and Strogatz 1998; Albert
and Barabasi 2002; Newman 2003; Boccaletti et al. 2006) or on the dynamics on a
network with fixed topology (Albert et al. 2000; Dhamala et al. 2004; Chavez et al.
2005; Sorrentino and Ott 2007; Zigzag et al. 2009; Choe et al. 2010; Kinzel et al.
2009; Lehnert et al. 2011; Keane et al. 2012). Recently, adaptive networks attracted a
lot of interest as they bring these two aspects together: In such networks the topology
evolves according to the state of the system while the dynamics on the network and
thus the state is influenced by the topology (Gross and Blasius 2008).

Figure 10.1 schematically illustrates the idea behind adaptive networks. The state
of the nodes affects the topological evolution, which determines the topology. The
topology, in turn, has a strong impact on the local dynamics, which governs the
evolution of the state of the nodes. Note that the state of the system at time t is given
by the state of the nodes and the topology at time t , or in the case of a system with
delay by the state of the nodes and the topology on the interval [t − τ, t], where τ

Topological
evolution

Local
dynamics

State of the nodes Topology Stateofthe
system

determines affects

affects determines

Fig. 10.1 Schematic view of the interplay of topology and local dynamics in a adaptive network.
For the original figure see Gross and Blasius (2008) (color figure online)
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is the maximum delay present in the system (see also Sect. 2.4 for a description of
networks with delay). Thus, one major challenge of dealing with adaptive networks
is the high dimensionality of the phase space.

Adaptive networks are found as a descriptive tool in all situations where there
is an interplay of topology and dynamics. Prominent examples are neural networks
where the probability of a neuron to spike highly depends on its input from other
neurons. The spiking behavior, in turn, can influence the neural connectivity via
synaptic plasticity or via the emergence of new connections. A first model describ-
ing this interplay was given in Hopfield (1982). Another example of an adaptive
network is swarm dynamics where the decision of the individual agents is influenced
by the positions of the other agents, i.e., the topology, while their decisions where
to go determines the topology (Huepe et al. 2011). Further examples include com-
munication networks, the network of blood vessels, social network, food webs, and
chemical networks; see Gross and Blasius (2008) and reference therein.

Despite the success of adaptive networks in the description of all kinds of phe-
nomena observed in nature, little research has focused on how a topology has to be
designed to ensure certain dynamics; or in other words how to use the topology to
control the dynamics. Control of cluster synchronization by adaptively changing the
topology of the network has previously been investigated, to my knowledge, only
by a few researchers: Lu et al. consider control of cluster synchronization by means
of changing topology. As a limiting restriction for the applicability, their method
requires a-priori knowledge to which cluster each node should belong in the final
state (Lu and Qin 2009). In contrast, for the method introduced in this chapter, no
a-priori ordering of nodes is needed, i.e., it is not necessary to assign each node to a
specific cluster in advance; but the final assignment is a built-in consequence of the
initially designed goal function.

Furthermore, the majority of algorithms developed to control (mainly in-phase)
synchronization by adaptation of the network topology are based on local mecha-
nisms. Most of them are related to Hebb’s rule: Cells that fire together, wire together
(Hebb 1949). The method investigated in this chapter (Lehnert et al. 2014) uses a
global goal function to realize self-organized control and is therefore a powerful
alternative and complements existing control schemes.

10.2 Goal Function

The main ingredient of the SG method (Fradkov 2007) is a goal function Q(z(t), t)
that vanishes for the target state, and is larger than zero otherwise (see Sect. 7.1).
Here, as in Chap. 9, the target state is an M cluster state, i.e., a state consisting of M
equally sized clusters with a constant phase lag 2π/M between subsequent clusters.1

1In the previous chapters, I discussed that each M-state might, depending on M and the number of
nodes N , correspond to several different states with different m where m neighboring nodes, i.e.,
ϕ(i+1)modN − ϕi = 2πm/N , and M relates to m according to M = lcm(m, N )/m (see Sect. 5.2).

http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_7
http://dx.doi.org/10.1007/978-3-319-25115-8_9
http://dx.doi.org/10.1007/978-3-319-25115-8_5
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In principle, the goal function presented in the previous chapter (see Eq. (9.1))
could also be used to control cluster synchronization by means of adapting the topol-
ogy and, in fact, the results are qualitatively similar to the ones presented here.
However, Eq. (9.1) has two drawbacks: First, it only ensures phase synchronization,
i.e., the radii of the oscillators do not synchronize, and, second, the clusters are not
of equal size. Therefore, we use an extended version of Eq. (9.1) as a goal function
for the control of an M-cluster state in a network of N nodes:

QM = 1 − fM(ϕ) + N 2

2

M−1∑
p=1

f p(ϕ) + 1

2

N−1∑
i,k=0

(ri − rk)
2

︸ ︷︷ ︸
qM

+ c

2

∫ t

0

N−1∑
k=0

(
N−1∑
i=0

Gki (t
′) − 1

)2

dt ′. (10.1)

r j and ϕ j , j = 0, . . . , N − 1, are the amplitude and the phase of the j th oscilla-
tor, respectively. ϕ is the vector ϕ ≡ (ϕ0, . . . , ϕN−1) and fM(ϕ) the generalized
Kuramoto order parameter given by

fM(ϕ) = 1

N 2

N−1∑
j=0

eıMϕ j

N−1∑
k=0

e−ıMϕk ; (10.2)

see also Sects. 3.3 and 9.2. Recall that the sum over p represents a penalty term.
In comparison to Eq. (9.1), the condition p|M (meaning that p has to be a fac-
tor of M) was dropped in the sum, in other words penalty terms are added for all
p-cluster states, where p < M . This ensures clusters of equal size since it prevents
side maxima of the goal function. Synchronization of the radii is reached due to the
term

∑
i,k(ri − rk)

2, where ri is the amplitude of the i th oscillator.
The last term in Eq. (10.1), where G is the N × N coupling matrix and c > 0 is a

parameter, yields a unity row sum. Without it, a constant but arbitrary row sum would
arise. Ensuring unity row sum helps to avoid side effects of changing the effective
coupling strengths by this arbitrary row sum. As this term takes into account all
deviations from the unity row sum during the growth of the network, QM will not
vanish completely in the goal state. Thus, qM is a better measure for the quality of
synchronization. Although this might be regarded as a disadvantage of the integral
in the unity-row-sum term, the advantage of the integral is that only terms in Gi j but
not in Ġi j appear in the right hand side of the SG algorithm. Thus, it is not necessary
to solve for Ġi j .

(Footnote 1 continued)
Recall that lcm stands for the least common multiplier. Here, the different m states for the same
M cannot be distinguished any longer because the term “neighboring nodes” is not well defined
in a topology which is not a regular ring network. Thus, in the following, I will only distinguish
between different M but not m.

http://dx.doi.org/10.1007/978-3-319-25115-8_9
http://dx.doi.org/10.1007/978-3-319-25115-8_9
http://dx.doi.org/10.1007/978-3-319-25115-8_9
http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_9
http://dx.doi.org/10.1007/978-3-319-25115-8_9
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10.3 Adapting the Topology

As in the previous chapter, I consider as a model a network of delay-coupled Stuart-
Landau oscillators (see Sect. 5.2), however, with a real-valued coupling strengths,
i.e., here, the phase β of the complex coupling strength σ = K exp(iβ) is equal to
zero. Then, the equation of motion for the phases and amplitudes reads

ṙ j (t) = [
λ − r2

j

]
r j + K

N−1∑
n=0

G jn
{
rn,τ cos

[
ϕn,τ − ϕ j

]− r j
}
,

ϕ̇ j (t) = ω + K
N−1∑
n=0

G jn

{
rn,τ

r j
sin
[
ϕn,τ − ϕ j

]}
, (10.3)

with r j = |z j | and ϕ j = arg(z j ), where z j (t) is the state of the j th node at time t .
Recall that τ is the delay time, and ω and λ are the frequency and the bifurcation para-
meter of an uncoupled node, respectively; for details on the Stuart-Landau oscillator
see Sect. 5.2. We abbreviate delayed variables with a lower index τ , for example,
rn(t − τ) ≡ rn,τ .

In the following, an adaption algorithm for G will be derived ensuring synchro-
nization in an M-cluster state. Recall the SG algorithm in its finite form (see also
Eq. (7.4)):

du
dt

= −γ∇uω(z, u, t), (10.4)

where γ = γ T > 0 is a positive definite gain matrix, u the control variable and
ω(z, u, t) the speed at which the goal function Q(z(t), t) is changing, i.e.,ω(z, u, t) =
Q̇ = ∂ Q(z,t)

∂t + [∇z Q(z, t)]TF(z, u, t). For a recapitulation on the SG algorithm see
Sect. 7.1.

The SG algorithm (10.4) with u = (G00, G01, . . . , G N−1,N−2, G N−1,N−1)

∈ R
N 2

and γi j = δi jγG , where γG is a positive constant, yields

Ġ jn = −γG
∂

∂G jn
Q̇M = −γG

∂

∂G jn

N−1∑
k=0

⎡
⎣∂qM

∂ϕk

dϕk

dt
+ c

2

(
N−1∑
i=0

Gki − 1

)2
⎤
⎦,

(10.5)

where we use QM as given by Eq. (10.1) as a goal function. Recall that qM is
the reduced goal function, i.e., the goal function without the unity-row-sum term
(see also Eq. (10.1)).

Finally, with Eqs. (10.1), (10.2), and (10.3) the following control scheme is
obtained

http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_5
http://dx.doi.org/10.1007/978-3-319-25115-8_7
http://dx.doi.org/10.1007/978-3-319-25115-8_7
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Ġ jn(t) = − γG K

[
rn,τ

r j
sin(ϕn,τ − ϕ j )

]

×
N−1∑
k=0

⎧⎨
⎩

M−1∑
p=1

p sin[p(ϕk − ϕ j )] − 2M

N 2 sin[M(ϕk − ϕ j )]
⎫⎬
⎭

− 2γG K
N−1∑
k=0

(r j − rk)
[
rn,τ cos(ϕn,τ − ϕ j ) − r j

]− γGc

(
N−1∑
i=0

G ji − 1

)
.

(10.6)

Figure 10.2 shows an example of the evolution of the network by applying the control
algorithm (10.6) with Q8, i.e., the goal to reach an 8-cluster state. The initial topology
is a unidirectional ring, see Fig. 10.2a. However, the nodes are approximately depicted
according to their position z j in the phase space; because the phase differences are
initially random, the unidirectional coupling structure does not clearly show here.
At t = 0 the control is switched on (Fig. 10.2b), and links rapidly change as can
be seen in Fig. 10.2c. The final state of the network is shown Fig. 10.2d: 8 equally
sized clusters are formed (to distinguish all nodes, the nodes in one cluster are not
depicted exactly according to their phases but on a circle around the point which
would correspond to their phase and radius). Black links mark excitatory links,
i.e., links that correspond to positive entries of the coupling matrix, while the blue
links are inhibitory ones, i.e., links due to negative entries of the coupling matrix.
Clearly, the final topology is characterized by a distinct distribution of excitatory and
inhibitory links: While the inhibitory links mainly connect neighboring clusters, the
excitatory ones dominate the connections to clusters further away in phase space. In
the Sect. 10.6 this distribution is investigated more closely.

Corresponding to the network realization in Figs. 10.2 and 10.3 shows the time
series of (a) the radii, (b) the phase differences, (c) the coupling weights, and (d)

(a) (b) (c) (d)

- 0

- π

-2π
Δϕ

excitatory link

inhibitory link

Fig. 10.2 Evolution of the network topology with the goal to achieve an 8-cluster state. a t = −50
(initial state), b t = 0 (contol starts), c t = 2 (shortly after control started) d t = 50 final state. Black
excitatory weighted links; blue inhibitory weighted links. Node colors denote phase differences with
respect to the first node. Parameters: λ = 0.1, ω = 1, c = 0.01, K = 0.1, τ = π , γG = 10, N = 40,
M = 8. Figure from Lehnert et al. (2014). Copyright (2014) by The American Physical Society
(APS)
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Fig. 10.3 Control of an 8-cluster state: a radii r j , b phase difference ϕ j − ϕ0 with respect to
the first node, c coupling weights Gi j , and d goal function Q8 and its reduced part q8 (excluding
the unity-row-sum term). Control starts at t = 0. The vertical dotted line at t = 80 is explained in
Sect. 10.6.2. Parameters as in Fig. 10.2. Figure from Lehnert et al. (2014). Copyright (2014) by The
American Physical Society (APS)

the goal function. After the control is switched on (dotted line at t = 0), the radii
and phases rapidly converge to the 8-cluster state, and the goal function Q8 and its
reduced part q8 approach their minimum. The final common value of the radii ri ,
i = 0, . . . , N − 1, is determined by the value of the feedback gain γG as will be
discussed in Sect. 10.6.

10.4 Robustness

This section discusses the performance of the method; in particular, the robustness
towards different initial conditions, the control parameter dependency, and the time
needed to reach the control goal are investigated. These issues are of particular
interest as they determine the applicability of the method and allow for comparing
the adaptive control of the topology with the control of the phase β of the complex
coupling strength presented in the previous chapter.

Figure 10.4 depicts the fraction fc of successful realization and the time tc to reach
the control goal for (a), (d) zero-lag synchronization, (b), (e) a 3-cluster state, and
(d), (f) a splay-states, respectively, in dependence on the coupling strength K and the
delay time τ . A realization is considered to be successful at time tc if qM < 0.001
for t ∈ (tc − 1, tc) and there has been no other time interval of length one before for
which qM < 0.001 also holds. For each value of K and τ , the initial conditions for
z j (t), j = 0, . . . , N − 1, are drawn from the complex interval [−1, 1] × [−1, 1].
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Fig. 10.4 Fraction fc of successfully controlled networks and control time tc as a function of
coupling strength K and delay τ for a, d zero-lag synchronization (M = 1), b, e a 3-cluster state
(M = 3), and c, f a splay-states (M = 15), respectively. White areas in (d) correspond to parameter
values where the control is unsuccessful for all realizations. Averaged over 20 realizations. N = 15,
γG = 1. Other parameters as in Fig. 10.2

For the 3-cluster state and the splay state, the method works remarkably fast and
well for all value of K and τ as becomes obvious from the success rate of 100 %
shown in panels (a), (b) and (c) and the low values of tc visible in panels (d), (e) and
(f). Only in the case of zero-lag synchronization and τ = π the control needs more
time and fails for small coupling strengths K . The reason is that at these parameters
amplitude death sets in, which we do not consider as successful synchronization in
a state of zero-lag synchrony. Comparing Fig. 10.4 with Fig. 9.6, which depicts fc

and tc for the adaptive control of β, it becomes clear that the adaptive control of the
topology is much more reliable and faster, in particular, for high coupling strength
and delay times, where the adaptive control of β fails. This suggests that the choice
of appropriate parameters to adapt is crucial for the success of the SG-method in the
control of dynamics on networks.

10.5 Linear Stability Analysis

As in the case of the focus with adaptive time-delayed feedback control (see Sect. 8.2)
and the adaptive control of the phase β of the complex coupling strength (see Chap. 9),
a linear stability analysis yields further insight into the problem. In the following,

http://dx.doi.org/10.1007/978-3-319-25115-8_9
http://dx.doi.org/10.1007/978-3-319-25115-8_8
http://dx.doi.org/10.1007/978-3-319-25115-8_9
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we label the nodes such that the final, synchronized state is described by

r j ≡ r0,M ,

ϕ j ≡ �M t + j
2π

M
,

Gi j ≡ G∗
i j , (10.7)

for j = 0, . . . , N − 1, where r0,M and �M denote the common radius and the com-
mon frequency in an M-cluster state, respectively. G∗ is the topology after successful
control.

A variational equation is obtained by using the ansatz r j (t) = r0,M [1 + δr j (t)],
ϕ j (t) = �M t + j 2πm

N + δϕ j (t) and Gi j (t) = G∗
i j + δGi j (t). Substituting this

ansatz into Eqs. (10.3) and (10.6) yields for the linear order of δr j , δϕ j and δGi j :

δṙ j = −2r2
0,Mδr j + K

∑
n

G∗
jn

(− cos 
1,n, j δr j + sin 
1,n, j δϕ j
)

+K
∑

n

G∗
jn

(
cos 
1,n, j δrn,τ − sin 
1,n, j δϕn,τ

)+ K
∑

n

(
cos 
1,n, j − 1

)
δG jn,

δϕ̇ j = −K
∑

n

G∗
jn

(
sin 
1,n, j δr j + cos 
1,n, j δϕ j

)
+K

∑
n

G∗
jn

[
sin 
1,n, j δrn,τ + cos 
1,n, j δϕn,τ

]+ K
∑

n

sin 
1,n, j δG jn,

δĠ jn = −γG K sin 
1,n, j

∑
k

{∑
p

p2 cos

[
2πp

M
(k − j)

]
− 2M2

N 2

} (
δϕk − δϕ j

)
−2γG Kr2

0,M

∑
k

(δr j − δrk)
(
cos 
1,n, j − 1

)− γGc
∑

i

δG ji , (10.8)

where we used the abbreviation 
l,k, j = l(k − j)2π/M − �Mτ . From δĠ jn �= 0
follows that no shift invariance in the direction of the adapted parameter exists as
observed in the case of the adaptive control of a focus (cf. Chap. 7) or the adaptive
control of the coupling phase β (cf. Chap. 9). In Chaps. 7 and 9, we observed that
eigenvalues of the fixed point and the Floquet exponents of the limit cycle, respec-
tively, of the system with adaptive control are given by the ones of the system without
adaption plus an additional one equal to 0, reflecting this invariance in the direction
of the adapted parameter. Here, this is not longer the case but the Floquet exponents
are completely changed by the adaptation. Consequently, the adaptation mechanism
here is different from the previous chapters. Instead of tuning the parameter under
adaptive control to values for which the system with or without adaptation would
be stable, the adaptive control introduces additional degrees of freedom which act
stabilizingly.

http://dx.doi.org/10.1007/978-3-319-25115-8_7
http://dx.doi.org/10.1007/978-3-319-25115-8_9
http://dx.doi.org/10.1007/978-3-319-25115-8_7
http://dx.doi.org/10.1007/978-3-319-25115-8_9
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10.6 Structural Properties

In the field of complex networks, topological features enhancing or weakening syn-
chronizability are of great interest (Pecora and Carroll 1998; Chavez et al. 2005;
Lehnert et al. 2011; Keane et al. 2012). Here, we discuss the structural properties
of the networks after successful control, in order to elucidate the common features
that enable synchronization in a cluster state. To this end we consider the coupling
weights of the final topology as a function of the final phase difference, i.e., the
function Ḡi j (�i j ) where �i j ≡ limt→∞[ϕi (t) − ϕ j (t)]. In Fig. 10.5 we plot

Ḡ

(
2π

M
n

)
=
〈 ∑

i j
(�i j )∈In

G∗
i j (�i j )

〉
(10.9)

with the interval In = (
2πn−π

M , 2πn+π
M

]
, n = −M/2, . . . , M/2 − 1 if M is even and

n = −(M − 1)/2, . . . , (M − 1)/2 if M is odd. 〈·〉 denotes the ensemble average
over 100 realizations, i.e., Ḡ

(
2π
M n

)
is the average of all weights linking nodes which

have a phase difference in the interval In . In the case of successful control these
are the weights linking nodes in cluster i with nodes in cluster (i + n)mod M .
Figure 10.5 depicts the weights for different delay times. Obviously, the curves have
the form of a delay time shifted cosine: i.e., Ḡ

(
2π
M n

) ∝ cos
(

2πn
M − τ

)
. This explains

-2
0
2

Ḡ
(n

2π M
)

-2
0
2

Ḡ
(n

2π M
)

-2
0
2

− π − π
2 0 π

2 π

Ḡ
(n

2π M
)

Δ i j

τ = 0
τ = 2π

(a)

τ = π
2

τ = 3π
2

(b)

τ = π
τ = 3π

(c)

Fig. 10.5 Average link strength Ḡ
( 2π

M n
)

versus phase differences �i j = limt→∞ [ϕi (t) − ϕ j (t)]
in the final state as defined in Eq. (10.9) for different values of τ : a τ = 0 and τ = 2π , b τ = π/2 and
τ = 3π/2, and c τ = π and τ = 3π . N = 30, M = 10, K = 0.08. Average over 100 realizations.
Other parameters as in Fig. 10.2. Figure from Lehnert et al. (2014). Copyright (2014) by The
American Physical Society (APS) (color figure online)
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Fig. 10.6 Average link strength Ḡ
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M n
)

versus phase differences �i j = limt→∞ [ϕi (t) − ϕ j (t)]
in the final state as defined in Eq. (10.9) for different values of γG : green empty squares γG = 100;
red filled squares γG = 100; blue empty circles γG = 100; yellow filled circles γG = 100. N = 30,
M = 10, K = 0.08. Average over 100 realizations. Other parameters as in Fig. 10.2 (color figure
online)

the topological structure we observe in Fig. 10.2c: For τ = π , we expect a structure
as described by Fig. 10.5c. Thus, a negative coupling between nodes with a small
phase difference and a positive coupling between nodes with a phase equal or close
to π .

Figure 10.6 shows Ḡ
(

2π
M n

)
versus �i j for τ = π and different values of the

feedback gain γG , where the green, red, blue, and yellow symbols correspond to
γG = 100, γG = 10, γG = 5, and γG = 1, respectively. Clearly, the amplitude of the
cosine depends on γG . In Sects. 10.6.1 and 10.6.2, it will be shown that this amplitude
is proportional to the square of the common radius r0,M2 . In conclusion, the common
radius depends on the feedback gain where higher feedback gains results in higher
radii.

10.6.1 Existence of Cluster Solutions

Insight into the network structure can be obtained by a row-wise discrete Fourier
transform of the coupling matrix after successful control. To do so, we introduce the
following N × M matrix

� jk =
m̄−1∑
l=0

G∗
j,k+l M , (10.10)

where m̄ is the number of nodes in one cluster, i.e., m̄ = N/M . Thus, � jk represents
the total input which node j receives from all nodes in cluster k. In the case of a
splay state, i.e., M = N , � and G coincide. We now represent each row of � as a
discrete Fourier series
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� jk = b j
0

2 cos(�Mτ)
+

N0−1∑
l=1

a j
l sin 
l,k, j + b j

l cos 
l,k, j

+ b j
N0

cos(�Mτ)2
cos 
N0,k, j︸ ︷︷ ︸

if M is even

, j = 0, . . . , N − 1, k = 0, . . . , M − 1,

(10.11)

with the abbreviation 
l,k, j = l(k − j)2π/M − �Mτ , which was already used in
Eq. (10.8). N0 = (M + 1)/2 if M is odd and N0 = M/2 if M is even. The Fourier
coefficients are given by ( j = 0, . . . , N − 1)

a j
l = 2

M

M−1∑
k=0

� jk sin 
l,k, j = 2

N

N−1∑
k=0

G∗
jk sin 
l,k, j , l = 0, . . . , N0 − 1,

b j
l = 2

M

M−1∑
k=0

� jk cos 
l,k, j = 2

N

N−1∑
k=0

G∗
jk cos 
l,k, j , l = 0, . . . , N0. (10.12)

With the unity-row-sum condition, i.e.,
∑M−1

k=0 � jk = ∑N−1
k=0 G jk = 1, b j

0 ≡ b0 =
2 cos(�Mτ)/M follows. Note that Ḡ

(
n 2π

M

)
from Eq. (10.9) can be expressed as

Ḡ

(
n

2π

M

)
=
〈

N−1∑
j=0

� j,( j+n)mod M

〉
. (10.13)

Next, we discuss the necessary conditions for a j
l and b j

l such that an M-cluster
state exists as a solution of Eq. (10.3). Substituting Eqs. (10.7) into (10.3) yields the
following conditions for r0,M and �M :

r2
0,M = λ + K

N−1∑
k=0

G∗
jk

[
cos 
1,k, j − 1

]
, (10.14a)

�M = ω + K
N−1∑
k=0

G∗
jk sin 
1,k, j . (10.14b)

Using Eq. (10.12) this can be rewritten as

r2
0,M = λ + K

[
b j

1 N

2
− 1

]
, (10.15a)

�M = ω + K

[
a j

1 N

2

]
. (10.15b)
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Equation (10.15) has to be fulfilled for all j = 0, . . . , N − 1. Thus, only if a0
1 =

a1
1 = · · · = aN−1

1 ≡ a and b0
1 = b1

1 = · · · = bN−1
1 ≡ b a solution with a common

radius and a common frequency exists. Note that there is no restriction on the higher
Fourier coefficients, i.e., on a j

l and b j
l with l > 1.

10.6.2 Stability of Cluster States

So far we have discussed the existence of the solution but not its stability. Unfortu-
nately, it is not possible to carry out a systematic stability analysis in all Fourier coef-
ficients as their number strongly increases for large M . However, there is evidence
that the higher Fourier coefficients do not affect the stability. Rewriting the varia-
tional equation (10.8) with the help of the Fourier coefficients given by Eq. (10.12)
yields

δṙ j = (−3r2
0,M + λ − K )δr j + (�M − ω)δϕ j

+K
∑

n

G∗
jn

[
cos 
1,n, jδrn,τ − sin 
1,n, jδϕn,τ

]+ K N

2

[
δb j

1 − δb j
0

cos(�Mτ)

]
,

(10.16a)

δϕ̇ j = (−�M + ω)δr j + (−r2
0,M + λ − K )δϕ j

+K
∑

n

G∗
jn

[
sin 
1,n, jδrn,τ + cos 
1,n, jδϕn,τ

]+ K N

2
δa j

1 , (10.16b)

δȧ j
l = −δl,1γG K

∑
k

{∑
p

p2 cos

[
2πp

M
(k − j)

]
− 2M2

N 2

}
(δϕk − δϕ j ), (10.16c)

δḃ j
l = −δl,0

1

2
N 2γGcδb j

0 − 2γG Kr2
0,M

∑
k

[δl1 − 2 cos(�Mτ)δl0](δr j − δrk).

(10.16d)

It follows from Eq. (10.16) that δȧ j
l = 0 and δḃ j

l = 0 for l > 1 because
Eqs. (10.16c) and (10.16d) contain only terms which are proportional to δl,0 or δl,1.
Thus, we have a shift invariance in the directions of the higher Fourier coefficients.
In the following, δa j

l and δb j
l with l > 1 are treated as constant.

With the abbreviations ξ j ≡ (δr j , δϕ j , δb j
0 , a j

1 , b j
1) and ξ ≡ (ξ0, . . . , ξN−1),

Eq. (10.16) can be rewritten in a compact form as

ξ̇ = 1 ⊗ Dfξ + K (B ⊗ H + C ⊗ I)ξ τ + A ⊗ Jξ + D ⊗ Kξ , (10.17)
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where 1 is a N × N unity matrix. Df describes the local dynamics:

Df =

⎛
⎜⎜⎜⎜⎜⎝

−3r2
0,M + λ − K �M − ω − K N

2 cos(�M τ)
0 K N

2

−�M + ω −3r2
0,M + λ − K 0 K N

2 0

4γG Kr2
0,M N cos(�Mτ) 0 − N 2γG c

2 0 0

0 − γG K 2M2

N 0 0 0
−2γG Kr2

0,M N 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠,

(10.18)

where we used
∑

k cos [2πp/M(k − j)] = 0 because 2πp/M /∈ N.
B and C are given by Bi j = G∗

i j cos(
1,n, j ) and Ci j = G∗
i j sin(
1,n, j ), i, j =

0, . . . , N − 1, respectively. B and C transmit the delayed coupled terms. The term of
the form

∑
k . . . δrk in Eq. (10.16d) constitutes an all-to all coupling (see Sect. 2.3.1)

which is described by the all-to-all matrix A with self-coupling, i.e., Ai j = 1,
i, j = 0, . . . , N − 1. D takes care off the more complicated all-to-all coupling into

the term δȧ j
l and is given by Di j = −γG K

∑
p p2 cos

[
2πp
M (k − j)

]
− 2M2

N 2 .

H, I, J and K represent the coupling schemes: H is a matrix with H00 = H00 =
1 and zeros otherwise. Analogously, I is a matrix with I01 = −I10 = 1 and zeros
otherwise. K is a matrix with K31 = 1 and zeros otherwise, and J is given by J2,0 =
−4γG Kr2

0,M cos(�Mτ), J4,0 = 2γG Kr2
0,M , and zeros otherwise.

Unfortunately, a master stability approach (see Sect. 3.2) is not possible here since
the matrices A, B, C, and D do not commute. However, commuting matrices are a
prerequisite for the application of the master stability approach in cases where more
than one coupling matrix is present; see Sect. 5.1.5 or Dahms 2011, Dahms et al. 2012.
Furthermore, a stability analysis in dependence of all higher Fourier coefficients is
not possible since their number grows linearly in N and M . However, their effect
can be tested by choosing random coefficients.

The Floquet exponent � that arises from Eq. (10.17) can be obtained from the
corresponding characteristic equation

0 = det
[
1 ⊗ Df − �15N + K (B ⊗ H + C ⊗ I) exp(−�τ) + A ⊗ J + D ⊗ K

]
(10.19)

where15N is a unity matrix of dimension 5N ; see also Appendix A for a recapitulation
on solving linear delay differential equations. Equation (10.19) yields an infinite
number of Floquet exponents for τ > 0. We consider only the one with the largest
real part. If this real part Re� is negative, the cluster solution given by Eq. (10.14)
or (10.15) will be stable otherwise the solution is unstable.

Figure 10.7 shows the result of this stability analysis for (a) all higher Fourier
coefficients being zero, i.e., a j

l = b j
l = 0 for l > 1 and j = 0, . . . , N − 1, (b) random

higher Fourier coefficients, and (c) constant higher Fourier coefficients, i.e., a j
l =

b j
l = 10 for l > 1 and j = 0, . . . , N − 1, in dependence on the common radius r2

0,M

and the common frequency �M . Random means that for each value of r2
0,M and

http://dx.doi.org/10.1007/978-3-319-25115-8_2
http://dx.doi.org/10.1007/978-3-319-25115-8_3
http://dx.doi.org/10.1007/978-3-319-25115-8_5
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Fig. 10.7 Stability as a function of common frequency �M and radius r2
0,M for a vanishing higher

Fourier coefficients, i.e., a j
l = b j

l = 0 for l > 1, b random higher Fourier coefficients, c constant

higher Fourier coefficients, i.e., a j
l = b j

l = 10 for l > 1. N = 8, M = 4. Other parameters as in
Fig. 10.2 (color figure online)

�M the coefficients are drawn from a uniform distribution on the interval [−10, 10].
Clearly it shows that the stability is only affected by the higher Fourier coefficients
if r2

0,M is small: For small r2
0,M the unstable regions (yellow to orange color code)

have a qualitatively different form in panels (a), (b) and (c), while for large r2
0,M

stability is found in all three cases. This is due to the terms δṙ j = −3r2
0,Mδr j and

δϕ̇ j = −r2
0,Mδϕ j in Eqs. (10.16a) and (10.16b), respectively, which act stabilizing

and outweigh the other terms for large r2
0,M .

Another possibility to test the influence of the higher coefficients is to disturb them
during or after the course of the adaptation process. Figures 10.8 and 10.9 show the
time series of a j

l , j = 0, . . . , N − 1, l = 1, . . . , N0 − 1, and b j
l , j = 0, . . . , N − 1,

l = 1, . . . , N0, respectively. The time series are from the simulation shown in
Fig. 10.3. Clearly, a j

1 and b j
1 converge to the common values a and b, respectively,

after the control has been switched on at t = 0 assuring the existence of a common
frequency and radius according to Eq. (10.15). In contrast, the higher Fourier coeffi-
cients do not approach each other. At t = 80, the higher Fourier coefficients are set
to a random value in the interval [−3, 3]. This interval was chosen for convenience
of depiction. Qualitatively, the result is the same for much larger random numbers.
As expected and apparent in Figs. 10.3 and 10.9, a and b, and thus, according to
Eq. (10.15), the common frequency and radius, do not change as a result of this per-
turbation. The higher Fourier coefficients stay at their new values, since there is no
need for them to readjust. In conclusion, the existence and stability of the cluster
solution does not depend on the higher Fourier coefficients. Thus, the final values of
these higher coefficients follow from the random initial conditions and are therefore
random themselves. As a consequence they average out, while, on average, the first
Fourier coefficients dominate the topology. In fact, the average topology is mainly
given by b as a and, for large M , b0 = 2 cos(�Mτ)/M are typically small. Thus,
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4 . At t = 0, the control is switched on (first vertical dotted line). At t = 80, b j
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4 are

set to random values (second vertical dotted line). Parameters as in Fig. 10.2. Figure from Lehnert
et al. (2014). Copyright (2014) by The American Physical Society (APS)
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Ḡ

(
n

2π

M

)
=
〈

N−1∑
j=0

� j,( j+n)mod M

〉
≈ b cos

(
2πn

M
− �Mτ

)
(10.20)

explaining the cosine form of the curves shown in Fig. 10.5.
We now can also explain the relation between the common radius r0,M2 and the

feedback gain γG : From Fig. 10.6, we have concluded that the amplitude of the curve
Ḡ
(
n 2π

M

)
depends on γG (for the description of the figure, see p.75). We now know

that this amplitude is given by b and that b, according to Eq. (10.15), is proportional
to the common radius r0,M2 . We, thus, can conclude that the common radius is a
function of the feedback gain. A high feedback gain drives the system to high radii,
while for a low gain the common radii are smaller.

From Eq. (10.20), it follows that the curve Ḡ
(
n 2π

M

)
is periodic in the delay time,

which is also observable in Fig. 10.5 when comparing the different panels. This is
closely related to Yanchuk and Perlikowski (2009) where it has been shown that
systems with time delay generically have families of periodic solutions which are
reappearing for infinitely many delay times. Simultaneously, with the return of a
solution the structure reappears to realize this solution.

10.7 Choosing a Frequency

The representation of the coupling matrix in a Fourier series as in Eq. (10.11) is
particularly convenient if one wants to choose a common frequency via constructing
an appropriate matrix. To select the common frequency �∗

M , a is set to

a = 2

N

(
�∗

M − ω

K

)
(10.21)

according to Eq. (10.15b). Note that we are free to choose the higher Fourier coef-
ficients, i.e., a j

l and b j
l , l > 1, j = 0, . . . , N − 1, when constructing � according

to Eq. (10.11). Furthermore, there is some freedom when choosing G from � since
Eq. (10.10) is only bijective if M = N , i.e., for the splay state.

As an example, Fig. 10.10 shows the quenching of oscillations in a splay state,
i.e., we tune �∗

M to zero: At t = 0 the adaptive control start with M = N , i.e., with
the goal function leading to a splay state. At t = 40 the adaptive control is switched
off and a is kept fixed at a = 2ω

N K forcing �M to approach zero. As a result of �∗
M

decaying to zero (see magenta line in Fig. 10.10d) while a is fixed, the coupling
weights slightly change after t = 40 even though the adaptive control is switched
off.
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and d goal function Q12, its reduced part q12 and the collective frequency �M . N = 12, M = 12. At
t = 40 the adaptive control is switched off and a is set to a = 2ω
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Figure from Lehnert et al. (2014). Copyright (2014) by The American Physical Society (APS)

10.8 Control of a Subset of Links

So far every link of the network was controlled. However, this is not necessary. It
is sufficient to control a subset of links, while the other links are left fixed. This
is useful for applications where not all links are accessible. We demonstrate this
with an example of a directed random network constructed of P links, which are
chosen from the L = N (N − 1) possible links excluding self-coupling. From these
P links, we select, again randomly, A links which are subject to adaptation as given
by Eq. (10.6). As an example, Fig. 10.11 depicts the generation of a 3-cluster state
in a network of 15 nodes. Here 30 % of all links are accessible. Figure 10.11a shows
the network before the control: Black links mark the P − A fixed links, green links
depict the A links that will be adapted. One can see that only these links change their
strength during the adaptation process as can be seen in Fig. 10.11b, which displays
the network after it has reached the desired 3-cluster state and the change of topology
terminates.

The corresponding time series are shown in Fig. 10.12a–d for the radii, the phase
differences, the elements of the coupling matrix, and the goal function, respectively.
As can be seen in Fig. 10.12b, d, after successful control with goal function Q3 the
network consists of 3 equally sized clusters and the reduced goal function q3 is zero.

We now want to test how successful our method is in dependence upon the links
present in the networks, and upon the fraction of these links subject to adaptation:
Fig. 10.13 shows the fraction fc of successfully controlled networks and as an inset,
the control time tc as function of P/L and A/L . We use the definition for successful
control at time tc introduced in Sect. 10.4.
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Fig. 10.11 Topology a before (t = 0) and b after control, i.e., after the vanishing of all transient
effects. Black links fixed links; green adapted links. Color code of nodes: Phase difference �ϕ =
ϕ j − ϕ0 with respect to the first node. Parameters: τ = 3, A/L = 0.3, P/L = 0.4, N = 15, M = 3.
Other parameters as in Fig. 10.2. Initial conditions: directed random network. Figure from Lehnert
et al. (2014). Copyright (2014) by The American Physical Society (APS)
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Note that the success rate is fairly independent of the total number of links P in
the network, but depends mainly on the ratio of adapted links to all possible links. In
other words, the links additionally present in the network, but not subject to control,
have almost no effect on the synchronizability. If the number of adapted links reaches
about 40 % the control still works in more than 90 % of the cases.

A good approximation of the success rate fc can be obtained if we assume that
for successful control each node in the networks needs at least two incoming links
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which are adapted. One adapted link is not sufficient because it could not change due
to the unity-row sum condition. Only if a second incoming link is present the links
can change in order to control the dynamics of the node because the effect of the
adaptation of the first link on the row-sum can be counteracted by the second link.
Figure 10.14 depicts fc versus A/L as red circles for a fixed ratio of (a) P/L = 0.4,
(b) P/L = 0.6, and (c) P/L = 1. The blue circles depict the fraction p>1 of networks
where all nodes have at least two incoming links. Obviously, p>1 well approximates
fc even though they are not identical meaning that cases exist where the network can
be controlled though one node has less than two adapted incoming links, or where
the control fails although each node has two incoming links.
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The probability that no node in the network has less than two incoming links, i.e.,
the probability that all nodes have more than one incoming link, can be analytically
calculated as

p>1 = 1 − (p0 p1 + p̄0 p1 + p0 p̄1), (10.22)

where pi , i = 0, 1, is the probability that at least one of the nodes in the network
has exactly i links, and p̄i is the complementary probability, i.e., p̄i = 1 − pi . To
calculate pi , we assume P/L = 1, i.e., a fully connected networks and distribute
than the A adapted links, meaning that we convert A of the static links to adaptive
links. The probability p0 that at least one of the nodes has exactly zero incoming
links reads

po = 1 −

⎡
⎢⎢⎢⎢⎣1 −

A−1∏
i=0

(
1 − N − 1

N (N − 1) − i

)
︸ ︷︷ ︸

probability that a particular node has no incoming links

⎤
⎥⎥⎥⎥⎦

N

︸ ︷︷ ︸
probability that none of the nodes has exactly zero incoming links

. (10.23)

We calculate the probability that a particular node has zero incoming adapted link by
distributing the A links on the N (N − 1) possible link positions, where we exclude
the self-feedback positions. Since the considered node has (N − 1) possible incom-
ing links the probability that it gets no link when the first link is distributed is

1 − N − 1

N (N − 1)
(10.24)

reducing the number of possible links position to N (N − 1) − 1 because we do not
allow double links. Thus, in the next step the probability that the link is not assigned
to the node under consideration is given by

1 − N − 1

N (N − 1) − 1
. (10.25)

This procedure continues until all links are allocated.
The probability p1 that at least one of the nodes has exactly one incoming adapted

link is given by
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p1 = 1 −

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 −
A−1∑
l=0

⎡
⎣l−1∏

i=0

(
1 − N − 1

N (N − 1) − i)

)
N − 1

N (N − 1) − l

A−1∏
j=l+1

(
1 − N − 2

N (N − 1) − j

)⎤⎦
︸ ︷︷ ︸

probability that a particular node has one incoming links

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

N

︸ ︷︷ ︸
probability that none of the nodes has exactly one incoming link

.

(10.26)
To calculate the probability that a particular node has exactly one incoming link, we
assume that it acquires this link in the lth step of the link distribution with a proba-
bility of N−1

N (N−1)−l . We, then, sum over l to get all possible scenarios. In Fig. 10.14,
p>1 calculated according to Eq. (10.22) is depicted as a blue line as a function of
the fraction of accessible links A. Even though, we assumed in the derivation of
Eq. (10.22) that P/L = 1, p>1 is reasonable well predicted by Eq. (10.22) even if
P/L < 1 as can bee seen in Fig. 10.14a, b.

10.9 Conclusion

In adaptive networks, the topology changes according to the states of the nodes,
while, in turn, the topology influences the node dynamics. Adaptive networks have
been used to described all kind of systems that are characterized by a complicated
interplay of the topology and the dynamics. Examples include neural networks,
swarm networks, social networks, the food web, and networks in chemistry and
biology. However, less effort has been put in the design of algorithms which shape
the topology of a network such that the nodes are forced to a desired dynamical state.

The aim of this chapter has been to make use of a changing topology to control
cluster synchronization in a network of time-delay coupled oscillators. The method
uses the speed-gradient (SG) algorithm to adapt the topology. The considered goal
function is based on a generalized Kuramoto order parameter and is independent of
the ordering of the nodes. An additional term ensures amplitude synchronization.

The control scheme is very robust. Numerically, we have studied the robust-
ness towards different initial conditions and its dependence on the overall coupling
strength and delay time. For all values of the delay time and coupling strength, the
method works reliable and fast. Only for the case of zero-lag synchrony, we have
found that the control fails for τ close to π and small coupling strengths K because
amplitude death takes place. Thus, the method is able to overcome the shortcomings
of the adaptive control of β presented in Chap. 9, which is sensitive towards different
initial conditions and needs an increasing amount of time for large K and τ .

A linear stability analysis reveals that the adaptive control does not work by chang-
ing the topology to a topology which will allows for stable cluster synchronization
even if the adaptation process is switched off. Instead, additional degrees of freedom
act in a stabilizing manner.

http://dx.doi.org/10.1007/978-3-319-25115-8_9
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The topology of the network after successful control is modulated by the coupling
delay. A row-wise discrete Fourier transform of the coupling matrix gives insight into
these delay modulations. Necessary conditions for the existence of a common radius
and a common frequency give rise to restrictions affecting the first Fourier coeffi-
cients, while there is no restriction for the higher Fourier coefficients. There is strong
evidence that for sufficiently large common radii, the stability of the cluster states
is not affected by the higher Fourier coefficients. In conclusion, the higher Fourier
coefficients are mainly dependent on the random initial conditions and are therefore
randomly distributed. On average, the network topology is therefore dominated by
the first Fourier coefficients leading to the observed delay modulation.

We have found that the first Fourier coefficients can be used to find topolo-
gies that lead to cluster states with a given common frequency. As an example,
we have quenched the oscillations in a Stuart-Landau oscillator. Such an inhomo-
geneous steady state is known as oscillation death (Koseska et al. 2010, 2013a, b;
Zakharova et al. 2013) and has been found in various systems including tunnel
diodes (Heinrich et al. 2010), neuronal networks (Curtu 2010), and genetic oscillators
(Koseska et al. 2009). This example demonstrates that we have found a very versatile
method to construct networks that show a desired dynamical behavior.

Since in many real-world networks not all links are accessible to control, the
adaptation algorithm has been applied to random networks where a random subset
of links has been subject to control, while the other links remained fixed. We have
found that the control is successful if the number of adapted links is equal or higher
than approximately 40 % of all possible links, independently of the number of actual
fixed links. For practical applications this opens up the possibility to apply the method
more efficiently.
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Chapter 11
Conclusion

11.1 Summary

The focus of this thesis has been to study and to control the interplay of dynamics
and topology in complex networks with time-delayed coupling where the dynamical
patterns include zero-lag as well as group and cluster synchronization. In the first part,
I have studied the stability of different synchronization patterns, while the second part
has focused on the adaptive control of these dynamical states. Besides developing a
theoretical framework, I have investigated neural networks as applications, where I
have considered generic neural models like the FitzHugh-Nagumo or the SNIPER
(saddle-node infinite period bifurcation) model as well as more sophisticated models
like the adaptive exponential integrate-and-fire model.

The study of synchrony performed in part I of this thesis is based on the mas-
ter stability function (MSF) which was suggested by Pecora and Carroll (1998) to
investigate the stability of zero-lag synchronization in complex networks. I have dis-
cussed its application to neural networks consisting of excitable elements. Depending
on the underlying bifurcation, type-I and type-II excitability can be distinguished.
We have investigated these types on the example of the saddle-node infinite period
(SNIPER) model and the FitzHugh-Nagumo system, which can be considered as
generic models for the respective type of excitability. It has turned out that the rate
of inhibition is a crucial parameter when controlling synchrony in these networks
and that its effect depends upon the type of excitability and the delay time: In the
FitzHugh-Nagumo model a transition from synchronization to desynchronization
takes place as the number of inhibitory links approaches a critical value. While the
same result applies to the case of the SNIPER model for large delays, the situation is
much more complex for this model as the delays become small. Here, depending on
the coupling and network parameters multiple transitions between synchronization
and desynchronization can take place.

The MSF can be generalized to group and cluster synchronization if the network
topology is multipartite. This framework allows for incorporating different local
dynamics in the different groups as well as different coupling strengths and delay
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times between the groups such that complex structural and dynamical patterns can
be investigated. We have shown that for group synchrony the MSF as well as the
coupling matrix are characterized by a discrete rotational symmetry which allows
for restricting the evaluation of the MSF to a part of the complex plane. In the case of
commuting coupling matrices, the limitation of multipartite networks can be lifted.
In the case of two groups, for example, this allows for taking inter- as well as intra-
group coupling into account. The emerging complexity has been demonstrated on
the example of two groups of FitzHugh-Nagumo systems where we have chosen
different delay times for the coupling between and the coupling inside the group.
Depending on the ratio of delay times we have observed zero-lag synchrony and
antisynchronization as well as bursting dynamics.

The MSF for zero-lag as well as for group synchrony can be extended to non-
smooth systems which are of particular interest for applications in neurosciences
where integrate-and-fire models are commonly used. These models are characterized
by a discontinuity if the membrane voltage reaches a threshold. We have applied the
MSF for non-smooth systems to networks of adaptive exponential integrate-and-fire
model where we have considered a group of excitatory and a group of inhibitory
neurons which we have modelled with different local dynamics. This is in contrast
to previous studies which were either fully numerically and, thus, considered only
example topologies, or used the MSF with identical dynamics for all nodes. Here,
we have made use of the full potential of the MSF for group synchrony by employing
different dynamics for excitatory and inhibitory neurons which is biologically more
plausible. By these means, we have shown that for different parameter sets, and,
thus, for different dynamical scenarios, a decreasing adaptation strength leads to
destabilization of synchrony independently of the topology.

Part II of this thesis is devoted to the adaptive control of network dynamics.
In adaptive methods one or several control parameters are constantly tuned. This is
particularly useful in situations where parameters drift or are unknown since it allows
for adapting the control to the changing environment automatically. In this thesis, I
have employed the speed gradient method (SG) (Fradkov 1979, 2007) to develop
adaptive controllers to control unstable fixed points and unstable periodic orbits in
uncoupled systems as well as states of cluster synchrony in delay-coupled network
motifs and large networks. As models I have considered generic models, namely,
the normal form of the unstable focus, the Rössler system which is a well known
model for chaotic dynamics, and the Stuart-Landau oscillator which is paradigmatic
for systems close to the Hopf bifurcation.

I have investigated several adaptive controllers and discussed their robustness
towards drifting parameters, noise, and different initial conditions. The controllers
can cope with all of these challenges, however, not all perform equally well. Consider
for example the control of cluster synchronization in networks of coupled Stuart-
Landau oscillators, here it has been shown that due to the high multistability of
the system without adaptive control, the tuning of one parameter does not suffice
to realize a control fairly independently of the initial conditions for all different
cluster states. Instead, in such a high-dimensional system only the simultaneous
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adaptation of several control parameters allows for a control which is independent
of different initial conditions in a large range of parameters. This was demonstrated
on the example of the adaption of the topology, where each entry of the coupling
matrix acts as a control parameter.

Two different stabilizing mechanism can be distinguished when considering the
above controllers. In the first mechanism, the adaptive controller tunes the parameter
to values for which the original system, i.e., the system without adaptive control is
stable. The system then approaches the target state because the adaptive controllers
of this first type do not change the stability of the original system. Instead, they only
introduce one additional Lyapunov exponent equal to zero in the direction of the
control parameter. In this case the adaptive control could be switched off once the
goal state has been reached without this target state becoming unstable again. This is
the mechanism behind the control of the unstable focus presented in Sect. 8.2 and the
control of the coupling phase discussed in Chap. 9. In the second case, the control
induces additional degrees of freedom meaning that a linear stability analysis of
the combined system, i.e., the original system and the adaptive controller, contains
several terms which stabilize the formerly unstable directions. Consequently, the
target state can become unstable again if the adaptation is switched off. As an example
for a control scheme relying on this mechanism consider the adaption of the topology
investigated in Chap. 10.

In summary, I have investigated the control of different states of synchrony. In the
first part of the thesis, I have used the MSF and its generalizations to consider the
dependency of synchronization on the system and coupling parameters as well as on
the topology. This knowledge can be used to realize a control goal by choosing appro-
priate parameters or topologies. In the second part, I have employed adaptive control
methods to find these appropriate parameters and topologies in a self-organized way
without the need to know the details of the local dynamics.

11.2 Outlook

The topics addressed in the first part of this thesis, i.e., the MSF, its generalizations,
and its application in neural networks with inhibition and delay, are already quite
far developed, where this thesis has contributed substantially. The MSF has been
generalized to cluster and group synchrony, non-smooth systems, and distributed
delays. Different versions of the topology like network topologies with inhibitory and
excitatory nodes rather than inhibitory and excitatory links have been considered (see
references in Chaps. 4 and 5). Therefore, a fundamental understanding of the interplay
between the topology, synchrony, and inhibition could be reached in the studies of
generic models like the SNIPER, the FitzHugh-Nagumo, or the Morris-Lecar model.
The focus of further research should, therefore, be to consider more realistic neural
models and to search for direct applications of the theory in neurophysiological
questions.
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In contrast, I believe that there exists a variety of possibilities to extent the work
on adaptive controllers on a fundamental level. First of all, further studies of the
robustness could be carried out regarding the control via adaptation of the topology.
In this context, the following questions could be fruitful: What are the effects of
delay distributions in this control method? Is the method able to cope with these het-
erogeneities? Which is the effect on the final topology? It could be expected that the
simple cosine we observed in Fig. 10.5 depicting the final coupling weights versus
the final coupling strengths changes to a more complicated function to counteract the
influence of the delay heterogeneities. Similarly, it would be interesting to investigate
the robustness in the presence of uni- or bimodal distributions of the nodes’ eigen-
frequencies. A question would be whether the nodes arrange themselves during the
course of control into groups in which the nodes resemble each other in frequency,
i.e., whether the width of the frequency distribution within a group is smaller than
the width of the overall distribution. A first step in the direction of heterogeneous
parameters has been made in Plotnikov et al. (2015), where we have investigated het-
erogeneous threshold parameters in networks of coupled FitzHugh-Nagumo systems
and showed that an adaptive control of zero-lag synchrony is feasible.

Secondly, a comparison or combination with other control concepts would be
worthwhile. For example, one could think of minimizing the wiring length in the
adaptive control of topology by complementing the method with optimal control
theory (Lewis et al. 2012). In Kaluza and Mikhailov (2014) an adaptive control
scheme involving time-delayed feedback has been developed and applied to control
zero-lag synchronization in oscillatory networks by changing the link strength. In
principal, this method could also be applied in the control of cluster states and a
comparison to the results obtained in Chap. 10 would be interesting. In Yanchuk
et al. (2011), Popovych et al. (2011), it was shown that arbitrary periodic firing
patterns can be achieved by appropriately choosing the delay times in feed-forward
oscillatory neural loops. By using adaptive techniques similar to the ones discussed
in Chaps. 8–10, these delay times could be found automatically and, thus, an adaptive
scheme to control theses patterns could be realized.

Furthermore, the adaptive control of other dynamical states in networks could
be rewarding. Travelling waves have recently been investigated on networks with a
certain degree of regularity, e.g., regular rings, tree networks, and small-world net-
works (Isele 2014; Kouvaris et al. 2014; Isele and Schöll 2015; Isele et al. 2015);
Turing patterns, which have been originally described in reaction diffusion systems,
have been generalized to networks (Nakao and Mikhailov 2010; Hata et al. 2012;
Wolfrum 2012; Hata et al. 2014); Chimera states, where the nodes in a regular network
with homogeneous local dynamics separate into two groups with distinctly different
dynamical behavior, gained a lot of attention recently (Kuramoto and Battogtokh
2002; Abrams and Strogatz 2004; Sethia et al. 2008; Wolfrum and Omel’chenko
2011; Wolfrum et al. 2011; Omelchenko et al. 2011, 2012; Hagerstrom et al. 2012;
Omelchenko et al. 2013; Vüllings et al. 2014; Zakharova et al. 2014; Omelchenko
et al. 2015). In principle, all of these dynamical states could be controlled with an
adaptive control scheme based on the SG method. However, Turing patterns on net-
works as well as Chimera states are characterized by a certain degree of randomness

http://dx.doi.org/10.1007/978-3-319-25115-8_10
http://dx.doi.org/10.1007/978-3-319-25115-8_10
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in their respective dynamical patterns. Thus, the challenge is to find a goal func-
tion which describes these dynamical patterns sufficiently well without requiring too
much knowledge of the system.
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Appendix A
Delay Differential Equations

Linear delay differential equations (DDE) are (semi-)analytically solvable (Asl and
Ulsoy 2003). Consider the following linear system of DDEs

ẋ(t) = Ax(t) + Bx(t − τ), (A.1)

with x ∈ Rd and A and B being d × d matrices. As in the case of an ordinary linear
equation we proceed with an exponential ansatz δx(t) = ue�t where u and � are
time independent. Inserting this Ansatz into Eq. (A.1) yields

�ue�t = [
A + Be−�τ

]
ue�t . (A.2)

Equation (A.2) has a solution only for u if the following transcendental equation is
full-filled

det
[
A + Be−�τ − �1d

] = 0, (A.3)

where1d is the d-dimensional unitymatrix.We refer to Eq. (A.3) as the characteristic
equation of system (A.1). Equation (A.3) has an infinite number of roots �1,�2, . . .

The solution of Eq. (A.1) is then given by a superposition of all modes:

x(t) =
∞∑
j=1

u j e
� j t . (A.4)

However, if we are interested only in the stability of the origin of Eq. (A.1), for
example, if we consider a variational equation and x corresponds to a variation,
it suffices to consider the exponent �i with the largest real part. If this real part
is negative the corresponding mode in Eq. (A.4) will decrease. Thus, the origin is
stable. Otherwise, if the real part is positive, the mode will increase and the origin
is unstable. For a variational equation, this would correspond to a decreasing or
increasing variation, respectively.

For details on the spectrum�1,�2, . . . for large delay τ see Lichtner et al. (2011).

© Springer International Publishing Switzerland 2016
J. Lehnert, Controlling Synchronization Patterns in Complex Networks,
Springer Theses, DOI 10.1007/978-3-319-25115-8

195



196 Appendix A: Delay Differential Equations

References

F.M. Asl, A.G. Ulsoy, Analysis of a system of linear delay differential equations,
ASME J. Dyn. Syst., Meas. Control 125, 215 (2003)
M. Lichtner, M. Wolfrum, S. Yanchuk, The spectrum of delay differential equations
with large delay. SIAM J. Math. Anal. 43, 788 (2011)



Appendix B
Kronecker Product

The derivation of the master stability function (MSF) for zero-lag synchrony (see
Chap.3) and ofMSF for group synchrony (see Chap. 5) relies on the Kronecker prod-
uct. The following rules are used (assuming appropriate dimensions of all involved
matrices, in particular, the matrix products AC and BD have to be defined):

Rule for block matrix multiplication

(A ⊗ B)(C ⊗ D) = AC ⊗ BD. (B.1)

Commutativity

(A ⊗ 1n)(1m ⊗ B) = (1m ⊗ B)(A ⊗ 1n). (B.2)

Rule (B.2) follows from rule (B.1): Let A be a matrix of the dimension m × m and
B a matrix of the dimension n × n. Then : (A ⊗ 1n)(1m ⊗ B) = (A1m) ⊗ (1nB) =
(1mA) ⊗ (B1n) = (1m ⊗ B)(A ⊗ 1n) where the multiplication rule (B.1) was used.
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